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Cryobiology is an inherently interdisciplinary research field. To solve any but the most trivial 13 

cryopreservation challenges requires cryobiology-specific knowledge from medicine, biology, 14 

thermodynamics and other engineering sciences, and this specific knowledge has been under 15 

development by cryobiologists over a period of study spanning almost 100 years. 16 

Thermodynamics, a mathematical and profoundly useful subject, is the underlying physical 17 

science of cryobiology. Thermodynamics determines at what temperature ice can form, how 18 

much ice is formed at a given temperature, how cryoprotectants supress the formation of ice or 19 

mitigate its effects, and how ice interacts with cell and tissue structures. Thermodynamics 20 

describes the transport of water across cells and tissues in response to ice formation, the 21 

permeation and efflux of cryoprotectants into and out of cells during loading and unloading, and 22 

the transport of heat in response to temperature gradients. To really leverage the understanding 23 

that thermodynamics can provide, mathematical modelling must be used in combination with 24 



other knowledge. In interdisciplinary, collaborative research we use innovative biological 25 

experiments to measure cell- and tissue-specific parameters appearing in mathematical models. 26 

Mathematical models are then used iteratively with innovative experimental measurement of cell 27 

and tissue responses to cryopreservation protocols. Experimental results inform the development 28 

and refinement of mathematical models; mathematical models narrow the required experimental 29 

space to something feasible. In our collaborative environment engineers and mathematicians 30 

work together with biologists and surgeons, each receiving some training in the complementary 31 

discipline and even receiving joint graduate degrees in engineering and medical sciences where 32 

desired.  33 

As well as many improvements to thermodynamic modelling in cryobiology, recent 34 

practical achievements from our group include: i) development of a protocol to cryopreserve 35 

hematopoietic progenitor cells (blood stem cells) with reasonable cell recovery without the need 36 

for permeating cryoprotectants [28], and ii) development (with NM Jomha) of a protocol to 37 

cryopreserve intact human articular cartilage on a bone base (as required for transplantation) with 38 

chondrocyte recovery (membrane intact cells after cryopreservation ÷ all cells in control) of 75.4 39 

± 12.1% in 10 mm dowels and 76.9 ± 6.2% in large fragments (12.5 cm2). The cells in 40 

cryopreserved articular cartilage exhibited metabolic activity equal to control tissue after time for 41 

metabolic recovery. Cells from cryopreserved articular cartilage were pellet cultured and showed 42 

glycosaminoglycan and collagen II production similar to control [18, 19]. This success is 43 

significant because articular cartilage might be harder to vitrify than some organs due to its very 44 

slow diffusion of cryoprotectants, and no option of vascular perfusion.  45 

A large amount of knowledge has been developed by cryobiologists over almost 100 years 46 

that is not fully appreciated outside of the cryobiology field but is critical to all aspects of 47 



biotechnology. Even though a lot of progress has been made by our group and many others, only 48 

a small amount of available thermodynamic knowledge has yet been fully applied to understand 49 

and optimize cryopreservation. In addition, there are many other scientific subjects with 50 

available knowledge not yet fully applied in the field of cryobiology. Finally, there are some 51 

scientific questions unique to cryobiology that will require unique approaches and study that has 52 

yet to begin. We will need to put all of this together in a collaborative way to solve the harder 53 

problems we are faced with next.  54 
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Thermodynamics is the study of mathematical relationships arising from physical laws 62 

governing energy and entropy [8]. Thermodynamic equilibrium includes thermal equilibrium, 63 

mechanical equilibrium and chemical equilibrium. If one of these equilibria is not satisfied in a 64 

system, there will be a change towards equilibrium: heat will be transferred, mass will be 65 

transferred or change phase (ice will form or melt), or acceleration will occur due to a 66 

mechanical force imbalance. As such, thermodynamics (including both equilibrium and 67 

nonequilibrium thermodynamics) is the overarching physical science of cryobiology. 68 

Thermodynamics describes the freezing point of intra and extracellular solutions and how much 69 

ice is formed at a given temperature. Thermodynamics describes the flux of water and 70 



cryoprotectants into and out of cells and across tissues. Thermodynamics describes the heat 71 

transfer that occurs during cooling and rewarming. Though vitrification is not strictly speaking a 72 

process of thermodynamic equilibrium, since vitrifiability is governed by how far the system is 73 

from its thermodynamic freezing point (vitrification is out-running thermodynamic equilibrium) 74 

and since the process of ice recrystallization of a vitrified solution is a thermodynamic one, 75 

thermodynamics plays a key role here too. Any approach to cryopreservation must be well-based 76 

in sound thermodynamic understanding. For more than fifteen years, we have worked to improve 77 

thermodynamic modelling in cryobiology [1–4,6,7,9–15,21–31]. We have introduced a multi-78 

solute osmotic virial equation to make the most accurate predictions of multi-component extra- 79 

and intracellular solution freezing points and driving forces for osmotic transport [6,11,24–80 

26,31]. We have described the transport of water and non-dilute components across cell 81 

membranes [3,9,12,14,15,28,29], and across complex tissues [1–3,13]. Our modelling has 82 

introduced an understanding of mechanisms of injury such as Mazur’s rapid-cool and slow-cool 83 

injury for cells [28,29] or the mechanical stress of spatially uneven tissue dehydration during 84 

cryoprotectant loading in tissues [3]. We have explored curvature-induced freezing point 85 

depression and its implications for the growth of ice through cell membrane pores and tissue 86 

porosity [4,21,22]. We have investigated physical conditions for intracellular ice formation 87 

[4,7,29]. We have coupled thermodynamics to fluid mechanics to describe complicated 88 

phenomena that occur in the freezing of colloidal suspensions [10,23]. We have described 89 

vitrifiability with empirical mathematical models [30]. Even though we have made many 90 

improvements in thermodynamic modelling in cryobiology, there exists a great deal of other 91 

well-developed thermodynamics that has yet to be applied to cryopreservation challenges. 92 
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Toxicity plays a central role in cryopreservation, whether it be toxicity of added cryoprotectants 102 

or of naturally occurring salts and other solutes concentrated in the unfrozen solution by ice 103 

formation. Toxicity may be studied from the viewpoint of biochemical mechanisms—104 

understanding what molecule, pathway, or structure is “poisoned”. However, an engineering 105 

perspective on toxicity is extremely relevant to cryopreservation. The toxicity of compounds to 106 

cells is concentration, temperature, and exposure-time dependent. Understanding the 107 

cryoprotectant exposure that a cell deep within a tissue experiences in a given loading/removal 108 

protocol requires an understanding of permeation/efflux kinetics with time. The dependence of 109 

toxicity on temperature can be used to advantage in designing cryopreservation strategies. 110 

Finally, even without knowledge of toxicity mechanisms, cryoprotectant toxicity and toxicity 111 

interactions can be modelled with empirical equations for use in protocol design. Our research 112 

group has explored these issues [1–3,5,16,17,20]. The developed engineering approaches to 113 

toxicity were critical in design of a protocol to cryopreserve intact full-thickness human articular 114 

cartilage on a bone base (as required for transplantation) with high chondrocyte viability, 115 

metabolic activity and function [18,19]. 116 
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