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| Abstract

This thesis introduces a novel approach of integrating error controi éodes and
constrained sequence codes into a single monolithic code. This is done in order to
overcome drawbacks with the conventional manner in which these coding procedures are
concatenated. The technique is based on the principle of mulfimode coding, where each‘
source word is represented by a set of complementary error control code words. From
this set the encoder selects the error control codeword that best meets the éonstrained
sequence goals of the system. The decoding structure avoids the problem of error
propagation during constrained sequence decoding by performing error correction before
removing the effects of the constrained sequence code. Power spectra of encoded
sequences generated by a hardware implementation have a null at 0 Hz, confiming that
these coded sequences are dc-free. Bit error rate simulations demonstrate the superior
performance of this combined error control and constrained sequence code on a dc-

constrained noisy channel.
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1, Introduction

The objective of a communication system is to transfer information from a source
to a destination with as much accuracy as possible. While errors will inevitably occur,
modern digital communication systems typically package their data in an intelligent
manner to reduce these errors. As such, both error control coding and‘ constrained
sequence coding are a form of intelligent packaging used to deliver information from a

source to a destination with a minimum number of errors [1,2,3].

For numerous reasons errors can occur during transmission. Error control coding
allows for the detection and often correction of these errors by encoding source data in a
redundant manner. Constrained sequence coding, also known as line coding (4.5, is an
alternate encoding method that pre-conditions source data before transmission in an

attempt to prevent errors from happening in the first place.

Both of these coding techniques aim to achieve the same goal of error free
transmission. As a result, a logical advancement is to try and combine the two approaches
to extract the benefits from both coding techniques (6-11]. Simple configurations involve
using both codes in a concatenated fashion where the original source data is encoded with
an error control code first, called the outer code, followed by a constrained sequence
code, called the inner code. This simple arrangement aspires to avoid errors as a result of

the inner constrained sequence code, with the expectation that the outer error control code

can correct any errors that do occur.

A problem known as error propagation occurs with this setup when  the
constrained sequence decoder encounters errors that inevitably occur during transmission.
That is, random bit errors from the channel are increased during constrained sequence
decoding since the constrained sequence decoder has no means of handling these errors.
As a result, the outer error control code must be powerful enough to correct the original
errors as well as the additional errors introduced by the constrained sequence decoder. If
the number of errors exceed the error correcting ability of the error control code, then the

error control decoder may also introduce additional errors into the decoded sequence.
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Since this p}roblem results from the fact that the constrained sequence decoder
cannot adequately handle errors, common sense would mandate that any errors be
corrected before removing the constrained sequence code. However this is not easily
accomplished since the order of decoding operations would no longer be the inverse of
the encoding operations. As a result this problem has lead many channel coding
researchers to investigate ways to combine both coding techniques into one monolithic
code. With a combined code data could be simultaneously pre-conditioned for the
channel to try and prevent errors from occurring, and as well, when errors do occur on the
channel, they could be error corrected first before constrained sequence decoding, thus
avoiding error propagation. This thesis introduces a new combined error control and
constrained sequence code based on linear block codes. The new code introduced is
analyzed, simulated, and implemented in FPGA circuits for proof of concept. The coding
technique presented in this thesis can be used in fiber optic back planes which
traditionally rely on CS coding alone, or even in CD and DVD formats such as the new
Blu-ray or HD-DVD standards, which employ both forward EC codes and dc-free CS

codes when formatting data for storage on the disk.

1.1. Thesis overview
Chapter 2 presents concepts of error control coding and constrained sequence
coding that are used in this thesis. Chapter 3 follows by discussing general approaches
that can be used to create a combined error control and constrained sequence code.
Following this is a gradually evolving example that clearly details the new approach
introduced in this thesis. Chapter 4 outlines the mathematics required for analyzing code
performance in the time domain. The results of a computer search are also presented and
recommendations are made detailing how this coding technique can be applied to other
linear block codes. Chapter 5 investigates the coding scheme in the frequency domain
and presents the results and analysis of the power spectral density of various
configurations of this coding technique. Chapter 6 presents the FPGA hardware
-implementation and compares the measured time domain and frequency domain results

with analytical results, while Chapter 7 considers the bit error rate performance of this

2
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- combined code and CQmpares various conﬁgura;ions. Finally, Chapter 8 sunﬁmarizes the
concept, configurations and- performance of the combined coding technique as well as
présents suggestions for future work. The appendix serves as a reference for calculating

power spectral density in general as well as for block codes.
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| | 2. Error Control Coding and Constrained Séquence Coding Background

2.1, Digital Communication System Basics

A digital communication systems requires a source, which for the purpose of this
thesis is considered to only output the binary symbols 0 and 1. Binary symbols will also
be referred to as bits or digits depending on the context. This binary information is
transmitted over a channel and is received by a receiver. The channel introduces a
number of effects such as attenuation, distortion, interference and noise, which inevitably
resul'ts in the receiver making errors (4,5. The channel however is most easily modeled as
simply introducing errors in the form of flipping bits from either a 0 to a 1, or vice versa.
The receiver then receives the incoming data, and makes bit by bit decisions on whether

or not it received a 0 or a 1. This is shown in Figure 2-1.

Channel

Source

Noise
— n()

Receiver |e

Figure 2-1: Simple digital communication system

2.2, Error Control Coding

Transmitting raw binary information over a channel provides no means: of

detecting errors which inevitably occur. The reason for this is because any combination
of Os and 1s on the channel is considered valid. Due to the addition of noise (that is
modeled as simply flipping bits) the receiver can never really be certain if the bits it
received were the ones that were sent.

A typical example would be copying a file from one computer to another. If the

data was transmitted byte by byte, where one byte is 8-bits, all 2° =256 possible bit -

4
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combinations of 0 and 1 would be considered valid. Thus if the source computer
transmits 00000000 and the destination computer receives 00000001 (as a result of
channel noise), the destination computer would have to assume that this was the data

transmitted and the file would now contain errors.

The solution then is to reduce the number bytes considered valid. For instance, if
out of the 256 possible bit combinations only 00000000 and 11111111 were considered
valid, the receiver would now have a way of detecting errors on the channel. The
destination computer would now know that byte 00000001 is invalid (error detection),
and furthermore could infer that the intended byte was 00000000 (error correction). In
fact, in this specific case, the channel can add as many as three bit errors per byte, such as
00000111, and the destination computer could still infer that this byte was 00000000.
(Note that four bit errors such as 00001111 would result in the receiver being unable to
determine the intended byte, and five or more bit errors such as 00011111 would result in
the receiver mistakenly inferring that 11111111 was the intended byte). This ability to
detect and correct errors comes at the expense of increased redundancy. With only two
valid bytes available for transmission only log2(2) = 1 bit of information is transmitted
with each byte. Therefore in order to transmit the data byte 10101010, the source
computer would need to transmit the eight bytes 11111111, 00000000, 11111111,
00000000, 11111111, 00000000, 11111111, 00000000. Thus the source computer must
transmit eight times as much information, which results in a redundancy of 800% or an
efficiency of 12.5%, to send one byte of data 1,23). As a result this system can be
considered as emitting 1-bit source words (SW) that are mapped to 8-bit code words

(CW). This is an example of error control (EC) coding and is shown in Figure 2-2.

Channel
.| Error Control |
Source  F Coding -
Noise
— a(b)
: ; Error Control |
Receiver Decoding IO—
Figure 2-2: Digital communication system with EC coding
5
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Redundancy is an essential part of EC coding since the more redundancy added
the more errors that can be corrected. For example, if instead of a 1:§ mapping a 1:16 or
1:32 mapping was used, the destination computer could correct as many as seven or

| fifteen bit errors per CW respectively. Conversely, the more redundancy added the more

inefficient the system becomes. This is known as the coding tradeoff.

There is also no restriction that requires SWs to be 1-bit. As will be seen in this
thesis, mappings such as 4-bit SWs to 7-bit CWs, 11-bit SWs to 15-bit CWs and higher
can be used. This mapping can be increased to any level desired, and as stated in
Shannon’s work, we can drive our error rates as low as we choose [12). In either case, the
fundamental concept of EC coding is that more bits are being sent on the channel then is
needed to convey the original message, but this is being done in order to detect errors,

and in many cases correct errors.
The previous example demonstrates the fundamental concepts and motivations of

EC coding. The following sections introduce terms and equations required for analyzing

and comparing various forms of EC coding.

| 2.3. Goals of Error Control Coding
Goals of EC coding include:

1. Detect and/or correct as many bit errors as possible
2. High efficiency

3. Simple scheme
4

Reduce error extension (to be defined)

| Some of these goals are contradictory, since to improve efficiency usually means
reducing the error controlling ability and vice versa. On the other hand, attempting to

improve both would be at the cost of increased encoding and decoding complexity.
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24, Block Codes |
. The ‘example presented in Section 2.2 broadly illustrates a simple block code. In

| bldck codes the source data is grouped in sequential blocks of k bits defined as a source

word (SW). Each £ bit block is then encoded into an n bit block defined as a code word -

(CW), where n is larger than & (1,23). This is often referred to as SW to CW mapping. The

resultant code is called an (n,k) block code and thus in the example above, the code

would be called an (8,1) block code.

The extra (n—k) bits added are called parity check bits. This is the redundant

information added to the source data that allows for error detection and/or correction. If
the CW is constructed in such a manner that the SW appears at the beginning of the CW,

itis said to be a systematic code. Figure 2-3 shows a systematic CW.

e

Figure 2-3: Systematic CW

As shown in Figure 2-4, the example in Section 2.2 used systematic_CWs si'nce

the original SW appéars at the beginning of the CW.

| 0| 00000000 |
1

Figure 2-4: Mapping of the 1:8 code

2.5, Parity Check Codes
The redundant information that is added to the source data is usually done in a
logical fashion. The goal is to have each CW unique, and different from all other CWs by

the greatest amount possible. One way to do this is with parity check codes.
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: - 1t is convenient to represcht an (n,k) block code in matrix form as a row vector
whose ‘elements are the code symbols (bits). The original SW in vector form can be

represented as d , and the CW in vector form as ¢ as shown in Equation 2.1.

d=[d,d,,..d,]

2.1
¢ =600, ] ( )

As descx‘ibéd in Section 2.4, in a systematic code the first k£ bits of ¢ would equal
the k bits of d. The remaining n—k parity check bits are created through addition over
a finite field of length 2, known as GF(2), which is also defined as modulo-2 addition, or
XORing in programming notation. Let m=n~-% and let the systematic CW vector ¢ be

created as follows:

cl=dl
92 =d2
ck =dk

2.2)
Cpnt = Ppdy + pppdy +..+ pyd;

 Cpyz = Pyt Ppdy .t pyd
Ck+m = pmldl + szdz Tt pmkdk D
| _ " The coefficients pij can be collected into a binary parity matrix P that describes

which SW bits are used to form the parity check bits. This logical mapping allows for 2*

unique SWs to be mapped to 2* unique CWs out of a possible 2" words. The SW to CW

mapping can also be pre-computed and stored in a large look-up table (LUT) in ’

computer memory, in which case each SW is treated as an index into the LUT, and ‘th‘e‘

~output is the CW.
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2.6.'Generator Mafrix

| Using a LUT to assign SWs to CWs becomes unmanageable as the CW size
grows and the number of possible SWs increases. This is because memory size and
access time start to become a factof. An alternative is to represent the above operation in

matrix form as shown in Equation 2.3 and 2.4.

10 .. 0 py Py - DPm _
| 01 ..0
c=dG=|d,,dy.d,] Po P - Pue 2.3)

0 0 ... 1 py Py « Pu

¢=dG where G‘=|:Ik PT] PR : | (24)

Here G is known as the génerator matrix and the CWé_éan now be generated on
‘t‘he :fly using Equation 2.4. This provides a memory saving since only the generator
matrix needs to be stored instead of all the CWs. This comes at the cost of added
complexity in the form of matrix multiplications. For instance, the following could be a

generator matrix with £ =4:

100010 1] 1000 o 110
010 0100 ‘

G= O LT here I, = and P=[011 1 (2.5)
0010110 0010 - 1101
0001011 0001

Using Equatit)n 2.3 with generator matri)g.G from Equation 2.5, Table 2.1 shows - | |

- all possible systematic CWs. Notice that the SW is left intact (bol_ded) inside the CW.
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'Table 2-1: Systematic CWs formed by Equations 2.3 to 2.5

Index SW  CW Index  SW cw

0 0000 0000000 8 1000 1000101
1 0001 0001011 9 1001 1001110

20010 0010110 10 1010 1010011
3 0011 0011101 11 1011 1011000
4 0100 0100111 12 1100 1100010
5 0101 0101100 13 1101 1101001
6 0110 0110001 14 1110 1110100
7

0111 0111010 15 1111 1111111

2.7. Parity Check Matrix

- Decoding is done by comparing the incoming CW (which possibly has €rrors)
with all possible CWs. The CW that is the closest match is assumed to be the one that
was transmitted. It is then simply a matter of removing the (n—%) parity bits to extract

the SW. This is known as maximum likelihood decoding [2). This was seen in the
example of Section 2.2, where receiving 00000111 would result in CW 00000000 being
inferred and SW 0 being decoded. Conversely receiving 00011111 would result in CW
11111111 being inferred and SW 1 being decoded.

As the number of CWs increase however, this comparison operation can become
too time consuming. A more elegant approach is to use the Parity Check Matrix H .
Sinée G can be considered to create a k-dimensional sub-space of CW vectors, its dual
space is of dimension (n—k) and can be generated by (n—k) linearly independent
vectors that are all orthogonal to the subspace generated by the generator matrix. These

vectors can be combined into an (n—k) by nmatrix H, such that
GH" =0 \ (20
 The parity check matrix H can be formed in a manner similar to how G is formed
using the parity matrix P.

10
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- G=[1, P"] o | @.7)

H=[PI_] 28)
suchthat
PT ' . o
GHT=|:Ik P’][l ]:PTGDPT:O. o (29),
. ’ ! ! ‘ n—k . . :“ N ’ :

2.8. Syndrome Decoding

Since every cW generated by G is orthogonal to all vectors in H, then cH™ =0,
i.e. the result is the all zero vector. Furthermore a received CW r that has been corrupted |

with errors such that it is no longer a valid CW will no longer be orthogonal and

rH” #0, i.e. the result will not be the all zero vector.

- Denoting r as the 1 by n received vector that results from sending the code vector

' ¢ over a noisy channel, and considering the case of a single error in the " position, then

r=c+e where ¢ =[0001000] (2.10)

- Since the channel is modeled as simply flipping a bit, this can be represented in

matrix form as shown in Equation 2.10, where an error vector e is added to the original

| ‘ ‘CW over GF(2). Next, evaluating rH T yields
FHT =(c+e)HT =cH +eH " =0+eHT =eH = s @.11)

The 1 by m vector s is called the syndrome of the received vector r. A syndrome
that is. all zero indicates that r is a code vector and is presumably correct. A non-zero

syndrome indicates that an error occurred.

11
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Using the syndrome s and noting that eH” is the i row of H 2, the error
position can be identified by compari‘ng s to the rows of H”, Ei‘ror correction can now be
done simply by flipping the i" bit in the received CW. Decoding by this simple

‘comparison is called syndrome decoding.

2.9. Hamming bound

With syndrome decoding an (n,k) linear block code can correct up to ¢ errors per

CW if n and k satisfy the following Hamming bdund.

where

(’?)=_—"!— | | (2.13)

i in—i)!

| ‘ A block code for which the equality holds is known as a perfect code Note that = = -

satlsfymg the Hammmg bound is necessary but not sufflclent for the construction of at

error correcting parity check code.

2.10. Hamming Distance

The Hamming distance d(c;,c;) between two CWs c; and ¢ from the same code

is defined as the number of positions in which their elements differ. The Hamming

weight w(c,) of a CW ¢; is defined as the number of 1s in ¢; Thus the Hamming weight
of ¢; is the Hamming distance between ¢; and O (the all-zero CW), that is
w(c;) =d(c;,0) (2.14)
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‘ Sifh_iiafly the Hamming distance g:an‘ be rewritten in terms of Hamming weight as
d(c;,c;)=w(c; +c;) (2.15)

The minimum distance d... of a linear block code is defined as the smallest
Hamming distance between any pair of CWs in the code. An (n,k) linear block code can

correct up to ¢ errors if and only if

d. >2+1 | (2.16)

2.11. Linear Code Properties

Almost all useful block codes pbsséss the property of ]i'néar‘ity. It is defined as

1. Multiplying a CW by a valid scalar produces another CW
2. Adding two CWs together also produces another CW.

- When dealing with binary symbols a valid scalar is O or 1, and hence
multiplication by O produces the all-zero CW, and multiplication by 1 leaves the CW
unchanged. Addition with binary symbols over GF(2) means that adding a CW with itself

will result in the all zero CW, and the addition of two different CWs will produce another

valid CW. For instance if ¢; and ¢; are two CWs, then the addition ¢; +¢; must alsobea

CW. Since c¢H" =0 then (¢,+c¢;)H" =0. As well since ¢, +¢c;#0, ¢H' =0, and

¢,H" =0, then ¢, +¢; must also be a valid CW.

2.12. Hamming Codes
~ Hamming codes were the first linear block codes pubiished on error correction,

‘ ‘They have a minimum distance d,;, =3, and thus they have the ability to correct single

13
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bit errors per CW. They are also perfect codes by definition of the Hamming bound and
they belong to a subset of linear block codes known as eyclic codes. This subset of codes

is popular since encoding and decoding can be done in a simple fashion.

2.13. Cyclic Codes

Cyclic codes are a subset of linear block codes. In addition to the propertiés of
linearity, they contain an additional property that if they are shifted cyclically (circularly
shifted or rotated in programming notation), the result is also a CW. For instance,
Table 2-1 above is showing a (7,4) Hamming code, where it can be seen that CW1 is
[0,0,0,1,0,1,1], which when shifted left forms CW2, CW5 and then CW11. Further cyclic

shifting, which involves wrapping the most significant bits back to the least significant
position, gives CW6, CW12 and then CW8 before forming CW1 again. This cyclic
nature of the CWs can be exploited to form simpler encoding and decoding
configurations versus the matrix approaches used to this point. This effect is also easier to
demonstrate when error control codes are represented using polynomials. The following
subsections demonstrate how binary digits can be represented as polynomials, and how
simple algebraic operations such as addition, subtraction, multiplication and division can
be performed. Note that since the binary alphabet only has two symbols, all algebraic
operations are performed in GF(2). As a result addition is the same as subtraction, and
| this operation can be implemented with XOR gates in hardware. Similarly, multiplication
and division can be accomplished through shifting, which is done using feed-back and

feed-forward shift registers respectively.

2.13.1. Polynomial representation of codes

101101 = 1 +0x*+1F° +1x° +0x' +1x° = #+x’+x"+1 = d(x) (2.17)

14
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2.13.2. Addition and Subtraction

r(x)=c(x)+c(x)

.:r(x)=mod((x5-+x3+x2+1)+(x5+x3+x2;%-1),2) ‘(2.A18) R

r(x) = mod((2x5 +2x° +2x% +2) ,2) =0
- 2.13.3. Multiplication

c(x) = g(x)d(x)

‘c(x)=x2(x’+x3‘+‘x2+1)=x7+x5‘+x4-|ix2 |
2.13.4. Division
d@igx) = q() and r(x) @220
' Xtxeg(x) 1010 +g(x)
2rx+1x® o+ 53 101151001000
)x6+x‘+;3 o
U 1000
x4+x2+x . 1011

Hoer(®

TH e er(®)

‘With division there is a quotient g(x) and a remainder r(x).

- 2.14. Encoding of Cyclic Codes

To encode cyclic codes first choose a generator polynomial 121 g(x) such that

1. Itis _of degree (n-k), in order to héve n-k redundant symbols.
2. Itis a factor of x" +1, to ensure that the code is cyclic.

15
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" The simplest way to creatéCWs is to multiply the SW i(x) of length k by the
generator polynomial g(x), i.e. c(x)=i(x)g(x). To match the systematic form however
the data bits must remain intact, and the parity bits must be simply concatenated. Thus
the first step is to shift the data bits i(x) up by (n—k), i.e. i(x)x"*. Then since it still
needs to be a multiple of g(x), i(x)x"™* can be divided by g(x) to see if the remainder
r(x) is zero. If it is not zero theﬁ i(x)x"™* must be modified so that it is a multiple of
g(x). The simplest way to do this is to subtract the non-zero remainder from the original

- dividend [2). This operation is shown in Equation 2.21 noting that addition and subtraction

are the same operation in GF(2).

This procedure works since this is an application of Euclidean division which

states that the dividend = (quotient)(divisor)+ remainder. Since i(x) was pre-

multiplied by x"*, the degree of the remainder will always be less than the degree of the
divisor and the dividend terms will all be greater than or equal to (n—k). Consequently
- adding the divisor to the quotient will not modify any terms in i(x), maintaining
systematic form. As well, choosing the divisor to be the generator polynomial g(x)

ensures that the result is always a CW. In other words, the polynomial representation of a

CW can be represented by
e(x) =i(x" + R, [ix™*] @2

where R, ,[] represents taking the remainder after division through g(x). All of this

work is neatly represented by the circuit in Figure 2-5 which consists only of shift

/

registers and XOR gates.

16
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Figure 2-5: Cyclic code encoder

This circuit represents a simultaneous multiplication by x°, and a division by

x>+ x+1. In order to build a systematic CW the registers are initially cleared, then the

i(x) bits are shifted through one at a time. After all k£ bits have been shifted in, the
registers will contain the remainder. Thus using the circuit shown in Figure 2-5 to encode
i(x)=x"+1, or in binary 1001, with the generator polynomial g(x)=x'+x+1, is
identical to the process shown above in Equation 2.20 under polynomial division. For
example if k=4 and n=7, i(x) is first multiplied by x” to yield x* +x*, and then this
dividend is divided by g(x). The final step is to append the remainder r(x)=x*+x to

form the CW c(x) = x° + x’ + x* + x, or in binary 1001110.

Inspection of the CW c(x) created above with the generator polynomial

g(x)=x>+x+1 shows that it is the same CW created with the generator matrix G in

Equation 2.5, i.e. CW9 in Table 2-1. Furthermore this generator polynomial can be used
to construct all the CWs shown in Table 2-1. Thus while the explanation of cyclic codes
is ‘more difficult, the implementation is simpler and these encoders can be easily

implemented with digital circuits using very basic logic components.

2.15. Decoding of Cyclic Codes
The received signal from the channel is a linear combination of the CW ¢(x) plus
an error vector e(x), denoted y(x)=c(x)+e(x). Since all CWs are multiples of g(x),
- testing if the received word is valid is as simple as dividing it by g(x) and checking if
the remainder r(x) is zero, If it is, then it can be assumed that there are no errors. If r(x)

is not zero then there was at least one or more errors present, This remainder is once

17
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again called the syndrome. Equation 2.22 demonstrates how the received vector y(x) is
divided by the generator polynomial g(x) and any non-zero remainder is a result of a non-
zero error vector e(x). If the error vector e(x) was zero then the syndrome s(x) will also be

zero, and it can be assumed that there were no errors.
5(x) = Ry o [y(x)] = Ry s [e(x) +e(x)] = 0+ R;(x)[e(X)] (2.22)

This syndrome can be found through division with the encoder circuit shown in
Figure 2-5. A benefit of cyclic codes is that it is not necessary to keep track of all
possible syndromes as it was with syndrome decoding. In fact, only the syndrome that
represents an error vector in the most significant bit (MSb) position needs to be tracked.

This is because a left cyclic shift of the error pattern results in a syndrome that changes
by the amount equivalent to R,,, [xes(x)] 121. What this means is, if a non-zero syndrome
is présent in the shift registers, each clock of the division circuit is equivalent to a left
cyclic shift of the error pattern. For instance, assume a corrupted word y(x) has an error -
in its 5™ MSb, i.e. e(x)=[0,0,1,0,0,0,0]. When it is clocked into the divisor circuit a
syndrome will be formed that indicates this error. Now a further clocking of the divisor
circuit will result in a left cyclic shift of the error vector to e(x)=[0,1,0,0,0,0,0], and

| thus, a syndrome will be formed indicating an error in the 6™ MSb. One further clocking

of this circuit then will produce a syndrome indicating an error in the 7" MSb, ie.

e(x) = [1,0,0,0,0,0,0]. Thus, as long as the circuit is monitoring for this syndrome it can
correct the flipped bit. To check for an error in the MSb, the syndrome to monitor for

when g(x)=[1,0,1,1] is shown in Equation 2.23.

s(x)=R,,[1,0,0,0,0,0,0]=[1,0,1] (2.23)
Theréfore it will take exactly n clocks to form the original syndrome, and then n-1 more
clocks to cycle through all the remaining n -1 possible error vectors (2].

18
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The practical significance of this result is that the circuit only needs to look for a
single error pattern and continue clocking the division circuit until the syndrome for this
error pattern is matched. Once this happens it simply corrects the erroneous bit by

“inverting it. On the other hand if the syndrome is never matched it can be assumed that
there were no errors. Decoders using this principle are called Meggitt Decoders (2].

The circuit in Figure 2-6 shows how the above process can be achieved using very
simple digital circuits. For example, taking the CW c(x)=[1,0,0,1,1,1,0], and flipping
the 5™ MSb as described gives y(x) = [1,0,1,1, 1,1,0]. Figure 2-6 shows that for the first
n=7 clocks the corrupted y(x) CW is fed in, which forms the original syndrome
s(x)=[1,1,0] as shown at clk =7 . As the last bit of y(x) is being fed in the first bit of
y(x) is leaving the buffer of length n—1, where it is XORed with the syndrome s(x)
through the boolean circuit. Had there been an error in the MSb of y(x) the syndrome
would have been 101 causing the output of the AND gate to be high, thus flipping or
correcting this erroneous bit.

Hence it can be seen from Figure 2-6 that on the 9" clock (clk =9), the syndrome
s(x)=[1,0,1] has been matched and the erroneous bit has been corrected. The original
CW ¢(x) is then formed by ignoring the first n-1 bits that leave the buffer and keeping
the last n bits. Furthermore since this is a systematic code the original SW d(x) is
recovered by removing the last n-k bits. Clearly this circuit is simpler than decoding

with the parity check matrix.

19
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Figure 2-6: Meggitt decoder and operation correcting the 5" MSb

2.16. Advantages of Error Control Coding

Before the use of error control coding the only way to improve the performancé of
a communication system was to increase the transmitted power, or increase the amount of
bandwidth used, both of which come with a never ending financial penalty. However EC
coding allows for the clever encoding of data which results in an improvement in
performance using the current allotted bandwidth and transmit power, at the cost of added
com_plexity. Thus EC codes do an excellent job of bringing the bit error rate down to any

level desired, as long as the system can tolerate the added redundancy.

2.17. Drawbacks of Error Control Coding
The drawback of EC coding is that it is impossible to detect and correct all errors.
Sin‘c_e this is a stochastic problem there is always some chance that errors will slip
through the system undetected. In addition, when the number of errors in a received word
exceed the error correcting abilities of the EC code, the error correction process may in
- fact introduce additional errors into the decoded sequence. This is called error extension
-and it occurs because the EC code is fooled by the excessive errors and incorrectly flips
bits that did not have errors to begin with, consequently introducing additional errors into

the system,

20
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2.18. Constrained Sequence C(v)dvin‘g
When digital pulée signals are conveyed over a practical transmission medium,
* certain bit patterns can be more prone to errors than others (131 Knowing some
characteristics about the channel and the type of corruption the signals will undergo
allows for the information to be encoded prior to transmission to avoid transmitting those
sequences that are likely to be decoded in error. These types of encoded sequences are
being constrained and thus this type of coding is called Constrained Sequence (CS)
coding. It is also known as Line Coding (LC) in digital transmission systems (4} and
Recording Coding (RC) in digital storage systems. These terms will be used -

interchangeably.

2.19. Line Coding Basics

_  Whena binary data stream is transmitted over a channel it is first converted into
an electrical or light waveform through transmission encoding (4). One of the simplest
formats used is on-off coding also known as unipolar coding shown in Figure 2-7. Here
a logic 1 is represented by a positive voltage and a logic O is represented by no voltage.
This can also be interpreted as assigning a positive square pulse shape p(¢) to a logic 1,
and assigning no pulse to a logic 0. This is the most prevalent signaling arrangement used

in fiber optics as the laser is either on or off [14,15].

.
o
-
-
o
()
-

Unipolar NRZ

Unipolar RZ

Figure 2-7: On-Off Signaling Formats
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If the voltage is constant over the symboi period 7, then the format is called Non-
Return Zero (NRZ). If however there are too many like valued symbols in a row it is
difficult to determine the end of one symbol and the start of the next. Thus some systems
use Return Zero (RZ) signaling format to force the voltage to return to zero before the
end of each symbol period. This.comes at the cost of less energy per symbol, and thus‘ a

decreased signal to noise ratio. Both formats are shown above in Figure 2-7.

Polar NRZ

i

Polar RZ

0 T 27 3T AT 5T 6T AS

Figure 2-8: Polar Signaling Formats

Another commonly used format is polar coding, also known as bipolar coding
shown in Figure 2-8. Following from the last example, a logic 1 is transmitted by the
square pulse shape p(z) and a logic O is transmitted by the inverted square pulse shape

—p(t). This is the most power efficient scheme since it requires the least power to

achieve a given error probability [4].

Regardless of the transmission encoding used the serial bit stream requires
periodic maintenance as it travels on the channel in order to combat the accumulation of
noise and signal distortion. This requires that the signal be received, decoded, and
regenerated for further transmission. Most often the receivers used are AC coupled as
they are easier to design and capable of better performance [16,15]. The high-impedance
amplifier in Figure 2-9 is often used in fiber optic transmission systems because it offers
the lowest noise level and hence the highest detection sensitivity {16l However, because
of the high load impedance the frequency response of the amplifier is limited by the RC

time constant at the input [15).
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Figure 2-9: Simple high-impedance preamplifier design using a bipolar transistor |

~ AC coupling in these receivers has the effect of blocking the average dc value of
the signal. As a result a 50% duty cycle unipolar square wave will appear as a 50% duty

cycle polar square wave on the other side of the capacitor as shown in Figure 2-10.

1
1
t
¥

Figure 2-10: 50% duty cycle square wave through a dc blocking capacitor

- There is an additional effect caused by the large RC time constant. The high
impedance receiver tends to integrate the detected signal as shown in Figure 2-11. This

leads to a variation of the midpoint known as baseline wander [i6].

W%hxhhhw
AARNAAAR,

e N NN AN A NN

i
i

| - Figure 2-11: AC coupléd signal and baseline wand‘el"‘ :
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When a series of like valued symbols arrive in succession, such as more 1s than
Os, the transmission is said to be unbalanced. This causes the integration effect to become
more severe as shown in Figure 2-12 because the signal decays towards zero [15,16,17.
Note that the integration effect has been exaggerated for demonstration purposes.
Nevertheless it is clear that the AC coupled signal in Figure 2-12 would have an
increased probability of error in the presence of noise. Thus in order to minimize baseline
wander the output needs to be balanced. That is, there must be an equal number of 1s and

Os on average in the output sequence.

I
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Figure 2-12: AC coupling of an unbalanced sequence

| The receiver also must know the duration of a symbol interval (Iength of a bit), in
order to determine when to make a decision regarding the value of each symbol. To avoid
transmission of a separate clock signal receivers typically derive a clock from transitions
in the received data stream. This is done by having the oscillator in the receiver lock on to
level shifts in the received signal. If there is a long series of logic 1s or Os in a row the
receiver’s oscillator frequency may drift and become unsynchronized. When this occurs
the receiver can lose track of where it is supposed to sample the transmitted data, as
shown in Figure 2-13. This is a more serious problem than bits simply being corrupted by

the channel (1) as now the system is completely missing data.
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Figure 2-13: Clock recovery circuit losing synchronization

Another reason to require adequate transitions is to reduce timing jitter [s).
Random deviations of the incoming pulses from their ideal locations are always present
even in the most sophisticated systems (s). The tuned circuits used for timing extraction
are sensitive to the pulse patterns, and long strings of Os or 1s introduce additional jitter
as the oscillation slows [4,51. As well, most data transmitted is packaged in a regular
fashion known as framing. This typically consists in a set number of bits for header,
payload and tail information. The framing patterns result in a periodic frame structure and .

these regular patterns can also cause pattern dependent jitter (4).

All of these factors collectively contribute to errors in the received signal.
However when CS coding is introduced the transmission signal characteristics are
improved in such a way that the regular patterns get randomizéd, and the long strings get
broken up as the transition density is increased. Consequently the clock recovery in the
receiving terminal is stabilized and jitter is reduced, decreasing the inter symbol

interference (ISI) and improving the accuracy of data reception.

2.20, Line Coding Goals

Goals of liné coding include:
| 1. Adequate transitions for timing recovery
2. Balanced transmission to reduce dc drift
- 3.. Low jitter

4. High efficiency, i.e. low fedundancy
| 25

Reproduced with permission of the copyright owner. Further reproducﬁon prohibited without permission.



5. Simple implementation
6. Low error extension

7. Good performance regardless of the source statistics

The unpredictable nature of the digital sdurce makes achieving the‘above goals
challenging. For instance, if the probability of the source outputting a 0 is very high, the
outgoing sequence would naturally have long runs of 0s. As a consequence the receiver
would have very few transitions to lock onto. The outgoing sequence would also be
heavily unbalanced which would lead to drift, jitter and ult.imately errors. Thus it would
be up to the CS code to modify this bit stream into a more suitable sequence for the
channel, removing the long runs of like valued bits. A block diagram of a system

incorporating CS coding, also known as line coding, is shown in Figure 2-14.

Channel

Line
Coding

Source

: / Line
Receiver [;l' Decoding

Figure 2-14: Digital communication system with CS coding

2.21. Line Coding approaches
Manchester Encoding is an almost ideal CS coding. Scheme in that it meets
nearly all line coding goals. In this system a logic 1 is mapped to the two bit pattern 01,
and a logic 0 is mapped to the complement two bit pattern 10. This guarantees at least
- one transition per bit as well as a completely balanced transmission (s5). Even if a source
constantly emitted logic Os the transmitted sequence would simply appear like a 50%
duty cycle square wave. The drawback with this approach hoWever is that with this 1:2
mapping the output sequence is 50% redundant. |
26
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_ " 4B/5B encoding is a line coding technique sometimes called block coding 1131
Here every four bits from the source are encoded into five bits for the channel. With
2* =16 possible SWs mapped to 16 of the 2° =32 possible CWs, a straightforward
implementation results in the 5-bit CWs always having two 1s even if the source data is
all Os. This allows for clock synchronization and is more efficient than Manchester
Encoding. A drawback however is that it is no longer balanced since CWs have an odd

length.

5B/6B uses the same idea as 4B/5B with the improvement that there are now three
0 bits and three 1 bits in each 6-bit CW. As a result the output is dc balanced. This coding
scheme also provides an added error checking capability since invalid data patterns, such

as-more than three Os or three 1s in a word can be detected.

There are many similar codes such as 7B/8B, 10B/12B and so on which map m
information bits into n transmission bits and they are commonly referred to as mBnB
codes where the B denotes binary signaling. They are also known as Alphabetic Codes
where the pre-selected set of n bit CWs are called an alphabet (1,4, 51. The mapping is
typically done using look-up tables stored in ROMs. The physical limitations of ROMs
impose CW length restrictions and speed (access time) restrictions. Because of this they

have not gained popularity in high bit rate systems.

Scrambling is a bit-level (or pulse-level) processing applied to a digital signal
just prior to transmission on the channel. The objective of scrambling is to improve clock
recovery as well as randomize the bit sequence as much as possible to remove long
strings of 1s or Os. Scrambling is designed to work well regardless of source statistics and
also does not affect the bandwidth requirements of the system r14,18). Therefore the bit rate
of the system is the same before and after scrambling and thus it has found great
popularity in fiber optic systems.

Scrambling can be described with the same polynomial representation used to
describe cyclic EC codes. For example, to scramble a stream of source data s(x) with the
scrambling polynomial d(x) using Self Synchronous Scrambling (SSS),F the data
stream is multiplied by the degree of the scrambling polynomial and divided by d(x).

The scrambled sequence is the quotient 18] as shown in Equation 2.24,
27
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c(%) = Qe [ s(0)x" | (2.24)

The scrambled sequence is formed using the same polynomial operations as were

~ used with EC coding. For example, consider a sequence that contains a long run of zeros,

i.e. s,(x) = 01000000001, and scrambling polynomial d(x) = 100101. The scrambled

sequence would be

¢(%) = Qaqy [ 50(3)x* | = 00010010111 (2.25)

Clearly the scrambled sequence c¢,(x) meets our line coding goals far better than -

the unscrambled sequence. While scrambling can greatly increase the probability of
avoiding long runs of like valued bits it does not provide the same guarantee that many
block coding techniques such as mBnB codes provide. It can be seen that there is still
situations that can cause the transmitted sequence to contain long run of 1s or 0s. For

instance, if §,(x) =01001010001001010100101, the output sequence would be
¢, (x) =0 [s, (x)x"] =(01000000001000000100000 (2.26)

Here the unscrambled sequence appears better suited to meet our constrained
sequence goals then the scrambled sequence. To account for this guided scrambling [14]

is an extension and improvement of SSS which augments the SW prior to scrambling. As

- aresult it is capable of guiding the outcome of an otherwise normal scrambling process to | o

‘produce a highly efficient balanced bit stream [14).
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2.22. Advantages of Constrained Sequence Coding

CS codes do an excellent job of ensuring sufficient transitions for timing recovery
and encoding the output sequence to match channel constraints [18). In this way they can
be thought of as pre-conditioning the data in a suitable fashion for transmission on a real
channel. This new data sequence will then suffer less corruption than had the data been

sent uncoded [14,18,19).

CS coding is often thought of as spectral shaping [20) since the channel constraints
are being met by modifying the frequency domain characteristics of the transmitted
signal. In essence, CS coding is a proactive approach to preventing errors from occurring

in the first place.

2.23. Disadvantages of Constrained Sequence Coding

The major drawback of CS coding comes from their inability to effectively handle
errors that inevitably occur. When errors are present in the received sequence error
propagation results as the CS decoder incorrectly decodes the message. In many cases

this error extension can affect numerous subsequent CWs [18).

2.24, Combining Error Control Coding and Constrained Sequence Codihg

Since EC coding and CS coding both aim to improve the accuracy of digital
communication systems, many systems utilize both approaches to extract the benefits
from the two coding techniques (6). Figure 2-15 shows the configuration that is normally
used. The idea is to apply an EC code first and then use CS coding to condition the
information for the channel. The hope is that the overall number of errors will be

reduced, and any errors that do occur can be corrected by the EC code.
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Figure 2-15: Typical configuration that incorporates EC coding and CS coding

The difficulty with this approach arises during demodulation/decoding. When
errors inevitably occur the CS decoder has no means of dealing with them. As a result it
incorrectly decodes the incoming sequence, in effect increasing or multiplying the
number of errors (6,7.8). This error multiplication can be thought of as turning a single
error into a burst (multiple bit errors) (7. Hence the error correcting code must be a burst
correcting code even when noise in the channel is dominated by random errors (7. In
general more redundancy is needed to correct ¢ error bursts than to correct ¢ random

| errors (2. This means that there is a greater cost in efficiency and complexity with the
above approach. Therefore a logical conclusion is that errors should be corrected prior to

CS decoding to avoid the error multiplication as shown in Figure 2-16.

However straightforward exchange of the decoders is impossible since the

| required order of operations is no longer followed. The EC decoder would not recognize
any of the words arriving off of the channel since the CS encoder would have modified
the EC CWs for the channel before they were transmitted. The EC decoder would then
mistakenly try to correct these words unintentionally introducing more errors. Finally,
since the CS decoder is now last, it would receive words that it would also not recognize
(as a result of the EC decoder) and most likely introduce additional errors when it

attempts to remove the effect of the line code.
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Figure 2-16: Desired configuration that incorporates EC coding and CS coding

Channel coding researchers are now investigating ways of combining the above
codes into one monolithic code to avoid this error multiplication and extract the benefits
of both. Several methods are similar in their approach of adding additional redundancy in
the form of multimode coding, where one SW is mapped to a selection set of CWs (7], or
through appending additional CS bits to an existing EC code 1101, or through augmentation
of EC and CS code bits 6. These codes are sometimes called combi-codes (21] or CC-EC

codes [11] and are depicted in Figure 2-17.

Channel

Error Control Coding
Line Coding

Y

Source

Noise,

— n(t).

, g Error Control Decoding j
Receiver ':’— Line Decoding i

Figure 2-17: Combined approach that incorporates EC coding and CS coding

This thesis introduces a simple approach to achieving the above goal of
integrating EC coding with CS coding that is easily implemented and has good
performancre tradeoffs. The approach uses linear cyclic block codes énd the simple family
of Hamming codes for proof of concept. CS coding is achieved through multimode
coding and this new technique is thoroughly analyzed, simulated, and implemented in

hardware using field programmable gate arrays (FPGAs).
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3. Integrating EC coding and CS coding

Creating a combined code is not straightforward since the methodologies behind
EC coding and CS coding are different. Error control CWs are designed to be as different
from one another as possible in order to increase the probability of detecting and/or
correcting the most errors. Therefore CWs such as the all-zero CW c¢(x) = 0000000 or
the all-one CW c¢(x)=1111111 are often present. These CWs have no transitions and
they are completely unbalanced, but clearly it would take multiple flipped bits (many

errors) to mistake one for the other. Constrained sequence CWs on the other hand are

designed to give balanced output and ensure an adequate number of transitions. Thus

with properties like these CWs often exist that only differ by a single bit. Consequently

single bit errors can often make one CW appear as another.

In order to create a combined code one of the following two approaches can be
employed. More redundancy can be added to an existing CS code, to increase the
distance between the CWs in an attempt to turn it into an EC code. Alternatively, more
redundancy could be added to an existing EC code in the form of restricting the CWs that

are used to only those that meet the systems CS coding requirements in an attempt to turn

it into a CS code.
If the latter approach is tagken and a typical (n,k) error correcting block code is

used, inspection of the 2* possible CWs will show that many of them meet the CS
coding goals outlined in Section 2.20. Therefore if transmission is restricted to this subset
of EC CWs, and since these CWs can natively correct errors, a combined EC and CS

code is obtained. This is the novel approach introduced in this thesis, which uses the EC
CWs themselves as the CS code.

While the above approach qualifies as a combined EC and CS code,

' straightforward implementation presents some difficulties. For example, the mapping of

SWs to the restricted set of CWs can be accomplished through look-up tables. However

this _Would result in the encoder being subject to all of the same ROM limitations as

mBnB codes, preventing its use in high bit rate systems. As well, many EC codes have
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CWs that contain an odd numb‘eri of bits. In these cases any individual CW will have
more 1s than Os and vice versa. Thus in a worst case situation where a source continually
emits the same SW, the encoder would continually transmit the same odd length CW,
resulting in a transmission that grows increasingly unbalanced. These problems need to
be addressed, and the complete details for the combined EC and CS code presented in

this thesis are presented through example in the next Section.

3.1. A Simple Scheme

| The major flaw in the 1:1 mapping of SWs to CWs described above is that the
system cannot guarantee balanced output. If however there existed the flexibility to send
the CW, or the complement of the CW, this guarantee could be made. For example,

examining the CWs of the (7,4) Hamming code shown in Table 2-1 shows that
¢,(x)=0111010 and ¢;(x)=1000101, c,(x)=0110001 and c,(x)=1001110, all the
way to ¢,(x)=0000000 and ¢, (x)=1111111 are all CW complements of one other.

Thus in a worst case situation where a source continually emits the same SW repeatedly,
this system would remain balanced since the encoder could alternately transmit the

original CW followed by its complement. That is ¢,(x) =0111010 which has four 1s and
three Os could be transmitted, followed by ¢;(x) =1000101 which has three 1s and four

0Os, thus balancing the transmission. An encoder that maps one SW to a choice of more
~ than one CW is classified as a multimode encoder, which was first discussed in
Section 2.24. Specifically, this encoder is further classified as a bimode encoder since

each SW is mapped to a choice of only two CWs.

This multimode encoder could be implemented without look-up tables and using
the original digital logic gate encoders of Figure 2-5 by taking advantage of linear code
properties of block codes. For example, from Section 2.11, any CW added to the all-zero

CW will result in the original CW unchanged. However any CW added to the all-one CW
will _ result in the CWs complement. For example, c¢,(x)=0111010 added with

¢,(x)=0000000 is c,(x)=0111010 (no change), but ¢,(x)=0111010 added with
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Cis (x)=1111111is ¢z(x) = 10001()1 (every bit inverted). Thué based on this idea of CW

- addition, Figure 3-1 shows a possible setup of a bimode coding scheme where the

encoder can choose to send the original CW or its complement.

te 0000000 Select :
EC Code Word | Best r——k{;EC+CS Code Word
1111111 } ©s

Sequence Statistics

Figure 3-1: A simple EC + CS encoder using bimode coding

From the discussion above SWs are still converted to CWs in the usual fashion.
However with the above system, these CWs are then added to both the all-zero and the
all-one CW. This has the effect of presenting the original CW and its complement to the
Select Best decision block. The decision of selecting which CW to transmit is based on
feedback from CWs already transmitted on the channel. Depending on these sequence
statistics, the CW that keeps the overall number of 1s and Os sent on the channel
approximately equal will be chosen. Therefore with this setup, in a worst case situation
where a source continually emits the same SW, such as the all-zero SW, this system can
ensure balanced transmission. These 'output sequences are contrasted in Figure 3-2, which

shows the original all-zero sequence listed as before, ,,, versus the im'proved sequence
listed as after,, ;. Clearly this is an improved sequence since it is balanced and there is a

transition once every CW.

before,, ,,- 0000000 0000000 0000000 0000000
after, 5 0000000 1111111 0000000 1111111

Figure 3-2: The effect of the bimode coding: balanced output

As shown below in Table 3-1 this setup has SW 0 mapped to two CWs 0 and 15.
Likewise, SW 1 is mapped to CWs | and 14 and so on. Hence SWs 8 to 15 can no longer

be used to represent data, or in other words, the ability to achieve balanced transmission
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has resulted in an: additional bit of redundéncy,-thus modifying the (7‘,4) Hamming code | |
to :a (7,3) Hamming code (i.e. there are now 2’ =8 possible SWs, 0 through 7 as listed in
Table 3-1). Since the overall length of the code stayed the same, this is known as
expurgating the code (2], i.e. one of the source bits is now acting like a parity bit. This
extra parity bit is the MSb of each SW listed in Table 3-1.

Table 3-1: SW to CW mapping of this bimode (7,3) setup. Compare with Table 2-1

Index ~ SW  CWy . CW, (complemen)
0 0000 0000000(, 21111115,
1 0001 0001011, 1110100y,
2 0010 0010110(; 11010013,
3 0011 00111013 110001012

4 0100 0100111, 1011000,
-5 0101 0‘1‘01100(5, 1010011(10,‘
6 0110 0110001, 1001110,
7 0111 0111010(;) 10001014

Decoding,bf these CWs is simple. Examination of Table 3-1 shows that the MSb
of every CW is either a 0 or a 1 (shown in bold). This MSb is the information bit that iS |
now acting as a parity bit. Thus the decoder can determine whether or not the received
CW is the original or the complement, simply by inspecting the MSb. Thus as shown in
Figufe 3-3 the decoder first error corrects the received word, and then based on the value
of the MSb, removes the CS coding by adding either the all-zero or all-one CW.

Recovering the SW is then the simple operation of removing the parity check bits.

; +
ECHCS Code Word | Meggitt Decoder A s /—t{ 0000000 Remove party
(Correct Exsors) 1of2 |t i 1o yield SW

Extract
MSb |

* Figure 3-3: A simple EC + CS decoder using two AddCWs
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There are two main advantages of this scheme. First of all the original encoder

and decoder circuits which consist of simple boolean logic can still be used with only a
slight modification for CS coding. Secondly, received words arriving off the channel
avoid error propagation since they are error corrected first before removing the CS
coding through CW addition. Thus the encoder of Figure 3-1 and decoder of Figure 3-3
démonstrate a combined EC and CS code that incorporates feedback to maintain balanced
output. In this coding scheme the all-zero and all-one CWs used for CW addition are
defined as Add Code Words (AddCWs). Therefore the encoder of Figure 3-1 and
decoder of Figure 3-3 use two AddCWs. |

3.2. Improved scheme
Looking once again at the output data stream after,, ; in Figure 3-2 demonstrates

that this setup can guarantee balanced transmission. However it also demonstrates that it

~ cannot guarantee numerous transitions. For example, this bimode system presented above
turns the all-zero sequence into an alternating sequence of seven zeros followed by seven
ones. Therefore in this (7,3) example there is a transition every seven bits since n=7.
However if the system used a larger code such as the (63,57) code expurgated to (63,56),
there would only be a transition every sixty-three bits since n=63. That is, the output
sequence would alternately consist of sixty-three zeros followed by sixty-three ones.
While the output would still be balanced, this situation is not desirable since so few
transitions could pose problems for clock recovery. Therefore a way to introduce more
transitions is required.

This can be accomplished using the same AddCW technique if the encoder has
more CW choices per SW. This is because the encoder could choose to transmit the CW
that not only balances the transmission but also contains the most transitions. Based on
the CW addition technique above, this can be achieved by doubling the number of
AddCWs. For example, consider the same worst case situation where the all-zero CW

¢,(x) =0000000 is continually emitted. If the encoder has two additional AddCWs
available for CW addition, such as ¢,(x) =0100111 and c,,(x)=1011000 as shown in
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Figure 3-4, then the Select Best decision block would have four choices for transmission

that are:  c,,0(x) =0000000, c,,,,(x)=0100111, | c;,tsu,,z(x) =1011000 and

re.

Croquna () =1111111. This is also a multimode scheme where one SW is mapped to a

choice of four CWs.
*nl 0000000
+pl 0100111 ﬁ :
! [ Select [
EC Code Word i ) Best { EC+CS Code Word
‘ tul 1012000 } Best | L
tyl 1111111 ;

Sequence Statistics

Figure 3-4: A simple EC + CS encoder using four AddCWs

(x) and ¢, ,.(x) are better choices for

resultl result2

- In this situation it is clear that ¢
transfm’ssion than ¢,,.;0(x) and ¢, (%) simply because they contain transitions within
each CW. The encoder can now alternately choose c,,,,,(x) and c,,,(x) for
transmission resulting in the improved output sequence listed as after,, ,, in Figure 3-5.
Comparison with the original all-zero sequence original,, and the simple bimode
scheme before,; ,, demonstrate how this multimode setup with double the number of

AddCWs can introduce transitions and still maintain balanced output.

original , ,, 0000000 0000000 0000000 0000000
before;,,, 0000000 1111111 0000000 1111111
after,,, 0100111 1011000 0100111 1011000

Figure 3-5: The effect of the (7,2) scheme is balanced output and numerous transitions

_ ' v “This CW addition technique has taken the all-zero CW with zero transitioﬁs and a

~ 7:0 ratio of Os to 1s per CW, and produced a sequence of alternating CWs that have three
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traris_itions and a 3:4 ratio and :4:3 ratio of Os to 1s respécﬁvely. This technique is
successful since the addition of a CW that has poor statistics (i.e. unbalanced with few
transitions) to a CW that has better statistics (i.e. balanced with numerous transitions),
results in a new CW whose statistics are an average of the two, upper bounded by the

statistics of the better CW.

As show in Table 3-2, SW 0 is now mapped to four CWs, 0, 4, 11 and 15.
Likewise, SW 1 is now mapped to CWs 1, 5, 10 and 14 and so on. Hence SWs 4 to 15
can _nbo longer be used to represe_ni data, or in other words, the ability to add transitions
has resulted in an additional bit of redundancy over the previous bimode system. Now the
first two bits of each SW can be viewed as redundant bits. Thus the (7,4) Hamming code

has now been expurgated to a (7,2) Hamming code. Also note that these CWs still

maintain the complementary nature of the system since cw, and cw, as well as cw, and

CW, are complements.

Table 3-2: SW to CW mapping of this multimode (7,2) setup

Index Sw Cw, CWy CWy Ccw,

0 0000 0000000(, 0100111y, 1011000, 1111111gs)
1 0001 0001011, 0101100(;, 1010011, 11101004
2 0010 0010110 0110001, 1001110 11010013,
3 0011 0011101, 0111010, 1000101, 1100010z

Decoding of these CWs does not change significantly. Examination of Table 3-2
shows that the two MSbs of each CW are either 00, 01, 10 or 11 (shown in bold), or in
decimal notation this is 0, 1, 2 or 3. Thus the decoder now inspects the two MSbs of the
error corrected words to determine which of the four AddCWs was added. Thus as shown
in Figure 3-6, the decoder first error corrects the received CW, then based on the value of
the two MSbs, removes the CS coding by adding the correct AddCW. Recovering the SW

is then the simple operation of removing the parity check bits.
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' +
Meggitt Decoder N - 0000000

EC+C Code Word ] orract Ertors) E+ -
‘ e Sel 0100111 Remove parity

4 X
1of |+ 1011000 to yield SW

Extract
2 MSbs

1111111

Figure 3-6: A simple EC + CS decoder using four AddCWs

Looking at the output data stream after,,, in Figure 3-5, it is clear that this

system can guarantee balanced transmission and definitely improves the number of |

transitions. However there is another factor that needs to be considered which is the run
of like valued bits across CW boundaries. For instance, when the concatenation of CWs
is considered a run of four 1s and four Os in still present in the obutput sequence as shown

in Figure 3-7.

aftery 5, 0100111101100001001111011000

LY [ A
runs of 4 like valued bits

Figure 3-7: Concatenation of CWs shows runs of four like valued bits

While this may not seem significant, consider that this is a small code of n=7 ,
and this represents a run of like valued bits more than half the CW length. Thus in a
longef code with n =63, this could mean a run of more than thirty-three like valued bits
in a row, which could cause problems for clock recovery. Therefore a way to break up
these runs of like valued bits is required.

This could be accomplished once again using the same AddCW techniques if the
encoldef had more CW choices per SW. This is because the encoder could choose to
transmit the CW that not only balances the transmission and contains the most transitions,
but also limits the runlengths of like valued bits. That is, building again on the previous
examp]e consider the same situation where the all—zefo CW ¢,(x)=0000000 is
continually emitted. If four additional AddCWs were available for CW addition, such as

¢,(x)=0010110, ¢;(x)=0110001, c,(x)=1001110 and c,;(x)=1101001 as shown in
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Figure 3-8, then the Select Best decision block would have eight choices for transmission

that  are: C,esuno (X) =0000000 , Crou () = 0010110, Cresun2(X) = 0100111,
Cresurs () = 0110001, c¢,,,.(x) =1001110, c,,,5(x)=1011000, c,,,;,c(x)=1101001 and
Croqun7(¥) =1111111. This is also a multimode scheme where one SW is mapped to a

choice of eight CWs,

+
4

tul 0110001 Select |

EC Code Word - it Best —ﬁl EC+CS Code Word 1%
e " ¥ 1001110

1101001
il 1111111

0000000 |—» '
0010110

* Sequence Statistics

Figure 3-8: A simple EC + CS encoder using eight AddCWs

In this situation the Select Best decision block would select c,,,,, (x) =0010110
and  C,,(x)=1101001 for transmission since they not only ensure balanced

res

transmission and contain numerous transitions , but a maximum runlength of two like

valued bits is achieved. This is shown as after,,,, in Figure 3-9.

Comparison with the original (7,4) all-zero sequence original, ,,, simple bimode
(7,3) scheme before, ,, and the four AddCW (7,2) system before; , demonstrate how

this multimode setup with eight AddCWs can introduce transitions, maintain balanced

output and constrain the output to a maximum runlength of two like valued bits.

(=3

4
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original, ,, 0000000 0000000 0000000 0000000
before; 5, 0000000 1111111 0000000 1111111
before,,, 0100111 1011000 0100111 1011000

after,,, 0010110 1101001 0010110 1101001

Figure 3-9: SW to CW mapping of this (7,1) setup

| As shown in Table 3-3, SW 0.is now mapped to eight CWs, 0, 2, 4, 6, 9, 11, 13
and 15. Likewise, SW 1 is now mapped to CWs 1, 3, 5, 7, 8, 10, 12 and 14. Hence SWs 2
to 15 can no longer be used to represent data, or in other words, the ability to decrease the
runlengths has resulted in an additional bit of redundancy over the previous setup. Thus
the (7,4) Hamming code has now been expurgated to a (7,1) Hamming code. Once again

the CWs have still maintained the complementary nature of the system since cw, and

cw, , as well as cw, and cw, , cw, and cw, and cw, and cw, are complements.

Table 3-3: SW to CW mapping of this multimode (7,1) setup

I SwW Ccw, CWy CWe Cwp CW), CW, CWy cw, ‘

0 0000 0000000 0; 001201103, 01001114, 0110001 ¢) 100111049 1011000413, 110100133 11111115,
1 0001 0001011y, 00111013 0101100¢s) 0111010¢7, 1000101g) 1010011;,0, 1100010412 111010014,

| Decdding of these CWs is identical to the previous decoders. Examination of
Table 3-3 shows that the three MSbs of each CW are either 000, 001, 010 011, 100, 101,
110 or 111. In decimal notation, this is 0, 1, 2, 3, 4, 5, 6, or 7. The decoder now checks
the three MSbs to determine which of the eight AddCWs was added. Thus as shown in
Figure 3-10, the decoder first error corrects the received CW, then based on the value of
the three MSbs, removes the CS coding by adding the correct AddCW. Recovering the

SW is then the simple operation of removing the parity check bits.
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Meggitt Decoder | —.I 0000000 t——
EC+CS Code Word Y Cortect Brrors) [ .
g % 0010110

£ 0100111
Ennct‘ N
3 MSbs o ol 0110001 » E—-— Remove parity

1o£8 [/ to yield SW
’ 4o 1011000

= 1101001
2 R

|+

‘Figure 3-10: A simple EC + CS decoder using eight AddCWs

- 3.3. Tradeoffs

All three schemes presented yield balanced outputs, and when more AddCWs are
available, increase the transition density. This can also be viewed as limiting the '
runlengths of like valued bits. These benefits however come at the cost of added
redundancy. A quick comparison of the coding schemes is shown in Table 3-4, assuming

equiprobable source statistics.

With 1 bit of redundancy for CS coding the (7,3) code is balanced and has on
average an 80% chance of runlengths that are three or less. However it still has a 20%
chance of runlengths that are higher than this, with a 0.147% chance of a run of twelve
(not shown in the table). With two bits of redundancy for CS coding, the (7,2) code has a |
96.41% chance of runlengths of three or less, and no possibility of a run longer than four.
Finally with three bits of redundancy for CS coding, the (7,1) code can guarantee
runlengths of two or less with a probability of 100%. Note that the (7,4) code is
completely unbounded in terms of runlengths, i.e. it is possible to have runlengths of any

length, whose likelihood is dependent on the statistics of the source data stream.

Table 3-4: (7,x) code performance with equiprobable source statistics

RunLengths 1 2 3 4 5 6 7 8 9 .

(7,3) Code 0.2719 0.2609 0.2683 0.0364 0.0151 0.0049 0.0562 0.,0378 0.0285
{7,2) Code 0.3794 0.3571 0.2276 0.0357 0.0000.0.0000 0.0000 0.0000 0.0000
{7,1) Code 0,4285 0.5714 0,0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Clearly with more AddCWs available the CS properties are improved. This

~ however comes at a tradeoff of adding more redundancy.

‘3.4. Goals of the _cbmbined EC and CS system

 The above examples demonstrate the combined EC and CS concept, whose
multimode approach is made possible through CW addition. The following sections
reiterate the most important goals, outline common pitfalls, and demonstrate the details of

this approach and how it can be implemented with any linear block code.

The main goals of the system are:
1. Simple implementation;

2. Guarantee of the desired performance regardless of the incoming sequence

statistics;

3. Addition of minimal redundancy into the encoded sequence.

Due to the cyclic nature of the simple Hamming EC code, encoding and decoding |
can be achieved using the simple logic circuits of Figure 2-5 énd 2-6, i.e. look-up tables
in ROMs are not required ensuring the use in high speed systems. The introduction of CS
coding through CW addition can also be easily implemented using simple logic circuits,

i.e. XOR gates since the addition is over GF(2).

Guaranteeing the desired performance of balanced transmission, numerous

~ transitions and limiting the runlengths of like valued bits is achieved through feedback in
the system. As discussed the system monitors the overall number of Os and 1s sent on the
channel to record transitions and runlengths, and then uses this information to determine
the best CW for transmiséion. This feedback guarantees the system’s CS goals will be

maintained regardless of source statistics.

Finally, the (7,4) code discussed so far was used because it is small and
- presentable, but it suffers from too much redundancy with this scheme. However this .
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- redundancy is less of a factor when larger codes are used. For instance with three
ad_ditibnal bits of redundancy (eight AddCWs),'the‘(IS,l‘l)‘code expurgated to (15,8) is
46% redundant, but the (31,26) expurgated to (31,23) is only 25% redundant, and the
(63,57) expurgated to (63,54) is only 14% redundant and so on. Therefore, the

- redundancy can be minimized to any desired level as larger and different codes are used.

3.5; Generic Systems

The following systems presented can be used with any linear block code and can

be incorporated into existing digital circuits with a minimum of additional complexity.

Balanced transmission: As discussed through example in Section 3-1, balanced
transmission can be achieved with a single additional bit of redundancy. The generic
structure of the complementary bimode encoder is shown in Figure 3-11, and the

corresponding decoder is shown in Figure 3-12.

EC+CS Code Word

|

EC Code Word

Sequence Staﬁsucs

Figure 3-11: Generic bimode complementary encoder using two AddCWs

' - Lty '
Meggitt Decoder Sel 00...00 Remove pari
EC+CS Code Word ‘ o panty
l o or I » (Corsect Ecrots) 1 of2 4 TR to yield SW

Extract
MSb |

Figure 3-12: Generic bimode complementdry decoder using two AddCWs v

With this setup the two AddCWs are recommended to be the all-zero and all-one
CWs as shown in Figure 3-13. This gives the Select Best decision block the ability to

transmit the original CW or its complement. (Note that other CWs could be used here and
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this will be discuséed below). Figure 3-13 also displays these CWs as 00..00 and 11..11° | | _ o

sinée their length is dependent on the (n,k) block code used. Therefore if the (7,4)

Hamming code is used like in the examples of Section 3.1 and 3.2, then their length is

n =17 bits. However if the (1023,1014) Hamming code was used, then their length would

be n=1023 bits.

- 00...00 11...11

Figure 3-13: AddCW format for a system using two AddCWs

In Figure 3-13 the MSbs of the two AddCWs (shown in bold) are 0 and 1
respective]y, which as discussed in Section 3-1, is the extra bit of redundancy that allows
the decoder to determine whether the received CW is the original or the complement.
Strictly speaking then, for the decoder to function properly these two AddCWs do not
necessarily have to be the all-zero and all-one CW. All that is required is that the two
AddCWs used have their MSbs as 0 and 1 respectively. As long as this criteria is met, the
decoder will be able to determine which AddCW needs to be added at the receiver in
order to recover the original CW (i.e. remove the CS coding). Therefore Figure 3-14
shows the specific format that these AddCWs must take, where the x’s represent any

available CW that has the MSbs in this fashion.

0x...RxX 1x...x8x

Figure 3-14: Format of the two AddCWs for proper decoder operation

- Note that since the .code is cyclic, nbt.using the all-zero and all-one CWs as
AddCWs only has the effect of changing the overall mapping of SWs to CW. For
example, if the two AddCWs used were ¢;(x)=0110001 and c,(x)=1001110, the SW

to CW mapping would be that shown in Table 3-5. This table can be compared with
Table 3-1 where the AddCWs were the all-zero and all-one CW.
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Table 3-5: Using AddCWs c¢(x)=0110001 and c5(x)=1001110

~ Index SW CW, CW, (complement)
0 0000 0110001, 2001110,
1 0001 0111010, 1000101,
2 0010 0100111, 1011000,
3 0011 010110055, 1010011
4 0100 0010110 11010013,
5 0101 0011101 11000103
6 0110 0000000y, 1111111s,
7 0111 0001011, 1110100 g

It is clear that with this new SW to CW mapping the output transmission will still
~ be balanced, since in a worst case situation where a source continually emits the same

‘CW such as the all-zero CW ¢,(x)=0000000, it would be mapped alternately to

¢s(x)=0110001 followed by c,(x)=1001110 ahd SO on.

Note that if the two AddCWs were not chosen to be complements then balanced

output can no longer be guaranteed. For example Table 3-6 shows the SW to CW

mapping if the two AddCWs were ¢,(x) =0110001 and c(x) =1000101 .

Table 3-6: Using AddCWs ¢6(x)=0110001 and cg(x)=1000101

Index N4 Ccw, CW, (complement)
0 0000 0110001, 1000101,
1 0001 0111010, 1001110,
2 0010 0100111, 1010011y
3 0011 0101100 1011000y,
4 0100 0010110, 11000102
5 0101 0011101, 11010013
6 0110 0000000, 11101001
7 0111 0001011y, 111111lgs
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In this case if the all-zero CW ¢,(x)=0000000 is continually emitted it would be

‘ma.pped alternately to c¢,(x) =0110001 followed by c;(x)=1000101 and so on, which

are both unbalanced with a 0 to 1 ratio of 4:3. Hence this system would continually grow
unbalanced. As a result, the AddCWs used in this bimode system must be chosen such
that their MSbs are 0 and 1 respectively, and that they are CW complements. Therefore,
since inspection of Table 3-1 and Table 3-5 shows that the only difference is the SW to
CW mapping, for simplicity it is recommended that the AddCWs are always chosen to be
the all-zero and all-one CW. In general the only requirement that this places on an EC

codevis that it contains the all-zero and all-one words as CWs.

Balanced transmission, Transitions: As discussed in Section 3-2, balanced
transmission can be guaranteed and transition density can be improved with two
additional bits of redundancy. Figure 3-15 shows the generic structure of the multimode

complementary encoder that uses four AddCWs, with the corresponding decoder shown

in Figure 3-16.

S];‘“‘ _"L EC+CS Cods Word
est

EC Code Word

ﬂ

T Sequence Statistics

Figure 3-_15: Generic multimode complementary encoder using four AddCWs

3 Meggitt Decoder .
EC+CS Code Word F (Corssct Exsos)

Remove parity
"l toyield SW

10f4

Extract
2 MSbs

- Figure 3-16: Generic multimode complementary decoder using four AddCW§
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. As with the previous setup in order for the decoder to know which AddCW was
‘added at the transmitter, the AddCWs must follow the format shown in Flgure 3-17.
Since this system uses four AddCWs, two MSbs are used and they must be in the form
00, 01, 10 and 11, which in decimal is 0, 1, 2 and 3. Therefore strictly speaking, each
AddCW could be any CW that meets this criteria. '

00...xx O1l...xx 10...xx 11...xx

- Figure 3-17: Chdosing an AddCW set with four AddCWs

However, from the previous discussion in order to guarantee balanced
transmission the encoder needs the ability to send complementary CWs. Therefore the
‘AddCWs‘ should maintain the format of Figure 3-17, and they should be chosen to be

complements as shown in Figure 3-18. Hence the all-zero and all-one CWs are chosen,

and CW a can be chosen in the form 01.. XX, and a is simply its complement.

00...00 a a 11...11

Figure 3-18: Strict format of the four AddCWs

Balanced transmission, Transitions, limit Runlengths: As discussed in Section 3-2,
balanced transmission can be guaranteed, transition density can be improved, and
runlengths can be greatly controlled with three additional bits of redundancy. Figure 3-19
shows the generic structure of the multimode complementary encoder that uses eight

AddCWs, with the corresponding decoder shown in Figure 3-20.

As with the previous setup in order for the decoder to know which AddCW was
added at the transmitter, the AddCWs must follow the format shown in Figure 3-21.
Since this system uses eight AddCWs, three MSbs are used and they must be in the form
000, 001, 010, 011, 100, 101, 110 and 111, which in decimal is 0, 1, 2, 3, 4, 5, 6 and 7.
Therefore strictly speaking each AddCW could be any CW that meets this criteria.
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l EC Code Word |—
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T Sequence Statistics

Figure 3-19: Generic multimode complementary encoder using eight AddCWs
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001...xx
Remove parity

o XX

101, . .=

Figure 3-20: Generic mliltimode complementary decoder using eight AddCWs

000, ..xx 001..,.xx 010...xx 011...xx 100, ..xx 101...xx 110...xx 111, ..xx

- Figure 3-21: Choosing an AddCW set with eight AddCWs

However, from previous discussions in order to guarantee balanced transmission
the encoder needs the ability to send complementary CWs. Therefore the AddCWs
should maintain the format of Figure 3-21, and they should be chosen to be complements
as shown in Figure 3-22. Hence the all-zero and all-one CWs are chosen, and CW a can

be chosen in the form 001...xx, CW b can be chosen in the form 010...xx, and CW ¢ can

be chosen in the form OI1...xx. Then CWs a, b and c are simply chosen as the

c‘omplemerits of a, b and c respectively.
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1 00...00 & b ¢ ¢ b & 11...11

" Figure 3-22: Strict format of the eight AddCWs

3.6. General notes on AddCWs

3.6.1. AddSWs and hexadecimal notation

From the previous example in Figure 3-4, the four AddCWs used were
¢,(x) =0000000, c,(x)=0100111, ¢,(x)=1011000 and c;(x)=1111111, which
follow the above guidelines since ¢,(x) and c;5(x) as well as ¢,(x) and ¢, (x) are CW
complements. However these could have also been listed in terms of SWs. For instance,
inspection of Table 2-1 confirms that the SWs s,(x) = 0000, s,(x)=0100, s,(x)=1011
and s,5(x)=1111 are the SWs that form the CWs c,(x), ¢,(x), ¢,(x) and c¢(x)
respectively. Therefore these SWs are defined as Add Source Words (AddSWs). Thus

using a compact hexadecimal notation this AddCW set can be represented as the

~ AddCWs {00h,27h,58h,7Fh}, or the AddSWs {Oh,4h,Bh,Fh}. These two representations
will be used interchangeably since AddCWs are simply AddSWs that have been encoded.

3.6.2. Number of AddCWs can be any power of two

Analysis in this chapter has shown that the number of AddCWs can be increased
to any power of two. While the generic systems listed in Section 3.5 have only used
2'=2, 2°=4 and 2* =8 AddCWs, more could be utilized such as 2* =16, 2° =32 or
higher. These AddCWs would need to be chosen in the same complementary fashion, and
the decoder would need to extract the appropriate number of MSbs in order to add the
correct AddCW at the receiver. Note that as discussed in Section 3-4, the use of more
AddCWs increases the transition density and decreases the runlengths of like valued bits.

However these CS coding benefits come at an efficiency cost in terms of code rate.
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3.6.3. MSbs and identification bits

Up to this point the encoders and decoders have used the MSbs to identify which
'AddCW has been used. However these identification bits can be located anywhere in the

CW and are located in the MSb position simply due to simplicity.

3.64. Good AddCW set

An aspect not covered in this chapter is what makes a good AddCW set. For
example, in the (7,2) Hamming code example from Figure 3-4, the four AddCWs used
were arbitrarily chosen as {00h,27h,58h,7Fh}. However based on the AddCW set format

outlined above, three more AddCW sets could have been used: {00h,2Ch,53h,7Fh},
{00h,31h,4Eh,7Fh} or {00h,3Ah,45hh,7Fh}. The effects of using these different AddCW

sets is thoroughly examined in Chapter 4, as well as the criteria regarding what makes a

good AddCW.

3.6.5. Number of AddCW sets

To the casual observer it is often Surprising to see that only four AddCW sets

exist with the (7,2) Hamming code introduced in this chapter. It is unexpected since the

format from Figure 3-17 may lead one to believe that there are (4)(4)(4)(4)=16
~ AddCW sets. However, this (7,2) code only has four possible AddCW sets which results

from the AddCW recommendations and the size of this code. Recall from Figure 3-18

that two AddCWs are recommended to be the all-zero and all-one CW. Furthermore only
CW a can be freely chosen to meet the format O1...xx, and a is simply chosen to be its
complement. Therefore the correct number of possible AddCW sets is (1)(4)(1)(1) =4,

and they were listed above in Section 3.6.4. These four AddCW sets can also be written

in compact hexadecimal notation in terms of AddSWs as {Oh,4h,Bh,Fh}, {Oh,5h,Ah,Fh},
{Oh,6h,9h,Fh} and {0h,7h,8h,Fh} respectively. '

51

Reproduced with permission of the copyright owner. Further reproduction prohibifed without permission.



This small number of AddCW sets simply results from the small size of the code.

If a larger code such as the (31,26) Hamming code expurgated to a (31,24) code was

used, the number of AddCW sets increases to (1)(2*)(1)(1) =16777216.

Likewise in an eight AddCW system, a (7,4) Hamming code expurgated to a (7,1)
code will only have eight possible AddCW sets. This is because Figure 3-22 shows that
two of the AddCWs are recommended to be the all-zero and all-one CW. Furthermore

only CWs a, b and c can be freely chosen to meet the format 001...xx, 010...xx, and

011...xx respectively, and a, b and ¢ must be chosen as their CW complements.

In general for any linear block code using this multimode coding approach the

number of AddCW sets will be
(2)7 (3.1)

where £ is from the codes expurgated size (1,k) and z is the number of AddCWs.

Therefore the number of possible AddCW sets for the (7,4) code, expurgated to a

8-2
(7,1) code using eight AddCWs is (2')2 =(2') =(1)(2)(2)(2)(1)(1)(1)(1)=8. In
terms of AddSWs these sets can be written in hexadecimal form as
{Oh,2h,4h,6h,9h,Bh,Dh,Fh}, {Oh,2h,4h,7h,8h,Bh,Dh,Fh}, {Oh,2h,5h,6h,%9h,Ah,Dh,Fh},
{Oh,2h,5h,7h,8h,Ah,Dh,Fh}, {Oh,3h,4h,6h,9h,Bh,Ch,Fh}, {0Oh,3h,4h,7h,8h,Bh,Ch,Fh},
{Oh,3h,5h,6h,9h,Ah,Ch,Fh} and {Oh,3h,5h,7h,8h,Ah,Ch,Fh}. Once again this small
number of AddCW sets simply results from the restrictions placed on AddCW selection
and the small size of the code. If a larger code such as the (31,26) Hamming code
expurgated to a (31,23) code using eight AddCWs was used, the number of AddCW sets
increases to (223 )3 =(1)(223)(223)(2”)(1)(1)(1)(1) =2%, Note that Appendix B lists all

AddSW sets used in this thesis.
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3.7. Combined EC and CS code summary o |
| This chapter ihtfoduced a combined EC and CS code that takes advantage of CW
addition through linear code properties to achieve a multimode coding system. This
combined code can be incorporated into existing systems with minimal complexity,
avoiding the use of look-up tables in ROMs and making it applicable to high bit rate
systems. Furthermore this system uses feedback to achieve its CS goals regardless of
source statistics and avoids CS error propagation by error correcting CWs from the

channel before removing the effect of the CS coding.

The real challenge of this system then comes in deciding which CWs to use as

- AddCWs. For instance, from Section 3.6.4 with the (7,2) Hamming code there are only
four AddCW sets and therefore they can be directly compared against one another.
However when dealing with larger codes there could be as many as 2% 2% or more
possible AddCW sets to choose from. As a result, directly comparing each AddCW set is
not feasible. In general a good AddCW set should lead to a transmitted sequence that is

balanced, contains numerous transitions, and has a high probability of low runlengths.

Chapter 4 will examine the use of different AddCW sets and their effect on the output -+~

sequence in the time domain. Furthermore Chapter 5 will examine the use of different
AddCW sets and their effect on the power spectral density of the transmitted sequence in

the frequency domain.
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4. Code Word Séarch and Analytical Results

The multimode coding system introduced in Chapter 3 involves generating an
original CW and adding it to a specific set of CWs called AddCWs. This produces a new
set of CWs from which the best is chosen for transmission. This chapter defines what is

considered to be a best CW, as well as the metrics used for finding good AddCW sets.

4.1, Evaluating CW Statistics

The objective of the encoder is to transmit balanced sequences that contain
numerous transitions. The encoder obtains this goal by transmitting CWs from the
selection set that best matches these objectives. The encoder is able to make this decision

by comparing the following CW statistics.

~ Transitions: A transition in a sequence occurs when there is a low to high or high
‘tc‘)‘low level shift. Counting the number of transitions in a CW requires examination of
the sequence of bits in the word and also requires keeping track of the last bit transmitted
on the channel. For a simple example consider the case when the CW {0111010} is
transmitted, represented in hexadecimal notation as 3Ah. As shown in Figure 4-1 if the
last bit transmitted was a 0 then the number of transitions would be four. However if the
last bit transmitted was a 1, then the number of transitions would have been five. Thus a
particular CW will have a different number of transitions depending on the value of the

last bit (LB) transmitted.

extra transition happens here

0011 1 17011470

4 Transitions

5 Transitions

1p0t1 1 170t1¢0
LB 3Ah

* Figure 4-1: Counting Transitions
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~ Running Digital Sum: In order to achieve a balanced output the number of 1s

~ and Os must be equal over the long term. These 1s and Os will sometimes be réferred toas
logic 1s and logic Os to avoid confusion when the transmitted sequence uses bipolar
transmission encoding of Section 2.19. That is, during transmission logic Os are mapped

to the value -1 and logic 1s are mapped to the value +1. Therefore a binary sequence x of

logic 1s and Os during transmission is represented by Equation 4.1. -
(xh={e Xy Xgsen X} X ={=L1} - @

This mapping allows for the testing of a balanced transmission by simply
summing up all of the bits in the sequence and testing if the result is zero. This process is

~ known as evaluation of the Running Digital Sum (RDS) (191 and it is defined as

z,.=2'x, @y

j:.'-w

The RDS is calculated and updated with each bit transmitted. The RDS value at
the end of the CW is defined as the word end running digital sum (WRDS). To
demonstrate this, assume that the system begins with an RDS of 0, then continuing with
the previous example, CW 3Ah would transition through various RDS values and
ultimately result in a WRDS of +1 as shown in Figure 4-2. This updates the systems RDS
to +1. If CW 3Ah was transmitted once again, its WRDS would be +2 updating the

overall systems RDS to +2 and so on.

WRDS

WRDS

| (internal RDS values) (internal RDS values) l
o1 o 1 2. 1 21 1o 1 2.3 273 2
Jfrriiaia Jlri1111a
. . i
' Previous Binary - ‘ Previous Binary
RDS : Sequence RDS Seqpcncc

Figure 4-2: Running Digital Sum of the code word 3Ah
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Having an RDS of +2 indicates that the system has currently had two more logic 1
bits than logic 0 bits and thus the transmission is slightly unbalanced. The next CW
would need to have two more logic 0 bits than logic 1 bits to bring the system RDS back
down to 0. This ho.wever represents an ideal situation that might not always be possible.
It may take one or more additional CWs to bring the RDS back to 0. However it has been

proven that as long as the RDS is bounded the transmission will be balanced [19).

Minimum Squared Weight: The WRDS is a useful metric that gives the overall
balance of a CW. However this metric only tracks the RDS at the end of a CW and does
not give any indication of the range of RDS values assumed within the CW. For instance

~ an RDS value that steadily grows and falls within a CW indicates long runs of like valued
bits. Inspecting only the number of transitions and WRDS of a CW may not indicate
these runs. For example, consider the case when the two CWs 2F0h and OEG6h are being

considered for transmission as shown in Figure 4-3.

itighRDS

1 0 1 2
0111041 1
.1

olo 0T

Figure 4-3: Minimum squared weight can take the internal RDS into account

It can be seen that both CWs have four transitions and a WRDS of 0. Hence the
encodér would consider this a tie since both CWs are equally-suitable for transmission.
However it can be seen that the first CW has a run of four like valued bits, while the
second CW only has runs of three like valued bits. The encoder would need an additional
metric in order to monitor these runs and select the second CW for transmission which is
a better choice in terms of limiting the runlengths. As a result the squared weight metric
takes into account the RDS within a CW. It is defined as the square of the RDS values

summed across the sequence as shown in Equation 4.3.
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Figure 4-4 shows the same CWs as Figure 4-3 with the squared weight calculated.
Due to the long runs of like valued bits the squared weight of the first sequence is much
higher at forty-five than the squared weight of the second sequence at nine. Therefore by

using the minimum squared weight (MSW) criteria the second CW would be chosen for

transmission.

Figure 4-4: Minimum squared weight criteria chooses ;he second CW :

4.2. Choosing the Best Code Word

| - The multimode coding system is presented with a choice of CWs for each SW,
and must select only one CW for transmission. The CW chosen will be the one that best
meets the system’s requirements. Based on the above discussion there is some flexibility |

when choosing the best CW.

1. Choose the CW that has the most transitions: This will ensure that there is
adequate timing information and will therefore satisfy the clock recovery
objectives and reduce jitter. However this alone cannot ensure balanced
transmission. For example the waveform in Figure 4-5 has numerous

transitions but is clearly unbalanced.

L 1|g]i roft 1]

Figure 4-5: Sequence has many transitions but it is unbalanced
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2. Choose the CW that has the smallest abs(WRDS): This by itself will
guarantee balanced transmission, but it cannot ensure a large number of
transitions. For example the waveform in Figure 4-6 is clearly balanced but

has very few transitions.

000000011]lllllOOOOOOOIIIllllI

Figure 4-6: Sequence is balanced but it contains few transitions

3. ‘Ch‘oosé_the CW that has the smallest squared weight: The MSW criteria
works best as a tie breaking metric and does not perform well alone. The
problem is that the MSW criteria squares the RDS values in an attempt to
penalize long runs of like valued bits. If the run of like valued bits passes
through an RDS of 0, the squared weight will be small and the MSW criteria
can be fooled into believing this CW is the best. For example consider the
case when the current RDS value is +3, the LB is 1 and the following CWs are

considered for transmission.

Table 4-1: With the MSW criteria the all-zero CW would be transmitted

WRDS TRAN.  SqW
00h - 4.0 1.0 35.0
27h + 4.0 4.0 47.0
58h +2.0 3.0 95.0
7Fh +10.0 0.0 371.0

From Table 4-1 it can be seen that based on the lowest RDS critefia; CW 58h
would be chosen as the best with a WRDS of +2. With the most transitions
criteria, CW 27h would be chosen as the best with 4 transitions. However,
with the MSW criteria, CW 00h would be chosen to be the best, even though

it is the all-zero CW which this multimode system is trying to avoid. This
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demonstrates that the MSW criterion does not wbrk well alone and is most |

useful as a tie breaking mechanism.

In general the CW decision process depends on the system requirements. If
system performance is highly dependent on clock recovery, then the best CW to transmit

will be the one with the most transitions. If system performance depends to a large extent

on having a balanced transmission, then the best CW will be the one that minimizes the

RDS Therefore what is considered to be the best CW is subjective.

Furthermore, as already mentioned it is possible for more than one CW to satisfy
the best CW requirements. In other words ties are possible. In these situations either CW
is equally suitable for transmission. That is, the system can always choose to transmit the
first CW that meets the systems goals, even if alternatives exist. This will still result in a

superior output that is balanced and contains numerous transitions.

However an undesirable problem can arise in this situation. If ties occur in a
regular fashion and the encoder continually chooses the first CW that meets the CS goals

of the system, the encoder may be selecting this CW in a periodic fashion. This can result

in discrete like components in the power spectrum of the transmitted waveform, possibly

leading to cross-talk and possibly violating any spectral masks that must be followed. As
a résﬁ]t it is useful to have enough tie breaking mechanisms to break any and all ties such
that there is always a single clear best CW. Otherwise it is recommended that when one
or more CWs are equally suitable for transmission, that the best CW is chosen randomly

from the set of words considered equally good.

4.3. Selection process used in this thesis

In this thesis the analysis was done based on selecting the CW that minimized the
RDS. This is because it is the only selection criteria that can guarantee balanced

transmission. Other criteria such as the number of transitions and MSW are still

employed in order to break ties.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



| ‘ 4.4; Example of the CW selection process based on minimizing the RDS
Consider the following (7,2) system using the AddSWs {Oh,7h,8h,Fh} encoded to
the AddCWs {00h,3Ah,45h,7Fh} as shown in Figure 4-7.

» 0000000 ¢
0111010 ¢
1000101

1111111

Select
Best

EC Code Word

fﬁ[ EC+CS Code Word

i

) L Channel Statistics

Figure 4-7: (7,2) encoder with AddCWs { 00h, 3Ah, 45h, 7Fh }

In this system there are 2? =4 possible SWs. Therefore in each encoding interval
one of the four possible SWs is encoded to a CW, added to all four AddCWs listed
above, and then the best CW is chosen from this set. In order to verify this process a
simulation called SimFPGA was written and its interface is shown in Figure 4-8. Note
that the name of this program comes from the fact that this system was implemented on
two FPGA boards as will be discussed in Chapter 6. This program writes every step of

the best CW decision process to a file.

<"~ simulate how the FPGA encoder works

o1 FleToTranmit
el

¥ RunOnce * .
* [¥ Save Results {compaie with FPGA]
[ save CW's ony tofie - )
™" Save for Mathematica

‘AddSWs —— louoooaoa ]oooooutJF
— AddCW5 —f——b, . |oouuuoa_5_ IUOQUDDZF_

Figure 4-8: SimFPGA - Program for verifying the CW selection process
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Consider a simple example using the (7,2) code whe_ré there are four 2-bit SWs
for transmission, 00, 10, 11, and 11, or in decimal 0, 2, 3 and 3. As shown in Figure 4-8

the two AddSWs {Oh,7h} are entered into the program in hexadecimal; their

complements {8h,Fh} are automatically generated. These four AddSWs are then

converted into the AddCWs {OOh, 3Ah, 45h, 7Fh} respectively. The output from this

program is written to a file as shown in Table 4-2 below.

Table 4-2: Decision process from SimFPGA for the first SW

sw = 00 WRDS TRAN Saw lstTran

00000000h -7.0 0.0 140.0 0.0

0000003Ah +1.0 4.0 12.0 2.0

00000045h -1.0 5.0 12.0 2.0%%wx

0000007Fh +7.0 1.0 140.0° 0.0

WinningLoc = 2 BitsLeft = 6 FilePointer = 0 CW's sent 1
Tie = 00000005 NumTies = 0 state 1 of numstates 2

{({({(( 00000045h RDS = -1.0 - LB =1)))))

The first 2-bit SW 00 results in CW 00h which is added to all AddCWs
generating the four CWs {00h,3Ah,45h,7Fh}. From these four CW choices the encoder
must now choose the best one for transmission. In order to do this the encoder arbitrarily
-assumes the initial RDS of the system is 0 and the initial LB is 0. Table 4-2 lists the
metrics of each CW choice. It is clear that the all-zero and all-one CW perform poorly
with respect to all metrics since they have high WRDS values of -7 and +7, low
transitions of O and 1, and a squared weight of 140. Therefore the choice comes down to
either CW 3Ah or 45h. Since these CWs are complements the abs(RDS) and squared
weight (SqW) are the same at 1 and 12 respectively. The only difference between them is
the number of transitions. Since the LB was initially chosen to be 0 the winning CW |

selected is 45h and it is considered to be the best.

Since CW 45h was transmitted and it has a WRDS of -1 and a LB of 1, the system |

RDS is updated to -1 and the LB is updated to 1. Now the system can move onto the next

SW. Continuing in the same fashion the next 2-bit SW 01 is encoded to the CW 16h and
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added to the 4 AddCWs to generate the CWs {16>h,2Ch,53h,69h}. Table 4-3 shows that
two CWs will bring the system RDS back to 0. Thus in terms of smallest abs(WRDS)

either of these CWs would be considered the best and the encoder has encountered a tie.

Table 4-3: Decision. process from SimFPGA for the second SW

SwW = ‘10 WRDS TRAN Saw lst'rran

00000016h 2.0 5.0 . 35.0 3.0

0000002Ch -2.0 5.0 15.0 2.0

00000053h +0.0 4.0 7.0 2.0

00000069h +0.0 4.0 3.0 3. 0%wkx

WinningLoc = 3 BitsLeft = 4 FilePointer = 0 CW'S sent 2
Tie = 00000007 NumTies = 0  state 2 of numstates 3 '

((({( 00000069h RDS = 0.0 LB =1 )))))

~ Since the main requireme_nt of the system has been met the encoder can now
choose the CW that meets the secondary goals of maximizing transitions for clock
recovery, i.e. removing long runs of like valued bits. The first tie breaking mechanism
considered is the number of transitions. However both “good” CWs have 4 transitions
and this tie persists. Only as a result of the MSW criteria has the tie been broken and CW
6% is chosen to be the best since its squared weight is smaller than CW 53h. This
demonstrates how the number of transitions and MSW criteria can still be used even

though the overall goal is only to transmit the CW with the lowest abs(RDS).

Finally consider when the source outputs the same SW 11 twice. As Shown in
Table 4-4 the first SW 11 causes the CW 27h to be transmitted and the second SW 11
causes the CW 62h to be transmitted. This demonstrates that the same SW will often be
represented with different CWs as a result of multimode coding. It also shows that the
best CW will not always be the same for the same SW. The best CW will often change
depending on the current RDS and LB value. Therefore these two values are formally

defined as a state of the system and will be represented as an (RDS,LB) state. -
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Table 4-4: Decision process from SimFPGA for the third and fourth SW

SW = 11 WRDS  TRAN Sqw 1stTran

0000001Dh +1.0 4.0 8.0 3.0

00000027h +1.0 4.0 8.0 2.0%*xx

00000058h -1.0 3.0 8.0 2.0

00000062n ~ -1.0 - 3.0 8.0 3.0

WinningLoc = 1 BitsLeft: = 2 FilePointer = 0 : CW's' sent é |

Tie = 0000000F NumTies = 0

state 3 of numstates 4

((((( 00000027h RDS = 1.0 LB =1 )))))

SwW = .11 WRDS TRAN Saw 1stTran

0000001Dh +2.0 4.0 11.0 3.0

00000027h +2.0 4.0 7.0 2.0

00000058h +0.0 3.0 23.0 2.0

00000062h +0.0 3.0 19.0 3.0%%x*

WinningLoc = 3 BitsLeft = 0 FilePointer = 0 . CW's sent 4

Tie = 0000000F NumTies = 0
state 0 of numstates 4
({((( 00000062h RDS = 0.0 LB =0 )))))

4.5. Comparing unconstrained and constrained transmission

If no CS coding had been used in the above example then only the regular (7,4)
Hamming code would had have been used. As a result the transmitted sequence would
have been {00h,16h,1Dh,1Dh}. This sequence would have had 11 transitions, been
unbalanced with an RDS of -6, and it would have contained a run of nine like valued bits

as shown in Figure 4-9,

Figure 4-9: Uncoded sequence is unbalanced and has a run of 9
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Conversely, the multimode coding system that ihCorporates CS coding has
resulted in an output sequence that is completely balanced with an RDS of 0 and

containing 16 transitions.

Figure‘4-10: Coded sequence is balanced but still has a run of 5 like valued bits

While this is a definite improvement inspection of Figure 4-10 shows that this

constrained sequence still has a run of five like valued bits. The question that arises then

- is how likely is this run of length five? Furthermore, could this run be removed if .

" different AddCWs were used?

4.6. Effect of Different AddCWs

Analysis in Sections 3.6.4 and 3.6.5 reported that there are only four possible
AddCW sets in this (7,2) system. They are {00h,27h,58h,7Fh}, {OOh,2Ch,53h,7Fh‘},
{00h,31h,4Eh,7Fh} and {00h,3Ah,45h,7Fh}, or in terms of AddSWs are {Oh,4h,Bh,Fh},
{Oh,5h,Ah,Fh}, {Oh,6h,9h,Fh} and {Oh,7h,8h,Fh} respectively. Using the same sequence
of four SWs, 00, 10, 11 and 11 with the AddSW set {Oh,4h,Bh,Fh} (versus
{Oh,7h,8h,Fh} previously) an entirely different sequence will be transmitted as shown in
Tables 4-5 and 4-6.

Here it can be seen that the first 2-bit SW 00 is now encoded to the CW 58h
instead of 45h as it was previously. In addition, this CW has caused the RDS to be -1 and
the LB to be 0. Comparison with the last AddCW set shows that this is an (RDS,LB) state
that was not reached before. As a result it is possible that this AddCW set will cause the
encoder to experience different RDS and LB combinations and therefore have a different
number of states than the last example. Table 4-6 continues this example by showing the

decision process for the next three SWs,
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Table 4-5: Decision process from SimFPGA for the 1% SW

SW =00 - WRDS TRAN  SqW . 1stTran
| 00000000h -7.0 0.0 140.0 0.0
00000027h +1.0 3.0 8.0 2.0
00000058h -1.0 4.0 8.0 2,0%%*¥
0000007Fh +7.0 1.0 140.0 0.0
WinningLoc = 2 BitsLeft = 6 FilePointer = 0 CW's sent 1
Tie = 00000005 NumTies = 0 state 1 of numstates 2
((((( 00000058h RDS = -1.0 LB =0 ))))}

Table 4-6: Decision process from SimFPGA for the second, third and fourth SW

Sw = 10 WRDS TRAN . Sqgw 1stTran

00000016h -2.0 4.0 35.0 3.0
00000031h -2.0 3.0 23.0 2.0
0000004Eh +0.0 4.0 7.0 2.0
0000006%h +0.0 5.0 3.0 3.0%x*x
" WinningLoc = 3 BitsLeft = 4 FilePointer = 0 CW's sent 2
Tie = 00000005 NumTies = 0 state 2 of numstates 3
{(((({ 00000069 RDS = 0.0 LB =1)))))
swo=11 WRDS TRAN .  SqW ~ 1stTran
‘0000001Dh‘ +1.0 4.0 8.0 3.0
0000003Ah +1.0 5.0 12.0 2,0%%wx
00000045h -1.0 4.0 12.0 2.0
00000062h -1.0 3.0 8.0 . 3.0
WinhingLoc = 1 BitsLeft = 2 FilePointer = 0 CW's sent 3
Tie = 00000005 NumTies = 0 state 3 of numstates 4
((((( 0000003Ah RDS = 1.0 LB =0 )))))
Sw = 11 WRDS TRAN Sqw lstTran
0000001Dh +2.0 3.0 11.0 3.0
0000003Ah +2.0 4.0 31.0 2.0
00000045h +0.0 5.0 7.0 2,0 k¥
00000062h +0.0 4.0 19.0 3.0
WinningLoc = 2 BitsLeft = 0 FilePointer = 0 CW's sent 4
Tie = 00000005 NumTies = 0 state 2 of numstates 4
{{(({ 00000045h : RDS = 0,0 LB=1)))))
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" In this case the transmitted CWs are {58h,69h,3Ah,45h} . This séquence has 19
trahsitfons, is completely balanced and now has a maximum run of only three like valued

bits as shown in Figure 4-11.

Figure 4-11: Coded sequence is balanced and now has a run of only three like valued bits

Based on this result it would appear that this is a better AddCW set. However
making this assumption would be premature since only four SWs were tested. A
complete analysis will look at the probability of various runlengths occurring and can
only be performed once all SW/CW combinations have been tested. In order to conduct
this analysis and evaluate different AddCW sets, it is helpful to model the encoder as a

finite state machine (FSM).

4.7. Finite State Machines

Any system that operates at discrete instants of time and takes on a finite number
of configurations can be represented as a finite state machine (FSM) 221. A FSM is
classified as either a Moore machine, where the output is a function of the internal state
only, or as a Mealy machine where the output is a function of the internal state and the
present input 22. The encoder presented in this thesis is classified as a Mealy machine
since the output CW and next state are both dependent on the present SW and presenf

(RDS,LB) state.

A FSM can also be represented graphically by a state diagram which shows the
progression of states through which the system operates and the resulting outputs based

on specific inputs.
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Figure 4-12: Partial state diagram for the (7,2) encoder transmitting the four SWs 0, 2, 3 and 3. This
* causes transitions from state (0,0), to state (-1,0), to state (0,1), to state (1,0), and back to state (0,1)

For instance, in the second (7,2) example above with AddSWs {Oh,4h,Bh,Fh}, the
sequence of four SWs transmitted caused the system to move into four (RDS,LB) states
as shown in Figure 4-12. The state diagram shows how each SW is mapped to each CW
depending on which state the system is presently in. For instance the system was assumed
to start with an RDS of 0 and a LB of 0. As a result the first state is denoted (0,0). The
first SW emitted was Oh and this caused the CW 58h to be transmitted and it moved the
system into state (—1,0), i.e. an RDS of -1 and a LB of 0. This SW/CW interaction is
shown as 0/58 on the trace that moves from state (0,0) to state (—1,0) . Likewise the next
SW was 2h with éorresponding CW 69h, shown as 2/69 and this moved the system into
state (0,1). Finally the next two SWs were both 3h, which caused the CWs 3Ah and 45h
to be transmitted, shown as 3/3A and 3/45 respectively, which moved the system to state

(1,0) and then back again to state (0,1).

Figure 4-12 only shows a partial state diagram after transmitting four CWs. In |
order to see the complete state diagram all SW/CW combinations must be explored

~ from every state. Figure 4-13 shows the complete state diagram for this (7,2) encoder
. 67 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



usiﬁg the AddSW set {Oh,7h,8h,Fh} encoded to the AddCW set {00h,3Ah,45hh,7Fh}
where CW selection is based on minimizing the RDS. It consists of six (RDS,LB) states

" numbered O through 5 for convenience. Inspection of this state diagram shows that each
state will be left the interval after it is entered. However the probability of entering each
state is not equally probable. Furthermore since the goal of the encoder is to minimize the
RDS, the states with the most entry points are states 2 and 3 which both represent an RDS
of 0, and a LB of 0 and 1 respectively.

Figure 4-13; State Diagram for (7,2) code with AddSWs={0h,4h,Bh,Fh}.

Focusing on the left half of the state diagram, i.e. the three states 0, 2 and 4 that
each have a LB of 0, it can be seen that there are eight different CWs that take. the system
into state 2, three different CWs that take the system into state 0, but only one CW that

| can take the system into state 4. Clearly state 2 will be visited more often than states 0
and 4. This is an important distinction since even though all exit paths from a particular
statc' are equally likely with equiprobable SWs, the probability of being in each state is

not. This means that the CWs that leave state 2 will be seen on the channel more often
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than the CWs that leave states 0 and 4. Hence‘the probability of a CW being transmitted |
is weighted by the probability of being in a particular state. When attempting to calculate
- runlength probabilities these state probabilities need to be taken into consideration. This

form of analysis can be performed by interpreting the FSM as a Markov Chain.

4.8. Markov Processes and Markov Chains

4.8.1. Markov Chains

A random process X(¢) is a Markov Process if the future value of the process is
- dependent only on its immediate present value. In other words the process is independent
of the past; its future value is dependent only on its present value. This is expressed

concisely in Equatidn 4.4, which states that the probability of X (¢#) assuming a new value
given all the previous values for all time is equal to the probability of X (¢) assuming a

new value if only the immediate value x, is considered.
P[X(tkn) =X, | X(@#)= Kiseoes X@)= xl] = P[X(tkﬂ) = Xt | X(@t,)= xk] (4.4)

In Markov chains the probability distribution functions (PDFs) that are
conditioned on several time instants always reduce to one PDF that is conditioned only

on the most recent time instant. This is known as the Markov property [23).

An integer valued Markov Process is a discrete time random process called a

- Markov Chain. Here the random variable X, takes on a countable number of values at

discrete moments in time, where T is the interval between discrete time events. The value

of X, atthe discrete time n is referred to as the state of the process at time n.

X, = X (nT) | @)
69.
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‘4.8.2. Markov Chain Prdperties
A system-can be modeled by a Markov chain if the sequence of trials satisfies the

following properties:

1. Each outcome belongs to a finite set of outcomes {a,,q,,...,a,} called the
state space of the system. If the outcome of the n'™ trial is a, , then the system
is defined to be in state a, at time n, or the system is in state g, at the n" step.

2. The outcome of any trial depends at most upon the outcome of the
immediately preceding trial and not upon any other previous outcome.
3. There is a given probability p; that state a; occurs immediately after g,

occurs. This can also be interpreted as follows: if the process is currently in
state a;, then p; is the probability of it moving to state a;.

The numbers p; are called the transition probabilities and they can be arranged in

a matrix called the transition matrix as shown in Equation 4.6.

Pun Po -+ Pumm
P= p.ZI p:22 v p:2m | (4.6)
p ml p m2 e p nm

. The transition matrix P is a stochastic matrix since each row is a probability
vector that sums to 1. Additionally a Markov chain has an initial probability vector p
which indicates the starting state. For instance, calculation of the probability of the
system starting in state O and then moving from state 0 to 1, and then from state 1 to 2

and so on would be done as shown in Equation 4.7.

p(X, =i0} X, =i, X, =0, X, :in)‘=,p(iO)P(iO’il)P(il'iZ)"'P(in—l’in) 4.7
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For example, let P be a transition matrix with the ihi_tial probability vector p as

shown in Equation 4.8 below. Since p=[1 0], the system begins in state 0 with 100%

‘probability. The probability P(0001110) denotes the probability of starting in state O,

staying in state O for two more time steps, moving to state 1 on the 3" time step, staying |

in state 1 for the next two time steps, and finally ending in state O on the 6" time step. As
shown in Equation 4.9 this probability is approximately 0.01627. Likewise, the
probability P(0011110)=0.01808 as shown in Equation 4.10.

3/4 1/4
1/6 5/6

N e
S —

- Equation 4.9 and 4.10 show two cases of the system starting in state 0 and after

] p=[1 0] | R |

six time steps finishing in state 0. If we were interested in all possible cases of starting in
state 0 and after six time steps ending in state 0, we would need to find all possible
chains of the type Oxxxxx0, where x indicates a don’t care state, and add together the

probabilities of these chains for the total probability which would be denoted as
P(X,=0|X,=0). There would be 2° =32 possible chains, and clearly this operation
would become cumbersome, especially for a large number of time steps.

The probability P(X, = j| X, =) can be obtained however from the n"™ power of

the transition matrix P" (23). This is due to a nice link between linear algebra and
probability. The transition matrix P can be interpreted as P’, which is the probability that
the system changes from the state g, to the state a; in one time step. Likewise P is the

probability that the system changes from the state g, to the state a; in two time steps and

continuing in this fashion P would represent the probability that the system changes
‘ 71
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from state a to the state a; in n time steps. Thus the probablhty P(X, -O|X =0) can

be obtamed from the 6™ power of the transition matrix P,

As shown in Equation 4.11 below, P(X,=0| X, =0)=0.424, which means that

if the starting state is state 0, the probability of it ending in state O six time steps later is

42.4%. Likewise the probability of starting in state 0 and ending in state 1 is 57.6% and -

SO on.

oo 424 576
“1.384 .616

} 50 P(X6=0|X0=o)'=o.424 @1y

In general a stochastic matrix is said to be regular if all the entriés of P" for =
n>1 are posmve (non-zero) (23). In Equatlon 4.8 the stochastic matnx Pis cons1dered to |

~ be a regular stochastic matrix by this defmltlon

' 4.8.3. Long Term Behavior of Markov Chains
Understanding the long term behavior of a Markov chain simplifies to
understanding P" for large n. Each P" preserves the property of rows summing to one |
and having non-negative entries. Thus all P" matrices are still transition matrices. For

example, P after 20 time steps is shown in Equation 4.12.

po 400 .59 | @.12)
399 .600 o :

It appears to be converging and one can conjecture that as n approaches infinity .~~~
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. '4‘ ’6 ; B : : H
pr=|" | 4.13
[.4, .6] . @15

| Each row (which is a probability vector) of P" for large n is identical. This
- probability vector is of special interest and is called the invariant probability vector 7z |

or A 231. The probability vector is invariant since
T=nP=nP*=7P =..=7P" as n—oo ' (4.14)

~* This expression demonstrates that with distribution 7 , the chain is in equilibrium.
That is, if the system starts with this probability distribution 7z, then this distribution will

be maintained for all time. The 7 vector is also a limiting probability vector since

7 =limvP" O @15)

n—yeo

whére v is any initial probability vector. Equation 4.15 states that for any initial
probability vector v, vP" approaches the invariant probability vectorz for large n. Every
Mé_rkov chain will have an invariant probability vector 7 123} and this vector gives the -
long term probability of being in any particular state. That is, if the system was running
for some period of time, and it was suddenly stopped, 7 would give the probability of
being in each state. In general if P is a regular stochastic matrix then the subsequent
powers of P approach a matrix IT that has rows that consist of the fixed probability |
| vector 7z [23].
However 7z is not always unique [23). If 7 is a unique vector and the rows of the

transition matrix P raised to large n converge to 7, then the chain/systerri is said to be

ergodic. This comes from the Perron-Frobenius theorem (23). This theorem states that if

there exists an n such that P" >0 for n>1 then P is ergodic (23). Ergodicity of Markov
73 '
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chains is a desired property since it guarantees that no matter which state you start in, if

| you run the systém long enough the influence of the initial probability vector p vanishes |

and the system will approéch the invariant distribution 7. This result has practical
applications such as with Monte Carlo Markov Chain (MCMC) algorithms and

simulations [23.

| ‘4.8.4. Non-Regular Markov Chains
It is possible to have a Markov chain that is ergodic and has a unique invariant
probability vector that does not satisfy the Perron-Frobenius theorem. For example

consider this trivial case

P=[o 1} P2=[1 0] P3=[o 1] P4=[1 o} @16
10 0 1 10 0 1

This chain will never converge and the powers of P will alternate between the two
matrices in Equation 4.16. This is because the chain has a period of size d=2. For
chains with a period of d the subsequent powers of P cycle between d different

n

matrices [23]. In this case P" will not converge and thus vP" will continue to alternate

between d =2 vectors unless v =7 . Therefore this chain is not regular.

However since the transition matrix states that when the system is in state O it
must move to state 1, and on the next time instant it must move back to state 0 and so on,

one can intuitively conclude that 50% of the time must be spent in each state. Therefore
even though there is no convergence it can be expected that 7 =[.5 .5]. In systems like

this that are not regular the average of the transition matrices raised to large n will

always converge to a matrix M [23). Furthermore, if all of the rows of M are identical then

the invariant probability vector 7z is unique [23).
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Using Equation 4.17 the invariant probability vector can be found from averaging

the'transition matrices as shown in Equation 4.18 to find # =[.5 .5].

M%G? oo ﬂHz MRS SR

‘ The above example demonstrates a case where 7 is unique and yet P does not
‘éonverge, hence they do not go hand in hand. As well this chain does not satisfy the
Perron-Frobenius theorem and yet it is ergodic. ‘This is an important distinction since
mahy of the combined EC and CS codes presented in this thesis, when aﬁalyzed as
Markov chains are also ergodic but do not satisfy the Perron-Frobenius system and their

transition matrices never converge.

4.8.5. State Diagrams
A Markov chain can also be represented graphically by a state diagram just like a
FSM. For example the state diagrarh for the Mealy FSM state gfaph of the (7,2) encoder
using the AddSWs {0h,4h,Bh,Fh} from Figure 4-13 can be redrawn using the probability
of taking a particular trace, instead of the SW/CW relationship, as shown in Figure 4-14,
With this represeritation it is easy to see the probability of each CW being transmitted
from each state. Furthermore, assuming that the source symbols are indepenvdent and

equally likely the transition matrix can be constructed by inspection.
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Figure 4-14: Markov Chain State Diagram

4.9. Analyzing the Encoder as a Markov Chain
Analyzing Figure 4-13 or Figure 4-14 shows that if the system is in state 0 it will
move to state 2 with probability 1/4 and move to state 3 with probability 3/4. Likewise “
if the system is in state 2 it will move to state O with probability 1/4, move to state 1 with
probability 1/4 and move to state 5 with probability 1/2. Continuing in this fashion all

possible transition probabilities can be found and they are shown in Equation 4.19.

0 0 /4 34 0 O
0.0 14 374 0 O S
—|v4 V4 0. 0 0 W2 o . ) 4.19
p 172 0 0 0 14 U4 : (4.19)
0 0 34 /4 0 0
0 0 3/4 /4 0 O
76 .
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Another z‘ipproach‘ to finding this transition matrix is to use the definitions first

presented by Cariolaro and Tronca [24). Define the inplit probability matrix 6§, for

u=12,..,5, where S is the number of SWs as

BSWIL), i=j

PSWIL). =8 G )= ‘ 4.20
€ |,)drng u(6: ) { 0 - otherwise f( )

i where:l,. denotes the i state. Equation 4.20 is the probability of a particular SW ‘

- occurring given the current state. Since there are 4 possible SWs and they are equally
likely then there is a Y probability of any one of them being chosen regardless of the

present state.

250 0 0 O 0]
‘ 0:25 0 0 0 0} «
“n—_pnlp |0 0 250 0 0f 421‘
6 =6, 02‘ 2 000 0 250 0 “. )
‘ 00 0 0 25 0
0 0 0 0 0 .

[
L%

Next define E, for u=12,..,S as the next-state matrices, where E, (i, j) =1 if
and only if state [; is entered from state [, given input S,. For each possible SW the
system will move to only one state and therefore the E, matrices will have a éingle 1on

each row. This is shown in Equation 4.22.

'
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-~ fooo1 ool [0 0 0 1 0.0]

000100 0001 00|

1.00000 000001

E. = E = _

0 " looo0o001 1" [oooo'o

001000 0010100
00100 0 0010 0.0 :
(4.22)

0oo0100f  footooo]

000100 001000

‘ 0000 010000

E, =|° = ‘

271100000 E, 000010

‘ 001000 000100

Looxoooi -Looonoo

By considering all the ways in which these state transitions can happen, and the

‘probability of their occurrence, it is straightforward to verify that

S s _ -
P=Y 6,E, - (4.23)
u=l '
'Using Equation 4.23 the transition matrix for the encoder is found to be
25 0 o 0 o offoo 1300
0 25 0 0 0 O0ff001 300
P=00.25000110002
00 0 0 25 0. 0f/200011
6 0 0 0 25 0f{(f003 100
[0 0 0 0 0 25/l0 03100 !
4.24)
[0 0 25 75 0 0] :
0 »0 25°95.0 0
P.= 252 0 0 0.5
5 0 0 0 25.25
0 .0 7525 0 0
L0 0..75 25 0 0]

Next define C, for u=1,2,..,S as matrices, where the row C,(i) is the CW

generated when state I, is entered due to a given input S, . For the example above:
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[0100111] ~ [1010011]

‘ 0100111 1010011

1011000 1010011

C.= =

0" |o100111 C' 0101100

|1011000 0101100
~"|1011000 0101100 o

(4.25)

[1101001] 0111010

1101001 0111010

_ | 1101001 __| 1000101

G, = 0010110 G 0111010

0010110 1000101

Loo10110 | 1000101

~ With these definitions all information. régarding the likelihood of entéring a state |

- and the CW emitted from each state is neatly formatted into a matrix representation. Note
that the transition matrix P found in Equation 4.24 is the same as the transition matrix
found by inspection in Equation 4.19. P can now be used to find the invariant probability

vector 7.

4.9.1. Findihg the invariant probability vector of the encoder
From Section 4.8.3 and Equation 4.15 the invariant probability vector # can be
found for any initial starting distribution v by evaluating vP" as n approaches infinity.

The rows of P" approach the invariant distribution for large n for regular stochastic

matrices satisfying the property 7z =zP. However for the encoder described above,
taking P" to large powers of n shows that it alternates between the two matrices below

for odd and even powers of n.
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1

)

1
s

31 13 ; L1
22900 = 2 ‘ 4 2
88~ 838 007300
31 13 L1
2200 = 2 — =
88 878 00323200
‘ 11 31 13 |
002200 2200 12 ‘ .
Po=(: " 22 pl=|8 8 88 (4.26)
0oo0llygy 2l o1 :
272 8 8 8 8
31 13 11
2l 22 L1l
88 8§ 8 002200
31 L3 1
21loo022 00+ 2
3 8 g 8l 22

This system has a chain Qf d =2and will cycle between these d matrices. This is
because the Markov chain is not regular, and it cannot be expected to converge. The |

invariant distribution as found by Equation 4.17 is

3 ryr113
8827288
311 1.1 3
38520323 8 [36 16 va ua 16 306
, 311 11 3| [3n6 16 w4 w4 16 316
M‘=(l) 8§82 2 8 8|[316 /16 /4 1/4 1/16 3/16
2)[3 11 1 1 3|7 (316 1/16 /4 1/4 1116 3/16
88 2 2 8 8 |16 116 1/4 /4 1116 3/16
31111 31 (316 116 14 14 116 3116
8 82 28 8 :
311113
8 8 2 2 8 8]

4.27)

7T =[3/16 1116 1/4 114 116 3/16]

| This means that if the system was running for somé amount of time and the
number of times each state was visited was recorded, it would be found that the invariant
distribution is 7z =[3/16 1116 1/4 14 1/16 3/16]=[.1875 0625 .25 .25 .0625 .1875], which
_is the probability of being in any particular state. Combining this information with the
state diagram shown in Figure 4-15, it can be seen that the system is in the two most

popular states, states 2 and 3 that correspond to an RDS of 0, 50% of the time.
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6.25%

‘ ‘ Figure 4-15: Markov Chain State Diagram with State Probabiiities

‘ Using Markov chain analysis it is now possible to evaluate the likelihood of a
particular CW being sent. On average the probability of a CW being transmitted from any
state is Y4, weighted by the probability of being in the state that emitted the CW.

For example, the probability of being in state 0 is 18.75%. Therefore the CWs
emitted from this state {27h,53h,69h,3Ah} would be seen on the channel (18.75%)(25%)

- or 4.68% of the time. Likewise the probability of being in state 1 is 6.25%. Therefore
even though the CWs emitted from this state are the same{27h,53h,6%h,3Ah}, they

would only be seen on the channel (6.25%)(25%) or 1.56% of the time. Continuing in
this manner the likelihood of all possible CWs being transmitted can be calculated. With

this information it is now possible to characterize the encoder in terms of runlength

probabilities.

TRE
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4.10. Finding Runlength Probabilities
To find the runlength probabilities it is convenient to decompose the state diagram
" into the format shown in Figure 4-16. From this representation it easy to see the

probability of specific CWs as the encoder enters and leaves states.

3 (.2504) 1 34 ——p L 58 (1/4) 3 0.25/4) / 27 —p —p 58 (1/4) ,
4 3 2C (1/4) 2 (.25/4) 7 53 —p 5 —» 2¢ 1/
1 L 16 (1/4) 20.25/4) 7 69 —p 1 L 16 (1/4)
[ 45 (174 —p 45 (L/4)
0 (.1875/4) / 34 L 58 (1/4) 0 (.1875/4) / 27 L 27 (1/4)
1 (.0625/4) / 3A 0 (.1875/4) / &3 2w
4 (.0625/4) / 58 3 53 (1/4) 0 (.1875/4) / €9 S
4 (.0625/4) / 2C 2 1 (.0625/4) / 27 3
4 (.0625/4) 7 16 ——p 69 (1/4) 1 (.0625/4) / 53 L 16 (1/4)
5 (.1875/4) / 58 00 1 (.0625/4) / €9 01
5 (.1875/4) / 2C ——p 45 (1/4) 4 (.0625/4) / 45 —p 34 (1/4)
5 (.1875/4) /16 § (.1875/4) / 45
2 (.25/4) / 58— —— 27 (1/4) 2 (.2574) 7 45 ——p L 27 (1/4)
3 (.2574) /2 —p) 0 3 53 (1/4) ——p 53 (1/4)
3 (.25/4) /16— 10 L3 65 (1/4) " L 69 (1/4)
| 3A (1/4) —p 31 (1/4)

Figui‘e 4-16: Decomposed state diagram illustrating the probability of a SW/CW entering each state, '

and probability of each CW leaving each state, allowing straightforward calculation of runlengths

- For example, Figure 4-16 shows that CW 58h enters state 0 with probability
(:25)(.25) =.0625. This is because CW 58h is one of four possible CWs that can be

emitted from state 2, which the system visits on average 25% of the time. Once the

system is in state O there are 4 possible CWs {27h,53h,69h,3Ah}that can be emitted all
with probability % . Hence the probability of the particular sequence 58h followed by 27h
s (.25)(.25)(.25)=.015625..

In order to accurately evaluate runlength probabilities the concatenation of CWs
must be taken into account. For examp]e Figure 4-17 shows the sequence formed through

the concatenation of the two CWs 58h and 27h.
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10110000100111 +— 5827

1011{0000100| 1114 Portion of interest

Figure 4-17: Concatenation of two CWs and the Portion of Interest

~ Note that CWs 58h and 27h alone only have a worst case runlength of 3 like
“valued bits. However once they are concatenated a runlength of 4 like valued bits
appears. Therefore the string of three Os at the end of CW 58h cannot be counted simply
as a run of three, since it may lead to a longer run of Os when concatenated with the next

‘ CW. Likewise the final string of three 1s in CW 27h is not counted as a run of three
either since it may lead to a longer run of 1s when it is concatenated to the next CW. As
shown in Figure 4-17 the middle portion of the concatenated CWs is called the portion

of ihterest.

4.11, Analysis of runlength probabilities |

As préviously discussed the probability of this particular two CW sequence 58h
followed by 27h is (.25)(.25)(.25)=.015625 or (.25)*Y4*%4. The probability of being
within the seven bit portion of interest out of these fourteen bits is 7/14. Inspection
shoWs that there is one run of 1, one run of 2 and one run of 4 that will occur with
probability 1/7, 2/7 and 4/7 respectively. Finally since the portion of interest spans two |
CWs, and the particular run of interest could commence at any encoding interval,
including the ™ and (2+1)" intervals, then the above sequence probability must be -

multiplied by two. For this example then,
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" Runofl= .25(-1-)(-1-)2( 7 )—1- -1 _ 002232
| a\7)\14)7 7 a8 |
Run of 2= .25 (l)El) 2( 7 )-7: — 2 004464 (4.28)
| a\7)\12)7 " a8
1
4

Run of4=.25(-1—J( )2( 7)5-_1_ .008929
4 14)7 448

Enumeration like this is required for all possible two CW combinatidns, and even
for this simple system there are 96 possible two CW combinations. Since this calculation

is best performed by a computer, two programs were written.

<~ Build_FuCu. "

LT T [ Information

Piess to Stait

Figure 4-18: Build_EuCu.exe Program that builds 0., E, and C, matrices

The first program Build_EuCu.exe is shown in Figure 4-18 and it allows the user

" to. select the expurgated code, selection criteria, source statistics and AddSWs. It then
generates three files. The first file generated is shown below in Figure 4-19 called
ProbOf1_50_States_(7,2)_[{0,4,B,F1_Lowest_RDS.txt, and it shows the RDS and LB states
generated by the code. These sfates are found by testing all SW/CW combinations and
they are sorted from lowest to highest to show the symmetry in the system. Inspection

shows that these are the same states from Figure 4-15.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permiésion.



£ ProbOft_50_states_(7,2) _[.4,8,.‘.; .= [o)
| e fEdt Fotat /e
| SORTED - Num States =6 --

‘| State 00 RDS=-1 LB=0
‘I State 01 RDS=-1 LB=1
| State 02 . RDS=0 LB=0
| State 03 RDS=0 LB=1
| State 04 RDS=1 LB=0
| State 05 RDS=1 LB=l

Figure 4-19: Output states from Build_EuCu.exe

Two other files are generated by this program. One is used in the evaluation of the

power spectral density that will not be considered until Chapter 5, and the other contains

~the E, and C, matrices shown in Figure 4-20.

SWo SW Sw2 SW3

3 27 3 53 3 69 2 3A
3 27 3 53 3 69 2. 3A
0 58 S5 53 5 69 1 45
5 27 0 2C 0 16 4 ‘3A
2 58 ¢ 2 2C 2 16 3 45
2 58 2 2C 2 16 3 45

Figure 4-20: Output E, and C, matrices from Bﬁild__EuCu.exe

This file lists the E,,C,,E,,C,,E,,C,, E;,C; matrices as shown in Equations 4.22
and 4.25 respectiveiy. The difference is that instead of writing the information in binary
matrix form, it is written in a compact hexadecimal form. The reason for this compact
notation is because this data is read into the second program CalcPIMandProbs.exe
which is shown in Figure 4-21. This program parses the E, and C, information to
calculate the transition matrix, invariant probability vector and runlength probabilities.
The compact form may not seem necessary for this (7,2) code which only had six states
and four possible SWs. However large codes like the (15,x) and (31,x) codes could have
thousands of CWs and hundreds of states and hence this file can grow to hundreds of

megabytes. Therefore the most compact form possible was adopted.
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The information in this file is read in a top to bottom fashion as follows. Looking
at the first line in Figure 4-20, when SW 0 is chosen and the system is in state 0, it moves
to state 3 and emits CW 27h. Likewise on the next line down, when SW 0 is chosen and

the system is in state 1, it moves to state 3 and also emits CW 27h and so on.

CalcPIMandProbs.exe takes this information and generates a single file that is

- shown in Figure 4-22. Inspection shows that it has calculated the same transition matrix
as found in Equation 4-24. Furthermore it has calculated the same invariant vector as = . .

found in Equation 4-27 and finally it has calculated all the runlength probabilities. It

shows that this system with AddSWs {Oh,4h,Bh,Fh}using the lowest RDS selection

criteria has on average a 37.94% chance of a run of one, 35.71% chance of a run of two,

22 76% chance of a run of three and a 3.57% chance of a run of four. Run]engths of five

or more w111 never occur.

+ » Calculate RunLength Probabilities

SiopZ:HC:d'(’:bla‘leh P

ria o le.enoth inemadiate stops
fie lot lu eodec

ll makea [}

Figure 4-21: CalcPIMandProbs.exe

anm Probil 0. utu_(1.2) _mmn Lowest ROS.xt - No(epod

State 00
State 01
State 02
State 03
State 04
State 05

Totals

K1

Pl'.MPmb( )
00000 0.0000 0.2500 0.7500 0.0000 0.0000

stateprob.Print(4 )
0.1875 0.0625 0.2500 0.2500 0.0625 0.1875

1
0,05803571

0,02455357
0.10714287
0.10714286
002455357
0.05803571

037946430

Sums to 1. ooooooo: )

2

0.07142857
001785714
0.08928572
0,08928572
0.01785714
0.07142857

035714287

0.0000 0.0000 0.2500 0.7500 0.0000 0.0000
0,2500 0.2500 0.0000 0.0000 0.0000 0,5000
0.5000 0.0000 0.0000 0.0000 0.2500.0.2500
0.0000 0.0000 0.7500 0.2500 0.0000 0.0000
0.0000 0.0000 0.7500 0.2500 0.0000 0.0000

3
0.04687500
0.01339286
0.05357143
0.05357143
0.01339286
0.04687500

0.22767858

4
0.01785714
0.00000000
0.00000000
0.00000000
0.00000000
0.01785714

0.03571429

&
\
i
4
,ez.

Figure 4-22; Output from CalcPIMandProbs.exe
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An additional feature of CalcPIMandProbs is that it can also show thé
intermediate steps of how the runlengths were calculated. This feature is only feasible for
srhall cddes because the file size grows very quickly. Nevertheless the intermediate steps
are shown in Figures 4-23 to 4-26 where it can be seen that the same runlength

probabilities are calculated as shown in Equation 4.28.

wo R bilit

Input C¥ = 27 from State 0 with likelihood 0,1075 * 0.2500 = 0,0469 to State 3 kng‘h Pmb fies for 58h,27h

Concat CW is 2727 01001110100111 -» 0100 1110100 111 0,011719 * 2 1 1 o lane? : 0.003348 ©.003349 0.005022 0,000000

Concst CW is 272C 03001110301300 -» 0L00 11101011 00 0,011719 * ) 1 1 o lened | 0.005022 0.003349 0.005022 0,000000

Concat C¥W 1s 2716 01001130010110 => 0100 111001011 G 0.01171% * 2 2 1 0 leney 0,003348 0,006696 ©.005022 0,000000

Concat C¥W 13 273A 01001110311010 -» 0J00 1110i1101 O 0.011729 * 3 o 2 0 lene9 0.008022 0.000000 -0.010045 0,000000
Total so far: 0.016741 0.013293 0,026112 0,000000

Input CW » 27 from State ! with likelihood 0,0625 * 0.2800 = 0.0156 to Svate 3

Concat CV is 2727 01001110100181 -» 0100 1110100 111 0.003906 * 2 1 1 o len=? 0.001116 0.001316 0.001674 0,000000
Concat CV is 272C 01001110101100 -» 0100 11101011 00 - 0.003906 * 3 1 1 3 lenss 0.001674 ©0.001116 0,001674 0,000000
Concat C¥ 1s 2716 01004110010110 -» 0100 111001014 0 0.003906 * 2 2 1 a len=3 0.001116 ©0.002232 0.001674 0,000000
Concat CW is 2734 01001110111010 -» 0100 111011101 0 0.002906 * 3 0 2 a lenes 0.001674 ©0.000000 0.003348 . 0,000000
’ Total 3o fas: 0.022321 0.017857 0.033462 0,000000
Inpuc C¥ = §8 froa Stete 2 with iikelihood 0.2500 * 0.2500 » 0.0625 to State O W

Concat CV 155827 10110000100111 -> 1011 0000100 111 0.015625 * T 1 [ 1 len=?
Concat CW 1s §053 10110001010011 => 1031 00010100 1} - 0.018625 3 1 1 o len=9 0.00669¢ 0.00446¢ 0.006696 0.000000
Concat CV 1s 5069 10110001101001 -» 1011 000110100 % 0.015625 * 2 2 1 o lene9 0.004464 0,008929 0.006696 0,000000
Concat CV is $8IA 1011000011010 -> 101} 000011101 O - 0.016625 * 2 0 1 1 len=s 0.004464 '0.000000 ©.006696 0,008929
Total so far: 0.040179 0.03571¢ 0,063§71 0.017857

Input CW = 27 frow Stete 3 with likelihood 0.2500 * 0.2500 = 0.0625 to State §
. Concat CV is 2750 01003111011000 =» 0100 1111011 000 0,015625 * 1 1 [ 1 len=? 0.002232 0.004464 0,000000 0,008929
‘ : Concat CV is 272C 0100111010100 <» 0100 11101011 00 0.015625 * 3 1 1 o lenwe 0.006696 0.004464 0.006696 0,000000
Concat' CW 18 2716 0100111000110 =» 0100 111001011 O 0.015626 * 2 2 1 3 len=y 0.004464 0.000929 0.006696 0,000000
Concat C¥ i3 2746 01001111000101 => 0100 111100010 1 0,015625 * z 0 1 s len=3 0.004464 0.000000 - 0.006696 0.008929
Total so far: 0.058036 0.053571 0.073661 0.035714

Input CV = 58 fros State 4 with likelihood 0.0625 * 0.2500 » 0.0156 to State 2
Concat CW is 5050 10110001011000 -» 1011 0001011 000 0.003906 * z 1 1 0 len=? 0.001116 0.001116 0.00167¢ ©,000000
Concat CV is 5053 10110001010011 -» 1011 00010100 1i 0.003906 * 3 1 1 0 lenss ©.001674 0.001116 0.001674 0,000000
Concat C¥ is 5069 1011000110001 -» 1011 000310100 L 0.003906 * 2 2 1 0 . leney 0.001116 0.002232 ©.003674 0.000000
Concat C¥ is 584§ 1011 01 -> 1041 1 0.003906 * 3 ] 2z 0 len=9 0.001674 0.000000 0.003348 0,000000
: . Total so far: 0.063516 0.068036¢ 0.092031 0,035714

Input C¥ = §8 from State 5 with likelihood 0.1876 * 0.2500 = D.0469 to State 2
Concat CV 1s §058 10110001011000 =» 1011 0001031 000 0.011719 * z 1 1 o lens? 0,003348 0.003348 0.005022 0.000000
Concat CW 1s 5053 10110001030014 =» 1011 00010100 11 0.011719 3 1 1 [} lensg 0.008022 0.003248 '0,005022 0.000000
Concat CV 1s 5069 10110001101001 =» 1011 000110100 1 0.011719 ¢ 2 2 1 o lens9 0.003348 0.006696 0.005022 0,000000
Concat CVW 1s 5045 1011000100001 -» 1011 000100010 1 0.013719 * 3 ° 2 a lenes 0.005022 '©,000000 0,010045 0.000000
Totel so far: 0.090357 0.071429 0.107443 0.036734

Figure 4-23: Runlength probabilities with SW 0

E LB Y Total so far: 0,000387 0.071429 0.107143 0,03571¢
Input CVW = §J from State 0 with likelihood 0.107% * 0.2600 = 0.0469 to State J
Concat C¥ is $§327 1000110100112 -» 10100 110100 311 0.011719 * 2 2 o o len=6 0.0033246 0.006696 ~ 0.000000 0,000000
Concat CV is §32C 10100110101100 -> 10100 1101031 0O 0.0117%9 * 3 z o o lene? 0,005022 0.006696 0.000000 0.000000
Concat C¥ is $316 10100110010110 -» 10100 11001018 O 0.011749 * 2 3 o ° len=8 ©.003240 0.0100¢§ ©.000000 0,000000
Concat CV is $334 10100110111010.-» 10100 11011101 O 0.011719 * 3 1 1 ] : len=8 0,005022 0.003348 0.006022 0,000000
Total so tar: 0.097098 0.09821¢ 0,112165 0,038714
Input CV = §3 from State 1 vith likelihood 0.0625 * 0.2500 = 0.0156 to Scace 3 .
Concat CV is §327 10100110100314 -> 10100 110100 111 0.003906 * z z [ ] leneé 0.0011i6 0.002232 0.000000 0.000000
Concat CV is §32C 10100130101100 -> 10100 1101012 00 0.003906 * 3 2 [ o len=? 0.003674 0,002232 0.000000 0.000000
Concat C¥ s 516 10100130010310 => 10100 1100101 © 0.003906 * 2 3 [ ¢ lenes 0.00%136 0.003340 0.,000000 0.000000
Concat CV $s 5334 10100130111010 =» 10100 11011104 O 0.003906 * 3 1} 1 ] lenes 0.001674 0,00111¢ 0,001674 0.000000
. Total so far: 0.102679 ' 0.107143 0.133039 0.038744
Input CV = §3 (roa Scate 2 victh likelihood 0,2500 * 0.2500 = 0.0625 to State §
Concat CV¥ i3 5350 1010011101:000 -» 10100 1110i1 000 0.015625 * 1 1 i o lens6 0,002232 0,004464 0.006696 0,000000
Concat C¥ is §32C 10100110105100 -» 10100 1101011 0O 0.016626 * 3 2 o o © lens? 0.0066%¢ 0,000929 0,000000 0.000000
Concat C¥ is $316 1010011001010 ~» 10300 11001011 © 0,015625 * 2 3 o -] 1lenes 0.004464¢ 0,.013393 0.000000 ~ 0.000000
Concat CW is §348 10100111000101 -» 10100 111000L0 1 0.0185625 * 2 o z o lan=9 0.004464 ©,000000 0.013393 0.000000
Total so fer: 0.120536 ©.133929 0.133929 0,03571¢
Input C¥ = 2C from State 3 with likelihood 0.2500 * 0.2800 « 0.0625 to State 0 .
Concat CV i3 2C27 0101100010011 <> 01011 000100 i1} : 0.018628 * 1 1 1 o leneé 0.002232 0,004464¢ 0.006696 0.000000
Concat CVW is 2C§) 01011001010011 ~» 01011 0010100 11 0.015628 * 3 2 o o lene? 0.00669¢ 0.000929 ©0.000000 ©.000000
Concet CW is 2C69 01011003101001 ~> 01011 00110100 1 0.018628 * 2 3 o ] lenet 0.004464 0,013393 0.000000 ¢.000000
Concat CW is 2C3A 01011000111010 «» 01011 00011101 O 0.015628 * 2 o 2 o lened 0.004464 0,000000 0.013393 0.000000
Total so ter: 0.139393 0.1607)¢ 0,154010 0.035744
Input CV ® 2C froa State 4 with likelihood 0.0626 * 0.2500 = 0.0156 to State 2
Concat CV s 2C50 01011001011000 ~» 01011 00DJ01L 000 0.003%06 * 2 2 [ 0.001116 0,002232 0.000000 ' 0,000000
Concat CV is 2053 01011001010031 ~» 0J031 0010100 31 0.003%06 * 3 2 ] 0.00467¢ 0,002232 0,000000 0.000000
Concet CV is 2069 01011001101001 ~=> 01011 00140100 1 0,003906 ¢ 2 3 [ 0.005146 0,003340 0,000000 0.000000
Concat C¥ i3 2048 01011001000101 -» 01011 00100010 & 0,003905 * 3 1 ) 0.001674 ©0,001316 0.081674 0.000000
. 0.143973  0.169643 0.1586%2 0,03871¢
Input C¥ = 2C from Scace § with likelihood 0.1876 * 0.2800 = 0.0469 to Scetes 2
Concat CV is 2C59 0101100011000 ->» 01014 001045 000 0.011719 * 2 z [} 0.003340 0.0066%6 0.000000 0.000000
Concat CV 1s 2C83 © 0101100404001 -» 01041 0010100 11 0.0147i8 ¢ 3 2 ¢ o lene? 0.008022 0.006696 0.000000 0.000000
Concat CV is 2069 01011001101001 -> 0101} 00110100 3 ) 0.011719 * z 3 L] [ lened 0.003340 0.010048 0.000000: ©.000000
Concat C¥W is 204§ 01031001000401 -» 03031 00100010 1 0.01INY * 3 13 S o leneg 0.005022 0.003348 ©,006022 0.000000
Total so. far: 0.160714 0.19642% 0.160714 0,03570¢

Figure 4-24: Runlength probabilities with SW 1
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w2

,Input C¥ = 63 from State 0 with likelthood 0.1675 ¢ 0,2500 = n.'ous to State 3

Concat C¥ 1is 6927
Concat C¥ is 632C
Concat C¥ is €316
Concat CV¥ is 6304

11010010100111 =»
11010010101100 =»
11010010010110 =>
11010010113010 ~>»

110100 10100 111
110100 101011 00
110100 1001011 O
110100 1011101 0

0.011718
0.01171%
0.011718
0,011719

Inpuc C¥ = €9 from State 1 with likelihood 0.0625 * 0.2500 = 0.0156 to State 3

Concat C¥ is 6927
Concat C¥ 15 €92C
Concat CV 1s €916
Concat CV¥ is 693A

11030010100113 =>»
11010010101100 ~»
11010010010120 =>
1101001011100 ~»

110100 10100 131
110100 103011 00
110100 1001013 O
110100 1011102 ©

©,00390¢
0,003906
0,003906
0,003%06

Input CW = €9 from State 2 with likelihood 0.2500 ¢ 0.2500 = 0.0626 to State §

Concat C¥ is €958
Concat CV is 692C
Concat C¥ is 6916
Concat C¥ i3 §945

Input C¥ = 1§ from
Concat C¥ s 1627
Concat C¥ is 1653
Concat C¥ i3 1669
Concat C¥ is 163)

Input C¥ = 16 trom
Concat CV is 1650
Concat CV¥ 1s 1682
Concat CV is 1669
Concat CVW i3 1645

Input CV = 16 from
,Concat C¥ 13 1656
Concat C¥ is 1653
Concat CV¥ 1s 1669
Concat CV 13 1645

v 3

11010011011000 =>
11010010101100 -~»
11010010010110 -»
11010011000101 ~>

110100 11011 000
110100 101011 00
110100 1001011 ©
110100 1100010 L

0.015628
0.018625
0.015625
c.018625

State 3 with 1ikelihood 0,2500 * 0.2500 « 0,0625 to State O

00101100100111 -»
00101101010011 - ~»
00101101101001 -»
00101100111010 ~»

001013 00100 111
001011 010100 11
001011 0110100 1
001011 0011101 0

0,015628
0.015626
0.0L8628
0.015626

State 4 with l1ikelihood 0,0626 * 0.2500 = 0.0156 to State 2

©0101101011000 ~»
00101101010011 =>
00101101101001 ~>
00101101000101 ->

001011 01011 000
001011 010100 11
001011 0110100 2
001011 0100010 1

' 0.003906
0.003%06
0,003906
0.003%0¢

State § with likelihood 0.1875 ¢ 0.2500 « 0.0469 to State 2

00101101011000 ->
00l01101010031 =»
00101101101001 ~»
0010110100001 -»

001011 01011 000
001011 010£00 11
001011 0110100 1
001011 0100040 1

0.011719
0.011719
0.011719
0.012719
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Figure 4-25: Runlength probabilities with SW 2

Input C¥ » JA from State 0 .with likelihood 0,1675 * 0.2800

Concat CV¥ is 3AS0
Concat C¥ is JAS)
Concat CW 1s JA6Y
Concat CW is JA4S

01110101011000
01110101010013
03110101101002
01110101000102

=-» 011101 01011 000
-» 011101 010100 1}
=» 011101 0110100 1
=» 011101 0100010 1

Input CW » 34 from State 1 with likelihood 0,0626 * 0.2500

Concat CV 35 JASE
Concat €V is 3A3
Concat C¥ is 3A69
Concat CW is 3AdS

01110101011000
01110102010011
01110101101001
01110101000101

=» 013101 01011 000
=» 011101 010100 11
=> 011101 0110100 1
=> 011103 0300010 &

Input CW = 45 from State 2 with iikelihood 0.2500 * 0.2500

Concat CV is 4527
Concat CVW is 4553
Concat CW 13 4569
Concat CV is 4534

10001010300212
10001011010011
10001011101002
iocoloi0111010

=» 100010 10100 111
~» 100010 110400 11
~» 100040 1110100 I
-» 100010 1011101 O

Input CV » 3A from State 3 with likelihood 0.2500 ¢ 0.2500

Concat CVW is 3A50
Concat C¥W is 3A2C
Concat C¥ is 3Al6
Concat CV¥ is 345

01110101011000
0111010010100
0111010000110
01110101000101

-» 011101 0l0lL BOO
-» 011101 001041 OO
-> 011101 0001011 ©
=>» 011101 0300010 1

Input CV = 45 from State 4 with likelihood 0.0625 * 0.2500

Concat CV¥ s 4527
Concat CW is 452C
Concat CV 4s 4516
Concat CV is 453

1000101010011 ~-»
10001010102100 -»
10001010010110 ~»
30001010111010 =>

100010 10100 111
100010 101011 00
10000 1001011 O
100040 1031301 0

= 0.0469

= 0.0156

» 0.0625

* 0.015¢

to Brate 2
0,01171%
0.01171%
0.01171%
0.011719

to Stete 2
0.003906
0.003906
0,003906
0,003906

to State 1
0.015628
0,015625
0.018625
0.015625

to State 4
0.015625
0.015625
0,015625
0.018628

to State 3
0.0039506
0.003906
0,003906
0.003506

Input CV = 45 from ftate § with likelihcod 0,1876 * 0.2500

Concat C¥W is 4827
Concac C¥ is 452C
Concat CV is 4516
Concat CVW is 4$3A

10001020100211
10001010101200
10001010010210

=-» 100010 10106 111
=» 100010 101011 00
-> 100010 1001011 ©

10001010111010 -» 100010 1011101 ©

* 0.0469 vo Scate D
0.011N19%
0,011719
0.011719
0.011719

DI e e “ e e 0w ¢ e e

“een

Ldwew  ammo annw cavaw rwaw

cavaw

aner o~N- - on -~ onee

O N~

~ocoo 00 ~~0o0 ~o0o00 CX-X-)

~oao

tal

-
@ gecoco

tal

40000 =000

otal so far:

dene$

cocoo

Lene?
Totsl so far:

lene=7
otal so far:

“ocoocoo

0.005022
0.006636
0.005022
0.00669¢
0.184282

0.001674
0.002232
0.00167¢
0.002232
0.1%1964

0.002232
0.008929
0.0066%¢
0,004464
0.214206

0.002232
0,00092%
0.00669¢
0,004464
0.236607

0,001674
0.002232
0,001674
0.002232
0.244420

0.005022
0.006696
0.008022
0.00669¢

0.267667

0.005022
0.0066%6
0.008022
0.00669¢
0,231295

0.001674¢
0,002232
0.001674
0.002232
0.29%107

0.00669¢
0.004464
0.004464
0.000929
0.322661

0.006696
0.004464¢
0.004464
0.000929
0.346214

0.003674
0.002232
0.001674
0.002232
0.356027

0.00%022
0.006696
0.005022
0.006696
0.379464

0,003348
0.003349
0.006696
0.000000
0.20%021

0.001116
0.001116
0.002232
0.000000
0.214208

0.000929
0.004464
0.008929
0.004484
0.241073

0.008929
0.004464
0.008929
0.004464¢
0.267857

0.00111¢
0.00111¢
0.002232
0.000000
0.272321

0.003348
0.003348
0.006636
0.000000

0.208714

0.003348
0.003348
0.00665¢
©.000000
0.293107

0.001116
0.001116¢
0.002232
0.000000
0.303571

0.004464
0.000929
0.004464
0,000000
0,321429

0.004464
0.008929
0,004464
0.000000
0.33%286

0.00111¢
0.001116
0,002232
0.000000
0.343750

0.003340
0.003348
0.0066%6
0.000000
0.357142
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©.000000
0.000000
0.000000
0.008022
0.168737

0,000000
0,000000
0.000000
0.001674
0,167411

0.000000
0.000000
0.000000
0.00669¢
0,174107

©0.000000
0,000000
0,000000
0.006696¢
0.160804

0.000000
0.000000
0.000000
0.001674
0.102478

0.000000
0.000000
©0.000000
0.008022

0.187600

0.000000
©0.000000

.0.000000

0.006022
G.192822

0.000000
0.000000
0.000000
0.001674
0.1941%

0.000000
0.000000
0.006696
0.006696
0.20769%

0.000000
0.000000
0,00669¢
0.008696
0.22996t

0.000000
0.000000
0.000000
0.001674
0.222686¢

0.000000
0.000000
6.000000
0,005022

'0.227679

0,000000
0.000000
0.000000
0.000000
0.028714

0.000000
0.000000
0.000000
0.000000
0.038714

0.000000
0.000000
0.000000
0.000000
0.035714

©.000000
©.000000
0.000000
0.000000
0.038714

0.000000
0.000000
0. 000000
0.000000
0.038714

0.000000
0.000000
0.000000
0,000000

0.036714

0.,000000
0.000000
0,000000
0.000000
0.035724

0.000000
0.000000
0.000000
0.000000
0.035714

0,000000
0,000000
0.000000
0.000000
0.035714

0.000000
0.000000
0.000000
0.000000
0.03571¢

0,000000
0,000000
0.000000
0.000000
0.035714

0.000000
0.000000
0.000000
0,000000
0.038714




4.12. Code Word Search
In order to determine the best AddCW'séts, the effecf that different AddCW sets
have on the number of transitions and runlength probabilities must be evaluated. To do so
involves testing each set of AddCWs using the above Markov chain analysis and
searching for the set that has the best statistics. This was done through an exhaustive
computer search. For example, for the (7,1) code the exhaustive search will begin with
the AddSW set {Oh,2h,4h,6h,9h,Bh,Dh,Fh}, since SWs 2h, 4h and 6h are the first SWs to
meet the selection criteria from Section 3.5 and Figure 3-21. Furthermore SWs 9h, Bh
and Dh are chosen because they are the SW complements of 2h, 4h and 6h, and SWs Oh
| and Fh are chosen since it was recommended that all AddCW sets include the all-zero
and éll—one CW. Note that this AddSW set must be encoded into its corresponding
AddCW set. After gathering statistics on this AddSW set the exhaustive search will
increment SW 6h to the next SW 7h, whose complement is 8h, and as a result the
AddSW set {Oh,2h,4h,7h,8h,Bh,Dh,Fh} will be tested. In this fashion the computer
search would continue testing the following AddSW sets {Oh,2h,5h,6h,9h,Ah,Dh,Fh},
{Oh,2h,5h,7h,8h,Ah,Dh,Fh}, {Oh,3h,4h,6h,9h,Bh,Ch,Fh}, {Oh,3h,4h,7h,8h,Bh,Ch,Fh},
{0h,3h,5h,6h,9h,Ah,Ch,Fh} and {Oh,3h,5h,7h,8h,Ah,Ch,Fh}, for testing a total of eight
sets. Note that the total number of AddSW sets tested agrees with the number given by

Equation 3.1.

ik wors CWs (mals ]

i A
ﬂ‘ﬁFSM;MQ"'FO_bn‘ IR T

Figure 4-27: CW search program
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To perform this computer search the prc_jgram FindAllProbs.exe in Figure 4-27
was created, which is a combination of the two programs BuildEuCu.exe and

CalcPIMandProbs.exe.

Like the previous two programs FindAllProbs allows the user to choose the
selection criteria and the expurgated code of interest. The major difference here is that the
AddSWs are not specified. Instead this program runs through all possible AddSW sets
(automatically converting them to AddCW sets) and tallies the statistics. For the (7,2)
code considered so far, FindAlIProbs will test the four AddSW sets {Oh,4h,Bh,Fh},

{Oh,5h,Ah,Fh}, {Oh,6h,9h,Fh} and {Oh,7h,8h,Fh}.

£(1,2)_WIM1 _towest RDs _0 nunlcnglhs txt Notepad
e’ EQR’: Format “Help : il o

f:Addslil (not Cus), tollowed by NumScates, followved by prob ot l, 2,3, ..

{|ros, Tran, nsw, 1scTran

{{Expact to test 4 sats

0 4 B r ;.379464231165 :.357112838516 :.227578569034 ;.03571;309130 ;.000lTlOCll:Il:Inflill)O”;“y
‘ 0 5 Av y 0.352678573424 0.419642792749 0.227678677599 0. 4000 0.
; 0 6 9 7 0.370535901082 0.374999942524 Ov. 254464156393 O, 1000 0.

0 ? 8 r

0.357142857143 0.250000000000 0.334821428571 0.035714285714 0.022321428571

{|* means that the AddCV set was not better than the best .
{1 means that the AddCW set had either too many states, or the all 1 or 0 CU present
i

l There were 4 GoodSsts out of 4 tested
{{There veare 0 BadSets out of 4 testad
:[NOTE: bad sats had too many scates, or the all 1 or 0 CW preseant

|{sunnary ot the runs...

i
;.l. 2 3 4 &
|6 4 4 H4 1

Qo
o
I~
-]
o
o
o
-]
o

E‘Bu:HAd.HnRun =3

i Y P

Figure 4-28: CW search results for the (7,2)

Figure 4-28 shows the results for the (7,2) code found by FindAllProbs. It can be
seen that for the AddSWs {0Oh,4h,Bh,Fh}, the runlength probabilities match the results
from the previous example in Figure 4-22. Furthermore, using the AddSWs

{Oh,7h,8h,Fh} leads to runs of length five 2.2% of the time, confirming the result shown

in Figure 4-10.
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Inspection of this output file shows that the two sets - {Oh,5h,Ah,Fh} and
{Oh,6h,9h,Fh} are the best since they only have runs up to length 3, i.e. a transition will

occur in the output sequence at worst case every three bits. Deciding on a clear winner

between these two sets however is subjective, since even though set {0h,6h,9h,Fh} has
the highest probability of runs of length one with 37%, it also has a higher probability of
runlengths of length three with 25.4%.

4.13. Analysis and CW Search on larger codes

Up to this point only the (7,x) codes have been discussed since their small size
makes them easy to present and demonstrate. However, this multimode coding scheme
with a length n=7 code suffers greatly in terms of code rate from the increased
redundancy. Therefore larger codes such as the (15,11) and (31,26) codes are now

considered.
With eight AddCWs the (15,11) code is expurgated to a (15,8) code resulting in
2°=256 possible SWs. This means there will be (1)(2°)(2%)(2°)(1)(1)(1)(1)=2*

AddCW sets to analyze based on the arguments from Section 3.6.5 and Equation 3.1. For
each AddCW set the state diagram of the encoder must be constructed. This can only be
found by testing all possible SWs, determining the CWs produced, and keeping track of
the resulting states. For each newly discovered state however, the process must be

repeated because each CW transmitted has the potential to cause a new state.

For instance, consider the case of transmitting the 15-bit all-one CW from the
(RDS,LB) state of (0,0). This would put the system into a new state of (15,1). If the all-
one CW is transmitted again it would put the system into another new state of (30,1) and
so on. This scenario simply illustrates how each CW has the potential to cause new states.
On the other hand, if lowest RDS is the primary metric (balanced transmission), many of
the states discovered should be duplicates. That is, the number of states in the system
should not grow unbounded since ideally the system is attempting to return to the states
with an RDS of 0. However, if the maximum transitions or MSW selection criteria is

“used as the primary metric, then as successive words are encoded, it is possible for the
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encoder to have an infinite number of states. For example, many CWs contain numerous
transitions but they are unbalanced. Consider the case when the system chooses one of
these CWs that results in the (RDS,LB) state of (7,1). In the next encoding interval one of
these CWs might be chosen again, resulting in the (RDS,LB) state of (14,1). Continuing
in this fashion with maximizing transitions as the primary metric, it is entirely possible
that the system will continue choosing these CWs causing the number of states to be

(21,1), (28,1), (35,1) and so on, and therefore grow unbounded as encoding proceeds.

To limit the evaluation time a hard upper limit of 256 states was established for
the number of states considered by FindAllProbs regardless of the primary decision

metric. Any AddCW set that exceeds this limit is discarded.

Once the state diagram is found, the 6,, E, and C, matrices must be constructed

in order to build the transition matrix and solve for the invariant distribution. Once this
information is complete the runlengths can be found using the analysis presented in

Section 4.10. Recapping this information shows how this problem grows in complexity.

With this (15,8) code and 256 possible SWs, it can be estimated that each state

can be entered and exited 256 ways. Assuming that there are only 32 states (well below

the upper limit of 256), this will represent (2562)(32) iterations. This amount of work

however is only for a single AddCW set and must be done once for each of the 2* sets
(from Section 3.6.5). Furthermore each iteration involves numerous matrix
multiplications. As a result the computer search for the (15,8) code needed to be run over
a three month period using sixteen Pentium 3 machines. This intensive task was split up
such. that each computer worked on sets of 262144 AddCWs at a time, with each set

taking approximately one week to complete running twenty-four hours a day.

It is obvious then that conducting the same CW search for the (31,26) code is just

not feasible since even when expurgated down to a (31,23) code it still has over 2%
possible AddCW sets to test (from Section 3.6.5). Therefore the results gathered for the
(15,8) code will be used to make suggestions on what constitutes a good AddCW set for

larger codes, which can be extrapolated to (31,x) codes, (63,x) codes and larger.
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4.14. CW Search Results _ _

Recall from Figure 3-22 that the AddCWs (or AddSWs since the codes
considered are systematic) @, b, and ¢ must have their MSbs in the binary format 001, 010
and 011. As a result the (15,8) CW search compared the 11-bit SWs a, b, and ¢ in the
range 100h to 1FFh, 200h to 2FFh and 300h to 3FFh respectively. Out of all the
AddSW/AdACW sets tested only four had maximum runlengths of 7. As well each of
these four AddCW sets had .a maximum of 14 states which means the RDS values of the
sequences only varied in the range 13 (Note that this means RDS values of -3, -2, -1, 0,
+1, +2, and +3 are possible, as well as LB values of 0 and 1). Therefore these four
AddSW/AddCW sets were considered to be the best. They are shown in Table 4-7 and

the’i_r'runlength probabilities are shown in Table 4-8.

Table 4-7: Best AddSW sets from the (15,8) search

A Oh 107h 2C8h 323h 4DCh 537h 6FBh 7FFh

B Oh 14Dh 29Bh 370h | 48Fh 564h 6B2h 7FFh

Cc Oh 1AAh 29Bh 323h 4DCh 564h 658h 7FFh

D Gh 1E7h 2C8h 323h 4DCh 537h 618h 7FFh

Table 4-8: Runlength probabilities for the Best AddCWs

1 2 3 4 5 6 7 8
R 0.3515993125 | 0.3252365187 | 0.1917786803 | 0.0966918019 | 0.0288151237 | 0.0056458649 | 0.0002328572 o
B 0.3698323555 | 0.3238076524 | 0.2029532910 | 0.0765068932 | 0.0209136549 | 0. 0059514779 | 0.0000347347 Q
C 0,3562579240 | 0.3189974631 | 0.1980528103 | 0.0844292445 | 0.0340671827 | 0.0056263416 | 0.0005492588 0
D 0.3549359883 | 0.3238715642 | 0.1886010711 | 0.0963552075 | 0.0292343068 | 0.0067199212 | 0.00026818141 [s]

Inspection shows that these four best AddSW sets could guarantee runlengths of
four or less 96.53% of the time. This means that the output sequence will have a
transition every four bits (or less) 96.53% of the time. Furthermore these AddSW sets
could guarantee runlengths of five or less 99.41% of the time, and six or less 99.97% of
the time. Only 0.023% of the time would runlengths ever be higher than this to a

maximum of seven. These are great results considering the CW length is fifteen.

In addition there were only four AddCW sets considered to be the worst. These

sets had maximum runlengths of 15 and a maximum of 28 states representing system
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RDS values that _véried in the range 17. These sets are shown in Table 4-9 with their

runlength probabilities shown in Table 4-10.

Table 4-9: Worst AddSW sets from the (15,8) search

E Oh 108h - 200h 300h 4FFh 5FFh 6F7h 7FFh
F Oh 1ach 200h 300n 4FFh 5FFh 6F3h 7FFh
G Oh 120h 200h 300h 4FFh 5FFh 6DFh 7FFh
H Oh 130h 200h 300h 4FFh 5FFh 6CFh 7FFh

Table 4-10: Runlength probabilities for the Worst CWs

1 2 3 4 5 6 7 8
E 0.328473565| 0.304656190] 0.189284263| 0.106383216| 0.044736361)] 0.015932939] 0.004961433| 0.003010110
4 0.337667123| 0.309838523] 0.182793727| 0.117408239) 0.036369763| 0.011969801) 0.003141914] 0.000671532
G 0.320816060] 0.3069676874] 0.194495328| 0.103729269] 0.040345690| 0.019072758] 0.003513444| 0.002903702
X 0.330055271] 0.306040341] 0.196458392] 0.110386161] 0.036408923| 0.015802792] 0.001505133) 0.000846763
9 10 11 12 13 14 15 16
B 0.002508024| 3.74071E-05| 1.25344E-05| 9.944398K-07] 2.31383E-07 7.4575E~08 2.7276E8-08 0
F 0.000107569|  2.49273R-05| 5.12467E~06] 1.48213E-06] 1.82689E-07 4.99501E-08 2.6733E-08 0
G 0.000132108( 1.81316E-05| 4.142278-06] 1.158895E-06| 1.96428R-07 7.32938-08 2.6913E8-08 0
.S 0.002445673| 4.117338-05]|  2.94851R-06] §5.93432E-06| 1.86449R-07 5.1507E-08 2.75938-08 0

Even though these four AddSW sets had the worst statistics, they.could still
guarantee runlengths of four or less 92.87% of the time, runlengths of seven or less
99.44% of the time, and only 0.56% of the time would runlengths be higher than this to a
maximum of fifteen. Note that the probability of a run of fifteen occurring is extremely

small at 0.00000027% (i.e. 2.7276E-6%).

4.15. AddCW recommendations

No distinct pattern emerges from inspection of Tables 4-7 to 4-10. However some

general conclusions can be drawn from these results and recommendations can be made.

Details of the worst AddCW sets from Table 4-9 are shown in Table 4-11 to
Table 4-14. These tables show that on average the Hamming weight is 3.5, the average
number of transitions is 4.9, and ratio of 0-bits to 1-bits is 11.5 to 3.5. Clearly these
AddCWs are unbalanced with few transitions and on average will do very little to help

the constrained sequence goals of the system.
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Table 4-11: AddSW set {Oh,108h,200h,300h,4FFh,5FFh,6F7h,7FFh}

n RDS 0:1

Sw cw Weight Tra

108h 1084h 3 6 -9 12:3
20Ch 200Dh 4 S -7 11:4
300h 3002k 3 4 -9 12:3

Table 4-12: AddSW set {Oh,10Ch,200h,300h,4FFh,5FFh,6F3h,7FFh}

SwW cw Welght Tran RDS 0:1

10Ch 10C8h 4 6 -7 11:4
200h 200Dh 4 5 -7 11:4
300h 3002h 3 4 -9 12:3

Table 4-13: AddSW set {Oh,120h,200h,300h,4FFh,5FFh,6DFh,7FFh}

SW Cwr Weight Tran RDS 0:1

120h 1205h 4 7 =7 11:4
200h 200Dh 4 5 =7 11:4
300h 3002h 3 4 -9 12:3

Table 4-14: AddSW set {Oh,130h,200h,300h,4FFh,5FFh,6CFh,7FFh}

SW Cwy¥ Weight Tran RDS 0:1

130h 1300h 3 4 -9 12:3
200h 200Dh 4 5 -7 11:4
300h 3002h 3 4 -9 12:3

Therefore the first recommendation to make regarding the choice of a good
AddCW set regardless of code size is to choose relatively balanced AddCWs that contain
a significant number of transitions. This is validated by inspecting the statistics of the
best AddCW sets as shown in Table 4-15 to Table 4-18. Here the average Hamming

weight is 7.5, the average number of transitions is 7.5 and the average ratio of 0-bits to

1-bits is also 7.5.

Table 4-15: AddSW set {Oh,107h,2C8h,323h,4DCh,537h,6F8h,7FFh}

sw cw Weight Tran RDS 0:1
107h 1076h 6 6 -2 9:6
2C8h 2C8Fh 8 7 +1 7:8
323h 323Dh 8 7 +1 7:8

Table 4-16: AddSW set {0h,14Dh,29Bh,370h,48Fh,564h,6B2h,7FFh}

SW CwW Waeight Tran RDS 0:1

14Dh 14DCh 7 8 -1 8:7

29Bh 29B8h 7 8 -1 8:7

370h 370Ah 7 8 -1 8:7
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Table 4-17: AddSW set {0h,1AAh,29Bh,323h,4DCh,564h,655h,7FFh}

SwW cw Weight _Tran RDS 0:1
1AAh 1AA6h 7 10 -1 8:7
29Bh 29B8h 7 8 -1 B8:7
323h 323Dh 8 7 +1 7:8_ b

Table 4-18: AddSW set {Oh,1E7h,2C8h,323h,4DCh,537h,618h,7FFh}

SW cw Welght Tran RDS 0:1
1E7h 1E75h 9 7 +3 6:9
2C8h 2C8Fh 8 7 +1 7:8
323h 323Dh 8 7 +1 7:8

Closer inspection of CWs 2C8Fh and 323Dh in Tables 4-15 and 4-18 show that
they are cyclically shifted versions of one another. As well all CWs in Table 4-16 are

cyclically shifted versions of one another. However the CWs in Table 4-17 show no such
symmetry.

~ Asaresult it is difficult to make precise recommendations on what constitutes a
good AddCW set. Furthermore it is tempting to assume that in this system all eight |
AddCWs are used equally. This however is not the case as can be seen in Figure 4-29.

 Here the SimFPGA output shows that AddCW1 (1076h), AddCW2 (2C8Fh) and their
CW complements AddCWS5 (5370h) and AddCW6 (6F89%h), are each used approximately
16% of the time. On the other hand AddCW3 (323Dh) and its CW complement AddCW4
(4DC2h) are used less at approximately 13%. Finally the all-zero and all-one CWs
(AddCWO0 and AddCW?7) are only used approximately 3.7% of the time. Thus, deciding
on what constitutes a good AddCW is made more difficult by fhe fact that not all
AddCWs are used with the same frequency. Note that this information is found simply by

counting how many times each AddCW is used when building the state diagram.

i £ (15,8)_{0,1076,2C0F,323D,4DC2,5370,6F89,
AddCuo AddCul Addcuz AddCu3 AddCuq AddCWS AddCus Adacuz7
0.03772582 0.16316168 0,162559919 0,13646932 0,13605682 0,16261918 0.16370918 0.03775481 i

, TFEF]_WTM1_Stats.txt - Notepad

= 0,01815973 (-2,1) = 0.02880557 (-1,0) = 0,11081333 {2,1) = 0.03763443 (-2,0) =

| <] SR

Figure 4-29: SimFPGA keeps track of percentage of time each AddCW is used
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It can be stated that in general for codes with odd léngth, a good AddCW will
belong to a set of CWs that are balanced in the fashion (n—-1)/2:(n+1)/2 or
(n+1)/2:(n-1)/2. From this set the best AddCWs will consist of those with as many |

“transitions as possible. Furthermore if any of the AddCWs can be cyclically shifted to
yield other AddCWs whose MSbs are in the form 001, 010, 011 (as shown in
Figure 3-21), then these are most likely good AddCWs.

However since CWs such as 1076h exist in the best set, and such CWs are not
~ balanced and have less than the average amount of transitions, this is a loose
recommendation. Nevertheless when these recommendations are followed the maximum

runlengths produced can be expected to be near the minimal values observed of

(n—1)/2, where n is the CW length.

Further analysis on what constitutes good AddCWs can also be done in the
frequency domain by inspecting the power spectral density of these codes. This is

-considered in Chapter 5.
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5. Power Spectral Density Results

Chapter 3 introduced the multimode coding technique and Chapter 4 discussed
‘how to model it as a finite state machine and how to analyze it using Markov chain
theory. Chapter 4 then continued by presenting the results of the AddCW enumeration for
the (7,x) and (15,x) codes. It was shown that a great deal of insight about what constitutes
a good AddCW set can be found by analyzing these time domain statistics. However an
equally suitable method of assessing this combined EC and CS code is to calculate its
power spectral density (PSD). This is because the coding rules of this technique will
directly influence the shape of the power spectrum. This chapter presents how: to

theoretically calculate the PSD of an encoded sequence and how to interpret the results.

5.1. Relationship between the time and frequency domain

As discussed in Section 2.19 a binary sequence using bipolar coding maps logic 0

values to a negative square pulse shape —p(t), and logic 1 values to a positive square pulse
- shape +p(#). When a transmitted sequence contains an overall equal number of logic Os
and 1s the transmission is said to be balanced. This is because the transmitted signal has a
negative amplitude half of the time and an equal but opposite positive amplitude the other
half of the time. As a result the dc average is O volts. Therefore inspecting this balanced
signal in the frequency domain would reveal that the PSD would have a null at 0 Hz. For
example Figure 5-1 shows the PSD of the Manchester code presented in Section 2.21.
Recall that this line coding scheme maps logic 0 values to the 2-bit pattern 10, and maps
logic 1 values to the complement 2-bit pattern 01. This guarantees at least one transition
per bit as well as a completely balanced transmission (5. As a result it can be seen that the
PSD of this balanced coding technique has a null (zero power) at 0 Hz. This is shown on

both the linear and logarithmic scales in Figure 5-1.
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A2

Null at OHz
zero dd contesjt)

7

Figure 5-1: Demonstrating nulls at 0 Hz on both linear and logarithmic scales

To understand how coding can effect the shape of the PSD, consider Figure 5-2
- which shows an output sequence with long runs of Os and 1s. It is clear that a signal such
as this will appear as a slowly varying square wave. As a result the PSD of this sequence

would have the majority of its power at low frequencies.

lowfrequency =~ 1 11111j000000[1 1111

Figure 5-2: Low frequency content of a signal

- On the other hand consider an output sequence that has numerous transitions as
shown in Fi gure 5-3. A signal such as this will appear as a rapidly changing square wave.
These rapid changes are indicative of high frequencies in the signal. As a result this

sequence would have a significant amount of its power at high frequencies.

high frequency i1loli]o[1]o[1]of1]o[1]lo[r]|of2|o|1]

Figure 5-3: High frequency content of a signal
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Since the m}ultimode codihg technique 6f Chapter 3 is designed to rémove long
runs of like valued bits (low frequencies) and introduce more transitions (high
frequencies), the PSD of the encoded waveform is expected to have most of its power at
high frequency and less power at low frequency. Thus the performance of the multimode

coding system can be evaluated by analyzing the PSD of the output sequence.

5.2. Evaluating the Power Spectral Density

Communication signals are inherently random. This is because the receiver does
not know beforehand the message that the transmitter sent. As a result a communication
signal is usually treated as a random process, since the data is random with time. Each
possible waveform is called a sample function and the collection of all possible

waveforms is called the ensemble of the random process (23].

To completely characterize the random process a probability density function
(PDF) or cumulative distribution function (CDF) would need to be known at every
instant in time. Since this information is usually difficult to obtain, random processes are
often characterized in terms of average sequence statistics (23). There are generally two
approaches used to evaluate the average statistics. A time average considers a single
sample function over all time, and an ensemble average considers all possible sample
functions and averages them at a single point in time. Processes where the time averages
equal the ensemble averages are called ergodic [23). If the random process has statistics

that do not change with time it is also called stationary [23).

Useful information to obtain about a random process is the mean or expected
value, as well as how quickly the process is expected to change which is given by its
autocorrelation function [23. The mean value of a random process has an intuitive
meaning as the dc content of the signal and the autocorrelation function gives an
indication of the frequency content of the random process. This is due to the fact that the
correlation of a random process with itself at two different points in time depends on how
rapidly the amplitude is expected to change with time [23). All of these topics are

investigated in detail with examples in Appendix A.
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- 5.3. Evaluating the Power Spectral Density of a Coded System

_ As previously stated the coding rules of the multimode coding system introducéd o
in Chapter 3 will have a direct influence on the shape of the PSD. Furthermore these
coding rules make calculating the PSD slightly more complicated. As a result this section
demonstrates through example the efficient procedure for calculating the PSD of a coded
system as outlined by Cariolaro and Tronca (24). Their method uses the finite state
machine model of the encoder first presented in Section 4.7, and the Markov chain

analysis presented in Section 4.9.

The multimode coding system is designed to transmit an output sequence with an
equal number of Os and 1s even if the source statistics are unbalanced. Thus if the logic
values 0 and 1 are represented with voltage levels of OV and 1V respectively, the average

value transmitted is (0+1)/2=0.5V. However if a system used the polar NRZ format

from Section 2.19 with Os and 1s mapped to +p(¢), with p(¢) being a square pulse shape
of amplitude 1V, then the average value transmitted would be 0 since (—1+1)/2=0V.

Therefore in terms of output CWs one can intuitively expect that the average CW will be

the all-zero sequence. The output is collectively known as the mean sequence and the

average CW is called the mean symbol vector 7, (24].

Recall from the Markov chain analysis in Section 4.9 the input probability

matrix 6,, code word matrix C, and long term invariant distribution vector 7.
Using these definitions it can be seen that each CW ¢, (i) will occur with probability
72(i)0,(i,i) . Therefore with mutually exclusive input symbols the mean symbol vector 7,

or average CW is defined as
n, =7 6,c, (5.1)
u=l

Cohtinuing with the example from Section 4.9 the mean symbol vector would be
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250 0 0 0 0ff2322 133
0 25 0 0 0 0f[2322133
UC=[.1875 0625 25 '25: .0625 .|x75]g g‘? :sg g ;’; : : ; ;?
0 0 .0 0 25 0fj2122311
0 0 000 0 25/[2 122311

52

/A = [s s .s‘ 5.5 05 5]

- The result in thation 5.2 is intuitively pleasing since it demonstrates that the
average CW (without bipolar NRZ mapping) isb in-between the all-zero and all-one CW,
i.e. a vector of all 0.5. However if the bipolar NRZ mapping had been used the mean

symbol vector would have been the all-zero vector as shown in Equation 5.3.

25 0 0 0 0 0(/0:2 00 -2 2 2

} 0.2 0 0 0 0f[0 2 00 -2 2 2

n. =[.ls7§ 0625 .25 25 .0625 .ms]g g‘? :sg g _44 '22 g g '22 '22 _22
: 0 0 0.0 25 0ffo 200 2 =2 -
0 0.0 0 0 250 200 2 2 -2

53)

M, =[0o000000

This confirms that the transmitted sequence of this encoder has a dc average of zero volts,

verifying that the goal of balanced transmission has been obtained.

From Appendix A the correlation of a random process with itself is called
autocorrelation (4 and leads to spectral information of the random process. For

- comparison the autocorrelation function R, (,,7,) of a random process X (¢) is shown

below in Equation 5.4.

© 00

Rxx(tlrté)s J‘ J‘xlxéfx (xl’xZ;tl’tZ)dxld.xZ L . (5 4) | ;l.

-0 =00

R, (1) = E[X (1) X, +7)]
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Since the autocorrelation function of a stationary process only depends on time

- 'separation z=t, -1, it is often represented in terms of the expectation operator [4] as

shown in Equation 5.5.

R@®=E[XOX0+D)] C6s

As a result Cariolaro and Tronca define the CW sequence autocorrelation R., as

- ‘Rc'k=E[c".c.-,f+k] o (5.6).

" Evaluation of R, at time separation k=0 is R, =E[c,c,]. Since CW ¢, (i)
will occur Wwith probability z(i)6,(i,i), its contribution to R, . will * be
Re, =c2 ()7 (i)0(i,i). To find the contribution from all CWs to Rc, it is helpful to

define A as an L-square diagonal matrix such that

70 = B X))
0. otherwise ‘

A, J) ={

Then the autocorrelation with zero time separation can be obtained by summing over all

CWs as shown in Equation 5.8.

Reg=DciAOc, . (5.8)
u=l o P ‘
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B Continuing in this manner and using the definitions defined by Cariolaro and Tronca,
~"when the input symbols are independent of state, the autocorrelation for all time

separations & can be shown to be

w-n

5
ZcuAH C
| u=t .
: =48 S '
Rea =1 > e AGETITY 6,c, k=1 (59)
i u=l

‘y=]

Rex k<-1

Then continuing with the example there are four SWs and as a result the:

autocorrelation at zero time separation R, is found by summing up the four matrices
coAbyc, + c'Abc, + c; Ay, + ¢; Abyc, shown in Equation 5.10. This was done by

mapping the CW matrices in Equation 4.25 to +A with A=1.

+r =r 4r 4r -r -r -r] o *ro=r Hr =r -r o4r 4r
‘ =r 4+r =r -r. +4r +r +r ‘ ~r +r -r 4r 4r -r -r
- B E 2 S T N T A N S C +r =1 AP =r =r 4P 4r
‘COAQOCO =l4r =r +F ¥r -r ~r -r C;FAQIC‘ = -ro#r =r 4 4r =r ~rf
“rotr =r -r 4r 4r 4r ‘ ~r 4r -r +r +r -r. -r
=r tr -r =r Fro+ro4r e mr Ar =r -r e 4
L=r +r =r =r +r +r +r] ‘ L+r =r +r =r -r +r +r]

(5.10)
tr e or e e o 4] o +r —-r -r -r. tr -r +r
SR TR Y Y A R ~r 4r 4r 4r -r +4r -r
“roer 4r -r 4r 4r -r : ~r 4r +r 4r -r 4r -r
CIA9202= T Y N e C}A%Cj Sler 4r 4r +r -r +r -r
rooer 4r er 4r 4r -r +r =r -r =r 4r.-r_ +r
or er 4r -r 4r 4r .-r ~r 4r 4r 4r -r +r -r
e 4roor +r_|‘ C I E T

where r=0.25.

. Using Equétion 5.9 the autocorrelation obtained for all CWs at time separation 0

is 'shown in Equation 5.11.
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(1 -5 0o 0 -5 -5 5]
-5 1 -5 .5 0.0 0 _
0 -5 1 0=5 5 -5
Reg=|0 5.0 1-5-5-5 L (¢.11)
-5 0-5-5 1 0 0 ‘ :
f-5 0 5-5 0 1 0
|5 0-5-5 0 0 1]

“ The interpretation of this autocorrelation matrix is as follows. Equation 5.11 is
- showing how correlated the individual bits (0 through 6) of any 7-bit CW are with
themselves at time separation k =0. For instance the diagonal ones indicate that the 1* |

bit is 100% correlated with the 1% bit, the 2" bit is 100% correlated with the 2" bit and

so on down to the 7™ bit is 100% correlated with the 7™ bit. Conversely, the correlation o

between the 1% bit with the 2™ bit is —.5. This means that the first two bit combinations of
any CW are more likely to be 1,-1 or -1,1 then they are to be 1,1 or -1,-1. Continuing in
this fashion the correlation between bit 0 and bit 2 is zero, which indicates that knowing
the value of the 1% bit gives no indication of the value of the 3™ bit. Hence all four
combinations -1,-1, -1,1, 1,-1 or 11 are equally likely. The rest of the matrix can be
understood in this fashion.

Before evaluating the autocorrelation of the encoded sequence for time separation

k>0, inspection of Equation 5.9 suggests that the second summation term can be

computed separately as shown in Equation 5.12 since it does not change with &.

0 500 -5 .5 .5 ‘
0 500-5 5 5
—|1-500-5-5 35 cot 512
,326’0 -1 500 S5 5 -5 (5.12)
0-500 .5 -5 -5
0-500 5 -5-5
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Thus R, .l is evaluated as

¢ -5 .5

0.50 K3
v 0 500 -5 5 .5
R, | = (cf Aeyon®+cT rg 0 +c] Aoy E;n0+c] agyeyn®) " ": g g ': ': _:
0 -500 5 -5 -5
D -500 .5 -5 -5 .
~125 . 0625 0 0 .0625 0625 -0625 : (5.13)
0 -0625 0 0 0625 -0625 -0625 :
: 125 -0625 0 0 -0625 -0625 0625
Rc’l =] 125 =065 0 0 -0625 ~0625 0625
0 0625 00 -0625 .0625 .0625
0 -0625 0 0 0625 -0625 0625
-25 06250 0 L1875 0625 -0625

This autocorrelation matrix indicates how similar any CW is with the preceding CW on -
the channel. Clearly the correlation falis off rapidly. This is because in this example
kndwing the value of the 1* bit in the first cW only gives a marginal -.125 ‘indication of
the value of the 1% bit in the next CW and so on. Nevertheless the autocorrelation can be .

evaluated for greater time separation as shown in Equation 5.14.

o 000 0 .0 "0 0000000

0625 -03125 0 0 -03125 -03125 -03125 0000000

o o000 o 0o 0 0000000

R,=| o o000 o 0o o R.;=l0000000

0625 03125 0 0 03125 03125 -03125 0000000

0625 03125 0 O -03125 -03125 '.03125 looooooo

0625 -03125 0 0 -03125 -03125 03125 0000000

(5.14)

0000000 0000000
0000000 0000000
0000000 0000000
R w=l000000o0 R._.=looo00000
- looooooo 0000000
0000000 ' 0000000
0000000 0000000

‘ Notice that by time separation % =3 the autocorrelation matrices have converged -
to the all-zero matrix, which demonstrates that this random process loses correlatlon with

1tself very rapidly. Further notlce that the autocorrelation matrix at k =oo can also be

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘obtéined by multip]ying the transpose of the mean symbol vector with itsel_f as shown in -

Equation 5.15.
R..=mn,=n; o (5.19)

Autocovariance matrices can also be found which indicate how the random
process varies with time separation. They are related to the autocorrelation matrices as

shown in Equation 5.16.

‘Kc.k= c.k‘77:' o - s 16)‘
Kc,k =Rc,k—R1:.°v ' . .

It can be seen from this expression  that if the mean symbol vector is zero, the
autocovariance matrices are equal to the autocorrelation matrices. As noted previously
this will occur when the output transmission is balanced and bipolar signaling is used.

K., is given by R (—R.., while K ,,=R,,-R._ and K ,=R ,-R and thus as k

tends to infinity R, tends to R, and the all-zero matrix is reached as shown below in

€00

Equation 5.17
P =5 0 0-5-5 5 125 0625 0 0 0625 0625 -.0625
-5 1-5 5 0 0 0 0 -0625 0 0 0625 -0625 -0625
Jo-s 17 0-5 5-s 125 -0625 0 O -0625 -.0625 0625
Ko=[o 5 0o 1-5:5-s| K =|.5 -0c5 0 0 -0625 025 0625
-5 0-5-5 1 0 0 ‘ 0 0625 0 0 -0625 < .0625 0625
5 0 5-5 0 1.0 0 -0625 0 0 .0625 -0625 -.0625
5 0=5-5 0 0 | 25 0625 0 0 .1875 0625 -0625 : ‘
(5.17)
o 000 o 0 o0 0000000
0625 -03125 0 O -03125 -03125 -.03125 0000000
_ o 000 0o 0 0 0000000
K.,=| o o000 o o o K. _.=looooooo
0625 03125 0 0 . .03125 03125 -03125 0000000
0625 -03125 0 O -03125 -03125 03125 0000000
0625 -03125 0 0 0000000

-03125 -03125 .03125
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The PSD is obtained using the autocorrelation and autocovariance matrices and it

* can be defined in terms of a continuous component X.(f), and a discrete component

X,(f). These components are weighted by the Fourier Transform of the ‘pulse

shape P(f).
W(f) |1<vf>| (X £+ D<f>m§ ( )J e
where | | |
Xc(f);v[Kc_o+2gkc,ke"f2”ﬂWTJv' 2 - 619)
X, (f)= VR (5.20)
v=[1 &7 el NCT ejz”f(N;;)T:l (5.21)

In this balanced transmission example R, =0 and by Equatlon 5.20 there is no

* discrete component X D( f) . Therefore Equation 5 18 can be rewritten as

IP(f)I
NT

W(f) ==l (X (f)+0) B 2)

Since the covariance matrices are only non-zero up to k =2, X.(f) is found to be

1 -5 0 0 ~5 -5 8 ) .
: ' -5 1-5 5 0 0 0 . .
Xc(f)=v|foTs o 1 §+2ZK g | v (5.23)
. ! -5 0 -8 -5 1:0 O . ‘ -
' -5 0 S5=-5 0 | 0 ‘
S 0-5-5 0 0 |
108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where

V= [1 el2TIT  Ql4nfT  Hi6rfT  LJ8afT  ,jl0mfT elenﬂ] (5.24)

The result is a continuous function of frequency f that is weighted by the pulse

shape. If a square pulse shape is used and normalized to A =1V with duration T =10us,

Equation 5.25 shows its time domain representation and Fourier transform. The PSD is |
then this function (pulse shape) squared, and plotted on either a linear or logarithmic

scale as shown in Figure 5-4.

p(t) = Arect (—Yt;) & Pw)= ATSiHC (a)_sz

P(f) = (10ps)sinc (7 f10ps) o (5.25)

Figure 5-4: PSD of a square pulse shape plotted on linear and logarithmic scales

Therefore using Equation 5.22 and evaluating X.(f) at f =500Hz, for example, gives

X -(500) =.0543+.215j = .2216¢'*%*/ (5.26)

|(104s)sinc (7500%10s
T*10us

W (500)=7.75E -8+ j3.07E-17

|W(500)| =3.167E~7
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- This is the PSD calculated at a single frequency. This evaluation however needs
to be done as a continuous function of frequency since by definition the power
contribution of a single point on adensity curve is zero [4). This time consuming

operation is best performed using mathematical software such as Matlab.

5.4. Evaluating the Power Spectral Density using Matlab

Recall from Section 4.11 the program Build_EuCu.exe. This program allows the
user to select the expurgated code, selection criteria, source statistics and AddSWs to use.

It then generates three files. The first two files created were shown in Figure 4-19 and

Figure 4-20. They dealt with the number of states in the encoder and created the 6,, E,

and C, matrices used to calculate the runlehgth probabilities of the code.

Continuing from the example in Section 4.11, the third file will contain a
combination of the information found in the first two files, and it is used to evaluate the
PSD. An example of this file is shown in Figure 5-5. This file begins with some
comments and general information about the code used. Following this is each Input

word (SW) along with its probability of occurrence which is read into the &, matrices,

followed by the E, and C, matrices which are written in binary form.

awest RDS.tat - Molepad T
TEloS B Fomak - B i e s

* Input gile (7,4} shortened to (7,2) for Line Code Pover Spectyal Analysss.
o

£ rrobnf1_So_LCodePwR_(7.2) 10,4,8F] 1

* Unbreskable Yie » 0 Ihumlies » O out of 72
g

g
Langth of fnpuc words: 2

Langth of encoded vosds: ?

Plunber of states in encodor: 13

Bource charactwristics; 0.3000 logic ons probsbiiity of independent bits.
[lusber of plot points: (13} .

Input vord: oo
Probability: 2.800000e-001
000100 0100111
000300 0300111
100000 1041000
000003 oloolal
001000 1011000
001000 1011000

PR AT

tnput vord: ot
Frobability:  2.5000008-004
000100 1010038
000100 1010042
000001 1010011
100000 0102100
001000 0101300
001000 0101100 .
-

i s e s s s e | Ty

Figure 5-5: Input file for PSD calculation
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The 6,, E, and C, information is used by a Matlab program called

| "calcCompletePSDfromLCODEPWRIN.m”. Additional paraineters are entered into the dialog
bdx as shown in Figure 5-6. These are a) the number of autocorrelation and
autocovariance matrices to compute, b) whether or not the system uses NRZ mapping
(i.e. balanced mapping), c) frequency stepping resolution, d) which figure number to use,
- e) maximum frequency to calculate values for and f) the duration of a single bit in
seconds. Note that the pulse shape is hard coded to be square and normalized to 1 volt to
match with the hardware implementation. This Matlab script will also output the PSD
with and without the influence of the sqhare pulse shape. This was done in order to see

the effect of the coding alone on the shape of the PSD.

<J Input needed

¥ Enter the Number of AutoCorrelation/Covariéncemalrix metricl
g

 Eniod 1 for Balriced, or 0 for UnBalanced: - > . . in

Figure 5-6: Information required for PSD calculation

Continuing the previous example with the parameters in Figure 5-6, the

continuous component X.(f) can be plotted on a linear scale without the effect of the

pulse shape as shown in Figure 5-7. This plot demonstrates the influence of the combined

EC and CS coding scheme alone.
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Jmneto. 20

(a) ' (b)

Figure 5-7: Linear PSD of the multimode system (no pulse shape included)

There are a few things to notice about this PSD. First of all as a result of the
discrete nature of the autocorrelation the PSD is periodic in the frequency domain as
shown in Figure 5-8a. Secondly since the symbols are all real valued the PSD is an even
function and thus symmetrical about 0 Hz as shown in Figure 5-8b. Therefore the PSD
repeats in this fashion to infinity where each lobe is a replica of the previous one as

'shown in Figure 5-7b.

-} hiquie to. 20

&MMMMWW
llmsna!kA;/];aa

[

(@ | | )

Figure 5-8: Showing that the PSD is periodic and an even function

However once the pulse shape of Figure 5-4 is taken into consideration, the PSD

begins to decay as sinc squared. This effect makes the null at 0 Hz less noticeable, but
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since this PSD is periodic, it is clear that the null is present. This is shown in Figure 5-9

on'both the linear and logarithmic scale.

Jlnme‘\n 22

Ce £ - Yew: hwwt Tooks Yondow e .
’Ilnnnah A)‘/ltﬁﬁ

Figure 5-9: Effect of the square pulse shape plotted on a linear and logarithmic scale

Note that the logarithmic scale is used in order to compare theoretical spectra with
those measured from the FPGA implementation in the lab. This is because digital
oscilloscopes and spectrum analyzers often display frequency domain results in decibels.
For example Figure 5-10 shows this PSD plotted for the first two lobes as generated by
this Matlab script, with the measured PSD from the FPGA implementation beside it. It is
cleaf that the Cariolaro and Tronca approach matches closely with the measured values.

This aspect will be more fully discussed in Chapter 6.

)lnmne'«) 23

boh S0LCODEPWR (7.2) 04 BF] Lowest ROS 1 _ g

Start 8Hz ot - S a 208 2
Res BH 1 kHz VBH | kHz Sweop 407.4 ms (Ml pts)
pevasmma—

Figure 5-10: Comparing the spectrlim analyzer to Matlab spectrum
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5.5, Understénding the Discrete-Like Nature.of the PSD

A final source of confusion is why the PSD sometimes has a “spiky” shape.
Normally strong spectral spikes are indicative of periodic sequences in the time domain.
These present themselves as discrete components in the PSD. However these strong
spectral peaks are not caused by periodic sequences with this coding scheme. In this case
‘the concentrated power in narrow bands in the frequency domain actually come from the

sometimes limited selection of CWs. This is best seen by example.

Consider the (7,1) Hamming code from Table 3-3 using the eight AddCWs
{00h,16h,27h,31h,4Eh,58h,69h,7Fh}. Figure 5-11 shows this code as a state diagram.
This small code is interesting to analyze since there are only two input SWs, 0 and 1.
Furthermore, even though there are eight AddCWs in this system, the simplicity of this
code results in only four CWs {69h,53,2Ch,16h} ever being transmitted.

0/69 .

0,0 1,1
0 1

10/16

Figure 5-11: Simplest FSM model for the (7,1) code

" The FSM model in Figure 5-11 indicates that the only possible CW sequences
that leave state 0 and return are {6%h,16h}, {69h,2Ch}, {53h,16h} and {53h,2Ch}. One
may expect this system to produce a discrete PSD since the transmitted sequences appear
periodic. However this is not the case since even though there are only four possible
sequences, théy are emitted randomly. This results in the continuous PSD shown in

Figure 5-12. This PSD was calculated assuming all four sequences are equally likely.
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j -} figute No. 10

Figure 5-12: PSD of the multimode code shown in Figure 6-50

At first glance this spectrum appears to have discrete components Understanding
why this is can be found by analyzing the Fourler Series (see Appendix A) of the four
sequences that can leave state 0 and return. As discussed above these sequences are
{69h,16h}, {69h,2Ch}, {53h,16h} and {53h,2Ch}, and their Fourier Series
representations are shown in Figure 5-13 and 5-14. All four figures have seven frequency

components in common as shown in Figure 5-15.

Comparing the spectrum in Figure 5-15 with the PSD in Figure 5-12 explains
wheré the apparent discrete components come from. These seven frequency components
will be dominant in this system regardless of randomness. For example if the output of
the encoder was ever forced to always be one of the four sequences, then the output
would be one of the four Fourier Series spectra shown below. However, since the output
at ény point in time is one of the four sequences chosen in a random fashion, each one of

the four spectra is prevalent, but overall yields a continuous spectrum,
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Figure 5-15: Average of the seven frequency components

5.6. Spectra of various codes

The CW search results of Section 4.14 for CWs of length 15 revealed that the
coding technique on average could guarantee i’unlengths of 4 or less 94% of the time.

Only 6% of the time would runlengths be higher than this to a maximum of 1‘1.
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Furthermore out of the 16777216 AddCW sets .tested only four sets were considered to _
be the worst since they could have runlengths as high as 15. However these runlengths .'
- would occur with very low probability and they could st1]] guarantee runlengths of 4 our
less 92% of the time. The four best AddCW sets on the other hand could guarantee
runlengths of 4 or less 96% of the time, and no runlengths higher than 7. This section

now investigates the PSD of these codes.

For comparison the PSDs are calculated using two heavily unbalanced source
statistics of 10% probability of a logic 1 and 90% probability of a logic 1. Furthermore
only the four best and four worst AddCW sets are calculated, as all other AddCW sets

“will have statistics within their range.

Yow: uort Tock Wrdow b :
BEINAr/IBRD -
1 50 LCODEPWR (15.8) 0, 10726832, AMMMJm Lowes

_ﬂl\
Y

rh R Yow eart. Tock . Wycow. i
‘~ua(uu-/l y
thon %0 LCODEPWR (ISH) p 1&20038,400,575 FF|

Figure 5-16: 90% ones — All four Best AddACW sets
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Figure 5.16 shows the PSD of the four best AddCW sets with a source that emits
logic 1s with 90% probability. It is clear that the coding scheme is workin'g since the
nulls are still present and quite wide. The “spiky” nature of the PSD however is a result
of the unbalanced source. Since the likelihood a SW containing many 1s is very high,

| only a limited number of the available CWs are being transmitted. That is since only a
subset of available SWs is being selected (i.e. SWs comprised mostly of 1s), only a
subset of available CWs is being transmitted. Hence the correlation between CWs is .
higher and the PSD shows spiky peaks indicative of a periodic-like transmission. In other

words, the same group of CWs is being repeatedly transmitted but in a random fashion.

/1ppo.

R (15,5 10,107 268323,40C 537 BFB7FF ] Lowt

W

Mﬂmnx
\ ; VA

I 1214 16 1872 s
R R RN T

O me_ et _Tock Yok i
Insasivarsigpo
: P’zub« 10 LEODEPWR (158) 0,1E7,209 323 ADC 537 £10.7FF] Low

o

f

1214 1618 2.0 "
AT T

Figure 5-17: 10% ones — All four Best AddCW sets

Similarly Figure 5-17 shows the PSD of the four best AddCW sets with a source
that emits logic 1s with 10% probability. This is of course the same but opposite problem
as above since now the likelihood of a logic 0 is 90%. Thus the PSD still exhibits the
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spiky response. ‘Nevertheless the attenuation of the PSD near dc shows that lower
frequencies are vlesvs likely than higher frequencies, and hence these PSDs are indicative

of a balanced sequence that has numerous transitions even with these unbalanced source

statistics.

Note that when the source is balanced the PSD loses its spiky nature. Figure 5-18
shows the PSD of two of the best AddCW sets with a balanced source. Since all the SWs
are equally likely the entire set of available CWs is used and hence the discrete-like
components disappear from the PSD. It is now more “smooth” and similar to the PSD of
a random binary waveform with the addition of the null at dc. Note that the PSD of all

(15,8) codes are practicall‘y identical when the source is balanced, and as a result they all

resemble those presented in Figure 5-18.

(DU Yoot L Hrdom 1 Y Tl e U8 Yew et Tk e b
In@asvars885 - |osusrArcsR
/50 LCODEPWR (15 5) [0, 107,208,223 40C,537 BFB.7FF] Liws# RDB.0x.” 9 ODEPWR (158) 10

AN

2,04 16 18, 20 L
SR ) PR -‘”u‘/‘.‘ i

'Figure 5-18: PSD of (15,8) codes with a balanced source

Continuihg with this analysis Figure 5-19 shows the PSD of the four worst .

" AddCW sets with a source that emits logic 1s with 90% probability. The null at dc
indicates that the coding scheme is working, however since runlengths of up to length 15

are possible, the null is narrower. Furthermore if is clear that the worst AddCW sets have

more power at low frequencies than the best AddCW sets.
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Figure 5-19: 90% ones — All four Worst AddCW sets

Similafly Figure 5-20 shows the PSD of the four worst AddCW sets with a source -
that emits logic 1s with 10% probability. While the best AddCW sets had PSDs with
convex shapes, the worst AddCW sets have almost concave shapes. This indicates that
the highest frequencies are less likely than some of the midband frequencies. On the other
hand the power at low frequencies is still quite small but clearly larger than the PSD of
the cdmparable best AddCW sets. For example Figure 5-21 shows the PSD of one of the
best AdACW sets beside one of the worst AddCW sets when the probability of the source
emitting logic 1s is 90%. '
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Figure 5-21: 90% ones - Best AddCW set followed by a worst AddCW set
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While it is obvious that the best AddCW set has more power at high frequency it
is most evident when they plotted together as shown in Figure 5-22. Here it is clearly
seen that not only does the best AddCW set have most of its power at higher frequencies, -

it also has a wider null width indicating its ability to limit runlengths.

AEIOEGM fnsert “ Tools YWindow ‘Help o0 Lo

Figure 5-22: 90% ones - Best and worst AddCW set

5.7. Spectra of larger codes

Based on the AddCW recommendations of Section 4.15 the PSD of larger codes
based on the (31,26) Hamming code are now investigated. The PSD of these codes
however cannot easily be calculated using the Cariolaro and Tronca technique used so
far, This is because their method involves modeling an encoder as a FSM and analyzing it

as a Markov chain which involves numerous calculations for every possible way into and
out of a state. In the case of the (15,8) codes this meant on average 2° ways into a state,
2% ways out of each state, and sometimes as many as 2° states. Thus the number of

calculations is on the order of 256°. Furthermore the file sizes for the intermediate 6, ,
E, and C, matrices are on the order of IMB . Consequently for the (31,23) codes the

number of calculations is on the order of (2%°)® = 8388608° with file sizes for the

“intermediate 6

u?

E, and C, matrices well past the order of 1GB. Thus calculating‘ exact
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PSDs for larger codes proved tb be impractical with todziy’s' computing power. Thus an-: .
alternative approach used was to simulate the encoding scheme and calculate the PSD v

using FFT techniques.

<" SimFPGA wilh FFT

Stopsimstr [1 " tewnter
Mo MSW Tt

: ';Mo),.' e
‘(| NumStates 147
- NumFleWries 1.

Figure 5-23: Simulation for finding the PSD

Figure 5-23 shows the program SimFPGAwithFFT written to find the PSD
through simulation. This program uses a technique called FFT overlap processing with a -
Héﬁning window to find an accurate spectrum representation. This technique involves
windowing 1024 CWs, taking an FFT, sliding the window by 256 CWs (i.e. overlapping
768 CWs), taking an FFT, and repeating over 64 windows and averaging the results.
Figure 5-24 shows two PSDs foﬁnd through simulation. Comparison with Figure 5-21
shows the accuracy of this technique. The noisiness of the spectra is due to the fact that
the transmission is random and an infinite number of samples would need to be averaged

in order to precisely match the PSD of Figure 5-21.
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Figure 5-24: 90% ones — best AddCW set followed by a worst AddCW set

Using the AddCW recommendations of Section 4.15, Figure 5-25 shows the PSD |
of the (31,23) code, with a source emitting logic 1s with 10% probability, using the
AddSW sets {0000000h, 084D4D4h, 1323232h, 189BIBSh, 2764646h, 2CDCDCDh,
37B2B2Bh, 3FFFFFFh} and {0000000h, O08AAAAAh, 1555555h, 1832323h,
27CDCDCh, ~ 2AAAAAAL, 3755555h, 3FFFFFFh}. It is immediately obvious from
Figufc 5-25 that the first AddCW set appears to have many bands of high power at high
frequency. On the other hand the second AddCW set has a majority of power at high

frequencies. This is indicative of a transmitted sequence that has very short runlengths.

g Rt Yew. yuwert Jook - Wrdow b’
mwnmquA

A

BB hE

ey

B0 B0 100 120 140 160 180 0.0 | 70 20 40 60 80 100:
i R - RS o U A s

e~ ]
EEF'
Bm

L

Figure 5-25: 10% ones - Two (31,23) codes
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This can be further understood by inspecting the statistics of the transmitted
sequence. In addition to the PSD the SimFPGAwithFFT program generates a file
containing the number of states in the encoder, maximum runlengths and AddCW usage.

These files are shown in Figures 5-26 and 5-27 respectively.

: J(3l23)_[0,109[\9[\07,26454540 3137312(,45(8(003 598‘30901,6F656578.7FFFFFFF] WTMI_Statstxt Notepad i
Fplo” Edt Fomat e : ‘ - ST

;Probl Prob0 CWs Sent BLtSZAVgOVGr MR1 MRU MRDS mRDS aMR1l &
i10.12 89.88 32259 1000024.0000 10.0 10.0 11.0 -13.0 3.3980;%
: o
INumstates = 30 (0,0) = 0.14615623 (3,0) = 0.02808432 (-2,0) = 0.03927464

;;‘ae B Fomat e , L A
1 2 3 4 S
' 0.2752733934 0.4073142245 0.2076310169 0.0713222883 0.0191745398 0. 0155

i

1(0,1) = 0.14758215 (-3,1) = 0.02916925 (2,1) = 0.03939664 (6,1) = 0'0013}5
s

b Lo ]

Figure 5-26: Statistics of the (31,23) code with the 1* AddCW set

1 £5(31,23) _IO 1155554C,2AAAAABD,3064646D, 4F989894,5555554F,55Am 7FFFFF?F] WTMI_MS M Not:pad B

[ Ble Edk. - Format | Help . o , ,
|Probl Prob0 CWs Sent B.LtSZAvg0ver MRl MRU MRDS mRDS aMR1l 2
110.12 89.88 32259 1000027.0000 11.0 11.0 ~12.0 -14.0 3.2605 i

(-1,0) = 0.09736516

il 77(31,23)_[0,1155554C,2AAAAABD, 305464sn,4rgn9094,5ssss54F.sEMAAua,vrrrrfrF]_wm1_statstxt Notepad .
B8 Edk - Format Help, : S

|1 2 3 4 5 6
.| 0.6041866870 0.1248226298 '0.1847800109 0.0382269679 ~ 0.0358690315 0.007:%
(0,1) = 0.14476132 (-3,0) = 0.04212647 (4,0) = 0.00505270 (-2,1) = 0.027"

4 L]

Figure 5-27: Statistics of the (31,23) code with the 2 AddCW set

Comparison of these two files shows that the first set only has maximum

run}engths of 10 (MRI =MR0O = 10), while the second set has maximum runlengths of 11

(MR1=MRO=11). On the other hand, the second set has a 60.4% chance of runlengths

of length 1, while the first set only 27.5%. This was clearly evident from the PSD plots.
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Similarly it was noticed that the first set had more power at intermediate
'~ frequencies than at its highest frequencies. This can be seen in the statistics file since the

probability of a run of length 2 is 40.7% and the probability of a run of length 3 is 20.7%.

5.8. PSD Summary |

The multimode coding technique introduced in Chapter 3 is deSigned to guarantee
balanced transmission and remove long runs of like valued bits. An output sequence that
has long runs of Os and 1s will appear as a slowly varying square wave, and an output
sequence with short runs of Os and 1s will appear as a rapidly varying square wave.

Hence these sequences can be analyzed in the frequency domain in terms of their PSD.

Cariolaro and Tronca (24] outline an efficient procedure for calculating the PSD of
a coded system, the details of which were demonstrated in this chapter, with further
examples found in Appendix A. It was shown that in systems where the number of states

or size of the code is too large, it is preferred to simulate the PSD.

The following chapter looks at the FPGA hardware implementation of this

multimode encoder. It also compares measured PSD results to the theoretical and

simulated PSDs calculated in this chapter.
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6. Implementing thé Multimode Encoder and Decoder in Hardware

The previous chapters introduced the combined EC and CS coding concept, as
well as outlined how to evaluafé performance in both the time and frequency domain.
This chapter chronicles how a working transmitter and receiver was implemented on two
FPGA boards and PSD measurements were taken for comparison with results from

Chapter 5. For proof of concept the goals of this communication system were simple:

1. Implement the combined CS coding and EC coding technique;

2. Transmit a file from transmitter to receiver to verify the encoding and

decoding techniques;

3. Measure the PSD of the transmitted sequence to verify it agrees with

calculations.

‘ A block diagram of the communication system is shown in Figure 6-1. It consists
of the two FPGA boards TX FPGA énd RX FPGA, the three wires over}which they
communicate, and the controlling computers TX PC and RX PC. Computer control
allows for a more sophisticated user interface than what is present on the FPGA boards
themselves. Furthermore this setup allows a user to select any file on the local TX PC and
transmit it to the RX PC using the combined EC and CS coding technique. Typically no
distinction will be made between the PC and the FPGA and they will collectively be
referred to as the TX and the RX.

o B0d -
TX PC J TX | data | RX RX PC
» FPGA | aok | FPGA [T

Figure 6-1: Block diagram of the FPGA communication setup
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The TX and RX communicate using three wires: serial data, serial clock and
ground. The serial data line transmits the actual coded sequence and the ground is simply
the common line between the two FPGAs. These two wires together would form what is
commonly known as a twisted pair. A third wire is also included which allows the RX

- clock to synchronize with the TX. This is because a typical RX must synchronize to the
clock rate of the TX in order to determine the duration of a single bit. Conventional
communication systems accomplish this using a phase lock loop (PLL) to derive this
clock from the transitions in the incoming bit stream on the serial data line. In fact the
combined EC and CS code introduced in this thesis is designed to aid PLLs to
accomplish this task. However the added complexity of designing a stable PLL for use
with the RX was considered unnecessary since the analysis reported in Chapters 4 and 5
has proven that the outgoing bit stream of this multimode coding technique contains
numerous transitions. Furthermore this coding technique was designed to be added to an
existing communication system. Therefore as long the calculated PSDs presented in
Chapter 5 match with the measured PSDs of this hardware implementation, the system
would be proven to be valid even without the implementation of a PLL at the receiver. As
a result, to simplify the receiver circuitry a clock signal was connected directly from the

transmitter.

Figure 6-2: FPGA transmitter and receiver communicating

Figure 6-2 shows the laboratory setup of the block diagram of Figure 6-1. Two

PCs and two FPGAs using three connecting wires are shown. The TX and RX each
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‘ consisted of a Digilent Digilab 2E (D2E) development board as shown in Figure 6-3, and
a Digilent Digital I/O board 2 (DIO2) expansion board shown in Figure 6-4. The D2E
boards each featured a 200K-gate Xilinx Spartan 2E FPGA (XC2S200E) in a PQ208
package running at S0MHz with 143 user I/O pins. The DIO2 boards provided input and
output functions with fifteen push buttons, eight toggle switches, sixteen LEDs, an LCD

- screen and four 7-segment displays.

power | o f25VDCE [soMbz} | Push | [stud [ g
Jack reguiaton] | CLK fibuttenfl LED | SPROM :
S-9VDCE LI AVIC " ‘ —
regulaton r
. s =
? = | Serinl |z
ol Port, v £
.'g e ot P ] ’%
EPP or SPP Nilinx Spartan2 e
() pomllelpont | XC25200-PQ208 )
E] [ , .
I J JTAG ;
S| 2] e .\,,.{ Z
£ | 2 I ) " £l
‘ ‘ S . 5
- T T

Tartprog L L
control | Expansion .\ LI Expansion B l_l

swilch | N TR § - "
1 Expansion E H Expansion F

Figure 6-3: Digilent Digilab FPGA board

l Connector A t Connector B
- =]

| é i ° P82
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wegulator § 1 o [VGA
g 4 P”"

DD, l;;' A 1082

A 1LCD
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B ho 01 B3

4Tsp BLEDS Nywinhe 15 boly
dwlu» Kexp!

| Figure 6-4: DIO2 peripheral board for input and output
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6.1. Pmouts

On each FPGA board pin 1 was the common ground (GND) pin 73 was the serial
data (SDATA) and pin 74 was the serial clock (SCLK). The data and clock pins were
easily accessed from the D-connector on the development boards in locations D40 and
D39 as shown in Figure 6-5. These translated into the physical pin locations on the FPGA

as pin 73 and 74 respectively.

ray B H B
2 ‘ Transmitter
| e % R P Name Pin # In/Out
i SDATA 40 out
I SCLK 39 out
l | 5 : GND 1 -
PR G
o] SPATAD 2 I Receiver
i PQ208 7
Q208 g Name Pin # In/0ut
a i SDATA 30 n
Y d el SCLK 39 in
g : GND 1 -
or 1]
Pin3o,  SOLK Pin 3: 33V« Pin 1,GND /l’in »

IIH lf [

7
= [END ll_lL_LJ[]ULII_DE]DI,IU JCICI] lﬂ[_llj ICICIC l_ l»l

8001001 T
Pin 40 =¥

SDATA

Figure 6-5: The pinouts used on the FPGA boards

6.2, SDATA and SCLK signals
. Figure 6-6 shows a typical data and ciock sequence. Itbis clear from the digital
| oScilloscope screenshots that SCLK rises halfway through SDATA. Thus the RX samples ,
SDATA midway through each bit on the rising edge of SCLK. .
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Figure 6-6: SDATA sequence (top) and SCLK sequence (bottom)

6.3. Controlling the FPGAs over the PC parallel port

- The D2E development boards each had a 25-pin parallel port connector that is
used during programming. This port could also be used to communicate with the FPGA
after programming. The parallel port of a PC, when accessed in standard parallel port
(SPP) mode, is typically located at address 378h (BIOS configurable), and is made up of
three individual ports, Of the 25 pins there is an 8-bit bi-directional data port (address
378h), a 5-bit input only status port (address 379h) and a 4-bit output only control port

(address 37Ah). The remaining 8 pins are all grounds as shown in Figure 6-7.

(orlocloclee]oalozlorlo)
@‘jé 00000060/
ooﬁor@ooooo@@@mo .

ETselslsafsa] T 1]

Figure 6-7: Parallel Port connector on the back of a PC

It is also important to note that some of the bits of the SPP are inverted by PC
_ hardware (7404 inverters) for legacy printer reasons. This must be compensated in
software by inverting these bits before writing to the write only control port, and by

inverting these bits when reading from the read only status port.
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PC parallel ports when used in SPP mode run at 125 kHz. This means that new |
~ data can be written to or read from the SPP bus every 8 us. However when writing data -
there is often a 2us settling time in the form of random transitions on the parallel port
data bus. For example, using the Agilent Logic Wave logic analyzer it can be seen that
there are transient values on the data bus when the data is changing from 65h to OOh as

shown in Fi gure 6-8.

Transient Transient

TXB5X 00 XBC X 00 X BT XG0 XBEX_
' X000l ¥__0002

e

0001 X 0002 14
L, e T T ]

Figure 6-8: The ‘transient’ nature of the parallel port when switching values

This presents a small problem when dealing with an FPGA that can sample the

| parallel port inputs at 50 MHz. For instance, if the transient values that occur when the
data is changing from 65h to 00h proceeds through the series 65h, 61h, 21h, 20h, 00h, the -
FPGA would see the above sequence as five separate and valid data values. This issue
must be resolved by implementing a debouncing circuit in VHDL code. That is, before -
reading any change on the parallel port inputs, a timer should begin that will re-sample
the parallel port bits after the 2us settling time has passed. Then a simple comparison
with the original data determines what the new value is, and the transient values are

ignored as shown in the FSM in Figure 6-9.

Change on paralle]
port bits

Isita
valid
change

Service
request

Figure 6-9;: FSM model of the parallel port debounce circuit
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6.4. Transmitter FPGA State Machine
The transmitter FPGA runs a main state machine that consists of four states as
shown in Figure 6-10. On power up it is forced into state 1 which is the reset state that
initializes the encoder. After this the FSM cycles through states 2, 3, and 4 indefinitely. |
- Only by powering the FPGA off and on, or through user input in state 2 will the system

ever enter the reset state again.

Figure 6-10: Main transmitter FPGA FSM

1. Reset State — this state is entered during power on or through specific user
input (such as command Eh in Table 6-1). Once entered all variables and buffers
are cleared and the system is ready to accept further commands such as

transmitting a file.

2. Check for Input — in this state the transmitter checks for input commands from
the parallel port as discussed in Section 6-3. User input is set up as follows. The
4-bit control port of the SPP is used to issue one of sixteen individual commands
to the FPGA, with additional data for each command coming from the 8-bit data

port. These are summarized in Table 6-1.

For example, to write the data value AAh to the FPGAs RAM at address
OE20h, begin by placing the FPGA into a HighZ state by issuing command Fh.
This makes the FPGA back-off the bi-directional data bus so the parallel port can
write data without any bus contention. The next step is to assign the RAM address

to modify by writing the address to the 12-bit FilePointer. Since the data bus is
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only 8-bits this must be done is two steps. First the upper 4-bits of the address is

written to the data bus by writing data value OEh followed by command 2h. Then

the lower 8-bits is written to the data bus by writing data value 20h followed by
command 2h. At this point the FPGA has latched the value E20h into the

FilePointer register. Finally in order to write a new value AAh into this RAM

location, simply write data value AAh, followed by command 1h.

Table 6-1: Commands for both the transmitter and receiver FPGAs

4 bit Control Function Description
Port Command

Latch file pointer RAM address

Oh RAM Read mode Enable RAM read mode
Increment file pointer
Latch file pointer RAM address

1h RAM Write mode Enable RAM write mode
Increment file pointer

. . . Werite to file pointer. This allows for
2h Assign File Pointer non-sequentigl access to RAM
3h Assign File Size File size of the data written to RAM
4h,5h Write AddSWs Assign AddSWs
6h,7h Read AddCWs Read AddCWs

8h Set number of AddCWs Set either 0,2,4 or 8 AddCWs

9h Initialize the Encoder This builds the AddCWs from the AddSWs
Begins transmitting the file continuously.

Ah Running Mode Continuous When it reaches the end of the file, it does
not stop and simply wraps around.

. Begins transmitting the file, and when it
Bh Running Mode Once rea%hes the end of %he file it stops.
Ch Set Serial Transmission Speed | Either 1 kHz, 10 kHz, 100 kHz or IMHz
' If RAM is in ReadMode (0), data is now put

Dh Enable RAM onto the data bus. If RAM is in WriteMode (1)
it will read data from the data bus and store it.

Eh Reset Reset all variables
Similar to reset, except not all variables are reset, and

Fh HighZ data bus that is connected to the parallel port is put
into HighZ state.

3. Service Output — This state involves writing data to the 16 character by 2 line

LCD screen (32 ASCII characters) on the DIO2 expansion board. The LCD was

used for debugging and testing purposes. For instance in order to verify that the

multimode coding system was choosing the correct CW at each coding interval, a

debug mode was set up that allowed stepping through the CW selection process.
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- In this ' mode there needed to be a way to display up to a 32 bit number (8-hex-
characters). The LCD screen was the only viable choice since the DIO2 board

only had four 7-segment displays and thus could only display 4-hex characters.

It is important to note that the LCD screen uses the Samsung KS0066
controller which has enough Display Data RAM (DDRAM) to handle up to a 40
character by 2 line display. Thus each of the 80 DDRAM location corresponds to
a single character location on the screen even though physically the LCD screen
only has 32 character locations as shown in Figure 6-11. This must be taken into
account in order to see the text displayed correctly. Thus it is not immediately
obvious but the simplest way of writing the 10 character string “Hello” and
“World” on two separate lines is to use 45 characters, not 10. This is

accomplished in the following manner.

Displaying the 5 character string “Hello” on the first line is trivial since it
requires placing the LCD screen into data mode followed by sending the five
ASCII characters 48h, 65h, 6Ch, 6Ch, 6Fh for ‘H’, ‘¢’, ‘I’, ‘I’, ‘o’. Writing the 5

character string “World” on the second line however is a bit more involved.

| In order to get to the next line on the LCD screen the cursor must

manually be moved 35 locations to the right since the generic KS0066 controller

~ has 40 DDRAM locations per line. One method to do this is to switch the LCD

screen into control mode followed by sending the “move cursor right” command

35 times. While this is not difficult, switching into control mode can be avoided

by just writing 35 spaces instead (ASCII character 20h). It is then just a matter of

writing the string “World” which is done by sending the 5 ASCII characters 57h,

» ‘6Fh, 72h, 6Ch, 64h, for ‘W’, ‘o’, ‘r’, ‘I’, ‘d’. This is illustrated in Figure 6-11,
~ where the LCD and corresponding DDRAM locations are shown.
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Figure 6-11: LCD screen and corresponding DDRAM locations

| Accordingly the simplest way to display a string on the LCD screen
without any additional overhead is to pad the string out to 80 characters with
| spaces. In this manner each string starts at the first location of the LCD screen and
overwrites every DDRAM location. This has the added benefit of erasing any past
characters that were on the LCD, thus clearing the screen before displaying each

new string without ever having to switch modes.

' Table 6-2: String table held in the first 400h bytes of RAM

Ram Address ~ String
000h Multimodé Coder Online
051h  Source Word

. 0AZh Code Word
O0F3h Hamming Code is
144 Number of AddCWs
195sh =~ RDS

" 1IE6h = Num.Tran
237h Ist Tran at loc./ MSW
288h Winning Location
2Doh - Last Bitis

32Ah  Not Updating RDS or LB for Test
37Bh Updating RDS and LB as normal
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For this reason all strings displayed on the LCD are stored in RAM as 80
bytes plus a O terminator for a total of 81 bytes (51h). That is, the 1 string is
stored from 000h to 050h, the 2™ string is stored from 051h to 0A1h and so on.
Therefore the first 1024 bytes (400h) of RAM are used to hold a string table that

consists of 12 strings as shown in Table 6-2.

In accordance with the above discussion the following FSM in Figure 6-12
illustrates how to display information on the LCD screen. One of the 12 strings to

display must be chosen, followed by an optional number.

Display
Number _,

Display String
signal received

Get string address
Read Data from RAM 1 Data = upper 4 bits

I-—b Increment address : of Number
. ; / Increment N

Convert Data
to ASCO

Shift number ;
left 4 bits ,

No
Send to LCD ]

Figure 6-12: FSM for displaying strings and numbers on the LCD screen

Sendto LCD

4. Running Mode — When the TX is in this state it is transmitting data séria]ly to the
RX. This process involves reading SWs from RAM, encoding them as CWs,
performing the multimode CW addition, calculating statistics for each candidate CW
‘to see which one maximizes the CS coding requirements, and finally transmitting. |

these CWs serially. There are two modes of operation.
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I. Run Once Mode — This mode is used for sending a data file once from the TX
to the RX. The file is stored in the FPGA’s RAM, and the TX sends each CW
on the channel until the end of file is reached. Once the end of file is reached the
TX automatically appends a 00h data byte to indicate the end of the file. Note -
that depending on the code and AddCWs used, this 00h byte is transmitted flilly
EC and CS coded. |

~II. Run Continuously Mode — This mode is used when measuring the PSD so the

spectrum analyzer has a continuous signal to measure. In this mode the file is

transmitted repeatedly which means when the end of file is reached, the

transmitter wraps around to the beginning of the file.

Showing a complete block diagram of the Running mode FSM is not

practical due to its size and complexity. Instead Figure 6-13 shows a high-level

block diagram with a text description of the functionality of each state.

Read RAM and
SW Packing

Hamming Codeword
Encoder [ Addition

Send
Serially

Select Best
Update channel Stats

| Collect
Stats CW7

Figure 6-13: High-level block diagram of the running mode state FSM

Each block in Figure 6-13 represents a sequential FSM. As the FPGA was
programmed with VHDL, each block also represents a V‘HDL‘module. The

- following section briefly describes the functionality of each one of these modules

as well as the corresponding test benches to verify their functionality.
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Read RAM and SW Packing: Since a data file is organized as a series of 8-bit
bytes, the first major task is to take the file data and convert it into SWs of sizes
as small as 1-bit and as large as 26-bits depending on the code being used. This is
not straightforward since, for example, with the (15,11) code 11-bits are needed to
form a single SW. This would require reading two bytes from RAM to get 16-bits,
to then form an 11-bit SW with 5 bits left over. Building the next SW however
only requires reading from RAM once (unlike twice the last time) to get an
additional 8-bits for a total of 13-bits. The next 11-bit SW can now be created
leaving 2-bits this time and so on. Thus the number of bits left over and the
number of RAM reads varies for each coding interval depending on the code

being used.

= .
213 4 15 W6 X1 2 I3 p4 )5 iz
1 10 19
g 10 7
8 1
400 401
[ |
184
63 Y i}
1 Fllllllllllll B { 1000000C7

Figure 6-14: Testbench for SW packing

Figure 6-14 shows the testbench for this module called SW Packing. This
particular test shows a (15,9) SW being formed. From initialization the number of
bits needed to form the SW (oneed) is set to 9. The first byte of the file is read
(theram_dout) from RAM address 400h (otheram_addr). Its value is 63h and it
is latched (oram_readlatched). The 8-bits are then loaded into osw and it can be
seen that one more bit is needed (oneed) to form the 9-bit SW. Thus another byte
is read (theram_dout) from address 401h (otheram_addr) and its value 8Ah is
latched (oram_readlatched). Here only the MSb is taken from

oram_readlatched and it is shifted left by one bit leaving 14h. Now the complete
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9-bit SW is formed (osw) which is 0C7h or 011000111b. Thus 7-bits remain
(oneed) in oram_readlatched for building the next SW. To clarify how the two

bytes 63h and 8Ah form the 9-bit SW C7h, the process is shown in Figure 6-15.

63 BA
(01100011 1j0001010
oki |

Figure 6-15: 63h and 8Ah form the 9-bit SW C7h or 011000111b

Hamming Encoder: As discussed in Section 2-14, the EC Hamming code can be -~ |

implemented using very low level logic blocks. It is a configurable stand-alone
module that allows selecting the generator polynomial as well as the length of the
code. In addition, encoding can be done in parallel on the FPGA so a SW to CW

conversion takes only a single clock cycle.

ey WO s SN s I VO sy N s IRy OO
nnnnnnm 00000002 IIIIIIIMI;IIIP 0000Q7EF :
25000000 | 100000013 100000026 1000000F2 100007FFF

Figure 6-16: Testbench for the Hamming encoder

Figﬁre 6-16 shows the testbench for the Hamming encoder module using a
(15,11) code. Encoding of the SWs 001h, 002h, 00Fh, and 7FFh each take a
single clock and are encoded to 0013h, 0026h, 00F2h and 7FFFh respectively.
Note that all SWs and CWs are represented using 32 bits and are truncated before

serial transmission according to the n and & values of the (n,k) code.

, Codeword Addition: CW addition is the simplest block/module of Figure 6-13.

As discussed in Section 2.5, modulo-2 addition can be done using XOR gates. It

too can be done in parallel on the FPGA. Figure 6-17 shows the testbench for the . -
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(15,9) encoder. The CW 0C70h (ocw) is added modulo-2 to the four AddCWs
OOOOh, 024EBh, 5B14h and 7FFFh, to form the new CWs (ohewch to
‘onewcw3) 0C70h, 289Bh, 5764h, and 738Fh. Note that the flexible algorithm
used always adds each CW to eight AddCWs for simplicity. Thus the testbench in .
Figure 6-17 displays eight new CWs, But only the first four are valid. The last

four (onewcw4 to onewcw7) new CWs would not be considered for transmission.

poanaiagay g
56 1 )2 )3 {4 16 16 J7 J8 }9 A1 )2 I3

1000000C8 1000000C7 l(UUUQUUUU

100

0000
0000283
00

00005764
{O000735F
00000

l@@ﬁ:
{00000C70

Figure 6-17: Testbench for CW addition

Collect Statistics: As discussed in Section 4—1; the mu]timodé coder evaluates the
CW statistics and selects the best CW that minimizes the RDS and/or the MSW as
well as maximizes the transitions. These statistics are gathered using the module
called StatsGen. This module is instantiated once for every possible AddCW and

*thus the statistics for all 8 AddCWs can be calculated in parallel.

1 [T ] | | | | 1 J 1 | |
1 (1
: 00007AQF |
| &4 .8 &4 13
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16 ¢ (]
15 114
1412 1675 1412 184

Figure 6-18: Testbench for the StatsGen module
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Figure 6-18 shQWs the testbench for the StatsGen module. As discussed in
Sections 4-2 and 4-3 the encoder keeps track of the current RDS (irds) and
current last bit (ilastbit) of the previous CW transmitted on the channel (these |
comprise the state of the encoder). This continuous feedback is updated with
every CW sent. To verify this functionality the testbench of Figure 6-18 collects
the statistics on the same input CW (icw) 022Ch for the (15,9) code three times, :
but with different irds and ilastbit equaling (0,0), (-1,0) and (0,1). As a result
when the first CW 022Ch is sent, the calculated RDS is -7 and the number of
transitions is 6. However when the CW is sent a second time the current RDS is at
-1, resulting in a calculated RDS that is one less than before at -8. This however
has no effect on the number of transitions but does result in a higher MSW. The

B third and final time CW 022Ch is sent the RDS is back at 0 resulting in an RDS of
-7 again. However since the current last bit was changed to a 1 this results in an
extra transition for a total of 7. This extra transition occurs between the last bit
and the start of the CW. Finally the testbench also transmits CW 7AQ0Fh with an
irds and ilastbit of (0,1). This CW is more balanced than 022Ch resulting in an
RDS of 3. However this CW has fewer transitions with only 4. The results from

the testbench in Figure 6-18 are summarized in Table 6-3.

This StatsGen module is the most important block of Figure 6-13. This is
because the information gathered in this module is used to decide which new CW
will represent the original SW, i.e. the multimode coding. This information is

passed to the next block Select Best, which decides which of the new CWs will |

be transmitted.

Table 6-3: Summary of the StatsGen module gathering statistics

CcwW Current RDS Current LB RDS Tran MSW 1lstTran

022C 0 0 -7 6 412 5

022¢Cc -1 » 0 -8 6 575 5

. 022C 0 1 =7 7 412 5

7AQF 1 3 4 84 4
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Select Best and Updaté ‘Channel Statistics: Once the statistics have been
collected a decision must be made to determine which CW will be sent on the
channel. In the (15,x) and (7,x) encoders the decision was based on which of the
new CWs had the lowest RDS, followed by the tie breaking criteria which
included most transitions, lowest MSW, and the CW with the first transition. Note
that the CW with the first transition test was only used to provide a final tie break
in order to always be able to predict which CW the encoder would select in the
unlikely event that two or more CWs had the identical RDS, MSW, and number
- of transitions. Simulations demonstrated that this selection metric was used less

than 1% of the time with any AddCW set.

Also note that for the (31,x) codes only the lowest RDS, most transitions
and first transition metrics were used. This was due to the size and resource
limitations of the FPGA. Missing the MSW test has very little impact on the code
performance, since the RDS and transitions test were the most important, and the

MSW test was only used to break ties.
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Figure 6-19: Testbench for the SelectBest module
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Continuing with the example from Figure 6-17 the testbench for the
SelectBest module is shown in Figure 6-19. Here the statistics are compared for
the four CWs 0C70h, 289Bh, 5764h, and 738Fh. This is done sequentially. The
algorithm initially chooses CWO0 to be the best, and then the module compares
each new CW'’s statistics to the current best statistics and only updates the winner
if the statistics are better. For example from Figure 6-19 it can be seen that the
winning location (owloc) is temporarily changed from 0 to 1, before location 2 is

selected as the best.

This process is summarized in Table 6-4 where it can be seen that CW1
(289Bh) is better than CWO0 (0C70h) since it has a lower absolute RDS of —1 as
compared to —5. CW1 (289Bh) is then the current best until comparison with
CW?2 (5764h) indicates that they are tied in terms of lowest absolute RDS. Since
both of these CWs will minimize the RDS, preference should be given to the CW
that has the most transitions. Thus CW2 (5764h) with 10 transitions is chosen to
be the best CW to transmit since it has one more transition than CW1 (289Bh).
Comparison with CW3 (738Fh) indicates that CcCW2 (5764h) is still the better

choice and thus it is the overall winner and is selected for transmission.

Table 6-4: Summary of the SelectBest module

CW location CW RDS Tran MSW 1stTran

0 0C70h . -5 4 116 3
1 289Bh -1 9 72 1
2 5764h 1 10 72 1
3 738Fh 5 3 116 3

Send Serially: Once the best CW is selected it must be transmitted serially along
with a serial clock to the RX FPGA. Figure 6-20 shows the testbench for the
Parallel2Serial module. Here the best CW 5764h chosen from the testbench above
in Figure 6-19 is being transmitted serially. Once the go pulse is received the data

is sent starting with the MSb first on the sdata line. The sclk signal is also sent
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~with a low to high transition occurring midway between each data bit. Once the
entire 15-bits are transmitted the Parallel2Serial module signals that it is ready to
transmit another CW. Thié hand shaking is used to prevent the FPGA that is
running at SOMHz from swamping the Parallel2Serial module that transmits at a

maximum rate of IMHz.

" Figure 6-20: Testbench for the Parallel2Serial module

6.5. PC Software: Controlling the TX FPGA

The TX FPGA was controlled using Windows software with the interface shown
in Figure 6-21. As shown in Table 6-1 all sixteen commands were issued using the
control port, with additional instructions coming from the data port. In order to explain
the operation and features of the software, an example is given illustrating how to

transmit a file.

Control {15,x) and (7,x) encoders

I o S SwdEncod i | :
A =
211 - Paalel 2 SwiadSpoed—1 :
kil [1oKHz ]

5 swinsbtran | |
I » SRAM Sige iy
: L snaaasv | N e

nudwtw} SuRMSie | | T

Figure 6-21: Software that controls the TX FPGA
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- 6.6. Transmitting a File

‘ This section briefly describes how to transmit a standard ASCII text file that
confains the 11 byte string “Hello World”. The first step after powering on the board is to
ensure that the FPGA is in a known state by pressing Reset FPGA Board. This forces |
the FPGA into the reset state and initiates the main FSM of Figure 6-10. Since the FPGA
has just powered up the string table from Table 6-2 must be loaded into the first 400h
bytes of RAM. This is accomplished using the Send Strings button and pressing the
Check Strings button reads back the string table from RAM to verify that they were
stored without error, Now the number of AddCWs can be set up as 0, 2, 4 or 8 using the
drop down box as shown in Figure 6-22. For example with length 31 Hamming CWs, this
would set up a (31,26), (31,25), (31,24), or (31,23) code respectively. '

Figure 6-22: Setting up the number of AddCWs

Once the number of AddCWs has been selected, pressing the Send number of -
AddCW’s button writes this value to the FPGA. The resultant code is immediately
displayed on the DIO2 boards 7-segment display. For example, eight AddCWs has been

selected resulting in the (31,23) code as shown in Figure 6-23.

Figure 6-23: Eight AddCWs have been selected for use with the (31,x) code
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‘ Once the encoder knows the number of AddCWs to use it must be to‘]d what these
AddCWs are. This is done by sending the encoder AddSWs which it then encodes into
AddCWs. Pressing the Read AddSW’s from File button allows selection of an ASCII
text file that contains the desired AddSWs as shown in Figure 6-24. Note that only the |
first four AddSWs are stored in this file. This is because the system is set up to
automatically use the CW complements. Hence these four AddSWs are encoded to four

AddCWs and four AddCW complements, resulting in a total of eight AddCWs.

sourceWords_(31,23)c.txt ;[ [=] B3
*Eje Edt ' Format Help.

Figure 6-24: Reading the AddSWs from file to use with the (31,23) code

The Send AddSW’s button writes these AddSWs into the FPGA memory. The
Initialize Encoder button causes the encoder to encode the four AddSWs to eight
AddCWs using the Hamming encoder module as explained above. The encoder then

automaticaily writes these AddCWs back to the PC to allow for verification that they

were encoded correctly, as shown in Figure 6-25.

AdABW RAAOW | oo
00000000 | 60000000 | ~~/g\ = TheA
D0BAAAAA | 1155554¢C| ==t

01555555 | 2AAAAABD
01832323 | 30646468
027cDeDC | 4F9B9BI94
D2AAAAAA | 5555554 F
03755555 | 6EAAAABS | . o T
O3FFFFEF | 7EEFFFFF|

Figure 6-25: Encoder writes back the 8§ AddCWs it is going to use
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The file to transmit is selected by pressing the Choose a file to Send button
which brings up a;file selection dialog box. Once a file is selected it is transferred to the
FPGA’s RAM by pressing either the Send the file to FPGA button or the Send Encoder
File button as shown in Figure 6-26. The difference between these two functions is that -
the Send the file to FPGA button writes the file contents into the string _tébles address
space. This is done to allow the loading of different strings into the striﬁg table (other
than the default hard coded ones) if required. The Send Encoder File button writes the

file contents directly above the string tables’ address space.

. Flelo Send: "HelWoldbt': 1 byes

] roncinet tat ajvata

0 ot ) i}

) Sheed batwes. st

J) Hebowarkch tt #) ThaOay.tA : B
¥] mportert thegs netst 1 tv.tat L .
¥ o et

 SendibatatoFPEAT, - |

" BesdbackliomPaA | T
: I-Whaiwatmédbwl( — S
T

Figure 6-26: Two ways to transmit the file into FPGA RAM

There are two ways to verify that the file was loaded correctly. First by pressing
the Read Encoder File saves to "FileReadBack.txt", the file is read back from the
FPGA and a byte by byte comparison is done with the original file that was sent. Any
errors that occurred are displayed in a popup box and the file read back is saved to the file

FileReadBack.txt. This allows for saving and inspection of the data at a later time.

Secondly by pressing the Read back from FPGA button the file is read back and
displayed in the two windows as shown in Figure 6-27. The top window displays the
ASCII representation of the data, while the bottom window shows the decimal
representation. Figure 6-27 shows the file “Hello World” was read back and what 2’

possible error might look like.
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| Numbptest

' Bead back from FPGA-
' What was read back =
. [He@p Woild

| [F2701 108403111 3287 111 114 108100 Al

Figure 6-27: Reading back the file Hello World, and what a possible error might look like

Once the file is loaded into the FPGA’s RAM and the AddCWs are selected, the
next step is to select the serial transmission speed. This is done by selecting the Parallel
2 Serial Speed as either 1kHz, 10kHz, 100kHz or 1IMHz as shown in Figure 6-28. These
various speeds were useful for testing and trouble shooting. For example, the logic
analyzer could capture far more samples at 1kHz than it could at IMHz. However, the
spectrum analyzer could not measure frequencies below 9kHz, and thus having the ability

to select different speeds proved quite useful,

’ Figure 6-28: Choosing the serial transmission speed

Another debugging feature implemented was the ability to change the amount of
RAM the encoder could use, specified as RAM Size. This is because when transmitting a
file repeatedly, the end of the file is inevitable reached and the file data is deliberately

wrapped around back to the start. In order to verify that the rollover occurred correctly, it
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was easier and faster to simply reduce the size of RAM (as far as the FPGA was o

concerned) to force a roll over sooner than it was to load in a smaller version of the file.

" Figure 6-29: Setting the amount of RAM that the FPGA could use

The final sfep is to select which meihod to use when transmitting the file. If
Running Mode (Once) is selected then the file is transmitted until the file in RAM is
exhausted. That is, this mode is used to transmit a single file once from the TX to the RX.
The other method of transmitting a file is to choose Running Mode (Repeat). In this
mode the transmission runs continuously, sending the file over and over again until the
transmitter is stopped by pressing either Initialize Encoder or Reset FPGA Board. This
mode is used when measuring PSDs since the digital oscilloscope and spectrum analyzer

are designed to monitor continuous signals.

6.7. Debug mode of the FPGA

Once the system was designed and implemented it had to be verified that the
encoder was indeed selecting the best CW for transmission. When switch 0‘ (SWO0) is set -
on the DIO2 board, the encoder is put into a debug mode Where with alternate use of

buttons 8 and 9, each phase of the CW selection process can be stepped through.

As discussed in Section 4-4, a simulation called SimFPGA was developed to
emulate the way the FPGA hardware would perform the encoding. Table 6-5 shows a
sméllv sample of the output file created with this program. In this example the (31,26)
code is expurgated to (31,23) using 8 AddCWs created from the set of four AddSWs
which are { Oh, 0800000h, 1000000h, 1800000h}. Since this is a large code the FPGA
needs to read from RAM three times in order to obtain enough data to form the 23-bit |

SW. In this case the three bytes read are 2Ah (00101010b), 22h (00100010b) and 56h
150 |
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(01010110Db). These three bytés (24-bits) form the - 23-bit SW  015112Bh
(0010101000100010010101lb) with 1-bit left over. Table 6-5 shows the 31-bit CW
added to all eight AddCWs along with the RDS, number of transitions, MSW and first

transition location statistics.

Table 6-5: Output from SimFPGA

**%x+++* RamRead = 2A  FilePointer = 0 of 49 **¥¥%*

**¥ %%+ RamRead 22 FilePointer = .1 of 49 #**x**x*x

**** %+ RamRead 56 FilePointer = 2 Of 49 *w****»

sw = 0015112Bh RDS TRAN MSW 1stTran
02A22562h -11.0 18.0 1768.0 6.0
12A2256Ch -7.0 . 20.0 880.0 3.0
22A2257Eh -3.0 18.0 . 744.0 2.0
32A22570h -7.0  18.0  448.0 2.0
4D5DDASFh +7.0  19.0°  448.0 2.0
'5DSDDA81h +3.0  19.0  744.0 2.0%***
6D5DDA93h +7.0 21.0 880.0 3.0
7DSDDASDh +11.0 19.0  1768.0 6.0

Figure 6-30 shows the encoder in debug mode displaying this process on the LCD
screen. Note that all values are given in hexadecimal including negative numbers. For
- example an RDS of -11 is really F5h (using two’s complement representation) and 18

transitions would be displayed as 12h.

Figure 6-30: Encoder in debug mode showing the CW selection process
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From Table 6-5 it can also be seen that the 6™ CW or CWS5 is the winner with an
RDS of +3, 19 transitions and an MSW of 744. Figure 6-31 demonstrates that after
stepping through all possible CWs and their statistics, the FPGA selects the Winning
Location to be CWS5.

Figure 6-31: Winning location is CW5 or SDSDDA81h

6.8.\Receiver State Machine

The RX FPGA runs the same main state machine as the TX which consists of four
states as shown in Figure 6-10 or Figufe 6-32. On power up it is forced into state 1 which
is the reset state that initializes the decoder. After this the FSM cycles through states 2, 3,
and 4 indefinitely. Only by powering the FPGA off and on, or through user input in state

2 will the system enter the reset state again.
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4
Running \_
-Made £

Figure 6-32: Main receiver FPGA FSM

1. Reset State — Identical to the TX reset state
2. Check for Input - Identical to the TX check for input state.
3. Service Qutput - Identical to the TX service output state.

4. Running Mode - This is the main mode of the communication system. It is
similar to the equivalent TX state in that many of the same operations are present.
The major difference however is that most functions are now in reverse. When the
RX is in this state it is receiving data serially from the TX and processing it to
recover the original data. This involves combining the serial data into CWs,
performing error correction, extracting the MSbs to apply the CW addition again

- to remove the CS coding and finally storing these SWs into RAM.

Serial to Hamming Check MSb’s | SW
Parallel | Decoder CW Addition unpacking

Figure 6-33: High-level block diagram of the running mode state FSM

ShoWing a complete block diagram of the Running mode FSM is not
practical due to its size and complexity. Instead Figure 6-33 shows a high-level
block diagram with a text description of the functionality of each state. Each

block represents either a VHDL module and/or a sequential FSM.
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Serial to Parallel Conversion: Once in running mode the RX cOntimiously '
monitors for changes on the serial clock line. The serial data (sdata) is sampled
when a rising edge (low to high transition) occurs on the serial clock (selk).
Whenever the RX has sampled #n bits it packs them into an n-bit CW which is

passed to the Hamming Decoder for error correction and conversion to a SW.

Figure 6-34 shows the testbench for the Serial2Paralle] module. The CW
5DSDDAS81h has been received serially and stored into data. At this point the
Serial2Parallel module signals that a CW is ready. |

pipEpupigint
D 5 D A 8 1
1 Lo T{ofT1ofT]T 1]ofl1]x T Lof3j2 LofilofT olo b o 111
T
GDEDDAG]

Figure 6-34: Testbench for the Serial2Parallel module

Hamming Decoder: Once a CW has been received it is sent to the Meggitt
Decoder (see Figure 2-6) which attempts to correct any errors in the CW, Recéll
from Section 2-12 that Hamming codes can correct single bit errors per CW., Thus
if the number of errors exceeds the power of the error correction code there will
possibly be error extension. Therefore Figure 6-35 shows the CW 5D5DDAS81h
from above being decoded in three different scenarios. The first time the CW does
not contain any errors and it is correctly decoded to SW 2EAEED4h. The second
time however the CW is forced to contain two bit errors. This results in CW
~ 5D5DDAS87h being decoded to SW 2EAEFD4h. Note that this SW still contains
one error. In the last case the CW only has a single bit error resulting in CW

- 5DSDDAB80N being decoded to the correct SW 2EAEED4h.
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| | | | J l i | LI

JEDEDDAB? 5D5DDAB]

(02EAEED4 102EAEFD4 J02EAEED4

Figure 6-35: Testbench for the Meggitt Decoder module

CW Addition: As described in Section 3-2 when a CW has been received and
corrected the original CW can be recovered by adding the same AddCW that was
added at the TX. This is done by checking the MSbs of the CW as shown in
Figure 3-20. However an alternative and equally valid approach takes advantage
of the fact that CWs used‘in this system are systematic (see Section 2.4). Since the
Meggitt Decoder module returns the error corrected SW (ohamd_sw), the CW
addition module can recover the original SW by adding the correct AddSW. The

testbench in Figure 6-36 demonstrates this.

Continuing with the example presented in Table 6-5 the original SW
015112Bh was transmitted as CW 5SD5DDASI1h. This. was error corrected and
decoded by the Meggitt Decoder module to thé SW (ohamd_sw) 2EAEED4h. In
order to recover the original SW the three MSbs of this 23-bit SW are inspected to
determine that the winning location (owloc) must have been 5. Therefore adding
AddSW5 (oaddsw5) which is 2FFFFFFh to this SW recovers the original SW
(ointsw) 015112Bh. o

J00i51128

4 15 16 8
bOOO0HOH00000000
POQLOOONX1008U000Y
bOOOOO0NK101000000
bOOOOOON4101800000
PO RNQ27FFREE

FF

FF

£F

Figure 6-36: Testbench for the CW addition module
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-SW Unpacking: The final step in this pfocess is to recover the original 8-bit data
values (bytes) from the k—bit SWs and sfore them into RAM. However, similar to |
the SW Packing module, this is complicated by the variable k-bit SW size. For
instance if k is a small number as in the case of the (7,1) code, it will take eight
SWs to fill a single byte. However if k is a large number, as in the case of the

(31,25) code, a single SW will fill three bytes in a row with one bit left over.

Figure 6-37 shows the testbench for the SW Unpacking module. Here SW
015112Bh from Figure 6-36 is unpacked and stored into RAM. The 23-bit SW is
8-bits + 8-bits + 7-bits. Thus 2Ah is stored at address 400h, and 22h is stored at
address 401h. Referring back to Table 6-5 shows that these are the correct values. |

The remaining 7-bits will not be written to RAM until the next SW arrives.

00151128 15112800 [ 111280000 95800000
1400 1400 1402
124 22 128

5 X6 17 8 15 6 7 18 15 6 |7 8 o 16 17

18 10 )8 0 18 A
23 118 bl 0
17

Figure 6-37: Testbench for the SW Unpacking module

6.9. PC Software: Controlling the RX FPGA

 As shown in Figure 6-38, the RX software has many of the same fun(ﬁtions as the
TX software. This is because the RX FPGA needs to set up the same Hammihg code, use
the same AddCWs and so on. The difference however is that the RX can receive the bit
sequence at any of the predetermined transmission rates without having to specifically
select one. Furthermore the RX was constantly in a state of monitoring the clock and data
lines for activity. In order to explain the operation and features of the software an

example follows which outlines how to receive a file.
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i - PC_FPGA Receiver all codes - A. Hughes -

"7 Chooss afletoSend

Sendthe ot FPGA" l  Numbpesto -

10 ‘ 'l . Sond number of AddCWs |

Figure 6-38: Software that controllers the RX FPGA

6.10. Receiving a File

This section briefly describes how to receive a standard ASCII text file such as
the eleven byte “Hello World” file discussed in Section 6.6. Initializing the RX FPGA is
almost identical to the TX FPGA. The first step after powering on the board is to ensure
the FPGA is in a known state by pressing Reset FPGA Board. This forces the FPGA
into the reset state shown in Figure 6-32, and therefore begins the main FSM. After this |
the string table from Table 6-2 is loaded, the number of AddCWs is set up and the
AddSWs are loaded into the FPGA memory in the exact same manner as the TX FPGA.

At this point however the setup changes.

To receive a file what is typically done is to first set up the RX RAM with a
preloaded dummy file. Then any data received by from the TX will overwrite this data‘to
verify that communication was successful. For example, Figure 6-39 shows the dummy
file “numbers.txt” loaded into the RX FPGA’s RAM. This is displayed when the Read
back from FPGA button is pressed. The top window displays the ASCII representation

and the bottom window displays the decimal representation, i.e.'l'= 49 decimal,

2' = 50 decimal and so on.
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wallbm

j rmmn122225222223333933333“«44404

9494949494349 4949 4
505050 51 51 51 51 51 51 5
525262525252

950
i

Figure 6-39: Dummy file read back from the RX FPGA RAM

Pressing the Running Mode button places the RX into a mode where any data
received on the sdata line is automatically stored into the RX RAM. Thus when the TX
| tfahsmits the “Hello World” file in the Run Once Mode, the 11-byte file plus 00h byte
terminator is sent to the RX. Pressing the Read back from FPGA button now shows the

current RAM contents.

|

1108106111 3é97111 11410810005050
5050 50 51 51 51 61 51 61 61 51 51 51 52
52 525252525252

g
IO =
NO O

8

. Figure 6-40: RAM contents read back from the RX FPGA -

- Figure 6-40' shows how the received 11-byte file has overwritten the RAM
contents. thice that the top window only shows the string “Hello World”, while the
‘b(‘)tt.om window still displays the 40 byte RAM contents. ’This is because in the Run
Once Mode the'TX automatically appends a 00h byte to indicate the end of the
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transmission. In the lower window it can be seen that the 12" byte isa 0 terminator. In
the top window the ASCII representation stops displaying data at this point since strings
in C++ are 0 terminated. However, since it was requested that 40 bytes were to be read

back from RAM, the lower window still shows all 40 bytes in decimal form.

| 6.11. Verify that the system could correct single bit errors

In this 3-wire system the channel length was less than 10 cm and the maximum
traﬁsmission rate was IMHz in base band. Hence the channel was practiéal]y ideal
(noiseless). Therefore, in order to test the error correcting abilities of the combined code,
errors were intentionally introduced into the transmitted bit stream. Using SW(6) or

SW(7) a 1-bit or 2-bit error per CW could be introduced on every CW sent on the

channel as shown in Figure 6-41.

Stepping- -~ Introduce 1 bit Introduce 2 bit
Mode crror per CW' crrors per CW

Figure 6-41; How the switches on the DIO2 board controlled the TX FPGA . -

_ | v "To verify that bit errors were being introduced the RX was configured to store all

| ‘ received CWs into a file called FileReadBack.dat, to compare with the file transmitted.
Figure 6-42 shows the same sixteen CWs transmitted using the (7,2) code with and
with:out SW(6) on. The top line shows the CWs all have a single bit error in the LSb
position while the bottom line shows the CWs without errors. Note that as a result of the
error correcting ability, single bit errors have no effect on the accuracy of the SWs and

they will still be decoded correctly.
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000000 45 3A 69 45 27 58 58 53 2C 27 3A 45 16' 69 27 58 E:iE'XXS, ':E.i'X
© 000000 44 3B 68 44 26 59 59 52 2D 26 3B 44 17 68 26 59 D;hD&YYR~&:D.h&Y

Figure 6-42: Top line is CWs with single bit errors, bottom line is error free CWs

6.12. The éffect of more than single bit errors

When SW(7) is set the TX introduces 2-bit errors per CW into the transmitted bit
stream. This number of errors exceeds the error correcting ability of the EC code, and
thus the SWs will no longer be decoded correctly. This effect can be demonstrated best
by observing the result of transmitting the “Hello World” file again with SW(7) on. The
resulting decoded data is displayed in Figure 6-43.

It is obvious from Figure 6-43 that the text in the ASCII window is completely
unrecognizable when compared to Figure 6-40. This is because the excess bit errors
resulted in the wrong SWs being decoded and as a result the decoded ASCII text is
garbled. Another interesting result is that the original dummy file “numbers.txt” appears.
in both the ASCII and decimal windows in its entirety. This is because the terminating
00h byte which followed the “Hello World” text was also corrupted (the 12™ byte is
decoded as a 1 as shown in the lower window in Figure 6-43). Thus without the O to

terminate the string the entire requested 40 bytes is displayed.

. e file to FPGA . Numbytesto
 Gend the file to FPGA ; teadback
‘BeadbackfomFPGA || [i@

~What was tead back ~—— S :
|dmmnlvnsmmli2222222233333333334444444444 |
731001091081103311811011510310915050 |
5060 50 50 50 50 51 51 51 61 51 51 51 51 51 51 62
52 52 52 62 52 52 52 52 62 _J

Figure 6-43: “Hello World” file received with 2-bit errors per CW
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6.13. Equipment used to measure the PSD

The two devices used to measure the spectral characteristics of the transmitted
sequences were the Agilent 54621A Digital Oscilloscope (DO) and the Agilent E4402B
9kHz - 3GHz Spectrum Analyzer (SA) as shown in Figure 6-44.

Figure 6-44: Digital oscilloscope and spectrum analyzer used

6.14. Testing discrete spectra ~ 50% duty cycle square wave

In order to have confidence in the measured spectra some initial tests were

«  performed. The first step was to observe the spectrum of a unipolar 3Vpp, 100kHz, 50%
duty cycle square wave on the SA and DO, then compare this spectrum to calculations.

The actual lab signal measured was -31mV to 2.875V or approximately 2.9Vpp. The
measured average voltage was 1.438V and the measured RMS voltage was 2.046V, as

shown in the DO screenshots in Figure 6-45.

5$:E‘~Agllcn|I&chnqloalsn‘ .

o “::;":‘ Anil'lm.n Technologies

[

[EEN———
.

-y

g 221t fa3sveamas] Ty

ENZR

Figure 6-45: 50% duty cycle unipolar square wave
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Caleulating the ideal average and RMS value is shown in Equations 6.1 and 6.2.

- To/2 T o
Avg—— [f@a  Avg== [ ) 2.875ds + [ -o. 3ldt:|—142V 6D
0 ,

T, To Tyl2

. ‘ : [ \ T | ) o ‘
RMS = ‘._ ,-—;T! (t) | RMS =\/Fo[ 6[(2.875) dt+ToJ2(—O.31) dt] 52.03V 6.2)

Table 6-6: Calculated AVG and RMS versus measured

Ideal Measured
AVG 142V 143V

RMS 2.03V 2.04V

Table 6-6 shews how the actual square wave produced by the FPGA agrees with

calculations in terms of average and RMS voltages.

6 15. Fourier Series Representation

Converting periodic signals from the time domain to the frequency domain can be

- done with a Trigonometric Fourier Series. The most general form is’

f@)= ao+z a, cos(nwt) +b, sm(nwt)) where w=2—” (6.3)
n=1 o 0 ;
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a==- [ ey
0

a,= Ti [* f@cosmanyds  n=1,23. | (64)
3 | | ‘
b, =—T20— [ r@sinuaonyar on=123.
Using the relation
a, cos(ﬁwt) +b, sin(nat) = C, cos(nwt + 6n) | | 6.5)

- where

G, =ya,’+b, : |
, =tan"'(_b"] N )

a,

this can also be written as a Compact Fourier Series which has the form:
f)=Cy+ . C, cos(nwt +6n) \ (67
n=l : ‘

| * This form gives a one-sided spectrum identical to what is displayed on a DO and
‘SA. In addition it is very easy to evaluate a magnitude and phase spectrum that together
completely describe the waveform, Calculating the Compact Fourier Series of the 50%

duty cycle square waveform yields:

Tol2 )

a = j 2.875dt + j -031dr=142 e - (6.8)
‘ 0 ‘ /2 ‘ ‘ ‘
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. o
[ —O.31_-éos(na)t)dt}=0 forn=12,. (6.9)

Ty/2

a=

"IIM

I
( f 87500s(na)t) dt +
0

Tol2 Ty

b, = 2, ( IZ 875sin (nat ) dt + I—O 31sm(na)t)dtJ
Ty X ) . : (6.10)

0098 (cos(2n7) —93.741(cos(nz) —0.989)) |

n

b =

n

forn=1,2,...

Using these values the C, coefficients of the Compact Trigonometric Fourier

¢ series can be calculated. The result is shown in Table 6-7.

Table 6-7: First nine C, terms from Compact Fourier Series (linear scale)

Harmonic Frequency (kHz) Calculated
1 - Fundamental 100 1.85
2 260 1.39E-15
3 300 0.616
7 400 45.26E-15
5 500 0.370
5 600 30.17E-15
7 700 0.264
8 500 46.49E-15
9 900 0.205

These C, values represent peak values of sinusoids and can be used to recreate the
waveform. Also since ideal 50% square waves contain no even harmonics, these values

- are extremely small (approximately zero) as shown in Table 6-7, and only exist as a result

of calculator precision (i.e. machine precision).

In order to cbmpare these values with the DO and SA they must be converted to

the decibel (dB) scale. The DO displays its results in terms of dB per volt RMS
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(dBVrums) across a 1 Mohm load (ideally infinite), while the SA displays its results in dB
per milliwatt across a 50 ohm load (dBm). Therefore in order to get the same units for

comparison the following conversions are used.

dBVrms =10 Log [(—%J J 6.11)

—(—%—J——— o (6.12)

dBm =10 Log (50/ 1mW)

Table 6-8 shows the first nine C, values converted to dB Vs which are compared

to measured values from the DO.

~ Table 6-8: First nine C, terms from Compact Fourier Series in dBVgys

Harmonic Frequency (kHz) | DBVrms (measured) | DBVrms (calculated)

Fundamental 100 2.5 2.33
SO0 < -6 <-60

3 300 -7.19 -7.21
4 400 G0 <-60

5 500 -11.56 -11.64
) 00 e 50 <~ &0

7 700 -14.44 -14.57
I 300 <=0 <-60

9 900 -16.56 -16.77

Note that the Fourier Series indicates that there should only be odd harmonics.
However the PSD measured on the DO clearly shows even harmonics less than -60

dBVims as shown in Figure 6-46. This is due to the fact that the square waves emitted
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from the FPGA are not perfect, i.e. they do not have an infinitely fast rise time. Hence
there will be some power in the even harmonics. For comparison the -30dBVgys value is

the center line of Figure 6-46 allowing one to gauge that the first peak is near 2 dBVgus.

st

wﬁmmmmmma~‘~

15.44 dBa

Log N

i H
e

s I
1

Start 58 kHz

\ N S S G
@ [Res BH 10 kb VBH 18 kHz __Sweep 20.37 ms (461 pta) |FH

Figure 6-46: PSD measured on the DO and SA

Table 6-9: First nine C, terms from Compact Fourier Series in dBm

Harmonic Frequency (kHz) DBm (measured) DBm (calculated)

Fundamental - 100 15.44 15.32
200 g () <-200

3 300 6.11 5.78

4 ,'” -40 <-200

5 500 1.65 1.34

5 500 < A0 ' <-200

7 700 -1.37 -1.57

3 GO0 =40 <-200

9 900 -3.45 -3.75

Figure 6-46 also shows the PSD as measured on the SA. In this case the first peak

- has a marker on it which indicates the peak is at 15.44 dBm. Table 6-9 shows how well
the calculations match up with the SA measured values. The even harmonics are also
noticeable on the SA which again are due to the fact that the square waves are not ideal.
In addition, both PSDs should ideally be line spectra, however the resolution settings on
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- the DO and SA and the imperfect nature of the square waves result in these broader

spikes (concentrated frequency bands) in the frequency domain. -

6.16. Accuracy of discrete PSD measurements

While the DO is useful for displaying time domain waveforms it is generally not -
considered to give the most accurate PSD. This is because the PSD is based on the FFT
and using various digital signal processing (DSP) techniques such as windows. Therefore
the majority of measured PSDs presented in this thesis will be from the SA since it is

considered to give a more accurate representation of the PSD.

When measuring spectra with the SA one factor that has to be taken into
consideration is its bandwidth (BW) of 9kHz to 3GHz. The manual stated that frequency
measurements below 9kHz were not accurate. This is demonstrated in Figure 6-47 where
a 6.25% duty cycle square wave is measured on the SA and compared with calculations.
Clearly it can be seen that as the frequency falls below the low end of the bandwidth of
the analyzer the measured values no longer agree with calculations. In addition, neither
the DO nor SA is capable of giving accurate readings at DC (0 Hz). As a result the DC

value shown in Figure 6-47 is the measured DC averages from the time domain.

First point at 6.25kHz, below the 9kHz lower range of the SA.
Next point at 12kHz, just above 9kHz and correct.

Figure 6-47: Shows how the SA is not accurate below 9kHz
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| 6.17. Accuracy of continuous PSD measurements
The BW of the SA must also be taken into account when measuring continuous
spectra. For example Figure 6-48 demonstrates the difference between the measured PSD
of a random binary waveform and the calculated PSD. The 9kHz cutoff frequency of the
~ SA has a pronounced effect on the measured PSD in that the power seems to drop
dramatically, only to ramp up very high at DC. The power drop off results from the BW
limitation of the SA and the ramp up at DC is due to the DC marker of the SA. This is a
feature found on many SA’s since PSD measurements are often double sided. That is, any
spectrum appearing to left of the DC marker (negative frequency range) is essentially a
mirror image of the spectrum to the right of the marker (positive frequency range). These
‘two_ effects at low frequencies should not be the present as shown in the PSD plot

- generated by Matlab.

Ref 20 dBm #Rtten 30 dB
{ Problem occursjhere |

VAvg

168

h1 82, : : ! :

S3FCE. . bt
AR

" Stop 200 khz

swrt 0z o
Sweep 487.4 ms (401 pts)

2
Res BN 1 kHz

VBH 1 kHz

Figure 6-48: PSD of a random binary square wave, measured versus calculated

Another factor that needs to be taken into account is the resolution bandwidth
(ResBW) of the SA. When the SA takes power measurements it does so using banks of
anélog filters. It dwells in certain frequency bandwidths set by ResBW, and measures the
power in these bands. As a result, large ResBWs tend to give a more coarse picture of the
shape of the PSD, while smaller ResBWs tends to give a more detailed picture of the
shape of the PSD. Aside from the shape, the actual power measured will differ depending

- on the ResBW also. For example in Figure 6-49 the same PSD is measured using a
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ResBW of 3kHz and 1kHz respectively over a bandwidth of 300kHz and 100KHz
-respectively. The power is measured at 50kHz is different in both plots at -0.825 dBm |
and -5.042dBm réspective]y. |

Hkrl 508 kHz P
e T5842 B

B W

Marker : .
50000 kiz |
MY {vavo 5042 dBm TR

Suee @bz T Stop 160 Wz |3
Res BH 1 kHz VBR 1 kHz Sweep 203.7 ms (481 pts) |H

] 3 JAINSCRENIQ6.DIF file saved - -

start @ Fiz = "k 190 kiz =
JRes BH 3 kHz VBR 3 kHz Sweep 67.91 ms (401 prs) |Hixdye

Figure 6-49: Same PSD measured with two different ResBW’s

The 3kHz ResBW plot on the left shows a coarser picture of the shape of the PSD
and a high measured power of -0.825 dBm at 50kHz. However the 1kHz ResBW plot on
the right shows a detailed picture of the shape of the PSD over one lobe, and a smaller
measured ‘power of -5.042dBm at 50kHz. This three times increase in ResBW directly
corresponds to approximately a 10log[3] =4.77dB change in the measured power, i.e.
5.042-.825=4.2dB. As shown in the following section, this difference in measured
power is to be expected with continuous spectra, and for every factor of 10 increase in

ResBW, the measured power should drop by a factor of 10dB, and vice versa.

6.18. How the ResBW affects the PSD

Recall from Figure 5-12 the PSD of the (7,4) Hamming code expurgated to a (7,1)
code from Section 5-5. Figure 6-50 shows the PSD measured on the SA with different
ResBWs. The top line corresponds to a ResBW of 3kHz, the middle line to 1kHz and the
botfom line to 300Hz. The first thing to notice is that the ResBW has a factor of 10
difference between the 3kHz plot and the 300Hz plot, and this directly relates to a 10dB
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difference in continuous power 1eve1s. What is happening is thét when the ResBW is set
- to 3kHz, the SA measures power in 3kHz bands and plots the result as a single point in
the spectrum. Hence it more crudely estimates where the power is located since it is
unable to distinguish frequencies smaller than 3kHz. Contrast this with the 300Hz
ResBW which has 10 times the frequency resolution. The SA now measures and plots
power in the 300 Hz bands. While it takes longer for the SA to generate this plot, it can
display more accurate information with these smaller bands. As a result the plot appears
more spiky. Also the more the ResBW is lowered the more the continuous component of
the PSD drops. This is because the SA is measuring and plotting the power in smaller
- frequency bands. However, when there are strong spectral components in narrow
frequency ranges, their power will not change as the ResBW is decreased. This can be
seen in Figure 6-50 where the dominant discrete like components maintain their relative
power levels as the ResBW is decreased. Clearly, when comparing measured PSDs to

calculated PSDs, it is only pfactical to compare their relative shapes and not their overall

power levels.

e holentEs “
Mkr1l 135.8 kHz
Ref 20 dBm . Atten 30 dB - -2.26 dBm

1 i

famp : — 3kHzZ {
09 | — ikHz | . i
10 = 300Hz

dB/ 1

-

B gt f

YAvy AN
WL S2} |
ssrchiY | L 1

AR|

[
Center 150 kHz : _ Span 100 kHz
#Res BN 300 Hz VBH 300 Hz Sweep 4.452 s (401 pts)

Figure 6-50: The effect of decreasing the ResBW
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6.19. Comparing spectra of various codes

‘ This section deals with measuring the PSDs of various codes with different
AddCW sets and comparing the results to the theoretical PSDs presented in Section 5.6.
As discussed in that section, two heavily unbalanced source statistics of 10% and 90%
probability of a logic 1 are considered. The source statistics were generated using the

computer program BuildRandomBitFile as shown in Figure 6-51.

Figure 6-51 demonstrates the use of this program to generate a file of size 1024
bytes that contains approximately 10% logic 1s. The file generated in this example
actually had 9.83% probability of a logic 1. The output file consists of 1024 bytes or 8192
bits which are primarily logic Os as shown in Figure 6-52. This file is then transmitted

repeatedly on the channel using Run Mode Continuously by the TX.

‘ - BulldRandommtﬂle .

”rw: r‘ssz

‘ B8 B cuitdrandomsitrile
:('52521. ('SOZ(’" 7% oK ETi ’ :: : mber ¢

UOUDUU E 81
000010 00 08 co 00 00 10 02 00 48 40 80 00 00 80 03 60
‘1 000020 01 00 02 00 04 00 01 OO 04 00 02 00 00 00 64 B1
000030 00 00 04 50 00 81 20 01 30 00 20 00 00 02 00 00
:/ 000040 00 01 00 00 10 00 0D 00 09 00 40 00 00 00 B8O 00
000050 14 CO 28 09 00 00 10 26 10 00 CO 00 20 00 QA 0O
| 000060 08 04 00 40 01 Al 45 00 ‘1A 00 22 00 00 24 00 10
000070 08 00 A0 42 00 11 00 00 00 00 01 00 44 00 04 00
| 000080 00 B0 80 00 20 80 20 01 01 00 00 00 00 08 00 68
;] 000090 40 80 08 01 89 40 00 00 0O 80 00 00 01 00 00 00

/000020 02 00 8C 00 88 00 00 08 49 02 02 D1 40 01 88 00 I...@ i

:10000b0 08 10 18 00 50 00 00 20 02 20 26 60 08 40 DD 00 Pl &‘.0..'_-‘:!

lannacn a4 nR N2 An n4 87 a0 AR nn AN 30 an an nn :
7 Ready B e G B IOH H[Len OVA (R EAD,{]

Figure 6-52: ‘Random_ones_10_Sizels1024.bin’ shows the file is mostly logic 0s
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- 6.20. (15,8) Best AddCW sets
The following PSDs were measured with the SA using the randomly generated

8192-bit files. Analysis of these PSDs can be found in Section 5.4.

Ref 28 dBm *Atten 38 dB
Samp T H
qlog § i

18 i
4B/ !

VAvg

198 H

Mt s2 L

R { TSNS SN SO SRR K R SO P
AR

|

; S
Stert @ Hz : Stop 260 kHz
Res BH | kHz VBH 1 kHz Swoop 487.4 ms (481 pty)

Stz Stop 208 KHz [§
Res BH | kHz VBH 1 kHz Sweep 487.4 ms (401 pts) |B

; ; | ?
$Stop 200 kHz

e ; ;
o 200 kHz Bl fStert 8 Hz i
;Ru BH 1 kHz : VBH 1 kHz Swoop 407.4 ms (401 pts) |¥

Start @ Hz i Sto
[Rcs BH 1 kHz VBH 1 kHz  'Sweop 487.4 ms (481 pty)
{ e

Figure 6-53: 90% ones ~ All four Best AddCW sets. Compare with Figure 5-16

~ Note that in all of the above PSD plots, the SA is set to 10dB per division, while
the comparable plots of Section 5.6 are 5dB per division. The following Figure 6-54
shows how one of the spectra would compare on the same scale. The agreement of the

. curves is clear.
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| Figure 6-55: 10% ones — Ail four Best AddCW sets. Compare with Figure 5-17
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Hz T ‘ ‘Stnp 200 kHz Start 8 Hz Stop 208 kHz
Res BH 1 Kiz VBH 1 kHz - Sweep 487.4 ms (48] pts) {Res BH 1 khz VBN 1 kHz Swoop 487.4 ms (401 pts)

I

Figure‘ 6-56: 50% ones shows little difference between codes — Compare with Figure 5-18

Figure 6-56 once again demonstrates that comparing these codes with balanced

. source statistics does not portray the effectiveness of this coding technique.

6.21. (15,8) Worst AddCW sets

Start Oz Stop 200 kiz K 2| {Stare 8 Hz - Stop 208 kHz
§Res BR 1 khz VBH 1 kHz Sweop 407.4'ms (401 prs) (BREE JRes BH 1 kHz VBH 1 kHz Sweop 407.4 ms (40} pts)

Figure 6-57: 90% ones — two of the Worst AddCW sets. Compare with Figure 5-19
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Figure 6-59: Comparing the 90% ones worst AddCW set 108 on the 5dB/div scale

Again the majority of the PSD plots were taken on the 10dB per division scale,
while the comparable plots of Section 5.6 are 5dB per division. Figure 6-59 compares the

PSDs on the same scale in the same manner as Figure 6-54.

As in Section 5.6 the PSDs can be contrasted side by side. For example the PSD
of one of the best AddCW sets plotted beside one of the worst AddCW sets when the
probability of the source emitting a logic 1 is 90% is shown in Figure 6-60. While it is
obvious that the best AddCW set has more power at high frequency, it is most evident

when they are both plotted on the same scale as shown in Figure 6-61.
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Figure 6-60: 90% ones — Best AddCW and Worst AddCW set — Compare with Figure 5-21
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Figure 6-61: 90% ones — Best AddCW and Worst AddCW set — Compare with Figure 5-22

In Figure 6-61 it is clearly seen that not only does the best AddCW set have most

of its power at higher frequencies, it also has a wider null indicating its ability to limit

runlengths and generate a signal with less baseline wander.
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6.22. Speétra of larger codes

Based on the AddCW recommendations in Section 4.15, the PSD of larger codes
based on the (31,26) Hamming code are now compared to those of Section 5.7. Recall
that these spectra could not be calculated exactly using the Cariolaro and Tronca method.
Instead they were simulated using the SimFPGA program. Comparing the spectra in

Figure 6-62 with Figure 5-25 show how closely they match.

N

St 072 T Siop 268 Wiz
Res BH 1 kHz VBH 1 kHz Sweep 407.4 ms (481 prs)

2 Stop 200 kHz |
JRes BH 1 kHz VBH 1 kHz Sweep 407.4 ms (481 prs)

Figure 6-62: 10% ones — Two (31,23) codes. Compare with Figure 5-25

6.23. Summary

This chapter outlined and explained the methods used to create a hardware proof
of concept system for the multimode coding technique introduced in Chapter 3. The
communication system was implemented on two FPGA boards, one as a transmitter and
the other as the receiver. There were two modes of operation. The first was used to
transmit a file once on the channel to be decoded by the receiver. The second mode was
used to transmit the file repeatedly on the channel in order to allow for measurement of
the PSD. The PSD was measured in order to verify that the calculations presented in

Chapter 5 were correct and that the coding technique operates as designed.
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7. Bit Error Rate Performance

In this chapter the bit error rate (BER) performance of the multimode coding.
technique is investigated. This is achieved through simulations on a high-pass additive

‘white Gaussian noise (AWGN) channel that models ac-coupled receivers.

7.1. Channel model

Recall from Section 2.19 that the serial bit stream requires periodic maintenance
as it travels on the channel in order to combat the accumulation of noise and signal
distortion. This requires that the signal be received and regenerated for further
transmission. Receivers that derive their clock from the incoming bit stream require
numerous transitions for adequate clock recovery. If there is a long series of 1s or Os in a
row the receiver’s oscillator frequency may drift and lose synchronization, consequently

losing track of where it is supposed to sample the transmitted data.

Recall that in the frequency domain these strings of like valued bits can be
considered low frequency content as shown in Figure 5-2. Furthermore a bit stream with
many transitions is considered to contain high frequency content as shown in Figure 5-3.
Therefore receivers that derive their clock from the incoming bit stream can be
summarized in the frequency domain as requiring a signal to have a majority of high

frequency content and little low frequency content.

It is also very common for receivers to be AC coupled since they are easier to |
design and are capable of better performance (15,16). However this results in the frequency
response of the receiver being limited by the RC time constant of the dc blocking
capacitor and input impedance of the receiver 115). These types of receivers not only block
the average DC value, but they also tend to integrate the detected signal giving rise to

baseline wander [16].

Therefore the effects and demands of this type of receiver are simplified by

considering it as a distinct type of channel referred to as a dc-constrained channel, i.e. a
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 channel that heavily attenuates the low frequency and dc power of a signal (17). As éresult
-one simple model of a dc-constrained channel is that of a first-order high pass filter
(HPF) concatenated with an AWGN source [17) as shown in Figure 7-1. This model will

be referred to as the HPF channel model.

Noise
Channsl )

W
— HPF > 3
“YE—— '

| Figure 7-1: dc-constrained channel — HPF concatenated with AWGN

4

Using this channel model it will be illustrated that the time domain waveform of

‘the transmitted bit stream will decay exponentially towards zero during each symbol

interval, where the rate of decay will be dependent on the value of the RC time constant

7 . For example, letting V,, and V,, be the voltéges at the start and the end of the ™ bit

interval (k 20), the voltage during the " interval is represented by Equation 7.1 7). The

instantaneous voltage at the end of the interval is represented by Equation 7.2 117}, where

T denotes the duration of each bit interval.

. V(t)=V e—(l—kT)/f ‘ : ‘ : (7'1)
sk e : .

where KT <t<(k+1)T and r=RC/T,and

€,

v, = s.ke-‘.m ‘ i (7.2)

- Atthe start of the next interval the starting voltage V, .1 takes on one of the values:
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([ Ver o if logic values are the same | | ‘
w1 =3Ver+2 ,if logic values change from -1 to 1 ‘(7.3)
V., —2 ,if logic values change from 1 to -1 B

€,

V.

§

‘Using Equations 7.1 to 7.3 the effect of this channel model can be demonstrated
‘using Matlab. For example, consider transmitﬁng the bit sequence 1,0,0,1,1,1,0 using
bipolar coding with a square pulse shape. Figure 7-2 (a)v shows the time domain

waveform on a noiseless channel, while for reference Figure 7-2 (b) shows the midpoints

"of the symbols in order to see the individual bit locations.

Figure 7-2: (a) Binary sequence [1, 0, 0, 1, 1, 1, 0] transmitted using bipolar coding.
(b) Midpoint locations

~ Figure 7-3 on the other hand shows the binary sequence on the HPF channel with

RC time constants of 7 =10 and 7 =2 respectively. In both cases it is clear that the time

~ domain waveform decays exponentially towards zero due to the frequency response of

the channel. That is, the more like valued bits in a row transmitted on this channel (i.e.
the greater the low frequency content), the more severe the power loss is to. the

intelligible signal. Conversely the AWGN is practically unaffected on this channel since |

the distribution of white noise has zero mean. As a result it is clear that the output SNR of
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the receiver will not be constant over a symbol period. The loss of the low frequency

portion of the signéll power causes a fluctuating SNR that degrades the BER.

‘33§.-u:&’!!“(4":"l A‘s 2%
S A TEARAT Sk B
; Yﬁﬁl'w 2
q,,;ss:.ﬁbﬁ%mf "-“t’

Figure 7-3: Showing the effect of the HPF channel with RC time constants 10 and 2, and how the

SNR is not constant over a bit period -

While Figure 7-3 demonstrates how the output SNR is not constant per symbol
intefval, a greater problem occurs if there are not adequate transitions in the output
sequence. If for example there was a long run of logic Os, the signal would decay to
practically OV as shown in Figure 7-4. In this case no amount of equalization can recover
the time domain waveform since in this extreme situation the receiver is working with

praétically zero signal power.

|t

bt

o B 85 L A0
Nemakyod timd, ba prriog = 1

Figure 7-4: HPF channels effect of a long run of logic 0s with an RC constant of 10 and 2. It can be
‘ seen that the voltage is decaying to 0 Volts
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. Thus the motivations to create a coding technique that can combat the effects of
this type of channel are clear. For improved BER performance on this channel the
transmitted sequence not only needs to be balanced, but it also must contain numerous

transitions and have limits on the length of consecutive like valued bits.

7.2. Simulation

In order to test the multimode coding technique on this HPF chanhel model a
simulation called HPF_BER_Sim.exe was written; the user interface for this program is
shown in Figure 7-5. This program allows the user to select the linear block code,
selection criteria and AddCWs to use, similar to the SimFPGA program introduced in
Section 4.4. The source statistics can be controlled using the Source Probability of a 0
and the RC time constant of the channel can be controlled using the RC time constant
Tau. The simulation runs at each SNR until the set number of decoding errors has been
encountered. Finally, the type of filtering in the receiver can be chosen as either a
Rectangular Filter or Matched Filter. Note that the channel can also be specified as

Not a HPF channel, at which time the receiver uses a Matched Filter.

nnel Model

-SNR in 8-

- :[‘Elmiobokfoipasﬁn-», T R — >
i) L 55 gg 10 155 gg |-
RC e constant Tao—— |~
l- |—§5; [ S!epSl‘z’o",I‘ 05 d8

Figure 7-5: HPF channel model simulation
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~An example is shown in Figure 7-6. Here the simulation was configured to run the
(31,23) code using eight AddCWs. The source statistics were balanced and the RC time

constant T was set to 30.

<= Find BER on a Channet Model’

m"‘”fﬁm [nKkj o0da
: ___
e [T | Go
DONE!
[Cowest RDS =l Kl Simulation
00000000 [OCBABABA [07555555 (01832323 [oatitvr  [waritrer [OGFFTFF  [DOFFFFFF
]Ll}.v.h.k».u leL!u:_w_IuL | ST l)uuu-’_u)l.’ lJn'\r;L;n l}xlirii,<.! | EXGEOEN B
[Sweuﬁohﬂlvdﬂ 1] Enmlabokluwsnn'] - SNRin g8~ - Typo of Recoiver — -~
[ . Reclangula Fiker
Choose the probablty ot | | B ‘
o 100, Lo. 10%is 10 j i l cﬂlol 0.8
1 (- AC time constant Teo — | 7 Matched PRt
5 | 30] | SwepSze]| 05 B ‘ f‘Nu.uPram

Figure 7-6: Looking for 1000 errors at each SNR from 5.5dB to 10dB with T =30

‘7 3. BPSK Simulation results

The channel was first tested without coding using bipolar signaling (BPSK) with
matched filtering as a benchmark. The RC time constant chosen for all channel
simulations was 7 =30. This value was selected in order to test the performance of the

multimode coding technique on a channel that was highly sensitive to baseline wander.

BPSK on HPF Channal with Tao=30 using a Matched Fllter
. 1.00E+00 - :
1.00E 01 : =
1.00E 02
o : :::\\‘\-.\ —+—BPSK 90% zeros
w 1.00E.03 —s—BP SK 50% zeros —
o N )
‘\\ \;\ —a—BP SK 50% zeros NOT HPF channel
1.00E 04 £
‘s\
1.00E 05
\ ‘I" d \-
1.00E-06 —
55 65 75 8.5 9.5 105 15 12.5 135 14.5 155
Eb/No (dB)

Figure 7-7: BPSK on an AWGN channel versus the HPF channel with AWGN
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Figure 7-7 demonstrates the effect of the channel on a BPSK signal that does not
use any form of EC or CS coding. For comparison a regular BER curve is also plotted for
a BPSK signal on a typical AWGN channel (i.e. not the HPF channel).

The arrow in Figure 7-7 clearly shows how the BER of the BPSK signal on the
HPF channel is worse than the BER on a standard AWGN channel. However the lower
two curves only show the BER when the source emits logic Os and 1s with equal
probability. If the instantaneous source statistics become unbalanced to the point where
‘logic Os are transmitted 90% of the time, the BER curve almost flattens out. Thus the |
BER perforinance is highly dependent on the source statistics. Figure 7-8 shows the
approximate range of BER values that a BPSK signal would experience on this channel

withvdifferent statistics of the source.

BPSK on HPF Channel with Tao=30 using a Matched Filter
1.QOE +00 .
1.00E-01 - M e . e,
1.00E 02 7 A
/, B
Q:\\‘\,\ . —a—BP SK 80% zeros
a F—
W 1.008.03 N —=—BPSK 50% zeros _
\\ el Y —4—BPSK 50% zeros NOT HPF channel
1.00E-04 S
Ny \%
1.00E.05 - T
"~
1.00E 06 =
55 65 75 85 9.5 105 15 125 135 145 155
Eb/No (4B)

Figure 7-8: Range of BER values that occurs with changing source statistics

7.4. Effect of error control codes

It is of interest to determine if error control coding can alleviate the BER
degradation on this channel. Figure 7-9 demonstrates the limited effectiveness of the
simple Hamming codes used so far in this thesis. In the case of an unbalanced source
only marginal improvement is observed with diminishing returns as larger error control

codes are used.
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BPSK on HPF Channel with Tao=30 using a Matched Fitter
© 100E+00
N 4 " Y .
100501 P P4 o SN .
] e | L4
100502 1
© T
& e —+—BPSK 90% zeros
100503 - ~a—BPSK 50% zers
\\ s (7,4)90% zeros
‘\ —0-(15,11) 80% ones
100604 -~ —a-(31,26) 90% zeros
~ -
100605
65 85 5 -1} 08 106 18 125 48 165
Eb/No (dB)

Figure 7-9: Effect of EC codes on this channel is minimal

7.5. Simple multimode code

As discussed in Section 3.1 and 3.2, a primary goal of this multimode coding
- technique is to guarantee balanced transmission regardless of the source statistics. It was
shown that the use of a single extra bit of redundancy for CS coding is sufficient for this

| to be achieved. As confirmation Figure 7-10 shows the BER improvement using this

technique with the (15,11) code expurgated to (15,10).

BPSK on HPF Channel with Tao=30 using a Matched Filter
100E+00
100601 : = z ® * -
1006GR
100503 - S .
—
100604 3
W 100805 -
@ 100508 \\ i \"\
1005e7 || ——BPSK 80% zsros VR ]
~=—BPSK 50% zeros &
100608 +— o (18,11) 50% zeros
~m—(15,10) 50% zeros
100500 ‘I ) l \'\
1005 10 +— } }
1] .Y 75 86 06 1086 16 26 138 145
Eb/No (dB)

' Figure 7-10: Comparison of performance of (15,11) and (15,10) codes with balanced s_ourcé
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This figure demonstrates that both codes have the ability to correct single bit
errors per CW, and at low SNRs the (15,11) code actually performs slightly better than
the (15,10) code. This is because with the extra bit of redundancy the overall per bit
energy versus noise spectral density is slightly lower for the (15,10) code than the (15,11)
code. At low SNRs the coding gain of the (15,10) code is not realized as the signal
“energy is simply too low. However around an SNR of 8.5dB a crossover occurs. It is at
this point that the ability of the (15,10) code to guarantee balanced transmission results in
improvement of the BER over that of the (15,11) code, and it can be seen that the BER
curves are actually diverging. This is a significant improvement considering only a single
extra bit of redundancy was used. It is not dramatic however since analysis in Chapter 4
showed that the (15,10) code has minimal ability to limit runlengths. As shown in
Figure 7-11 maximum runlengths (MR1 and MRO) of 22 like valued bits in a row are still
possible. Furthermore, the average runlength (aMR1 and aMRO) with balanced source
statistics is approximately 3.6 like valued bits in a row. With unbalanced source statistics
however the maximum runlengths (MR1 and MRO) are actually less at 13, but the
average run (MR1 and MRO) has increased to approximately 5 like valued bits in a row.
These results are still better than the (15,11) code which can have runlengths that are

completely unbounded.

£(15,10)_[0,7FFF]_WIM1_Stats.txt - Natepad,

£[peliEdk T Format - Hob ; S ; ot e A b : (iR B R
Probl Prob0 CWs Sent Bits2AvgOver MR1 MRO MRDS mRDS aMR1

49.25 50.75 66667 1000003.0000 21,0 22.0 17.0 -18.0 3.5731 3.5678
Numstates = 58 (0,0) = 0.08110338 (5,0) = 0.01322974 (4,1) = 0.02807944 (-1,0) = li
0) = 0.00003000 (13,1) = 0.,00018000 (-13,1) = 0.00004500 (-11,1) = 0,00001500 (-11,0)
Probl Prob0 CWs Sent Bits2AvgOver MR1 MRO MRDS mRDS aMR1 aMRO

89.72 10.28 66667 1000003. 0000 13,0 12,0 13.0 -13.0 5,0600 5.0645
NumBtates = 38 (0,0) = 0.03659927. (~9,1) = 0.01249475 (~6,0) = 0,02029459 (-5,0) = b~

Figure 7-11: SimFPGA results for the (15,10) code showing runlength probabilities
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Figure 7-12 compares the range of BER values the (15,10) code can assume
compared with BPSK. Clearly the range of results for the (15,10) code is less than the
corresponding range of the BPSK signal. As well, when the SNR is greater than 9dB, the
performance of the (15,10) code with unbalanced source statistics (90% chance of a logic
0) is actually better than the performance of the BPSK signal with balanced source
statistics (50% chance of a 0). It can be concluded that the multimode coding technique is

removing the BER dependency on the source statistics.

BPSK on HPF Channel with Tao=30 using a Matchad Filter
1,00E400
1.006-01 e .
1.00602 — b
=g . /
100503 T
1.00604 e —— / [[
£ oe0s \ "\§:\'\ = A\ /
@ RN
- R
1.00s07 —EPSK90% o8 S =
4.00608 +— —8—-BPSK50% zeros P g S
~#-(15,10)90% 28105 \ / 7
100600 Fmri —8—(15,10)50% zer08 ‘
60 ! ! ! .
66 es 7.8 85 05 105 18 1285 135
Eb/No (dB)

Figure 7-12: Range of BER results for the (15,10) code

7.6. Effect of 8 AddCWs with the (15,8) code
In Chapter 4 and Chapter 5 the (15,11) code expurgated to a (15,8) code with
eight AddCWs was analyzed in great detail. Using the (15,8) code with any one of the
- four best AddCW sets results in the BER curve shown in Figure 7-13. With balanced
source statistics the first test demonstrates the ability of this code to further improve the
BER curve on the HPF channel beyond the performance of the (15,10) code at high
values of SNR. This ability is a result of the fact that the (15,8) code is not only balanced,

but that the worst case maximum runlength is only 7, versus 22 with the (15,10) code,
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BPS8K on HPF Channel with Tao=30 using a Matched Filter
" 1008400 :
100501 e = * + -
1006 (2 Jote-
100600 ———
100504 g
& 100508 \\ BN
100608 1—" 4 BPSK 80% zems N =]
100607 +— —a--BPSK 50% zeros SN
\oonte 4 (15,11)50% zeros ‘ “ ~~
- —u—-(15,10) 50% zeros ~
100500 J—]  —e—(15, ) 50% 78108 N
100610 [ ' 1 \.
65 s 75 85 05 106 16 26 35 145
Eb/No (dB)

Figure 7-13: BER performance of the (15,8) code

| The benefits of this coding technique are appreciated more when compared to
‘BPSK signaling on a regular AWGN channel. In Figure 7-14 it can be seen that the BER
curve of the (15,8) code is approaching the BER curve of the original BPSK signal on a

regular AWGN channel.
BPSK on HPF Channel with Tao=30 using a Matched Filter
1.00E+00 17—
" 1.00E-01 M * * —e -
—
1,00E-02 Senav—.
1.00E-03 S —
1.00E-04 e ]
" .
w 1,00E-05 [ e .
@ ) ooE-06 S|
. o .
100607 4o Tt BPSKS0%mros NS e
: —8—BPSK 50% »ros ‘u\‘:\
1.00E-08 T—] —e—(15,8)50% =ros
1.00E-09 4—  ——BPSK 50% 2ros NOT HPF channel (>
1.00E-10 ! ] | | N\
55 6.5 75 8.5 8.5 105 115 1256 135 145
: EbNo (dB)

Figure 7-14: The (15,8) code on the HPF channel compared to BPSK on an AWGN channél

Finally, when using the (15,8) code with an unbalanced source, simulation results

show that the BER curve remains» fixed. That is, the BER curve for the 50% zeros and
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~ 90% zeros are identical. This is shown in Figure 7-15 which demonstrates that the source
statistics no longer have any effect of the BER curve performance as a result of the CS

coding features of this multimode coding technique.

BPSK on HPF Channel with Tao=30 using a Matched Filter

1.00E400

100601 A2 =

I—ao.

10060 ]

100803 - \z\,\

1.00604 =

8 sy ~C

& 1o0m0s I e
o ~

100608 S~ \\

’ \ —.\.
100807 1 —e— BPSK 90% zeros I~

: -a-- BPSK 50% 8ros \

100608 --&— (15 B) 80% zeros

: —-8—(15 B) 50% zeros \
1.00600 \:\
1.006-10

65 65 75 85 05 105 1ns 125 135
Eb/No (dB)

Figure 7-15: Performance of the (15,8) code does not change with varying source statistics

7.7. Performance of larger codes

It was suggested in Chapter 3 that the additional redundancy of the multimode
coding technique cah be minimized by using larger codes. Based on Section 7.5 and the
results of the (15,10) code, the performance of the (31,26) code expurgated by 1-bit to a
(31,25) code with two AddCWs is now investigated. ’

Figure 7-16 shows the range of values thé BER curve can assume for the (31,25)

‘code. At first glance it may be surprising to see that the range of BER values is far greater
than the corresponding (15,10) code considered in Section 7.5. This can be understood by
looking at the SimFPGA results, As shown in Figure 7-17 when the source statistics are
balanced the maximum runlength (MR1 and MRO) of the (31,25) code is approximately
20, which is 2 less than the (15,10) code. As well, while the average runlength (aMR1
and aMRO) of approximately 4.5 is slightly higher than that of the (15,10) code, the

* redundancy in the (31,25) code is considerably less. Thus with a balanced source the

(31,25) code performs slightly better than the (15,10) code. <
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BPSK on HPF Channel with Tac=30 using a Matched Filter
1.00£+00
100801 M M * > n > *
A
e | D T
100203 S - .
S~
100804 A :'\ ca T
& 1080 e M S
m \ ‘\‘\
100600 7= —+—BPSK 80% z8ros \\ ]
100607 4—] —%—~DBPSK 50% zeros T~
—a~(31,25)90% mros
TOB® 1™ (31,25)50% mros ‘ Ny
100500 <
100610
66 05 78 85 Y 05 16 126 185
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Figure 7-16: BER performance of the (31,25) code

Conversely when the source statistics become unbalanced, the (31,25) code
generated maximum runlengths (MR1 and MRO) of approximately 25 like valued bits in
a rdw, versus only 13 for the (15,10) code. In addition the average runlength (aMR1 and
a MRO) increases to approximately 8.7, versus only 5 for the (15,10) code. Hence the
BER curve for the (31,25) code with unbalanced source statistics is significantly worse
than the curve for the corresponding (15,10) code, and hence the range of BER values for

" the (31,25) code is much greater as shown in Figure 7-18.

# 74(31,25)_10,TFFFFEFF]_WTMI_Stats.txt - Notepad -~

{ gl gdt. Fomak e T G A B
Probl Prob0 CWs Sent Bits2AvgOver MR1 MRO MRDS mRDS aMR1

49,97 50.03 32259 1000027.0000 20.0 19.0 22.0 -22.0 4,4983
INumstates = 76 (0,0) = 0.05731556 (3,1) = 0.03477991 (2,1) = 0.04110353

Probl Prob0 CWs Sent Bits2AvgOver MR1 ~ MRO MRDS mRDS aMR1

i490.05 9.95 32259 1000028.0000 25.0 . 25.0 27.0 -30.0 8.7075
‘[Numstates = 102 (0,0) = 0.03515189 ~ (-21,0) = 0.02008680 (-2,1) = 0.02716987

Figure 7-17: SimFPGA results for the (31,25) code showing runlength probabilities
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BPSK on HPF Channel with Ta0=30 using a Matchad Filter
1006400
100604 - : : +
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Figure 7-18: Range of BER values for the (31,25) code versus the (15,10) code

7.8. Effect of 8 AddCWs with the (31,23) code |

Using the AddCW recommendations of Section 4.15, the (31,26) code expurgated
to '(31,23) with eight AddCWs is now investigated. In general it can be seen from -
Figure 7-19 that this code performs better than the (15,8) code. This is due to the fact that
the (31,23) code has less redundancy than the (15,8) code, while still providing EC and
CS abilities. Figure 7-19 also demonstrates that like the (15,8) code, the performance of
the (31,23) code is not affected by the source statistics.

BPSK on HPF Channel with Tao=30 using a Matched Fliter
} 1.006+00.
100601 - - > s *
1.00802 &
100603 ‘:‘:&Q g
100604 \“%‘: S Sy
& 1ooe0s \\\“‘\\"m
@ 100608 41— \ \ \\I\_‘ _
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100607 J]  —®~BPSK 50% 2108 I A
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66 as 76 8s "1 05 18 126 138
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Figure 7-19: BER performance of the (31,23) code is better than that of the (15,8) code
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Finally it can be seen in Figure 7-20 that the BER performance of the (31,23)
code is actually better than BPSK signaling on an AWGN channel only. This clearly
defnonstrates how with larger codes the drawbacks associated with redundancy in this
multimode coding technique can be minimized. With larger codes the efficiency

increases and consequently the BER penalty incurred decreases.

BPSK on HPF Channel with Tao=30 using a Matched Filter
1,00E+00
100801 - M * * * e *
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Flgure 7-20: BER performance of the (31,23) code on the dc-constrained channel is better than the
BER performance of BPSK on an AWGN channel '

7.9. Conclusions

| This chapter has investigated the BER performance of the multimode coding
technique on a dc-constrained AWGN channel. On this type of channel the source
statistics play a significant role in BER performance. As the source statistics change, so

too does the BER experienced in the system.

It was shown that on this type of channel EC coding techniques alone do little to
overcome this dependency on source statistics. However by using the multimode coding
technique introduced in Chapter 3, the BER performance of the system can be improved.
With a single extra bit of redundancy it was shown that the range of BER values

experienced can be restricted and improved versus a system that does not use this coding.
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| ~;'~In addmon, it was shown that once the system mcorporates three addmonal bits of
redundancy, the BER performance can be 1mproved and completely lose its dependency
" on the source statistics. Furthermore, the redundancy required to obtain this CS codmg

' effect can be minimized by using larger block codes.
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8. Conclusion

This thesis has introduced a new combined EC and CS code based on linear block
codes. This chapter summarizes the development of this coding technique and offers |

suggestions for future work.

8.1. Thesis summary

Following the introduction and discussion of the concepts of EC and CS coding
presented in Chapter 1 and 2, Chapter 3 introduced a novel combined EC and CS code
which is based on multimode coding. It was apparent that with a single extra bit of
redundancy any linear block code that includes the all-zero and all-one codeword can be
used to construct a balanced dc-free code since the CWs are effectively partitioned into
two complementary sets, giving the encoder two CW choices per SW. It was also shown
that this partitioning can be accomplished through linear code word addition.
Furthermore this technique was extended by giving the transmitter four and eight CW
choices per SW through the use of four and eight AddCWs respectively, thus it is called a

multimode coding technique.

Chapter 4 reviewed the mathematics required for analyzing the encoder as a
Markov chain and evaluating its performance in the time domain. This involved a
computer search to find the best AddCW sets, and results were presented contrasting the
performance between the best and worst AddCW sets. The chapter concluded with

recommendations and applications of this technique to other systems.

Chapter 5 investigated the frequency domain characteristics of the multimode
coding scheme, and the power spectral densities of various code configurations were
evaluated and analyzed. Chapter 6 presented the hardware implementation that used two
FPGAs and compared their measured time domain and frequency domain results to the

results in Chapter 4 and 5, demonstrating how they agreed with calculations.
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| Finally Chapter 7 looked at the bit error rate performance of this combined coding - |
= technique on a dc-constrained channel and clearly showed how its performance . is |

_superior to uncoded systems.

8.2, Future work |

In this thesis thorough analysis was completed on the (15,11) code expurgated to
a (15,8) code. It was shown that fbour‘ sets of AddCWs had the best performanée in terms
of limiting runlengths. However no specific pattern emerged from these results. While
most of the AddCWs were balanced and had numerous transitions, there was the odd
exception that did not adhere to this rule. Therefore only general guidelines could be
‘recommended for selecting AddCWs for use with larger codes where a computer search
was impractical. While it was shown in Chapter 7 that these recommendations with the
(31,23) code produced excellent results, the optimum AddCW sets for this code and
larger codes remain unknown. Further work could quantify the results from the analysis

of the (15,8) code and extend them to larger codes.

Finally, as proof of concept, the only linear block code considered in this thesis
‘was the simple Hamming code. Future work could apply this multimode coding

technique to other more powerful error control block codes.
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Appendix A - Calculating Power Spectral Density

The energy spectral density (ESD) is a measure of the energy contributed by all
spectral components of an energy signal. If a signal has infinite energy it is considered to
be a power signal and its power spectral density (PSD) is a measure of the power
contributed by all spectral components. Both the ESD and PSD are important quantities
in evaluating the performance of a communication system. For example, in Figure A-1,
modulation shifts the spectrum of a baseband signal to a higher frequency band. If the
allocated BW for this system was 100kHz, measuring the ESD or PSD on a spectrum

analyzer would indicate whether or not the system is operating within this limit.

m(t) _bg}—* m(t)cos wt

cosail

Figure A-1: PSD displays the contribution of power at each frequency

A.l. ‘Determining the Power Spectral Density

There are three ways to find spectral densities
1. Measure them with a Digital Gscilloscope or Spectrum Analyzer
2. Calculate them mathematically

3. Simulation

The first approach can be difficult since it involves actually building a working

system. This may not be practical if you are only interested in the PSD of some new

: communiéation approach. The second approach can also be difficult simply due to the
mathematics involved, and it becomes more challenging once coding is introduced. For
example, what is the PSD of a Hamming code? The third approach is therefore often

used. In this Appendix, the second approach is considered in detail.
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Binary
Source

Hamming
Encoder

—— PSD =

Figure A-2: Once coding is introdtuced, calculating the PSD can be challenging

A.2, How to calculate RMS for non-sinusoidal signals

Quite often measuring equipment such as oscilloscopes work in RMS when

dealing with time varying voltages. Therefore to compare calculations with measured

values it is convenient to also work in RMS. Thus it is useful to review this concept.

The RMS (root mean square) value of a signal is defined in general as the

square root of the power of a time varying signal. It was originally used to determine the

equivalent DC voltage required to deliver the same power as a sinusoidal signal.

Example 1 - RMS: Consider a 1Vpp sine wave at IMHz. This is a signal that varies

from —0.5V to +0.5V and would be written as y,(¢) = 0.5sin (27: ft). Find the power and

RMS voltage with ¢z, =1/ f .

Toolsin1dediajCatciither|Pramin|Clea
II.HI

Figure A-3: Calculating the power and RMS of a sine wave

As shown in Figure A-3 the power is found to be 125mW assuming the voltage is

dissipated over 1 ohm. The square root of the power gives 353.55mV RMS. Thus

353.55mV is the equivalent DC voltage that would give the same power over 1 ohm, that

is (353.55mV DC)? = 125mW.
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A simplified way to find the RMS voltage for sinusoidal waveforms is:

Vpp Vpeak ‘
RMS =— RMS = —— ‘ A.l)
| 22 72 | {

0.5V
Either way the result is Wep _ 353.55mV ——J—Eﬂﬁ =353.55mV

22

,:' Agllent Technologlos:. AR S -_'-}:_::{;:-;:Agllum'chimnlnglnl‘ .

Figure A-4: Digital oscilloscope measurements

“ Oscilloscope screen shots shown above in Figure A-4 have a peak to peak value

~of 1.073V and as a result the measured the RMS value is 381mV. This matches very

closely to 379.36mV and 1.073/(22)=379.36mV .

A3. Comparing Fourier calculations to spectrum analyzer output |

Converting periodic time domain signals to the frequency domain is done with
Fourier Series representations, These are classified as the Trigonometric Fourier Series,

the Compact Fourier Series and the Exponential Fourier Series.
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~Ad. Trigonometric Fourier Series

S f®)=a, +Z (a,cos(nw,t)+b, sm(na) t)) |

n=l

where a)o=-2T£, T, is the period

1 @
- [ rear | |
a, =}2: f f (t)cos(naw,t)dt  n=1, 2,'3..

b, =}2: [ rosinmapd n=1, 22

" A.5. Compact Fourier Series

An equlvalent form of the tngonomemc Fourier series is to combme the sine and .

- cosine terms into a smg]e s1nus01d using the 1dent1ty

a, cos(naw,t) +b, sin(naw,t) = C, cos(nw,t +6,) | o (A-4)‘ v
Cn :— an2+bn2 ‘ o ‘ _:‘ _ AR
b fO=Cy+).Coosnm+6,) (AS)
6, =tan”'| =2 | = RN
a ‘

‘A6 Exponential Fourier Series
' This is the most compact form of the Fourier series and it is based on the Euler

1dent1t1es since each sinusoid is expressed as the sum of two exponentlals
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8 _ _-jo ‘ ) E

sin@)="—"— and  cos(6)= e—ize— (A.6)
Y

f(t) - iD"ejnwnr where Dn = }1_ L f(l)e_j"w"'dt ‘ (A7)

The important thing to note with an Exponential Fourier Series is that it is a two-

sided series. Thus there are negative and positive frequency components that range from

. -0 to +o0, This is in contrast to the Compact and Trigonometric Fourier Series that are
one-sided series that only have positive frequency components in the range 0 to +c. Note

that these two forms are related by Equation A.8 for real valued signals.

C,=2D

n n

n=12,3.. (A.8)

Example 2 - Compact Fourier Series: Calculate the Fourier series of a 100kHz, 2.9V,

50% duty cycle unipolar square wave.

5;}:‘.{4Agllanlﬁbhnologlu RTINSO B [ -5 Agitont Technologigs .

Figure A-6: Calculating the average and RMS
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Figures A-5 and A-6 show that the calculated average and RMS values are
practically identical to the measured values. Calculating the Trigonometric Fourier Series -
by Equation A.3 with f, =100kHz and ¢, =1/ f; =10ps is shown below in Figures A-7
and A-8. | |

Figure A-8: Calculating b,

Figure A-7 shows that a, =1.422V which is identical to the DC average shown in
Figure A-6. As well, the a, and b, values are calculated for n=1,2,3,... whi'ch‘ are used

to calculate the Compact Fourier Series using Equation A.5.

Figure A-10: C, values in a list with frequency values and n index below
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Figure A-11: 0, values shown in list with frequency values and 7 index below

Figures A-10 and A-11 above show the Compact Fourier Series representation of
- the signal. These magnitude and phase values indicate exactly how to recreate f(t). That
~is you would need a DC level of 1.422V, plus a 1.85V peak cosine wave of frequency
100kHz with initial phase —1.57 rad, plus a 0.616V peak cosine wave of frequency
300kHz with initial phase —1.57 plus and so on. Clearly these are peak values which is

important when converting to RMS.

A.7. Comparing to a Spectrum Analyzer and Digital Oscilloscope

In order to compare measured results to calculations, two things must be taken
into account. First, most spectrum analyzers (SA) and digital oscilloscopes (DO) only
show one-sided spectra, and second, SAs and DOs often work in RMS, and display their
results in decibels (dB). Specifically the DOs considered here work in dBVpgums, Which is
dB per 1Vgrms normalized to 1 ohm, and SAs work in dBm, which is dB per ImW

normalized to 50 ohms.

As a result the Compact Fourier Series is a natural choice since the C, values are

already one sided. All that is required for comparison is to convert them to dB. This can

easily be done by dividing them by V2 first (Equation A-1) since they are Vpeak, and

then converting them to the appropriate dB scale as shown in Equations A-9 and A-10.

%)) |
, (Cn)z ) ' i
dBm =10 Log \2) e (A.10)
50*.001/
204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For example Figure A-12 shows the square wave from Example 2 in the
frequency domain. Figure A-13 shows the dBVgrums values calculated from the C, values,
and Table A-1 shows how these calculated values match up with the measured values

from the DO.

10 Tog
Bt

" Figure A-13: Calculated dBVgys values of the square wave

Table A-1: Showing how the measured and calculated values match up

Harmonic Frequency (kHz) | DBVgms measured Calculated

Fundamental 100 2.5 2.31
60

3 300 —-7.19 : ~7.22

5 500 ~11.56 : -11.66

7 700 T14.44 T14.58

[ < 430

9 900 ~16.56 -16.76

Clearly this approach is very accurate.
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Similaﬂy Figure A-14 shows the same output on the SA. Figure A-15 shows the
dBm values being calculated from the C, values, and Table A-2 shows how these

calculated values match up with the measured values.

1$1are 581z ‘ Stap 1,05 HHz
ms (48]

Res BH 19 iz 20.37 pts)

Figure A-15: Calculated dBm values of the square wave

Table A-2: Showing how the measured and calculated values match up

Harmonic Frequency (kHz) dBm measured Calculated
Fundamental 100 15,42 15,32
. .. G < A00
3 300 6.11 5.78
5 500 1.65 1.34
) SO0
7 700 1,37 =1.57
Vi AU w00
9 300 -3.45 =3.75

Clearly this approach is very accurate.

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without pefmission.




Example 3 — Repeat Example 2 with a square wave that does not have a 50% duty cycle:

""ff'i:i-:}j:'AgllqnlTachnnloglei ! - AT {:?:}Ei-'Agllcn‘!Technologlci .

TR AR AR AR NNENNAY R RE RSN R RS
I EUR R R R e

Figure A-16: Square wave with a 6.25% duty cycle

‘ Figure‘ A-16 shows a square wave with one 10us pulse every 160us; This can also
be thought of as a 100kHz square wave with a 6.25% duty cycle. Looking at Figure A-16
-shows that there is a slight DC offset of approximately 94mV, so the 2.65V peak to peak |
signal swings from 94mV to 2.75V. '

i
- RAD ALY D3z ~oas FUNCE 5244301

+ - Figure A-17: Calculating Average and RMS values for the 6.25% duty cycle square wave

Figure A-17 shows how to calculate the average. The signal has 94mV for 15/16™
of the period, and 2.75V for 1/16™ of the period for an average of 260mV, or 271.2mV
measured. As well, the same approach can be used for the RMS voltage where 693,5mV
is calculated and 692.1mV is measured. Note that 15/16" of the period can also be

considered as 15 out of 16 bits and 1/16™ of the period can be considered 1 out of 16 bits.

As shown in Figure A-18 the measured spectra appear more dense and more like
the spectrum that corresponds to a single square wave. This result is pleasing since as the
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duty cycle decreases the pulses become farther apart and the time domain signal itself
begins to appear more and more like a single square wave. Therefore the Fourier
Transform could almost be used to calculated the spectrum (or “frequency content of the

signal”) instead of the Fourier Series.

.Agllent Technologies -

i

e

1
[

AT
i

Start 0Tz T T Stop 260 Wiz
{Res BH 1 kHz VBH 1 kHz Sweep 257.7 ms (481 pts) (¥

Figure A-18: 6.25% duty cycle square wave in the frequency domain on the DO and SA

Table A-3: Measured vs calculated for dBm and dBVpgygs for 6.25% duty cycle square wave

Harmonic Frequency dBm dBm DBVgus DBVrus

(kHz) measured calculated measured calculated
1 6.25 -1.5 0.347 T12.81 ~12.66
2 12.50 70.1 0.178 -12.81 ~12.83
3 18.75 Z0.11 -0.105 T13.13 -13.11
2 25.00 20.373 ~0.508 ~13.44 -13.51
5 31.25 ~0.857 ~ -1.039 T13.75 ~14.05
6 37.50 T1.52 ~1.708 ~14.38 -14.71
7 43.75 -2.38 ~2.527 -15,31 715.53
8 50.00 73.44 ~3.519 -16.25 -16.52
) 56.25 T 4.67 73,710 Z17.5 ~17.72
10 62.50 ~6.16 ' ~6.14 ~19.06 -19.15
11 68.75 ~7.82 ~7.88 ~20.94 ~20.89
12 75.00 79.91 -10.05 ~22.81 -23.06
13 81.25 ~12.64 712.84 725.62 ~25.85
14 87.50 T -16.47 ~16.72 229.69 =29.73
15 93.75 222,76 -23.17 ~35.94 ~36.18
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A8 Random Binary Signals
Examples so far have considered only the cases of repeating periodic signals. A’
different approach is needed when these signals are random. Consider a random binary
waveform that takes on two different values +A and —A, with transitions that occur only
at integer multiples of the symbol period T, with symbol values that are equally likely.
This can be considered a discrete time random process with the probability density

function (PDF) shown in Figure A-19.

G ~® ()

|

-A +A

Figure A-19: PDF for the discrete time random process

Since this is now a random process (random signal) there is no easy way to do
Fourier analysis. Therefore how does one find the PSD of a signal that is not
deterministic? Clearly this signal can take on an infinite number of sequences. The PSD
would be known if the duty cycle was always 50% or 6.25% like in Example 1 and 2,
however now the signal can have any duty cycle at any given time. Since each sequence
is different and not periodic the best we can realistically do is to evaluate this signal in
terms of some average statistics of bit sequences. In order to do this we need the concept

of a random process.

A random process (also known as a stochastic process) is a mapping of an
experimental outcome to a function of time. Each waveform associated with an
experiment is called a sample function. The collection of all sample functions is called
the ensemble of the random process. In general there are two approaches to evaluating

~average statistics of random processes:
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1. Time average: Examine one sample function from the ensemble (collection of
sequences) over an extended period of time, i.e. examine a typical sequence

2. Ensemble average: Take averages over all possible different sample functions.
This is usually the more comprehensive approach since we don’t know if any one

sample function is representative of the entire ensemble.

A process whose ensemble statistics don’t change with time is a stationary
process. They are usually called strict sense stationary (SSS) processes if all statistics
do not change with time. i.e. PDF’s and CDF’s do not change with time. They are wide
sense stationary (or weak sense stationary) (WSS) if at least the first and second order
statistics do not change with time, i.e. the mean and variance. Processes in which all time
averages of all sample functions are equal to the ensemble averages are called strict
sense ergodic processes. If at least the first and second order time averages are equal to
the first and second order ensemble averages then the process is called wide sense

ergodic (or weak sense ergodic).

Note that in reality there is no such thing as a stationary process. However many
processes can be considered stationary for the time interval of interest and this stationary

assumption allows for a manageable mathematical model.

Some common statistics about random processes that are often useful
e - E[x] — Expected value or average. Indicates the DC level of the signal

e E[x*] - Expected square value — Total power (AC+DC) of the signal
o 0%=E[x*]-(Elx])’ - Variance - Total AC power (i.e. subtracting DC power)

e o = Standard Deviation - RMS value of the AC components

NOTE: When processes are zero mean (such as noise) the variance is the total power and

the standard deviation is the total RMS value.
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In general only two statistics are usually considered which are the mean and the

auto‘cOrrelation of the random process. The autocorrelation of a random process is a
measure of how similar the process is to itself as time increases. That is, correlating the
function with itself as a function of time separation gives an indication of how quickly

one can expect the random process to change. This will be demonstrated by example.

Example 4 ~ A random process: Consider the transmission of a signal from a TX to an

RX where the frequency is given as f Hz and the attenuation is minimal. The received

phase can be any value from 0 to 27z . This is shown in Equation A.11:

X(t)= Acos(wt+0) : (A.11)

where A and @ are constants and the phase © is a uniform random variable over

- [=7m,z]. Therefore the PDF is shown in Figure A-20.

Jo(&) | .
1
Ey | — -ns8<x
- Jo @) =22
0 otherwise
-7 T

Figure A-20: PDF of the random process for Example 4

‘As shown in Equations A.12 and A.13 respectively, the first step is to find the

time averaged mean and ensemble mean.

Time averaged mean:

- . 1T ‘
x—(x(t)}—;EF_T{ZAcos(th?)dt | o e
Wiz , S (A12)
X =— I cos(wt +8)dt =0 R
0 -T,/2
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: ' Ensemble mean:

4 O=E[X®)]= [Acos(@t+06)£,(0)0 X7
SR LT | a13)
| ﬂ"(t)_ﬁj, cos(wt +6)d0 =0 A

By inspection the average value of any cosine wave regardless of phase will be 0

: ‘1 e..no DC value. Thus even when considering the ensemble mean (all sample functlons)

~there will be an equal number of sample functions above and below zero and thus the

| mean is still 0. Therefore this process is Ergodic in the mean since (x(1)) = E[X ()]

The next step is to find the time averaged autocorrelation and ensemble

autocorrelation as shown in Equations A.14 and A.15 respectively.

Time averaged autocorrelation:

(=1 r(tl\r{t-&-'r\\

() =lim— IAzcos(wt+6)cos(a)(t+1')+0)
=T fn o ¢

— A2y )

R, (T)=— Iz[coswt+cos(2wt+29+wz' ]dt o (A.14)

R, (7)=— j |_coswt+cos(za)t+zu+a)z')_]dt SR

Rm
R,

A
T) =—coswr
(@) 5 Cos
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Ensemble autocorrelation:

R,(t,t+7)=E[X()X(t+7)]

2

Rxx(t,t+2')=2%[— _[cos(wt+6)cos(w(t+r)’+0)d9

2 - (A5
R (hi+7)="" [=coswr +cos (20t +26+wr)d6 o

2

R, (t.t+7)= f; cos Wt

This process is Ergodic in the autocorrelation since (x(1)x(t+7)) = E[X ()X (t +7)].

Furthermore since the mean is constant (does not depend on time) and the

~ autocorrelation is a function of time separation 7 only (does not depend on time) then we

“can conclude that this process is wide sense stationary (WSS).

Example 5 — Random Binary Signal. Recall from Section 2.19 the random binary
waveform where O is mapped to —A and 1 is mapped to +A. Transitions occur only at

intc_:ger multiples of the symbol period 7, and the symbol values are équally likely. If we

let A=1 then by inspection we can see that if 50% of the time there are -1s, and 50% of

the time there are +1s, then the mean value (DC value, expected value) of this random =

process should be 0. This is found to be true as shown in Equation A.16.

E[x] =.2xfx(x)=—l(%)+l(—;-)=0' : (A.16) |
- i=0 : o

‘Note that Equation A.16 finds the ensemble average and not the time average.
Time averages are not as useful as ensemble averages in this case since a single sample
function will not be indicative of all sample functions. Thus only ensemble averages will

be considered from this point on.
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The autocorrelation of a random biriary waveform is not as straightforward as the
previous example since it is known as a cyclostationary random process. This means
that by the above definitions this random binary process is not strictly stationary, or even
wide sense stationary. However it turns out that the statistics (mean, autocorrelation etc)
are periodic. Therefore an average over mean and an average autocorrelation can be
evaluated to obtain a stationary result. Hence the term cyclostationary (cyclically

stationary).

To analyze random binary processes it is useful to interpret discrete time signals
as trains of delta functions as shown in Figure A-21 and Equation A.17. This maps a

discrete time random process to a continuous time random process.

Discrete Time +A +A +A A +A A

(HA)  (+A)  (+A) (+A)

— L 1T
!

¢4 &)

Figure A-21; Discrete time random process mapped to continuous time with delta functions

x(®)= Y. a,6(t—kT,) (A17)

k=—o0

This works well since we can consider the final waveform to be the convolution

of the train of delta functions with a pulse shape p(z) as shown in Figure A-22 and

Equation A-18.
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Figure A-22: Waveform is a convolution of the pulse shape and train of delta functions

()= p0r S aseoiny @)

k=00

Therefore the average autocorrelation function for cyclostatronary random :

processes asa functlon of time separatlon 7 is defined as

k=~co

B Ry =p(z')*»p(-z')*[_71: i E[xnxn+k]§(z'—,k7},)) (A,1“9)“ .

Eqixation A.19 is indicating that to evaluate the autocorrelation of - this

cyclostationary process, first convolve the pulse shape with itself, then convolve the
result with the autocorrelation of the source symbols averaged over all time. An example -

of a square pulse shape being convolved with itself is shown in Figure A-23.

o) o) a0

‘ ‘ : TT ‘
. T T T
ST TR -T2 T/2 -T T

'Figiu‘e A-23: Sqimre pulse shape being convolved with itself

Equaition A.20 shbvys the autocorrelatiori of the source symbols.
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k=0 E[x] A

E[ n+lc]
k#0  Elxx,,]=Elx,ELx X%, ]1=0

i Finally the autocorrelation by Equation A.19 is shown graphicalIy in Figure A-24,

.A_z. PP autocorrelation
T T A2
T \ T T
-T2 Ti2 -T T -T T

Figure A-24: Graphical depiction of Equation A.19

The Fourier Transform of the autocorrelation functlon ofa random process is the

power spectral density.

‘ B : ‘ only place
Sx(®) = F[Ru(1)] where delta
. function exists

4
i

fP( (o)l

‘ t
Sx(c‘)) ZE[(I,,(/“,,] e B
AT e
effect of correlation of
~ pulse shnpc‘ " symbols

. Figure A-25:; Fourier transform of the autocorrelation function is the PSD

~ ) EigureNo, t

agram Files\matlab6p1\work\PSDbinary.m* i
Debug &o*pohts ‘Web: Window . Help :
: M @0 o u:»laial@mﬁm__
% PSD of a binary random waveforwn
A=2;
Tsl;
tel;
te-10:,01:10;
Sx = AA2YTH(Sin(27pitL*eaT/2)./(2%pivEreeT/2)) .42
dBSx = 10*loglO({(({{sqrc(Sx)/sqrec(2)).~2)/,001)/50));
subplot(2,1,1)
plot(t,Sx)
subplot(2,1,2)
plot(t,dBsx):
axia ([0, 1u,-4u,zu));

Figure A-26: Matlab script showing PSD that matches with Example 3
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_ Figure A-25 shows the process to find the PSD from the autocorrelation function.
Figure A-26 shows the Matlab script that performs this calculation and plots the PSD.
Comparing the shape of this PSD to that found in Example 3 shows their similarity. The
difference is that this PSD is continuous since this random process contains every

possible duty cycle square wave. Thus Example 5 demonstrated how to find the spectrum

of a random binary waveform.

" A.9. Finding the PSD of a Coded Binary Signal
This challenging topic was first covered by Cariolaro and Tronca. Their approach
is to first model the communication system as a finite state machine, then analyze it using

the theory of Markov Chains.

A.10. Finite State Machines

Any system which operates at discrete instants of time and takes on a finite
number of configurations can be represented as a Finite State Machine (FSM). A general
description of a FSM is a system that operates on a finite number of inputs and assumes a

specific internal state based on those inputs. The output of the FSM can be determined in

two ways.

1. Moore machine: The output is a function of the internal state only.

2. Mealy machine: The output is a function of the internal state and the

_present input.

A general Mealy FSM is shown in Figure A-27. In this model let §,, C, and L,

represent the input, output and internal state values of the system respectively. The

system then operates in time intervals T, with a new state being generated every ¢t =nT .
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: Thcféfore using this FSM to model a coded system, S, would be the input SWs, C,

- would be the output CWs, and L, would represent the internal state of the encoder.

Output = § Cn

Sn Next State
— Combinational E Memory Combinational f——ip
Logic "~ Logic

La

Figure A-27: Mealy Finite State Machine (FSM)

C, = fIL,,S,]

v @2
: Ln+l =g[LmS,.] : ‘ : :

A FSM can also be represented graphically by a state diagram which shows the

* progression of states through which the system operates and the resulting outputs based

on specific inputs..

~Example 6 — FSM encoder: Below is a typicél Y2 rate con_volutioﬁal encoder with
'~ constraint length 2. The %2 comes from the fact that 1 source bit (SW) is encoded to 2
‘coded bits (CW). : ‘

MSB LSB

Figure A-28: Rate 2 convolutional encoder
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" Por __éxample, consider thé encoded output cofrespbnding to the following iriput sequence
10100
. Details of the ope’r’alion of the circuit are:

Clk  Regs i/p olp

.00

<1 01 1 11

2 10 0 10

3. 701 1 00

4 10 0 10

5 00 o0 11

~‘and the output sequence would be

1110001011

Modeling this convolutional encoder as a FSM allows‘ creation of the s‘tate':_'; ’
dlagram as shown in Figure A-29. This is done by cons1dermg all possible states with the .-

| correspondmg inputs and outputs.

¥ -Figure A-29: FSM of the convolutidhal encoder of Example 6 ;
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Clearly the FSM fnddé] of a communications system is useful since olnce the FSM
~model is complete, the behavior of the system can be determined very easily. As well,
Cariolaro and Tronca require modeling the coding system as a FSM and analyzing it as a
Markov Chain in order to find the PSD.

A.11. Markov Chains |
A random process X (¢) is a Markov Process if the future value (or State) of the

process is dependent only on its immediate present value (or state). In other words, the
process is independent of the past, and its future value is dependent only on its present

value. Equation A.22 indicates that the probability of X (#) assuming a new value given

all the past values for all time is equal to the probability of X (#) assuming a new value if -

only the immediate value x, is considered.
P[X () =X | X (1) = X0 X (0) = 5] = P[X (1)) = %0 | X () = x| (A22)

An integer valued Markov Process is a discrete time random process that is called
a Markov Chain. Here the random variable X, takes on a countable number of values at
discrete moments in time, where T is the interval between discrete time events. The value

of X, atthe discrete time n is referred to as the state of the process at time .
X, =X(nT) : - (A23)

In Markov chains the probability distribution functions (PDFs) that are
conditioned on several time instants always reduce to one PDF that is conditioned only
on the most recent time instant. This is known as the Markov property. For this reason

the value of X, at the discrete time n is referred to as the state of the process at time n.
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A 12 Markov Chain Propertles

In general a system can be modeled by a Markov chain if the sequence of trials

satisfy the followmg properties:

1. Each outcome belongs to a finite set of outcomes {a;,az,:..,am} called the
‘ state space of the system. If the outcome on the ' trial is a;, then the
system is defined to be in state a; at time n, or the system is in state g; at
the n™ step.
2. The outcome of any trial depends at most upon the outcome of the
- immediately preceding trial and not upon any other previous outcome.
‘3. There is a given probability p; that state a; occurs immediately after the
occurrence of a;. Therefore if the system is currently in state a;, then py; is
the pfobability of moving to state a;. :

The numbers p;; from requirement 3 are called the transition probabxlmes and they

~can be arranged in a matrix called the transition matrix as shown in Equation A.24.

Pyn Do - Py e
P='1_I’= p:21 P:z'z P:zm ' ‘ o (A'24) S
pml pm2 A pmm

The transition matrix IT is a stochastic matrix since cach row is a probability

 vector that sums to 1, In addition to the transition matrix a Markov chain has an initial

‘ pr'obability‘vector p that indicates the starting state. This is best shown in an example.
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. Example 7 - Simple Markov Chain: After work a woman enjoys either working out or
playing tennis. Since the workout can be quite tiring she never works out 2 days in a row.
However if she plays tennis one afternoon, she is just as likely to play tennis the next
afternoon as she is to work out. This can be modeled as a Markov chain since the
outcome on any day depends only on what happened the preceding day. The transition

- matrix is shown in Figure A-30.

o[- cpé
LN Lol e
N —

Figiu‘e A-30: Transition matrix for Example 7

In this figure, W denotes working out and T denotes playing tennis. The rows
denote the activity on the current day, and the columns denote the activity on the next
day. This matrix is then read in the following manner. If the woman worked out one
afternoon she definitely plays tennis the next afternoon (i.e. she never works out 2 days in
a row). If however she played tennis one afternoon, 50% of the time she will play tennis
the next afternoon and 50% of the time she will work out the next afternoon. This can

also be shown as a state diagram as shown in Figure A-31.

1

0.5

Figure A-31: State diagram for Example 7

Here it is very easy to see that if she works out one day she does not work out the
next. However if she plays tennis one day she is just a likely to play tennis the next day as

she is to. work out.
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‘Now consider this. What is the likelihood that she will play tennis two days from
the curfent day? This is easy to solve. If she works out today she definitely playé tennis
the next day (100%), and then two days later there is a 50% chance of playing tennis. If
‘shc: plays tennis today she works out the next day 50% of the time and plays tennis 50%
of the time. Two days from now if she had worked out she definitely plays tennis (100%),
otherwise there is a 50% chance that she will play tennis. In terms of a probability tree
there are two ways she can play tennis again and one way she will work out again in 2

days. So to summarize

_ If the woman is currently working out, two afternoons from now:
e the probability that she will work out again is 1/2.
o the probability that she will play tennis is 1/2.

. If the woman is currently playing tennis, two afternoons from now:
o the probability that she will work out is 1/4.
e the probability that she will play tennis again is 3/4.

- Notice that this can be done elegantly using matrix powers as shown in Figure A-32,

R I H HH A

Figure A-32: Matrix powers can find the two step probability

sl n-S

vi- O
Slw Nj-—
N

nf- O
[N [

The component p;; in the transition matrix P of a Markov chain is the probability

that the systém changes from the state g; to the state a; in one step (i.e. one time instant),

From the above example in one time instant we can move from either state 1 to 2, or from
state 2 to 1, or stay in state 2. The probabilities in the transition matrix then show the one-

step probabilities.
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However we may want to know the probabxllty of movmg from state a; to state a;
in two or more steps. ThlS can be accomphshed simply by matrix multiplication as shown

‘in Equation A.25
Pi=pP or IT*=IIN (A25)

Based on this result, it is easy to evaluate the probability of this woman working

out or playing tennis in four days, five days or even one hundred days using

P*,P°, and P'® as shown in Figure A-33.

Figure A-33: 4-step, 5-step and 100-step probabilities for Example 7

The interesting thing to note in Figure A-33 is that these matrix powers are
converging to a special matrix that has identical rows. After a certain number of steps
(matrix powers), the probability of being in state W or T approaches a constant regardless
of the starting state. This special matrix is called the transition matrix IT (sometimes

called the T matrix) and the rows of this matrix are known as the invariant probability

vector 7z (also sometime called A_).

A.13. Partial Summary

It would be useful to summarize the most important concepts so far.

e Oscilloscopes and spectrum analyzers generally work in RMS and dB
e Communication systems must be analyzed as random processes

e Coding in systems adds an extra dimension of difficulty'
’ 224
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e Cariolaro and Tronca developed a way to find the PSD of these systems,
they require modeling the system as a FSM, and then analyzing the system
using Markov Chains.

With these definitions the PSD of systems that use coding can be performed using
the approach developed by Cariolaro and Tronca. Their approach is quite involved and

two more examples will be explored to explain how their approach works.

A.14. PSD of Coded Systems — Simplest Example

Example 8 - 50% duty cycle square wave revisited: Evaluate the PSD of the same
50% duty cycle square wave from Example 2, with 2.9V peak and fundamental
frequency of 100kHz.

While this is not really a coding system it can be considered a coding operation
with the mapping 1— 10 and 0 — 10. Hence this is a 1:2 mapping and each CW is 2-bits
long. Secondly we can assume that the source outputs a 1 or a 0 bit (SW) with equal
probability. The first step is to represent the system as a finite state machine and draw a
state diagram. However in this example system there would only be one state no matter

what the input symbols are and the output would always be 10 as shown in Figure A-34.

010 (°’ 110

Figure A-34: Original state diagram of the example system

'; This would lead to a very trivial example and therefore the model used in this
example will be modified to have two states as shown in Figure A-35. This does not
ch‘ange the functionality since the system is still always outputting a 50% duty cycle

square wave.
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Figure A-35: Expanded state diagram for the example system

i Th:is’ rﬁodel is adequate since we can consider:
e Is and Os are equally likely
e Instate Spa 1is mapped to a 10 and a 0 is mapped to a 10
e Instate Sy alis mapped toa 10 and a 0 is mapped to a 10

A couple observations:

| ¢ Due to this coding procedure (mapping), the source statistics are irrelevant (on
| purpose). That is, even if the source outputs 1s constantly, the output sequence
will always be 10101010 etc.

e Since both a 1 or a 0 forces a move to the other state, we can intuitively

determine that 50% of the time is spent in each state.
e Since the output is always 10 repeatedly, if we had to determine the average

output it would have to be 10.

The next step is to define the input probability matrix 6, for u=12,...,S as

| shdwn in Equation A.26, wherc S is the number of SWs. In this example, S =2 since the
" 1-bit SWs are either 0 or 1. Equation A.26 is showing the probability of a particular SW

being chosen given the current state. It is written in diagonal form for mathematical

convenience.

P(SW|L),  i=j

(A26)
0 otherwise T ( )

P(SW Ili)dlag = gu(i’ j) ={
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Also define E, for u=1,2,...,§ as the next-state matrices, where E,(i,j)=1 if

 and only if state ; is entered from state /; given input S,. Thus for each possible SW §,,
the system will move to only one state so the E, matrices will have a single 1 on each

- row. Finally define C, for u=1,2,...,5 as the CW matrix, where C, (i, j) is the CW

generated when state /; is entered due to a given input S,. These are shown in Equations

A.27 and A.28.
| 05 0 01 10 . '
6. = - E = C. = _ A27)
7 {0 0.5} ° [1 o} ° [10] @20
05 0 01 10
0 = E — = Co A.28 ‘

Therefore by considering all the ways in which these state transitions can occur
and the probability of their occurrence, it is clear that a transition probability matrix

can be constructed by Equation A.29.

 P=1I=Y4E A

u=l '

P=H=[0'5 o][o 1]+[0.5 0}[0 1]=[0 1] | (A30)
0 05{1 o[ |0 051 0] |1 0

The transition probability matrix P in Equation A.30 indicates that if the system is
currently in state 0, the probability of moving to state 1 is 100%. Likewise if the system

is currently in state 1 the probability of moving to state 0 is 100%, as expected.

Once the transition probability matrix is found the invariant probability
distribution can be found by taking P to high powers. However from Markov Chain

Theory it is found that P is a non-regular, irreducible, periodic Markov Chain with d=2.
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Thus the subsequent powers will oscillate between d different matrices. However like |
- most things in probability, we can once again average over these matrices to find a

stationary distribution. Therefore finding the invariant stationary distribution is

ISmoen (A3
e | ‘ ‘

o yffo )L o s S . L
‘ ’M—E([l o}{o 1D_[5 .5} therefore 7z =[.5 .5] A32)

Thus vector n indicates, as expected, that this system spends 50% of the time in
each state. As well the CW ¢, (i) will occur with probability 7(i)6,(i,i) and thus the
average CW or mean symbol vector can be found by summing over all CWs multiplied

by their likelihood as shown in Equation A.33.

u=|

”2‘9“ =[5 5][ ]BSJ:[.S .s]EgJ [10] | (A.33) R

As expected the average CW is 10. As already discussed this is the only CW soit

' 'must obviously be the average CW.
-~ Now consider evaluation of the symbol - sequence autocorrelation

R, =E[c,c

Cori |- Consider first R, or evaluation of E[c,c,]. Since symbol c,(i)

bccufs with probability 7(i)d,(i,i), the contribution of this symbol to R, is
c,f (D)7 (i)6, (i,i) . Therefore to find the contribution from all CWs to R_,, Cariolaro and

Tronca first define A as the L-square diagonal matrix such that
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- Then sumnﬁng oyér all CWs gives
o= CA 00 T o@sn
o A IR ':': S PR

Therefore when the mput symbols are mdependent of state the autocorrelatlon is . :

" be shown tobe

( S "r o . o
Zc Abc, , k=0
R =‘ZcTAeEnk ‘Z k=1 | (A36)
! v=l '

LR},‘  ks-l

' Contmulng with the example above, there are two SWs so the autocorrelatlon at S

zero time separation R o is found by summmg up cgAbyc, + ¢ A6’ c, .

gc(',rAﬁoco:l:l. 1}[‘5 O][j» 0][1 0}[5 0] SR
e 0 ojfo 5[0 .5j[1 0] [0 0 gk
?‘IFAQC*:[I 1}[.5 0][50][1 0]=[55 o] . _(A.37‘~)5 e

| 0 offo .5]lo .5[l1 o] [0 O o |

R, =c§Aﬁoco+c,TA6xc, =[

O =
o O
| IS |

“[2’29
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Equatlon A.37 depicts the correlation of all the CWs In order to contmue this
: evaluatlon for the fll'St few time separatlons it is 1mportant to notice that in Equation A.36
the second summation term does not change with &, and thus it can be computed

separately as shown in Equation A.38.

3 5 ol o] [5 olf1 o .5:01()'_“«_
Soey 2L ole b oS ol o] e

ot Thus Ry, is found to be the same as R.., as shown in Equation A.39.

R, = Zc"Ae E,IT* 'Z

u=1
‘ 10
R, =Zc§A9“EurI"'
‘ u=1 10
oyt o - o . ’ s Co
TAG E \ T (A39
Cl §C u™u O 1 1 O “ o ( | )

o o [P O]t 1S o ofo 1]t 0]
cl T4 ol “lo oflo 5|0 5|1 of[t of

S Continuing with this approabh itis founvd that

Reo=Rc, =R, =Rc;=...=R., =[O ’0] ':E ; (A40)

~where

Re.=n1,
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WHich is the transpose of the mean symbol Vect‘pr multiplied by itself. Finally the

“autocovariance is found as

K, =R,-n’
: Kc.k =Rc.k;R

(T

~ This means that if the mean symbol vector is zero, the autocovariance matrices
-are equal to the autocorrelation matrices. As discussed previously, the mean symbol
- vector will be zero 1f the output waveforms are balanced, i.e. if 0 is mapped to ~1 and 1 is

mapped to +1.

Thus K, is found by R.,—R.. as K¢, =R, — R, and K., =R.,-R... and

thus as & tends to infinity the all zero matrix results as shown below.

K..=R,-R. =[0 O:I as k—oe R (A43)

" In the exainple above Kcy is all zero for all k. This makes sense since the output

‘ (A.42) : Z_}

never varies. In other words the output is periodic and in the frequency domain there is = :

no continuous component. Finally the PSD is found by

W)= “’2' (xetr+ 2o "(f)Z ( J) A
‘ Whel:re |
C(f) v[KCO+ZK e'ﬂ”ﬂ‘”r] X,;(f):‘vR‘C'mf P (A45)
kmeo ‘ e T
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v=[1 e/ ‘ejdn'ﬂ‘ ef6"_’.T eerff('N—l)T]‘ (A.46)

" continuous component and X ( f ) =0 and therefore

Wo- |P(j;)| [O+X (f)Z ( D 'y ,‘_(A.47,)e

m=—co

& ‘ end the discrete PSD component is found to be

Xo(D=[L e ][3 S}L-im]ﬁl] Cwhere v=[1 e]  (Ad8) -

‘Therefore the ove_réll PSD reduces to

| G ( _mfo) - e
W)= T NT > o r-"e (A9

m==—oo

* Equation A.49 indicates that the PSD of this signal is a train of delta functions
' weighted by the Fourier Transform of the pulse shape squared. Since the pulse.Shape isa

sqliare wave we can find the Fourier transform from tables or by Equation A.50.

 «— 100kHz —>

«— 10us —»

2,9Y ,—

“ Sus—»

'Figure A-36§ Square pulse shape used in Example 8 ‘
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Arect (i) & Atsine (-(—01)
\7) 2

—-’—Jezp(sm)sinc(z”f 5‘“) Casy

2.9rect
Sus 2

P(f)=(14.5us)sinc(z f5us)

With‘kthis pulse shape define the weight value as

Py | [P ( _m_fo_J e
welght—-——N—f— from W(f)= NT NT,,,Z,,J f‘ N (A.51)

Since it is a magnitude function squared it is now in the form of power dissipated

over 1 ohm. However to match the oscilloscope we want it to be in dB and RMS

Therefore we need to take the square root ,/wetght .

- Furthermore Cariolaro and Tronca define this PSD as a two sided spectrum, ie.

the Fourier Transform of the pulse shape is related to the complex exponential Fourier
~ Series. Therefore to match a one sided spectrum the \/weight needs to be multiplied by
two as indicated by Equation A.8 i.e. 2,/weight . Therefore the final form to match the

digital oscilloscope and spectrum analyzer is

\ | S |
: 2 weight o
va(f)=1010g[( ]( D ( )) (A.52)
N & )
2fweight | (1 < f, ) L
weig _mfy
W5, (f) =10l0g [ J2 ) [NT m;,‘s(f N D (A53)
50(.001) )

Note: Equations A.52 and A.53 are general forms for this example only. Some values for

‘dBVRus are given in the following figures.
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Figure A-39: Find dBVgys values at 500kHz and 700kHz

Continuing in this fashion for dBm:

Figure A-41: Finding the dBm values at 300kHz and 500kHz
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Cofnparing the dBVRrums results in Figures A-37, A-38 and A-39 to Table A-1, and
the dBm results in Figures A-40 and A-41 to Table A-2 demonstrates the accuracy of this

method.

~ While this example is much more complicated than Example 2, it does show the
generality of the Cariolaro and Tronca method of finding PSDs. Their approach however

is intended for more complicated systems as the next example will show.

A.15, PSD of Coded Systems — Real World Example

Exampie 9 - Random Binary Signal: From Example 5 consider a A random square

wave with pulse width Sus, modeled as a FSM as shown in Figure A-42.

Figure A-42: State diagram of the random binary signal

The first thing to notice here is that this output will be truly random. Therefore
there will definitely be a continuous component in the PSD. As well since the output is
balanced, i.e. £A, there will be no discrete component in the PSD. Like Example 8, the

first things to define are the §,, E, and C, matrices as shown in Equations A.54 and A.55.

0.5 0 01 -1 |
00=[0 0 5] E0=[1 o} CO_L] (A.54)
91=[O'5 o} El=[0 1} C‘=H ! (A.55) |

0 05 10 1 ‘ i
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- ‘By considering all the ways these state transitions can occur and the probability of

their occurrence it is clear that a transition probability matrix will be the same as in

Example 8. o | | ‘ |
50 X 0 o1l
1|03 0 1] [05 0 1_fo | (AS6)
0 051 of] [0 051 0f [1 0]
: —Zl‘I"—)M

C o qffo 1].[1 o) [5 5 S
‘M =l therefore #=[.5".5]
20 ofTlo 1f)7Ls 5] >l

As expecfed this system ‘spends 50% of the time in each state. As well the CW

(A;57) '

¢, (z) will occur with probability 7(i)6,(i,i) and thus the average CW or mean symbol

vector can be found by summing over all the 1~bitvCWs.

Zec =[5 5][5 g}[_i]qu[.s.s][g 2}“ o] (A.58)‘

As expected the average CW is 0 since 50% of the time the system outputs a a1
*and the other 50% of the time the system outputs a +1.

Furthermore, since there are two SWs the autocorrelation at zero time separation:

R., is found by summing up cTA8,c, + cTAfc, as shown in Equation A.59,
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o o e

TAGe, =1 1][0 5][-3 g}m=[~5]ﬁ |

Reg=cyAbyc, + ¢ Abc, =[1]

Equatxon A.59 depicts the correlatlon of all the CWs at zero time separatlon Like ‘

| Example 8 the second summation term does not change with k so it can be computed -

- separately.

W ENE TR

Thus R, is found to be

s
BuEqu-lzeva : . gy i
v=| et ,:::': (A.61) ‘

il "AG,ETI" ‘[g] [0]

) COntinuing with this approach shows that

Roy=Rea=Fea=Re.=[0]  (A6)

‘Finally the autocovariance is found as

| Keo=Rep—Re = [1] [O] [ ]
Key=Kcp=Kew=Re, - = [0] [0] [O]

237

Reproduced with permission of the copyright owner. Further reproduction proh'ibited without .perr‘r’ﬁs’sib.r‘]. |



~ This shows that there will be a continuous component. Noting that the only covariance

- matrix that is non-zero is K, the result is

X () =va:KC’° + Z Kc'ke"ﬂ””m]v‘
)

X(H=Ke' o (ash

Xc(f)=[1 eﬂ”ﬂ][l][e_ﬂ,,fr:l=2:
Théféfore the PSD m this case rec_luées to

W( )= [P (f)I

2+0) I o "(‘A‘.65)

L1ke Example 8, since the pulse shape is a square wave, from Founer Tables we ‘

: ,ﬁnd that

2 | vArect (i) & Azsine (-QE)
o v 2 o po TR e ]
2rect(-;-)<—>25inc(%) S s (A66)

P(f)=2sinc(7f)

The final expression: for the PSD in this example is then

8sinc? ()z f)

W=
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Ay

Figure A-43: Ti-89 and Matlab plotting‘ the spectrum

Inspection of the PSD from Example 5 shows the identical result. Therefore this

‘zipproach by Cariolaro and Tronca can be applied to very c‘omplex coding systems to
~ obtain the PSD. | ' |
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- ’  " " Appendix B - AddSWs, AddCWs and Codes

o ~ This Appendix lists all possible AddSWs that can. be used with each Hamming
i . codé considered in this thesis. Encoding to AddCWs is accomplished as outlined in
Section 2.14 usfng the generator polynomial g(x) = 1011 = Bh for (7,x) codes, the |
generator polynomial g(x) = 10011 = 13h for (15,x) codes, and the generator polynomial
g(x) = 101111 = 2Fh for (31,x) codes. They are presented in the format introduéed by
Figures 3-18 and 3-22. The number of AddSW/AddCW sets is defined in qujation 3.1

B.1. (7,x) codes
Table B-1: (7,3) AddSWs -2} =1set
00...00 11...11
0 F
‘Table B-2: (7,2) Addsws-(22)1=4sets' -
© 00...00 a 2 11...11
0 4 B F
0 5 A F
0 6 9 F
0 7 - 8 F
‘Table B-3: (7,1) AddSWs — (21)° = 8 sets
00...00 a b ¢ = B & 11l...11
0 2 4 6 9 B D F
0 2 4 7 8 B D F
0 2 5 6 9 A D F
0 -2 5 7 8 A D F
0 3 4 6 9 B C F
0 3 4 7 8 B C F
0 3 5 6 9 A C F
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B.2. (15,X)‘codejs :‘_ L

' TableB4: (1510) AddSWs - @ =1set
00...00 11...11
0o 7FF

" Table B-5: (15,9) AddSWs — (2)" = 512 sets

'~ 00...00 a  a 11...11
0 200  5FF TR
0 200 5FE TFF
0 202 ~ SFD  7TFF
0 7FF
0 7FE
0  3FE 401 TFR
0

3FF - 400 7FF

Table B-6: (15,8) AddSWs - (2%)° = 16777216 sets
00...00 a b ¢ e b a 1l...11
100 200 300 4FF SFF 6FF . 7FF
100 200 301 4FE SFF 6FF  7FF
100 200 302 4FD S5FF 6FF 7TFF
100 201 300 4FF SFE 6FF  7FF
100 201 301 4FE SFE 6FF TFF
100 201 302 4FD S5FE 6FF 7FF
101 200 300 4FF SFF 6FE  7FF
101 200 301 4FE SFF 6FE  7FF
101 200 302 4FD SFF 6FE  7FF
IFF  2FF 3FF 400 500 600  7FF

OO0 00O o000 o0 OO0 OO
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BJ3. (31,x) codes

Reproduced with permission of the copyright owner. Further reproduction prohibited wifhouf perhiésion.

.00  a b

~ Table B-T: (31,25) AddSWs - (2%)° =1 set
© 00.. .00 11...11
O - 3FFFFFF

Table B-8: (31,24) AddSWs - (2%)! = 16777216 sets

00...00 a a C11...11
0 1000000  2FFFFFF  3FFFFFF
0 1000001  2FFFFFE  3FFFFFF
0 T ... 3FFFFFF
0 - 3FFFFFF
0 IFFFFFE 2000001  3FFFFFF
0 2000000  3FFEFFF

 IFFEFFF

" Table B-9: (31,23) AddSWs - (22)3=590295810358705651712 sets

< c b a
800000 1000000 1800000 27FFFFF 2FFFFFF 37FFFFF
1800000 1000000 1800001 27FFFFE 2FFFFFF 37FFFFF
800000 1000000 1800002 27FFFFD 2FFFFFF 37FFFFF
FFFFFF 17FFFFF = IFFEFFFF 2000000 2800000 3000000
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11...11
3FFFFFF
3FFFFFF
3FFFFFF
3FFFFFF
3FFFFFF
3FFFFFF




