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Abstract

We determine the rates, photon energy and angular distributions of positronium de-

cays into a photon and a neutrino-antineutrino pair, Ps → γν`ν̄`. We find that both

positronium spin states have access to this decay channel, contrary to a previously pub-

lished result. The low-energy tails of the spectra are shown to be sensitive to binding

effects in positronium and agree with Low’s theorem. Additionally, we find a connection

between the behaviour of the soft photon spectrum in both o-Ps→ γν`ν̄` and o-Ps→ 3γ

decays, and the Stark effect.
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Chapter 1

Introduction

Positronium (Ps), the bound state of an electron and its antiparticle, is a metastable

leptonic atom. It is the lightest known atom and in many ways resembles hydrogen.

Like hydrogen, Ps can form two spin states: the singlet parapositronium (p-Ps) and the

triplet orthopositronium (o-Ps).

Decays of Ps can be precisely described within pure quantum electrodynamics (QED);

the only limitation being the computational complexity of the higher orders in the expan-

sion in the fine structure constant α ' 1/137. Despite this complexity, many corrections

in higher orders have been calculated [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

While the dominant decay modes of Ps are purely photonic, weak interactions can

transform Ps into final states involving neutrinos [14, 15, 16, 17, 18, 19]. Recently,

Ref. [20] examined the exotic decay of Ps into a photon and a neutrino-antineutrino pair

Ps → γν`ν̄`, and claimed that only p-Ps can decay in this way. On the other hand,

Ref. [14] stated that o-Ps can decay into such a final state, even estimating its branching

ratio.

This thesis addresses the apparent contradiction between Refs. [20] and [14]. We

calculate the Ps→ γν`ν̄` decay rates and photon spectra for both p-Ps and o-Ps (chap-

ter 2). We find that both p-Ps and o-Ps have access to the Ps → γν`ν̄` decay mode. In
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addition to establishing that the o-Ps decay rate is non-zero, we find differences between

our calculated p-Ps rate and spectrum and those of Ref. [20]. We calculate the angular

distributions of Ps→ γν`ν̄` decays in chapter 3.

It is easy to mislead oneself into thinking that only one Ps spin state can decay into

γν̄ν, since none of the previously studied final states was accessible to both. Due to the

conservation of charge-conjugation (C) in pure QED, o-Ps decays into an odd number of

photons and p-Ps into an even number. However in the theory of weak interactions, the

weak bosons couple to both the C-odd vector and the C-even axial current. Thus, p-Ps

can decay into a photon and a neutrino pair by a vector coupling (analogous to its main

γγ decay) while o-Ps can decay into the same final state through an axial coupling.

In three-body channels, the energy of the decay products has an extended distribution.

The low-energy tail is sensitive to binding effects; such effects have been determined in

the three-photon decay of o-Ps [21, 22, 23, 24]. We find an analogous phenomenon

in Ps → γν`ν̄` decays. Unlike the 3γ decay accessible only to o-Ps, in Ps → γν`ν̄`

decays, one can compare the low-energy behaviour of both the p-Ps and o-Ps decays.

In chapter 5, we employ the non-relativistic effective field theory (NREFT) methods of

[22, 23, 24] to explain how binding effects connect the linear behaviour of the spectra

found in chapter 2 with the cubic behaviour at extremely low energy, predicted by Low’s

theorem [25] (chapter 4).

Before proceeding to the detailed calculations starting in chapter 2, we summarize

some basic properties of positronium. This includes Ps wave functions and energy levels

(section 1.1), discrete symmetries (section 1.2), QED decay modes of Ps (section 1.3)

and weak decays of Ps (section 1.4).
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1.1 Wave functions and energy levels of Ps

The total wave function of Ps is the probability amplitude that Ps will be in a given

configuration. To first approximation, the total wavefunction is the product of the spatial

wave function, ψnlml , and the spinor (spin wave function), ηsms ,

Ψnlml;sms(x) = ψnlml(x)ηsms , (1.1)

where n, l,ml, s and ms are the quantum numbers that characterize a particular con-

figuration or state. The energy levels are the energies associated with a given state of

Ps.

Since Ps is a non-relativistic system, its spatial wave functions and energy levels are

given by the energy eigenfunctions and energy eigenvalues of the Schrödinger equation for

Ps. To first approximation, Ps is described by the Schrödinger equation for a particle of

electric charge e and reduced mass µ = m/2 in the Coulomb potential V (|x|) = −α/|x|

where e (< 0) is the electron charge, m is the electron mass, α ≈ 1/137 is the fine

structure constant and x is the separation distance between the electron and positron

in Ps (note, we work in natural units where ~ = c = 1). Instead of directly solving the

Ps Schrödinger equation, the energy eigenfunctions and energy eigenvalues of Ps can be

obtained by taking advantage of the similarity between the Schrödinger equation for Ps

and that for hydrogen.

Specifically, the Ps spatial wave functions can be obtained by replacing the hydrogen

Bohr radius with the Ps Bohr radius in the hydrogen energy eigenfunctions1. These

wave functions are characterized by the principal quantum number (or energy quantum

number), n, the orbital angular momentum quantum number, l, and the orbital angular

1A detailed analysis of the wave functions and energy levels for hydrogen can be found in any ele-
mentary text on quantum mechanics (e.g., Ref. [26]) and are therefore not duplicated here.
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momentum projection quantum number, ml. The spatial wave functions are

ψnlml (x) =

√(
2

na

)3
(n− l − 1)!

2n [(n+ 1)!]3
e−|x|/na

×
(

2|x|
na

)l
L2l+1
n−l−1

(
2|x|
na

)
Y m
l (θ, φ), (1.2)

where a = 2/mα is the Bohr radius of Ps, Lmn−m are associated Laguerre polynomials

and Y ml
l are spherical harmonics. The ground state wave function, ψ0 (x) ≡ ψ100 (x), is

the wave function of the n = 1, l = ml = 0 state and is frequently used in our analysis

of the Ps→ γν`ν̄` decay.

In addition to the spatial wavefunction, Ps has two spin states: the singlet state,

p-Ps, and the triplet state, o-Ps. The Ps spinor contains the spin information of Ps and

is the tensor product of the electron spinor, φ, and positron spinor, χ,

ηsms ≡ φχ† =


I2×2/

√
2 for s = 0 (p-Ps)

ξms · σ/
√

2 for s = 1 (o-Ps).

(1.3)

where s is the spin quantum number and ms is the spin projection quantum number.

Here, I2×2 is the 2 by 2 identity matrix, σ are the Pauli matrices and ξms are the o-Ps

spin vectors,

ξms =


(−1,−i, 0)/

√
2 for ms = 1

(0, 0, 1) for ms = 0

(1,−i, 0)/
√

2 for ms = −1.

(1.4)

Now that we have determined the spatial wave function and the spinors, these can

be used to obtain the total Ps wave function using equation (1.1).

The energy levels of Ps can be obtained by replacing the electron mass with the
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reduced mass of Ps in the hydrogen energy eigenvalues,

En(Ps) = −mα
2

4n2
. (1.5)

The binding energy of Ps is the energy needed to break Ps into a free electron and free

positron. It is the negative of the ground state energy, −E1 = mα2/4. In order to

understand binding effects in the photon spectrum, we calculate the photon spectra of

Ps→ γν`ν̄` decays for photons with energies less than the Ps binding energy (chapter 5).

Relativistic corrections to the kinetic energy as well as interactions involving the

electron and positron spins induce small corrections to the energy levels and spatial

wavefunctions of Ps.

The spin-orbit interaction yields corrections of order O(α2). These corrections origi-

nate from the interaction of the electron’s/positron’s magnetic dipole moment with the

magnetic field created by the orbiting electron/positron. The spin-orbit corrections break

the energy degeneracy in l (i.e., the energies become l dependent) resulting in what is

known as the fine structure of Ps.

The spin-spin interaction contributes corrections of order O(α4). These corrections

originate from the interaction of the dipole moments of the electron and positron. The

spin-spin corrections distinguish the energies of p-Ps from the energies of o-Ps. This

energy splitting is known as the hyper-fine structure of Ps.

1.2 Discrete symmetries

Discrete symmetries place restrictions on the allowed decays of Ps. For example, discrete

symmetries determine whether decays, such as o-Ps→ γν`ν̄`, can occur.

There are three discrete symmetries in the standard model of particle physics: charge

conjugation (C) – the exchange of particles with antiparticles; parity (P ) – the inversion of

spatial coordinates; time reversal (T ) – inversion of the time coordinate. If an interaction
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Table 1.1: P and C eigenvalues of the total Ps wave function, Ψnlml;sms . Here, l is
the orbital angular momentum quantum number and s is the spin angular momentum
quantum number.

Discrete Transform Ps Eigenvalue

P (−1)l+1

C (−1)l+s

is invariant under a discrete symmetry (or a composition of discrete symmetries) and if

the initial state is an eigenstate of the discrete symmetry, then the final state, after

interaction, must be an eigenstate of the symmetry operator with the same eigenvalue.

In order to understand the restrictions discrete symmetries place on Ps decays, we

need to determine the C, P and T eigenvalues of Ps.

The P eigenvalue of Ps is the product of the respective P eigenvalues of the spatial

wave function and spinor2. To obtain the P eigenvalue of the spatial wave function,

we begin by inverting the spatial coordinates in equation (1.2). The only part of the

spatial wave function that is sensitive to such an inversion is the spherical harmonic,

Ylm(θ, φ) → (−1)lYlm(θ, φ). Thus, the P eigenvalues of the spatial wave functions are

(−1)l. The P eigenvalue of the Ps spinor is a product of the intrinsic parity of the

electron and positron. Since the electron has an intrinsic parity of 1 and the positron

has an intrinsic parity of (−1), the Ps spinor transforms as ηsms → −ηsms under P

[27, 28, 29]. Therefore, the P eigenvalue of the total Ps wave function is (−1)l+1, or

equivalently under P , the total wave function transforms as

Ψnlml;sms(x)
P−→ (−1)l+1Ψnlml;sms(x). (1.6)

To determine the C eigenvalue of Ps, we note that application of C is equivalent to

the application of P and interchanging the positron and electron in the Ps spinor [30].

2The C and T eigenvalues can also be obtained in the same manner. However, we chose a simpler
alternative approach.
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The p-Ps (o-Ps) spinor is antisymmetric (symmetric) under the exchange of electron and

positron, contributing a factor of (−1)s+1 to the C eigenvalue. Multiplying this with

the P eigenvalue yields the C eigenvalue, (−1)s+l. Therefore, the total Ps wave function

transforms as

Ψnlml;sms(x)
C−→ (−1)s+lΨnlml;sms(x). (1.7)

The time-reversal operator is an anti-unitary operator that reverses the direction of

the 3-momentum and spin of a particle [29]. Acting on the total Ps wavefunction, T sends

the position space wavefunction to its complex conjugate ψnlml → ψ∗nlml = (−1)mlψn,l,−ml

and flips the spin of the electron and positron in the Ps spinor ηsms → (−1)s+1ηs,−ms .

Combining the above, we obtain the transformation rule for the total Ps wavefunction

under T

Ψnlml;sms(x)
T−→ (−1)ml+s+1Ψn,l,−ml;s,−ms(x). (1.8)

Notice that the Ps state is not an eigenstate of the time-reversal operator.

Since the Ps state is not an eigenstate of T , only the discrete symmetries of P and C

restrict the decay modes of Ps. The P and C eigenvalues of the total Ps wave function

are listed in Table 1.1.

1.3 QED decay modes of Ps

Within QED, Ps can only decay into photons. Furthermore, the decays of p-Ps and o-Ps

are restricted to different final states by C conservation. In other words, the allowed

decay modes must have the same C eigenvalue for the initial and final state.

To determine the allowed decay modes, we equate the C eigenvalue for Ps and the C

eigenvalue for a state of N photons, and determine the valid values of N . Since the C
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eigenvalue of a photon is −13 a final state with N photons has a C eigenvalue of (−1)N

[30]. Equating the C eigenvalue of the initial state (Table 1.1) and that of the final state

(N photons) yields the condition

(−1)l+s = (−1)N =⇒ l + s ≡ N (mod 2). (1.9)

That is, for an orbital angular momentum, l, p-Ps must decay into l+ 2n photons while

o-Ps must decay into l + 2n + 1 photons where n is a nonnegative integer. These are

called the selection rules for QED decay modes of Ps. Note, the single photon decay is

forbidden by momentum conservation.

The dominant (n = 1) decay modes of Ps are: p-Ps → 2γ and o-Ps → 3γ. These

decay modes determine the lifetime of Ps. To first order, the Ps lifetimes are given by

the corresponding electron-positron annihilation rate at rest, e+e− → 2γ, for p-Ps [31]

and e+e− → 3γ for o-Ps [32] (see Fig. 1.3). Explicitly, the lifetimes of Ps are

τ(Ps) =


2

meα5 ≈ 10−10s for p-Ps

9π
2(π2−9)meα6 ≈ 10−7s for o-Ps

(1.10)

which are the inverses of the decay rates

Γ(Ps) =


meα5

2
≈ 1010s−1 for p-Ps

2(π2−9)meα6

9π
≈ 107s−1 for o-Ps.

(1.11)

The branching ratio of the decay Ps → X, for some final state X, is a measure of

how often that decay occurs relative to all possible decays. It is defined as the ratio of

the Ps → X decay rate and the total decay rate of Ps. Since the total decay rate is

3Intuitively, we can see this by considering the classical electromagnetic field, Aµ; when the sign of
the charge and charge density is reversed, Aµ → −Aµ.
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Figure 1.1: Feynman graphs for (a) e+e− → 2γ and (b) e+e− → 3γ annihilation.

approximately the same as the decay rate of the dominant mode, the branching ratios

for p-Ps→ X and o-Ps→ X are approximately

Br(p-Ps→ X) ≈ Γ(p-Ps→ X)

Γ(p-Ps→ 2γ)
,

Br(o-Ps→ X) ≈ Γ(o-Ps→ X)

Γ(o-Ps→ 3γ)
. (1.12)

The Ps→ γν`ν̄` branching ratios are calculated in chapter 2.

1.4 Weak decays of Ps

Weak interactions introduce new decay modes for Ps with final states that include both

photons and neutrinos. The theory of weak interactions, unlike QED, breaks both C- and

P -symmetry but approximately conserves the composite symmetry CP 4. The breaking of

C-symmetry opens the possibility of C-violating photonic decay modes such as p-Ps→ 3γ

and o-Ps → 4γ as well as C-violating photon-neutrino decays such as o-Ps → γν`ν̄`.

These and other novel decays make Ps an interesting tool for studying C-violating effects.

While interesting, weak decays of Ps are heavily suppressed because the electron

4While processes involving all three generations of leptons can break CP , they are not important for
the decays we consider. Therefore, we take CP to be an exact symmetry of the weak interaction.

9



mass is tiny compared to the mass of the force mediating Z- and W -bosons. Since the

amplitudes for weak decays are proportional to GFm
2 ≈ 3 · 10−12 [14] (where GF '

1.166 · 10−5/GeV2 is the Fermi constant [33]), these decays have exceptionally small

decay rates and branching ratios. For example, Ref. [17] considers the decay of Ps into

a neutrino-antineutrino pair (Ps → ν`ν̄`). It reports that only o-Ps can undergo such a

decay. This decay has rates

Γ(o-Ps→ ν`ν̄`) =


G2

Fα
3m5

e

24π
(1 + 4 sin2 θW ) ≈ 7.2 · 10−11s−1 for ` = e

G2
Fα

3m5
e

24π
(1− 4 sin2 θW ) ≈ 1.8 · 10−12s−1 for ` = ν, τ,

(1.13)

and branching ratios

Br(o-Ps→ ν`ν̄`) =


9.5 · 10−21 for ` = e

6.2 · 10−18 for ` = ν, τ.

(1.14)

Even though these decays cannot be detected today [19], such rare standard model

decays will be important in the search for new beyond the standard model physics as

experimental sensitivity increases.

As in the Ps→ ν`ν̄` decay outlined above, previous research has found that weak (as

well as QED) decays were exclusively accessible to either p-Ps or o-Ps. It is, therefore,

easy to assume that only one Ps spin state can decay into γν`ν̄`, the subject of our

research. However, it is not obvious that this assumption should be true since weak

interactions break C-symmetry.

We hypothesise that p-Ps can decay into a photon and a neutrino pair through a C-

even vector coupling (analogous to its main 2γ decay) while o-Ps can decay into the same

final state through a C-odd axial coupling. This hypothesis will be tested in chapter 2

where we compute the p-Ps→ γν`ν̄` and o-Ps→ γν`ν̄` decay rates.
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Chapter 2

Ps→ γν`ν̄` decay rates and photon

spectra

The relevant e+e− → γν`ν̄` annihilation graphs for Ps → γν`ν̄` decays are presented in

Fig. 2. The photon is emitted off the initial electron or positron before the e+e− pair

annihilates into a neutrino-antineutrino pair via Z or W boson exchange. The s-channel

Z-boson exchange (Fig. 2.1(a)) contributes to the amplitude for all lepton flavors, `, while

the t-channel W -boson exchange (Fig. 2.1(b)) contributes to the amplitude only when

` = e. The photon can also be emitted off of an internal charged W boson (Fig. 2.1(c));

since this process is suppressed by an additional factor of m2/M2
W ≈ 4 · 10−11 � 1 where

m is the electron mass and MW is the W -boson mass, it is ignored in our calculations.

We begin by calculating both Ps→ γν`ν̄` decay amplitudes. The initial incoming 4-

momenta of the electron and positron are denoted by p1 and p2 while outgoing 4-momenta

are denoted by ki where k1 is the 4-momentum of the neutrino, k2 the anti-neutrino and

kγ the photon. Since the Ps binding energy is small, O(mα2), compared to the rest

mass of the initial leptons, their average kinetic energy is negligible. Therefore, we take

the initial electron and positron to be at rest with 4-momentum p1 = p2 = p = (m,0).

Similarly, the momenta of the virtual Z and W bosons are also negligible compared to

11
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Figure 2.1: Feynman graphs that contribute to the e+e− → γν`ν̄` annihilation ampli-
tudes relevant for Ps → γν`ν̄` decays (` = e, µ, τ). For both (a) and (b), there is an
analogous graph where the photon is emitted off the positron leg. Both (b) and (c) only
contribute to the amplitude when ` = e.

their rest masses and their momentum is neglected in the Z and W propagators. To

account for the bound state nature of Ps, we include p-Ps and o-Ps projection operators

in the spinor trace of the amplitudes along with a factor of ψ0(0)/
√
m where ψ0(0) is

the Ps ground state wave function. With these considerations, the Ps → γν`ν̄` decay

amplitudes are

iMp/o = −4
√

2ieGFm
ψ0(0)√
m

ū(k1)γµ(v` − a`γ5)v(k2)

×Tr Ψp/o

(
γµ
(
v` − a`γ5

)
�p1 −��kγ +m

(p1 − kγ)2 −m2 �ε
∗
γ

+�ε
∗
γ

��kγ − �p2 +m

(kγ − p2)2 −m2
γµ
(
v` − a`γ5

))
(2.1)

where GF ' 1.166 · 10−5/GeV2 is the Fermi constant [33], α ' 1/137 is the fine structure

constant, εγ is the photon polarization and Ψp/o are the p-Ps and o-Ps projection opera-

tors of Ref. [34]. Here, v` and a` describe the electron vector and axial-vector couplings

induced by Z (` = e, µ, τ) and W (` = e; a Fierz transformation is understood [17])
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boson exchange

v` =


1
4

+ sin2 θW for ` = e

1
4
− sin2 θW for ` = µ, τ,

(2.2)

a` =
1

4
. (2.3)

Since the weak mixing angle, θW , is such that sin2 θW ' 0.238 [35] (numerically close to

1/4), the vector coupling is suppressed for ` = µ, τ . We find the total decay rates

Γp ≡ Γ(p-Ps→ γν`ν̄`) =
2G2

Fm
5α4v2

`

9π3
≈


3.5 · 10−14 s−1 for ` = e

2.1 · 10−17 s−1 for ` = µ, τ,

(2.4)

Γo ≡ Γ(o-Ps→ γν`ν̄`) =
8G2

Fm
5α4a2

`

27π3
≈ 1.2 · 10−14 s−1. (2.5)

The branching ratios are small, as expected for weak decays:

Br(p-Ps→ γνν̄) ≈ Γ(p-Ps→ γν`ν̄`)

Γ(p-Ps→ 2γ)
≈


4.3 · 10−24 for ` = e

2.6 · 10−27 for ` = µ, τ,

(2.6)

Br(o-Ps→ γνν̄) ≈ Γ(o-Ps→ γν`ν̄`)

Γ(o-Ps→ 3γ)
≈ 1.7 · 10−21 for ` = e, µ, τ. (2.7)

We find that the o-Ps not only can decay radiatively into neutrinos, but also that since

it can decay into all three flavors with equal probability, its total decay rate into νν̄γ is

in fact slightly larger than for the p-Ps.

Equation (2.7) shows that the o-Ps branching ratio was overestimated by two orders

of magnitude in [14]. The estimate of Ref. [14] has the correct powers of the universal

constants, GF, α, and m

Γ(o-Ps→ γν`ν̄`)

Γ(o-Ps→ 3γ)
∝
(

GFm
2

α

)2

≈ 10−19. (2.8)
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However, the additional factor 4a2
`/ (3π2(π2 − 9)) ≈ 0.01 reduces the branching ratio by

two orders of magnitude.

In Ref. [20], o-Ps is claimed not to decay into γνν̄, contrary to what we find. On

the other hand, the decay rate of p-Ps into this final state seems to be overestimated

by about a factor 60. Their result, presented as Γ (p-Ps→ γν`ν̄`) =
α4G2

Fm
5

π3 Σ(sin2 θW ),

has the correct dependence on coupling constants and the mass, but the function of the

weak mixing angle Σ(sin2 θW ) seems to be in error. This can be seen in equation (11)

in [20] that describes the decay into muon neutrinos. Only the Z boson contributes in

this channel, so the amplitude should be proportional to the vector coupling of the Z

to electrons and vanish when sin2 θW → 1/4; the expression in that equation does not

vanish in this limit.

For the photon spectra we find very simple expressions,

1

Γp

dΓp

dxγ
= 6xγ(1− xγ), (2.9)

1

Γo

dΓo

dxγ
=

3

2
xγ(2− xγ), (2.10)

where xγ = Eγ/m ∈ (0, 1). These spectra are shown in Fig. 2.2. Since there is some

similarity between Ps → γν`ν̄` and o-Ps → 3γ decays, the o-Ps → 3γ spectrum (first

calculated by Ore and Powell [32]) is also included in Fig. 2.2 for comparison.

When the photon reaches the maximum energy, xγ = 1, the neutrino (left-handed)

and the antineutrino (right-handed) move collinearly in the direction opposite to the

photon. Their spins cancel and the angular momentum of the system is carried by the

photon’s spin. Clearly, this is possible only for o-Ps; for this reason, the p-Ps spectrum

vanishes at xγ = 1 (Fig. 2.2(a)). This spectrum also vanishes at xγ = 0. However, the

p-Ps spectrum of Ref. [20] vanishes at neither xγ = 0 or xγ = 1.

The p-Ps spectrum is maximal at xγ = 1/2; different from the maximum xγ = 2/3,

predicted in [20]. On the other hand the o-Ps spectrum is maximal at xγ = 1 when the
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(a) (b)

Figure 2.2: The photon spectrum of p-Ps → γν`ν̄` (solid), o-Ps → γν`ν̄` (dashed)
and o-Ps → 3γ (dotted) decays plotted over (a) the full energy domain of the photon,
xγ ∈ (0, 1) and (b) over the low-energy domain xγ ∈ (0, 0.1).

photon carries the whole angular momentum of the system.

We also note that the spectra we have found (neglecting binding effects) are linear

in the low-energy limit (Fig. 2.2(b)). Since Low’s theorem [25] predicts the low-energy

behaviour of the spectrum to be cubic rather than linear, we shall determine how binding

effects modify the results (2.9) and (2.10) (chapter 4).
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Chapter 3

Angular distributions of Ps→ γν`ν̄`

decays

In Chapter 2, we calculated the decay rates and spectra for p-Ps and o-Ps, and found that

both can decay into a photon and a neutrino-antineutrino pair. To better understand

these decays, we calculate the angular dependence of the Ps→ γν`ν̄` amplitudes (Sec. 3.1)

and then use those amplitudes to determine the angular distributions of Ps → γν`ν̄`

decays (Sec. 3.2).

3.1 Angular dependence of the decay amplitudes

The angular dependence of the decay amplitudes is most easily found by reformulating

the three-body decay Ps → γν`ν̄` in terms of a two-body decay Ps → γZ∗, where Z∗ is

a fictitious massive vector boson of polarization ε and 4-momentum q. Specifically, the

three-body phase space of the decay rate is factorized into two two-body phase spaces

(one for Ps → γZ∗ and one for Z∗ → νν̄) and an integral over the invariant mass

squared of the Z∗ boson (Appendix A). After integrating over the neutrino momenta,

the Ps → γν`ν̄` decay rate can be written as the integral of the Ps → γZ∗ decay rate

(multiplied by a factor from the Z∗ → νν̄ phase space) over the invariant mass of Z∗
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squared (Appendix B),

Γp/o =
G2

F

2π2α

∫
dq2

2π
q2Γp/o-Ps→γZ∗ , (3.1)

where q = k1 + k2 is the Z∗ 4-momentum and

Γp/o-Ps→γZ∗ =
1

g

1

2mPs

∫
dΦ2 (p1 + p2; q, kγ)

|ψ0(0)|2
m

1

3

∑
pol

∣∣Mp/o-Ps→γZ∗
∣∣2 . (3.2)

Here, g is the number of polarizations of the initial Ps state and the sum,
∑

pol, is over

the Z∗ polarizations.

From (3.1), it is clear that the three-body problem Ps → γν`ν̄` can be described

in terms of the two-body problem Ps → γZ∗. The Z∗ couples to the electron current

through both vector and axial-vector coupling with the Feynman rule ie�ε
∗ (v` − a`γ5) at

each e+e−Z∗ vertex.

To construct the angular dependence of the Ps → γZ∗ decay amplitudes on the

spherical angles θ and φ, we first determine the decay amplitudes to final states where

the photon moves along the +z-axis and the Z∗ boson moves along the −z-axis. The

angular dependence is then determined by rotating the initial state and considering decay

along the new z′-axis [36].

The p-Ps→ γZ∗ decay amplitudes are isotropic and given by

Am′γ ,m′Z (θ, φ) = Bm′γ ,m
′
Z
∝ δm′γ ,−m′Z , (3.3)

where m′γ ∈ {±1} and m′Z ∈ {±1, 0} are the spin projections of the photon and Z∗ along

the z′-axis. The z′-axis points along the photon trajectory defined by the spherical polar

angles θ and φ in the original unrotated frame. The p-Ps amplitudes along the z-axis,

Bm′γ ,m
′
Z
, are calculated in Appendix C and the angular amplitudes, Am′γ ,m′Z (θ, φ), are

listed in Table 3.1.
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Table 3.1: The p-Ps→ γZ∗ decay amplitudes, Am′γm′Z/v`e2, as a function of the spherical
angles θ and φ. Since p-Ps is odd under parity, A−m′γ−m′Z = −Am′γm′Z ; therefore, only
the m′γ = +1 amplitudes need be tabulated.

mZ∗

m′γ +1 0 −1

+1 0 0 4i/
√

2

The o-Ps→ γZ∗ amplitudes must be calculated for each initial polarization of o-Ps.

In the initial frame before decay, the o-Ps atom is in a state of definite angular momentum

with some spin projection along the z-axis. We let |Λ〉 represent this initial state. The

o-Ps atom subsequently decays along the z′-axis with the amplitude Am′γm′Z (Appendix

C). Using the Am′γm′Z , the o-Ps angular amplitudes, AmΛ

m′γm
′
Z
, are derived in Appendix D

and are listed in Table 3.2. Here, mΛ ∈ {±1, 0} is the initial spin projection of o-Ps along

the z-axis.

Alternatively, one can obtain the angular dependence of the o-Ps→ γZ∗ amplitudes

using the helicity basis formalism (Appendix E).

Table 3.2: The o-Ps→ γZ∗ decay amplitudes, AmΛ

m′γm
′
Z
/a`e

2, as a function of the spherical

angles θ and φ evaluated at q = −kγ, EZ = 2m− Eγ. The mΛ = −1 amplitudes can be
obtained from the mΛ = +1 amplitudes by the replacement θ → θ + π and φ→ −φ.

m′Z∗

mΛ m′γ +1 0 −1

+1 +1 0
√

2(1 + cos θ)eiφ/
√

1− xγ −2i sin θeiφ

−1 2i sin θeiφ −
√

2(1− cos θ)eiφ/
√

1− xγ 0

0 +1 0 2 sin θ/
√

1− xγ 4i cos θ/
√

2

−1 −4i cos θ/
√

2 −2 sin θ/
√

1− xγ 0

To validate the amplitudes in Tables 3.1 and 3.2, we use them to calculate the decay

rates and photon spectra, and compare these with those obtained in chapter 2. To do

this, we first derive the spin averaged amplitudes squared. For p-Ps, this task is simple,

1

3

∑
m′γm

′
Z

∣∣Amγm′Z ∣∣2q=−kγ ,EZ=2m−Eγ
=

16v2
` e

4

3
. (3.4)
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To obtain the o-Ps spin averaged amplitude squared, it is convenient to first sum over

mΛ and m′γ

∑
mΛm′γ

∣∣AmΛ
mγ+

∣∣2
q=−kγ ,EZ=2m−Eγ

=
∑
mΛm′γ

∣∣AmΛ
mγ−

∣∣2
q=−kγ ,EZ=2m−Eγ

= 8a2
`e

4, (3.5)

∑
mΛm′γ

∣∣∣AmΛ
mγ0

∣∣∣2
q=−kγ ,EZ=2m−Eγ

=
16a2

`e
4

1− xγ
. (3.6)

Then completing the sum over m′Z and dividing by the number of o-Ps and Z∗ polariza-

tions yields the spin averaged amplitude squared

1

3 · 3
∑

mΛm′γm
′
Z

∣∣∣AmΛ

mγm′Z

∣∣∣2
q=−kγ ,EZ=2m−Eγ

=
2

9

(
8a2

`e
4
)

+
16a2

`e
4

9(1− xγ)

=
16a2

`e
4(2− xγ)

9(1− xγ)
. (3.7)

Next, the Ps → γZ∗ decay rates are calculated by substituting equations (3.4) and

(3.7) into (3.2). Since the spin averaged amplitudes squared are independent of angular

location of the photon, θγ and φγ, the angular integrations in (3.2) are trivial

Γp/o-Ps→γZ∗ =
1

2mPs

∫
dΦ2 (2p; q, kγ)

|ψ0(0)|2
m

1

3g

∑
pol

∣∣Mp/o-Ps→γZ∗
∣∣2 ,

=
1

2mPs

β̃(4m2, q2, 0)

8π

|ψ0(0)|2
m

 16v2
` e

4/3

16a2
`e

4(2− xγ)/9(1− xγ)


=
α3m2

3

4m2 − q2

4m2

 v2
`

a2
`(2− xγ)/3(1− xγ)


=
α3m2

3
xγ

 v2
`

a2
`(2− xγ)/3(1− xγ)

 (3.8)

where the top line in the curly brackets is used for the p-Ps (o-Ps) decay rate. Here, we

have used equation (A.2) to simplify the two-body phase space in the second line and

19



q2 = 4m2(1− xγ) to simplify the third line. Substituting the above equations into (3.1)

and writing dq2 = −4m2dxγ, we obtain the Ps→ γν`ν̄` photon spectrum and decay rates

Γp/o =
4G2

Fα
4m5

3π3

∫ 1

0

dxγ

 v2
`xγ(1− xγ)

a2
`xγ(2− xγ)/3

 (3.9)

=
4G2

Fα
4m5

9π3

 v2
`/2

2a2
`/3

 . (3.10)

The decay rates (3.10) are identical to (2.4) and (2.5). The spectra are the integrands of

equation (3.9) and are also equal to the spectra (2.9) and (2.10). Thus, the amplitudes

of Tables 3.1 and 3.2 are consistent with our results from chapter 2.

While it is evident that p-Ps and o-Ps cannot decay into the same final states (even

though they have the same constituent particles), we confirm the orthogonality of the

p-Ps and o-Ps decay amplitudes. The o-Ps amplitudes, AmΛ

±′0′ , are trivially orthogonal to

the p-Ps amplitudes (3.3) because p-Ps cannot decay into a longitudinally polarized Z∗

and photon. To check the orthogonality of AmΛ

±′∓′ with (3.3), we take their inner product

∫
dΩAmγ ,mZ

(
AmΛ

±′∓′ (θ, φ)
)∗ ∝ ∫ dΩ

(
AmΛ

±′∓′ (θ, φ)
)∗
. (3.11)

Since AmΛ

±′∓′ (θ, φ) are proportional to e±iφ or cos θ (depending on mΛ), the inner products

vanish proving orthogonality; this is as expected because AmΛ

±′∓′ (θ, φ) (Table 3.2) are p-

waves while the p-Ps amplitudes are s-waves (Table 3.1).

Thus, the p-Ps→ γν`ν̄` and o-Ps→ γν`ν̄` decays do not have access to the same final

state although both the p-Ps and o-Ps final states contain the same constituent particles.
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3.2 Angular distributions

The angular distribution for a specific γ + Z∗ final state is found by differentiating the

decay amplitude (3.1) by xγ and cos θ where the squared amplitude corresponding to the

specific final state (Tables 3.1 and 3.2) is used in place of the spin averaged amplitude

squared.

Since the nonzero p-Ps amplitudes are isotropic, the nonzero p-Ps → γν`ν̄` angular

distributions are also isotropic

d2Γm′γ=±′;m′Z=∓′

dxγd cos θ
=

9Γpxγ(1− xγ)
2

. (3.12)

Thus, p-Ps is equally likely to decay into a photon and a neutrino-antineutrino pair where

the photon is emitted in any direction.

The o-Ps→ γν`ν̄` angular distributions are determined to be

1

Γo

d2ΓmΛ

m′γm
′
Z

dxγd cos θ
=

27

64
xγ(1− xγ)

∫
dφ

2π

∣∣∣∣∣A
mΛ

m′γm
′
Z

a`e2

∣∣∣∣∣
2

q=−kγ ,EZ=2m−Eγ

(3.13)

and are tabulated in Table 3.3. Since Z∗ is a mathematical convenience, the physical

angular distribution for a given o-Ps polarization mΛ and photon helicity m′γ is obtained

by averaging over the Z∗ polarizations. For an o-Ps atom initially polarized in the mΛ = 0

Table 3.3: Angular distributions of o-Ps→ γν`ν̄` decays, (d2ΓmΛ

m′γm
′
Z
/dxγd cos θ)/Γo. The

mΛ = −1 distributions can be obtained from the mΛ = +1 angular distributions by the
replacement θ → θ + π and φ→ −φ.

m′Z∗

mΛ m′γ +1 0 −1

+1 +1 0 27 cos4(θ/2)xγ/8 27 sin2 θxγ(1− xγ)/16
−1 27 sin2 θxγ(1− xγ)/16 27 sin4(θ/2)xγ/8 0

0 +1 0 27 sin2 θxγ/16 27 cos2 θxγ(1− xγ)/8
−1 27 cos2 θxγ(1− xγ)/8 27 sin2 θxγ/16 0
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state, the angular distributions for decay into a photon of helicity m′γ = ±1 are

1

3

∑
m′Z

d2Γ0
±′m′Z

dxγd cos θ
=

9

16
Γoxγ

[
sin2 θ + 2 cos2 θ(1− xγ)

]
, (3.14)

which are non-zero for all θ. The angular distribution for o-Ps initially polarized in the

mΛ = +1 state decaying into a photon of helicity m′γ = +1 is

1

3

∑
m′Z

d2Γ+
+′m′Z

dxγd cos θ
=

9

16
Γoxγ

[
2 cos4(θ/2) + sin2 θ(1− xγ)

]
. (3.15)

Since this angular distribution vanishes for θ = π, an o-Ps atom in the mΛ = +1 state

cannot decay into a photon of helicity m′γ = +1 along the −z-axis. Similarly, an o-Ps

atom initially polarized in the mΛ = +1 state cannot decay into a photon of helicity

m′γ = −1 along the +z-axis.

The photon spectrum for a specific γ +Z∗ final state is calculated by integrating the

corresponding angular distribution by d cos θ. These spectra are listed in Tables 3.4 and

3.5 and provide further insight into equations (2.9) and (2.10).

Table 3.4: p-Ps → γν`ν̄` photon spectra, (dΓm′γm′Z/dxγ)/Γp, for specific γ + Z∗ final

states. Since |Am′γm′Z |2 = |A−m′γ−m′Z |2, only the m′γ = +1 decay rates need be tabulated.

m′Z∗

m′γ +1 0 −1

+1 0 0 9xγ(1− xγ)

Table 3.5: o-Ps → γν`ν̄` photon spectra, (dΓmΛ

m′γm
′
Z
/dxγ)/Γo, for specific γ + Z∗ final

states and any mΛ.

m′Z∗

m′γ +1 0 −1

+1 0 9xγ /4 9xγ(1− xγ)/4
−1 9xγ(1− xγ)/4 9xγ/4 0
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From Tables 3.4 and 3.5, we see that the nonzero photon spectra of decays into final

states with m′γ = ±1 and m′Z = ∓1 are proportional to xγ (1− xγ) and vanish as xγ → 1.

On the other hand, the nonzero photon spectra of decays into final states with m′γ = ±1

and m′Z = 0 are linear and maximal at xγ → 1.

The o-Ps photon spectrum is maximal at xγ = 1 because the o-Ps decay has access

to two final states with a longitudinally polarized Z∗, which add to the linear term in

the spectrum, unlike the p-Ps decay. Specifically, the AmΛ
±0 amplitudes contain a factor of

2m/q = 1/
√

1− xγ from the longitudinal polarization of Z∗ that enhances the amplitude

for high-energy photons and when squared cancels the factor q2 ∝ (1− xγ) in the dq2

integral of (3.1). Physically, the high-energy limit xγ → 1, the longitudinal polarization

of Z∗ represents a final state where the neutrino and antineutrino are collinear.

Lastly, we note that the photon spectra (2.9) and (2.10) can be obtained from Tables

3.4 and 3.5 by averaging over the photon and Z∗ polarizations and summing over the

photon polarizations

1

3

∑
m′γm

′
Z

dΓm′γm′Z
dxγ

= 6Γpxγ(1− xγ), (3.16)

1

9

∑
mΛm′γm

′
Z

dΓmΛ

m′γm
′
Z

dxγ
=

3Γo

2
xγ(1− xγ). (3.17)

It is clear that the decay rates (2.4) and (2.5) are obtained by integrating the above over

xγ.
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Chapter 4

Low’s theorem and the soft photon

limit of the spectra

Low’s theorem [25] places constraints on the amplitude of any radiative process and

predicts the spectrum in the soft photon limit. In chapter 2, the tree level electroweak

photon spectra, equations (2.9) and (2.10), were found to be linear in the low-energy

limit, similar to the Ore-Powell o-Ps→ 3γ spectrum [32]. However, it was pointed out by

Ref. [21] that the Ore-Powell spectrum is in contradiction with Low’s theorem. Therefore,

it is important to reconcile any discrepancy between Low’s theorem and equations (2.9)

and (2.10).

Low’s theorem states that the O(E−1
γ ) and O(E0

γ) terms in the Laurent expansion of

the radiative amplitude, X → Y + γ, are obtained from knowledge of the non-radiative

amplitude, X → Y [21, 22, 25]. Expanding the radiative amplitude, εµγMµ, in a Laurent

series in the photon energy, we obtain

εµγMµ =
∞∑

n=−1

Mn+1E
n
γ , (4.1)

where Mi is the coefficient of the O
(
Ei
γ

)
term of the Laurent series. The coefficients
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M0 and M1 are independent of Eγ and determined by the non-radiative amplitude, its

derivatives in physically allowed regions and the anomalous magnetic moments of the

particles involved in the reaction [25].

The M0 coefficient is proportional to the non-radiative amplitude multiplied by the

factor −Qiε · pi/kγ · pi, which arises from the emission of a photon by an outgoing or

ingoing particle [22]. The M0 coefficient vanishes when there are no moving charged

particles in the initial and final state of the non-radiative process or when the non-

radiative amplitude is zero. The coefficient M1 is a function of the magnetic moments

of the particles as well as the non-radiative amplitude and its derivatives with respect to

energy and angle [25].

By combining the behavior of the radiative amplitude and the phase space, we find

that the low-energy photon spectrum has the form

dΓ

dEγ
=

A

Eγ
+B + CEγ +DE2

γ +O
(
E3
γ

)
, (4.2)

where

A = |M0|2

B = M0M∗
1 +M1M∗

0

C = |M1|2 +M0M∗
2 +M2M∗

0

D = M0M∗
3 +M3M∗

0 +M1M∗
2 +M2M∗

1. (4.3)

If M0 vanishes, then A = B = 0 and the soft photon spectrum is of order EγdEγ. If

both M0 and M1 vanish, then A = B = C = D = 0 and the soft photon spectrum is of

order E3
γdEγ.

For p-Ps→ γν`ν̄`, the non-radiative p-Ps→ ν`ν̄` amplitude vanishes [17]; application

of Low’s theorem yields M0,1 = 0 for the radiative decay, p-Ps → γν`ν̄`. Since the
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radiative o-Ps → γν`ν̄` decay proceeds only via axial-vector coupling while the non-

radiative o-Ps → ν`ν̄` amplitude is proportional to vector coupling [17], Low’s theorem

requires the O(E−1
γ ) and O(E0

γ) terms of the radiative o-Ps→ γν`ν̄` amplitude to vanish

(i.e.,M0,1 = 0). Thus, for both Ps → γν`ν̄` decays, Low’s theorem predicts that the

photon spectra are cubic in the low-energy limit in apparent contradiction with equations

(2.9) and (2.10).

Equations (2.9) and (2.10) were calculated using the tree level electroweak amplitude

for the e+e− → γν`ν̄` annihilation multiplied by the probability density for the e+e− pair

to be at the origin. This calculation assumes that the electron and positron are initially

free and at rest, and therefore neglects the binding effects in Ps (which are of order mα2).

For photons with comparable energies, binding effects become important and equations

(2.9) and (2.10) are no longer accurate.

To resolve the contradiction between equations (2.9) and (2.10), and Low’s theorem,

we must include binding effects in the soft photon spectrum of Ps→ γν`ν̄` decays. To do

this we employ the non-relativistic effective field theory (NREFT) methods developed in

Refs. [22, 24, 23].
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Chapter 5

Soft photon spectra of Ps→ γν`ν̄`

decays

NREFTs provide a systematic way of incorporating binding effects in the computation

of bound state decay amplitudes. One computes the decay amplitudes in electroweak

theory. Then a NREFT Hamiltonian is constructed to reproduce the soft photon limit of

the electroweak amplitudes when ignoring binding effects. In other words, the effective

theory dynamics (ignoring binding effects) are set equal to the low-energy limit of the

electroweak dynamics.

Once this matching has been performed, the NREFT Hamiltonian is used to calculate

the effective theory amplitudes and subsequently the soft photon spectra. The effective

theory amplitudes are calculated using time-independent perturbation theory and have

both long (Coulomb) and short distance (annihilation into a ν`ν̄` pair) contributions.

We calculate the soft-photon limit of the Ps → γν`ν̄` electroweak amplitudes in

Sec. 5.1. The matching conditions and effective theory photon spectra are calculated in

Secs. 5.3 and 5.4.

The Coulomb (HC) and the interaction (Hint) Hamiltonians describe the bound state

dynamics of an e+e− pair interacting with a quantized electromagnetic field. Following
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Ref. [23], we argue that the dipole approximation of the interaction Hamiltonian is valid

in the energy range Eγ � m (Sec. 5.2). In the dipole approximation, the Hamiltonians

are

H = HC +Hint, (5.1)

HC =
p2

m
− α

r
, (5.2)

Hint = −ex · E− µ [σφ + σχ] ·B, (5.3)

in terms of the center of mass variables p = (p1 − p2) /2 and x = x1 − x2 where the

indices 1 and 2 refer to the electron and positron [22]. Here, σφ/χ are the Pauli matrices

acting on the electron (φ) and positron (χ) Pauli spinors. The electric, E, and magnetic,

B, fields are evaluated in the dipole approximation. Therefore, Hint can induce both E1

and M1 transitions within the Ps atom.

The Coulomb Hamiltonian HC is the leading term in the velocity, v � 1, of the

electron. The interaction Hamiltonian, Hint, is higher order in v and taken as a pertur-

bation. The (p/o)-Ps annihilation amplitude is given by the first order v expansion of

the electroweak e+e− → ν`ν̄` annihilation amplitude. While the neutrino energies are

of order O(m), a non-relativistic treatment is still valid since the annihilation into a

neutrino-antineutrino pair is a short distance effect – the neutrinos are not dynamical.
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5.1 Soft photon limit of the tree level electroweak

decay amplitude

Using the standard Feynman rules, the Ps→ γνν̄ decay amplitude (Fig. 2) is

M = −2
√

2iGFemv̄ (p2)

(
��J
(
v` − a`γ5

)
�p1 −��kγ +m

(p1 − kγ)2 −m2 �ε
∗
γ

+�ε
∗
γ

��kγ − �p2 +m

(kγ − p2)2 −m2��J
(
v` − a`γ5

))
u (p1) , (5.4)

where p1 and p2 are the electron and positron 4-momenta, k1 and k2 are the neutrino and

antineutrino 4-momenta, kγ is the photon 4-momentum and εγ is the photon polarization.

Here, Jµ (k1, k2) = ū(k1)γµ (1− γ5) v(k2) is the neutral weak current (see equation (F.6)

in Appendix F).

In equation (5.4), we choose the Dirac representation of the gamma matrices and

Dirac spinors for the electron and positron. In this representation, the electron spinor is

us(p) =
1√

E +m

 E +m

p · σ

φs, (5.5)

where E =
√
m2 + p2, φs is the two-component electron spinor and the index s denotes

the spin projection [37]. The positron spinors are related to the electron spinors by charge

conjugation,

vs (p) =
1√

E +m

 p · σ

E +m

χs, (5.6)

where χs = iσ2φ∗s is the two-component positron spinor.

Since the Ps binding energy is small, O(mα2), the typical momentum of the electron

is small and we neglect it (i.e., p1 = p2 = (m,0)). In the limit Eγ → 0, the neutrino

momenta are back to back (k1 = −k2) and J0 → 0. Factoring out the Eγ dependence
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and working with k̂γ = kγ/Eγ, equation (5.4) becomes

M = 2
√

2GFeχ
†
(
v`

(
k̂γ × εγ

)
· J + a` (εγ × J) · σ

)
φ, (5.7)

where we choose εγ to be real and transverse to kγ. Projecting the electron and positron

spinors onto the p-Ps (χ†φ→
√

2 and χ†σφ→ 0) and o-Ps (χ†φ→ 0 and χ†σφ→
√

2ξ)

states, the low-energy limit of the electroweak amplitudes are

Mp = 4GFev` (εγ × J) · k̂γ, (5.8)

Mo = 4GFea` (εγ × J) · ξ, (5.9)

where ξ is the o-Ps polarization vector.

5.2 Dipole approximation of the interaction Hamil-

tonian

While normally the dipole approximation is applicable for photons with wavelengths

much larger than the spatial extent of the Ps atom, 2/mα (i.e., Eγ � mα), it has been

shown that the dipole approximation of the interaction Hamiltonian holds in the enlarged

energy region Eγ � m for the three-body decay o-Ps→ 3γ [23, 24]. In this energy region,

amplitudes where the intermediate states propagate via the Coulomb Green’s function,

are a series in α
√
m/Eγ ∼

√
α rather than integer powers of α. The main contributions to

the effective field theory amplitudes arise from distances of order O(1/
√
mEγ), which are

much smaller than the Ps radius O(1/mα) [24]. We argue that the same considerations

apply to Ps → γν`ν̄` decays and that the dipole approximation holds in the extended

energy range Eγ � m.

Initially, the Ps atom is in either the 1S0 or 3S1 states at energy E1 = −mα2/4
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relative to the threshold. The p-Ps (o-Ps) atom then emits a soft photon and the e+e−

pair propagates non-relativistically in the Coulomb field in a C-odd (C-even) state of

energy E1 − Eγ before annihilating into a neutrino-antineutrino pair (Fig. 5.1).

⌫̄

o-Ps

�
⌫

p-Ps

⌫̄

o-Ps

�
⌫

o-Ps

1

(a)

⌫̄

o-Ps

�
⌫

p-Ps

⌫̄

o-Ps

�
⌫

o-Ps

1

(b)

Figure 5.1: Effective theory graphs for (a) p-Ps → γν`ν̄` and (b) o-Ps → γν`ν̄`. The
open square (circle) represents a M1 (E1) transition while the solid star represents the
annihilation of o-Ps into a neutrino-antineutrino pair.

The Green’s function of the e+e− pair, interacting via a Coulomb field, GC , describes

the propagation of the pair between the emission of the soft photon and the annihilation

into a neutrino-antineutrino pair. It satisfies the equation

(
HC +

κ2

m

)
GC(x,y;κ) = δ (x− y) (5.10)

and is proportional to exp (−κr) where −κ2/m = Eγ. Therefore, the virtual pair propa-

gates over a distance of O(κ−1) [23].

Since the spin-singlet state cannot annihilate into a neutrino-antineutrino pair [17],

the virtual C-odd (C-even) state of Fig. 5.1(a) (5.1(b)) must be a triplet state of orbital

angular momentum L = 2n (L = 2n + 1) for n a non-negative integer. The transition

amplitude for 1S → 3(2n) + γ (3S → 3(2n + 1) + γ) is a magnetic M(2n) (electric

E(2n + 1)) type interaction and proportional to (Eγ/m)(Eγr)
2n ((Eγr)

2n+1). Further-

more, the amplitude for annihilation contains L derivatives of the Green’s function and

is proportional to (κ/m)L. Since the exponential dependence of the Green’s function,

exp(−κr), constrains the product κr to order one, the total amplitude scales with the
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photon energy as (Eγ/m)2n+1 [23].

Therefore, only the intermediate states with the lowest n (i.e., n = 0) need to be

considered for Eγ � m [23]. The intermediate state of Fig. 5.1(a) is the o-Ps ground

state, 13S1, while the intermediate states of Fig. 5.1b are the L = 1 o-Ps excited states,

n3P0,1,2. These states are reached from the initial p-Ps and o-Ps ground states by M1

and E1 transitions respectively. Thus, the dipole approximation is valid in the energy

region Eγ � m.

5.3 Soft photon spectrum for p-Ps

As noted in Sec. 5.2, p-Ps cannot decay into a ν`ν̄` pair; therefore, the p-Ps → γν`ν̄`

decay must proceed solely through an M1 transition. The M1 interaction flips the spin of

either the electron or positron and takes the initial p-Ps state, 11S0, to an intermediate

o-Ps state. Within the dipole approximation, the only allowed intermediate state is the

o-Ps ground state, 13S1.

In time-ordered perturbation theory, the effective theory amplitude for p-Ps → γν`ν̄`,

Fig. 5.1(a), is

Meff
p =

∑
n

i〈0|Â(ν`ν̄`)
s |n〉〈n|iµ (σφ + σχ) ·B|p-Ps〉

Ep − En − Eγ

=
∑
ms

−i〈0|Â(ν`ν̄`)
s |13S1;ms〉〈13S1;ms|iµ (σφ + σχ) ·B|p-Ps〉

∆Ehfs + Eγ
, (5.11)

where ∆Ehfs = Eo−Ep is the hyperfine splitting energy difference, and, Ep and Eo are the

p-Ps and o-Ps ground state energies. Here, Â
(ν`ν̄`)
s is the s-wave o-Ps→ ν`ν̄` annihilation

operator (Appendix G),

Â(ν`ν̄`)
s = 2

√
2iGFmv` (J · σ) . (5.12)

To simplify the effective theory amplitude, we begin by evaluating the annihilation and

magnetic matrix elements in the numerator. Projecting the electron and positron spinors
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onto the spin triplet state (χ†σφ→
√

2ξ), the annihilation matrix element becomes

〈0|Â(ν`ν̄`)
s |13S1;ms〉 = 2

√
2iGFmv`J ·

(
χ†σφ

)
ψ0(0)

= 4iGFmv`J · ξψ0(0), (5.13)

where ψ0 is the Ps ground state wave function. The magnetic matrix element is

〈13S1;ms|iµ (σφ + σχ) ·B|p-Ps〉 =
e√
2m

Eγ

(
k̂γ × εγ

)
·
(
χ†σφ

)∗
=

e√
2m

Eγ

(
k̂γ × εγ

)
·
√

2ξ∗. (5.14)

Summed over the polarizations of the intermediate o-Ps states in (5.11),

∑
ξ

ξiξi∗ = δij, (5.15)

the effective theory amplitude becomes

Meff
p = 4GFev` ψ0(0) (εγ × J) · k̂γ Am(Eγ). (5.16)

The magnetic amplitude, Am, contains all the dependence on the soft photon energy in

the effective theory amplitude,

Am(Eγ) =
Eγ

∆Ehfs + Eγ
=

xγ
ε+ xγ

, ε ≡ ∆Ehfs

m
. (5.17)

To ensure that the effective theory amplitude (5.16) is consistent with electroweak theory,

we consider xγ � ε and neglect the hyperfine energy difference in the energy denominator

of (5.11); then, Am = 1. The effective theory amplitude, ignoring binding effects, is

therefore

Meff
p → 4GFev` ψ0(0) (εγ × J) · k̂γ. (5.18)
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Since (5.18) is equal to the soft photon limit of the tree level electroweak amplitude (5.8)1,

the annihilation operator (5.12) and M1 transition fully account for ν`ν̄` annihilation and

soft photon emission in p-Ps→ γν`ν̄` decays.

Assured that the effective theory amplitude (5.16) is consistent with the full elec-

troweak theory, we use it to calculate the low-energy photon spectrum. We need both

the three body phase space in the xγ → 0 limit and the spin averaged amplitude squared.

In the xγ → 0 limit, the three body phase space is

[
1

128π3
dx1dxγ

]
xγ→0

≈ 1

128π3

xγ
2

d cos θdxγ, (5.19)

where θ is the angle between the neutrino and photon. The spin averaged square of the

amplitude is

∑
εγ

∣∣Meff
p

∣∣2 =
∑
εγ

∣∣∣4GFev`ψ0(0)Am(Eγ) (εγ × J) · k̂γ
∣∣∣2

−→
xγ→0

128G2
Fv

2
`α

4m5 |Am(Eγ)|2
(
1 + cos2 θ

)
, (5.20)

where
∑
εγ
| (εγ × J) · k̂γ|2 = 16E2

1

[
1 + (k̂γ · k̂1)2

]
(see equation (F.15) in Appendix F),

k̂γ · k̂1 = cos θ and E1 → m. Here, k̂1 and k̂γ are the unit 3-momentum vectors of the

neutrino and photon.

The effective theory photon spectrum is obtained by multiplying (5.20) by (5.19) and

integrating over d cos θ where the allowed integration range is −1 ≤ cos θ ≤ 1

(
1

Γp

dΓp

dxγ

)eff

=
9π3

2m5α4G2
Fv

2
`

∫ 1

−1

d cos θ
1

128π3

xγ
2

∑
εγ

∣∣Meff
p

∣∣2
= 6xγ |Am(Eγ)|2 . (5.21)

The spectrum is proportional to the square of the magnetic amplitude, Am. The magnetic

1This equality is up to an overall factor of ψ0(0), which was not accounted for in Sec. 5.1.
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amplitude has simple asymptotic behavior; it is linear in xγ for xγ � ε and approximately

constant for xγ � ε

Am ≈


xγ/ε for xγ � ε

1 for xγ � ε.

(5.22)

Therefore, the effective theory spectrum (5.21) is cubic in xγ in the low-energy limit,

xγ � ε, as required by Low’s theorem. Above the hyperfine splitting, xγ � ε, the

spectrum shifts from being cubic in the photon energy to linear.

The ratio of the p-Ps→ γν`ν̄` effective theory to the tree level electroweak spectrum

is plotted in Fig. 5.2. In the intermediate energy region (ε� xγ � 1), the ratio plateaus

near 1 indicating that the effective theory and tree level electroweak spectrum (2.9)

are approximately equal (the two spectra intersect at xγ ≈ 5.75 × 10−5). For high-

energy photons xγ . 1, the ratio spikes revealing that the effective theory spectrum

differs significantly from the tree level electroweak spectrum and is no longer accurate

(Fig. 5.2(b)). Below the hyperfine energy splitting, the ratio in the log-log plot is linear

with a slope of 2 since the effective theory spectrum is cubic in xγ while the tree level

electroweak spectrum is linear (Fig. 5.2(a)).

(a) (b)

Figure 5.2: Log-log plot of the ratio of the effective theory spectrum to the tree level
electroweak spectrum in p-Ps → γνν̄ decays in (a) the low-energy limit α6 < xγ < α2

and (b) the high-energy limit α3/5 < xγ < 1. The vertical line in (a) indicates the
hyperfine splitting energy (xγ = ε = 7α4/12) while the horizontal line in (b) is placed at
1 to indicate the region where the effective and full theory spectra are equal.
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5.4 Soft photon spectrum for o-Ps

In o-Ps → γν`ν̄` decays, the E1 transition takes the initial o-Ps ground state, 13S1, to

the excited o-Ps states n3P0,1,2 (n 6= 1), which then decay into a ν`ν̄` pair. On the other

hand, the M1 transition takes the initial o-Ps state, 13S1, to the p-Ps ground state, 11S0,

which cannot decay into a ν`ν̄` pair and therefore does not need to be considered.

Thus, the effective theory o-Ps→ γν`ν̄` decay amplitude, Fig. 5.1(b), is given by

Meff
o =

∑
n

i〈0|Â(ν`ν̄`)
p |n〉〈n|iex · E|o-Ps〉
Eo − En − Eγ

= −2
√

2iGFea`Eγ
∑
n

〈0| (J× σ) · p|n〉〈n|x · εγ|o-Ps〉
Eo − En − Eγ

, (5.23)

where Â
(ν`ν̄`)
p is the p-wave o-Ps→ ν`ν̄` annihilation operator (derived in Appendix G),

Â(ν`ν̄`)
p = −2

√
2GFa` (J× σ) · p. (5.24)

As in the calculation of the effective theory p-Ps → γν`ν̄` amplitude (Sec. 5.3), we now

demonstrate that the effective theory amplitude (without binding) is equal to the soft

photon limit of the electroweak amplitude. To calculate the effective theory amplitude,

ignoring binding effects, we take Eγ � mα2 and therefore can ignore Eo − En in the

energy denominator of (5.23), which yields

Meff
o → 2

√
2iGFa`e

∑
n

〈0| (J× σ) · p|n〉〈n|x · εγ|o-Ps〉

= 2
√

2iGFa`e〈0| (J× σ) · p x · εγ|o-Ps〉. (5.25)

The tensor operator pixj can be decomposed into irreducible spherical tensor operators

pixj =
δij

3
p · x +

pixj − pjxi

2
+

1

2

(
pixj + pjxi − 2

3
δijp · x

)
. (5.26)
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Since the initial o-Ps state is an s-wave, only the operator with zero angular momentum

(first term of (5.26)) gives a non-zero matrix element. Additionally, we take the operator

p to act only on x because x ·∇ψ0 vanishes at the origin. With these considerations,

the effective theory amplitude (ignoring binding effects) (5.25) simplifies to

Meff
o → 4GFea` (εγ × J) · ξ ψ0(0). (5.27)

Since this is equal to the soft photon limit of the tree level electroweak amplitude (5.9)2,

the annihilation operator (5.24) and E1 transition fully account for ν`ν̄` annihilation and

soft photon emission in o-Ps → γν`ν̄` decays. Thus, equation (5.23) is the complete

effective theory amplitude.

We now return to the general case, without any assumptions about photon energies.

Expanding the inner products of the effective theory amplitude (5.23), we find

Meff
o = 4GFea`Eγ (J× ξ)i εjγ

∫
d3x d3y δ(3)(x) ∂ix

(∑
n

〈x|n〉〈n|y〉
En + κ2/m

)
yjψ0(y)

= 4GFea`Eγ (J× ξ)i εjγ

∫
d3y

[
∂ixGC(x,y, κ)

]
x=0

yjψ0(y) (5.28)

where −κ2/m = Eo−Eγ and GC(x,y, κ) is the Coulomb Green’s function. The derivative

selects the l = 1 partial wave of the Green’s function [24]

[
∂ixGC(x,y, κ)

]
x=0

= 3yiG1(0, y, κ). (5.29)

where the partial wave decomposition of the Coulomb Green’s function can be found

in Appendix D of Ref. [22]. Substituting (5.29) into (5.28) and performing the angular

2This equality is up to an overall factor of ψ0(0), which was not accounted for in Sec. 5.1.
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integrations yields the effective theory amplitude

Meff
o = 4GFea` ψ0(0) (J× ξ) · εγ Ae(Eγ)

= 4GFea` ψ0(0) (εγ × J) · ξ Ae(Eγ). (5.30)

Here, the electric amplitude, Ae, is

Ae (Eγ) =
4πEγ
ψ0(0)

∫ ∞
0

dy y4GC,1 (0, y;κ)ψ0(y)

=
(1− ν) (3 + 5ν)

3 (1 + ν)2 +
8ν2 (1− ν)

3 (2− ν) (1 + ν)3 2F1

(
1, 2− ν; 3− ν;

ν − 1

ν + 1

)
,

(5.31)

where ν = α√
4xγ+α2

. The first line of (5.31), is the same integral representation of the

electric amplitude from Ref. [22] while the second line was derived in Ref. [23]. The

hypergeometric function 2F1 in the second line, simplifies to the so-called Hurwitz-Lerch

Φ function [38],

1

2− ν 2F1

(
1, 2− ν; 3− ν;

ν − 1

ν + 1

)
=

1

2− νΦ

(
ν − 1

ν + 1
, 1, 2− ν

)
=
∞∑
n=0

1

2− ν + n

(
ν − 1

ν + 1

)n
, (5.32)

Ae (Eγ) =
1− ν

3 (1 + ν)2

[
3 + 5ν +

8ν2

1 + ν

∞∑
n=0

1

2− ν + n

(
ν − 1

ν + 1

)n]
. (5.33)

At high energies, equivalent to xγ � α2 and ν ' α
2
√
xγ
→ 0, this amplitude can be

expanded as a series in α/
√
xγ,

Ae = 1− 2α

3
√
xγ

+
(2− 2 ln 2)α2

3xγ
+ . . . , (xγ � α2). (5.34)

We see that for xγ � α2, the electric amplitude is approximately 1. In this region the

binding effects are relatively unimportant. Indeed, the expression (5.30) agrees with the
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amplitude obtained when binding effects are ignored, eq. (5.27), when we take Ae → 1.

On the other hand, in the extreme soft photon limit xγ � α2, equivalent to ν '

1− 2xγ
α2 → 1−, the electric amplitude can be expanded as a series in xγ/α

2,

Ae =
2xγ
α2

+ . . . (xγ � α2). (5.35)

The leading term in the soft photon limit is linear in xγ with a slope of 2/α2.

To summarize, the electric amplitude is linear in the photon energy below the binding

energy and approximately constant above it. The expansions (5.35) and (5.34) will be

important when determining the behaviour of the photon spectrum in the limits xγ � α2

and xγ � α2.

5.4.1 Low-energy limit and the Stark effect

It is instructive to look for a simple physical connection to the leading low-energy term

(5.35). In the soft photon limit, the wavelength is large and the electric field of the

wave is approximately constant. This is similar to the situation in the Stark effect.

Since the first order correction to the ground state energy for the Stark effect vanishes

(E(1) ∝ 〈ψ0|x · εγ|ψ0〉 = 0), one evaluates the second order correction to the ground state

energy

E(2) =
∑
n 6=0

〈ψ0|H ′|n〉〈n|H ′|ψ0〉
E0 − En

, (5.36)

where H ′ ∝ x · εγ = r cos θ. The form of (5.36) is similar to the low-energy limit of the

effective theory amplitude where Eγ = 0 in the energy denominator of (5.23)

Meff
o = −2

√
2iGFea`Eγ

∑
n

〈0| (J× σ) · p|n〉〈n|x · εγ|o-Ps〉
Eo − En

. (5.37)

Since equation (5.36) can be summed exactly using the method of Dalgarno and Lewis

[39, 40], we can exploit the similarity between equations (5.36) and (5.37) to evaluate the
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effective theory amplitude in the soft photon limit.

Equations (5.36) and (5.37) can be summed exactly by finding a function F that

satisfies

[F,H0]ψ0(x) = x · εγψ0(x). (5.38)

For the unperturbed positronium Hamiltonian, H0, the function F is given by

F = −m
2

x · εγ
(
a2 +

ar

2

)
(5.39)

where a is the Ps Bohr radius. With F in hand, we evaluate equation (5.37)

Meff
o = −2

√
2iGFea`Eγ〈0| (J× σ) · pF |o-Ps〉

= −4GFea`Eγ (J× ξ) ·
∫

d3x δ(3)(x)∇(Fψ0(x))

= 4GFea` ψ0(0) (εγ × J) · ξ 2xγ
α2

. (5.40)

Thus, in the limit xγ � α2 the electric amplitude is Ae ≈ 2xγ/α
2 which is equal to the

first order term of the expansion (5.35).

Similarly, the Stark effect can be related to the soft photon limit of the E1 portion of

the o-Ps → 3γ decay amplitude. The annihilation operator that contributes to the E1

portion of the o-Ps → 3γ decay amplitude is of the same form as the o-Ps p-wave ν`ν̄`

annihilation operator and contains a p derivitive. A calculation, using the summation

technique above, reveals that in the soft photon limit, Ae ≈ 2xγ/α
2. This agrees with

the soft photon limit of the electric amplitude derived in [22, 24] by expansion of the

p-wave Green’s function.

5.4.2 Photon spectrum

With this understanding of the electric amplitude, we proceed to the the computation of

photon spectrum. Both the spin averaged square of the amplitude (5.30) and the three
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body phase space in the x → 0 limit are needed. Squaring (5.30), summing over the

photon polarizations and averaging over the initial o-Ps polarizations, yields

1

3

∑
ξεγ

∣∣Meff
o

∣∣2 =
1

3

∑
ξεγ

|4GFea`ψ0(0)Ae(Eγ) (εγ × J) · ξ|2

−→
xγ→0

128G2
Fa

2
`α

4m5 |Ae(Eγ)|2
(

1− 1

3
cos2 θ

)
, (5.41)

where
∑
ξεγ
| (εγ × J) · ξ|2/3 = 16E2

1

[
1− 1

3
(k̂γ · k̂1)2

]
(see equation (F.16) in Appendix

F), k̂γ · k̂1 = cos θ and E1 → m. Multiplying by the three body phase space in the limit

xγ → 0 and integrating over cos θ yields the effective theory spectrum

(
1

Γo

dΓo

dxγ

)eff

=
27π3

8G2
Fm

5α4a2
`

∫ 1

−1

d cos θ
1

128π3

xγ
2

1

3

∑
ξεγ

∣∣Meff
o (Eγ)

∣∣2
= 3xγ |Ae(Eγ)|2 . (5.42)

The effective theory spectrum is proportional to the square of the electric amplitude

and thus shares the same transitional behaviour at xγ = α2. Substituting the leading

term from equations (5.35) and (5.34) into (5.42) we obtain the approximate form of the

spectrum in the limits xγ � α2 and xγ � α2

(
1

Γo

dΓo

dxγ

)eff

≈


12
α2x

3
γ for xγ � α2

3xγ for xγ � α2.

(5.43)

Clearly, for photons with xγ � α2, the spectrum is cubic in the photon energy as required

by Low’s theorem. For photons in the energy range α2 � xγ � 1, both the effective

theory and tree level electroweak spectra are approximately linear with a slope of 3.

The ratio of the effective theory spectrum to the tree level electroweak spectrum for

o-Ps → γν`ν̄` decays is plotted in Fig. 5.3. The effective theory spectrum and tree level

electroweak spectrum are approximately equal in the intermediate energy range xγ ∼
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O(10−2−10−1) (Fig. 5.3(b)). For high energy photons the ratio spikes upward indicating

that the effective theory spectrum differs significantly from the tree level electroweak

spectrum and is no longer accurate (Fig. 5.3(b)). Below the binding energy, the ratio in

the log-log plot is linear with a slope of slope of 2 since the effective theory spectrum is

cubic in xγ while the tree level electroweak spectrum is linear (Fig. 5.3(a)).

(a) (b)

Figure 5.3: Log-log plot of the ratio of the effective theory spectrum to the tree level
electroweak spectrum for o-Ps → γνν̄ decays in (a) the low-energy limit α4 < xγ < 0.1
and for (b) the high-energy limit α2 < xγ < 1. The vertical line in (a) indicates the
binding energy (xγ = α2/2) while the horizontal line in (b) is placed at 1 where the
effective theory and electroweak theory spectra are equal.
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Chapter 6

Conclusions

We calculated the decay rate and photon spectrum of the decay of Ps into a photon

and a neutrino-antineutrino pair (Ps → γν`ν̄`). Both Ps spin states have access to the

γν`ν̄` decay channel where the p-Ps and o-Ps final states are orthogonal despite being

comprised of the same particles. The decay rates are given by (2.4) and (2.5) and the

tree level electroweak photon spectrum by (2.9) and (2.10). These rates and spectra

were further examined by calculating the angular dependence of the decay amplitudes,

angular distributions and spectra for specific γ + Z∗ final states (Tables 3.1–3.4).

In principle, this decay could be observed. Experimentally, this channel would appear

as the decay of Ps into a single photon if the neutrinos go undetected. However, exper-

imental detection of this channel would be very challenging given the small branching

ratios.

The soft photon limit of the tree level electroweak spectra (equations (2.9) and (2.10))

was compared with that predicted by Low’s theorem and found to be in disagreement.

This contradiction was resolved by including binding effects in the computation of the

soft photon spectrum using the methods of non-relativistic effective field theories. The

effective theory spectra are given by equations (5.21) and (5.42), and are valid for photon

energies much less than the electron mass.
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For photon energies much larger than the hyperfine splitting yet still much smaller

than the electron rest mass (mα4 � Eγ � m), the p-Ps → γν`ν̄` effective theory

spectrum approaches the tree level electroweak spectrum (2.9). Below the hyperfine

splitting (Eγ � mα4), the effective theory spectrum is cubic in the soft photon energy as

required by Low’s theorem. In the dipole approximation of the interaction, soft photon

p-Ps→ γν`ν̄` decays proceed only by the magnetic M1 transition.

The o-Ps → γν`ν̄` effective theory spectrum approaches the tree level electroweak

spectrum (2.10) for photon energies much larger than the binding energy but still much

smaller than the electron rest mass (mα2 � Eγ � m). For photon energies much smaller

than the binding energy (Eγ � mα2), the effective theory spectrum is cubic in the photon

energy as required by Low’s theorem. In the dipole approximation of the interaction,

soft photon o-Ps→ γν`ν̄` decays proceed only by the electric E1 transition.

Lastly, we find connection between the Stark effect and the soft photon limit of the

o-Ps→ γν`ν̄` spectrum and the E1 contribution to the o-Ps→ 3γ spectrum.
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Appendix A

Factorization of the three-body

phase space

A three-body phase space can be factorized into two two-body phase spaces and an

integral over an invariant mass squared. Specifically for Ps → γν`ν̄` decays, the three

body Ps → γν`ν̄` phase space is factorized into two two- body phase spaces (one for

Ps→ γZ∗ and one for Z∗ → νν̄) and an integral over the invariant mass of Z∗ squared.

In Sec. A.1, we review two-body phases spaces – the basis for this factorization. Then we

derive the three-body factorization for three massive particles and take the limit relevant

for our decay where all three particles are massless (Sec. A.2).

A.1 Two-body phase spaces

In general, the N -body phase space measure is given by [29]

dΦN (P µ; k1, ..., kN) = (2π)4 δ(4)

(
P µ −

N∑
i=1

kµi

)
N∏
i=1

d3ki

(2π)3

1

2Ei
. (A.1)

Here, P µ is the total 4-momentum of all initial particles, and, ki and Ei are the 4-

momentum and energy of the ith particle in the final state. Since the integration measure,
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d3ki/(2π)32Ei, is Lorentz invariant, the integrals in each two-body phase space can be

performed in any inertial reference frame.

For the two-body phase space, we choose to work in the center of mass frame of the

initial particles so that the total 4-momentum is given by P µ =
∑

i p
µ
i = (

√
s,0) where

s = P · P is the invariant mass squared and pi is the 4-momentum of the ith particle in

the initial state. Denoting the masses and 4-momentum of the final state particles by

m1, k1 and m2, k2, the phase space volume is

∫
dΦ2(P ; k1, k2) =

∫
d3k1

2E1 (2π)3

d3k2

2E2 (2π)3 (2π)4 δ(4) (P µ − kµ1 − kµ2 )

=
β̃(s;m2

1,m
2
2)

8π

∫
d cos θ1

2

dφ1

2π
. (A.2)

In the equation above, the function β̃ is

β̃ (s; s1, s2) =

√
1− 2 (s1 + s2)

s
+

(s1 − s2)2

s2
. (A.3)

In the case where the final state particles are massless, β̃ simplifies to unity. For the case

m1 = m2 = m,

β̃(s,m2,m2) =

√
1− 4m2

s
=

√
1− m2

E2
, (A.4)

which is the velocity of a final state particle.

A.2 Three-body phase space factorization

We first determine the three-body phase space factorization assuming massive final state

particles with masses m1,m2, and m3, and 4-momenta k1, k2, and k3. Once we have the

three-body factorization for massive particles, we specialize to the massless limit relevant

for our decay.
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Starting with the three-body phase space,

∫
dΦ3 (P ; k1, k2, k3) =

∫ ( 3∏
i=1

d3ki

(2π)3 2Ei

)
(2π)4 δ(4) (P − k1 − k2 − k3) , (A.5)

we insert unity in the form of the integral

1 =

∫
d4q12

(2π)4 (2π)4 δ(4) (q12 − p1 − p2) Θ
(
q0

12

)
(A.6)

where q12 = k1 + k2. Even though the step function eliminates half of the integral over

q0
12, the delta function ensures that q0

12 is given by the sum of two energies and hence its

support (all points of a function which are non-zero) is in the half retained. In addition

to inserting unity in the form of (A.6), we also insert

1 =

∫
ds12

2π
2πδ

(
s12 − q2

12

)
. (A.7)

The delta functions in (A.6) and (A.7) allow for the identification of s12 as the “mass

squared” of the “particle” whose 4-momentum is q12. For the Ps→ γν`ν̄` decay, q12 is the

4-momentum of the effective vector boson Z∗ and s12 is the Z∗ invariant mass squared.

Multiplying (A.6) and (A.7) together and performing the energy integral yields

1 =

∫
d4q12

(2π)4

ds12

2π
(2π)4 δ(4) (q12 − p1 − p2) Θ

(
q0

12

)
2πδ

(
s12 − q2

12

)
=

∫
d3q12

(2π)3 2E12

ds12

2π
(2π)4 δ(4) (q12 − p1 − p2) . (A.8)

In the first line of equation (A.8), the delta function δ(s12 − q2
12) sets s12 = E2

12 − q2
12

while the step function Θ(q0
12) ensures that q0

12 = +
√
s12 + q2

12. Inserting equation (A.8)

into the three-body phase space, (A.5), yields the three-body factorization

∫
dΦ3 (P ; k1, k2, k3) =

∫
ds12

2π
dΦ2 (P ; q12, k3) dΦ2 (q12; k1, k2) . (A.9)
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Or in terms of the function, β̃,

∫
dΦ3 (P ; k1, k2, k3) =

∫
ds12

2π

∫
d cos θ3

2

dφ3

2π

β̃ (s, s12,m
2
3)

8π

×
∫

d cos θ12

2

dφ12

2π

β̃ (s12;m2
1,m

2
2)

8π
. (A.10)

In the massless limit, m1 = m2 = m3 = 0, the three-body phase space factorization

simplifies to

∫
dΦ3 (P ; k1, k2, k3) =

∫
ds12

2π
dΦ2 (P ; q12, k3) dΦ2 (q12; k1, k2)

=

(
1

8π

)2 ∫
ds12

2π

∫
d cos θ3

2

dφ3

2π

(
1− s12

s

)
×
∫

d cos θ12

2

dφ12

2π
. (A.11)

This is the factorization referenced in chapter 3. It is used in appendix B to formulate

the three-body Ps→ γν`ν̄` decay in terms of a two-body Ps→ γZ∗ decay.
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Appendix B

Formulation of the Ps→ γν`ν̄`

decay rate in terms of γ and Z∗

To rewrite the Ps → γν`ν̄` decay rate in terms of the Ps → γZ∗ decay rate, we start

with the Ps → γν`ν̄` decay amplitude and then factorize the three-body (γν`ν̄`) phase

into two two-body phase spaces (γZ∗ and ν`ν̄`) as detailed in Appendix A. Performing

the integrals in the ν`ν̄` phase space yields the Ps → γν`ν̄` decay rate in terms of the

Ps→ γZ∗ decay rate.

The Feynman diagrams relevant for the Ps→ γν`ν̄` decay are illustrated in Fig. 2. As

in chapter 2, we neglect the 3-momentum of the incoming leptons as well as the virtual

W - and Z-bosons. With these approximations, the p/o-Ps→ γν`ν̄` amplitudes are

iMp/o =
iGF√
2πα

(εγ)
∗
µgνρTr

[
Xµν

p/o(p1, kγ)
]
Jρ(k1, k2), (B.1)

where

Xµν
p/o(p1, kγ) = Tr

[
2mΨp/o

(
(ie)γν

(
v` − a`γ5

)
�p1 −��kγ +m

(p1 − kγ)2 −m2
(−ie)γµ

+(−ie)γµ ��kγ − �p2 +m

(kγ − p2)2 −m2
(ie)γν

(
v` − a`γ5

))]
, (B.2)
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and Jµ (k1, k2) = ū(k1)γµ (1− γ5) v(k2) is the neutral weak current. The p-Ps and o-Ps

projection operators are given by Ψp = (1 + γ0) γ5/(2
√

2) and Ψo = (1 + γ0)γ · ξ/(2
√

2)

where ξ is the o-Ps polarization vector [34].

To calculate the Ps→ γν`ν̄` decay rate, we start from the standard formula,

Γp/o =
1

2mPs

∫
dΦ3(p1 + p2; k1, k2, kγ)

|ψ0(0)|2
m

1

g

∑
spin/pol

∣∣Mp/o

∣∣2 , (B.3)

where ψ0(0) is the ground state positronium wave function at the origin and g is the

number of Ps polarizations of the initial state [29].

Substituting the three-body spin averaged matrix element squared

∑
spin/pol

∣∣Mp/o

∣∣2 = gαβgµρgνσ
G2

F

2πα
Xαµ

p/oX
βν
p/o

∗
Tr
[
��k1γ

ρ(1− γ5)��k2γ
σ(1− γ5)

]
, (B.4)

into (B.3) and factorizing the three-body phase space into two two-body phase spaces

(Appendix A), yields the decay rate

Γp/o =
1

2mPs

∫
ds

2π
dΦ2(2p1; kγ, q)

|ψPs(0)|2
m

gαβgµρgνσ
g

G2
F

2πα
Xαµ

p/oX
βν
p/o

∗

∫
dΦ2(q; k1, k2)k1ηk2λTr

[
γηγρ(1− γ5)γλγσ(1− γ5)

]
, (B.5)

where s = q · q is the invariant mass of Z∗ squared and q is its 4-momentum. The neu-

trino phase space integral can be performed by writing the neutrino momentum product,

k1ηk2λ, as a linear combination of the only available tensors, k1ηk2λ = Aq2gηλ + Bqηqλ.

The momentum conserving delta function in dΦ2(q; k1, k2) forces q = k1 + k2. A system

of equations for A and B is obtained by contracting
∫

dΦ2(q; k1, k2)k1ηk2λ with gηλ and

qηqλ, and yields the solution A = 1/12 and B = 1/6. Thus, the neutrino contribution to
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the decay rate is

∫
dΦ2(q; k1, k2)k1ηk2λTr

[
γηγρ(1− γ5)γλγσ(1− γ5)

]
=

1

3π

[
qρqσ − q2gρσ

]
=

1

3π
q2
∑
s

ερs(q)ε
σ
s
∗(q), (B.6)

where the sum over the polarizations of a massive vector boson is given by

∑
s

ερs(q)ε
σ
s
∗(q) =

qρqσ

q2
− gρσ. (B.7)

Substituting (B.6) into equation (B.5), we obtain the Ps→ γν`ν̄` decay rate in terms of

Ps→ γZ∗

Γp/o =
1

2mPs

∫
ds

2π
dΦ2(2p1; kγ, q)

|ψPs(0)|2
m

gαβ
g

G2
F

2πα
Xαµ

p/oX
βν
p/o

∗ 1

3π
q2
∑
s

(εs)µ (ε∗s)ν

=
G2

F

2π2α

∫
dq2

2π
q2

(
1

2mPs

∫
dΦ2(2p; kγ, q)

|ψPs(0)|2
m

1

3g

∑
pol

∣∣Mp/o-Ps→γZ∗
∣∣2)

=
G2

F

2π2α

∫
dq2

2π
q2Γp/o-Ps→γZ∗ . (B.8)
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Appendix C

Calculation of Ps→ γZ∗ decay

amplitudes along the z-axis

Given that the Ps → γν`ν̄` decay can be written in terms of Ps → γZ∗ (equation

(3.1)), we now determine the Ps → γZ∗ amplitudes for decay along the z-axis. These

amplitudes are used in chapter 3 to construct the full angular dependence of the Ps→ γZ∗

amplitudes.

The relevant diagrams for Ps→ γZ∗ decays are given in Fig C.1. As in chapter 2, we

approximate the electron and positron to be at rest with initial 4-momentum p = p1 =

p2 = (m,0). The 4-momentum of the photon is kγ while the 4-momentum of the Z∗ is q.

Solutions to Peskin and Schroder – Andrzej Pokraka

e�

e+

�

Z⇤

e�

e+

Z⇤

�

1

Solutions to Peskin and Schroder – Andrzej Pokraka

e�

e+

�

Z⇤

e�

e+

Z⇤

�

1

Figure C.1: The relevant Feynman diagrams for the two-body decay, Ps→ γZ∗.
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As discussed in chapter 3, the Z∗ couples to the electron with Feynman rule ie�ε(q)
∗(v`−

a`γ
5). The matrix elements for Ps→ γZ∗ are

iMp/o-Ps→γZ∗ = v̄(p)

[
ie�ε
∗(q)(v` − a`γ5)

i (�p−��kγ +m)

(p− kγ)2 −m2
(−ie)�ε∗(kγ)

+(−ie)�ε∗(kγ)
i (�p− �q +m)

(p− q)2 −m2
ie�ε
∗ (q)

(
v` − a`γ5

)]
u(p)

= 2mie2Tr

[
Ψp/o

(
�ε
∗(q)(v` − a`γ5)

(�p−��kγ +m)

(p− kγ)2 −m2 �
ε∗(kγ)

+�ε
∗(kγ)

(�p− �q +m)

(p− q)2 −m2 �
ε∗ (q)

(
v` − a`γ5

))]
. (C.1)

We can simplify (C.1) by performing the trace. This yields the two-body amplitudes

iMp/o-Ps→γZ∗ =


−4i√

2

v`e
2

mEγ
εαβγδp

αkβγ ε
∗γ(kγ)ε

∗δ(q) for p-Ps

−4i√
2

a`e
2

Eγ
εαβγδk

αε∗β(kγ)ε
∗γ(q)ξδ for o-Ps

(C.2)

where ξ = (0, ξ) is the polarization of the o-Ps state and ε is the totally anti-symmetric

Levi-Civita tensor.

To simplify equation (C.2), we need to understand the properties of polarizations for

both massless and massive spin-one particles (Appendix C.1). In sections C.2 and C.3,

we simplify (C.2) for p-Ps and o-Ps decays.

C.1 Spin-one polarizations

Consider a spin-one particle moving along the z-axis with 4-momentum p = (E,p). The

transverse polarizations,

ε± = ∓ 1√
2

(0, 1,±i, 0), (C.3)

ε∗± = ∓ 1√
2

(0, 1,∓i, 0), (C.4)
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are available to both massive and massless bosons. The longitudinal polarization,

ε0 =
1√
s

(|p|, 0, 0, E) = ε∗0, (C.5)

is, however, only accessible to massive bosons. In the above equation,
√
s =
√
p · p is the

invariant mass of the boson.

The contractions with the Levi-Civita tensor in (C.2) can be simplified to a sum of

ordinary 3-dimensional vector products. The necessary vector products for the simplifi-

cation of equation (C.2) are listed below:

ε∗± × ε∗± = 0, (C.6)

ε∗± × ε∗∓ =

(
∓ 1√

2
(1,∓i, 0)

)
×
(
± 1√

2
(1,±i, 0)

)
= ∓iẑ, (C.7)

ẑ× ε∗± = (0, 0, 1)×∓ 1√
2

(1,∓i, 0) = ±iε∗±. (C.8)

C.2 Amplitudes for p-Ps along the z -axis

Simplifying the contractions with the Levi-Civita tensor in equation (C.2), the p-Ps→

γZ∗ amplitude is

iMp-Ps→γZ∗ = − 4i√
2

v`e
2

Eγ
kγ · [ε∗(kγ)× ε∗(q)] (C.9)

where the photon is moving in the +z-direction with 4-momentum kγ = (Eγ, Eγ ẑ) and

the Z∗ is moving in the −z-direction with 4-momentum q = (EZ ,−Eγ ẑ).

The amplitudes, where Z∗ has a transverse polarization, are

iMp-Ps→γZ∗ =


∓4v`e

2
√

2
for ε(kγ) = ε± and ε(q) = ε∓,

0 for ε(kγ) = ε± and ε(q) = ε±.

(C.10)
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The amplitudes, where Z∗ has a longitudinal polarization (ε(kγ) = ε± and ε(q) = ε0),

are

iMp-Ps→γZ∗ =
∓4v`e

2

√
2

EZ√
sEγ

(
kγ · ε∗±

)
= 0. (C.11)

Since the amplitude in (C.11) vanishes, p-Ps can only decay into a Z∗ with a transverse

polarization.

For convenience, we define the non-zero amplitudes to be

B±∓ ≡Mp-Ps→γZ∗ |ε(kγ)=ε± and ε(q)=ε∓ = ±i4v`e
2

√
2
. (C.12)

C.3 Amplitudes for o-Ps along the z -axis

Simplifying the contractions with the Levi-Civita tensor in equation (C.2), the o-Ps→

γZ∗ amplitude is

iMo-Ps→γZ∗ = −4ia`e
2

√
2

{
Eγξ · [ε∗(kγ)× ε∗(q)] + ε∗0(q)ξ · [ẑ× ε∗(kγ)]

}
. (C.13)

where the photon is moving in the +z-direction with 4-momentum kγ = (Eγ, Eγ ẑ) and

the Z∗ is moving in the −z-direction with 4-momentum q = (EZ ,−Eγ ẑ).

The amplitudes, where Z∗ has a transverse polarization, are

iMo-Ps→γZ∗ = −4ia`e
2

√
2
ξ · [ε(kγ)× ε(q)]

=


±4ia`e

2
√

2
ξ · ẑ for ε(kγ) = ε± and ε(q) = ε∓,

0 for ε(kγ) = ε± and ε(q) = ε±.

(C.14)

The amplitudes, where Z∗ has a longitudinal polarization (ε(kγ) = ε± and ε(q) = ε0),
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are

iMo-Ps→γZ∗ = −4ia`e
2

√
2

{
ξ ·
[
ε∗± × ε∗(q)

]
+ ε∗0ξ ·

[
ẑ× ε∗±

]}
= −4ia`e

2

√
2

[
ξ ·
(
ε∗± ×

−EZ ẑ√
s

)
+
Eγ√
s
ξ ·
(
ẑ× ε∗±

)]
=
±4a`e

2

√
2

Eγ + EZ√
s

ξ · ε∗±. (C.15)

Unlike p-Ps, o-Ps can decay into a Z∗ with either a transverse or longitudinal polarization.

For convenience, we define the non-zero amplitudes to be

A±∓ ≡Mo-Ps→γZ∗ |ε(kγ)=ε± and ε(q)=ε∓ = ±4ia`e
2

√
2
ξ · ẑ, (C.16)

A±0 ≡Mo-Ps→γZ∗ |ε(kγ)=ε± and ε(q)=ε0 =
±4a`e

2

√
2

Eγ + EZ√
s

ξ · ε∗±. (C.17)
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Appendix D

Derivation of the o-Ps amplitudes

with their angular dependence

Initially, the o-Ps atom is in a state of definite angular momentum denoted by |Λ〉.

Since o-Ps and its decay products, γ and Z∗, are all spin one particles, we abbreviate

the angular momentum states |1,ms〉 by |ms〉 where ms is the projection of spin along

the z-axis. The massive Z∗ boson has access to all three spin projection states (i.e.,

mZ ∈ {±1, 0}) while the massless photon cannot access the longitudinally polarized |0〉

state (i.e., mγ ∈ {±1}). Conservation of angular momentum requires that the spin

projection quantum numbers satisfy mγ +mZ = mΛ; as a result, there are four different

modes in which o-Ps can decay along the z-axis.

Consider |Λ〉 initially polarized in the state |+〉 along the z-axis. Since the photon

must havemγ = ±1, conservation of angular momentum implies |γ〉 = |+〉 and |Z∗〉 = |0〉;

we assign the amplitude A+0 to this decay. If |Λ〉 is initially polarized in the state |−〉,

|γ〉 = |−〉 and |Z∗〉 = |0〉; we assign the amplitude A−0 to this decay. Lastly, if |Λ〉 is

initially polarized in the state |0〉, mγ = −mZ and therefore |γ〉 = |±〉 and |Z∗〉 = |∓〉;

we assign amplitudes A±∓ to these decays.
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From Appendix C, the o-Ps→ γZ∗ amplitudes along the z-axis are

A±0 = ±4e2a`√
2

Eγ + EZ
q

ξ · ε∗± = ±4e2a`√
2

Eγ + EZ
q

δmΛ,±, (D.1)

A±∓ = ±4ie2a`√
2
ξ · ẑ = ±4ie2a`√

2
δmΛ,0, (D.2)

where ε± are the transverse polarization vectors of the photon and ξ is the o-Ps polar-

ization vector. Here q is the momentum of the Z∗.

To determine the angular dependence of the decay amplitudes on the spherical angles,

θ and φ, we consider two coordinate systems {x, y, z} and {x′, y′, z′}. The z′-axis is

defined by the angles θ and φ in the {x, y, z} coordinate system and represents the decay

axis. The angular dependence of the decay amplitudes is constructed by rotating the

initial o-Ps state and then considering the decay into γ + Z∗ along z′.

The combination of rotations required to bring {x, y, z} onto {x′, y′, z′} (Fig. D.1) is

R = Rz′(α)Ry′(θ)Rz′(φ), (D.3)

where Rn(θ) = eiθn·S is the operator for rotations about the axis given by the unit vector,

n, and S = (Sx, Sy, Sz) is the spin-one matrix operator [37].

Figure D.1: Sequence of rotations transforming {x, y, z} (solid) to {x′, y′, z′} (dashed).

Application of R to |Λ〉 yields the amplitude for |Λ〉 to be in the state |m′Λ〉 along the

z′-axis for each m′Λ ∈ {±1, 0}. If |Λ〉 is initially polarized in the state |+〉, then |Λ〉 has an
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amplitude of 1
2
(1+cos θ)eiαeiφ to be in the state |+′〉 (the mΛ = 1 state along the z′ axis).

If |Λ〉 is in the state |+′〉, it decays to |+′; kẑ′〉γ ⊗ |0′;−kẑ′〉Z with an amplitude A+′0′ ,

where k is the magnitude of the photon momentum along z′. Thus, the total amplitude

for the decay of an o-Ps atom with spin projection mΛ = +1 into a photon moving along

+z′-axis with spin projection m′γ = +1 is

A+
+′0′ (θ, φ) =

A+′0′

2
(1 + cos θ)eiαeiφ. (D.4)

Similarly, the amplitude for the final state |−′; kẑ′〉γ ⊗ |0′;−kẑ′〉Z is

A+
−′0′ (θ, φ) =

A−′0′

2
(1− cos θ)e−iαeiφ, (D.5)

and the amplitudes for |±′; kẑ′〉γ ⊗ |∓′;−kẑ′〉Z are

A+
±′∓′ (θ, φ) =

−A±′∓′√
2

sin θeiφ. (D.6)

We denote the o-Ps decay amplitudes with their full angular dependencies as AmΛ

m′γm
′
Z

where mΛ ∈ {±1, 0} is the initial spin projection of o-Ps along the z-axis, and, m′γ ∈ {±1}

and m′Z ∈ {±1, 0} are the spin projections of the photon and Z∗ along the z′-axis.

The amplitudes, A0
m′γm

′
Z
, are obtained using the method outlined above while A−m′γm′Z is

obtained from A+
m′γm

′
Z

by the prescription θ → θ + π, φ → −φ and α → −α. The o-Ps

amplitudes, AmΛ

m′γm
′
Z
, are listed in table 3.2 where we have chosen the convention α = 0.
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Appendix E

Angular dependence of the o-Ps

amplitudes: helicity basis formalism

The angular dependence of the o-Ps amplitudes (chapter 3) can be determined using the

helicity basis formalism of [41, 42, 43, 44] instead of the method outlined in Appendix D.

The helicity basis formalism, provides a simple and powerful method to analyze two-body

reactions involving particles of arbitrary spin; it also applies equally well to relativistic

particles. This formalism uses states of definite helicity (states where angular momentum

and spin are quantized along the direction of linear momentum) as a basis instead of states

of definite angular momentum. States of definite helicity are particularly useful because

they are invariant under rotations; the quantization axis rotates with the system.

The initial o-Ps state is one of definite total angular momentum

|i〉 ≡ |pi = 0; 1mλ〉 (E.1)

where pi is the initial momentum of the o-Ps atom and mΛ is the o-Ps spin projection

along the z-axis. In terms of the relativistic plane-wave state, |Pi〉, the initial o-Ps state

is

|i〉 = |1mΛ〉|Pi = 0〉 (E.2)
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where Pi is the initial 4-momentum of the o-Ps state.

We express the final, γZ∗, state as a two-particle plane-wave state of definite helicity

in the center of mass frame. These particles move back-to-back with momentum of

magnitude |pf | along the decay axis (the axis along which the decay products move).

The helicities of the two final state particles are the spin projections along the decay axis.

The total helicity is λ = λγ − λZ where λγ and λZ are the helicities of the photon and

Z∗. This final state can be expressed as

|f〉 ∝ |θfφfλγλZ〉|Pf〉 (E.3)

where |θfφfλγλZ〉 is a two particle plane wave helicity state, θf is the polar angle of the

decay axis and φf is the azimuthal angle of the decay axis.

The o-Ps → γZ∗ decay amplitude, up to an overall multiplicative constant and the

energy-momentum conserving δ-function is given by

AmΛλ(i→ f) ∝ 〈θfφfλγλZ |Û |1mΛ〉 (E.4)

where the operator Û governs the annihilation of positronium into γZ∗.

In order to take advantage of conservation of angular momentum in the amplitude

(E.4), we need to know how to write states of definite angular momentum, J , and spin

projection, M , in terms of helicity states. Namely,

|JMλ1λ2〉 =

√
2J + 1

4π

∫ 2π

0

dφ

∫ 1

−1

d cos θDJ∗
Mλ=λ1−λ2

(φ, θ, 0)|θφλ1λ2〉 (E.5)

where Dj
m′m is the Wigner D function (see chapter 13 of Ref. [45] for a definition of the

Wigner D functions and their properties). After inserting unity in the form of

1 =
∑
JM

|JMλγλZ〉〈JMλγλZ | (E.6)
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into (E.4) the amplitude becomes

AmΛλ(i→ f) =
∑
JM

〈θfφfλγλZ |JMλγλZ〉〈JMλγλZ |Û |1mΛ〉

=
∑
JM

√
2J + 1

4π
DJ∗
Mλ(φf , θf , 0)δJ,1δM,mΛ

〈λ1λ2|U |1mΛ〉

=

√
3

4π
D1∗
mΛλ

(φf , θf , 0)AλγλZ (E.7)

where AλγλZ = 〈1λγλZ |Û |1ms〉 is called the helicity amplitude. Since all the angular

dependance comes from the Wigner D functions, equation (E.7) may be used to verify the

angular dependence of the o-Ps amplitudes in chapter 3 (Table 3.2) without determining

the helicity amplitude, AλγλZ (Table E.1).

Table E.1: Table of the Wigner D functions, D1∗
mΛλ

(φ, θ, 0), needed to evaluate the
decay Ps→ γν`ν̄` decay amplitudes in the helicity basis formalism. Here, mΛ is the spin
projection of o-Ps along the z-axis and λ = m′γ + m′Z is the total helicity where, like in
chapter 3, m′γ and m′Z are the spin projections of the photon and Z∗ along the decay
axis (z′-axis). The Wigner D functions for mΛ = −1 are obtained by the replacement
θ → θ + π and φ → −φ. Furthermore, only configurations of mΛ, m′γ and m′Z that
conserve angular momentum are defined.

m′Z

mΛ m′γ +1 0 −1

+1 +1 0 (1 + cos θ)eiφ/2 − sin θeiφ/
√

2

−1 − sin θeiφ/
√

2 (1− cos θ)eiφ/2 0

0 +1 0 sin θ/
√

2 cos θ

−1 cos θ − sin θ/
√

2 0
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Appendix F

The neutral weak current

In order to evaluate the extreme soft photon limit of the Ps→ γν`ν̄` amplitudes (chapter

5) and the Ps → ν`ν̄` annihilation operators (Appendix G), we calculate the explicit

expression for the neutral weak current,

Jµ = ū(k1)γµ(1− γ5)v(k2) = 2ū(k1)γµPLv(k2) (F.1)

where k1 (k2) is the neutrino (antineutrino) 4-momentum and PL = (1− γ5)/2 is the left

handed projection operator. Additionally, we utilize some properties of Jµ to simplify

the polarization sums in the spin averaged Ps → γν`ν̄` amplitudes squared, equations

(5.20) and (5.41).

In order to provide the most apparent connection to non-relativistic quantum mechan-

ics, we use Dirac spinors for the electron and positron as well as the Dirac representation

of the gamma matrices (chapter 5). However, expressing the neutral weak current using

Dirac spinors for neutrinos is cumbersome because Dirac spinors are eigenstates of the

spin operator not the left handed projection operator, PL. Therefore, we choose to use

spinors of definite handedness (chirality), the so-called Weyl spinors, to determine Jµ.

Left handed Weyl spinors transform in the irreducible ( 1
2
, 0) representation of the

Lorentz group while right handed Weyl spinors transform in the irreducible (0, 1
2
) repre-
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sentation [46]. Left/right handed Weyl spinors are eigenstates of the left/right handed

projection operators1, PL = (1− γ5)/2 and PR = (1 + γ5)/2.

Additionally, the representation of the gamma matrices in the neutral weak current

is irrelevant because Jµ is a 4-vector and has no spinor indices. Therefore, we also use

the Weyl representation of the gamma matrices because the Weyl spinors are especially

simple (only two non-zero components) [29].

In the Weyl representation, the left and right handed spinors for massless neutrinos

of 4-momentum k = (E, kx, ky, kz) are

uL(k) =
1√

E + kz



−kx + iky

kz + E

0

0


, (F.2)

uR(k) =
1√

E + kz



0

0

kz + E

kx + iky


(F.3)

where E = |k| (derived by solving problem 3.3 of [29]). As always, the anti-particle

spinors are obtained from the charge conjugation operation

vL(k) = −iγ2u∗L(k) (F.4)

vR(k) = −iγ2u∗R(k). (F.5)

For the calculations of chapter 5, we only need the current in the limit that the

photon energy in Ps → γν`ν̄` decays vanishes, Eγ → 0 (i.e., when the neutrinos move

1Since neutrinos are (nearly) massless, the Weyl spinors for neutrinos are also eigenstates of the
helicity operator (spin projection along the direction of motion).
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back-to-back: k2 = −k1 and E2 = E1). Therefore,

Jµ(k1, k2)|k2=−k1 and E2=E1 = 2ū(k1)γµPLv(k2)|k2=−k1 and E2=E1

= 2ūL(k1)γµvR(k2)|k2=−k1 and E2=E1

=
4√

E2
1 − k2

1z



0

−k1xk1z − ik1yE1

−k1yk1z + ik1xE1

E2
1 − k2

1z


. (F.6)

Since J0 = 0 in the Eγ → 0 limit, many of the computations in chapter 5 are

simplified. Furthermore, 3-vector dot products involving the spatial part of the current

satisfy the simple identities

J · J∗ = 32 |k1|2 , (F.7)

(r · J) (r · J∗) = 16 |r|2 |k1|2 − 16 (k1 · r)2 , (F.8)

for any r ∈ R3.

We will use equations (F.7) and (F.8) to simplify equations (5.20) and (5.41). Specif-

ically, we want to simplify

∑
εγ

| (εγ × J) · k̂γ|2, (F.9)

for the p-Ps spectrum and

1

3

∑
ξεγ

| (εγ × J) · ξ|2, (F.10)

for the o-Ps spectrum. Here, εγ is the photon polarization 3-vector, k̂γ = kγ/Eγ is

the unit momentum 3-vector of the photon and ξ is the o-Ps polarization 3-vector.

69



Simplifying the polarization sums in (F.9) and (F.10) yields

∑
εγ

| (εγ × J) · k̂γ|2 = |J|2 − |J · k̂γ|2, (F.11)

1

3

∑
ξεγ

| (εγ × J) · ξ|2 = |J|2 − 1

3
|J · k̂γ|2 (F.12)

where we have used the identities [22]

∑
εγ

εγiεγ
∗
j = δij − k̂γik̂γj, (F.13)

∑
ξ

ξiξ
∗
j = δij. (F.14)

Using the identities (F.7) and (F.8) in equations (F.11) and (F.12), we get the fully

simplified polarization sums required for equations (5.20) and (5.41)

∑
εγ

| (εγ × J) · k̂γ|2 = 16E2
1

[
1 + (k̂γ · k̂1)2

]
, (F.15)

1

3

∑
ξεγ

| (εγ × J) · ξ|2 = 16E2
1

[
1− 1

3
(k̂γ · k̂1)2

]
, (F.16)

where k̂1 = k1/E1 is the unit momentum 3-vector of the neutrino.
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Appendix G

Derivation of the o-Ps→ νν̄

annihilation operator

W

⌫̄`

⌫`

e+

e�

Z

⌫̄`

⌫`

e+
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1

(a)

W

⌫̄`

⌫`

e+

e�

Z

⌫̄`

⌫`

e+

e�

1

(b)

Figure G.1: The e+e− → ν`ν̄` annihilation graphs for (a) Z boson exchange and (b) W
boson exchange. The graph (a) contributes to the Ps → ν`ν̄` amplitude for all lepton
flavours ` = e, µ, τ while (b) only contributes when ` = e.

In order to calculate the effective theory amplitudes (chapter 5), we require the

O(|p|/m) expansion of the e+e− → ν`ν̄` annihilation amplitude (Fig. G.1). The electron

and positron 4-momentum are p1 = (E,p) and p2 = (E,−p) while the neutrino and

71



anti-neutrino 4-momentum are k1 and k2. The amplitude of Fig. G.1 is

A(ν`ν̄`) = −i
√

2GFv̄(−p)��J(v` − a`γ5)u(p)

= 2
√

2iGFm χ†

( (σ·p)†

2mc
1

)
��J
(
v` − a`γ5

) 1

σ·p
2mc


φ

= χ†Â(ν`ν̄`)φ, (G.1)

where

Â(ν`ν̄`) = 2
√

2iGFm

(
σ·p
2m

1

) J0 −J · σ

J · σ −J0


 v` −a`
−a` v`


 1

σ·p
2m

 (G.2)

is the ν`ν̄` annihilation operator. From momentum conservation, k1 = −k2, the time

component of the neutral weak current vanishes, J0 = 0. Therefore, the ν`ν̄` annihilation

operator becomes

Â(ν`ν̄`) = 2
√

2iGFmv` (J · σ)− 2
√

2GFa` (J× σ) · p. (G.3)

The first term of equation (G.3), proportional to vector coupling, is the s-wave o-Ps →

ν`ν̄` annihilation operator

Â(ν`ν̄`)
s = 2

√
2iGFmv` (J · σ) . (G.4)

In the computation of the p-Ps→ γν`ν̄` effective theory amplitude, the s-wave annihila-

tion operator takes the intermediate s-wave o-Ps state into a neutrino-antineutrino pair.

The second term, proportional to axial coupling, is the p-wave o-Ps → ν`ν̄` annihilation

operator

Â(ν`ν̄`)
p = −2

√
2GFa` (J× σ) · p. (G.5)
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In the computation of the o-Ps → γν`ν̄` effective theory amplitude, the p-wave annihi-

lation operator takes the intermediate p-wave o-Ps states into a neutrino-antineutrino

pair.
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