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Abstract 

Graphitic carbon nitride (g-C3N4) has gained significant attention due to its versatile 

applications in photocatalysis, energy conversion, and environmental remediation. To harness its 

full potential, high-quality g-C3N4 nanosheets are essential, which can be achieved through liquid-

phase exfoliation (LPE). However, the efficiency of LPE is critically influenced by the choice of 

solvent, and understanding the molecular interactions involved remains a challenge. This thesis 

investigates the LPE of g-C3N4 using molecular dynamics (MD) simulations and machine learning 

(ML) techniques, with the aim to provide a comprehensive understanding on how the solvent 

selection and nanosheet functionalization impact exfoliation efficiency. 

First, MD simulations were employed to evaluate the free energy of exfoliation (ΔGexf) for 

g-C3N4 in various solvents. The findings revealed that solvents with higher magnitude of solvation 

free energy (ΔGsol) tend to facilitate exfoliation by forming stable adsorption layers around the 

nanosheets. To measure the stability, a quantity called solvent mobility was introduced, which 

benefited subsequent investigations in this thesis. Building on these insights, an ML model was 

developed to predict ΔGexf and ΔGsol for a wider range of solvents, significantly reducing the need 

for extensive MD simulations. The ML model identified several promising solvents, including 

benzyl alcohol (Bn), and methanesulfonic acid (MSA) which were experimentally validated to 

enhance the dispersibility of g-C3N4. 

The thesis further explored the use of binary solvent mixtures, uncovering the phenomenon 

of solvent dominance where one component governs the LPE performance. Detailed MD 

simulations demonstrated that in N-Methyl-2-Pyrrolidone (NMP):Cyclohexane mixture, the 

performance was dominated by NMP, leading to superior exfoliation efficiency. Conversely, in 
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methanol:dichloromethane mixtures, methanol dominated, resulting in poor LPE performance. 

These findings challenge the traditional surface tension-based criteria for solvent selection, 

highlighting the need to consider molecular interactions in in the vicinity of the nanosheets. The 

solvent dominance motivated a novel strategy for designing binary solvent mixture with balanced 

LPE performance, cost and environmental friendliness. 

Finally, the impact of chemical functionalization on LPE efficiency was examined. 

Functional groups such as SO3H and COOH were found to significantly enhance exfoliation by 

reducing ΔGexf and promoting stable solvent-sheet interactions. The SO3H group, in particular, 

exhibited the most substantial enhancement due to strong dipole-dipole interactions, decreasing 

solvent mobility and increasing interaction strength around the nanosheets. NH2 and OH groups 

also contributed positively, though to a lesser extent, while CHO hindered the process by 

increasing ΔGexf and disrupting solvent-solvent interactions. These varied outcomes underscore 

the complexity of solvent-functional group interactions and provide practical guidelines for 

selecting effective solvents for functionalized g-C3N4. 

Overall, this dissertation advances the understanding of molecular mechanisms in LPE of 

g-C3N4, providing practical guidelines for solvent selection and functionalization to optimize 

nanosheet production. The integration of MD simulations and ML models offers a powerful 

framework for predicting and enhancing the exfoliation process, paving the way for scalable and 

efficient production of g-C3N4 for various technological applications. 
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1. Chapter 1: Introduction 
 

Nanotechnology has revolutionized material science. Advances in nanotechnology have 

catalyzed major progress in computing and electronics, yielding faster, smaller, and more portable 

systems capable of managing and storing vast amounts of information [1–4]. These advancements 

encompass transistors, magnetic random-access memory, and flash memory chips for smartphones 

[5]. As another example, nanoparticle copper suspensions serve as a safer, cost-effective, and 

reliable substitute for lead-based solder in electronics assembly [6]. Materials exhibit distinct 

physical properties at the nanoscale compared to their bulk counterparts. Certain nanoscale 

materials can spontaneously self-assemble into ordered structures [7]. Additionally, 

nanostructured materials boast a high surface-to-volume ratio, making them particularly suitable 

for interactions with other materials. This high surface-to-volume ratio is crucial since numerous 

reactions, both chemical and electrical, occur at interfaces and are heavily influenced by surface 

morphology and chemical composition [8]. Mastery over nanoscale interfacial properties is 

paramount in creating functional surfaces and nanomaterials. Manipulating nanoscale surface 

morphology and functionality demands precise control over electronic structures (e.g., molecular 

energy levels, dipole moments, polarizabilities, and optical properties) and intermolecular 

interactions [9]. 

A particular interest exists in exploring nanoscale properties to enhance energy efficiency 

[3]. Addressing the escalating global energy demand and environmental concerns caused by fossil 

fuel consumption has become a critical focus over recent decades [10]. Building on the unique 

properties of nanoscale materials, researchers are delving into the nanoscale realm to discover 

materials that promise to significantly boost the efficiency of contemporary energy sources and 

environmental protection [1,2,11]. Among these advancements, photocatalysis has emerged as a 

significant area of interdisciplinary interest [12–15]. Photocatalysis, driven by solar light, often 

employs semiconductors to facilitate catalytic reactions [16]. Notable examples include the 

splitting of water to produce hydrogen and oxygen [16], and the reduction of CO2 to produce 

valuable hydrocarbons [17]. Developing a high-quality semiconductor photocatalyst to address 

energy shortages and environmental issues is a burgeoning research area. Among the promising 
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materials, graphitic carbon nitride (g-C3N4) stands out as a next-generation photocatalyst, owing 

to its easy synthesis, attractive electronic band structure (normal band gap ∼2.7 eV), high 

physicochemical stability, and abundance in nature [10,18]. Its two-dimensional structure, 

comprising carbon and nitrogen atoms arranged in a conjugated framework, imparts exceptional 

chemical stability and favorable electronic properties, which are crucial for photochemical 

applications. The structure of g-C3N4 can be based on either triazine or tri-s-triazine (heptazine) 

units. Figure 1.1 illustrates these two structural types, highlighting their building blocks with a red 

circle. First-principle and experimental studies indicate that the heptazine configuration is more 

stable and therefore more likely under ambient conditions [19,20]. 

 

Figure 1.1 (a) Triazine structure; (b) heptazine structure, with building blocks highlighted in red. 

 

Numerous studies have highlighted the advantages of ultrathin g-C3N4 nanosheets, which 

offer higher specific surface areas and shorter charge carrier migration distances compared to bulk 

g-C3N4 with polymeric layers [21]. Electrochemical impedance spectroscopy has shown that 

ultrathin g-C3N4 nanosheets exhibit reduced electron transfer resistance [22]. Transient 

photocurrent measurements further revealed that these nanosheets produce a higher photocurrent. 

Additionally, photoluminescence studies indicated that ultrathin g-C3N4 nanosheets have a lower 

recombination rate of photogenerated carriers than their bulk counterparts [23]. These findings 

collectively suggest that ultrathin g-C3N4 nanosheets possess superior properties such as increased 

specific surface area, enhanced electron transport, and higher charge separation efficiency [21]. 

Exfoliation is a critical strategy to achieve the delamination of bulk g-C3N4 into free-

standing nanosheets [24]. g-C3N4 nanosheets can be prepared by exfoliating bulk g-C3N4, akin to 

the exfoliation of two-dimensional (2D) graphene from bulk graphite. Different methods for 
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exfoliating g-C3N4 include ultrasonication-assisted liquid-phase exfoliation (LPE), post-thermal 

oxidation etching, and combined sonication and thermal delamination. Among these, LPE is 

particularly advantageous due to its simplicity, scalability, and practical approach for producing 

high-quality g-C3N4 nanosheets. LPE involves dispersing bulk g-C3N4 in a liquid medium and 

applying ultrasonic energy to overcome the van der Waals forces between layers, leading to 

effective exfoliation. This method avoids the use of harsh chemicals and high temperatures, 

making it a more sustainable approach [25]. 

LPE of g-C3N4 faces several limitations that can impact its effectiveness and scalability. 

One major challenge is the low exfoliation yield, which often results in a limited production of 

single or few-layer nanosheets [26]. The process is also time-consuming and energy-intensive, 

typically requiring prolonged ultrasonication or shear mixing [27]. The solvent type plays a crucial 

role in determining exfoliation efficiency, with certain solvents significantly enhancing the process 

while others hinder it [28]. Additionally, many effective solvents for LPE are expensive or toxic, 

raising concerns about cost-effectiveness and environmental impact [27]. The exfoliated 

nanosheets tend to restack or aggregate upon drying, reducing their effective surface area and 

compromising their performance in applications [29]. The process may also introduce defects or 

impurities, potentially affecting the material electronic and optical properties [30]. Given the 

complexity of interactions between solvents and g-C3N4 nanosheets, both experimental and 

theoretical studies are crucial in elucidating the optimal conditions, especially the selection of 

solvents. 

1.1. Experimental studies 

The dispersion behavior of exfoliated g-C3N4 in various solvents was evaluated by Ayán-

Varela et al. [31] based on surface energy and Hildebrand/Hansen solubility parameters. These 

parameters, known as Hansen solubility parameters, include δD (dispersion forces), δP (polar 

forces), and δH (hydrogen bonding). Experimentally derived Hansen parameters for exfoliated g-

C3N4 yielded δD ≈ 17.8 MPa1/2, δP ≈ 10.8 MPa1/2, and δH ≈ 15.4 MPa1/2. The relatively high δH 

value highlighted the substantial role of H-bonding in the dispersion process, contrasting with 

other two-dimensional materials like graphene or transition metal dichalcogenides, where van der 

Waals forces dominate. This strong H-bonding was attributed to the high density of primary and 
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secondary amines in g-C3N4, resulting from incomplete condensation during synthesis. Solvents 

with high H-bonding parameters, such as diols and amine-containing compounds, were found to 

be particularly effective. Coleman et al. [32] proposed an equation to estimate the energy of 

exfoliation for graphite oxide as 
∆𝐻𝑚𝑖𝑥

𝑉𝑚𝑖𝑥
=

2

𝑇𝑠ℎ𝑒𝑒𝑡
(√𝐸𝑠𝑢𝑟

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒
− √𝐸𝑠𝑢𝑟

𝑠𝑜𝑙𝑣𝑒𝑛𝑡)2∅, where ∆𝐻𝑚𝑖𝑥 is the 

enthalpy of mixing, 𝑇𝑠ℎ𝑒𝑒𝑡 is the thickness of nanosheets, 𝐸𝑠𝑢𝑟
𝑖  is the surface energy of each 

component, and ∅ is the volume fraction of g-C3N4. They concluded that the exfoliation efficiency 

in a liquid is governed by ∆𝐻𝑚𝑖𝑥. If one were to apply Coleman et al.'s theory to g-C3N4, then 

when the surface energies of bulk g-C3N4 and the solvent are similar, the enthalpy of mixing would 

be low, facilitating successful exfoliation into 2D nanosheets. Water, with a surface energy of 102 

mJ m−2 [33], matches well with that of g-C3N4 (115 mJ m−2), which would suggest water to be an 

effective dispersing solvent for g-C3N4 nanosheets [34].  

Zhang et al. [34] were the first to report the successful delamination of bulk layered g-C3N4 

into 2D nanosheets using a "green" liquid exfoliation method in water, while preserving the C−N 

chemical bonds within the g-C3N4 plane. The resulting ultrathin nanosheets had a thickness of 

approximately 2.5 nm, consisting of around seven layers, and remained stably suspended in both 

acidic and alkaline environments for a week. However, the concentration of the resulting g-C3N4 

nanosheets in suspension was quite low, less than 0.15 mg mL−1. Yang et al. [35] conducted 

delamination experiments with five different solvents: water, ethanol, acetone, isopropanol (IPA), 

N-methyl-pyrrolidone (NMP). IPA and NMP outperformed water in terms of exfoliation 

efficiency, despite their much lower surface energies (∼40 mJ m−2) compared to the calculated 

value for g-C3N4. These findings highlight the complexity of selecting an appropriate solvent for 

LPE and suggest that relying solely on surface energy matching is insufficient for determining the 

best solvent. 

Building on this understanding, a promising approach involves using binary solvent 

mixtures. Shen et al. [36] investigated the efficacy of such mixtures by directly probing and 

matching the surface tension components for various 2D materials. Surface tension is divided into 

polar and dispersive components, and their study revealed that combining solvents with 

complementary polar and dispersive components significantly improved exfoliation outcomes. For 

instance, they found that a 1:1 mixture of IPA and water was highly effective for exfoliating 

graphene, WS2, h-BN, and MoSe2, while a 1:4 IPA/water mixture was optimal for Bi2Se3 and SnS2. 
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Similarly, a 7:3 IPA/water mixture worked best for MoS2, and acetonitrile was the preferred 

solvent for TaS2. A similar approach was used for g-C3N4, where a mixed solvent method proved 

effective. Lin et al. [37] reported a versatile approach for the LPE of bulk g-C3N4 to form 

monolayer g-C3N4 nanosheets with tunable concentrations (0.1−3.0 mg mL−1). They examined 

different mixed solvents, including ethanol/water, IPA/water, and dimethylformamide 

(DMF)/water. In the ethanol/water system, reducing the volume ratio of ethanol led to a gradual 

increase in the suspension concentration. When the volume ratio of water reached 75%, a milky 

dispersion was achieved, with the highest concentration of g-C3N4 at 3.0 mg mL−1. The Brunauer–

Emmett–Teller (BET) surface area of the g-C3N4 nanosheet was estimated to be about 59.4 m² g−1, 

which is approximately five times larger than that of bulk g-C3N4 (12.5 m² g−1). Conversely, pure 

water resulted in a low g-C3N4 concentration (about 0.5 mg mL−1), and pure ethanol produced an 

even lower concentration (about 0.2 mg mL−1). This demonstrates that the combination of two 

solvents can significantly enhance the formation of free-standing g-C3N4 nanosheets with a high 

concentration.  

Another effective method to enhance the dispersibility of g-C3N4 in solvents is through 

functionalization. Kumru et al. [38] utilized a one-pot, visible light-induced grafting approach to 

improve the dispersibility of g-C3N4 in both aqueous and organic media. They grafted functional 

groups, such as sulfonic acid (SO3H) and allylamine, onto the g-C3N4 surface. This 

functionalization significantly enhanced hydrophilicity and dispersion stability, achieving up to 

10% solid content in water and providing pH-dependent dispersibility. The SO3H groups increased 

the negative zeta potential, indicating better stability, while allylamine allowed for reversible 

dispersion in acidic (pH = 4) and basic (pH = 9) conditions. 

The diverse experimental strategies explored for exfoliating g-C3N4 highlight the 

complexity and multifaceted nature of achieving efficient dispersion and high-quality nanosheets. 

From leveraging Hansen solubility parameters to employing green liquid exfoliation methods, 

researchers have developed innovative approaches to enhance the LPE process. However, the 

variation in solvent performance across different studies underscores the need for a more nuanced 

understanding of solvent interactions. The use of binary solvent mixtures and functionalization 

techniques has shown significant promise, revealing that the combination of solvents and the 

introduction of specific functional groups can substantially improve exfoliation outcomes. These 
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findings suggest that a tailored approach, considering both the chemical nature of g-C3N4 and the 

specific requirements of the application, is essential for optimizing liquid-phase exfoliation. 

1.2. Computational studies 

Computational modeling serves as a powerful tool for bridging the gap between 

experimental and theoretical understanding, particularly in the context of LPE. Firstly, it allows 

for the investigation of energy conversion dynamics, which is crucial for uncovering the 

underlying mechanisms of exfoliation processes [39]. Secondly, simulations can test different 

candidate molecules to evaluate their performance before their introduction into material synthesis 

[9]. Molecular dynamics (MD) simulations have been extensively used to model LPE for different 

layered nanomaterials such as graphene and boron nitride, providing molecular-level details of 

solvent-nanomaterial interactions, solvent ordering near surfaces, and intermolecular interactions 

in the immediate vicinity of such materials [40]. MD simulations can evaluate various dynamical 

properties that are not easily accessed through experimental techniques. Furthermore, MD can 

assess the thermodynamics of exfoliation and solvation processes using techniques like the 

potential of mean force (PMF) calculation and alchemical free energy perturbation (FEP) [40]. 

These computational approaches not only address the challenges associated with LPE but also 

predict new solvents and exfoliation protocols, enhancing our fundamental understanding of the 

underlying mechanisms.  

One notable study by Shih et al. utilized MD simulations and the kinetic theory of colloid 

aggregation to understand the stabilization mechanism of graphene sheets in various organic 

solvents [41]. They examined solvents such as DMF, NMP, Dimethyl sulfoxide (DMSO), and γ-

butyrolactone (GBL) to model the micromechanical processes during ultrasonication and 

agitation. By calculating the PMF between solvated graphene sheets, they discovered that the 

primary barrier preventing graphene aggregation was the last layer of confined solvent molecules 

between the sheets, resulting from the strong affinity of the solvent molecules to graphene (Figure 

1.2a, b). This intercalation forms highly dense mono-to-few layers, which prevents the graphene 

sheets from aggregation. The stacked state corresponded to the free energy minimum in each 

solvent, but with varying degrees of stability (Figure 1.2c, d). As the vertical separation between 

the sheets increased and more solvent molecules intercalated, the stacked configuration became 
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less stable until a quasi-stable configuration was reached with a monolayer of solvent molecules 

between the sheets. Further separation led to multiple solvent layers, nearly nullifying the 

interlayer interactions. The solvents were ranked in terms of their ability to stabilize the dispersion 

as NMP ≈ DMSO > DMF > GBL > water, which aligns with their common use in graphene 

dispersion (Figure 1.2d). Follow-up studies with phosphorene and MoS2 showed similar solvent 

intercalation within nanosheet gaps, indicating that solvent-induced stabilization favors 

exfoliation, though the ease of exfoliation varies with different solvents due to size and 

electrostatic effects [42,43]. 

 

Figure 1.2. (a) Images of a graphene bilayer with NMP molecules at various inter-sheet distances, 

(b) normalized density profiles of NMP relative to bulk as functions of the z coordinate which is 

perpendicular to the graphene surface, (c) potential of mean force (PMF) between two graphene 

sheets (red curve), the number of NMP molecules confined between the sheets (blue curve), and 

the interaction potential between the graphene sheets without NMP molecules (dashed curve), and 
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(d) PMF per unit area (Φ) between two parallel graphene sheets in five solvents (NMP, DMF, 

GBL, DMSO, and water) as functions of the inter-sheet distance. [Reprinted with permission from 

ref. [41]. Copyright © 2010 American Chemical Society.] 

Following the exploration of graphene, Mukhopadhyay and Datta [44] delved into the 

computational modeling of h-BN exfoliation using MD simulations. They investigated both 

parallel (shearing) and perpendicular (pulling) exfoliation pathways, calculating the PMF for each 

process (Figure 1.3a, b). The results showed that the free energy requirement for shearing is 

significantly lower than for pulling (Figure 1.3c, d). This is because, during shearing, most BN–

BN interactions are retained, while in pulling, these interactions are drastically reduced as the 

layers move apart simultaneously. Polar solvents like DMSO, IPA, and water were found to be 

more effective in exfoliating h-BN compared to nonpolar solvents like dichloromethane (DCM) 

and dichloroethane (DCE), primarily due to stronger electrostatic interactions in addition to van 

der Waals forces. The PMF profiles indicated that polar solvents create a quasi-stable state with 

intercalated solvent layers, which aids in reducing the energy required for exfoliation. 

 

Figure 1.3. (a, b) Schematic illustration of parallel (shearing) and perpendicular (pulling) 

exfoliation pathways for h-BN. (b) Definitions of the reaction coordinates dy and dz, representing 
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the slipping (shearing) and vertical (pulling) distances between the h-BN nanosheets. PMF per unit 

area for the parallel (c) and perpendicular (d) exfoliation of an h-BN nanosheet from a solvent-

intercalated bilayer. [Reprinted with permission from ref. [44]. Copyright © 2017 American 

Chemical Society.] 

 

As previously discussed, a promising experimental strategy involves utilizing binary solvent 

mixtures, which have demonstrated significant improvements in the exfoliation and stabilization 

of graphene nanosheets. Gotzias and Lazarou utilized MD simulations to investigate the 

exfoliation of graphene in NMP/water mixtures. They computed the PMF for exfoliation, 

considering both shearing and pulling pathways. Similar to the work of Mukhopadhyay and Datta 

[44], the study found that the shearing pathway, where the graphene sheet is pulled parallel to its 

plane, is the preferred reaction coordinate, requiring less free energy compared to the pulling 

pathway. The results demonstrated that NMP substantially decreases the free energy barrier for 

exfoliation, emphasizing its superior solubilizing efficacy compared to water, as shown in Figure 

1.4a. Remarkably, the optimal solvent mixture was found to be 70-80% NMP, which not only 

improved exfoliation efficiency but also addressed environmental concerns associated with using 

pure organic solvents. They also found as the graphene sheets exfoliate, they become coated with 

a dense monolayer of NMP, which protects the sheets from re-aggregation. Figure 1.4b illustrates 

the monolayer adsorption of NMP molecules on the graphene sheet, where the number of adsorbed 

NMP molecules increases with higher NMP concentrations. The snapshot at the bottom of Figure 

1.4c visually demonstrates the distribution of NMP molecules around the exfoliating graphene. 



10 

 

 

Figure 1.4. (a) PMF profiles for the exfoliation of graphene sheets in binary NMP/water mixtures 

with varying NMP concentrations (0%, 13%, 25%, 65%, 80%, and 100%). (b) Monolayer 

adsorption of NMP molecules on the graphene sheet as a function of separation distance in 

different NMP concentrations, illustrating the increase in adsorption with higher NMP content. 

Shaded regions represent standard deviations. (c) Snapshot of the simulation box for the 13 wt% 

NMP concentration, showing the distribution of NMP and water molecules around the exfoliated 

graphene sheets. NMP molecules are shown with cyan color. [Reprinted with permission from ref. 

[45]. Copyright © 2024 John Wiley & Sons.] 

 

Among the computational studies available, the work by Zou et al. [46] is the first that used 

MD simulations to investigate the exfoliation mechanisms of g-C3N4 nanosheets. Their approach 

involved a three-step process: first, the experimental preparation and initial exfoliation of bulk g-

C3N4 using various solvents; second, the utilization of MD simulations to analyze the interactions 

between the solvent molecules and g-C3N4 nanosheets, identifying the energy barriers involved in 

the exfoliation process; and third, re-carrying out the exfoliation experimentally based on the 

simulation results to optimize the yield of exfoliated g-C3N4 nanosheets. The simulations revealed 
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that solvent molecules intercalate into the g-C3N4 layers, lowering the free energy barriers for 

exfoliation, thus enhancing the efficiency of the process. By examining the kinetic energy changes 

of the nanosheets, they introduced a method to estimate energy barriers for exfoliation. Their 

results demonstrated that the most suitable solvent mixtures for exfoliating g-C3N4 were those with 

surface energies close to that of the g-C3N4 nanosheets, with the mixture of water and IPA (mass 

ratio 1:2) predicted to be particularly effective. This computational prediction was experimentally 

validated, achieving a g-C3N4 suspension concentration of 5.03 mg mL-1. 

While the study by Zou et al. [46] provides insights into the exfoliation process of g-C3N4, 

several aspects need to be examined. Firstly, the reliance on surface energy matching as the 

primary criterion for solvent selection, although effective in their study, might not capture the 

complete complexity of solvent-nanosheet interactions. This approach assumes that surface energy 

is the dominant factor, potentially overlooking other critical properties such as solvent density, 

dielectric constant, and specific molecular interactions that could also influence exfoliation 

efficiency. Furthermore, the method introduced for estimating energy barriers based on kinetic 

energy changes requires further validation against more established techniques such as PMF 

calculations to ensure its robustness and accuracy. 

1.3. Knowledge gaps and objectives 

The efficiency of producing high-quality g-C3N4 nanosheets through LPE is critically 

dependent on various factors such as solvent selection, molecular interactions, and 

functionalization. LPE, a widely used method for synthesizing 2D g-C3N4, requires a detailed 

molecular-level understanding to optimize the process effectively. Current experimental 

techniques often fall short in providing such insights, making MD simulations a valuable tool for 

exploring the microscopic mechanisms of LPE. MD simulations offer a powerful approach to 

study the LPE process at a microscopic level, providing detailed information on the interactions 

between g-C3N4 nanosheets and various solvents. However, these simulations are resource-

intensive and time-consuming when applied to a wide range of solvents. Machine learning (ML) 

algorithms can complement MD simulations by predicting the free energy of exfoliation and 

solvation for numerous solvents based on a limited dataset. This combination of MD and ML 
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enables the efficient screening and selection of optimal solvents for LPE, addressing the limitations 

of purely experimental or computational methods. 

Additionally, the performance of binary solvent mixtures in LPE introduces an additional 

layer of complexity that has not been sufficiently explored. Existing studies have not thoroughly 

investigated why some mixtures perform better than others or how the dominance of one solvent 

component affects the LPE process. This lack of understanding limits the ability to optimize 

solvent mixtures for improved exfoliation performance. While chemical functionalization of g-

C3N4 nanosheets has been shown to enhance solvent-sheet interactions and reduce the energy 

required for exfoliation, systematic studies investigating the effects of different functional groups 

on these processes are scarce. The literature lacks detailed MD simulations that analyze the specific 

interactions between functionalized g-C3N4 and various solvents, which are crucial for optimizing 

functionalization strategies. 

This thesis will extend the theoretical understanding of LPE for g-C3N4 through the 

following objectives:  

(1) develop MD simulation frameworks to evaluate the free energy of exfoliation and solvation for 

g-C3N4 in various solvents;  

(2) integrate ML algorithms to predict these free energies across a wide range of solvents, reducing 

the need for extensive simulations;  

(3) investigate the performance of binary solvent mixtures and their molecular interactions to 

optimize LPE efficiency;  

(4) explore the impact of chemical functionalization on the LPE efficiency of g-C3N4 and provide 

guidelines for effective functionalization strategies.  

Achieving these is expected to advance the theoretical and practical understanding of LPE, 

contributing to the development of efficient methods for producing high-quality g-C3N4 

nanosheets. 

1.4. Thesis outline 

Chapter 2 presents the simulation methodology used throughout this research. This 

chapter includes a brief description of the MD simulation techniques, the all-atom forcefields 
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employed, potential of mean force calculations, and radial distribution functions which is a key 

analysis used to identify major molecular interactions. 

Chapter 3 investigates LPE of g-C3N4 nanosheets in pure solvents using MD simulations. 

The chapter examines the molecular mechanisms of exfoliation, focusing on the evaluation of free 

energy in various solvents through PMF calculations. It analyzes how solvent properties affect 

exfoliation efficiency and develops guidelines for selecting effective solvents to optimize g-C3N4 

nanosheet production. 

Chapter 4 delves into the integration of ML with MD simulations to predict the free energy 

of exfoliation and solvation for g-C3N4 in various solvents. It describes the development and 

validation of ML models, based on extensive MD simulation data, and demonstrates how these 

models can efficiently and accurately predict solvent performance, thereby reducing the need for 

resource-intensive simulations. 

Chapter 5 focuses on the dynamics of binary solvent mixtures in LPE of g-C3N4. The 

chapter explores how the exfoliation performance can be dominated by one solvent component. 

MD simulations and ML predictions are used to investigate the molecular interactions within 

binary mixtures, providing insights into optimizing these mixtures for improved LPE performance, 

and reduced cost and environmental impact. 

Chapter 6 examines the impact of chemical functionalization on the LPE efficiency of g-

C3N4 nanosheets. Various functional groups, such as sulfonic, carboxyl, amine, hydroxyl, and 

aldehyde, are studied using MD simulations. The chapter provides practical guidelines for 

selecting and designing functionalized g-C3N4 nanosheets to enhance solvent-sheet interactions 

and reduce the free energy required for exfoliation. 

Chapter 7 summarizes the key findings, discusses the implications of the research, and 

suggests directions for future studies to further advance the field of g-C3N4 nanosheet production 

and application. 
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2. Chapter 2: Simulation Methodology 
 

2.1. Basic principle of molecular dynamics simulation 

MD simulation is grounded in Newton’s second law of motion, 𝑭 = 𝑚𝒂, where 𝑭 denotes 

the force acting on a particle, 𝑚 is the mass of the particle, and 𝒂 is the acceleration [1]. For 

conservative forces, the force can be expressed as the negative gradient of a potential energy 

function, 𝑈, leading to 𝑭 = −∇𝑈. This relationship is pivotal for classical MD simulations where 

intricate intermolecular potentials are employed [1]. In an MD simulation, Newton’s second law 

is numerically integrated over time to update the positions and velocities of all particles in the 

system.  

Various statistical ensembles can be employed in MD simulations depending on the 

physical conditions and properties one wishes to study [2]. Each ensemble is characterized by 

different constraints on the system's thermodynamic variables. The most commonly used 

ensembles in MD simulations are the microcanonical (NVE), canonical (NVT), and isothermal-

isobaric (NPT) ensembles [2]. These ensembles derive from the fundamental principles of 

statistical mechanics and provide different ways to sample the phase space. 

2.1.1. NVE ensemble 

The microcanonical ensemble, also known as the NVE ensemble, is characterized by a 

constant number of particles, volume, and energy. In this ensemble, the total energy of the system 

is conserved, and the system is isolated with no exchange of energy or matter with the 

surroundings. The fundamental equation for the microcanonical ensemble is the conservation of 

total energy [3]:  

 𝑬 = ∑
𝒑𝑖

2

2𝑚𝑖

𝑁

𝑖=1
+  𝑈 

(2.1) 

 

where 𝒑𝑖 = 𝑚𝑖𝒗𝑖 is the linear momentum of particle 𝑖, 𝑚𝑖 and 𝒗𝑖 being the mass and velocity of 

particle i respectively, 𝑈 is the system’s total potential energy, and 𝑁 is the total number of 

particles. 
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The NVE ensemble is useful for studying the intrinsic dynamics of isolated systems 

without external influences [3]. Because the total energy is conserved, second time derivative of 

Eq. (2.1) results in 

 
𝑑𝒗𝑖

𝑑𝑡
= 𝒂𝑖 =

𝑭𝑖

𝑚𝑖
= −

1

𝑚𝑖
∇𝒓𝒊

𝑈 (2.2) 

 

where 𝑭𝑖 = −∇𝒓𝒊
𝑈 is the force on particle i and ∇𝒓𝒊

 indicates the gradient taken with respect to the 

position 𝒓𝒊 of particle i. 

The initial conditions for position (𝒓𝒊) and velocity (𝒗𝑖) of all particles are set, typically 

with the linear momentum of the center of mass (COM) and the system angular momentum 

initialized to zero [4]. In this thesis, the leap-frog algorithm [5] is employed to solve the equations 

of motion, described by the following equations: 

 𝒗𝑖 (𝑡 +
∆𝑡

2
) = 𝒗𝑖 (𝑡 −

∆𝑡

2
) +

∆𝑡

𝑚
𝑭𝑖(𝑡) (2.3) 

 

 𝒓𝒊(𝑡 + ∆𝑡) = 𝒓𝒊(𝑡) + ∆𝑡𝒗𝑖 (𝑡 +
∆𝑡

2
) (2.4) 

 

Here, 𝑡 denotes the simulation time and ∆𝑡 is the integration time step. By integrating these 

equations over all timesteps, we can predict how particles move within the simulation. Figure 2.1 

visually represents the sequential process of updating particle positions and velocities. To 

accurately simulate bulk properties and avoid edge effects, periodic boundary conditions (PBC) 

are employed [1]. PBCs ensure that a particle leaving one side of the simulation box re-enters from 

the opposite side, maintaining a continuous and infinite system environment. 

 

Figure 2.1. Flowchart illustrating the step-by-step process of updating particle positions and 

velocities in a MD simulation. 
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2.1.2. NVT ensemble 

The canonical ensemble, or NVT ensemble, maintains a constant number of particles, 

volume, and temperature. In this ensemble, the system can exchange energy with a thermal 

reservoir to maintain a constant temperature. The probability distribution of states in the canonical 

ensemble is given by the Boltzmann factor [3]: 

 𝑃(𝒓, 𝒑) =
𝑒−𝛽𝐻(𝒓,𝒑)

𝑍
 (2.5) 

 

where 𝛽 =
1

𝑘𝐵𝑇
 (with 𝑘𝐵 being the Boltzmann constant and T being the absolute temperature), 𝒓 

and 𝒑 contains the positions and momenta of all the particles respectively, 𝐻(𝒓, 𝒑) is the 

Hamiltonian of the system, and 𝑍 is the partition function, defined as [3]: 

 𝑍 =  ∑ 𝑒−𝛽𝐻(𝒓,𝒑)

𝑠𝑡𝑎𝑡𝑒𝑠
 (2.6) 

 

The canonical ensemble is particularly useful for simulating systems at a fixed temperature, such 

as biological macromolecules in a thermal bath [2]. 

Since direct integration of Eq. (2.2), (2.3) and (2.4) corresponds to simulation in the NVE 

ensemble, special algorithms are required to maintain the constant temperature in the NVT 

ensemble. These algorithms are called thermostats [4]. The Nosé-Hoover thermostat introduces 

additional generalized coordinate and momentum, and employs Lagrangian mechanics to establish 

extra equations of motion so that the probability distribution Eq. (2.5) is achieved [1]. This method 

is rigorous yet time-consuming due to the added coupled equations of motion [1]. The velocity-

rescale (v-rescale) thermostat adjusts the velocities of all particles proportionally to reach the 

desired kinetic energy which is related to temperature [6]. This method is fast but less accurate as 

it does not ensure the satisfaction of the probability distribution Eq. (2.5). Thus, it is mainly used 

during the setup phase to quickly achieve the target temperature [6]. In this thesis, the v-rescale 

thermostat was utilized for the equilibration phase, while the Nosé-Hoover thermostat was 

employed during the production run to maintain accurate temperature control. 
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2.1.3. NPT ensemble  

The isothermal-isobaric ensemble, or NPT ensemble, is characterized by a constant number 

of particles, pressure, and temperature. This ensemble allows the system to exchange both energy 

and volume with the surroundings, making it ideal for studying phase transitions and material 

properties under constant pressure and temperature conditions [3]. The probability distribution for 

the NPT ensemble is given by [3]: 

 𝑃(𝒓, 𝒑, 𝑉) =
𝑒−𝛽(𝐻(𝒓,𝒑)+𝑝𝑉)

∆
 (2.7) 

 

where ∆ is the isothermal-isobaric partition function: 

 ∆= ∫ 𝑑𝑉 ∑ 𝑒−𝛽(𝐻(𝒓,𝒑)+𝑝𝑉)

𝑠𝑡𝑎𝑡𝑒𝑠
 (2.8) 

 

Barostats are algorithms used to control the pressure within MD simulations, ensuring the 

system accurately reflects the desired pressure conditions [1]. The stochastic cell rescaling (C-

rescale) algorithm, introduced by Bernetti and Bussi, is a first-order barostat designed to sample 

correct volume fluctuations by incorporating a stochastic term [7]. C-rescale operates by adjusting 

the simulation cell dimensions at each timestep based on the pressure difference, with an added 

random noise component [7]. This ensures that the volume fluctuations align with those expected 

from the NPT ensemble, making it suitable for both equilibration and production phases of MD 

simulations [7]. The frequently used Berendsen [3] barostat, while efficient at equilibrating 

systems, often result in inaccurate volume fluctuations. We used C-rescale for both equilibration 

and production run in our simulations. 

2.2. Forcefields 

Forcefields are essential for accurately modeling the interactions between particles. The 

OPLS-AA (Optimized Potentials for Liquid Simulations All Atom) forcefield was chosen for this 

thesis due to its proven versatility and accuracy in modeling a wide range of molecular systems 

[8]. Specifically, OPLS-AA is highly effective for simulating organic molecules and liquids, 
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making it an ideal choice for studying the interactions between g-C3N4 and various organic 

solvents [8]. 

2.2.1. Bonded interactions 

Bonded interactions in the OPLS-AA forcefield encompass forces arising from bond 

stretching, angle bending, and dihedral torsions [8]. These interactions are described by specific 

potential energy functions that depend on the relative positions of atoms. Bond stretching 

interactions are typically modeled using a harmonic potential, which describes how the energy 

increases quadratically as the bond length deviates from its equilibrium value [8]: 

 𝐸𝑏𝑜𝑛𝑑 =
1

2
𝑘𝑏(𝑟 − 𝑟0)2 (2.9) 

 

where 𝑘𝑏 is the bond force constant, 𝑟 is the current bond length, and 𝑟0 is the equilibrium bond 

length. Angle bending is also represented by a harmonic potential [8]: 

 𝐸𝑎𝑛𝑔𝑙𝑒 =
1

2
𝑘𝜃(𝜃 − 𝜃0)2 (2.10) 

 

In this equation, 𝑘𝜃 is the angle force constant, 𝜃 is the bond angle, and 𝜃0 is the equilibrium bond 

angle. Dihedral or torsional interactions are modeled using a periodic potential, capturing the 

energy changes due to rotations around bonds [8]: 

 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 = ∑
𝑉𝑛

2𝑛
[1 + cos(𝑛∅ − 𝛾)] (2.11) 

 

where 𝑉𝑛 is the barrier height or dihedral force constant, 𝑛 is the periodicity of the dihedral, 

indicating how many times the potential repeats as the dihedral angle completes a full 360° 

rotation, ∅ is the dihedral angle, and 𝛾 is the phase angle, representing the shift in the cosine 

function. 

2.2.2. Non-bonded interactions 

Non-bonded interactions in the OPLS-AA forcefield describe the forces between atoms 

that are not directly bonded, including van der Waals and electrostatic interactions [3]. Van der 
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Waals (vdW) interactions are modeled using a Lennard-Jones potential, which combines both 

attractive and repulsive components [1]: 

 𝐸𝐿𝐽 = 4𝜀′ [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] (2.12) 

 

In this equation, 𝜀′ is the depth of the potential well, 𝜎 is the distance at which the inter-particle 

potential is zero, and 𝑟 is the distance between particles. Electrostatic interactions are described by 

Coulomb’s law, representing the potential energy between charged particles [1]: 

 𝐸𝑐𝑜𝑢𝑙𝑜𝑚𝑏 =
1

4𝜋𝜀0

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
 (2.13) 

 

here, 𝑞𝑖 and 𝑞𝑗 are the charges of particles 𝑖 and 𝑗, 𝑟𝑖𝑗 is the distance between them, and 𝜀0 is the 

permittivity of free space. 

Efficient computation of non-bonded interactions, particularly electrostatics, is crucial in 

MD simulations due to their slow convergence [3]. A common cutoff distance for non-bonded 

interactions, including vdW and short-range electrostatic interactions, is typically around 1.2 nm 

[2]. Unlike vdW interactions, the effects of electrostatic interactions do not become negligible 

beyond the cutoff distance [2]. To address long-range electrostatic interactions, the Particle Mesh 

Ewald (PME) method is employed [9], which splits the electrostatic calculation into short-range 

and long-range components, allowing for faster convergence than traditional methods [9]. The 

PME method involves grouping and averaging charges beyond the cutoff distance by assigning 

them to cells in a mesh. Charges are interpolated over the cells to form a charge density, which is 

then transformed into the reciprocal space using a Fast Fourier Transform (FFT) algorithm [10]. 

Electrostatic calculations are performed in the reciprocal space and subsequently converted back 

into the real space [9]. This approach significantly reduces the computational cost while 

maintaining high accuracy. By employing PME, we balance the need for accurate electrostatic 

calculations with computational efficiency, ensuring that long-range interactions are properly 

accounted for [9]. 
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2.3. Umbrella sampling 

Umbrella sampling (US) is a powerful technique used in MD simulations to enhance the 

sampling of rare events and to calculate the PMF [11]. The PMF provides insights into the free 

energy profile along a reaction coordinate, which is crucial for understanding various molecular 

processes [11]. In US, a series of simulations are performed with additional potential terms 

(biasing potentials) applied to the system to restrain it to specific regions of the phase space [11]. 

These potentials help in overcoming energy barriers and allow the system to sample configurations 

that would be otherwise rarely visited [11]. The biasing potential 𝑈𝑏𝑖𝑎𝑠(𝑥) is typically a harmonic 

potential [11]: 

 𝑈𝑏𝑖𝑎𝑠(𝑥) =
1

2
𝑘(𝑥 − 𝑥0)2 (2.14) 

 

where 𝑘 is the force constant, 𝑥 is the reaction coordinate, and 𝑥0 is the center of the bias. Each 

biased simulation is referred to as a "window," and multiple windows are set up along the reaction 

coordinate to cover the entire range of interest. 

The PMF 𝑊(𝑥) along a reaction coordinate 𝑥 can be extracted from the biased simulations 

using the US data. The PMF is related to the unbiased probability distribution 𝑃(𝑥) by [11]: 

 𝑊(𝑥) = −𝑘𝐵𝑇 𝑙𝑛𝑃(𝑥) + 𝐶 (2.15) 

 

where 𝑇 is the temperature, and 𝐶 is an arbitrary constant. The unbiased probability distribution 

𝑃(𝑥) is obtained by combining the histograms from all the windows and correcting them for the 

biasing potentials. This is typically done using the Weighted Histogram Analysis Method 

(WHAM) [12]. WHAM is a technique used to combine data from multiple biased simulations to 

reconstruct the unbiased free energy profile. WHAM solves for the unbiased probabilities by 

iteratively adjusting the weights of the histograms obtained from each window until they converge 

to a consistent set of probabilities [12]. The WHAM equations are given by [12]: 

 𝑃(𝑥) =
∑ 𝑛𝑖𝑃𝑖(𝑥)𝑒𝛽𝑓𝑖𝑀

𝑖=1

∑ 𝑛𝑖𝑒𝛽(𝑓𝑖−𝑈𝑖(𝑥))𝑀
𝑖=1

 (2.16) 
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 𝑒−𝛽𝑓𝑖 = ∑ 𝑃(𝑥)
𝑥

𝑒−𝛽𝑈𝑖(𝑥) (2.17) 

 

where 𝑃𝑖(𝑥) is the probability distribution from window 𝑖, 𝑈𝑖(𝑥) is the biasing potential in window 

𝑖, 𝑓𝑖 is the free energy offset for window 𝑖, 𝑛𝑖 is the number of samples in window 𝑖, and 𝑀 is the 

total number of windows. WHAM iteratively solves these equations to obtain 𝑓𝑖 and the unbiased 

probability distribution 𝑃(𝑥), which is then used to understand the free energy landscape of the 

system. 

2.4. Radial distribution function 

The radial distribution function (RDF), 𝑔(𝑟), is a key tool for characterizing the structure 

of a system at the atomic level [1]. It describes how the density of atoms varies as a function of 

distance from a reference atom, providing insights into the local structure and spatial correlations 

within the system. The RDF is defined as [1]: 

 𝑔(𝑟) =
〈𝜌(𝑟)〉

𝜌0
 (2.18) 

 

where 〈𝜌(𝑟)〉 is the average local density of atoms at a distance 𝑟 from the reference atom, and 𝜌0 

is the bulk density of the same type of atoms. To calculate the RDF, the distances between pairs 

of atoms are binned into a histogram, which is then normalized by the volume of the spherical 

shell and the total number of reference atoms [1]: 

 𝑔(𝑟) =
1

𝑁
(

𝑉

4𝜋𝑟2∆𝑟
) ∑ ∑ 𝛿(𝑟 − 𝑟𝑖𝑗)

𝑁

𝑗≠𝑖

𝑁

𝑖=1
 (2.19) 

 

here, ∆𝑟 is the bin width used to create the histogram, 𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗, 

and 𝛿 is the Dirac delta function, which ensures that only pairs of atoms separated by a distance 𝑟 

contribute to the RDF. 

The RDF provides information on the likelihood of finding a particle at a distance 𝑟 from 

a reference particle [3]. Peaks in 𝑔(𝑟) indicate preferred distances corresponding to coordination 
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shells, while a value of 𝑔(𝑟) ≈ 1 at large 𝑟 signifies a random distribution of particles, as expected 

in a homogeneous system [3]. 

2.5. Machine learning 

Machine learning (ML) has emerged as a transformative tool in computational materials 

science, offering the ability to uncover complex patterns and relationships within large datasets. 

Traditional methods in materials science, particularly those involving MD simulations, can be 

computationally intensive, often requiring significant time and resources [13]. ML provides an 

alternative by enabling rapid predictions of material properties, system behaviors, and potential 

outcomes based on existing data, without the need for full-scale simulations each time [13]. In the 

context of computational materials science, ML leverages algorithms that can build predictive 

models from historical simulation or experimental data by analyzing relationships between input 

features (such as structural, electronic, or chemical properties) and desired outputs (such as 

material performance or free energy calculations) [14], allowing for identification of trends that 

may not be easily evident through classical theoretical approaches. 

ML models in materials science typically employ supervised learning techniques, where 

the model is trained on a set of known data to make predictions for unseen cases. These models 

can handle a wide variety of tasks, ranging from regression problems (e.g., predicting material 

properties like dielectric constants or exfoliation energies) to classification problems (e.g., 

categorizing materials based on their potential applications) [14]. Furthermore, ML role in 

computational materials science is not limited to prediction. It also facilitates the optimization of 

simulations by guiding the selection of parameters for MD simulations, or even suggesting which 

materials or chemical compositions are most likely to exhibit desired properties. 

2.5.1. Supervised learning 

Supervised learning is one of the most commonly used approaches in ML, particularly 

suited for tasks where the relationships between input features and known outputs need to be 

mapped [14]. In this framework, a model is trained on labeled data, where each input is paired 

with its corresponding output, allowing the model to learn the underlying patterns or dependencies 

within the dataset [13]. Once trained, the model can predict outputs for new, unseen inputs based 
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on these learned relationships. The following provides an overview of the specific models 

employed in this work. 

Extra-trees regressor (ETR) and random forest regression (RFR) are ensemble ML 

techniques. RFR [15,16] consists of an ensemble (forest) of decision trees. Each tree has a series 

of decision nodes from which the tree split into branches until it reaches its end (“the leaf”, i.e., 

the prediction). Each decision node depends on whether a certain input characteristic is greater 

than a specific value. Each tree in RFR is trained using a subset of the entire training set, and by 

averaging the predictions of individual trees a prediction is formed. ETR is an extension of RFR 

and it trains each tree using the entire set of training data. In order to split the nodes, ETR chooses 

a random cut point rather than a locally optimal cut point as used in RFR, which helps reduce 

overfitting. In gradient boosting regression (GBR), a new weak learner (a model that performs 

slightly better than random chance) is added to the previous model at each step such that the new 

model gives rise to smaller collective error. The weak learners are usually decision trees because 

of their strong empirical performance. Like GBR, AdaBoost regressor (ABR) is one of the 

boosting algorithms that automatically adjust its parameters based on the performance in the 

current iteration [17]. In ABR, each new model will weigh the data such that data with less accurate 

prediction are assigned more weight. By formulating linear regression using probability 

distributors, Bayesian ridge regression (BRR) is a method suitable for insufficient or poorly 

distributed data [18]. Rather than estimated as a single value, the output is drawn from a probability 

distribution.  

2.5.2. Feature selection 

Feature selection is a critical step in ML, particularly for supervised learning models [19]. 

It involves identifying the most relevant input variables (features) that significantly contribute to 

the model predictions while discarding those that are redundant or less relevant. By focusing on 

the most informative features, feature selection enhances model accuracy, reduces overfitting, and 

decreases computational complexity [19]. In materials science, features can include various 

properties such as molecular structure, surface tension, or dielectric constant, which influence 

material behavior. For this work, we employed the all subset model (ASM) approach for feature 

selection [20]. ASM evaluates all possible combinations of features to determine which set 

provides the best predictive performance. This exhaustive method ensures that the model captures 
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the most important features while minimizing the inclusion of irrelevant ones, leading to more 

reliable predictions. 

2.5.3. Model training and validation 

Model training and validation are essential for developing ML models that generalize well 

to new data. To ensure robust performance, k-fold cross-validation is often used. This technique 

divides the dataset into k subsets, or “folds,” training the model on k-1 folds while using the 

remaining fold for validation. The process is repeated k times, with each fold being used as the 

validation set once. This method provides a comprehensive assessment of model performance by 

averaging the results across all folds, reducing the bias that may result from a single training-test 

split. 

In addition to cross-validation, hyperparameter tuning is key to optimizing the model. 

Instead of relying on default settings, hyperparameters—such as the number of trees in a random 

forest or the learning rate in gradient boosting—are fine-tuned to enhance model performance. 

Grid search is a common method used for this, where different combinations of hyperparameters 

are systematically tested, and the combination that yields the best cross-validation results is 

selected [21]. Together, these methods ensure that the model is both well-validated and optimized 

for predictive accuracy. 
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3. Chapter 3: Liquid-phase Exfoliation of 

Graphitic Carbon Nitrides 
 

3.1. Introduction 

Two-dimensional g-C3N4 nanosheets have been explored as a promising candidate in many 

applications such as photocatalysis [1–4], membranes [5], sensing [6], imaging [7], and energy 

conversion [8,9]. Importantly, the basic structural unit of g-C3N4 is a π-conjugated heptazine or 

triazine, which exhibits special electronic and photocatalytic performances [10]. In addition, a 

weaker photoluminescence intensity was observed in ultrathin g-C3N4 nanosheets compared to the 

layered bulk material [3], which corresponds to a lower inter-sheet recombination rate of 

photogenerated carriers. Therefore, the superiority of ultrathin g-C3N4 sheets results from a large 

specific surface area, enhanced electron transport ability, and high charge separation efficiency 

[11]. LPE, as an important functional modification strategy, can be used to delaminate layered g-

C3N4 bulk material to obtain free-standing nanosheets [12–18]. In this process, bulk materials are 

placed into certain solvents followed by ultrasonic treatments [19]. Despite some successes [20–

27], it remains a challenge to identify solvents that enable effective exfoliation and stable 

dispersion of the g-C3N4 sheets. 

A number of studies have investigated the delamination of bulk g-C3N4 in different organic 

solvents. The selection of solvents was mostly arbitrary, based on trial-and-error experimentation. 

For example, Yang et al. reported LPE of bulk g-C3N4 using various organic solvents as the 

dispersion medium, including but not limited to IPA, NMP, acetone (ACE), and ethanol [28]. It 

was found that NMP was a promising solvent, which could stabilize the individual nanosheets. In 

comparison, precipitation of g-C3N4 was observed after 2 days when using ethanol and ACE. Lin 

et al. reported a mixed solvent approach for the LPE of bulk g-C3N4, to form monolayer g-C3N4 

nanosheets with tunable concentrations (0.1−3 mg mL-1) [29]. Different binary solvents, namely 

ethanol/H2O, IPA/H2O, and DMF/H2O were examined. For the ethanol/H2O system, when the 

volume ratio of H2O was 75%, a milky dispersion was obtained, reaching the maximum g-C3N4 

concentration of 3 mg mL-1.  
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To the best of our knowledge, attempts to determine a quantitative relationship between 

the solvent properties and the performance of the exfoliation are completely absent for g-C3N4, 

while there has been some work on another 2D material, graphene. Hernandez and co-workers 

[21] reported that the Hildebrand solubility parameters, Hansen solubility parameters, and surface 

tensions may be used to identify solvents that are effective in dispersing graphene. It was discussed 

that in order to minimize the enthalpic cost of mixing, efficient solvents should have a surface 

tension close to that of graphene. In another study, Coleman et al. [30] stated that the concentration 

of dispersed graphene nanosheets is maximized when the energy of exfoliation is minimized. An 

equation was proposed to calculate the enthalpy of mixing ∆𝐻𝑚𝑖𝑥 as an estimate for the energy of 

exfoliation, 

 
∆𝐻𝑚𝑖𝑥

𝑉𝑚𝑖𝑥
=

2

𝑇𝑠ℎ𝑒𝑒𝑡
(√𝐸𝑠𝑢𝑟

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒
− √𝐸𝑠𝑢𝑟

𝑠𝑜𝑙𝑣𝑒𝑛𝑡)

2

∅ 
(3.1) 

 

where 𝑉𝑚𝑖𝑥 is the volume of the solution mixture, 𝑇𝑠ℎ𝑒𝑒𝑡 is the thickness of a nanosheet, 𝐸𝑠𝑢𝑟
𝑖  is 

the surface energy of component i, and ∅ is the volume fraction of graphene in the solution. 

The above semiempirical criteria have provided some general guidelines for solvent 

selection, however, they do not allow for molecular-level design of novel solvents capable of 

effectively dispersing 2D nanosheets, especially g-C3N4. For example, an effective solvent should 

have interactions with g-C3N4 that are strong enough to compensate for the vdW attraction between 

the g-C3N4 sheets. It is unclear whether these interactions can be captured by solubility parameters 

or surface tension alone. In this regard, little is known about the molecular details of the 

interactions between g-C3N4 and solvent molecules, and the correlation of these interactions with 

the structural properties of the solvents. Hence, developing a molecular-level understanding of the 

interactions between g-C3N4 and common solvents can provide fundamental insights that help the 

design of exfoliation strategies to obtain stable g-C3N4 solutions. 

MD is a powerful numerical tool that can shed light on interactions beyond the accessibility 

of current experimental techniques. Zou et al. [31] presented the first MD study on the exfoliation 

of g-C3N4 nanosheets, where an external force was added to imitate the sonication process. The 

energy barrier for exfoliation was estimated by the variation of kinetic energies in MD simulations, 

which was a very rough approximation. There was a lack of accurate evaluation of the free energy 
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required in the exfoliation process, as well as elucidation on the relationship between the free 

energy and solvent properties. In this work, we present a systematic MD study on the LPE of g-

C3N4 in nine different solvents with varying molecular structures. Through PMF calculations, we 

have for the first time quantified the free energy of exfoliation between two g-C3N4 sheets, which 

can be used as a metric to evaluate the performance of g-C3N4 exfoliation in those solvents. 

Mechanistic explanations are provided on the relationship between the free energy of exfoliation 

and molecular features of the solvent. Results from this study shed light on how to make molecular 

structure-based selection of solvents to improve g-C3N4 exfoliation and dispersion in the liquid-

phase. 

3.2. Computational details 

3.2.1. Molecular models for g-C3N4 and solvents 

The heptazine-based g-C3N4 nanosheet was considered for this study (Figure 3.1a). This 

structure consists of 6-membered rings with sp2 bonds between C and N atoms, and intrinsically 

contains vacancies (or voids) surrounded by nitrogen atoms as shown by the red circle in Figure 

3.1a. The presence of these vacancies and the rotation at the N-C bonds that connects two building 

blocks (cyan circle in Figure 3.1a highlights one building block) make the growth of a large-sized 

layer difficult [20]. In this work, we considered an equilateral triangular sheet to be representative 

of a g-C3N4 nanosheet, consistent with several previous studies [32–36], with a side length of 4.5 

nm. This nanosheet consists of 21 heptazine core units, with the periphery saturated with 21 H 

atoms. The justification for choosing this size is provided in Appendix A, section A1. 

For the study of LPE, nine solvents commonly used in the experiments [27,29,37] were 

considered as the medium. These solvents were categorized into three groups based on their 

structural character and functional groups. The first group (Figure 3.1b) featured polar O-H 

(hydroxyl) groups and included water and two alcohols: methanol (MET) and 1,4-butanediol (BD). 

The second group (Figure 3.1c) had a carbonyl (O=C) group which can be an amide as in 

formamide (FRM) and DMF, or a ketone as in ACE. The third group (Figure 3.1d) contained an 

aromatic structure: a benzene ring in chlorobenzene (CB), or a heterocycle in tetrahydrofuran 

(THF) and NMP. 
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Figure 3.1. Molecular structure of the 21-unit g-C3N4 used in this study. The cyan circle shows 

one heptazine core unit and the red circle shows a vacancy that exists around the N atoms. 

Molecular structures of simulated solvents, categorized into group 1 (b), group 2 (c) and group 3 

(d) according to their structural characteristics. The molar weight of each solvent is given in the 

parenthesis. 

 

The OPLS-AA force field [38] was used for both the solute (g-C3N4) and the solvents. The 

force field parameters were generated from LigParGen and PolyParGen servers [39,40] unless 

otherwise specified. The Charge Model 5 (CM5) with a scaling factor of 1.20 [41] was used for 

the partial atomic charges. To validate the force field parameters and partial atomic charges, key 

properties of g-C3N4 such as bond length/angle distributions, surface energy and hydration free 

energy were compared with results from density functional theory (DFT) calculations. Validation 

was also performed for the solvents, by comparing their density, dielectric constant, and surface 

tension with experimental results. Details of the validation are shown in Appendix A, Section A2. 

3.2.2. Simulated systems 

US [42] was used to calculate the PMF, which is defined as the potential whose negative 

gradient with respect to a pre-defined reaction coordinate (RC) corresponds to the average force 
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in the direction of the RC. The weighted histogram analysis method (WHAM) [43] was used to 

extract the PMF curve from a set of US simulations. It is non-trivial to define a RC that best 

describes the exfoliation of the g-C3N4 nanosheets. Two adhered 2D sheets can be separated via 

different paths, which may be associated with different free energy requirements [44–48]. For 

example, it was shown that for graphene sheets in water the PMF to separate them in the direction 

perpendicular to the sheets (i.e., normal direction) was lower compared to that in the direction 

parallel to the sheets (i.e., lateral direction) [45]. However, for boron nitride (BN) nanosheets in 

several organic solvents, it was reported that the lateral direction had lower PMF [46]. 

In this work, we first performed a set of simulations to determine the most probable path 

for the exfoliation of g-C3N4. For this purpose, three different RCs were explored with DMF being 

the solvent. RC I was defined as the distance between the COMs of two sheets along the normal 

direction (Figure 3.2a); PMF associated with this RC corresponded to the process of separating 

the two sheets in the normal direction. RC II was the distance between the edge atoms of two 

sheets in the normal direction (Figure 3.2b), resembling the peeling of the top sheet from the 

bottom one. Finally, RC III was the distance between the COMs of two sheets in the lateral 

direction (Figure 3.2c), to capture the process of sliding the top layer over the bottom one. RC I 

ranged from 0.3 to 1.3 nm, beyond which the two sheets no longer interacted with each other, 

while RC II and III ranged from 0.3 to 4.0 nm. For each chosen RC, US simulations were 

performed by applying a harmonic biasing potential (force constant 5000 kJ/mol.nm2) to restrain 

the RC at each US window. To complement the PMF calculations, a pulling simulation was carried 

out along each of the three RCs in DMF. In these simulations, the bottom sheet was fixed while 

the center of the mass (COM) of the top sheet (RC I and RC III) or edge atom (RC II) of the top 

sheet was attached to a spring of stiffness 1000 kJ/mol.nm2 and pulled away at a speed of 0.005 

nm/ps. PMFs and forces obtained from the three RCs were compared to determine the one with 

the lowest resistance to separation, i.e., the most probable path for exfoliation. Then this RC was 

employed to calculate the PMFs for all the other solvents. 
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Figure 3.2. Three RCs explored for the separation of two g-C3N4 nanosheets: (a) the distance 

between the COMs of two sheets along the normal direction, (b) the distance between the edge 

atoms of two sheets in the normal direction, and (c) the distance between the COMs of two 

nanosheets in the lateral direction. For better illustration, the two sheets are colored differently. 

The COMs or edge atoms are shown with blue and red circles respectively for the two sheets. (d) 

PMF curves for separating two stacked g-C3N4 nanosheets in DMF along RC II and RC III. Insets 

show representative snapshots at different stages of the separation. 

 

In addition to the PMF calculations, a set of simulations were performed to determine the 

solvation free energy (SFE, denoted by ΔGsol) of a single g-C3N4 sheet in different solvents. 

Bennett Acceptance Ratio (BAR) method [49] was used to gradually couple a sheet to its 

equilibrium solvation environment and the average <dH(λ)/dλ> was evaluated, where H is the 

Hamiltonian and λ is the coupling parameter. Twenty-one states were defined in this procedure 

where the first state corresponded to no interaction (λ = 0) between the g-C3N4 sheet and the 

solvent. In the next 10 states the vdW interaction between the g-C3N4 sheet and the solvent was 

increased with the step of Δλ = 0.1. For the last 10 states the electrostatic interaction was turned 

on by the step of Δλ = 0.1 reaching the fully interacting state between the sheet and solvent. 

Consequently, the ΔGsol between λ = 0 and λ = 1 can be calculated from: 
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 ∆𝐺𝑠𝑜𝑙 =  ∫ 〈
𝑑𝐻

𝑑𝜆
〉𝜆 𝑑𝜆

𝜆=1

𝜆=0

 
(3.2) 

 

Finally, the fully interacting systems from the end of the ΔGsol simulations were further 

equilibrated for 60 ns. Afterward, the g-C3N4 sheet was removed from each system, the solvent 

was re-equilibrated for 60 ns and the g-C3N4 sheet was equilibrated in vacuum for 10 ns. This set 

of simulations allowed us to calculate the solvation enthalpy (ΔHsol) from 

 ∆𝐻𝑠𝑜𝑙 =  𝐻𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐻𝑠𝑜𝑙𝑣𝑒𝑛𝑡 −  𝐻𝑠𝑜𝑙𝑢𝑡𝑒 (3.3) 

 

where Hsolution is the enthalpy of the solution after 60 ns equilibration, Hsolvent is the enthalpy of the 

solvent alone after 60 ns re-equilibration, and Hsolute is the enthalpy of the sheet alone after 10 ns 

equilibration in vacuum. Each enthalpy term was calculated based on H = E + pV where E is the 

internal energy, p is pressure and V is volume. The solvation entropy was then estimated by 

 𝑇∆𝑆𝑠𝑜𝑙 =  ∆𝐻𝑠𝑜𝑙 − ∆𝐺𝑠𝑜𝑙 
(3.4) 

 

where T = 300 K is the simulation temperature. A summary of the simulated systems is given in 

Table 3.1. These simulations generated trajectories with a total length of 5 μs. 
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Table 3.1. Summary of the simulated systems. 

Simulation type # g-C3N4 

sheets 

Solvent Size of the box 

(nm*nm*nm) 

# simulation 

windows 

Time of production 

run in each simulation 

window (ns) 

Pulling 

 

2 DMF 9*10*9 1 1 

PMF with RC I 

 

2 DMF 8*8*10 40 10 

PMF with RC II 

 

2 DMF 8*8*10 30 10 

PMF with RC III 2 Water, MET, BD, 

ACE, FRM, DMF, 

CB, THF, NMP 

9*10*9 40 10 

ΔGsol calculation 1 Water, MET, BD, 

ACE, FRM, DMF, 

CB, THF, NMP 

7*7*4 21 1 

ΔHsol and ΔSsol 

calculation 

0 and 1 Water, MET, BD, 

ACE, FRM, DMF, 

CB, THF, NMP 

5.8*5.8*5.8 1 60 

 

3.2.3. Simulation details 

All simulations were performed using the GROMACS package [50] (version 2021.2). Prior 

to each production run, energy minimization of the system was carried out using a steepest descent 

algorithm. The system was then equilibrated in the NPT ensemble for 200 ps with a 2 fs timestep. 

The temperature and pressure were controlled at 300 K and 1 bar by the Berendsen thermostat and 

barostat, with a coupling time constant of 0.2 ps and 5 ps respectively. A production run was 

subsequently performed with a 2 fs timestep, where the bond lengths involving a hydrogen atom 

were constrained using the LINCS algorithm. A temperature of 300 K was maintained by means 

of a velocity-rescale algorithm with a time constant of 0.1 ps. An isotropic pressure of 1 bar was 

set by using a C-rescale scheme with a coupling constant of 1.0 ps. Periodic boundary condition 

was employed in all directions, and long-range electrostatic interaction was evaluated using the 

particle-mesh Ewald summation. The cutoff radius for the nonbonded interactions was set to 1.2 

nm. The length of each production simulation is given in Table 3.1. 

3.3. Results and discussion 

3.3.1. Selection of reaction coordinate 

To determine the most probable path for exfoliation, pulling simulations for two stacked 

g-C3N4 sheets in DMF were first performed for all three RCs. The force-displacement curves are 
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shown in Appendix A, Section A3. Along RC I a large force (~ 4300 kJ/mol·nm) is required, which 

occurs at around 0.45 nm, in order to overcome the π-π interaction [51] between the two stacked 

sheets. After this peak, the force decreases rapidly because of the diminishing interactions. For RC 

II and III, the force is steady and below ~1000 kJ/mol·nm. The results suggest that exfoliation via 

RC I is significantly more difficult compared with RC II and III as demonstrated by the more than 

4-fold larger force required at the initial stage. Subsequently, we focused on RC II and III and 

generated the associated PMF curves in Figure 3.2d. Here the dimension of the PMF is energy per 

unit area (normalization done using the area of one nanosheet), and the PMF value of the first data 

point was set to zero in both curves. At the early stage (RC < 2.5 nm), the two PMFs are 

comparable. However, as the RC further increases, the two curves show the sign of separating 

from each other. When RC > 3.0 nm, the curve for RC III has leveled off while the one for RC II 

curve is still climbing. The difference between the two curves can be understood by recognizing 

that while the separation of the two nanosheets, and hence the loss of interaction between them, is 

gradual at the beginning for both RCs, in the final stage detaching the top sheet from the bottom 

one along RC II (inset of Figure 3.2d) requires a much larger amount of energy. These results 

suggest that among the three RCs, RC III requires the least amount of energy to completely 

separate two stacked g-C3N4 sheets, and therefore exfoliation in the experiments is more probable 

to occur along this RC. The same observation is also confirmed numerically in other solvents (CB 

and NMP, see Appendix A, section A3), and for other 2D materials such as BN [46]. For this 

reason, PMF calculations were performed along RC III for all 9 solvents and compared to assess 

their ability to disperse g-C3N4 sheets.  

3.3.2. PMF and free energy of exfoliation 

The PMF curve in DMF associated with RC III (blue curve in Figure 3.2d) is examined 

with details here. As the COM distance (D) between the two sheets increases, the PMF shows an 

initial decreasing trend, characteristic of a repulsive interaction between them. The curve reaches 

the global minimum at D = 0.45 nm where the average force between the two sheets is zero. At 

the global minimum, the sheets are stacked with a lateral shift of 0.28 nm (inset of Figure 3.2d) 

compared to the initial configuration where they are in complete overlap. This configuration has 

been predicted for both g-C3N4 [52] and graphene like C3N [53] bilayers by DFT calculations and 

corresponds to displaced π–π stacking. After the global minimum, the PMF exhibits an overall 

increasing trend, which represents attraction between the two sheets. There are small fluctuations 
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in the curve, and the local minima and maxima are caused by the triangle patterns in the g-C3N4 

structure. Specifically, the heptazine core units from the two sheets prefer to be overlapping with 

each other, and the same applies to the void regions. Occurrence of such a configuration tends to 

result in a local minimum in the PMF. For example, the inset of Figure 3.2d at D = 1.15 nm shows 

the structure of two nanosheets that have ten of their heptazine core units overlapped. On the 

contrary, at D = 1.25 nm (inset of Figure 3.2d), the heptazine core units are not aligned, leading to 

a local maximum in the PMF curve. The PMF curve reaches a plateau around D = 3.50 nm, 

indicating negligible interaction between the sheets beyond this COM separation. The difference 

in PMF value between the global minimum and the plateau represents the free energy required to 

separate two stacked sheets, via the mode of sliding, from their equilibrium distance until they are 

no longer interacting. This difference is therefore defined as the free energy of exfoliation (ΔGexf, 

positive throughout this work).  

The PMF curves for all 9 simulated solvents are presented in Figure 3.3a, with ΔGexf 

marked for DMF as an example. Validity of the ΔGexf calculation is demonstrated by good overlaps 

between the US histograms as well as reproducibility confirmed by five independent set of US 

simulations performed for DMF (Appendix A, Section A3). Quantitatively, ΔGexf measures the 

level of difficulty to exfoliate one sheet from another; lower ΔGexf is preferred and exfoliation is 

expected to be easier with less external efforts (e.g. ultrasonication time and intensity) required. 

The ranking of ΔGexf follows: water > MET > FRM > ACE > BD > THF > CB > DMF > NMP, 

which suggests that exfoliation of g-C3N4
 is easiest in DMF and NMP, and hardest in water. 
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Figure 3.3. (a) PMF curves for separating two g-C3N4 nanosheets in all solvents investigated in 

this study. (b) ΔGexf vs. ΔGsol for solvents from the three groups. Error bars in ΔGsol are obtained 

by splitting the data into 5 blocks, calculating the free energy difference over each block, and 

estimating the error from the average variance over the blocks [54]. 

 

3.3.3. Mechanisms governing the free energy of exfoliation  

While the PMF calculations have allowed us to evaluate and rank the free energy of 

exfoliation, mechanisms behind such ranking require more investigation. Fundamentally, stronger 

attractive interaction between g-C3N4 and the solvent should lead to better solubility and a lower 

value of ΔGexf, and this was demonstrated for graphene oxide nanosheets [55]. Quantitatively, the 

solubility can be evaluated by calculating the SFE (ΔGsol) of a single sheet, which is the energy 

required to create a unit area of contact between the g-C3N4 sheet and the solvent. ΔGsol is negative 

for all solvents, indicating attractive interaction between the sheet and the solvent (for the ease of 

discussion, in this thesis the solvation free energy is denoted by ΔGsol and refers to its absolute 

value). ΔGexf is plotted against ΔGsol in Figure 3.3b for all three groups of the solvents. The 

standard deviation in ΔGsol is small; hence hereafter we will refer only to the average values. In 

general, a negative correlation between ΔGexf and ΔGsol is observed within each group, consistent 

with our expectation that better solubility would lead to easier exfoliation. The three groups are 
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examined in more detail to identify how the structural features of the solvent molecules affect 

ΔGsol, and hence ΔGexf. 

3.3.3.1. Group 1 (solvents with hydroxyl group): 

In this group the ranking for ΔGsol follows BD > MET > water which suggests BD as a 

better liquid for the exfoliation of g-C3N4. Interestingly, the size and molecular weight (MW) of 

the solvents in this group follow the same trend, BD (90.1) > MET (32.0) > water (18.0). A few 

analyses were done to further investigate the relationship between ΔGsol and structural features of 

the solvent molecules. Because all three solvents in this group contain hydroxyl groups capable of 

forming hydrogen bonds (H-bonds), an analysis was first performed to calculate the number of H-

bonds dissociated and generated during the solvation. The results are provided in Appendix A, 

Section A4, which show no direct correlation with ΔGsol. In fact, larger size of MET and BD 

molecules has limited their capability to orient themselves in order to form close contact with the 

interior of the sheet. The solvent-sheet interaction is therefore suspected to be more impacted by 

non-specific electrostatic and vdW forces. In addition, entropy may play an important role in 

solvation [56]. In the following, ΔGsol is separated into its enthalpic and entropic components to 

gain more insights into the governing contribution. 

ΔGsol and its partition into the enthalpic (ΔHsol) and entropic (TΔSsol) terms are given in 

Appendix A, Section A5. Both ΔHsol and TΔSsol are negative, suggesting that solvation of the 

nanosheet in the three solvents is favored by enthalpy while opposed entropically. In addition, the 

magnitude of ΔHsol is more than double that of TΔSsol, and the magnitudes of ΔHsol and ΔGsol 

follow the same order of BD > MET > water. The solvation of the nanosheet is therefore an 

enthalpy-driven process, larger reduction in enthalpy indicates higher sheet-solvent affinity, and 

leads to more favorable exfoliation [44,46,57,58].  

Solvation of a g-C3N4 nanosheet involves multiple steps with different energy implications. 

First, a cavity must be created in the solvent to accommodate the sheet. This step is both 

entropically (ΔS < 0) and enthalpically (ΔH > 0) unfavorable, as it increases the order of the solvent 

and reduces solvent-solvent interaction. Stronger interaction among solvent molecules leads to a 

greater enthalpic penalty for cavity formation. Next, the sheet enters the cavity, and the resulting 

solvent-sheet interaction is enthalpically favorable (ΔH < 0). Finally, as the solute is mixed into 

the solvent, there is an entropy gain (ΔS > 0). Since the solvation of g-C3N4 nanosheet is enthalpy 
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driven, we further calculated the energy changes during these steps. The energy change associated 

with creating a cavity in the solvent, denoted by ΔE1, was estimated from the difference in non-

bonded interactions (vdW and electrostatic) among the solvent molecules from two 60 ns 

simulations (last set in Table 3.1): one with the presence of a sheet and one without the sheet. 

Similarly, the energy change due to the insertion of a sheet into a pre-existing cavity, denoted by 

ΔE2, was estimated from the non-bonded interactions between the solvent and the sheet after 60 

ns equilibration of the sheet in the solvent. The total energy change in the solvation process then 

can be estimated as 

 ∆𝐸 =  ∆𝐸1 +  ∆𝐸2 (3.5) 

 

Figure 3.4a shows ΔE1, ΔE2, ΔE along with ΔHsol from Appendix A, Section A5. Statistics 

are based on the last 30 ns of the two 60 ns simulations described above. ΔE and ΔHsol only differ 

by a small amount suggesting that non-bonded interactions are the main contribution to the 

enthalpy of solvation. From Figure 3.4a, the penalty for disrupting solvent-solvent interaction 

(ΔE1, positive) follows order of water > BD > MET. Meanwhile, attractive solvent-sheet 

interaction (ΔE2, negative) follows water > MET > BD. Solvating the nanosheet in water involves 

both higher penalty for disrupting solvent-solvent interaction and weaker solvent-sheet attraction, 

consistent with its smallest ΔGsol and highest ΔGexf. While ΔE1 is higher in BD than in MET, it is 

compensated by the stronger attraction between BD and the sheet, making BD a better medium for 

g-C3N4 solvation. 
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Figure 3.4. (a) For group 1 solvent: energy changes in the solvation process associated with cavity 

generation (ΔE1) and sheet insertion (ΔE2). The sum of the two terms (ΔE = ΔE1 + ΔE2) along with 

ΔHsol are also shown. (b) For group 1 and 2 solvents: rp (location of the first peak in the RDF) vs. 

ΔGsol (left axis) and average H-bond lifetime vs. ΔGsol (right axis) for group 1 and 2 solvents. Inset 

shows the partial atomic charges (PAC) of the solvent oxygen. (c) For group 3 solvents: probability 

distribution of the angle between the normal of the sheet and the normal of the aromatic rings of 

the solvent in the first solvation layer. 

 

Now that it is shown that the exfoliation process is enthalpy-driven and influenced by both 

solvent-solvent and solvent-sheet interactions, the question remains as to why ΔHsol follows the 

order of BD > MET > water, exactly the same as the molecular weight of the solvent molecules? 
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To investigate this, the solvent molecules in the first solvation layer of the sheet were identified at 

30 ns of the 60 ns simulation, and tracked for the next nanosecond. Here the first solvation layer 

is defined as solvent molecules whose COM is within 0.5 nm of the sheet, based on the solvent 

distribution around the sheet (Appendix A, Section A4). Simulation snapshots in Appendix A 

Section A4 shows that as the solvent size increases, the molecules in the first solvation layer tend 

to adhere more stably to the sheets. For instance, 80% of the initially adhering BD molecules 

remain in the first solvation layer while the corresponding number is only 5% for water. Similar 

observations are made in the US simulations for two nanosheets (Appendix A, Section A4), where 

after the first 1 ns 82%, 17%, and 5% of the solvent molecules remain in the first solvation layer, 

respectively for BD, MET, and water. Water behaves much more dynamically, and there are 

frequent exchanges between water molecules on the interface and those in the bulk. In contrast, 

the larger MET and especially BD molecules can maintain their positions around and even between 

the sheets (Appendix A, Section A4). Their lower mobility near the sheet and less exchange with 

the bulk are consistent with the higher value of |ΔHsol|, suggesting more stably established vdW 

and electrostatic interaction between the sheet and the solvent.  

3.3.3.2. Group 2 (solvents with carbonyl group) 

Similar to group 1, solvent molecules in group 2 are also linear molecules with polar groups 

(albeit different) capable of forming H-bonds. It is therefore not surprising that the result of ΔGexf 

and ΔGsol for these two groups show similar behaviors, and data in Figure 3.3b for all solvents in 

these two groups form a single class that can be clearly distinguished from group 3. Analysis in 

Appendix A Section A5 shows that solvation of the g-C3N4 nanosheet in group 2 solvents is also 

driven by enthalpy. The TΔSsol (< 0) term is in the same range for all three solvents; ΔHsol (< 0) 

for ACE and FRM is close, while the magnitude of ΔHsol is much larger for DMF. Consequently, 

DMF also has the highest ΔGsol and lowest ΔGexf. Considering data from groups 1 and 2 together 

in Figure 3.3, DMF stands out as the solvent with the best potential to exfoliate g-C3N4 nanosheets. 

Unlike group 1, the ranking of ΔGsol in group 2 does not follow the order of the MW of the 

solvent molecules. In particular, FRM has a smaller MW (45.0) than ACE (58.1), yet the two 

solvents have similar ΔGsol. Considering groups 1 and 2 together, BD has larger MW than DMF, 

yet its ΔGsol is lower. Therefore, it appears that when the solvent molecules possess a carbonyl 

group, their interaction with the sheet is not directly correlated with their size. The radial 
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distribution function (RDF, g(r)) of the solvent oxygen around N atoms of the sheet is shown in 

Appendix A Section A6 for all solvents in groups 1 and 2, based on the last 30 ns of the 60 ns 

simulations. The location of the first peak (rp) in each curve corresponds to the accumulation of 

the solvent oxygen near the N atoms of the sheet in the first hydration layer. A negative correlation 

is observed between rp and ΔGsol (Figure 3.4b). In other words, solvents that can orient their oxygen 

closer to the surface of the sheet tend to have a higher ΔGsol. Among the solvents from groups 1 

and 2, DMF has the lowest value of rp. One possible reason could be the partial atomic charge of 

the solvent oxygen, which is shown in inset of Figure 3.4b. The charge is most negative for water 

oxygen and least negative for DMF. Since the nitrogen atoms on the g-C3N4 nanosheet also carry 

a negative partial charge (-0.35), less negative charge of the solvent oxygen can alleviate their 

local repulsion with the nitrogen, allowing other attractive interactions (vdW, electrostatic force 

between atoms with opposing partial atomic charges) to be more stably established.  

In Section 3.3.3.1, it is discussed that ΔGsol does not have a direct correlation with the 

number of H-bonds broken and formed during the solvation; rather it is related to the mobility of 

the solvent molecules around the sheet. This motivates us to investigate the persistence of the 

solvent around the sheet by calculating the lifetime of the H-bonds between them, through the 

following autocorrelation function [59]: 

 𝐶(𝜏) = < 𝑠𝑖(𝑡) 𝑠𝑖(𝑡 + 𝜏) > (3.6) 

 

Here 𝑠𝑖(𝑡) indicates whether H-bond 𝑖 is present (𝑠𝑖 = 1) or absent (𝑠𝑖 = 0) at time 𝑡, and < • > 

performs an average over all time t and all H-bonds 𝑖 between the solvent and the sheet. The 

integral ∫ 𝐶(𝜏)𝑑𝜏
∞

0
 gives a rough estimate of the average H-bond lifetime, which is shown in 

Figure 3.4b for group 1 and 2 solvents. Interestingly, the average H-bond lifetime follows an 

almost linear relationship with ΔGsol. Consistent with the visual observations in Appendix A 

Section A4 this result confirms that higher magnitude of ΔGsol is associated with less mobility and 

more stable adherence of the solvent molecules around the sheet.  

3.3.3.3. Group 3 (solvents with aromatic structures): 

Group 3 solvents have a distinct structure compared with group 1 and 2 solvents, containing 

a ring-like, instead of linear, structure. Their ΔGexf vs. ΔGsol data are separated from the other two 
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groups in Figure 3.3b, and within similar range of ΔGsol this group tends to have lower ΔGexf. 

Energetics analysis in Appendix A Section A5 shows that the solvation of the g-C3N4 nanosheet 

in group 3 solvent is still enthalpy-driven. Since these solvents contain aromatic structures, it is of 

interest to study potential π-π interactions between solvent molecules and the sheet. Previous DFT 

simulations investigated the adsorption of ionic liquid on BN nanosheets [60], and reported the 

presence of π−π, CH-π, and anion−π interactions. π-π interactions between two aromatic rings are 

typically manifested by a small separation (less than 5.0 Å [61]) between them [62]. Appendix A 

Section A6 provides the RDFs of the center of the aromatic ring around the carbon and nitrogen 

atoms on the sheet (data based on last 30 ns of the 60 ns simulations from the last set of simulations 

in Table 3.1). The curves corresponding to different solvents almost overlap, demonstrating similar 

distribution of the aromatic ring around the sheet. The location of the first RDF peak is 4.2 Å for 

carbon and 3.8 Å for nitrogen, suggesting that the aromatic centers are positioned slightly closer 

to the nitrogen atoms. To measure the relative orientation of the solvent aromatic rings with respect 

to the sheet, Figure 3.4c shows the probability distribution of the angle between the normal of the 

aromatic rings in the solvents and the normal of the solvated sheet. Here the solvent molecules 

considered are in the first solvation layer and the probability distribution is generated based on last 

30 ns of the 60 ns simulation. For all three solvents most of the molecules have an angle > 80°, 

corresponding to nearly perpendicular orientation relative to the sheets. NMP, however, has a 

higher probability of acquiring smaller angles (< 10°) than the other two solvents. This suggests 

that while all solvents experience T-shaped π-π interactions [63] with the sheet, NMP benefits 

from having more offset-stacked (parallel-displaced) [64]. This conformation in turn promotes the 

solvent-sheet interactions and makes NMP a better medium for LPE (highest ΔGsol and lowest 

ΔGexf in this group). 

3.3.4. Discussion 

3.3.4.1. Mobility of solvent molecules around nanosheet 

In sections 3.3.3.1 and 3.3.3.2, an interesting correlation is observed between ΔGsol and the 

mobility of the linear solvent molecules around the sheet. Here the analysis is extended to solvents 

in all three groups. For each 60 ns simulation where a single nanosheet was equilibrated in a 

solvent, the solvent molecules in the first solvation layer at t = 25 ns were tracked till the end of 

the simulation. The fraction of these molecules that departed from the first solvation layer (M) was 
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calculated as a function of time and presented in Appendix A Section A7. M starts from zero and 

increases with time, reaching a plateau at t = 50 ns for all solvents. The average from the last 10 

ns (50 to 60 ns), denoted by Mave, is shown in Figure 3.5a by plotting ln(𝑀𝑎𝑣𝑒) against ΔGsol/kT, 

where k is the Boltzmann constant. All data fall near a straight line, suggesting the following 

relationship between Mave and ΔGsol: 

 𝑀𝑎𝑣𝑒 = A e
−𝑎Δ𝐺𝑠𝑜𝑙

𝑘𝑇  
(3.7) 

 

where A and a > 0 are constants. This is a relationship that resembles the Arrhenius equation [65], 

with ΔGsol serving the role of an activation energy that is required to drive the molecules to depart 

from the first solvation layer and diffuse into the bulk. 

 

Figure 3.5. (a) ln(𝑀𝑎𝑣𝑒) versus 
∆𝐺𝑠𝑜𝑙

𝑘𝑇
 for all the solvents studied in this work. (b) Comparison of 

ΔHeq.(3.1) and ΔGexf from this study. 

 

3.3.4.2. Implications for LPE 

Previous studies [29] have reported that the concentration of the as-obtained g-C3N4 

nanosheets in suspension was extremely low (less than 3 mg/mL). Fabricating graphene-like g-

C3N4 with a single atomic layer in a relatively high concentration remains a strenuous task since 

the g-C3N4 nanosheets tend to aggregate due to their high surface energy [66]. Hence, a key goal 
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of the studies on LPE is to find the most suitable dispersant–solvent system that can generate 

uniform and stable dispersion of g-C3N4 sheets with high concentration. Smaller values of ΔGexf 

correspond to less amount of energy required to separate aggregated sheets, as well as less 

tendency for the sheets to aggregate [57]. It is therefore expected that the concentration of dispersed 

g-C3N4 sheets can reach higher values in the solvents with lower ΔGexf, which has been verified 

experimentally for graphene solvated in ionic solvents [67]. Our results showed that NMP, DMF, 

CB, and THF have the lowest ΔGexf, therefore they are predicted to be better media for LPE. This 

is in line with the experiments by Yang et al. where g-C3N4 nanosheets were found to be more 

stably dispersed in NMP and IPA among five solvents (NMP, IPA, water, ACE, and ethanol) [28]. 

It should be noted that NMP has a high boiling point and is challenging to be removed in order to 

obtain exfoliated g-C3N4 nanosheets. The evaporation process is slow and aggregation of 

exfoliated nanosheets may occur during the process [28]. This provides quantitative and 

molecular-level support for why DMF is widely used as an effective exfoliation medium in 

experimental studies [28,68–72].  

In drastic contrast to NMP and DMF, water has a very large ΔGexf, 52% higher than the 

second poorest solvent (MET) in this study. ΔGsol of water is also the lowest, about 23% smaller 

than the next in line (MET). This suggests low affinity of water molecules to g-C3N4 sheets, which 

is manifested through its lowest average H-bond lifetime, furthest distribution from the sheet 

(largest rp value), and highest molecular mobility in the adsorption layer. Based on the data, water 

is not a suitable candidate for the LPE of g-C3N4. The predicted poor performance of water is in 

line with experimental studies where a relatively low concentration of dispersed g-C3N4 sheets was 

found in water [29,31]. Recognizing the advantages of water being a solvent (e.g., safe, abundant, 

easily accessible), surface modifications of g-C3N4 sheets may be considered to enhance their 

interactions with water and increase their aqueous dispersibility. 

Sresht et al. investigated the LPE of phosphorene sheets using MD simulations [44]. It was 

discussed that the performance of a solvent depended on its molecular shape, and solvents with a 

planar structure, such as NMP and dimethyl sulfoxide, behave like molecular wedges that can 

intercalate more efficiently [44]. In agreement with this, our data show that for similar ΔGsol, group 

3 solvents with planar structures tend to have smaller ΔGexf. More interestingly, our results have 

repeatedly shown a correlation between ΔGexf and the mobility of solvent molecules around the 
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nanosheet. For example, for DMF, NMP, and BD, up to 30% of the solvents in the first solvation 

layer lingered near the sheet even after 35 ns (Appendix A Section A7). Those solvent molecules 

essentially formed an adsorption layer on the nanosheet, which could shield the sheet-sheet 

interactions, potentially hindering the aggregation and allowing stable dispersion of individual 

sheets. Based on our observations, several suggestions can be made that might promote the 

stability of the adsorption layer. Firstly, highly negative partial atomic charges (typically related 

to high polarity) should be avoided, so as to reduce the repulsion with the electronegative nitrogen 

on the sheet. Secondly, solvents with larger size (higher MW) present an advantage. Finally, 

solvents with an aromatic structure are preferred, especially those that are able to form more 

parallel π-π stacked conformations. 

Energetics analysis in this work has demonstrated enthalpy as the main driving force in the 

solvation of g-C3N4. While the dominance of enthalpy has been reported in the literature for the 

solvation of long-chain polymers [73,74], to our knowledge this is the first time it is reported for 

2D materials. Coleman et al. [22] proposed a first-order estimation, eq. (3.1), for the enthalpy of 

mixing of graphene as an approximation for the free energy of exfoliation. To examine the validity 

of this approximation for g-C3N4, we used ∅ =
𝑉𝑠ℎ𝑒𝑒𝑡

𝑉𝑚𝑖𝑥
  to rewrite eq. (3.1) into  

ΔHeq(3.1) ≡ 
∆𝐻𝑚𝑖𝑥 𝑇𝑠ℎ𝑒𝑒𝑡

𝑉𝑠ℎ𝑒𝑒𝑡
= 2 (√𝐸𝑠𝑢𝑟

𝑠ℎ𝑒𝑒𝑡 − √𝐸𝑠𝑢𝑟
𝑠𝑜𝑙𝑣𝑒𝑛𝑡)

2

 

which represents the enthalpy of mixing per unit area of the sheet. ΔHeq. (3.1) was calculated using 

the surface energy values from Appendix A Tables A2 and A3, respectively for 𝐸𝑠𝑢𝑟
𝑠ℎ𝑒𝑒𝑡 and 

𝐸𝑠𝑢𝑟
𝑠𝑜𝑙𝑣𝑒𝑛𝑡, and compared with ΔGexf from our work (Figure 3.5b). For all of the solvents, ΔHeq.(2.1) 

underestimates ΔGexf and the discrepancy is particularly large for solvents with high surface 

tension (such as water and FRM). The ranking of ΔHeq.(2.1) follows: ACE > THF > MET > CB > 

DMF > NMP > BD > FRM > water. If ΔHeq.(2.1) were to be used to select the solvent for LPE, then 

water would be chosen as the best solvent among these nine solvents. This is in contradiction with 

our earlier discussion on the performance of water in LPE. Therefore, eq. (3.1) is a poor estimation 

for the free energy of exfoliation for g-C3N4 and should not be used as a selection criterion. 
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3.4. Conclusion 

In this study, MD simulations are performed along with extensive potential of mean force 

(PMF) calculations, to evaluate the free energy of exfoliation of g-C3N4 nanosheets in nine 

common solvents. The solvation free energy of a single g-C3N4 nanosheet is also calculated and 

compared with the free energy of exfoliation of two g-C3N4 nanosheets in the same solvent. The 

effect of structural properties of solvents on the free energy cost of the exfoliation process is 

analyzed. Our results show that similar to other 2D materials such as BN [46] and graphene [47], 

the most probable path for the exfoliation of g-C3N4 nanosheets is in the parallel (shear) direction. 

Based on PMF calculations, the performance of the nine solvents in exfoliating or dispersing g-

C3N4 sheets is ranked, with the best solvents being NMP, DMF, CB, and THF. This provides 

quantitative and molecular-level support for why NMP and DMF are widely used as exfoliation 

media in experimental studies [28,68–72]. A high correlation is found between the free energy of 

exfoliation of two sheets and the solvation free energy of a single sheet, with higher magnitude of 

solvation free energy corresponding to lower free energy of exfoliation. Regardless of the 

molecular structure of the solvents, the solvation of g-C3N4 sheet is driven primarily by enthalpy. 

Analysis of the first solvation layer shows that solvents with higher magnitude of solvation free 

energy tend to be less mobile in this layer, and in some cases a stable adsorption layer is formed 

around the sheet. Additionally, our results show that the first-order estimation for the free energy 

of exfoliation proposed by Coleman et al. [22] is insufficient and can lead to large errors especially 

for water.  

To our best knowledge, this is the first atomistic-level study that determines a quantitative 

relationship between solvent properties and the performance of liquid phase exfoliation. Not only 

have the simulations been able to provide explanations for solvent selection in some experiments 

[28,68–72], they have also generated critical insights into the underlying mechanisms which are 

not accessible by experiments. Also, through several novel analyses, we have for the first time 

revealed key factors that govern the efficacy of the solvent.  This has allowed us to propose a 

comprehensive set of principles for the selection and design of effective solvents in liquid phase 

exfoliation of g-C3N4, including less negative partial atomic charges, higher molecular weight and 

the presence of aromatic structures. 
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Several future directions are recognized. First, in the literature there are two main 

molecular structures proposed for g-C3N4 nanosheets: heptazine based and s-triazine based [26]. 

Here, we only considered the former and it is of interest to investigate the latter structure. It is also 

worth studying whether the geometry of the model (e.g., triangle in this work vs. other shapes) 

affects the free energy results. Second, there exist many other solvents with structural features 

different from those studied in this work. Extending the present framework to a large number of 

solvents may allow for a more general model to be established that can predict the free energy of 

exfoliation. Lastly, future work can be conducted to relate the free energy of exfoliation to critical 

concentrations of delaminated g-C3N4 in a solvent that lead to aggregation and precipitation [29]. 
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4. Chapter 4: Predicting Free Energies of 

Exfoliation and Solvation for Graphitic 

Carbon Nitrides Using Machine Learning 
 

4.1. Introduction 

Graphitic carbon nitride, g-C3N4, has garnered significant attention owing to its unique 

properties and broad spectrum of potential applications. Its outstanding chemical stability, metal-

free nature, and visible-light-responsive photocatalytic activity make it a promising material in 

fields such as energy conversion [1], environmental remediation [2], advanced membrane 

fabrication [3], chemical sensing [4], bio-imaging [5], and even in emerging areas like electronics 

and optoelectronics [6,7]. The critical bottleneck on enabling g-C3N4 for their applications is the 

lack of industrial-scale methods to produce high-quality monolayer nanosheets. Many efforts have 

been spent on developing low-cost and large-scale procedures for high-quality g-C3N4 production. 

Compared with other methods, LPE has a relatively high yield and low cost [8–10]. This method 

separates layered g-C3N4 bulk material into monolayered nanosheets in a liquid medium by means 

of an external force such as sonication. For the LPE to be successful, the solvent and externally 

applied force must overcome interlayer interactions such as π-π interaction and hydrogen bonding 

between neighboring sheets.  

It has been widely reported both experimentally and computationally that different solvents 

have different performance in the LPE of 2D materials, due to their distinct physical properties 

and interactions with the nanosheets [11–20]. Two quantities can be used to measure the ability of 

a solvent to exfoliate 2D nanosheets. Free energy of exfoliation, ΔGexf, is defined as the free energy 

required to separate a unit area of two stacked sheets from their equilibrium distance [14,15,21]. 

Lower ΔGexf corresponds to less energy cost during LPE as well as easier stabilization of separated 

nanosheets after LPE. Solvation free energy of a nanosheet is the free energy change by bringing 

a unit area of the nanosheet from the gas phase into the solution. Solvents used for LPE typically 

produce negative ΔGsol, and higher absolute value of this quantity indicates better dispersibility. 

While the solvation free energy has been investigated in drug delivery [22], organic synthesis [23], 
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and solvation of nanoparticles [24], its quantification for 2D materials is much scarcer. In fact, to 

our best knowledge there had been no reports on the value of ΔGexf or ΔGsol for g-C3N4 nanosheets 

until our recent work [21]. 

The evaluation of ΔGexf for g-C3N4 involves the separation of two stacked nanosheets, 

which is experimentally difficult due to the required molecular resolution. Determining ΔGsol from 

experiments are possible but setting up its measurement is complicated and the results are prone 

to noises at ambient conditions [25,26]. MD simulation provides an alternative for capturing the 

molecular details and accurately calculating ΔGexf and ΔGsol, but doing so for every single solvent 

is extensively time and resource consuming. It is therefore of interest to combine MD data with 

other predictive tools to identify the key properties of solvents that govern ΔGexf and ΔGsol, and 

study their quantitative influence.  

ML methods are now widely used to predict material properties such as band gap, enthalpy 

of formation and transition-state properties [27,28]. In the field of 2D materials, Saito et al. applied 

a deep-learning-based method for quality filtering of mechanically exfoliated 2D crystals [29]. 

Siriwardane et al. [30] developed energy-structure correlation using DFT and ML to reveal the 

exfoliation energy of MAB (where M is a transition metal, A is a group 13–16 element, and B is 

boron) phases. Also based on DFT data, Wan et al. [31] used an ML method to accurately predict 

the exfoliation energies for various 2D materials. It should be noted that the data in Siriwardane et 

al. [30] and Wan et al. [31] were from DFT simulations which did not involve any solvents. In this 

work, we utilized MD simulations to create a dataset for ΔGexf and ΔGsol of g-C3N4 in 49 solvents 

(water and 48 organic solvents), totaling 31 μs of simulation time. ML methods are then employed 

to find the correlation between ΔGexf (and ΔGsol) and descriptors that correspond to physical 

properties of the solvent. This procedure allows us to identify the most significant descriptors and 

highlight the guiding principles in the design of solvents for LPE of g-C3N4. By implementing the 

most accurate ML model on a new dataset, several solvents are proposed to be potentially effective 

candidates, including one that that has not been attempted in the LPE of 2D material. In tandem 

with these efforts, experimental dispersibility tests are conducted on four solvents to validate the 

predictions of our ML model. 

In solving the critical bottleneck in the industrial-scale production of high-quality g-C3N4 

nanosheets, our approach enables significant practical advances in this field. It not only streamlines 

the process of solvent selection for LPE, but also provides a foundation for more efficient 
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production of g-C3N4 for a variety of applications, showcasing the potential of machine learning 

in accelerating materials design and production. The experimental results largely corroborate the 

model predictions, thereby demonstrating the practical utility of our approach in guiding solvent 

selection for LPE. 

4.2. Methods 

4.2.1. g-C3N4 and solvents 

g-C3N4 is composed of heptazine or triazine rings as its basic units [32,33]. The heptazine 

moiety is more common and therefore used in this study [34]. In agreement with previous studies 

[35,36], an equilateral triangular sheet was chosen as the molecular model for g-C3N4 nanosheet 

(Figure 4.1). This structure has 21 heptazine units and a side length of 4.5 nm. Nanosheets larger 

than this size were found to not alter the ΔGexf and ΔGsol values [21]. The PolyParGen server [37] 

was used to generate the parameters compatible with the OPLS-AA force field [38], along with 

the Charge Model 5 (with a scaling factor of 1.20) [39] for the PACs. For the liquid phase, it is 

vital to choose solvents that exhibit a wide range of structural and physical properties. In this study, 

solvents were selected based on two main criteria: (i) extensively used in the literature on LPE of 

2D layered materials [40]; and (ii) covering a large range of properties such as density, surface 

tension, heat of vaporization, dielectric constant, compressibility, thermal expansion coefficient, 

and molecular weight. Chemical structures of the 49 solvents used in this work are shown in the 

Appendix B, section B1. For more details on the OPLS-AA force field parameters of the solvents, 

refer to Caleman et al. [41]. 
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Figure 4.1. Molecular structure of the g-C3N4 nanosheet used for the simulations in this study. The 

nanosheet contains 21 units of heptazine rings and is saturated with H atoms on the periphery. 

 

4.2.2. Dataset 

The objective of the ML modeling is to predict ΔGexf in the LPE of g-C3N4 nanosheets as 

well as ΔGsol; these two quantities are considered as the target properties. A significant step in the 

development of a ML model is the design of appropriate descriptors, which in the context of 

computational chemistry are mathematical representations of the chemical information of a 

molecule or properties of a material [42]. In the literature, there are more than 5000 descriptors 

generated from various methods [42]. Among them, we selected a subset that is potentially relevant 

to ΔGexf and ΔGsol, based on insights from our previous work [21]. These descriptors are 

categorized into two types. The first type is at the macroscopic level, defined for the bulk solvent. 

Eight descriptors were considered in this category: heat of vaporization (∆𝐻𝑣𝑎𝑝), heat capacity 

under constant pressure (𝐶𝑝), dielectric constant (𝜀), surface tension (𝛾), isothermal 

compressibility (κ𝑇), thermal expansion coefficient (α𝑃), density (𝜌), and finally ΔGsol when ΔGexf 

is considered as the target property in the ML modeling. 

The second type of descriptors are based on the structure of a solvent molecule. They 

include 𝑀𝑊, count of hydrogen bond donors (DHBC), count of hydrogen bond acceptors (AHBC), 
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heavy atom count (HAC), and aromaticity (Arm). In a solvent molecule, DHBC and AHBC 

respectively count the total number of atoms that are capable of serving as hydrogen donors and 

acceptors, while HAC is the number of non-hydrogen atoms. Arm = 1 for a solvent that contains 

an aromatic hydrocarbon; otherwise Arm = 0. Also, Jämbeck et al. concluded that PACs can 

significantly affect the value of ΔGsol [43]. Therefore, two additional descriptors were introduced: 

the mean absolute value of PAC of heavy (non-hydrogen) atoms, 𝐶𝑚𝑒𝑎𝑛; and the maximum 

absolute value of PAC of heavy atoms, 𝐶𝑚𝑎𝑥. Mathematically, 𝐶𝑚𝑒𝑎𝑛 and 𝐶𝑚𝑎𝑥 are calculated by 

 𝐶𝑚𝑒𝑎𝑛 =  
∑ |𝐶𝑖|

𝑁
𝑖=1

𝑁
 

(4.1) 

 

𝐶𝑚𝑎𝑥 =  max (|𝐶1|, |𝐶2|, … |𝐶𝑁|) (4.2) 

 

where 𝐶𝑖 are the PAC of the ith heavy atoms in a solvent molecule, and N is the total number of 

heavy atoms. Here, the absolute values of PACs were considered because both positive and 

negative PACs in a solvent molecule signify its degree of polarity. In fact, carbon and nitrogen 

atoms in g-C3N4 nanosheets have positive and negative PACs, respectively, and hence can interact 

with partially charged solvent atoms.  

While type 2 descriptors are defined based on the chemical structure of a solvent molecule 

and hence can be directly calculated, determination of type 1 descriptors needs more consideration. 

These macroscopic descriptors can be obtained from both experiments and simulations, and there 

can be some minor difference between the values from the two approaches [41]. Because the 

objective of this work is to find a relationship between the descriptors and target properties, and 

the latter (ΔGexf and ΔGsol) were determined from MD simulations, to be consistent type 1 

descriptors were also evaluated from simulations (details in section 4.2.4.2). It is expected that 

once a well-performed model is established, it can be used to predict ΔGexf and ΔGsol from 

experimental values of the descriptors. 

Our initial dataset consisted of the target properties and both types of descriptors for 49 

solvents (water and 48 organic solvents). Using the Tukey’s method [44], water was identified as 

the only outlier among the 49 solvents (see details in Appendix B, section B2). It was therefore 

eliminated from subsequent ML modeling. 
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4.2.3. ML framework and models 

The ML framework for predicting ΔGexf and ΔGsol is shown in Figure 4.2. MD simulations 

were first performed to prepare the dataset by calculating the target properties (ΔGexf and ΔGsol) 

as well as type 1 descriptors. The second step involved training, tuning, validation and selection 

of ML models. Six different supervised ML algorithms were used, namely extra-trees regressor 

(ETR) [45], random forest regression (RFR) [45], gradient boosting regression (GBR) [46], 

AdaBoost regressor (ABR) [47], Bayesian ridge regression (BRR) [48], and linear regression (LR). 

These algorithms were chosen based on an initial screening of 50 ML algorithms, which identified 

ETR, RFR, GBR and ABR as the best-performing nonlinear algorithms as well as BRR and LR as 

the best-performing linear algorithms. A brief description of these models is given in Chapter 2, 

section 2.5. Each ML method has hyper-parameters that must be specified in order to customize 

the model to the dataset. In addition to general heuristics or rules of thumb, a better approach for 

configuring the hyper-parameters is to objectively test different hyper-parameter values and 

determine a subset that results in best model performance on a given dataset. Such hyper-parameter 

optimization or tuning (called “grid search”) was employed in this work, by defining a grid of 

hyper-parameter values as the search space and evaluating the model performance at every grid 

point. The entire dataset was used as training data for hyper-parameter tuning. 

After hyper-parameter tuning, each ML model was validated with 10-fold cross validation 

(CV). The entire dataset was randomly divided into 10 subsets or folds, with 9 used for training 

and 1 for validation. The process was repeated 10 times by alternating the validation fold. This 

allows the model to be evaluated using the full dataset via resampling, while maximizing the total 

number of points used for testing (beneficial for reducing overfitting) [49]. Two indices were used 

to gauge the performance of the ML models: squared correlation coefficient (R2 score) and root 

mean square error (RMSE). 

The best performing model was adopted for subsequent descriptor selection. Several 

methods can be applied to reduce the number of descriptors and select the ones that have strongest 

correlation with the target properties, such as forward selection [50], backward elimination [50], 

and all subset model (ASM) [51]. If the number of data and descriptors is not very large (as in our 

case), it is appropriate to use ASM which generates all possible combinations of descriptors (from 

a single descriptor to the combination of all descriptors). While guaranteeing that the best subset 

of descriptors is found, ASM can be very demanding computationally. For example, for n 
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descriptors 2n-1 combinations need to be tested. This means for the prediction of ΔGexf (with 15 

descriptors) there are 16384 possible subsets. To make the computation more realistic, an upper 

bound (= 6 in this study) was specified for the number of descriptors in the subsets, a strategy often 

used in the literature [52].  

After descriptor selection was completed, all ML models were trained again with the 

reduced number of descriptors and 10-fold CV. The model with the best performance in predicting 

the target properties was identified. This model was finalized by fine tuning of its parameters using 

67% of the total dataset for training and the remaining 33% for testing. This final model was then 

used to predict ΔGexf for more than 100 solvents that did not exist in our dataset. The ML modeling 

was conducted using the open-source code Scikit-learn [53] package in the Python 3.7 

environment. 

 

Figure 4.2. ML framework employed in this work. The flowchart outlines the systematic approach 

taken for dataset preparation, model training and validation, descriptor selection to reduce 

overfitting, and model finalization. 

 

4.2.4. MD details 

MD simulations performed in this work are summarized in Table 4.1.  

4.2.4.1. Calculation of target properties 

ΔGexf was evaluated by calculating the PMF as two initially stacked nanosheets were 

separated along a defined reaction coordinate. Based on our previous work [21], the most probably 
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path for LPE of g-C3N4 is via “shearing”, i.e., as one sheet slides over the other while maintaining 

a parallel configuration. Therefore, the reaction coordinate was chosen to be the distance D 

between the COMs of the two nanosheets and varied (from 0.3 nm to 4.0 nm) by moving one 

nanosheet laterally. A presentation of the reaction coordinate is shown in the first row of Table 4.1 

with black arrows. Umbrella sampling [54] simulations were performed and the WHAM was used 

to calculate the PMF [55]. Specifically, for each solvent a total of 50 US windows were used and 

for each window, a harmonic biasing potential (with force constant 5000 kJ/mol⋅nm2) was applied 

to restrain the reaction coordinate. The PMF was set to zero at the smallest value of the reaction 

coordinate. As an example, the histograms obtained from US simulations in chloroform and the 

associated PMF curve are shown in Figure 4.3a and b, respectively. The PMF curve exhibits a 

global minimum at small D and a plateau when D is sufficiently large. The plateauing of the PMF 

curve indicates diminishing interaction between the two sheets when their lateral separation is 

larger than 4 nm. Within this separation, the interaction between the sheets is attractive, suggesting 

that spontaneous aggregation will occur when the two sheets are close. The difference between the 

minimum and plateau values of the PMF is defined as ΔGexf (see Figure 4.3b). Figure 4.3b shows 

that ΔGexf is lowered by a solvent, compared with the situation where two sheets are separated 

laterally in vacuum. Nevertheless, the attractive interaction shown by the PMF still requires 

external forces (e.g., via sonication or high-shear mixing) to disperse the sheets during LPE. When 

the concentration of the sheets is below the critical aggregation concentration (CAC) [56], LPE 

can produce a stable dispersion due to the large distance and therefore vanishing attraction between 

the fully dispersed sheets. 

BAR approach [57] was used to calculate ΔGsol of a single nanosheet. Twenty-one states 

were defined, with the first state corresponding to no interaction between the g-C3N4 nanosheet 

and the solvent. The vdW and electrostatic interactions were then gradually turned on to reach the 

final stage where the sheet and the solvent were fully interacting. ΔGsol was calculated based on 

the data from the twenty-one states. Figure 4.3c shows the change in ΔGsol for the process of 

turning on vdW and electrostatic interactions. It is worth noting that although both ΔGsol and ΔGexf 

serve as metrics for evaluating the dispersibility of the nanosheets in a solvent, they are not 

interchangeable. Specifically, ΔGsol represents an intrinsic property characterizing the interaction 

of a single sheet with the solvent. In contrast, ΔGexf in our study is derived from a PMF calculation 

and is contingent upon the chosen reaction coordinate. As evidenced by our previous work [21], 
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the value of ΔGexf can vary depending on the specific reaction coordinate used. To be precise, 

ΔGexf discussed in this study should be understood as the free energy required for exfoliating two 

sheets via shear. 
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Table 4.1. Summary of MD simulations performed in this study. 

Simulation Schematic Setup 

ΔGexf 

calculation 

 

• Two g-C3N4 sheets in solvent 

• US along reaction coordinate shown 

• NPT ensemble, initial box size 

9*10*9 nm3 

• 50 US windows, 10 ns production 

run for each window; simulation 

time for 49 solvents = 24.5 μs 

ΔGsol 

calculation 

 

• One g-C3N4 sheets in solvent 

• BAR method  

• NPT ensemble, initial box size 

7*7*4 nm3 

• 21 simulated windows, 1 ns 

production run for each window;  

simulation time for 49 solvents = 1 

μs 

Liquid phase 

for solvent 

 

• 600 to 4000 solvent molecules  

• NPT ensemble, initial box size 

5*5*5 nm3  

• 10 ns production run; simulation 

time for 49 solvents = 0.5 μs 

Gas phase 

for solvent 

 

• One solvent molecule  

• NVT ensemble, box size: 5*5*5 nm3  

• 100 ns production run; simulation 

time for 49 solvents = 4.9 μs 

Surface 

tension 

calculation 

for solvent 

 

• 600 to 4000 solvent molecules  

• NVT ensemble, box size 5*5*15 nm3  

• 10 ns production run; simulation 

time for 49 solvents = 0.5 μs 

𝐷𝑜𝑆  

 

• 600 to 4000 solvent molecules  

• NVT ensemble, box size 5*5*5 nm3  

• 100 ps production run; simulation 

time for 49 solvents = 0.005 μs 
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Figure 4.3. Illustration of computational methodology and free energy definitions. (a) Histograms 

from US simulations for two g-C3N4 sheets in chloroform. (b) PMF curve and definition of ΔGexf 

for two g-C3N4 sheets in chloroform. Corresponding PMF curve in vacuum is shown as a 

comparison to demonstrate lowering of ΔGexf by chloroform. (c) The change in solvation free 

energy (SFE) as the vdW and electrostatic interactions are turned on, via 21 steps, between a g-

C3N4 sheet and chloroform. The sum of the changes is the total solvation free energy for this 

solvent and its absolute value is denoted by ΔGsol in this work. 

 

4.2.4.2. Calculation of type 1 descriptors 

Four additional simulations were performed for each solvent (Table 4.1) to evaluate type 

1 descriptors related to its bulk properties. Such calculations follow the work of Caleman et al., 
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which has been implemented in GROMACS [58]. For completeness, a brief description of the 

computations is provided below. For each solvent, a 10.0 ns NPT simulation (liquid phase 

simulation in Table 4.1) was performed to calculate the density (𝜌) 

 𝜌 =
𝑀

⟨𝑉⟩
 (4.3) 

 

where 𝑀 is the mass of the system and ⟨𝑉⟩ is the average volume of the simulation box. Static 

dielectric constant (𝜀) was computed based on the fluctuation in the magnitude of dipole 

moment (𝑀𝐷) obtained from the liquid phase simulation [59]: 

 𝜀 = 1 +
4𝜋

3
(

⟨𝑀𝐷
2⟩  − ⟨𝑀𝐷⟩2

⟨𝑉⟩𝑘𝐵𝑇
)  (4.4) 

 

where 𝑘𝐵 is the Boltzmann constant and 𝑇 is the temperature. Thermal expansion coefficient (𝛼𝑃) 

and isothermal compressibility (κ𝑇) were also computed from fluctuations in the liquid phase 

simulation, according to [60] 

 ⟨𝛿𝑉𝛿𝐻⟩ = 𝑘𝐵𝑇2⟨𝑉⟩ 𝛼𝑃 (4.5) 

 

 ⟨𝛿𝑉2⟩ = 𝑘𝐵𝑇⟨𝑉⟩ κ𝑇 (4.6) 

 

where 𝛿𝑉, 𝛿𝐻 and 𝛿𝑉2 are respectively the standard deviation in volume, standard deviation in 

enthalpy and variance in volume. The enthalpy of vaporization (∆𝐻𝑣𝑎𝑝) was evaluated from 

 ∆𝐻𝑣𝑎𝑝 = (⟨𝑈𝑔⟩ +  𝑘𝐵𝑇) − ⟨𝑈𝑙⟩ 
(4.7) 

 

where 𝑈𝑙 is the potential energy of one mole of the solvent in the liquid phase evaluated from the 

liquid phase simulation in Table 4.1, and 𝑈𝑔 is the potential energy of one mole of the solvent in 

the gas phase evaluated from the gas phase simulation in Table 4.1. The gas phase is modeled as 

an ideal gas with no intermolecular interaction, and the molar volume of the liquid phase is 

assumed negligible compared with that of the gas phase. To determine the surface tension (γ), a 

simulation box with two liquid–vacuum interfaces was generated (Table 4.1) and γ was calculated 

from 
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 γ(𝑡) =
𝐿𝑧

2
⟨𝑃𝑧(𝑡) −

𝑃𝑥(𝑡) + 𝑃𝑦(𝑡)

2
⟩  (4.8) 

 

where 𝑃𝑖 is the pressure component in direction 𝑖 and 𝐿𝑧 is the length of the box in z direction 

(refer to Table 4.1 for the xyz coordinates). For the calculation of constant pressure heat capacity 

(𝐶𝑝), the two-phase thermodynamics method introduced by the Goddard group [61] was applied. 

This method treats a liquid as a substance between a solid and an ideal gas, which enables the 

calculation of thermodynamic properties based on the density of states [41] 

 𝐶𝑝 =  𝑘𝐵 ∫ [𝐷𝑜𝑆𝑔𝑎𝑠(𝜐)𝑊𝑔𝑎𝑠(𝜐) + 𝐷𝑜𝑆𝑠𝑜𝑙𝑖𝑑(𝜐)𝑊𝑠𝑜𝑙𝑖𝑑(𝜐)]𝑑𝑣
∞

0

+ 𝑉𝑇
α𝑃

2

κT
 (4.9) 

 

Here 𝐷𝑜𝑆𝑔𝑎𝑠 and 𝐷𝑜𝑆𝑠𝑜𝑙𝑖𝑑 are respectively the density of states in a gas and a solid state, and 

𝑊𝑔𝑎𝑠(𝜐) and 𝑊𝑠𝑜𝑙𝑖𝑑(𝜐) are the corresponding weighting factors [62]. Both 𝐷𝑜𝑆𝑔𝑎𝑠 and 𝐷𝑜𝑆𝑠𝑜𝑙𝑖𝑑 

can be obtained from the 𝐷𝑜𝑆 simulation in Table 4.1, which calculates 𝐷𝑜𝑆 of the liquid as a 

function of frequency 𝜐 from the Fourier transform of the mass-weighted velocity autocorrelation 

function.  

4.2.4.3. Simulation parameters 

MD simulations were carried out using the GROMACS 2021.2 package [58]. Before each 

production run, the steepest descent algorithm was used for energy minimization, followed by a 

short (200 ps) equilibration in the NPT ensemble with a timestep of 2 fs. Berendsen thermostat 

and barostat were used to control the temperature and pressure at 300 K and 1 bar with a coupling 

time constant of 0.2 ps and 5.0 ps respectively. In the production run for all simulations in Table 

4.1 (except 𝐷𝑜𝑆), a timestep of 2 fs was applied and bond lengths involving a hydrogen atom were 

constrained using the LINCS algorithm. A cutoff of 1.2 nm was used for vdW (Lennard-Jones) 

and short-range electrostatic interactions, while the PME algorithm was employed for computing 

long-range electrostatic interactions. Periodic boundary condition was employed in all directions. 

For production runs in NVT ensemble (gas phase simulation and surface tension calculation in 

Table 4.1), the temperature was maintained at 300 K via the velocity-rescale algorithm with a time 

constant of 0.1 ps. For production runs in NPT ensemble (ΔGexf, ΔGsol and liquid phase simulation 

in Table 4.1), the same thermostat was adopted while C-rescale scheme with a coupling constant 
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of 1.0 ps was used to achieve an isotropic pressure of 1 bar. In the production run for the 𝐷𝑜𝑆 

simulations, stricter energy conservation parameters were used, including a neighbor list buffer of 

0.3 nm, combined with a switched Lennard-Jones and short-range electrostatics term (for 1.0–1.1 

nm). See reference [63] for more explanations on the simulation parameters used. 

4.3. Results 

4.3.1. Quality of dataset 

It is of vital importance that our dataset of solvents (with water removed as the outliner) is 

representative of common organic solvents studied in the literature. To examine this, the 

probability distribution of 𝜌, 𝜀 and 𝛾 for the organic solvents in our dataset are compared to an 

organic solvent dataset cured by Caleman et al. [41] which includes 146 common organic solvents 

(Figure 4.4). For both datasets, these properties are calculated from MD simulations, which allows 

for a fair and direct comparison. The good agreement in Figure 4.4 shows that our database is a 

sufficient sample of the population. 

Table 4.2 summarizes the statistics of all descriptors for the solvents in our dataset, 

including their mean, standard deviation (std), minimum (min), the first quartile (Q1), the second 

quartile (Q2), the third quartile (Q3), and maximum (max). More information about the dataset and 

the histograms of all descriptors and target properties can be found in Appendix B, section B1. 

 

 

Figure 4.4. Comparison of solvent properties in this work and those in Caleman et al. [41] 

(containing a larger dataset). The probability distributions are compared for (a) density, (b) 

dielectric constant and (c) surface tension of the organic solvents in both works. The good 

agreement confirms that the organic solvents in our dataset constitute a sufficient sample. 
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Table 4.2. Statistics of descriptors and target properties used for ML modeling. 

 Quantity mean std min 25% 50% 75% max 

Macroscopic 

descriptors 

∆𝐻𝑣𝑎𝑝 (kJ/mol) 46.43 14.83 23.36 34.02 46.68 55.17 89.37 

𝐶𝑝  (J/mol⋅K) 157.59 59.09 70.07 118.89 149.54 176.73 333.23 

𝜀 21.21 16.37 1.01 6.70 15.20 35.22 59.19 

𝛾 (mN/m) 30.32 10.76 12.03 21.46 31.47 37.39 57.20 

κ𝑇  (1/GPa) 0.87 0.51 0.22 0.48 0.63 1.16 2.22 

α𝑃 (10-3/K) 1.25 0.41 0.59 0.98 1.15 1.50 2.12 

𝜌 (g/L) 1058.92 326.03 584.90 863.03 1024.80 1108.07 2475.30 

Molecular 

descriptors 

𝑀𝑊(g/mol) 100.26 43.13 32.04 60.84 92.12 127.55 202.09 

DHBC 0.40 0.71 0 0 0 1 3 

AHBC 1.13 0.91 0 1 1 1 4 

HAC 6.23 2.63 2 4 6 8 13 

Arm 0.38 0.49 0 0 0 1 1 

𝐶𝑚𝑒𝑎𝑛 0.18 0.10 0.04 0.11 0.15 0.2025 0.48 

𝐶𝑚𝑎𝑥 0.49 0.33 0.04 0.22 0.47 0.68 2 

Target 

properties 

ΔGexf (kJ/mol⋅nm2) 57.82 8.72 44.37 50.68 55.72 62.63 78.68 

ΔGsol(kJ/mol⋅nm2) 164.98 19.58 114.57 150.80 165.54 176.27 208.28 

 

4.3.2. Model comparison 

Six different ML methods are applied on the dataset to identify the one that predicts ΔGexf 

and ΔGsol with the highest accuracy. All the descriptors are included in the first round of modeling. 

Figure 4.5a shows the predicted (from ML models) vs. measured (from MD) values of ΔGexf after 

10-fold CV. R2 score and RMSE are also displayed, where ETR produces the highest R2 = 63.14 

and the lowest RMSE = 5.51 kJ/mol⋅nm2, followed by ABR, RFR, GBR, BBR, and LR. The two 

linear models (BRR and LR) have the lowest performance suggesting complex non-linear 

dependence of ΔGexf and ΔGsol on the descriptors. Figure 4.5b exhibits that the best prediction of 

ΔGsol is also achieved by ETR with R2 = 80.79 and RMSE = 8.51 kJ/mol⋅nm2 and the two linear 

models are again inferior in comparison to the nonlinear models.  
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A closer examination of Figure 4.5 is conducted to understanding the origin of discrepancy 

between predicted and measured values. In Figure 4.5a, the predicted ΔGexf is closer to the 

measured value when ΔGexf < 67 kJ/mol⋅nm2 (except GBR which shows better agreement for 

larger ΔGexf). In addition, all the nonlinear models overestimate ΔGexf for two solvents 

(dibromomethane and dichlorofluoromethane) highlighted by orange circles in Figure 4.5a. A 

similar behavior is observed for ΔGsol, where all models produce poor prediction for the two 

solvents with the lowest and highest ΔGsol (propane,1,2,3-triol and triethyl phosphate, respectively, 

highlighted by orange circles in Figure 4.5b). The inaccuracy associated with these seemingly 

outliers (dibromomethane and dichlorofluoromethane for ΔGexf, propane,1,2,3-triol and triethyl 

phosphate for ΔGsol) can be attributed to the lack of solvents around these solvents. For example, 

according to Table 4.2, more than 75% of the solvents have ΔGexf < 67 kJ/mol⋅nm2, which results 

in lower accuracy of predicting ΔGexf when its value is above 67 kJ/mol⋅nm2. 

Reduced accuracy in the prediction of ΔGexf and ΔGsol due to lack of solvents can be a sign 

of overfitting. Moreover, the number of descriptors in this study (15 for ΔGexf and 14 for ΔGsol) is 

relatively high compared to the number of solvents (48 used for ML modeling), which can lead to 

overfitting [64]. Potential overfitting is further investigated with ETR, the best performing model 

identified from Figure 4.5. Bootstrap method is implemented to break down the contributions of 

bias and variance to the predicting error [65], 

 𝑏𝑖𝑎𝑠2 =
1

𝑛𝑡𝑒𝑠𝑡
∑ (𝑓 ̅(𝑋𝑙) − 𝑦𝑙)

2𝑛𝑡𝑒𝑠𝑡

𝑙=1
 (4.10) 

 

 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑛𝑡𝑒𝑠𝑡
∑

1

𝐵

𝑛𝑡𝑒𝑠𝑡

𝑙=1
∑ (𝑓 (𝑋𝑙; 𝐷𝑏) − 𝑓 ̅(𝑋𝑙))

2𝐵

𝑏=1
 (4.11) 

 

where 𝑛𝑡𝑒𝑠𝑡 is the number of testing data, 𝑋𝑙 contains descriptors for the lth testing data, and 𝑦𝑙 is 

the measured target property for the lth testing data. 𝐵 is the number of training sets (denoted by 

𝐷𝑏, b = 1, 2, ... B) sampled from the original training data, 𝑓 (𝑋𝑙; 𝐷𝑏) is the target property 

predicted for 𝑋𝑙 using the model trained from 𝐷𝑏. 𝑓 ̅(𝑋𝑙) is the average of 𝑓 (𝑋𝑙; 𝐷𝑏) over different 

training sets 𝐷𝑏. For ΔGexf and ΔGsol the squared biases are estimated to be 4.68 kJ2/mol2⋅nm4 and 

19.56 kJ2/mol2⋅nm4 respectively, and the corresponding variances are 21.33 kJ2/mol2⋅nm4 and 

56.19 kJ2/mol2⋅nm4. This suggests that for both ΔGexf and ΔGsol the variance is 3 to 5 times larger 
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than the squared bias. A large variance overshadowing squared bias signals the statistical issue of 

overfitting. Although one way to address this problem is adding more solvents, this approach 

requires unrealistically high time and resource (each solvent requires over 540 ns of simulation). 

Alternatively, reducing the number of descriptors can also mitigate the impact of overfitting, 

especially for small datasets [66]. In the next section, descriptor selection is carried out using the 

ETR model. 
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Figure 4.5. Correlation between predicted and measured values of free energies for the six ML 

models. All descriptors are included in the ML modeling. The scatter plots for (a) ΔGexf and (b) 
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ΔGsol provide a visual assessment of model accuracy, which is quantified by R2 and RMSE values 

indicated in each subplot.  ETR stands out as the most accurate model for both ΔGexf and ΔGsol.  

 

4.3.3. Descriptor selection 

After implementing the ASM method for ETR, the optimal subsets of descriptors are 

identified to be: ∆𝐻𝑣𝑎𝑝, 𝜀, 𝛾, 𝜌 and 𝑀𝑊  for ΔGexf, and 𝜀, 𝛾, α𝑃, 𝑀𝑊, 𝐶𝑚𝑒𝑎𝑛 and 𝐶𝑚𝑎𝑥 for ΔGsol. 

All the ML models are trained again with these descriptors and their optimal hyper-parameters are 

listed in Appendix B, section B3. Figure 4.6a shows the improvement in R2 and RMSE for ETR 

after descriptor selection. A 21% gain in R2 and 24% reduction in RMSE are observed in the 

prediction of ΔGexf. While the improvement is less significant for ΔGsol, R
2 still increases by 3% 

and RMSE decreases by 4%. The predicted vs. measured values of ΔGexf and ΔGsol after descriptor 

selection are shown in Appendix B, section B3 for all ML models. Comparison with Figure 4.5 

shows improved performance of all ML models with the optimal subset of descriptors. Reducing 

the number of descriptors to a maximum of six was strategically applied to strike a balance among 

computational efficiency, model complexity, and prediction accuracy. This not only mitigates 

overfitting [67] but also facilitates the prediction of ΔGexf and ΔGsol for solvents that are out of our 

database, as fewer descriptors require less amount of calculations.  

Some discussion is warranted for why the descriptors in the optimal subsets might play 

crucial roles in determining ΔGexf and ΔGsol. Our previous work [21] has shown that ΔGexf and 

ΔGsol are correlated with the mobility of solvent molecules around the g-C3N4 nanosheet, with 

lower mobility leading to larger ΔGsol and smaller ΔGexf. Reduced solvent mobility can be caused 

by high values of 𝜌 and 𝑀𝑊. Larger ΔHvap and 𝛾 both imply stronger solvent cohesion, which 

could make the insertion of a nanosheet into the solvent energetically more difficult. On the other 

hand, large ΔHvap and 𝛾 can also work synergistically with large 𝜌 and 𝑀𝑊 to reduce solvent 

mobility around the nanosheet. The effect of 𝜀 is multi-faceted. Larger 𝜀 corresponds to higher 

polarity of the solvent molecules, which can lead to stronger solvent cohesion that hinders 

solvation and exfoliation. Meanwhile, the more polar solvent molecules can exhibit increased 

affinity towards the partially charged atoms on the g-C3N4 nanosheets, which favors solvation and 

exfoliation. Higher 𝜀 also provides stronger screening of electrostatic interactions between 

different nanosheets. Solvents with lower α𝑃 values offer a more stable molecular arrangement 
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around the nanosheets across temperature variations, potentially producing a more favorable ΔGsol. 

The two descriptors related to PACs (𝐶𝑚𝑒𝑎𝑛 and 𝐶𝑚𝑎𝑥) are found to be influential for ΔGsol, 

consistent with the work of Jämbeck et al. [43]  Such impact is rooted in the electrostatic 

interactions between partially charged atoms on the nanosheets and those on the solvent molecules. 

 

Figure 4.6. Refinement of the ETR model. (a) RMSE and R2 score with all descriptors and the 

optimal subset (listed in figure) identified from ASM. The arrows indicate the improvement of 

prediction accuracy after descriptor selection. (b) Learning curves (with ΔGexf being the target 

property) using 10-fold CV and R2 as the accuracy metric. The green and blue shadows show the 

standard deviation for training and validation accuracy, respectively. Both curves plateau after the 

training size reaches 20. 

 

4.3.4. Model finalization 

It is well-known that the accuracy of an ML model depends on the size of the training set 

[66]. To study this effect, Figure 4.6b shows the change in R2 score for the ETR prediction of ΔGexf 

by varying the proportion of the training set (also known as the learning curve). The optimal subset 

of descriptors is used, along with 10-fold CV for validation. The size of the training set is varied 

from 1 to 43, with the remaining data serving as the testing set. The training accuracy curve is 

generated from the training set, while the validation accuracy curve is from the testing set. Standard 
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deviation is reported for each curve, to account for the different choices of training/testing set 

during 10-fold CV.  

As illustrated in Figure 4.6b, the training accuracy is insensitive to the number of training 

data points and quickly reaches 0.90 when as few as five data points were used. A slight increasing 

trend continues as the training size increases, ultimately reaching 0.96 when more than 30 data 

points are utilized for training. On the other hand, validation accuracy is found to be highly 

dependent on the number of training data points, with even negative R2 score observed when less 

than nine data points are used for training. As the training size increases, validation accuracy also 

increases, ultimately reaching a plateau when the training set contains 20 or more data points. This 

indicates that the accuracy of the model is maintained as long as the training set includes more 

than 20 data points. However, it is recommended that the training set contains more data points 

than the testing set when the dataset is small [68]. For generating the final model, 67% (32 data 

points) of the dataset is used for training and 33% (16 data points) used for testing. The hyper-

parameters used for this model remain the same as the ones listed in Appendix B, section B3. 

A few more data are provided here to support the robustness of the finalized model. In 

Figure 4.6a, RMSE for ΔGexf obtained from the 10-fold cross-validation after descriptor selection 

is 4.18 kJ/mol.nm2 (data on the bottom right). Using the finalized model with a 67/33 split between 

the training and testing data, we performed RMSE calculations for five random data splitting. The 

RMSE values are 4.35, 4.17, 4.24, 4.04 and 4.58 kJ/mol.nm2 respectively, which are close to the 

RMSE from  Figure 4.6a. We further employed the Bootstrap method [69] for 1000 iterations and 

the RMSE obtained is 4.23 kJ/mol.nm2, again comparable to the result from 10-fold cross-

validation. The consistency among these data suggests that the finalized ETR model is well 

calibrated, with good applicability to be generalized for new, unseen data.  

4.4. Discussion 

The finalized ETR model can now be used to predict ΔGexf for solvents outside of our 

dataset. For this purpose, the dataset cured by Caleman et al [41] is used, which contains the 

experimental values for the optimal subset of descriptors (∆𝐻𝑣𝑎𝑝, 𝜀, 𝛾, 𝜌 and 𝑀𝑊) for 146 organic 

solvents. Additionally, we included seven organic solvents commonly used in the LPE process, 

bringing the total number of organic solvents in the dataset to 153. A complete list of the solvents 
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and their predicted ΔGexf values are given in Appendix B section B4, while the histogram of the 

predicted ΔGexf is shown in Figure 4.7. This figure demonstrates that most of the solvents have a 

moderate performance in exfoliating the g-C3N4 sheets, with ΔGexf falling in the range of 50-60 

kJ/mol⋅nm2. However, four solvents have a ΔGexf less than 50 kJ/mol⋅nm2 and therefore are 

potentially effective solvents for LPE. They are, in the order of increasing ΔGexf: benzonitrile 

(PhCN), phenylmethanol (or benzyl alcohol, abbreviated Bn), NMP, and methanesulfonic acid 

(MSA). Some of these solvents have been previously explored for the LPE of 2D materials, 

including: PhCN for graphene [70], NMP for graphene [71], MoS2 [72] and g-C3N4 [73], as well 

as MSA for graphene [74] and boron nitride nanosheets [75]. However, Bn has never been 

attempted for the LPE of layered materials and could be a good candidate to consider. 

To test the model predictions, four solvents—NMP, MSA, Bn, and Acetonitrile (ACN)—

were chosen for experimental validation. They were selected based on the diversity in their 

chemical structure and properties, commercial availability, as well as range of ΔGexf prediction 

(low for NMP, MSA, Bn, while high for ACN). Particularly, Bn is a novel candidate identified by 

the model, while NMP and MSA are established benchmarks. The experimental details are given 

in Appendix B section B5, and the images demonstrating the dispersibility are shown in Figure 

4.8. NMP, Bn and MSA all demonstrate good dispersibility of g-C3N4, producing a uniform 

dispersion for concentration as high as 5 mg/mL, which remains undisturbed after an hour. These 

observations are consistent with the developed model, which predicts small values of ΔGexf for 

NMP (49.43 kJ/mol⋅nm2), MSA (49.89 kJ/mol⋅nm2) and Bn (49.11 kJ/mol⋅nm2). Conversely, the 

dispersibility of g-C3N4 in ACN is remarkably poor, also in line with our prediction (ΔGexf = 67.54 

kJ/mol⋅nm2), and the substance sediments at the bottom. Therefore, our model is shown to 

successfully predict the dispersibility of g-C3N4 in these solvents. 
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Figure 4.7. Histogram of predicted ΔGexf for an expanded set of organic solvents. The prediction 

is made using the ETR model with the optimal subset of descriptors, for the 153 organic solvents 

listed in Appendix B section B4. The distribution shows that most ΔGexf values are in the range of 

50-60 kJ/mol⋅nm2. 
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Figure 4.8. Macroscopic images demonstrating the dispersibility of bulk carbon nitride in various 

solvents. For each solvent, two sets of images are shown which correspond to different time (0 

min: immediately after sonication; 60 min: 1 hour after sonication with no disturbance). Mass 

concentration of g-C3N4 for each test is indicated below the respective image. ACN shows 

considerably poorer dispersibility compared with other solvents. 

 

Although the LR model showed poorer performance than ETR in Figure 4.5, by 

introducing the optimal subset of descriptors, the accuracy of LR is also improved. The 

enhancement in its RMSE and R2 score due to descriptor selection is illustrated in Appendix B 
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section B3. One advantage of the LR model is that it provides closed-form predictions for ΔGexf 

and ΔGsol, and therefore can be a useful tool for initial screening of solvents where relatively low 

accuracy is needed. The closed-form LR predictions of ΔGexf and ΔGsol in terms of the optimal 

subset of descriptors are 

 ∆𝐺𝑒𝑥𝑓 =  −0.35 𝛥𝐻𝑣𝑎𝑝 + 0.12 𝜀 − 0.03 𝛾 − 0.01 𝜌 − 0.02 𝑀𝑤 + 80.56 (4.12) 

 

 ∆𝐺𝑠𝑜𝑙 =  0.04 𝜀 + 0.16 𝛾 − 17.18 𝛼𝑃 + 0.03 𝑀𝑊 + 28.08 𝐶𝑚𝑒𝑎𝑛 + 27.29 𝐶𝑚𝑎𝑥 + 159.84 (4.13) 

 

Looking at Eqs. (4.12) and (4.13), it appears that ΔGexf has a negative correlation with 𝛥𝐻𝑣𝑎𝑝 and 

𝛾, correlates positively to 𝜀 and has negligible dependence on 𝜌 and 𝑀𝑊. For ΔGsol, a highly 

negative correlation is found with 𝛼𝑃 while there is a strong positive correlation with 𝐶𝑚𝑒𝑎𝑛 and 

𝐶𝑚𝑎𝑥. ε, 𝛾 and 𝑀𝑊 have much smaller impact on ΔGsol. In an earlier work, Coleman et al. [18] 

proposed that the free energy of exfoliation for graphene only depends on the surface energy 

difference between graphene and the solvent. On the contrary, Eqs. (4.12) and (4.13) show that 𝛾 

is neither the only influencing parameter for ΔGexf nor the most impactful one. 

One question arises from the LR predictions in Eqs. (4.12) and (4.13). If some of the 

descriptors (such as 𝑀𝑊) has very weak correlation with the target properties, why are they 

selected during ASM? To answer this, Figure 4.9 shows the pair plots of the target properties 

measured from MD vs. three descriptors that have the highest coefficients in Eqs. Eqs. (4.12) and 

(4.13). For ΔGsol, the pair plot with 𝐶𝑚𝑒𝑎𝑛 is not shown because it is similar to that with C𝑚𝑎𝑥 

(Appendix B section B6). Figure 4.9 sheds light on some of the correlations found in LR. 

Generally, LR fits a line between the target property and a descriptor, and if there is a significant 

linear relationship (as is the case for 𝛥𝐻𝑣𝑎𝑝 in Figure 4.9a and 𝐶𝑚𝑎𝑥 in Figure 4.9d), a large 

coefficient will appear in the closed-form. On the contrary, if the relationship is not clear (Figure 

4.9c, f) or it is a higher order correlation (Figure 4.9b, e), then LR alone is insufficient to describe 

the dependence of the target property on the descriptor. Using polynomial regression might help 

but implementing polynomial regression in our dataset only exacerbates overfitting. In fact, using 

even a second order polynomial led to negative R2 (data not presented). As shown in Appendix B 

section B6, 𝑀𝑊 does not exhibit a clear linear relationship with ΔGexf or ΔGsol. This explains why 

despite its small coefficients in Eqs. (4.12) and (4.13), 𝑀𝑊 is retained during descriptor selection 
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using ASM and ETR (a nonlinear ML model). While Eqs. (4.12) and (4.13) are useful for initial 

solvent screening, care should be exercised not to over-interpret the influence of the descriptors. 

Another interesting observation from Figure 4.9 is that solvents with better performance 

(lower ΔGexf and higher ΔGsol) tend to be associated with a certain range for each descriptor. 

Specifically, five solvents that have the lowest ΔGexf and highest ΔGsol are highlighted with red 

color and their name are listed in Figure 4.9a and d. Clearly, these data points form a cluster in 

each plot and the clustering is more evident for ΔGexf. This motivated us to reexamine ΔGexf 

predicted for all 153 organic solvents (Appendix section B4 and Figure 4.7) and the range of 

descriptor values for achieving small ΔGexf. The range of descriptors that correspond to predicted 

ΔGexf < 51 kJ/mol⋅nm2 are shown in Figure 4.10a, which serves as a guideline for initial screening 

of solvents for LPE of g-C3N4 nanosheets. 

The effect of descriptor on the target properties is further examined through the Shapley 

additive explanations (SHAP) values [76]. SHAP values allocate the contribution from each 

descriptor towards the model prediction, thereby allowing us to understand the impact of 

individual descriptors. The relative importance of each descriptor in predicting ΔGexf from the 

ETR model is shown in Figure 4.10b and the corresponding results for ΔGsol are given in Appendix 

B section B6. On the horizontal axis, each point represents an individual instance or sample from 

the dataset. Each instance represents a specific set of descriptor values from the dataset used to 

generate predictions and assess descriptor contributions. The predicted ΔGexf associated with these 

instances are shown at the top, below which the descriptors are ordered by their importance from 

high to low, as determined by the mean absolute SHAP values. A higher SHAP value signifies a 

stronger effect of the descriptor on the prediction, while a lower value implies a weaker effect. The 

results reveal that the 𝛥𝐻𝑣𝑎𝑝 has the highest influence on the prediction of ΔGexf, followed by 𝑀𝑤, 

𝜀, 𝛾, and 𝜌. Together with Figure 4.10a, these findings can be used to guide solvent selection for 

LPE of g-C3N4, especially to identify solvents that exhibit favorable characteristics in terms of 

heat of vaporization and molecular weight. 
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Figure 4.9. Correlation between measured ΔGexf and key descriptors. Pair plots of ΔGexf vs. (a) 

𝛥𝐻𝑣𝑎𝑝, (b) 𝜀 and (c) 𝛾. Pair plots of ΔGsol vs. (d) 𝐶𝑚𝑎𝑥, (e) 𝛼𝑃 and (f) 𝛾. ΔGsol and ΔGexf are 

measured (from MD) values for the 48 organic solvents in our dataset. Five solvents with the 

lowest ΔGexf and highest ΔGsol are highlighted with red color; their numbering is consistent with 
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Appendix B section B1, and their name are given in (a) and (d). The correlation is linear in (a) and 

(d), nonlinear in (b) and (e), and unclear in (c) and (f). 

 

 

Figure 4.10. Guidance on solvent selection for LPE of g-C3N4 gained from ML modeling. (a) 

Proposed ranges of descriptors (shown with pattern bars), based on the solvents with predicted 

ΔGexf < 51 kJ/mol⋅nm2. The maximum and minimum of each descriptor is also shown for the 

experimental values of 153 organic solvents listed in Appendix B section B4. (b) Heatmap of 

SHAP values for each descriptor in the ETR model. The color intensity represents the magnitude 

of the SHAP value, with red indicating a positive impact and blue indicating a negative impact on 
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the predicted ΔGexf. The descriptors are ordered by their impact on ΔGexf, with decreasing 

significance from top to bottom. 

 

4.5. Limitations and future considerations 

While MD simulations offer valuable insights into material behaviors at the molecular 

level, it is crucial to acknowledge their inherent limitations. Of particular note is the quality of 

interatomic potentials used in the simulations, which can affect the accuracy of the simulation 

results. To mitigate this limitation, extensive validations were conducted during the 

parameterization of the interatomic potentials used in our work. Key properties of g-C3N4, such as 

bond length/angle distributions, surface energy and hydration free energy, were rigorously 

compared with results from DFT calculations. For the solvents, validations were carried out by 

finding good agreement when comparing their calculated density, dielectric constant and surface 

tension against experimental data. Details of these validations can be found in our previous work 

[21] and in Caleman et al [41].  

Another inherent limitation of MD simulation is the demand of high computational 

resources when conducting large-scale simulations. As such, simplifications (e.g., size reduction 

compared to real-world systems) are almost unavoidable in order to make the running time of the 

simulations realistic. In this work, to calculate ΔGexf we considered the PMF between two g-C3N4 

nanosheets, while in reality LPE likely functions on a multi-layer structure. The choice of reducing 

the number of layers to two is based on the computational demand (the current simulations for two 

layers already took months on a national high-performance computing platform), as well as the 

consideration that the closest layer is expected to dominate ΔGexf, a notion also supported by other 

studies [12,15]. This approach serves the primary purpose of this work, which is to establish a 

model that correlates the free energy with the solvent properties and use the same model across a 

range of solvents to guide their selection for LPE. While the validity of the model is proven by 

experimental dispersibility tests, we acknowledge that the free energy to exfoliate a unit area of g-

C3N4 nanosheet from a multi-layer structure can be different from ΔGexf reported in this work, and 

is subjected to future investigation. 
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Acknowledgment of limitations can also be extended to the ML modeling. While descriptor 

reduction mitigates the risk of overfitting and reduces model complexity, this process could 

potentially affect applicability of the model to new solvents. Data augmentation methods such as 

Bootstrap and synthetic minority over-sampling technique (SMOTE) can increase the number of 

samples and help achieve better predictive performance. In this work, we applied the Bootstrap 

method for the ETR model with the optimal subset of descriptors, and the results indicate that our 

finalized model is robust and well calibrated. Nevertheless, as new solvents are added to our 

database, it is prudent to closely monitor the model performance to ensure it remains accurate or 

else adjust the descriptors in the model. Another limitation is that while the ML models here are 

effective in predicting free energies based on solvent descriptors, they do not account for other 

factors that may be crucial in practical situations, such as sonication and centrifugation settings, 

solvent stability, cost, availability, and environmental impact. The models are built on data 

generated under specific conditions and might not fully capture variability arising from different 

experimental setups. In addition, the applications of g-C3N4 are broad and include areas such as 

photovoltaic cells, catalysts, and water treatment systems. Solvents identified as being effective 

for LPE might have limitations in subsequent applications. For instance, a solvent that is excellent 

for exfoliating g-C3N4 may not be ideal for depositing a thin and uniform film of the material for 

photovoltaic applications. These factors should be taken into consideration for the successful 

application of the ML models beyond the scope of this study. 

4.6. Conclusion 

Molecular dynamics simulations were combined with machine learning (ML) algorithms 

to predict the free energy of exfoliation and solvation free energy for the liquid phase exfoliation 

(LPE) of g-C3N4 nanosheets. A dataset involving 48 organic solvents was built using extensive 

MD simulations that evaluated the two free energies as well as bulk properties of the solvents. Six 

different ML methods were attempted, considering the two free energies as the target properties 

and 15 descriptors for the free energy of exfoliation (14 for the solvation free energy). Extra-trees 

regressor demonstrated the best ability to predict both target properties. For some descriptors (e.g., 

dielectric constant, surface tension), a certain range was identified which would lead to better LPE 

performance. The established model allowed us to predict the free energies of exfoliation and 
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solvation for g-C3N4 in different solvents based on available experimental data, thus reducing the 

need to perform additional lengthy simulations. In fact, by applying the ML model to over 100 

additional solvents, we identified benzyl alcohol (Bn) as a promising solvent, which had not been 

previously used for the LPE of 2D materials. Experimental dispersibility tests on four solvents 

(NMP, MSA, Bn, and ACN) provided evidence for the efficacy of the ML model and substantiated 

the applicability of our model in guiding solvent selection for LPE. The approach undertaken here 

can be adapted to predict the performance of solvents for other layered materials. 
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5. Chapter 5: Hierarchy in Binary Liquid 

Phase Exfoliation of Graphitic Carbon 

Nitride: Dissecting the Dominance of One 

Solvent 
 

5.1. Introduction 

LPE has been identified as a critical method for producing 2D nanosheets consisting of one 

or a few layers (e.g. graphene or g-C3N4), a process essential for harnessing the distinct 

photocatalytic, electronic, and structural properties of these 2D materials [1–4]. The selection of 

solvents, a cornerstone of this process, has traditionally focused on single-component systems 

[5,6]. Yet, the exploration of binary solvent mixtures opens new avenues by offering the potential 

to enhance exfoliation efficiency via customization of solvent compositions. For example, Lin et 

al. [7] reported that ethanol and water mixed at 1:3 volume ratio maximized nanosheet 

concentration and markedly enhanced the visible-light photocatalytic capabilities of g-C3N4 

nanosheets. Shen et al. [8] optimized the exfoliation efficiency by aligning the surface tension of 

binary solvents with those of 2D materials. Their findings identified a number of optimal volume 

ratios for IPA and water binary mixture, such as 1:1 for graphene, WS2, h-BN and MoSe2; 1:4 for 

Bi2Se3 and SnS2; and 7:3 for MoS2. Advancing these methodologies, Zou et al. [9] introduced a 

three-step tactic for LPE of g-C3N4 nanosheets, involving the initial preparation of bulk g-C3N4, 

followed by solvent exfoliation using various solvents, and finally optimizing the exfoliation 

conditions based on MD simulations. They identified Water:IPA mixed at 1:1.75 volume ratio as 

being the most effective. This strategy notably increased the nanosheet yield to an unprecedented 

concentration of 5.03 mg/mL. Together, these studies have paved the way for the development of 

efficient and scalable methods to synthesize 2D nanomaterials for a wide range of uses. 

While significant progress has been made in employing mixed solvents for LPE, it remains 

unclear why some mixtures outshine others. Existing studies often hinge on the idea that matching 

the surface tension of solvents with the 2D material optimizes exfoliation efficiency. However, 
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insights from our prior work [10,11] revealed that the reality of LPE is more intricate, with multiple 

factors like the size, polarity and structure of the solvent molecules impacting exfoliation success 

even for a single solvent. The situation becomes more interesting in a solvent mixture where 

different solvents are mutually interacting. This motivated us to take an approach that evaluates 

solvent performance through a free energy lens, using a quantity called the free energy of 

exfoliation (ΔGexf) calculated from MD simulations. In our exploration of how a binary solvent 

mixture performs in LPE of g-C3N4 compared to its singular counterparts, we discovered an 

interesting phenomenon: while some binary solvents have ΔGexf values between those of their 

singular counterparts, there exist situations where ΔGexf is significantly skewed towards one of the 

constituting solvents. As a result, one of the solvents in the mixture can exhibit dominance in LPE, 

by suppressing either the “bad” solvent with high ΔGexf or the “good” solvent with low ΔGexf. 

Detailed analysis of the MD simulation data allowed us to dissect the dominant role of one solvent, 

and shed light on why certain mixtures achieve superior performance.  

Besides physical insights, this work presents a systematic and quantitative approach that 

can be more broadly applied to gauge the effectiveness of solvent mixtures. This approach includes 

an initial solvent screening process using an established ML model, followed by more precise free 

energy calculations using umbrella sampling. Finally, based on the potential dominance of one 

solvent in a binary mixture, we demonstrate that cheaper and cleaner LPE of 2D nanomaterials 

can be achieved by mixing certain organic solvents with water (a known bad solvent for g-C3N4), 

at no significant cost of the LPE performance. 

5.2. Methods 

5.2.1. Structure of simulated g-C3N4 and solvents 

For this study, g-C3N4 is constructed from heptazine units, as opposed to triazine-based 

counterparts [12,13]. This choice is guided by the prevalence of heptazine in g-C3N4 compositions, 

as corroborated by the literature [14]. Consistent with our previous work [10], the molecular model 

employs an equilateral triangular nanosheet, incorporating 15 heptazine units with each side 

extending 4.0 nm, as illustrated in Figure 5.1. The parameters requisite for describing the intra- 

and inter- molecular interactions are derived using the LigParGen and PolyParGen servers [15,16]. 

These parameters align with the OPLS-AA force field [17] and incorporate the Charge Model 5 
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[18] with a scaling factor of 1.20 for partial atomic charges. This approach and the accuracy of the 

parameters it generates have been previously validated [10,11]. 

A total of 171 solvents are considered for initial screening (see details in Section 5.2.2), as 

listed in Appendix C, Section C1. Two binary solvents that exhibit significant dominance by one 

component are then subjected to further investigation. These two binary solvents are: NMP mixed 

with Cyclohexane (CH), and methanol (MET) mixed with Dichloromethane (DCM), both at a 1:1 

volume ratio. The chemical structure and molecular mass of the four constituting solvents are 

shown in Figure 5.1.  

 

Figure 5.1. Molecular structure of the 15-unit g-C3N4 alongside four solvents used in US 

simulations. The molecular mass of each solvent is provided in parentheses. For the nanosheet, 

atoms highlighted in cyan are considered as periphery, while the remaining atoms are considered 

as interior. 

 

5.2.2. Initial screening of binary mixtures 

In the previous chapter, a ML model has been established based on Extra Trees Regressor, 

which is capable of accurately predicting the ΔGexf for a single solvent based on physicochemical 

properties significant in LPE—namely, heat of vaporization (ΔHvap), dielectric constant (ε), 

surface tension (γ), mass density (ρ), and molar weight (𝑀𝑊). Physically, ΔGexf is the free energy 

required to separate a unit area of two stacked g-C3N4 nanosheets from their equilibrium distance 
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to a state where they are no longer interacting (see quantitative definition of ΔGexf in Figure 5.4a). 

A lower ΔGexf signifies not only reduced energy expenditure during LPE but also enhanced 

stability of the separated nanosheets post-exfoliation, underscoring its critical role in measuring 

solvent efficacy. 

Built on this ML model, initial screening of binary solvents is performed. These binary 

solvents are created based on the 171 solvents specified in Appendix C Section C1 and prepared 

at a 1:1 volume ratio. Properties (ΔHvap, ε, γ, ρ, 𝑀𝑊) of the binary solvents are calculated from the 

properties of the individual components according to following equations. For ΔHvap, ε, γ, 

 𝑃𝑚𝑖𝑥 = 𝑥1𝑃1 + 𝑥2𝑃2 (5.1) 

 

where 𝑃𝑚𝑖𝑥 represents the property of the binary mixture, 𝑥1 and 𝑥2 are the mole fractions, and 𝑃1 

and 𝑃2 are the respective properties (ΔHvap, ε, γ) of the individual solvents. At 1:1 volume ratio, 

the mass density 𝜌 of the mixture is given by 

 𝜌𝑚𝑖𝑥 =
𝜌1 + 𝜌2

2
 

(5.2) 

 

where 𝜌1 and 𝜌2 denote the mass densities of the individual solvents. 𝑀𝑊 of a mixture with 1:1 

volume ratio can be expressed as 

 
𝑀𝑊𝑚𝑖𝑥 =

𝜌1 + 𝜌2

(
𝜌1

𝑀𝑊1
) + (

𝜌2

𝑀𝑊2
)
 (5.3) 

 

where 𝑀𝑊1 and 𝑀𝑊2 are the molar weights of the individual solvents. Based on these properties, 

ΔGexf is predicted for every possible binary combination, corresponding to a total of 14,535 binary 

solvents. Additionally, ΔGexf is predicted for the 171 pure solvents.  

By examining the predicted ΔGexf values, it is determined whether the combination of two 

solvents results in ΔGexf close to the arithmetic mean of its components, or dominated by one of 

the components. Selected binary solvents are further investigated by MD simulations, to verify the 

ML predictions as well as gain deeper insights into the molecular interactions driving the observed 

behaviors. The schematic representation of the methodological steps is depicted in Figure 5.2, 

illustrating the workflow from property calculation, ΔGexf prediction using ETR, to the selection 

and detailed analysis of noteworthy binary solvent systems. 
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Figure 5.2. Flowchart illustrating steps taken in this work to examine LPE of g-C3N4 by binary 

solvents. 

 

5.2.3. Simulation details 

ΔGexf is evaluated via the computation of the PMF, as two initially adjacent nanosheets are 

separated along a predetermined reaction coordinate. Drawing from insights gained in our prior 

investigations [10,11], the most feasible pathway for the LPE of g-C3N4 is identified as “shearing” 

where one nanosheet glides over another while maintaining a parallel orientation. Consequently, 

the reaction coordinate is designated as the distance D between the COMs of two adjacent 

nanosheets, and varied from 0.3 nm to 3.5 nm by laterally shifting one nanosheet (see inset of 

Figure 5.4a for a schematic depiction). The US [19] technique is utilized to perform a series of 

restrained simulations, from which the PMF is derived through the WHAM [20]. For each solvent, 

a total of 40 US windows are employed, within each window a harmonic biasing potential (force 

constant 5000 kJ/mol⋅nm2) is enforced on the reaction coordinate. The baseline of the PMF is set 

at the minimum value of the reaction coordinate. 

Along with ΔGexf, the ΔGsol of an individual nanosheet is evaluated using the BAR method 

[21]. Beginning with a state indicative of zero interaction between the g-C3N4 nanosheet and the 

solvent, the vdW and electrostatic interactions are incrementally activated through nineteen 
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intermediate states, culminating in a fully interactive state between the nanosheet and the solvent. 

ΔGsol is then calculated based on the data gathered across these twenty-one states. Furthermore, to 

investigate the dynamics of solvent molecules near the nanosheets, additional simulations are 

performed where a single or two stacked nanosheets are equilibrated in a binary mixture, as well 

as in their singular counterparts. 

All simulations are conducted utilizing the GROMACS software [22] (version 2022.3). For 

each US simulation in which the reaction coordinate is restrained, the system first undergoes an 

energy minimization employing the steepest descent method. Following this, the system is 

equilibrated in an NPT ensemble for a duration of 200 ps, with temperature and pressure 

maintained at 300 K and 1 bar, respectively, using the Berendsen thermostat (time constant = 0.2 

ps) and barostat (time constant = 5 ps). Subsequently, a production run is executed for 10 ns, during 

which the bond lengths that include a hydrogen atom are restricted using the LINCS algorithm. 

Temperature is maintained at 300 K using the Nosé-Hoover algorithm with a time constant of 0.1 

ps, while an isotropic pressure of 1 bar is regulated using the C-rescale scheme with a time constant 

of 1.0 ps. Periodic boundary conditions are applied in all three directions. The computation of 

long-range electrostatic interactions is facilitated through the particle-mesh Ewald technique. For 

short-range nonbonded interactions, a cutoff radius of 1.2 nm is used. The equations of motion are 

integrated with a 2-fs time step in both equilibration and production stages. The simulation for 

ΔGsol calculation follows the same procedure and settings, except that there is only one nanosheet 

in the system and it is unrestrained, and that the production simulation for each intermediate state 

is run for 1 ns. The same parameters, including thermostat and barostat, are also adopted for the 

simulations where a single or two stacked nanosheets are equilibrated. Each of these simulations 

is run for 20 ns and data from the last 10 ns are used for statistical analysis. 

5.3. Results and discussion 

5.3.1. ML prediction of ΔGexf in binary mixtures 

Figure 5.3a shows the normalized histograms for ΔGexf of the binary solvent mixtures and 

the arithmetic average ΔGexf of the two components in each binary solvent. All data are predicted 

by the ML model. The histogram for the binary solvent mixtures appears to be wider compared to 

the histogram for the average of the individual solvents. In addition, more binary systems exhibit 
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ΔGexf values lower than 50 kJ/mol·nm², suggesting LPE performance better than what would be 

predicted by taking the arithmetic average of the two constituting solvents. To further investigate 

this behavior quantitatively, we categorized the binary solvent mixtures into three groups: above-

par, par-reaching and sub-par performance. A binary solvent is considered above-par if its ΔGexf 

is in the bottom 25% of the range between the lower and higher ΔGexf values of the two solvents 

it contains. A sub-par performance is identified when ΔGexf of the binary solvent is in the top 25% 

of this range. Binary solvents that do not fall into either category are classified as par-reaching.  

The results of this categorization show that 43.1% of the binary solvent mixtures exhibit 

above-par performance, 36.3% exhibit par-reaching performance, and 20.6% exhibit sub-par 

performance. Figure 5.3b presents a scatter plot of ΔGexf of binary solvents against the arithmetic 

average of its individual components. The red dashed line represents the line of equality, where 

ΔGexf of the binary mixture would equal the average of its components. Clearly, the scattered data 

show deviation from the red line, and if a straight line were to be fit to the data, its slope would be 

larger than 1. In other words, for small average ΔGexf the binary mixtures have a higher tendency 

to exhibit above-par performance, and for large average ΔGexf the binary mixtures have a higher 

tendency to show sub-par performance. 

From the entire dataset, we selected three systems for further investigation: one with par-

reaching performance (NMP:MET), one with above-par performance (NMP:CH), and the last with 

sub-par performance (MET:DCM). These three systems are highlighted in Figure 5.3b with 

yellow, green, and red colors, respectively. MD simulations and PMF calculations are performed 

to validate the ML predications as well as to study the molecular interactions driving their 

behaviors. The above constituting solvents are also chosen based on their wide availability in LPE 

of g-C3N4 and other 2D materials, as well as the consideration that the two solvents in a binary 

mixture should be fully miscible. 
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Figure 5.3. (a) Normalized histograms and (b) scatter plot of ΔGexf for the binary solvent mixtures 

as well as the arithmetic average of the two solvents in each binary mixture. 

 

5.3.2. Validation of solvent dominance with MD 

Figure 5.4 shows the PMF profiles for the three selected binary solvent mixtures and their 

singular counterparts, with part (a) specifically highlighting ΔGexf as the difference between the 

minimum PMF and the value where the PMF curve plateaus. In Figure 5.4a, ΔGexf of NMP:MET 

mixture is approximately the average of ΔGexf of NMP and MET, consistent with the ML 

prediction in Figure 5.3b and the traditional expectation that a solvent mixture behaves merely as 

a composite of its individual components. Conversely, the NMP:CH system in Figure 5.4b 

demonstrates an alignment of their ΔGexf with the more effective component (NMP) which has 

lower ΔGexf. On the other end of the spectrum, ΔGexf of the MET:DCM system in Figure 5.4c 

closely mirrors that of the less efficient component (MET) with higher ΔGexf. These behaviors 

confirm the findings from ML modeling that exfoliation efficacy of binary mixture can go beyond 

mere arithmetic averages of constituent solvents and be dominated by one solvent.  

A natural question arises from the above observations: what leads to the dominance of one 

solvent in a 1:1 binary mixture? Building on insights from our prior research (Chapter 3 and 4) 

[10,11], we first examine ΔGsol of the solvents in Figure 5.4b and c, since higher ΔGsol typically 
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indicate improved performance in LPE of g-C3N4 [10]. Figure 5.5 shows the step-by-step change 

in solvation free energy as the vdW and electrostatic interactions are turned on in the BAR method. 

In Figure 5.5a, ΔGsol for NMP, CH and their mixture are respectively 213.8, 138.6 and 203.4 

kJ/mol⋅nm2. The similar values of ΔGsol for NMP and NMP:CH mixture are consistent with the 

observation in Figure 5.4b where the PMF of NMP:CH mixture follows closely that of NMP. CH 

has much smaller ΔGsol, indicating weaker nanosheet-solvent interaction. The distinction between 

CH, NMP and their mixture becomes particularly pronounced upon activating the electrostatic 

interaction: CH’s non-polar nature results in negligible changes, whereas NMP and the mixture 

exhibit substantial shifts owing to NMP’s polarity. Unlike NMP and CH which have contrasting 

polarity, both MET and DCM are polar solvents, and the difference between their ΔGsol is notably 

smaller (Figure 5.5b). However, ΔGsol of the MET:DCM mixture (131.5 kJ/mol⋅nm2) still aligns 

better with that of MET (130.5 kJ/mol⋅nm2) than DCM (136.3 kJ/mol⋅nm2), consistent with the 

PMF agreement observed in Figure 5.4c. DCM has slightly larger ΔGsol suggestive of stronger 

nanosheet-solvent interaction. This is reflected in the greater magnitude of vdW interaction 

compared to MET (the first 10 steps in Figure 5.5b), despite smaller magnitude of electrostatic 

interaction (the last 10 steps in Figure 5.5b).  

Figure 5.4 and Figure 5.5 demonstrate that the dominance of one solvent in ΔGexf of the 

mixture is positively correlated with the agreement between ΔGsol of the mixture and that of the 

dominant solvent. However, these data alone do not explain why the binary mixture would be 

skewed towards the good solvent (NMP, lower ΔGexf and higher ΔGsol) for the NMP:CH system 

while toward the bad solvent (MET, higher ΔGexf and lower ΔGsol) for the MET:DCM system. Nor 

does it explain why DCM, which exhibits only a slightly stronger nanosheet-solvent interaction 

seen in ΔGsol, possess a considerably lower ΔGexf than MET and MET:DCM mixture. Detailed 

atomistic analyses are conducted next to unravel the mechanisms driving the diverse spectrum of 

exfoliation behaviors observed among the solvent mixtures. 
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Figure 5.4. PMF profiles for different solvents and their mixture in LPE of g-C3N4: (a) NMP, MET, 

and their mixture, (b) NMP, CH, and their mixture, and (c) MET, DCM, and their mixture. The 

definitions of reaction coordinate and ΔGexf are shown in (a). 
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Figure 5.5. Comparison of change in solvation free energy (SFE) as vdW and electrostatic 

interactions are turned on in twenty steps; (a) NMP, CH, and their mixture; (b) MET, DCM, and 

their mixture. 

 

5.3.3. Dominance of NMP in NMP:CH mixture 

 Inspired by a previous finding that the mobility of solvent molecules around the nanosheets 

plays a critical role in LPE [10], equilibrium simulations for two stacked nanosheets are used to 

quantify the solvent mobility (Mave). Here, Mave is defined as the average fraction of solvent 

molecules that leave the first solvation layer for no more than 0.5 ns; larger Mave thus corresponds 

to higher solvent mobility. The definitions of first, second and third solvation layers are provided 

in Appendix C Section C2, with the first solvation layer particularly important to the LPE process 

due to the significant solvent-sheet interactions in this region. The first 5 columns in Figure 5.6 

present Mave for pure NMP, pure CH, NMP in the binary mixture, CH in the binary mixture, and 

both NMP and CH in the mixture. Pure NMP stands out with the lowest Mave at 35%, suggesting 

a stable adsorption layer. This low mobility implies high affinity between NMP molecules and the 

nanosheets, which according to our prior studies correlates with enhanced LPE efficiency [10]. 

Similar observation was also reported by Gupta et al. [23] in their combined experimental and 

computational investigation. In stark contrast, pure CH exhibits an Mave of 66%, indicating a more 

transient interaction with the nanosheets and a reduced propensity for aiding the exfoliation 

process. When combined into the NMP:CH mixture, the mobility of NMP increases slightly to 

38% while simultaneously the mobility of CH decreases to 55%. The overall Mave is 41% for the 
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mixture, a number that is more closely aligned with NMP rather than being intermediate between 

NMP and CH, which would have been the expected outcome if both solvents contributed equally 

to the dynamics of the mixture in the vicinity of the nanosheets. This confirms the dominance of 

NMP in the behavior of the binary solvent near the nanosheets, consistent with the observations 

made in Figure 5.4. 

 

Figure 5.6. Mave of NMP, CH, MET and DCM in the binary mixtures and their singular 

counterparts. “NMP & CH in Mix” considers both NMP and CH molecules in the first solvation 

layer; the same applies to “MET & DCM in Mix”.  

 

Using the Mave data in Figure 5.6, we can compute the composition of the two types of 

solvents within the first solvation layer, according to: 

 𝑀𝑎𝑣𝑒,𝑁𝑀𝑃 × 𝑛𝑁𝑀𝑃 + 𝑀𝑎𝑣𝑒,𝐶𝐻 × 𝑛𝐶𝐻 = 𝑀𝑎𝑣𝑒,𝑚𝑖𝑥 × (𝑛𝑁𝑀𝑃 + 𝑛𝐶𝐻) (5.4) 

 

Or in another form: 

 
𝑛𝑁𝑀𝑃

𝑛𝐶𝐻
=

𝑀𝑎𝑣𝑒,𝐶𝐻 − 𝑀𝑎𝑣𝑒,𝑚𝑖𝑥 

𝑀𝑎𝑣𝑒,𝑚𝑖𝑥 − 𝑀𝑎𝑣𝑒,𝑁𝑀𝑃 
 (5.5) 
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where 𝑛𝑖 stands for the average number of molecules of solvent 𝑖 within the first solvation layer. 

Substituting in 𝑀𝑎𝑣𝑒,𝑁𝑀𝑃 = 38%, 𝑀𝑎𝑣𝑒,𝐶𝐻 = 55% and 𝑀𝑎𝑣𝑒,𝑚𝑖𝑥 = 41%, the ratio 𝑛𝑁𝑀𝑃:𝑛𝐶𝐻 is 

found to be 4.66. This implies that over 80% of the solvent molecules in the first solvation layer 

are NMP, despite the initial ratio of 𝑛𝑁𝑀𝑃:𝑛𝐶𝐻 =1.1:1. This theoretical prediction is substantiated 

by the direct count from the simulation data, as shown in Figure 5.7a. The graphical representation 

confirms the prevalence of NMP over CH in the immediate vicinity of the nanosheets. As we move 

to the second solvation layer, this NMP prevalence halves, and inside the third solvation layer, CH 

rises to a slightly larger percentage than NMP. This layered arrangement of solvent molecules is 

further elucidated by the density profiles in Figure 5.7b. Here, the regions of high NMP 

concentration correspond to lower CH presence than in the bulk solution, illustrating an active 

displacement of CH by NMP.  

 

Figure 5.7. (a) Schematic illustration of the average percentage of NMP, CH, MET and DCM 

molecules in the first three solvation layers of two stacked nanosheets. (b) The corresponding 

density profiles of NMP, CH, MET, and DCM in their corresponding mixtures. Here, "Distance" 

is measured from the midpoint between the two nanosheets along the direction perpendicular to 

the nanosheet plane. All solvent molecules in the systems are considered in the calculation. Each 

density profile is symmetric about Distance = 0 and only half of the profile is shown. 
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In addition to being displaced from the vicinity of the nanosheets, CH molecules also 

undergo orientation changes that affect their affinity with the nanosheets. The molecular 

orientation is quantified by calculating the angle between the normal of the aromatic plane in CH 

(and NMP) and that of the nanosheet (see inset of Figure 5.8 for illustration). An angle of 90 

degrees indicates a solvent molecule perpendicular to the nanosheets, while angles of 0 or 180 

degrees depict parallel alignment. Figure 5.8 shows that the orientation of NMP molecules is 

remarkably consistent within the first solvation layer, regardless of whether they are in the singular 

or binary solvent. This suggests a strong, potentially directional, affinity towards the g-C3N4 

surfaces that is robust against solvent compositional changes. On the other hand, CH shows 

considerable reorientation in the mixture, moving to a more perpendicular stance relative to the 

nanosheets. Caused by the presence of NMP, this reorientation reduces the contact area between 

each CH molecule and the nanosheet, further weakening the influence of CH in the LPE of g-C3N4 

by the binary mixture. 

 

Figure 5.8. Probability distribution for the orientation of solvent molecules in the first solvation 

layer relative to the nanosheets. 

 

So far, it has been established that NMP’s dominance in the mixture stems from its greater 

adherence to the g-C3N4 nanosheets and lower mobility in the first solvation layer, which 
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influences the mixture to behave more akin to NMP rather than CH. The next question is what 

drives the NMP molecules to preferentially attract to the g-C3N4 nanosheets, and what specific 

interactions are at play? To address this, we turn to the radial distribution function (RDF), which 

elucidates the subtleties of intermolecular interactions. As Figure 5.9a illustrates, from the singular 

NMP system to the mixture the RDF profile of the aromatic ring in NMP around the nitrogen 

atoms in the g-C3N4 nanosheets is notably elevated (upward blue arrow). Correspondingly, 

presence of CH around the nanosheets is suppressed in the mixture (downward red arrow). For 

both NMP and CH, the first RDF peaks of their aromatic rings are at approximately the same 

distance (~0.38 nm) from the g-C3N4 nitrogen. However, NMP uniquely approaches the 

nanosheets from its oxygen end, evidenced by the first peak in the RDF of NMP oxygen being 

located as close as 0.27 nm to the g-C3N4 nitrogen (green curve in Figure 5.9a). This peak 

corresponds to the formation of H-bonds between NMP oxygen and the hydrogens of the 

nanosheets on the periphery (see the definition of periphery and interior regions of a nanosheet in 

Figure 5.1). The longevity of these H-bond is substantial (see quantification of H-bond lifetime in 

Appendix C, Section C3), with NMP in the mixture showing a H-bond lifetime of 33.8 ps—a slight 

decrease from 43.4 ps in pure NMP but still significant enough to foster a persistent interaction 

conducive to LPE. 

In addition to the first and sharpest peak at 0.27 nm, the RDF of NMP oxygen in Figure 

5.9a also shows a pronounced peak at around 0.35 nm. This peak corresponds to another type of 

interaction NMP exploits with the nanosheets via its oxygen atoms that are situated near the 

aromatic structures of the nanosheets. The so-called “lone-pair π interaction”, akin to those found 

in water-protein studies, involves the electron-rich lone pairs of oxygen interacting with the 

electron-poor π systems of aromatic rings [24–26]. Both types of non-covalent interactions 

promote the attraction of NMP to g-C3N4 and its stability around the nanosheets, while CH’s lack 

of ability to establish H-bond or lone-pair π interaction, due to its non-polar nature, leads to its 

depletion from the nanosheets. 
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Figure 5.9. (a) RDF plots showing the distributions of aromatic rings in NMP and CH around 

nitrogen in the two stacked g-C3N4 nanosheets, in both singular and binary mixture systems. The 

distribution of oxygen in NMP around nitrogen in g-C3N4 nanosheets is also shown for the binary 
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mixture system; the corresponding result for pure NMP is very similar and hence not shown. (b) 

RDF plots showing the distributions of oxygen in MET and chlorine in DCM around nitrogen 

atoms of the two stacked g-C3N4 nanosheets, in both singular and binary systems. The top inset 

shows a snapshot of the first solvation layer at t = 20 ns, with MET and DCM molecules in red 

and green, respectively. The H-bond network between MET molecules is shown with blue lines in 

the bottom inset. 

5.3.4. Dominance of MET in MET:DCM mixture 

Both ΔGexf and ΔGsol data, in Figure 5.4 and Figure 5.5 respectively, show that the behavior 

of the MET:DCM mixture is closer to its MET component. Examination of the solvent mobility 

data (last 5 columns in Figure 5.6) reveals that in their pure form, MET has higher mobility 

compared to DCM, a trend that persists even when MET is mixed with DCM. The resulting 

mixture exhibits mobility similar to its MET component, mirroring the alignment seen between 

the NMP:CH mixture and its NMP component. Extending this reasoning to the number of solvent 

molecules within the first solvation layer, we anticipate a similar pattern of dominance. Based on 

Eq. (5.5) and Mave data in Figure 5.6, the ratio 𝑛𝑀𝐸𝑇:𝑛𝐷𝐶𝑀 in the first solvation layer is 

approximately 2.3:1, despite the initial ratio of 1.8:1. Direct counts of solvent molecules confirm 

this prediction (Figure 5.7a). Examining Figure 5.7b, the dominance of MET is also evident in the 

density profiles, where near the nanosheets the density of MET exceeds its bulk value, while DCM 

has a significantly lower density compared to the bulk. 

Despite the similarity to the NMP:CH mixture, where the behavior of the binary solvent is 

dominated by the component with stronger presence around the nanosheets, a critical difference 

exists: here, the solvent with higher mobility dominates the mixture. The dominance of MET in 

the MET:DCM mixture therefore results in poorer LPE performance, converging to that of the 

“bad” solvent (MET), opposite to the case of the NMP:CH mixture.  

A natural question arises: why does MET dominate the first solvation layer (in fact, the 

first three solvation layers according to Figure 5.7a) even though it has higher mobility? To answer 

this, we must delve into the solvent-sheet interactions. Figure 5.9b shows the RDF curves of 

oxygen in MET and chlorine in DCM around nitrogen atoms of the nanosheets. For pure MET, 

the RDF of its oxygen shows a small peak at approximately 0.28 nm, indicating H-bonding with 

the nanosheets’ periphery. DCM, on the other hand, cannot form H-bonds due to the absence of 

highly electronegative atoms such as nitrogen, oxygen, or fluorine. Consequently, there is no peak 
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at this distance in the RDF for pure DCM. Subsequent peaks around 0.36 nm for both pure solvents 

suggest interactions of oxygen atoms in MET and chlorine atoms in DCM with the π systems of 

the nanosheets. Cl–π interaction, induced by chlorine’s high polarizability, generates strong 

dispersion forces, with interaction energies ranging from −2.01 to −3.60 kcal/mol [27–29]. In 

comparison, O–π interaction between MET and the nanosheets is generally weaker, with energies 

between −0.11 and −2.12 kcal/mol [29–31]. The pronounced strength of interaction between DCM 

and the interior of the nanosheet offsets DCM’s lack of H-bonding capability and explains why 

DCM has a considerably lower ΔGexf than MET and the MET:DCM mixture, even though its ΔGsol 

(governed by interactions in both interior and periphery of the nanosheet) is of similar magnitude. 

When MET and DCM are mixed, the RDF curves experience notable changes. As shown 

in Figure 5.9b, the RDF of the dominant solvent (MET here) is elevated, while that of the less 

important solvent (DCM here) is diminished at short distances. Specifically, the distinct peak at 

0.36 nm in the singular DCM system, indicative of Cl-π interactions, disappears in the mixture. 

Concurrently, the first peak in the RDF of pure MET (at 0.28 nm) becomes more pronounced in 

the mixture. These results suggest that DCM’s Cl atoms are displaced to a larger distance from the 

nanosheets, while MET’s H-bond formation with the nanosheets’ periphery is enhanced. 

Consequently, we expect an accumulation of MET molecules in the periphery of the nanosheets. 

To verify this, solvent molecules in the first solvation layer are categorized into periphery and 

interior regions based on whether their COMs fall within 0.50 nm (for MET) or 0.53 nm (for DCM) 

from the respective regions of the nanosheets. These distances correspond to the first prominent 

peaks observed in the RDF curves, as detailed in Appendix, section C2. The results reveal that 

67% of the MET molecules in the first solvation layer are situated in the periphery, compared to 

only 47% for DCM. Consequently, MET constitutes 77% of the total molecules in the periphery 

region. The top inset of Figure 5.9b provides a snapshot of the first solvation layer, clearly 

illustrating the dominance of MET, especially in the periphery. 

In addition, a MET molecule can form H-bonds with other MET molecules. As shown in 

the bottom inset of Figure 5.9b, which highlights the H-bond network of MET with itself (rather 

than with the nanosheets), MET’s H-bond network begins at the periphery and extends into the 

interior. This H-bond network contributes to the dominant occupation of the solvation layers by 

the MET molecules, not only in the periphery but also in the interior. MET molecules remain 

highly mobile due to their small MW, thus the H-bond network is dynamic and there are frequent 
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exchanges between MET molecules in the first solvation layer and outside. However, the H-bond 

network is stable with balanced H-bond breaking and reforming, ensuring the dominant presence 

of MET in the vicinity of the nanosheets. This is why Figure 5.7a shows prevalent occupation of 

all three solvation layers by MET, in contrast to NMP which, being higher immobile, becomes less 

dominant in the second or third solvation layers. 

5.3.5. Application: eco-friendly LPE with water-organic solvent mixtures 

Exploring cost-effective and environmentally-friendly methods for the LPE of g-C3N4, a 

natural option is to consider water as a solvent. However, water is known to be a poor performer 

for g-C3N4 LPE, with ΔGexf reaching 119.5 kJ/mol⋅nm² [10], the highest among all solvents that 

we have simulated. With the discovery of dominance of one solvent in a binary mixture, it is of 

interest to see if water can be added to an organic solvent with only minor deterioration of the LPE 

performance. To achieve this, we conducted a series of MD simulation, each 20 ns long and 

contained a single nanosheet equilibrated in 25 common organic solvents (listed in Appendix C, 

Section C4)— either in pure form or mixed with water in a volumetric ratio of 1:3, where water 

constitutes 25% and the organic solvent 75%. These organic solvents are commonly used in the 

LPE of layered nanomaterials and are miscible with water. From the insights gained earlier, we 

assess the efficacy of the binary mixture based on a ratio (β) that quantifies the dominance of the 

organic solvent molecular near the nanosheet. 

 β =

            (
𝑛𝑂𝑆

𝑛𝑊
)

𝐹𝑖𝑟𝑠𝑡 𝑙𝑎𝑦𝑒𝑟

 (
𝑛𝑂𝑆

𝑛𝑊
)

𝐵𝑢𝑙𝑘

 
(5.6) 

 

where 𝑛𝑂𝑆 and 𝑛𝑊 are the number of organic solvent and water molecules, respectively, and the 

subscripts indicate whether the measurement is done in the first solvation layer or for the bulk. A 

larger β indicates greater dominance of the organic solvent in the first solvation layer.  

Our findings indicate that none of the systems demonstrates water as the dominant solvent, 

suggesting that mixing organic solvents with water consistently exhibits above-par performance. 

Notably, three organic solvents—IPA, MSA, and EtOH—emerge as candidates potentially 

dominating their mixtures with water. PMF results (Figure 5.10a) further show the extent of their 

dominance. In particular, when mixed with water IPA is found to significantly reduce the ΔGexf 
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value towards itself, with ΔGexf of the mixture only 16.3% higher than that of pure IPA. RDF of 

IPA oxygen around nitrogen atoms of the nanosheets (Figure 5.10b) shows that compared to pure 

IPA, the lone-pair π interactions in IPA:water mixture not only occur at shorter distances (moving 

from 0.38 nm to 0.35 nm) but also have greater intensities. Snapshot of the first solvation layer 

(inset of Figure 5.10b) also reveals that IPA molecules dominate both the interior and periphery 

of the nanosheet, displacing water molecules out of the first solvation layer. 

Our results align well with experimental studies on various 2D layered nanomaterials, 

which commonly report the highest nanosheet concentrations using IPA-water mixtures [8,9,32] 

or ethanol-water mixtures [7,33–35]. Additionally, our results recommend MSA as another solvent 

to be considered for mixing with water. Adopting water-inclusive solvent systems offers a strategy 

for scaling up nanomaterial production, reducing reliance on costly solvents, and aligning with 

environmental sustainability goals. Consequently, this approach promises broader adoption of g-

C3N4 nanosheets in diverse applications, from energy storage to environmental remediation. 

 

Figure 5.10. (a) ΔGexf for three organic solvents and their mixture with water. ΔGexf for pure water 

is also shown for comparison. (b) RDF of IPA oxygen around nitrogen atoms of the nanosheet, in 

pure IPA and in IPA:water mixture. Inset show a snapshot of the first solvation layer at t = 20 ns 

where the IPA and water molecules are shown with green and red color, respectively. 
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5.4. Discussion 

ML modeling and MD simulations reveal that when two solvents are combined to create a 

binary mixture, their ΔGexf for g-C3N4 nanosheets can significantly deviate from the arithmetic 

average of ΔGexf of the individual components. The derivation is stronger when the arithmetic 

average is very large or very small. In these situations, one solvent is often found to have prevalent 

presence in the vicinity of the nanosheets and consequently dominate the LPE performance of the 

binary mixture. This can skew ΔGexf of the binary mixture towards the “good” solvent (if the 

dominant solvent has low ΔGexf, for example NMP in the NMP:CH mixture) or the “bad” solvent 

(if the dominant solvent has high ΔGexf, for example MET in the MET:DCM mixture). 

The correlation between ΔGexf and solvent mobility, identified in our previous work [10], 

is reaffirmed in this study: higher solvent mobility in the first solvation layer leads to higher ΔGexf 

and poorer LPE performance. On the other hand, the relationship between solvent mobility and 

dominance near the nanosheets is more intricate. In the case of the NMP:CH mixture, NMP, being 

a more polar solvent, demonstrates stronger anchoring to the nanosheets through hydrogen 

bonding and lone-pair π interactions, both of which are absent in the non-polar CH. This strong 

anchoring, coupled with the higher MW of NMP, results in lower mobility for NMP, thereby 

establishing its dominance in the mixture. In contrast, for the MET:DCM mixture, both solvents 

are polar. MET shows anchoring to both periphery and interior of the nanosheets. However, this 

is counterbalanced by MET's lower MW. DCM, while only anchoring to the interior, has a higher 

MW, resulting in overall lower mobility. Despite this, the mobility difference between DCM and 

MET is not as pronounced as that between NMP and CH. The ability of MET to form a dynamic 

yet stable H-bond network, extending from the periphery to the interior, enables the prevalence of 

MET in the solvation layers around the nanosheets.  

Our results underscore that molecular polarity, and similarly surface tension, alone does 

not dictate solvent-nanosheet interactions or solvent mobility. Halim et al. [33] provided insights 

into this aspect by demonstrating that larger molecule size of the cosolvent significantly enhances 

exfoliation yield through steric repulsion, which prevents the restacking of exfoliated layers. Their 

study focused on solvent systems composed of water mixed with different alcohols—MET, 

ethanol, IPA, and t-butyl alcohol. Their findings are in line with ours where solvents with higher 

MW usually having lower mobility and hence lower ΔGexf. Water, for instance, has high polarity 
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but also high mobility due to its small MW, and exhibits poor LPE performance. Results from this 

study therefore challenge existing, largely surface tension based, solvent selection criteria for LPE, 

and emphasize the importance of molecular details in the solvation layers around the nanosheets. 

 

5.5. Conclusion 

This study elucidates the intricate molecular mechanics governing the performance of binary 

solvent mixtures in the liquid-phase exfoliation (LPE) of graphitic carbon nitride (g-C3N4) 

nanosheets. By integrating molecular dynamics simulations with machine learning predictions, we 

demonstrate that the performance of binary solvent systems can be significantly influenced by the 

dominance of one solvent, which can lead to above-par or sub-par LPE performance. This 

dominance is dictated by the ability of certain solvents to occupy the first solvation layer, their 

interaction strength with g-C3N4 nanosheets, and the resulting molecular orientation and mobility. 

Insights from this study suggests a novel strategy for optimizing solvent mixtures, and particularly 

the potential for employing more environmentally friendly and cost-effective solvent systems, 

such as water-organic solvent mixtures, without compromising exfoliation performance.  
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6. Chapter 6: Molecular Dynamics Analysis 

on Liquid-Phase Exfoliation of 

Functionalized Graphitic Carbon Nitride 
 

6.1. Introduction 

g-C3N4 has emerged as a versatile 2D material with remarkable potential in various 

applications such as photocatalysis [1], energy conversion [2], and environmental remediation [3]. 

Its intrinsic properties, including high chemical stability, metal-free composition, and visible-light-

responsive photocatalytic activity, position g-C3N4 as a promising candidate for advancing these 

technologies [4]. Pristine g-C3N4 faces several inherent limitations, such as relatively low specific 

surface area compared to other 2D materials like graphene, rapid charge recombination, limited 

light absorption range, and poor dispersibility in both aqueous and organic mediums [5]. Also 

because of the poor dispersibility, the scalable production of high-quality g-C3N4 nanosheets 

remains a significant challenge, impeding their widespread industrial application. To overcome 

these issues, chemical functionalization has emerged as a valuable strategy to modify and enhance 

the synthesis and properties of g-C3N4, thereby expanding its range of applications [6]. 

Functionalization of g-C3N4 with groups such as sulfonic (SO3H) [7], carboxyl (COOH) 

[8], amine (NH2) [9], hydroxyl (OH) [10], and aldehyde (CHO) [11] has been shown to 

significantly enhance various properties of g-C3N4, including photocatalytic efficiency, charge 

separation, and chemical stability. These functional groups can introduce additional active sites, 

improve electronic properties, and increase the hydrophilicity of g-C3N4, thereby broadening its 

applicability in diverse fields such as environmental remediation, energy conversion, and sensor 

technology [6]. For example, Yousefi et al. [10] demonstrated that oxidized g-C3N4 nanosheets are 

effective adsorbents for organic dyes and tetracycline in water remediation. These oxidized 

materials showed high adsorption capacities, 70-600 mg/g for organic dyes and 895 mg/g for 

tetracycline, surpassing non-oxidized counterparts. The enhanced adsorption was attributed to the 

introduction of oxygen-containing groups, improving interactions with adsorbates and making 

these materials promising for water purification applications. 
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 Furthermore, functionalization has been shown to lead to better dispersion of g-C3N4 in 

solvents, which is crucial for processes like LPE [4]. LPE involves dispersing bulk g-C3N4 in a 

liquid medium followed by applying ultrasonic energy to overcome the van der Waals interactions 

between layers. The choice of solvent is crucial in this process, as it directly influences the 

efficiency of exfoliation and the stability of the resulting nanosheets in dispersion [12]. When 

functionalization is taken into account, finding an optimal solvent becomes even more complex 

due to the varied interactions between different functional groups and solvents. 

The effect of functionalization on LPE for some 2D layered materials, such as graphene, 

has been extensively studied. For example, Haar et al. [13] explored the impact of functionalization 

on the LPE of graphite into single- and few-layer graphene using alkanes terminated with various 

functional groups, including COOH, OH, and NH2. Their study revealed that the type of functional 

group attached to the alkanes significantly influenced the exfoliation yield (YW), defined as the 

ratio of exfoliated graphene weight to the initial graphite weight. Among the functional groups 

tested, COOH was particularly effective, leading to a ∼100% increase in YW when exfoliated in 

NMP. This enhanced performance was attributed to the strong dipole–dipole interactions 

facilitated by the COOH groups, which promoted better stabilization and dispersion of the 

graphene sheets in the solvent. 

LPE of functionalized g-C3N4 has been studied to a much less extent. Kumru et al. [7] 

investigated the enhancement of dispersibility of g-C3N4 particles in both aqueous and organic 

media using a one-pot grafting approach. They grafted functionalized olefinic molecules with low 

polymerization tendencies onto the g-C3N4 surface, which significantly improved its dispersibility 

while preserving its intrinsic properties. The study highlighted that functionalization with SO3H 

groups significantly enhanced the hydrophilicity of g-C3N4, resulting in rapid dispersion and 

increased solid content in water, achieving up to 10% solid content. The introduction of SO3H 

groups also led to more negative zeta potentials, indicating improved dispersion stability. 

Additionally, the research demonstrated that NH2 functionalization imparted pH-dependent 

dispersibility to g-C3N4 in aqueous media. The NH2-functionalized g-C3N4 dispersed uniformly 

under acidic conditions (pH = 4) but precipitated when the pH was increased to a basic range (pH 

= 9), allowing for reversible dispersion through reacidification. 

Chapter 3 [14] has shed light on the intricate mechanisms underlying the LPE of pristine 

g-C3N4 nanosheets. We demonstrated that the free energy of exfoliation (ΔGexf), defined as the 
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energy required to separate a unit area of two stacked nanosheets from their equilibrium distance, 

effectively quantifies the ease of exfoliation. Using MD-based PMF calculations, we revealed the 

correlations of ΔGexf with several solvent-nanosheet interaction metrics such as solvent mobility 

in the first solvation layer, H-bond lifetime, and the orientation of solvent molecules around the 

nanosheet [14]. Furthermore, ΔGexf is influenced by intensive properties of the solvents, including 

surface tension, dielectric constant, and density [15]. This comprehensive understanding enabled 

us to leverage MD data, supplemented with ML analysis, to predict effective solvents for LPE. 

Experimental validation through dispersibility tests confirmed the accuracy of our ML model. 

Building on these insights, we now turn our attention to functionalized g-C3N4 nanosheets. 

Specifically, we ask the following questions: can the same correlations and predictive 

capabilities be extended to functionalized variants? How can we use MD simulations to assist in 

solvent selection for functionalized g-C3N4 nanosheets? These questions underscore the need for 

systematic investigations to elucidate the molecular-level interactions between functionalized g-

C3N4 and solvents. Such investigations can provide valuable guidelines for optimizing the 

exfoliation process and enhancing the performance of g-C3N4-based applications. 

6.2. Methods 

6.2.1. Structures of functionalized g-C3N4 

The g-C3N4 nanosheet is constructed using tri-s-triazine-based (heptazine) units instead of 

s-triazine-based counterparts, since experimental and theoretical studies have reported that the 

heptazine g-C3N4 is more stable than the s-triazine-based g-C3N4 [16,17]. The model features an 

equilateral triangular sheet composed of 15 heptazine units, each side measuring 4.0 nm, as 

depicted in Figure 6.1a. This configuration serves as the baseline g-C3N4 model or pristine g-C3N4. 

Hydrogen atoms are added to the pristine g-C3N4 to saturate any unbonded nitrogen atoms, 

ensuring stability of the structure during the simulation. 

To investigate the effect of functional groups on LPE of g-C3N4, several common 

functional groups from the literature are selected: SO3H, COOH, NH2, OH, and CHO. The 

functionalization is carried out by uniformly placing 15 functional groups at the nanosheet 

periphery (Figure 6.1b-f). Functionalizing the periphery, as opposed to the inert basal planes, 

significantly enhances the material reactivity and accessibility for modifications, thereby 
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improving photocatalytic activities through better charge separation and extended light absorption 

capabilities [18,19]. For the liquid medium, DMF which is a common solvent for the LPE of g-

C3N4 [20] is used for all the systems. We recognize that the size of the nanosheets and the number 

of functional groups can affect the LPE performance and the overall properties of the nanosheets. 

For the purpose of this study, these variables are kept constant to focus solely on the effects of the 

functional groups. 

To describe the intra- and intermolecular interactions, the LigParGen and PolyParGen 

servers [21,22] are used to generate the necessary parameters. These parameters, which conform 

to the OPLS-AA force field [23], incorporate the Charge Model 5 [24] with a partial atomic charge 

(PAC) scaling factor of 1.20. The effectiveness and accuracy of these generated parameters have 

been substantiated in previous research [14,15]. 

 

Figure 6.1. The molecular structure of (a) pristine g-C3N4 and g-C3N4 functionalized with (b) 

sulfonic, (c) carboxyl, (d) amine, (e) hydroxyl, and (f) aldehyde. The atoms shown with green 

color are defined to form the “periphery” of the nanosheet. The remaining atoms are defined to 

belong to the “interior”. 
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6.2.1.1. Simulation details 

To evaluate ΔGexf, PMF is computed by separating two initially adjacent nanosheets along 

a predefined reaction coordinate. Building on insights from previous studies [14,15], the most 

viable pathway for LPE of g-C3N4 is identified as “shearing,” where one sheet glides over another 

while maintaining a parallel orientation. Consequently, the reaction coordinate is defined as the 

distance between the COMs of two adjacent nanosheets, varying from 0.35 nm to 3.8 nm by 

laterally shifting one nanosheet. US method [25] is employed to perform a series of restrained 

simulations, from which the PMF is derived using the WHAM [26]. For each functionalization, 

40 US windows are used, within which a harmonic biasing potential (force constant of 5000 

kJ/mol⋅nm²) is applied to the reaction coordinate. The PMF zero is set at the minimum value of 

the reaction coordinate. 

All simulations are performed using GROMACS software [27] (version 2022.3). For each 

US simulation where the reaction coordinate is restrained, the system undergoes energy 

minimization using the steepest descent method. This is followed by equilibration in an NpT 

ensemble for 200 ps, with temperature and pressure maintained at 300 K and 1 bar using the 

Berendsen thermostat (time constant = 0.2 ps) and barostat (time constant = 5 ps). A production 

run is then carried out for 10 ns, during which bond lengths involving hydrogen atoms are 

constrained using the LINCS algorithm. Temperature is maintained at 300 K with the Nosé-

Hoover thermostat (time constant = 0.1 ps), while isotropic pressure of 1 bar is controlled using 

the Parrinello-Rahman barostat (time constant = 1.0 ps). Periodic boundary conditions are applied 

in all three dimensions. Long-range electrostatic interactions are computed using the particle-mesh 

Ewald method, and short-range nonbonded interactions are assigned a cutoff radius of 1.2 nm. The 

equations of motion are integrated with a 2-fs time step during both equilibration and production 

stages. 

To investigate the dynamics of solvent molecules near the nanosheets, additional 

simulations are performed with a single layer (1L) or two stacked layers (2L) of nanosheets 

equilibrated in DMF. The simulation parameters, including thermostat and barostat settings, are 

identical to those described above. Each simulation is run for 20 ns, with data from the last 10 ns 

used for statistical analysis. 
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6.3. Results 

6.3.1. ΔGexf comparison for different functionalizations 

The PMF curves for pristine g-C3N4 and functionalized g-C3N4 with SO3H, COOH, NH2, 

OH, and CHO groups are shown in Figure 6.2a. For all systems except NH2, the PMF curves show 

a global minimum at approximately 0.5 nm, consistent with parallel-displaced π–π stacking—a 

configuration where the π-electron clouds of adjacent layers overlap but are slightly offset, 

allowing the two nanosheets to stabilize at this separation. However, the NH2 functionalized 

system does not exhibit a minimum and its curve is monotonic at short distances. This suggests 

that due to the presence of NH2 functional groups, the two nanosheets tend to adopt a face-to-face 

π–π stacking configuration. Additionally, the NH2 groups, with their lone pairs of electrons, form 

H-bonds with hydrogen atoms from other NH2 groups on the adjacent nanosheet, which averages 

to 3.6 H-bonds over a 10 ns simulation time. Both interactions provide a unique stabilization 

mechanism for stacked NH2 functionalized g-C3N4. 

All PMF curves reach a plateau around 3.50 nm, indicating negligible interaction between 

the nanosheets beyond this center-of-mass separation. The difference in PMF value between the 

global minimum and the plateau represents the free energy required to separate two stacked 

nanosheets from their equilibrium distance until they are no longer interacting, defined as ΔGexf. 

For instance, ΔGexf for the pristine system is shown in Figure 6.2a. For NH2, the PMF is simply 

calculated as the difference between the minimum PMF value and the plateau value. Among the 

functionalized g-C3N4 samples, SO3H exhibits the lowest ΔGexf, suggesting the highest 

enhancement in exfoliation efficiency compared to pristine g-C3N4. COOH, NH2, and OH also 

show reduced ΔGexf values. Interestingly, CHO shows a higher ΔGexf compared to pristine g-C3N4, 

indicating that functionalization with CHO does not enhance, but rather hinders the exfoliation 

process. These findings underscore the significant impact of functional groups on ΔGexf. To 

understand the molecular mechanisms at play, we now examine the mobility of solvent molecules 

around the nanosheets, as this factor is closely tied to the efficiency of the exfoliation process [14]. 
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Figure 6.2. (a) The PMF curves of pristine g-C3N4 and g-C3N4 functionalized with different groups. 

(b) The relationship between ΔGexf and Mave for 1L and 2L configurations of each type of 

nanosheet. 

 

6.3.2. Solvent mobility around nanosheets 

The solvent mobility, Mave, is defined as the average fraction of solvent molecules leaving 

the first solvation layer—the region within 0.5 nm of the nanosheets—over successive 0.5 ns 

increments during the last 10 ns of a 20 ns simulation. This involves defining the first solvation 

layer at t = 10 ns, calculating how many solvent molecules leave this layer after 0.5 ns, and 

repeating this process every 0.5 ns for 10 ns to obtain 20 mobility results, which are then averaged 

to determine the final Mave. Lower mobility suggests stronger solvent-nanosheet interactions, 

which could reduce the adhesion between layers of the 2D nanomaterials, making exfoliation 

easier. 

Mave is first calculated for 1L systems. Unlike our previous research on pristine systems, 

where there was a clear correlation between ΔGexf and Mave for different solvents, this correlation 

no longer holds when dealing with functionalized nanosheets in the same solvent. Recognizing 

that ΔGexf is determined from two initially stacked nanosheets, we extended our calculations to 

include Mave from 2L systems. The new calculations reveal a significant correction between Mave 

and ΔGexf for the 2L systems (Figure 6.2b). To understand this change, we first divide each 



139 

 

nanosheet into periphery and interior parts (refer to Figure 6.1a for the definition of both parts). A 

periphery-to-interior ratio (α) can then be defined as the ratio of the perimeter along the periphery 

to the area of the interior (details for calculating perimeter and area are provided in Appendix D 

Section D1). As we transition from 1L to 2L systems, α increases from 0.32 nm-1 to 0.64 nm-1, and 

because the functional groups are only located in the periphery, it is expected that the impact of 

functionalization on solvent-nanosheet and solvent-solvent interactions is manifested to a greater 

extent in the 2L system. The roles of functional groups are therefore best addressed by examining 

how these interactions evolve as α increases. 

A notable trend emerges when increasing α, i.e. when transitioning from 1L to 2L 

configurations (Figure 6.2b). For SO3H, COOH, NH2, and OH systems, Mave decreases; for pristine 

g-C3N4, Mave remains almost unchanged while for CHO, Mave increases. This suggests that adding 

more functional groups can enhance solvent-nanosheet interactions in some systems, while it may 

be detrimental in others. To unravel why certain functional groups lead to more stable solvation 

layers (lower Mave) compared to others, we divided Mave calculations into the periphery and interior 

regions. The periphery region includes solvent molecules within 0.5 nm of the periphery atoms, 

while the interior region includes solvent molecules within 0.5 nm of the nanosheet(s) but not in 

the periphery region. As shown in Figure 6.3, Mave values are generally lower in the interior region 

compared to the periphery for both α values. This can be attributed to stronger interactions between 

DMF and the interior part of the nanosheets through lone-pair–π interactions [28]—where the lone 

pair of electrons on the oxygen in DMF interacts with the π-electron clouds of the aromatic 

structures of the nanosheets. These interactions are absent in the periphery, leading to higher Mave 

values.  

Although Mave values are higher in the periphery for all systems, this does not imply that 

the periphery is less important than the interior in influencing solvent-nanosheet interactions. In 

fact, the periphery harbors significantly more solvent molecules than the interior (Figure 6.3). For 

instance, in the SO3H system, the average number of solvent molecules remaining in the periphery 

after 0.5 ns is 68.25, compared to 39.90 in the interior. This greater number of solvent molecules 

in the periphery suggests that the interactions occurring at the edges of the nanosheets can be 

crucial for the overall stability and dispersibility of the functionalized g-C3N4. 

Comparing the 1L and 2L systems in Figure 6.3, it is observed that the SO3H and COOH 

systems show a decrease in Mave for both periphery and interior regions when α increases, with the 
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periphery experiencing a more pronounced decrease. This trend contrasts with pristine g-C3N4, 

which shows almost no change in Mave for either region. NH2 and OH systems, exhibit little to no 

change in the interior region but a considerable decrease in the periphery region. The CHO system, 

however, behaves uniquely: while it shows a decrease in Mave in the interior region, the periphery 

experiences an increase. The increased mobility in the periphery for the CHO system outweighs 

the improvement in the interior, leading to an overall increase in solvent mobility for the first 

solvation layer when increasing α (Figure 6.2b). This striking disparity reaffirms the substantial 

influence the periphery can have on the overall solvent mobility and, consequently, ΔGexf. Hence, 

we ask the questions: how do the functional groups interact with the solvent in the periphery 

region? Do they impact the interactions in the interior? Do they also affect solvent-solvent and 

nanosheet-nanosheet interactions? 

 

 

Figure 6.3. Mave and number of solvent molecules in the periphery and interior regions of the 

first solvation layer, for both 1L and 2L configurations. 

 



141 

 

6.3.3. Functionalization impacts interactions in both periphery and interior regions 

We first focus on the interactions occurring in the periphery region, where functional 

groups are present. Narrowing our analysis to three systems with distinct ΔGexf values, SO3H, 

pristine, and CHO, we can generate a more in-depth understanding on these effects. Again, 

analysis will be conducted for both 1L and 2L systems, to monitor the changes upon increasing 

the presence of the functional groups (α from 0.32 to 0.64 nm-1). 

  Since the periphery is the only region where DMF molecules can form H-bonds with the 

nanosheets, a detailed analysis is conducted on the number of H-bonds and their lifetimes (for the 

calculation of H-bond lifetime, refer to Appendix D section D3), as these are crucial for solvent 

mobility in the periphery. Figure 6.4a plots the H-bond lifetime vs. Mave. The number of H-bonds 

(inset of Figure 6.4a) in the pristine system is comparable to SO3H for both 1L and 2L, but the H-

bond lifetime is significantly shorter. This likely results from the fact that the nature of the H-

bonds differs between the SO3H-functionalized and pristine nanosheets. The SO3H functional 

groups form O−H···:O H-bonds, which are stronger (21 kJ/mol) [29], while the pristine nanosheet 

forms N−H···:O H-bonds, which are weaker (8 kJ/mol) [29]. For the CHO system, although its H-

bond lifetime is comparable to SO3H, only a few H-bonds are formed with DMF (inset of Figure 

6.4a), leads to higher Mave values. As α increases, the H-bond lifetime for the pristine and CHO-

functionalized nanosheets remains constant, while the SO3H system exhibits a significant increase 

in H-bond lifetime, underscoring the superior impact of SO3H in stabilizing H-bonds. 
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Figure 6.4. (a) Relationship between the H-bond lifetime and Mave in 1L and 2L configurations. 

Inset shows the number of H-bonds formed with DMF. (b) RDF curves of oxygen in DMF around 

COM of functional groups for both 1L and 2L configurations. (c) RDF curves of oxygen in DMF 

around interior atoms of the nanosheet for both 1L and 2L configurations. 

 

To delve deeper into the intricate interactions between DMF and the functional groups, the 

RDF of DMF oxygen around the COM of the functional groups is examined. For pristine g-C3N4, 

which lacks functional groups, the hydrogens around the nanosheet are considered as reference 

points for RDF calculation. Figure 6.4b presents these results, focusing on distances up to 0.5 nm 

to highlight where most interactions occur. The first peak in the RDFs (near 0.2 nm) corresponds 

to the H-bonds between DMF molecules and the nanosheet periphery. It is significantly higher for 

SO3H and pristine systems compared to CHO, consistent with the greater number of H-bonds seen 

in Figure 6.4a. The second peak (between 0.2 and 0.3 nm) represents the interaction of DMF 

oxygen with oxygen atoms in the SO3H or CHO groups (absent in pristine). The third peak in the 

RDFs of SO3H and CHO systems (between 0.3 and 0.4 nm) corresponds to the interactions of 

DMF oxygen with sulfur in SO3H or carbon in CHO groups. 

When comparing 1L to 2L systems, an intriguing pattern emerges. As α increases, for 

SO3H, all RDF peaks shift to a closer distance, and the peak values increase. This suggests that the 

presence of more SO3H functional groups enhance the intensity of solvent-nanosheet interactions 

by reducing the distance between oxygen in DMF and all atoms in the functional groups. 

Conversely, for CHO, the first RDF peak moves to a larger distance, and the RDF values at all 

peaks decrease, indicating diminished solvent-nanosheet interactions. These results correlate well 

with the observed changes in Mave for SO3H and CHO in the periphery region (Figure 6.3), 

suggesting the significance of the interactions between oxygen in DMF and the functional groups. 

Referring back to Figure 6.3, as we transition from 1L to 2L systems, Mave in the interior 

region decreases for both SO3H and CHO. To elucidate the underlying interactions, we examine 

the RDF curves of DMF oxygen around the atoms in the interior part of the nanosheets (Figure 

6.4c). The systems with functional groups (SO3H, CHO) not only produce higher first peaks, these 

peaks also appear at shorter distances compared to the pristine system, which indicates stronger 

attraction between DMF molecules and the interior of the functionalized nanosheets through lone-

pair π interactions. As α increases, a clear rise in the first RDF peak is observed for both SO3H and 
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CHO systems, which aligns with the decrease in Mave in the interior region. Despite the reduced 

Mave in the interior region of CHO, the overall Mave increases because of the significantly greater 

number of solvent molecules in the periphery region (Figure 6.3). The pristine system does not 

exhibit significant changes in peak positions or values regardless of the region of investigation 

(Figure 6.4b for periphery, Figure 6.4c for interior), which aligns with its lack of change in Mave 

as α varies (Figure 6.2b and Figure 6.3).  

The above findings illustrate that the functional groups not only affect solvent-nanosheet 

interactions in the periphery where they are located but also influence these interactions in the 

interior. To further understand these observations, we need to examine solvent-solvent interactions 

and how functional groups might modify these interactions. 

6.3.4. Functionalization impacts nanosheet dipole moment 

In DMF, a dipole moment exists which directs from N towards O, with N being partially 

positive and O being partially negative [30]. The dipole-dipole interactions among DMF molecules 

are closely related to the formation of H-bonds between DMF molecules. Previous research by 

Zhang et al. [31] supports the existence of such interactions, showing that weak H-bonds form 

between the oxygen of one DMF molecule and the hydrogen of another. On the other hand, the 

dipole moment of pristine g-C3N4 is relatively low, limiting its interaction capabilities with 

surrounding DMF molecules. For instance, Kamel et al. reported that pristine g-C3N4 has a dipole 

moment of 3.43 Debye in an aqueous media, but functionalization with chitosan boosts it to 9.14 

Debye in aqueous media [32]. Similarly, Asif et al. [33] demonstrated that pristine g-C3N4 has a 

dipole moment of 1.82 Debye in the gas phase, which increases to 3.58 Debye with lonidamine 

functionalization in the gas phase and further to 6.14 Debye in water. By examining the partial 

atomic charges (PACs) in SO3H, we find that the PACs of S, O, and N (connected to S) are 0.82, 

-0.52, and -0.71, respectively. This significant charge difference propagates throughout the 

nanosheet, leading to average PACs of the C and N atoms in the nanosheet being 0.70 and -0.57, 

respectively. In contrast, the CHO system has much lower PACs, with C, O, and N (connected to 

C) having values of 0.28, -0.34, and -0.28, respectively, and average PACs of the C and N atoms 

in the nanosheet being only 0.40 and -0.35. For the pristine system, these values are 0.43 and -

0.39, respectively.  

The presence of dipole moment in the nanosheet can be analogized to the creation of an 

internal electric field within the material. Bai et al. discussed how fluorine doping in g-C3N4 
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induces a surface polarization electric field due to the high electronegativity of fluorine, which 

causes a redistribution of electron density and creates an uneven charge distribution [34]. This 

phenomenon is not unique to fluorine; similar effects can be expected from other functional groups 

that introduce polar bonds and non-uniform charge distributions. An internal electric field, akin to 

an externally applied one, influences the interactions within the surrounding medium. Gao et al. 

explored the response of DMF to an external electric field and found that such a field disrupt H-

bonding between DMF molecules, leading to significant structural reorganization [30]. This 

reorganization includes changes in O–O, O–C, O–H, and C–C interactions, with the electric field 

causing the H-bonds, particularly the already weak -HC=O⋯HC=O interactions, to become further 

weakened or eliminated. 

To assess the effect of dipole moment of the nanosheet on DMF dipole-dipole interactions, 

the distance distribution between nitrogen atoms from one DMF molecule and oxygen atoms from 

another DMF molecule is analyzed, focusing on DMF molecules in the first solvation layer as 

compared to those in the bulk. Figure 6.5a-c depict these distance distributions for SO3H, pristine, 

and CHO systems, respectively, with both 1L and 2L configurations. As α increases, the SO3H 

system shows more pronounced peaks in shorter distances, suggesting stronger interactions among 

DMF molecules in the 2L configuration. Conversely, for the CHO system, the distributions show 

more peaks at larger N-O distances in the 2L configuration, indicating weaker solvent-solvent 

interactions as α increases. For the pristine system, no significant change is observed with an 

increase in α. The bulk distribution, shown for comparison in each figure, remains consistent. 

These results suggest that increasing α enhances the electrostatic interactions among DMF 

molecules in the first solvation layer in the presence of the SO3H functional groups.  

The orientation of DMF molecules under the influence of the nanosheet dipole moment is 

examined by calculating the angle between the dipole moment (from N to O) of each DMF 

molecule within 0.5 nm of the COM of each functional group and the closest dipole moment in 

the periphery region of the nanosheet. The dipole moments from the nanosheet are S to N for 

SO3H, H to N for pristine, and C (from the functional group) to N for CHO, where the N atoms 

are bonded to the S, H, or C atoms as illustrated in inset of Figure 6.6a. The results, shown in 

Figure 6.6a, reveal a bimodal angle distribution for SO3H and pristine systems, with peaks around 

30° and 90°. Conversely, the CHO system exhibits a normal distribution with a peak around 90°. 

For angles greater than 110°, all systems display similar distributions, but differences emerge at 
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smaller angles. Smaller angles correspond to the alignment of the DMF dipole moment with the 

dipole moment of the nanosheet, and stronger dipole-dipole interactions. As α increases, the peak 

at 30° for SO3H becomes more pronounced, indicating enhanced alignment of DMF and nanosheet 

dipole moments. In contrast, CHO shows a decreased probability at smaller angles as α increases, 

suggesting weaker dipole-dipole interactions. Pristine g-C3N4 experiences minimal change with 

increasing α.  

Consolidating the results on both distance and angle distributions, it becomes evident that 

adding more layers of SO3H functionalized nanosheets enhances dipole-dipole interactions in 

DMF while adding more layers of CHO functionalized nanosheets weakens these interactions. The 

SO3H groups, with their strong polar nature, also attract DMF molecules. This, along with the 

increased solvent-solvent attraction, leads to a more stable solvation layer not only around the 

periphery but also near the interior, reducing the free energy required for exfoliation. Conversely, 

the functionalization with CHO groups results in a lower dipole moment compared to pristine g-

C3N4, which diminishes the dipole-dipole interactions among DMF molecules as well as between 

DMF and the nanosheet, making the solvation layer less stable and thereby increasing the free 

energy required for exfoliation. 

Then enhanced dipole-dipole interaction by SO3H functionalization is manifested through 

the rotation of the top layer relative to the bottom layer, as depicted in Figure 6.6b. This rotation 

facilitates the alignment of DMF and nanosheet dipole moments, and even causes the two 

nanosheets to slightly separate near the vertices, allowing DMF molecules to intercalate between 

them (Figure 6.6c). This intercalation is beneficial for exfoliation as it generates a steric effect, 

shielding nanosheet-nanosheet interactions. Such a behavior is absent in both pristine and CHO 

systems. 
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Figure 6.5. Probability distribution for the distance between nitrogen and oxygen atoms of different 

DMF molecules in the first solvation layer and bulk for (a) SO3H, (b) Pristine, and (c) CHO 

systems. 
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Figure 6.6. (a) Probability distribution for the angle between DMF dipole moments and the nearest 

dipole moment in the periphery region of the nanosheet. (b) Top view of equilibrated nanosheets 

shown in (c) - DMF molecules are omitted for clarity. (c) Molecular configurations for 2L systems 

along with the first solvation layer for SO3H, pristine, and CHO. Inset in (a) shows an example for 

the angle definition. 

 

6.4. Discussion 

Building on the trend observed when transitioning from 1L to 2L systems, we extended 

our PMF calculations to explore the effect of increasing the number of layers from 2 to 3. This 

approach involved exfoliating the top layer from the two bottom layers, enabling us to investigate 

whether the observed trend continues and to assess the impact of additional functional groups on 

LPE. The results are presented in Figure 6.7a. As anticipated, the SO3H system demonstrates 

significant improvements when increasing from 2L to 3L. The ΔGexf values decreases by 

approximately 30%, indicating enhanced exfoliation efficiency with more layers. In contrast, the 

pristine system shows no significant change, while the CHO system exhibits a 22% increase in 

ΔGexf, highlighting a deterioration in exfoliation performance. These results underscore the pivotal 
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role of functionalization in improving the exfoliation process. Functional groups such as SO3H not 

only enhance exfoliation efficiency but also contribute to the stabilization of the nanosheets, as 

previously reported in the literature [7]. 

 

 

Figure 6.7. (a) ΔGexf values for 2L and 3L SO3H, Pristine, and CHO systems. (b) Histogram of 

Mave values for 50 common organic solvents tested with different functional groups in a 2L system. 
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Given the limited research on solvent selection for LPE in the presence of functional 

groups, and the absence of comprehensive computational studies, we attempt to provide 

recommendations that may assist experimentalists in choosing the optimal solvent for their specific 

functionalized g-C3N4 systems. Based on the insights gained earlier, we selected 50 common 

organic solvents (listed in Appendix D Section D2), equilibrated the 2L system for each 

functionalization over 20 ns, and calculated Mave for the last 10 ns. The histogram of these results 

is presented in Figure 6.7b. SO3H, COOH, and NH2 functional groups have a larger number of 

solvents with lower Mave values, suggesting their greater interaction with a range of organic 

solvents. In contrast, the CHO and OH functional groups show a narrower range of effective 

solvents, highlighting the challenges in finding suitable solvents for these systems. To provide 

practical recommendations, we identified the top five solvents with the lowest Mave for each 

functional group, as summarized in Table 6.1. These solvents are expected to enhance the 

exfoliation efficiency for the respective functional groups. 

 

Table 6.1. Best five solvents based on Mave results for each functional group. 

Functional group Best five solvents 

SO3H NVP, Phenoxybenzene, Triethyl phosphate, NMP, m-Cresol 

COOH Quinoline, BD, NVP, Acetamide, Formamide 

NH2 NMP, NVP, 1,2-Dibromopropane, BD, Triethyl phosphate 

OH Acetamide, Cyclohexanone, NMP, MSA, BD 

CHO Phenoxybenzene, BD, NMP, Formamide, MSA 

 

6.5. Conclusion 

This study explores the impact of chemical functionalization on the liquid-phase 

exfoliation (LPE) efficiency of graphitic carbon nitride (g-C3N4) nanosheets through molecular 

dynamics (MD) simulations. Functional groups sulfonic (SO3H), carboxyl (COOH), amine (NH2), 

hydroxyl (OH), and aldehyde (CHO) are evaluated. Our findings reveal that functionalization can 

either enhance or hinder exfoliation efficiency compared with pristine g-C3N4 nanosheet. 

Specifically, SO3H and COOH groups significantly improve exfoliation by reducing the free 
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energy of exfoliation (ΔGexf) and promoting stable solvent-nanosheet interactions. SO3H groups 

exhibited the most substantial enhancement, as they create strong dipole-dipole interactions and 

stable hydrogen bonds, decrease solvent mobility, and increase interaction strength around the 

nanosheets. COOH and NH2 groups also show positive effects, though to a lesser extent. On the 

other hand, CHO functionalization increases the free energy of exfoliation by weakening solvent-

nanosheet interactions and increasing solvent mobility. These varied outcomes underscore the 

complexity of solvent-functional group interactions. By understanding the interactions between 

functionalized g-C3N4 and solvents, we propose strategies for selecting solvents that can 

potentially facilitate scalable production and broaden the application of g-C3N4-based materials in 

various technological fields. 
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7. Chapter 7: Conclusion and Future 

Perspective 
 

7.1. Overall conclusions 

This thesis presents a comprehensive investigation into the liquid-phase exfoliation (LPE) 

of pristine and functionalized graphitic carbon nitride (g-C3N4) nanosheets, emphasizing the 

molecular mechanisms and optimization strategies through advanced simulations and machine 

learning techniques. The research is structured into four main chapters, each addressing different 

aspects of the exfoliation process, from foundational principles to practical applications and 

solvent recommendations. 

Chapter 3 explores the LPE of g-C3N4 using molecular dynamics (MD) simulations. The 

study identifies the most probable path for the exfoliation process and evaluates the free energy of 

exfoliation in nine common solvents categorized into three groups. Results demonstrate that the 

solvation free energy of a single g-C3N4 nanosheet correlates directly with the free energy of 

exfoliation. Solvents such as NMP and DMF produce high magnitude of solvation free energies 

and stable adsorption layers, making them particularly effective for LPE. This chapter establishes 

the foundational principles for solvent selection, emphasizing the critical role of solvent-nanosheet 

interactions in determining exfoliation efficiency. 

Chapter 4 integrates MD simulations with machine learning (ML) to predict the free 

energies of exfoliation and solvation for g-C3N4 in a broader range of solvents. A comprehensive 

dataset of 49 solvents is created, and various ML algorithms are employed to identify key solvent 

descriptors influencing the LPE process. The extra-trees regressor emerges as the most accurate 

model. The ML model recommends several promising solvents, including benzyl alcohol (Bn) and 

methanesulfonic acid (MSA), which had not previously been used for LPE. Experimental 

validation confirms the efficacy of these solvents, demonstrating the practical utility of the ML 

model in guiding solvent selection. This chapter showcases the potential of ML to streamline the 

solvent selection process, enhancing efficiency and reducing reliance on extensive MD 

simulations. 
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Chapter 5 investigates the performance of binary solvent mixtures in the LPE of g-C3N4, 

revealing that one component can dominate the exfoliation process. MD simulations and ML 

predictions examine the free energy of exfoliation in 171 pure solvents and 14,535 binary mixtures. 

Certain binary mixtures, such as NMP:Cyclohexane (NMP:CH) and Methanol:Dichloromethane 

(MET:DCM), demonstrate a distinct behavior where one solvent significantly influences the LPE 

performance. NMP dominates in the NMP:CH mixture, showing good LPE performance, while 

MET dominates in the MET:DCM mixture, resulting in poor performance. Additionally, the study 

finds that certain solvents like IPA, when mixed with water at 25%, can achieve free energies of 

exfoliation close to those of pure organic solvents. This insight provides experimentalists with 

valuable guidance for selecting solvent mixtures, potentially reducing costs and environmental 

impact by incorporating water into the mixtures. 

Chapter 6 examines the impact of chemical functionalization on the LPE efficiency of g-

C3N4 nanosheets. MD simulations evaluate the effects of various functional groups, including 

sulfonic (SO3H), carboxyl (COOH), amine (NH2), hydroxyl (OH), and aldehyde (CHO), on the 

exfoliation process. The findings reveal that functionalization can significantly enhance or hinder 

exfoliation. SO3H and COOH groups improve exfoliation by reducing the free energy of 

exfoliation and promoting stable solvent-sheet interactions, while CHO groups hinder the process 

by weakening these interactions. The chapter also recommends effective solvents for each 

functional group based on solvent mobility calculations. This research discusses the complexity of 

solvent-functional group interactions and offers practical guidelines for optimizing the production 

of functionalized g-C3N4 nanosheets. 

Overall, this thesis contributes to the field of nanomaterial synthesis by providing a 

detailed understanding of molecular interactions in the LPE of g-C3N4 nanosheets. The integration 

of MD simulations and ML techniques offers a powerful approach to facilitate solvent selection, 

enabling the identification of optimal solvents and solvent mixtures for efficient and scalable 

production. The insights gained can be applied to other two-dimensional materials, broadening the 

scope of applications and advancing the development of high-performance nanomaterials for 

energy conversion, environmental remediation, and other technological fields. 
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7.2. Future perspectives 

7.2.1. Enhancing realism in simulations 

To bring simulations closer to the actual LPE process, future research could explore areas 

beyond potential of mean force (PMF) calculations for two or three nanosheets. Simulating 

scenarios with multiple layers of g-C3N4 of larger size and/or incorporating the mechanical effects 

of sonication could provide more realistic insights. Less computationally expensive approaches, 

such as coarse-grained molecular dynamics or mesoscale modeling, could also be considered to 

expand the database of solvent efficacy. These simulations can be calibrated to correlate with 

experimental metrics like nanosheet concentration and yield, enabling a more comprehensive 

evaluation of solvent performance. 

7.2.2. Advancing computational and experimental integration 

Integrating computational and experimental approaches has shown great promise in this 

research. Future efforts could aim to create a seamless feedback loop between simulation and 

experimentation. Real-time data sharing can enable immediate refinement of models and 

experimental protocols, fostering iterative improvements. The development of high-throughput 

experimental setups, combined with automated data analysis pipelines, can accelerate the 

identification of optimal solvents and functionalization methods. Multi-scale modeling techniques 

could be further developed to link molecular-level interactions with macroscopic behaviors, 

providing a holistic understanding of the LPE process. 

7.2.3. Exploring solvent mixtures 

The exploration of binary and tertiary solvent mixtures offers significant potential for 

enhancing LPE efficiency. Creating a comprehensive dataset of these mixtures will enable the 

development of robust ML models to predict solvent performance. Identifying solvents with 

synergistic effects or those that overpower water in mixtures can pave the way for more 

environmentally friendly "green" LPE processes. Future research could focus on systematically 

studying the interactions within these mixtures to uncover new insights and optimize solvent 

combinations. 
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7.2.4. Exploring functional group synergies 

The influence of a few functional groups on g-C3N4 exfoliation has been discussed. Future 

studies could investigate the synergistic effects of having multiple functional groups on the same 

nanosheet. Co-functionalization with groups that enhance both exfoliation efficiency and 

suspension stability could lead to significant improvements. Advanced characterization 

techniques, such as in-situ spectroscopy and high-resolution electron microscopy, can provide 

detailed observations of these synergies at the molecular level. Additionally, exploring the impact 

of functional group density and distribution will offer valuable insights for optimizing 

functionalization strategies. 

7.2.5. Extending methodologies to other 2D materials 

The methodologies developed for g-C3N4 can be extended to other 2D materials. 

Investigating the LPE processes of materials such as graphene, boron nitride, and transition metal 

dichalcogenides using similar ML-assisted simulations and experimental integrations can broaden 

the applicability of the findings. This comparative approach will help identify universal principles 

as well as material-specific strategies, advancing the field of 2D material synthesis and application. 
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9. Appendix A 

Supporting Information for Chapter 3 

 

A1. Effect of sheet size 

A series of simulations were conducted with different sheet size in three solvents (MET, 

THF and DMF). Table A1 shows the simulated models, which consist of 6, 10, 15 and 21 heptazine 

units, respectively. Figure A1 a shows the PMF data for THF, where the curves for 15 and 21 units 

almost overlap with each other.  Figure A1b shows that regardless of the type of solvent, ΔGexf 

reaches a plateau as the number of units increases to 15. This suggests that the effect sheet size is 

negligible for nanosheets containing over 15 units. 
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Table A1. Models of g-C3N4 nanosheets simulated to study the effect of sheet size 

Number of 

heptazine units 

Surface area 

(nm2) 
Structure 

6 2.37 

 

10 4.00 

 

15 6.12 

 

21 8.65 
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Figure A1. (a) PMF curves in THF for the exfoliation of two g-C3N4 nanosheets with different 

size. (b) ΔGexf in three different solvents as a function of number of units. 

 

A2. Validation of force field parameters 

Figure A2 and Table A2 compares the bond angle, bond length, surface energy, and 

hydration free energy of g-C3N4 nanosheet obtained from molecular dynamics (MD) and density 

functional theory (DFT) calculations. Geometry optimization in DFT was carried out using the 

Gaussian 16 program, with the B3LYP hybrid exchange–correlation functional and the 6-

311++G(d,p) basis set [1,2]. In Table A2, the free energy of hydration evaluated by DFT was 

obtained using the polarizable continuum model (PCM) and the integral equation formalism [3]. 

Surface energy and free energy of hydration were also evaluated by MD using different force fields 

and charge schemes, and are reported separately in Table A2 for comparison. The OPLS-AA force 

field accompanied by Charge Model 5 (CM5) with a scaling factor of 1.20 produces the best 

agreement with the DFT results, and is therefore used to model the g-C3N4 nanosheet. Energy 

minimization using this force field also generated bond and angle distributions that agree well with 

DFT results (Figure A2). 
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Table A3 shows the validation of OPLS-AA force field for all the solvents used in this 

study. MD results on density, dielectric constant, and surface tension are compared with the 

corresponding experimental values. Good agreement is achieved for the vast majority of the 

properties, and only the dielectric constants of BD and ACE show relatively poor comparison. 

Although using other approaches such as a polarizable force fields [4–8] may further improve the 

comparison, for compatibility (with the g-C3N4 model) and consistency (fair comparison across 

the solvents) the OPLS-AA force field is used for all components in this work. 
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Figure A2. The N-C-N (a) and C-N-C (b) bond angle distributions, and the C-N bond length 

distribution (c); comparisons made between results from energy minimization using OPLS-AA 

force field and from geometry optimization using DFT. 
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Table A2. Surface energy and hydration free energy of a 6-unit g-C3N4 nanosheet evaluated 

using different methods. 

Method/force 

field 

Charge scheme Surface energy 

(mJ/m2) 

Free energy of hydration  

(kJ/mol) 

OPLS-AA 

 

CM5 (ref. [9]) 130.2 ± 0.4 -105.2 ± 1.9 

OPLS-AA 

 

1.20*CM5 119.3 ± 0.3 -89.6 ± 2.1 

OPLS-AA 

 

1.14*CM1A (ref. [10,11]) 135.0 ± 0.5 -172.0 ± 3.4 

GROMOS Default (generated by ATB 

server) 

111.0 ± 0.3 -155.4 ± 2.5 

GROMOS CHELPG (generated by 

Gaussian) 

48.2 ± 0.1 -198.4 ± 4.0 

DFT B3LYP/6-311++G(d,p)  115.0 (ref. [12]) -77.1 

 

Table A3. Calculated and experimental (in parenthesis) values of density, dielectric constant, and 

surface tension at 298.15 K for the nine solvents used in this study. 

Solvent Density  

(kg/m3) 

Dielectric 

constant 

Surface 

tension  

(mJ/m2) 

Source of OPLS-

AA parameters 

Charge scheme  

MET 735 ± 0.1 

(787 [13]) 

30.4 ± 0.7  

(31.92 [14]) 

20.0 ± 0.4  

(22.1 [14]) 

Ref. [15] Ref. [15] 

BD 994 ± 0.2  

(1013 [14]) 

15.1 ± 0.9  

(32.9 [14])  

45.6 ± 0.4  

(45.7 [14]) 

LigParGen 1.14*CM5  

ACE 799 ± 0.1  

(785 [13]) 

15.4 ± 0.3  

(20.5 [14]) 

17.2 ± 0.1  

(22.7 [14]) 

Ref. [16] Ref. [16] 

FRM 1126 ± 0.3  

(1129 [13]) 

107.6 ± 0.2  

(108.9 [14]) 

57.2 ± 0.5  

(57.0 [14]) 

Ref. [17] Ref. [17] 

DMF 958 ± 0.1  

(943 [13]) 

37.2 ± 0.6  

(37.5 [14]) 

39.1 ± 0.5  

(37.1 [14]) 

LigParGen 1.20*CM5  

CB 1111 ± 0.1  

(1110 [14]) 

4.5 ± 0.0  

(5.6 [14]) 

30.2 ± 0.2  

(33.0 [14]) 

LigParGen R.E.D server [18]  

THF 833 ± 0.2  

(880 [13]) 

5.8 ± 0.0  

(6.98 [14]) 

27.4 ± 0.1  

(32.61 [19]) 

LigParGen 1.14*CM5  

NMP 1033 ± 0.2  

(1030 [14]) 

27.1 ± 0.3  

(33.0 [14]) 

38.9 ± 0.2  

(41.0 [14]) 

LigParGen 1.20*CM5  

water 1008 ± 0.3  

(997 [20]) 

77.1 ± 0.2  

(78.6 [20]) 

69.5 ± 0.1  

(72.0 [20]) 

TIP4P model [21] TIP4P model [21] 
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A3. Additional data from pulling and US simulations 

 

Figure A3. Force-displacement curves for two initially stacked g-C3N4 nanosheets in DMF, pulled 

apart along the three RCs. 

 

Figure A4. PMF curves for separating two stacked g-C3N4 nanosheets in CB and NMP along RC 

II and RC III. 
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Figure A5. Histograms from US simulations for all solvents. 

 

Table A4. ΔGexf results for DMF from five independent sets of US simulations. 

US simulation set # ΔGexf (kJ/mol.nm2) Statistics (kJ/mol.nm2) 

1 48.98  

 

48.46 ± 0.29 

2 48.56 

3 48.79  

4 49.15  

5 49.31 
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A4. Additional analysis for group 1 

From the simulations listed in the last row of Table 1 in the main text, the average numbers 

of hydrogen bonds (H-bonds), NH, were counted for the last 30 ns of the two simulations (solvent 

alone and solvent with sheet). Without the presence of the sheet, the average NH per water molecule 

is 1.77, the corresponding numbers are 0.97 for MET and 1.70 for BD. This is consistent with the 

fact that there are two hydroxy groups in each molecule of water and BD, while only one in MET. 

Upon the insertion of the g-C3N4 nanosheet, H-bonds between solvent molecules are broken, while 

new H-bonds between the sheet and the solvent are established. The numbers of broken H-bonds, 

newly established H-bonds and net increase in H-bonds are shown in Figure A6a. The number of 

broken H-bonds decreases with increasing size of the solvent molecules, and it is almost four times 

higher for water compared to BD. This is expected since the number of water molecules disrupted 

by the introduction of the nanosheet is much greater due to its smaller size. The number of newly 

generated H-bonds between solvent molecules and the sheet is almost the same for MET and BD 

while water has twice the value. Despite the differences in the numbers of H-bonds broken by the 

sheet and newly generated H-bonds with the sheet, the net increase in NH is similar among the 

three solvents (Figure A6a). 

The types of H-bonds that exist in the simulated systems are shown in Figure A6b. When 

forming H-bonds with the sheet, MET and BD almost always act as acceptors and the majority of 

the H-bonds are located on the periphery of the sheet where the 21 H atoms are placed (Figure 

A7a, middle and right subfigures). On the contrary, water molecules can act both as an acceptor 

and as a donor (Figure A6b), and H-bonds are formed not only on the periphery but also in the 

interior of the sheet (Figure A7a, left subfigure). The lack of H-bonds in the interior of the sheet 

for MET and BD could be related to the size of the solvent molecules. For solvents with larger 

molecular size, the number of molecules that could form close contact with the surface decreases, 

which is depicted in Figure A7b by showing the first solvation layer around the sheet and the 

numbers of solvent molecules in this layer. Here the first solvation layer is defined as solvent 

molecules whose center of mass (COM) is within 0.5 nm of the sheet, based on the solvent 

distribution around the sheet (Figure A8). In addition, not all solvent molecules in the first 

solvation layer form H-bonds with the sheet; the steric hinderance caused by larger molecules 

reduces the probability of molecular rotation and alignment necessary to form H-bonds in the 
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interior of the sheet. Although H-bonding controls some of the phenomena associated with carbon 

nitrides, the contribution of H-bonding to ΔGsol is small in all three solvents Table A5), and H-

bonding alone cannot explain the difference in ΔGsol. 

 

Figure A6. (a) H-bond analysis for solvents from group 1. (b) Different types of H-bonds and their 

corresponding strength [22]. 

 

 

Figure A7. (a) Snapshots of the sheet and solvent atoms involved in H-bonding with the sheet. (b) 

Snapshots of the sheet and solvent molecules within 0.5 nm of the sheet, which constitute the first 

solvation layer around the sheet. The average number of solvent molecules in this solvation layer 

is given below each subfigure. All snapshots are extracted from the simulations for “ΔHsol and 

ΔSsol calculation” (refer to Table 1 in main text). Color scheme: blue, N; gray, C; white, H; red, O. 
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Figure A8. The density profile of solvents as a function of Z, the coordinate perpendicular to the 

nanosheet with Z = 0 corresponding to the location of the nanosheet. For all three solvents, the 

first peak is located at ~0.5 nm from the sheet. The solvent molecules within this distance are 

considered as the first solvation layer. 

 

Table A5. Contribution of H-bonding to ΔGsol for solvents from group 1. 

Solvent 
Net increase in # of 

H-bonds (average) 

Energy difference due to 

H-bonds (kJ/mol) 
ΔGsol (kJ/mol) 

% contribution of 

H-bonding to ΔGsol 

water 10 -131 -1047.0 12% 

MET 13 -40 -690.2 5% 

BD 14 -53 -551.6 9% 
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Figure A9. (a) The snapshots of the first solvation layer around the sheet at 30 ns and the same 

molecules at 31 ns in the simulation with one nanosheet. (b) The snapshots of the first solvation 

layer around the sheets at the beginning and after 1 ns of the US simulation where the COM 

distance between the two sheets is restrained to around 0.34 nm. %A: % of initially adhering 

solvent molecules that remained in the first solvation layer after 1 ns. 
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A5. Energy analysis for the solvation process 

 

Figure A10. Enthalpic and entropic contributions to ΔGsol for (a) group 1, (b) group 2, and (c) 

group 3. Energy change in the solvation process associated with cavity generation (ΔE1) and sheet 

insertion (ΔE2) for (d) group 2 and (e) group 3. The sum of the two terms (ΔE = ΔE1 + ΔE2) along 

with ΔHsol are also shown. Corresponding data for group 1 is given in the main text. Statistics are 

based on the last 30 ns of the 60 ns simulations.   
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A6. RDF plots 

 

Figure A11. (a) RDF of solvent oxygen around nitrogen atoms of the g-C3N4 sheet for group 1 

and 2 solvents. RDF of the aromatic center of group 3 solvent molecules around carbon (b) and 

nitrogen (c) atoms of the sheet.  
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A7. Fraction of molecules that departed from the first solvation layer 

 

Figure A12. The fraction of molecules that departed from the first solvation layer (M) versus 

time of the simulation. 

Table A6. Statistics for M in the last 10 ns of Figure A12. 

Solvent Statistics of M 

Water 0.970 ± 0.018 

MET 0.955 ± 0.006 

BD 0.770 ± 0.018 

ACE 0.930 ± 0.024 

FRM 0.901 ± 0.021 

DMF 0.739 ± 0.008 

CB 0.922 ± 0.023 

THF 0.848 ± 0.015 

NMP 0.805 ± 0.019 
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10. Appendix B 

Supporting Information for Chapter 4 
 

B1. Dataset 
Table B1. Numbering, name, Simplified Molecular Input Line Entry System (SMILES) codes, and 

molecular structure of solvents used to build the dataset. 
Name SMILES Structure Name SMILES Structure 

1. Chloroform ClC(Cl)Cl 

 

26. Pyrimidine C1=CN=CN=C1 

 
2. Dichlorofluoromethane C(Cl)Cl 

 
28. 

Dimethylacetamide 

CN(C)C(C)=O 

 
3. Dibromomethane BrCBr 

 
27. 1,4-
dichlorobutane 

C(CCCl)CCl 
 

4. Methanoic acid O=CO 
 

29. 1,2,3,5-
Tetrafluorobenzene 

C1=C(C=C(C(=C1F)F)F)
F 

 
5. Formamide O=CN 

 
30. 1,3-
Difluorobenzene 

C1=CC(=CC(=C1)F)F 

 
6. Methanol CO 

 
31. Benzenethiol C1=CC=C(C=C1)S 

 
7. Pentachloroethane C(C(Cl)(

Cl)Cl)(Cl)
Cl 

 

32. 4-

Methylpyridine 

CC1=CC=NC=C1 

 
8. Acetamide CC(=O)N 

 

33. Cyclohexanone C1CCC(=O)CC1 

 
9. N-Methylformamide CNC=O 

 
34. Triethyl 
phosphate 

CCOP(=O)(OCC)OCC 

 
10. Ethanol OCC 

 
35. N,N-

diethylethanamine 

CCN(CC)CC 

 
11. Dimethyl sulfoxide CS(=O)C 

 

36. Benzonitrile N#Cc1ccccc1 

 
12. Ethanolamine NCCO 

 
37. Toluene Cc1ccccc1 
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13. Ethane-1,2-diamine C(CN)N 
 

38. 3-Methylphenol CC1=CC(=CC=C1)O 

 
14. gamma-
Butyrolactone 

O=C1OC
CC1 

 

39. 1,2-
Dimethoxybenzene 

COC1=CC=CC=C1OC 

 
15. Propanenitrile CCC#N 

 

40. 1-Butoxybutane CCCCOCCCC 
 

16. 1,2-Dibromopropane CC(CBr)

Br 

 

41. Quinoline C1=CC=C2C(=C1)C=CC

=N2 

 
17. Methyloxirane CC1CO1 

 

42. 2,6-Dimethyl-4-

heptanone 

CC(C)CC(=O)CC(C)C 

 

18. Acetone CC(=O)C 

 

43. 
Phenoxybenzene 

O(c1ccccc1)c2ccccc2 

 
19. Tetrahydrofuran C1CCOC

1 

 

44. Chlorobenzene c1ccc(cc1)Cl 

 
20. Dimethylformamide CN(C)C=

O 

 

45. 1-

Cyclohexylpyrrolidi
n-2-one 

O=C2N(C1CCCCC1)CC

C2 

 
21. N-Methylacetamide CC(=O)N

C 

 

46. 

Dichlorobenzene 

ClC1=CC=C(Cl)C=C1 

 
22. Glycerol OCC(O)C

O  
47. Propan-2-ol CC(O)C 

 
23. Isobutane CC(C)C 

 

48. N-

Vinylpyrrolidone 

O=C1N(C=C)CCC1 

 
24. Butane-1,4-diol OCCCCO 

 
49. Water O 

 

25. 2-Methylpropan-2-

amine 

CC(C)(C)

N 
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Figure B1. Histogram of macroscopic descriptors calculated for the 49 solvents. 
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Figure B2. Histogram of molecular descriptors calculated for the 49 solvents. 
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Figure B3. Histogram of target properties calculated for the 49 solvents. 
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B2. Determination of outlier 

In Tukey’s method [1], the inter-quartile range (IQR) is defined as the interval between the 

first (Q1) and the third (Q3) quartiles. Data less than Q1-(1.5×IQR) or more than Q3+(1.5×IQR) are 

considered outliers. In our initial dataset that included all 49 solvents, Q1 and Q3 for ΔGexf are 

respectively 50.79 and 62.83 kJ/mol⋅nm2, and IQR = Q3 - Q1 = 12.04 kJ/mol⋅nm2. Water has a 

ΔGexf of 119.40 kJ/mol⋅nm2 which is higher than Q3+(1.5×IQR) = 80.89 kJ/mol⋅nm2. Q1 and Q3 

for ΔGsol are respectively 149.59 and 174.96 kJ/mol⋅nm2, and IQR = Q3 - Q1 = 25.37 kJ/mol⋅nm2. 

Water has a ΔGsol of 94.90 kJ/mol⋅nm2 which is less than Q1-(1.5×IQR) = 111.53 kJ/mol⋅nm2. It 

is therefore identified as an outlier and removed from ML modeling.  
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B3. Descriptor selection 

 
Figure B4. Predicted vs measured values for (a) ΔGexf and (b) ΔGsol with the selected descriptors. 

R2 and RMSE of each model are also shown. 
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Table B3. Optimal parameters obtained from hyper-parameter tuning after descriptor selection.  

ML models Hyper-parameters 

ETR bootstrap: False; cost-complexity pruning (ccp): 0.0, criterion: 

squared error; maximum depth: None; maximum features: auto; 

maximum leaf nodes: None; maximum samples: None; minimum 

impurity decrease: 0.0; minimum samples leaf: 1; minimum samples 

split: 2; minimum weight fraction leaf: 0.0; number of estimators: 

100; out-of-bag (oob) score: False 

RFR bootstrap: True; ccp: 0.0; criterion: squared error; maximum depth: 

None; maximum features: auto; maximum leaf nodes: None; 

maximum samples: None; minimum impurity decrease: 0.0; 

minimum samples leaf: 1; minimum samples split: 2; minimum 

weight fraction leaf: 0.0; number of estimators: 100; oob score: False 

GBR alpha: 0.9; ccp: 0.0; criterion: Friedman mean squared error; learning 

rate: 0.1; loss: squared error; maximum depth: 3; maximum features: 

None; maximum leaf nodes: None; minimum impurity decrease: 0.0; 

minimum samples leaf: 1; minimum samples split: 2; minimum 

weight fraction leaf: 0.0; number of estimators: 100; subsample: 1.0; 

tolerance: 0.0001; validation fraction: 0.1; verbose: 0 

ABR base estimator: None; learning rate: 1.0; loss: linear; number of 

estimators: 50 

GBR Alpha1: 10-6; Alpha2: 10-6; Alphainit: None; compute score: False; fit 

intercept: True; lambda1: 10-6; lambda2: 10-6; lambdainit: None; 

number of iterations: 300; normalize: deprecated; tolerance: 0.001 

 

 

Figure B5. RMSE and R2 score for the LR model with all descriptors and the optimal subset 

identified from ASM. The arrows indicate the improvement of each target property after descriptor 

selection. 
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B4. Model deployment 
Table B4. ΔGexf (kJ/mol.nm2) predicted for 49 solvents from our dataset (along with measured 

values from MD) and 105 solvents in Caleman et al. [2]. The prediction here is made with ETR 

and the optimal subset of descriptors. 
Solvent Measured 

ΔGexf 
Predicted 
ΔGexf  

Solvent Measured 
ΔGexf  

Predicted 
ΔGexf  

1. Chloroform 59.41 58.86 50. Dichloromethane - 59.77 

2. Dichlorofluoromethane 60.09 60.80 51. Methanal - 72.87 

3. Dibromomethane 49.56 51.74 52. Bromomethane - 59.09 

4. Methanoic acid 55.33 70.58 53. Nitromethane - 57.58 

5. Formamide 74.69 61.15 54. 1,1,2,2-tetrachloroethane - 52.70 

6. Methanol 78.68 63.36 55. 1,1-dichloroethene - 60.72 

7. Pentachloroethane 53.49 54.87 56. 1,1,2-trichloroethane - 54.17 

8. Acetamide 56.76 58.06 57. Acetonitrile - 67.54 

9. N-Methylformamide 50.79 57.69 58. 1,2-dibromoethane - 54.36 

10. Ethanol 67.96 58.76 59. 1,1-dichloroethane - 59.60 

11. Dimethyl sulfoxide 55.19 57.45 60. 1,2-dichloroethane - 56.50 

12. Ethanolamine 71.98 57.16 61. Methyl formate - 67.18 

13. Ethane-1,2-diamine 69.79 55.07 62. Bromoethane - 58.64 

14. gamma-Butyrolactone 47.55 55.27 63. Chloroethane - 67.75 

15. Propanenitrile 70.58 64.96 64. 2-chloroethanol - 51.04 

16. 1,2-Dibromopropane 51.66 54.54 65. Nitroethane - 56.19 

17. Methyloxirane 72.04 71.17 66. Methoxymethane - 74.71 

18. Acetone 69.44 61.52 67. 1,2-ethanedithiol - 55.41 

19. Tetrahydrofuran 59.41 69.02 68. Methyldisulfanylmethane - 57.72 

20. Dimethylformamide 54.85 53.05 69. Methylsulfanylmethane - 66.52 

21. N-Methylacetamide 53.28 52.07 70. Prop-2-enenitrile - 67.76 

22. Glycerol 61.68 61.83 71. 1,3-dioxolan-2-one - 61.08 

23. Isobutane 77.36 73.00 72. 1,3-dichloropropane - 55.96 

24. Butane-1,4-diol 62.83 53.83 73. Methyl acetate - 59.85 

25. 2-Methylpropan-2-amine 55.45 62.09 74. 1,3-dioxolane - 58.93 

26. Pyrimidine 49.34 51.90 75. 2-iodopropane - 52.93 

27. 1,4-dichlorobutane 60.6 52.94 76. 1-bromopropane - 57.49 

28. Dimethylacetamide 45.95 61.60 77. 1-nitropropane - 55.70 

29. 1,2,3,5-Tetrafluorobenzene 52.01 56.04 78. 2-nitropropane - 56.96 

30. 1,3-Difluorobenzene 54.89 58.56 79. Dimethoxymethane - 61.38 

31. Benzenethiol 65.01 54.17 80. Propan-1-amine - 66.61 

32. 4-Methylpyridine 55.99 55.02 81. Propan-2-amine - 68.58 

33. Cyclohexanone 63.42 55.59 82. Ethylsulfanylethane - 57.70 

34. Triethyl phosphate 48.26 50.23 83. Butane-1-thiol - 57.41 

35. N,N-diethylethanamine 47.64 59.95 84. Butan-1-ol - 52.50 

36. Benzonitrile 56.98 48.58 85. 2-methylpropan-2-ol - 58.48 

37. Toluene 56.91 59.92 86. (2-hydroxyethoxy)ethan-2-ol - 56.82 

38. 3-Methylphenol 50.34 54.31 87. N-ethylethanamine - 60.10 

39. 1,2-Dimethoxybenzene 52.9 53.73 88. Butan-1-amine  57.54 

40. 1-Butoxybutane 48.9 59.10 89. 2-(2-hydroxyethylamino)ethanol - 55.86 

41. Quinoline 44.37 52.18 90. Furan - 63.90 

42. 2,6-Dimethyl-4-heptanone 53.84 51.89 91. Thiophene - 61.06 

43. Phenoxybenzene 48.91 54.68 92. 1H-pyrrole - 54.97 

44. Chlorobenzene 58.04 57.93 93. Ethenyl acetate - 58.26 

45. 1-Cyclohexylpyrrolidin-2-one 62.56 58.22 94. Acetyl acetate - 52.06 

46. Dichlorobenzene 49.26 54.55 95. Ethoxyethene - 62.28 

47. Propan-2-ol 59.52 59.40 96. Ethyl acetate - 57.75 

48. N-Vinylpyrrolidone 49.72 52.27 97. Tetrahydrothiophene 1,1-dioxide - 58.80 

49. Water 119.38 74.35 98. Thiolane - 58.26 

   99. 1-bromobutane - 56.20 
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100. 1-chlorobutane - 58.84 

101. Pyrrolidine - 57.25 

102. Morpholine - 55.84 

103. Pyridine - 57.20 

104. Cyclopentanone - 56.24 

105. 1-cyclopropylethanone - 58.11 

106. Pentane-2,4-dione - 56.24 

107. Methyl 2-methylprop-2-enoate - 59.22 

108. Pentanenitrile - 56.72 

109. Ethyl propanoate - 58.46 

110. Diethyl carbonate - 61.89 

111. Pentan-1-ol - 51.27 

112. Pentan-3-ol - 51.59 

113. 2-methylbutan-2-ol - 54.45 

114. Pentane-1,5-diol - 53.90 

115. Pentan-3-amine - 58.14 

116. 1,2,3,4-tetrafluorobenzene - 55.37 

117. 1,2-difluorobenzene - 57.62 

118. Fluorobenzene - 59.21 

119. Nitrobenzene - 52.16 

120. 2-chloroaniline - 50.12 

121. Phenol - 51.89 

122. 2-methylpyridine - 56.28 

123. 3-methylpyridine - 54.86 

124. (E)-hex-2-ene - 63.13 

125. Hexan-2-one - 57.57 

126. 2,4,6-trimethyl-1,3,5-trioxane - 56.99 

127. Cyclohexanamine - 57.03 

128. 2-propan-2-yloxypropane - 59.14 

129. 1-methoxy-2-(2-

methoxyethoxy)ethane - 

56.69 

130. N-propan-2-ylpropan-2-amine - 59.62 

131. Trifluoromethylbenzene - 56.69 

132. Benzaldehyde - 58.71 

133. Methoxybenzene - 57.52 

134. Phenylmethanol - 49.11 

135. 2-methylphenol - 53.91 

136. 4-methylphenol - 50.60 

137. Diethyl propanedioate - 52.35 

138. 2,4-dimethylpentan-3-one - 57.41 

139. Heptan-2-one - 55.66 

140. Ethenylbenzene - 58.95 

141. 1-phenylethanone - 50.28 

142. Methyl benzoate - 53.26 

143. Methyl 2-hydroxybenzoate - 51.14 

144. Ethylbenzene - 60.49 

145. 1,2-dimethylbenzene - 59.62 

146. 2,4,6-trimethylpyridine - 51.96 

147. Octan-1-ol - 51.00 

148. N-butylbutan-1-amine - 55.67 

149. Isoquinoline - 53.79 

150. (1-methylethyl)benzene - 57.45 

151. 1,2,4-trimethylbenzene - 57.68 

152. 1-chloronaphthalene - 53.04 

153. N-Methyl-2-pyrrolidone  49.43 

154. Methanesulfonic acid  49.89 
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B5. Experimental details 

1-Methyl-2-pyrrolidinone (NMP), Benzyl alcohol (Bn), Acetonitrile (ACN) were 

purchased from Fisher Scientific. Melamine (99%) and Methanesulfonic acid (MSA) (99%) were 

purchased from Acros. All solvents were of HPLC grade and used as received. 

Graphitic carbon nitride was synthesized by heating melamine in a ceramic crucible from 

room temperature to 550 C at the rate of 5 C/min, and maintaining the temperature for 2 hours 

within the muffle furnace. The crucible was then allowed to settle naturally to room temperature, 

and the obtained light-yellow product was ground into a fine powder for additional experimental 

work. The samples were examined by various methods to confirm the synthesis of traditional 

carbon nitride. The X-ray diffraction (XRD) was collected with a Rigaku Ultimate IV equipped 

with a Cu-Kα radiation source (40 kV, λ=0.15418 nm). Raman active vibrational modes of the 

material were investigated with a Raman spectrometer (Renishaw InVIa Raman Microscope) 

operating at the 532 nm laser excitation line. The powder sample was deposited on a glass slides 

and spectra were accumulated using 50um confocal pinhole aperture slit. The absorption spectrum 

of the bulk carbon nitride in the UV/VIS region was determined using diffuse reflectance 

spectroscopy UV/VIS spectrophotometer (Hitachi U-3900H). For the dispersibility tests, the 

aquasonicator model 75T from VWR Scientific Products, operating at 117/120 V, 2 A, and 50/60 

Hz, was used to disperse bulk carbon nitride in the four different solvents. The sonication was 

conducted for 15 mins under the temperature of 26oC. The dispersibility of carbon nitride is 

photographically recorded immediately after sonication and over one hour keeping it in stable 

condition. 
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Figure B6. (a) Macroscopic image, (b) DRS UV/Vis spectra, (c) XRD pattern, and (d) Raman 

spectra of the carbon nitride powder. 

 

The pale-yellow colored powder (Figure B6a) suggests the successful synthesis of carbon 

nitride using melamine as the precursor. Figure B6b shows the DRS UV/VIS absorbance spectrum 

of g-C3N4 thin film. The spectrum demonstrates the intrinsic absorption edge at 420 nm [3]. The 

Kubelka-Munk plot shows that the bandgap of the g-C3N4 is 2.7 eV [4]. Figure B6c displays the 

XRD pattern, and it clearly demonstrates the characteristic diffraction peaks at 13.05º and 27.5º 

[5]. The modest diffraction peak at 13.05 º corresponds to the (100) plane of heptazine units. The 

strong peak at 27.5 º is assigned to the stacking of conjugated aromatic rings and designated as 

(002) plane. The extremely intense diffraction pattern developed from interlayer stacking of carbon 

nitride along the hexagonal c-axis was observed for melamine derived g-C3N4 material [6]. Figure 

B6d shows the Raman spectra for the carbon nitride where the D band (around 1210 cm-1) exists 



231 

 

due to the sp3 defects, while the G band (around 1650 cm-1) holds the signature of the in-plane 

vibration of sp2 carbon in the graphitic carbon nitride network [7,8]. 
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B6. Additional plots 

 

Figure B7. Pair plots of (a) ΔGsol vs. C𝑚𝑒𝑎𝑛, (b) ΔGsol vs. 𝑀𝑊, and (c) ΔGexf vs. 𝑀𝑊. ΔGsol and 

ΔGexf are measured (from MD) values for the 48 organic solvents in our dataset. Four solvents 

with the lowest ΔGexf and highest ΔGsol are highlighted with red color. 
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Figure B8. Heatmap of SHAP values for each descriptor in the ETR model. The color intensity 

represents the magnitude of the SHAP value, with red indicating a positive impact and blue 

indicating a negative impact on the predicted ΔGsol. 
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11. Appendix C 

Supporting Information for Chapter 5 

 

C1. Organic solvents used for machine learning modeling 

1. (1-methylethyl)benzene 58. Benzaldehyde 115. Methoxybenzene 

2. (2-hydroxyethoxy)ethan-2-ol 59. Benzenethiol 116. Methoxymethane 

3. (2R)-2-methyloxirane 60. Benzonitrile 117. Methyl 2-hydroxybenzoate 

4. (E)-hex-2-ene 61. Benzyl-benzoate 118. Methyl 2-methylprop-2-

enoate 

5. 1,1,1,2,2-pentachloroethane 62. Benzylether 119. Methyl acetate 

6. 1,1,2,2-tetrachloroethane 63. Bromobenzene 120. Methyl benzoate 

7. 1,1,2-trichloroethane 64. Bromoethane 121. Methyl formate 

8. 1,1-dichloroethane 65. Bromomethane 122. Methyldisulfanylmethane 

9. 1,1-dichloroethene 66. Butan-1-amine 123. Methylsulfanylmethane 

10. 1,2,3,4-tetrafluorobenzene 67. Butan-1-ol 124. Methylsulfinylmethane 

11. 1,2,3,5-tetrafluorobenzene 68. Butane-1,4-diol 125. 4-Methylpentan-2-one 

12. 1,2,4-trimethylbenzene 69. Butane-1-thiol 126. Morpholine 

13. 1,2-dibromoethane 70. Chlorobenzene 127. Methanesulfonic acid 

14. 1,2-dibromopropane 71. Chloroethane 128. 2-Methoxy-2-

methylpropane 

15. 1,2-dichloroethane 72. Chloroform 129. N,N-diethylethanamine 

16. 1,2-difluorobenzene 73. 1-Cyclohexylpyrrolidin-2-

one 

130. N,N-dimethylacetamide 

17. 1,2-dimethoxybenzene 74. Cyclohexanamine 131. N,N-dimethylformamide 

18. 1,2-dimethylbenzene 75. Cyclohexane 132. N-dodecyl-pyrrolidone 

19. 1,2-ethanedithiol 76. Cyclohexanol 133. N-butylbutan-1-amine 

20. 1,3-dichloropropane 77. Cyclohexanone 134. N-ethylethanamine 

21. 1,3-difluorobenzene 78. Cyclopentanone 135. 1-formylpiperidine 

22. 1,3-dioxolan-2-one 79. Dichlorobenzene 136. Nitrobenzene 

23. 1,3-dioxolane 80. Diethyl phthalate 137. Nitroethane 

24. 1,4-dichlorobutane 81. Diaminodiethylamine 138. Nitromethane 

25. 1-bromobutane 82. Dibromomethane 139. N-methylacetamide 

26. 1-bromopropane 83. Dichloro(fluoro)methane 140. N-methylformamide 

27. 1-butoxybutane 84. Dichloromethane 141. N-Methylpyrrolidone 

28. 1-chlorobutane 85. Diethyl carbonate 142. N-propan-2-ylpropan-2-

amine 

29. 1-chloronaphthalene 86. Diethyl propanedioate 143. N-Vinyl-2-pyrrolidone 

30. 1-cyclopropylethanone 87. Dimethoxymethane 144. Octan-1-ol 

31. 1H-pyrrole 88. Dimethylethyleneurea 145. Oxolan-2-one 

32. 1-methoxy-2-(2-

methoxyethoxy)ethane 

89. Pyrimidinone 146. Oxolane 

33. 1-nitropropane 90. Epichlorohydrin 147. Pentan-1-ol 

34. 1-phenylethanone 91. Ethanamide 148. Pentan-3-amine 



237 

 

35. 2-(2-

hydroxyethylamino)ethanol 

92. Ethane-1,2-diamine 149. Pentan-3-ol 

36. 2,4,6-trimethyl-1,3,5-

trioxane 

93. Ethanol 150. Pentane-1,5-diol 

37. 2,4,6-trimethylpyridine 94. Ethenyl acetate 151. Pentane-2,4-dione 

38. 2,4-dimethylpentan-3-one 95. Ethenylbenzene 152. Pentanenitrile 

39. 2,6-dimethylheptan-4-one 96. Ethoxyethene 153. Phenol 

40. 2-aminoethanol 97. Ethyl acetate 154. Phenoxybenzene 

41. 2-chloroaniline 98. Ethyl propanoate 155. Phenylmethanol 

42. 2-chloroethanol 99. Ethylbenzene 156. Prop-2-enenitrile 

43. 2-iodopropane 100. Ethylene glycol 157. Propan-1-amine 

44. 2-methylbutan-2-ol 101. Ethylene-glycol 158. Propan-2-amine 

45. 2-methylphenol 102. Ethylsulfanylethane 159. Propan-2-one 

46. 2-methylpropan-2-amine 103. Fluorobenzene 160. Propane-1,2,3-triol 

47. 2-methylpropan-2-ol 104. Furan 161. Propanenitrile 

48. 2-methylpropane 105. Heptan-2-one 162. Pyridine 

49. 2-methylpyridine 106. Hexan-2-one 163. Pyrimidine 

50. 2-nitropropane 107. Hexane 164. Pyrrolidine 

51. 2-propan-2-yloxypropane 108. Isopropanol 165. Quinoline 

52. 3-methylphenol 109. Isoquinoline 166. Tetrahydrothiophene 1,1-

dioxide 

53. 3-methylpyridine 110. Methylacetone 167. Thiolane 

54. 4-methylphenol 111. Methanal 168. Thiophene 

55. 4-methylpyridine 112. Methanamide 169. Toluene 

56. Acetonitrile 113. Methanoic acid 170. Triethyl phosphate 

57. Acetyl acetate 114. Methanol 171. Trifluoromethylbenzene 
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C2. Definition of solvation layers 

In order to define the solvent layers for each solvent, the RDF of solvent molecules around 

nanosheet atoms were calculated from the simulations where a single nanosheet was solvated and 

equilibrated. Figure C1 shows these RDF curves. The first solvation layer is defined based on 

where the first prominent peak is observed. For each system, all solvent molecules whose COM is 

within this distance are considered part of the first solvation layer. A similar approach is used to 

define the second and third solvation layers, based on the second and third prominent peaks in the 

RDF curves. If the peaks are not evident in the RDF curves, then the second and third solvation 

layers are defined as double and triple the distance of the first peak, respectively. It should be noted 

that in some systems, such as pure NMP and pure MET, there is a peak around 0.2 nm which 

corresponds to hydrogen bonding and is neglected in the solvation layer definition. The cutoff 

distances for each system are listed in Table C1. 

 

Figure C1. The RDF curves of (a) NMP (in pure NMP), CH (in pure CH), NMP & CH (in NMP:CH 

mixture), (b) MET (in pure MET), DCM (in pure DCM), and MET & DCM (in MET:DCM 

mixture) molecules around all atoms of a single nanosheet. 
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Table C1. Cutoff distances for defining the first, second and third solvation layers.  

System 1st solvation layer distance 

(nm) 

2nd solvation layer distance 

(nm) 

3rd solvation layer distance 

(nm) 

NMP 0.50 1.00 1.50 

CH 0.56 1.10 1.60 

NMP:CH Mixture 0.50 1.00 1.50 

MET 0.50 1.00 1.50 

DCM 0.53 1.06 1.59 

MET:DCM Mixture 0.50 1.00 1.50 

 

C3. H-bond lifetime calculation 

To calculate the lifetime of hydrogen bonds (H-bonds), the following autocorrelation function is 

used [1]: 

 𝐶(𝜏) = < 𝑠𝑖(𝑡) 𝑠𝑖(𝑡 + 𝜏) > (C1) 

Here, 𝑠𝑖(𝑡) is an indicator function that records whether hydrogen bond 𝑖 is present (𝑠𝑖  = 1) or 

absent (𝑠𝑖 = 0) at time 𝑡. The angular brackets < • > denote an average over all time 𝑡 and all H-

bonds 𝑖 between the solvent and the nanosheets. By integrating this autocorrelation function over 

time, we obtain an estimate of the average hydrogen bond lifetime [1]: 

 Average H-bond lifetime ≈ ∫ 𝐶(𝜏)𝑑𝜏
∞

0
 (C2) 

This method provides a quantitative measure of the duration for which a hydrogen bond persists, 

giving insights into the dynamic interactions between the solvent molecules and the nanosheets. 
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C4. Organic solvents used for studying their mixture with water 

1. 2-Aminoethanol 10. Ethane-1,2-Diamine 19. N-Methyl-2-Pyrrolidone 

2. 2-Methylpropan-2-Amine 11. Formaldehyde 20. N-Vinylpyrrolidone 

3. Acetamide 12. Gamma-Butyrolactone 21. Propane-1,2,3-Triol 

4. Acetone 13. Isopropyl Alcohol 22. Propanenitrile 

5. 1,4-Butanediol 14. Methanoic Acid 23. Pyrimidine 

6. Dimethylacetamide 15. Methanol 24. Tetrahydrofuran 

7. Dimethylformamide 16. Methanesulfonic Acid 25. Triethyl Phosphate 

8. Dimethyl Sulfoxide 17. N-Methylacetamide  

9. Ethanol 18. N-Methylformamide  
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12. Appendix D 

Supporting Information for Chapter 6 
 

D1. Calculation of perimeter and area for determining the periphery-to-

interior ratio (α) 

To determine α for a pristine g-C3N4 nanosheet, the pristine nanosheet first undergoes 

energy minimization in vacuum using the steepest descent method to ensure structural stability. 

Then, the nitrogen atoms located in the periphery region of the nanosheet are considered boundary 

atoms (for the definition of the periphery region, refer to Figure 6.1). These atoms are sorted in 

sequence to form a closed loop around the nanosheet. To calculate the perimeter, the Euclidean 

distance between each pair of consecutive boundary atoms is determined. Denoting the plane of 

the nanosheet as the x-y plane, for atoms 𝑖 and 𝑗 with coordinates (𝑥𝑗, 𝑦𝑖) and (𝑥𝑗, 𝑦𝑗), respectively, 

the distance 𝑑𝑖,𝑗 is computed as follows: 

 𝑑𝑖,𝑗 = √(𝑥𝑗 − 𝑥𝑖)
2

+(𝑦𝑗 − 𝑦𝑖)
2
 (D1) 

The perimeter P is then obtained by summing these distances: 

 𝑃 = ∑ 𝑑𝑖,𝑖+1 + 𝑑𝑁,1

𝑁−1

𝑖=1

 (D2) 

where 𝑁 is the total number of boundary atoms, and 𝑑𝑁,1 is the distance between the last and the 

first boundary atoms to close the loop. 

The area of the pristine nanosheet is calculated by discretizing the nanosheet into smaller 

triangles. Each of these smaller triangles is formed by connecting the boundary atoms to the center 

of the nanosheet or by using a Delaunay triangulation method. For each small triangle i with 

vertices located at (𝑥𝑖1, 𝑦𝑖1), (𝑥𝑖2, 𝑦𝑖2), and (𝑥𝑖3, 𝑦𝑖3), the area 𝐴𝑖 is calculated using the determinant 

method: 

 𝐴𝑖 =
1

2
|𝑥𝑖1(𝑦𝑖2 − 𝑦𝑖3) + 𝑥𝑖2(𝑦𝑖3 − 𝑦𝑖1) + 𝑥𝑖3(𝑦𝑖1 − 𝑦𝑖2)| (D3) 

The total area 𝐴𝑡𝑜𝑡𝑎𝑙 of the nanosheet is then determined by summing the areas of all the small 

triangles: 
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 𝐴𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐴𝑖

𝑀

𝑖=1

 (D4) 

where 𝑀 is the total number of small triangles formed. With the perimeter 𝑃 and the total area 

𝐴𝑡𝑜𝑡𝑎𝑙 calculated, 𝛼 is defined as: 

 𝛼 =
𝑃

𝐴𝑡𝑜𝑡𝑎𝑙
 (D5) 

The calculations for the functionalized nanosheets are conducted in the same manner, 

involving energy minimization followed by evaluations using Eq. (D1)-(D5). The results for 𝛼 

show less than 1% difference across different nanosheets, allowing a single value (0.32 nm-1 for 

1L and 0.64 nm-1 for 2L) to be used for different functionalizations. 

D2. Organic solvents used for studying different functionalizations 

1. 1,2-Dibromopropane 18. Benzonitrile 35. Methanoic Acid 

2. 1,2-Diaminoethane 19. Benzenethiol 36. Methanol 

3. 1,2-Dimethoxybenzene 20. Chloroform 37. Methyloxirane 

4. 1,3-Difluorobenzene 21. Chlorobenzene 38. N,N-Diethylethanamine 

5. 1,4-Butanediol 22. Cyclohexanone 39. N-Methyl-2-Pyrrolidone 

6. 1,4-Dichlorobutane 23. Dibromomethane 40. N-Methylacetamide 

7. 1-Butoxybutane 24. Dichlorobenzen 41. N-Methylformamide 

8. 1-Cyclohexylpyrrolidin-2-one 25. Dichloromethane 42. N-Vinylpyrrolidone 

9. 1,2,3,5-Tetrafluorobenzene 26. Dimethyl Sulfoxide 43. Phenoxybenzene 

10. 2-Aminoethanol 27. Dimethylacetamide 44. Propane-1,2,3-Triol 

11. 2,6-Dimethylheptan-4-One 28. Dimethylformamide 45. Propanenitrile 

12. 2-Methylpropane 29. Ethane-1,2-Diamine 46. Pyrimidine 

13. 2-Methylpropan-2-Amine 30. Ethanol 47. Quinoline 

14. 3-Methylphenol 31. Formaldehyde 48. Tetrahydrofuran 

15. 4-Methylpyridine 32. Gamma-Butyrolactone 49. Toluene 

16. Acetamide 33. Isopropyl Alcohol 50. Triethyl Phosphate 

17. Acetone 34. Methanesulfonic Acid  

 


