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Abstract

We determine the rates, photon energy and angular distributions of positronium de-
cays into a photon and a neutrino-antineutrino pair, Ps — ~y,,. We find that both
positronium spin states have access to this decay channel, contrary to a previously pub-
lished result. The low-energy tails of the spectra are shown to be sensitive to binding
effects in positronium and agree with Low’s theorem. Additionally, we find a connection
between the behaviour of the soft photon spectrum in both o-Ps — v, and o-Ps — 3~

decays, and the Stark effect.
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Chapter 1

Introduction

Positronium (Ps), the bound state of an electron and its antiparticle, is a metastable
leptonic atom. It is the lightest known atom and in many ways resembles hydrogen.
Like hydrogen, Ps can form two spin states: the singlet parapositronium (p-Ps) and the
triplet orthopositronium (o-Ps).

Decays of Ps can be precisely described within pure quantum electrodynamics (QED);
the only limitation being the computational complexity of the higher orders in the expan-
sion in the fine structure constant o ~ 1/137. Despite this complexity, many corrections
in higher orders have been calculated [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

While the dominant decay modes of Ps are purely photonic, weak interactions can
transform Ps into final states involving neutrinos [14, 15, 16, 17, 18, 19]. Recently,
Ref. [20] examined the exotic decay of Ps into a photon and a neutrino-antineutrino pair
Ps — ~ui, and claimed that only p-Ps can decay in this way. On the other hand,
Ref. [14] stated that o-Ps can decay into such a final state, even estimating its branching
ratio.

This thesis addresses the apparent contradiction between Refs. [20] and [14]. We
calculate the Ps — 1,0, decay rates and photon spectra for both p-Ps and o-Ps (chap-

ter 2). We find that both p-Ps and o-Ps have access to the Ps — vy, decay mode. In



addition to establishing that the o-Ps decay rate is non-zero, we find differences between
our calculated p-Ps rate and spectrum and those of Ref. [20]. We calculate the angular
distributions of Ps — v,y decays in chapter 3.

It is easy to mislead oneself into thinking that only one Ps spin state can decay into
~vvv, since none of the previously studied final states was accessible to both. Due to the
conservation of charge-conjugation (C') in pure QED, o-Ps decays into an odd number of
photons and p-Ps into an even number. However in the theory of weak interactions, the
weak bosons couple to both the C-odd vector and the C-even axial current. Thus, p-Ps
can decay into a photon and a neutrino pair by a vector coupling (analogous to its main
~v7 decay) while o-Ps can decay into the same final state through an axial coupling.

In three-body channels, the energy of the decay products has an extended distribution.
The low-energy tail is sensitive to binding effects; such effects have been determined in
the three-photon decay of o-Ps [21, 22, 23, 24]. We find an analogous phenomenon
in Ps — ~, decays. Unlike the 3y decay accessible only to o-Ps, in Ps — ~ui
decays, one can compare the low-energy behaviour of both the p-Ps and o-Ps decays.
In chapter 5, we employ the non-relativistic effective field theory (NREFT) methods of
22, 23, 24] to explain how binding effects connect the linear behaviour of the spectra
found in chapter 2 with the cubic behaviour at extremely low energy, predicted by Low’s
theorem [25] (chapter 4).

Before proceeding to the detailed calculations starting in chapter 2, we summarize
some basic properties of positronium. This includes Ps wave functions and energy levels
(section 1.1), discrete symmetries (section 1.2), QED decay modes of Ps (section 1.3)

and weak decays of Ps (section 1.4).



1.1 Wave functions and energy levels of Ps

The total wave function of Ps is the probability amplitude that Ps will be in a given
configuration. To first approximation, the total wavefunction is the product of the spatial

wave function, ¥y, and the spinor (spin wave function), ngn,,

\Ijnlml;sms (X> == 7pnlml (X)nsms s (1 1)

where n,[,m;, s and m, are the quantum numbers that characterize a particular con-
figuration or state. The energy levels are the energies associated with a given state of
Ps.

Since Ps is a non-relativistic system, its spatial wave functions and energy levels are
given by the energy eigenfunctions and energy eigenvalues of the Schrodinger equation for
Ps. To first approximation, Ps is described by the Schrodinger equation for a particle of
electric charge e and reduced mass p = m/2 in the Coulomb potential V (|x|) = —a/|x]
where e (< 0) is the electron charge, m is the electron mass, o ~ 1/137 is the fine
structure constant and x is the separation distance between the electron and positron
in Ps (note, we work in natural units where i = ¢ = 1). Instead of directly solving the
Ps Schrodinger equation, the energy eigenfunctions and energy eigenvalues of Ps can be
obtained by taking advantage of the similarity between the Schrodinger equation for Ps
and that for hydrogen.

Specifically, the Ps spatial wave functions can be obtained by replacing the hydrogen
Bohr radius with the Ps Bohr radius in the hydrogen energy eigenfunctions!. These
wave functions are characterized by the principal quantum number (or energy quantum

number), n, the orbital angular momentum quantum number, [, and the orbital angular

LA detailed analysis of the wave functions and energy levels for hydrogen can be found in any ele-
mentary text on quantum mechanics (e.g., Ref. [26]) and are therefore not duplicated here.



momentum projection quantum number, m;. The spatial wave functions are

0o J2Y E D
Vntmy (%) \/(na) 2n [(n+1)1°

x (ix')f: (21) 0.0, (12)

na na

where a = 2/ma is the Bohr radius of Ps, L7 — are associated Laguerre polynomials
and Y;™ are spherical harmonics. The ground state wave function, ¢ (x) = 9100 (X), is
the wave function of the n = 1, [ = m; = 0 state and is frequently used in our analysis
of the Ps — ~vy1, decay.

In addition to the spatial wavefunction, Ps has two spin states: the singlet state,

p-Ps, and the triplet state, o-Ps. The Ps spinor contains the spin information of Ps and

is the tensor product of the electron spinor, ¢, and positron spinor, ¥,

Toyo/V2 for s = 0 (p-Ps)

€, -0/V2 fors=1/(o-Ps).

where s is the spin quantum number and m, is the spin projection quantum number.
Here, I5xo is the 2 by 2 identity matrix, o are the Pauli matrices and §,, are the o-Ps

spin vectors,
(

(—1,—4,0)/v/2  for my =1

Em. = 4(0,0,1) for my =0 (1.4)

(1,—4,0)/v/2  for my = —1.

\

Now that we have determined the spatial wave function and the spinors, these can
be used to obtain the total Ps wave function using equation (1.1).

The energy levels of Ps can be obtained by replacing the electron mass with the



reduced mass of Ps in the hydrogen energy eigenvalues,

ma2

C 4n?

B, (Ps) = (1.5)

The binding energy of Ps is the energy needed to break Ps into a free electron and free
positron. It is the negative of the ground state energy, —F; = ma?/4. In order to
understand binding effects in the photon spectrum, we calculate the photon spectra of
Ps — v,y decays for photons with energies less than the Ps binding energy (chapter 5).

Relativistic corrections to the kinetic energy as well as interactions involving the
electron and positron spins induce small corrections to the energy levels and spatial
wavefunctions of Ps.

The spin-orbit interaction yields corrections of order O(a?). These corrections origi-
nate from the interaction of the electron’s/positron’s magnetic dipole moment with the
magnetic field created by the orbiting electron/positron. The spin-orbit corrections break
the energy degeneracy in [ (i.e., the energies become [ dependent) resulting in what is
known as the fine structure of Ps.

The spin-spin interaction contributes corrections of order O(a*). These corrections
originate from the interaction of the dipole moments of the electron and positron. The
spin-spin corrections distinguish the energies of p-Ps from the energies of o-Ps. This

energy splitting is known as the hyper-fine structure of Ps.

1.2 Discrete symmetries

Discrete symmetries place restrictions on the allowed decays of Ps. For example, discrete
symmetries determine whether decays, such as o-Ps — vy, can occur.

There are three discrete symmetries in the standard model of particle physics: charge
conjugation (C') — the exchange of particles with antiparticles; parity (P) — the inversion of

spatial coordinates; time reversal (1) — inversion of the time coordinate. If an interaction



Table 1.1: P and C eigenvalues of the total Ps wave function, W,,.sm,. Here, [ is
the orbital angular momentum quantum number and s is the spin angular momentum
quantum number.

Discrete Transform Ps Eigenvalue
P ( -1 )l+1
C ( -1 ) I+s

is invariant under a discrete symmetry (or a composition of discrete symmetries) and if
the initial state is an eigenstate of the discrete symmetry, then the final state, after
interaction, must be an eigenstate of the symmetry operator with the same eigenvalue.

In order to understand the restrictions discrete symmetries place on Ps decays, we
need to determine the C', P and T eigenvalues of Ps.

The P eigenvalue of Ps is the product of the respective P eigenvalues of the spatial
wave function and spinor?. To obtain the P eigenvalue of the spatial wave function,
we begin by inverting the spatial coordinates in equation (1.2). The only part of the
spatial wave function that is sensitive to such an inversion is the spherical harmonic,
Yim(0,6) — (=1)'Y3,,(0,¢). Thus, the P eigenvalues of the spatial wave functions are
(—1)!. The P eigenvalue of the Ps spinor is a product of the intrinsic parity of the
electron and positron. Since the electron has an intrinsic parity of 1 and the positron
has an intrinsic parity of (—1), the Ps spinor transforms as 7s,, — —7smn, under P
27, 28, 29]. Therefore, the P eigenvalue of the total Ps wave function is (—1)"!, or

equivalently under P, the total wave function transforms as
P
Crtmgzsm, (X) = (=1 Cotimysom, (%) (1.6)

To determine the C eigenvalue of Ps, we note that application of C' is equivalent to

the application of P and interchanging the positron and electron in the Ps spinor [30].

2The C and T eigenvalues can also be obtained in the same manner. However, we chose a simpler
alternative approach.



The p-Ps (0-Ps) spinor is antisymmetric (symmetric) under the exchange of electron and
positron, contributing a factor of (—1)*™! to the C eigenvalue. Multiplying this with
the P eigenvalue yields the C eigenvalue, (—1)**!. Therefore, the total Ps wave function

transforms as

\Ilnlmusms (X) E} <_1)S+I\Pnlml;sms (X) (17)

The time-reversal operator is an anti-unitary operator that reverses the direction of
the 3-momentum and spin of a particle [29]. Acting on the total Ps wavefunction, 7" sends
the position space wavefunction to its complex conjugate Ynim, — ¥, = (—1)™Wn 1, —m,
and flips the spin of the electron and positron in the Ps spinor 7g,, — (—1)¥™ns ..

Combining the above, we obtain the transformation rule for the total Ps wavefunction

under T
Wotimgsoms (X) 2 (1) ™,y (). (1.8)

Notice that the Ps state is not an eigenstate of the time-reversal operator.
Since the Ps state is not an eigenstate of T, only the discrete symmetries of P and C'
restrict the decay modes of Ps. The P and C' eigenvalues of the total Ps wave function

are listed in Table 1.1.

1.3 QED decay modes of Ps

Within QED, Ps can only decay into photons. Furthermore, the decays of p-Ps and o-Ps
are restricted to different final states by C conservation. In other words, the allowed
decay modes must have the same C' eigenvalue for the initial and final state.

To determine the allowed decay modes, we equate the C' eigenvalue for Ps and the C

eigenvalue for a state of N photons, and determine the valid values of N. Since the C'



eigenvalue of a photon is —12 a final state with N photons has a C eigenvalue of (—1)¥
[30]. Equating the C' eigenvalue of the initial state (Table 1.1) and that of the final state

(N photons) yields the condition

(-1)"** = (-1)Y = [+s=N (mod 2). (1.9)

That is, for an orbital angular momentum, [, p-Ps must decay into [ + 2n photons while
0-Ps must decay into [ + 2n 4+ 1 photons where n is a nonnegative integer. These are
called the selection rules for QED decay modes of Ps. Note, the single photon decay is
forbidden by momentum conservation.

The dominant (n = 1) decay modes of Ps are: p-Ps — 27 and o-Ps — 3v. These
decay modes determine the lifetime of Ps. To first order, the Ps lifetimes are given by
the corresponding electron-positron annihilation rate at rest, efe™ — 2, for p-Ps [31]

and eTe” — 3y for o-Ps [32] (see Fig. 1.3). Explicitly, the lifetimes of Ps are

2~ 1070 for p-Ps
T(Ps)=¢ (1.10)
m ~10~"s for o-Ps
which are the inverses of the decay rates
meTaE) ~ 101971 for p-Ps
['(Ps) = (1.11)
W ~ 10"s™!  for o-Ps.

The branching ratio of the decay Ps — X, for some final state X, is a measure of
how often that decay occurs relative to all possible decays. It is defined as the ratio of

the Ps — X decay rate and the total decay rate of Ps. Since the total decay rate is

3Intuitively, we can see this by considering the classical electromagnetic field, A,; when the sign of
the charge and charge density is reversed, A4, — —A,,.
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(a) (b)

Figure 1.1: Feynman graphs for (a) ete™ — 2 and (b) ete™ — 3~ annihilation.

approximately the same as the decay rate of the dominant mode, the branching ratios

for p-Ps — X and o-Ps — X are approximately

[(p-Ps — X)
(p-Ps — 27)
['(0-Ps — X)
['(0-Ps — 37)

Br(p-Ps — X) =

?

Br(o-Ps — X) = : (1.12)

The Ps — v,y branching ratios are calculated in chapter 2.

1.4 Weak decays of Ps

Weak interactions introduce new decay modes for Ps with final states that include both
photons and neutrinos. The theory of weak interactions, unlike QED, breaks both C- and
P-symmetry but approximately conserves the composite symmetry C'P*. The breaking of
C-symmetry opens the possibility of C-violating photonic decay modes such as p-Ps — 3~
and o-Ps — 4v as well as C-violating photon-neutrino decays such as o-Ps — ~uv,1,.
These and other novel decays make Ps an interesting tool for studying C-violating effects.

While interesting, weak decays of Ps are heavily suppressed because the electron

4While processes involving all three generations of leptons can break C'P, they are not important for
the decays we consider. Therefore, we take C'P to be an exact symmetry of the weak interaction.



mass is tiny compared to the mass of the force mediating Z- and W-bosons. Since the
amplitudes for weak decays are proportional to Ggpm? ~ 3 - 107! [14] (where Gp =~
1.166 - 107°/GeV? is the Fermi constant [33]), these decays have exceptionally small
decay rates and branching ratios. For example, Ref. [17] considers the decay of Ps into
a neutrino-antineutrino pair (Ps — v,2). It reports that only o-Ps can undergo such a
decay. This decay has rates

G%a?’mg
241

(1+4sin®fy) ~7.2-1071s71 forf=e

I'(0-Ps — viy) = (1.13)

GZa3m]
24m

(1 —4sin®fy) ~1.8-10712s71 for £ = v, 7,

and branching ratios

95-1072! forf=e
Br(o-Ps — ) = (1.14)

6.2-1071% for ¢ =v, 7.

Even though these decays cannot be detected today [19], such rare standard model
decays will be important in the search for new beyond the standard model physics as
experimental sensitivity increases.

As in the Ps — 1,7, decay outlined above, previous research has found that weak (as
well as QED) decays were exclusively accessible to either p-Ps or o-Ps. It is, therefore,
easy to assume that only one Ps spin state can decay into vy, the subject of our
research. However, it is not obvious that this assumption should be true since weak
interactions break C-symmetry.

We hypothesise that p-Ps can decay into a photon and a neutrino pair through a C-
even vector coupling (analogous to its main 27 decay) while o-Ps can decay into the same
final state through a C'-odd axial coupling. This hypothesis will be tested in chapter 2

where we compute the p-Ps — vy, and o-Ps — yu,0, decay rates.

10



Chapter 2

Ps — vvypvp decay rates and photon

spectra

The relevant ee~ — ~yu,7, annihilation graphs for Ps — 1,1, decays are presented in
Fig. 2. The photon is emitted off the initial electron or positron before the e*e™ pair
annihilates into a neutrino-antineutrino pair via Z or W boson exchange. The s-channel
Z-boson exchange (Fig. 2.1(a)) contributes to the amplitude for all lepton flavors, ¢, while
the t-channel W-boson exchange (Fig. 2.1(b)) contributes to the amplitude only when
¢ = e. The photon can also be emitted off of an internal charged W boson (Fig. 2.1(c));
since this process is suppressed by an additional factor of m?/M3, =~ 4-10~" <« 1 where
m is the electron mass and My is the W-boson mass, it is ignored in our calculations.
We begin by calculating both Ps — v, decay amplitudes. The initial incoming 4-
momenta of the electron and positron are denoted by p; and p, while outgoing 4-momenta
are denoted by k; where k; is the 4-momentum of the neutrino, ks the anti-neutrino and
k. the photon. Since the Ps binding energy is small, O(ma?), compared to the rest
mass of the initial leptons, their average kinetic energy is negligible. Therefore, we take
the initial electron and positron to be at rest with 4-momentum p; = p; = p = (m, 0).

Similarly, the momenta of the virtual Z and W bosons are also negligible compared to

11
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Figure 2.1: Feynman graphs that contribute to the ete™ — 14, annihilation ampli-
tudes relevant for Ps — vy, decays (¢ = e, u, 7). For both (a) and (b), there is an
analogous graph where the photon is emitted off the positron leg. Both (b) and (c) only
contribute to the amplitude when ¢ = e.

their rest masses and their momentum is neglected in the Z and W propagators. To
account for the bound state nature of Ps, we include p-Ps and o-Ps projection operators
in the spinor trace of the amplitudes along with a factor of ¢g(0)/v/m where 1y(0) is

the Ps ground state wave function. With these considerations, the Ps — vy, decay

amplitudes are

1o(0)

iMpo = —4V2ieGpm NG (k1) (ve — ary”)v(ks)
71 K, +m
xXTrWp/o (7u (W - aw5) (p1 — kv;Q — m2¢7

L K, —patm
+£, (k‘j— pf;g e ol (W — aﬂ5) ) (2.1)

where G ~ 1.166 - 107°/GeV? is the Fermi constant [33], a ~ 1/137 is the fine structure
constant, €, is the photon polarization and ¥, are the p-Ps and o-Ps projection opera-
tors of Ref. [34]. Here, v, and a, describe the electron vector and axial-vector couplings

induced by Z (¢ = e,u,7) and W (¢ = e; a Fierz transformation is understood [17])

12



boson exchange

1 _sin?6w for £ =p, T,

Ay =

1 +sin’fy forl=e
Ve = (22)
1
4

(2.3)

Since the weak mixing angle, 6y, is such that sin® 6y ~ 0.238 [35] (numerically close to

1/4), the vector coupling is suppressed for £ = u, 7. We find the total decay rates

) 2C2mP o2 35107 st forl=e¢
I, =T(p-Ps = ywwy) = % R~ (2.4)
2.1-1071"s7t for £ = p, 7,
8G2 54,2
Ty =T(0-Ps = i) = % ~1.2-1071 st (2.5)
m

The branching ratios are small, as expected for weak decays:

T(p-Ps — i) 431072 forl=e

Br(p-Ps — o) = C(pPs = 27)

2.6-1072" for { = p, T,

F(O—PS — ’)/Vgﬂg)
I'(0-Ps — 37)

Br(o-Ps — ywv) =~ 1.7-107% for £ = e, i, 7. (2.7)

We find that the o-Ps not only can decay radiatively into neutrinos, but also that since
it can decay into all three flavors with equal probability, its total decay rate into v~y is
in fact slightly larger than for the p-Ps.

Equation (2.7) shows that the o-Ps branching ratio was overestimated by two orders
of magnitude in [14]. The estimate of Ref. [14] has the correct powers of the universal

constants, Gg, a, and m

['(0-Ps — yvy1) (Gpm2)2 ~10-1,

['(0-Ps — 3v) a (28)

13



However, the additional factor 4a?/ (37%(7? — 9)) & 0.01 reduces the branching ratio by
two orders of magnitude.
In Ref. [20], o-Ps is claimed not to decay into yvv, contrary to what we find. On

the other hand, the decay rate of p-Ps into this final state seems to be overestimated

by about a factor 60. Their result, presented as I' (p-Ps — yv,i7y) = a4i2§m52(sin2 Ow),
has the correct dependence on coupling constants and the mass, but the function of the
weak mixing angle Y(sin? fy,) seems to be in error. This can be seen in equation (11)
in [20] that describes the decay into muon neutrinos. Only the Z boson contributes in
this channel, so the amplitude should be proportional to the vector coupling of the Z
to electrons and vanish when sin? fy; — 1/4; the expression in that equation does not
vanish in this limit.

For the photon spectra we find very simple expressions,

1 dl,
——— = 6x,(1— 2.9
Fqs = tn(l-) 29)
1 drI, 3
— = —z4(2— 2.10
Fo = gmR-m) (2.10)
where z, = E,/m € (0,1). These spectra are shown in Fig. 2.2. Since there is some

similarity between Ps — ~u,7, and o-Ps — 3v decays, the 0o-Ps — 3~ spectrum (first
calculated by Ore and Powell [32]) is also included in Fig. 2.2 for comparison.

When the photon reaches the maximum energy, ., = 1, the neutrino (left-handed)
and the antineutrino (right-handed) move collinearly in the direction opposite to the
photon. Their spins cancel and the angular momentum of the system is carried by the
photon’s spin. Clearly, this is possible only for o-Ps; for this reason, the p-Ps spectrum
vanishes at z, = 1 (Fig. 2.2(a)). This spectrum also vanishes at z, = 0. However, the
p-Ps spectrum of Ref. [20] vanishes at neither z., = 0 or z., = 1.

The p-Ps spectrum is maximal at ., = 1/2; different from the maximum =z, = 2/3,

predicted in [20]. On the other hand the o-Ps spectrum is maximal at x, = 1 when the

14



zy = E,/m
(a)
Figure 2.2:  The photon spectrum of p-Ps — ~ui, (solid), o-Ps — ~vu, (dashed)
and o-Ps — 37 (dotted) decays plotted over (a) the full energy domain of the photon,
x, € (0,1) and (b) over the low-energy domain z., € (0,0.1).
photon carries the whole angular momentum of the system.
We also note that the spectra we have found (neglecting binding effects) are linear
in the low-energy limit (Fig. 2.2(b)). Since Low’s theorem [25] predicts the low-energy
behaviour of the spectrum to be cubic rather than linear, we shall determine how binding

effects modify the results (2.9) and (2.10) (chapter 4).

15



Chapter 3

Angular distributions of Ps — vy

decays

In Chapter 2, we calculated the decay rates and spectra for p-Ps and o-Ps, and found that
both can decay into a photon and a neutrino-antineutrino pair. To better understand
these decays, we calculate the angular dependence of the Ps — v, amplitudes (Sec. 3.1)
and then use those amplitudes to determine the angular distributions of Ps — ~u

decays (Sec. 3.2).

3.1 Angular dependence of the decay amplitudes

The angular dependence of the decay amplitudes is most easily found by reformulating
the three-body decay Ps — 1,7y in terms of a two-body decay Ps — vZ*, where Z* is
a fictitious massive vector boson of polarization € and 4-momentum q. Specifically, the
three-body phase space of the decay rate is factorized into two two-body phase spaces
(one for Ps — 4Z* and one for Z* — vv) and an integral over the invariant mass
squared of the Z* boson (Appendix A). After integrating over the neutrino momenta,
the Ps — vy decay rate can be written as the integral of the Ps — vZ* decay rate

(multiplied by a factor from the Z* — v phase space) over the invariant mass of Z*
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squared (Appendix B),

Gi [

212y 27

r

p/o — q2rp/0—Ps—wZ*> (3.1)

where ¢ = k1 + ko is the Z* 4-momentum and

1 1

r o-Ps * = =
ploPsZ ngPs

0)° 1
/dq)2 (pl +p2aQ7 k’y) W}O( )| gz ‘Mp/o—Ps—wZ* ? (32>

m
pol

Here, g is the number of polarizations of the initial Ps state and the sum, Zpol’ is over
the Z* polarizations.

From (3.1), it is clear that the three-body problem Ps — ~1,1y can be described
in terms of the two-body problem Ps — yZ*. The Z* couples to the electron current
through both vector and axial-vector coupling with the Feynman rule ie¢* (v, — apy°) at
each ete™ Z* vertex.

To construct the angular dependence of the Ps — ~Z* decay amplitudes on the
spherical angles 6 and ¢, we first determine the decay amplitudes to final states where
the photon moves along the +z-axis and the Z* boson moves along the —z-axis. The
angular dependence is then determined by rotating the initial state and considering decay
along the new z’-axis [36].

The p-Ps — vZ* decay amplitudes are isotropic and given by
Amg,m/z (9, gb) = Bm'wm'z X 6m/wv*mlz’ (33)

where m/, € {£1} and m/, € {£1,0} are the spin projections of the photon and Z* along
the z’-axis. The z’-axis points along the photon trajectory defined by the spherical polar
angles f and ¢ in the original unrotated frame. The p-Ps amplitudes along the z-axis,
By my,, are calculated in Appendix C and the angular amplitudes, Amg,m’z (0,0), are
listed in Table 3.1.
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Table 3.1: The p-Ps — vZ* decay amplitudes, -Amfym’z Jvee?, as a function of the spherical
angles ¢ and ¢. Since p-Ps is odd under parity, A_,; —py, = — Ay ;5 therefore, only
the mf7 = +1 amplitudes need be tabulated.

™Mz«
m; +1 0 —1
+1 0 0 4i/\/2

The o-Ps — vZ* amplitudes must be calculated for each initial polarization of o-Ps.
In the initial frame before decay, the o-Ps atom is in a state of definite angular momentum
with some spin projection along the z-axis. We let |A) represent this initial state. The
0-Ps atom subsequently decays along the z’-axis with the amplitude Amfym/Z (Appendix
C). Using the Ayt e, the o-Ps angular amplitudes, A%:m,z , are derived in Appendix D
and are listed in Table 3.2. Here, my € {£1, 0} is the initial spin projection of o-Ps along
the z-axis.

Alternatively, one can obtain the angular dependence of the o-Ps — ~vZ* amplitudes

using the helicity basis formalism (Appendix E).

Table 3.2: The o-Ps — vZ* decay amplitudes, Agﬁm,z Jase?, as a function of the spherical
Y

angles ¢ and ¢ evaluated at q = —k,, £z = 2m — E,. The my = —1 amplitudes can be
obtained from the mj = +1 amplitudes by the replacement 6 — 6 + m and ¢ — —¢.

/!
mz*

ma m. +1 0 -1

+1 41 0 V2(1 4+ cos 0)e®/\/1—x, —2i sin fe*®
—1 2i sin fe'® —V2(1 = cos )™/ /T -, 0

0 +1 0 2sinf//1 —z, 4icos0/v/2
-1 —4icosf/\/2 —2sinf/\/1 -z, 0

To validate the amplitudes in Tables 3.1 and 3.2, we use them to calculate the decay
rates and photon spectra, and compare these with those obtained in chapter 2. To do

this, we first derive the spin averaged amplitudes squared. For p-Ps, this task is simple,

1 2 16v2e?
g Z ‘Amwm’z{q:_k%EZ:?m_Ev == ?f . (34)

’ /
mwmz
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To obtain the o-Ps spin averaged amplitude squared, it is convenient to first sum over

my and mif

2
— ma ‘ — Q2,4
Z ‘ mw+ q*—k.y Eyz=2m—E, Z ‘Amw— a=—k+,Ez=2m—E, Bage”, (3:5)
mAm mAmfy
16a2e*
) ‘Am‘ - e (3.6)
v, a=—k,,Ez=2m—E, 11—,

Then completing the sum over m/, and dividing by the number of o-Ps and Z* polariza-

tions yields the spin averaged amplitude squared

2 2 (8 ) N 16aze?
= — (8aye —
a=—k, Ey=2m—E, 9 ° 91 — )

1 .
73 o A

/ /
mamlml,

_ 16age(2 — x,)
91—z,

(3.7)

Next, the Ps — vZ* decay rates are calculated by substituting equations (3.4) and
(3.7) into (3.2). Since the spin averaged amplitudes squared are independent of angular

location of the photon, 6, and ¢, the angular integrations in (3.2) are trivial

1 Y
Fp/o—Psﬂ'yZ* = omp /d(DQ (2]% q, k ) | Ofn Z |MP/0 PSH'yZ* )
S pol
_ 1 BEm*,.¢%,0) [ (0) 16v7e!/3
2mes 8T Mmoo | 16azet (2 — ) /9(1 — )
adm? 4m? — ¢* v}

oAt 22— w30 -1,

2
adm? vy

= T (3.8)
@2~ 2,)/3(0 - )

where the top line in the curly brackets is used for the p-Ps (0-Ps) decay rate. Here, we

have used equation (A.2) to simplify the two-body phase space in the second line and
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¢* = 4m*(1 — x,) to simplify the third line. Substituting the above equations into (3.1)

and writing d¢* = —4m?2dx.,, we obtain the Ps — 1,7 photon spectrum and decay rates
4GEatm® ! v?a:w(l - x’y)
Fp/O = . 3 dx’y (39)
3T 0

a;z(2 = 24)/3

_ % izl (3.10)
2a3/3
The decay rates (3.10) are identical to (2.4) and (2.5). The spectra are the integrands of
equation (3.9) and are also equal to the spectra (2.9) and (2.10). Thus, the amplitudes
of Tables 3.1 and 3.2 are consistent with our results from chapter 2.

While it is evident that p-Ps and o-Ps cannot decay into the same final states (even
though they have the same constituent particles), we confirm the orthogonality of the
p-Ps and o-Ps decay amplitudes. The o-Ps amplitudes, A}, are trivially orthogonal to
the p-Ps amplitudes (3.3) because p-Ps cannot decay into a longitudinally polarized Z*

and photon. To check the orthogonality of ;”/;F, with (3.3), we take their inner product

/dQAm%mZ (ATA (0,0)) o /dQ( A (0,9))" (3.11)

Since AT, (0, ¢) are proportional to e* or cos f (depending on my), the inner products
vanish proving orthogonality; this is as expected because AT, (0,¢) (Table 3.2) are p-
waves while the p-Ps amplitudes are s-waves (Table 3.1).

Thus, the p-Ps — vy and o-Ps — yv0, decays do not have access to the same final

state although both the p-Ps and o-Ps final states contain the same constituent particles.
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3.2 Angular distributions

The angular distribution for a specific v + Z* final state is found by differentiating the
decay amplitude (3.1) by x,, and cos § where the squared amplitude corresponding to the
specific final state (Tables 3.1 and 3.2) is used in place of the spin averaged amplitude
squared.

Since the nonzero p-Ps amplitudes are isotropic, the nonzero p-Ps — yi,v, angular
distributions are also isotropic

dQFmL/:i’;m’Z=¥/ _ 9prv(1 — x’Y)
dz.,d cos 6 2

(3.12)

Thus, p-Ps is equally likely to decay into a photon and a neutrino-antineutrino pair where
the photon is emitted in any direction.

The o-Ps — vy, angular distributions are determined to be

— Z = —z (l—-2x — | —= )
[,de,dcosf 6477 7 21 | ape?
q=—k+,Ez=2m—-E,

and are tabulated in Table 3.3. Since Z* is a mathematical convenience, the physical
angular distribution for a given o-Ps polarization m, and photon helicity m/ is obtained
by averaging over the Z* polarizations. For an o-Ps atom initially polarized in the my = 0

Table 3.3:  Angular distributions of 0-Ps — v decays, (A°I""*  /dz,d cos)/T,. The

/ m/Z
mp = —1 distributions can be obtained from the my = +1 angﬁlar distributions by the
replacement § — 0 + 7 and ¢ — —¢.

m'y.
ma m’v +1 0 —1
+1 41 0 27cos*(0/2)x,/8  27sin*0z,(1 —x,)/16
—1  27sin®fx (1 —x,)/16  27sin*(0/2)z. /8 0
0 +1 0 27 sin? 0z, /16 27 cos? Oz, (1 — ) /8
-1 27 cos? Oz (1 — x,)/8 27sin” O, /16 0
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state, the angular distributions for decay into a photon of helicity m! = 41 are

dQFO / 9

) 2
3 Z dz,d 0080 16110% [sm 0+ 2cos”0(1 — xw)} ) (3.14)

which are non-zero for all §. The angular distribution for o-Ps initially polarized in the
ma = +1 state decaying into a photon of helicity m/, = +1 is

dQFLmZ 9 ) »
3 Z dz.,dcosé 16F°x7 [2cos(0/2) + sin® O(1 — z,)] . (3.15)

Since this angular distribution vanishes for § = 7, an o-Ps atom in the m, = +1 state
cannot decay into a photon of helicity m/ = +1 along the —z-axis. Similarly, an o-Ps
atom initially polarized in the my = +1 state cannot decay into a photon of helicity
m! = —1 along the +z-axis.

The photon spectrum for a specific v+ Z* final state is calculated by integrating the

corresponding angular distribution by d cos 6. These spectra are listed in Tables 3.4 and

3.5 and provide further insight into equations (2.9) and (2.10).

Table 3.4: p-Ps — ~u, photon spectra, (dFm;m/Z/dxv)/Fp, for specific v + Z* final
states. Since [ Ay my |* = [ Ay g, [%, only the m/ = +1 decay rates need be tabulated.

/
mZ*

m. +1 0 -1
+1 0 0 9z,(1 — )

Table 3.5:  0-Ps — v, photon spectra, (d FmA /dxv)/FO, for specific v + Z* final
states and any mj.

m'y.
m +1 0 -1
+1 0 9z, /4 9z,(1 —x,)/4
-1 9z, (1 — z,)/4 9z.,/4 0
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From Tables 3.4 and 3.5, we see that the nonzero photon spectra of decays into final
states with m/, = £1 and m/, = F1 are proportional to z, (1 — x,) and vanish as z,, — 1.
On the other hand, the nonzero photon spectra of decays into final states with m’7 =+1
and m’, = 0 are linear and maximal at ., — 1.

The o-Ps photon spectrum is maximal at x, = 1 because the o-Ps decay has access
to two final states with a longitudinally polarized Z*, which add to the linear term in
the spectrum, unlike the p-Ps decay. Specifically, the AL amplitudes contain a factor of
2m/q = 1//1 —  from the longitudinal polarization of Z* that enhances the amplitude
for high-energy photons and when squared cancels the factor ¢* « (1 — z,) in the dg¢?
integral of (3.1). Physically, the high-energy limit ., — 1, the longitudinal polarization
of Z* represents a final state where the neutrino and antineutrino are collinear.

Lastly, we note that the photon spectra (2.9) and (2.10) can be obtained from Tables
3.4 and 3.5 by averaging over the photon and Z* polarizations and summing over the

photon polarizations

1 dFm’ m/,
= —Z =62, (1 —z,), (3.16)
3 m{yzm,z d.ffy Py Y
1 dror,. 3r,
5 > T = (1 ). (3.17)
1 ! Y
mamlm’,

It is clear that the decay rates (2.4) and (2.5) are obtained by integrating the above over

Ty
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Chapter 4

Low’s theorem and the soft photon

limit of the spectra

Low’s theorem [25] places constraints on the amplitude of any radiative process and
predicts the spectrum in the soft photon limit. In chapter 2, the tree level electroweak
photon spectra, equations (2.9) and (2.10), were found to be linear in the low-energy
limit, similar to the Ore-Powell o-Ps — 3~ spectrum [32]. However, it was pointed out by
Ref. [21] that the Ore-Powell spectrum is in contradiction with Low’s theorem. Therefore,
it is important to reconcile any discrepancy between Low’s theorem and equations (2.9)
and (2.10).

Low’s theorem states that the O(E;") and O(EY) terms in the Laurent expansion of
the radiative amplitude, X — Y + v, are obtained from knowledge of the non-radiative
amplitude, X — Y [21, 22, 25]. Expanding the radiative amplitude, et M, in a Laurent

series in the photon energy, we obtain

M, =Y My E7, (4.1)

n=-—1

where M, is the coefficient of the O (E;) term of the Laurent series. The coefficients
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M and M; are independent of E, and determined by the non-radiative amplitude, its
derivatives in physically allowed regions and the anomalous magnetic moments of the
particles involved in the reaction [25].

The M, coefficient is proportional to the non-radiative amplitude multiplied by the
factor —Q;e - p;/k- - p;, which arises from the emission of a photon by an outgoing or
ingoing particle [22]. The M, coefficient vanishes when there are no moving charged
particles in the initial and final state of the non-radiative process or when the non-
radiative amplitude is zero. The coefficient M is a function of the magnetic moments
of the particles as well as the non-radiative amplitude and its derivatives with respect to
energy and angle [25].

By combining the behavior of the radiative amplitude and the phase space, we find

that the low-energy photon spectrum has the form

dr A
— =_—"14+8B E., + DE? E3 4.2
aE. EWJF +CE, + 7+(9(W), (4.2)

where

A = M

B = MM+ M M;

C = M+ MM+ MM,
D

= MM+ MM+ MM + Mo M. (4.3)

If M, vanishes, then A = B = 0 and the soft photon spectrum is of order £,dE,. If
both My and M vanish, then A = B =C = D = 0 and the soft photon spectrum is of
order E3dE,.

For p-Ps — 1,1, the non-radiative p-Ps — 147, amplitude vanishes [17]; application

of Low’s theorem yields My; = 0 for the radiative decay, p-Ps — ~. Since the
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radiative o-Ps — vy decay proceeds only via axial-vector coupling while the non-
radiative o-Ps — 14, amplitude is proportional to vector coupling [17], Low’s theorem
requires the O(E ") and O(EY) terms of the radiative o-Ps — 1,7, amplitude to vanish
(i.e., Mp1 = 0). Thus, for both Ps — v,y decays, Low’s theorem predicts that the
photon spectra are cubic in the low-energy limit in apparent contradiction with equations
(2.9) and (2.10).

Equations (2.9) and (2.10) were calculated using the tree level electroweak amplitude
for the ete™ — vy, annihilation multiplied by the probability density for the ete™ pair
to be at the origin. This calculation assumes that the electron and positron are initially
free and at rest, and therefore neglects the binding effects in Ps (which are of order ma?).
For photons with comparable energies, binding effects become important and equations
(2.9) and (2.10) are no longer accurate.

To resolve the contradiction between equations (2.9) and (2.10), and Low’s theorem,
we must include binding effects in the soft photon spectrum of Ps — 1,7, decays. To do
this we employ the non-relativistic effective field theory (NREFT) methods developed in
Refs. [22, 24, 23].
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Chapter 5

Soft photon spectra of Ps — vyuvyvp

decays

NREFTSs provide a systematic way of incorporating binding effects in the computation
of bound state decay amplitudes. One computes the decay amplitudes in electroweak
theory. Then a NREFT Hamiltonian is constructed to reproduce the soft photon limit of
the electroweak amplitudes when ignoring binding effects. In other words, the effective
theory dynamics (ignoring binding effects) are set equal to the low-energy limit of the
electroweak dynamics.

Once this matching has been performed, the NREFT Hamiltonian is used to calculate
the effective theory amplitudes and subsequently the soft photon spectra. The effective
theory amplitudes are calculated using time-independent perturbation theory and have
both long (Coulomb) and short distance (annihilation into a 147, pair) contributions.

We calculate the soft-photon limit of the Ps — ~w1, electroweak amplitudes in
Sec. 5.1. The matching conditions and effective theory photon spectra are calculated in
Secs. 5.3 and 5.4.

The Coulomb (H¢) and the interaction (H,y,,) Hamiltonians describe the bound state

dynamics of an e*e™ pair interacting with a quantized electromagnetic field. Following
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Ref. [23], we argue that the dipole approximation of the interaction Hamiltonian is valid

in the energy range £, < m (Sec. 5.2). In the dipole approximation, the Hamiltonians

are

HC + Hint7 (51)
2

p° «

— = = 2.2

m o r’ (5:2)

—ex-E—plos+0,]- B, (5.3)

in terms of the center of mass variables p = (p; — p2) /2 and x = x; — X5 where the

indices 1 and 2 refer to the electron and positron [22]. Here, o4/, are the Pauli matrices

acting on the electron (¢) and positron () Pauli spinors. The electric, E, and magnetic,

B, fields are evaluated in the dipole approximation. Therefore, H;,; can induce both E1

and M1 transitions within the Ps atom.

The Coulomb Hamiltonian Hg is the leading term in the velocity, v < 1, of the

electron. The interaction Hamiltonian, H;,, is higher order in v and taken as a pertur-

bation. The (p/o)-Ps annihilation amplitude is given by the first order v expansion of

the electroweak e*e™ — vy, annihilation amplitude. While the neutrino energies are

of order O(m), a non-relativistic treatment is still valid since the annihilation into a

neutrino-antineutrino pair is a short distance effect — the neutrinos are not dynamical.
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5.1 Soft photon limit of the tree level electroweak
decay amplitude
Using the standard Feynman rules, the Ps — yvi decay amplitude (Fig. 2) is

y 1 _/]{’y +m
(p1 = ky)? —m?

. K —pa+

M = —2v/2iGpemi (p») (J (ve — ary?) &

where p; and py are the electron and positron 4-momenta, k; and ko are the neutrino and
antineutrino 4-momenta, k- is the photon 4-momentum and e, is the photon polarization.
Here, J* (k1, ko) = u(ki)y* (1 — 7°) v(ko) is the neutral weak current (see equation (F.6)
in Appendix F).

In equation (5.4), we choose the Dirac representation of the gamma matrices and

Dirac spinors for the electron and positron. In this representation, the electron spinor is

1 E+m

us(p) = JEim - Ps, (5.5)

where £ = \/m? + p?, ¢, is the two-component electron spinor and the index s denotes
the spin projection [37]. The positron spinors are related to the electron spinors by charge
conjugation,

1 b-o

Us(p):ﬁ B Xs (5.6)

where y, = i02¢? is the two-component positron spinor.
Since the Ps binding energy is small, O(ma?), the typical momentum of the electron
is small and we neglect it (i.e., py = po = (m,0)). In the limit £, — 0, the neutrino

momenta are back to back (k; = —ks) and J% — 0. Factoring out the E, dependence
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and working with k, = k., /E,, equation (5.4) becomes
M = 2v/2Cpex! ('Ug <1A<7 X 67) J4ap(e, xJ)- 0'> o, (5.7)

where we choose €, to be real and transverse to k,. Projecting the electron and positron
spinors onto the p-Ps (xT¢ — v/2 and xTo¢ — 0) and o-Ps (xT¢ — 0 and xTo¢ — /2€)

states, the low-energy limit of the electroweak amplitudes are

~

M, = 4Gpev (e, x J) -k, (5.8)

M, = 4Greas (e, x J) - &, (5.9)

where £ is the o-Ps polarization vector.

5.2 Dipole approximation of the interaction Hamil-
tonian

While normally the dipole approximation is applicable for photons with wavelengths
much larger than the spatial extent of the Ps atom, 2/ma (i.e., E, < ma), it has been
shown that the dipole approximation of the interaction Hamiltonian holds in the enlarged
energy region E. < m for the three-body decay o-Ps — 3+ [23, 24]. In this energy region,
amplitudes where the intermediate states propagate via the Coulomb Green’s function,
are a series in a\/WE,Y ~ y/a rather than integer powers of «. The main contributions to
the effective field theory amplitudes arise from distances of order O(1/,/mE.), which are
much smaller than the Ps radius O(1/ma) [24]. We argue that the same considerations
apply to Ps — 1,0, decays and that the dipole approximation holds in the extended
energy range F, < m.

Initially, the Ps atom is in either the 1Sy or 35; states at energy E;, = —ma?/4
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relative to the threshold. The p-Ps (0-Ps) atom then emits a soft photon and the eTe™
pair propagates non-relativistically in the Coulomb field in a C-odd (C-even) state of

energy E; — E, before annihilating into a neutrino-antineutrino pair (Fig. 5.1).

p-Ps > L > 0-Ps . @, »

NI
X

Figure 5.1: Effective theory graphs for (a) p-Ps — v, and (b) o-Ps — . The
open square (circle) represents a M1 (E1) transition while the solid star represents the
annihilation of o-Ps into a neutrino-antineutrino pair.

The Green’s function of the eTe™ pair, interacting via a Coulomb field, G, describes

the propagation of the pair between the emission of the soft photon and the annihilation

into a neutrino-antineutrino pair. It satisfies the equation

(Hc ; a) Golx,yim) =8 (x—y) (5.10)

and is proportional to exp (—#r) where —x?/m = E,. Therefore, the virtual pair propa-
gates over a distance of O(k™1) [23].

Since the spin-singlet state cannot annihilate into a neutrino-antineutrino pair [17],
the virtual C-odd (C-even) state of Fig. 5.1(a) (5.1(b)) must be a triplet state of orbital
angular momentum L = 2n (L = 2n + 1) for n a non-negative integer. The transition
amplitude for 'S — 3(2n) + v (35 — 3(2n + 1) + 7) is a magnetic M(2n) (electric
E(2n + 1)) type interaction and proportional to (E,/m)(E,r)** ((E,r)**!). Further-
more, the amplitude for annihilation contains L derivatives of the Green’s function and
is proportional to (k/m)Y. Since the exponential dependence of the Green’s function,

exp(—kr), constrains the product xr to order one, the total amplitude scales with the
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photon energy as (E,/m)***! [23].

Therefore, only the intermediate states with the lowest n (i.e., n = 0) need to be
considered for E, < m [23]. The intermediate state of Fig. 5.1(a) is the o-Ps ground
state, 135, while the intermediate states of Fig. 5.1b are the L = 1 o-Ps excited states,
n3Py12. These states are reached from the initial p-Ps and o-Ps ground states by M1
and E1 transitions respectively. Thus, the dipole approximation is valid in the energy

region £, < m.

5.3 Soft photon spectrum for p-Ps

As noted in Sec. 5.2, p-Ps cannot decay into a v,0, pair; therefore, the p-Ps — ~yu,0
decay must proceed solely through an M1 transition. The M1 interaction flips the spin of
either the electron or positron and takes the initial p-Ps state, 1Sy, to an intermediate
0-Ps state. Within the dipole approximation, the only allowed intermediate state is the
o-Ps ground state, 139;.

In time-ordered perturbation theory, the effective theory amplitude for p-Ps — ~v,0,

Fig. 5.1(a), is

M Zz<orfié”f”f’|n><n\w<a¢+ax>-B\p—Ps>
P E,—E,—E,

= > —i(0] AL 1138y m,) (1381 mylip (075 + o) - Blp-Ps)
B AE’hfs + E’y ’

(5.11)

ms

where AFEyg = E,— E, is the hyperfine splitting energy difference, and, E,, and E, are the
p-Ps and o-Ps ground state energies. Here, A is the s-wave o-Ps — vy annihilation
operator (Appendix G),

Al — 9\/2iGpmu, (3 - ). (5.12)

To simplify the effective theory amplitude, we begin by evaluating the annihilation and

magnetic matrix elements in the numerator. Projecting the electron and positron spinors
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onto the spin triplet state (xTo¢ — v/2€), the annihilation matrix element becomes

(OJAY™1381:m,) = 2V2iGrmued - (xTad) ¢o(0)

where 1y is the Ps ground state wave function. The magnetic matrix element is

(13S1;mglip (g + o) - Blp-Ps) = ——F <1A<7 X 67> : (XTO'Qb)*

Summed over the polarizations of the intermediate o-Ps states in (5.11),
> gt =6, (5.15)
£

the effective theory amplitude becomes

~

M = AGrevy 1(0) (€4 x ) - ky A (E,). (5.16)

The magnetic amplitude, A,,, contains all the dependence on the soft photon energy in

the effective theory amplitude,

ELy Ty AEhfs

:AEhfS—FE’Y:E—{—l‘,Y’ m

A (E,) . (5.17)

To ensure that the effective theory amplitude (5.16) is consistent with electroweak theory,
we consider z, > € and neglect the hyperfine energy difference in the energy denominator
of (5.11); then, A,, = 1. The effective theory amplitude, ignoring binding effects, is

therefore

M — 4Grevy 10(0) (€, x J) - k,. (5.18)
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Since (5.18) is equal to the soft photon limit of the tree level electroweak amplitude (5.8)1,
the annihilation operator (5.12) and M1 transition fully account for v,, annihilation and
soft photon emission in p-Ps — v, decays.

Assured that the effective theory amplitude (5.16) is consistent with the full elec-
troweak theory, we use it to calculate the low-energy photon spectrum. We need both
the three body phase space in the z, — 0 limit and the spin averaged amplitude squared.

In the z, — 0 limit, the three body phase space is

1 1
{—dxldxw] A D g cos da (5.19)

12873 o 128702 "

where 6 is the angle between the neutrino and photon. The spin averaged square of the

amplitude is

Z ‘M;ﬁf = Z ‘4GF6W¢O(O)Am(E7) (e, x J) -k,
— 128G2v2a*m® | Am(E,)| (1+ cos?6) , (5.20)

where >°_ | (€, x J) - k,|> = 16F? [1 + (k, - 121)2} (see equation (F.15) in Appendix F),
1;7 . Rl = cosf and E; — m. Here, lA<1 and 1A<7 are the unit 3-momentum vectors of the
neutrino and photon.

The effective theory photon spectrum is obtained by multiplying (5.20) by (5.19) and

integrating over d cos # where the allowed integration range is —1 < cosf <1

1 dr, 97? L
g . d eff
(I‘ dxv) 2m5064G12;1}3 /1 cos 6 12873 2 Z ’M |

= Gay |An(E,)|. (5.21)

The spectrum is proportional to the square of the magnetic amplitude, A,,. The magnetic

IThis equality is up to an overall factor of 1y(0), which was not accounted for in Sec. 5.1.
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amplitude has simple asymptotic behavior; it is linear in ., for 2, < € and approximately
constant for x., > ¢

zy /e forxz, < e

A~ (5.22)
1 for z, > e.
Therefore, the effective theory spectrum (5.21) is cubic in z., in the low-energy limit,
z, < €, as required by Low’s theorem. Above the hyperfine splitting, x, > ¢, the
spectrum shifts from being cubic in the photon energy to linear.

The ratio of the p-Ps — vy, effective theory to the tree level electroweak spectrum
is plotted in Fig. 5.2. In the intermediate energy region (¢ < x, < 1), the ratio plateaus
near 1 indicating that the effective theory and tree level electroweak spectrum (2.9)
are approximately equal (the two spectra intersect at z, &~ 5.75 x 107°). For high-
energy photons =, < 1, the ratio spikes revealing that the effective theory spectrum
differs significantly from the tree level electroweak spectrum and is no longer accurate
(Fig. 5.2(b)). Below the hyperfine energy splitting, the ratio in the log-log plot is linear

with a slope of 2 since the effective theory spectrum is cubic in z, while the tree level

electroweak spectrum is linear (Fig. 5.2(a)).
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Figure 5.2: Log-log plot of the ratio of the effective theory spectrum to the tree level
electroweak spectrum in p-Ps — yvv decays in (a) the low-energy limit o < z., < o?
and (b) the high-energy limit o®/5 < x, < 1. The vertical line in (a) indicates the
hyperfine splitting energy (., = € = 7a*/12) while the horizontal line in (b) is placed at
1 to indicate the region where the effective and full theory spectra are equal.
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5.4 Soft photon spectrum for o-Ps

In o-Ps — v decays, the E1 transition takes the initial o-Ps ground state, 135, to
the excited o-Ps states n®Py19 (n # 1), which then decay into a v pair. On the other
hand, the M1 transition takes the initial o-Ps state, 1357, to the p-Ps ground state, 115,
which cannot decay into a v,7, pair and therefore does not need to be considered.

Thus, the effective theory o-Ps — v, decay amplitude, Fig. 5.1(b), is given by

; A (veDp) :
of i(0|Ap " |n) (nliex - E|o-Ps)
M, = ; E,— E,—E,
: (0l (J x &) - p|n) (nx - &|o-Ps)
= —QﬂzGFeagEyg " E._F, a : (5.23)

where Al(;,”‘gﬁ‘g) is the p-wave o-Ps — 147, annihilation operator (derived in Appendix G),
A7) = —2/2Gpay (J x @) - p. (5.24)

As in the calculation of the effective theory p-Ps — 1,0, amplitude (Sec. 5.3), we now
demonstrate that the effective theory amplitude (without binding) is equal to the soft
photon limit of the electroweak amplitude. To calculate the effective theory amplitude,

2

ignoring binding effects, we take E, > ma® and therefore can ignore F, — F,, in the

energy denominator of (5.23), which yields

M 2v2iGrage Z<O| (J x o) - p|n)(n|x - €,]|o-Ps)
= 2V2iGpase(0] (J x &) - p x - €,]0-Ps). (5.25)
The tensor operator p‘x’/ can be decomposed into irreducible spherical tensor operators

o 5 ixl —plxt 1 o 2
p'x = ?p-x+%+§(prJanjxl—gé”p-x). (5.26)
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Since the initial o-Ps state is an s-wave, only the operator with zero angular momentum
(first term of (5.26)) gives a non-zero matrix element. Additionally, we take the operator
p to act only on x because x - Vi vanishes at the origin. With these considerations,

the effective theory amplitude (ignoring binding effects) (5.25) simplifies to
M — 4Gpeay (e, x J) - € 1o(0). (5.27)

Since this is equal to the soft photon limit of the tree level electroweak amplitude (5.9),
the annihilation operator (5.24) and E1 transition fully account for 147, annihilation and
soft photon emission in 0-Ps — v, decays. Thus, equation (5.23) is the complete
effective theory amplitude.
We now return to the general case, without any assumptions about photon energies.
Expanding the inner products of the effective theory amplitude (5.23), we find
M = AGuearls, (1 €)' e) [ @ by 59 0, <Z M) Vin(y)

E, + r?/m

n

= 4Grpea,E, (J x ¢ ei/dgy [8;GC(X,y,/£)}X:O Yo (y) (5.28)

where —x?/m = E,—E, and G¢(x, y, k) is the Coulomb Green’s function. The derivative

selects the [ = 1 partial wave of the Green’s function [24]
[0:Ge(x,y, I{)j|x:0 = 3y'G1(0,y, k). (5.29)

where the partial wave decomposition of the Coulomb Green’s function can be found

in Appendix D of Ref. [22]. Substituting (5.29) into (5.28) and performing the angular

2This equality is up to an overall factor of 1y(0), which was not accounted for in Sec. 5.1.
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integrations yields the effective theory amplitude

M = 4Greay 1o(0) (J x &) - €, A(E,)

= 4Grea; vo(0) (€, x 3) - € Ad(E,). (5.30)

Here, the electric amplitude, A, is

A (E,) — z:f); /0 " dyy'Gen (0,1 5) toly)
(1-v)(3+5v) 82 (1—v) F(lZ—V'3—V'V—_1)
3(1+ 1) 32-v) 1+ 2\ T D)o
(5.31)

8]

where v = By /e The first line of (5.31), is the same integral representation of the
electric amplitude from Ref. [22] while the second line was derived in Ref. [23]. The
hypergeometric function o F} in the second line, simplifies to the so-called Hurwitz-Lerch

¢ function [38],

1 -1 1 -1
o 1,2—V;3—l/;y = P v 1,2 —v
2—v v+1 2—v v+1

[e.e]

1 v—1\"
= 5.32
;Q—V—l—n(u—l—l) ’ ( )

Y- 1 v—1\"
3+5
+ V+1+y22—u+n<y+1>

n=0

T (5.33)

At high energies, equivalent to x, > o® and v ~ 2\;% — 0, this amplitude can be

expanded as a series in «/, /T,

Ao=1-

(z, > a?). (5.34)

3\/@+ 30 -

We see that for z., > a?, the electric amplitude is approximately 1. In this region the

binding effects are relatively unimportant. Indeed, the expression (5.30) agrees with the
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amplitude obtained when binding effects are ignored, eq. (5.27), when we take A, — 1.

2

On the other hand, in the extreme soft photon limit z, < o, equivalent to v ~

1-— %:—; — 17, the electric amplitude can be expanded as a series in z.,/a?,

Ac=""T+ ... (2, <a?). (5.35)

The leading term in the soft photon limit is linear in z., with a slope of 2/a?.

To summarize, the electric amplitude is linear in the photon energy below the binding
energy and approximately constant above it. The expansions (5.35) and (5.34) will be
important when determining the behaviour of the photon spectrum in the limits z., < o?

and ., > a?.

5.4.1 Low-energy limit and the Stark effect

It is instructive to look for a simple physical connection to the leading low-energy term
(5.35). In the soft photon limit, the wavelength is large and the electric field of the
wave is approximately constant. This is similar to the situation in the Stark effect.
Since the first order correction to the ground state energy for the Stark effect vanishes
(BEW o (1ho|x - €,]1ho) = 0), one evaluates the second order correction to the ground state

energy

H'|n)(n|H'|tho)

E® — (1ol ‘

> B—E (5.36)
n#0

where H' o« x - €, = rcosf. The form of (5.36) is similar to the low-energy limit of the

effective theory amplitude where £, = 0 in the energy denominator of (5.23)

e : (0] (J x &) - p|n)(n|x - €]o-Ps)
Mt = —2\/§ZGFeangzn: B —E u : (5.37)

Since equation (5.36) can be summed exactly using the method of Dalgarno and Lewis

[39, 40], we can exploit the similarity between equations (5.36) and (5.37) to evaluate the
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effective theory amplitude in the soft photon limit.
Equations (5.36) and (5.37) can be summed exactly by finding a function F' that

satisfies

[F, Holto(x) = x - €310 (x). (5.38)

For the unperturbed positronium Hamiltonian, Hy, the function F' is given by

F= —%x €, <a2 + %) (5.39)

where a is the Ps Bohr radius. With F in hand, we evaluate equation (5.37)

M = —2V2iGreasE, (0] (J x &) - pF|o-Ps)

— _4CreasE, (T x £) - / B 6O (x)V (Fibo ()

= 4Gpeas Po(0) (e, x J) - & 20%7. (5.40)
Thus, in the limit 2, < o? the electric amplitude is A, = 2z, /a? which is equal to the
first order term of the expansion (5.35).

Similarly, the Stark effect can be related to the soft photon limit of the E1 portion of
the o-Ps — 37 decay amplitude. The annihilation operator that contributes to the E1
portion of the o-Ps — 37 decay amplitude is of the same form as the o-Ps p-wave v,0,
annihilation operator and contains a p derivitive. A calculation, using the summation
technique above, reveals that in the soft photon limit, A, ~ 2z./a?. This agrees with
the soft photon limit of the electric amplitude derived in [22, 24] by expansion of the

p-wave Green’s function.

5.4.2 Photon spectrum

With this understanding of the electric amplitude, we proceed to the the computation of

photon spectrum. Both the spin averaged square of the amplitude (5.30) and the three
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body phase space in the x — 0 limit are needed. Squaring (5.30), summing over the

photon polarizations and averaging over the initial o-Ps polarizations, yields

1 1
SOIMET = 2D Greanin(0)A(E,) (e, x J) - &F
ey €ey
1
— 128G2aZa*m® | A (E,)| (1 —3 cos? 6’) : (5.41)

where 7. | (ey x J) - £|?/3 = 16E} [1 — %(f{7 . 121)2} (see equation (F.16) in Appendix
F), 127 -k; = cosf and E; — m. Multiplying by the three body phase space in the limit

x, — 0 and integrating over cos @ yields the effective theory spectrum

1 dr,\ " 273 ! 1 z,1 2
e o = _— d 0 _’Y_ eff E
(Fo d%) 8Gy a2 /1 8 12878 2 3 ; [MH(E)]
= 3z, |A(E,)|*. (5.42)

The effective theory spectrum is proportional to the square of the electric amplitude
and thus shares the same transitional behaviour at z., = o?. Substituting the leading
term from equations (5.35) and (5.34) into (5.42) we obtain the approximate form of the

spectrum in the limits z, < o? and x, > o?

12..3 2
1dr, eff 5T for r, < o
( ) ~{ ! (5.43)

Fo dz 3z, for z, > o’

Clearly, for photons with z., < o2, the spectrum is cubic in the photon energy as required

by Low’s theorem. For photons in the energy range o? < x, < 1, both the effective

theory and tree level electroweak spectra are approximately linear with a slope of 3.
The ratio of the effective theory spectrum to the tree level electroweak spectrum for

o-Ps — vy decays is plotted in Fig. 5.3. The effective theory spectrum and tree level

electroweak spectrum are approximately equal in the intermediate energy range z, ~
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O(1072—-10"1) (Fig. 5.3(b)). For high energy photons the ratio spikes upward indicating
that the effective theory spectrum differs significantly from the tree level electroweak
spectrum and is no longer accurate (Fig. 5.3(b)). Below the binding energy, the ratio in
the log-log plot is linear with a slope of slope of 2 since the effective theory spectrum is

cubic in =, while the tree level electroweak spectrum is linear (Fig. 5.3(a)).
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Figure 5.3: Log-log plot of the ratio of the effective theory spectrum to the tree level
electroweak spectrum for o-Ps — v decays in (a) the low-energy limit a* < x, < 0.1
and for (b) the high-energy limit a® < 2., < 1. The vertical line in (a) indicates the
binding energy (z, = a?/2) while the horizontal line in (b) is placed at 1 where the
effective theory and electroweak theory spectra are equal.
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Chapter 6

Conclusions

We calculated the decay rate and photon spectrum of the decay of Ps into a photon
and a neutrino-antineutrino pair (Ps — ~1,7,). Both Ps spin states have access to the
vy decay channel where the p-Ps and o-Ps final states are orthogonal despite being
comprised of the same particles. The decay rates are given by (2.4) and (2.5) and the
tree level electroweak photon spectrum by (2.9) and (2.10). These rates and spectra
were further examined by calculating the angular dependence of the decay amplitudes,
angular distributions and spectra for specific v + Z* final states (Tables 3.1-3.4).

In principle, this decay could be observed. Experimentally, this channel would appear
as the decay of Ps into a single photon if the neutrinos go undetected. However, exper-
imental detection of this channel would be very challenging given the small branching
ratios.

The soft photon limit of the tree level electroweak spectra (equations (2.9) and (2.10))
was compared with that predicted by Low’s theorem and found to be in disagreement.
This contradiction was resolved by including binding effects in the computation of the
soft photon spectrum using the methods of non-relativistic effective field theories. The
effective theory spectra are given by equations (5.21) and (5.42), and are valid for photon

energies much less than the electron mass.

43



For photon energies much larger than the hyperfine splitting yet still much smaller
than the electron rest mass (ma* < E, < m), the p-Ps — iy effective theory
spectrum approaches the tree level electroweak spectrum (2.9). Below the hyperfine
splitting (B, < ma?), the effective theory spectrum is cubic in the soft photon energy as
required by Low’s theorem. In the dipole approximation of the interaction, soft photon
p-Ps — vy decays proceed only by the magnetic M1 transition.

The o-Ps — ~u,1, effective theory spectrum approaches the tree level electroweak
spectrum (2.10) for photon energies much larger than the binding energy but still much
smaller than the electron rest mass (ma? < E., < m). For photon energies much smaller
than the binding energy (E., < ma?), the effective theory spectrum is cubic in the photon
energy as required by Low’s theorem. In the dipole approximation of the interaction,
soft photon o-Ps — vy, decays proceed only by the electric E1 transition.

Lastly, we find connection between the Stark effect and the soft photon limit of the

o-Ps — vy spectrum and the E1 contribution to the o-Ps — 3v spectrum.
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Appendix A

Factorization of the three-body

phase space

A three-body phase space can be factorized into two two-body phase spaces and an
integral over an invariant mass squared. Specifically for Ps — ~v,0, decays, the three
body Ps — ~yus, phase space is factorized into two two- body phase spaces (one for
Ps — vZ* and one for Z* — vv) and an integral over the invariant mass of Z* squared.
In Sec. A.1, we review two-body phases spaces — the basis for this factorization. Then we
derive the three-body factorization for three massive particles and take the limit relevant

for our decay where all three particles are massless (Sec. A.2).

A.1 Two-body phase spaces

In general, the N-body phase space measure is given by [29]

N N 3
d’k; 1
. : : Al

Ady (P* ky, ... ky) = (2m)* 0@ (P“ B

Here, P*" is the total 4-momentum of all initial particles, and, k; and FE; are the 4-

momentum and energy of the i*® particle in the final state. Since the integration measure,
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d*k; /(27)?2E;, is Lorentz invariant, the integrals in each two-body phase space can be
performed in any inertial reference frame.

For the two-body phase space, we choose to work in the center of mass frame of the
initial particles so that the total 4-momentum is given by P* = >~ pt' = (1/s,0) where
s = P - P is the invariant mass squared and p; is the 4-momentum of the i*" particle in
the initial state. Denoting the masses and 4-momentum of the final state particles by

mq, k1 and mao, ko, the phase space volume is

A3k A3k, 1 ()
d®y(P;ky, ko) = 28, (2n)’ 2B, (27) (2m)" 6 (P — k) — k)
1 \&T 2 \ 4T

2 a2 a2
I ™

In the equation above, the function B is

B (s; 51, 8) = \/1 _Hsitss) + (51— 82)2. (A.3)

In the case where the final state particles are massless, 5 simplifies to unity. For the case

myp = Mo =M,

B(s,m2,m2)_\/1—@_\/1—%§, (A4)

S

which is the velocity of a final state particle.

A.2 Three-body phase space factorization

We first determine the three-body phase space factorization assuming massive final state
particles with masses mq, mo, and mgz, and 4-momenta ki, ks, and k3. Once we have the
three-body factorization for massive particles, we specialize to the massless limit relevant

for our decay.
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Starting with the three-body phase space,

3

/ d®; (P; ky, ke, k) = / <H %) @2m) oW (P — ki — ks —ks),  (A5)

we insert unity in the form of the integral

1= / fzj) (27) 59 (g1 — pr — 1) © (o) (A.6)

where q1o = k1 + ko. Even though the step function eliminates half of the integral over
q%,, the delta function ensures that ¢%, is given by the sum of two energies and hence its
support (all points of a function which are non-zero) is in the half retained. In addition

to inserting unity in the form of (A.6), we also insert

ds
1= /—1227r5 S12 — qi3) - (A7)

The delta functions in (A.6) and (A.7) allow for the identification of s;5 as the “mass
squared” of the “particle” whose 4-momentum is qi5. For the Ps — y1,1y decay, q5 is the
4-momentum of the effective vector boson Z* and s;5 is the Z* invariant mass squared.

Multiplying (A.6) and (A.7) together and performing the energy integral yields

d*qus ds
| - / (_I12 dsiz 2m)* 6@ (g1 — p1 — p2) © () 270 (512 — qi,)

d3q ds
- / (27r>3;Em o (2m)" 0 (a2 = p1 = p2) (A.8)

In the first line of equation (A.8), the delta function 6(s1o — ¢3y) sets s;o = E% — g3

while the step function O(q),) ensures that ¢¥y = ++/s12 + q2,. Inserting equation (A.8)

into the three-body phase space, (A.5), yields the three-body factorization

ds
[Pkt = [ TR0 (Piga ) dBa(aumikuk). (A9)

o1



Or in terms of the function, 3,

/dQ)3 (P7 kl;k'Q,k'g, /dSIQ/dCOSQ?) d2¢36(8 812,m3)

T 8

" / d cos 015 Ao ﬁ (S12; ml, m2)
2 o 87 '

(A.10)

In the massless limit, m; = my = m3 = 0, the three-body phase space factorization

simplifies to

ds
/ Dy (P k. by, by — / 40, (P gun, bs) A% (g1 b, o)

_ (87r) /dsm/dcosﬁgdqug (1_%>

/ d cos 912 d¢12
2 21

(A.11)

This is the factorization referenced in chapter 3. It is used in appendix B to formulate

the three-body Ps — v,y decay in terms of a two-body Ps — vZ* decay.
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Appendix B

Formulation of the Ps — vyuvyvy

decay rate in terms of v and Z*

To rewrite the Ps — ~u,1y decay rate in terms of the Ps — ~Z* decay rate, we start
with the Ps — ~1,0, decay amplitude and then factorize the three-body (yv,) phase
into two two-body phase spaces (y7Z* and v7;) as detailed in Appendix A. Performing
the integrals in the v, phase space yields the Ps — 1,1, decay rate in terms of the
Ps — ~Z* decay rate.

The Feynman diagrams relevant for the Ps — vy, decay are illustrated in Fig. 2. As
in chapter 2, we neglect the 3-momentum of the incoming leptons as well as the virtual
W- and Z-bosons. With these approximations, the p/o-Ps — yuy, amplitudes are

1Gp

iMP/O V2o

(6’7)ZQVPTI‘ |:X5/Vo(p17 k’)’)i| Jp(kla k2)7 (B1>

where

. — K, +m
X;Ll/ k — T 2 \I/ 14 . 5 %1 Y
pfo(PL: Kx) r [ m¥p/o ((16)7 (ve = ary”) (p1 — k)2 — m?

P a2

(—ie)y"

+(—te)y
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and J* (ky, kg) = (k)" (1 — 7°) v(kq) is the neutral weak current. The p-Ps and o-Ps
projection operators are given by W, = (1 +4°)~°/(2v/2) and ¥, = (1 +7°) v-£/(2V2)
where £ is the o-Ps polarization vector [34].

To calculate the Ps — 1,1, decay rate, we start from the standard formula,

p/o

/d<I>3(p1 + pa; ki, ko, ky )WO( )‘ 1 Z |Mp/0’2, (B.3)

mpg g
spin/pol

where 1y(0) is the ground state positronium wave function at the origin and g is the
number of Ps polarizations of the initial state [29].

Substituting the three-body spin averaged matrix element squared

2 G2 « v o
D Mol = Gasgueto s X Xo T Ky (1= 47Ky "(1 = 7)), (B4)
spin/pol

into (B.3) and factorizing the three-body phase space into two two-body phase spaces

(Appendix A), yields the decay rate

1 ds |¢Ps(0>|29aﬁgupgua G%‘ B
Ty, = 24D, (2p1; K, xon x o
b/ 2Mps / 2 221 %) m g 2 P/oTp/o
/d‘bz(q; k1, k2)k1nk2,\Tl" [7"7’0(1 - 75)7/\70(1 - 75)} ) (B.5)

where s = ¢ - ¢ is the invariant mass of Z* squared and ¢ is its 4-momentum. The neu-
trino phase space integral can be performed by writing the neutrino momentum product,
k1,k2y, as a linear combination of the only available tensors, ki,kay = Ag®gpr + Bgyqa.
The momentum conserving delta function in d®s(q; k1, ko) forces ¢ = k1 + k2. A system
of equations for A and B is obtained by contracting [ d®s(g; k1, ko)k1,kay with g™ and

q"q", and yields the solution A =1/12 and B = 1/6. Thus, the neutrino contribution to
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the decay rate is

1
/d%@%mbﬁm@ﬂYh%%b—fwﬁﬂl—fﬂ=§;h%”—f¢ﬂ

12 o*
=34 §§:6§(q)63 (9),

where the sum over the polarizations of a massive vector boson is given by

o q°q° -
> elg)ed(q) = Z —-g”.

s

(B.7)

Substituting (B.6) into equation (B.5), we obtain the Ps — vy decay rate in terms of

Ps — vZ*

1 ds SO gap G2 L
1—‘p/o = /_d(b2(2p1ak7 )lwp ( )| g_B ﬁ _q Z 68

2mps J 2 m g 2ma p/o p/o

Gp [dg® ,( 1 1Yps (0)°
= - By (2p; *
271'206 / o q Qmps /d 2( P; k"/? q) m 3g Z ’Mp/o Ps—~Z

pol

Gi d¢* ,
- 220 o a4 1—‘p/o—Psﬁ'yZ’“

%)

)

(B.8)
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Appendix C

Calculation of Ps — vZ* decay

amplitudes along the z-axis

Given that the Ps — ~u, decay can be written in terms of Ps — ~Z* (equation
(3.1)), we now determine the Ps — vZ* amplitudes for decay along the z-axis. These
amplitudes are used in chapter 3 to construct the full angular dependence of the Ps — ~Z*
amplitudes.

The relevant diagrams for Ps — vZ* decays are given in Fig C.1. As in chapter 2, we
approximate the electron and positron to be at rest with initial 4-momentum p = p; =

p2 = (m,0). The 4-momentum of the photon is k, while the 4-momentum of the Z* is ¢.

et Z* et v

_ vy e~ z

Figure C.1: The relevant Feynman diagrams for the two-body decay, Ps — yZ*.
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As discussed in chapter 3, the Z* couples to the electron with Feynman rule ie¢(q)*(v,—
ary’). The matrix elements for Ps — yZ* are
i(p =K +m)
(p— k’y)Q —m?

L e ) o= )t
p=q) —m

P/ (rf*(Q)(vz — ay®)

iMpjopsnz- = 0(p) [ie¢*<q><w ~ary’) (—ie)e" (k)

+(—ie)¢" (ky)

(Z” _%’y +m)
(p— kv)z —m?

= 2mie’Tr

¢ (ky)

#) P 0 (g) (0 ) )| )
(p—q)" —m

We can simplify (C.1) by performing the trace. This yields the two-body amplitudes

—44 vge? 1.8 %y *§
— capysD k€ (ky) e (q)  for p-Ps
V2 ! (C.2)

iM p/o-Ps—vyZ* —

_Tgaé_fgaﬂvék%*ﬁ(kv)ﬁw(q)ﬁd for o-Ps

where £ = (0, ) is the polarization of the o-Ps state and ¢ is the totally anti-symmetric
Levi-Civita tensor.

To simplify equation (C.2), we need to understand the properties of polarizations for
both massless and massive spin-one particles (Appendix C.1). In sections C.2 and C.3,

we simplify (C.2) for p-Ps and o-Ps decays.

C.1 Spin-one polarizations

Consider a spin-one particle moving along the z-axis with 4-momentum p = (E,p). The

transverse polarizations,

er = F—(0,1,4i,0), (C.3)

e, = F—=(0,1,F1,0), (C4)

S-Sl



are available to both massive and massless bosons. The longitudinal polarization,

1

75(pL0.0.5) = (©5)

€o

is, however, only accessible to massive bosons. In the above equation, /s = \/p - p is the
invariant mass of the boson.

The contractions with the Levi-Civita tensor in (C.2) can be simplified to a sum of
ordinary 3-dimensional vector products. The necessary vector products for the simplifi-

cation of equation (C.2) are listed below:

€p X e =0, (C.6)
. o 1 : 1 . .
€} X €. = :FE(L Fi,0) | x :I:E(l, +i,0) | = Fiz, (C.7)
1
2 x e =(0,0,1) x F—=(1,Fi,0) = +ie’. (C.8)

V2

C.2 Amplitudes for p-Ps along the z-axis

Simplifying the contractions with the Levi-Civita tensor in equation (C.2), the p-Ps—
~vZ* amplitude is
M ke (k) € (a) (©9)
IMpps sz = ———-k, - [€ € .
p-Ps—7Z V2 E, g q
where the photon is moving in the +z-direction with 4-momentum k, = (E,, £,z) and
the Z* is moving in the —z-direction with 4-momentum ¢ = (Ez, —E,2).

The amplitudes, where Z* has a transverse polarization, are

4vge? _ =+ _
F for €(ky) = €* and €(q) = €T,
iMppsrze =4 V2 (C.10)
0 for €(k,) = € and €(q) = €*.
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The amplitudes, where Z* has a longitudinal polarization (e(k,) = €* and €(q) = €),

are

M Fdue? Ey
7 -Ps—yZ* —
P V2 \SE,

(k,-€}) =0. (C.11)

Since the amplitude in (C.11) vanishes, p-Ps can only decay into a Z* with a transverse
polarization.
For convenience, we define the non-zero amplitudes to be

B :l:,41)462
e(ky)=€T and e(q)=eF = L1 \/5 .

Bi$ = Mp—PS—)'yZ* (C12)

C.3 Amplitudes for o-Ps along the z-axis

Simplifying the contractions with the Levi-Civita tensor in equation (C.2), the o-Ps—

~Z* amplitude is

iMopesz = —47 (B.&-[€ (k) x € ()] + € ()€ - [ x ()]} (C.13)

where the photon is moving in the +z-direction with 4-momentum k, = (E,, £,2z) and
the Z* is moving in the —z-direction with 4-momentum ¢ = (Ez, —E,z).
The amplitudes, where Z* has a transverse polarization, are
diage?

Z'MO—PS%’YZ* = \/§ é ' [€<k’7> X 6((])]

:l:4ia582£ -z for e(k,) = et and €(q) = €T,
B o) gl (C.14)

0 for €(k,) = €* and €(q) = €*.

The amplitudes, where Z* has a longitudinal polarization (e(k,) = €* and €(q) = &),
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are

. 4ia562 * * x0 5 *
iMopssnyze = — NG {€ el x € (q)] + V¢ [2 x €]}
diape? —FE,7 E R .
(o) B
2
_ +dase” E, +EZ€ e (C.15)

Vi

Unlike p-Ps, o-Ps can decay into a Z* with either a transverse or longitudinal polarization.

For convenience, we define the non-zero amplitudes to be

B diape® | .
A:I::F = Mo—Ps—wZ* e(ky)=€* and €(q)=€F = + \/5 S " Z, (016)
+4ae* B, + E .
Aso = Mopsyze €(ky)=€* and e(q)=€0 = V2 ’Y\/g ZE "€ (C.17)
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Appendix D

Derivation of the o-Ps amplitudes

with their angular dependence

Initially, the o-Ps atom is in a state of definite angular momentum denoted by |A).
Since o-Ps and its decay products, v and Z*, are all spin one particles, we abbreviate
the angular momentum states |1, ms) by |ms) where my is the projection of spin along
the z-axis. The massive Z* boson has access to all three spin projection states (i.e.,
myz € {£1,0}) while the massless photon cannot access the longitudinally polarized |0)
state (i.e., m, € {%1}). Conservation of angular momentum requires that the spin
projection quantum numbers satisfy m, 4+ mz = my; as a result, there are four different
modes in which o-Ps can decay along the z-axis.

Consider |A) initially polarized in the state |+) along the z-axis. Since the photon
must have m., = 1, conservation of angular momentum implies |y) = |+) and |Z*) = |0);
we assign the amplitude A, to this decay. If |A) is initially polarized in the state |—),
|v) = |—) and |Z*) = |0); we assign the amplitude A_( to this decay. Lastly, if |A) is
initially polarized in the state |0), m, = —my and therefore |y) = |£) and |Z*) = |F);

we assign amplitudes A+ to these decays.
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From Appendix C, the o-Ps — vZ* amplitudes along the z-axis are

de’ay E, + EZE et — :|:462a€ E,+ Ey

Oma £
V2 g V2 g e
4ie%a, 4ieay

A = 8% 5 R0
+F \/ﬁéz \/5 A0

Ai()::l:

where €4 are the transverse polarization vectors of the photon and £ is the o-Ps polar-
ization vector. Here ¢ is the momentum of the Z*.

To determine the angular dependence of the decay amplitudes on the spherical angles,
0 and ¢, we consider two coordinate systems {x,y,z} and {2/,y/,2'}. The z-axis is
defined by the angles § and ¢ in the {x,y, 2z} coordinate system and represents the decay
axis. The angular dependence of the decay amplitudes is constructed by rotating the
initial o-Ps state and then considering the decay into v + Z* along 2’

The combination of rotations required to bring {x,y, z} onto {2/, v/, 2’} (Fig. D.1) is

R = RZ/(Q)Ry/(Q)Rz/(Qﬁ), (DB)

where R, (0) = €S is the operator for rotations about the axis given by the unit vector,
n, and S = (S,, Sy, 5,) is the spin-one matrix operator [37].

o

z z
A A o
I Ra9) y
\ S
A
. ¥ Y e y
1Ry (0)
» Y ’\ ! » Y
RN | /
23 Y v 0 [
Lo FaRNNA
N -— -5 --
4 A
z 2 z z

Figure D.1: Sequence of rotations transforming {z,y, z} (solid) to {2’,y/, 2’} (dashed).

Application of R to |A) yields the amplitude for |A) to be in the state |m/y) along the

2'-axis for each m/y € {£1,0}. If |A) is initially polarized in the state |4}, then |A) has an
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amplitude of 1(1+cos#)e®e™ to be in the state |[+') (the my = 1 state along the 2 axis).
If |A) is in the state |+'), it decays to |+';kz'), ® |0'; —k2'); with an amplitude Ay,
where k is the magnitude of the photon momentum along z’. Thus, the total amplitude
for the decay of an o0-Ps atom with spin projection m, = +1 into a photon moving along

+2/-axis with spin projection m’V =+11is

A
Ai/o/ (97 ¢) == +0

(1 + cosf)e™e™. (D.4)

Similarly, the amplitude for the final state |—'; k2'), ® |0'; —kz') ;7 is

A_iy
Ai/o/ (9, (b) - 2 0

(1 —cos@)e e, (D.5)
and the amplitudes for |+'; k2')., ® |F'; —kz')z are
= — =7 sinfe. (D.6)

We denote the o-Ps decay amplitudes with their full angular dependencies as Azf‘m,z
4
where my € {41, 0} is the initial spin projection of o-Ps along the z-axis, and, m/, € {£1}

and m’, € {£1,0} are the spin projections of the photon and Z* along the z’-axis.

/ !
meZ

The amplitudes, A2, m),» Are obtained using the method outlined above while A is
Y
obtained from AZL, ) by the prescription § — 0 + 7, ¢ - —¢ and a — —a. The 0-Ps
Y

amplitudes, A”} . are listed in table 3.2 where we have chosen the convention o = 0.
Y Z
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Appendix E

Angular dependence of the o-Ps

amplitudes: helicity basis formalism

The angular dependence of the o-Ps amplitudes (chapter 3) can be determined using the
helicity basis formalism of [41, 42, 43, 44] instead of the method outlined in Appendix D.
The helicity basis formalism, provides a simple and powerful method to analyze two-body
reactions involving particles of arbitrary spin; it also applies equally well to relativistic
particles. This formalism uses states of definite helicity (states where angular momentum
and spin are quantized along the direction of linear momentum) as a basis instead of states
of definite angular momentum. States of definite helicity are particularly useful because
they are invariant under rotations; the quantization axis rotates with the system.

The initial o-Ps state is one of definite total angular momentum
i) = |pi = 0; 1my) (E.1)

where p; is the initial momentum of the o-Ps atom and m, is the o-Ps spin projection
along the z-axis. In terms of the relativistic plane-wave state, |P;), the initial o-Ps state
is

i) = [1ma) | = 0) (E.2)
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where P, is the initial 4-momentum of the o-Ps state.

We express the final, vZ*, state as a two-particle plane-wave state of definite helicity
in the center of mass frame. These particles move back-to-back with momentum of
magnitude |ps| along the decay axis (the axis along which the decay products move).
The helicities of the two final state particles are the spin projections along the decay axis.
The total helicity is A = A\, — Az where A, and A are the helicities of the photon and

Z*. This final state can be expressed as

|f) o< |05 @A AZ) | Pr) (E.3)

where |0;¢rA\, A7) is a two particle plane wave helicity state, 6 is the polar angle of the
decay axis and ¢y is the azimuthal angle of the decay axis.
The o-Ps — vZ* decay amplitude, up to an overall multiplicative constant and the

energy-momentum conserving d-function is given by
Apaa(i = f) o< (052 A2|U|1my) (E.4)

where the operator U governs the annihilation of positronium into vZ*.
In order to take advantage of conservation of angular momentum in the amplitude
(E.4), we need to know how to write states of definite angular momentum, J, and spin

projection, M, in terms of helicity states. Namely,

2J+1 [*" ! I
[TMMAs) =\ = i dg 1dcos@DM/\:/\l_/\Q(qu,0,0)|0¢)\1)\2) (E.5)

where D7, is the Wigner D function (see chapter 13 of Ref. [45] for a definition of the

Wigner D functions and their properties). After inserting unity in the form of

L= [JMNAz)(JMA Az (E.6)

JM
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into (E.4) the amplitude becomes

Amia(i = f) = Z(@@A Az| TMA NN T MM Z|U|1my)

/2J+ 1
= Z D gbf,Qf, 5J,15M7mA<)\1)\2|U|1mA>
= v A D’rlr;(,\)\(gbfa ‘9f7 )A)WAZ (E?)

where Ay , = (1M Az|U|1m,) is called the helicity amplitude. Since all the angular

dependance comes from the Wigner D functions, equation (E.7) may be used to verify the
angular dependence of the o-Ps amplitudes in chapter 3 (Table 3.2) without determining

the helicity amplitude, A, », (Table E.1).

Table E.1:  Table of the Wigner D functions, D},;‘A)\(gb,Q,O), needed to evaluate the
decay Ps — vy decay amplitudes in the helicity basis formalism. Here, m, is the spin
projection of 0-Ps along the z-axis and \ = m’7 + m/, is the total helicity where, like in
chapter 3, m/ and m/, are the spin projections of the photon and Z* along the decay
axis (z’-axis). The Wigner D functions for my = —1 are obtained by the replacement
0 — 0+ mand ¢ — —¢. Furthermore, only configurations of my, m/ and m/, that
conserve angular momentum are defined.

/

mz
ma m’7 +1 0 -1
+1 +1 0 (1+ cos0)e™ /2 — sin e’ //2
-1 — sin fe’ /\/2 (1 —cos)e'/2 0
0 +1 0 sin@/ﬂ cos 6
—1 cos 6 — sin 6/\/5 0
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Appendix F

The neutral weak current

In order to evaluate the extreme soft photon limit of the Ps — ~1,1, amplitudes (chapter
5) and the Ps — 1,7, annihilation operators (Appendix G), we calculate the explicit

expression for the neutral weak current,
JH = ?_L(k1>"}/“<1 — 75)?}(]{2) = 2’L_L<k1)’)/'uPL’U(]€2) (Fl)

where k; (ko) is the neutrino (antineutrino) 4-momentum and P = (1 —~°)/2 is the left
handed projection operator. Additionally, we utilize some properties of J* to simplify
the polarization sums in the spin averaged Ps — vy, amplitudes squared, equations
(5.20) and (5.41).

In order to provide the most apparent connection to non-relativistic quantum mechan-
ics, we use Dirac spinors for the electron and positron as well as the Dirac representation
of the gamma matrices (chapter 5). However, expressing the neutral weak current using
Dirac spinors for neutrinos is cumbersome because Dirac spinors are eigenstates of the
spin operator not the left handed projection operator, P,. Therefore, we choose to use

spinors of definite handedness (chirality), the so-called Weyl spinors, to determine J*.

1

Left handed Weyl spinors transform in the irreducible (5,0) representation of the

1

Lorentz group while right handed Weyl spinors transform in the irreducible (0, 5) repre-
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sentation [46]. Left/right handed Weyl spinors are eigenstates of the left/right handed
projection operators', P, = (1 —~°)/2 and Pr = (1 +°)/2.

Additionally, the representation of the gamma matrices in the neutral weak current
is irrelevant because J*" is a 4-vector and has no spinor indices. Therefore, we also use
the Weyl representation of the gamma matrices because the Weyl spinors are especially
simple (only two non-zero components) [29].

In the Weyl representation, the left and right handed spinors for massless neutrinos

of 4-momentum k = (E, ky, ky, k.) are

—ky + ik,
1 k,+FE
uL(k) = E——i—k ) (F2>
z 0
0
0
1 0
up(k) = (F.3)

E+k, k. +E

ky + ik,

where £ = |k| (derived by solving problem 3.3 of [29]). As always, the anti-particle

spinors are obtained from the charge conjugation operation

or(k) = —ivui (k) (F.4)

vn(k) = —ir2up(k). (F.5)

For the calculations of chapter 5, we only need the current in the limit that the

photon energy in Ps — 147 decays vanishes, E, — 0 (i.e., when the neutrinos move

!Since neutrinos are (nearly) massless, the Weyl spinors for neutrinos are also eigenstates of the
helicity operator (spin projection along the direction of motion).
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back-to-back: ko = —k; and E, = E}). Therefore,

JH(K1, k2) lkom—xy and Boery, = 2U(k1) Y PLv(k2)|ke=—xk; and Er—,

= 2ug(k1)Y"vr(k2)|ky=—k, and By=E,

0
4 —kipk1, — ik, E
_ : : 12R1 1y (F.6)
El - klz _klyklz + iklel
El2 - k%z
Since J% = 0 in the E, — 0 limit, many of the computations in chapter 5 are

simplified. Furthermore, 3-vector dot products involving the spatial part of the current

satisfy the simple identities

J.J = 320k, (F.7)

(r-J)(r-J) = 16]c]|ki|* — 16 (ky - )°, (F.8)

for any r € R3.
We will use equations (F.7) and (F.8) to simplify equations (5.20) and (5.41). Specif-

ically, we want to simplify

> ey x3) kP, (F.9)

€y

for the p-Ps spectrum and

S e x )€ (F.10)

£ey

for the o-Ps spectrum. Here, €, is the photon polarization 3-vector, lA<V = k,/E, is

the unit momentum 3-vector of the photon and & is the o-Ps polarization 3-vector.
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Simplifying the polarization sums in (F.9) and (F.10) yields

S ey < ) e = 3P = 13K (F11)
1 2 2 1 L (2
32 (e x D) -¢F =P =510 -k (F.12

where we have used the identities [22]

~

Z €y;€y; = Oij — lA("/ikwﬁ (F.13)

> &L =6y (F.14)
'3

Using the identities (F.7) and (F.8) in equations (F.11) and (F.12), we get the fully

simplified polarization sums required for equations (5.20) and (5.41)

S l(e, x 3) -k, = 16E3 [1 +(k, - 121)2] , (F.15)

1 2 2 L L \2

S e < )€ =16 1 Lk, K2 (F.16)
Eey

where Rl = k;/E; is the unit momentum 3-vector of the neutrino.
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Appendix G

Derivation of the o-Ps — v

annihilation operator

(a) (b)

Figure G.1: The ete™ — 1,7, annihilation graphs for (a) Z boson exchange and (b) W
boson exchange. The graph (a) contributes to the Ps — 147, amplitude for all lepton
flavours ¢ = e, pu, 7 while (b) only contributes when ¢ = e.

In order to calculate the effective theory amplitudes (chapter 5), we require the
O(|p|/m) expansion of the eTe™ — 1,7, annihilation amplitude (Fig. G.1). The electron

and positron 4-momentum are p; = (E,p) and p, = (E, —p) while the neutrino and
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anti-neutrino 4-momentum are k; and k;. The amplitude of Fig. G.1 is

AV = —iv/2Gr0(—p) (v — ary’)u(p)
. T 5 1
= 2V2iGpm x| (';Ec) 1 )4 (ve—ary®) ¢
2775:
_ XTA(WW)Q (G.1)
where
N Ji —J-o vy —a 1
AWe) = 9\/2iGpm ( e ) ’ ‘ ‘ (G.2)
2m .
J-o - —ap Uy 2
is the 1,7, annihilation operator. From momentum conservation, k; = —ks, the time

component of the neutral weak current vanishes, Jy = 0. Therefore, the v, annihilation

operator becomes
AW = 9\/2iGpmug (J - ) — 2v/2Cra, (I X o) - p. (G.3)

The first term of equation (G.3), proportional to vector coupling, is the s-wave o-Ps —

vy, annihilation operator
Al = 97/2iCGpmu (3 - o). (G.4)

In the computation of the p-Ps — vy, effective theory amplitude, the s-wave annihila-
tion operator takes the intermediate s-wave o-Ps state into a neutrino-antineutrino pair.
The second term, proportional to axial coupling, is the p-wave o-Ps — 1,7, annihilation

operator

Al™) = —2\/2Gra, (I x o) - p. (G.5)
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In the computation of the o-Ps — ~u1, effective theory amplitude, the p-wave annihi-
lation operator takes the intermediate p-wave o-Ps states into a neutrino-antineutrino

pair.
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