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Abstract

Scoliosis is an abnomal curvature of the spine in the frontal plane associated with
vertebral rotation. An understanding of the mechanical behavior of the human'’s spine is
important to study the development and the corrections related with scoliosis. Using
computer simulation and physical models of scoliotic spines, it is possible to create a
pre-surgical tool. This tool would be able to predict the forces and moments that are
necessary to apply during the surgery to obtain the correction.

The Finite Element Method was the mathematical tool employed in the present work. It
employed a new technique called constraint equations. Constraint equations are linear
equations that relate the degrees of freedom of a rigid body. The constraint equations
minimized the global number of degrees of freedom in a system and greatly simplify the
geometry of the model as well as the computational time. The technique aiso kept
accuracy of the results for any number of degrees of freedom.

The present work employed experimental and computational displacement results to
validate the modeling of the thoracic region of the human spine. Maximum
displacements of the two-dimensional computational and experimental models were also
compared, and the maximum percentage difference was 13%.



Acknowledgment

The author would like to express her deep gratitude to her supervisors Dr. Ken Fyfe and
Mr. Jim Raso for their continues help and support in the course of this thesis.



Contents

L0310 1 (- e [ 1
1.1  latroduction 1
1.11 ThESISOULIING ... e e e e neeeees 2
1.2 Human Spine 2
1.3  Components of the Spine........c.ccccccvcrnrrccenneecenisccssascccccnnnnes 6
1.3.1 VerEDIra ... ... et e e e e e e e e e e e e e e r e aee 6
1.3.2 Intervertebral DiSC............coooimiieeee e eeeee e e e e nes 7
133 LIGAMENES ...t ee e e eear e e eesnnn e e ssnen e erenneeannes 8
1.3.3.1 Ligamentum Flavum. ... e s 8
1.3.3.2 Transverse Ligament.................oooooiiiiiiiiiiiiciieeeeeeeeeeee e 9
1333 Posterior and Anterior Ligaments ....................cooooviiiiiiiiieee 9
1334 Supraspinous and Interspinous Ligaments.................ccccoeeieeeeiieeieeenenes 9
1335 FacetCapsularLigament ...................cocooiiiiiiiiiieeeeeeeeeeeeeeneees 9
1.3:4 TONAONS........ooeeeeeeeeee e eeeeeee e eeserrnsnsnseeseessnnnnnnnnnns 10
138 MUSCIES ...ttt eeeeesnre s eeeeeasnnssnenaans 10
1.4 Geometry of the Human Normal Spine...........cccccceccnnnnnnen 1
1.4.1 TheVertebra........ ... e eeeeeeeeeeeeeeeee e esssre e s eseseesnnns 1
142 Intervertebral DiScC............oooo e ee e e ceeeeeas 13
1.5 Biomechanical Properties of the Human Normal Spine..........ccccccuu.... 13
1.5.1 Properties ofthe Vertebra................oooo oo, 13
1.5.2 Intervertebral Disc Properties.............oooooereriieieeiiiieeeeeeeeeeeeee 15
153 Ligaments and Tendons............ooooueorimmiiimeicceeeeeeeeereeeeeeenennneeanes 18
1.5.4 SUMMANY....... et eeeeeeeea e esesssssssssnssseesssnnnraesaannes 20
1.6 Idiopathic Scoliosis 21

16.1 Treatments of Scoliosis



16.1.1 Observation TreatmeNt ... ee e 24

1.6.1.2 Orthotic Treatment ........... ... eas 24
1.6.1.3 Surgical Treatment............... .o eaeae 25
1.6.2 Complications of Surgical Treatments .....................ccccccciiiiiiiniiinnn. 26
1.7 Development of a Pre-surgical Tool 27
Chapter 2 ........cciiiieinnncnecnsnsnansassscsssesssnsesssssssensssesssessessensensas cecresenees 28
2.1 Literature Review.. 28
2.1.1 ShUZ A, Galante J. ..o e e e e e ee e ee s 28
212 SubbarajK., GhistaD.N., Viviani G. R, ..., 29
2.1.3 Dietrich, M. Kedzior K., Zagrajek T. ... 30
214  SteVEN TONG....ooeoiieeeeieeeieieei et rereeeetee s ee e e s e eaee 31
2,15  SCRUNZ, Aottt ettt e e e e 32
2.16 Takemura, Yamotoand Tani T. ........ccooemiiiiiiimiiiiiceeececee e e eeeees 33
Chapter 3 ..........ecciininnececccsessenncnctaeeneeeeeccetessesssssssessssasasssesenssane 34
3.1 Finite Element Method . 34
3.2 Kinematics of Rigid Body Motion 34
3.3 Constraint Equations 36
331 Constraint Equations in Two Dimensions......................ccccccvviiiinnnn. 36
3.4 Constraint Equations - Procedures 40
3.41 Collocation Overdetermination................c.cccccciiiiiiiniiiiiniiinenneeneenenens 41
342 TralSolutionMethod......... ... eeneneees 42
3.5 Geometrical Non-linearity 42
351 Frame with Horizontal FOrce..............ooooiececee e 44
3.52 Frame with Horizontal and Vertical Force .................ccooooiimriiinnieceees 46

353 Series of Blocks



3.6 ANSYS Elements and Constraint Equations 51

3.7 Meshing 52
Chapter 4 .................... eeeseesesssscnssesannane cessssesssssesansas cesecssssasassesassananane 54
4.1 Spine Simulation 54
4.2 Probable Error 55
4.3 Experimental Model 57
43.1 Shear Test ... ettt e e 59
432 Compression TESt......... .o it reeree e e eeaees 63
433 Student T TestforSampleMeans ...................cccceeiiiiiiiiiiiiiiiiiiinnenne. 68
434 Intervertebral Disc vs. Silicone Disk Material Properties................... 69
435 ThePhysical Functional Unit..................coiieeeeeee 70
436 PhySicCalMOdel............ooooimiiiiiieeieeeeeeeeeeeeeee e e 72
4.4 Computational Model — 4 4
441 Modeling of the Intervertebral Disc ..............ooociiiiiiiiiieeee 77
442 Computer Model of the Physical Functional Unit .............................. 81
443 Computational PhysicalModel..................ccoomiiiiiiiiiiiiiceeeeeees 85
444  DISCUSSION. ... e e et e e s e e e e e e aeeeeaseeaanaennes 89
445 ThoracicModel ...t eas 92
Chapters ............... SR ceseresesssssnanssannens tesesseetsessnntsssssnsnasansanne 97
51 Summary... 97
5.2 Conclusions 100
5.3 Future Work 102

6.1 References 104




Appendix 1

Nomenciature of the geometry of the vertebrae

Appendix 2

............................................

Geometrical Analysis of Constraint Equations

Appendix 3

..............................................

Constraint Equations in Two dimensions with Rotations

Appendix 4

...............................

Constraint Equations in Three dimensions with Rotations

Appendix § ...

............................

Constraint Equations in Two dimensions with no rotations

Appendix 6

Physical Functional Unit Displacements...

Appendix 7 ........oocunen...

.....................................................

Coordinate Measuring System Specifications

Appendix 8

Physical Model Resuits

Appendix 9 ........ccccceeceiennennns

.....................................................

Computational Physical Functional Unit Results

Appendix 10

...........................................

Computational Results of Physical Model

.....................................................

110
110

112
112

116
116

118
118

124
124

126
126

127
127

128
128

132
132

133



List of Tables

Table 1-4-1-1
Table 1-5-1-1
Table 1-5-1-2
Table 1-5-1-3
Table 1-5-2-1
Table 1-5-2-2
Table 1-5-2-3
Table 1-5-3-1
Table 1-5-3-2
Table 1-6-1-1
Table 3-3-1-1
Table 3-5-1
Table 3-5-1-1
Table 3-5-2-1
Table 3-5-3-1
Table 4-2-1
Table 4-3-1-1
Table 4-3-2-1
Table 4-3-3-1
Table 4-3-4-1
Table 4-3-5-1
Table 4-4-1-1
element

Table 4-4-3-1
Table 1-1
Table 6.1
Table 8.1
Table 8.2
Table 8.3
Table 8.4

Flexion, extension, lateral flexion and axial rotation ranges ................ 12
Young’s modulus of the vertebra (corticalbone)................cccoouuuenennee. 14
Average stiffness coefficients with forces of the vertebra................... 15
Average stiffness coefficients with moments of the vertebra............... 15
Young's modulus of the intervertebraldisc ......................oooeeennninnnn... 18
Stiffness due to forces of the intervertebral disc.................................. 18
Stiffness due to moments of the intervertebral disc............................ 18
Young’s modulus and Poison'’s ratio of the ligaments ......................... 19
Young's modulus and stiffness of each spinal ligament...................... 20
Treatment of SCONOSIS.............ocooirmnmieieeee e 23
Final position in X, Y and Z coordinates of the selected point............. 38
Resuits from linear and non-linear test of the cantilever beam........... 44
Results from beam and CE frame models with horizontal force.......... 46
Resuits from beam and CE models with horizontal and vertical force.47
Resuits from beam and CE series model with one end fixed.............. S0
Probable @FTOr ..............oo et eee e e 56
Stiffness and shear modulus of silicone 732...............ccccoceveeeeeeecnnne. 63
Stiffness and compression Young'’s modulus of silicone 732 .............. 68
Student T test for sample meanresults.....................ooooeieieeiieeieeneennn. 69
Material properties of the intervertebral disc and silicone disk ............ 70

Thickness values of the physical functional unit

Comparison between different models using CE, springs and plane
81

Percentage difference of the physicaimodel....................ccccoennnnennne. 89
Geometryofthe Vertebra..................oooieeeeeeee 11
Experimental resuits from the physical functional unit ...................... 126
Horizontal Forces in block 7 and 3 of the Physical Modei................. 129
Horizontal Force in block 7 of the PhysicalModel ........................... 129
Horizontal Force in block 3 of the PhysicalModel ............................ 129
Horizontal Force in block 4 of the PhysicalModel ............................ 130

Table 8.5 Horizontal Force in block 4 and angle force at block 7 of the Physical

Model 130



Table 8.6 Angle Force of 4 degrees at block 7 of the Physical Model ............... 130
Table 8.7 Moment at block 3 of the PhysicalModel .........................oooeenennnnnnnnns 131
Table 8.8 Moment at block 7 of the PhysicalModeit ........................oonennenn. 131

Table 8.9 Vertical angle of 4 degrees at block 3 and Horizontal force at block 7 of
the Physical Model

eeeeteeeesseeesteesanneaneaeaaeaaaenrnrnnanrrrareraeennnnns 131
Table 9.1 Computational results from the physical functional unit..................... 132
Table 10.1 Horizontal Forces in block 7 and 3 of the Computational Model ........ 133
Table 10.2 Horizontal Force in block 7 of the Computational Modei.................... 133
Table 10.3 Horizontal Force in block 3 of the Computational Model.................... 133
Table 10.4 Horizontal Force in block 4 of the Computational Modet.................... 134
Table 10.5 Horizontal Force in block 4 and angle force at block 7 of the
Computational Model....................enn eeiereeeececcetreeereeere s s e nennes 134
Table 10.6 Angle Force of 4 degrees at block 7 of the Computational Model...... 134
Table 10.7 Moment at block 3 of the ComputationalModei................................. 135
Table 10.8 Moment at block 7 of the Computational Model.................ccoeeeeeeenen.... 135

Table 10.9 Vertical angle of 4 degrees at block 3 and Horizontal force at block 7 of
theComputational MOdEeN. ........... .o et eer s e s e ree e eeeeenannes 135



List of Figures

Figure 1-2-1
Figure 1-2-2
Figure 1-2-3
Figure 1-24
Figure 1-3-1-1
Figure 1-3-2-1
Figure 1-3-3-1
Figure 1-3-4-1
Figure 1-5-2-1
Figure 1-5-2-2
Figure 1-5-2-3
Figure 1-5-24
Figure 1-6-1
Figure 1-6-1-1
Figure 3-3-1-1
Figure 3-5-1-1a
Figure 3-5-1-1b
Figure 3-5-2-1a
Figure 3-5-2-1b
Figure 3-5-3-1a
Figure 3-5-3-1b
Figure 4-3-1
Figure 4-3-1-2a
Figure 4-3-1-2b
Figure 4-3-1-3
Figure 4-3-14a
Figure 4-3-14b
Figure 4-3-2-1
Figure 4-3-2-2a
Figure 4-3-2-2b
Figure 4-3-2-3b

Regions of the human spine, sagittal view................cccooveeornnennnnnnnn.... 3
Conventional planes and axis.............. eeeteerererta——————eereresereesante—ennneanas 4
XYZ SPIN@ AXES............ooooomnrereeeeeeeeceeeeeeeee e eeeeeaeessssseenneeeonnaen 5
Local coordinatesofthevertebra ..........................ccooeiiiiiiieiiieeens 5
Typicallumbarvertebra........ ...t 6
Intervertebral disc............ ... 7
Ligaments of the Spine........... ..ot 8
Typical Stress-strain graph of tendons behavior...............cccco........... 10
Tensile and compressive stresses in the intervertebral disc.............. 16
Bendingofthespine ..............coco e 16
Horizontal and axial shear stresses in the intervertebral disc............. 17
Axial rotation between the vertebraeinthe spine............................... 17
Types of scoliosis, classification KingMoe ....................oooveneeeenennn.. 21
Cobb’'sangle.............. e e 23
Incremental angle values ...........................cccooiiiiiiiieeeeeenn. 38
Model with beam elements with horizontal force .............................. 45
CE frame model with horizontalforce.....................ccoceovieeieeecennnne. 46
Model with beam elements with horizontal and vertical force ........... 47
CE model with horizontal and vertical force.................cccccoeeeuveeen...... 47
Beam series MOdel ..ot 49
CEseriesmodel ... 49
Stress-strain silicone DC 999 (from ASTM STP 1271,1996)............ 58
Stress-strain shear curve of silicone 732 cured 1 week................... 60
Stress-strain shear curve of silicone 732 cured 7 weeks................. 60
Hysterisis results for the shear test of silicone 732..........cc.coueuuueee. 61

Load-displacement shear curve of silicone 732 cured 1 week......... 62
Load-displacement shear curve of silicone 732 cured 7 weeks........ 62
CoOmMPresSioN SELUP ... aae e ens 64

Stress-strain compression curve of silicone 732 cured 1 week........ 65
Stress-strain compression curve of silicone 732 cured 5 weeks......66
Load-displacement compression curve of silicone 7232 cured 5 weeks




Figure 4-3-5-1
Figure 4-3-5-2
Figure 4-3-5-3
Figure 4-3-6-1
Figure 4-3-6-2
Figure 4-3-6-3
Figure 4-3-6-4
Figure 4-4-1-1
Figure 4-4-1-2
Figure 4-4-2-1
Figure 4-4-2-2
Figure 4-4-2-3
Figure 4-4-3-1
Figure 4-4-3-3
Figure 4-4-34
Figure 4-4-4-1
Figure 4-4-4-2
Figure 4-4-4-3
Figure 4-4-5-1
Figure 4-4-5-3
Figure 4-4-5-3
Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

..................

Dimensions of the physical functionalunit......................................... 70
Bending force applied to the physical functional unit. ........................ 71
Equivalent forces of the physical functional unit................................ 72
Coordinate Measuring Machine......................eemeveeeeeeeeeeeireeeeeenenneenns 73
Horizontal force applied to the physicaimodel .................................. 75
Combined forces applied to the physical mode................................. 75
Moment applied to the physicalmodel ....................cccooenniinnnnnnnn... 76
Crossed spring set model..................ooeeiieeeeeeeeeeeeeeeeeeeeeeeeeenneneees 78
Intervertebral disc using plane elements ....................ccccoeieennnnnne.. 80
Displacement resuits from physical functional unit 1 ......................... 83
Displacement resuits from physical functional unit2 ........................ 84
Displacement resuits from physical functional unit3 ......................... 84
X displacement of the physical model case Horizontal 4................... 86
X displacement of the physical model of case Moment 7. ................. 88
Y displacement of the physical model of case Moment 7 .................. 88
Intervertebral disc using solid elements....................ccccoeeiinniinnnnnnnn.. 91
Intervertebral disc using planeelements .....................cccccoeereerrinnnnnen. 91
intervertebral disc using spring set..................oooiiiiiiiiiiiiiinee 91
CE represented by lines that form the vertebral body........................ 93
Intervertebral discs, ligaments andtendons ..............ccccoeeecnnnnnnn... 94
TROrACICMOMEL.........oooeeeeeeeeeceeeeeeereee e ecee e e reeee s e s e eeennes 95
Rotation sequences for X Coordinate...............ccccococceenrnrrereeneecnn.. 118
Rotation Sequences for Y Coordinate..................ccccccrnnnicecnnnnnnenn. 119
Rotation Sequences for Z Coordinate................cccocoeeemeeinnnnnnrnnnenes 119

True and Approximate Rotation Matrix Resuilts for X and Y Coordinate

True and Approximate Rotation Matrix Results for Z Coordinate .... 120



Chapter 1

1.1 Introduction

Scoliosis is a lateral curvature of the spine in the frontal plane. It probably constitutes
one of the most challenging and complex clinical problems in the field of orthopedic
biomechanics. There are several treatments to correct spinal deformation depending on
the severity of the curvature. The operative treatment for scoliosis and spinal fixation has
not yet been satisfactorily clarified. Therefore, developing a model to describe the
corrective forces and methods prior to surgery is necessary.

The vertebral column is a non-homogenous complex structure with a mechanical
behavior that is difficuit to analyze. Presently, researchers use the Finite Element
Method with numerous simplifications with regard to the geometry and to the material
behavior of the spine. This research was done using the Finite Element Method that
incorporates constraint equations. The constraint equations are a set of linear equations
that relate the degrees of freedom of the points in a rigid body.

The present work pursued three objectives. The use of constraint equations to represent
the motion of the rigid body, the experimental and computational maximum displacement
resuits have a maximum percentage difference in the order of 15%. Finally, the
intervertebral disc was modeled in two dimensions.

The final product of the thesis was the modeling, in two dimensions, of the thoracic
region of the human spine. The computational model was subjected to different loading
conditions in order to verify the accuracy and short computational time of the Finite
Element Method. The software tools used to develop this model are ANSYS® and

MATLAB®. A physical model of the spine is used to validate the results of this
computational model.



1.1.1 Thesis Outline

The first chapter provides an introduction to the thesis, an overview of the relevant
anatomy and biomechanical geometrical information of the human spine and an
explanation of idiopathic scoliosis. This chapter also explains the treatments for scoliosis
to realign the deformity and reduce the pain of the motion segments and as well as
discusses the most common failures in the treatment.

Chapter Two presents the literature review used in this work. Chapter Three explains
the finite element method and the selection of the elements used in the present work.

The chapter also discusses the constraint equations approach that is used in the
analysis.

The fourth chapter presents the modeling of the spine. The modeling can be categorized
into two parts: the physical model buiit with wood and silicone and the computationail
model of the spine performed in ANSYS. A comparison between the displacement
results obtained from the computational model and the experimental one is discussed.

Finally, the fifth chapter presents the discussion, conclusions, and recommendations for
future work. A bibliography and the appendices follow this.

1.2 Human Spine

The human spine is considered a mechanical structure of the human body because it
supports the trunk as well as, protects the spinal cord and neural elements. The
vertebral column the axis of this mechanical structure, rests on the pelvis at the lower
end and at the upper end, supports and orients the head in space.

The spine has three fundamental biomechanical functions. First, it transfers the loads
and the resultant bending moments coming from the head and trunk as well as any
weight being lifted towards the pelvis. Second, it provides a structure to join the
extremities, head and trunk with enough physiological energy to cause motion. Finally,



and most importantly, it protects the delicate spinal cord from potential damaging forces
and motions from physiologic movement or trauma [11,22,54).

According to Kapandji, (1987) the general anatomy of the spine is divided into five
regions the cervical, the thoracic, the lumbar, the sacrum and coccyx. Each section is
composed of individual bones called vertebra. There are seven cervical vertebrae (C1-
C7). twelve thoracic vertebrae (T1-T12) and five lumbar vertebrae (L1-L5). All these are
mobile vertebrae. Below the lumbar region is a bone called the sacrum, which is
composed of five fused sacral vertebrae. Its function is to transmit body loads to the

pelvis. The last region, the coccyx, is a bone attached to the sacrum and contains four
fused coccygeal vertebrae. Figure 1-2-1 shows a drawing of the human spine.

Figure 1-2-1 Regions of the human spine, sagittal view
(Modified from Zatsiorsky, 1998)



The spine in the sagittal view has four normal curves, cervical, thoracic (kyphosis),
lumbar (lordosis) and sacral curvatures. These curves are convex anteriorly in the
cervical and lumbar regions and convex posteriorly in the thoracic and sacral regions.
The mechanical basis for the anatomic curves results from the curves increasing the

flexibility while at the same time maintaining adequate stiffness and stability at the
intervertebral joint level [22,51,54].

The conventional planes used in this study are: the frontal plane, transverse plane and
sagittal plane with the correspondent axis as shown in Figure 1-2-2

Y
Lo dinal axis
Frontal Plane
Latero medial axis ’;
Transverse Plane
ro-posterior axis
z
R
> {V
Sagittal Plane
Figure 1-2-2 Conventional planes and axis

(Modified from Zatsiorsky, 1998)

The global coordinate system used in the present work is a XYZ right-handed system.
The X-axis represents the Latero medial axis; the Y-axis represents the Longitudinal axis



and the Z-axis represents the Antero posterior axis. In similar way, the conventional
planes are represented by the combination of the X, Y and Z-axes. See Figure 1-2-3.
The local coordinate system of the vertebra is represented in Figure 1-2-4

Figure 1-2-3 XYZ spine axes
(Modified from Pope, et al., 1984)

Figure 1-2-4 Local coordinates of the vertebra
(Modified from Pope, et al., 1984)



13 Components of the Spine

The primary components of the spine are: vertebrae, intervertebral discs, ligaments,
tendons and muscles. Each of these elements plays an important role in the
biomechanical behavior of the spine.

1.3.1 Vertebra

A typical vertebra consists of an anterior body and a neural or posterior arch. The arch
bears seven processes: the spinous processes, two lateral transverse processes and
four articular processes (two superior and two inferior) as shown in Figure 1-3-1-1.

Spinous Process

Superior Articular
Facet . Lamina
Transverse Process
Arch
T
R~
Anterior
8ody

Transverse Process

Spinous Process

Inferior Demifacet Lamina

Figure 1-3-1-1 Typical lumbar vertebra
View from above (upper figure) and from right side (lower figure).
(Modified from Schultz, 1974)



The vertebral body is a kidney-shaped bone. The outer surface is a dense bony layer
surrounded by a spongy marrowbone. The flat surface of the vertebral body is called an
endplate. It is composed of hyaline cartilage. The posterior element of the vertebra is the
vertebral arch and it is composed of the lamina and pedicle. A concavity and inferior

vertebral notch on the inferior border of the arch provides a passageway for a spinal
nerve.

The spinous process is a prominence at the posterior part of each vertebra. The paired
transverse processes are oriented ninety degrees to the spinous processes and provide
attachment for back muscles. There are four facet joints associated with each vertebra,
one pair facing upward and the other facing downward [11,22,50,54].

1.3.2 Intervertebral Disc

The intervertebral disc is a fibro cartilage flattened disc between the bodies of vertebrae.
It is subjected to different types of loads due to the physiologic motions such as flexion,
extension and lateral bending. These loads are tension, compression, and torsion. Axial
rotation of the trunk with respect to the pelvis causes torsional load that resuilts in shear
stresses in the lumbar discs. The Intervertebral disc consists of two parts. The first is the
nucleus pulpous that is centrally located with a very loose mucoprotein gel, tightly
bounded by fibrous tracks. Surrounding the nucleus pulpous is the annulus fibrous,
which is a structure that contains fibrous in concentric laminated bands arranged in

helicoidal manner [19,22,54). Figure 1-3-2-1 shows the structure of the intervertebral
disc.

Figure 1-3-2-1 Intervertebral disc
(Modified from White and Panjabi, 1990)



1.3.3 Ligaments

Ligaments are elastic bands of strong fibrous connective tissue that attach the bones

together and help stabilize the joint. There are seven ligaments attached to each
vertebra as shown in Figure 1-3-3-1.

» Facet Capsular
Ligament

Ligament

Interspinous
Ligament
Supraspinous
Ligament
Anterior
L ongitudinal

Ligament

Figure 1-3-3-1  Ligaments of the spine
(Modified from White and Panjabi, 1990)

1.3.3.1 Ligamentum Flavum

Ligamentum flavum runs from the anterior and interior aspect of the lamina of the
vertebra. There are a left and right ligamentum flavum that begin at the cervical vertebra
C1 superiorly and end in the lumbar vertebra L5 inferiorly. The ligamentum flavum is the
only one with elastin, an extra-cellular connective tissue protein. Elastin causes natural
contraction; therefore in the case of the ligamentum flavum, its function is to prevent
sagging into the spinal canal [19,22,51,54].



1.3.3.2 Transverse Ligament

The transverse ligaments connect the ends of the transverse processes of the vertebrae.
The ligament consists of a thin membranous band that works during lateral flexion and at
the same time leads to relaxation of the capsular ligaments. Relaxation occurs in

viscoelastic elements when is applied a pre-stressed load and it tends to decreased
gradually with the time [19,22,51,54).

1.3.33 Posterior and Anterior Ligaments

The posterior longitudinal ligament runs from the posterior aspect of the vertebral body
from cervical vertebra C2 to the coccyx. it has a weak attachment to the vertebral body
and a strong attachment to the intervertebral disc. The strong attachment helps to

prevent intervertebral disc herniation and the weak attachment aliows for the exit of the
basi-vertebral veins.

The anterior longitudinal ligament is a wide fibrous band that covers the anterior aspect
of the vertebra at the cervical level C1 to the sacrum. Contrary to the posterior
longitudinal ligament, it has a rather strong attachment to the vertebral body but a rather
weak attachment to the intervertebral disc. The function of the anterior longitudinal
ligament is to limit the extension of the spine [19,22,51,54].

13.34 Supraspinous and Interspinous Ligaments

The supraspinous and interspinous ligaments run between the spinous processes from
the cervical vertebra C2 to lumbar vertebra LS. The function of these ligaments is to limit
the spinal flexion and control the rotation between neighboring vertebrae [19,22,51,54].

1.3.35 Facet Capsular Ligament

The facet capsular ligament is a heavy fibrous structure with a synovial (lubricant fluid)
membrane that helps to minimize the friction among the facets and surrounding
articulations. It controls the flexion and rotation between adjacent vertebrae. Another
function of the capsules is to allow smooth and effortiess motion between the facet



surfaces when axial compression or extension of the spine occurs. The facet joints also
support a small portion of the compressive loads [14,19,22,51,54).

1.3.4 Tendons

The tendon is a composite material composed of connective fibrous protein and elastic
tissue that attach the muscles with the bones. Tendons contain collagen fibers that give
them mechanical properties, such as tensile strength, elasticity, viscosity, relaxation and
creep. The mechanical response of these complex structures is non-linear and is
characterized by J-shape dependence shown in Figure 1-3-4-1 {22,55].

Stress

Strain

Figure 1-34-1  Typical Stress-strain graph of tendons behavior
(J-shape dependence)

1.3.5 Muscles

The muscle is a wrapped package containing other smaller wrapped package of long,
slender cells known as muscle fibers. Skeletal posterior muscles show sustained
contraction when a person is awake and its action is essentially related to the extension
of the iumbar vertical column. When the sacrum is fixed, the muscles powerfully extend
the lumbar and thoracic column at the lumbrosacral joint (LS and sacrum) and at the

thoracolumbar joint (T12 and L1) respectively. In addition, the muscles accentuate the
lumbar lordosis [22,51,54].

The functions of the back muscles are
- Extension of the vertebral column,
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- Maintenance of the erect posture and head posture,

- Lateral bending,

- Stabilization of the vertebral column during flexion and
- Rotation

1.4 Geometry of the Human Normal Spine

The spinal column is like a tall radio tower made up of twenty four vertebrae, separated
by the intervertebral discs that act as shock absorbers. The spine is unstable on its own,
but due to the different elements attached to it such as ligaments, tendons and muscles
it is very stable. In profile, the spine is curved in a faint S-shape to help to support
different kinds of loading conditions. Therefore, the role of the tendons, muscles and
ligaments in the human back is supporting the spine in its S-shape.

1.4.1 The Vertebra

The vertebra is composed of anterior and posterior elements [22). The anterior element
is the vertebral body and it plays the static role because it supports the whole structure.
The posterior elements play the dynamic role because they allow the mobility of the

vertebral column. The primary function of the vertebra is to support loads, including the
body weight.

“As a whole the column from sacrum to skull is equivalent to a joint with three degrees of
freedom: it allows flexion and extension, lateral flexion right and left and axial rotation.
The range of these elementary movements at each individual joint of the column is very
small but, in view of the many joints involved, the cumulative effect is quite significant”.
(Kapandji, 1987). The pattem of movements of the spine is dependent on the shape and
positions of the articulating processes, the attached ligaments, thickness of the
intervertebral discs and orientation of the facets.

Moving from top to the inferior position of the vertebrae (T1-S1) the range of motion of
the individual motion segments increases in flexion and extension, but decreases in axial
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rotation. In lateral flexion, the range of motion is almost constant. The motion segment or
functional unit is considered to be two adjacent vertebrae and their interposed
intervertebral discs of the spine; each segment has six degrees of freedom [57). The
lower vertebra is fixed while the upper one is subjected to different loading conditions.

As mentioned in Section 1.2, the spine has curves, and, therefore, the posterior
elements are not oriented perfectly vertical. They are inclined. This causes more than
one movement of the vertebrae at the same time, i.e., when lateral bending is performed
the motion segment also rotates about its latero medial and longitudinal axis. As a
result, the spinous processes in the upper portion of the thoracic region rotate to the
convex side while the spinous processes of the lumbar region rotate toward the

convexity of the spine. The following table summarizes the motion ranges in the different
regions of the spine.

Movement Region Angle (Degrees)
Flexion Lumbar 60
Extension Lumbar 35
Flexion Thoraco-lumbar 105
Extension Thoraco-lumbar 60
Lateral Flexion Lumbar 20
Lateral Flexion Thoracic 20
Axial Rotation Lumbar 5
Axial Rotation Thoracic 35

Table 14-1-1  Flexion, extension, lateral flexion and axial rotation ranges
(Kapandii, 1987)

The modeling of the vertebral column requires the dimensions of its components such as
lengths, widths, and cross sections. In the literature, data is collected from different
research sources. The geometry of the vertebra is shown in Appendix 1
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1.4.2 Intervertebral Disc

The intervertebral disc is a combination of a center with fluid and an annulus with fibers
that cause a different behavior according to the applied load. For instance, at low levels
of load, the response is a soft or flexible disc. On the other hand when the load is large,
approaching traumatic levels, the fluid in the core pressurized. The pressure makes the

disc stiff or less flexible; therefore the intervertebral disc can become even stiffer than
the vertebral bone [22,54].

The intervertebral disc thickness varies according to the region in the vertebral column.
In the cervical region, it is 3 mm; in the thoracic region, it is 5 mm; and, in the lumbar
region, it is 9 mm. These differences in thickness cause a different ratio of mobility. For
instance, the cervical column is the most mobile, followed by the lumbar column and,
finally, the thoracic column, which is the least mobile (Kapandji, 1987).

1.5 Biomechanical Properties of the Human Normal Spine

The human spine anatomically described is a set of vertebrae, intervertebral discs,
ligaments, tendons and muscles. All these elements work together to transmit suitable
loads towards the pelvis and keep the normai posture of a person. During normal
activity, the spine can undergo flexion, extension, axial rotation and lateral bending.
These movements subject the intervertebral discs, ligaments, tendons and muscles to a

different set of loading conditions such as compression, tension, bending, torsion and
shear.

1.5.1 Properties of the Vertebra

The vertebra is composed of a cortical shell, cancellous core, end plate, facet joints and
neural arch. The vertebra may be considered as an engineering structure composed of a
vertical column joining the two end plates and horizontal ties supporting the columns
from the side. This structure can support compressive and shear loads [27,54].

13



The major physiological load on the column is axial, producing compression on each
vertebra. The vertebral body carries most of the compressive load helped by the facets.
An axial load produces compression on the vertebrae. This causes significant pressure
on the nucleus. The compressive load is almost entirely transferred directly from one
vertebra to the other by the annulus of the intervertebral disc. A small percentage of the
compressive load is carried by the endplate. The failure of the vertebra is due to the
fracture of the periphery of the endplate [54).

in the literature, the reported mechanical properties of the vertebra differ from one author
to another. In this study the most representative results were used. The value used in
the modeling corresponded to the mean value of the values found in literature shown in
Table 1-5-1-1. Other important mechanical properties were found from Goel and
Weinstein (1990), such as the tensile strength with a value of 1.18 N/mm? the
compressive strength from 1.37 to 1.86 N/mm? and the shear modulus as 4,615 N/mm’.

The consecutive tables, Table 1-5-1-2 and Table 1-5-1-3, contain the average stiffness
coefficients of a representative functional spinal unit in different regions of the spine.

Author Young's Modulus (N/mm®) Poison’s Ratio
Goel and Weinstain, 1990 12000 03
White and Panjabi, 1990 8900 (Longitudinal) 0.3
White and Panjabi, 1990 4300 (Tangential) 0.3
White and Panjabi, 1990 3800 (Radial) 0.3
Suwito, et al., 1992 14500 0.3
Skalli, et al., 1993 12000 0.3
Yoganandan, et al., 1995 10000 0.39

Table 1-5-1-1  Young's modulus of the vertebra (cortical bone)

(Oifferent sources)
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Region Tension Compression | Ant. Shear | Post. Shear | Lat. Shear
+Fy (mm) Fy (vmm) +Fz (vmm) -Fz (vmm) Fx (vmm)
Thoracic 770 1250 110 110 110
Lumbar 770 2000 121 170 145
Table 1-5-1-2 Average stiffness coefficients with forces of the vertebra
(White and Panjabi, 1990)
Region Flexion Extension Lat. Bend Axial Rotation
+MXx (Nmmideg) | -MX (Nmideg) | +MZ (Nmvdeg) -My (Nmendeg)
Thoracic 770000 1250000 110000 110000
Lumbar 770000 2000000 121000 170000

Table 1-5-1-3  Average stiffness coefficients with moments of the vertebra
(White and Panjabi, 1990)

1.5.2 Intervertebral Disc Properties

The intervertebral disc can resist forces and moments in many directions because of its
structure. Along with the facet joints, it is responsible for carrying all the compressive
loading to which the trunk is subjected. The compressive load is transferred from one

vertebral end plate to the other by the nucleus pulposus and the annulus fibrous,
creating internal pressure.

The fibers (annulus fibrosus) at + 30 degrees arrangement absorb the tensile stresses.
The situation is quite different when the nucleus is dry, because the nucleus is not
capable of building sufficient fiuid pressure and the loads are distributed more around its
periphery.

During physiological movements such as flexion, extension, lateral bending and axial

rotation, the annulus fibrosus are under axial tensile stresses in all directions see Figure
1-5-2-1.
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Tension

Figure 1-5-2-1 Tensile and compressive stresses in the intervertebral disc
(Modified from Kapandji, 1987)

Bending occurs when the spine is subjected to tension on its convex side and
compression on its concave side during flexion, extension and lateral bending.
Therefore, the effect on the disc is then a combination of compressive and tensile loads.
The disc bulged anteriorly during flexion, posteriorly during extension and toward the
concavity of the spinal curve during lateral bending [54]; see Figure 1-5-2-2.

Flexien

Figure 1-5-2-2 Bending of the spine
(Modified from Kapandji, 1987)

Axial rotation of the torso with respect to the pelvis causes torsional loads, which resuits
in shear stresses in the disc. The disc is subjected to torsion when shear stresses
appear in the transverse plane and the sagittal plane. The tension reaches to the central
fibres of the annulus and causes compression in the nucleus increasing the internal
pressure. This explains why flexion and axial rotation tend to tear the annulus and drive

16



the nucleus posteriorly through the tear in the annulus [54), as presented in Figure 1-5-2-
3 and Figure 1-5-2-4

Axial Rotation

Figure 1-5-24  Axial rotation between the vertebrae in the spine
(Modified from Kapandiji, 1987)

During lateral flexion, the vertebral bodies rotate contralaterally. This automatic rotation
of the vertebrae depends on two mechanisms: compression of the intervertebral discs
and the stretching of ligaments. This rotation is normal, but in some cases the vertebrae
are fixed in their position resulting in the development of abnormalites and the
imbalance of the ligaments. The result is scoliosis, which combines fixed lateral flexion

of the column with rotation of the vertebrae. This abnormal rotation can be demonstrated
clinically [54].

The material behavior of the intervertebral disc is linear viscoelastic because of the high
water content of the nucleus pulposus. Table 1-5-2-1 shows the mechanical properties
of the intervertebral disc. The elastic modulus is independent of the spinal level. The
shear modulus found is 1.6 N/mm? [56).
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Author Young’s Modulus (N/mm°) Poison’s Ratio
Goel and Weinstain, 1990 4.2 (annulus) 0.45
Suwito, et al., 1992 6.5 (annulus) 0.44
Skalli, et al., 1993 2 (annulus) 0.45
Skalli, et al., 1993 2 (nucleus) 0.499
Yoganandan, et al., 1995 3.4 (disc) 0.40
Table 1-5-2-1 Young’s modulus of the intervertebral disc
(Different sources)
Region Tension Compression Ant. Shear
+Fy (vwm) -Fy (vmm) +F2 (Nwwmam)
Thoracic 1000 1800 260
Lumbar 1000 1833 260
Table 1-5-2-2  Stiffness due to forces of the intervertebral disc
(White and Panjabi, 1990)
Axial Rot. Flexion Extension Bending
(Nmm/deg) (Nmm/deg) (Nmm/deg) (Nmm/deg)
2000 2270 2270 2270

Table 1-5-2-3  Stiffness due to moments of the intervertebral disc
(Modified from Tong, 1999)

1.5.3 Ligaments and Tendons

“Tendons and ligaments are soft connective tissues composed of closely packed,
parallel collagen fiber bundles oriented to provide for the motion and stability of the
musculoskeletal system. Ligaments connect bone to bone, whereas tendons connect
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bone to muscle. Tendons generally have large parallel fibers that insert uniformly into
bone. Ligaments have smaller-diameter fibers (70% dry weight), flattened elliptical cross
section. These fibers can be either parallel or branching and interwoven" [27].

Physical and mechanical properties are a function of fiber arrangement, composition and
microstructure. Tendon and ligament insertions to bone are functionally adapted to
distribute and dissipate the forces, by passing through fibrocartilage to bone. Tendons
and ligaments are well suited to the physiological movements. The parallel fiber
arrangement of tendons and ligaments allows early tensile resistance once the “crimp
pattem” is straightened [27].

Tendons are one of the soft tissues with highest tensile strength from 50 to 150 N/mm?
and with Young's Modulus from 1200 to 1800 N/mm?. Tendons are incompressible
materials and exhibit small hysterisis; 90 to 96% of its energy is recovered. Tendons

exhibit less viscoelastic behavior with respect to other soft tissues and the stress strain
behavior is non-linear [27].

Ligaments are less strong and less stiff than tendons, due to lower collagen content, and
more woven collagen structure compared to tendon’s arrangement. However, ligaments
have similar stress-strain behavior attributed to fiber straightening and stretching. Table
1-5-3-1 presents the stiffness values of the spinal ligaments.

Author Young's Modulus (\/mm?) Poison’s Ratio
Chazal, et al., 1985 45 0.3
Skalli, et al., 1993 10 03
Yoganandan, et al., 1995 15-30 03

Table 1-5-3-1  Young's modulus and Poison'’s ratio of the ligaments
(Different sources)
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Ligament Young'’s Modulus Stiffness (N mm)
(N/mm?)
Ligamentum Flavum (LF) 19.5 66.5
Transverse Ligament (TL) 37 58.7
Anterior Longitudinal Ligament (ALL) 164 12-44
Posterior Longitudinal Ligament (PLL) 164 11-37
Interspinous Ligament (IL) 41.5 116
Supraspinous Ligaments (SL) 55.1 62.7
Joint Capsule (JC) 49.7 329

Table 1-5-3-2 Young’s modulus and stiffness of each spinal ligament
(Modified from Goel and Weinstein, 1990)

1.5.4 Summary

The vertebral column consists of bones, intervertebral discs and various spinal tissues.
The human spine is a strong, flexible rod that bends anteriorly, posteriorly and lateraily,
and it aiso rotates. In sagittal view, the human column shows four curves. This geometry
provides increase in its strength, helps to maintain balance, absorbs loads and weights

during the normai activities of a human, and helps to protect the human column from
fracture.

The vertebra has a high Young's Modulus compared to the intervertebral disc, ligaments
and tendons. Therefore in biomechanical studies, the vertebra is often considered as a
rigid body with respect to the surrounding elements. One of the main tasks of the
vertebra is to support most of the compressive loads and transfer them towards the
intervertebral disc and then towards the pelvis. The lumbar vertebrae are the largest and
strongest in the vertebral column, because the weight increases towards the inferior end

of the spine. Therefore, their stiffness in the lumbar region is bigger than in the thoracic
region.

The intervertebral disc is a complex structure that can support a variety of loading
conditions. Therefore, it can be considered as the shock absorber in the spine and also
the flexible attachment among the vertebrae. The stiffness coefficients for tension and
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compression show that the intervertebral disc can be stiffer than the vertebra. This is

possible because of the intemal fluid pressure built in the nucleus of the intervertebral
disc under the mentioned loading conditions.

The tendons and ligaments can be considered as elastic bands that provide attachment
between bones and between bones and muscles. These connective tissues are the

responsible for the adequate physiologic motion and fixed postural attitudes between
vertebrae.

1.6 Idiopathic Scoliosis

Idiopathic scoliosis is an abnormal lateral curvature of the spine in the frontal plane for
unknown reasons. There are two types of idiopathic scoliosis: structural scoliosis and
functional scoliosis. Structural scoliosis is defined as a lateral curvature of the spine
accompanied with the development of wedging and deformation vertebral rotation.
Vertebral wedging or deformation does not accompany functional scoliosis. The present

work is a study of structural scoliosis [2,3,21,40). Figure 1-6-1 presents a classification of
types of scoliosis.

Figure 1-6-1 Types of scoliosis, classification King Moe
(Modified from King, et al., 1983)
A) S - shaped, Lumbar dominant
B) S — shaped, Thoracic dominant
C) Thoracic and Lumbar curve
D) Long Thoracic curve
E) Double Thoracic
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There are several theories that explain possible causes of scoliosis. Those that are
biomechanically based include Roaf, White and Ponsetti's.

Roaf (1966) suggested, “The basic problem in scoliosis is relative lengthening of the
anterior components of the spine compared with the posterior components of tha spine.

The result is a lateral deviation of the spine and the subsequent development in
scoliosis.”

White (1971) mentioned that the coupling effects occur in lateral bending where the
vertebra rotates along the longitudinal axis of the spine and the spinous processes point
towards the convexity of the curve. “If some precarious balance of the normal thoracic
motion should be disturbed, vertebrae in physiologic, right thoracic curve might
somehow rotate too much into the convexity of the curve. Such occurrence could set off
a chain of events leading to asymmetrical loads on the epiphyseal plates and muscles
and ligamentous imbalance, with ultimate progression to scoliosis.”

Ponsetti (1973) suggested, “a shift in the position of the nucleus pulpous towards the
convex side of the curve might be a cause of scoliosis. The normal physiologic shift of
the nucleus pulposus is toward the concavity of the curve.”

As mentioned earlier, the spine supports, protects and gives mobility to the neural and
human structures. The vertebral body, disc and ligaments provide the major support to
the spinal column and absorb impact. The intervertebral, ligaments and muscles provide
the mobility. In summary, normal spine functions depend on the reciprocal relationship

among its structure, stability, flexibility, as well as the strength of its muscles and
ligaments.

Any damage or alteration in the spinal system causes a disorder in its functions or
shape. For example, scoliosis is a complex disease that damages muscles, ligaments,
intervertebral discs and vertebrae. The next result is that scoliosis causes a sideways
twisting and rotation of the spine.
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1.6.1 Treatments of Scoliosis

Scoliosis treatment depends on the severity of the curve; this severity is defined by
Cobb’s angle. When the intervertebral discs are not deformed, the Cobb’s angle is
measured between the interception of the two perpendicular lines through the end plates
of the most tilted vertebrae of the scoliotic curve. Usually the intervertebral discs are
deformed in scoliosis; therefore, the Cobb's angle is the angle between the inflexion
points of the scoliotic curve. Figure 1-6-1-1 shows how a Cobb angle can be found from
a scoliotic spine.

« and B Cobb’s
angles

Figure 1-6-1-1 Cobb’s angle
(Modified from Pope, et al., 1984)

The treatment of scoliosis can be divided into: observation, orthotic and surgical
treatment. The following table summarizes a possible treatment to be followed.

COBB'S ANGLE TREATMENT
(DEGREES)
<20 Observation
20-40 Orthotic
>40 Surgical

Table 1-6-1-1 Treatment of scoliosis
(Modified from Duke, 2001)



Clinically, scoliosis is detected as a rib hump while bending over. The symptoms vary

with the person; some may experience headaches, back pain to dull back pain, hip and
knee pain.

1.6.1.1 Observation Treatment

Once scoliosis has been identified, the treatment may start with observation. In the
majority of cases, the prognosis is not well defined, and the patient needs to be
observed for progression. The methodology consists of taking X-rays every four months
during the first two years. After this stage, films every six to twelve months are
appropriate once no further progression is seen. The routine consists of defining the
position of each vertebra carefully measured to compare the location of the vertebra
from a previous radiograph. It is essential to accurately measure the same spots on the
same vertebra because the scoliotic curve may progress slowly and unpredictably
[21,36,54].

1.6.1.2 Orthotic Treatment

Scoliosis is a deformity that occurs in the bones rather than in the soft tissues. Orthotic
treatment consists of wearing braces where pressure is applied to strategic areas on the
ribs, in hope of preventing further curve progression. A rational bracing program that
involves dynamic bracing, muscle stimulation and strengthening with compatible
exercise and nutritional therapy can achieve good resulits.

The Milwaukee Brace is constructed into a mold where the deformed patient is fit. The
spine is supported by a rigid framework and stretched between the throat and occipital
mold on one end and the pelvic girdie on the other. The method applies additional
corrective forces using corrective pads attached in a vertical position of the brace. Some
studies show that because of the localization of the pads and the exercises executed

while wearing the vest, the Milwaukee brace provides both active and passive correction
[54].
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Boston brace studies reveal that the brace does not generate uniform distribution of
forces. It does not correct the three-dimensional deformations of idiopathic scoliosis [12].
Although the brace reduces the Cobb’'s angle of the frontal plane, a negative effect
appears in the sagittal plane. The negative result is the reduction of the thoracic
kyphosis. This negative resuit is because the brace pushes the spine and the rib cage
forward with no effects on the rib hump or vertebral rotation [24].

A traction head halter and/or ankle pelvic are two other corrective scoliosis methods.
The method consists of distraction forces applied for long periods of time (about 3
weeks) to the skeleton [54]. The Halo traction can be combined with the pelvic hoop in
order to straighten an oblique pelvis. It is advised to have a preoperative traction
treatment in order to minimize:

- The risk of spinal cord damage.

- Minimized monitoring spinal responses and awakening the patient for the
sensory functions.

- Reduce the possibility of failure in the lamina and pull out of the hooks from the
rod.

- Help on the correction of double curves with different stiffness.

1.6.1.3 Surgical Treatment

Surgery is the most common treatment of severe or progressive spine deformities. For
treatment of a Cobb’'s angle greater than forty degrees, surgery is recommended,
because it will prevent further progression of the curve. Straightening of the spine is
achieved with fusion combined in some cases with removal of the deforming growth
potential on the convexity of the curve. It is accomplished using instrumentation that
gives enough stability to keep the right position when fusion occurs [19].

Two instrumentation surgical treatments are commonly practiced:

- The Harrington instrumentation (Hl)
- Cotrel-Dubousset instrumentation (CD)
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HI consists of a distraction rod attached to the end of the curve in the concave side. The
correction forces cause a lengthening in the spine, making the Cobb’s angle smaller.
The patient is able to move approximately one week after the surgery wearing a
Milwaukee brace for six months [46).

in the case of CD surgical treatment, a rod is located along the spine and fixed with
veriebra hooks for the correction. Rotation is applied to the rod from the frontal plane
into the sagittal plane. The goal is to straighten the spine while restoring the thoracic
kyphosis. The patient is able to move at the second or third postoperative day with out
any extemal support [40].

The results from these two instrumentation procedures present no difference in the
Cobb’s angle correction. With respect to the sagittal profile, the thoracic kyphosis is
better obtained from the CD method and, therefore, not necessary to remove spinal
motion segments. However, the CD instrumentation could be dangerous while the
rotation is occurring because of injury in the spinal canal.

1.6.2 Complications of Surgical Treatments

The risks associated with surgical treatment include: death, wound infection,
gastrointestinal and genitourinary dysfunctions, pulmonary problems, and loss of biood.
Therefore it is important to have preoperative and postoperative evaluations of the
patient. The main complications are neurological, biological or mechanical [15].

Neurological problems are related to the approaching procedures to correct the spine.
The main complication is stretching the nerve roots causing paralysis in the patient.
Other complications are the damage in the aorta, vena cava, iliac artery, kidney, ureter
and spleen [36]. The Biological complications resuit in failure of the bone mass to fuse
so that the scoliosis collapses and the instrumentation may fracture due to fatigue

failure. Osteroporotic bone is very fragile and it breaks easily, letting the hooks pull out of
their place.

The main mechanical complication is hook pull out through the arch of the vertebrae,
usually due to overloading or poor quality bone stock. In the case of the HI, the
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mechanical complications are breakage of the rod and hook disengagement as well as
hook force concentration-causing fracture in the lamina. The complications in the CD
instrumentation are hook pulled out, prominent hardware, inadequate contouring of the
rod and improper pilacement of the laminar or pedicle hooks [15].

After surgery, the greatest problem is lower back pain below the straightened curve. This
problem appears in patients with fused lumbar vertebrae below the third one (L3).
Thompson and Renshaw (1989) mention that a possible cause is the loss of lumbar
lordosis and, therefore, the load transfer is increased and some segments have disc
degeneration and facet colliding.

1.7 Development of a Pre-surgical Tool

Presently, the surgical treatment of scoliosis has a high degree of variability, because
empirical and experiencential knowledge are involved. The surgical treatments involve
the application of forces and moments to the spine or/and in the instrumentation. The
creation of a pre-surgical tool will be a help to the medical doctors to analyze the applied
forces to the scoliotic spine prior to the surgery. The computational program (i.e. pre-
surgical tool) will simulate and predict the amplitude, location and direction of forces that
are necessary to apply in order to obtain a desired correction.
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Chapter 2

2.1 Literature Review

This chapter offers a background to understand the mechanics of the human spine and
its congenital deformities. Three simulation-modeling categories, analytical,
computational and experimental have appeared in the literature since 1970 to model the
human spine. In general, analytical models attempt to demonstrate the geometrical
relationship of the normal spine and its elements. The computational category based on
numerical methods of mechanics pursues the simulation of the physiological motions of

the spine. The experimental methods attempt to find the properties of the components of
the spine. ‘

Although each new model attempted to improve upon the previous ones, some
limitations still remain. First, the lack of agreement in the experimental data from which
accurate material properties may be assigned. Second, the lack of scoliotic spine
models to predict the surgical correction in real time. The present models have
incorporated a new finite element technique called constraint equations to minimize the
computational costs.

Analytical studies:

2.1.1 Shultz A., Galante J.

A Mathematical Model for the Study of the Mechanics of the Human Vertebral, 1970 [44]

This model is a mathematical representation of the human vertebral column. it was done
with a collection of equations expressing the mechanical relationships obeyed among its
elements. The vertebra was idealized as a rigid body connected to other vertebrae and
skeletal structures by deformable elements such as springs or any other element that
can store mechanical energy. These deformable elements exerted forces that are
functions only of their deformation. The vertebrae, rigid bodies, were interconnected by
fixed length deformable elements representing the ligaments, intervertebral discs and
muscles.
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Cartesian coordinates and Euler angles were used to indicate the orientation of the body
in the space. The simulation began with defining the position and orientation of one
vertebra. Then, the next vertebra is found with geometrical relationships. Therefore, it is

possible to find the position and orientation of consecutive vertebra using geometry. The
results were validated with similar works done by others.

From this work is important to mention that it is possible to assume the vertebra as rigid
body attached with deformable elements. The human spine is not geometrically
constrained to have a pattemn of motion; it can achieve many different configurations.
Euler angles helped to describe the orientation of the body in three dimensions.

The main disadvantage of this model was the removing of some vertebral parts or
shortening distances to obtain physiologic motion. The physiologic motion results from
this study were lateral bending, flexion, extension and axial rotation.

Computational studies:

2.1.2 Subbaraj K., Ghista D. N., Viviani G. R.,

Presurgical Finite Element Simulation of Scoliosis Correction, 1989 [47]

A Scoliotic spine is modeled using Finite Element Method with deformable plane frame
elements. The spine is considered as a beam column hinged at the bottom representing
the sacrum and with free axial displacement at the opposite side representing the
cervical end. The nodes of each element represented the centroids of each vertebra.

The spinal stiffness was determined in vivo applying incremental distraction forces to the
head of the patients. The resuits were obtained from the displacement of the vertebral
centroids located at the intersection of the diagonal lines that join the opposite comers of
the vertebral body. The data were collected from X-rays of the patients’ spines.

Small incremental sets of corrective forces in vertical and horizontal fashions were

applied to the Scoliotic computational model, and linear deformation responses of the
Finite Element Method were computed. The work was validated using instrumentation
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designed for intraoperative monitoring of corrective forces and spinal deformations.
During the surgery, both the distraction and the lateral forces were applied incrementally.

At each stage those forces were compared with those predicted from the Finite Element
Model.

From this work is important to consider the incremental loading fashion applied to the
spinal deformity. The disadvantage of this work is that Scoliosis is a deformation in three
dimensions and this work was only done in two dimensions.

2.1.3 Dietrich, M. Kedzior K., Zagrajek T.
A Biomechanical Model of the Human Spinal System, 1991 [13]

A three-dimensional biomechanical model of the spine using finite element method was
programmed including: vertebrae, intervertebral discs, ligaments and back muscles. The
model had 2,640 elements and 13,107 non-linear algebraic equations to be solved.

The vertebra was considered as a rigid body. The intervertebral disc contains finite
elements with anisotropic elastic properties. The nucleus pulposus was considered as a
liquid body in an incompressible space. The ligamentous system comprised the seven
basic ligaments modeled with elastic elements with anisotropic properties. The back
muscles system had linear anisotropic elements.

From this work it is important to point out how the muscle system kept the spine in an
appropriate position and how the external influences acted on the spine. To keep the
appropriate position, the muscle was supplied with minimum energy. This energy was
proportional to the muscle elastic potential energy. Extenal forces were treated as
concentrated loads and transmitted to the spinal model through the shoulder girdle.
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2.1.4 Steven Tong
A Mechanical Model of the Normal Human Spine, 1999 [50]

This model simulated and predicted the kinematic response of the normal thoracolumbar

spine using Finite Element Method with 178 elements per vertebra and posterior
elements.

The vertebra was modeled using solid brick elements with a very high Young Modulus,
behaving as a rigid body. Ligaments and intervertebral disc were modeled with spring
elements. The use of bi-linear spring elements in the Intervertebral disc structures and
ligaments allowed for accurate modeling of spinal behavior during normal ranges of
motion, but it yielded inaccurate responses during higher displacements. This is because
this research work was done using the linear range only.

The work was validated using the functional unit through comparisons of stiffness values
and displacements of existing studies conducted on excised spinal units. The functional
unit consisted of two consecutive vertebrae and the associated interconnecting
ligaments and disc. During testing, the inferior endplate perimeter on the inferior vertebra
was constrained in all directions. Loads were applied to the superior vertebra to produce
flexion, extension, lateral bending and axial rotation movements.

The model showed the coupling effects within the motion segments when lateral bending
occurred. This effect happens when the vertebrae rotate along the longitudinal axis of
the spine such that the spinous processes point towards the convexity or concavity of

the curve in the thoracic or lumbar region respectively. In a scoliotic spine the opposite
occurrence is noted.

This work highlights the importance of a simplified way to model the human spine using
the intervertebral body, interconnecting ligaments and intervertebral disc. Some
disadvantages are that the model works with small displacements and cannot be user
defined for another type of geometry. The model takes a long computational time, in the
order of seven to ten minutes per functional unit.
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Experimental Studies:

2.1.5 Schuitz, A.

Biomechanical Factors in the Progression of Idiopathic Scoliosis, 1984 [43]

This work studied the possible factors that might underlie the progression of idiopathic
scoliosis. The study was done in vivo with adolescents of a mean age of 13.5 years and
Cobb’s angle of twenty-two degrees. Three biomechanical reasons were reviewed: the

spine slendemess and flexibility, the strengths of the trunk muscles and the myoelectric
activity in the trunk muscles.

From the study, slendemess and fiexibility data obtained by the lateral clinical bending
test did not show any dominant factor in the progression of scoliosis. The results from
maximum voluntary trunk strengths presented no consistent differences between the
structurally normal trunks and trunks with idiopathic scoliosis. These findings suggested
that trunk muscles weakness in not a cause of progression of idiopathic scoliosis.

The study showed a significant variation between idiopathic scoliotic spine and normal
spines when muscles contracted in response to electrical signals transmitted by the
nerves. Patients with idiopathic scoliosis with curves more than twenty-five degrees had
myoelectric asymmetrical signals than those of structural normal spines. The significant
differences were found at lumbar level on the convex side of the erector spinae muscles
while resisting flexion moment at the trunk.

Some other important findings were: at modest contraction and unilateral contraction of
some trunk muscles can cause substantial increase in the Cobb’s angle is noted. The
internal abdominal obliques and the erector spinae increased the lumbar curve. The
latissimus, intercostals and erector spinae can increase the thoracic curve. Application of

weight on the upper body segments to a laterally curved spine can cause significant
curve increase.

One possible source of progression of idiopathic scoliosis lies in defective neural system
that control upright postures of the trunk. Therefore once the curve exists in a spine, any
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weight on the body superior segment in the upright position creates a lateral bending
moment that tends to increase the curve.

2.1.6 Takemura, Yamoto and Tani T.

Biomechanical Study of the Development of Scoliosis, Using a Thoracolumbar Spine
Model, 1999 [49]

A physical thoracolumbar spine was modeled using synthetic vertebrae, silicon discs
and nylon string. The vertebrae were joined with the silicon discs and nylon strings were
attached to the spinal processes to the tip of the left transverse processes to simulate

the back muscles. The spine was fixed at the sacrum and flexibly attached at the first
thoracic vertebra in a metal frame.

In this model, ligaments and joint capsules were omitted to clearly see the deformation
by the application of a force. The model did not consider the effects of the thorax, gravity
or secondary deformation of the vertebral bodies from the muscular point of view.

It is important to emphasize how this biomechanical study attempted to clarify the
development of the scoliosis related to the type of applied load. Lateral flexion, rotational
and lordotic forces were simulated to evaluate the influence of them on the scoliotic
deformation. This study found that the most severe scoliosis occurred when loading was
done in the order of rotational force, lordotic force and lateral flexional force.

Takemura's study provided information of the silicone used in the thoracolumbar model.
It suggested that the silicone is an element that may behave similar to the intervertebral
discs under loads below 67 N. This study, also mentioned the way of the application of
the forces in the model. Consequently, these ideas allowed me to use in the physical
model silicone and wood to simulate the intervertebral disc and the vertebral body
respectively. The physical model was built and tested with forces in the XY plane.

Finally, the physical model was used to validate the computer model done in ANSYS for
the present thesis work.
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Chapter 3

3.1 Finite Element Method

In general, engineering problems are mathematical models of physical situations.
Mathematical models are differential equations with a set of corresponding boundary
and initial conditions. The ideal solution would be to solve every problem using analytical
methods. However, for many practical engineering problems it is not possible to obtain
exact solutions due to irregular boundary geometries, arbitrary boundary conditions,
non-uniform material properties, non-linearity or coupling effects that appear. Finite
Element Method (FEM) is one way to solve these kinds of problems [1,26).

FEM considers the body as a continuum, and it divides it into a number of discrete finite
elements. In each element, the governing equations are algebraic. The complete
solution is then generated by connection or assembling the individual solutions, allowing
for continuity at the interelemental boundaries. For the present work, the ANSYS
program is used. It is a comprehensive general purpose Finite Element computer
program; it is capable of performing, static, dynamic, heat transfer, fluid flow and
electromagnetism analyses [1,26].

3.2 Kinematics of Rigid Body Motion

A rigid body is defined as a system of mass points subject to holonomic constraints. In
other words a rigid body is considered a system of particles in which the distances
between them do not vary. Holonomic constraint means that the distances between all
pairs of points belonging to the rigid body remain constant throughout the motion. A
holonomic constraint can be expressed as equations connecting the coordinates of the
particles (and possibly the time), (Goldstein, 1980) having the form:

f(r1,r2, ........)=0 (3.2.1)
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Examples:
Holonomic: the circle (ri-rp?-¢32=0 (3.2.2)
Non-holonomic: ri-c2:>0 (3.2.3)

A rigid body in space needs six independent generalized coordinates to describe its
configuration and motion. These can be obtained by creating a moving Cartesian system
of coordinates x, y, z fixed in the rigid body located relative to a fixed coordinate axis of
the external space XYZ [20]).

There are many ways to set forth the orientation of a Cartesian set of axes relative to
another set with a common origin. One common procedure is to state the direction
cosines of the moving system (x, y, z) relative to the fixed-system XYZ. The direction
cosines are alpha (a), beta (B) and gamma (y); These angles describe the instantaneous

orientation of the body relative to a fixed coordinate system as can be seen in Equations
3.2.4 [20]).

X=a1X+aY+az2Z

Y= X+BY+B,2Z (3.2.9)
Z=Y1X*YZY"Y3 2

These equations constitute a linear transformation from a set of coordinates X, Y,Z toa
new set of coordinates X, v, Z accomplished by orthogonal transformation. The array of
transformation quantities, direction cosines, is called the transformation matrix. The
transformation can be carried out from a given Cartesian coordinates system to another
by means of three successive rotations performed in a specific sequence. Three

successive angles of rotation performed in specific sequence are called Euler angles
[20].

The most common convention used in applied mechanics and molecular and solid state

physics is the XYZ convention or the nautical convention. The first rotation is the YAW
angle ( ¢ ) about Z-axis, the second is the PITCH angle ( 6 ) about the intermediate Y-
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axis, and the third is a ROLL angle ( ¢ ) about the final axis X. Euler rotation matrix
contains the above mentioned rotations. (See Equation 3.2.5.)

€0S 0 coSs ¢ €0s 9 sin ¢ -sin 6
Sin @ Sin 6 cos ¢ - cos @ Sin ¢ Sin @ sin 0 sin ¢ + cos @ oS ¢ cosOsing | (3.2.5)
COS @ Sin 0 cos ¢ + sin @ Sin ¢ €OS @ Sin O sin ¢ — sin @ €OS ¢ €0Ss 0 cos ¢

The final position of the body after a known movement with respect to the fixed

coordinate system is described by three angles (rotation matrix) plus a displacement
(displacement matrix).

3.3 Constraint Equations

Constraint Equations (CE) are geometrical relationships among the points of a rigid
body. The CE give the ultimate position of the points of the body after a known
displacement and rotation.

One of the objectives of the present study is to use CE to replace the vertebral body. To

do so, this study validates the CE in two dimensions, followed by generalization of the
CE in three dimensions.

3.3.1 Constraint Equations in Two Dimensions

The CE for two dimensions is illustrated using geometrical drawing (see Appendix 2). A
rigid plane is used and from it three points are selected. Two lines join the three points of
the plane forming an angle. The angle-plane is subjected to a known translation and
known rotation about one of the three points.

The vertex of the angle-plane is point number 1 and the rotation was done about this
point. The initial and final coordinates of two points are known as well as the angile of
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rotation, which was a small angle. A further analysis about small angles explains that the
maximum allowed angle is 10 degrees.

The purpose of this geometrical procedure was to find the X and Y coordinates of the
unknown point as a function of the geometry of the plane. It was found that the X and Y
coordinate of the third point is a function of the point number one. The mathematical
analysis of the geometry is given in Appendix 2.

The Finite Element Method involves small deflections in the order of 1 or 2% of the total
length. The Euler rotation matrix is used to verify the results of the simplifications done
with the geometrical resuits. The rotation matrix was tested for small angles. The

purpose of this procedure is to find the maximum angle that can be considered the limit
of the small angles to be used in the CE.

Displacement and rotation are given to the same three points of the mentioned rigid
plane. The method consists of incrementing the rotation angle for three selected points.
The points are subjected to different displacements and rotation in increments of one
degree. Here one point of the three is presented that has an initial position: X = 10 mm,
Y = 20 mm and Z =30 mm. The displacement applied is 20 mm in X direction, 10 mm for
Y direction and 30 mm for Z direction. Figure 3-3-1-1 shows the final position of the point
with the incremental angle value.
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Figure 3-3-1-1

Incremental angle values

The criterion to choose this point is checking for the final resuits that give the major
differences among the other results. Table 3-3-1-1 shows the three Euler angles psi (9),

theta (8) and phi (®), and the resuitant coordinates for each case.

Angles X Coordinate Y Coordinate Z Coordinate
1-1-1 29.82 30.34 59.82
2-2-2 29.63 30.68 59.65
3-3-3 2944 31.02 59.47
4-4-4 29.25 31.34 §9.30
5-5-5 29.04 31.67 5§9.12
6-6-6 2883 31.99 58.95
7-7-7 28.61 32.30 5§8.77
8-8-8 28.38 32.61 58.60
9-9-9 28.15 32.91 58.42

10-10-10 2790 33.21 68.25

Table 3-3-1-1 Final position in X, Y and Z coordinates of the selected point
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Table 3-3-1-1 represents the final position of the selected point in the X, Y and Z
coordinate, using the incremental angle values. As is mentioned previously, each point
was subjected to a 1-degree combination until the three Euler angles reached the value
of 10 degrees of rotation. The first combination (1-1-1) of the Euler angles was assumed
as the reference. Because the modeling was done in FEM, the test looked for a
maximum value of small angles.

The previous table shows that when the combination is 10 degrees (10-10-10) of Euler
angles, the percentage difference with respect to the reference (1-1-1) was in the order
of 3.4% for the X coordinate, 5.4% for the Y coordinate and 1.5% for the Z coordinate.
As a consequence, small angles can be considered less than 10 degrees for the present
study. The present study established that the maximum accepted error was in the order

of 15%. Therefore, the previous percentage results are accepted. A further study of the
probable error is presented in Chapter Four.

Small rotation angles were used to simplify the final equations obtained from the
geometrical results in Appendix 2. The final resuits using these simplifications are shown
in the following equations:

UX3-UX,;-Ci+C;RotZ2;=0 (3.3.1.1)
UY3-UY,+C3; -C(RotZ,=0 (3.3.1.2)
RotZ,-RotZ;=0 (3.3.1.3)

Where:

UX and UY represent the displacements in X and Y respectively for points 1 and 3.
Rot Z is the rotation about the Z-axis and

C1.C2.C,, C4 are constant that depending on the geometry of the rigid body.

The three equations represent the relationship between two points of any rigid body. As
is mentioned before, the CE will give the uitimate position of the points of the body after
displacement and rotation. The derivation of these equations is presented in Appendix 3.

The CE in three dimensions were derived from the Euler rotation matrix plus the

displacement matrix. The rotation Euler matrix is manipulated with the same procedures
mentioned before. The derivation of these equations is shown in Appendix 4.
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To visualize the effectiveness of these equations two models were constructed in
ANSYS. The models consisted of a frame of three elements using beams and CE. The
beam model contains two vertical beams and one horizontal. The horizontal beam is
very stiff compared to the other two beams and may be considered rigid. The CE model
contains two vertical beams, and the CE replaced the horizontal element. The models
were subjected to the same loading conditions, and the results were compared with the

analytical solution. Figure 3-3-1-2 shows both models before and after the application of
a load.

On the right side of the drawing the CE model is presented: on the left side, the beam
model is presented. The resuits are satisfactory proved between the two models with an
overall error of 0.024% in displacement. This error includes the displacements in the X
and Y direction and rotation about the Z-axis.

Y/ X
Figure 3-3-1-2 Beam model and CE model

3.4 Constraint Equations - Procedures

The stiffness matrix in the Finite Element Method contains the degrees of freedom of the
analyzed body with its corresponding constraints. In this work, CE are used to model the
movement of a rigid body. There are two commonly used procedures to apply CE; these
are the collocation overdetermination and the trial solution method. When there are few
degrees of freedom, these procedures may readily be performed manually, otherwise it
is better to program the mentioned procedures.
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3.4.1 Collocation Overdetermination

To solve an overdetermined system of equations, one method is to use the so-called
penalty form of the matrix, which is related to the Lagrange multipliers technique. Using
this method the CE are considered as the overdetermined factors. The solution of the

system will give rise to the ultimate position of a rigid body after a displacement and
rotation.

To begin with, the original FEM of equations without overdetermination as:

[A] (} = {0} (34.1.9)

The overdetermined equations have the following form,

[j;’:}{xw} ={:§} (G4.12)

Where A° and b° are the overdetermined elements.

The above two system of equations are written in penality form:
‘4'n.m A::'m X’"l {b"-‘l }
=910 (3.4.1.3)
A ~Va,, ||Am -

-Va,, setto max(A°)/10° (34.149)

As an approximation, it is solved the above square system with the diagonal submatrix:

Solving this penalized system yields the unique solution X (rotation and displacement).
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3.4.2 Trial Solution Method

This method basically consists of eliminating rows and columns, when substituting the
constraint degrees of freedom in the system. The system is established with nodes that
have constrained degrees of freedom. These constrained nodes are related with the
other degrees of freedom of the body by linear equations. From these linear equations
the degrees of freedom are chosen and substitute in the system of equation. The system
of equations begin with the original FEM system:

[A] {x} = {b} (3.4.2.1)
Using a constraint equation (CE):
CiA+ C.A,+C3D3=d (3.4.2.1)

where A are the degrees of freedom, and Ci and d are constants.
We now select one degree of freedom, and put it as a function of the others.

A; = d_ Q(A )- ¢, (4,) (3422

¢, ¢ G
This value is then introduced into the system of equations. The substitution is done in
each column. Once this is complete, the equation relating to the substituted degree of
freedom, may then be eliminated. The final product is a simplified system of equations
that has one less degree of freedom. This procedure is done continuously until all the
CE are substituted in the system of equations.

3.5 Geometrical Non-linearity

Publications using orthotic treatment or surgical procedures for scoliosis have reported a
large amount of correction to which a spine is subjected. In surgical procedures the
reduction is bigger, starting with Cobb’s angles greater than 40 degrees, so the
relationship between the applied load and the resuitant correction is non-linear [19].
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According to linear Hooke’s law, when assuming linear behavior, loads are in direct
proportion to the displacement, while in geometrical non-linear behavior, loads are not.
“Geometric nonlinearities refer to the nonlinearities in the structure or components due to
the changing geometry as it deflects. That is, the stiffness matrix [K] is a function of the

displacements {u}. The stiffness changes because the shape changes and/or the
material rotates” [1].

For non-linear analysis, the tangent stiffness matrix assumes the role of the stiffness
matrix in linear analysis. However, now the matrix (tangent stiffness) relates small
changes in load to small changes in displacement. When calculating geometrical non-
linear cases, Hooke’s law is enforced at every stage when creating the stiffness matrix

(1.

Geometrical non-linearity can be solved using analytical techniques or the FEM. Section
3.4 showed two procedures of how to apply CE in the system of equations used by the
FEM. These procedures can be done in a generalized form (using large number of
equations) when the method is programmed. Since the CE are directly involved with the
stiffness matrix, the above-mentioned CE methods would not work with geometrical
nonlinearities. This is because the methods used in Section 3.4 do not include any
procedure to update the tangent stiffness matrix when the load is applied by increments.

However, the present work studied the possibility to use CE for non-linear problems that
consider geometric non-linearity.

To define what deflection comresponds to the linear or non-linear behavior, it was
necessary to determine when non-linear modeling became important. The solution of a
cantilever beam was used for this purpose. A cantilever beam, 1000 mm in length and 5
mm per side, was taken as the test model, and it was subjected to varying loading from

1000 to 8000 Nmm as shown in Table 3-4-1. The cantilever beam was modeled in
ANSYS with and without non-linear option.

The displacements obtained from the non-linear model in ANSYS are determined in
order to verify the results of the analytical linear solution. When small loads are applied,
the linear analytical and the non-linear resuits should be identical. From this study, the
limit between the linear and non-linear field was found. The limit was defined as the
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diverging point between the resuits from the analytical linear and non-linear ANSYS
model. In the Table, it occurred when the load is more than 8000 N with a percentage
difference of 1.7%

Moment Deflection ANSYS Deflection ANSYS Percentage
(Nmm) linear non-linear Difference %
1000 48 47.9 0.2
2000 96.01 95.9 0.1
3000 144.01 143.6 03
4000 192.01 191.2 04
5000 240.01 238.5 0.6
6000 288 2854 ' 0.9
8000 384 377.7 17
Table 3-5-1 Results from linear and non-linear test of the cantilever beam

Since the purpose of this study was to use CE in the finite element analysis, CE were
tested in three general cases presented in the following sections. The three general
cases are done for the two-dimensional case. For the three-dimensional case, a
cantilever beam is modeled using three-dimensional elements and subjected to the
same loads as in two-dimensional cases. The results between the 3D and 2D models
are compared, and the difference in the results is in the order of 2%. A possible reason
for this difference might be due to the value of G (Shear Modulus) that is included for the
three dimensional analysis only.

3.5.1 Frame with Horizontal Force

This model is done with three beams: two vertical and one horizontal. The vertical
beams had one end fixed and the other connected with the horizontali beam in a fixed
way. For the second model, the CE replaced the horizontal beam. The mechanical
properties of the frame models are the mean values of the vertebral and intervertebral
disc properties from the lumbar region.

Length of vertical beams (intervertebral disc height) = 20 mm




Length of the horizontal beam (width of the vertebra) = 40 mm
Area = 25 mm’

Width of the beam = 5 mm

Height of the beam = 5 mm

Young’s Modulus of the vertical beams = 4 N/mm?

Young's Modulus of the horizontal beam = 12000 N/mm?®

Non-linear behavior for the frame model started with deflections greater than 2.8 mm
corresponding to a load of 1.4 N. Representative values of load are shown in Table 3-5-
1-1 in order to compare the results from the model that uses only elements with the

model with CE. Figure 3-5-1-1a and 3-5-1-1b show the maximum deflection of the frame
for both models.

Frame Beam Model befare and after the application of 1S N

Figure 3-5-1-1a Model with beam elements with horizontal force
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CE made! before and after the applicatian of 15 N

Figure 3-5-1-1b CE frame model with horizontal force

The percentage in the table represents the overall percentage error difference between
the beam and CE models for all load cases.

Load (N) Ux (mm) Uy (mm) Rotz (rad)
3 46 -0.7 -0.3
7 93 -2.8 -0.7
Beam
15 144 -7.3 -1.2
3 46 0.7 -0.3
7 9.2 2.7 0.7
CE
15 14.1 69 -1.1
Mean +STDV % 11+1 3+28 28+48

Table 3-5-1-1 Results from beam and CE frame models with horizontal force

3.5.2 Frame with Horizontal and Vertical Force

This case used the same mentioned model as in 3-5-1 with an additional vertical force
applied to the top left comer. Table 3-5-2-1 shows representative load values with the
respective displacement of both models. Figures 3-5-2-1a and 3-5-2-1b show that
maximum defiection of the frame in both cases.




K

r
»

Beam mode! before and after the applied lcad of IO N

Figure 3-5-2-1a Model with beam elements with horizontal and vertical

force

K‘J ,

CE madel before and afler the applied load of 10 N

Figure 3-5-2-1b CE model with horizontal and vertical force

Load in X and
Ux (mm) Uy (mm) Rotz (rad)
Y (N)
3 58 -14 04
7 13.1 -7 -1.1
Beam

10 156 -12.7 -1.7

3 58 -1.4 04

7 13.1 6.8 -1.1

CE

10 155 -11.6 -1.5

Mean + STDV % 02+03 38+44 39+68

Table 3-5-2-1 Results from beam and CE models with horizontal and vertical force
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3.5.3 Series of Blocks

A third case composed of a series of square areas formed by beam elements connected
by two vertical beams was modeled. This model had the shape of a twelve-floor tower
with the bottom fixed and the top end free. The model was a representation of a
cantilever beam in vertical fashion, which was the way that the present work analyzed
the non-linear case. Also, the idea behind this shape was to represent the spinal column
composed of vertebrae and intervertebral discs.

Width of the block (thoracic spine width) = 32 mm

Height of the vertical beams (intervertebral disc) = 6 mm

Height of the square block (vertebra) = 18 mm

Number of floors in the tower with vertical beams (Number of intervertebral discs)=13mm
Number of floor with square blocks (number of vertebrae) = 12 mm

Width of the beam = 5 mm

Height of the beam = 5 mm

Young’s modulus of the vertical beams (disc) = 4 N/mm?

Young’s modulus of the square areas (vertebrae) = 12000 N/mm?

The model with beams used beams to build a square area that represented the vertebral
body and two pillars that represented the intervertebral discs. The model with CE used
the vertical beams as the intervertebral disc, and the CE replaced the vertebral body.
The geometry and mechanical properties were mean values of the thoracic spine taken

from Appendix 1. The modeling of the simulated vertebral column was done first with
linear behavior for both cases.

The resultant displacements, X, Y and rotation about Z- axis, between the two models
were compared. The error differences in the linear field for X was 0.63% , Y was 0.88%
and rotation about the Z-axis was equal to 1.25%. Therefore resuits from the non-linear

case are expected to have similar behavior. Non-linear behavior started when the load is
bigger than 1 N.

Figure 3-5-3-1a shows the deflections of the models composed of beams, and Figure 3-

5-3-1b shows the model using CE. Table 3-5-3-1 presents the deflection of both modeis
under different values of load.
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Figure 3-5-3-1a Beam series model

Figure 3-5-3-1b CE series model
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Loadin X (N) Ux (mm) Uy (mm) Rotz (rad)
15 65.5 -13.3 -0.3
2 85.6 -20.7 -0.4
Beam 25 103.9 -28.9 -0.5
3 1206 -37.6 -0.6
15 65.7 -7.3 -0.3
2 87.3 -10.8 04
CE 25 108.7 -14.7 -0.5
3 129.7 -19.1 -0.6
Mean + STDV % 36+21.2 478 + 3.6 0+0

Table 3-5-3-1 Resuilts from beam and CE series mode! with one end fixed

Table 3-5-3-1 presents the results from the beam and CE models. These results show
that the model using CE does not have the same behavior when using elements. The
table also verified what was mentioned in Section 3.5, where CE methods (Section 3.4)
do not work for the non-linear case. it is because the CE methods do not include the
change of the stiffness matrix when the load is applied in an incremental way. This
difference is more noticeable in the third case (series of blocks) where the
displacements in the Y direction are close to 48%.

Also, it is important to mention that for every run performed in ANSYS using CE in the
non-linear cases, the program showed a waming message saying, “Constraint
Equations may not be valid for elements that undergo large deflections.” The results
obtained from the last case showed that CE do not work with non-linear behavior.

Thus, a recommendation would be to continue the work using linear and non-linear field

with elements, but when using CE only use the linear field or increments in linear
behavior as is suggested by Subbaraj, et al., 1989.
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3.6 ANSYS Elements and Constraint Equations

To develop a computational model that represents the human spine, each element of the
spine needs to be selected according to its biomechanical behavior. The intervertebral
disc is a complex structure that supports compression, tension, bending and torsion. On
the other hand, tendons and ligaments have a cable-like structure capable of supporting
only tensile but not compressive loads.

A beam is a uniaxial element with tension, compression and bending capabilities. A 2-
dimensional beam element has three degrees of freedom at each node, displacement in
the X, Y and rotation about the Z-axis. However, a beam element may not represent the
real behavior of the intervertebral disc, tendons or ligaments, because the beam in the
previous models behaves as a pillar supporting compression, bending or buckling.

To successfully model the spine using finite element techniques, it is essential to
understand the behavior of each element in ANSYS. The intervertebral disc can support
different loading conditions. Thus, elements that can represent its behavior closely are a
set of springs used by Tong, 1999 or plane element used by Subbaraj et al, 1989. For
the case of tendons and ligaments, a link element seems to be the best choice.

The spring or link element in ANSYS is a two dimensional element with uniaxial tension-
compression properties which has two degrees of freedom at each node: translation in X
and Y directions. Tong, (1999) used a set of forty-nine crossed spring elements with the
idea of building a truss structure containing 17 vertically oriented and 32 diagonally
oriented springs. A stiffer center spring in the structure, acting as a swivel joint between
the adjacent superior and inferior endplates, simulates the function of the nucleus
pulpous.

The plane element in ANSYS was another two-dimensional element with two degrees of
freedom per node. The plane element can behave as plane stress or a plane strain
element. To simulate the intervertebral disc the model had thickness, in other words
used the plane stress option. The model was defined by four nodes having two degrees
of freedom: translation in X and Y directions. Subbaraj, et al., 1989 used plane elements
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to model the spine considering it as a beam column hinged at the bottom and having
free axial displacement at the top.

The aforementioned work by Tong and Subbaraj has been validated; therefore springs
or planes were used in the modeling. The use of these new elements, such as springs or
planes, involves a change in the CE, because the actual CE involve rotations. A new
setup for equations that replace the rigid body motion without rotations was carried out.

The new setup of CE with no rotation is found with the same concept used in the three
dimensional CE. Rotational matrix and displacement matrix of two points from a rigid
body was used, and the CE with no rotations was derived. The derivations are in
Appendix 5. The resultant equations were:

AX
AUX, —UXZ(T)+UX(%)+UYZ(%) —U)’,(%)—Udrl =0 (36.1)

ALY, —UYZ(%)+UYI(%)—UXZ(AL£)+UX|(AL{)—Udy, =0 (3.62)

Where AX, AY and AZ are local coordinates of the points 1 and 2 in the rigid body and L
is the absolute length between the points 1 and 2. The CE with no rotation (CEN) were
tested against models using elements, and the results were the same.

3.7 Meshing

Meshing is the process to form the nodes and elements to be used in the Finite Element
Method. Meshing can be performed by two methods: mapped messing and free
meshing. Mapped meshing is performed by defining a number of element divisions along
the edges of the geometry. Therefore, the model usually require opposite edges. Free

meshing, on the other hand, defines the outer region of the geometry and fills in the
enclosed area or volume of the model.

52



As previously mentioned, constraint equations were used to modeling of the human
spine. This method does not require any meshing as it simply relates the degrees of
freedom of existing nodes that surround the vertebral body.
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Chapter 4

4.1 Spine Simulation

The spine is a complex structure to model. As a resuit, most investigators use FEM with
numerous simplifying assumptions to model it. The simplifications refer to the geometry
and material data used to build the spine. The vertebra in the present work was
considered as a rigid body in relation to the surrounding elements. The vertebra body
was built in the frontal plane with constraint equations. To simplify the geometry, the
vertebra was considered a rectangle. The material properties of the model were
averaged values taken from experimental tests and/or published literature.

An experimental model was built to validate the resuits of the two-dimensional
computational spine model. The experimental model consisted of blocks of wood
attached with silicone. The wooden pieces in the experimental model represented the
vertebral body, and the silicone represented the intervertebral discs. As is mentioned in
Chapter Three, the intervertebral discs act as cushions between the bones. Hence,

silicone was used to simulate this behavior, and two experimental tests were carried out
in order to obtain its properties.

Based on the product information of the silicone, the expected error in the properties of
this material falls in the range of 5%. Another ten percent more was attributed to the
geometrical problems and measurement procedures. Therefore, a total value of 15%
difference is expected between the theoretical and the experimental resuilts.
Displacement measurements of the specimens were done using accurate measurement
tools, such as dial gauges, calipers, and metallic rulers.

The mechanical properties for the silicone material (as stated in literature) were not used
in the present study because they referred to a different silicone. However, these

properties gave a reference of how much the expected values of the experimental tests
should be.
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4.2 Probable Error

Probable error in measurements is called uncertainty. it defines an interval about the
measured value within which the true value is expected to fall. Although no general
discussion of errors can be complete in listing the elements contributing to error in a
particular measurement, a certain generalization for emror sources can be made to help
in their identification. As a consequence, it is possible to make an estimate of the error of
a variable based on the error of the other variables involved with it in an equation.

The probable error of a sum or difference is the square root of the sum of the squares of
the individual probable errors. The probable error of a product or quotient is necessary to
convert the probable error to a percentage. Then the probable error is equal to the
square root of the sum of the individual probable percentages of errors. The probable
error of a measurement multiplied or divided by a pure number is the probable error of
the measurement multiplied or divided by the number. The probable error of a
measurement raised to a power is the probable percentage error of the measurement
multiplied by the power [15]. For example, a purely multiplicative equation is

Q = A1 . Fﬂ - Gb - Hc (4.2.1)
where A,, a, b and c are constants that can be either positive or negative. To find the
effect of errors in F, G and H on the function Q, the equation has to be differentiated with

respect to each variable, and, therefore, the constant A, is eliminated. The product of
these steps leads to the following equation:

2 2 2 2
(S_Q_) =az(£) +b’(£g) +cz(ﬂ) 4.2.2)
0 F G H

The square of the fractional or the percentage error or probable error in each variable is
weighted by the square of its exponent.

The following table contains some variables that affected the behavior of the
experimental models (silicone disk) with their correspondent errors. The probable error
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for the height and width was calculated using the probable error from the metrical
measurements obtained by the caliper for inside the silicone disk. The probable error of
the area was obtained using the equation 4.2.2 with the height and width of each face in
the silicone disk. The probable error of the Young’'s modulus was obtained using the
equation 4.2.2 from the deflection of a beam. The known values of the deflection
equation were the applied load, the height, the area and the deflection of the silicone
disk. In the same way, the probable error of the maximum deflection of the physical
model was calculated. Finally, the probable error of machine design was calculated from
the repeatability, resolution and linearity of the coordinate measuring machine.

Case Variable Value Probable error
PFU-1 Height of silicone disk 6-7 mm 0.72 mm (11%)
PFU-1 Width of the silicone disk 25 mm 0.70 mm (2.8%)
Shear test Load 907.25 gr 5.11 gr (0.5%)
PFU-3 Area 200 mm¢ 5.85 mm?* (2.9%)
PFU-2 Area 112 mm* 12 mm*® (10.7%)
Compression Young's Modulus 2.54 N/mm* 0.23 N/mm* (9%)
Physical Model Max. Deflection " 8mm 0.796 mm (9.9%)
Coordinate Measuring Design 406 mm 0.0073 mm
System

Table 4-2-1 Probable error

The maximum error obtained from the different variables was in the order of 11%, due to
the geometrical problem (height and width of the silicone disc). Another 9% was
attributed to the material properties (Young's modulus). Finally, a maximum error in the
order of 9.9% was due to the deflection resuits from the physical model. If these errors
were related in an equation similar to 4.2.1, the total maximum errors would be 11%.

The maximum percentage error difference accepted in this study was 15%. This
percentage was considered the maximum value among the resuits from computer
simulation, theoretical analysis and experimental tests. in Chapter Three, the 15%
difference accounted for simplifications and the order sequence of rotation done in the
rotation matrix to obtain the constraint equations. A value of 11% accounted for
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geometrical differences in thickness, height and depth as well as in material properties —
4% more from irregularities in the silicone disk, human error when taking measurement
as well as uncertainty conceming procedural or instrument calibration and repeatability.

4.3 Experimental Model

Takemura, et al., (1999) found a relationship between the physical spine model in their
study with the human spine. Their biomechanical study attempted to clarify the
development of scoliosis related to the type of applied load. Based on their study, the
idea to build a physical model seems effective because of the possibility to obtain

deflection with different loading conditions similar to the ones supported by the human
spine.

The physical model consists of square pieces of wood with dimensions that are the
geometrical average values of the vertebra in the thoracic region. The area of the block
is also the average value of the endplates of the vertebra with a value of 625 mm?.
Mechanical properties of the wood were found in [6] and in the material properties of the
intervertebral disc from experimentat tests.

The silicone used in the present study was multi-purpose Sealant 732 from Dow
Coming®. This sealant is designed for a number of diverse sealing and bonding
applications with metal, fabric, wood and glass. It cures at room temperature by reaction
with moisture in the air to produce a durable, flexible silicon rubber. The silicone was

recommended for this experiment because it is a deformable element suitable at the
point of stiffness to maintain the disc height [49].

Only one study was found in literature [4A] of the material properties of the Sealant
DC999 from Dow Coming®. The study presented an experimental investigation of the
material under different ASTM' standard tests, such as bending, shear and tension. The
specimens in this study were prepared with conditioning standards during 7 weeks.

' American Society for Testing and Materials
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Figure 4-3-1 presents the published Stress — strain curves for tension and shear for
silicone DC999.

TENS1ON

STRESS (kfa)
- 8 8 8 & 8 8

[>] c.S 1 *.S
STRAIN (row ewn)

Figure 4-3-1 Stress-strain silicone DC 999 (from ASTM STP 1271,1996)

A Young’'s modulus of 2.54 N/mm? was determined from the stress-strain curve in Figure
4-3-1 in the range of 0-0.06 N/mm?. A shear modulus of 0.461 N/mm? was determined
as well in the linear range from 0-0.06 N/mm? from the shear curve. Based on this ASTM
study, silicone 732 has close values of the material properties as silicone DC999.

The product information for silicone 732 gave the tensile strength value of 2.24 N/mm?,
which when compared with the silicone DC999 is smaller. Hence, the mechanical
properties of silicone 732 would have smaller values than those of silicone DC999. In

order to know the values of the mechanical properties of silicone 732, two tests were
carried out.

Data from these tests were used to find the shear modulus and the stiffness of the
silicone. Stress-strain and load-displacement graphs show that the material has a linear
behavior in the tested range. Data from ASTM experimental tests show that the material

has a non-linear behavior when the load is more than 1000 N for the tension test and
500 N for the shear test.
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4.3.1 Shear Test

Four blocks made of silicone 732 were molded between pieces of wood during seven
days at room temperature according to the specifications of the product. The
specifications providing the cure time information for 1/8 inch (3.175 mm) bead are 24
hours exposure to air at 25°C and 50% RH. The dimensions of the silicone blocks were

as follows: length = 35 mm, width = 35 mm and depth = 12 mm. Figure 4-3-1-1 shows
the set up of the test.

Dial Gauge

o :-‘;.J“'_.- St p e

Load

Figure 4-3-1-1 Set up for the shear test

The test consisted of hanging different weights from one end of the top wooden piece
and, from the other side, recording the readings with a dial gauge each time that the
weight changed. Thus, the shearing stresses act tangentially to the surface of contact
and do not change the length of the sides of the volume. On the other hand, the volume
changes the angle between the faces and the length of the diagonal. Two pairs of
shearing stress intensities must act together; therefore, the lower wooden piece is
constrained. The specimens were tested twice: the first test with 7 days of curing and the
second test with 7 weeks of curing at room temperature.

All the following graphs present a line that fits the data using the least squares method.
The slopes of the curve represent the Young’s modulus or shear modulus for the stress-
strain curves as well as the stiffness in compression and in shear for the load-
displacement curve. The following figures show the graphs obtained from the shear test.
Figures 4-3-1-2a,b present the stress-strain curves for 1 and 7 weeks of curing.
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Figure 4-3-1-2a  Stress-strain shear curve of silicone 732 cured 1 week

Stress- Strain (7 weeks)
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Figure 4-3-1-2b  Stress-strain shear curve of silicone 732 cured 7 weeks

it can be seen that the material properties did not significantly change the pattern of the
linear behavior between the two periods of time. The specimens were checked for
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hysterisis, and it was noticed that the material completely recovered its original shape.
The hysterisis error is presented in equation 4.3.1.

Y, -Y
ehm - up scale down scale ‘100 4.3-1
Full scale output range

€hmax = 12.5%

The meaning of this percentage is the amount the material loses in energy during the

recovery of its original shape. The results presented below were for the specimens for
one week of curing.

Load-displacement with hysterisis (1 week)
0 Specimen 1
80
74 e e 9ym. .| 4 Specimen 2
60 4o e X Specimen 3
g S0 O Specimen 4
40
X Hyst. of speciment
-l 30
20 | © Hyst. of specimen 2
104 - + Hyst. of specimen 3
0 - ' = Hyst. of specimen 4
0 0S 1 15 2 2.
Displacement (mm)

Figure 4-3-1-3 Hysterisis results for the shear test of silicone 732

As mentioned before, the ASTM test had a shear modulus of 0.461 N/mm? while the
shear modulus for the present test is 0.304 N/mm?>. This value of shear modulus in fact

showed that silicone 732 has lower mechanical properties than silicone DC999 as
mentioned before.

Another material characteristic obtained from the experimental shear test was stiffness.
The slope of the curve represents the stiffness in shear of the silicone. Using the least
squares method, the data obtained by the four specimens were fitted with a line. Figures
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4-3-1-4a,b present the load-displacement curves for one and seven weeks of curing
time.

Load-Displacement (1 week)
80
70 1. Lly=304x+23| .
60 o Specimen 1
a Specimen 2
x Specimen 3
o Specimen 4
0 ‘ T Ll T A}
0 0.5 1 15 2 25
Displacement (mm)
Figure 4-3-1-4a Load-displacement shear curve of silicone 732 cured 1 week
Load-Displacement (7 weeks)
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L I y=318x+2. 0} MR
11 Y S AL L C——__ S— o Specimen |
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T 40 o .
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o 30 g Speci «
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Figure 4-3-1-4b  Load-displacement shear curve of silicone 732 cured 7 weeks
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Table 4-3-1-1 presents the stiffness and shear modulus at different curing times for the
four specimens. At the end of each curing time, the mean value among the four

specimens is recorded with the respective standard deviation.

Cured Time Specimens Shear Modulus
(Weeks) Stiffness (N/mm) (N/mm?)
1 29.9 0.3
] 2 30 0.2
3 31.2 0.3
4 30.6 0.3
Mean + STDV 30.4+0.6 0.2+0.01
1 31.7 0.3
. 2 32.2 0.3
3 32 0.3
4 314 0.3
Mean + STDV 32+0.3 0.3+0.0
Table 4-3-1-1  Stiffness and shear modulus of silicone 732

A student T test was done using the stiffness information provided in the above table.
The test is presented in Section 4.3.3.

4.3.2 Compression Test

According to ASTM, silicone is considered as rubber or elastomer, Consequently,
Designation D395-98 [5] is used as a reference for the compression test. The
compression specimens are cylindrical disks with %2 in. (12.7 mm) thickness and 1 ¥z in.
(38.1 mm) diameter. The cure time was specified by the information of the product, and
the conditioning temperature was 23 + 2 °C. Four silicone cylindrical specimens were

molded during one week, and another set of four specimens was molded during five
weeks.
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The ASTM experimental study presented the tensile test. The present thesis work chose
to use the compression test to obtain the compressive properties, since the vertebra and
intervertebral disks are mostly loaded under these conditions. The compressive stress-
strain curve is similar to the tensile stress-strain curve up to the tensile strength.
Thereafter, progressively increasing specimen cross-section causes the compressive
stress-strain curve to diverge from the tensile curve.

The test consisted of placing the specimen in the center of a flat surface and subjecting
it to continued compression force using the Instron machine with a velocity of 1.27
mm/min (0.05 in/min) [5]. The load is applied slowly enough so that all parts of the
specimen are in equilibrium at any instant. The machine gave the results as a curve:
loading versus deflection. Figure 4-3-2-1 illustrates the set up for the compression test.

Specimen

Figure 4-3-2-1 Compression set up

Similar to the previous section, the properties obtained from this test were Young’s
modulus and stiffness. The maximum load applied was 200 ib (890 N) for the 1 week
curing time specimen and 220 Ib (980N) for the 5 weeks curing time specimen.
According to the properties of sealant DC999 for more than 1000 N in load, the material
starts to behave non-linearly. Because the information obtained from the shear test
presented little difference between the resuits from the one and seven week tests, the
second test was done with 5 weeks of curing.

Two different sets of compression specimens were tested. The following figures show
the graphs obtained from these tests. The resuits given by the four specimens were
fitted with a straight line using the least squares method. The slope of the curve stress-
strain represents the Young's modulus for compression, and the slope of the curve load-
displacement is the stiffness of the material for compression. The graphs represent the



stress-strain and load-displacement curves. Figures 4-3-2-2a,b depict the stress-strain
compression curves for 1 and 5 weeks.

Stress-Strain (1 week)

& o Specimen 4
g A Specimen 2
‘z; x Specimen 3
g o Specimen 1

Strain (mm/mm)

Figure 4-3-2-2a  Stress-strain compression curve of silicone 732 cured 1 week

Itis shown in the figure below that the results in the second test with five weeks of curing
present a convergence between the resuits of the specimens. The specimens were
checked for hysterisis, and, the material recovered its original shape. The hysterisis was
done unloading the specimen straight from the last loading value up to zero value of
load. The hysterisis error in this test for 1 week of curing was 10%, which is a smaller
value than the one obtained by the shear. The hysterisis value also means that the
material has a linear behavior, and it recovered its initial height in less time than in the
shear test. The Young's modulus given by the compression test in the present study

was on average 2.28 N/mm?; while, for the ASTM tension-test, the Young’s modulus is
2.54 N/mm?.
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Figure 4-3-2-2b  Stress-strain compression curve of silicone 732 cured 5 weeks

The stiffness in compression was another property obtained from this test. In the case of
the stress-strain curve, the slope of the first test had a slightly different value from that of
second. The value of the slope in stress-strain curve for the one-week test was 2.25, and
the value for 5 weeks was 2.31. This small difference means that the material has
become stiffer during that time. As was mentioned before, due to the irregular geometry
that the first set presented, the second test used another set of four specimens.
However, the resuits obtained from both tests were consistent.

The difference between the slopes also is attributed to the stiffness increase with the
time. In this case, 192.5 was the value for one week and 208.8 for five weeks. The
second figure of load-displacement presents a noticeable convergence between the
specimens. This pattern is not noticeable in the curve stress-strain. All resuits given by
the specimens sustained the prevalence of the linear behavior at any time of testing.



Figures 4-3-2-3a,b present the load-displacement curves for one and five weeks of

curing time.
Load-Displacement (1 week)
o Specimen 1
3 a Specimen 2
g X Specimen 3
© Specimen 4

Figure 4-3-2-3a Load-displacement compression silicone 732 cured 1 week

1200

Load-Displacement (5 weeks)
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Figure 4-3-2-3b Load-displacement compression curve of silicone 732 cured 5 weeks
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Table 4-3-2-1 presents the stiffness and shear modulus at different curing times for the
four specimens. At the end of each curing time, the mean value between the four
specimens is recorded with the respective standard deviation.

Cured Time Specimens Stiffness (N/mm) Young’s Modulus
(Weeks) Compression (N/mm?)
1 186.1 2
1 2 1743 23
3 202.6 22
4 207.2 23
Mean + STDV 192.5+15 2.2+0.1
1 205 22
5 2 207.7 23
3 2113 23
4 210.9 23
Mean + STDV 208.7+2.9 2.3+0.02

Table 4-3-2-1  Stiffness and compression Young's modulus of silicone 732

4.3.3 Student T Test for Sample Means

To determine the standard deviation of the mean in terms of the standard deviation of
the population, the T distribution test results are presented in Table 4-3-3-1. This test
allows one to determine if two different means come from the same population or not.

Xea = Sample mean of the first test at one week.
X8 = Sample mean of the second test at five or seven weeks.

S = Standard deviation.

N = Number of degrees of freedom.
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Case Xg S N T test
. 304 0.6 4
Shear stiffness 95 %
32 0.3 4
Compression 192.5 15 4 8%
stiffness 208.7 29 4

Table 4-3-3-1  Student T test for sample mean results

As is shown in the previous table, the first case represents the probability that Xsa and
Xsg are from the same population. On the contrary, the second case (compression)
shows that the Xs values are from different populations. This is a fact since the
compression specimens for the first time were different than the ones used in the second
test. However, the results obtained from the two compression tests matched the
expected value in the Young’s modulus. The expected value was 2.54 N/mm? with 15%
error; the value found from the experiments was 2.28 N/mm?.

4.3.4 Intervertebral Disc vs. Silicone Disk Material Properties

Once the material properties of the silicone were set, the next step was to compare them
with the mechanical properties of the intervertebral disc. Table 4-3-4-1 presents the
material properties of the intervertebral disc and the silicone disk.

it can be seen that the Young's modulus for compression of the silicone was the only
property close to the intervertebral disc one. On the other hand, the other three
properties are many times smaller than the intervertebral disc properties. This, is justified
due to the composite structure of the intervertebral disc, the intervertebral disc properties
have maximum or traumatic load involved. The orientation of the fibers and the intemnal
pressure built up under compression or axial torsion creates a structure with high

properties, even bigger than the vertebral body. Chapter One discusses the
biomechanical behavior of this complex structure.
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Element Shear Stiffness

Young's Modulus | Shear Modulus Compression
(N/mm) (N/mm?) (N'mm?) Stiffness
(N/mm)
Intervertebral 260 3.62 16 1833
Silicone 31 2.2 0.3 200

Table 4-34-1 Material properties of the intervertebral disc and silicone disk

4.3.5 The Physical Functional Unit

The physical functional unit consisted of two pieces of wood glued with silicone. This
experimental model is called the physical functional unit, because it represents the same
idea as of the functional unit in the spine biomechanical studies. Three physical
functional units were molded during 2 weeks with different thickness of the silicone
disks. The different thickness in the silicone disks is due to the scoliosis problem with
imegular shapes in the intervertebral discs. Figure 4-3-5-1 depicts the geometry of the

physical functional unit:

Width

Figure 4-3-5-1 Dimensions of the physical functional unit

Y

The thickness of the silicone disks of the three functional physical units is presented in
Table 4-3-5-1 along with their standard deviations.
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Specimen Thickness Right (mm) Thickness Left (mm)
1 7.1+ 0.1 6.2+ 0.04
2 38+06 6.8+0.3
3 7.7+0.02 7.7 +0.02

Table 4-3-5-1  Thickness values of the physical functional unit

The physical functional unit was subjected to a bending force as many researchers have
done to find the displacements of the vertebra. The test was performed using an arm
made of aluminum that holds the upper wooden block. The load was applied at the end
of the arm as shown in Figure 4-3-5-2. The lower wooden block was fixed, and the upper
one was free to move.

Dial Gauges
Dial Gauge

Figure 4-3-5-2 Bending force applied to the physical functional unit.

The maximum load applied to the specimens was 10 N; this load created a moment of
875 Nmm. The readings of the displacement were obtained from three dial gauges
located at selected points. These points were along the line that is parallel to the right
and left edges of the wooden block. Another dial gauge was located on the aluminum
arm where the load is applied. In order to have repeatability, the test was performed
three times for each loading condition.

The purpose of this study was to compare the experimental and computational results of
the different models. Therefore, the physical functional unit was modeled in ANSYS in
three dimensions with the same geometry and material properties of the experimental
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model. Also, it was modeled in two dimensions using equivalent forces. The equivalent
forces replaced the aluminum amm, and this is depicted in the figure below. The
displacement results from ANSYS and from the experimental tests were compared. The
results and the discussion about them are presented in the following Section 4.4.2. Raw
data from the experimental tests are presented in Appendix 6.

Force +
Moment

Figure 4-3-5-3 Equivalent forces of the physical functional unit

The next step was to build a sequence of functional units similar to the human spine.
This was built as a physical model with 10 wooden blocks glued by silicone disks.

4.3.6 Physical Model

The physical model was built with equal thickness of silicone disks. This test used the
Coordinate Measuring Machine made by Brown and Sharpe. The machine is designed
to meet production needs, as well as accurate and economical verification of a variety of
work pieces. The Coordinate Measuring Machine features a granite worktable that
provides a stable, precise measuring and measuring surface, air bearings for frictionless
movement of all axes, as well as, a bridge that moves in X, Y and Z directions. Fully
counterbalanced columns infinitely adjust for varying probe weights [58]. Appendix 7
shows the specifications of the machine, and Figure 4-3-6-1 shows a picture of it.
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Figure 4-3-6-1 Coordinate Measuring Machine

To operate the machine, it is necessary to tum on the air supply and regulate the
pressure to 55 + 1 Psi. Pushing or pulling on the bridge leg, the X-Z camiage or the Z
Rail accomplishes the movement of each axis through the measuring device. Stops are
provided at both ends of the axes to prevent over-travel, and each axis is provided with a
locking system. The physical model is located on the worktable of the machine using
clamps in order to fix its position [58).

The first step, before measuring the displacement of the physical model, is to qualify the
machine. For the qualifying test, a probe was used. It was a sphere of radius of 1/8"
(3.175 mm). Once, the qualification is passed, the physical model is mounted on the
table and aligned. The physical model is aligned with the reference system of the local
coordinate axis. Special holders were built for the physical model to fix the ends and
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apply the forces to any wooden block. The holders can be appreciated in Figures 4-3-6-
2,34.

The physical model was tested twice to obtain repeatability and also confidence in the
method used. The first time the displacements were measured using a needie that
touched the vertices of the wooden blocks. To reach any target of the wooden block
required great ability to coincide the needle with the vertices. These targets became
difficuit to reach because the vertices might have contained a small layer of silicone that
was not noticeable. The vertices are points, and, therefore, the surface of contact has
very low probability of being touched in the exact place. In addition, a steady hand is
required for the bridge leg and rail in order to move the coordinate system to measure
the displacement of the vertices of the blocks. Nevertheless, the test was done, and the
results had big differences in the order of 60% in error difference.

Another method of measuring the displacements was used, instead it consisted of a
spherical probe. The displacements expected with this procedure are around 8 mm:; this
value is given by the computational resuits using the properties of the experimental
tests. The resolution of the coordinate measuring machine is in the order of 0.002 mm,
and the accuracy is 0.006 mm. It was found that the probable error for the present
experimental tests is in the order of 0.073 mm,; this value was calculated in Section 4.2.

The measurement procedure consisted of touching the probe three times with the
extension arms that are localized in each vertebra block. These arms protruding from the
vertebrae blocks are the ones that provide the displacement after the application of the
loads. The three measurements were done at the same height level of the protruding
arms. This procedure was useful to obtain more accuracy with the measured
displacements since the minimum values obtained were in the order of 0.1 mm.

The protruding arms were localized parallel to the Y-axis on the surface of each wooden
block. The displacement resuits were divided into two regions: the right and left region;
these can be seen in the next figures. The working plane was XY and the protruding
arms were in the Z direction as shown in the figure of Appendix 8.

The physical model was subjected to different sets of loads such as horizontal, angle
and combined forces. Figure 4-3-6-2 shows the horizontal forces applied to the physical
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model. Figure 4-3-6-3 presents a combination of angle and horizontal forces (combined)
and finally Figure 4-3-6-4 presents the angle forces causing a movement applied to the

physical model.
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Figure 4-3-6-2 Horizontal force applied to the physical model
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Figure 4-3-6-3 Combined forces applied to the physical model
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Figure 4-3-6-4 Moment applied to the physical model

There were nine loading cases applied to the physical model. The first case called
double honizontal consisted of two pulling horizontal forces towards the right on block
number 3 and to the left on block number 7. The second case called single honzontal 7,
was a pulling force towards the left on block number 7. The third case called single
honzontal 3, again, was a pulling force towards the right on block number 3. The fourth
case called honzontal 4 was another pulling force towards the right on block number 4.
The numbering of the blocks is presented in Appendix 8.

The fifth case called combined 7-4 was a horizontal pulling force towards the right on
block number 4 and an angle pulling force of 95° on block number 7. The sixth case
called angle force 7 was an angular pulling force of 266° on block number 7. The
seventh case called moment 3 was a couple of angular pulling forces with 93 and 274°
applied on block number 3. The eighth case called moment 7 was a couple of angular
pulling forces with 266 and 85° applied on block number 7. Finally, the ninth case called
combined 7-3 was a pulling horizontal force to the left on block 7 and an angular pulling
force of 274° on block number 3.
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The physical model was cured for 5 weeks. The maximum load applied was 19.6 N that
produced a displacement of 7.1 mm in the X direction and 0.84 mm in the Y direction,
when the load was horizontal. It was observed that the model has very small
displacements when angle force and moment forces were applied. The maximum value
of displacement obtained with a load of 19.6 N was in the order of 1.3 mm in the X
direction and 0.3 mm in the Y direction. A discussion about the resuits between

experimental and computational model appears in Section 4.4.3. Raw data from this
experiment are presented in Appendix 8.

4.4 Computational Model

The objective of the present work was to use the constraint equation method in
computational modeling. The experimental models were built in ANSYS using the
mechanical properties and geometry from the experimental tests (Table 4-3-3-1) and/or
literature. The modeling was two-dimensional using beams or CE for the vertebral body
and a crossed spring set or plane elements for the intervertebral disc.

4.4.1 Modeling of the Intervertebral Disc

The experimental test resuits were set up to yield only two-dimensional coordinates.
Thus, the three-dimensional silicone disk was represented by a simplified two-
dimensional set of springs or plane elements.

The intervertebral disc is a combination of fiuid and fibers; as a resuit, its mechanical
behavior is diverse, supporting different loading conditions. The set of crossed springs
constitute a simple way to obtain similar mechanical characteristics of the three-
dimensional silicone disk. This model is able to support bending, compression, extension
and shear loads. The search for an equivalent stiffness between the set of springs and
the silicone disk is developed.

A model was established with four springs of different stiffnesses. Two vertical springs
supports the compression and tension loads, two crossed ones support the shear loads

and the set of four springs supports the bending loads. These four springs were
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connected to a horizontal rigid body. Since it was an indeterminate problem, the finite
element method was used to solve it. The unknowns for this problem were the

stiffnesses of the four mentioned springs. Figure 4-3-1-1 depicts the crossed spring set
model:

B8 D
¥~ Rigid Beam

K4

A C
Figure 4-4-1-1 Crossed spring set model

To solve any mechanical problem (system of equations) using the FEM, the stiffness
matrix, displacement matrix and load vector are defined [26A]. The stiffness matrix, [K],
contains the stiffness values of each element of the problem. The displacement vector,
{x}, contains the degrees of freedom of the probiem. Finally, the load vector (b}, contains

the loads that are applied to the problem. These entities are related by the following
system of equations:

(K] {x} = {b} (4.4.1.1)

The present purpose was to model the intervertebral disc in two dimensions. Therefore,
the model required an equivalent stiffness that had the same behavior as the silicone
disk in two dimensions. As a consequence, the stiffness values of the spring model
became the unknowns of the spring set problem. The solution of this problem was
similar to the usual FEM procedure.

The method consisted of establishing the stiffness matrices for each spring as a link
element. Once the stiffness matrices for each element were set, an assembly procedure
was done for the whole system. Usually, FEM solves for displacements, but, in this
particutar case, it solved for the four springs’ stiffnesses. The known data in the problem
were the displacement and the forces applied to the model obtained from the silicone
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disk model of the physical functional unit. Consider a simplified example with two

degrees of freedom:
Kl Kz Xl bl
= 44.1.

Let us assume that K, is known, while K; and K3 are unknown stiffnesses. X, and X, are
the known displacements and finally, by and b, are the known applied loads. Expanding
the system, the resuiting equations are:

K, X+K,X, =b,
KX, +K,X,=b, (44.13)

The next step was to solve for K2 and K3. These values were derived from the known
data:

b1 - K1 X1 = Kz Xz (4.4.1 .4)
ba— Ky Xo = K3 X,

The new system is:

kK, =2 KX 4415
T X, X,
K3 - b2 _ KIXZ
Xl Xl

In this way, the stiffness of each spring was found and its value was tested in models
done in ANSYS with similar geometry of the physical functional units. The results from
each case were satisfactory, because the same displacement values were obtained with
the spring set model. The stiffness of each physical functional unit was different due to
the different geometry of each model.
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The second option to use was the plane element. This element was used to model the
intervertebral disk. it was noticed that the plane element supports compression, tension,
and shear when it is treated as plane stress element. As a consequence, the element
was modeled in two dimensions having thickness. The element was tested against the
three-dimensional modeling of the different physical functional units. It was found that it
had similar results to the solid three-dimensional model of the silicone disk.

Figure 4-4-1-2 depicts the intervertebral disc using a plane element with 8 divisions per

intervertebral disc. The total number of degrees of freedom of this element is 30, two
degrees of freedom at each node.

Figure 4-4-1-2 Intervertebral disc using plane elements

Since the present study found two options to model the intervertebral disc, a test was
performed to see what option was better for the modeling of the spine. The test
consisted of comparing the displacement resuilts from the model using the spring set and
the plane element. The model consisted of a series of blocks forming a 12-floor
structure. Each floor was made of beams or constraint equations attached with the
spring set or the plane element. The plane element used in the test had only one
element; in other words, it was not meshed as is depicted in Figure 4-4-1-2. The results
of this test are presented in the following table:
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Case Elements # DOF | Mechanical properties Max. Ax
1 Beams and spring set 228 K= 47 N/mm 83.8 mm
2 Beam and plane elem. 228 E= 2.28 N/mm* 87.8 mm
3 CE and plane elem. 200 E= 2.28 N'mm* 87.4 mm
4 CE and spring set 200 K =47 N/mm 83.4 mm

Table 4-4-1-1 Comparison between different models using CE, springs and plane
element

The intervertebral discs were modeled with equal thicknesses. The stiffness value was
47 N/mm for a thickness of 8 mm. The results from the four models using CE with plane
element, CE with spring set, Beams with plane element and Beams with spring set were
compared against the experimental models of the physical functional units (See Table 4-
4-1-1). From these results, it was concluded that the spring set with a stiffness value of
47 N/mm and the model with the plane element and Young's modulus of 2.28 N/mm?
has a similar behavior to the experimental model of the silicone disk. The silicone disk in

the experimental model has 25 mm in thickness and the Young’'s modulus of 2.28
N/mm?.

4.4.2 Computer Model of the Physical Functional Unit

A computational model with similar geometry to the experimental model was built. The
intervertebral disc used the plane element or spring set and the vertebral body either

beams or constraint equations. The model was tested for convergence and final
displacements.

The physical functional unit was modeled in three dimensions using solid squared
elements for the metallic arm, wooden blocks and silicone disk. The material properties
used were found in literature for the case of the metallic aluminum arm and wooden
blocks. The silicone properties were from the experimental tests in Section 4.3.4. The

loading and constraint conditions were applied to the model as closely to the real test as
possible.
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In a similar manner, a two-dimensional computational model was built, but the loading
conditions were the equivalent forces in three dimensions converted into two
dimensions. In other words, the moment and the reaction loads were transformed into
vertical forces applied to the surface of the wooden block. This was explained in Section
4.3.5. The percentage difference in displacement between the two computer models in
three-dimensional with the two-dimensional case was in the order of 2%. The reference
was the three-dimensional model, because it gave similar resuits to the experimental
model.

The following figure presents the maximum displacement in Y direction for the physical
functional unit one (FPU-1; see Table 4-3-5-1). The three dimensional case was under
the application of the moment load and the two-dimensional case under the equivalent
load. Figure 4-4-2-1 also presents the displacements of the experimental model. The
results for the three models started with almost equal values, but as the load increased,
the values from the experimental test diverged from the ANSYS values. The difference
was explained because the ANSYS models had a perfectly linear behavior. In the
experimental, test the silicone disk had geometrical irregularities, matenal property
differences, different dimensions, not perfectly straight structure, and among others did
not permit the perfectly linear behavior. Section 4.2 presented a discussion of the

possible reasons of the difference between the experimental tests and the computational
models.

The error difference between the experimental model and the three dimensional model
was in the order of 10% and between the experimental and the two-dimensional case
2%. These percentages differences were considered acceptable for the analysis error in
the present thesis.
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Figure 44-2-1 Displacement resuits from physical functional unit 1

Similarly, the displacements from the functional unit 2 (PFU-2; see table 4-3-5-1) were
plotted. As is shown in Figure 4-4-2-2, the experimental resuits diverged from the
models done in ANSYS as in the previous case. The percentage difference between the
experimental model and the three-dimensional case was 16%, and 5% between the
experimental model and the two-dimensional case. This percentage was greater than
the ones for PFU-1. Therefore, another factor must be influencing in the results.

In fact, the geometry of the second model had imperfections in the thickness of the
silicone disk, it was different in each face of the body. The probable error value for this
specific case was 10.7%; this value is presented in Section 4.2. The iregularities in the
silicone disk, plus the imperfections in geometry, caused the greater difference between
the computational models and the experimental ones. However, this model was
accepted because of the displacement results given by the two-dimensional ANSYS
model; that agreed with the experimental test results as 95%.

Figure 4-4-2-2 depicts the maximum displacements of the physical functional unit two for
the experimental and ANSYS models.
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Figure 4-4-2-2 Displacement resuits from physical functional unit 2

Following the same procedure, the physical functional unit three (PFU-3; see table 4-3-
5-1) was tested and modeled. The resuits in this case presented better convergence
throughout the test. The error difference between the experimental test and the three-
dimensional case was 8% and 3%. Figure 4-4-2-3 presents the maximum displacement

for the physical functional unit three.
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Figure 4-4-2-3 Displacement results from physical functional unit 3




PFU-3 is the model that had the same thickness over all its faces. The results from these
specimens provided more confidence of the experimental tests. As a resuit, for the
physical model, it was decided to use the same thickness in all the silicone disks.

In summary, the experimental and computational models had similar results. The overall
error difference between the experimental and three-dimensional models is in the order
of 11% and 4% between the experimental and the two dimensional model. As was
mentioned at the beginning of this thesis, one of the purposes is to find a way of
simplifying the three-dimensional model of the silicone disk into a two-dimensional
model. Hence, the two-dimensional modeling fulfills this purpose.

it was found that when using constraint equations with a spring set or plane element in
two dimensions, the results between the experimental and computational model have a
small error. This error is in the order of 4%. Therefore, the two-dimensional modeling
with the actual properties and elements was considered for the modeling of the physical
model. Maximum displacements from ANSYS are presented in Appendix 9.

4.4.3 Computational Physical Model

The physical model was programmed, and it simulated the two dimensional response
under different loading conditions. Likewise, the model was tested for convergence and
for displacement resuits when using constraint equations and beams. The mechanical
properties used in this modeling were the same as in the physical functional unit.

in the previous section, the displacements in the three and two-dimensional models
were found for each physical functional unit. In the present study, a three-dimensional
model was not necessary because the previous section showed that two-dimensional
modeling better represents the experimental results.

The vertebral body was modeled as a set of rectangular boxes made up with 4 rigid
beams or constraint equations. The intervertebral disc is modeled with the plane
elements, as discussed in Section 4.4.1. The geometry of the computational model was
based on the measurements of the physical model as a straight model. The constraints
of the model were applied in the X and Y directions at both ends. The forces were
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applied directly on the vertices of the rigid bodies equivalent to the one applied in the
experimental test.

The nine arbitrary loading conditions mentioned in Section 4-3-6 were modeled in
ANSYS. The displacements for each block were obtained and compared with the
respective experimental case. The results, in general, fulfiled the expectations of the
study (expected value 8 mm). The smallest error difference between the nine cases was
obtained from the horizontal forces applied to the block number 4 (4™ case). The
displacement resuits given by the protruding arms on the wooden block at the right or
left side were recorded. The following figures depict the results between the
experimental and ANSYS models for the left case only because similar values are

obtained with the right side. Figure 4-3-6-2 presents the loading picture of the horizontal
4 case.

X displacement of Horizontal Force at block 4
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Figure 4-4-3-1 X displacement of the physical model case Horizontal 4

The error difference for the 4™ case is in the order of 5% in the X direction while, inthe Y
displacement, the percentage difference was 14%. It was suspected that the Y
coordinate had a bigger error than the X coordinate due to a small motion in the Y
direction at the constrained ends. Similar results were obtained with the first five cases.
The first five cases comrespond to the application of the load in a horizontal and
combined fashion. The horizontal force is along the X-axis for the local coordinate shown
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in Appendix 8. The combined force represents one along the X-axis and the other almost
parallel to the Y- axis.

Y displacement of Horizontal Force at block 4
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Figure 4-4-3-2 Y displacement of the physical model of case Horizontal 4

The last four cases had the angled forces and moment fashion forces applied to the
blocks. The angle force is a load with an angle close to 90 or 270° measured
anticlockwise. The values of these angles were between 90 or 270° + 5°. The moment
load has two angle forces applied to the same block in opposite directions. In other
words, this loading reproduce force couple on the biock. The values obtained from these
four cases were far from what was obtained from the ANSYS models. The following
figures depict these large differences.

According to the information given by the computational model, the displacements
obtained from the last four cases were very small in the order of 0.3 to 1.3 mm. These
values were difficult to measure using the experimental chosen procedure. As was
mentioned previously, the ends of the physical model were not completely fixed; as a
result, some displacement in the X and Y direction might happen during the tests.
Consequently, the displacement resuits obtained by the experiment were bigger than the
computational ones. Figure 4-3-6-4 presents the loading picture of the Moment 7 case:
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Figure 44-3-3 X displacement of the physical model of case Moment 7.
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Figure 4-4-34 Y displacement of the physical model of case Moment 7

The maximum displacements from both models (experimental and computational)
differed on average 67% in direction X. The possible reasons that could affect the
resultant displacements were due to the irregularities in the silicone disks, imperfections
in its geometry and in the overall geometry of the body and boundary conditions. The




following table is a summary of the nine cases with the individual percentage errors
among the models. The computational resuits from this model are found in Appendix 10.

Case X (Left) % Y(Left) % | X (Right) % | Y (Right) %
Double Horizontal 9 15 8 16
Single Horizontal 7 10 21 11 23
Single Horizontal 3 6 16 6 14
Horizontal 4 5 14 ] 16
Combined 7-4 15 8 16 9
Angle Force 7 83 59 36 89
Moment 3 65 57 65 65
Moment 7 65 72 64 66
Combined 7-3 12 32 1 390

Table 4-4-3-1 Percentage difference of the physical model

As is shown in the first five cases the mean value of the difference is 13%, which is
inside the range of the percentage difference error accepted by this study. In contrast,
the last four cases present a mean value of 77% in the X and Y direction.

4.4.4 Discussion

Since computer simulation is used in this thesis to create the spine model various
problems related with geometry, boundary conditions and material properties appeared.
These problems caused the simulation to yield inconsistent results. This was especially
seen in the four last experimental cases (Section 4.3.6) and their correspondent
computational cases (Section 4.4.3) of the physical model when the boundary conditions
greatly affected the displacement resuits. To avoid such problems for the experimental
model dimensions, geometry and silicone disks properties were measured carefully.
These measurements were done in order to reproduce the experimental case in the
simulation program as closely as possible.

The experimental tests used silicone. It was suitable at the point of stiffness for
maintaining disc height between the wooden pieces and for maintaining elasticity while
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applying the forces. The mechanical properties found from these tests agreed with the
expected values from the ASTM information in Section 4.3.

The probable error study from Section 4.2, gave the maximum percentage error in which
the experimental and computational tests should differ. The probable error of 11% was
obtained, and it was less than the one expected (See Table 4-2-1). it was justified
because some errors do not usually contribute to the final error in accumulative manner.
In other words, some of the errors may act in different directions, and, hence, the error
from one factor may cancel the error caused by another factor. Therefore, 4% more was
added due to the internal and not counted errors. A total of 15% was established as the

maximum error between the experimental and computational models for the present
study.

The computational model in ANSYS was validated by experimental tests. The first
validation was done with the intervertetral disc of the physical functional unit. The
displacement resuits from these comparisons gave a percentage difference of 4%
shown in Section 4.4.2 that, according to this study, is in the range of acceptance. The
second validation was done with the displacement results of the physical model. Despite
that fact that the last four cases did not match as closely did the computational
predictions; the first five cases accomplished the expected displacements given by the
computational modeling as shown in Table 4-4-3-1. The maximum expected
displacement was 8 mm, and the maximum displacement obtained was 7.1 mm with a
maximum percentage difference in 9% in the X direction (see Figure 4-4-3-1).

The intervertebral disc in the computational model was built using plane elements or a
spring set. The stiffness of the spring set was computed using the finite element method
as explained in Section 4.4.1. The stiffness values were found based on the properties
of the silicone disk of the physical functional unit. in other words, the stiffness depended
on the geometry (thickness and height) and material properties of the disk.

Intervertebral discs, vertebrae, ligaments and tendons are frequently modeled using
elements, such as solids, planes or links. In order to obtain solutions from a model
constructed with elements, it is required to mesh them. The meshing procedure creates
more degrees of freedom in the system, and, therefore, computational time is increased.

90



Figure 4-4-4-1 shows a typical three-dimensional representation of an intervertebral disc,
while Figure 4-4-4-2 show a simplified two-dimensional model. Both of these models
exhibit a relatively large number of degrees of freedom.

Figure 4-4-4-1 Intervertebral disc using solid elements

Figure 4-4-4-2 Intervertebral disc using plane elements

To decrease the number of degrees of freedom in the intervertebral disc, this thesis lead
to the use of a two-dimensional spring set. Figure 4-4-4-3 depicts the intervertebral disc
model using the spring set. There are only 8 degrees of freedom in this modei.

Figure 4-4-4-3 Intervertebral disc using spring set

The previous figures show the advantage of using the spring set in the modeling of the
intervertebral disc due to the decrease in the number of degrees of freedom.
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For modeling the vertebra, constraint equations are used in the present work to provide
a new technique that decreased the number of degrees of freedom keeping the same
accuracy in the calculations. The accuracy of the system was the same when using CE
instead of the two-dimensional or three-dimensional elements. As a resuit, the CE
technique also offers a substantial decrease in the computational time due to the great
simplification in the model's geometry.

4.4.5 Thoracic Model

Modeling the spine is difficult due to its very complicated nature. A two-dimensional finite
element model of the normal thoracic region in the frontal plane was built. The geometry
of the region was obtained from Table 1-4-1-2 and the mechanical properties from
Table 4-3-4-1. The thoracic region was chosen since it is where the majority of the
scoliotic problem appears.

The model consisted of trapezoidal shapes that represented the vertebrae bodies built
with constraint equations. The CE in the simulation program (ANSYS) appeared as lines
that express the linear equations. These lines join the vertices of the rectangular
intervertebral discs. Two horizontal lines appeared from the upper part of the trapezoidal
shape, representing the transverse processes of the vertebra as is shown in Figure 4-4-
5-1. Figure 4-4-5-2 presents a close view of the vertebral body formed by constraint
equations in the ANSYS program.
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Figure 4-4-5-1 CE represented by lines that form the vertebral body

Constraint equations

Constraint Equations

Figure 4-4-5-2 Vertebral body represented with constraint equations

The intervertebral disc was made of a plane element with one division in order to keep
the number of degrees of freedom similar to the spring set while maintaining modeling
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accuracy. The following figure shows the intervertebral discs as deformed rectangles in

the computational model when using CE. The rectangles appeared without any link or
joint because the model is using CE.

Tendons intervertebral disc
Ligaments

Figure 4-4-5-3 Intervertebral discs, ligaments and tendons

The above figure shows the horizontal thick elements represent the tendons, and the
vertical dashed lines joining with the horizontal are the ligaments. The tendons and the

ligaments are elastic bands, which was modeled with link elements mentioned in Section
441.

The complete model after the application of the load is shown in the next figure.
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Figure 4-4-5-3 Thoracic model

The above figure shows a particular case of forces of 200 N in the X positive direction
applied on T3 to TS and a load of 150 N in the X negative direction on T10 and T11. The
maximum displacement in the model obtained by these forces was 18 mm. According to
information found in literature, a ioad up to 400 N is possible to apply to the spine and
obtain corrections in the order of 60 to 70% depending on the severity of the curve. The
values obtained by this model gave an idea that the spine is a very stiff element, and,
therefore, to correct any deformation, it is necessary to apply forces in different places.

The presented model is a simplification of the thoracic spine in two dimensions. The

model can support different loads, such as horizontal and vertical forces. To apply a
moment force, it is necessary to use a couple, two parallel forces with apposing
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directions and separated by a distance. From the resuits obtained after the application of
loads, the only deformable element was the intervertebral disc form with a plane
element. The vertebra constructed with constraint equations, behaved as a rigid body,
and, hence, it stayed with no deformation as shown in Figure 4-4-5-1.

The constraint equations simplify the geometry of the modeis that uses rigid bodies and,
hence, reduces the number of degrees of freedom and the computational time. The
thoracic model in two dimensions contained a very low number of degrees of freedom
compared with any modei that used meshed elements. The number of degrees of
freedom is about 472 with 59 elements. In the case of the model done by Steven Tong,
the thoracic region had 2,136 elements and 12,816 degrees of freedom. Although it was
done in three dimensions, the great number of elements and degrees of freedom that
the model had is very noticeable.

The program was done with the possibility to be user defined. The geometry and the
mechanical properties of the thoracic region can be changed. For instance, in the case
of a scoliotic spine, it is possible to collect the geometrical and mechanical data of the
thoracic region of the patient in the frontal plane as new input.

The results obtained from this computer model with constraint equations were compared
against another one using only elements, and the displacement results for any loading
condition were the same. With the CE, it is possible to conclude that constraint

equations are a fast and easy way to replace rigid bodies and substantially reduce the
computational time.



Chapter 5

5.1 Summary

One of the objectives of the present work was to validate the use of constraint equations
to represent rigid bodies in the finite element method. The constraint equations relate the
degrees of freedom of the points in the rigid body explained in Section 3.3. To find the
constraint equations, three points of a rigid body were selected and subjected to
displacements and rotations. The Euler matrix was used to generate the resultant
equations. It was found that the constraint equations involved small angles; these angles
were less than 10 degrees (see Section 3.3.1).

To estabiish the validation of these equations in the modeling of the spine, comparison
tests of maximum displacements between computational and theoretical models were
carried out, as discussed in Section 3.3.1 The validation process started with a simple
frame problem composed of three elements. Two vertical beams with small stiffnesses
and one horizontal beam with very high stiffness with respect to the vertical ones formed

the frame problem. it was found that the horizontal element could be replaced by the
constraint equations.

Once, the validation of these equations was done, it was established that the vertebral
body of the spine would be modeled with constraint equations. The geometry of the
vertebral body at the beginning was built as a rectangle; thereafter, it was changed to a

trapezoidal shape that had, on average, geometrical values of the width and height of
the vertebral body.

Another objective of this thesis was to validate the computational model by comparing
the displacement results from the experimental test with those from the computational
modeling, as presented in Chapter Four. This thesis did not attempt to use the
experimental resuits to model the human spine. This thesis attempted to qualify and
quantify the relationship between the silicone disks in three dimensions with a model of
the intervertebral disc in two dimensions.
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Takemura, et al's study (1999) simulated the spinal deformation associated with
idiopathic scoliosis by applying different pattems of forces to qualify and quantify the
scoliotic deformity. Following the same idea, four experimental models were built to find
the properties of the silicone disk. Displacements from the experimental and
computational model were recorded under different loading conditions. It was found that
the experimental tests exhibited similar behavior to the computational ones presented in
Section 4.4.3.

The intervertebral disc was modeled using silicone 732. The mechanical properties of
silicone 732 were found by compression and shear tests. The results from these two
tests were as expected lower values with respect to the ASTM experimental study. The
mechanical properties of the silicone were compared against the intervertebral disc
properties proved in Section 4.3.

Young's modulus of silicone 732 was 1.5 times less than the value of the intervertebral
disc Young’'s modulus. On the other hand, shear modulus; compression stiffness and
shear stiffness values were 8, 9 and 5 times less than the intervertebral disc properties
respectively (see Table 4-3-4-1). This difference in the properties is justified due to the
structure of the intervertebral disc. The intervertebral disc is capable to increase its

properties a great amount under compression and shear forces and be similar or
stronger than the vertebra.

Three models were built using silicone 732 as a disk between two wooden square
pieces called a physical functional unit. Three similar models were built in ANSYS in
order to compare their results with the experimental tests. The averages of the
percentage differences for these cases were as follows: between the experimental and
the three-dimensionai models 11%, and for the experimental and two-dimensional
models 4%, as calculated in Section 4.4.2.

Physical functional unit 2 (PFU-2) presented bigger differences with respect to the
computational model due to geometry and material problems. The second specimen is
the one that has a different thickness at each side of the frontal view (Table 4-3-5-1).
Careful measurements found that each face in the experimental PFU-2 contained a
different value in thickness. This showed why the 3-dimensional model built in ANSYS
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with a symmetric and parallel thickness in each face gave a bigger percentage of
difference with respect to the experimental models.

As was mentioned, the models built in three dimensions had bigger percentages of
difference than to the experimental ones. it could be alleged to be a geometry and
material problem. The three-dimensional model built in ANSYS has a perfect silicone
disk while the experimental model, in its volume, contained some small bubbles,
different thickness and irregular surfaces in its faces. Therefore, the three-dimensional
model is more susceptible to having a larger error than the two-dimensional model.

The two dimensional model showed a closer behavior tc the experimental model,
because of its simplifications. The model of the silicone disk in two dimensions was a
plane element, which used the average lengths and widths of the experimental models
discussed in Section 4.4.4. In summary, the three physical functional units compared
with the computational programs gave results inside the range of acceptance.

The physical model (ten blocks) had a higher probability of having different
displacements than the computational model due to the increase in the number of blocks
and disks. The physical model had irregularities in its silicone disks and straightness.
Nevertheless, the results showed good values for the first five cases but not for the last
four ones. For the first five cases, the mean value of the percentage difference is 13%, a
value accepted in this study. In contrast, the last four cases present a mean value of
77%, as caiculated in Section 4.4.3.

The last four cases of the physical model gave a clear idea of why the boundary
conditions were not achieved as expected and the method used were not useful to
measure very small displacements. As a result, the displacement results gave a large
amount of variation between the experimental and computational models.



5.2 Conclusions

itis shown that an understanding of the mechanical modeling of the human spine plays
and important role in the treatment of any spinal pathology. The start of a surgical
pianning model in two dimensions was done in the present study. However, a three-
dimensional model would be a better representation of what is happening in the human
spine.

To obtain constraint equations either in two dimension or three dimensions, the Euler
rotation matrix is another way available instead of the geometrical analysis. However, for
the three-dimensional case, the Euler rotation matrix is recommended instead of the
geometrical analysis because it already has the sine and cosine invoived.

The present work achieved the three objectives established for this thesis, namely (i) the
use of constraint equations to represent the motion of the rigid body, (ii) the experimental
displacement results have a maximum percentage difference with the computational

model in the order of 15% and (iii) the modeling of the intervertebral disc done in two
dimensions.

The human spine can be simplified using constraint equations because it only used
certain selected points that are representative in the overall geometry. For example, in
the case of the vertebral body, it was simplified as a trapezoidal shape with average
values of end plates and heights. in the same manner, a point that joined the vertebral
body using constraint equation represented the tip of the transverse processes.

Constraint equations are a new technique to replace the rigid body motion as well as
decrease the number of degrees of freedom. The accuracy of the resuits obtained with
CE are the same as if the modeling is using elements. The advantage of using CE is
also noticeable in the decrease of the computational time used to solve the model.

Experimental specimens were useful to obtain the material properties of silicone 732, as

well as to prove that the geometry of the silicone disk does not affect its material
properties when using a plane element. Nevertheless, it is advised to use the spring set
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instead to model the silicone disk, because it reduces more the number of degrees of
freedom.

In the case of horizontal and/or combined forces, the displacements were values that
could be measured easily by the coordinate measuring system procedure. On the other
hand, in the last four cases, is the angle or moment forces were applied; the
displacements obtained were very small compared with the previous ones. Therefore

measurement difficuity appeared; lack of accuracy of the procedure and boundary
conditions contributed to the big percentage differences.

The last four cases did not give the expected resuits, and it was mainly attributed to the
possibility of movement of the block in the constraint holder when the load was applied.
The clamps at the ends of the physical model were not perfectly constrained; thus, the
physical model had the possibility to move in the Y direction. In addition, the geometry

was added to the inaccuracy of the measurement as well as the straightness on the
model.

The first five cases of the physical model showed an opposite situation to the last four
cases. it gave the confidence to validate the computational model. it was found that in
the modeling of the spine model either with the experimental case or the computational
case the intervertebral disc parameters significantly affect the final displacement
solution. These parameters are the Young’s modulus and the height of the disc.

The computational model was successfully validated using the physical model. It is
concluded that the importance of having the right boundary conditions, accurate
geometrical dimensions, the right material properties and the correct measurement
method contributed to the final resuits when comparisons between experimental and
theoretical or computational models are done.

The final product is a program that can use different input data of geometrical values,

mechanical properties and load values with very small computational time making it easy
to study each particular spine probiem.
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5.3 Future Work

Spinal deformity in idiopathic scoliosis invoives not only vertebral deformation in the
frontal plane but also rotation of the vertebral bodies and a decrease in thoracic
kyphosis. it has been shown that three kinds of deformity produce the three-dimensional

Scoliotic deformities. Hence, a three-dimensional model is required to better study the
scoliotic problem.

As was mentioned in Chapter One, Scoliosis is a lateral curvature of the spine
associated with vertebral rotation. Therefore, it involves a three-dimensional modeling to
study the problem. It is recommended to create a three-dimensional model, in order to
analyze the rotational problem of the vertebrae. The two-dimensional program can be
used as a preliminary short study of the scoliotic problem in a patient.

The present work is done in the linear range of elasticity using constraint equations to
model the spine. A future study in a non-linear field using constraint equations or any
other method would allow modeling the three-dimensional physiological movements of

the spine with accuracy. This new procedure would aiso greatly reduce the number of
elements that cause long computational time.

A suggested approach for the non-linear problem is the use of substructuring or
condensation derivation procedures. These procedures are used to simplify the analysis
of very large in size problems with minimal computer resources. The substructuring
method considers a condensed stiffness matrix that only retains those degrees of
freedom that are necessary to connect the body to the adjoining elements.

The use of the spring set is advised in the present thesis because it greatly reduces the
number of degrees of freedom of the intervertebral disc model. However, it was not used
for the final thoracic model because of the problem of variation in stiffness due to the
geometry and the loading pattem. A further analysis in the stiffness values is advised.

Since the constraint equations are mathematical expressions, they can be implemented

in any computer language to create a simulator that medical doctors can use in their pre-
operative procedures.
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The possibility to create a spine model using synthetic vertebrae attached with silicone
disks would allow observing the pattern of motion of the spine in three dimensions. This

model would help to clearly identify the intervertebral shifts that are hard to reproduce in
a computer model.
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Appendix 1

Nomenclature of the geometry of the vertebrae

UE upper end plate

LE lower end plate

PD pedicle

SP spinous process

SC spinal canal

Pl pars interarticulars

vB vertebral body

w width

A area

D depth

H height

| inclination

t transverse place

P posterior

IFPD inferior facet pedicle distance
IFMPL inferior facet mid pedicle length
PL pedicle length

HBF height between facets

LV length of the vertebra
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Appendix 2

Geometrical Analysis of Constraint Equations

The purpose of this procedure is to find the X and Y coordinates of the unknown points
of the plane. It uses three points called: Point 1, Point 2 and Point 3.

Lye

LX1

Two lines join the selected three points in the plane forming an angle. The vertex of the
angle is point number 1 and it is about this point the rotation was done. The initial
coordinates of points 1,2 and 3 (P, (X:,Y4), P2 (X2,Y2) and P; (X3,Y3) )are known as well
as the angle respect to the horizontal iine 0

Distances between the points were determined using their coordinates. The lengths of r
and ry, were determined using Pythagoras theorem
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LX, =X, - X,

LY,=Y,-F,

r=yJ(LX,)* +(LY,)}

LX,=X,-X, r = V(LX,) +(LY,)?

LY,=Y,-V, .

The angle 6 was found using the geometry of the points 1 and 2. Similarly the angle §

was found using points 1 and 3.

-1, LY,
6=t —
an (LXI)

LY,

-1
5=t
a (x]

14
r

Cos(6+ p) = ,then

I'A =rcos(6+p)

AB = I'B - I'A =LX,—rcos(@+ )
The X displacement for Point 2 is:
AX,=AX,- AB
AX,=AX,-(LX,-rcos(68+p))
AX,=AX,-LX, +rcos(f0+ B)

sin(@ + B) = ?a 2"A=rsin(0+ p)

The next step was to find Y’ and then the X coordinate
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Y ="4-LY,

AY,=AY +Y"

Y =rsin(8+B)-LY,

In the expression for AY;, above, substitute the values for Y’ and AY,
AY, =AY, +rsin(6+ B)-LY,

Finally the value of AX, is found from AX, and the lengths of X

cos(d+ f) = LX,

h

LX, =r,cos(d + )

AX, = AX, + LX, - LX,

Looking for the Y coordinate:

sin(8 + B) = 3TE - FE =rsin(d+ )
3D=LY,=CE
¥C=TE-CE

3"C=rsin(5+p)-LY,

Substitute 3"C into the following expression:
AY, =AY, +3'C

AY, =AY, +rsin(5+ )~ LY,
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The displacement of the point 3 in X and Y coordinate are:
AX,=AX, +rcos(d + B)- LX,

AY, =AY, +r;sin(6 + B)- LY,
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Appendix 3

Constraint Equations in Two dimensions with Rotations

Once the range of small angles is set the last equations from Appendix 2 can be
simplified.

AX,=AX +rcos(d+p)-LX,
AY; =AY, +rsin(é + B)-LY,

The first step is to expand each equation in order to obtain the sine and cosine
individually. Start with the expression for the X coordinate of point number three

AX, =AX, —(X,- X))+ r(cosScos B —sin 5sin B)

Because B is a small angle value

The cosine of the angle is equal to one and the sine of the angle is equal to the same
angle. In this case angle p which is the rotation angle.

CosBp—1
Singp—B

Replacing these values into the last expression for X is obtained:
AX, =AX, - (X, - X,)+rcosd - rsin6(B)
AX, =AX, - (X;~-X,)+rcosd-r,sindé(RotZ)

It is shown that the last expression contains some constant values. Those expressions
can be replaced by the constants C, and C,.

C =X,-X,+rcosé
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C,=rsind
AX, = AX,+C, -C,(RotZ,)
Similar procedure is done for the Y coordinate.

AY, =AY, - (Y, -Y)+rsin(6 + B)
Expand:

AY, =AY, -(Y, -Y))+r(sinScos B +cosdsin B)
B is treated as small angle value.

AY, =AY, -(Y;=Y,)+rsind +r,cos 5B

AY, =AY, - (Y, -Y,)+nrsind + r,cosdRotZ,
C,=Y,-Y, +rsind

C,=rcosd

AY, =AY, -C, +C,RotZ,

The ultimate bosition of the point 3 in X and Y direction is:
AX, =AX,+C,-C,RotZ,

AY, =AY, -C, +C,RotZ,

To represent the motion of the point of a rigid body is necessary to have three equations
that represent the three degrees of freedom. Therefore one equation is add to this set
and this equation represent the rotation of two point of a rigid body.

RotZ, = RotZ,
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Appendix 4

Constraint Equations in Three dimensions with Rotations

The sequence of rotation is a new factor to be tested to find small angles range for the
case of CE in three dimensions. The method used is an analysis with the three studied
points from the plane. The rotation matrix is obtained from different combinations of
rotations. The XYZ convention is considered the reference of comparison. The figures
below show the final position of the same analyzed point anteriorly in X, Y and 2
coordinate. The results are shown in the following figures, but only those show the
results up to 4 degrees in order to visualize more the tendency of the rotation
sequences. The error analysis calculated the maximum value among the combinations
up to 10 degrees in increments is in the order of 2.6% for the Y-Z-X sequence of
rotation.

Rotation Sequences for X Coordinate
29.9
298} & e
c 2974 - i ---------------------------------------------- +X-Y-Z
g 29 6 _____________________________________________________________________ x Y'Z'x
- -0 1 - - b 4 -
e 8 AZ-X-Y
E 2.5 oo o T Ko X Y-X-2
R 2 e R o X-2-Y
X
29,3 oo
P
29.2 - v ’
0 1 2 3 4 5
Angle (degrees)
Figure 4-1 Rotation sequences for X Coordinate

118



Rotation Sequences for Y Coordinate
316
a
3 T T S e
x
B2 b +XY-Z
§ I S . Y-ZX
5 A ZXY
g m-a """""""""""""""" i """"""""""""""""""""""""""" xY.xz
R Y3 S — o XZY
304 4 T e
30.2 . v . -
0 1 2 3 4 5
Angle (degrees)
Figure 4-2 Rotation Sequences for Y Coordinate
Rotation Sequences for Z Coordinate

599

598 .

B i """"""""""""""""""""""""" o XY-2Z
=_S= 896 - e B ® Y-ZX
5 595 s S azZxXY
% 504 | e K xY-XZ
* x %ZY

= ¥

[
B9.2 4o s 3 S R
F-y

£9.1 - .

(] 1 2 3 4 5
Angile (degrees)
Figure 4-3 Rotation Sequences for Z Coordinate

The results showed that the different sequences to form the rotation matrix with smail
angles do not vary in great amount as it is shown in the figure above. Therefore the 10
degrees are stili working well to define small angles.
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Finally one more test is done to the Euler matrix to find the small angle range. The
method consisted of comparing the results from the simplified Euler matrix with the Euler
matrix with out any manipulation. The simpiified Euler matrix assumed small angles,
therefore the cosine of the angle is equal to one and sine of the angle is equal to the
same angle. The resuits show the range of rotation angles among 1 and 4 degrees. An
error of 8.76% exists when the angle is 4 degrees. Figures 4-4 and 4-5 show the resuits
of the analyzed point in each coordinate.

True and Approximated Rotation Matrix Results in X and Y Coordinate
$ —eo—True Value
= .
£ 200 [
s % Aproximate
@ Value
28.00 - : ]
0 1 2 3 4 ]
Rotation angies (degrees)
Figure 4-4 True and Approximate Rotation Matrix Results for X and Y Coordinate
True and Approximated Rotation Matrix Results in 2 Coordinate
6100 ————— 11— l
s —o—True Value
3
e )
s -~z Aproximate
@ Value
Rotation angles (degrees)
Figure 4-§ True and Approximate Rotation Matrix Results for Z Coordinate
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Using the rotation matrix from Euler with XYZ convention

cos 0 cos ¢ cos O sin ¢ -sin 0
sin @ sin O cos ¢ - cos ¢ sin ¢ sinpsindsing+cospcosd cosOsing | =(R]
COS ¢ Sin O cos ¢ + sin @ sin ¢ cospsinOsinég—-sinpcos¢ cosoOcose

The motion of a rigid body is given by the following expression:

AX) (UX,
AU, =[R){AY } +{UY,
aAz| |uz

AU ; = Rotation + Displacement Matrix

As mentioned before, the small angles are used to simplify the expressions that contain
sine and cosine.

Cos9 — 1 Sin8 —06
Cos @ — 1 Sing—9
Cos® — 1 SN®—-o®

The rotation matrix with the simplifications given by the use of small angles is transform
into:

[ 1 ¢ -6

P0—-¢ @6p+1 ¢@ | The product between the small angles < zero

O+pp Gp—9 -1

-

1 ¢ -6
-9 1 9
6 -9 -1
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Replacing the new simplified rotation matrix into the initial expression that gives the

motion of a rigid body:
1 ¢ -0 [AX UX,
AU,=|-¢ 1 ¢ |{AY }+ UY,
6 -¢ -1} |AZ UZ,

The following angles represent:

e — Rotation about Y axis — Rot Y,
@ — Rotation about X axis — Rot X,
® — Rotation about Z axis — Rot Z,

The new terms are replaced in the last matrix equation:

1 RotZ, -RotY |[(AX

AU, =|-RotZ, 1 RotX, [{AY +UY,

| RotY, -RotX, -1 ||AZ

[ AX +AYRotZ, — AZRotY, UX,
AU, =|-AXRotZ + AY + AZRotX  |+{ UY,
| AXRotY, - AYRotX + AZ UZ,

[ AX +AYRotZ, — AZRotY, + UX,
AU, =|-AXRotZ + AY + AZRotX , +UY,
| AXRotY, —AYRotX, + AZ +UZ,

AX, AY and AZ is the distance between the points of the rigid body (local coordinates)

Expanding the resuitant matrix it is obtained:
AUX, -UX, —AYRotZ, + AZRotY, - AX =0
AUY, -UY, + AXRotZ, — AZRotX, - AY =0

AUZ,-UZ, — AXRotY, + AYRotX, - AZ =0
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The displacement of the point 2 AU, is also equal to:
AX +UX,

AU, =5 AY +UY,
AZ +UZ,

Equating the last expression with the three equations in the previous page, the resultant
equations are:

UX, -UX, — AYRotZ, + AZRotY, =0
UY, ~UY, + AXRotZ, - AZRotX, =0

UZ, -UZ, - AXRotY, + AYRotX, =0

But the degrees of freedom in three dimensions are 6 at each point of the rigid body.

Therefore three more equations are added to the last set, representing the rotations
between two points of the rigid body.

RotX, = RotX,
RotY, = RotY,
RotZ, = RotZ,
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Appendix §

Constraint Equations in Two dimensions with no rotations

Using the rotation and displacement matrices from the motion of a rigid body

cosf -—sinf|(AX] (Udx,
AU, =| . +
" |sin@ cosé |(AY] |Udy,
A=Ux, -Ux,
B=Uy, -Uy,

sin9=§=——Uy1;Uy'

cosf=2 Y% =Un
(4 4

Since no rotations must be involved in the equations, sine and cosine are replaced by
the geometry of the points in the following figure.

fv

3'
1
4 :
4 3
1’ 0 ,[1 B Udy2
Udx1
X
1 2 Udv1 f
>
<
- Ux1 >
U2

The following steps consist of muitiplications of the terms of the transformation matrix
with the displacements.
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1{Ux,-Ux, -Uy,-Up)]|[AX N Udx,
¢|\Uy,-Uy, Ux,-Ux, ||AY] |Udy,

1{Ux,-Ux, -Uy,+Uy |[AX . Udx,
¢|Uy,-Uy, Ux,-Ux, ||AY] |Udy,

1[(Ux, -Ux)AX +(-Uy, +Uy,)AY |(AX N Udx,
€| Uy, -Uy)AX +(Ux, -Ux)AY ||AY] (Udy,

1[Ux,AX —Ux,AX —Uy,AY +Uy,AY | N Udx,
€| Uy,AX -Uy,AX +Ux,AY -Ux,AY | |Udy,

1[Ux,AX —Ux,AX —Uy,AY +Uy,AY ] N Udx,
> ¢|Uy,AX —Uy,AX +Ux,AY ~Ux,AY | |Udy,

Ux, (é{) -Ux, (éﬁj -Uy, (ﬁj +Uy, (ﬂj +Udkx,
AU, = ¢ ¢

; ¢
' Uyz(A—eX-)—Uy, (%}w{%%-w, (%}de

The final equations that relate the displacement and rotation of two points of the rigid
body are:

( (AY)
AUx, =Ux, ﬁ) -Ux, (%) - Uyz(%) +Uy, % +Udx,
\ £ )

( (AY)
AUy, =Uy, ﬁ)—Uyl(AX—)+Ux{ﬁ)—wr, AY +Udy,
\ ¢ l 14 \ £ )
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Appendix 6

Physical Functional Unit Displacements

Load (N) | Disp. Specimen1 (mm) | Disp. Specimen 2 (mm) ﬁisp. Specimen 3 (mm)
1.96 0.190 0.127 0.221
2.94 0.304 0.228 0.342
3.92 0.419 0.304 0.451

49 0.495 0.364 0.589
5.88 0.609 0.4408 0.693
6.86 0.711 0.508 0.806
7.84 0.800 0.576 0.933
8.82 0.889 0.654 1.097

9.8 0.965 0.712 1.240

Table 6.1 Experimental results from the physical functional unit
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Appendix 7

Coordinate Measuring System Specifications

PERFORMANCE
Accuracies [@68°F +2°F]
Linear Accuracy (B89 - Bandwidth) 0.006mm 0.00024"
Repeatability (B89 — Bandwidth) 0.004mm 0.00015"
Resolution 0.002mm 0.00010"
Display Range + X000¢. 300K HX00C.3000¢
DIMENSIONS
Measuring Range X-Axis 356mm____ 14.00"
Y-Axis 406mm_____ 16.00"
Z-Axis 305mm____ 12.00"
Work Capacity X-Axis 457mm_____ 18.00"
Y-Axis 610mm_____ 24.00"
Z-Axis 381mm___ 15.00"
Overall Dimensions Length (X) 743mm_____ 29.25"
Width (Y) 730mm____ 28.75"
Height (2) 1340mm____ 52.75"
Weights Machine Only 149 kg 330 Ibs
Complete System____ 168 kg 370 ibs
Shipping 220 kg 485 Ibs
Max. Part Weight 68 kg 150 Ibs
OPERATIONAL REQUIREMENTS
Operating Temperature Range 10-40°C___ 50-104°F
Minimum Air Input 70 PSI
Air Consumption 3.5 SCFM
Regulator Setting 55 PSI
Power 1107220 VAC, 50/60 Hz
Power Consumption Electronics 60 Watts
CRT Display_______ 26 Watts

From Coordinate Measuring System Manual, 1986
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Appendix 8

Physical Model Resuits

The following drawing presents the numbering that is used in the physical model.

Fixed

Fixed

The following tables contain the resuits from the different loading conditions with the

maximum load apply to the physical model for each case.
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Type of load | Force (N) | # Block X (Left) Y (Left) | X (Right) | Y (Right)
1 1.013 0.371 0.991 -0.434
Horizontal to 2 2432 0.328 2.425 -0.473
the blocks 7 18.62 3 3.337 -0.01 3.336 -0.084
5 1.388 -0.542 1.375 047
and 3
6 -0.061 -0.402 -0.067 0.416
7 -0.997 -0.122 -1.009 0.079
8 -0.571 0.124 -0.585 -0.184
Table 8.1 Horizontal Forces in block 7 and 3 of the Physical Model
Type of load | Force (N) | # Block X (Left) Y (Left) | X (Right) | Y (Right)
1 -0.372 -0.225 -0.389 0.202
Horizontal 2 -1.182 -0.325 -1.172 0.292
Left force at 19.6 3 -2.147 -0.369 -2.133 0.334
block 7 5 -3.731 -0.208 -3.743 0.123
6 -3.848 0.213 -3.877 -0.041
7 -3.184 0.473 -3.253 -0.421
8 -1.280 0.455 -1.351 -0.629
Table 8.2 Horizontal Force in block 7 of the Physical Model
Type of load | Force (N) | # Block X (Left) Y (Left) | X (Right) | Y (Right)
1 1.450 0.594 1416 -0.631
Horizontal 2 3.714 0.610 3.6884 -0.796
Right force at 196 3 5.629 0.226 5.621 -0.439
block 3 5 4.864 -0.456 4.862 0.372
6 3.487 -0.566 3.476 0.522
7 1.894 -0.565 1.880 0.481
8 0.580 -0.303 0.577 0.294
Table 8.3 Horizontal Force in block 3 of the Physical Model
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Type of load | Force (N) | #Block | X(Left) | Y(Left) | X (Right) | Y (Right)
1 1.305 0.602 1.290 -0.591
Horizontal 2 3.558 0.747 3.507 -0.842
Rightforceat| 18.62 4 7.142 0.112 7.157 -0.201
block 4 5 6.475 -0.276 6.451 0.440
6 4797 -0.666 4757 0.707
7 2.742 -0.747 2.692 0.672
8 0.859 -0.458 0.849 0.415
Table 8.4 Horizontal Force in block 4 of the Physical Model
Type of load | Force (N) | #Block | X(Left) [ Y (Left) | X (Right) | Y (Right)
1 1.008 0.498 0.993 -0.425
Horizontal 2 2.719 0.604 2.686 -0.551
Right force at 19.6 4 5247 0.079 5.243 -0.017
block 4 and 5 4.412 -0.260 4415 0.52
angle force 6 2.957 -0.369 2.956 0.607
of 5 degrees 7 1.597 -0.107 1.590 0.444
at block 7 8 0.590 -0.187 0.590 0.345

Table 8.5 Horizontal Force in block 4 and angle force at block 7 of the Physical

Model

Typeofload | Force(N) | #Block | X(Left) | Y (Left) | X (Right) | Y (Right)

1 0.203 0.026 0.193 -0.147

Angle force 0.543 0.040 0.560 -0.203

of 4 degrees 19.6 3 0.920 0.033 0.934 -0.191

at block 7 5 1.304 -0.187 1.311 -0.120

6 1.113 -0.300 1.118 0.016

7 0.519 -0.314 0.518 0.311

8 0.046 -0.146 0.040 0.012

Table 8.6 Angle Force of 4 degrees at block 7 of the Physical Model
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Typeofiload | Force(N) | #Block | X(Left) | Y (Left) | X (Right) | Y (Right)
1 -0.039 0.044 -0.039 -0.073
2 0.254 0.213 0.259 -0.227
Moment at 18.62 3 1.147 0.519 1.120 -0.510
block 3 5 2.035 -0.015 2.051 0.087
6 1.612 -0.193 1.601 0.219
7 0.944 -0.212 0.932 0.248
8 0.303 -0.133 0.301 0.178
Table 8.7 Moment at block 3 of the Physical Model
Type of load | Force (N) | #Block | X (Left) Y (Left) | X (Right) | Y (Right)
1 0.332 0.201 0.335 -0.158
2 0.986 0.264 1.002 -0.241
Moment at 18.62 3 1777 0.238 1.771 -0.25
block 7 5 262 -0.037 2.681 0.015
6 2412 -0.271 2.404 0.246
7 1.333 -0.647 1.284 0.602
8 0.238 -0.247 0.231 0.240
Table 8.8 Moment at block 7 of the Physical Model
Type of load | Force (N) | #Block | X (Left) Y (Left) | X (Right) | Y (Right)
1 -0.314 -0.247 -0.322 0.033
2 -0.816 -0.301 -0.793 -0.018
Moment at 18.62 3 -1.081 -0.223 -1.119 -0.137
block 7 5 -2.209 -0.355 -2.227 0.042
6 -2.629 -0.042 -2.640 -0.014
7 -2.369 0.370 -2414 -0.142
8 -1.033 0.300 -1.078 -0.506
Table 8.9 Vertical angle of 4 degrees at block 3 and Horizontal force at block 7 of

the Physical Model
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Appendix 9

Computational Physical Functional Unit Results

Load (N) | Disp. Specimen1 (mm) | Disp. Specimen 2 (mm) T)isp.J Specimen 3 (mm)
1.96 0.202 0.141 0.236
2.94 0.303 0.210 0.354
3.92 0.404 0.283 0.472
49 0.505 0.352 0.59
5.88 0.606 0.420 0.708
6.86 0.707 0.491 0.826
7.84 0.808 0.564 0.944
8.82 0.909 0.630 1.062
9.8 1.01 0.700 1.180

Table 9.1 Computational results from the physical functional unit
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Appendix 10

Computational Results of Physical Model

Type of load | Force (N) | #Block | X(Left) | Y (Left) | X (Right) [ Y (Right)
1 0.899 0.313 0.893 -0.313
Horizontal to 2 2.251 0.323 2.251 -0.323
the blocks 7 18.62 3 3.239 0.045 3.239 -0.0456
and 3 5 1.311 -0.418 1.311 0.418
6 -0.082 -0.361 0.0826 0.381
7 -1.045 -0.104 -1.045 0.110
8 -0.589 0.093 -0.589 -0.093
Table 10.1 Horizontal Forces in block 7 and 3 of the Computational Model
Type of load | Force (N) | #Block X (Left) Y (Left) | X (Right) | Y (Right)
1 -0.328 -0.160 -0.328 0.160
Horizontal 2 -1.004 -0.252 -1.004 0.252
Left force at 19.6 3 -1.836 -0.274 -1.836 0.274
block 7 5 -3.200 -0.112 -3.214 0.112
6 -3.36 0.072 -3.378 -0.072
7 -2.938 0.326 -2.926 -0.326
8 -1.244 0.388 -1.244 -0.388
Table 10.2 Horizontal Force in block 7 of the Computational Model
Type of load | Force (N) | #Block X (Left) Y (Left) | X (Right) | Y (Right)
1 1.291 0.490 1.276 -0.490
Horizontal 2 3.360 0.598 3.378 -0.598
Rightforceat| 196 3 5.243 0.324 5.241 -0.324
block 3 5 4.581 -0.334 4.580 0.334
6 3.280 -0.458 3.290 0.458
7 1.830 -0.442 1.836 0.442
8 0.614 -0.290 0614 0.29
Table 10.3 Horizontal Force in block 3 of the Computational Model
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Type of load | Force (N) | #Block | X (Left) Y (Left) | X (Right) | Y (Right)
1 1.144 0.486 1.144 -0.486
Horizontal 2 3.214 0672 3.214 -0.673
Right force at 18.62 4 6.796 0.133 6.796 -0.132
biock 4 5 6.180 -0.330 6.180 0.330
6 4.580 -0.574 4.596 0.574
7 262 -0.602 2.636 0.602
8 0.904 -0.410 0.904 0.410
Table 10.4 Horizontal Force in block 4 of the Computational Model
Type of load | Force (N) | # Block X (Left) Y (Left) | X (Right) | Y (Right)
1 1.018 0.442 1.018 -0.419
Herizontal 2 2.853 0.613 2.85 -0.57
Right force at 19.6 4 5.971 0.136 5.971 -0.0513
block 4 and 5 5.321 -0.260 5.320 0.366
angle force 6 3.853 -0.437 3.838 0.562
of 5 degrees 7 2.179 -0.387 2.179 0.535
at block 7 8 0.771 -0.294 0.771 0.368
Table 10.5 Horizontal Force in block 4 and angle force at block 7 of the
Computational Model
Type of load | Force (N) | # Block X (Left) Y (Left) | X (Right) | Y (Right)
1 0.044 0.009 0.044 -0.031
Angle force 0.130 0.007 0.131 -0.05
of 4 degrees 196 3 0.220 -0.005 0.226 -0.061
at block 7 5 0.330 -0.064 0.330 -0.047
6 0.276 -0.110 0.330 0.234
7 0.112 -0.166 0.276 0.011
8 -0048 -0.068 0.112 -0.008
Table 10.6 Angle Force of 4 degrees at block 7 of the Computational Model

134




Type of load | Force (N) | #Block | X(Left) | Y(Left) | X (Right) [ Y (Right)

1 -0.003 0.031 -0.003 -0.031

2 0.117 0.091 0.117 -0.091

Moment at 18.62 3 0.448 0.183 0.448 -0.182
block 3 5 0.756 -0.013 0.756 0.014

6 0.598 -0.060 0.598 0.060

7 0.359 -0.074 0.359 0.074

8 0.127 -0.053 0.127 0.054

Table 10.7 Moment at block 3 of the Computational Model

Type of load | Force (N) | #Block | X(Left) | Y (Left) | X (Right) | Y (Right)

1 0.114 0.051 0.114 -0.052

2 0.336 0.077 0.336 -0.077

Moment at 18.62 3 0.5%0 0.076 0.590 -0.076
block 7 5 0.906 -0.006 0.906 0.0062

6 0.818 -0.088 0818 0.088

7 0.467 -0.197 0.467 0.197

8 0.098 -0.091 0.098 0.089

Table 10.8 Moment at block 7 of the Computational Model

Type ofload | Force (N) | #Block | X(Left) | Y (Left) | X (Right) | Y (Right)
1 -0.275 -0.153 -0.277 0.091
2 -0.796 -0.239 -0.796 0.112
Moment at 18.62 3 -1.368 -0.254 -1.368 0.065
block 7 5 -2.527 -0.186 -2.542 0.058
6 -2.813 -0.022 -2.813 -0.072
7 -2.557 0.228 -2.557 -0.290
8 -1.100 0.317 -1.098 -0.349
Table 10.9 Vertical angle of 4 degrees at block 3 and Horizontal force at block 7

of the Computational Model
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