National Library
of Canada

Acquisitions and
Bibkographic Services Branch

K1A ON4

i+l

du Canada

K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the

university sent us an inferior
photocopy.

Reproduction in full or in part of

this microform is governed by
th- Canadian Copyright Act,
R.S.C.

1970, c¢. C-30, and
ent amendments.

Bibliothéque natwyale

Dwection des acquisitions el
des services bibhographiques

395 rue Welbnglon
Oftawa (Onano)

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

$'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées & l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Lol canadienne sur le droit
d'iubur. SHC 1970, ¢. C-30, et
wts subséquents.




UNIVERSITY OF AILBERTA

New Approaches To Moving Target Search

BY

Stanley Melax

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Master of Science.

DEPARTMENT OF COMPUTING SCIENCE

Edmonton, Alberta
Spring 1994



Bol e

Acquisitions and

Bibliotheque nationale
du Canada

Direction des acquisttions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K 1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
this thesis available tc interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Oftawa (Onfano)

Yoa R b A

L'auteur a accordé une licence
irrévocable et non exclusive
permettant & la Bibliothéque
nationale du Canada de
reprodvire, préter, distribuer ou
vendre des copies de sa thése
de queique maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L'auteur conserve la pro;riété du
droit d'auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de cellecli ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-11296-9




UNIVERSITY OF ALBERTA

RELEASE FORM

NAME CF AUTHOR: Stanley Melax

TITLE OF THESIS: New Approaches To Moving Target Search
DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1994

Permission is heteby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor any
substautial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

Stanley Melax
11719-38A Avenue
Edmonton, Alberta,
Canada. T6J OL8



UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersisned certify that they have readand recommend vothe Faondie of GCirad
aate Stidies and Rescarch for aceeptance, a thesic entitled New Approachies To
Moving Target Search submitted by Stan Melax in partial fulbllinent o the e
guirements for the degree of Master of Scienee

acfler (Sapersion)

/‘_; a

Cewis (Fxternal)

)r. l"; '\;;mliw-k (Fxaminer)

Dr. K. Smilhe (Chair



Abstract

This thesis explores a variation of the state space search problem, moving target

search. The objective for the problem ni.-ad in a search space and sub-
jected to severe time constraints, is : + target. This thesis presents
new methods for doing moving tar ¢ . a « srithm, Forgetful Depth-First
Search, adapts the well-known De: | m » this problem domain. Also, a
search technique called Marking eer- ral knowledge about the search

space. These methods are discr«~d and cor pared with other known methods. Ex-
perimental results show that F +e: 11l Iepth ' irst Search and Marking give good

performance and are better tha: previ- v ne~ hods.
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Chapter 1
The Search Problem

The problem researched in this thesis is a variation of common search problems. 'The
general graph search consists of a graph with a start node and a goal node. The
entity doing the search is referred to as the problem. solver { . In the general case
there may be multiple goal nodes, however this problem is restricted to a single goal.
The objective is for the solver to travel from the start to the goal in as few moves
as possible. The difference between the problem studied here and most other search

settings is that the goal node, which we will refer to as the target (°%), also moves.

1.1 Legal Moves

One constraint on the search problem is the movements that the entities are allowed
to make. Some search settings allow the solver to move from any node to any pre-
viously generated node. Such searches are called off-line or internal searches. In the
moving target search setting, the target and the solver are only allowed to move to
nodes adjacent to their respective current nodes. The problem can be viewed as a
search where the solver and the target are real-world objects, physically moving in &
space. The solver may conduct its own internal off-line searches during its allowed
computation time to determine its next moves.

1



1.2 Real-Time Constraint

If the solver is allowed to use whatever computing resources it desires to compute its
moves, then little challenge is added by having a target that moves around. In this
search setting the solver must make its decisions in a small constant amount of time.

This is what makes the problem interesting.

1.3 Initial Knowledge

‘The moving target search problem is further defined by the specifications about what
information is available to the problem solver and the target. At all times during the
search, each entity knows the current position (node) of the other. Because the solver
computes its moves in constant time, deciding whether or not to allow the solver to
initially know the structure of the graph (nodes and adjacencies) is not a big issue.
When the s&lver‘cﬂmputes moves it will only have time to look at its current neighbors
anyway. On the other hand, the initial knowledge of the target has no specified limit.
In the experimentation in this thesis, problem solvers are tested against a number of

targets with varying strategies, speeds and degrees of intelligence.

1.4 Search Setting

Although the search problem and the algorithms that are discussed are applicable to
any graph, the research presented in this paper is restricted to grid type graphs with
some percentage of the nodes blocked-out. Note that this differs slightly from another
common technique in which walls are placed (edges removed) between adjacent nodes.
In search spaces with a perimeter it is often very easy for the solver to corner the
target. The graphs used here are toroidal which means that the nodes along the
top row are connected to those along the bottom and similarly for the left and right

2]



Figure 1: Search setting

columns. Figure 1 shows one such typical graph. Such graphs are commonly used
for many search problems. They typically have high diameter which make the search
challenging. Furthermore, this class of graphs allows for much variation.

Most of the graphs used in experimentation are randomly generated with some
specified density which is the probability each node has of being blocked-out. At
is analogous to walking through a forest: although forced to make many side-steps,
one strays little from the straight line from start to destination. However at higher

also be produced using fewer nodes blocked-out if the blocked-out nodes are placed
by hand.

1.5 Move Sequence

A minor detail concerning the search setting is the move sequence. The target and
the problem solver alternate making moves. Another possibility would be to have the
entities move concurrently. In other words, each would compute its next position,



Figure 2: Critical decision

and then, simultaneously, each would move to its destination. However, it was found
that using one method instead of the other makes almost no difference in the time

required to complete the search.

1.6 Variance in Experimentation

One note concerning the experimentation is that there are large amounts of variance
in the time needed to complete the search. One place where variance shows up is in the
difficulty of search spaces. Two graphs with the same percentage of nodes randomly
blocked-out may differ by an order of magnitude in the average time needed for the
problem solver to reach the target. It all depends on which nodes get blocked-out
during maze generation. Variance also occurs for different runs using the same search
space. Sometimes when search parameters are varied slightly there is a large change
in the search time. Such variance results from the high degree of sensitivity that can
exist for individual moves. Figure 2 shows a typical example of a move decision with
potentially high consequences. Furthermore, once two separate search runs begin to
differ (one problem solver goes one way, the other chooses another path) the runs will
not likely have any similarity from that point forward.



Figure 3: Various tie-breaking heuristics
1.7 Heuristics

There may or may not be heuristics to apply to the search. A(a) is normally defined
to be a predicted distance from the current node a to the target node. With a moving
target, heuristic functions must be of the form A(a, b) -the predicted distance between
nodes a and b. The moving target search algorithms discussed in this thesis assume
the existence of a reasonably good and admissible heuristic function. For the grid
class of graphs previously mentioned, Manhattan distance is a common admissible
function.

Often a secondary heuristic is used to decide which neighboring node to move to
in the event of a tie. For instance, some of the algorithms discussed in this thesis use
random choice, giving precedence to either the vertical or horizontal move, or basing
a decision on where the solver has been recently. To analyze effects that the different
methods have, consider the space where the origin is the target's position (Figure 3).
Using the Euclidean distance as the secondary heuristic, the problem solver will tend
to travel to the 45 degree line of the quadrant it is in. Then it will travel along the 45
degree incline to the origin. This is good because it tends to maximise the number
of “best” moves by allowing both horisontal and vertical 1 s in the direction




Figure 4: Disadvantage of approach along axis

of the target. Should the problem solver favor one direction over another given equal
heuristic values, then the solver will travel directly to the axis and then travel along
that axis to the target. Using random decision making, the solver will likely travel
toward the respective axis along a 45 degree slope and then travel along that axis
toward the problem solver. Figure 4 illustrates why it can easily be suboptimal
to approach the target along one of its axes. To dodge a single node obstruction
the solver moving along the axis of the target must make two extra moves. By
approaching the target at an angle, the solver has an alternative move when it reaches
the obstruction and therefore is still able to reach the target in the optimal number of
moves. Simply stated, the Euclidean method maximizes the number of optimal paths
to the target. Furthermore, “cornering” the target is easier if it has only 2 directions

of movement that increase heuristic distances instead of 3 (Figure 5).

1.8 Target Catchable

Another premise concerning this search problem is that it is possible for the solver to
catch the target. Certainly, this condition is satisfied with a slower moving target. In
this case the “follow” technique discussed in Section 1.9 is generally the best approach.
However the search problem is more interesting when the solver cannot depend on the



Figure 6: Cycling target

target’s speed being slower than its own. Instead the target makes “mistakes”, such
as occasionally making moves “toward” the solver. The actual meaning of this is open
to debate. One definition of a mistake is for the target to move one node closer to the
solver according to the true distance of the search space. Another definition is that
the target moves one node closer to the solver according to the solver’s knowledge of
the search space.

Figure 6 shows a situation where the target travels in an endless cycle. The solver
may end up immediately behind the target, and at every step it will move toward the
target along the counter-clockwise cycle. However, every step the target makes will
be directly away from the solver and therefore it will never be caught. It is easy to
see that the solver merely has to stand in the target’s path to catch it. However, this

-



requires the solver to anticipate where the target will be. In the real-time setting this
demand is too great for the solver. Even though it can be argued that it is “possible”
for the target to be caught, these situations are beyond the scope of the algorithms

discussed in this thesis.

1.9 Follow Target’s Trail

One simple approach for catching slow moving targets is based on keeping track of
the target’s movements. The problem solver first does a simple graph search to get
on the target's trail and then follows this trail until it catches up to the target. The
memory requirement for this method depends on how quickly the problem solver can
pick up the target’s trail, which is in O(n) where n is the number of nodes in the
search space. If the problem solver follows the trail exactly then almost no time is
required to compute moves. Only a small constant amount of computing time is
required to maintain the target’s trail. Therefore this search algorithm satisfies the
real-time constraint. Common search techniques can traverse a spanning tree of an
n node graph in 2n moves. Using such an algorithm initially, the solver will take 2n
moves, in the worst case, to find the target’s trail. When the trail is found, the target
will not have made more than 2n moves. Consequently, the length of the target’s
trail which the solver must follow is less than or equal to 2n. The rate at which the
solver catches up to the target depends on the speed difference between the entities.
The solver can reach the target within 2nT,,;,, moves (where the target skips every
Tmise'th move). From adding the time for both components of the search, the worst
case time required to catch the target is 2n(1 + T;,,) which is in O(nT,,). It is
important to note that this technique is designed to catch the “slower” moving target,
not the target that occasionally makes “mistakes”.



ReverseFloyd()
fori=1ton
for j=1ton )
H(i,j)=Heuristic(i,j)
for k= 2 ton
for i =1 ton
for j=1ton
if H[i,jl==x
Hli,jl=min{H[i’,jl+1}
over all neighbors i’ of i
end

Figure 7: Reverse Floyd learning algorithm
1.10 Floyd’s Algorithm

Another approach to doing moving target search is Flnyd‘g algorithm [1]. This is an
O(n®) algorithm for computing A*() which is the all pairs shortest path matrix of a

can be executed prior to moving the problem solver. If the structure of the graph is
not known then the problem solver must first map the search space before executing
Floyd’s algorithm. After A*() has been computed, the problem solver just follows the
direct path to the target. This method is guaranteed to find the target provided the
target either moves slower or does not always move directly away from the problem
solver. In situations where computation time is irrelevant this is an excellent approach
to take. However, in real-time search this is too costly.

To take advantage of intermediate computations, Reverse Floyd (Figure 7), an
alternative algorithm to Floyd’s, can be used. Reverse Floyd builds up the heuristic
function matrix (in our case starting from the Manhattan dist

ve matrix). Its en-
tries are increased until the matrix equals the all-pairs shortest path distances A*().
Because the heuristic matrix monotonically increases toward the correct value, the
intermediate computations are admissible (lese than A*()) and therefore useful to



strategy. Furthermore, since the algorithm computes A*(), it guarantees the problem

solver can complete the search in n® time.

1.11 Algorithms

The two algorithms discussed, Floyd's and the “follow” technique, motivate issues in

optimally toward its destination. In contrast, the “follow” algorithm concentrates
entirely on the target’s moves. Traditional search algorithms, such as Depth-First
Search (1], are based on where the solver has been. At every point in the search, the
problem solver must decide which node to move to. To do this, each moving target
search algorithm uses some combination of its knowledge about the search space, the

target’s current and previous positions, and its own current and previous positions.

method of representing its knowledge. The all pairs shortest path matrix (produced
by Floyd's or a similar algorithm) is perhaps the most complete and useful descrip-
tion of a graph that a searcher can have. However, in order to overcome the O(n?)
bound and be useful in the real-time search setting, a solver that uses this knowledge
representation must be able to compute and use only the portion of information that
it needs. The method introduced by Korf and Ishida in the next section attempts
to do this. Alternatively, other methods of learning the search space in an O(n)
representation are possible, as shown in Chapter 4.

1.12 Summary Of Thesis

In Chapter 2, this thesis reviews previous work on moving target search. This includes
a paper by Korf and Ishida (6] which presents the problem and an algorithm for

catching the target. A following paper by Ishida [7] makes improvements to this

10



algorithm. Chapter 3 introduces a new technique called Forgetful Depth-First Search.
This algorithm adapts the common Depth-First algorithm [1] to this problem domain.
Marking, a new and efficient way of learning about a search space, is introduced in
Chapter 4. Chapter 5 presents results of experiments measuring the performance and
learning of the various algorithms. A summary and ideas for future work conclude

this thesis in Chapter 6.



Chapter 2

Previous Work

2.1 Korf and Ishida ’91

In the paper “Moving Target Search” [6], Korf and Ishida introduce the search prob-
lem examined in this thesis. In addition, they present an algorithm by which a

problem solver can find the target.

2.1.1 Original Moving Target Search Algorithm

Their basic moving target search algorithm (BMTS) is an extension of the trivial
“greedy” or “magnet” algorithm in which the problem solver always moves to an
a “local minimum” (Figure 8) is that it modifies its heuristic information using simple
deduction. The initial heuristic information must be admissible. When the solver is at
a non-goal node s, (h(sy,t) > 0) its true heuristic value (with respect to the target's
node ¢) must be at least one greater than the least of its neighbors s;. Therefore, when
the actual heuristic does not reflect this, it is updated (h(s;,t) = A(s3,t) +1). The
solver does this each time it moves. Furthermore, the target's moves (from ¢, to t5)
are monitored. If the heuristic value changes by more than 1 (A(s,t,) = A(s,3) > 1) a

12



Figure 9: All pairs shortest path matrix
similar heuristic update is made. The problem solver builds an n by n matrix whose
entries h(z,y) represent a lower bound on the shortest path length between nodes r

and y (Figure 9). This representation of knowledge is the same as that used by Floyd.

2.1.2 Heuristic Depressions

The BMTS problem solver has great difficulty with heuristic depressions. Figure 10
shows how the problem solver typically overcomes a misinformed heuristic situation

such as a local minimum. The target is sitting still just on the other side of the wall at

Figure 10: Adapting the heuristic function

13



node t;. The problem solver will move back and forth along the other side of the wall
increasing the heuristic function A( X, ¢,) for nodes X on the problem solver’s side of
the wall. The problem solver’s amplitude increasing oscillations will eventually bring

it to a node from where it can go around the wall. O(k?) moves are required to get

because the solver increments heuristic information (usually by 1 or 2) one node at
a time. Figure 10 also illustrates another problem. If just before the solver moves
around the barrier the target moves from node ¢, to 2, then the solver will have to
repeat the learning that previously took place. This second problem is characterized
as “loss of information” due to target's movement. In a follow up paper, discussed

later, Ishida addresses these problems (7).

2.1.3 Tie Breaking

One issue not given much attention in the paper is how to break ties. As discussed
in a previous section, a second heuristic could be used. For the particular search
graphs used, the Euclidean distance is one suggestion. However, Korf and Ishida use
a random choice in this event.

Experiments were done, for this thesis, to measure Euclidean and random sec-
ondary heuristics. Comparisons of the tables in Figure 11 show the difference in
search time performance of the two tie breakers. These experiments used 100 by 100
search spaces where each node has a 35 percent chance of being blocked-out. 500
ing. One of them moves completely randomly. The other tries to avoid the solver
by giving higher probability to nodes farther away from solver as it makes its ran-

was tested as well as the same algorithm using commitment (CMTS), as discussed
in Section 2.2.1 using a degree of commitment of 10. The experiments measured

14



[ RANDOM | Target | mean | median | min | _max | num over |
BMTS | random [ 10245 | 8965 243 | 520000 128
avoid 0435 | 7476 | 1 00

CMTS random

Target | mean | median [ min | max [ num over
random | 13297 | 15281 | 350 | >20000 199
avoid | 11943 | 12521 ] 305 | >20000] 157
random | 3615 1321 | 133 | >20000 17
avoid | 3124 1511 ] 143 [>20000|

Figure 11: Using Euclidean as secondary heuristic

the number of moves the solver needed to catch the target. For each configuration,
the mean, minimum, and maximum of the 500 trials is shown in Figure 11. The
experiments do confirm that using random as a tie-breaker is a better choice than
the secondary heuristic. Searches that required more than 20000 moves were halted
and recorded as 20000. Consequently, the mean averages for configurations that had

some long searches are deflated. This applies more to the searches using the Euclidean

actually more pronounced.

The problem with using the Euclidean distance as a second heuristic function is
that it keeps the solver in heuristic depressions much longer. Figure 12 is a snapshot of
a search showing the solver choosing to move back down to the bottom of a heuristic
depression for the second time when in fact the alternative move (with the same
heuristic value) would have been better. With a random choice the solver may have
made the correct move toward the exit of the depression.

A potential improvement to the random tie breaking currently used would be to
give priority to the node that the solver has not been at most recently. This might
discourage “local” thrashing.

15



Figure 12: Using Euclidean as secondary heuristic

2.1.4 Analysis

BMTS is complete (the target will eventually be caught) under the assumption that
the target makes “mistakes”. The solver keeps increasing its heuristic function (ma-
trix) which, of course, cannot increase past the all-pairs shortest path matrix. The
sum of all n? entries in this matrix cannot exceed n® because each entry is bound
above by the true minimal distance between its nodes which must be less than n.
Learning also depeﬂds on the rate in which the target makes “mistakes”. The worst
case is O(n®T,,,) where T.,,, is the period of error (number of moves per mistake that
the target makes).

BMTS differs from Floyd’s [1] because it concentrates its learning on correcting
the heuristic values that pertain to the current positions of the target and the problem
solver. In practice most of the heuristic values are never used. Experimentation shows

that actual search times are significantly better than the worst case.

2.1.3 Completeness Questioned

The proof of completeness for BMTS relies on the assumption that occasionally the
target moves in such a way that the heuristic distance between the problem solver
and the target does not increase. Given this, it seems reasonable for one to conclude

16



that this criterion would be satisfied if they use a target that, instead of occasionally
skipping moves, would move semi-randomly or occasionally make moves that com-
mon sense dictates are “toward” the problem solver. However this is not so. In other
words, the target can move in such a way that reduces both the Manhattan distance
(initial heuristic) and the shortest path distance (optimal heuristic h*()) but, ac-
cording to the problem solver's current heuristic information, the heuristic disparity
increases. Although this sounds possible, it seems likely that a target's random move
should have a good if not equal chance of decreasing heuristic disparity for any given
heuristic information. Unfortunately this is not the case. Experimentation discovered
a situation in which BMTS builds up its heuristic information such that any legal
move to an adjacent node that the target makes will increase the heuristic disparity.
Furthermore this is not an unreasonable or isolated setup.

Recall that in our (and their) experimentation a grid of nodes was used which
is a 2-colorable graph (checkerboard). Without loss of generality, assume that when
the target is on a red square the problem solver makes a move from red to blue, and
likewise for blue moves to red. Consequently, the target will never be on a blue square
when the problem solver is making a move from red to blue. Therefore the problem
solver is never given the opportunity to increase the heuristic distance between a red
and a blue as an outcome of one of its movements. These updates can be made as a
result of a target’s movement, but that is not sufficient.

Figure 13 shows a situation where the solver is never able to work its way out of
a heuristic depression. The target is programmed to move randomly but only stay
within the 3 by 2 area. Even after a long time the problem solver never moves out of
the heuristic depression marked by the rectangle. The solver spends most of its time
toward the left side of the depression. In general, the size of a heuristic depression
that a solver can tackle does depend on the size of the area that the target moves
about.
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Figure 13: Stuck

Note that this problem only applies to bipartite search spaces (no odd cycles).
Possible remedies include using a slower target (in which case just following the tar-
get is a better algorithm) or not using this class of search spaces (use a hexagonal
or triangular tessellation instead). Fortunately, the commitment enhancement in-
troduced by Ishida (next section) will restore completeness to searches with random

targets that do not skip moves.

2.2 Ishida ’92

In “Moving Target Search With Intelligence” [7], Ishida presents improvements to his
and Korf's original algorithm BMTS. Ishida introduces commitment and deliberation
to reduce the “information loes” and “thrashing” problems discussed in the previous

section.

2.2.1 Commitment

In Korf and Ishida’s original algorithm the solver learns with respect to the target’s
current position. If the target didn't move then the solver could concentrate its
learning and get out of heuristic depressions sooner. Ishida achieves this effect using
commitment. The solver ignores some of the target’s moves, and instead concentrates
on a “goal” node which i# eccasionally updated to the target’s current position.
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When to Update Goal

The main issue that arises by adopting this strategy is deciding when the goal node
should be updated. Obviously, when the solver reaches the goal node it should be
updated to the target's current position. Ishida points out that by itself, this rule

for updating the goal requires too much commitment. If the solver makes a sufficient

parameter (the number of moves toward the goal) is called the degree of commitment.

How Much Commitment

Now the question becomes how large the degree of commitment should be. The ideal
value for the degree of commitment will depend on the search space. By experimen-
tation on 100 by 100 search spaces with varying densities, Ishida finds 10 to be a good
value.

Performance

In easy search spaces, where the solver is not likely to get caught in heuristic depres-
sions, the solver is better off chasing the target directly instead of using commitment.
For the more difficult search spaces (those with 35 % of the edges removed), the per-
formance improves by 5 to 10 times over the original algorithm. This is consistent
with experimentation done for this thesis shown later in Section 5.3.

the solver to the target sooner.

2.2.2 Deliberation

Commitment eases the problem of lost learning due to the target’s movements. How-
ever, the problem solver still “thrashes” inside depressions as it incrementally updates
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its heuristic information. Ishida introduces a mechanism called deliberation in which
the solver switches to off-line search to find its way out of heuristic depressions sooner.

In off-line search the solver doesn’t actually move but instead expands nodes in its
internal memory. One advantage is that this search is not restricted to moving only
to adjacent nodes. To maintain the real-time constraint, the solver can only expand
one node in off-line search per regular move. The off-line search is similar to an A®

search [1].

When To Deliberate

The solver switches from on-line search to off-line search as soon as it detects that
it is in a heuristic depression, i.e. all neighboring nodes have higher heuristic value.
For the off-line search, the solver maintains two lists, a closed list and an open list.

Initially the closed list is empty and the open list contains the starting node of the

closed list. When a node is expanded all of its neighbors that have not previously
been added to the open list are added to the open list. The solver expands its search
outward from its beginning node until it finds its way out of the depression or it has
exceeded its allowable time to do the off-line search. The solver knows it has found
its way out of a depression when it expands a node on the open list z and it finds a
previously unseen neighboring node z’ with lower heuristic value, A(z') < h(z). At
this point, the solver stope deliberating, moves out of the depression, and resumes
regular search. The limit placed on how much off-line search the solver is allowed
to do (called the degree of deliberation) is the maximum number of nodes that the
solver can expand during an off-line search.



21

Begin off-line search
Figure 14: Deliberation

Better Learning

After doing the off-line search the solver updates the heuristic value of all of the nodes
h(Zdosed:y) = h(z,y) + 1. The learning here is faster because some heuristic values
are being increased by more than just 1 or 2.

Figure 14 illustrates the problem solver’s use of deliberation. The solver works
its way out of a heuristic depression of 18 nodes. The solver makes almost as many
off-line moves to find its way out of the depression. At the end of the off-line search

interpretations of the moving target search
problem may allow the solver to jump from the bottom of the depression to the exit

however it now has a destination. Some

since it is still moving less than one node per turn on average. If the problem solver is
bound by the rule that is can only physically move one node per turn then it will need
another 7 moves to move to the edge of the depression. This direct path from the
bottom of the heuristic depression to the exit does not have to be computed (which



Figure 15: Deliberation in a non-ideal setting

would violate the real-time constraint). If, while doing the off-line search, the solver
maintains information about the “parent” of each node whenever it adds a node to
its open list, th& the ancestral path from the exit node up to the bottom-of-the-
depression node in the solver’s off-line search tree gives what will be (in most cases)
a direct path (in reverse order) out of the depression. Using deliberation the solver
gets out of the depression in 25 moves. Note that there is a total increase of 46 in the
heuristic information (sum of all new heuristic values minus sum of all old heuristic
values).

Figure 15 illustrates the problem solver’s use of deliberation in a more “random”
search setting. The heuristic depression is not a nice square room. In this Figure the
solver starts its off-line search from the bottom of the heuristic depression. Later when
it finds node a it will stop its off-line search since a has a neighbor, namely node A,
that has a lower heuristic value and is not on the solver’s closed list. However when it
later moves to node A it will have reached another depression and will again perform
off-line search. Similarly the solver will stop off-line searching each time when it
reaches nodes b, ¢, and d only to restart (and redo) the off-line search immediately



after when it reaches nodes B, C, and D. The second part of Figure 15 shows the
effect of ending off-line search too soon. The problem solver has finished all of its
off-line searches up to node d. Node d, of heuristic value 8, has a new neighbor with
lower heuristic so the solver stops its off-line search. When the solver reaches node D

it will start a new off-line search. For the solver to find its way out of this big heuristic

depression (around the upper right hand corner), it will have to do an off-line search of

almost every node in the depression even though it has already “done” most of these

the true exit node (of heuristic value 9) is searched. Another cause of this same
problem occurs when the degree of deliberation is less than the size of a heuristic
depression. Again the solver stops the off-line search prematurely throwing away
depressions. However, as the search space increases in difficulty, deliberation loses its
advantage. ‘

How Much Deliberation

How much deliberation should the solver do? The ideal value for the degree of delib-

better when it was allowed to expand up to 25 nodes off-line instead of just 5 nodes.

Deliberation in combination with commitment was added to the moving target search

priate. A problem solver chasing an avoiding target takes longer by using deliberation.
In difficult search spaces the performance doubled in comparison to using commit-



Figure 16: Learning lost

ment alone. With respect to the original algorithm the improvement is between 10
and 20 times.
Deliberation effectively reduces the thrashing behavior of the solver and results in

more efficient searches.

2.2.3 Overall Learning

rithm. However even with these revisions, after the problem solver’s immediate goal
is satisfied, the learning that has taken place is not likely to be beneficial again. For
example, consider a long grueling search where the problem solver learns its way out
of a heuristic depression but later finds itself in the same place (see Figure 16). If at
this time the target is even one node away (node t;) from where it was during the
first time that this happened (node t,), the problem solver will have to learn its way
out of this heuristic depression once again. In short, learning seems to get lost in
the huge n by n heuristic matrix representing the problem solver’s knowledge. The
essential reasoning process of Ishida’s revised problem solver remains the same as its
predecessor. Knowledge is still represented by pairs of nodes. Ishida's improvements
are in the efficiency of the algorithm. Learning is concentrated and localized, not
generalized.
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2.3 Other Related Work

Ideas for the works of Korf and Ishida [6] and Ishida [7] came from a previous paper
by Korf [5] in which Korf solved other problems in real-time by adapting the heuristic
function.

There are other similar works that deal with problem solving in time restricted and
uncertain environments. Pollack and Ringuette [9] introduce an environment called
solver balances its time between “thinking” and “working”. The Tileworld problem
is different than the moving target search problem, and unfortunately algorithms for
one are incompatible with the other.

Ishida’s ideas of commitment and deliberation have been used in other problem

setting. The notion of commitment and amount of commitment is discussed exten-

sively in Cohen and Levesque [2].

25



Chapter 3
Forgetful Depth-First Search

This thesis presents an algorithm with a radically different paradigm for searching
for the moving target. The objective is to capture the way the Depth-First Search
algorithm (1] (Figure 17) efficiently searches areas and quickly gets out of heuristic
depressions. Figure 18 shows the path the Depth-First Search algorithm produces.

At every step, the solver moves onto a node that it hasn’t previously visited if there

function is used to break the tie. When the solver is surrounded by old nodes, it
backtracks.

DepthFirstSearch(Node n)
ForAll newv neighbors m of n
move froma n to m
DepthFirstSearch(a)
move froam to n

Figure 17: Depth-First Search algorithm



" Figure 19: Target wanders onto searched nodes
3.1 Problems with Traditional DFS

Unfortunately, using normal Depth-First Search to hunt a moving target would not
be an effective strategy. One problem is that old information becomes invalid. Nodes
that have already been searched (those on the solver's closed list) are supposed to be
places where the target is not. However this is not true; the target may move onto
these nodes after they are searched (Figure 19).

Another problem is that the closed list constructed by the problem solver inhibits
movement. This could block efficient paths to the target (Figure 20).



Figure 20: Closed list inhibits movement
3.2 Forgetful Algorithm

These setbacks are overcome using an algorithm called Forgetful Depth-First Search
(FDFS). The solver has limited memory and cannot support a continually growing
closed list. When the solver moves onto a node it will add it to its data structure.
This 1.1eans that some previous piece of information must go. The victim is the oldest
piece of information, which is the root of the search tree. The new root of the search
tree is the first ;:hild of the previous root. This pruning occurs once for each move
the solver makes whether advancing onto a fresh node or backtracking over old ones.
Figures 21 through 25 show the problem solver’s path and the changes in the DFS
search tree as the search progresses.

Variations to DFS have been done before. Examples include iterative deepen-
ing [10] and iterative broadening [3]. These techniques are used to alter node ordering
for searching large trees. Like these examples, FDFS attempts to adapt DFS to a
different problem domain -moving target search.

3.3 Implementation

For FDFS to be an acceptable candidate for doing moving target search, the transfor-
mation (root pruning) of the tree data structure must be achievable in real-time for
arbitrary tree sise. Fortunately there is a simple implementation. The solver keeps



List:babcgihijigcd
Figure 21: Problem solver's path and implicit DFS tree

List:abcgihijigcde
Figure 22: Same search 1 move later

List:cgihijigcdefe
Figure 23: Same search at a total of 3 moves later
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Figure 24: Same search at a total of 4 moves later
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List:jigcdefedcbab .f:
Figure 25: Same search at a total of 8 moves later



track of a list of visited nodes that allows duplicates. Whenever the solver moves it

to move to, it selects one that is not currently on its list if possible. If the problem
solver cannot move to a node not on its list, it moves to the predecessor of the oldest
occurrence on the list of the node it is currently at. This mechanism for deciding
which node to move to, along with maintaining the list of the last few nodes, achieves
the desired Forgetful Depth-First Search strategy. Figures 21 through 25 also show

the list and how it represents the implicit DFS tree.

be able to quickly determine if a given node is in its history list. This can be achieved
by having a flag for every node in the search space. The flag is set if the node is
in the recent history of the solver. Information also stored for each node includes
references to each occurrence of the node in the solver’s history list. The number
of occurrences of each node is limited by the branching factor of the search space.
This extra information is needed so that the problem solver knows if it should reset
a node’s flag when an occurrence of the node is removed from the end of the history

list. Furthermore, during backtracking the solver has to move to the predecessor of

history it wishes to maintain.

Alternative implementations of FDFS are possible. One variation is to not have
duplicates in the history list. It is still possible to have the solver give priority to
new nodes and backtrack the same way as previously discussed. This implementation

k]|



Figure 26: Unrecoverable bad decision

method modifies the algorithm slightly. Since pruning does not occur during back-
tracking the solver has a memory advantage in that using the same length history
it will remember more nodes than the previously discussed implementation. How-
ever, this provides little advantage since the length of the history can be arbitrarily
incrcased without affecting the time required by the problem solver to execute its

moves.

3.4 Maneuverability and Recoverability

One concern with this method is that it might take the problem solver a long time to
visited nodes. Figure 26 illustrates this idea. The problem solver has little room
to maneuver in search spaces with long narrow hallways. This problem is not as

apparent in more open search spaces.

3.5 Target Trespasses on Solver’s History

One special case to consider is when the target wanders onto any of the nodes that
appear in the solver’s list of nodes it has visited recently. Once again a situation
arises that is similar to the one shown back in Figure 19. The problem solver must

32



Figure 27: Target wanders onto solvers history

correct its current information.

3.5.1 Remove Minimal History

One method of dealing with the target wandering onto the recent history of the solver,
is to invalidate the node the target is on. In other words the inost recent occurrence of
this node plus all prior nodes are removed from the solver’s list. As much information

as possible (all nodes more recent than the target's position) is salvaged in the solver's

length of the problem solver’s list tends to be proportional to the distance between

it and the target.

3.5.2 Remove All History

In the previous method for dealing with the target moving onto the solver's recent
past, the solver preserves the part of its list more current than the target's node.
However, these nodes now represent a path (not necessarily the best path) from the
solver to the target (Figure 27). Recall that the solver avoids nodes in this list.
Consequently, the problem solver may have problems trying to get to the target.



minimal | full | neither
0621 973

Figure 28: Comparison of history removal mechanisms

This is worse for dense search spaces (those with narrow hallways and little room to
follow the problem solver. An alternative way to deal with the situation where the
target wonders onto nodes in the solver’s list is to empty the list completely. This

gives the solver the freedom to move over those nodes between it and the target.

3.5.3 Comparison

Removing all the history prevents the target from sneaking around behind the solver.
Compared to removing the minimum amount of history, the difference is certainly
noticeable with a user controlling the target’s movements. However, the evasive
strategy of :,:c:nm;mter target algorithms is far from intelligent. During experimenta-
tion, switching between history correction mechanisms made almost no difference.
The search parameters included using 100 by 100 search spaces with 35 percent of
the nodes blocked-out. The target was programmed to move randomly giving much
higher probability to nodes farther away from the solver. The length of the solver's
list of visited nodes ranged from 25 to 300. Using long list length maximums would
show more differences between the two pruning mechanisms, however the range cho-
sen results in better search times (see next section). A total of 330 searches were
simulated. In general, the number of moves needed to complete these searches is in
the order of a few hundred. The results are shown in Figure 28. For 2.1 percent of the
scenarios the solver reached the target sooner by purging the entire list. Removing
the minimum history proved to be better 0.6 percent of the time. Overall, for more
than 97 percent of the runs it didn’t matter which type of pruning was done. Varying
other parameters, such as search space size and density, yielded similar results.
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Figure 29: Search times for varying list maximums 100x100

3.6 Amount of Memory

An issue that arises with respect to using FDFS is how much memory should the
solver have. That is, how long should the list be? The ideal list length will vary
with the target's behavior and with the search space. At one extreme, with a zero
length list, the solver easily traps itself. At the other extreme the solver only prunes
nodes off its list when the target causes it. Thus, with a stationary target the solver’s
strategy is the same as normal Depth-First Search, which is the suggested approach
for these circumstances. Perhaps pruning the list only when the target causes it may
in fact be a good approach.

Experimentation was done to determine a good maximum length for the solver’s
list. Values from 5 to 500 (increasing by 5) were tested. For each length the solver
was tested on 100 randomly generated search spaces. Due to the variance in difficuity
of the search spaces, the results for each search space were normalized so that the
average number of moves over all searches (5 to 500) is 100. Figures 29 shows the
average of the normalized curves. The problem solver is hunting a randomly moving
target in a 100 by 100 search space where each node has a 35 percent probability of
being blocked. The data shows that the search time levels out when the maximum
list length equals the dimension of the search space (100). Therefore this was chosen
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as the default length for FDFS.



Chapter 4
Marking

Any real-time learning technique strictly based on using and updating the heuristic
function falls victim to the huge n? representation. Algorithms such as Forgetful
Depth-First Search may have an excellent strategy for hunting down the target, how-
ever no learning occurs. Consequently, the performance of the solver does not improve
in the long term. For example, if during a search the FDFS problem solver handles
a situation poorly and later finds itself in a similar situation then it will likely make
the same mistakes. The Marking mechanism introduced in this section attempts to
provide the problem solver with the ability to learn efficiently and to maintain that
knowledge in a higher level representation than the traditional all-pairs shortest path

matrix.

4.1 Flat Marking

The objective of Marking is to factor the search space into sections so that during

for the problem solver to move to that node unless the target is at a node with the
same marking i.
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Figure 30: Marking nodes

As stated, the prerequisite to marking a node is that the solver’s ability to track
the target is not inhibited by doing so. Formally, a node can be marked if for every
pair of unmarked neighbors there is another unmarked node in the neighborhood of
both of the neighbors. For grid-type graphs, Figure 30 shows examples when nodes
can be marked. A unique marking number is assigned to a markable node when none
of its neighbors are marked. The corner node is marked because one can travel from
one of its neighbors to the other in two moves without going through the corner node.
When marking a node with a marked neighbor normally the same marking value is
used. The next node (to the right of the corner node) can now be assigned (with the
same marking as the corner node) because its unmarked neighbors have an alternate
shortest path between them. Figure 31 shows how a search space would typically be
marked after a problem solver explored it.

4.2 Hierarchical Marking

Unfortunately there are some intuitive cases which this flat marking system cannot
handle. Figure 32 shows an example where a long “dead-end” hallway cannot be
conveniently designated as a region to avoid if the target is not within. The problem
is that the two nodes adjacent to the intersection have different markings. The



Figure 31: Search space marked into regions
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Figure 32: Multiple markings

solution, shown in the second part of Figure 32, is to allow a node to be marked
with combinations of its neighbors’ markings. In other words, each node has a set of
markings, therefore allowing more information to be represented. Unmarked nodes
are best thought of as being marked with all markings.

Initially each node n's marking set M(n) is the set of all things (complement of
the empty set).

M(n)

1]

N(n) is the neighborhood of (set of adjacent nodes to) node n. A node n can define

The marking set becomes a singleton set containing a unique number (for node n use
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Figure 33: Too many markings
number n). If:
(Va)a € N(n)(Vb)be N(n)(Ic)c#nAc€ N(a)Ace N(b)A(M(a)U M(b)) C M(c)
Then:
| M) = {n)

Otherwise a node’s marking set may be reduced based on the marking sets of its
neighbors.
M(n) = {m | 3a € N(n)3b € N(n)Aa # bAm € (M(a)NM(b))A(Vc)c # nAm & M(c))

Note that M(n) cannot be empty after applying this rule since that could only happen
if the antecedent of the first rule was true in which case M(n) is assigned to be {n}.

since a single node can have many markings. Figure 33 shows an exceptional case
where nodes can have a large number of markings. Comparisons of large sets is not
a constant operation. Fortunately the size of such multiple markings are typically

there have been no occurrences of individual nodes having more than 64 markings.
Even %0, the real-time constraint can be guaranteed if the number of markings per
node is limited by a constant.




Figure 34: Unmarkable search space

4.3 Marking Limitations

Marking unfortunately has its limitations. Figure 34 shows a search space for which
this strategy is helpless. The graph is two-connected and every 2 by 2 collection of
nodes has at lea,ist one of them blocked-out. Consequently the problem solver cannot
mark anything. On the other kand, simple human intuition would easily divide the

space into appropriate sections. A more advanced mechanism that can look at more

4.4 Using Markings

The problem solver uses information produced by the Marking technique as it decides
where to move. It is useless for the solver to move onto a neighboring node that is
marked unless the target’s node is marked similarly under the flat Marking system.
When the hierarchical Marking system is used, the solver should not move onto a
node unless its markings are a superset of the target’s node's markings.

This Marking technique may augment any moving target search strategy as easily
as adding a heuristic function. Marking does not replace existing heuristic functions
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or learning techniques. By itself, Marking would not be an effective strategy. Instead
Marking often reduces the number of neighboring nodes that the solver must choose
from. Because Marking is based only on deductive inferences, it is unlikely that
adding it will ever make a problem solver less effective.

Even this Marking strategy is not immune from the fact that learning takes time.
This means that the solver using Marking will still enter “markable” heuristic de-
pressions. However, it will enter them at most once. Consequently, Marking will
make more of a difference in search time when the search is long and difficult. In this
setting the solver may visit areas of the search space many times enabling it to take

advantage of previous learning.
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Chapter 5

Experiments

Experimentation of the various algorithms was done to help understand their behav-

ior, measure, and compare them.

5.1 Implementation

Algorithms implemented include Korf and Ishida’s original moving target search al-
gorithm (BMTS), the same algorithm with the addition of commitment (CMTS), the

Forgetful Depth-First Search (FDFS), and the hierarchical Marking technique com-
bined with FDFS. The implementation was done in C++, an object oriented language.

reuse. Over 8000 lines of code were written for the tools and the experiments in this
thesis.

Korf and Ishida’s algorithms modify the heuristic matrix and therefore need space

methods had to be implemented.
The experiments were executed on Sparc Workstations. A single search on a 100
by 100 search space that lasts for 1000 moves will typically take a few seconds. For
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the experiments in Section 5.4, involving millions of searches, it took a dedicated
network of 20 workstations 30 hours to process.

A graphics tool to animate searches was developed. The tool was implemented in
('++ and uses X-windows. The search space, a problem solver marker (3, and a target
marker *., are drawn on the screen. The solver’s and target’s markers are continually
updated as the entities make moves. The program has many useful features. The
user can control the speed of the search. To help test a solver's ability in specific
situations, the user has the ability to control the target's movements. Methods for
tracing the internal state of the solver were implemented. When observing BMTS,
position) can be drawn in each node. When commitment is used an extra marker
indicating the solver's current goal node can be drawn. As the IMTS solver deliberates
the nodes of its internal search are highlighted. For FDFS, the search tree is shown by
drawing the relevant path history of the solver. When Marking is used, markings are
shown within the nodes. An accompanying program lets the user build and edit search
spaces, and set the starting positions of the solver and the target. These graphics
tools were helpful for verifying the correctness of the implementations, studying the

behavior of the different algorithms, and testing out new ideas.

5.2 Small Space and Stationary Target

The problem solver must work its way out of a heuristic depression to find a non-
moving target. The main purpose of this experiment is to become familiar with the
nature of each of the algorithms. Algorithms tested include BMTS, IMTS, FDFS,
and FDFS combined with the hierarchical Marking technique. The results are shown
in Figure 36.
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Figure 36: Search times

The second column of Figure 36 shows the time required for each of the algorithms
to find the target. Clearly BMTS does not do very well. This problem solver keeps
moving back and forth until it finally builds up its heuristic information. The IMTS
problem solver moves down one square from the starting position and then begins

upper right corner to be an exit. The solver then jumps to the exit node and continues
toward the target. (The reason for letting the IMTS solver unfairly jump from the
starting node to the exit node, is explained in the next section.) IMTS finishes much
sooner than BMTS. The FDFS solver searches the area before it finds its way out of
first round of search, adding Marking to FDFS does not improve performance.

The third column of Figure 36 shows the number of moves required a few rounds
later (acquired knowledge is maintained between rounds), which helps illustrate the
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Figure 37: Heuristic information learned by IMTS solver

performs optimally heading directly from the start node to the goal node. At this time
the BMTS solver’s knowledge is equal to A*(). The IMTS solver does not improve as
well as BMTS, even though the same knowledge representation and similar learning
is used. Instead of being incremented individually on a per node basis, heuristic
information is set to the same value for a group of nodes after deliberation. Figure 37
shows the knowl;adge of the IMTS solver in the later rounds. Starting the search over
again from the middle of the depression, the IMTS solver has to search the entire
area again in order to find its way out of the depression. During later rounds FDFS
(which does not adapt) requires the same number of moves that it did in the first
round. This is where Marking pays off: after a few rounds the number of moves
required drops but not quite as much as it did for BMTS.

The reason that Marking causes improvement in this scenario is due to the way

the search space gets marked. The path of the solver is shown in Figure 38. The

along the bottom edge of the depression. From there it expands the marked region
outward. After the solver moves to (and marks) the corner node and the node above,
it moves left onto a node that cannot yet be marked because the nodes above and

below it are not marked at this time. Consequently marking is suspended until the
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Figure 38: Path of searcher

number M2 and therefore creates a region distinct from the region beginning at the
other corner. In later rounds the solver stays out of the two “sides” of the depression
and heads almost directly on an optimal path to the target.

If the solver started at one of the corners and traveled first along the hottom to
the other corner, then the entire bottom edge, and eventually the entire depression,
would have had the same marking. This would have provided no information to the
solver at the beginning of the following round when it gets placed back in the middle
of the marked region. This suggests that the Marking technique may not be effective
in some basic circumstances. However, Marking is designed to keep the solver out of
regions, not to get the solver out of regions. The only reason that Marking would be
ineffective in this case is that the solver is placed in the middle of a marked region.
The flaw is not with Marking; it is with what is done to the solver. Furthermore,
the rectangular depression created here. Instead they have many divots and sub-
depressions that force the use of many marking identifiers when marking an area.



The previous experiment illustrates the behavior of the various problem solvers. The
experimentation in this section attempts to measure the ability of these algorithms.

100 by 100 toroidal (wrap-around) search spaces with a density of 35 percent

not representative of all possible graphs, these search spaces are challenging and
appropriate for this moving target search problem. At the beginning of each search
apart. Note that the technique of generating search spaces differs from that of Korf
and Ishida [6] [7). They just removed edges instead of entire nodes. The difference
between the two generation techniques and the graphs they produce is not significant.

Ten thousand randomly generated graphs (using the above parameters) were used

for testing each of the problem solvers. The mean, median, and range are recorded.

search. The number of searches exceeding this limit is also recorded.

Two types of targets were tested against. One of them (RAND) behaves com-
pletely randomly giving equal probability to each neighboring node when deciding its
next move. Tle other target (AVOID) gives higher probability to nodes farther away
from the problem solver thus tending to avoid the solver.

Experimentation was done for BMTS (Ishida’s and Korf's original algorithm),
the same with Ishida's commitment technique but no deliberation (CMTS), Ishida’s
algorithm with commitment and deliberation (IMTS), Forgetful Depth-First Search
(FDFS), and FDFS with the Marking technique. The results are shown in Figure 39.
Note that the mean search times for BMTS are deflated because of the large number
(almost 30 per cent) of truncated searches.

Figure 40 shows the probability that a search will require a certain number of
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RAND | mean | med | min max | over
BMTS 11174 | 10485 | 101 | >20000 | 2964
[CMTS | 2110 | 915 109 >20000 | oI
IMTS 1700 512 | 109 | >20000
FDFS :

Marking

mean min max | over
9176 | 7300 | 135 | >20000 | 1844
2037 | 1162 | 123 | >20000 )
1476 512 ] 112 | >20000
308 474 | 105 | >20000
| Marking | 619 | 461 | 105 | >20000

Figure 39: Algorithm performance

moves. To reduce clutter, only the densities for Marking, IMTS, and BMTS are
shown. Figure 40 is based on the data for the avoiding moving target; the densities
for the random moving target are similar. It should be noted that these curves
were generated by smoothing the data from the search runs. The same smoothing
algorithm was a;)plied to each of the three sets of data. The resulting graphs may be
inaccurate representations of the true populations, however they do correctly show
the relationships between the three different algorithms. Having a larger portion of
the area under a curve toward the left indicates a better algorithm.

For CMTS and IMTS the degree of commitment used was 10 which is the same
value that Ishida suggests in his paper. For the search spaces used in this experiment,
adding deliberation with a maximum off-line search of 25 nodes (as suggested by
Ishida) yielded little improvement. Allowing for more deliberation, up to 250 nodes,
resulted in better performance for IMTS. The results for IMTS shown in Figure 39
are based on this. Using more deliberation was beneficial because the search spaces
were dense and had huge heuristic depressions. Recall that the search spaces were
generated by blocking out nodes instead of just removing edges which is the method
Ishida used.

For the experiments in this section, after completing the deliberation step the



Search Time Distribution
Avoiding Moving Target

100 x 100 search space @ 35%
Based on data from 10000 searches
Curves smoothed to reduce noise
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..............
—

Number of Moves 5000

Figure 40: Algorithm performance

IMTS problem solver went directly (in one move) from where it started its off-line
search to the exit of the depression. It can be argued that this violates the real-time
constraint (espe‘cially with such a large degree of deliberation of 250) giving IMTS
an unfair advantage. However if the solver had to take single moves to physically get
out of a depression after off-line search then there would be doubt as to whether the
results reflected the true potential of IMTS. One concern is that the value chosen for
the degree of deliberation may be suboptimal. As well, the IMTS algorithm could
be enhanced so that during off-line search while it expands one node per move it
also makes a physical move “toward” the node being expanded. This may cut down
on the distance the solver must travel after deliberation. By using a high degree of
deliberation and by jumping the solver out of depressions the results in Figure 39
represent a safe lower bound of the performance limits for the IMTS solver. This
strengthens the conclusion that the FDFS algorithm is a better approach than IMTS
for the class of search spaces used in these experiments.
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Moves Marbing Techmqu

Figure 41: Long term learning using Marking
5.4 Long Term Learning

Experiments were done over a number of rounds to observe general learning on the
part of the solver for algorithms that acquire knowledge about the search space. After
a search the solver and target were placed back in their initial positions, the solver
was allowed to retain any knowledge it had acquired from the previous search, and
the search was carried out again.

and Ishida’s moving target search algorithm with commitment (no deliberation) were
tested for improvement over 100 rounds. The experiment setup is the same as the
previous section, ten thousand times 100 by 100 spaces at density of 35 percent. The
random moving target was used.

respectively. The data on the CMTS graph is fitted (using least squares) with a
straight line. The progression along the r axis is the round number, which can
be misleading because the amount of time spent learning during » given round is
proportional to the number of moves taken in that round. Both algorithms show im-
provement over time. Note that the scales on the y-axis differ. CMTS has much more
room for improvement than Marking whose performance is good from the beginning.



Round® 100
Figure 42: Long term learning in CMTS algorithm
Also, the data shows that the two algorithms learn at different rates. For Marking,
the search time drops quickly in the first few rounds and then shows no improvement

in later rounds. On the other hand, CMTS will likely maintain its slower rate of

the memory overhead is a concern.

5.5 Evaluation

Clearly the original moving target search algorithm does not perform well compared to
the other algorithms discussed in this paper. The sensitivity to the target’s movements
and the slow incremental learning hamper this algorithm. However the research by
Korf and Ishida is still significant because it laid the foundation for this field of study
and also led to Ishida's improved algorithm.

for maximum benefit. The solver gets out of heuristic depressions much quicker.




which shows the benefit of learning over time, Ishida's problem solver improvements
come slowly. Eventually (many rounds later) it will behave optimally.

Deliberation effectively reduces the thrashing problem and therefore helps the
solver get out of local minimums. Ishida's techniques also require parameters, degree
of commitment and deliberation, that must be fine tuned for the current search set-
ting. Overall, deliberation and commitment are good techniques. Unfortunately they
are specifically designed to work with the original moving target search algorithm.
They cannot readily be added to other algorithms (Forgetful Depth-First Search, for
example) with the guarantee of performance improvements.

Forgetful Depth-First Search is simple, requires little overhead and memory, and
seems to be a reasonable approach to doing moving target search. The performance
results from the experiments done in this paper are promising. For the search settings
used here, FDF S is clearly superior to CMTS and IMTS. A criticism with FDFS is
that it is not “O(n®) complete”. (Although this is curable for any algorithm by aug-
menting it with Floyd's algorithm.) On a theoretical note, the Forgetful Depth-First
Search algorithm (without any Marking technique) would be usable in a dynamic
search setting where edges are added and deleted from the graph as the search pro-
gresses. Korf and Ishida’s algorithms cannot handle edges being added

Marking proves to be a beneficial addition to the Forgetful Depth-First Search al-

between all pairs of nodes, it comes much sooner and is general. The Marking tech-
nique can be easily added to any algorithm, it requires no parameters to be tuned,
and it is unlikely that adding Marking will have a negative effect on an algorithm's

performance.
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Chapter 6
Conclusion

6.1 Summary

This thesis investigated the moving target search problem. The problem is a variation
of the standard graph search in that the solver is constrained to computing its moves
in a small mnst;nt amount of time and the target also moves. Other work in this
research area was reviewed. Korf and Ishida [6) introduce the problem and an algo-
rithm to solve it. The algorithm works by incrementing heuristic information. The
analysis and experimentation in this thesis found this algorithm to be impractical.
Ishida (7] recognizes the shortcomings with the algorithm and presents improvements,
namely commitment and deliberation. This thesis verifies that these improvements

that their representation of knowledge is large (the size of the search space squared).
This thesis introduced an alternative approach to doing moving target search called
Forgetful Depth-First Search. The algorithm outperformed the other methods in the
experiments done in this thesis. The Forgetful Depth-First Search solver moves of-
fectively about the search space but does not learn or adapt. A technique called
Marking attempts to quickly learn about the search space at a higher level than the
other method of improving heuristic distances. Experiments confirm that Marking
54
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Algorithm Ehwledgﬁepn Space Requirement
Floyd all-pairs matrix ] O(n?)

target's s trail ~ O(n)
E all-pa -pairs matrix —O(n?)
Commitment | all-pairs matrix T 0(nY)
Deliberation | all-pairs matrix _ ~O(n?)
FDFS own history ~ 0O(n)

Marking Regions ___O(n)
Figure 43: Primary knowledge base of algorithms

Addable can be | parameters
Technique | combined | requiring
with tuning
Floyd __Any none
Commitment | BMTS | degree
Deliberation | BMTS | degree
Marking _Any none

Figure 44: Camp.mson of a.lgnnthm enh;ncemem;

quickly acquires' knowledge about the search space but that this knowledge has its
limits. Marking was combined with Forgetful Depth-First Search and the resulting
problem solver performed better than plain Forgetful Depth-First Search.

Figures 43 and 44 summarize various points on the algorithms discussed.

6.2 Future Work

The developments introduced in this thesis do not put an end to moving target re-
search. Instead, the new ideas presented here probably can be improved or extended.
There may be radically different approaches that are even better.

6.2.1 Mathematical Analysis

Many of the arguments concerning the worthiness of algorithms Forgetful Depth First
Search and Marking are based on intuitive notions rather than mathematical proof.




More work is needed to analyze these algorithms in this way. To further understand

6.2.2 Solving Real World Problems

The constraints of the moving target search problem are severe. Solver algorithms
are extremely limited. Important real searching problems having time constraints
with a changing goal will likely have different specifications than the ones used in this
thesis. When important real problems are identified, further research must be done

to apply the moving target search algorithms to the problem domain. Problems that

arise in practice will probably allow for more computation time per move. This leads

to questions of how to use extra time most effectively. For example, should the solver

problem are lessened the potential ability (and complexity) of the solver algorithm

can be increased in many directions.

6.2.3 Variations

There are many variations of the moving target search problem worth studying. One
interesting extension of the problem is to allow for multiple solver agents. Algorithms
would have to be modified to utilize this “parallelism” effectively. Algorithms based
on learning would have the different solver entities trade knowledge. When Forgetful
Depth-First Search solvers are working together they should avoid moving onto nodes
that are in the history of any of the other searchers in order to keep apart from each
other. Another variation of the search problem involves using a dynamic search space
researching such various problems will occur as they arise in real situations.
objective is to develop a target that is difficult to catch. In some ways this is a harder
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problem. If a solver knows the true shortest distance between every pair of nodes
then it can easily determine the optimal move. This is not true for a target with the
same knowledge. A target that always tries to increase the distance between itself
and the solver will likely just trap itself in a local maximum with no way to escape
as the solver closes in. Given smarter targeus, = nseful study would be to face them
against the various moving target search algorithms discussed in this thesis. It would
be interesting to see not just the performance of each of the solver algoritims, but
the performance relative to the other solver algorithms as the target's evasive abilii;

is increased.

6.2.4 Higher Learning

The reasoning process of Korf and Ishida's algorithms updates heuristic information.
Marking works at a higher level by creating “regions”. Such techniques may “perform
well”, however f;’—.w would consider such approaches as “intelligent”. When a human
user cont.ols the target, he/she can quickly become familiar with the solver’s behavior
and then exploit it's weaknesses. The challenge in most interactive computer games

is coordination and speed instead of intelligence. Oz research direction would be
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