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Abstract 

Manufacturing industry workers face significant ergonomic risks due to poorly designed work 

systems. Consequently, it is crucial to periodically assess work systems to identify areas for 

improvement. However, the assessment process is often disregarded due to the absence of user-

friendly ergonomics risk assessment tools. The primary objective of this study is to address this 

issue by leveraging artificial intelligence to develop convenient ergonomics risk assessment tools 

for occupational injury management. The study identified four significant challenges that hamper 

the effectiveness of ergonomics risk assessment: (1) a lack of versatile physical-ergonomic tools; 

(2) the fragmented nature of existing ergonomic tools that fails to provide an integrated assessment 

of work systems; (3) the challenge of developing an interpretable data analytics framework for risk 

diagnosis; and (4) the inability to develop human-centered ML-powered ergonomics risk 

assessment tools. To address these challenges, the study pursued four objectives. First, a versatile 

physical-ergonomics risk assessment tool is developed using the Pattern Search optimization 

algorithm to simplify tool selection for improving work systems. Second, a fuzzy logic-based 

Decision Support System is developed to provide an integrated assessment of the ergonomic 

performance of work systems by blending physical, environmental, and sensory risk factors. Third, 

an effective and interpretable machine learning-based data analytics framework is developed for 

diagnosing safety and ergonomics risk factors in work systems. Finally, a literature review is 

conducted to uncover the many design challenges that hinder the development of human-centered 

ML-powered ergonomics risk assessment tools. Overall, this study aims to demonstrate the 

effectiveness of AI as a valuable technology for developing convenient ergonomics risk 

assessment tools that aid health and safety specialists in mitigating ergonomic risks by facilitating 

the harmonization of industrial work systems. 
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Chapter 1: INTRODUCTION 

1.1 Background and motivation 

Ergonomics is the study of human-workplace interactions, with the goal of optimizing safety, 

human well-being, and system performance through the use of theory, concepts, data, and design 

(International Ergonomics Association, 2003). In a manufacturing facility, workers at each 

workstation are responsible for performing a set of job tasks. These tasks involve interacting with 

other system elements to transform raw materials into finished products. However, when 

ergonomic discomfort leads to errors or unproductive activities, these issues can propagate to 

downstream workstations, resulting in production fluctuations and losses that can impact system 

throughput and product quality (Lee et al., 2021).  

To improve interactions between workers and system elements on the shop floor, manufacturing 

companies must focus on improving the ergonomic performance of their industrial work systems. 

By doing so, they can minimize injury rates, increase worker productivity, reduce product defects, 

and lower manufacturing costs (Resnick, 1997; Wilson, 2000; Shikdar, 2002; Shikdar, 2003; 

Krishna et al., 2015; Zare et al., 2016; Martin Lebeau et al., 2013). A variety of ergonomics risk 

assessment methods have been proposed by ergonomics researchers to evaluate different physical, 

environmental, and sensory aspects of workplace design. These researchers have introduced many 

conventional manual ergonomics risk assessment tools for assessing the ergonomic performance 

of work systems (Lynn et al., 1993; Waters et al., 1993; Moore et al., 1995; Karhu et al., 1977; 

Hol et al., 1999, McAtamney et al., 2004; Health and Safety Executive, 2006; Freivalds et al., 

2013; Health and Safety Executive, 2020; Occupational Safety and Health Administration, 2020; 

Hart et al., 1988; Reid et al., 1988; Li et al., 2015; Li et al., 2019a).  
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Despite the significant benefits of prioritizing health and safety in manufacturing (Hendrick, 2003; 

Dul et al., 2009), businesses often overlook ergonomic performance assessments due to the lack 

of convenient tools (Kahraman et al., 2003; Azadeh et al., 2008). Therefore, the primary objective 

of this research is to leverage artificial intelligence to develop convenient ergonomics risk 

assessment tools that can help health and safety specialists mitigate ergonomic risks in the 

workplace and harmonize industrial work systems. In this context, harmonization refers to the 

intricate process of aligning and seamlessly integrating individuals with their work environments, 

ultimately ensuring not only their ease and comfort but also optimizing the efficiency and 

effectiveness of their job tasks. 

1.2 Problem statement 

Four significant challenges, which make the ergonomics risk assessment process less convenient 

for health and safety specialist based on the current state of art, are discovered in this research: 

Problem 1: lack of versatile physical-ergonomic tools 

The existing physical-ergonomic tools available for assessing workplace risks are often specialized 

and not versatile enough to be compatible with different data collection methods to suit their time 

and budget constraints (David, 2005). Additionally, the requirement for practitioners to learn new 

tools for assessing diverse work systems further hinders the progress of enhancing work systems. 

To address this challenge, there is a need for a versatile physical-ergonomics risk assessment tool 

that can simplify tool selection for work system improvement. 
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Problem 2: the fragmented nature of existing ergonomic tools that fail to provide an 

integrated assessment of work systems 

Current ergonomics risk assessment tools assess physical, environmental, and sensory work 

system components individually, which does not provide an integrated assessment of work 

systems. A comprehensive ergonomics risk assessment tool should incorporate physical, 

environmental, and sensory factors and consider their interplay. However, due to a lack of 

literature on the interplay between these factors, developing a standard logical decision support 

system (DSS) for this scenario proves to be a challenging task. Fortunately, a fuzzy logic-based 

DSS can address problems with incomplete, partial, or inaccurate knowledge (Zadeh et al. 2013; 

Novak et al. 2012; Kayacan et al. 2016). Therefore, there is a need to develop a fuzzy logic-based 

DSS that incorporates physical, environmental, and sensory elements to assess the ergonomic 

performance of work systems. 

Problem 3: the challenge of developing an interpretable data analytics framework for risk 

diagnosis 

Managing occupational risks in the manufacturing industry can reduce injuries, workers' 

compensation costs, and improve productivity and product quality (Pawłowska et al. 2011; Li et 

al. 2019; Lee et al. 2021). However, occupational risks can be difficult to understand and require 

a risk classification system. Researchers have developed several supervised machine learning 

(ML) models to classify and diagnose risk factors (Sarkar et al. 2020; Lee et al. 2021; Chan et al. 

2022), but these models can be difficult for non-expert users to understand. Moreover, these 

models require labeled datasets, which may not always be available. To address this issue, an 
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effective and interpretable ML-based data analytics framework that can diagnose occupational risk 

factors using worker incident data without needing pre-labeled datasets needs to be developed.  

Problem 4: the inability to develop human-centered ML-powered ergonomics risk 

assessment tools 

The objective of ergonomics in manufacturing is to maintain worker comfort and safety, which 

can lead to positive outcomes in various contexts, including financial, technical, legal, social, 

organizational, political, and professional, resulting in decreased costs and increased productivity. 

While researchers have demonstrated the viability of several ML-powered ergonomics risk 

assessment tools in manufacturing ergonomics (Parsa et al., 2020; Arora et al., 2021; Ciccarelli et 

al., 2022; Arora et al., 2022; Lee et al., 2022; Kwon et al., 2022; Fernandes et al., 2022; Generosi 

et al., 2022; Kunz et al., 2022), the dominance of research-focused machine learning (ML) tools 

in the literature highlights various challenges that researchers encounter. Therefore, there is a need 

to propose strategic visions to bridge the gap between research-focused ML tools and practical ML 

systems for manufacturing ergonomics. 

1.3 Research objectives 

To solve the research problems, the following objectives are pursued in this research: 

1. Develop a versatile physical-ergonomics risk assessment tool to simplify tool selection for 

work system improvement.  

2. Develop a fuzzy logic-based DSS that integrates the Physical, Environmental, and Sensory 

aspects to assess the ergonomic performance of work systems.  



5 

 

3. Develop an interpretable data analytics framework for effective occupational injury 

management through occupational risk diagnosis. 

4. Develop strategic visions for bridging the gap between research-focused ML tools and 

practical ML systems in manufacturing ergonomics. 

Specifically, Objective 1 aims to revamp a pre-existing physical ergonomics risk assessment tool 

called the Physical Load Index (PLI) that has the potential to be compatible with Self-reports, 

Observational methods, and Direct Measurements. Objective 2 intends to craft a fuzzy logic-based 

DSS that portrays overall ergonomic risk in the workplace (including physical, environmental, and 

sensory risk factors) by blending different ergonomics risk assessment tools to develop a 

composite key performance indicator (KPI) called the ergonomic risk indicator (ERI). Objective 

3 aims to develop a data analytics framework for occupational risk diagnosis to facilitate better 

occupational injury management. Finally, Objective 4 aims to conduct a detailed literature review 

of ML research in manufacturing ergonomics and propose strategic visions for future research to 

bridge the gap between research-focused ML tools and practical ML systems. 

1.4 Thesis organization 

This thesis comprises seven distinct chapters, each contributing to the advancement of ergonomic 

risk assessment in industrial work systems, which are represented on a high-level in Figure 1-1.  

Figure 1-1 visually represents the structure of the thesis and how each chapter contributes to the 

overarching goal of improving ergonomic risk assessment. It serves as a roadmap, guiding through 

the various aspects and stages of the research undertaken to address the challenges and objectives 

discussed earlier. 
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Chapter 1 serves as an introduction, outlining the background, motivation, and essential context 

for this research. It highlights the significance of harnessing AI for the development of efficient 

ergonomics risk assessment tools that align with industrial work systems’ needs. This chapter also 

articulates the problem statement and research objectives guiding this endeavor. 

Chapter 2 provides a literature review outlining five essential concepts for understanding 

subsequent chapters. It emphasizes key trends and challenges identified in the literature, 

pinpointing gaps to address in the following sections. 

In Chapter 3, the conventional Physical Load Index (PLI), a tool for evaluating physical-

ergonomics risks, undergoes a transformation to create a versatile tool. The revamped version, 

known as Revamped PLI, emerges as a versatile instrument capable of assisting health and safety 

experts in enhancing work systems. Revamped PLI capitalizes on the strengths of its predecessor 

while addressing its limitations. This chapter substantiates the efficacy of Revamped PLI by 

comparing it with the widely-used Rapid Entire Body Assessment (REBA) tool. 

Chapter 4 recognizes the importance of a comprehensive assessment encompassing various 

ergonomic risk factors. Beyond physical aspects, environmental and sensory factors are integrated 

into a fuzzy logic-based Decision Support System (DSS). This innovative DSS amalgamates 

different ergonomics risk assessment tools to generate a composite risk score, referred to as ERI. 

Real-life validation attests to the effectiveness of the proposed DSS. 

Chapter 5 extends the focus to risk interpretation alongside quantification. An interpretable 

Machine Learning (ML) data analytic framework is conceived for identifying and characterizing 

clusters of worker incidents, facilitating improved management of occupational injuries. This 
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framework combines unsupervised ML, supervised ML, and Explainable AI techniques for 

diagnosing occupational risk factors. A real-life case study verifies the framework's utility. 

In Chapter 6, the influence of ML on ergonomic risk assessments is recognized, prompting an 

extensive literature review of existing ML research in the context of manufacturing ergonomics. 

The review underscores a bias towards research-oriented tools rather than human-centered 

solutions. This imbalance is attributed to four distinct design challenges. In response, the chapter 

proposes four strategic visions to address design challenges and enhance the development of 

human-centered, practical ML solutions. 

Finally, Chapter 7 offers a synthesis of the thesis's findings and contributions. It encapsulates the 

outcomes of the research journey, reflecting upon its significance. Additionally, this chapter 

acknowledges the limitations of the study and delineates potential avenues for future research. 



8 

 

 

Figure 1-1 Thesis Structure 
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Chapter 2: LITERATURE REVIEW 

This chapter offers a comprehensive exploration of five pivotal topics that play a crucial role in 

achieving the harmonization of work systems. Section 2.1 focuses on the classification of 

ergonomic data collection methods, exploring the different approaches used to gather data in this 

field. Section 2.2 examines conventional physical ergonomics risk assessment tools commonly 

employed for evaluating industrial job tasks, highlighting their significance in assessing ergonomic 

risks and their impacts on workers' well-being. This section reviews the assessed ergonomics risk 

assessment tools, emphasizing their limitations and narrow specializations, which present 

challenges for health and safety specialists when selecting tools that align with their organization's 

specific needs and limitations. Section 2.3 explores the applications of fuzzy logic in ergonomics 

risk assessment, highlighting its widespread use in various industries while emphasizing the need 

for an integrated fuzzy logic-based decision support system to address all relevant hazards in work 

systems. Section 2.4 explains how ML can be used to diagnose risk factors in manufacturing 

occupational safety and health. It emphasizes the need for easier-to-understand model 

interpretation techniques, the challenges of labeling datasets, and the importance of integrating 

safety and ergonomics research. Lastly, Section 2.5 provides a broader overview of the state-of-

the art ML-powered ergonomic risk assessment tools in manufacturing ergonomics. By 

comprehensively addressing the following five areas, this chapter strives to delve into essential 

concepts to enhance the harmonization of work systems. 
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2.1 Data collection methods for ergonomics risk assessments 

Various ergonomic data collection methods are available for conducting ergonomics risk 

assessments.  David (2005) conducted an in-depth review of the ergonomic methods that have 

been developed for assessing exposure to risk factors for work-related musculoskeletal disorders 

(WMSDs). As David notes, the methods for assessing WMSD risk factors can be understood in 

terms of three main categories: (1) self-reports, where workplace exposure data is collected and 

assessed based on physical and psychosocial factors through interviews and questionnaires; (2) 

observational methods, which can be subcategorized as either “simple observational methods” 

(where the observer methodically records and assesses workplace exposure data using manual 

observational techniques) or “advanced observational methods” (where workplace postural 

variation in highly dynamic activities are observed using computer vision algorithms or other 

dedicated software); and (3) direct measurements, where workplace exposure data is collected 

using monitoring instruments that typically rely on sensors or optical markers attached directly to 

the individual under observation (David, 2005; Inyang et al., 2012). Given the diverse range of 

methods available, the data acquisition costs, maintenance costs, training strategies, time 

requirements, and assessment precision will vary depending on the particular method being 

employed. Accordingly, the type of assessment method to be employed is chosen by the 

practitioner based on the resources available to the organization, as illustrated in Figure 2-1 (David, 

2005; Li et al., 2018; Humadi et al., 2021; Yantao Yu et al., 2019; Nath et al., 2017). 
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Figure 2-1 Classification of human data collection methods 

2.2 Prominent tools for ergonomics risk assessments 

A range of tools have been developed in the last decades for assessing various aspects of physical 

ergonomic risk. The reviewed literature suggests that the spine, which connects different parts of 

the musculoskeletal system, is the most affected region in the human body when performing any 

type of strenuous activity (Punnett et al., 2005; Trinkoff et al., 2003; Cole et al., 2001; Ebraheim 

et al., 2004; Bridger, 1991; Pope et al., 2002, Straker 1999). Thus, Hollmann et al. (1999) 

developed Physical Load Index (PLI), which focuses on evaluating risk factors primarily based on 

the posture of the trunk and the mechanical load it carries and the frequency of postures while 

performing dynamic and continuous activities. Pascual et al. (2008) investigated and found that 

the National Institute for Occupational Safety and Health (NIOSH) Lifting Equation, Rapid Upper 

Limb Assessment (RULA), and REBA are the tools recommended most by certified ergonomists. 

To be more specific, Waters et al. (1993) have noted that the NIOSH Lifting Equation is “designed 

to assist in the identification of ergonomic solutions for reducing the physical stresses associated 

with manual lifting by identifying the features of the lifting task that contribute the most to the 
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hazard for low back injuries”. Lynn et al. (1993) have indicated that RULA is designed to “assess 

operators who may be exposed to musculoskeletal loading which is known to contribute to upper 

limb disorders”. McAtamney et al. (2004), meanwhile, mentioned that REBA is a tool specifically 

designed to be sensitive to erratic working postures observed in health care and other service 

industries as part of entire body assessments. In addition to these prominent tools, there are other 

credible ergonomics risk assessment tools currently in use in industry. For instance, Moore et al. 

(2010) developed a tool, called 'The strain index’, that measures six task variables by (1) assigning 

an ordinal rating for each task variable based on the exposure data; and (2) then assigning a 

multiplier value for each task variable. This tool is used to identify jobs associated with distal 

upper extremity disorders (Moore et al., 2010). In a much earlier study, Karhu et al. (1971) devised 

a pragmatic method, called Ovako working posture analyzing system (OWAS), for detecting and 

assessing poor working postures. OWAS was developed to evaluate worker performance as a 

function of the discomfort brought on by poor working postures. This tool was developed with the 

purpose of facilitating work sampling, offering insights into the frequency and duration of various 

postures assumed by workers (Karhu et al., 1971). As another example, manual handling 

assessment charts (MAC) is a checklist used by safety inspectors and professional health inspectors 

when analyzing the common risk factors associated with lifting, lowering, and individual or group 

lugging, although it should be noted that the method of assessment differs depending on which of 

the three operations is being assessed (Health and Safety Executive, 2014).  Furthermore, Chapter 

3 will provide a comprehensive and in-depth analysis of various tools, offering a more extensive 

and detailed comparison between them. 
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Overall, conventionally used ergonomics risk assessment tools such as REBA, RULA, the 

National Institute for Occupational Safety and Health (NIOSH) Lifting Equation, the strain index, 

the Ovako working posture analyzing system (OWAS), and manual handling assessment charts 

(MAC), are best suited to specific human data collection method such as simple observational 

methods. Moreover, these tools have narrow specializations that prevent them from being 

comprehensive tools that can be used for assessing all types of industrial job tasks. This makes it 

challenging for health and safety specialists to quickly find ergonomics risk assessment tools that 

fit their organization's needs and limits (David, 2005). Moreover, when selecting an ergonomics 

risk assessment tool, health and safety specialists are also required to consider execution time and 

costs associated with the selected tool. In addition, the health and safety specialists must also 

become acquainted with the selected tool. Therefore, selecting and acquainting oneself with an 

appropriate tool for assessing the performance of industrial job tasks delay the improvement of 

industrial work systems.  

2.3 Fuzzy-Logic based ergonomics risk assessment tools 

Many expert systems use dual-logic inference engines, but the fuzzy expert system (FES) uses 

fuzzy logic and approximate reasoning (Pal et al. 1991). Fuzzy logic seeks to reflect the imprecise 

forms of thinking that helps humans to make rational decisions in an uncertain and imprecise 

world. Thus, performance of an Fuzzy Expert System (FES) depends on human ability to deduce 

an approximate solution to a problem in the presence of an imperfect, incomplete, or unreliable 

body of knowledge (Hall et al. 1988; Zadeh et al. 2013; Novak et al. 2012; Kayacan et al. 2016). 

Hall et al. (1988) assert that FESs are applicable to multiple domains because the theory of 

imprecision handling for fuzzy sets is well-developed. Accordingly, fuzzy logic has been 
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successfully used in several areas, such as control systems engineering, image processing, power 

engineering, industrial automation, robotics, consumer electronics, and optimization.  

In addition, the application of fuzzy logic to the assessment of ergonomic risk has been widely 

adopted in a variety of industries. Azadeh et al. (2008) designed a FES for assessing the 

performance of health, safety, environment (HSE) and ergonomics system factors in a gas refinery. 

Nunes et al. (2009) created a FES to aid Occupational Health and Safety professionals in the 

identification, evaluation, and control of ergonomic risks associated with the development of 

musculoskeletal disorders. Azadeh et al. (2015) proposed a neuro-fuzzy algorithm for measuring 

and improving health, safety, environment, and ergonomics programs through performance 

evaluation of operators for management planning and control activities in a large petrochemical 

plant. Jablonski et al. (2018) designed a system that assesses environmental conditions related to 

occupant comfort in indoor and built environments using sensor data. Falahati et al. (2019) used 

the fuzzy logic approach to predict musculoskeletal disorders among automotive assembly workers 

based on self-reported questionnaires and REBA assessment using the MATLAB software.  

Fuzzy logic has also been widely used to assess ergonomic risk in the construction industry. Fayek 

et al. (2005) showed how fuzzy logic and FESs can model industrial construction labor 

productivity with realistic constraints, such as subjective assessments, multiple contributing 

factors, and limited datasets. Aluclu et al. (2008) developed a fuzzy logic-based model for noise 

control in industrial workplaces. Golabchi et al. (2015) applied automated FES for ergonomics 

assessment in the form of a quick, simple, and reliable tool by which to identify unsafe worker 

actions and address them to reduce work-related musculoskeletal disorders. Debnath et al. (2015) 

developed an FES for assessing occupational risks on construction sites. Golabchi et al. (2016), in 
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another study, proposed a fuzzy logic posture-based ergonomic analysis tool for field observation 

and assessment of manual construction operations using RULA. Wang et al. (2020) proposed a 

fuzzy-integrated automated post-3D visualization ergonomic analysis framework to assess 

dynamic motion-based ergonomic risk in existing and proposed workplace designs. Wang et al. 

(2021) also proposed a 3D fuzzy ergonomic analysis method for the rapid design and modification 

of construction workplaces. In summary, the usefulness of FESs in conducting ergonomics risk 

assessments in the construction industry is evident.  

Nonetheless, it is important to note that the fuzzy logic-based systems proposed in the literature 

focus on the physical aspects of ergonomics for construction industries. Moreover, it has been 

noted in the literature that risk factors such as awkward posture, force, repetition, static loading, 

contact stress, lack of recovery, monotony of tasks, work duration, illumination, noise, extreme 

temperatures, vibration, auditory information demands, and visual information demands all 

contribute to hazardous work systems (Damaj et al. 2016; Parsons 2000; Freivalds et al. 2013, 

Jaffar et al. 2011; Li et al. 2015; Li et al., 2019a; Schifferstein et al. 2007). Consequently, it is 

evident that work systems are hazardous not only because of physical risks, but also because of 

environmental demands and sensory information overload (Freivalds et al. 2013). This necessitates 

the development of a fuzzy logic-based DSS that can automate ergonomics risk assessments in a 

comprehensive manner, considering the physical, environmental, and sensory hazards associated 

with work systems.  
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2.4 Occupational risk factor diagnosis using ML 

ML can be a valuable technology for occupational risk factor diagnosis. Several risk classification 

models have been used as predictive tools in a range of industries (Sasikumar et al. 2018; Amiri et 

al. 2016; Aliabadi et al. 2020; Macedo et al. 2022) the use of classification models for OSH 

management is a relatively new notion. In the context of this study, there have been a few research 

studies on the prediction of risk classes in manufacturing. For instance, Baghdadi et al. (2018) used 

a Support Vector Machine to classify gait parameters measured by wearable sensors as either 

fatigued or non-fatigued following an occupational task. Darbandy et al. (2020) proposed a k-

nearest neighbors’ model that uses heart rate signals to classify workers’ physical fatigue. In 

addition, researchers have created several ML models to classify the level of risk of occupational 

lower-back disorders (Asensio-Cuesta et al. 2010; Akay et al. 2011; Ganga et al. 2012; Zurada et 

al. 2012; Erdem et al. 2016). Although these tools can diagnose risk factors, they do not focus on 

the input–output variable relationships; instead, they place a greater emphasis on risk class 

prediction. However, relying solely on predictive models is inadequate for diagnosing risk factors, 

as it's the interpretation of the relationship between input and output variables that truly aids in 

risk diagnosis. 

Recent research on OSH in manufacturing has examined not only building classification models, 

but also model interpretability for the diagnosis of ergonomic risks and safety risks. For instance, 

Maman et al. (2020) introduced a data analytics framework that uses wearable sensors to detect 

physical fatigue occurrence in simulated manufacturing tasks in order to classify fatigue states 

(Yes/No) over time. They demonstrated that the sequential application of predictive models when 

combined with visual analytics tools can help with diagnosing root causes. Moreover, Conforti et 
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al. (2020) estimated biomechanical risk during lifting tasks via postural pattern recognition 

(correct/incorrect) using ML models driven by kinematic data from wearable sensors and 

incorporating a Support Vector Machine classifier. They then performed statistical analysis in 

order to better understand the relationship between kinematic data and the recognized postural 

patterns. Krishna et al. (2015), finally, developed a Decision Tree classifier to classify and interpret 

the prevalence of musculoskeletal disorders (Yes/No) among crane operators in an Indian steel 

plant using Nordic Musculoskeletal Questionnaire survey data.  

Following the Krishna et al. (2015) study, several statistical methods have been integrated with 

the Decision Tree classifier for model interpretation. For instance, Sarkar et al. (2016) developed 

text mining-based classification ML models using both Fault Tree Analysis and Bayesian Network 

that can assist in identifying the root causes of steel plant accidents. They performed a sensitivity 

analysis on the developed classification ML models to further examine the causes of risk factors, 

and employed standard statistical tests to interpret the SVM classifier. Shirali et al. (2018) used 

Decision Trees to predict the outcomes of occupational accidents (minor/severe/fatal) in the steel 

industry. They then applied the Chi-square Automatic Interaction Detection algorithm to 

understand the input–output variable relationships. Overall, despite the utility of these studies, they 

all use model interpretation techniques that can be challenging for non-technical personnel, such 

as business stakeholders and health and safety specialists, to interpret and implement in safety 

intervention policies. This necessitates techniques for easier model interpretation. 

Given the complexity of the predominant model interpretation techniques available, OSH 

researchers have begun seeking comparably simple model interpretation techniques, such as the 

plotting of feature importance, where feature importance plots simply represent the predictive 
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power of input variables to predict output variables. For instance, using workers' compensation 

data, Kakhki et al. (2020) constructed a Random Forest Decision Tree classifier and a Naive Bayes 

classifier to categorize the injury severity level (low/medium) of occupational incidents in grain 

elevator Agro-manufacturing operations in the United States. In addition, the evaluation of feature 

importance using the Chi-squared method has been used for model interpretation. Sarkar et al. 

(2018a) predicted incident outcomes using Decision Tree and AdaBoost classifier on a mixed 

dataset comprising both reactive and proactive data. They then used the Decision Tree classifier 

to generate rules for determining which risk factors are most strongly associated with occurrences 

of work-related risks. Finally, as the basis for model interpretation, they evaluated feature 

importance using the Boruta feature selection and Chi-square method. In another study, Sarkar et 

al. (2018b) also used Expectation Maximization-based text clustering to carry out unstructured 

text analysis and pass it to a Deep Neural Network for the classification of injury risk using the 

accident data collected from a steel plant in India. Subsequently, they implemented the Chi-

squared method for the evaluation of feature importance as a means of model interpretation. 

Finally, Sarkar et al. (2019) developed a novel method for the classification of Slip-Trip-Fall (STF) 

occurrences that uses Decision Tree classifiers and generates a set of rules to determine which risk 

factors are most strongly associated with STF occurrences. Yet again they employed the Chi-

square method for the model interpretation. In summary, the studies in this area have generally 

favored the plotting of feature importance, especially using the Chi-square method, as a means of 

simplifying the model interpretation. However, the plotting of feature importance only indicates 

the predictive power of input variables with respect to output variables. As a result, there is still 

potential for improvement with regard to intuitive model interpretation.  
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Overall, the publications analyzed demonstrate the manner in which classification ML models can 

be used for risk factor diagnosis in manufacturing OSH research, but there remain some gaps and 

deficiencies. First, the model interpretation techniques that have been used in these studies may be 

easy for ML developers to understand, but they can be difficult for non-experts to grasp in practice. 

Therefore, it is challenging to persuade personnel who are not technical experts in this area to 

implement safety intervention policies rooted in ML, as they see these models as lying within a 

‘black box’. In this regard, it is well known that the recently developed interpretable ML 

techniques can make the ‘black-box’ of ML models simpler to unpack. Linardatos et al. (2020) 

examined numerous ML model interpretation techniques, including local interpretable model-

agnostic explanations (LIME) (Riberio et al. 2016) and Shapley Additive Explanations (SHAP) 

(Lundberg et al. 2017), among others, and asserted that SHAP is the most comprehensive and 

intuitive technique for model interpretation currently available. Rather than merely demonstrating 

feature importance (as other techniques have done), SHAP highlights not only the predictive power 

of input variables but also the importance of each input variable in predicting multiple risk classes. 

Despite this, the application of SHAP to diagnose risk factors in manufacturing OSH research has 

not yet been explored. Second, classification ML models by definition must be developed using 

labeled datasets. While the works cited above have demonstrated the effective use of pre-labeled 

datasets in the development of classification ML models, pre-labeled datasets are not always 

readily available for ML model development. In such circumstances, substantial effort must be 

directed toward labeling the datasets, and this task can be time-consuming and can delay the 

diagnosis of risk factors. While the effectiveness of clustering algorithms in addressing the dataset, 

labeling problem is widely recognized (Madhulatha et al., 2012), no previous manufacturing OSH 

study utilizing clustering algorithms for this objective has been identified. Moreover, despite the 
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fact that the goal of OSH management is to prevent all work-related injuries, illnesses, and 

fatalities, safety research and ergonomics research are frequently detached in terms of risk factor 

diagnosis. For these reasons, an interpretable ML-based data analytics framework is presented for 

safety and ergonomics risk factor diagnosis using incident data that does not require pre-labeled 

datasets in this study. 

2.5 A broader overview of ML-powered ergonomics risk assessment tools 

The recent growth of ML in the manufacturing ergonomics domain, several researchers have 

designed several ML-powered tools in order to make ergonomics risk assessments more 

convenient for health and safety experts. This section discusses the current status of ML-powered 

ergonomics risk assessment tools. Table 2-1 provides an overview of literature on state-of-the-art 

ML-powered ergonomics risk assessment tools. 
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Table 1-1 State of the art ergonomics risk assessment tools in manufacturing ergonomics   

Citation Purpose of ML Data sample ML algorithm(s) 

used 

ML 

technique(s) 

used 

Data collection 

method 

Application 

Abobakr et al., 

(2019) 

Developed a semi-automated ergonomic posture 

assessment that makes use of a convolutional 

neural network to analyze the articulated posture 

and predict body joint angles from a single depth 

image.  

RGB-D pictures and motion 

capture kinematic data 

synthesized utilizing six virtual 

human models (2 men, 2 

women, 2 neutral). 

Convolutional neural 

network 

Regression Direct Measurement Posture identification 

Abobakr et al., 

(2017) 

The proposed method uses a low-cost Kinect 

sensor and a deep convolutional neural network 

model for joint angles regression. 

168,000 colorized depth 

images for training and 42,000 

images for testing 

Convolutional neural 

network 

Regression Advanced 

Observational Method 

Posture identification 

Abubakar et al., 

(2020) 

Developed an artificial neural network to model 

the relationship between safety climate, safety 

behavior, and workplace injuries in metal casting 

industry employees using survey data from metal 

casting industry employees. 

306 workers from central 

Anatolia's metal casting 

industry. 

Artificial neural network Regression Self-report Identification of risk 

factors  

Agostinelli et al., 

(2021) 

Proposed a tool called RGB motion analysis 

system, to fasten the human joint angle extraction 

and RULA calculation for static postures by 

exploiting open-source deep neural network 

model from Carnegie Mellon University, from 

the tf-pose-estimation project. 

6 participants (4 men, 2 

women) were instructed to 

hold five distinct poses for 5 

seconds each. 

Deep neural network Regression Advanced 

Observational Method 

Posture identification 
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Akay (2011) Developed and compared Grey relational 

analysis, logistic regression, decision tree, 

artificial neural network, and ensemble models to 

classify industrial jobs related to occupational 

low back disorders risks.  

235 manual material handling 

activities taken from several 

manufacturing companies 

(Marras et al., 1993) 

Grey relational analysis, 

Logistic, regression, 

Decision tree, Artificial 

neural network, and 

Ensemble models 

Binary 

classification 

Dataset Risk classification 

Akay et al., (2009) A classification model based on ant colony 

optimization entitled ACOCLASS was proposed 

for classifying the risk of low back disorder. 

235 manual material handling 

activities taken from several 

manufacturing companies 

(Marras et al., 1993) 

ACOCLASS Binary 

classification 

Dataset Risk classification 

Asadi et al., (2020)  Created deep neural network model for 

classifying musculoskeletal injuries by detecting 

isometric grip exertions with facial videos and 

wearable photoplethysmograms.  

18 participants (8 men, 10 

women) 

DeepFace algorithm to 

process faces in images; 

Deep neural network 

Binary 

classification; 

Multiclass 

classification 

Advanced 

Observational Method 

Risk classification 

Asensio-Cuesta et 

al., (2010) 

Developed a feedforward neural network to 

classify industrial jobs related to occupational 

low back disorders risks. 

235 manual material handling 

activities taken from several 

manufacturing companies 

(Marras et al., 1993) 

Feedforward neural 

network 

Binary 

classification 

Dataset Risk classification 

Baghdadi et al., 

(2018)  

Created a support vector machine model to 

classify gait parameters measured by wearable 

sensors as fatigued or non-fatigued after an 

occupational task. 

20 subjects (14 men, 6 

women), chosen from the local 

labor force and students with 

physical labor experience. 

Support vector machine Binary 

classification 

Direct Measurement Risk classification 

Baghdadi et al., 

(2018) 

Presented a framework for kinematics estimation 

and fatigue monitoring that employs a small 

number of sensors and data. 

20 subjects (14 men, 6 

women), chosen from the local 

Support vector machine Binary 

classification 

Direct Measurement Risk classification 
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labor force and students with 

physical labor experience. 

Bortolini et al., 

(2018) 

Presented an original hardware-software 

architecture, called Motion Analysis System 

(MAS) to quantitatively measure body joint 

angles followed by ergonomic risk index 

calculation using conventional risk assessment 

tools such as NIOSH, OWAS, RULA, and 

REBA. 

An operator is engaged in 

assembly operations in an 

automotive assembly line  

Artificial neural network Regression Advanced 

Observational Method 

Posture identification 

Chen et al., (2000)  Developed a feedforward neural network to 

classify industrial jobs related to occupational 

low back disorders risks. 

235 manual material handling 

activities taken from several 

manufacturing companies 

(Marras et al., 1993) 

feedforward neural 

network 

Binary 

classification 

Dataset Risk classification 

Chen et al., (2004)  Using feedforward neural network, developed a 

method to reliably classify the risk of injuries in 

industrial tasks based on datasets that do not 

match the assumptions of parametric statistical 

tools or are incomplete. 

235 manual material handling 

activities taken from several 

manufacturing companies 

(Marras et al., 1993) 

Feedforward neural 

network 

Binary 

classification 

Dataset Risk classification 

Chung et al., (2002) Presented a multi-layer perceptron neural 

network model to classify macro-postural 

workload based on perceived discomforts and 

postural stress levels for several joint motions.  

19 male auto assembly line 

employees 

Multi-layer perceptron 

neural network 

Multiclass 

classification 

Simple Observational 

Method 

Risk classification 
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Conforti et al., 

(2020)  

Estimated biomechanical risk during lifting 

operations using postural pattern identification 

utilizing ML powered by kinematic data from 

wearable sensors and support vector machine 

classifier. 

26 healthy participants Support vector machine Binary 

classification 

Direct Measurement Risk classification 

Darbandy et al., 

(2020) 

Using heart rate signals, propose a k-nearest 

neighbors’ model that can detect physical fatigue 

in workers. 

8 members of the local 

community (5 men, 3 women); 

2 employed in manufacturing. 

k-nearest neighbors Binary 

classification 

Dataset Risk classification 

Erdem et al., (2016)  Employed support vector machine model to 

classify occupational lower back disorder risks 

for manual material handling tasks. 

235 manual material handling 

activities taken from several 

manufacturing companies 

(Marras et al., 1993) 

Support vector machine Binary 

classification 

Dataset Risk classification 

Ganga et al., (2012)  Developed a model based on linear discriminant 

analysis and artificial neural network to classify 

industrial jobs related to occupational low back 

disorders risks. 

235 manual material handling 

activities taken from several 

manufacturing companies 

(Marras et al., 1993) 

Linear discriminant 

analysis, Artificial neural 

network 

Binary 

classification 

Dataset Risk classification 

Greene et al., 

(2019)  

A computer vision method is shown for 

automatically classifying lifting postures such as 

standing, stooping, and squatting at the lift origin 

and destination utilizing a decision tree algorithm 

and an elastic rectangular bounding box drawn 

tightly around the body. 

Mannequin poses 

systematically generated using 

3DSSPP for various hand 

locations and lifting postures. 

Decision tree Multiclass 

classification 

Advanced 

Observational Method 

Posture identification 
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Kakhki et al., 

(2019)  

Investigated the effectiveness of multi-layer 

perceptron neural network, and Radial basis 

function neural network, to classify injury root-

causes in Agro-manufacturing operations in the 

USA 

5400 opened and closed 

workers’ compensation claims 

from 2008 to 2016, were used 

Multi-layer perceptron 

neural network, and 

Radial basis function 

neural network 

Multiclass 

classification 

Dataset Identification of risk 

factors  

Konstantinidis et 

al., (2021) 

Propose a unique method employing the 3D pose 

estimation algorithm known as Video Inference 

for Human Body Pose and Shape Estimation and 

deep neural network to assess the ergonomic risk 

of any work-related job in real-time using the 

REBA framework. 

TUM Kitchen dataset and UW 

IOM dataset; Both datasets 

were split into 4 subsets and 

each time 3 subsets (15 videos) 

were selected for training and 

the remaining subset (5 videos 

were selected for testing. 

Video Inference for 

Human Body Pose and 

Shape Estimation (VIBE); 

Deep neural network 

Regression Advanced 

Observational Method 

Risk Quantification 

Krüger et al., (2015) Presented a method for the extraction of features 

from depth images using a low-cost depth sensor 

and a random forest classifier trained on 

manually labeled videos for posture 

classification. 

8 participants working in an 

industrial setting 

Random forest  Multiclass 

classification 

Advanced 

Observational Method 

Posture identification 

Li et al., (2020)  Developed an algorithm that takes normal RGB 

images as input and outputs the RULA action 

level (4 levels), which is a further division of 

RULA grand score based on deep neural network 

and a RULA score estimator 

Human3.6M (public human 

pose dataset with full-body 

kinematics marker data) 

Deep neural network Multiclass 

classification 

Dataset Risk classification 
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Maman et al., 

(2017) 

Investigated the usage of wearable sensors to 

detect physical fatigue in simulated industrial 

jobs and evaluated the level of physical fatigue 

across time utilizing penalized logistic regression 

and multiple linear regression. 

8 members of the local 

community (5 men, 3 women); 

2 employed in manufacturing. 

Penalized logistic 

regression, Multiple 

linear regression 

Binary 

classification; 

Regression 

Direct Measurement Identification of risk 

factors  

Maman et al., 

(2020)  

Introduced a data analytic framework for 

managing fatigue in physically demanding 

workplaces using wearable sensor data to capture 

different fatigue modes and modules. This 

framework also investigated the performance of 

Logistic regression, penalized logistic regression, 

decision tree, naive Bayes, k nearest neighbors, 

random forest, bagging, and boosting algorithms. 

24 healthy people were used, 

including manufacturing 

workers and students with 

some physical work 

experience; 15 used for 

analysis. 

Logistic regression, 

Penalized logistic 

regression, Decision tree, 

Naive Bayes, k nearest 

neighbors, and three 

ensemble models (Random 

forest, Random forest with 

Bagging, and Random 

forest with Boosting) 

Binary 

classification 

Direct Measurement Risk classification 

Massiris Fernández 

et al., (2020)  

Using the OpenPose Convolutional neural 

networks, a method was created to automatically 

compute RULA scores from digital video or still 

images. 

Simulated 3D model, one 

author, and five videos of 

workers plastering walls, 

hammering, felling trees, 

drilling, and marshal signs. 

OpenPose algorithm for 

posture detection  

Regression Advanced 

Observational Method 

Posture identification 

Mgbemena et al., 

(2016)  

Presented an application developed to detect 

gestures towards triggering real-time human 

motion data capture on the shop floor for 

ergonomic evaluations and risk assessment using 

the Microsoft Kinect using AdaBoost algorithm 

2742 occurrences of lowering 

gestures and 3079 occurrences 

of lifting gestures were 

recorded. 

AdaBoost Binary 

classification 

Advanced 

Observational Method 

Posture identification 
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Nath et al., (2018)  Developed a support vector machine-based 

method to unobtrusively evaluate the ergonomic 

risk levels caused by overexertion. This is 

accomplished by collecting time-stamped motion 

data from body-mounted smartphones (i.e. 

accelerometer, linear accelerometer, and 

gyroscope signals), automatically detecting 

workers' activities through a classification 

framework, and estimating activity duration and 

frequency data. 

2 employees engaged in 

warehouse operations 

involving manual material 

handling activities. 

Support vector machine Multiclass 

classification 

Direct Measurement Identification of risk 

factors  

Parsa et al., (2019)  Presented a method for the automatic prediction 

of ergonomic risks levels using REBA for 

material handling human activities for an 

automobile manufacturer based on the integration 

of a low-cost body sensor network and ML 

algorithms for tracking working operations. This 

is accomplished by learning spatial features using 

Convolutional neural networks. Subsequently, 

encoder decoder-temporal convolutional 

networks, dilated-temporal convolutional 

networks, bi-directional long short-term memory, 

and support vector machines were compared for 

video segmentation. 

TUM Kitchen dataset with 

24,052 training and 5,290 

testing samples; UW IOM 

dataset with 27,539 training 

6,052 testing samples, 

respectively 

Convolutional neural 

networks; Encoder 

decoder-temporal 

convolutional networks, 

Dilated-temporal 

convolutional networks (D-

TCN), Bi-directional long 

short-term memory (Bi-

LSTM), and Support vector 

machines 

Multiclass 

classification 

Dataset Risk classification 
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Parsa et al., (2020) Presented a real time Spatio-temporal pyramid 

graph convolutional network for action 

recognition that enables the use of features from 

all levels of the skeleton feature hierarchy.  In 

addition, the proposed method is also compatible 

with REBA score computation. 

TUM Kitchen dataset; UW 

IOM dataset; Kinetics; and 

NTU-RGBD datasets 

Spatio-temporal pyramid 

graph convolutional 

network 

Multiclass 

classification 

Dataset Posture identification 

Petz et al., (2021) Developed a sensor system that can be used as 

universal platform for recording and classifying 

movement. A Long-short term memory neural 

network is used to demonstrate the classification 

of learned motion sequences.  

The constructed sensor system 

collected 6030 training 

instances and 670 testing 

instances. 

Long-short term memory Multiclass 

classification 

Direct Measurement Posture identification 

Zurada et al., (2012)  Developed and compared logistic regression, 

neural networks, radial basis function neural 

network, support vector machines, k-nearest 

neighbor, decision trees, and random forest 

classifier models to classify the risk of low back 

disorders  

235 manual material handling 

activities taken from several 

manufacturing companies 

(Marras et al., 1993) 

Neural networks, support 

vector machines, k-

nearest neighbour, 

Logistic regression, Radial 

basis function neural 

network, Decision trees, 

and Random Forest  

Binary 

classification 

Dataset Risk classification 
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Chapter 3: REVAMPED PHYSICAL LOAD INDEX (PLI) 

3.1 Introduction 

In current practice, practitioners choose an appropriate ergonomics risk assessment tool on a case-

by-case basis considering the tools compatibility with data collection method (self-report, 

observational methods, direct measurements). Then, they choose an appropriate tool for assessing 

a specific industrial work activity, taking their time and budget constraints into consideration 

(David, 2005). To assess the ergonomic performance of a different industrial work activity, they 

may need to repeat the entire procedure, as different ergonomics risk assessment tools have 

different specializations. There is no global ergonomics risk assessment tool to 

comprehensively evaluate the ergonomic performance of work systems. Consequently, it must be 

understood that different ergonomics risk assessment tools are preferred for evaluating work 

systems based on the nature of the industrial work activity. Nevertheless, there is utility in 

developing a comprehensive ergonomics risk assessment tool that is compatible with all types of 

data collection methods.  

This chapter describes a reinvention of an ergonomics risk assessment tool, the Physical Load 

Index (PLI), which was initially developed by Hollman et al. (1999), in order to present a versatile 

and near comprehensive ergonomics risk assessment tool. The PLI is specifically chosen for 

revision because of three reasons: (1) PLI has the potential for compatibility with all types of data 

collection methods (self-reports, observational methods, and direct measurements) as opposed to 

some other physical ergonomics risk assessment tools; (2) PLI includes assessment of entire body 

posture, weight of the load, and repetition/frequency as inputs, thereby, serving as a single tool for 

a near comprehensive assessment of both dynamic and continuous worker activities; and (3) 
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Numerous research studies have indicated that occupational injuries, often stemming from factors 

like heavy lifting, uncomfortable lifting postures, repetitive lifting, and sustained muscle loading, 

predominantly impact the back region (Qiu et al., 2021; Straker, 1999; Punnett et al., 2005; 

Trinkoff et al., 2003; Cole et al., 2001; Ebraheim et al., 2004; Bridger, 1991; Pope et al., 2002; 

Boulila et al., 2018). Therefore, it may be beneficial to revise a tool like PLI that was created by 

integrating information from a biomechanical model of lumbar load. Here, a lumbar load model is 

valuable because it helps address the prevalent issue of back-related occupational injuries caused 

by various factors, as evidenced by extensive research (Qiu et al., 2021; Straker, 1999; Punnett et 

al., 2005; Trinkoff et al., 2003; Cole et al., 2001; Ebraheim et al., 2004; Bridger, 1991; Pope et al., 

2002; Boulila et al., 2018), warranting a revision of tools like PLI integrating biomechanical 

lumbar load information. Moreover, the Enhanced PLI capitalizes on the original version's 

strengths, adapting the framework to align with diverse objective data collection methods. It 

further integrates AI approaches like mathematical optimization to establish a revised scoring 

range, reflecting alterations in the PLI structure. Additionally, it introduces risk categories for 

simpler interpretation of PLI risk scores. The proposed Revamped PLI has been preliminary 

validated using data collected from manufacturing and construction industries and compared to 

the Rapid Entire Body Assessment (REBA) scores.  

Overall, the existing physical-ergonomic tools available for assessing workplace risks are often 

specialized and not versatile enough to be compatible with different data collection methods to 

suit their time and budget constraints (David, 2005). The requirement for practitioners to learn new 

tools for assessing diverse work systems further hinders the progress of enhancing work systems. 
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Therefore, to address this challenge, this chapter proposes revising PLI to become a versatile and 

near-comprehensive physical-ergonomics risk assessment tool.   

3.2 Research method 

The detailed methodology for developing Revamped PLI is displayed in Figure 3-1 with three 

phases included. In order to develop Revamped PLI, three phases are required: (1) Tool selection 

for Revision – This phase discusses the research and exploration of numerous tools, as well as the 

rationale for selecting PLI for redevelopment in order to make it a versatile instrument; (2) 

Revision of PLI – This phase discusses the revisions made to PLI to develop Revamped PLI; and 

(3) Implementation and validation – This section discusses the use of Revamped PLI to assess the 

ergonomic performance of real-world industrial job tasks, followed by a comparison of the 

proposed tool to REBA (a well-known ergonomics risk assessment tool) to determine the validity 

of Revamped PLI. 

 

Figure 3-1 Methodological framework for development of the Revamped PLI 
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3.2.1 Tool selection for Revision 

A range of quantitative risk assessment tools have been developed in the last decades for assessing 

various ergonomic risk factors in industrial job tasks such as awkward posture, material handling 

factors, and repetition/frequency body movement. Here, awkward posture involves uncomfortable 

body positions that can lead to musculoskeletal strain. Material handling factors encompass how 

objects are lifted, carried, pushed, or pulled, impacting musculoskeletal health. 

Repetition/frequency of body movement refers to the repetitive nature of certain actions, which 

can lead to overuse injuries. 

These tools use varied input data to generate their risk indexes. Some of the commonly used tools 

to assess the ergonomic performance of industrial job tasks are PLI, REBA, RULA, NIOSH Lifting 

Equation, The strain index, OWAS, and MAC (McAtamney et al. 2004, Lynn et al. 1993, Waters 

et al. 1993, Moore et al. 2010, Karhu et al. 1971, Health and Safety Executive 2014). Therefore, 

these tools are investigated in Table 3-1 to determine the best tool for revampment. As a result, it 

has been determined that, among the tools presented in Table 3-1, PLI is the ideal tool for revision. 

PLI is deemed more suitable for revision than the other tools because, (1) PLI has the potential for 

compatibility with all types of data collection methods (self-reports, observational methods, and 

direct measurements) as opposed to some other physical ergonomics risk assessment tools; (2) PLI 

includes assessment of entire body posture, weight of the load, and repetition/frequency as primary 

inputs, thereby, serving as a single tool for a near comprehensive assessment. Specifically, PLI 

utilizes a comprehensive set of input factors to assess ergonomic risks. These factors include trunk 

postures (T) such as T1 (straight, upright), T2 (slightly inclined), T3 (strongly inclined), T4 

(twisted), and T5 (laterally bent). Arm postures (A) include both arms below shoulder height (A1), 
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one arm above shoulder height (A2), and both arms above shoulder height (A3). Leg postures (L) 

encompass sitting (L1), standing (L2), squatting (L3), kneeling (L4), and walking/moving (L5). 

Weight lifting activities (W) are classified into weight categories, including Wu1 (light up to 10 

kg), Wu2 (10-20 kg), Wu3 (more than 20 kg) for non-inclined lifting, and Wi1 (light up to 10 kg), 

Wi2 (10-20 kg), Wi3 (more than 20 kg) for inclined lifting. By considering these specific postures 

along with weight load, in tandem with repetition/frequency of postures the PLI provides a holistic 

evaluation of physical ergonomic risks; and (3) Heavy lifting, awkward lifting positions, repetitive 

lifting, and static muscle loading, which affect the back, are a leading cause of occupational 

injuries, according to several research studies (Qiu et al., 2021; Straker, 1999; Punnett et al., 2005; 

Trinkoff et al., 2003; Cole et al., 2001; Ebraheim et al., 2004; Bridger, 1991; Pope et al., 2002; 

Boulila et al., 2018). Therefore, it may be beneficial to revise a tool like PLI that was created by 

integrating information from a biomechanical model of lumbar load. For these reasons, PLI is 

regarded as the optimal choice for enhancement, contrasting with tools such as REBA or NIOSH 

Lifting equation. While REBA and NIOSH equations align well with observational methods, they 

lack seamless compatibility with self-reports, fail to encompass all critical risk factors as primary 

inputs, and are not structured around lumbar load like PLI, thus rendering them less fitting for the 

revampment process. Consequently, the aim is to streamline the tool selection process for health 

and safety specialists by establishing the foundation for a versatile and near-comprehensive 

ergonomics risk assessment tool, named Revamped PLI. This tool exhibits the potential to 

accommodate diverse data collection methods, thereby offering users the flexibility to choose a 

method that aligns with their time and budget constraints.
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Table 3-1 Comparison of ergonomics risk assessment tools 

Tools Inputs 

 

Outputs Analysis Reference 

Compatibility Pros Cons  

PLI Primary inputs: 

• Entire Body Posture 

• Weight of the Load 

• Repetition/ Frequency 

Secondary inputs: 

• N/A  

• Risk Index with data collection methods: 

• Self-report 

with activities: 

• For dynamic and continuous 

activities 

• Non-Cumbersome 

tool  

• Includes all 

primary 

information 

necessary for 

assessing 

occupational tasks 

• Risk index is not classified into 

risk categories 

• Results may not be accurate unless 

study includes large number of 

samples 

Hollman et al. 

(1999) 

REBA Primary inputs: 

• Entire Body Posture 

Secondary inputs: 

• Repetition / Frequency  

• Load / Force 

 

• Risk Score 

• Risk Category 

• Risk Description and 

Response Plan 

with data collection methods: 

• Simple Observational Methods 

with activities: 

• For static or single postures 

• Specialized in 

assessing the entire 

body posture 

 

• No sufficient weight allocated to 

capture the weight of the handled 

load  

• Needs to be paired with advanced 

observational methods, direct 

measurements for dynamic and 

continuous activities 

McAtamney et 

al. (2004) 

RULA Primary inputs: 

• Upper Body Posture 

Secondary inputs: 

• Repetition / Frequency  

• Load / Force 

 

• Risk Score 

• Risk Category 

• Risk Description and 

Response Plan 

with data collection methods: 

• Simple Observational Methods 

with activities: 

• For static or single postures 

• Specialized in 

assessing the upper 

body posture 

 

• Considers only the upper body 

posture 

• No sufficient weightage allocated 

for weight of the handled load 

• Needs to be paired with advanced 

observational methods, direct 

measurements for dynamic and 

continuous activities 

Lynn et al. 

(1993) 

NIOSH Lifting 

Equation 

Primary inputs: 

• Material Handling Factors 

• Weight of the Load 

Secondary inputs: 

• Repetition/ Frequency 

• Load acceptance with data collection methods: 

• Simple Observational Methods 

• Direct Measurements 

with activities: 

• For dynamic activities 

• Specialized in 

assessing job tasks 

that highly involve 

material handling 

tasks 

 

• No sufficient emphasis on entire 

body posture 

• Accurate physical measurements 

are usually required 

 

Waters et al. 

(1993) 
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The strain index Primary inputs: 

• Intensity of exertion 

• Duration of exertion 

• Exertions per minute 

• Hand/wrist Posture 

• Speed of Work 

• Duration of task per day 

Secondary inputs: 

• N/A 

 

• Strain Index  with data collection methods: 

• Simple Observational Methods 

with activities: 

• For dynamic and continuous 

activities  

• Specialized in 

assessing jobs for 

risk of distal upper 

extremity 

disorders derived 

from physiological 

model of localized 

muscle fatigue 

 

• Not based on quantitative 

relationship between a task 

variable and some physiological, 

biomechanical, or epidemiological 

responses 

• Task variables are limited 

• Three task variables rely on 

subjective judgement 

• Requires professional judgment 

• Requires training and experience to 

use 

 

Moore et al. 

(2010) 

OWAS Primary inputs: 

• Entire Body Posture 

Secondary inputs: 

• N/A 

• Posture Rating 

• Risk Category 

• Risk Description and 

Response Plan 

with data collection methods: 

• Simple Observational Methods 

with activities: 

• For static and dynamic single 

postures 

 

• Non-cumbersome 

tool specialized in 

rapidly assessing 

entire body posture 

 

• Does not accurately reflect the 

ergonomic risks based on entire 

body posture 

Karhu et al. 

(1971) 

MAC Primary inputs: 

• Material handling Factors 

• Weight of the Load 

• Repetition/ Frequency 

Secondary inputs: 

• N/A 

• Numerical score 

• Risk band 

• Risk Description and 

Response Plan 

with data collection methods: 

• Simple Observational Methods 

with activities: 

• For static and dynamic single 

postures 

• Specialized in 

assessing job tasks 

that highly involve 

material handling 

tasks 

• Does not provide sufficient 

emphasis on entire body posture 

• No action level is provided 

Health and 

Safety Executive 

(2014) 
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3.2.2 Revision of PLI 

This section explains the methodical approach taken to revise the computational framework of 

Revamped PLI. Prior to that, it's critical to categorize Revamped PLI in accordance with data 

collection methods used:  

• the conventional PLI is compatible with self-reports and is still referred to as PLI; 

• a revamped version of PLI when paired with observational methods is called PLI II;  

• a revamped version of PLI when paired with direct measurements is called PLI III.  

Thus, this revampment makes PLI compatible with all types of human data collection methods. 

Based on the time and budgetary availability, the practitioner can select the most suitable data 

collection method for the assessment and identify the associated tool (PLI, PLI II, PLI III). The 

underlying framework of Revamped PLI (including posture codes, weights, and linguistic 

categories of postures and frequencies) remains the same as in conventional PLI. However, certain 

revisions are made to the underlying framework of conventional PLI to which will be discussed in 

sections 3.2.2.1, 3.2.2.2, and 3.2.2.3. 

3.2.2.1 Objective data collection 

As aforementioned, one of the critical limitations of conventional PLI was the accuracy and 

imprecision of collected data in self-reports due to subjectivity. Referring to Figure 2-1, when 

moving towards the top of the data collection methods pyramid, the collected data exhibits 

comparatively higher levels of accuracy and precision. The reason for the increase in accuracy and 

precision is that observational methods and direct measurements are objective in nature, whereas 
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self-reports are subjective in nature. Therefore, the limitations of conventional PLI can be 

overcome if conventional PLI is compatible with observational methods or direct measurements. 

As elaborated in section 3.1, observational methods can be carried out either using a human based 

observation (simple observational method) or computer-based observation (advanced 

observational method), while direct measurements can be carried out using monitoring instruments 

such as sensors or optical markers directly attached to the individual under observation (David, 

2005; Inyang et al., 2012). Consequently, this section discusses how PLI input data can be 

collected objectively either using observational methods or direct measurements: 

1. The 19 postures included in Revamped PLI can be identified by using joint angles (the 

angle between the two segments on either side of the human joint) and joint coordinates 

(the xyz position of joints) via observations (simple or advanced observational methods) 

or direct measurements. Moreover, if the determination of the workers postures in three-

dimensional space is required, it can be referred from the “3D static strength prediction 

program”, proposed by the University of Michigan, Center of Ergonomics (2012).  

2. The material weights are the weight of tools, objects, and equipment handled by the worker 

during a job task. These weights can be measured directly or referred to the item's 

specifications when using simple observational methods. Nevertheless, when employing 

advanced observational methods or direct measurements, computer vision algorithms or 

weight sensors can be used to determine the weights lifted by human workers. 

3. Referring to the research conducted by Li et al. (2019a, 2019b) and the Workers' 

Compensation Board – Alberta (2019), a proposal is made to enhance the conventional PLI 

approach. Instead of relying solely on linguistic descriptions, the suggestion is to quantify 
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the frequencies of postures using numerical percentages. These percentage values can then 

be categorized into five distinct ranges, known as frequency percentages (FP): Never (0%), 

Seldom (1%–5%), Sometimes (6%–33%), Often (34%–66%), and Very often (67%–

100%). 

𝐹𝑃 =  𝐷𝑖  / 𝐷𝑡𝑜𝑡𝑎𝑙 × 100%       (3-1) 

where 

Di: Total duration of a specific Posture Code (e.g. T1, T2, etc.) in one cycle of the 

job task 

Dtotal: Total duration for one cycle of the job task   

i: Specific Posture Code selected for assessment 

Moreover, it is also important to note that the material handling frequency data is 

synchronous to the posture frequency data, but it is recorded only during material handling 

activities. Finally, the upcoming sections in this chapter center on developing the 

Revamped PLI framework, ensuring compatibility with both simple and advanced 

observational techniques as well as direct measurements, albeit validation being limited to 

simpler observational method. 

3.2.2.2 Overlap analysis and body constraint determination 

Conventional PLI allows for overlapping of any two postures in the list of available postures, even 

though in reality some postures cannot practically overlap with one another due to the body 
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constraints. This is because conventional PLI was developed to suit the subjective nature of self-

reports. For example, walking (L5) and sitting (L1) cannot overlap with one another, however, 

conventional PLI allows the overlap of walking (L5) and sitting (L1) postures. Therefore, an 

overlap analysis matrix is developed to identify the possible and impossible postural overlaps.  

Based on this overlap analysis matrix, a total of 33 constraint equations are developed and applied 

in the Revamped PLI. The benefits of establishing and complying with constraint equations not 

only serve to eliminate impractical body postures from consideration in the assessment, but also 

allow practitioners to cross-check the reliability and the conformance of body postures to reality 

for the human motion data collected. For example, if the human data collected for trunk straight, 

upright (T1), trunk slightly inclined (T2), and trunk strongly inclined (T3) result in a sum of 200%, 

this finding violates conformance to reality, i.e. it is impossible for a worker to have his trunk both 

in upright and inclined positions. Therefore, the appropriate constraint equation, ‘T1 + T2 + T3 = 

100%’, is proposed in this case. Thus, in total 33 constraint equations are developed to ensure the 

reliability and the conformance to reality of the collected data.  

3.2.2.3 Identification of Revamped PLI score range 

With the identification of possible and impossible postural overlaps, Revamped PLI is no longer 

subjected to the index range of 0-56 as in conventional PLI. The inclusion of constraint equations 

in Revamped PLI naturally has an impact on the final index range. Consequently, the Pattern 

Search optimization algorithm available on the Global Optimization Toolbox on MATLAB is used 

to identify the new index range of Revamped PLI. Consequently, it is determined that the index 

range for Revamped PLI is 0-32. To provide further insight, the Pattern Search algorithm employs 
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the PLI equation as its objective function, with the 33 constraints detailed in section 3.2.2.2 

established as constraint equations. These constraints serve to narrow down the search space, 

enabling the identification of the highest achievable value through the PLI equation, which is 

determined to be 32. On the other hand, when only neutral postures defined by the PLI equation 

are seen during a job task, the PLI equation gives a value of zero. 

3.2.2.4 Risk Categorization 

A major drawback of conventional PLI is the lack of risk categories, which entails that the index 

can only express the severity of risk in comparative terms (higher or lower risk). Health and safety 

specialists may benefit from risk categories for the following reasons: (1) it makes the risk index 

more interpretable; (2) it simplifies the process of communicating the severity of ergonomic risk 

to management and employees using risk labels; and (3) it helps determine which category of risks 

must be addressed immediately. Consequently, the continuous PLI scores obtained from the 

research execution and validation phase (section 3.2.3) for 92 real-world industrial job tasks are 

binned into five discrete bins of equal width that are representative of five risk categories, as shown 

in Table 3-2. 

On the basis of the discussion in the preceding sections, a computational framework is proposed 

for Revamped PLI. This application of the framework is illustrated in Section 3.2.3.1 with respect 

to PLI II (simple observational method) along with computation steps. Although the application 

of this framework is shown with reference to PLI II (simple observational method), the 

computational framework of Revamped PLI can be easily adapted for PLI II (advanced 

observational methods) and PLI III (direct measurements) by simply changing the method of data 
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collection in Step (1). This can be accomplished with the help of theoretical foundations of 

objective data collection discussed in section 3.2.2.1. 

3.2.3 Implementation and validation 

3.2.3.1 Implementation 

The significant improvements made in Revamped PLI by revising the framework of conventional 

PLI is elaborated in this section. The Revamped PLI assessment form created by revising the 

conventional PLI form is displayed in Figure 3-2 as a partial sample. The full template of the 

Revamped PLI is given in the Appendix. 

 

Figure 3-2 Sample procedure visualization for calculating PLI II score – T postures 

The computational methodology proposed for obtaining the Revamped PLI score can be explained 

using the following four steps: 

STEP (2)

STEP (3)

Posture Code Activities Start time Stop time Time (s) % total %

Both arms below shoulder height 02:52:28 02:54:21 00:01:53 70.62

Both arms below shoulder height 02:52:03 02:52:50 00:00:47 29.38

L2 Standing 02:52:28 02:52:41 00:00:13 7.26 7.26

Kneeling with one knee or with both 02:52:03 02:52:50 00:00:47 26.26

Kneeling with one knee or with both 02:52:50 02:53:27 00:00:37 20.67

Kneeling with one knee or with both 02:53:59 02:54:21 00:00:22 12.29

Walking, Moving 02:53:22 02:53:52 00:00:30 16.76

Walking, Moving 02:53:28 02:53:52 00:00:24 13.41

Walking, Moving 02:52:44 02:52:50 00:00:06 3.35

straight, upright 02:53:28 02:53:52 00:00:24 17.91

straight, upright 02:52:50 02:52:58 00:00:08 5.97

straight, upright 02:52:28 02:52:30 00:00:02 1.49

slightly inclined 02:52:03 02:52:50 00:00:47 35.07

slightly inclined 02:53:59 02:54:21 00:00:22 16.42

slightly inclined 02:53:21 02:53:27 00:00:06 4.48

strongly inclined 02:52:59 02:53:20 00:00:21 15.67

strongly inclined 02:52:31 02:52:35 00:00:04 2.99

T1 25.37

A1 100.00

L4 59.22

L5 33.52

T2 55.97

T3 18.66

Frequency % 0% 1-5% 6-33% 34-66% 67-100%

T1 0 straight, upright 25.37 25.37

T2 0.974 slightly inclined 55.97 55.97

T3 1.104 strongly inclined 18.66 18.66

T4 0.068 twisted 0

T5 0.173 laterally bent 0

A1 0 Both arms below shoulder height 100 100

A2 0.157 One arm above shoulder height 0

A3 0.314 Both arms above shoulder height 0

L1 0 Sitting 0

L2 0 Standing 7.26 7.26

L3 0.405 Squatting 0

L4 0.152 Kneeling with one knee or with both 59.22 59.22

L5 0.152 Walking, Moving 33.52 33.52

Wu1 0.549 Light (up to 10kg) 0

Wu2 1.098 Medium (10-20 kg) 0

Wu3 1.647 Heavy Weight (more than 20 kg) 0

Wi1 1.777 Light (up to 10kg) 0

Wi2 2.416 Medium (10-20 kg) 0

Wi3 3.056 Heavy (more than 20 kg) 0

Posture 

Code
Weight

Linguistic Categories NEVER SELDOM SOMETIMES OFTEN VERY OFTEN
SUM OF SCORES

SCORES ASSIGNABLE 0 1 2 3 4

T1 0 straight, upright 2 2

T2 0.974 slightly inclined 3 3

T3 1.104 strongly inclined 2 2

T4 0.068 twisted 0

T5 0.173 laterally bent 0

A1 0 Both arms below shoulder height 4 4

A2 0.157 One arm above shoulder height 0

A3 0.314 Both arms above shoulder height 0

L1 0 Sitting 0

L2 0 Standing 2 2

L3 0.405 Squatting 0

L4 0.152 Kneeling with one knee or with both 3 3

L5 0.152 Walking, Moving 2 2

Wu1 0.549 Light (up to 10kg) 0

Wu2 1.098 Medium (10-20 kg) 0

Wu3 1.647 Heavy Weight (more than 20 kg) 0

Wi1 1.777 Light (up to 10kg) 0

Wi2 2.416 Medium (10-20 kg) 0

Wi3 3.056 Heavy (more than 20 kg) 0

Score

PLI 6

SOMETIMES OFTENPosture 

Code
Weight

Linguistic Categories NEVER SELDOM VERY OFTEN
SUM OF SCORES

STEP (1)

SCORES ASSIGNABLE 0 1 2 3 4

T1 0 straight, upright 2 2

T2 0.974 slightly inclined 3 3

T3 1.104 strongly inclined 2 2

T4 0.068 twisted 0

T5 0.173 laterally bent 0

A1 0 Both arms below shoulder height 4 4

A2 0.157 One arm above shoulder height 0

A3 0.314 Both arms above shoulder height 0

L1 0 Sitting 0

L2 0 Standing 2 2

L3 0.405 Squatting 0

L4 0.152 Kneeling with one knee or with both 3 3

L5 0.152 Walking, Moving 2 2

Wu1 0.549 Light (up to 10kg) 0

Wu2 1.098 Medium (10-20 kg) 0

Wu3 1.647 Heavy Weight (more than 20 kg) 0

Wi1 1.777 Light (up to 10kg) 0

Wi2 2.416 Medium (10-20 kg) 0

Wi3 3.056 Heavy (more than 20 kg) 0

Score

PLI 6

SOMETIMES OFTENPosture 

Code
Weight

Linguistic Categories NEVER SELDOM VERY OFTEN
SUM OF SCORES

STEP (4)

Posture Code Activities Start time Stop time Time (s) % total %

Both arms below shoulder height 02:52:28 02:54:21 00:01:53 70.62

Both arms below shoulder height 02:52:03 02:52:50 00:00:47 29.38

L2 Standing 02:52:28 02:52:41 00:00:13 7.26 7.26

Kneeling with one knee or with both 02:52:03 02:52:50 00:00:47 26.26

Kneeling with one knee or with both 02:52:50 02:53:27 00:00:37 20.67

Kneeling with one knee or with both 02:53:59 02:54:21 00:00:22 12.29

Walking, Moving 02:53:22 02:53:52 00:00:30 16.76

Walking, Moving 02:53:28 02:53:52 00:00:24 13.41

Walking, Moving 02:52:44 02:52:50 00:00:06 3.35

straight, upright 02:53:28 02:53:52 00:00:24 17.91

straight, upright 02:52:50 02:52:58 00:00:08 5.97

straight, upright 02:52:28 02:52:30 00:00:02 1.49

slightly inclined 02:52:03 02:52:50 00:00:47 35.07

slightly inclined 02:53:59 02:54:21 00:00:22 16.42

slightly inclined 02:53:21 02:53:27 00:00:06 4.48

strongly inclined 02:52:59 02:53:20 00:00:21 15.67

strongly inclined 02:52:31 02:52:35 00:00:04 2.99

T1 25.37

A1 100.00

L4 59.22

L5 33.52

T2 55.97

T3 18.66
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1. In this step, the total duration of repeating postures over the duration of the job task are 

recorded for all posture codes based on observational methods or direct measurements. The 

recorded time for each posture is converted into frequency percentages (FP) by using 

Equation (3-1).  

2. The form is then populated based on five quantitative FP ranges: Never (0%), Seldom (1%–

5%), Sometimes (6%–33%), Often (34%–66%), and Very often (67%–100%). This step is 

to fill the form by assigning an FP value to each posture code. 

3. In this step, the FPs are converted into frequency code scores (FCS) using the equational 

logic expressed as Equation (3-2) below.  

4. Finally, Equation (3-3) is used to obtain the Revamped PLI score.   

PLI Score Computation: 

if FP = 0% AND FP <1%, then, FCS = 0 

if FP ≥ 1% AND FP <6%, then, FCS = 1 

if FP ≥ 6% AND FP <34%, then, FCS = 2 

if FP ≥ 34% AND FP <67%, then, FCS = 3 

if FP ≥ 67% AND FP <100%, then, FCS = 4          (3-2) 

PLI = 0.974 × T2 score + 1.104 × T3 score + 0.068 × T4 score + 0.173 × T5 score + 0.157 

× A2 score + 0.314 × A3 score + 0.405 × L3 score + 0.152 × L4 score + 0.152 × L5 score 

+ 0.549 × Wu1 score + 1.098 × Wu2 score + 1.647 × Wu3 score + 1.777 × Wi1 score + 

2.416 × Wi2 score + 3.056 × Wi3 score. (Hollman et al., 1999)       (3-3) 
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With the identification of possible and impossible postural overlaps, the Revamped PLI index 

range is determined to be 0-32. Table 3-2 displays the five discrete risk categories of Revamped 

PLI index. 

Table 3-2 Classification of Revamped PLI risk categories 

Risk 

Category 

Revamped 

PLI Score Risk Description & Response Plan 

NR ≤3 negligible risk, no action required 

LR ≤6 low risk, change may be needed 

MR ≤9 medium risk, investigate and implement change  

HR ≤12 high risk, investigate and implement change soon 

EHR ≥13 extremely high risk, implement change now 

Overall, this section provided an overview of using the computational methodology of Revamped 

PLI. At this stage, it is important to recollect that the computational methodology of Revamped 

PLI is applicable for both PLI II (Revamped PLI that is compatible with simple and advanced 

observational methods) and PLI III (Revamped PLI that is compatible with Direct measurements). 

Although this study lays the theoretical groundwork for the development of a near comprehensive 

ergonomics risk assessment tool that is compatible with all types of data collection methods, it has 

only developed and validated PLI II (Revamped PLI compatible with simple observational 

method) for the assessment of ergonomic performance of industrial job tasks. 

3.2.3.2 Validation 

In this phase, Revamped PLI is compared with a well-established, valid, and reliable entire body 

assessment tool, REBA, for the purpose of preliminary validation of the proposed tool. For this 

purpose, PLI II and REBA data regarding 92 job tasks is collected from manufacturing and 
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construction industries. Due to the disparate score ranges of REBA and PLI, direct comparison of 

risk indexes between the two tools is not possible. Consequently, using PLI II and REBA risk 

indexes, both tools are compared to see if they are aligned closely. If PLI II is in close agreement 

with REBA, then, PLI II will be recognized as a valid method for conducting ergonomics risk 

assessments. However, if PLI II scores contradict REBA scores, they will be deemed invalid for 

conducting ergonomics risk assessments. 

3.3 Validation Results 

In this section, PLI II’s performance is compared with the REBA’s performance using risk 

categories, for preliminarily validating the proposed tool. The validation dataset consists of scores 

and risk categories obtained from evaluating 92 job tasks in manufacturing and construction 

facilities. Considering the risk categories and risk descriptions of PLI II (Table 3-2) and REBA, 

ground rules (i.e., match criteria) are established for validating PLI II. The Match criteria Logic 

for validating PLI II with REBA are presented in Table 3-3. Despite the fact that the two tools use 

different inputs to evaluate risk severity, it is anticipated that PLI II will represent similar risk 

categories as REBA regardless of the industrial job task being assessed. If PLI II is in close 

agreement with REBA, then, PLI II will be recognized as a valid method for conducting 

ergonomics risk assessments. However, if PLI II scores entirely contradict REBA scores, then PLI 

II will be deemed invalid for conducting ergonomics risk assessments. The Match criteria Logic 

for validating PLI II with REBA (Table 3-3) is easier to comprehend with the help of an example. 

For instance, if a package handling job task in a warehouse shows an HR in both PLI II and REBA, 

this is a ‘Match’ and is considered an ideal result. In contrast, if the same job task shows an HR in 

PLI II but an NR in REBA, the result is ‘Miss-Match’, meaning that the risk severity results 



45 

 

generated by the two tools are contradictory. Finally, if there is an instance in which the same job 

task shows an HR in PLI II and an LR in REBA, meaning that the tools have narrowly missed a 

‘Match’, this can be considered to be a ‘Semi-Match’. Overall, if the majority of the Match criteria 

Logic for PLI II and REBA (Table 3-3) depict a 'Match' or a 'Semi-Match,' then PLI II can be 

considered to be in close agreement with REBA, and therefore can be regarded as an acceptable 

tool for conducting ergonomics risk assessments. 

Table 3-3 Match criteria Logic for PLI II and REBA 

Outcomes Descriptions Match Criteria 

Match 

 

The tools show the same type of risk 

severity 

if PLI II (NR) = REBA (NR) 

or if PLI II (LR) = REBA (LR) 

or if PLI II (MR) = REBA (MR) 

or if PLI II (HR) = REBA (HR) 

or if PLI II (EHR) = REBA (EHR) 

Semi-Match 

 

The tools are approximately similar, 

but are not radically different (PLI II 

minorly “overestimates” or 

“underestimates” risk categories in 

comparison to REBA) 

if PLI II (NR) = REBA (LR) 

or if PLI II (LR) = REBA (NR, MR) 

or if PLI II (MR) = REBA (LR, HR) 

or if PLI II (HR) = REBA (MR, EHR) 

or if PLI II (EHR) = REBA (HR) 

Miss-Match The tools are contradictory Other Cases 

Among 92 industrial job tasks that were assessed, there were 37 ‘Match’ cases (40%), 41 ‘Semi-

Match’ cases (45%), and 14 ‘Miss-Match’ cases (15%), as displayed in Figure 3-3. At this stage it 

is imperative to recall that, the Revamped PLI focuses on the lumbar load present in the human 

body for a variety of postures and material handling tasks, while REBA focuses only on awkward 
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postures. Since, majority of the cases (45%) are ‘Semi-Match’ cases, these cases are explored 

further and categorized as “overestimates” or “underestimates”. In addition, further data analysis 

reveals that "overestimates" and "underestimates" are caused by the predominant trunk posture of 

the worker. In particular, it is found that PLI II typically overestimates REBA scores when the 

worker is required to frequently use inclined trunk postures, and that PLI II typically 

underestimates REBA scores when the worker is required to predominantly use a straight upright 

trunk posture. In addition, industrial job tasks that involved lifting weights in an inclined trunk 

position typically fell in the overestimate category. This important discovery revealed that PLI II 

penalized industrial job tasks more than REBA when the trunk was frequently stressed by 

inclination. In addition, PLI II penalized industrial job tasks more than REBA if they required 

prolonged lifting of weights, specifically in an inclined position. The collected validation data also 

revealed a strong positive linear correlation of 0.73 between PLI II and REBA scores. 

Considering these factors, it is reasonable to conclude that PLI II's risk categories are valid, closely 

aligning with REBA. Both tools demonstrate meaningful risk categories for whole-body awkward 

postures. Notably, PLI II excels over REBA, particularly in assessing material handling tasks. This 

is evident from PLI II generating higher risk scores for such tasks, whereas REBA tends to 

underestimate risks. This underscores PLI II's potential as a more comprehensive tool, offering 

more accurate, actionable insights for both awkward postures and material handling tasks. And 

therefore, the validation results also indicate that PLI II can be used to assess any type of industrial 

job task due to its comparative comprehensiveness when compared to REBA. 
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Figure 3-3 Match Criteria Results 

3.4 Discussion and Conclusion 

The Revamped PLI framework builds on the traditional PLI method, leveraging its strengths such 

as entire posture, load weight, and repetition/frequency as inputs while addressing its limitations 

by objectively collecting human motion data. This study compared the Revamped PLI against the 

widely-used REBA tool and demonstrated its effectiveness. 

The key highlights of this study are: 

• The theoretical and computational framework proposed for PLI II (simple observational 

method) sets the foundation for the development of PLI II (advanced observational 

methods) and PLI III (direct measurements). 

• PLI II eliminates impossible overlapping postures and incorporates a time study 

component, removing subjectivity in the collection of human motion data. This feature 

results in better accuracy and precision than conventional PLI. 
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• PLI II scores are categorized into five risk categories using human motion data from 92 

industrial job tasks. The added descriptive risk categories make Revamped PLI scores more 

interpretable than conventional PLI scores. 

Overall, this study represents a significant step in the development of a versatile physical-

ergonomics risk assessment tool. It has the potential to simplify tool selection for work system 

improvement. However, further research is necessary to fully evaluate the effectiveness of the 

theoretical foundations and computational framework proposed for PLI II (which uses advanced 

observational methods for data collection) and PLI III (which uses direct measurements for data 

collection). Actual implementation of these tools would provide valuable insights and feedback 

for the improvement and refinement of the proposed physical-ergonomics risk assessment tool. 
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Chapter 4: FUZZY LOGIC-BASED DSS FOR AUTOMATING 

ERGONOMIC RISK ASSESSMENTS 

4.1 Introduction 

Ergonomics is the scientific discipline focused on the interactions between humans and other 

elements of a system (people, environment, and objects) (ACE 2018). Ergonomists fit work 

systems to people's needs, skills, and limitations. Quantification and risk assessment of physical, 

environmental, and sensory risks associated with work system design can improve occupational 

health and safety. Specifically, the term risk assessment is used to describe the following 

processes: (1) hazard identification—finding risk factors; (2) risk analysis—understanding the 

nature of risk factors and estimating the severity of risk; (3) risk evaluation—estimating the 

significance of risk (Canadian Centre for Occupational Health and Safety, 2016). A variety of 

ergonomics risk assessment methods that evaluate different physical, environmental, and sensory 

aspects of workplace design have been proposed by ergonomics researchers. Specifically, 

ergonomics researchers have brought about advancements by introducing many manual 

ergonomics risk assessment methods for assessing the ergonomic performance of work systems 

(Lynn et al. 1993; Waters et al. 1993; Moore et al. 1995; Karhu et al. 1977; Hol et al. 1999, 

McAtamney et al. 2004; Health and Safety Executive 2006; Freivalds et al. 2013; Health and 

Safety Executive 2020; Occupational Safety and Health Administration 2020; Hart et al., 1988; 

Reid et al., 1988; Li et al. 2015; Li et al. 2019a). However, despite the beneficial effects of 

ergonomics risk assessments in terms of enhancing organizational health and safety by optimizing 

work systems (Hendrick, H. W. 2007, Li et al. 2019b, Ryu et al. 2020, Getuli et al. 2020; 

Silverstein 1997, Hendrick, H. W. 2007, ACE 2018, Golabchi et al. 2018, Li et al. 2019b), many 
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organizations disregard ergonomics risk assessments due to the lack of convenient tools 

(Kahraman et al. 2003, Azadeh et al. 2008). 

To address this issue, Pokorádi et al. (2009) argue for the wider adoption of fuzzy logic in today's 

technical management decision-making because it has been demonstrated to be helpful in risk 

assessment for human activities. Accordingly, other researchers have suggested a number of fuzzy 

logic-based ergonomics risk assessment tools over the years to enhance health and safety in the 

construction industry (Fayek et al. 2005; Aluclu et al. 2008; Debnath et al. 2015; Golabchi et al. 

2015; Golabchi et al. 2016; Wang et al. 2020; Wang et al. 2021). Although a number of robust 

automated tools have been proposed by researchers in manufacturing ergonomics, these focus on 

physical ergonomic risk factors, and no tool has been proposed that simultaneously evaluates the 

physical, environmental, and sensory aspects of work systems. Therefore, this article proposes an 

integrated fuzzy logic-based Decision Support System (DSS) that enables the simultaneous 

assessment of physical, environmental, and sensory aspects of work systems. The key outcome of 

the proposed DSS is the ergonomics risk indicator (ERI), a composite risk score that reflects the 

combined physical, environmental, and sensory risk levels in work systems. Rather than relying 

on historical data to solve ergonomics problems in work systems, the proposed DSS can be used 

to proactively assess the level of ergonomic risk in work systems. To prove its validity, the 

proposed DSS is validated using a real-world case study in a modular construction facility by 

comparing the results of the overall DSS with the facility’s occupational injury reports. Overall, 

the proposed DSS is intended to provide an automated and integrated ergonomics risk assessment 

that can assist practitioners in improving occupational health and safety. 
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4.2 Identifying appropriate existing ergonomics risk assessment tools for DSS development 

In order to create an integrated automated ergonomics risk assessment system, it is necessary to 

integrate physical, environmental, and sensory assessment tools. The integration of physical, 

environmental, and sensory ergonomics risk assessment tools, in turn, requires knowledge of the 

interactions among physical, environmental, and sensory factors in work systems. However, these 

relationships can be difficult to characterize, and there is no reliable literature on the interaction of 

such factors and their impact on work systems. Therefore, it is difficult to design logical systems 

that incorporate existing physical, environmental, and sensory assessment tools. FESs are capable 

of overcoming the challenge of having incomplete, partial, or unreliable information (Zadeh et al. 

2013; Novak et al. 2012; Kayacan et al. 2016). Thus, this study introduces a fuzzy logic-based 

DSS that incorporates existing physical, environmental, and sensory risk factors to generate an 

Ergonomic Risk Indicator (ERI) that can be used to comprehensively assess the ergonomic 

performance of a work system. 

There are several existing ergonomics risk assessment tools in the literature that can be 

incorporated together to develop a fuzzy logic-based DSS capable of assessing the physical, 

environmental, and sensory aspects of work systems. In order to architect such a integrated 

ergonomics risk assessment tool, this study adapts individual comprehensive tools for assessing 

the physical, environmental, and sensory aspects of work systems when available. For aspects for 

which individual comprehensive tools are not available, multiple tools are blended together. In 

such cases, the multiple tools are selected with simplicity of design in mind. The high-level 

architecture of the proposed DSS is depicted in Fig. 4-1. 
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First, the risk assessment tool, Physical Load Index (PLI), developed by Hollmann et al. (1999), 

is selected for obtaining the Physical Indicator. In this regard, several ergonomics risk assessment 

tools, such as REBA (McAtamney et al. 2004), RULA (Lynn et al. 1993), and the National Institute 

for Occupational Safety and Health (NIOSH) Lifting Equation (Waters et al. 1993), were reviewed 

and are considered but are deemed to be too specialized (either in assessing postures or in assessing 

material handling tasks) for the purpose of the present study. PLI, it should be noted, is a 

questionnaire created by integrating information from a biomechanical model of the lumbar load. 

The PLI questionnaire aids in assessing the worker's entire body posture, the weight of the load 

carried, and the repetition/frequency of activities while performing job duties, all within the same 

assessment (Hollmann et al. 1999). Thus, the PLI questionnaire can comprehensively and easily 

assess physical ergonomic risks in a work system. Consequently, the PLI is selected in the present 

study for the assessment of the physical aspects of work systems. 

Although there is no comprehensive individual tool for environmental risk assessment tool 

available in the literature, several separate tools are available that can be combined to 

comprehensively predict the environmental conditions of work systems. Therefore, a number of 

different environmental risk assessment tools are combined to generate an Environmental 

Indicator. Parsons (2000) states that illumination, heat hazard, noise, vibration, and wind chill are 

key environmental risk factors with regard to assessing work systems. Therefore, the illumination 

sub-indicator is obtained from 'recommended illumination levels for use in interior lighting design' 

charts using the age of workers, the reflectance of task/surface background, speed and accuracy 

required, and range of illuminance as inputs (Freivalds et al. 2013); the noise sub-indicator is 

obtained from the 'permissible noise exposure' chart (Freivalds et al. 2013); and the wind chill sub-
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indicator is obtained from 'equivalent wind chill temperature of cold environments under calm 

conditions' chart using air temperature and wind speed as inputs (Freivalds et al. 2013). The heat 

hazard sub-indicator is obtained from the Heat Stress standards recommended by Occupational 

Safety and Health Administration (OSHA) using workers’ metabolic rate and Wet Bulb Globe 

Temperature (WBGT) as inputs (OSHA 2020). Finally, the vibration sub-indicator is obtained 

from the Health and Safety Executive (HSE)'s recommended limits for hand–arm vibration (HSE 

2020).  

Li et al. (2015) analyze sensory demands in modular construction plants using only visual and 

auditory demand data, as they regard visual and auditory demand to be the most important 

components of sensory risk in modular construction plants. In their work, a questionnaire with the 

following frequency categories is used to record workers' sensory demands: (1) Never (0%); (2) 

Rare (1%–5%); (3) Occasional (6%–33%); (4) Frequent (34%–66%); (5) Continuous (67%–

100%). The reasoning underlying their study is that greater sensory demand corresponds with 

greater ergonomic risk. The tool proposed by Li et al. (2015) is used in the present study for 

evaluating the sensory aspects of work systems.  

Developing a fuzzy logic-based DSS that incorporates the physical, environmental, and sensory 

aspects of work systems necessitates the development of a complex system, which in turn 

necessitates the modeling of multiple FESs that form the basis of the DSS. However, complex 

expert systems can be difficult to develop and interpret. To reduce the complexity of the expert 

system, emphasis is placed on selecting tools that prioritize simplicity and relevance to the modular 

construction industry. This approach leads to the selection of near-comprehensive subjective tools 
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for assessing the Physical and Sensory indicators, while incorporating a diverse array of objective 

tools for evaluating the Environmental indicator. 

4.3 Methodology 

The methodology devised to design a integrated DSS entails a two-phase approach: firstly, 

defining the high-level architecture of the DSS, and secondly, constructing distinct FESs that 

collectively form the DSS. This approach aims to seamlessly incorporate established tools for 

assessing physical, environmental, and sensory ergonomics risks within the developed system. 

4.3.1 Architecture of DSS 

Constructing a single FES that incorporates existing physical, environmental, and sensory 

ergonomics risk assessment tools is a challenging task due to the numerous variables involved. In 

particular, it is difficult to construct a single FES to comprehensively automate ergonomics risk 

assessment since a considerable amount of time is required to precisely design a large number of 

rules. Consequently, in this study, a DSS is developed to overcome the curse of dimensionality by 

hierarchically interconnecting FESs, where each FES is an individual expert system performing a 

narrow function beneficial to the overall system. Fig. 4-1 depicts the high-level architecture of the 

proposed DSS. As can be seen, each FES in the proposed DSS accepts inputs and passes outputs, 

which in turn serve as inputs for the next FES in the chain. Fig. 4-1 depicts the pale blue boxes 

representing the inputs that must be supplied to the DSS by the practitioner using the data collected 

from the work system under investigation.  
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At this juncture it is important to note that, despite the fact that this study proposes the development 

of a fuzzy logic-based DSS for automating ergonomics risk assessments, the proposed DSS can 

only automate the process of risk estimation through the generation of ERI when the practitioner 

manually supplies the DSS with the collected ergonomics data. Collectively, the hierarchically 

interconnected FESs are able to estimate the ergonomic performance of any hypothetical work 

system by generating a composite risk score, referred to as an ERI, provided that the collected 

ergonomic data for the hypothetical work system is relayed to the appropriate FESs. 

There are several ergonomics risk assessment tools in the literature that can be used to assess the 

physical, environmental, and sensory aspects of work systems separately. However, an integrated 

ergonomics risk assessment tool must be capable of assessing the physical, environmental, and 

sensory aspects of work systems simultaneously. In order to architect an integrated ergonomics 

risk assessment tool, this study looked for and adapted individually comprehensive tools for 

assessing the physical, environmental, and sensory aspects of work systems when they were 

available. However, when individually comprehensive tools were not available, separate tools 

were blended together. The high-level architecture of the proposed DSS is depicted in Figure 4-1. 

In addition, it is essential to note that the proposed DSS's diverse array of separate tools was 

selected with simplicity of design in mind. 
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Figure 4-1 Architecture of the proposed DSS 

Moreover, as depicted in Fig. 4-1, the proposed DSS’s FESs can be grouped into three classes 

based on functionality: (1) FES_Class3—FESs that automate the risk estimation workflows for 

the purpose of generating the Illumination sub-indicator (Freivalds et al. 2013), Heat Hazard sub-

indicator (OSHA 2020), and Wind Chill sub-indicator (Freivalds et al. 2013); (2) FES_Class2—

FESs that act as a blended layer in the proposed DSS, combining sub-indicators produced by 

FES_Class3 to generate indicators; and (3) FES_Class1—FESs that act as the final blended layer 

in the proposed DSS, combining the indicators produced by FES_Class2 to generate the ERI. 

4.3.2 Design of DSS 

In order to fully comprehend the DSS's design and its constituent FESs, it is first necessary to 

comprehend the FES's general operation. All the FESs making up the proposed DSS are 

constructed specifically with the fuzzy logic toolbox available in MATLAB. These FESs are 



57 

 

designed using the simple and widely accepted Mamdani-type inference method. Fig. 4-2 

illustrates the block diagram for FES. As can be seen, the FES in general consists of four main 

components: fuzzification, inference engine, rule base, and defuzzification (Kayacan et al. 2016). 

The function of the FES can be described as the process of formulating the mapping of crisp inputs 

to crisp outputs using the theory of fuzzy sets (Wong et al. 2013). The inputs and outputs of the 

FESs, it should be noted, are referred to as crisp values, as they assume a distinct value as opposed 

to a fuzzy membership value. To elaborate, the inputs of the FES are crisp (non-fuzzy) numbers 

that are limited to a specific range. When the crisp inputs are passed to the FES, they are fuzzified 

by determining the degree to which they belong to each membership function. In this context, a 

fuzzy set is any set that permits its elements to have varying degrees of membership with linguistic 

variables within the interval [0,1]. After fuzzifying the inputs, the inference engine evaluates each 

fuzzy rule in the rule base to generate an output for each fuzzy rule. Consequently, fuzzy output 

sets are obtained. Following this, the output fuzzy sets obtained are aggregated into a single fuzzy 

set using the aggregation method. Finally, the aggregated output fuzzy set is defuzzified using 

defuzzification methods to produce a crisp number as an output. In this way, the FESs making up 

the proposed DSS use these four components—fuzzification, an inference engine, a rule base, and 

defuzzification—to formulate the mapping between a given input and output. In addition, it must 

be highlighted that there are many types of membership functions (triangle, trapezoid, gaussian, 

bell-shaped, sigmoid, etc.) that can be used in the Mamdani fuzzy systems for fuzzification and 

defuzzification. For the proposed DSS, only triangle and trapezoidal membership functions are 

employed owing to their simplistic nature. 
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Figure 4-2 FES block diagram 

At this juncture, it is important to underscore that, in the proposed DSS, eight FESs are used to 

generate the composite risk score (i.e., ERI). Moreover, on the basis of their functionality, these 

eight FESs are divided into three categories: FES_Class3, FES_Class2, and FES_Class1 as 

discussed above. The rule base underlying the FESs in each of the aforementioned FES classes is 

essential for the estimation of outputs based on the given inputs. The number of heuristic rules 

present in the rule base of each FES, meanwhile, is contingent upon the number of input/output 

variables and membership functions of the FES. While the number of input/output variables is a 

function of the ergonomics risk assessment tools chosen for the DSS's architecture, the number of 

membership functions for each FES is determined in such a manner as to strike a balance between 

design simplicity and performance. In general, the rule bases of FESs can be designed using a large 

numerical dataset from which rules can be extracted, while they can also be created using linguistic 

data, typically obtained from expert opinion. In the proposed fuzzy logic-based DSS, the rules are 

designed using both numerical and linguistic data. 

4.3.2.1 Design of FES_Class3 

The rule base underlying FES_Class3 is essential for determining the Environmental sub-

indicators, and it is developed using numerical datasets derived from the tools themselves 

(Freivalds et al. 2013; OSHA 2020). The rule base for the FESs in FES_Class3 consists of 9 rules 
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for FES 3.1, 45 rules for FES 3.2, 16 rules for FES 3.3, 7 rules for FES 4, 27 rules for FES 5, 7 

rules for FES 4, and 27 rules for FES 5.  

For instance, the rule base for FES 3.3, which estimates the Wind chill sub-indicator, its rule base 

is derived from the Wind chill index chart (Freivalds et al. 2013). This chart requires users to 

determine the Wind chill index based on the air temperature (at 5° F intervals) and wind speed (at 

5 mi/h intervals). In other words, this chart provides a discrete index that is limited in its ability to 

provide continuous values in real case scenarios (i.e., due to the discrete nature of the input 

parameter). Thus, FES plays an important role here in providing continuous estimation of the Wind 

chill sub-indicator based on the rules extracted from the Wind chill index chart (Freivalds et al. 

2013). To achieve this, the FES 3.3 is created, and the performance of the model is evaluated by 

contrasting the Wind chill indices determined by the chart with the estimated Wind chill sub-

indicator determined by the FES 3.3 using the mean absolute error. 

Furthermore, considering the inclusion of FES 3.2, which generates the Heat hazard sub-indicator, 

it is worth noting that its rule base is derived from the Threshold Limit Value or Action Limit chart 

as outlined by OSHA (2020). This chart requires users to determine whether the heat hazard is 

below or above the danger zone using the inputs of Metabolic Rate (watts) and WBGT (°C). This 

chart can be used to determine whether the heat hazard risk is below, above, or on the borderline, 

but it does not provide any index. Thus, the FES plays an important role here in providing 

continuous estimation of the Heat hazard sub-indicator based on the rules extracted from the 

Threshold limit value or Action limit chart (OSHA, 2020). To accomplish this, the FES 3.2 is 

developed, and the effectiveness of the model is evaluated by examining the accuracy of the FESs 



60 

 

in classifying whether the heat hazard risk is below, above, or borderline when compared to the 

Threshold limit value or Action limit chart. 

Additionally, the hierarchically connected FES 5, FES 4, and FES 3.1 can be taken into 

consideration as they collectively contribute to the generation of the Illumination sub-indicator. In 

this case the rule base is derived from the procedure proposed by Freivalds et al. (2013). However, 

this procedure does not provide an index per se; rather, it assists the user in determining the extent 

of deviation between the observed illumination (fc) in the work system and the recommended 

illumination (fc). Thus, FES plays an essential role here in illustrating not only the degree of 

deviation between observed illumination (fc) in the work system and the recommended 

illumination (fc) based on Freivalds et al. (2013), but also in quantifying the level of risk that is 

proportional to the deviation. To model such a procedure, however, a single FES is insufficient; 

consequently, this procedure is modeled using three hierarchically interconnected FESs. First, FES 

5 is used to estimate the continuous illumination weights of a job task using inputs such as the 

average age of the workforce, the reflectance of the work system, and the required speed and 

accuracy category for the work system’s job task. Second, FES 4 estimates the recommended 

illumination (fc) using the illumination weights obtained in FES 4. Finally, FES 3.1 uses the 

observed illumination (fc) of the work system and the recommended illumination range (fc) from 

FES 4 as inputs to illustrate the deviation of observed illumination (fc) from the recommended 

illumination (fc). Here, the effectiveness of FES 5 and FES 4 are assessed using the mean absolute 

error by comparing the estimated values to the actual values, in accordance with Freivalds et al. 

(2013). Meanwhile, FES 3.1, with the assistance of FES 5 and FES 4, is modeled not only to 

illustrate the degree of deviation between observed illumination (fc) in the work system and the 
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recommended illumination (fc) based on Freivalds et al. (2013), but also to quantify the level of 

risk that is proportional to the deviation. 

Finally, it should be noted that, in contrast to the Wind chill, Heat hazard, and Illumination sub-

indicators, the Noise (dBA) and Vibration (m/s2) sub-indicators do not require any modeling 

because the collected ergonomic data for Noise (dBA) and Vibration (m/s2) can be directly used 

as sub-indicators to feed FES 2.1. 

4.3.2.2 Design of FES_Class2 

The rule base of the FES_Class2 is essential for determining of Environmental and Sensory 

indicators. The FESs of FES_Class2 consists of 216 rules for FES 2.1, and 625 rules for FES 2.2. 

The rule bases for FES_Class2 are developed using reasonable assumptions and trial-and-error 

with respect to the validation phase rather than engaging human experts to obtain linguistic data, 

as neither an expert nor a study in the literature is capable of speaking to the question of how to 

model blended layers such as those in FES_Class2. Therefore, FES_Class2’s rule bases assume 

that input risk is proportional to output risk. For example, if FES 2.1 has multiple high-risk inputs 

for the Illumination, Heat hazard, Noise, Vibration, and Wind chill sub-indicators, then the 

Environmental indicator must be high. Similarly, if FES 2.1 has multiple low-risk inputs, the 

Environmental indicator must be low. However, it is challenging to establish Environmental 

indicators for mixed cases in which inputs vary across the risk spectrum. In these situations, the 

rule base of FES 2.1 is tuned using a trial-and-error approach with respect to the validation phase 

(discussed in Section 4). Similarly, the rule base of FES 2.2 is also designed to output the Sensory 

sub-indicator by combining reasonable assumptions and a trial-and-error approach. It should be 
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noted, however, that, because FES_Class2 acts as a blended layer in the proposed DSS, it cannot 

be directly validated. Therefore, the dependability of the FESs in FES_Class2 is dependent on the 

evaluation of the entire DSS. By evaluating the final blended layer of the DSS, FES_Class1, the 

performance of the entire DSS can be determined. 

4.3.2.3 Design of FES_Class1 

Despite the fact that all eight FESs play crucial roles in generating the ERI, in the interest of brevity 

only FES_Class1 (FES 1) is discussed in detail in this study (due to its significance in evaluating 

the DSS as a whole). In terms of its inputs and outputs, the first input of FES 1, the Physical 

Indicator, requires that the average frequency of body positions and load handling at workstations 

be reported by workers in accordance with the PLI questionnaire. The responses are rated on a 

five-point scale from "never" to "very often." The 5-point rating scale is then used to calculate the 

PLI score for the workstation using the equation provided by Hollmann et al. (1999). Following 

this, the PLI of the workstation recorded for each employee is averaged to calculate the Physical 

indicator of the workstation. The second input of FES 1, the Environmental Indicator, necessitates 

that the practitioner collects environmental data using a variety of sensors, such as the illuminance 

meter, WBGT meter, Decibel meter, hand-arm vibration meter, Air temperature meter, and wind 

speed meter, on the workstation whose Environmental indicator is to be calculated. The collected 

environmental data is then relayed through the respective FESs across FES_Class3 and 

FES_Class2 to calculate the Environmental indicator. The third input of FES 1, the Sensory 

Indicator, requires the average frequency of visual and auditory demand at workstations be 

reported by workers in accordance with the questionnaire developed by Li et al. (2015). The 

responses are rated on a five-point scale ranging from “never” to “continuous.” Consequently, the 
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average visual and auditory demands of all workers at the workstation are calculated in order to 

approximate the visual and auditory demands of the workstation. Following this, the averaged 

visual and auditory demands of the workstation are relayed through FES 2.2 to calculate the 

Sensory indicator. Moreover, according to the PLI established by Hollmann et al. (1999), the 

Physical Indicator is assigned a range of 0 to 56, whereas the Environmental Indicator, Sensory 

Indicator, and ERI are assigned a range of 0 to 1 because they are the result of blending sub-

indicators. Overall, when the Physical Indicator, Environmental Indicator, and Sensory Indicator 

are passed into FES 1, the output ERI is generated. 

To shed further light on the manner in which FES 1 determines the ERI, the membership functions 

and rule base of FES 1 also warrant discussion. The design of the input and output membership 

functions for FES 1 is illustrated in Fig. 4-3. The Physical Indicator is defined using linguistic 

variables such as Low Risk (LR), Medium Risk (MR), High Risk (HR), and Extremely Extreme 

Risk (EER) for input membership functions, whereas the Environmental Indicator and Sensory 

Indicator use linguistic variables such as LR, MR and HR for input membership functions. 

Moreover, the output membership function of the ERI is defined using linguistic variables such as 

LR and HR to indicate the overall ergonomic risk intrinsic in the work system. Fig. 4-3 also depicts 

the heuristics rules designed for the rule base of FES 1. 
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Figure 4-3 Visualization of membership functions and heuristics rules of FES 1 

At this juncture, it is important to note that the rule base of FES 1 consists of 36 heuristic rules 

designed to blend the Physical, Environmental, and Sensory indicators to generate the composite 

risk score (i.e., ERI). Since the generated ERI is the blended result of the Physical, Environmental, 

and Sensory indicators, it cannot be compared to any actual ERI score. As a result, not only FES 

1 but also the overall DSSs performance is evaluated using a proxy indicator such as the ‘Count 

of total injuries’ recorded in the plant, which is retrievable from the occupational injury reports as 

described in Section 4. The 36 heuristic rules of FES 1 are depicted in Fig. 4-3, which were 

developed by combining reasonable assumptions with a trial-and-error approach such that the 

input risk is proportional to output risk. In addition, Fig. 4-4 presents graphically the fuzzy 

inference process underlying FES 1. 
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Figure 4-4 Fuzzy inference process of FES 1 

Finally, it is important to note that the proposed DSS can be used to calculate the workstation ERI 

for any hypothetical work system. However, in order to evaluate the performance of the DSS, the 

workstation ERI obtained from FES 1 must be compared to a proxy indicator such as the ‘Count 

of total injuries’ recorded in the plant (since the workstation ERI cannot be compared to any actual 

ERI score). However, this proxy indicator may be recorded at the plant level by work area rather 

than at the level of the individual workstations comprising each work area. In such cases, it may 

be necessary to calculate the Area ERI from the Workstation ERI using workload-weighted 

averages, where metabolic rates of workers (OSHA 2020) can be used as the weights of the 

workstation. Equation 4-1 provides the formula for calculating the Area ERI of a work area through 

the use of weighted averages. This Area ERI can then be compared to the proxy indicator, such as 

"count of total injuries," that is recorded by plant area. 

𝐴 =  ∑
𝑤𝑖 𝑋𝑖

𝑤𝑖 

𝑛

𝑖=1

                  (𝟒 − 𝟏) 
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𝐴 = Area ERI 

𝑛 = Number of terms to be averaged 

𝑤𝑖 = Metabolic rates applied to 𝑋 values 

𝑋𝑖 = Workstation ERI values to be averaged 

 

4.4 Evaluating the performance of DSS 

4.4.1 Application of DSS  

Before evaluating the developed DSS, it is important to discuss the manner in which modular 

construction organizations can expect to make use of it. This section thus proposes the concept of 

the ergonomic risk management lifecycle for understanding the interactions between the 

practitioner and the developed DSS. The ergonomic risk management lifecycle, as illustrated in 

the block diagram in Fig. 4-5, is a cyclical process developed to detect, assess, and control 

ergonomic risks in an organization using the developed DSS. The ergonomic risk management 

lifecycle consists of six stages: (1) Data Collection—this phase entails the collection of ergonomics 

data from various workstations that are to be passed to the DSS; (2) Run DSS—at this juncture, 

the practitioner inputs the collected ergonomics data into the DSS in order to determine the 

composite risk score (i.e., ERI) for the workstation under review (bearing in mind that the DSS 

can only assess one workstation at a time); (3) Interpret DSS results—this stage represents the 

practitioner's interpretation of the DSS results, in which the practitioner interprets the risk level of 

the assessed workstation using the ERI score (0–1), where a high ERI score is indicative of high 
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ergonomic risk, while a low score is indicative of low risk; (4) Prioritize work systems—at this 

stage, the practitioner must compare the ERI results for all of the workstations under investigation 

and prioritize the workstation with the highest ERI score; (5) Make a risk-control decision—at this 

stage, the practitioner must investigate and choose a specific risk-control strategy to reduce, 

mitigate, or eliminate the ergonomic risks associated with the prioritized workstation (this can be 

accomplished by retrieving the Physical, Environmental, and Sensory Indicator scores of the 

prioritized workstation—the retrieved risk profile of the prioritized workstation, in turn, can aid 

the practitioner in making tactical and strategic decisions to address certain risk factors over others 

based on their high indicator scores, thereby reducing the workstation's ERI); and (6) Risk 

control—this stage requires the practitioner to implement the selected risk control strategy to 

alleviate ergonomic risks in the selected workstation. It is imperative to note that risk management 

is a continuous process that must be performed periodically in order to continuously improve the 

organization's occupational health and safety. 

 

Figure 4-5 Ergonomic risk management lifecycle 
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4.4.2 Case Study 

4.4.2.1 Description of the organization selected for case study 

The organization selected for the case study is a modular construction plant. Modular construction 

involves fabricating modular components in a plant that are then transported and assembled on-

site to form a building. The manufacturing plant chosen as the case study consists of five work 

areas: (1) Wall area—the wall frame assembly area involves precutting all materials with high 

accuracy using automated robotic machinery, inspecting these precut wall frames for defects and 

then passing them to the next position using conveyors, manually placing the wall panels and 

fitting them to the wall frame using power tools, then passing them to the Windows and Doors 

Area; (2) Windows & Doors area—this area involves workers moving and fitting windows and 

doors to the wall using vacuum lifts and power tools; (3) Manual area—this area involves workers 

building components using a combination of power tools and non-powered hand tools as per the 

requirements of the component being fabricated (the Manual Area is typically using for building 

auxiliary components such as stairs, decks, and verandas); (4) Floor area—floor assembly is 

predominantly conducted on computerized tables, although the floor panels are glued and the 

sheeting is mounted on the floor panel assembly manually by the workers prior to computerized 

robots screwing down the materials; and (5) Roof area—the roof area involves job tasks such as 

loading, sorting, and assembling the trusses to form the roof frame. With regard to this last work 

area, depending on the type of roof, the work may also include installing drywall and the addition 

of Tyvek home wrap in preparation for siding installation. Furthermore, the roof assembly also 

necessitates sheathing rooftops and installing shingles, siding, and waterproof paper, and cutting 

vents. 
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4.4.2.2 DSS Experiment 

In this case study, the ergonomics data for the aforementioned five work areas are gathered and 

appropriately passed to the DSS, as illustrated in Fig. 4-1. It is crucial to note that some of these 

work areas comprise several workstations within them. Therefore, the DSS must be executed on 

each individual workstation. Table 4-1 shows the collected ergonomic data that are passed to the 

DSS, while Table 4-2 provides a summary of the DSS results
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Table 4-1 Ergonomic input data collected for the case study 

Workstation Age  Reflectance 

Speed 

and 

Accuracy 

Observed 

Illumination 

(fc) 

Metabolic 

Rate 

(watt) 

WBGT 

(°C) 

Noise 

(dBA) 

Vibration 

(m/s2) 

Air 

temperature 

(°F) 

Wind 

Speed 

(mph) 

Hearing/

Speech  

(%) 

Sound 

Discrimination 

(%) 

Vision: 

Near/Far 

(%) 

Color 

Vision 

(%) 

Physical 

Indicator 

Wall Panel 

Sheeting  
<40 30%–70% Critical 25.20 300 15.80 85.92 2.80 74.90 0.33 1.00 0.50 1.00 0.50 15.25 

Wall Line 

Transfer 

Area 

<40 30%–70% Critical 25.20 300 15.80 85.92 4.30 74.90 0.33 1.00 0.50 1.00 0.50 10.74 

Windows 

and Doors 

Area 

<40 30%–70% Critical 22.79 300 15.40 82.33 3.60 74.20 0.20 0.28 0.05 0.75 0.50 5.47 

Framing 

Stairs Area 
<40 30%–70% Critical 23.44 300 13.83 86.33 2.40 70.79 0.00 0.60 0.50 0.92 0.24 11.54 

Finishing 

Area 
<40 30%–70% Critical 23.44 415 13.83 86.33 3.00 70.79 0.00 0.60 0.50 0.92 0.24 13.22 

Floor 

Loading 
<40 30%–70% Critical 46.42 300 15.75 83.07 0.00 74.60 0.06 0.75 0.92 0.65 0.50 8.57 

Floor Panel 

Framer 
<40 30%–70% Critical 46.42 300 15.75 83.07 2.00 74.60 0.06 0.75 0.92 0.65 0.50 12.87 

Sheathing 

and Shingles 
<40 30%–70% Critical 48.46 415 15.77 82.00 5.20 74.03 0.26 0.78 0.80 1.00 0.20 20.73 

Truss 

Assembly 
<40 30%–70% Critical 48.46 415 15.77 82.00 4.50 74.03 0.26 0.78 0.80 1.00 0.20 15.51 

 



71 

 

Table 4-2 Summarization of DSS results 

Area Workstation 
Physical 

Indicator 

Environmental 

Indicator 

Sensory 

Indicator 

Workstation 

ERI 

Wall Wall Panel Sheeting  13.511 0.285 0.837 0.62 

Wall Wall Line Transfer Area 10.744 0.452 0.837 0.59 

Windows Windows and Doors Area 5.469 0.496 0.500 0.29 

Manuals Framing Stairs Area 11.539 0.150 0.532 0.64 

Manuals Finishing Area 13.223 0.319 0.532 0.64 

Floor Floor Loading 8.567 0.380 0.817 0.61 

Floor Floor Panel Framer 12.871 0.380 0.817 0.66 

Roof Sheathing and Shingles 20.731  0.568  0.831  0.67  

Roof Truss Assembly 15.513 0.538 0.831 0.67 

The Workstation ERI in Table 4-2 represents the overall ergonomic performance of a workstation; 

therefore, it can be used to interpret the DSS results. The results of Table 4-2 can be interpreted as 

follows: The ‘Windows and Doors Area’ has the lowest ergonomic risk, as indicated by the low 

Workstation ERI score of 0.29, whereas the ‘Sheathing and Shingles’ and ‘Truss Assembly’ 

workstations have the highest Workstation ERI score of 0.67, indicating that they have the highest 

ergonomic risk among the assessed workstations. Naturally, a reasonable approach for prioritizing 

a workstation is to select the workstation with the highest ERI score. In this case study, both the 

‘Sheathing and Shingles’ and the ‘Truss Assembly’ workstations have the highest ERI score of 

0.67. This indicates that both workstations present an equivalent level of ergonomic risk. Thus, 

either of these two workstations could be prioritized for workplace modification over other 

workstations. For illustration purposes in this discussion, the ‘Sheathing and Shingles’ workstation 

is given priority. Following the prioritization of the 'Sheathing and Shingles' workstation, risk 

control decisions must be made to reduce the Workstation ERI of the 'Sheathing and Shingles' 

workstation. In order to make the best risk control decision, a correlation analysis is performed, as 
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shown in Table 4-3, to characterize the relationships between the Physical, Environmental, and 

Sensory indicators and the Workstation ERI score for the nine workstations presented in Table 4-

2. 

Table 4-3 Correlation matrix based on Workstation ERI 

  

Physical 

Indicator 

Environmental 

Indicator 

Sensory 

Indicator 

Workstation 

ERI 

Physical Indicator 1.00 
   

Environmental Indicator 0.46 1.00 
  

Sensory Indicator 0.29 0.44 1.00 
 

Workstation ERI 0.73 0.52 -0.21 1.00 

Taylor (1990) proposes the following interpretation of the coefficient for correlation analysis 

purposes: ρ ≤ 0.35 = weak correlation; 0.36 ≤ρ ≤ 0.67 = moderate correlation; 0.68 ≤ρ ≤ 0.89 = 

high correlation; and ρ ≥ 0.90 = very high correlation. Based on Taylor’s (1990) interpretation of 

the coefficient for correlation analysis, the Physical Indicator has a high correlation of 0.73 with 

the Workstation ERI, the Environmental Indicator has a high correlation of 0.52 with the 

Workstation ERI, while the Sensory Indicator has a low correlation of −0.21 with the Workstation 

ERI. Notably, the correlation analysis reveals which of the three indicators has the greatest 

influence on the Workstation ERI scores for the nine workstations analyzed in Table 4-2. This 

insight may enable the practitioner to prioritize the reduction of certain indicators over others 

during the ‘Make a risk-control decision’ stage in the ergonomic risk management lifecycle. For 

instance, Table 4-2 indicates that the 'Sheathing and Shingles' workstation poses a high physical 

and sensory risk. Therefore, for the ‘Sheathing and Shingles’ workstation, if either the physical or 

the sensory risks of the workstation must be treated, it may be effective if the practitioner 

prioritizes treating the physical risks over the sensory risks owing to the high correlation of 0.73 
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between the Physical Indicator and the Workstation ERI for the nine workstations analyzed in this 

study. Nevertheless, it is ideal that the practitioner aims to address both physical and sensory risks 

of the workstation. Finally, for any prioritized workstation, engineering controls are preferable to 

administrative controls because they eliminate ergonomic risk factors at the source (Centers for 

Disease Control and Prevention 2015). For instance, for the prioritized ‘Sheathing and Shingles’ 

workstation, the practitioner may redesign material handling systems associated with the 

workstation to alleviate the physical risks. However, when engineering controls are too cost-

prohibitive or otherwise impractical, administrative controls can be used to temporarily reduce 

worker fatigue by limiting exposure to ergonomically hazardous job tasks. Examples of 

administrative controls that can be used are worker rotation, minimizing shift duration of workers, 

providing PPE, increasing staffing, and providing sufficient breaks.  However, to reduce 

Workstation ERI for the prioritized workstation, engineering controls must be implemented at the 

workstation. 

4.4.2.3 Validation and testing of DSS 

This section describes the validation and testing of the DSS, where the case modular construction 

company’s 2015–2022 injury reports are used to validate and test the developed DSS. Validation 

is especially useful for fine-tuning the DSS to select the best DSS configuration for the fuzzy rules 

and membership functions, while testing is used to achieve an unbiased final evaluation of the 

DSS. It would be ideal to compare the DSS's ERI with an actual ERI score to evaluate the DSS's 

performance; however, since there is no actual ERI score against which the DSS's ERI can be 

compared, the ‘Count of total injuries’ in each work area from the case modular construction 
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company’s 2015–2022 injury reports is used as a proxy to evaluate the DSS's performance in 

estimating the risk level of work areas. 

To validate the developed DSS, the Area ERI outputs of the DSS are compared to the ‘Count of 

total injuries’ for the wall, windows, manual, floor, and roof work areas. It is important to recall 

that the Area ERI (ERI per work area) is derived from the Workstation ERI in Table 4-1 using 

Equation (4-1). The results of the validation are displayed in Fig. 4-6. Overall, for the validation 

phase, a high correlation of 0.7 is observed between ‘Count of total injuries’ and ‘Area ERI’, 

demonstrating the extent to which the developed DSS is valid for assessing ergonomic risks in the 

workplace. The developed DSS is then tested by comparing the Area ERI outputs of the DSS to 

the ‘Count of total injuries’ extracted for the ‘Loading area’ that was not exposed during the fine-

tuning of the DSS. The findings of the testing are also shown in Fig. 4-6 (i.e., in the same figure 

where the validation results are displayed, but appearing to the right of the dashed line). The 

findings indicate a low 'Area ERI' of '0.3' for the ‘Loading area’, which is consistent with the low 

‘Count of total injuries’ for the area. The consistency between ‘Count of total injuries’ and the 

'Area ERI' for the loading area demonstrates the degree of generalizability of the developed DSS 

for assessing ergonomic risks of any hypothetical work area. Overall, for both the validation and 

testing phases, a high correlation of 0.8 is observed between ‘Count of total injuries’ and ‘Area 

ERI’. 
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Figure 4-6 Validation–testing outcomes for the DSS 

Examining the experimental results, the validation shows a correlation of 0.70 between the ‘Count 

of total injuries’ and the 'Area ERI,' and the validation and testing phase’s together show a 

correlation of 0.80. Moreover, in testing the developed DSS, the consistency between ‘Count of 

total injuries’ and the 'Area ERI' for the ‘Loading area’ demonstrates the degree of generalizability 

of the developed DSS for assessing ergonomic risks for any hypothetical work area. Overall, in 

terms of classifying workstations as high-risk or low-risk, the DSS provides a reliable assessment 

of the risk posed by each work area. However, in its current form, the developed DSS is not perfect 

in differentiating the risk level between workstations. For example, the DSS generates a 

comparable ERI for the wall, manual, and floor area despite the difference in their ‘Count of total 

injuries’. Nonetheless, it is able to determine that the roof workstation has the highest risk, in 

keeping with the ‘Count of total injuries.’ Thus, it can be concluded that the developed DSS in its 

current form can reliably distinguish between high-risk and low-risk workstations, 

notwithstanding the noted deficiency with respect to distinguishing the level of risk between 

workstations. To enhance the DSS's ability to differentiate the risk level between workstations, 
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future work could be undertaken to modify the fuzzy rules and membership functions of the DSS’s 

FESs. 

4.5 Discussion and Conclusion 

In this study, an integrated fuzzy logic-based DSS for ergonomics risk assessment that evaluates 

physical, environmental, and sensory aspects of work systems simultaneously is developed. The 

developed DSS generates a composite risk score, ERI, representing the combined physical, 

environmental, and sensory risk levels in work systems. 

The key highlights of this study are: 

• The developed DSS provides a reliable assessment of the risk posed by each work area and 

can serve as an automated, integrated ergonomics risk assessment tool to help practitioners 

improve occupational health and safety. 

• The DSS can distinguish between high-risk and low-risk workstations but has a deficiency 

in differentiating the risk level between workstations. 

The proposed DSS offers a significant contribution to the field of ergonomics risk assessment by 

evaluating the physical, environmental, and sensory aspects of work systems simultaneously. The 

developed DSS provides a reliable assessment of the risk posed by each work area and can be used 

as an automated, integrated tool to improve occupational health and safety. However, the DSS 

needs further modification to enhance its ability to differentiate the risk level between 

workstations. Moreover, the proposed DSS is fine-tuned, validated, and tested for only one 

modular construction plant, the developed DSS should be tested on other modular construction 
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plants to confirm its generalizability. Overall, this study provides valuable insights for 

comprehensively understanding the ergonomic risk of work systems, thereby, facilitating the 

reduction of ergonomic discomfort and the enhancement of work system productivity. 
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Chapter 5: A DATA ANALYTICS FRAMEWORK FOR IDENTIFYING 

AND CHARACTERIZING INCIDENT CLUSTERS IN THE DIAGNOSIS 

OF RISK FACTORS IN MANUFACTURING 

5.1 Introduction 

Improving OSH is a key industrial concern, particularly in manufacturing. According to 2021 

statistics from the Association of Workplace Safety and Insurance Boards of Canada (Abdi et al. 

2010), the manufacturing industry has the second-highest rate of injuries/diseases in Canada. 

Effective management of OSH risks in manufacturing is essential because it helps to lower the risk 

of accidents, lower workers' compensation costs, and improve productivity and product quality 

(Pawłowska et al. 2011; Li et al. 2019; Lee et al. 2021). OSH researchers have traditionally used 

qualitative, quantitative, or quali-quantitative methods to minimize occupational risks (Fera et al. 

2009). However, with recent developments in machine learning (ML), researchers have developed 

several ML-based quantitative methods for interpreting, classifying, and evaluating OSH 

performance (Sarkar et al. 2020; Lee et al. 2021; Chan et al. 2022) that have outperformed their 

traditional counterparts. 

ML is a branch of artificial intelligence that is becoming more popular in many fields as a result 

of technological advances that have made it easier to collect and process large volumes of data. 

ML refers to the use of algorithms to optimize a performance criterion based on training data 

and/or historical data (Alpaydin et al. 2020). ML algorithms ‘learn’ from existing data and create 

models that reveal underlying structures (unsupervised learning) or forecast discrete or continuous 

output variable(s) in unseen data (supervised learning) while employing hyperparameters set by 
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the researchers (Meena et al. 2020). Recent reviews on ML methods in OSH (Sarkar et al. 2020; 

Lee et al. 2021; Chan et al. 2022) reveal the effectiveness of ML methods in enhancing OSH and 

reducing occupational injuries.  

In OSH, occupational risks are often implicit and ill defined. Therefore, it is vital for the 

manufacturing industry to have a risk classification system that can be used to better understand 

risk factors. In recent years, manufacturing OSH researchers have created numerous classification-

based ML models for facilitating risk factor diagnosis. Despite the usefulness of numerous 

classification-based ML models in OSH research, to effectively mitigate OSH risk, it is crucial to 

understand the predictors of ML models for risk diagnosis (Sarkar et al 2020; Chan et al. 2022). 

Therefore, this study concentrates on a specific sub-theme of OSH research, namely, risk factor 

diagnosis in manufacturing.  

Recognizing the significance of risk factor diagnosis, numerous researchers have developed 

classification-based ML models alongside model interpretation techniques to comprehend the 

models they had developed. However, these models are often accompanied by model interpretation 

techniques that may not be easily interpretable for non-technical personnel, such as business 

stakeholders and health and safety specialists. Therefore, it becomes challenging to persuade these 

non-technical personnel to implement safety intervention policies. In addition, existing studies 

have used pre-labeled datasets to develop and interpret classification-based ML models. However, 

pre-labeled datasets in some cases may not be readily available for model development. In such 

circumstances, substantial efforts must be put to labeling the datasets, a task that can be time-

consuming and that may delay risk factor diagnosis. For these reasons, an interpretable ML-based 
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data analytics framework is presented that does not require pre-labeled datasets for safety and 

ergonomics risk factor diagnosis using incident data.  

5.2 Methodology 

This section provides an overview of the proposed framework (as depicted in Figure 5-1), which 

comprises three modules: (a) data collection—the collecting of incident details that are then 

translated into structured data; (b) data preprocessing—the translation of unprocessed data into a 

format suitable for subsequent analysis; and (c) identification and characterization of incident 

clusters—labeling of unlabeled incident data utilizing clustering algorithms, followed by cluster 

interpretation for the diagnosis of risk factors 

 

 

Figure 5-1 An overview of the proposed framework 
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5.2.1 Data collection  

The data collection module involves the collection and translation of incident data into a structured 

format to create a dataset that can be used to identify and characterize clusters of incidents. As 

incidents occur in a given organization, the practitioner initially gathers incident reports or 

‘incident details’ in the form of comments from injured workers. The practitioner then manually 

converts the comments provided by the injured workers into a structured format. Converting 

injured workers' comments into a structured format entails translating incident details into a 

tabulated format to extract meaningful insights. Specifically, the dataset can be translated into a 

structured format using the specifications demonstrated in Table 5-1. (In addition, an e.g., of a 

translated dataset is shown in Figure 5-2) It is important to note that the categorical values extracted 

from the comments of each incident detail are designed to be compatible with the modular building 

manufacturing facility investigated in the case study. If the proposed framework were to be applied 

to a different industry, the categorical values listed under each Feature in Table 5-1 could be 

tailored to meet the needs of that industry. It should also be noted that, when the practitioner sets 

multiple categorical values, each feature in the dataset must have sufficient variance to help the 

subsequent modules discover meaningful patterns from the incident reports. 

Table 5-1 Overview of dataset specifications for case study dataset 

Feature Categorical data 

Injury source heavy objects, nail gun, falling objects, metal items, trailer, ladder, 

hammer, vehicle, machine, foreign object, crane 
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Ergonomic risk factor poor posture, forceful exertion, vibration, repetition, contact stress, 

force exertions/ poor posture (F/P), repetition/ poor posture (R/P), 

working from height 

Safety factor inadequate guards or protection, inadequate clearances, inadequate 

PPE, working from height, inadequate maintenance, inadequate 

equipment and tool, inadequate training, weather condition 

Motion injury nailing, slipping, lifting, falling, carrying, walking/ moving, pulling, 

pushing, swinging, driving/craning, exiting 

Area of injury back, finger, hand, knee, face, shoulder, ankle, arm, wrist, foot, head, 

neck, elbow, leg, hip, chest 

Injury type strain/sprain, cut/laceration, bruise, foreign object, fracture 

Area wall, windows and doors, manual, floor, roof 

Table 5-1 contains two columns — ‘features’ and ‘categorical data’:  

1. ‘Features’ are the variables that will be used in the dataset. The particular features listed in 

Table 5-1 are selected due to their ability to effectively identify meaningful clusters of 

incidents. The structured dataset may contain features such as ‘Date’ and ‘Incident details,’ 

which would simply be the date the incident occurred and incident-related comments for 

reference. 

2. ‘Categorical data’ refers to the vast array of industry-specific categorical values extracted 

from ‘incident detail’ comments for each feature listed in Table 5-1. It should be noted that 

practitioners may leave some cells blank if there is some uncertainty with respect to the 

‘incident details’ comments or if the incident does not fall within the predetermined 

categories. However, if there are many empty cells, the proposed framework may not be 

able to extract meaningful insights from the incident reports. 
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5.2.2 Data Preprocessing 

In this module, the proposed framework must transform unprocessed data into a format suitable 

for identifying and characterizing clusters with high risk. Before this dataset is passed to the 

subsequent modules, it must be cleaned in order to avoid incorrect or misleading results. In 

addition, the proposed framework uses only categorical features, so the categorical features must 

be transformed to accommodate Unsupervised ML algorithms. 

5.2.3 Identification and characterization of high-risk clusters 

This module uses Unsupervised ML, specifically clustering algorithms, to group and label injury 

instances based on the features in Table 5-1. Selecting the most suitable clustering algorithm is 

one of the key issues that must be addressed before identifying and characterizing incident clusters. 

In this study, the k-Means Clustering, Agglomerative Hierarchical Clustering, Birch Clustering, 

and Optics Clustering algorithms are evaluated for illustrative purposes to determine the best 

clustering algorithm. As per the proposed framework, the task of screening clustering algorithms 

is an iterative process that requires the practitioner to iterate between three stages before the best 

clustering algorithm can be identified: (1) internal validation—computing internal validation 

indices for various clustering algorithms to guide the selection of the best clustering algorithm 

(i.e., the one with the optimal number of clusters, k); (2) principal component analysis (PCA)—

visualizing the results of clustering analysis using a dimensionally reduced plot; and (3) 

characterization of incident clusters—interpreting the results of PCA using interpretable ML and 

clustering visualization techniques. Overall, this iterative process simply entails subjecting 

different clustering algorithms with different k-values to internal validation, PCA, and 



84 

 

characterization of incident clusters stages, and annotating the results to evaluate and determine 

the best clustering algorithm (i.e., the one with the optimal k-value). Once the best clustering 

algorithm has been identified, it can be used to identify and characterize incident clusters from 

incident reports. 

5.2.3.1 Internal validation  

There are two methods for validating the performance of clustering algorithms for a given dataset: 

(1) external validation—determines if clustering results correspond to an a priori expected cluster 

(when the ‘true cluster labels’ are known, the clustering output is compared to a given ‘correct’ 

clustering), and (2) internal validation—examines the clustering outcomes using internal 

validation indices that do not require prior knowledge from the dataset. The latter method is 

employed when the ‘true cluster labels’ are unknown (Rendón et al. 2011; Pedregosa et al. 2011). 

Since the unlabeled incident report dataset is used in the present study, the proposed framework 

employs internal validation to guide the selection of the best algorithm (i.e., optimal k-value) 

among the algorithms screened. 

Popular internal validation indices such as the ‘Silhouette Coefficient’, ‘Caliński-Harabasz Index’, 

and ‘Davies-Bouldin Index’ (Rousseeuw et al. 1987; Caliński et al. 1974; Davies et al. 1979) are 

used, where a greater Silhouette coefficient is indicative of a model with more coherent clusters. 

The score ranges from −1 (clustering errors) to +1 (dense clustering), where a score close to 0 

indicative of cluster overlap (Rousseeuw et al. 1987; Pedregosa et al. 2011). A greater Caliński-

Harabasz Index, meanwhile, indicates dense clusters that are well-separated (Caliński et al. 1974; 

Pedregosa et al. 2011), and a lower Davies-Bouldin Index corresponds to a model with superior 
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cluster separation. Zero is the lowest possible Davies-Bouldin Index, and values closer to 0 

indicate better partitioning between clusters (Davies et al. 1979; Pedregosa et al. 2011). 

Von Luxburg et al. (2012) argue that the available internal cluster validation indices are unsuitable 

for objective evaluation of clustering algorithms, asserting that these indices reveal relatively little 

about a clustering's usefulness across algorithms. They suggest that, for every index favoring one 

clustering over another, one can invent the opposite, and therefore, in essence, no global, objective 

clustering score exists (Von Luxburg et al. 2012). To overcome the deficiency of individual 

indices, then, three internal validation indices (i.e., the ‘Silhouette Coefficient,’ ‘Calińki-Harabasz 

Index,’ and ‘Davies-Bouldin Index,’) are employed in combination to select the best clustering 

algorithm (i.e., the one with the optimal k-value) rather than using just a single index. The rationale 

for using these three clustering indices in particular is that they are compatible with the widely-

used scikit-learn package, created by Pedregosa et al. (2011), that is employed in this research. 

5.2.3.2 Principal component analysis 

Visualization plays a crucial role in determining the performance of the selected clustering 

algorithm and its corresponding k-value in a manner that facilitates the discovery of meaningful 

clusters within a dataset (Von Luxburg et al. 2012). Von Luxburg et al. (2012) also argued that 

clustering and visualization need to be examined together in order to find meaningful clusters in 

data. In other words, it is reasonable to sacrifice some accuracy in the clustering algorithm in 

exchange for improved visualization performance (Von Luxburg et al. 2012). In light of the 

importance of visualizing the clustering results, the proposed framework uses an Unsupervised 

ML algorithm called PCA (Abdi et al. 2010). PCA reduces the dimensionality of clustering results 
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so that they can be more easily visualized by practitioners. Dimensionality reduction, it should be 

noted, refers to the transformation of high-dimensional datasets to low-dimensional datasets 

(Bruce et al. 2020). In this regard, Nguyen & Holmes (2019) asserted that conventional PCA 

cannot be applied to categorical variables but applies to numerical variables. Consequently, 

categorical features are handled in the present research by converting them to dummy binary 

features (one-hot encoding) to make them suitable for PCA. However, other suitable 

transformations can also be applied to the categorical features in order to make the dataset 

adaptable to PCA. Thus, using PCA, the incomprehensible results of high-dimensional clustering 

become comprehensible. Nevertheless, the characterization of incident clusters, as discussed in the 

following section, is critical in any effort to make sense of the PCA results. 

5.2.3.3 Characterization of high-risk clusters 

Clustering algorithms can identify clusters, but they cannot descriptively label (characterize) them. 

Typically, a domain expert is required to characterize each cluster through manual analysis of the 

clustering results, which is a laborious task. Consequently, a simplified method using the latest 

advances in the field of interpretable ML in conjunction with intuitive visualization charts to 

effortlessly characterize incident clusters is incorporated.  

The risk cluster characterization process suggested in this module can be used in conjunction with 

PCA results in order to better understand meaningful structures in the clustered data. Specifically, 

the SHAP value, an important technique in interpretable ML that was originally developed in the 

context of game theory (Lundberg et al. 2017; Strumbelj et al. 2010) is selected for the proposed 

framework owing to its strong theoretical underpinnings. In this regard, Liu & Udell (2020) 
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explored how a model’s predictive accuracy affects interpretation quality and concluded that the 

use of the extreme gradient-boosting algorithm (XGBoost) with SHAP provides the most reliable 

model interpretation. Accordingly, in the present research, an XGBoost classifier model is trained 

on the clustered incident report dataset to predict cluster membership over n-folds. SHAP values 

are then applied to the developed XGBoost classifier model for intuitive model interpretation. In 

other words, the proposed framework uses the XGBoost classifier in conjunction with SHAP on 

the clustered incident report dataset to simplify the process of cluster characterization.  

In addition, Hinneburg (2009) recommends the use of a parallel coordinates plot for visualizing 

the overall clustering results on the dataset, and this can be done without any dimensionality 

reduction. However, since plotting of parallel coordinates is for numerical data, the parallel 

categories plot is used instead. The parallel categories plot, it should be noted, is a type of flowchart 

that illustrates data patterns and trends using flow streams, which are assigned to parallel vertical 

axes. The blocks on these vertical axes represent the distribution of categorical data for all the 

features in the incident report dataset. Each block is different in size, and flow streams pass through 

each in a different manner. Essentially, the user can identify the extensiveness of incident patterns 

and trends in each risk cluster using the parallel categories plot. 

5.3 Case Study 

To evaluate the performance of the proposed framework, a case study in a modular building 

manufacturing facility is examined. Modular building manufacturing is popular in North America 

due to its efficiency. This construction approach involves fabricating modular components in an 
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offsite facility and then transporting them to the site for assembly. The manufacturing plant chosen 

for the case study consists of five work areas:  

1. Wall Area—In the wall frame assembly area, automated robotic machinery is used to 

precut all materials with high accuracy. These precut wall frames are inspected for defects 

and then passed on to the next position using conveyors. Wall panels are then manually 

placed and fixed to the wall frame using power tools, and finally passed on to the Windows 

and Doors Area. 

2. Windows and Doors Area—This area involves workers moving and fixing windows and 

doors to the wall using vacuum lifts and power tools. 

3. Manual Area—In this area, workers fabricate various wood building components (e.g., 

stairs, deck, veranda) using power tools and non-powered hand tools. 

4. Floor Area—Floor assembly is conducted primarily on computerized tables. However, 

floor panels are glued and sheeting is mounted on the floor panel assembly manually by 

the workers prior to the computerized robots fastening the materials. 

5. Roof Area—The roof area involves job tasks such as loading, sorting, and assembling the 

trusses into a roof frame. Depending on the type of roof, drywall boarding and Tyvek home 

wrap may also be installed at this juncture. The roof assembly also necessitates installing 

sheathing, shingles, siding, and waterproof paper and cutting vents. 

The descriptions above clearly show that the plant is only partially automated in its operational 

processes and involves several manual tasks that pose occupational risks. 
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5.3.1 Data Collection 

In the first module, a structured and unlabeled incident report dataset containing 102 

manufacturing facility incident reports from the period, 2019 to 2021, is collected. A sample of 

the structured and unlabeled incident report dataset used for the case study is provided in Figure 

5-2. 

 

Figure 5-2 A sample of the incident report dataset 

5.3.2 Data Preprocessing 

In this module, the dataset is inspected for any errors and cleaned in order to prevent erroneous 

and misleading results in the subsequent modules. The original dataset comprises 102 rows with 9 

features. The ‘Date’ and ‘Incident details’ features are then removed, owing to their irrelevance to 

clustering analysis. Moreover, data is missing across some features of the dataset. These values 

are missing because they are left blank either when they do not match the categorical values in 

Table 5-1 or when they are unknown. In general, it is typical to replace missing values with the 

most common class. However, in this study, the missing data have been replaced with the constant 

‘Unavailable’ value because missing values can provide meaningful results during cluster 

characterization. Subsequently, the categorical features of the incident report dataset are 
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transformed to be PCA-adaptable by applying one-hot encoding to all of the categorical features. 

Finally, the transformed dataset that is used for the identification of incident clusters entails 

consists of 102 rows with 68 features. 

5.3.3 Identification and characterization of high-risk clusters 

This module involves the labeling of injury instances using clustering algorithms based on 

similarity of worker incidents. k-Means Clustering, Agglomerative Hierarchical Clustering, Birch 

Clustering, and Optics Clustering are screened to identify the best clustering algorithm (i.e., the 

one with the optimal k-value) for identifying incident clusters. As noted above, screening of 

clustering algorithms is an iterative process that requires the practitioner to iterate between three 

stages—internal validation, PCA, and characterization of incident clusters—in order to identify 

the best clustering algorithm. This iterative process simply entails selecting an algorithm with a 

particular k-value and running it through the three stages, after which the best clustering algorithm 

can be identified. Once the best clustering algorithm (i.e., the one with the optimal k-value) has 

been identified, it can be used to identify and characterize incident clusters from incident reports. 

5.3.3.1 Internal validation 

As noted above, it is essential to select the best clustering algorithm for the identification of risk 

clusters. The internal validation indices, ‘Silhouette Coefficient’, ‘Caliński-Harabasz Index’, and 

‘Davies-Bouldin Index’, are used to investigate the performance of the clustering algorithms. The 

results of the ‘Silhouette Coefficient’, ‘Caliński-Harabasz Index’, and ‘Davies-Bouldin Index’ 

validation indices for running k-Means Clustering, Agglomerative Hierarchical Clustering, Birch 
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Clustering, and Optics Clustering algorithms for k-values between 2 and 10 are displayed in Tables 

5-2, 5-3, and 5-4, respectively. 

Table 5-2 Results of Silhouette Coefficient 

 
k 

Algorithm 2 3 4 5 6 7 8 9 10 

k-Means 0.116 0.127 0.140 0.150 0.138 0.128 0.144 0.138 0.123 

Agglomerative Hierarchical  0.102 0.118 0.132 0.137 0.127 0.128 0.138 0.146 0.151 

Birch 0.102 0.118 0.134 0.141 0.129 0.130 0.132 0.141 0.141 

Optics n/a 0.087 n/a n/a n/a n/a n/a n/a n/a 

Note: k = number of clusters; n/a = not applicable 

Table 5-3 Results of Calinski-Harabasz Index 

 
k 

Algorithm 2 3 4 5 6 7 8 9 10 

k-Means 14.580 13.096 11.935 11.028 9.886 8.845 8.328 8.061 7.477 

Agglomerative 

Hierarchical  

13.477 12.473 11.447 10.410 9.442 8.760 8.320 7.995 7.627 

Birch 13.477 12.473 11.581 10.451 9.478 8.758 8.281 7.901 7.538 

Optics n/a 10.616 n/a n/a n/a n/a n/a n/a n/a 

Note: k = number of clusters; n/a = not applicable 

Table 5-4 Results of Davies Bouldin Index 

 
k 

Algorithm 2 3 4 5 6 7 8 9 10 

k-Means 2.316 2.247 2.447 2.217 2.135 2.168 2.072 2.004 2.055 

Agglomerative Hierarchical  1.866 2.274 2.444 2.315 2.200 2.119 2.228 2.099 1.946 
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Birch 1.866 2.274 2.442 2.296 2.192 2.178 1.984 1.879 2.002 

Optics n/a 2.143 n/a n/a n/a n/a n/a n/a n/a 

Note: k = number of clusters; n/a = not applicable  

The highlighted k-values in Tables 5-2, 5-3, and 5-4 represent the ‘optimal k-value’ for k-Means 

Clustering, Agglomerative Hierarchical Clustering, Birch Clustering, and Optics Clustering 

algorithms based on the internal cluster validation indices employed. Although only four 

algorithms are used in the screening procedure, there are numerous alternatives (based on k-values) 

to evaluate. To determine the most suitable clustering algorithm, specifically the one with the 

optimal k-value, for the case study, a comprehensive evaluation is conducted. This evaluation 

involves the consideration of four clustering algorithms and three internal validation indices, 

resulting in a total of 28 distinct alternatives. For the k-Means Clustering, Agglomerative 

Hierarchical Clustering, and Birch Clustering algorithms, the k-value ranges from 2 to 10 (27 

alternatives), whereas, for Optics Clustering algorithms, the k-value is determined by the algorithm 

to be 3 (i.e., 1 alternative). Consequently, there are a total of 28 alternatives from which one 

clustering algorithm (i.e., the one with the optimal k-value) is selected. However, evaluating all 28 

clustering algorithm alternatives can be a lengthy procedure. 

Therefore, to simplify the procedure, simply the highlighted potential ‘optimal k-values’ in Tables 

5-2, 5-3, and 5-4, can be evaluated and eliminate the remaining alternatives from further 

consideration. Consequently, k-Means (k = 5, 2, 9), Agglomerative hierarchical (k = 10, 2), Birch 

(k = 9, 2), and Optics (k = 3), a total of eight different alternatives are selected for evaluation. 

These eight alternatives are evaluated using PCA (Section 4.3.2) and characterization of incident 
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clusters (Section 4.3.3) to filter out the best clustering algorithm (i.e., the one with the optimal k-

value). 

5.3.3.2 Principal Component Analysis 

As noted above, the proposed framework evaluates clustering and visualization together. Thus, the 

results in Tables 5-2, 5-3, and 5-4 are examined using PCA to determine the best algorithm (i.e., 

the one with the optimal k-value) that provides useful clustering results. Although the details of 

such an investigation are not elaborated on in detail in this paper due to space limitations, 

qualitative descriptors such as (1) convoluted clusters (the clusters are not meaningful and/or are 

difficult to interpret), (2) moderately meaningful clusters (the clusters are somewhat ambiguous 

but can be interpreted to a satisfactory degree), and (3) meaningful clusters (the clusters are 

meaningful and easy to interpret) are used to summarize of the quality of the clustering results. 

With respect to the Silhouette Coefficient results (Table 5-2), it is found that both k-Means and 

Optics Clustering algorithms achieve meaningful clusters. However, the results of the 

Agglomerative Hierarchical Clustering and Birch Clustering are reflective of convoluted clusters. 

With respect to the Caliński-Harabasz results (Table 5-3), meanwhile, the Optics Clustering 

algorithm is found to achieve meaningful clusters, the k-Means Clustering algorithm revealed 

moderately meaningful clusters, and the Agglomerative Hierarchical Clustering and Birch 

Clustering convoluted clusters. With respect to the Davies-Bouldin results (Table 5-4), finally, the 

Optics Clustering algorithm is found to achieve meaningful clusters, the Agglomerative 

Hierarchical Clustering and Birch Clustering moderately meaningful clusters, and the k-Means 

Clustering algorithm convoluted clusters.  
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In summary, having a relatively small number of clusters (i.e., small k-values) is found to be 

helpful in identifying clusters that are simple to characterize, whereas having a larger number of 

clusters (i.e., large k-values) makes cluster characterization more difficult. Overall, examining the 

results of the respective indices (Tables 5-2, 5-3, and 5-4) jointly with the PCA results (i.e., in 

tandem with characterization of risk clusters—Section 4.3.3) reveals that the k-Means clustering 

algorithm (k = 5), and optics clustering algorithm (k = 3) both achieve meaningful clusters useful 

for the intended purpose of the case study. Figure 5-3a illustrates the PCA visualization for the 

Optics clustering algorithm (k = 3), while Figure 5-3b illustrates the PCA visualization for the k-

Means clustering algorithm (k = 5). To aid understanding of Figures 5-3a and 5-3b, the cluster 

characterization results (as per Section 3.3.3) are discussed as follows. 

 

Figure 5-3 PCA plot for the selected algorithms 

Figure 5-3a depicts the Optics clustering algorithm (k = 3). The defining characteristics of the 

incident clusters generated by the Optics clustering algorithm (k = 3) are as follows: (1) Cluster 

1—arbitrary injuries (blue cluster—here, ‘hybrid injuries’ refers to injuries caused by a 

Figure 5-3a PCA plot 

Optics clustering algorithm. 

(k = 3)  

 

 

Figure 5-3b PCA plot for k-

Means clustering algorithm. (k = 

5)  

 (k = 5) 
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combination of ergonomic and safety hazards); (2) Cluster 0—nailing injuries (green cluster); and 

(3) Cluster 1—heavy lifting injuries (red cluster). 

Figure 5-3b, meanwhile, depicts the k-Means clustering algorithm (k = 5). The defining 

characteristics of the incident clusters of the k-Means clustering algorithm (k = 5) are as follows: 

(1) Cluster 0—injuries related to inadequate training and nailing (green cluster); (2) Cluster 1—

injuries from ergonomic and safety hazards, particularly in the Roof area (purple cluster); (3) 

Cluster 2—injuries caused by heavy lifting, back injuries, and strain/sprain injuries, especially in 

the Wall area (red cluster); (4) Cluster 3—injuries caused by inadequate machine guards and 

bruising-related injuries (orange cluster); and (5) Cluster 4—arbitrary injuries (blue cluster). 

Overall, both the Optics clustering algorithm (k = 3) and the k-Means clustering algorithm (k = 5) 

are found to achieve meaningful clusters. In the present study, however, k-Means clustering (k = 

5) is selected due to it having identified a small but significant difference between the incident 

clusters that the Optics clustering algorithm (k = 3) was not able to identify. 

5.3.3.3 Characterization of incident clusters 

This subsection discusses the characterization of incident clusters for cluster analysis results. For 

demonstration purposes but in the interest of brevity, only the results of the selected k-Means 

clustering algorithm (k = 5) are shown. Figure 5-4 shows the results of applying the k-Means 

clustering algorithm (k = 5) to the unlabeled incident report dataset. 
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Figure 5-4 Sample of the labeled incident report dataset via k-Means clustering algorithm 

(k = 5) 

The XGBoost classifier model is trained on the results of the labeled incident report dataset to 

predict cluster membership over 5-folds (using an 80/20 training/testing split). The F1 score is 

reported as the performance metric to account for any potential class imbalances. The developed 

XGBoost model is found to predict cluster membership with 92% performance on the test set. The 

confusion matrix of the XGBoost model’s test set is also displayed in Figure 5-5. SHAP values 

are then applied to the developed XGBoost classifier model to reveal the significance of each 

feature for each cluster identified. The significant characteristics of each of the incident clusters 

are displayed as a SHAP summary plot in Figure 5-6. 
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Figure 5-5 Confusion Matrix 
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Figure 5-6 SHAP summary plot 

Unlike the confusion matrix, the SHAP values do not shed light on the XGBoost model’s 

performance, but instead facilitate the interpretation of the characteristics of cluster membership. 

In Figure 5-6, the y-axis represents all of the important features of the model, whereas the x-axis 

represents the mean absolute SHAP values of the associated features. Here, the greater the SHAP 

value is, the greater the significance of the specific features will be. In this way, by understanding 

the significant features of each class, it is possible to characterize the incident clusters. For 

example, Class 0 or Cluster 0 (magenta color) is easily interpretable by observing the four most 
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dominant magenta-colored portions of the horizontal bars in Figure 5-6. Evidently, 

‘Injury_source_nail gun,’ ‘Motion_injury_nailing,’ ‘Safety_factor_inadequate training,’ and 

‘Area_of_injury_hand’ are some of the key characteristics of Cluster 0. These descriptors, 

provided by the y-axis of the SHAP summary plot, clearly indicate that Cluster 0 has injuries 

resulting from insufficient training and nailing activities. Other incident clusters of the k-Means 

clustering (k = 5) can be characterized in a similar manner. Meanwhile, to gain further insights 

into the characteristics of incident clusters, the SHAP summary plot can be used in conjunction 

with the parallel coordinates plot. In this regard, Figure 5-7 depicts a parallel categories plot for 

the clustering analysis results. It can be seen in the figure that Cluster 0 includes the ‘Puncture’ 

and ‘Cut/Laceration’ injury types as other critical cluster characteristics for the e.g., discussed with 

regard to Figure 5-6. 

 

Figure 5-7 Parallel categories plot   
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In addition, the modular building manufacturing facility's health and safety expert is interviewed 

to explore implicit expert knowledge concerning workplace injuries. The health and safety expert 

is asked to explain the most prominent risk factors in the plant. The expert's comments reveal four 

groups of injuries: (A) nailing accidents; (B) strain/sprain and back injuries from manual materials 

handling; (C) injuries from working on uneven surfaces with awkward body postures, especially 

in the roof area; and (D) arbitrary high-risk factor injuries (ergonomic and safety injuries). The 

health and safety expert's insights are found to be comparable to the results of the proposed 

framework (i.e., Group A injuries correspond to Cluster 0 injuries, Group B to Cluster 2, Group C 

to Cluster 1, and Group D to Cluster 4). However, the proposed framework identifies another group 

of injury instance, Cluster 3, which includes injuries caused by inadequate machine guards and 

bruising-related injuries. 

Overall, the proposed framework achieved a high F1 score of 92% with the developed XGBoost 

classifier model, and worker incident clusters identified by the framework were comparable to an 

expert's injury groupings, indicating its reliability for enhancing safety intervention efforts. Thus, 

the presented framework simplifies the process of diagnosing risk factors by effectively identifying 

and characterizing incident clusters in a meaningful manner. 

5.4 Discussion and Conclusion 

In this study, an interpretable ML-based data analytics framework for identifying and 

characterizing worker incident clusters is developed. This frameworks effectiveness is validated 

by assessing the performance of the XGBoost classifier model, and also by comparing the results 

to expert’s opinion. Proposed framework is effective for diagnosing risk factors and has a low 
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barrier to entry for implementation in manufacturing, simplifying the process of enhancing safety 

intervention efforts. 

The key highlights of this study are: 

• The proposed framework does not require pre-labeled datasets for identifying and 

characterizing incident clusters, making it a useful tool for safety and ergonomics risk 

factor diagnosis. 

• The proposed framework demonstrated effectiveness in the case study, achieving a 92% 

F1 score with the developed XGBoost classifier model and providing worker incident 

clusters comparable to an expert's injury groupings. 

The proposed framework effectively identifies and characterizes incident clusters using worker 

incident data, simplifying the process of diagnosing safety and ergonomics risk factors in the 

manufacturing industries. 
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Chapter 6: STRATEGIC VISIONS FOR IMPROVING ML-BASED 

PHYSICAL ERGONOMIC RISK ASSESSMENT TOOLS: 

PRIORITIZING HUMAN CONVENIENCE IN TOOL DESIGN AND 

UTILIZATION 

6.1 Introduction 

The manufacturing sector in Canada has the second-highest injury/disease rate, according to 2013 

figures from the Association of Workplace Safety and Insurance Boards of Canada (AWCBC, 

2013). Improving the ergonomic performance of work systems is a key industrial concern, 

particularly for manufacturing industries. Workers often experience musculoskeletal issues due to 

physical demands like repetitive tasks and awkward positions (Li et al., 2019). Addressing 

ergonomic performance is vital to minimize these risks and enhance productivity (Lee et al., 2021). 

Moreover, optimizing the interactions between human-system elements also has positive effects 

on organizations in regards to financial, technical, legal, social, organizational, political, and 

professional contexts (Resnick, 1997; Wilson, 2000; Shikdar, 2002; Shikdar, 2003).  Trained 

ergonomists, according to Pascual et al. (2008), recommend the NIOSH Lifting Equation (Waters 

et al., 1993), RULA (Lynn et al., 1993), and REBA (McAtamney et al., 2004) for evaluating 

physical ergonomic risks. However, there also exist several other physical ergonomic risk 

assessment tools (Karhu et al., 1977; Moore et al., 1995; Hollman et al., 1999; Health and Safety 

Executive 2006) that can facilitate work system improvement. While these tools offer advantages, 

they frequently demand significant time and labor for risk assessments. This can be particularly 

challenging for small and medium-sized enterprises lacking ergonomic expertise and resources. In 

such cases, ML systems emerge as a viable solution to automate assessments (Drury et al., 2021). 
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Hence, the implementation of ergonomic risk assessment tools, including advanced ML-powered 

methods, offers a pivotal pathway to enhance safety and productivity in manufacturing industries. 

However, considerations about integration and practicality remain important. The focus on 

manufacturing ergonomics in the paper is driven by the sector's high injury rates, the need to 

improve worker safety and productivity, and the potential of ML-driven automation to address 

these challenges. 

ML is increasingly influential, benefiting from technological progress that enables automated data 

collection and processing (Alpaydin, 2020). This capacity for automated data handling proves 

invaluable for the partial or complete automation of ergonomics risk assessments. Numerous 

researchers have crafted ML-based solutions to automate ergonomic risk assessments (Parsa et al., 

2020; Arora et al., 2021; Ciccarelli et al., 2022; Arora et al., 2022; Lee et al., 2022; Kwon et al., 

2022; Fernandes et al., 2022; Generosi et al., 2022; Kunz et al., 2022). ML involves algorithms 

that maximize performance using training or historical data, learning from known information to 

create models for structure revelation or outcome prediction (Meena et al., 2020). Supervised 

learning, a subset of ML, includes regression for continuous prediction and classification for 

discrete variable prediction (Meena et al., 2020), underscoring data's importance for ML-powered 

ergonomic risk assessment tools. It must be noted here that, the field of ergonomics offers a range 

of data collection methods to collect ergonomic data: self-reports, where exposure data is gathered 

through interviews and questionnaires; observational methods, including both simple techniques 

involving manual recording and advanced methods using computer vision algorithms; and direct 

measurements using sensors or markers attached to individuals (David 2005).  
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Initially, ergonomic risk assessment tools primarily leaned on self-reports and basic observational 

methods (Wang et al., 2015). Nevertheless, the field has since evolved, embracing advanced 

observational methods and direct measurements (David 2005; Wang et al., 2015) often in tandem 

with ML to streamline the ergonomic risk assessment process. However, legitimate concern arises 

about whether humans will still be needed in the process of ergonomic risk assessment given these 

advancements. The definite response is that humans will continue to hold a crucial position in the 

near future. This is grounded in the reality that fully autonomous artificial general intelligence 

(AGI) is still a distant prospect (Sawyer et al. 2021). Thus, human-ML collaboration is crucial to 

limit worker exposure to ergonomic risks in the near future. Human-ML teams can identify areas 

needing improvement while allocating tasks effectively between repetitive tasks for ML systems 

and non-repetitive tasks for humans (Daughtery et al., 2018). This collaboration operates in cycles, 

as the end-user observes the machine's state, and vice versa, driving an ongoing process that helps 

improve work systems (Sawyer et al., 2021; Flemisch et al., 2008). The cyclical nature of human-

machine collaboration is presented in Figure 1. In conclusion, the evolution of ergonomic risk 

assessment tools incorporates advanced methods and ML, underscoring the ongoing importance 

of human-ML collaboration in ensuring effective risk management. Given the collaborative 

nature of human-ML interactions for robust risk management, it is crucial to prioritize human 

convenience when designing and utilizing ML-powered ergonomic risk assessment tools. This 

emphasis ensures a smooth integration of ML within the manufacturing sector. 
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Figure 6-1 Ergonomic risk management framework 

Xu (2019) highlights that the success of ML-powered applications hinges on incorporating human 

factors into their design, recognizing that intelligence lies in creating advanced ML systems with 

human convenience in focus, rather than solely in the capabilities of computers. With this 

understanding in mind regarding the cyclical nature of practical ML systems within manufacturing 

ergonomics, the discussion turns to the design of these ML systems. Before introducing an ML 

system for improving work systems, it is essential to define how it aims to achieve this. Hence, 

developers need to translate a business problem into an ML problem (Huyen, 2022). Throughout 

this process, involving human stakeholders and end-users is critical to ensure the viability of the 

ML system (Huyen, 2022). It is important to note that maintaining engagement with end-users is 

a gradual process, rather than a one-time leap (Endsley & Kiris, 1995). Following ML model 

design, the deployment and monitoring of the model come into play (Sawyer et al., 2021; Sheridan 

& Parasuraman). Furthermore, since ML systems differ from rule-based expert systems, the 

availability of relevant data is paramount in their design. However, the data requirements can vary 

across different ML applications (Huyen, 2022). 
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Up to this point, existing literature, including studies by Joshi et al. (2019), has explored 

comparative analyses of ergonomic risk assessment techniques. Some research has highlighted the 

significance of wearable technologies in this domain (Lim and D'Souza, 2020; Stefana et al., 

2021). Chan et al. (2022) have delved into the latest advancements in ML applications for 

preventing Work-Related Musculoskeletal Disorders (WMSD), utilizing the framework provided 

by Van Der Beek et al. (2017). Additionally, Lee et al. (2021) have examined the current progress 

of ML in manufacturing ergonomics, considering the perspectives of ML, ergonomics, and 

manufacturing systems. In summary, existing literature has explored various aspects of ergonomic 

risk assessment techniques, including wearable technologies and ML applications. However, a 

significant gap exists in comprehensively reviewing ML's application in ergonomic risk 

assessments within manufacturing, emphasizing human convenience in tool design for enhanced 

integration. Therefore, this chapter pinpoints challenges and opportunities in the state-of-the-art 

literature, to present strategic visions that enhance future ergonomic risk assessment tools.  

6.2 Research Method 

This section outlines the research methodology employed to systematically examine the 

contemporary landscape of machine learning (ML)-powered ergonomic risk assessment tools 

within the manufacturing sector. The methodological framework is illustrated in Figure 2. The 

review of relevant articles encompassed a comprehensive search across multiple databases, 

notably Google Scholar and Scopus. The search strategy was meticulously crafted, employing the 

search terms "manufacturing" AND "ergonomics" AND ("risk" OR "posture") AND ("machine 

learning" OR "deep learning"), while systematically excluding papers related to nursing and 

construction (-nursing, -construction). The temporal scope spanned from January 1, 2000, to the 
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present, concentrating on research articles that resonate with the manufacturing domain. To ensure 

comprehensiveness and eliminate redundancy, duplicate papers were carefully removed. 

The subsequent filtration process was informed by a set of predefined review criteria, consisting 

of the following components: 

1. Language Criterion: Only papers published in English were considered for inclusion. 

2. Exclusion of Literature Review Papers: Papers primarily focused on literature reviews were 

excluded from the review process. 

3. Source Type Exclusion: Non-journal and non-conference papers were excluded to ensure 

the reliability and rigor of the selected studies. 

4. Citation-based Filtering: Papers with citations below a threshold of three were excluded to 

ensure the inclusion of impactful contributions. 

5. Relevance to ML/Deep Learning: Inclusion was limited to papers where machine learning 

or deep learning played a pivotal role in the presented ergonomic assessment tools. 

Emphasis on Worker Safety Enhancement: Included papers were those that explicitly 

demonstrated efforts to enhance worker comfort and safety. 

Papers failing to meet the specified criteria were purposefully excluded from the review process. 

The procedural integrity of this process is detailed in Figure 2 through a comprehensive flowchart 

depicting the literature screening trajectory, adhering meticulously to the established review 

criteria. It is important to underscore that after thorough title and abstract scrutiny, a total of 121 

full-text papers were subject to rigorous eligibility assessment, culminating in the eventual 

inclusion of 32 full-text papers for comprehensive review and synthesis in this study. 
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Figure 6-2 Overview of research method 

6.3 Insights from Literature Review 

The following are the key insights drawn from the reviewed literature in section 2.5: 

1. The most employed ML technique was Binary Classification (44%). Binary classification 

was followed by Multiclass classification (28%), Regression (22%), a combination of 

Binary classification and Multiclass classification (3%), and a combination of Binary 

classification and Regression (3%). In addition, it is essential to note that manufacturing 

ergonomics researchers do not currently use Unsupervised ML for the development of 

ergonomics risk assessment tools. Moreover, an examination of the dominant of Binary 

classification ML applications revealed that majority (57%) of Binary classification models 

proposed by researchers use Marras et al's., (1993) dataset as a benchmark dataset to 

improve the occupational lower-back disorder risk classification task. 

2. The most common data source for designing ML tools was pre-established datasets (41%). 

Subsequently, Advanced Observational Method (28%), Direct Measurement (25%), Self-
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report (3%), and Simple Observational Method (3%) were also used by researchers to build 

datasets. The predominant usage of pre-established datasets in the proposed tools may 

indicate that researchers face challenges in collecting their own datasets.  

3. The most employed ML application was Risk classification (53%).  Risk classification was 

followed by Posture identification (31%), Identification of risk factors (12%), and Risk 

quantification (3%). This evidently reveals that manufacturing ergonomics researchers 

favor the development of Risk classification applications over other applications.  

Overall, manufacturing ergonomics risk assessment research has revealed several exciting 

technical ML applications that can improve the ergonomic performance of manufacturing work 

systems. Furthermore, a thorough examination of the literature revealed in Table 6-1, uncovers 

that ML research in manufacturing ergonomics is now of an academic nature.  Academic ML 

research is defined by Huyen (2022) as research that marginally outperforms state-of-the-art 

results on benchmark datasets and research that disregards human factors in the design of ML 

applications. Based on the literature reviewed in Table 6-1, 25% of the investigated papers utilize 

the same benchmark dataset presented by Marras et al., (1993). In addition, after assessing each 

publication separately, it was discovered that the ML tools offered by researchers addressed just 

the technical aspects of ML tool design and lack a human-centered design approach. Although 

model performance outcomes that outperform state-of-the-art results are significant, it is vital in 

practical applications to incorporate the needs of end users and broader users who use the ML 

applications. In light of this, it is determined that present ML research in manufacturing 

ergonomics is largely academic in nature. Therefore, due to the prevalence of research-focused 

ML tools in manufacturing ergonomics research, researchers must bridge the gap between 
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research-focused ML tools (which encompass only the technical aspect of an ML application) and 

practical ML systems (which encompass both the technical and human factors of a practical ML 

application) because the primary objective of designing ML applications is to employ them in the 

real world to solve real-world issues. For future ML applications of manufacturing ergonomics 

research to be trusted and adopted by real-world manufacturing industries, researchers must jointly 

consider both the technical and human factors of ML applications and bridge the gap between 

research-focused ML tools and practical ML systems. 

6.4 Research opportunities and challenges 

This section proposes four strategic visions to close the gap between research-focused ML tools 

and practical ML systems in manufacturing ergonomics considering technical and human 

challenges. 

6.4.1 Improving data availability 

The following technological limitations are found to influence the advancement of current 

automated ergonomic risk assessment tools: 1) high costs of the technologies behind data sources, 

such as motion capture data, data from cameras and sensors; and 2) the difficulty of conducting 

experiments in real-world settings due to technical and ethical issues, both of which lead to data 

availability (Wang et al., 2015; Li et al., 2018; Lee et al., 2021). These are significant issues 

because data is one of the most valuable ingredients for designing ML systems. The unavailability 

or difficult access to ergonomic data due to technology limitations makes it challenging to design 

ML systems for automating ergonomic risk assessments, and design both practical and prototype 

applications. In addition, the cumbersome nature of the available technology for collecting 
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ergonomic data restricts researchers to develop practical applications that are effective in the real 

world.  This may explain why majority (25%) of the ML applications presented by manufacturing 

researchers use pre-established datasets. To solve the problem of data availability, reducing the 

cost and enhancing the performance of the data collection technologies through technological 

improvements can alleviate experimental challenges and lead to practical applications. Alternately, 

research efforts can be made to construct and share datasets, as done by Marras et al., (1993), and 

Maurice et al., (2019), which can be useful for the design of practical ML systems. However, 

excessive use of the same benchmark datasets can also impede the advancement of manufacturing 

ergonomics research by preventing the emergence of new research.  In addition, the literature 

review revealed that researchers occasionally incorporate open-source ML models such as 

OpenPose (Cao et al., 2017), VIBE (Kocabas et al., 2020), and DeepFace (Taigman et al., 2014), 

and tf-pose (TF-Pose, 2021) into the automated ergonomic risk assessment tools they present. 

Therefore, we also propose that researchers develop useful open-source ML models, so that these 

models can be easily incorporated by future researchers without requiring them to reinvent the 

wheel. Crafting open-source models can indirectly provide a solution to the challenges linked with 

data collection complexities. In summary, it is believed that technological advances, the creation 

of public datasets, and the development of open-source ML models may help alleviate the data 

availability problem and lessen the burden for future researchers working to develop ML-powered 

ergonomic risk assessment tools. 

6.4.2 Aligning business and ML objectives 

Manufacturing ergonomics researchers must create ML-powered ergonomic risk assessment tools 

to move business metrics for real-world success. Technology boosts organizational effectiveness 
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but complicates management, requiring new methods, procedures, and worker skills (Reiman et 

al., 2021; Karwowski et al., 2012; Siemeniuch et al., 2015; Neumann et al., 2021). Without 

organizational and social elements, new technologies are more likely to fail (Clegg et al., 2007). 

Therefore, it is suggested that technology must be adapted to the people and processes of an 

organization to be beneficial (Kennedy, 2004). Despite tremendous breakthroughs in ML 

technology, it is difficult for enterprises to incorporate ML technology. Every ML system must be 

justified, and manufacturing ergonomics ML systems are no exception. Therefore, this study 

proposes that manufacturing ergonomics research must consult the broad users of the ML-powered 

ergonomic risk assessment tools to identify business objectives and convert them into ML 

objectives. Moreover, it is observed from the literature review that manufacturing ergonomics 

researchers have dedicated lots of effort to improving ML metrics, whereas in the real-world 

business stakeholders are more concerned with how ML systems affect business metrics. 

Subsequently, after ML objectives are identified and the ML systems are designed, it may crucial 

for researchers to understand how the proposed ML system works in the real world. For this 

purpose, researchers can seek to validate ML-powered ergonomic risk assessment tools in terms 

of business metrics in addition to ML metrics. For example, a hypothetical ML-powered 

ergonomic risk assessment tool may be needed in manufacturing companies to reduce ergonomic 

discomfort and increase worker productivity, or to reduce ergonomic injuries and lower worker 

compensation costs. In these cases, the productivity of workers and the compensation costs are 

business metrics. Therefore, these business metrics must be used to validate the designed 

hypothetical ML-powered ergonomic risk assessment application. As a result, when formulating 

ML objectives, researchers designing ML applications must consider business requirements and 

also attempt to verify if their ML applications influence business metrics as intended by businesses 
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through case studies. Moving business metrics is required for ML applications intended for 

ergonomic risk reduction, such as Risk classification, Risk quantification, and Risk factor 

identification, but may not be required for supporting applications such as Posture identification. 

6.4.3 Cooperative development of intelligent ML systems 

Designing sophisticated ML systems for human convenience is where intelligence rests, not in 

computers themselves. Introducing ML systems to collaborate with people is fascinating, but such 

systems must meet human needs. Human activities are growing more complex, and digitization 

allows highly capable individuals to take on additional responsibilities. In such cases, 

technological advances may boost people's adaptability (Ras et al., 2017). Farr et al., (2003) show 

that intrinsic motivation is crucial for cutting-edge technologies. Blocking unnecessary 

information can improve human-computer interaction, according to Peifer et al., (2020). More 

importantly, Kennedy (2004) contends that technology should be designed to complement an 

organization's people and processes rather than the other way around. As a result, it is required to 

maximize end-user motivation and flow states, as well as to develop ML-powered ergonomic risk 

assessment tools for people associated with the ML system. To ensure ML-powered ergonomic 

risk assessment tools are beneficial, they must be created with input from end-users (such as health 

and safety specialists) and broader users (such as business stakeholders). According to Ren et al., 

(2020) and Xu et al., (2019), people desire computers to deliver more direct and natural services. 

End-users seek for sophisticated, easy-to-use services.  User experience (UX) determines the 

effectiveness of ML-powered solutions (Huyen, 2022). Moreover, it is observed from the literature 

review that manufacturing ergonomics researchers have not considered UX till now and have 

confined themselves to the technical domain. However, ML system design cannot be limited to 
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the technical domain despite being technical. ML systems are created by humans, utilized by 

humans, and may even leave a lasting impression on society (Huyen, 2022). The studies listed in 

Table 1 did not create intelligent ML systems collaboratively; rather, they proposed ML systems 

based on gaps in the literature. This approach is justifiable, but we suggest that ML systems that 

incorporate the needs of potential end-users and broader users can be significantly more valuable 

to solve real-world issues. To this end, researchers can seek to cooperatively develop intelligent 

ML systems. To accomplish this, the design thinking framework proposed by Gibbons (2016) for 

creating usable, safe, and pleasurable ML systems can be utilized. Figure 3 depicts a graphical 

representation of the human-centered design thinking process for enhancing user experience.  The 

six steps for a Human-centered design thinking framework proposed by Gibbons (2016) are as 

follows: 

1. Empathize: Entail comprehending the user needs involved. 

2. Define: Reframe and define the problem from a human perspective. 

3. Ideate: Create numerous ideas in ideation sessions. 

4. Prototype: Adopt a hands-on approach in prototyping. 

5. Test: Develop a prototype/tool to the problem. 

6. Implement: Put the idea into action. 
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Figure 6-3 Human-centered design framework (Gibbons, 2016, Xu et al., 2019) 

6.4.4 Optimization of task allocation in ML systems 

Optimization of task allocation in ML systems is a sub-problem of cooperative development of 

intelligent ML systems. However, due to its importance in ML system design, this article examines 

it separately. ML-powered ergonomic risk assessment systems can only be successful if they have 

optimal human-ML task allocation. To elaborate, until recently, automated ergonomic risk 

assessment tools were created solely to automate the ergonomic risk assessment process. However, 

researchers in manufacturing ergonomics have not justified whether the ML systems they have 

developed allocate tasks optimally between the human agent and the ML agent. Therefore, is 

essential for manufacturing ergonomics researchers to justify task allocation between humans and 

ML agents for their ML tools. After all, empowering health and safety specialists is one of the 

primary purposes of designing ML-powered ergonomic risk assessment systems. Hendrick (2007) 

identifies a "leftover" approach to assigning human jobs as a reason for technology failure. This 

means that before assigning work to a computer or human, it should be assessed if a person is 

needed (Kleiner, 2006). This rationale is reasonable, considering that human energy should be 

conserved for the hardest problems. Moreover, Korteling et al., (2021) highlight the importance of 
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hybrid intelligence systems that blend human and machine intelligence. As a result, there has 

recently been a great deal of interest in human-machine teams that consider both their cognitive 

strengths and weaknesses (Sawyer et al., 2021; Korteling et al., 2021).  Consequently, future 

ergonomic researchers must analyze which tasks are appropriate for humans, machines, and mixed 

activities. For example, it is best if repetitive tasks such as data collection can be done by machines. 

While complex tasks such as risk control can be done by humans. However, activities such as 

identification of risk factors may involve human-AI collaboration. Nevertheless, the preceding 

examples are illustrative and not conclusive, because allocating tasks between humans and ML 

may be problem specific. Nevertheless, it can be conceived that optimal task allocation in ML-

powered ergonomic risk assessment systems can be challenging.  In addition, even though this 

study says ML systems should be created with human requirements in mind, not all ML 

technologies are resilient. ML has functional constraints, like humans. In trade-off scenarios, 

where ML systems cannot be adapted to human needs, it is unclear what developers should do. 

Consequently, independent research is required to determine the optimal ways to divide tasks 

between humans and machines in ML-powered ergonomics risk assessment systems, particularly 

in trade-off scenarios. 

6.5 Discussion and Conclusion 

In this study, the current status, challenges, and opportunities in the application of ML for the 

improvement of physical ergonomics in manufacturing industries has been investigated. Although, 

researchers demonstrated the viability of several ML-powered ergonomics risk assessment tools, 

the dominance of research-focused ML tools is indicative of challenges in developing human-
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centered ML systems. Therefore, strategic visions are proposed for future research to bridge the 

gap between research-focused ML tools and practical ML systems.  

The key highlights of this study are: 

• This study found that existing ML tools in manufacturing ergonomics primarily focused 

on technical aspects and lacked a human-centered design approach. 

• Four strategic visions are proposed to advance the design of practical ML systems for 

manufacturing ergonomics with a human-centered design approach, including improving 

data availability, aligning business and ML objectives, cooperative development of 

intelligent ML systems, and optimizing task allocation in ML systems. 

In summary, the challenges, and opportunities for developing human-centered ML-based Physical 

Ergonomic Risk Assessment Tools are discussed, with a focus on the human aspects of designing 

human-ML systems. More complex challenges, such as computational priority of ML systems, 

fairness of ML systems, and interpretability of ML systems, are not covered. Overall, the presented 

strategic visions are anticipated to contribute to the advancement of manufacturing ergonomics 

research towards the design of human-centered ML systems. 
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Chapter 7: CONCLUSIONS 

7.1 Research Summary 

The field of ergonomics focuses on optimizing work system interactions through theory, concepts, 

data, and design (International Ergonomics Association, 2003). Manufacturing industries involve 

humans interacting with system elements to produce finished goods, and ergonomic discomfort 

can result in unproductive worker activities that affect production and product quality. Despite the 

benefits of prioritizing health and safety in manufacturing, many businesses ignore ergonomic 

performance assessments due to a lack of convenient tools. This study endeavors to overcome four 

key challenges that make ergonomics risk assessment less convenient for health and safety 

specialists: (1) lack of versatile physical-ergonomics risk assessment tools, (2) fragmented 

ergonomics risk assessment tools, (3) challenge of developing intuitive occupational risk diagnosis 

framework with ML, and (4) an inability to develop practical ML-powered ergonomics risk 

assessment tools. 

First, a versatile physical-ergonomics risk assessment tool called the Revamped PLI is developed 

to address the limitations of existing tools that are only compatible with specific data collection 

methods. This tool simplifies tool selection and aids health and safety specialists in improving 

work systems. Its implementation in real cases and comparison against the widely-used REBA 

tool validate its effectiveness, offering potential benefits in enhancing workplace safety and 

preventing injuries. 

Second, a fuzzy logic-based Decision Support System (DSS) that comprehensively evaluates the 

ergonomic performance of work systems by considering the physical, environmental, and sensory 
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factors together. The proposed DSS offers the potential benefit of providing a holistic approach to 

ergonomics risk assessment, enabling organizations to assess and improve the overall performance 

of their work systems more effectively. 

Third, an interpretable ML-based data analytic framework is developed to diagnose risk factors 

for enhanced occupational injury management. The framework combines unsupervised and 

supervised ML techniques, along with Explainable AI, to diagnose occupational risk factors. 

Validation in a prefabricated construction facility demonstrates its utility in accurately identifying 

and characterizing worker incident clusters, offering potential benefits in improving occupational 

injury management and targeted risk mitigation. 

Lastly, a literature review on ML research is conducted in the field of manufacturing ergonomics. 

The review highlights challenges caused by research-focused ML tools dominating the field. To 

bridge this gap, the study proposes four strategic visions: improving data availability, aligning 

business and ML objectives, fostering cooperative development of intelligent ML systems, and 

optimizing task allocation in ML systems. These visions aim to enhance the integration of ML in 

manufacturing ergonomics, aligning research with human convenience in mind. 

7.2 Research Contributions 

This research found four significant challenges that make ergonomics risk assessment less 

convenient for health and safety specialists, therefore it pursues four objectives, with each 

identified challenge addressed in a distinct chapter. The primary contributions of this research, 

corresponding to chapters 3, 4, 5, and 6, are summarized as follows:  
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1. The development of Revamped PLI, a near comprehensive and versatile physical-

ergonomics risk assessment tool, is presented. Unlike traditional tools, Revamped PLI can 

be used with all data collection methods and has no narrow specializations, allowing for a 

near comprehensive assessment of any work system's physical ergonomic performance. 

This makes it a potential sole tool for assessing industrial job tasks, regardless of time and 

budget constraints. 

2. A new approach to assess the ergonomic performance of work systems by integrating 

physical, environmental, and sensory risk factors using a fuzzy logic-based DSS is 

presented. This approach overcomes the fragmented nature of existing tools, which enables 

health and safety specialists to obtain a more complete and accurate evaluation of industrial 

work systems. By integrating physical, environmental, and sensory risk factors, the 

proposed DSS offers a holistic view of ergonomic performance, which addresses the 

limitations of existing tools that only assess these aspects separately. 

3. An effective and interpretable ML-based data analytic framework to identify and 

characterize worker incident clusters, facilitating improved occupational injury 

management is presented. The framework combines unsupervised and supervised ML 

techniques along with Explainable AI occupational risk diagnosis. The framework has a 

low barrier to entry for implementation in manufacturing industries and simplifies the 

process of diagnosing safety and ergonomics risk factors using worker incident data. 

4. The current state of ML in manufacturing ergonomics is reviewed. The challenges in 

developing human-centered ML systems is addressed. Subsequently, the study proposes 

four strategic visions, including improving data availability, aligning business and ML 
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objectives, cooperative development of intelligent ML systems, and optimizing task 

allocation in ML systems, all with the ultimate goal of enhancing human convenience. 

7.3 Limitations and Future Research 

Notwithstanding these contributions, there are opportunities for further work in this area as 

summarized below: 

1. The computational methodology of Revamped PLI is validated against REBA. However, 

further testing is required for PLI II (advanced observational methods) and PLI III (direct 

measurements). Future research can compare the performance of Revamped PLI with other 

widely used tools, like RULA and the NIOSH Lifting Equation. It is also worth noting that 

the risk categories established for Revamped PLI are provisional and may require 

amendment with a larger dataset containing a variety of job tasks.  

2. A fuzzy logic-based DSS for ergonomics risk assessments is evaluated using a real-life 

case study. The results showed promising performance for the DSS in classifying work 

systems as high or low risk. However, there is room for improvement in distinguishing risk 

levels between work systems. The developed DSS was fine-tuned, validated, and tested 

using data from a prefabricated construction company, and further testing on other 

companies is necessary to confirm its generalizability.  

3. A promising framework for occupational risk factor diagnosis is developed and validated. 

However, the framework is only suitable for categorical datasets, which may not be 

applicable in datasets that have both numerical and categorical variables. In addition, the 

clustering algorithms and internal validation indices are not exhaustively considered. 
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Although the conducted case study identifies an optimal algorithm, future research can 

address these limitations to further improve the framework. 

4. The challenges and opportunities in developing practical ML-powered ergonomics risk 

assessment systems are discussed with a focus on human-centered design. However, it does 

not cover more complex challenges such as computational priority, fairness, and 

interpretability. Moreover, the scope is limited to only the human aspects of designing ML 

systems. 
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APPENDIX 

The template used in MS Excel for calculating the PLI II score of a specific job task is portrayed 

in the Figure below.  

 

Template for calculating PLI II score 

STEP (2)

STEP (3)

Posture Code Activities Start time Stop time Time (s) % total %

Both arms below shoulder height 02:52:28 02:54:21 00:01:53 70.62

Both arms below shoulder height 02:52:03 02:52:50 00:00:47 29.38

L2 Standing 02:52:28 02:52:41 00:00:13 7.26 7.26

Kneeling with one knee or with both 02:52:03 02:52:50 00:00:47 26.26

Kneeling with one knee or with both 02:52:50 02:53:27 00:00:37 20.67

Kneeling with one knee or with both 02:53:59 02:54:21 00:00:22 12.29

Walking, Moving 02:53:22 02:53:52 00:00:30 16.76

Walking, Moving 02:53:28 02:53:52 00:00:24 13.41

Walking, Moving 02:52:44 02:52:50 00:00:06 3.35

straight, upright 02:53:28 02:53:52 00:00:24 17.91

straight, upright 02:52:50 02:52:58 00:00:08 5.97

straight, upright 02:52:28 02:52:30 00:00:02 1.49

slightly inclined 02:52:03 02:52:50 00:00:47 35.07

slightly inclined 02:53:59 02:54:21 00:00:22 16.42

slightly inclined 02:53:21 02:53:27 00:00:06 4.48

strongly inclined 02:52:59 02:53:20 00:00:21 15.67

strongly inclined 02:52:31 02:52:35 00:00:04 2.99

T1 25.37

A1 100.00

L4 59.22

L5 33.52

T2 55.97

T3 18.66

Frequency % 0% 1-5% 6-33% 34-66% 67-100%

T1 0 straight, upright 25.37 25.37

T2 0.974 slightly inclined 55.97 55.97

T3 1.104 strongly inclined 18.66 18.66

T4 0.068 twisted 0

T5 0.173 laterally bent 0

A1 0 Both arms below shoulder height 100 100

A2 0.157 One arm above shoulder height 0

A3 0.314 Both arms above shoulder height 0

L1 0 Sitting 0

L2 0 Standing 7.26 7.26

L3 0.405 Squatting 0

L4 0.152 Kneeling with one knee or with both 59.22 59.22

L5 0.152 Walking, Moving 33.52 33.52

Wu1 0.549 Light (up to 10kg) 0

Wu2 1.098 Medium (10-20 kg) 0

Wu3 1.647 Heavy Weight (more than 20 kg) 0

Wi1 1.777 Light (up to 10kg) 0

Wi2 2.416 Medium (10-20 kg) 0

Wi3 3.056 Heavy (more than 20 kg) 0

Posture 

Code
Weight

Linguistic Categories NEVER SELDOM SOMETIMES OFTEN VERY OFTEN
SUM OF SCORES

SCORES ASSIGNABLE 0 1 2 3 4

T1 0 straight, upright 2 2

T2 0.974 slightly inclined 3 3

T3 1.104 strongly inclined 2 2

T4 0.068 twisted 0

T5 0.173 laterally bent 0

A1 0 Both arms below shoulder height 4 4

A2 0.157 One arm above shoulder height 0

A3 0.314 Both arms above shoulder height 0

L1 0 Sitting 0

L2 0 Standing 2 2

L3 0.405 Squatting 0

L4 0.152 Kneeling with one knee or with both 3 3

L5 0.152 Walking, Moving 2 2

Wu1 0.549 Light (up to 10kg) 0

Wu2 1.098 Medium (10-20 kg) 0

Wu3 1.647 Heavy Weight (more than 20 kg) 0

Wi1 1.777 Light (up to 10kg) 0

Wi2 2.416 Medium (10-20 kg) 0

Wi3 3.056 Heavy (more than 20 kg) 0

Score

PLI 6

SOMETIMES OFTENPosture 

Code
Weight

Linguistic Categories NEVER SELDOM VERY OFTEN
SUM OF SCORES

STEP (1)

SCORES ASSIGNABLE 0 1 2 3 4

T1 0 straight, upright 2 2

T2 0.974 slightly inclined 3 3

T3 1.104 strongly inclined 2 2

T4 0.068 twisted 0

T5 0.173 laterally bent 0

A1 0 Both arms below shoulder height 4 4

A2 0.157 One arm above shoulder height 0

A3 0.314 Both arms above shoulder height 0

L1 0 Sitting 0

L2 0 Standing 2 2

L3 0.405 Squatting 0

L4 0.152 Kneeling with one knee or with both 3 3

L5 0.152 Walking, Moving 2 2

Wu1 0.549 Light (up to 10kg) 0

Wu2 1.098 Medium (10-20 kg) 0

Wu3 1.647 Heavy Weight (more than 20 kg) 0

Wi1 1.777 Light (up to 10kg) 0

Wi2 2.416 Medium (10-20 kg) 0

Wi3 3.056 Heavy (more than 20 kg) 0

Score

PLI 6

SOMETIMES OFTENPosture 

Code
Weight

Linguistic Categories NEVER SELDOM VERY OFTEN
SUM OF SCORES

STEP (4)


