
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

University of Alberta

A Combined Error Control and Constrained Sequence Code

through Multimode Coding

Aaron Hughes

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment

of the requirements for the degree of Master of Science

Department of Electrical and Computer Engineering

Edmonton, Alberta

Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ONK1 A 0N4
Canada

Bibliothdque et
Archives Canada

Direction du
Patrimoine de I'ddition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

0-494-09191-6

Your file Votre reference
ISBN:
Our file Notre reference
ISBN:

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

i +i

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my wife Valerie, we did it baby!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This thesis introduces a novel approach of integrating error control codes and

constrained sequence codes into a single monolithic code. This is done in order to

overcome drawbacks with the conventional manner in which these coding procedures are

concatenated. The technique is based on the principle of multimode coding, where each

source word is represented by a set of complementary error control code words. From

this set the encoder selects the error control codeword that best meets the constrained

sequence goals of the system. The decoding structure avoids the problem of error

propagation during constrained sequence decoding by performing error correction before

removing the effects of the constrained sequence code. Power spectra of encoded

sequences generated by a hardware implementation have a null at 0 Hz, confirming that

these coded sequences are dc-free. Bit error rate simulations demonstrate the superior

performance of this combined error control and constrained sequence code on a dc-

constrained noisy channel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to thank the University of Alberta and TRLabs for giving me an

exciting place to study that I always found challenging.

Thanks to Pranavi Anand, Tony Rapley and Shreeram Sigdel for being there

through all of our classes.

Thanks to Yan Xin and Fengqin Zhai for always being able to help me solve my

toughest problems, and locate hard to find papers.

Thanks to Steve Drake and Rick McGregor for letting me use the VLSI labs,

oscilloscopes, power supplies, logic analyzers and many other little parts to make my

project work.

Thanks to Marco Castellon for your VHDL expertise. Without you I might still be

in the lab to this day.

Thanks to Dr. Witold Krzymieri. You became a good friend and mentor and it was

nice to know you were in my comer.

Thanks to Dr. Wayne Grover. You may not know this but I learned a surprising

amount of communication theory from you.

Thanks to my good friend Shreeram Sigdel. Thanks for all the Tim Horton’s

coffees, thanks for studying with me, and mostly thanks for preparing me for my

Qualcomm interview.

Thanks to my brother Duane for flying into Edmonton on numerous occasions to

catch Oiler’s hockey games. We smashed many joysticks and didn’t make it home until

3am, and I wouldn’t have had it any other way. I will never forget those times. Thanks!

Thanks to my Mother and Father for staying supportive all these years I wasn't

workingl This is what I was doing with my time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thanks to my best friend and wife Valerie. We spent almost four years walking

over the windy high level bridge (even in -40°C), and we continued to support each other

every day. When I had some low times and lost my confidence, you were there to remind

me that I am worth something. Thank you for all of your support.

My biggest and most sincere thanks goes out to my supervisor Dr. Ivan Fair. You

took a chance on me as a graduate student when I am certain no one else would, and you

never gave up on me. You gave me skills and tools that I use everyday, taught me new

ways to envision problems, and had the patience to weather my sometimes relentless

questions.

Everyone needs a supervisor like you!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1. Introduction........ 1

1.1. Thesis overview 2

2. Error Control Coding and Constrained Sequence Coding Background 4

2.1. Digital Communication System B asics 4

2.2. Error Control Coding..................................... 4

2.3. Goals of Error Control C oding.. 6

2.4. Block Codes.. 7

2.5. Parity Check Codes.................................... 7

2.6. Generator Matrix... 9

2.7. Parity Check M atrix... 10

2.8. Syndrome Decoding 11

2.9. Hamming bound..... 12

2.10. Hamming Distance... 12

2.11. Linear Code Properties..13

2.12. Hamming Codes....................................... 13

2.13. Cyclic Codes...14

2.13.1. Polynomial representation of codes................ 14

2.13.2. Addition and Subtraction............................... 15

2.13.3. Multiplication.............................15

2.13.4. Division.................... 15

2.14. Encoding of Cyclic C odes.. 15

2.15. Decoding of Cyclic C odes.. 17

2.16. Advantages of Error Control Coding.................................... 20

2.17. Drawbacks of Error Control Coding.................... 20

2.18. Constrained Sequence Coding.................................... 21

2.19. Line Coding Basics............................ 21

2.20. Line Coding G oals 25

2.21. Line Coding approaches.. 26

2.22. Advantages of Constrained Sequence Coding...29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.23. Disadvantages of Constrained Sequence Coding 29

2.24. Combining Error Control Coding and Constrained Sequence Coding.................29

3. Integrating EC coding and CS coding................... 32

3.1. A Simple Scheme 33

3.2. Improved scheme 36

3.3. Tradeoffs.. 42

3.4. Goals of the combined EC and CS system .. 43

3.5. Generic Systems... 44

3.6. General notes on AddCWs... 50

3.6.1. AddSWs and hexadecimal notation 50

3.6.2. Number of AddCWs can be any power of tw o.............................. 50

3.6.3. MSbs and identification b its 51

3.6.4. Good AddCW set......................... 51

3.6.5. Number of AddCW sets...51

3.7. Combined EC and CS code summary... 53

4. Code Word Search and Analytical Results.................. 54

4.1. Evaluating CW Statistics....................................... 54

4.2. Choosing the Best Code W ord.................... 57

4.3. Selection process used in this thesis 59

4.4. Example of the CW selection process based on minimizing the R D S 60

4.5. Comparing unconstrained and constrained transmission... 63

4.6. Effect of Different AddCW s.. 64

4.7. Finite State Machines... 66

4.8. Markov Processes and Markov Chains................... 69

4.8.1. Markov Chains.. 69

4.8.2. Markov Chain Properties... 70

4.8.3. Long Term Behavior of Markov Chains 72

4.8.4. Non-Regular Markov Chains.................... 74

4.8.5. State Diagrams..75

4.9. Analyzing the Encoder as a Markov C hain ... 76

4.9.1. Finding the invariant probability vector of the encoder.................... 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.10. Finding Runlength Probabilities 82

4.11. Analysis of runlength probabilities 83

4.12. Code Word Search....................... 89

4.13. Analysis and CW Search on larger codes 91

4.14. CW Search R esults..93

4.15. AddCW recommendations... 94

5. Power Spectral Density Results.. 98

5.1. Relationship between the time and frequency dom ain.................. 98

5.2. Evaluating the Power Spectral Density...100

5.3. Evaluating the Power Spectral Density of a Coded System 101

5.4. Evaluating the Power Spectral Density using Matlab 110

5.5. Understanding the Discrete-Like Nature of the PSD... 114

5.6. Spectra of various codes... 116

5.7. Spectra of larger codes.. 122

5.8. PSD Summary.................................. 126

6. Implementing the Multimode Encoder and Decoder in Hardware. 127

6.1. Pinouts................................. 130

6.2. SDATA and SCLK signals 130

6.3. Controlling the FPGAs over the PC parallel port... 131

6.4. Transmitter FPGA State Machine..133

6.5. PC Software: Controlling the TX FPG A ..145

6.6. Transmitting a F ile 146

6.7. Debug mode of the FPGA.. 150

6.8. Receiver State M achine.. — 152

6.9. PC Software: Controlling the RX FPGA.................... 156

6.10. Receiving a F ile —.......157

6.11. Verify that the system could correct single bit errors..159

6.12. The effect of more than single bit errors...160

6.13. Equipment used to measure the PSD .. 161

6.14. Testing discrete spectra - 50% duty cycle square w ave 161

6.15. Fourier Series Representation...................... 162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.16. Accuracy of discrete PSD measurements 167

6.17. Accuracy of continuous PSD measurements.................. 168

6.18. How the ResBW affects the PSD............................. 169

6.19. Comparing spectra of various codes... 171

6.20. (15,8) Best AddCW se ts ... 172

6.21. (15,8) Worst AddCW sets.............................. 174

6.22. Spectra of larger codes... 177

6.23. Summary... 177

7. Bit Error Rate Perform ance................................. 178

7.1. Channel m odel.................................... 178

7.2. Simulation... 182

7.3. BPSK Simulation results... 183

7.4. Effect of error control codes 184

7.5. Simple multimode code ... 185

7.6. Effect of 8 AddCWs with the (15,8) code 187

7.7. Performance of larger codes 189

7.8. Effect of 8 AddCWs with the (31,23) code 191

7.9. Conclusions...................... 192

8. Conclusion..194

8.1. Thesis summary................................ 194

8.2. Future work............................ 195

References... 196

Appendix A - Calculating Power Spectral D ensity 198

A.I. Determining the Power Spectral Density 198

A.2. How to calculate RMS for non-sinusoidal signals ... 199

A.3. Comparing Fourier calculations to spectrum analyzer output...............................200

A.4. Trigonometric Fourier Series..201

A.5. Compact Fourier Series... 201

A.6. Exponential Fourier Series.. 201

A.7. Comparing to a Spectrum Analyzer and Digital Oscilloscope 204

A.8. Random Binary Signals 209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.9. Finding the PSD of a Coded Binary Signal 217

A.10. Finite State Machines.................. 217

A .ll . Markov Chains.................................... 220

A.12. Markov Chain Properties... 221

A.13. Partial Summary................... 224

A.M. PSD of Coded Systems - Simplest Example.... 225

A.15. PSD of Coded Systems - Real World Example 235

Appendix B - AddSWs, AddCWs and Codes...................... 240

B .l. (7,x) codes....................... 240

B.2. (15,x) codes............................... 241

B.3. (31,x) codes 242

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

F igure 2-1: S im ple dig ita l c o m m u n ic a tio n s y s t e m .. 4

F igure 2-2: D igital co m m u n ic a tio n system w ith EC c o d in g 5

F igure 2-3: S y stem atic C W»•.•••7

F igure 2-4: M apping o f t h e 1:8 c o d e7

F igure 2-5: C yclic c o d e e n c o d e r ... 17

F igure 2-6: M eg g itt decoder a n d o peration correctin g th e 5™ M S b ...20

F igure 2-7: O n-O ff S ig naling F o r m a t s .. .21

F igure 2-8: P olar S ig naling Fo r m a t s ..22

F igure 2-9: S im ple h ig h- im ped a n ce prea m plifier design using a b ipolar tr a n sisto r 23

F igure 2 -1 0 :5 0 % duty cy c le sq u a r e w a ve throug h a dc blocking c a pa c it o r23

F igure 2 -1 1: AC c o u pled signa l a n d baseline w a n d e r 23

F igure 2-12: AC co u plin g o f an u n b a la n c ed seq u en c e ... 24

F igure 2-13: C lock r eco very c ir c u it losing sy n c h r o n iz a t io n 25

F igure 2-14: D igital c o m m u n ic a tio n system w ith CS c o d in g ..26

F igure 2-15: T ypical c o n fig u r a tio n t h a t in corporates EC c o d in g and CS c o d in g30

F ig u r e 2-16: D esired c o n fig u r a tio n th a t in corporates EC c o d in g and CS c o d in g31

F igure 2-17: C om bined appro a ch th a t in corporates EC c oding and CS c o d in g31

F igure 3-1: A sim ple EC + CS en c o d er using bim o d e c o d in g ..34

F igure 3-2: T he effec t o f th e b im ode c o d in g : balanced o u t p u t ..34

F igure 3-3: A sim ple EC + CS d ec o d er using tw o A ddC W s ...35

F igure 3-4: A sim ple EC + CS en c o d er using four A ddCW s »37

F igure 3-5: T he effec t o f t h e (7,2) sch em e is balanced o u tpu t a n d n u m er o u s t r a n s it io n s 37

F igure 3-6: A sim ple EC + CS d ec o d er using four A ddC W s39

F igure 3-7: C oncatenatio n o f C W s show s runs o f four like v a lu ed b it s .. 39

F igure 3-8: A sim ple EC + CS en c o d er using eig h t A ddCW s .. 40

F igure 3-9: SW to CW m apping o f t h is (7,1) s e t u p ... »41

F igure 3-10: A sim ple EC + CS dec o d er using eig h t A d d CW s 42

F igure 3-11: G eneric bim ode co m plem en ta ry encoder using tw o A d dC W s 44

F igure 3-12: G eneric bim ode co m plem en ta ry decoder using tw o A d dC W s 44

F igure 3-13: A ddCW f o r m a t fo r a system using tw o A ddCW s ».»45

F igure 3-14: Fo r m a t o f t h e tw o A d dCW s for proper d ecoder o p e r a t io n 45

F igure 3-15: G eneric m u ltim o d e co m plem en ta ry encoder using fo u r A ddC W s47

F igure 3-16: G eneric m u ltim o d e c o m plem en ta r y decoder using four A ddC W s47

F igure 3-17: C hoosing an A ddC W s et with four A ddC W s ..48

F ig ure 3-18: Str ic t fo r m a t o f th e four A ddCW s .. 48

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

F igure 3-19: G eneric m u ltim o d e c om plem entary encoder using e ig h t A ddCW s49

F igure 3-20: G eneric m u ltim o d e com plem entary decoder using e ig h t A d dC W s49

F igure 3-21: C hoosing an A ddCW s et with eig ht A ddCW s49

F igure 3-22: Str ic t fo r m a t o f th e eig h t A d dCW s .. 50

F igure 4-1: C o un ting T r a n s it io n s .. 54

F igure 4-2: R unning D ig ital S um o f t h e code w ord 3A h 55

F igure 4-3: M inim um sq uared w eig h t can ta k e th e in tern al RDS into a c c o u n t 56

F igure 4-4: M inim um sq uared w eig h t criteria chooses th e sec o n d C W ..57

F igure 4-5: S equ ence has m any tra n sitio n s but it is u n b a la n c ed ..57

F igure 4-6: Seq u en c e is balanced b u t it c ontains few t r a n s it io n s58

F igure 4-7: (7,2) encoder w ith A d dCW s { 00 h , 3A h , 45 h , 7F h) ... 60

F igure 4-8: S imFPG A - P rogram for verifying th e CW selection pro cess ... 60

F igure 4-9: U n c o d ed seq u en ce is unba la n ced and has a run o f 9 63

F igure 4-10: C o ded seq u en c e is balanced but still has a run o f 5 like valued b it s64

F igure 4-11: C o ded seq u en c e is balanced and no w has a run o f o n l y th r e e lik e v alued b it s 66

F igure 4-12: P artia l sta te diagram for the (7,2) encoder tra n sm ittin g four SW s 0 ,2 ,3 and 3.

T his causes tra n sitio n s fro m state (0,0), to state (-1,0), to sta te (0,1), to state (1,0), and

BACK TO STATE (0 ,1) ..67

F ig u r e 4-13: St a t e D iagram for (7,2) code w ith A ddSW s={0h ,4h ,B h ,Fh } ..68

F ig u r e 4-14: M arkov C hain St a t e D ia g r a m ...76

F igure 4-15: M arkov C hain St a t e D iagram w ith Sta te P r o b a b ilities ... 81

F igure 4-16: D eco m po sed state diagram illustrating th e pro bab ility o f a SW /C W entering

EACH STATE, AND PROBABILITY OF EACH CW LEAVING EACH STATE, ALLOWING STRAIGHTFORWARD

CALCULATION OF RUNLENGTHS -8 2

F igure 4-17: C on c a ten a tio n o f t w o C W s and th e P ortion o f In t e r e s t ...83

F igure 4-18: B uild_E uC u .exe P ro g ra m th a t builds e u, Ev and C„ m a t r ic e s .. 84

F igure 4-19: O utput states from B uild_E uC u .e x e ... 85

F ig u re 4-20: O u tp u t E„ a n d C„ m a t r ic e s f ro m B u ild _ E u C u .e x e .. 85

F igure 4-21: C alcPIM andP r o b s .e x e ... 86

F igure 4-22: O utput from C alcP IM andP r o b s .e x e .. 86

F igure 4-23: R unlength pro ba bilities with SW 0 -8 7

F igure 4-24: R unlength pro babilities w ith SW 1 87

F ig ure 4-25: R unlength pro ba bilities w ith SW 2 88

F igure 4-26: R unlength pro ba bilities with SW 3 .. 88

F igure 4-27: CW search pr o g r a m '... 89

F igure 4-28: CW search resu lts for t h e (7 ,2).. 90

F igure 4-29: S imFPG A k eeps tr a c k o f percenta ge o f tim e each A d d CW is u s e d96

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

F igure 5-1: D em onstratin g nulls a t 0 H z on both linear a nd lo g a rith m ic s c a l e s99

F igure 5-2: L ow freq uency c o n ten t o f a s ig n a l 99

F igure 5-3: H igh freq uency c o n ten t o f a s ig n a l ...99

F ig ure 5-4: PSD o f a sq u a r e pulse shape plotted on linear and lo g a rith m ic s c a l e s 109

F igure 5-5: In put file for PSD c a lc u la tio n ...110

F igure 5-6: In form ation r equired for PSD c a l c u l a t io n111

F igure 5-7: L inear PSD o f t h e m u ltim o d e system (no pulse sh a pe in clu ded)112

F igure 5-8: S how ing th a t t h e PSD is periodic and an even f u n c t io n ..112

F igure 5-9: E ffect o f t h e sq u a r e pulse shape plotted on a linear a nd lo g a rith m ic s c a l e 113

F igure 5-10: C om paring th e spectru m analyzer to M atlab s pe c t r u m .. 113

F igure 5-11: S im plest FSM m o d el for the (7,1) c o d e ..114

F igure 5-12: PSD o f t h e m u ltim o d e c o d e show n in F igure 6 -5 0 ..115

F igure 5-13: PSD o f t h e periodic sequences {6916h } and {692Ch } .. 116

F igure 5-14: PSD o f t h e periodic sequences {5316h } and {532Ch }116

F ig ure 5-15: A v erage o f t h e sev en frequency c o m po n en ts .. 116

F ig ure 5-16: 90% ones - A ll four B est A d dCW s e t s ..117

F igure 5-17: 10% ones - A ll four B est Ad dCW s e t s ..118

F ig ure 5-18: PSD o f (15,8) codes w ith a balanced so u r c e ...119

F igure 5 -19 :90% ones - A ll four W o r st A ddCW s e t s ...120

F igure 5 -20 :10% ones - A ll four W o r st A ddCW s e t s 121

F igure 5 -21 :90% o n e s - B est A d dCW set follow ed by a w o rst A d dCW s e t ..121

F igure 5-22: 90% ones - B est a n d w o rst A ddCW set .. 122

F igure 5-23: S im ulation for finding th e P S D ... 123

F igure 5-24: 90% ones - b est A d dCW set follow ed by a w o rst A d d CW s et 124

F ig u r e 5-25: 10% ones - T w o (31,23) c o d es .. 124

F igure 5-26: Statistics o f t h e (31,23) c ode w ith th e 1st A ddCW s e t ...125

F igure 5-27: Statistics o f t h e (31,23) c ode with th e 2nd A d dCW s e t .. 125

F igure 6 -1: B lqck diagram o f t h e FPG A c o m m unication s e t u p 127

F igure 6-2: FPGA tr a n sm itter a n d receiver co m m u n ic a tin g ... 128

F igure 6-3: D ig il e n t D igilab FPG A board ... 129

F ig ure 6-4: D I0 2 periph era l b oard for input and o u t p u t 129

F igure 6-5: T he pinouts used on t h e FPG A b o a r d s ... 130

F igure 6-6: SDATA seq u en c e (t o p) and SCLK seq u en c e (b ottom) 131

F igure 6-7: P arallel P o r t c o n n ec to r on th e back o f a P C ...131

F igure 6-8: T he ‘tr a n sien t ’ n a t u r e o f th e parallel po rt w hen sw itc h in g v a l u e s132

F igure 6-9: FSM m o d el o f t h e pa r a llel port deboun ce c ir c u it ...132

F igure 6-10: M ain tr a n sm itter FPG A F S M .. 133

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

F igure 6-11: LCD scr een and correspo n d in g D DRAM lo c a tio n s .. 136

F igure 6-12: FSM for displaying strings and num bers on th e LCD s c r e e n 137

F igure 6-13: H igh-lev el block diagram o f t h e r unning m o d e sta te F S M 138

F igure 6-14: T estbench for SW pa c k in g139

F igure 6-15: 63h and 8A h form t h e 9 -bit SW C 7h or 01100011 1b .. 140

F igure 6-16: T estbench for th e H am m in g en c o d er ... 140

F ig ure 6-17: T estbench for CW a d d it io n ...141

F ig ure 6-18: T estbench for th e St a tsG en m o d u l e .. 141

F igure 6-19: T estbench for t h e Selec tB est m o d u l e 143

F igure 6-20: T estbench for t h e P a r a llel2Ser ia l m o d u l e 145

F igure 6 -2 1: Softw a re th a t co n tro ls th e TX F P G A 145

F ig ure 6-22: S etting up th e n u m b er o f A ddCW s ... 146

F ig ure 6-23: E ight A ddCW s hav e been selected for use w ith th e (31 ,x) co d e 146

F igure 6-24: R eading th e A ddSW s from file to use w ith t h e (3 1,23) c o d e ...147

F igure 6-25: E nc o d er w rites back th e 8 A ddCW s it is going to u s e .. 147

F igure 6-26: T w o w ays to tr a n sm it th e file into FPG A R A M ..148

F ig ure 6-27: R eading back th e file H ello W o r ld , and w h a t a po ssib le erro r m ig h t look l ik e . 149

F ig ure 6-28: C hoo sing th e ser ia l tra n sm issio n s p e e d ... 149

F igure 6-29: S etting th e a m o u n t o f RA M th a t th e FPG A c ould u s e ..150

F ig ure 6-30: E nco d er in debug m o d e show ing t h e CW selection p r o c e s s .. .151

F ig ure 6-31: W inning location is CW 5 or 5D 5D D A 81h 152

F ig ure 6-32: M ain receiver FPG A F S M .. 153

F ig ure 6-33: H igh-lev el block diagram o f t h e running m o d e sta te F S M .. 153

F igure 6-34: T estbench for t h e S erial2P a r allel m o d u l e ..154

F igure 6-35: T estbench for th e M eg g itt D ecoder m o d u l e ...155

F igure 6-36: T estbench for th e C W addition m o d u le ... 155

F ig ure 6-37: T estbench for th e SW U npacking m o d u l e 156

F ig ure 6-38: Softw a re th a t co n tr o ller s th e RX F PG A ... 157

F ig ure 6-39: D um m y file r ead b a c k from the RX FPG A R A M 158

F ig ure 6-40: RAM conten ts rea d back from the RX FPG A 158

F igure 6-41: H ow th e sw itc h es on th e D I0 2 board controlled t h e TX F P G A159

F ig ure 6-42: T o p line is C W s w ith sin g le bit er ro rs , bottom line is erro r free CW s 160

F ig ure 6-43: “H ello W o r ld” file received w ith 2 -bit errors per C W ...160

F igure 6-44: D igital o sc illo sc o pe and spectrum ana lyzer u sed ...161

F igure 6 -4 5 :5 0 % duty c y c le unipo lar sq u a r e w a v e ... 161

F ig ure 6-46: PSD m easured o n t h e DO and S A .. 166

F ig ure 6-47: S how s h o w th e SA is n o t accurate below 9 kHz 167

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

F igure 6-48: PSD o f a random binary sq u a r e w a v e , m easured versus c a l c u l a t e d 168

F igure 6-49: Sa m e PSD m easured w ith tw o d iffer en t R esB W ’s .. 169

F igure 6-50: T he effect o f decreasing th e R esB W .. 170

F ig ure 6-51: B ujldR a n d o m B jtF ile program for gen era ting rando m data f il e s 171

F ig ure 6-52: ‘R a nd om _ ones_10_S izeIs 1024.b in ’ show s th e file is m ostly logic Os171

F ig ure 6 -53 :90% ones - A ll four B est A d dCW sets . C o m pare w ith F ig ure 5 -1 6172

F ig u re 6-54: Co m pa r in g th e 90% o nes b est A ddCW set l AA on th e 5 dB /div s c a l e 173

F ig u re 6 -5 5 :1 0 % ones - A ll four B est AddCW sets . C o m pa r e w ith F ig ure 5 -1 7 173

F ig ure 6 -56 :50% ones show s little differ en c e betw een c odes - C o m pa r e w ith F igure 5 -18........174

F ig ure 6 -57 :90% o n e s - tw o o f t h e W o r st A ddCW sets . C o m pa r e w ith F igure 5 -19 174

F ig ure 6 -58 :10% o n e s - tw o o f t h e W o r st A d d CW sets . Co m pa r e w ith F ig ure 5 -20 175

F ig ure 6-59: Co m pa r in g th e 90% o nes w o rst A d dCW set 108 on th e 5 dB /div s c a l e 175

F ig ure 6 -6 0 :9 0 % ones - B est A ddCW and W o r st A ddCW s e t - C o m pa r e w ith F ig ure 5 -21176

F ig u re 6 -61 :90% o n e s - B est A ddCW and W or st A ddCW s e t - C o m pa r e w ith F ig ure 5 -22176

F ig u re 6 -62 :10% o n e s - T w o (31,23) c o d es . Co m pa r e w ith F ig u r e 5 -2 5 .. 177

F ig u re 7-1: d c -c o n str a in ed c h a n n e l - H P F con ca ten a ted w ith A W G N ...179

F ig ure 7-2: (a) B inary seq u en c e [l , 0 ,0 ,1 ,1 , l , 0] tr a n sm itted using bipolar c o d in g .

(b) M id po in t l o c a t io n s ..180

F ig u re 7-3: S ho w ing th e effec t o f t h e H PF ch a n n el w ith A C tim e con sta n ts 10 and 2, and how

THE SNR IS N O T CONSTANT OVER A BIT PER IO D 181

F ig u re 7-4: H PF c h a n n e l s e f f e c t o f a lo n g r u n o f l o g i c 0s w ith a n R C c o n s t a n t o f 10 a n d 2. I t

CAN BE SEEN THAT THE VOLTAGE IS DECAYING TO 0 V O L T S ... 181

F igure 7-5: H PF c h a n n el m o d el s im u l a t io n ...182

F ig ure 7-6: L o o k in g for 1000 errors at each SNR from 5 .5dB t o 10dB w ith t = 3 0183

F ig ure 7-7: BPSK on an AW GN c h a n n el versus th e H PF ch a n n el w ith A W G N 183

F ig ure 7-8: R ang e o f B ER values th a t occurs w ith cha n g in g so u r c e st a t ist ic s 184

F ig ure 7-9: E ffec t o f EC codes on th is ch a n n el is m in im a l ... 185

F ig u re 7-10: C o m pa r iso n o f perform ance o f (15,11) a n d (15,10) codes w ith ba la n ced so u rce ...185

F ig ure 7-11: S imFPG A results for th e (15,10) c o d e show ing runlength p r o b a b il it ie s 186

F ig ure 7-12: R a n g e o f BER results for th e (15,10) c o d e ... 187

F ig ure 7-13: BER perfo rm a n ce o f t h e (15,8) c o d e .. 188

F ig ure 7-14: T h e (15,8) c o d e on t h e H PF ch a n n el c o m pa red to BPSK on an AW GN c h a n n el 188

F igure 7-15: P er fo rm a n ce o f t h e (15,8) c o d e does not c hang e w ith varying so u r ce statistics 189

F igure 7-16: BER perfo rm a n ce o f t h e (31,25) c o d e .. 190

F ig ure 7-17: S imFPG A results for th e (31,25) co d e show ing r unlen gth p r o b a b il it ie s 190

F ig ure 7-18: R a n g e o f BER values for th e (31,25) c o d e versus th e (15,10) c o d e191

F ig ure 7-19: B ER perfo r m a n c e o f t h e (31,23) c ode is better th a n th a t o f t h e (15,8) c o d e 191

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

F igure 7-20: BER perfo rm a n ce o f t h e (31,23) co d e on th e dc-co n str a in ed ch a n n el is better than

THE BER PERFORM ANCE O F B PSK ON AN AW GN CH A N N EL ... 192

F ig ure A -l: PSD displays th e c o ntribution o f pow er a t each f r e q u e n c y ...198

F igure A-2: O nce c odin g is in tro d u c ed , calculating th e PSD can be c h a l l e n g in g 199

F ig ure A-3: C a lcula ting t h e pow er and RM S o f a sine w a v e ... 199

F igure A-4: D igital o sc illo sc o pe m e a s u r e m e n t s .. 200

F ig ure A -5 :50% duty c y c le sq u a r e w ave on s c o p e 202

F igure A-6: C alcula ting th e av era g e and R M S 202

F igure A-7: C alcula ting a0 and an.. 203

F ig ure A-8: C a lcula ting bn ..203

F ig ure A-9: Show s t h e an and bn values in a list , and th e co n v ersio n to find t h e C n v a l u e s203

F ig ure A -10: CN values in a list w ith freq uency values and n index b e l o w ...203

F igure A -l l : e N values show n in list w ith freq uency values and n index b e l o w 204

F ig ure A-12: DO show ing th e freq uency dom ain PSD o f t h is sq u a r e w a v e ...205

F ig ure A-13: C alcu la ted dBV rms v alues o f t h e sq u a r e w a v e ...205

F igure A-14: SA sh ow ing th e freq u en cy dom ain PSD o f t h is sq u a r e w a v e ... 206

F ig ure A-15: C a lcula ted dB m values o f t h e square w a ve ... 206

F igure A-16: Sq u a re w a ve w ith a 6.25% duty c y c l e .. 207

F ig ure A-17: C a lcula ting A v er a g e and RM S values for t h e 6.25% duty c y c le sq u a r e w a v e ..207

F igure A -18:6 .25% duty cy c le sq u a r e w ave in th e freq uency dom a in on t h e DO a n d S A 208

F igure A-19: PD F for t h e d isc r ete tim e random p r o c e s s ..209

F ig ure A-20: PD F o f t h e r ando m pro cess for E x a m ple 4 211

F ig ure A -21: D iscrete tim e random process m apped to continuous tim e w ith delta functions 214

F ig ure A-22: W aveform is a c o n v o lu tio n o f t h e pulse sha pe and tr a in o f delta fu n c tio n s 215

F igure A-23: Sq u a re pulse sh a pe being convo lved w ith itself .. 215

F igure A-24: Gra ph ic a l depictio n o f E quation A .1 9 ... 216

F ig ure A-25: Fo u rier tr a n sfo rm o f t h e autoco rrelation fu n c tio n is th e P S D 216

F ig ure A-26: M atlab scr ipt sh ow ing PSD th a t m atches w ith E xa m ple 3 ..216

F igure A-27: M ealy F in ite Sta te M achin e (F S M)... 218

F ig u re A-28: R a te j/z c o n v o l u t i o n a l e n c o d e r .. 218

F ig ure A-29: FSM o f t h e c o n v o lu tio n a l encoder o f E x a m p l e 6 ... 219

F ig ure A-30: T ransitio n m atrix for E xam ple 7222

F ig ure A -3 1: Sta te diagram for E x a m ple 7 ... 222

F igure A-32: M a trix pow ers c a n find the tw o step p r o b a b il ity .. 223

F ig ure A-33: 4-step , 5-step and 100-step probabilities for E x a m ple 7224

F igure A-34: O riginal s ta te diagram o f t h e exa m ple s y s t e m225

F igure A-35: E xpanded state diagram for th e exa m ple s y s t e m226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F ig u re A-36: S q u a r e p u ls e sh a p e u s e d in E x a m p le 8232

F ig u r e A-37: S to r e s t h e p u ls e sh a p e P(f) a n d w e ig h t , f in d s t h e d B V RMs v a l u e a t 100kH z 234

F ig ure A-38: F ind dB V rms v alues a t 200kH z and 300kH z 234

F ig ure A-39: F ind dB V RMs v alues a t SOOkH z and 700kH z234

F ig u re A-40: F inding th e dB m va lu e a t IOOkH z 234

F ig ure A-41: F inding th e dB m values a t 300kH z and 5 00 kHz234

F ig ure A-42: Sta t e diagram o f t h e random binary s ig n a l235

F ig ure A-43: T i-89 and M atlab plottin g th e spectrum 239

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

List of Tables

T able 2-1: S ystem atic C W s fo r m ed by E quations 2.3 to 2 .5 ... 10

T able 3-1: SW to C W m apping o f t h is bim ode (7,3) setu p . Co m pa r e w ith T a b le 2 - 1 35

T able 3-2: SW to CW m apping o f t h is m u ltim ode (7,2) s e t u p38

T able 3-3: SW to CW m apping o f t h is m u ltim ode (7,1) s e t u p41

T able 3-4: (7,x) code perfo rm a n ce w ith equ iprobable so u r ce s t a t is t ic s ..42

T able 3-5: U sing Ad dCW s c6(y)= 0 110001 a n d CoCŷ IO O I I I O 46

T able 3-6: U sing A d d CW s c6(y)= 0 1 10001 and c8(x)=1000101 ..46

T a ble 4-1: W ith th e M SW criter ia th e all-zer o CW w o uld be t r a n s m it t e d ...58

T able 4-2: D ecision process from S imFPG A for t h e fir st S W ...61

T a ble 4-3: D ecision pro cess from S imFPGA for t h e seco n d S W ..62

T able 4-4: D ecision pro cess from S imFPG A for t h e th ird and fourth S W 63

T able 4-5: D ecision pro cess from S imFPG A for t h e 1st S W ...65

T able 4-6: D ecision process from S imFPGA for th e sec o n d , th ir d and fourth S W65

T able 4-7: B est A ddSW sets from th e (15,8) s e a r c h93

T able 4-8: R unlength pro ba bilities for the B est A ddC W s .. 93

T able 4-9: W o r st A ddSW sets from th e (15,8) s e a r c h ...94

T a ble 4-10: R unlength pro ba bilities for the W o r st C W s ..94

t a b l e 4-11: ADDSW set {0h ,108h ,200h ,300h ,4FFh ,5FFh ,6F7h ,7FFh }... 95

T able 4-12: A d d SW set {0h ,10C h ,200h ,300h ,4FFh ,5FFh ,6F3h ,7FFh }........................... 95

T a b l e 4-13: A d d SW set (Oh , 120h ,200h ,300h ,4FFh ,5FFh ,6DFh ,7FFh } ...95

T a ble 4-14: A ddSW set {0h ,130h ,2O0h ,300h ,4FFh ,5FFh ,6CFh ,7FFh }.. 95

T a b l e 4-15: A ddSW set {0h ,107h ,2C8h ,323h ,4DCh ,537h ,6F8h ,7FFh } 95

T able 4-16: A ddSW set {0h ,14D h ,29B h ,370h ,48Fh ,564h ,6B2h ,7FFh } 95

T a b l e 4-17: A d d SW set {0h ,1A A h ,29B h ,323h ,4DC h ,564h ,655h ,7FF h }................................... 96

T able 4-18: A d d SW set (0 h ,1E7h ,2C8h ,323h ,4DCh ,537h ,618h ,7FFh) ...96

T able 6-1: Co m m a n d s for both t h e transm itter and receiver F PG A s .. 134

T able 6-2: String table held in th e first 400h bytes o f R A M ...136

T a ble 6-3: S um m ary o f t h e St a t sG en m odu le g athering s t a t is t ic s 142

T a ble 6-4: S um m ary o f t h e S electB est m o d u l e ... 144

T able 6-5: O u tpu t from S im F PG A ... 151

T able 6-6: C alcula ted A V G and RM S versus m e a s u r e d 162

T a b le 6-7: F i r s t n in e Cn t e r m s f ro m C o m p a c t F o u r ie r S e r ie s (l i n e a r s c a l e) 164

T a b le 6-8: F i r s t n in e Cn t e r m s f ro m C o m p a c t F o u r ie r S e r ie s in dB V RMs 165

T a b le 6-9: F i r s t n in e Cn t e r m s f ro m C o m p a c t F o u r ie r S e r ie s in d B m ..166

T able A -l: S how ing how t h e m ea su r ed and ca lc u la ted v alues m a tch up ... 205

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

T able A-2: S how ing how t h e m ea su r ed and ca lc u la ted values m a tch u p206

T able A-3: M easured vs c a lc u la ted for dB m and dBV RMs 6.25% duty c y c le sq u a r e w a v e 208

TABLE B-l: (7,3) ADDSWS - (23)0 = 1 SET... 240

TABLE B-2: (7,2) ADDSWS - (22)1 = 4 SETS.................... 240

TABLE B-3: (7,1) ADDSWS - (21)3 = 8 SETS 240

TABLE B-4: (15,10) ADDSWS - (2I0)°= 1 S E T241

TABLE B-5: (15,9) ADDSWS - (29)1 = 512 SETS............................ 2 4 1

TABLE B-6: (15,8) ADDSWS - (28)3 = 16777216 SETS2 4 1

TABLE B-7: (31,25) ADDSWS - (22S)° = 1 SET 242

TABLE B-8: (31,24) ADDSWS - (224)1 = 16777216 S E T S 2 4 2

TABLE B-9: (31,23) ADDSWS - (223)3 = 590295810358705651712 SETS 242

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

List of Abbreviations

AddSW Add Source Word

AddCW Add Code Word

CS Constrained Sequence

CW C odew ord

DO Digital Oscilloscope

EC Error Correction / Error Correcting

ESD Energy Spectral Density

LB Last Bit

LC Line Coding

LSb Least Significant bit

MSb Most Significant bit

MSW Minimum Squared Weight

PSD Power Spectral Density

RDS Running Digital Sum

SW Source Word

SA Spectrum Analyzer

WRDS Word-end Running Digital Sum

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

1. Introduction

The objective of a communication system is to transfer information from a source

to a destination with as much accuracy as possible. While errors will inevitably occur,

modem digital communication systems typically package their data in an intelligent

manner to reduce these errors. As such, both error control coding and constrained

sequence coding are a form of intelligent packaging used to deliver information from a

source to a destination with a minimum number of eirors [i,2,3].

For numerous reasons errors can occur during transmission. Error control coding

allows for the detection and often correction of these errors by encoding source data in a

redundant manner. Constrained sequence coding, also known as line coding [4,5], is an

alternate encoding method that pre-conditions source data before transmission in an

attempt to prevent errors from happening in the first place.

Both of these coding techniques aim to achieve the same goal of error free

transmission. As a result, a logical advancement is to try and combine the two approaches

to extract the benefits from both coding techniques [6-ii]. Simple configurations involve

using both codes in a concatenated fashion where the original source data is encoded with

an error control code first, called the outer code, followed by a constrained sequence

code, called the inner code. This simple arrangement aspires to avoid errors as a result of

the inner constrained sequence code, with the expectation that the outer error control code

can correct any errors that do occur.

A problem known as error propagation occurs with this setup when the

constrained sequence decoder encounters errors that inevitably occur during transmission.

That is, random bit errors from the channel are increased during constrained sequence

decoding since the constrained sequence decoder has no means of handling these errors.

As a result, the outer error control code must be powerful enough to correct the original

errors as well as the additional errors introduced by the constrained sequence decoder. If

the number of errors exceed the error correcting ability of the error control code, then the

error control decoder may also introduce additional errors into the decoded sequence.

' ' 1 ■ ■

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

Since this problem results from the fact that the constrained sequence decoder

cannot adequately handle errors, common sense would mandate that any errors be

corrected before removing the constrained sequence code. However this is not easily

accomplished since the order of decoding operations would no longer be the inverse of

the encoding operations. As a result this problem has lead many channel coding

researchers to investigate ways to combine both coding techniques into one monolithic

code. With a combined code data could be simultaneously pre-conditioned for the

channel to try and prevent errors from occurring, and as well, when errors do occur on the

channel, they could be error corrected first before constrained sequence decoding, thus

avoiding error propagation. This thesis introduces a new combined error control and

constrained sequence code based on linear block codes. The new code introduced is

analyzed, simulated, and implemented in FPGA circuits for proof of concept. The coding

technique presented in this thesis can be used in fiber optic back planes which

traditionally rely on CS coding alone, or even in CD and DVD formats such as the new

Blu-ray or HD-DVD standards, which employ both forward EC codes and dc-free CS

codes when formatting data for storage on the disk.

1.1. Thesis overview

Chapter 2 presents concepts of error control coding and constrained sequence

coding that are used in this thesis. Chapter 3 follows by discussing general approaches

that can be used to create a combined error control and constrained sequence code.

Following this is a gradually evolving example that clearly details the new approach

introduced in this thesis. Chapter 4 outlines the mathematics required for analyzing code

performance in the time domain. The results of a computer search are also presented and

recommendations are made detailing how this coding technique can be applied to other

linear block codes. Chapter 5 investigates the coding scheme in the frequency domain

and presents the results and analysis of the power spectral density of various

configurations of this coding technique. Chapter 6 presents the FPGA hardware

implementation and compares the measured time domain and frequency domain results

with analytical results, while Chapter 7 considers the bit error rate performance of this

' ' 2 ■

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.

combined code and compares various configurations. Finally, Chapter 8 summarizes the

concept, configurations and performance of the combined coding technique as well as

presents suggestions for future work. The appendix serves as a reference for calculating

power spectral density in general as well as for block codes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Error Control Coding and Constrained Sequence Coding Background

2.1. Digital Communication System Basics

A digital communication systems requires a source, which for the purpose of this

thesis is considered to only output the binary symbols 0 and 1. Binary symbols will also

be referred to as bits or digits depending on the context. This binary information is

transmitted over a channel and is received by a receiver. The channel introduces a

number of effects such as attenuation, distortion, interference and noise, which inevitably

results in the receiver making errors [4,sj. The channel however is most easily modeled as

simply introducing errors in the form of flipping bits from either a 0 to a 1, or vice versa.

The receiver then receives the incoming data, and makes bit by bit decisions on whether

or not it received a 0 or a 1. This is shown in Figure 2-1.

Channel

Source

G)
Receiver

Figure 2-1: Simple digital communication system

2.2. Error Control Coding

Transmitting raw binary information over a channel provides no means of

detecting errors which inevitably occur. The reason for this is because any combination

of Os and Is on the channel is considered valid. Due to the addition of noise (that is

modeled as simply flipping bits) the receiver can never really be certain if the bits it

received were the ones that were sent.

A typical example would be copying a file from one computer to another. If the

data was transmitted byte by byte, where one byte is 8-bits, all 28 = 256 possible bit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

combinations of 0 and 1 would be considered valid. Thus if the source computer

transmits 00000000 and the destination computer receives 00000001 (as a result of

channel noise), the destination computer would have to assume that this was the data

transmitted and the file would now contain errors.

The solution then is to reduce the number bytes considered valid. For instance, if

out of the 256 possible bit combinations only 00000000 and 11111111 were considered

valid, the receiver would now have a way of detecting errors on the channel. The

destination computer would now know that byte 00000001 is invalid (error detection),

and furthermore could infer that the intended byte was 00000000 (error correction). In

fact, in this specific case, the channel can add as many as three bit errors per byte, such as

00000111, and the destination computer could still infer that this byte was 00000000.

(Note that four bit errors such as 00001111 would result in the receiver being unable to

determine the intended byte, and five or more bit errors such as 00011 111 would result in

the receiver mistakenly inferring that 11111111 was the intended byte). This ability to

detect and correct errors comes at the expense of increased redundancy. With only two

valid bytes available for transmission only log2(2) = 1 bit of information is transmitted

with each byte. Therefore in order to transmit the data byte 10101010, the source

computer would need to transmit the eight bytes 11111111, 00000000, 11111111,

00000000, 11111111, 00000000, 11111111, 00000000. Thus the source computer must

transmit eight times as much information, which results in a redundancy of 800% or an

efficiency of 12.5%, to send one byte of data [1,2 ,3]. As a result this system can be

considered as emitting 1-bit source words (SW) that are mapped to 8-bit code words

(GW). This is an example of error control (EC) coding and is shown in Figure 2-2.

Channel

Noise

Receiver

Source

Error Control
Decoding

Error Control
Coding

Figure 2-2: Digital communication system with EC coding

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Redundancy is an essential part of EC coding since the more redundancy added

the more errors that can be corrected. For example, if instead of a 1:8 mapping a 1:16 or

1:32 mapping was used, the destination computer could correct as many as seven or

fifteen bit errors per CW respectively. Conversely, the more redundancy added the more

inefficient the system becomes. This is known as the coding tradeoff.

There is also no restriction that requires SWs to be 1-bit. As will be seen in this

thesis, mappings such as 4-bit SWs to 7-bit CWs, 11-bit SWs to 15-bit CWs and higher

can be used. This mapping can be increased to any level desired, and as stated in

Shannon’s work, we can drive our error rates as low as we choose [12]. In either case, the

fundamental concept of EC coding is that more bits are being sent on the channel then is

needed to convey the original message, but this is being done in order to detect errors,

and in many cases correct errors.

The previous example demonstrates the fundamental concepts and motivations of

EC coding. The following sections introduce terms and equations required for analyzing

and comparing various forms of EC coding.

2.3. Goals of E rro r Control Coding

Goals of EC coding include:

1. Detect and/or correct as many bit errors as possible

2. High efficiency

3. Simple scheme

4. Reduce error extension (to be defined)

Some of these goals are contradictory, since to improve efficiency usually means

reducing the error controlling ability and vice versa. On the other hand, attempting to

improve both would be at the cost of increased encoding and decoding complexity.

6 ■ ■ ' '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4. Block Codes

The example presented in Section 2.2 broadly illustrates a simple block code. In

block codes the source data is grouped in sequential blocks of k bits defined as a source

word (SW). Each k bit block is then encoded into an n bit block defined as a code word

(CW), where n is larger than k [1,2 ,3]. This is often referred to as SW to CW mapping. The

resultant code is called an (n,k) block code and thus in the example above, the code

would be called an (8,1) block code.

The extra (r t -k) bits added are called parity check bits. This is the redundant

information added to the source data that allows for error detection and/or correction. If

the CW is constructed in such a manner that the SW appears at the beginning of the CW,

it is said to be a systematic code. Figure 2-3 shows a systematic CW.

<---------------------n ------------------------►

a 1r r 1 • n lr k■ i t p 1 * n-K *

Figure 2-3: Systematic CW

As shown in Figure 2-4, the example in Section 2.2 used systematic CWs since

the original SW appears at the beginning of the CW.

0 00000000
1 11111111

Figure 2-4: Mapping of the 1:8 code

2.5. Parity Check Codes

The redundant information that is added to the source data is usually done in a

logical fashion. The goal is to have each CW unique, and different from all other CWs by

the greatest amount possible. One way to do this is with parity check codes.

. ■ ■ ' ' ' ' 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is convenient to represent an (n,k) block code in matrix form as a row vector

whose elements are the code symbols (bits). The original SW in vector form can be

represented as d , and the CW in vector form as c as shown in Equation 2.1.

d — \d\ , dn,•*'d/c 1
, , (2-1)

C — \C\,C2 , . . .c k ,.. .Cn\

As described in Section 2.4, in a systematic code the first k bits of c would equal

the k bits of d . The remaining n - k parity check bits are created through addition over

a finite field of length 2, known as GF(2), which is also defined as modulo-2 addition, or

XORing in programming notation. Let m = n - k and let the systematic CW vector c be

created as follows:

cl = d \
c2 = d2

(2.2)
ck = dk

Ck+1 = P \ \d \ + P \2d 2 + • • • + P \k ^ k

Ck+2 = P i \ d ’l + P l l ^ l ••• + P 2 k^k

^k+m = P ' , A + P n , 2 d 2 + - + P n,kd k

The coefficients py can be collected into a binary parity m atrix P that describes

which SW bits are used to form the parity check bits. This logical mapping allows for 2*

unique SWs to be mapped to 2* unique CWs out of a possible 2" words. The SW to CW

mapping can also be pre-computed and stored in a large look-up table (LUT) in

computer memory, in which case each SW is treated as an index into the LUT, and the

output is the CW.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6. G enerator M atrix

Using a LUT to assign SWs to CWs becomes unmanageable as the CW size

grows and the number of possible SWs increases. This is because memory size and

access time start to become a factor. An alternative is to represent the above operation in

matrix form as shown in Equation 2.3 and 2.4.

c = dG = \dv d2,...,dk\

1 0 ..

0 1 ..

0 Pi i P21
0 P\2 P22

0 0 ... 1 p lk p 2k

c = dG where G = [/ t P r]

Pml
Pm2

Pmk J

(2.3)

(2.4)

Here G is known as the generator m atrix and the CWs can now be generated on

the fly using Equation 2.4. This provides a memory saving since only the generator

matrix needs to be stored instead of all the CWs. This comes at the cost of added

complexity in the form of matrix multiplications. For instance, the following could be a

generator matrix with fc = 4:

G =

1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

where Ik =

‘ 1 0 0 o'
11 1 00 1 0 0 and P = 0 1 1 10 0 1 0

1 1 1.0_o 0 0 1

(2.5)

Using Equation 2.3 with generator matrix G from Equation 2.5, Table 2.1 shows

all possible systematic CWs. Notice that the SW is left intact (bolded) inside the CW.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2-1: Systematic GWs formed by Equations 2.3 to 2.5

Index SW CW Index SW CW

0 0000 0000000 8 1000 1000101

1 0001 0001011 9 1001 1001110

2 0010 0010110 10 1010 1010011

3 0011 0011101 11 1011 1011000

4 0100 0100111 12 1100 1100010

5 0101 0101100 13 1101 1101001

6 0110 0110001 14 1110 1110100

7 0111 0111010 15 1111 1111111

2.7. Parity Check M atrix

Decoding is done by comparing the incoming CW (which possibly has errors)

with all possible CWs. The CW that is the closest match is assumed to be the one that

was transmitted. It is then simply a matter of removing the (n - k) parity bits to extract

the SW. This is known as m axim um likelihood decoding m. This was seen in the

example of Section 2.2, where receiving 00000111 would result in CW 00000000 being

inferred and SW 0 being decoded. Conversely receiving 00011111 would result in CW

11111111 being inferred and S W 1 being decoded.

As the number of CWs increase however, this comparison operation can become

too time consuming. A more elegant approach is to use the P arity Check M atrix H .

Since G can be considered to create a ^-dimensional sub-space of CW vectors, its dual

space is of dimension (n - k) and can be generated by (n - k) linearly independent

vectors that are all orthogonal to the subspace generated by the generator matrix. These

vectors can be combined into an (n - k) by n matrix H , such that

GH r =0 (2.6)

The parity check matrix H can be formed in a manner similar to how G is formed

using the parity matrix P.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G = [lk PT]

H = [P In_k]

(2.7)

(2.8)

such that

G H T = [l t PT]

2.8. Syndrom e Decoding

Since every CW generated by G is orthogonal to all vectors in H, then cH T = 0 ,

i.e. the result is the all zero vector. Furthermore a received CW r that has been corrupted

with errors such that it is no longer a valid CW will no longer be orthogonal and

rHT * 0 , i.e. the result will not be the all zero vector.

Denoting r as the 1 by n received vector that results from sending the code vector

c over a noisy channel, and considering the case of a single error in the i'th position, then

r = c + e where e = [0 0 0 1 0 0 0] (2.10)

Since the channel is modeled as simply flipping a bit, this can be represented in

matrix form as shown in Equation 2.10, where an error vector e is added to the original

CW over GF(2). Next, evaluating rH r yields

rHr =(c + e)H T = c H T +eHT =0 + eH T = e H r =s (2.11)

The 1 by m vector s is called the syndrom e of the received vector r. A syndrome

that is all zero indicates that r is a code vector and is presumably correct. A non-zero

syndrome indicates that an error occurred.

' 11 . ■ ■

l n-k,

= PT ® P T = 0 (2.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using the syndrome s and noting that eHT is the i'th row of H T[2], the error

position can be identified by comparing s to the rows of H T. Error correction can now be

done simply by flipping the ith bit in the received CW. Decoding by this simple

comparison is called syndrom e decoding.

2.9. Ham m ing bound

With syndrome decoding an (n,k) linear block code can correct up to t errors per

CW if n and k satisfy the following Hamming bound.

A block code for which the equality holds is known as a perfect code. Note that

satisfying the Hamming bound is necessary but not sufficient for the construction o f a t

error correcting parity check code.

2.10. Ham m ing Distance

The Ham m ing distance d(cn Cj) between two CWs c,- and cj from the same code

is defined as the number of positions in which their elements differ. The Ham m ing

weight w(Cj) of a CW q is defined as the number of Is in c,-. Thus the Hamming weight

of Cj is the Hamming distance between c,- and 0 (the all-zero CW), that is

(2 .12)

where

n\ _ n\
i) i \ (n - i) \

(2.13)

w(ci) = d(ci, 0) (2.14)

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly the Hamming distance can be rewritten in terms of Hamming weight as

d(ci,cj) = w(ci +cj) (2.15)

The m inim um distance dmin of a linear block code is defined as the smallest

Hamming distance between any pair of CWs in the code. An (n,k) linear block code can

correct up to t errors if and only if

dmin>2t + l (2.16)

2.11. L inear Code Properties

Almost all useful block codes possess the property o f linearity. It is defined as

1. Multiplying a CW by a valid scalar produces another CW

2. Adding two CWs together also produces another CW.

When dealing with binary symbols a valid scalar is 0 or 1, and hence

multiplication by 0 produces the all-zero CW, and multiplication by 1 leaves the CW

unchanged. Addition with binary symbols over GF(2) means that adding a CW with itself

will result in the all zero CW, and the addition of two different CWs will produce another

valid CW. For instance if c,- and c7- are two CWs, then the addition c, + c; must also be a

CW. Since cH T = 0 then (c ,+ c ;)H r = 0 . As well since cy+Cy^O, c,HT =0 , and

CjH t = 0 , then c(+ c;. must also be a valid CW.

2.12. Ham m ing Codes

Hamming codes were the first linear block codes published on error correction.

They have a minimum distance d ^ n = 3 , and thus they have the ability to correct single

' ' : 13 '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bit errors per CW. They are also perfect codes by definition of the Hamming bound and

they belong to a subset of linear block codes known as cyclic codes. This subset of codes

is popular since encoding and decoding can be done in a simple fashion.

2.13. Cyclic Codes

Cyclic codes are a subset of linear block codes. In addition to the properties of

linearity, they contain an additional property that if they are shifted cyclically (circularly

shifted or rotated in programming notation), the result is also a CW. For instance,

Table 2-1 above is showing a (7,4) Hamming code, where it can be seen that CW1 is

[0,0,0,1,0,1,1], which when shifted left forms CW2, CW5 and then CW11. Further cyclic

shifting, which involves wrapping the most significant bits back to the least significant

position, gives CW6, CW12 and then CW8 before forming CW1 again. This cyclic

nature of the CWs can be exploited to form simpler encoding and decoding

configurations versus the matrix approaches used to this point. This effect is also easier to

demonstrate when error control codes are represented using polynomials. The following

subsections demonstrate how binary digits can be represented as polynomials, and how

simple algebraic operations such as addition, subtraction, multiplication and division can

be performed. Note that since the binary alphabet only has two symbols, all algebraic

operations are performed in GF(2). As a result addition is the same as subtraction, and

this operation can be implemented with XOR gates in hardware. Similarly, multiplication

and division can be accomplished through shifting, which is done using feed-back and

feed-forward shift registers respectively.

2.13.1. Polynomial representation of codes

101101 = Lt5 + O*4 + l;c3 + lx2 + 0xl + 1*°. = x5 + x 3 + x 2 4-1 = d(x) (2.17)

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.13.2. Addition and Subtraction

r(x) = c(x) + c(x)

r(jc) = m od((x5+ x 3+A:2+ l) + (A:5+j[:3+ j:2+ l) ,2 j (2.18)

r(x) = mod ((2a:5 + 2a :3 + 2x2 + 2), 2) = 0

2.13.3. Multiplication

c(x) = g(x)d(x)

c(x) = x 2 (x5 + x3 + x 2 + l) = a:7 + x 5 + x 4 + x 2

2.13.4. Division

(2.19)

d (x) / g (x) = q(x) and r(x) (2.20)

r x* + x 4-q(x) 1010«-<?(*)
x3 + x + i p 7 ? 1011)1001000

V + x4 + x3 M l
 7 1000

*4 + *2 + * 10H :
a.. ■ / % 110«-K*)x + x *—r(x)

With division there is a quotient q{x) and a remainder r(x).

2.14. Encoding of Cyclic Codes

To encode cyclic codes first choose a generator polynomial [2] g(x) such that

1. It is of degree {n - k) , in order to have n -k redundant symbols.

2. It is a factor of x n + 1 , to ensure that the code is cyclic.

■ ' ■ ■ 15 ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The simplest way to create CWs is to multiply the SW i(x) of length k by the

generator polynomial g (x), i.e. c(x) = i(x)g(x) . To match the systematic form however

the data bits must remain intact, and the parity bits must be simply concatenated. Thus

the first step is to shift the data bits i(x) up by (n - k) , i.e. i(x)xn~k . Then since it still

needs to be a multiple of g (x) , i(x)xn~k can be divided by g(x) to see if the remainder

r(x) is zero. If it is not zero then i(x)x"~k must be modified so that it is a multiple of

g (x) . The simplest way to do this is to subtract the non-zero remainder from the original

dividend [2]. This operation is shown in Equation 2.21 noting that addition and subtraction

are the same operation in GF(2).

This procedure works since this is an application of Euclidean division which

states that the dividend = (quotient)(divisor) + remainder . Since i(x) was pre­

multiplied by x n'k , the degree of the remainder will always be less than the degree of the

divisor and the dividend terms will all be greater than or equal to (n - k) . Consequently

adding the divisor to the quotient will not modify any terms in /(*), maintaining

systematic form. As well, choosing the divisor to be the generator polynomial g(x)

ensures that the result is always a CW. In other words, the polynomial representation of a

CW can be represented by

c(x) = i(x)x"~k + Rg M [iX*)*”"*] (2,21)

where RgM[] represents taking the remainder after division through g (x) . All of this

work is neatly represented by the circuit in Figure 2-5 which consists only of shift
/

registers and XOR gates.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i(x)

Figure 2-5: Cyclic code encoder

This circuit represents a simultaneous multiplication by x3, and a division by

x3+ x + l . In order to build a systematic CW the registers are initially cleared, then the

i(x) bits are shifted through one at a time. After all k bits have been shifted in, the

registers will contain the remainder. Thus using the circuit shown in Figure 2-5 to encode

/(x) = x3+ l , or in binary 1001, with the generator polynomial g(x) = x3 + x + l , is

identical to the process shown above in Equation 2.20 under polynomial division. For

example if k = 4 and n = 7 , i(x) is first multiplied by x7'4 to yield xc’ + x 3, and then this

dividend is divided by g (x) . The final step is to append the remainder r(x) = x 2 + x to

form the CW c(x) = x 6 + x3 + x 2 + x , or in binary 1001110.

Inspection of the CW c(x) created above with the generator polynomial

g(x) = x 3 + x + l shows that it is the same CW created with the generator matrix G in

Equation 2.5, i.e. CW9 in Table 2-1. Furthermore this generator polynomial can be used

to construct all the CWs shown in Table 2-1. Thus while the explanation of cyclic codes

is more difficult, the implementation is simpler and these encoders can be easily

implemented with digital circuits using very basic logic components.

2.15. Decoding of Cyclic Codes

The received signal from the channel is a linear combination of the CW c(x) plus

an error vector e(x) , denoted y(x) = c(x) + e(x) . Since all CWs are multiples of g(x) ,

testing if the received word is valid is as simple as dividing it by g(x) and checking if

the remainder r(x) is zero. If it is, then it can be assumed that there are no errors. If r(x)

is not zero then there was at least one or more errors present. This remainder is once

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

again called the syndrome. Equation 2.22 demonstrates how the received vector y(x) is

divided by the generator polynomial g(x) and any non-zero remainder is a result of a non­

zero error vector e(x). If the error vector e(x) was zero then the syndrome s(x) will also be

zero, and it can be assumed that there were no errors.

This syndrome can be found through division with the encoder circuit shown in

Figure 2-5. A benefit of cyclic codes is that it is not necessary to keep track of all

possible syndromes as it was with syndrome decoding. In fact, only the syndrome that

represents an error vector in the most significant bit (MSb) position needs to be tracked.

This is because a left cyclic shift of the error pattern results in a syndrome that changes

by the amount equivalent to R lx) [x»^(a:)] [2]. What this means is, if a non-zero syndrome

is present in the shift registers, each clock of the division circuit is equivalent to a left

cyclic shift of the error pattern. For instance, assume a corrupted word y(x) has an error

in its 5th MSb, i.e. e(x) = [0,0,1,0,0,0,0]. When it is clocked into the divisor circuit a

syndrome will be formed that indicates this error. Now a further clocking of the divisor

circuit will result in a left cyclic shift of the error vector to e(x) = [0,1,0,0,0,0,0], and

thus, a syndrome will be formed indicating an error in the 6th MSb. One further clocking
th

of this circuit then will produce a syndrome indicating an error in the 7 MSb, i.e.

e(x) = [1,0,0,0,0,0,0]. Thus, as long as the circuit is monitoring for this syndrome it can

correct the flipped bit. To check for an error in the MSb, the syndrome to monitor for

when g(;t) = [l,0,1,1] is shown in Equation 2.23.

Therefore it will take exactly n clocks to form the original syndrome, and then n-1 more

clocks to cycle through all the remaining rc-1 possible error vectors [2].

(2.22)

= ^ [1 ,0 ,0 ,0 ,0 ,0 ,0] = [l,0,i] (2.23)

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The practical significance of this result is that the circuit only needs to look for a

single error pattern and continue clocking the division circuit until the syndrome for this

error pattern is matched. Once this happens it simply corrects the erroneous bit by

inverting it. On the other hand if the syndrome is never matched it can be assumed that

there were no errors. Decoders using this principle are called M eggitt Decoders [2j.

The circuit in Figure 2-6 shows how the above process can be achieved using very

simple digital circuits. For example, taking the CW c(x) = [1,0,0,1,1,1,0], and flipping

the 5th MSb as described gives y(x) = [1,0,1,1,1,1,0]. Figure 2-6 shows that for the first

n = 7 clocks the corrupted y(x) CW is fed in, which forms the original syndrome

s(x) = [1,1,0] as shown at clk = l . As the last bit of y(x) is being fed in the first bit of

y(x) is leaving the buffer of length n - 1 , where it is XORed with the syndrome s(x)

through the boolean circuit. Had there been an error in the MSb of y(x) the syndrome

would have been 101 causing the output of the AND gate to be high, thus flipping or

correcting this erroneous bit.

Hence it can be seen from Figure 2-6 that on the 9th clock (elk = 9), the syndrome

5(x) = [l,0 ,l] has been matched and the erroneous bit has been corrected. The original

CW c{x) is then formed by ignoring the first n-1 bits that leave the buffer and keeping

the last n bits. Furthermore since this is a systematic code the original SW d(x) is

recovered by removing the last n - k bits. Clearly this circuit is simpler than decoding

with the parity check matrix.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elk i(x) 3 2 1 c(x)

switch after
n clocks

0 0 0
1 1 0 0 1
2 0 0 1 0
3 1 1 0 1
4 1 0 0 0
5 1 0 0 1
6 1 0 1 1

T " T T ‘ O’ — I
8 1 1 1 0
9 1 0 1 0
10 0 0 1 1
11 0 1 0 1
12 1 0 0 1
13 0 1 1 0

Figure 2-6: Meggitt decoder and operation correcting the 5th MSb

2.16. Advantages o f Error Control Coding

Before the use of error control coding the only way to improve the performance of

a communication system was to increase the transmitted power, or increase the amount of

bandwidth used, both of which come with a never ending financial penalty. However EC

coding allows for the clever encoding of data which results in an improvement in

performance using the current allotted bandwidth and transmit power, at the cost of added

complexity. Thus EC codes do an excellent job of bringing the bit error rate down to any

level desired, as long as the system can tolerate the added redundancy.

2.17. Drawbacks of Error Control Coding

The drawback of EC coding is that it is impossible to detect and correct all errors.

Since this is a stochastic problem there is always some chance that errors will slip

through the system undetected. In addition, when the number of errors in a received word

exceed the error correcting abilities of the EC code, the error correction process may in

fact introduce additional errors into the decoded sequence. This is called error extension

and it occurs because the EC code is fooled by the excessive errors and incorrectly flips

bits that did not have errors to begin with, consequently introducing additional errors into

the system.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.18. Constrained Sequence Coding

When digital pulse signals are conveyed over a practical transmission medium,

certain bit patterns can be more prone to errors than others [13]. Knowing some

characteristics about the channel and the type of corruption the signals will undergo

allows for the information to be encoded prior to transmission to avoid transmitting those

sequences that are likely to be decoded in error. These types of encoded sequences are

being constrained and thus this type of coding is called Constrained Sequence (CS)

coding. It is also known as Line Coding (LC) in digital transmission systems [4] and

Recording Coding (RC) in digital storage systems. These terms will be used

interchangeably.

2.19. Line Coding Basics

When a binary data stream is transmitted over a channel it is first converted into

an electrical or light waveform through transmission encoding [4]. One of the simplest

formats used is on-off coding also known as unipolar coding shown in Figure 2-7. Here

a logic 1 is represented by a positive voltage and a logic 0 is represented by no voltage.

This can also be interpreted as assigning a positive square pulse shape p{t) to a logic 1,

and assigning no pulse to a logic 0. This is the most prevalent signaling arrangement used

in fiber optics as the laser is either on or off [i4,i5j.

U nipolar N R Z

U nipolar RZ

X U
* 1 1

n 1i
1 1

-------- !
i

■ 1 h ± L

iii

m
0 T 2T 3r 4T 5T CT 7T

Figure 2-7: On-Off Signaling Formats

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the voltage is constant over the symbol period T, then the format is called Non-

R eturn Zero (NRZ). If however there are too many like valued symbols in a row it is

difficult to determine the end of one symbol and the start of the next. Thus some systems

use R eturn Zero (RZ) signaling format to force the voltage to return to zero before the

end of each symbol period. This comes at the cost of less energy per symbol, and thus a

decreased signal to noise ratio. Both formats are shown above in Figure 2-7.

Polar NRZ

Polar RZ

Figure 2-8: Polar Signaling Formats

Another commonly used format is po lar coding, also known as bipolar coding

shown in Figure 2-8. Following from the last example, a logic 1 is transmitted by the

square pulse shape p{t) and a logic 0 is transmitted by the inverted square pulse shape

- p(t) . This is the most power efficient scheme since it requires the least power to

achieve a given error probability [4],

Regardless of the transmission encoding used the serial bit stream requires

periodic maintenance as it travels on the channel in order to combat the accumulation of

noise and signal distortion. This requires that the signal be received, decoded, and

regenerated for further transmission. Most often the receivers used are AC coupled as

they are easier to design and capable of better performance [i6,i5]. The high-impedance

amplifier in Figure 2-9 is often used in fiber optic transmission systems because it offers

the lowest noise level and hence the highest detection sensitivity [16]. However, because

of the high load impedance the frequency response of the amplifier is limited by the RC

time constant at the input [15].

22 . , . . ■ ' '

1 0 1 1 0 0 1

3T 4T 6T 7T2 T 5TT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Photodloda
Vout

C oup ling
C a p a c ito r

Figure 2-9: Simple high-impedance preamplifier design using a bipolar transistor

AC coupling in these receivers has the effect of blocking the average dc value of

the signal. As a result a 50% duty cycle unipolar square wave will appear as a 50% duty

cycle polar square wave on the other side of the capacitor as shown in Figure 2-10.

Figure 2-10: 50% duty cycle square wave through a dc blocking capacitor

There is an additional effect caused by the large RC time constant. The high

impedance receiver tends to integrate the detected signal as shown in Figure 2-11. This

leads to a variation of the midpoint known as baseline w ander [16].

AC coupled
Signal

/ , , , s , ; , , V
■u». A / \ . / \ / \ / V / \ y
— , v i y j v : V ■ v v i V

Figure 2-11: AC coupled signal and baseline wander

23. .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When a series of like valued symbols arrive in succession, such as more Is than

Os, the transmission is said to be unbalanced. This causes the integration effect to become

more severe as shown in Figure 2-12 because the signal decays towards zero [is, 16,17].

Note that the integration effect has been exaggerated for demonstration purposes.

Nevertheless it is clear that the AC coupled signal in Figure 2-12 would have an

increased probability of error in the presence of noise. Thus in order to minimize baseline

wander the output needs to be balanced. That is, there must be an equal number of Is and

Os on average in the output sequence.

input] I
signal 1".~r"

I i
n v -— ■— : ^ u v II 1 1 II 1 0 11 1 1 |1 1 0 l l l l 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0 X 0 0 0 0 0 1 0i 1 ; ! : : i i i i : i i

[7 7 7 |7 7 0 7 7 7 ;7 7 0 ;? 7 7 ,7 7 0 7 7 7 ,7 7 0 7 0 0 0 0 0 7 0 0 0 0 0 _ t 0j- - - . • ' ■ ' : ' 1]
o v ::

AC coupled
signal

Figure 2-12: AC coupling of an unbalanced sequence

The receiver also must know the duration of a symbol interval (length of a bit), in

order to determine when to make a decision regarding the value of each symbol. To avoid

transmission of a separate clock signal receivers typically derive a clock from transitions

in the received data stream. This is done by having the oscillator in the receiver lock on to

level shifts in the received signal. If there is a long series of logic Is or 0s in a row the

receiver’s oscillator frequency may drift and become unsynchronized. When this occurs

the receiver can lose track of where it is supposed to sample the transmitted data, as

shown in Figure 2-13. This is a more serious problem than bits simply being corrupted by

the channel [ij as now the system is completely missing data.

24 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

_ n i : i___ n _ " v,i
0 11 0 0 0 0 1 111 11 1 11 1 11111 1 1 1 0 0 0 0 1 1 0 0

i f u u T J i r i J i n _ j — u u m r < ^ {
0 Jl 0000 I U) 1 I 1 1 JI 1 V ? 1 ? -> 0000 1) 00

\ \ t
Clack is losing synchronization :
beginning to niiss some bits j

Figure 2-13: Clock recovery circuit losing synchronization

Another reason to require adequate transitions is to reduce timing jitter [5].

Random deviations of the incoming pulses from their ideal locations are always present

even in the most sophisticated systems [5], The tuned circuits used for timing extraction

are sensitive to the pulse patterns, and long strings of Os or Is introduce additional jitter

as the oscillation slows [4,5]. As well, most data transmitted is packaged in a regular

fashion known as framing. This typically consists in a set number of bits for header,

payload and tail information. The framing patterns result in a periodic frame structure and

these regular patterns can also cause pattern dependent jitter [4].

All of these factors collectively contribute to errors in the received signal.

However when CS coding is introduced the transmission signal characteristics are

improved in such a way that the regular patterns get randomized, and the long strings get

broken up as the transition density is increased. Consequently the clock recovery in the

receiving terminal is stabilized and jitter is reduced, decreasing the inter symbol

interference (ISI) and improving the accuracy of data reception.

2.20. Line Coding Goals

Goals of line coding include:

1. Adequate transitions for timing recovery

2. Balanced transmission to reduce dc drift

3. Low jitter

4. High efficiency, i.e. low redundancy

: ̂ 25 :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Simple implementation

6. Low error extension

7. Good performance regardless of the source statistics

The unpredictable nature of the digital source makes achieving the above goals

challenging. For instance, if the probability of the source outputting a 0 is very high, the

outgoing sequence would naturally have long runs of Os. As a consequence the receiver

would have very few transitions to lock onto. The outgoing sequence would also be

heavily unbalanced which would lead to drift, jitter and ultimately errors. Thus it would

be up to the CS code to modify this bit stream into a more suitable sequence for the

channel, removing the long runs of like valued bits. A block diagram of a system

incorporating CS coding, also known as line coding, is shown in Figure 2-14.

Channel

Noise

Source

Receiver Line
Decoding

Coding

Figure 2-14: Digital communication system with CS coding

2.21. Line Coding approaches

M anchester Encoding is an almost ideal CS coding scheme in that it meets

nearly all line coding goals. In this system a logic 1 is mapped to the two bit pattern 01,

and a logic 0 is mapped to the complement two bit pattern 10. This guarantees at least

one transition per bit as well as a completely balanced transmission [5]. Even if a source

constantly emitted logic Os the transmitted sequence would simply appear like a 50%

duty cycle square wave. The drawback with this approach however is that with this 1:2

mapping the output sequence is 50% redundant.

26 :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4B/5B encoding is a line coding technique sometimes called block coding [13].

Here every four bits from the source are encoded into five bits for the channel. With

24 =16 possible SWs mapped to 16 of the 25 =32 possible CWs, a straightforward

implementation results in the 5-bit CWs always having two Is even if the source data is

all Os. This allows for clock synchronization and is more efficient than Manchester

Encoding. A drawback however is that it is no longer balanced since CWs have an odd

length.

5B/6B uses the same idea as 4B/5B with the improvement that there are now three

0 bits and three 1 bits in each 6-bit CW. As a result the output is dc balanced. This coding

scheme also provides an added error checking capability since invalid data patterns, such

as more than three Os or three Is in a word can be detected.

There are many similar codes such as 7B/8B, 10B/12B and so on which map m

information bits into n transmission bits and they are commonly referred to as mBnB

codes where the B denotes binary signaling. They are also known as Alphabetic Codes

where the pre-selected set of n bit CWs are called an alphabet n,4,5]. The mapping is

typically done using look-up tables stored in ROMs. The physical limitations of ROMs

impose CW length restrictions and speed (access time) restrictions. Because of this they

have not gained popularity in high bit rate systems.

Scram bling is a bit-level (or pulse-level) processing applied to a digital signal

just prior to transmission on the channel. The objective of scrambling is to improve clock

recovery as well as randomize the bit sequence as much as possible to remove long

strings of Is or Os. Scrambling is designed to work well regardless of source statistics and

also does not affect the bandwidth requirements of the system [u.isj. Therefore the bit rate

of the system is the same before and after scrambling and thus it has found great

popularity in fiber optic systems.

Scrambling can be described with the same polynomial representation used to

describe cyclic EC codes. For example, to scramble a stream of source data s(x) with the

scram bling polynomial d (x) using Self Synchronous Scram bling (SSS), the data

stream is multiplied by the degree of the scrambling polynomial and divided by d(x) .

The scrambled sequence is the quotient [is] as shown in Equation 2.24.
27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c(x) = Qdu) [sU)*''] (2.24)

The scrambled sequence is formed using the same polynomial operations as were

used with EC coding. For example, consider a sequence that contains a long run of zeros,

i.e. 's0(jc) = 01000000001, and scrambling polynomial d(x) = 100101. The scrambled

sequence would be

c0(x) = QdM |>o(x)xd] = 00010010111 (2.25)

Clearly the scrambled sequence c0(;c) meets our line coding goals far better than

the unscrambled sequence. While scrambling can greatly increase the probability of

avoiding long runs of like valued bits it does not provide the same guarantee that many

block coding techniques such as mBnB codes provide. It can be seen that there is still

situations that can cause the transmitted sequence to contain long run of Is or 0s. For

instance, if s, (x) =01001010001001010100101, the output sequence would be

cl(x) = Q(IM[sl(x)x<l] = 01000000001000000100000 (2.26)

Here the unscrambled sequence appears better suited to meet our constrained

sequence goals then the scrambled sequence. To account for this guided scram bling [14]

is an extension and improvement of SSS which augments the SW prior to scrambling. As

a result it is capable of guiding the outcome of an otherwise normal scrambling process to

produce a highly efficient balanced bit stream [14],

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.22. Advantages of Constrained Sequence Coding

CS codes do an excellent job of ensuring sufficient transitions for timing recovery

and encoding the output sequence to match channel constraints [is]. In this way they can

be thought of as pre-conditioning the data in a suitable fashion for transmission on a real

channel. This new data sequence will then suffer less corruption than had the data been

sent uncoded [14,18,19].

CS coding is often thought of as spectral shaping [20] since the channel constraints

are being met by modifying the frequency domain characteristics of the transmitted

signal. In essence, CS coding is a proactive approach to preventing errors from occurring

in the first place.

2.23. Disadvantages of Constrained Sequence Coding

The major drawback of CS coding comes from their inability to effectively handle

errors that inevitably occur. When errors are present in the received sequence error

propagation results as the CS decoder incorrectly decodes the message. In many cases

this error extension can affect numerous subsequent CWs [18].

2.24. Combining Error Control Coding and Constrained Sequence Coding

Since EC coding and CS coding both aim to improve the accuracy of digital

communication systems, many systems utilize both approaches to extract the benefits

from the two coding techniques [6]. Figure 2-15 shows the configuration that is normally

used. The idea is to apply an EC code first and then use CS coding to condition the

information for the channel. The hope is that the overall number of errors will be

reduced, and any errors that do occur can be corrected by the EC code.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Channel

Source Error Control
Coding

Line
Coding

Receiver Error Control Line
Decoding Decoding

Q *
Noise

»(t)

Figure 2-15: Typical configuration that incorporates EC coding and CS coding

The difficulty with this approach arises during demodulation/decoding. When

errors inevitably occur the CS decoder has no means of dealing with them. As a result it

incorrectly decodes the incoming sequence, in effect increasing or multiplying the

number of errors [6 ,7 ,8] . This error multiplication can be thought of as turning a single

error into a burst (multiple bit errors) [7]. Hence the error correcting code must be a burst

correcting code even when noise in the channel is dominated by random errors m. In

general more redundancy is needed to correct t error bursts than to correct t random

errors [2]. This means that there is a greater cost in efficiency and complexity with the

above approach. Therefore a logical conclusion is that errors should be corrected prior to

CS decoding to avoid the error multiplication as shown in Figure 2-16.

However straightforward exchange of the decoders is impossible since the

required order of operations is no longer followed. The EC decoder would not recognize

any of the words arriving off of the channel since the CS encoder would have modified

the EC CWs for the channel before they were transmitted. The EC decoder would then

mistakenly try to correct these words unintentionally introducing more errors. Finally,

since the CS decoder is now last, it would receive words that it would also not recognize

(as a result of the EC decoder) and most likely introduce additional errors when it

attempts to remove the effect of the line code.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Channel

E tror Control
Coding

Line
Coding

Source

Noise

Line
Decoding

Error Control
Decoding

Receiver

Figure 2-16: Desired configuration that incorporates EC coding and CS coding

Channel coding researchers are now investigating ways of combining the above

codes into one monolithic code to avoid this error multiplication and extract the benefits

of both. Several methods are similar in their approach of adding additional redundancy in

the form of multimode coding, where one SW is mapped to a selection set of CWs m, or

through appending additional CS bits to an existing EC code no], or through augmentation

of EC and CS code bits [6]. These codes are sometimes called combi-codes [21] or CC-EC

codes [ii] and are depicted in Figure 2-17.

Channel

Noise
- n(t)

Source

Receiver

Error Control Coding
Line Coding

Error Control Decoding
Line Decoding

Figure 2-17: Combined approach that incorporates EC coding and CS coding

This thesis introduces a simple approach to achieving the above goal of

integrating EC coding with CS coding that is easily implemented and has good

performance tradeoffs. The approach uses linear cyclic block codes and the simple family

of Hamming codes for proof of concept. CS coding is achieved through multimode

coding and this new technique is thoroughly analyzed, simulated, and implemented in

hardware using field programmable gate arrays (FPGAs).

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Integrating EC coding and CS coding

Creating a combined code is not straightforward since the methodologies behind

EC coding and CS coding are different. Error control CWs are designed to be as different

from one another as possible in order to increase the probability of detecting and/or

correcting the most errors. Therefore CWs such as the all-zero CW c(x) = 0000000 or

the all-one CW c(at) = 1111111 are often present. These CWs have no transitions and

they are completely unbalanced, but clearly it would take multiple flipped bits (many

errors) to mistake one for the other. Constrained sequence CWs on the other hand are

designed to give balanced output and ensure an adequate number of transitions. Thus

with properties like these CWs often exist that only differ by a single bit. Consequently

single bit errors can often make one CW appear as another.

In order to create a combined code one of the following two approaches can be

employed. More redundancy can be added to an existing CS code, to increase the

distance between the CWs in an attempt to turn it into an EC code. Alternatively, more

redundancy could be added to an existing EC code in the form of restricting the CWs that

are used to only those that meet the systems CS coding requirements in an attempt to turn

it into a CS code.

If the latter approach is t^ken and a typical (n,k) error correcting block code is

used, inspection of the 2* possible CWs will show that many of them meet the CS

coding goals outlined in Section 2.20. Therefore if transmission is restricted to this subset

of EC CWs, and since these CWs can natively correct errors, a combined EC and CS

code is obtained. This is the novel approach introduced in this thesis, which uses the EC

CWs themselves as the CS code.

While the above approach qualifies as a combined EC and CS code,

straightforward implementation presents some difficulties. For example, the mapping of

SWs to the restricted set of CWs can be accomplished through look-up tables. However

this would result in the encoder being subject to all of the same ROM limitations as

mBnB codes, preventing its use in high bit rate systems. As well, many EC codes have

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CWs that contain an odd number of bits. In these cases any individual CW will have

more Is than Os and vice versa. Thus in a worst case situation where a source continually

emits the same SW, the encoder would continually transmit the same odd length CW,

resulting in a transmission that grows increasingly unbalanced. These problems need to

be addressed, and the complete details for the combined EC and CS code presented in

this thesis are presented through example in the next Section.

3.1. A Simple Scheme

The major flaw in the 1:1 mapping of SWs to CWs described above is that the

system cannot guarantee balanced output. If however there existed the flexibility to send

the CW, or the complement of the CW, this guarantee could be made. For example,

examining the CWs of the (7,4) Hamming code shown in Table 2-1 shows that

c7(*) = 0111010 and c8(jc) = 1000101, c6(*) = 0110001 and c9(x) = 1001110, all the

way to c0(x) = 0000000 and c15(;c) = 1111111 are all CW complements of one other.

Thus in a worst case situation where a source continually emits the same SW repeatedly,

this system would remain balanced since the encoder could alternately transmit the

original CW followed by its complement. That is c7(x) = 0111010 which has four Is and

three 0s could be transmitted, followed by c8(x) = 1000101 which has three Is and four

0s, thus balancing the transmission. An encoder that maps one SW to a choice of more

than one CW is classified as a multimode encoder, which was first discussed in

Section 2.24. Specifically, this encoder is further classified as a bimode encoder since

each SW is mapped to a choice of only two CWs.

This multimode encoder could be implemented without look-up tables and using

the original digital logic gate encoders of Figure 2-5 by taking advantage of linear code

properties of block codes. For example, from Section 2.11, any CW added to the all-zero

CW will result in the original CW unchanged. However any CW added to the all-one CW

will result in the CWs complement. For example, c7(x) = 0111010 added with

c0(x) = 0000000 is e7(jc) = 0111010 (no change), but cn(x) = 0111010 added with

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CijCx) = 1111111 is cg(x) = 1000101 (every bit inverted). Thus based on this idea of CW

addition, Figure 3-1 shows a possible setup of a bimode coding scheme where the

encoder can choose to send the original CW or its complement.

ooooooo *
EC Code W ord

---R Select
EC+CS Code W ordBest :—*+ , 1111111 *

___________Sequence Statistics

Figure 3-1: A simple EC + CS encoder using bimode coding

From the discussion above SWs are still converted to CWs in the usual fashion.

However with the above system, these CWs are then added to both the all-zero and the

all-one CW. This has the effect of presenting the original CW and its complement to the

Select Best decision block. The decision of selecting which CW to transmit is based on

feedback from CWs already transmitted on the channel. Depending on these sequence

statistics, the CW that keeps the overall number of Is and Os sent on the channel

approximately equal will be chosen. Therefore with this setup, in a worst case situation

where a source continually emits the same SW, such as the all-zero SW, this system can

ensure balanced transmission. These output sequences are contrasted in Figure 3-2, which

shows the original all-zero sequence listed as beforeaA), versus the improved sequence

listed as after(1A). Clearly this is an improved sequence since it is balanced and there is a

transition once every CW.

beforeaA) 0000000 0000000 0000000 0000000
after(1A) 0000000 1111111 0000000 1111111

Figure 3-2: The effect of the bimode coding: balanced output

As shown below in Table 3-1 this setup has SW 0 mapped to two CWs 0 and 15.

Likewise, SW 1 is mapped to CWs 1 and 14 and so on. Hence SWs 8 to 15 can no longer

be used to represent data, or in other words, the ability to achieve balanced transmission

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has resulted in an additional bit of redundancy, thus modifying the (7,4) Hamming code

to a (7,3) Hamming code (i.e. there are now 23 = 8 possible SWs, 0 through 7 as listed in

Table 3-1). Since the overall length of the code stayed the same, this is known as

expurgating the code [2], i.e. one of the source bits is now acting like a parity bit. This

extra parity bit is the MSb of each SW listed in Table 3-1.

Table 3-1: SW to CW mapping of this bimode (7,3) setup. Compare with Table 2-1

Index SW CWA (complement)

0 0 0 0 0 0 0 0 0 0 0 0 (0) 1 1 1 1 1 1 1 (1 5 ,

1 0 0 0 1 0 0 0 1 0 1 1 (1) 1 1 1 0 1 0 0 , ! 4 ,

2 0 0 1 0 0 0 1 0 1 1 0 , 2 , 1 1 0 1 0 0 1 , 1 3 ,

3 0 0 1 1 0 0 1 1 1 0 1 , 3 , 1 1 0 0 0 1 0 , 1 2 ,

4 0 1 0 0 0 1 0 0 1 1 1 , 4 , 1 0 1 1 0 0 0 , 1 1 ,

5 0 1 0 1 0 1 0 1 1 0 0 , 5 , 1 01 0 01 1 (1 0)

6 0 1 1 0 0 1 1 0 0 0 1 , 6 , 1 0 0 1 1 1 0 , 9 ,

7 0 1 1 1 0 1 1 1 0 1 0 , 7 , 1 0 0 0 1 0 1 , 8 ,

Decoding of these CWs is simple. Examination of Table 3-1 shows that the MSb

of every CW is either a 0 or a 1 (shown in bold). This MSb is the information bit that is

now acting as a parity bit. Thus the decoder can determine whether or not the received

CW is the original or the complement, simply by inspecting the MSb. Thus as shown in

Figure 3-3 the decoder first error corrects the received word, and then based on the value

of the MSb, removes the CS coding by adding either the all-zero or all-one CW.

Recovering the SW is then the simple operation of removing the parity check bits.

^ 0000000
liinn

Extract
MSb

Remove parity
to yield SW

Selector
1 of 2

EC+CS Code Word Meggitt Decoder
(Cornet Erron)

Figure 3-3: A simple EC + CS decoder using two AddCWs

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are two main advantages of this scheme. First of all the original encoder

and decoder circuits which consist of simple boolean logic can still be used with only a

slight modification for CS coding. Secondly, received words arriving off the channel

avoid error propagation since they are error corrected first before removing the CS

coding through CW addition. Thus the encoder of Figure 3-1 and decoder of Figure 3-3

demonstrate a combined EC and CS code that incorporates feedback to maintain balanced

output. In this coding scheme the all-zero and all-one CWs used for CW addition are

defined as Add Code W ords (AddCWs). Therefore the encoder of Figure 3-1 and

decoder of Figure 3-3 use two AddCWs.

3.2. Im proved scheme

Looking once again at the output data stream after0 i) in Figure 3-2 demonstrates

that this setup can guarantee balanced transmission. However it also demonstrates that it

cannot guarantee numerous transitions. For example, this bimode system presented above

turns the all-zero sequence into an alternating sequence of seven zeros followed by seven

ones. Therefore in this (7,3) example there is a transition every seven bits since n = 7 .

However if the system used a larger code such as the (63,57) code expurgated to (63,56),

there would only be a transition every sixty-three bits since n = 63. That is, the output

sequence would alternately consist of sixty-three zeros followed by sixty-three ones.

While the output would still be balanced, this situation is not desirable since so few

transitions could pose problems for clock recovery. Therefore a way to introduce more

transitions is required.

This can be accomplished using the same AddCW technique if the encoder has

more CW choices per SW. This is because the encoder could choose to transmit the CW

that not only balances the transmission but also contains the most transitions. Based on

the CW addition technique above, this can be achieved by doubling the number of

AddCWs. For example, consider the same worst case situation where the all-zero CW

c0(x) = 0000000 is continually emitted. If the encoder has two additional AddCWs

available for CW addition, such as c4(*) = 0100111 and c , , (a :) = 1011000 as shown in

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3-4, then the Select Best decision block would have four choices for transmission

that are: crej|l„0(» = 0000000, = 0100111, cresull2(x) = 1011000 and

cresulA(x) = 1111111. This is also a multimode scheme where one SW is mapped to a

choice of four CWs.

Sequence Statistics

0 1 0 0 1 1 1

1 0 1 1 0 0 0

0000000

EC Code W ord EC+CS C o d e w o rd
Select
Best

Figure 3-4: A simple EC + CS encoder using four AddCWs

In this situation it is clear that cresuln(x) and cresidl2(x) are better choices for

transmission than cresutl0(x) and cresull3(x) simply because they contain transitions within

each CW. The encoder can now alternately choose cresuln(x) and cresull2(x) for

transmission resulting in the improved output sequence listed as after(12) in Figure 3-5.

Comparison with the original all-zero sequence originalaA) and the simple bimode

scheme before{13) demonstrate how this multimode setup with double the number of

AddCWs can introduce transitions and still maintain balanced output.

originalaA) 0000000 0000000 0000000 0000000
beforeaA) 0000000 1111111 0000000 1111111

afteraA) 0100111 1011000 0100111 1011000

Figure 3-5: The effect of the (7,2) scheme is balanced output and numerous transitions

This CW addition technique has taken the all-zero CW with zero transitions and a

7:0 ratio of 0s to Is per CW, and produced a sequence of alternating CWs that have three

37 :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transitions and a 3:4 ratio and 4:3 ratio of Os to Is respectively. This technique is

successful since the addition of a CW that has poor statistics (i.e. unbalanced with few

transitions) to a CW that has better statistics (i.e. balanced with numerous transitions),

results in a new CW whose statistics are an average of the two, upper bounded by the

statistics of the better CW.

As show in Table 3-2, SW 0 is now mapped to four CWs, 0, 4, 11 and 15.

Likewise, SW 1 is now mapped to CWs 1, 5, 10 and 14 and so on. Hence SWs 4 to 15

can no longer be used to represent data, or in other words, the ability to add transitions

has resulted in an additional bit of redundancy over the previous bimode system. Now the

first two bits of each SW can be viewed as redundant bits. Thus the (7,4) Hamming code

has now been expurgated to a (7,2) Hamming code. Also note that these CWs still

maintain the complementary nature of the system since cwA and cwA as well as cwB and

cwB are complements.

Table 3-2: SW to CW mapping of this multimode (7,2) setup

Index ■SW cwA cwB cwB

0 0 0 0 0 0 0 0 0 0 0 0 (o) 0 1 0 0 1 1 1 (4 , 1 0 1 1 0 0 0 (H) 1 1 1 1 1 1 1 U S)

1 0 0 0 1 0 0 0 1 0 1 1 , ! , 0 1 0 1 1 0 0 , 5 , 1 0 1 0 0 1 1 , 1 0 , 1 1 1 0 1 0 0 (1 4)

2 0 0 1 0 0 0 1 0 1 1 0 , 2 , 0 1 1 0 0 0 1 , 6 , 1 0 0 1 1 1 0 , 9 , 1 1 0 1 0 0 1 (13)

3 0 0 1 1 0 0 1 1 1 0 1 , 3 , 0 1 1 1 0 1 0 (7 , 1 0 0 0 1 0 1 (8 , 1 1 0 0 0 1 0 (1 2)

Decoding of these CWs does not change significantly. Examination of Table 3-2

shows that the two MSbs of each CW are either 00, 01, 10 or 11 (shown in bold), or in

decimal notation this is 0, 1, 2 or 3. Thus the decoder now inspects the two MSbs of the

error corrected words to determine which of the four AddCWs was added. Thus as shown

in Figure 3-6, the decoder first error corrects the received CW, then based on the value of

the two MSbs, removes the CS coding by adding the correct AddCW. Recovering the SW

is then the simple operation of removing the parity check bits.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^>1 0000000 f—
y±*A 0100111 t—

1011000 |—
■/±»| 1111111 (r-

Extract
2 MSbs

Remove parity
to yield SW

EC+CS Code Word Meggitt Decoder
(C o r n e t E rro r*)

Selector
1 of 4

Figure 3-6: A simple EC + CS decoder using four AddCWs

Looking at the output data stream after02) in Figure 3-5, it is clear that this

system can guarantee balanced transmission and definitely improves the number of

transitions. However there is another factor that needs to be considered which is the run

of like valued bits across CW boundaries. For instance, when the concatenation of CWs

is considered a run of four Is and four Os in still present in the output sequence as shown

in Figure 3-7.

aSter{1n 0100111101100001001111011000
N t /

runs of 4 like valued bits

Figure 3-7: Concatenation of CWs shows runs of four like valued bits

While this may not seem significant, consider that this is a small code of n = 7 ,

and this represents a run of like valued bits more than half the CW length. Thus in a

longer code with n = 63, this could mean a run of more than thirty-three like valued bits

in a row, which could cause problems for clock recovery. Therefore a way to break up

these runs of like valued bits is required.

This could be accomplished once again using the same AddCW techniques if the

encoder had more CW choices per SW. This is because the encoder could choose to

transmit the CW that not only balances the transmission and contains the most transitions,

but also limits the runlengths of like valued bits. That is, building again on the previous

example consider the same situation where the all-zero CW c0 (x) = 0000000 is

continually emitted. If four additional AddCWs were available for CW addition, such as

c2(x) = 0010110, c6(x) = 0110001, c9(*) = 1001110 and c13(x) = 1101001 as shown in

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3-8, then the Select Best decision block would have eight choices for transmission

that are: cresull0(x) = 0000000, cresuln(x) = 0010110, -result 2 (x) = 0100111,

Cresuit3W = 0110001, crei„„4(*) = 1001110, cresull5(x) = 1011000, c _ „ 6« = 1101001 and

cresuin (x) = 1111111. This is also a multimode scheme where one SW is mapped to a

choice of eight CWs.

r N 0 0 0 0 0 0 0 ■r-m
0 0 1 0 1 1 0 - f e

- N 0 1 0 0 1 1 1 — fc
0 1 1 0 0 0 1 r—te Select

1 0 0 1 1 1 0
Best

1 0 1 1 0 0 0 - *

1 1 0 1 0 0 1 — k

U r l 1 1 1 1 1 1 1 — fc

* EC+CS Code W ord

Sequence Statistics

Figure 3-8: A simple EC + CS encoder using eight AddCWs

In this situation the Select Best decision block would select cresuln(x) = 0010110

and cresull6(x) =1101001 for transmission since they not only ensure balanced

transmission and contain numerous transitions , but a maximum runlength of two like

valued bits is achieved. This is shown as after(1]) in Figure 3-9.

Comparison with the original (7,4) all-zero sequence originalaA), simple bimode

(7,3) scheme beforea 3) and the four AddCW (7,2) system before(1V) demonstrate how

this multimode setup with eight AddCWs can introduce transitions, maintain balanced

output and constrain the output to a maximum runlength of two like valued bits.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

originalaA) 0000000 0000000 0000000 0000000
before^ 0000000 1111111 0000000 1111111
before02) 0100111 1011000 0100111 1011000

after(1A) 0010110 1101001 0010110 1101001

Figure 3-9: SW to CW mapping of this (7,1) setup

As shown in Table 3-3, SW 0 is now mapped to eight CWs, 0, 2, 4, 6, 9, 11, 13

and 15. Likewise, SW 1 is now mapped to CWs 1, 3, 5, 7, 8, 10,12 and 14. Hence SWs 2

to 15 can no longer be used to represent data, or in other words, the ability to decrease the

runlengths has resulted in an additional bit of redundancy over the previous setup. Thus

the (7,4) Hamming code has now been expurgated to a (7,1) Hamming code. Once again

the CWs have still maintained the complementary nature of the system since cwA and

cwA , as well as cwB and cwB , cwc and cwc and cwD and cwD are complements.

Table 3-3: SW to CW mapping of this multimode (7,1) setup

I SW cwA cw0 CWc cwD

0 0000 0000000,0) 0010110,2, 0100111,4, 0110001 ,6,

1 0 0 0 1 0 0 0 1 0 1 1 ,1 , 0 0 1 1 1 0 1 ,3 , 0 1 0 1 1 0 0 ,5 1 0 1 1 1 0 1 0 ,7 1

Decoding of these CWs is identical to the previous decoders. Examination of

Table 3-3 shows that the three MSbs of each CW are either 000, 001, 010 011, 100, 101,

110 or 111. In decimal notation, this is 0, 1, 2, 3, 4, 5, 6, or 7. The decoder now checks

the three MSbs to determine which of the eight AddCWs was added. Thus as shown in

Figure 3-10, the decoder first error corrects the received CW, then based on the value of

the three MSbs, removes the CS coding by adding the correct AddCW. Recovering the

SW is then the simple operation of removing the parity check bits.

41

cwD cwc cwB cwA

1 0 0 1 1 1 0 ,9 , 1 0 1 1 0 0 0 ,3 1 , 1 1 0 1 0 0 1 ,1 3 , 1 1 1 1 1 1 1

1000101 ,8, 1010011 , 10, 1100010 , 12, 1110100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EC-fCS CodeWord
M e g g itt D e co d er

(C om et Error*)

Extract
3 MSbs

ooooooo
n

0010110 h

0100111
It

Selector
0110001 h

1 of 8 1001110 J ~
r'H 1011000 J ~

1101001 J ~
1111111 H

Remove parity
to yield SW

Figure 3-10: A simple EC + CS decoder using eight AddCWs

3.3. Tradeoffs

All three schemes presented yield balanced outputs, and when more AddCWs are

available, increase the transition density. This can also be viewed as limiting the

runlengths of like valued bits. These benefits however come at the cost of added

redundancy. A quick comparison of the coding schemes is shown in Table 3-4, assuming

equiprobable source statistics.

With 1 bit of redundancy for CS coding the (7,3) code is balanced and has on

average an 80% chance of runlengths that are three or less. However it still has a 20%

chance of runlengths that are higher than this, with a 0.147% chance of a run of twelve

(not shown in the table). With two bits of redundancy for CS coding, the (7,2) code has a

96.41% chance of runlengths of three or less, and no possibility of a run longer than four.

Finally with three bits of redundancy for CS coding, the (7,1) code can guarantee

runlengths of two or less with a probability of 100%. Note that the (7,4) code is

completely unbounded in terms of runlengths, i.e. it is possible to have runlengths of any

length, whose likelihood is dependent on the statistics of the source data stream.

Table 3-4: (7,x) code performance with equiprobable source statistics

RunLengths 1 2 3 4 5 6 7 8 9

(7 , 3) Code 0 .27 19 0 .2609 0 .26 83 0 .0364 0 .0151 0 .0049 0 .05 62 0 .0 378 0 .0285

(7 , 2) Code 0 .3794 0 .3 571 0 .22 76 0 .0357 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

(7 , 1) Code 0 .42 85 0 .5714 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Clearly with more AddCWs available the CS properties are improved. This

however comes at a tradeoff of adding more redundancy.

3.4. Goals of the combined EC and CS system

The above examples demonstrate the combined EC and CS concept, whose

multimode approach is made possible through CW addition. The following sections

reiterate the most important goals, outline common pitfalls, and demonstrate the details of

this approach and how it can be implemented with any linear block code.

The main goals of the system are:

1. Simple implementation;

2. Guarantee of the desired performance regardless of the incoming sequence

statistics;

3. Addition of minimal redundancy into the encoded sequence.

Due to the cyclic nature of the simple Hamming EC code, encoding and decoding

can be achieved using the simple logic circuits of Figure 2-5 and 2-6, i.e. look-up tables

in ROMs are not required ensuring the use in high speed systems. The introduction of CS

coding through CW addition can also be easily implemented using simple logic circuits,

i.e. XOR gates since the addition is over GF(2).

Guaranteeing the desired performance of balanced transmission, numerous

transitions and limiting the runlengths of like valued bits is achieved through feedback in

the system. As discussed the system monitors the overall number of Os and Is sent on the

channel to record transitions and runlengths, and then uses this information to determine

the best CW for transmission. This feedback guarantees the system’s CS goals will be

maintained regardless of source statistics.

Finally, the (7,4) code discussed so far was used because it is small and

presentable, but it suffers from too much redundancy with this scheme. However this

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

redundancy is less of a factor when larger codes are used. For instance with three

additional bits of redundancy (eight AddCWs), the (15,11) code expurgated to (15,8) is

46% redundant, but the (31,26) expurgated to (31,23) is only 25% redundant, and the

(63,57) expurgated to (63,54) is only 14% redundant and so on. Therefore, the

redundancy can be minimized to any desired level as larger and different codes are used.

3.5. Generic Systems

The following systems presented can be used with any linear block code and can

be incorporated into existing digital circuits with a minimum of additional complexity.

Balanced transm ission: As discussed through example in Section 3-1, balanced

transmission can be achieved with a single additional bit of redundancy. The generic

structure of the complementary bimode encoder is shown in Figure 3-11, and the

corresponding decoder is shown in Figure 3-12.

EC C ode W ord
i j A d 0 0 . . .D O r— %

1 1 . . . 1 1 !---- »

Select
Best — fe EC +C S C ode W ord

Sequence Statistics

Figure 3-11: Generic bimode complementary encoder using two AddCWs

Extract
MSb

Remove parity
to yield SW

Selector
1 of 2

EC+CS Code Word Meggitt Decoder
(C om et Errors)

Figure 3-12: Generic bimode complementary decoder using two AddCWs

With this setup the two AddCWs are recommended to be the all-zero and all-one

CWs as shown in Figure 3-13. This gives the Select Best decision block the ability to

transmit the original CW or its complement. (Note that other CWs could be used here and

■ ■ 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this will be discussed below). Figure 3-13 also displays these CWs as 00...00 and 11... 11

since their length is dependent on the (n,k) block code used. Therefore if the (7,4)

Hamming code is used like in the examples of Section 3.1 and 3.2, then their length is

n = 7 bits. However if the (1023,1014) Hamming code was used, then their length would

be n = 1023 bits.

0 0 . . . 0 0 1 1 . . . 1 1

Figure 3-13: AddCW format for a system using two AddCWs

In Figure 3-13 the MSbs of the two AddCWs (shown in bold) are 0 and 1

respectively, which as discussed in Section 3-1, is the extra bit of redundancy that allows

the decoder to determine whether the received CW is the original or the complement.

Strictly speaking then, for the decoder to function properly these two AddCWs do not

necessarily have to be the all-zero and all-one CW. All that is required is that the two

AddCWs used have their MSbs as 0 and 1 respectively. As long as this criteria is met, the

decoder will be able to determine which AddCW needs to be added at the receiver in

order to recover the original CW (i.e. remove the CS coding). Therefore Figure 3-14

shows the specific format that these AddCWs must take, where the x ’s represent any

available CW that has the MSbs in this fashion.

0 x . . . X X l x . . . X X

Figure 3-14: Format of the two AddCWs for proper decoder operation

Note that since the code is cyclic, not using the all-zero and all-one CWs as

AddCWs only has the effect of changing the overall mapping of SWs to CW. For

example, if the two AddCWs used were c6(x) = 0110001 and cg(x) = 1001110, the SW

to CW mapping would be that shown in Table 3-5. This table can be compared with

Table 3-1 where the AddCWs were the all-zero and all-one CW.

. . ' ' . 45 ■ ■ • •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3-5: Using AddCWs c«(*)=0110001 and c9(x)=100U10

Index SW CWa CW ̂ (complement)

0 0 0 0 0 0 1 1 0 0 0 1 , 6 , 1 0 0 1 1 1 0 , 9 ,

1 0 0 0 1 0 1 1 1 0 1 0 , 7 , 1 0 0 0 1 0 1 (6)

2 0 0 1 0 0 1 0 0 1 1 1 , 4 , 1 0 1 1 0 0 0 , 1 1 ,

3 0 0 1 1 0 1 0 1 1 0 0 , 5 , 1 0 1 0 0 1 1 , 1 0 ,

4 0 1 0 0 0 0 1 0 1 1 0 , 2 , 1 1 0 1 0 0 1 , 1 3 ,

5 0 1 0 1 0 0 1 1 1 0 1 , 3 , 1 1 0 0 0 1 0 , 1 2 ,

6 0 1 1 0 0 0 0 0 0 0 0 , 0 , 1 1 1 1 1 1 1 , 1 5 ,

7 0 1 1 1 0 0 0 1 0 1 1 , 1 , 1 1 1 0 1 0 0 , 1 4 ,

It is clear that with this new SW to CW mapping the output transmission will still

be balanced, since in a worst case situation where a source continually emits the same

CW such as the all-zero CW c0(;c) = 0000000, it would be mapped alternately to

c6(x) = 0110001 followed by c9(x) = 1001110 and so on.

Note that if the two AddCWs were not chosen to be complements then balanced

output can no longer be guaranteed. For example Table 3-6 shows the SW to CW

mapping if the two AddCWs were c6(x) = 0110001 and cg(x) = 1000101 .

Table 3-6: Using AddCWs c6(*)=0110001 and c8(*)=1000101

Index 5W CWA (complement)

0 0 0 0 0 0 1 1 0 0 0 1 , 6 , 1 0 0 0 1 0 1 , 8 ,

1 0 0 0 1 0 1 1 1 0 1 0 , 7 , 1 0 0 1 1 1 0 , 9 ,

2 0 0 1 0 0 1 0 0 1 1 1 , 4 , 1 0 1 0 0 1 1 (1 0)

3 0 0 1 1 0 1 0 1 1 0 0 , 5) 1 0 1 1 0 0 0 (1 1 ,

4 0 1 0 0 0 0 1 0 1 1 0 , 2 , 1 1 0 0 0 1 0 (1 2 ,

5 0 1 0 1 0 0 1 1 1 0 1 , 3 , 1 1 0 1 0 0 1 , 1 3)

6 0 1 1 0 0 0 0 0 0 0 0 , 0 , 1 1 1 0 1 0 0 (1 4)

7 0 1 1 1 0 0 0 1 0 1 1 , 1 , 1 1 1 1 1 1 1 (1 5 ,

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this case if the all-zero CW c0(x) = 0000000 is continually emitted it would be

mapped alternately to c6(x) = 0110001 followed by cs(x) = 1000101 and so on, which

are both unbalanced with a 0 to 1 ratio of 4:3. Hence this system would continually grow

unbalanced. As a result, the AddCWs used in this bimode system must be chosen such

that their MSbs are 0 and 1 respectively, and that they are CW complements. Therefore,

since inspection of Table 3-1 and Table 3-5 shows that the only difference is the SW to

CW mapping, for simplicity it is recommended that the AddCWs are always chosen to be

the all-zero and all-one CW. In general the only requirement that this places on an EC

code is that it contains the all-zero and all-one words as CWs.

Balanced transm ission, Transitions: As discussed in Section 3-2, balanced

transmission can be guaranteed and transition density can be improved with two

additional bits of redundancy. Figure 3-15 shows the generic structure of the multimode

complementary encoder that uses four AddCWs, with the corresponding decoder shown

in Figure 3-16.

0 0 . . .0 0 “ ft
0 1 . . . XX — ft Select

- M 1 0 . . . XX — fc Best

l±h 1 1 . . .1 1 !---- ft

Sequence Statistics

Figure 3-15: Generic multimode complementary encoder using four AddCWs

Extract
2 MSbs

Remove parity
to yield SW

EC+CS Code Word

Selector
1 of 4

Figure 3-16: Generic multimode complementary decoder using four AddCWs

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As with the previous setup in order for the decoder to know which AddCW was

added at the transmitter, the AddCWs must follow the format shown in Figure 3-17.

Since this system uses four AddCWs, two MSbs are used and they must be in the form

00, 01, 10 and 11, which in decimal is 0, 1, 2 and 3. Therefore strictly speaking, each

AddCW could be any CW that meets this criteria.

0 0 . . . XX 0 1 . . . XX 1 0 . . . X X 1 1 . . . X X

Figure 3-17: Choosing an AddCW set with four AddCWs

However, from the previous discussion in order to guarantee balanced

transmission the encoder needs the ability to send complementary CWs. Therefore the

AddCWs should maintain the format of Figure 3-17, and they should be chosen to be

complements as shown in Figure 3-18. Hence the all-zero and all-one CWs are chosen,

and CW a can be chosen in the form 01.. .xx, and a is simply its complement.

0 0 . . . 0 0 a 1" 1 1 . . . 1 1

Figure 3-18: Strict format of the four AddCWs

Balanced transm ission, Transitions, limit Runlengths: As discussed in Section 3-2,

balanced transmission can be guaranteed, transition density can be improved, and

runlengths can be greatly controlled with three additional bits of redundancy. Figure 3-19

shows the generic structure of the multimode complementary encoder that uses eight

AddCWs, with the corresponding decoder shown in Figure 3-20.

As with the previous setup in order for the decoder to know which AddCW was

added at the transmitter, the AddCWs must follow the format shown in Figure 3-21.

Since this system uses eight AddCWs, three MSbs are used and they must be in the form

000, 001, 010, 011, 100, 101, 110 and 111, which in decimal is 0, 1, 2, 3, 4, 5, 6 and 7.

Therefore strictly speaking each AddCW could be any CW that meets this criteria.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r N 0 0 0 . . . 0 0 h *
^ 1 0 0 1 . . .x x

0 1 0 . . .x x h *
0 1 1 . . , x x J - * Select

Best
■ M 1 0 0 . . . x x — *

1 0 1 . . . x x J - *
1 1 0 . . ,x x — te

1 1 1 . . . 1 1

EC +C S Code W ord

Sequence Statistics

Figure 3-19: Generic multimode complementary encoder using eight AddCWs

EC+CS CodeWord Meggitt Decoder
(Correct Eiron)

Extract
3 MSbs

000. .00 h
001. .XX J "
010. .XX H

*
Selector on...XX J “

1 oF8 100. . XX J ”
101. . . XX h

y H 110. . . XX h
1 1 1 .. .11

Remove parity
to yield SW

Figure 3-20: Generic multimode complementary decoder using eight AddCWs

0 0 0 . . . xx 0 0 1 . . . xx 0 1 0 . . . xx Oil...xx 1 0 0 . . . xx 1 0 1 . . . xx 1 1 0 . . . xx 1 1 1 . . . X X

Figure 3-21: Choosing an AddCW set with eight AddCWs

However, from previous discussions in order to guarantee balanced transmission

the encoder needs the ability to send complementary CWs. Therefore the AddCWs

should maintain the format of Figure 3-21, and they should be chosen to be complements

as shown in Figure 3-22. Hence the all-zero and all-one CWs are chosen, and CW a can

be chosen in the form 001...xx, CW b can be chosen in the form 010 ...xx, and CW c can

be chosen in the form 011...xx. Then CWs a , b and c are simply chosen as the

complements o f a, b and c respectively.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 0 . . . 00 a b c c b a 11. . . 1 1

Figure 3-22: Strict format of the eight AddCWs

3.6. General notes on AddCWs

3.6.1. AddSWs and hexadecimal notation

From the previous example in Figure 3-4, the four AddCWs used were

c0(x) = 0000000, c4(;c) = 0100111, cu (jc) = 1011000 and c15(x) = l l l l l l l , which

follow the above guidelines since c0(x) and % (*) as well as c4(x) and cx, (x) are CW

complements. However these could have also been listed in terms of SWs. For instance,

inspection of Table 2-1 confirms that the SWs 50(a:) = 0000, s4(x) = 0100, s,, (x) = 1011

and ^15(x) = l l l l are the SWs that form the CWs c0(x) , c4(x), c,,(x) and c15(x)

respectively. Therefore these SWs are defined as Add Source Words (AddSWs). Thus

using a compact hexadecimal notation this AddCW set can be represented as the

AddCWs {00h,27h,58h,7Fh}, or the AddSWs {0h,4h,Bh,Fh}. These two representations

will be used interchangeably since AddCWs are simply AddSWs that have been encoded.

3.6.2. Number of AddCWs can be any power of two

Analysis in this chapter has shown that the number of AddCWs can be increased

to any power of two. While the generic systems listed in Section 3.5 have only used

21 = 2 , 22 = 4 and 23 = 8 AddCWs, more could be utilized such as 24 = 16, 25 = 32 or

higher. These AddCWs would need to be chosen in the same complementary fashion, and

the decoder would need to extract the appropriate number of MSbs in order to add the

correct AddCW at the receiver. Note that as discussed in Section 3-4, the use of more

AddCWs increases the transition density and decreases the runlengths of like valued bits.

However these CS coding benefits come at an efficiency cost in terms of code rate.

■ ' 50. : ■ , ■ ' '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6.3. MSbs and identification bits

Up to this point the encoders and decoders have used the MSbs to identify which

AddCW has been used. However these identification bits can be located anywhere in the

CW and are located in the MSb position simply due to simplicity.

3.6.4. Good AddCW set

An aspect not covered in this chapter is what makes a good AddCW set. For

example, in the (7,2) Hamming code example from Figure 3-4, the four AddCWs used

were arbitrarily chosen as {00h,27h,58h,7Fh}. However based on the AddCW set format

outlined above, three more AddCW sets could have been used: {00h,2Ch,53h,7Fh},

{00h,31h,4Eh,7Fh} or {00h,3Ah,45hh,7Fh}. The effects of using these different AddCW

sets is thoroughly examined in Chapter 4, as well as the criteria regarding what makes a

good AddCW.

3.6.5. Number of AddCW sets

To the casual observer it is often surprising to see that only four AddCW sets

exist with the (7,2) Hamming code introduced in this chapter. It is unexpected since the

format from Figure 3-17 may lead one to believe that there are (4)(4)(4)(4) = 16

AddCW sets. However, this (7,2) code only has four possible AddCW sets which results

from the AddCW recommendations and the size of this code. Recall from Figure 3-18

that two AddCWs are recommended to be the all-zero and all-one CW. Furthermore only

CW a can be freely chosen to meet the format 0 1 ...xx, and a is simply chosen to be its

complement. Therefore the correct number of possible AddCW sets is (l) (4) (l) (l) = 4 ,

and they were listed above in Section 3.6.4. These four AddCW sets can also be written

in compact hexadecimal notation in terms of AddSWs as {0h,4h,Bh,Fh}, {0h,5h,Ah,Fh},

{0h,6h,9h,Fh} and {0h,7h,8h,Fh} respectively.

' 51 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This small number of AddCW sets simply results from the small size of the code.

If a larger code such as the (31,26) Hamming code expurgated to a (31,24) code was

used, the number of AddCW sets increases to (l) (2 24)(l) (l) = 16777216.

Likewise in an eight AddCW system, a (7,4) Hamming code expurgated to a (7,1)

code will only have eight possible AddCW sets. This is because Figure 3-22 shows that

two of the AddCWs are recommended to be the all-zero and all-one CW. Furthermore

only CWs a, b and c can be freely chosen to meet the format 001...xx, 010 ...xx, and

O il...x x respectively, and a , b and c must be chosen as their CW complements.

In general for any linear block code using this multimode coding approach the

number of AddCW sets will be

(2 * p (3.1)

where k is from the codes expurgated size (n,k) and z is the number of AddCWs.

Therefore the number of possible AddCW sets for the (7,4) code, expurgated to a
8 -2

(7,1) code using eight AddCWs is (21) 2 = (2 ‘) = (l) (2) (2) (2)(l) (l) (l) (l) = 8. In

terms of AddSWs these sets can be written in hexadecimal form as

{0h,2h,4h,6h,9h,Bh,Dh,Fh}, {0h,2h,4h,7h,8h,Bh,Dh,Fh}, {0h,2h,5h,6h,9h,Ah,Dh,Fh},

{0h,2h,5h,7h,8h,Ah,Dh,Fh}, {0h,3h,4h,6h,9h,Bh,Ch,Fh}, {0h,3h,4h,7h,8h,Bh,Ch,Fh},

{0h,3h,5h,6h,9h,Ah,Ch,Fh} and {0h,3h,5h,7h,8h,Ah,Ch,Fh}. Once again this small

number of AddCW sets simply results from the restrictions placed on AddCW selection

and the small size of the code. If a larger code such as the (31,26) Hamming code

expurgated to a (31,23) code using eight AddCWs was used, the number of AddCW sets

increases to (223)3 = (l) (2 23)(2 23)(2 23) (l) (l) (l) (l) = 269. Note that Appendix B lists all

AddSW sets used in this thesis.

' ' 52 ' , . ■ ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.7. Combined EC and CS code summary

This chapter introduced a combined EC and CS code that takes advantage of CW

addition through linear code properties to achieve a multimode coding system. This

combined code can be incorporated into existing systems with minimal complexity,

avoiding the use of look-up tables in ROMs and making it applicable to high bit rate

systems. Furthermore this system uses feedback to achieve its CS goals regardless of

source statistics and avoids CS error propagation by error correcting CWs from the

channel before removing the effect of the CS coding.

The real challenge of this system then comes in deciding which CWs to use as

AddCWs. For instance, from Section 3.6.4 with the (7,2) Hamming code there are only

four AddCW sets and therefore they can be directly compared against one another.

However when dealing with larger codes there could be as many as 224, 269 or more

possible AddCW sets to choose from. As a result, directly comparing each AddCW set is

not feasible. In general a good AddCW set should lead to a transmitted sequence that is

balanced, contains numerous transitions, and has a high probability of low runlengths.

Chapter 4 will examine the use of different AddCW sets and their effect on the output

sequence in the time domain. Furthermore Chapter 5 will examine the use of different

AddCW sets and their effect on the power spectral density of the transmitted sequence in

the frequency domain.

, , ■ > ■ 53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Code Word Search and Analytical Results

The multimode coding system introduced in Chapter 3 involves generating an

original CW and adding it to a specific set of CWs called AddCWs. This produces a new

set of CWs from which the best is chosen for transmission. This chapter defines what is

considered to be a best CW, as well as the metrics used for finding good AddCW sets.

4.1. Evaluating CW Statistics

The objective of the encoder is to transmit balanced sequences that contain

numerous transitions. The encoder obtains this goal by transmitting CWs from the

selection set that best matches these objectives. The encoder is able to make this decision

by comparing the following CW statistics.

Transitions: A transition in a sequence occurs when there is a low to high or high

to low level shift. Counting the number of transitions in a CW requires examination of

the sequence of bits in the word and also requires keeping track of the last bit transmitted

on the channel. For a simple example consider the case when the CW {0111010} is

transmitted, represented in hexadecimal notation as 3Ah. As shown in Figure 4-1 if the

last bit transmitted was a 0 then the number of transitions would be four. However if the

last bit transmitted was a 1, then the number of transitions would have been five. Thus a

particular CW will have a different number of transitions depending on the value of the

last bit (LB) transmitted.

extra transition happens here

0 1 1 i l o J T j o _ 4 Transitions

l | o { l 1 l l o f p o 5 Transitions

LB 3 Ah

Figure 4-1: Counting Transitions

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Running Digital Sum: In order to achieve a balanced output the number of Is

and Os must be equal over the long term. These Is and Os will sometimes be referred to as

logic Is and logic Os to avoid confusion when the transmitted sequence uses bipolar

transmission encoding of Section 2.19. That is, during transmission logic Os are mapped

to the value -1 and logic Is are mapped to the value +1. Therefore a binary sequence x of

logic Is and Os during transmission is represented by Equation 4.1.

This mapping allows for the testing of a balanced transmission by simply

summing up all of the bits in the sequence and testing if the result is zero. This process is

known as evaluation of the Running Digital Sum (RDS) [19] and it is defined as

The RDS is calculated and updated with each bit transmitted. The RDS value at

the end of the CW is defined as the word end running digital sum (WRDS). To

demonstrate this, assume that the system begins with an RDS of 0, then continuing with

the previous example, CW 3Ah would transition through various RDS values and

ultimately result in a WRDS of +1 as shown in Figure 4-2. This updates the systems RDS

to +1. If CW 3Ah was transmitted once again, its WRDS would be +2 updating the

overall systems RDS to +2 and so on.

{x} ■—{..., X_| ,-Xq> •••> Xj,...} Xj — { 1,1} (4.1)

= Z x j (4.2)

vvuns
(internal RIJS values) j

0-1 0 1 2 1 2 1
1 1 1 - 1 1 "I

I 0

WRDS
(internal RDS values) j

1 2 3 2 3 21 2 3 2 3 2

/ - 1

1 1 1 -1 1 - 1

Previous
RDS

Binary
Sequence

Previous
RDS

Binary
Sequence

Figure 4-2: Running Digital Sum of the code word 3Ah

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Having an RDS of +2 indicates that the system has currently had two more logic 1

bits than logic 0 bits and thus the transmission is slightly unbalanced. The next CW

would need to have two more logic 0 bits than logic 1 bits to bring the system RDS back

down to 0. This however represents an ideal situation that might not always be possible.

It may take one or more additional CWs to bring the RDS back to 0. However it has been

proven that as long as the RDS is bounded the transmission will be balanced [19].

Minimum Squared Weight: The WRDS is a useful metric that gives the overall

balance of a CW. However this metric only tracks the RDS at the end of a CW and does

not give any indication of the range of RDS values assumed within the CW. For instance

an RDS value that steadily grows and falls within a CW indicates long runs of like valued

bits. Inspecting only the number of transitions and WRDS of a CW may not indicate

these runs. For example, consider the case when the two CWs 2F0h and 0E6h are being

considered for transmission as shown in Figure 4-3.

H igh RDS
\ .W R D S

1 0 1 2 3 4 3 2 1 0

OfHOll 1 1 1 to 0 0 0
W RDS

- 1 - 2 - 1 0 I 0 - 1 0 I 0

o[o oi l i 1 1o ofT H o

Figure 4-3: Minimum squared weight can take the internal RDS into account

It can be seen that both CWs have four transitions and a WRDS of 0. Hence the

encoder would consider this a tie since both CWs are equally suitable for transmission.

However it can be seen that the first CW has a run of four like valued bits, while the

second CW only has runs of three like valued bits. The encoder would need an additional

metric in order to monitor these runs and select the second CW for transmission which is

a better choice in terms of limiting the runlengths. As a result the squared weight metric

takes into account the RDS within a CW. It is defined as the square of the RDS values

summed across the sequence as shown in Equation 4.3.

■ ■ 56'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

z, = £ RDS) (4.3)

Figure 4-4 shows the same CWs as Figure 4-3 with the squared weight calculated.

Due to the long runs of like valued bits the squared weight of the first sequence is much

higher at forty-five than the squared weight of the second sequence at nine. Therefore by

using the m inim um squared weight (MSW) criteria the second CW would be chosen for

transmission.

I + 0 + 1 +. 4 + 9 +16 + 9 + 4 + I + 0 - 45
1 0 1 2 3 4 3 2 1 0

o|m 0 11 1 1 1 to 0 0 0
I + 4 + i -o +, i + o + i + o ♦ i '+ 0 ” 9

-I -2 -I 0 I 0 -I 0 I 0

0 o n 1 110 OfTTVO

Figure 4-4: Minimum squared weight criteria chooses the second CW

4.2. Choosing the Best Code W ord

The multimode coding system is presented with a choice of CWs for each SW,

and must select only one CW for transmission. The CW chosen will be the one that best

meets the system’s requirements. Based on the above discussion there is some flexibility

when choosing the best CW.

1. Choose the CW that has the most transitions: This will ensure that there is

adequate timing information and will therefore satisfy the clock recovery

objectives and reduce jitter. However this alone cannot ensure balanced

transmission. For example the waveform in Figure 4-5 has numerous

transitions but is clearly unbalanced.

_oJ r l [oj i i [ojT T |_oJT T |

Figure 4-5: Sequence has many transitions but it is unbalanced

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Choose the CW that has the smallest abs(WRDS): This by itself will

guarantee balanced transmission, but it cannot ensure a large number of

transitions. For example the waveform in Figure 4-6 is clearly balanced but

has very few transitions.

o o o o o o o l i 1 1 l l i l lo o o o o o Oi l 1 1 1 1 1 1

Figure 4-6: Sequence is balanced but it contains few transitions

3. Choose the CW that has the smallest squared weight: The MSW criteria

works best as a tie breaking metric and does not perform well alone. The

problem is that the MSW criteria squares the RDS values in an attempt to

penalize long runs of like valued bits. If the run of like valued bits passes

through an RDS of 0, the squared weight will be small and the MSW criteria

can be fooled into believing this CW is the best. For example consider the

case when the current RDS value is +3, the LB is 1 and the following CWs are

considered for transmission.

Table 4-1: With the MSW criteria the all-zero CW would be transmitted

WRDS TRAN SqW
00h - 4.0 1 . 0 35.0
27h + 4.0 4.0 47.0
58h + 2 . 0 3.0 95.0
7Fh +10 . 0 0 . 0 371.0

From Table 4-1 it can be seen that based on the lowest RDS criteria, CW 58h

would be chosen as the best with a WRDS of +2. With the most transitions

criteria, CW 27h would be chosen as the best with 4 transitions. However,

with the MSW criteria, CW OOh would be chosen to be the best, even though

it is the all-zero CW which this multimode system is trying to avoid. This

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

demonstrates that the MSW criterion does not work well alone and is most

useful as a tie breaking mechanism.

In general the CW decision process depends on the system requirements. If

system performance is highly dependent on clock recovery, then the best CW to transmit

will be the one with the most transitions. If system performance depends to a large extent

on having a balanced transmission, then the best CW will be the one that minimizes the

RDS. Therefore what is considered to be the best CW is subjective.

Furthermore, as already mentioned it is possible for more than one CW to satisfy

the best CW requirements. In other words ties are possible. In these situations either CW

is equally suitable for transmission. That is, the system can always choose to transmit the

first CW that meets the systems goals, even if alternatives exist. This will still result in a

superior output that is balanced and contains numerous transitions.

However an undesirable problem can arise in this situation. If ties occur in a

regular fashion and the encoder continually chooses the first CW that meets the CS goals

of the system, the encoder may be selecting this CW in a periodic fashion. This can result

in discrete like components in the power spectrum of the transmitted waveform, possibly

leading to cross-talk and possibly violating any spectral masks that must be followed. As

a result it is useful to have enough tie breaking mechanisms to break any and all ties such

that there is always a single clear best CW. Otherwise it is recommended that when one

or more CWs are equally suitable for transmission, that the best CW is chosen randomly

from the set of words considered equally good.

4.3. Selection process used in this thesis

In this thesis the analysis was done based on selecting the CW that minimized the

RDS, This is because it is the only selection criteria that can guarantee balanced

transmission. Other criteria such as the number of transitions and MSW are still

employed in order to break ties.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4. Example of the CW selection process based on minimizing the RDS

Consider the following (7,2) system using the AddSWs {Oh,7h,8h,Fh} encoded to

the AddCWs {00h,3Ah,45h,7Fh} as shown in Figure 4-7.

EC Code Word

0000000

----*! 0111010 Select

—M 1000101 Best

— *1 1111111
....... ■■■......................................

EC+CS Code Word

Channel Statistics

Figure 4-7: (7,2) encoder with AddCWs { 00h, 3Ah, 45h, 7Fh }

In this system there are 22 = 4 possible SWs. Therefore in each encoding interval

one of the four possible SWs is encoded to a CW, added to all four AddCWs listed

above, and then the best CW is chosen from this set. In order to verify this process a

simulation called SimFPGA was written and its interface is shown in Figure 4-8. Note

that the name of this program comes from the fact that this system was implemented on

two FPGA boards as will be discussed in Chapter 6. This program writes every step of

the best CW decision process to a file.

•^•Sim ulate how th e FPGA encoder works

Select a fie first
Waiting lo start

m u
OK

Cancel

--(ak)code

| r a z J

•■'W i *•.. ' ~

.(Lowest RDS d

EleToTrammit
"smalLtxt"
1 bytes

Go
17 Run Once

17 Save Results (compete with FPGA)

I” Seve CW s only to fie

r Save (ot Mathematics

K i Simulation;

j c m x m o : (00000007

;' | OOOOOOOQ -110000003A

■ A d d S W s '(- t f (00000008 (OOPOOOOF

; A d d C W s -] .— H . . (00 0 0 0 0 4 5 |0000007F..
Update

Figure 4-8: SimFPGA - Program for verifying the CW selection process

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consider a simple example using the (7,2) code where there are four 2-bit SWs

for transmission, 00, 10, 11, and 11, or in decimal 0, 2, 3 and 3. As shown in Figure 4-8

the two AddSWs {Oh, 7h} are entered into the program in hexadecimal; their

complements {8h, F h } are automatically generated. These four AddSWs are then

converted into the AddCWs {00h, 3Ah, 45h, 7Fh} respectively. The output from this

program is written to a file as shown in Table 4-2 below.

Table 4-2: Decision process from SimFPGA for the first SW

SW = 00 WRDS TRAN SqW IstTran
OOOOOOOOh -7.0 0 . 0 140.0 0 . 0

0000003Ah +1 . 0 4.0 12 . 0 2 . 0

00000045h -1 . 0 5.0 12 . 0 2 .0**»*
0000007Fh +7.0 1 . 0 140.0 0 . 0

WinningLoc = 2 BitsLeft = 6 FilePointer = 0
Tie = 00000005 NumTies = 0 state 1 of nutns
(((((00000045h RDS = -1.0 LB = 1)))))

The first 2-bit SW 00 results in CW OOh which is added to all AddCWs

generating the four CWs {00h,3Ah,45h,7Fh}. From these four CW choices the encoder

must now choose the best one for transmission. In order to do this the encoder arbitrarily

assumes the initial RDS of the system is 0 and the initial LB is 0. Table 4-2 lists the

metrics of each CW choice. It is clear that the all-zero and all-one CW perform poorly

with respect to all metrics since they have high WRDS values of -7 and +7, low

transitions of 0 and 1, and a squared weight of 140. Therefore the choice comes down to

either CW 3Ah or 45h. Since these CWs are complements the abs(RDS) and squared

weight (SqW) are the same at 1 and 12 respectively. The only difference between them is

the number of transitions. Since the LB was initially chosen to be 0 the winning CW

selected is 45h and it is considered to be the best.

Since CW 45h was transmitted and it has a WRDS of -1 and a LB of 1, the system

RDS is updated to -1 and the LB is updated to 1. Now the system can move onto the next

SW. Continuing in the same fashion the next 2-bit SW 01 is encoded to the CW 16h and

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

added to the 4 AddCWs to generate the CWs {16h,2Ch,53h,69h}. Table 4-3 shows that

two CWs will bring the system RDS back to 0. Thus in terms of smallest abs(WRDS)

either of these CWs would be considered the best and the encoder has encountered a tie.

Table 4-3: Decision process from SimFPGA for the second SW

SW = 10 WRDS TRAN SqW IstTran
00000016h -2 . 0 5.0 35.0 3.0
0000002Ch -2 . 0 5.0 15.0 2 . 0

00000053h +0 . 0 4.0 7.0 2 . 0

00000069h +0 . 0 4.0 3.0 3.0****

WinningLoc = 3 BitsLeft = 4 FilePointer = 0
Tie = 00000007 NumTies = 0 state 2 of nums
(((((00000069h RDS = 0.0 LB = 1)))))

Since the main requirement of the system has been met the encoder can now

choose the CW that meets the secondary goals of maximizing transitions for clock

recovery, i.e. removing long runs of like valued bits. The first tie breaking mechanism

considered is the number of transitions. However both “good” CWs have 4 transitions

and this tie persists. Only as a result of the MSW criteria has the tie been broken and CW

69h is chosen to be the best since its squared weight is smaller than CW 53h. This

demonstrates how the number of transitions and MSW criteria can still be used even

though the overall goal is only to transmit the CW with the lowest abs(RDS).

Finally consider when the source outputs the same SW 11 twice. As shown in

Table 4-4 the first SW 11 causes the CW 27h to be transmitted and the second SW 11

causes the CW 62h to be transmitted. This demonstrates that the same SW will often be

represented with different CWs as a result of multimode coding. It also shows that the

best CW will not always be the same for the same SW. The best CW will often change

depending on the current RDS and LB value. Therefore these two values are formally

defined as a state of the system and will be represented as an (RDS,LB) state.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4-4: Decision process from SimFPGA for the third and fourth SW

SW = 11 WRDS TRAN SqW IstTran
OOOOOOIDh +1 . 0 4.0 8 . 0 3.0
00000027h +1 . 0 4.0 8 . 0 2 .0****
00000058h -1 . 0 3.0 8 . 0 2 . 0

00000062h -1 . 0 3.0 8 . 0 3.0

WinningLoc = 1 BitsLeft = 2 FilePointer = 0 : CW's sent 3
Tie = 0000000F NumTies = 0

state 3 of numstates 4
(((((00000027h RDS = 1.0 LB

SW = 11 WRDS TRAN SqW IstTran
OOOOOOIDh +2 . 0 4.0 11 . 0 3.0
00000027h +2 . 0 4.0 7.0 2 . 0

00000058h + 0 . 0 3.0 23.0 2 . 0

00000062h + 0 . 0 3.0 19.0 3,0****

W in n in g L o c = 3 B i t s L e f t = 0 F i l e P o i n t e r = 0 C W 's s e n t 4

T i e = OOOOOOOF N u m T ie s = 0

s t a t e 0 o f n u m s t a t e s 4

(((((0 0 0 0 0 0 6 2 h RDS = 0 . 0 LB = 0)))))

4.5. Comparing unconstrained and constrained transmission

If no CS coding had been used in the above example then only the regular (7,4)

Hamming code would had have been used. As a result the transmitted sequence would

have been {00h,16h,lDh,lDh}. This sequence would have had 11 transitions, been

unbalanced with an RDS of -6, and it would have contained a run of nine like valued bits

as shown in Figure 4-9.

0 -I -2 -3-1 *5 -9 -7 •« -5 ■» -9 ■* -7 •« -9 -10 .9 .» .7 ■» -7 -S -9 ■# -7 -6 -7 -6
lo 0 0 0 0 0 0 0 o i l 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1I_________ I_____ ;____ I__________ I--------------- 1

0/00 2/16 3/ID 3/ID

Figure 4-9: Uncoded sequence is unbalanced and has a run of 9

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Conversely, the multimode coding system that incorporates CS coding has

resulted in an output sequence that is completely balanced with an RDS of 0 and

containing 16 transitions.

0 1 0 -I -J -I -1 -I 0 1 0 I 0 -I 0 -I 0 -1 -2 .1 0 I 2 3 1 1 0 1 0
l o o o i o i i i o i o o i o i o o il i iT T Io o o 1 o

l , L J , \ 1 :

0/45 2/69 3/27 3/62

Figure 4-10: Coded sequence is balanced but still has a run of 5 like valued bits

While this is a definite improvement inspection of Figure 4-10 shows that this

constrained sequence still has a run of five like valued bits. The question that arises then

is how likely is this run of length five? Furthermore, could this run be removed if

different AddCWs were used?

4.6. Effect of D ifferent AddCW s

Analysis in Sections 3.6.4 and 3.6.5 reported that there are only four possible

AddCW sets in this (7,2) system. They are {00h,27h,58h,7Fh}, {00h,2Ch,53h,7Fh},

{00h,31h,4Eh,7Fh} and {00h,3Ah,45h,7Fh}, or in terms of AddSWs are {0h,4h,Bh,Fh},

{0h,5h,Ah,Fh}, {0h,6h,9h,Fh} and {0h,7h,8h,Fh} respectively. Using the same sequence

of four SWs, 00, 10, 11 and 11 with the AddSW set {0h,4h,Bh,Fh} (versus

{0h,7h,8h,Fh} previously) an entirely different sequence will be transmitted as shown in

Tables 4-5 and 4-6.

Here it can be seen that the first 2-bit SW 00 is now encoded to the CW 58h

instead of 45h as it was previously. In addition, this CW has caused the RDS to be -1 and

the LB to be 0. Comparison with the last AddCW set shows that this is an (RDS,LB) state

that was not reached before. As a result it is possible that this AddCW set will cause the

encoder to experience different RDS and LB combinations and therefore have a different

number of states than the last example. Table 4-6 continues this example by showing the

decision process for the next three SWs.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4-5: Decision process from SimFPGA for the 1st SW

SW = 00
OOOOOOOOh
00000027h
00000058h
0000007Fh

WRDS TRAN
-7.0 0.0
+1.0 3.0
-1.0 4.0
+7.0 1.0

SqW IstTran
140.0 0.0
8 . 0 2 . 0

8 . 0 2 . 0 ****

140.0 0.0

WinningLoc = 2 BitsLeft = 6

Tie = 00000005 NumTies = 0
(((((00000058h

FilePointer = 0 CW's sent 1
state 1 of numstates 2

RDS = -1.0 LB = 0)))))

Table 4-6: Decision process from SimFPGA for the second, third and fourth SW

SW = 10 WRDS TRAN SqW IstTran
00000016h -2 . 0 4.0 35.0 3.0
00000031h -2 . 0 3.0 23.0 2 . 0

0000004Eh +0 . 0 4.0 7.0 2 . 0

00000069h + 0 . 0 5.0 3.0 3 ̂ o****

WinningLoc = 3 BitsLeft = 4 FilePointer = 0 CW's
Tie = 00000005 NumTies = 0 state 2 of numstates 3
(((((00000069h RDS = 0.0 LB = 1)))))

SW = 11 WRDS TRAN SqW IstTran
OOOOOOIDh + 1 . 0 4.0 8 . 0 3.0
0000003Ah +1 . 0 5.0 12 . 0 2 .0****
00000045h -1 . 0 4.0 1 2 . 0 2 . 0

00000062h -1 . 0 3.0 8 . 0 3.0

WinningLoc = 1 BitsLeft = 2 FilePointer = 0 CW's
Tie = 00000005 NumTies = 0 state 3 of numstates 4
(((((0000003Ah RDS = 1.0 LB = 0)))))

SW = 11 WRDS TRAN SqW IstTran
OOOOOOIDh +2 . 0 3.0 1 1 . 0 3.0
0000003Ah +2 . 0 4.0 31.0 2 . 0

00000045h +0 . 0 5.0 7.0 2 .0****
00000062h +0 . 0 4.0 19.0 3.0

WinningLoc = 2 BitsLeft = 0 FilePointer = 0 CW's
Tie = 00000005 NumTies = 0 state 2 of numstates 4
(((((00000045h RDS = 0.0 LB = 1)))))

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this case the transmitted CWs are {58h,69h,3Ah,45h}. This sequence has 19

transitions, is completely balanced and now has a maximum run of only three like valued

bits as shown in Figure 4-11.

0 I 0 I J I 0 -I 0 I 0 I 0 .1 0 -I 0 I J I 1 I 2 I 0 -I 0 -I 0
1 0 : i 0 0 0 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 1

i_____________ i_____________ i_____________ i-------------------- 1
0/58 2/69 3/3A 3/45

Figure 4-11: Coded sequence is balanced and now has a run of only three like valued bits

Based on this result it would appear that this is a better AddCW set. However

making this assumption would be premature since only four SWs were tested. A

complete analysis will look at the probability of various runlengths occurring and can

only be performed once all SW/CW combinations have been tested. In order to conduct

this analysis and evaluate different AddCW sets, it is helpful to model the encoder as a

finite state m achine (FSM).

4.7. Finite S tate M achines

Any system that operates at discrete instants of time and takes on a finite number

of configurations can be represented as a finite state machine (FSM) [22]. A FSM is

classified as either a M oore machine, where the output is a function of the internal state

only, or as a M ealy m achine where the output is a function of the internal state and the

present input [22]. The encoder presented in this thesis is classified as a Mealy machine

since the output CW and next state are both dependent on the present SW and present

(RDS,LB) state.

A FSM can also be represented graphically by a state d iagram which shows the

progression of states through which the system operates and the resulting outputs based

on specific inputs.

66 :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(0,0)

Figure 4-12: Partial state diagram for the (7,2) encoder transmitting the four SWs 0 , 2 , 3 and 3. This

causes transitions from state (0,0), to state (-1,0), to state (0,1), to state (1,0), and back to state (0,1)

For instance, in the second (7,2) example above with AddSWs {Oh,4h,Bh,Fh}, the

sequence of four SWs transmitted caused the system to move into four (RDS,LB) states

as shown in Figure 4-12. The state diagram shows how each SW is mapped to each CW

depending on which state the system is presently in. For instance the system was assumed

to start with an RDS of 0 and a LB of 0. As a result the first state is denoted (0,0). The

first SW emitted was Oh and this caused the CW 58h to be transmitted and it moved the

system into state (-1 ,0), i.e. an RDS of -1 and a LB of 0. This SW/CW interaction is

shown as 0/58 on the trace that moves from state (0,0) to state (-1 ,0). Likewise the next

SW was 2h with corresponding CW 69h, shown as 2/69 and this moved the system into

state (0,1). Finally the next two SWs were both 3h, which caused the CWs 3Ah and 45h

to be transmitted, shown as 3/3A and 3/45 respectively, which moved the system to state

(1,0) and then back again to state (0,1).

Figure 4-12 only shows a partial state diagram after transmitting four CWs. In

order to see the complete state diagram all SW/CW combinations must be explored

from every state. Figure 4-13 shows the complete state diagram for this (7,2) encoder

67. .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using the AddSW set {0h,7h,8h,Fh} encoded to the AddCW set {00h,3Ah,45hh,7Fh}

where CW selection is based on minimizing the RDS. It consists of six (RDS,LB) states

numbered 0 through 5 for convenience. Inspection of this state diagram shows that each

state will be left the interval after it is entered. However the probability of entering each

state is not equally probable. Furthermore since the goal of the encoder is to minimize the

RDS, the states with the most entry points are states 2 and 3 which both represent an RDS

of 0, and a LB of 0 and 1 respectively.

Figure 4-13: State Diagram for (7,2) code with AddSWs={0h,4h,Bh,Fh}

Focusing on the left half of the state diagram, i.e. the three states 0, 2 and 4 that

each have a LB of 0, it can be seen that there are eight different CWs that take the system

into state 2, three different CWs that take the system into state 0, but only one CW that

can take the system into state 4. Clearly state 2 will be visited more often than states 0

and 4. This is an important distinction since even though all exit paths from a particular

state are equally likely with equiprobable SWs, the probability of being in each state is

not. This means that the CWs that leave state 2 will be seen on the channel more often

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

than the CWs that leave states 0 and 4. Hence the probability of a CW being transmitted

is weighted by the probability of being in a particular state. When attempting to calculate

runlength probabilities these state probabilities need to be taken into consideration. This

form of analysis can be performed by interpreting the FSM as a M arkov Chain.

4.8. M arkov Processes and M arkov Chains

4.8.1. M arkov Chains

A random process X(t) is a M arkov Process if the future value of the process is

dependent only on its immediate present value. In other words the process is independent

of the past; its future value is dependent only on its present value. This is expressed

concisely in Equation 4.4, which states that the probability of X (t) assuming a new value

given all the previous values for all time is equal to the probability of X (t) assuming a

new value if only the immediate value xk is considered.

A W *) = * < .- .X « 1) = ^] = />[X « i . l) = ^ , 1|X ((,) = A:4] (4.4)

In Markov chains the probability distribution functions (PDFs) that are

conditioned on several time instants always reduce to one PDF that is conditioned only

on the most recent time instant. This is known as the M arkov property [23].

An integer valued Markov Process is a discrete time random process called a

M arkov Chain. Here the random variable X n takes on a countable number of values at

discrete moments in time, where T is the interval between discrete time events. The value

of X n at the discrete time n is referred to as the state o f the process at time n.

X n = X (n T) (4.5)

. ■ . 69 ■ ■ ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8.2. Markov Chain Properties

A system can be modeled by a Markov chain if the sequence of trials satisfies the

following properties:

1. Each outcome belongs to a finite set of outcomes [av a2,...,am} called the
state space of the system. If the outcome of the n‘h trial is af , then the system

tHis defined to be in state at at time n, or the system is in state a, at the n step.

2. The outcome of any trial depends at most upon the outcome of the
immediately preceding trial and not upon any other previous outcome.

3. There is a given probability p i} that state a ; occurs immediately after a,

occurs. This can also be interpreted as follows: if the process is currently in
state a , , then p(j is the probability of it moving to state a,..

The numbers ptj are called the transition probabilities and they can be arranged in

a matrix called the transition matrix as shown in Equation 4.6.

P =

P \ 1 P\2

P l \ P22

Pml P m2

Pin,

P2m

' nun _

(4.6)

The transition matrix P is a stochastic matrix since each row is a probability

vector that sums to 1. Additionally a Markov chain has an initial probability vector p

which indicates the starting state. For instance, calculation of the probability of the

system starting in state 0 and then moving from state 0 to 1, and then from state 1 to 2

and so on would be done as shown in Equation 4.7.

p (X 0 =i0, X l =il, X 2 =i2,... ,Xn = i J = p(i0)P(i0J l)P(ii,i2)...P(in_l,in) (4.7)

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, let P be a transition matrix with the initial probability vector p as

shown in Equation 4.8 below. Since p = [l 0], the system begins in state 0 with 100%

probability. The probability P(0001110) denotes the probability of starting in state 0,

staying in state 0 for two more time steps, moving to state 1 on the 3rd time step, staying

in state 1 for the next two time steps, and finally ending in state 0 on the 6th time step. As

shown in Equation 4.9 this probability is approximately 0.01627. Likewise, the

probability P(0011110) = 0.01808 as shown in Equation 4.10.

P =
3 /4 1/4
1/6 5 /6

P = l 1 o]

P(0001110) = (l)

P(0011110) = (l)

1A)

f -UJ

3

- 1
,4 ,

5 I
V6y

6

= 0.01627

= 0.01808

(4.8)

(4.9)

(4.10)
vu /

Equation 4.9 and 4.10 show two cases of the system starting in state 0 and after

six time steps finishing in state 0. If we were interested in all possible cases of starting in

state 0 and after six time steps ending in state 0, we would need to find all possible

chains of the type OxxxxxO, where x indicates a don’t care state, and add together the

probabilities of these chains for the total probability which would be denoted as

P (X 6 = 0 | X 0 = 0) . There would be 25 = 32 possible chains, and clearly this operation

would become cumbersome, especially for a large number of time steps.

The probability P (X n = j \ X 0 - i) can be obtained however from the nth power of

the transition matrix P" [23]. This is due to a nice link between linear algebra and

probability. The transition matrix P can be interpreted as P 1, which is the probability that

the system changes from the state a, to the state a, in one time step. Likewise P 2 is the

probability that the system changes from the state a{ to the state aj in two time steps and

continuing in this fashion P" would represent the probability that the system changes
71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from state a, to the state ay in n time steps. Thus the probability P (X 6 = 0 | X0 = 0) can

be obtained from the 6th power of the transition matrix P.

As shown in Equation 4.11 below, P (X 6 = 0 | X0 = 0) = 0.424, which means that

if the starting state is state 0, the probability of it ending in state 0 six time steps later is

42.4%. Likewise the probability of starting in state 0 and ending in state 1 is 57.6% and

so on.

P 6 =
.424 .576
.384 .616

so P (X 6 = 0 |X 0 = 0) = 0.424 (4.11)

In general a stochastic matrix is said to be regu lar if all the entries of P" for

n > 1 are positive (non-zero) [23]. In Equation 4.8 the stochastic matrix P is considered to

be a regular stochastic matrix by this definition.

4.8.3. Long T erm Behavior of M arkov Chains

Understanding the long term behavior of a Markov chain simplifies to

understanding P n for large n. Each Pn preserves the property of rows summing to one

and having non-negative entries. Thus all P n matrices are still transition matrices. For

example, P after 20 time steps is shown in Equation 4.12.

p 2 0 _
.400 .599

.399 .600
(4.12)

It appears to be converging and one can conjecture that as n approaches infinity

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r.4 .6i
A (4>13).4 .6

Each row (which is a probability vector) of P" for large n is identical. This

probability vector is of special interest and is called the invarian t probability vector n

or A,. [23]. The probability vecto rs is invariant since

7t = n P - n P 2 - 7rP3 = ... = n P n as n —>°° (4.14)

This expression demonstrates that with distribution n , the chain is in equilibrium.

That is, if the system starts with this probability distribution n , then this distribution will

be maintained for all time. The n vector is also a limiting probability vector since

7T = \imvP" (4.15)

where v is any initial probability vector. Equation 4.15 states that for any initial

probability vector v, vPn approaches the invariant probability vector# for large n. Every

Markov chain will have an invariant probability vector n [23] and this vector gives the

long term probability of being in any particular state. That is, if the system was running

for some period of time, and it was suddenly stopped, n would give the probability of

being in each state. In general if P is a regular stochastic matrix then the subsequent

powers of P approach a matrix n that has rows that consist of the fixed probability

vector 7 i [23],

However n is not always unique [23]. If n is a unique vector and the rows of the

transition matrix P raised to large n converge to # , then the chain/system is said to be

ergodic. This comes from the Perron-Frobenius theorem [23]. This theorem states that if

there exists an n such that P" > 0 for n > 1 then P is ergodic [23]. Ergodicity of Markov

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

chains is a desired property since it guarantees that no matter which state you start in, if

you run the system long enough the influence of the initial probability vector p vanishes

and the system will approach the invariant distribution n . This result has practical

applications such as with Monte Carlo Markov Chain (MCMC) algorithms and

simulations [23].

4.8.4. Non-Regular M arkov Chains

It is possible to have a Markov chain that is ergodic and has a unique invariant

probability vector that does not satisfy the Perron-Frobenius theorem. For example

consider this trivial case

'0 f ' 1 o' "° 1_ ' l o'
p = p 2 = p 3 = p 4 =1 0 0 1 1 0 0 1

This chain will never converge and the powers of P will alternate between the two

matrices in Equation 4.16. This is because the chain has a period of size d = 2 . For

chains with a period of d the subsequent powers of P cycle between d different

matrices [23]. In this case P n will not converge and thus vP" will continue to alternate

between d = 2 vectors unless v = n . Therefore this chain is not regular.

However since the transition matrix states that when the system is in state 0 it

must move to state 1, and on the next time instant it must move back to state 0 and so on,

one can intuitively conclude that 50% of the time must be spent in each state. Therefore

even though there is no convergence it can be expected that n = [.5 .5]. In systems like

this that are not regular the average of the transition matrices raised to large n will

always converge to a matrix M [23]. Furthermore, if all of the rows of M are identical then

the invariant probability vector 7t is unique [23].

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n tTi
(4.17)

Using Equation 4.17 the invariant probability vector can be found from averaging

the transition matrices as shown in Equation 4.18 to find 7t = [.5 .5],

1 f ‘0 1' 1 0
\ ‘.5 .5'

M = — + —

2 \ ! 0 .° 1. .5 .5_
thus 71 = [.5 .5] (4.18)

The above example demonstrates a case where n is unique and yet P does not

converge, hence they do not go hand in hand. As well this chain does not satisfy the

Perron-Frobenius theorem and yet it is ergodic. This is an important distinction since

many of the combined EC and CS codes presented in this thesis, when analyzed as

Markov chains are also ergodic but do not satisfy the Perron-Frobenius system and their

transition matrices never converge.

4.8.5. State Diagrams

A Markov chain can also be represented graphically by a state diagram just like a

FSM. For example the state diagram for the Mealy FSM state graph of the (7,2) encoder

using the AddSWs {0h,4h,Bh,Fh} from Figure 4-13 can be redrawn using the probability

of taking a particular trace, instead of the SW/CW relationship, as shown in Figure 4-14.

With this representation it is easy to see the probability of each CW being transmitted

from each state. Furthermore, assuming that the source symbols are independent and

equally likely the transition matrix can be constructed by inspection.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-14: Markov Chain State Diagram

4.9. Analyzing the Encoder as a Markov Chain

Analyzing Figure 4-13 or Figure 4-14 shows that if the system is in state 0 it will

move to state 2 with probability 1 /4 and move to state 3 with probability 3 /4 . Likewise

if the system is in state 2 it will move to state 0 with probability 1/4, move to state 1 with

probability 1/4 and move to state 5 with probability 1/2. Continuing in this fashion all

possible transition probabilities can be found and they are shown in Equation 4.19.

P =

0 0 1/4 3/4 0 0
0 0 1/4 3/4 0 0
1/4 1/4 0 0 0 1/2
1/2 0 0 0 1/4 1/4
0 0 3/4 1/4 0 0
0 0 3/4 1/4 0 0

(4.19)

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another approach to finding this transition matrix is to use the definitions first

presented by Cariolaro and Tronca [24]. Define the input probability matrix 0U for

u = 1,2,..., S , where S is the number of SWs as

where denotes the ith state. Equation 4.20 is the probability of a particular SW

occurring given the current state. Since there are 4 possible SWs and they are equally

likely then there is a lA probability of any one of them being chosen regardless of the

present state.

.25 0 0 0 0 0
0 .25 0 0 0 0

0Q= dl =02= 0i = 0
0

0
0

.25
0

0
.25

0
0

0
0

(4.21)
0 0 0 0 .25 0
0 0 0 0 0 .25

Next define Eu for u = 1,2,...,5 as the next-state matrices, where Eu (/, j) = 1 if

and only if state is entered from state given input Su. For each possible SW the

system will move to only one state and therefore the Eu matrices will have a single 1 on

each row. This is shown in Equation 4.22.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£o =

E2 =

0 0 0 1 0 o' 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 E, = 0 0 0 0 0 1
0 0 0 0 0 1 I 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 E, = 0 1 0 0 0 0
1 0 0 0 0 0 3 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0 0

(4.22)

By considering all the ways in which these state transitions can happen, and the

probability of their occurrence, it is straightforward to verify that

M=i
(4.23)

P =

P =

.25 0 0 0 0 0 0 0 1 3 0 0
0 .25 0 0 0 0 0 0 1 3 0 0
0 0 .25 0 0 0 1 1 0 0 0 2
0 0 0 .25 0 0 2 0 0 0 1 1
0 0 0 0 .25 0 0 0 3 1 0 0

. 0 0 0 0 0 .25 0 0 3 1 0 0_

0 0 .25 .75 0 0
0 0 .25 .75 0 0
.25 .25 0 0 0 .5
.5 0 0 0 .25 .25
0 0 .75 .25 0 0
0 0 .75 .25 0 0

(4.24)

Next define Cu for u = 1,2,...,S as matrices, where the row Cu(i) is the CW

generated when state is entered due to a given input Su, For the example above:

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0100111 1010011

0100111 1010011

1011000
c , =

1010011
0100111 1 0101100

1011000 0101100
1011000 0101100

(4.25)
1101001 0111010

1101001 0111010

1101001
c , =

1000101

0010110 3 0111010

0010110 1000101

0010110 1000101

With these definitions all information regarding the likelihood of entering a state

and the CW emitted from each state is neatly formatted into a matrix representation. Note

that the transition matrix P found in Equation 4.24 is the same as the transition matrix

found by inspection in Equation 4.19. P can now be used to find the invariant probability

vector n .

4.9.1. Finding the invariant probability vector of the encoder

From Section 4.8.3 and Equation 4.15 the invariant probability vector n can be

found for any initial starting distribution v by evaluating vPn as n approaches infinity.

The rows of P" approach the invariant distribution for large n for regular stochastic

matrices satisfying the property n = n P . However for the encoder described above,

taking P n to large powers of n shows that it alternates between the two matrices below

for odd and even powers of n.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This system has a chain of d = 2 and will cycle between these d matrices. This is

because the Markov chain is not regular, and it cannot be expected to converge. The

invariant distribution as found by Equation 4.17 is

M = { i

3 I M
8 8 2 2

2 1 1
8 8 2
2 1 1
8 8 2

2 1 1
8 8 2

2 1 1
8 8 2
2 1 1
8 8 2

1 2
8 8

1 A 3
2 8 8
1 T 2
2 8 8

31 1
2 8 8

1 1 2
2 8 8

1 1 2
2 8 8 .

3 /1 6 1/16 1 /4 1 /4 1/16 3 /16
3 /16 1/16 1 /4 1 /4 1/16 3 /16
3 /16 1/16 1 /4 1 /4 1/16 3 /1 6
3 /16 1/16 1 /4 1 /4 1/16 3 /16
3 /1 6 1/16 1 /4 1 /4 1/16 3 /16
3 /1 6 1/16 1 /4 1 /4 1/16 3 /16

(4.27)

7T = [3 /1 6 1/16 1 /4 1 /4 1/16 3 /1 6]

This means that if the system was running for some amount of time and the

number of times each state was visited was recorded, it would be found that the invariant

distribution is ^ = [3 /1 6 1/16 1 /4 1 /4 1/16 3 /1 6] = [.1875 .0625 .25 .25 .0625 .1 8 7 5] , which

is the probability of being in any particular state. Combining this information with the

state diagram shown in Figure 4-15, it can be seen that the system is in the two most

popular states, states 2 and 3 that correspond to an RDS of 0, 50% of the time.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-15: Markov Chain State Diagram with State Probabiiities

Using Markov chain analysis it is now possible to evaluate the likelihood of a

particular CW being sent. On average the probability of a CW being transmitted from any

state is Va, weighted by the probability of being in the state that emitted the CW.

For example, the probability of being in state 01s 18.75%. Therefore the CWs

emitted from this state {27h,53h,69h,3Ah} would be seen on the channel (18.75%)(25%)

or 4.68% of the time. Likewise the probability of being in state 1 is 6.25%. Therefore

even though the CWs emitted from this state are the same{27h,53h,69h,3Ah}, they

would only be seen on the channel (6.25%)(25%) or 1.56% of the time. Continuing in

this manner the likelihood of all possible CWs being transmitted can be calculated. With

this information it is now possible to characterize the encoder in terms of runlength

probabilities.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.10. Finding Runlength Probabilities

To find the runlength probabilities it is convenient to decompose the state diagram

into the format shown in Figure 4-16. From this representation it easy to see the

probability of specific CWs as the encoder enters and leaves states.

3 (. 2 5 / 4) / 3 A -------

0 (. 1 8 7 5 / 4) / 3A fc.
1 (. 0 8 2 5 / 4) / 3A fc.
4 (. 0 8 2 5 / 4) / 58 h .
4 (. 0 8 2 5 / 4) / 2C fc.
4 (. 0 8 2 5 / 4) / 18 fc.
5 (.1 8 7 5 / 4) / 58 fc.
5 (. 1 8 7 5 / 4) / 2C fa.
5 (. 1 8 7 5 / 4) / 16 ---------^

2 (. 2 5 / 4) / 5 8 ^

3 (. 2 5 / 4) / 2C -------- ^

3 (. 2 5 / 4) / 1 6 fc

Figure 4-16: Decomposed state diagram illustrating the probability of a SW/CW entering each state,

and probability of each CW leaving each state, allowing straightforward calculation of runlengths

For example, Figure 4-16 shows that CW 58h enters state 0 with probability

(.25)(.25) = .0625. This is because CW 58h is one of four possible CWs that can be

emitted from state 2, which the system visits on average 25% of the time. Once the

system is in state 0 there are 4 possible CWs {27h,53h,69h,3Ah}that can be emitted all

with probability lA . Hence the probability of the particular sequence 58h followed by 27h

is (.25) (.25) (.25) = .015625.

In order to accurately evaluate runlength probabilities the concatenation of CWs

must be taken into account. For example Figure 4-17 shows the sequence formed through

the concatenation of the two CWs 58h and 27h.

82

5 8 (1 / 4)

2 C (1 / 4)

1 6 (1 / 4)

4 5 (1 / 4)

3 (. 2 5 / 4) / 2 7 -----

2 (. 2 5 / 4) / S 3 -----

2 (. 2 5 / 4) / 6 9 +

5 8 (1 / 4)

2 C (1 / 4)

1 6 (1 / 4)

4 5 (1 / 4)

5 8 (1 / 4) 0 . 1 8 7 5 / 4) / 2 7 — _____ 2 7 (1 / 4)
0 . 1 8 7 5 / 4) / 53 --►

5 3 (1 / 4) 0 . 1 8 7 5 / 4) / 69 -- ► ZC (1 / 4)1 . 0 6 2 5 / 4) / 27 --► 3
6 9 (1 / 4) 1 . 0 6 2 5 / 4) / 53 --► — ^ 1 6 (1 / 4)

1 . 0 6 2 5 / 4) / 6 9 -- ► 01
4 5 (1 / 4) 4 . 0 6 2 5 / 4) / 45 — > — ^ 3A (1 / 4)

5 . 1 8 7 5 / 4) / 4 5 — ►

------ ► 2 7 (1 / 4) 2 (. 2 5 / 4) / 4 5 - ----- >

--- ► 5 3 (1 / 4)
1__p. 6 9 (1 / 4) 1

- 1 1
3A (1 / 4)

2 7 (1 / 4)

S 3 (1 / 4)

6 9 (1 / 4)

3A (1 / 4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 0 1 1 0 0 0 0 1 0 0 1 1 1 * 5 8 2 7

1 0 1 1 1 0 0 0 0 1 0 0 | 1 1 1 * Portion of interest

Figure 4-17: Concatenation of two CWs and the Portion of Interest

Note that CWs 58h and 27h alone only have a worst case runlength of 3 like

valued bits. However once they are concatenated a runlength of 4 like valued bits

appears. Therefore the string of three 0s at the end of CW 58h cannot be counted simply

as a run of three, since it may lead to a longer run of 0s when concatenated with the next

CW. Likewise the final string of three Is in CW 27h is not counted as a run of three

either since it may lead to a longer run of Is when it is concatenated to the next CW. As

shown in Figure 4-17 the middle portion of the concatenated CWs is called the portion

of interest.

4.11. Analysis of runlength probabilities

As previously discussed the probability of this particular two CW sequence 58h

followed by 27h is (.25)(.25)(.25) = .015625 or (.25)*1/**1#. The probability of being

within the seven bit portion of interest out of these fourteen bits is 7/14. Inspection

shows that there is one run of 1, one run of 2 and one run of 4 that will occur with

probability 1/7, 2/7 and 4/7 respectively. Finally since the portion of interest spans two

CWs, and the particular run of interest could commence at any encoding interval,

including the «th and (/z+l)th intervals, then the above sequence probability must be

multiplied by two. For this example then,

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Run of 1 = .25

Run of 2 = .25

Run of 4 = .25

1

' I V

1

n
v^y

_7J2
14 J 7

7
\
z' n ̂4

vl4y

448

2
448

4
7 448

= .002232

004464

= .008929

(4.28)

Enumeration like this is required for all possible two CW combinations, and even

for this simple system there are 96 possible two CW combinations. Since this calculation

is best performed by a computer, two programs were written.

►.-Build EuCu

-(ok)code

|(7.2)

-Selection Ciiteria

| Lowest RDS d

rln/oimatiorr

Piess to Stall
building LC0DEPWR.IN

Probability of a 1
a; in 502 put 50,
1 0 * put 10 etc.

[50 j-
-AddSW-

JT [4 {0 |a fo— fo— [eT

Figure 4-18: Build_EuCu.exe Program that builds 0 U, E u and C u matrices

The first program Build_EuCu.exe is shown in Figure 4-18 and it allows the user

to select the expurgated code, selection criteria, source statistics and AddSWs. It then

generates three files. The first file generated is shown below in Figure 4-19 called

ProbOfl_50jStates_(7,2)_[0,4,B,FJ_Lowest_RDS.txt, and it shows the RDS and LB states

generated by the code. These states are found by testing all SW/CW combinations and

they are sorted from lowest to highest to show the symmetry in the system. Inspection

shows that these are the same states from Figure 4-15.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P j ProbOf I _5(l_State«_(7,2) J O ,4,Dr - F I R E

i '0 « E dt Faflnat:. Help

SORTED - Nura States = 6 H

State 00 RDS=-1 LB=0
State 01 RDS=-1 LB=1
State 02 RDS=0 LB=0
State 03 RDS=0 LB=1
State 04 RDS=1 LB=0
State 05 RDS=1 LB=1

<1 1 A

Figure 4-19: Output states from BuiId_EuCu.exe

Two other files are generated by this program. One is used in the evaluation of the

power spectral density that will not be considered until Chapter 5, and the other contains

the Eu and Cu matrices shown in Figure 4-20.

S W 0 S W 1 S W 2 S W 3
3 27 3 53 3 69 2 3A
3 27 3 53 3 69 2 3A
0 58 5 53 5 69 1 45
5 27 0 2C 0 16 4 3A
2 58 2 2C 2 16 3 45
2 58 2 2C 2 16 3 45

Figure 4-20: Output E u and C u matrices from Buiid_EuCu.exe

This file lists the E0, C0, E 2,C2, E3,C3 matrices as shown in Equations 4.22

and 4.25 respectively. The difference is that instead of writing the information in binary

matrix form, it is written in a compact hexadecimal form. The reason for this compact

notation is because this data is read into the second program CalcPIM andProbs.exe

which is shown in Figure 4-21. This program parses the Eu and Cu information to

calculate the transition matrix, invariant probability vector and runlength probabilities.

The compact form may not seem necessary for this (7,2) code which only had six states

and four possible SWs. However large codes like the (15,*) and (31,*) codes could have

thousands of CWs and hundreds of states and hence this file can grow to hundreds of

megabytes. Therefore the most compact form possible was adopted.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Calculate R unlength Probabilities

; S t e p l Choote lha input lie

Step 2'. Calculate

OK

ry tfiite a l Runlength intetmediate ttep i
.',!T iWatrving: it make t a huge He lot laiga eodet

Figure 4-21: CalcPIMandProbs.exe

The information in this file is read in a top to bottom fashion as follows. Looking

at the first line in Figure 4-20, when SW 0 is chosen and the system is in state 0, it moves

to state 3 and emits CW 27h. Likewise on the next line down, when SW 0 is chosen and

the system is in state 1, it moves to state 3 and also emits CW 27h and so on.

CalcPIMandProbs.exe takes this information and generates a single file that is

shown in Figure 4-22. Inspection shows that it has calculated the same transition matrix

as found in Equation 4-24. Furthermore it has calculated the same invariant vector as

found in Equation 4-27 and finally it has calculated all the runlength probabilities. It

shows that this system with AddSWs {0h,4h,Bh,Fh} using the lowest RDS selection

criteria has on average a 37.94% chance of a run of one, 35.71% chance of a run of two,

22.76% chance of a run of three and a 3.57% chance of a run of four. Runlengths of five

or more will never occur.

Fgrmat. U * V ' ^

PIM.Print<4)
0.0000 0.0000 0.2500 0.7500 0.0000 0.0000
0.0000 0.0000 0.2500 0.7500 0.0000 0.0000
0.2S00 0.2500 0.0000 0.0000 0.0000 0.5000
0.5000 0 0 0 0 0 0 0000 0.0000 0 2500 0.2500
0.0000 0.0000 0.7500 0.2500 0.0000 0.0000
0.0000 0.0000 0.7500 0.2500 0.0000 0.0000

itateprob.Print(4)
0.1875 0.0625 0.2500 0.2500 0.0625 0.1875

3

■ ■ if

■ ■ ■ ! ii

1• • • . |

fey

1
State 00 0.05803571
State 01 0.02455357
State 02 0.10714287
State 03 0.10714286
State 04 0.02455357
State 05 0.05803571

2
0.07142857
0.01785714
0.08928572
0.08928572
0.01785714
0.07142857

3
0.04687500
0.01339286
0.05357143
0.05357143
0.01339286
0.04687500

4
0.01785714
0.00000000
0.00000000
0 00000000
0.00000000
0.01785714

Total* 0 37946430 0.35714287 0.22767858 0.03571429

Sums to 1.00000003

<1 ■ ■ 1 A

Figure 4-22: Output from CaIcPIMandProbs.exe

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An additional feature of CalcPIMandProbs is that it can also show the

intermediate steps of how the runlengths were calculated. This feature is only feasible for

small codes because the file size grows very quickly. Nevertheless the intermediate steps

are shown in Figures 4-23 to 4-26 where it can be seen that the same runlength

probabilities are calculated as shown in Equation 4.28.

>v 0 Run length probabilities for 58h»27h
Input CW ■ 27 froa Stata 0 with likalihood 0.1975 * 0.2*00 ■ 0.0461 to Stato 9
Coneat CW la 2727 01001110100111 -► 0100 1110100 111 0.011719 * 2 1 1 0 lan-7 t 0.003349 0.003349 0.006022 0.000000
Coneat CW la 272C 01001110101100 -► 0100 11101011 00 0.011719 • 3 1 1 0 lanaS I 0.005022 0.003349 0.006022 0.000000
Coneat CW la 2716 01001110010110 •» 0100 1 U 0 0 1 0 U 0 0.011719 a 2 2 1 0 lin'i | 0.003341 0,006696 0.001022 0.000000
Coneat CW la 273A 01001110111010 -» 0100 111011101 0 0.011719 a 3 0 2 0 lan-9 |I 0.005022 0.000000 0.010046 0.000000

Total ao far: I 0.016741 0.013393 0.026112 0.000000
Input CW ■ 27 froa Stato 1 with likalihood 0 .0 6 2 6 • 0.2600 - 0.0156 to Stato 3 I
Coneat CW la 2727 01001110100111 -> 0100 1110100 111 0.003906 a 2 1 1 0 lana7 I 0.001116 0.001116 0.001674 0.000000
Concat CW la 272C 01001110101100 -► 0100 11101011 00 0.003906 a 3 1 1 0 lanBS 1 0.001674 0.001116 0.001674 0.000000
Concat CW la 2716 01001110010110 -► 0100 111001011 0 0.003906 a 2 2 1 0 lan-9 \ 0.001116 0.002232 0.001674 0.000000
Concat CW la 273A 01001110111010 •> 0100 111011101 0 0.003906 a 3 0 2 0 lan-9 I 0.001674 0.000000 0.003349 0.000000

Total ao far: 10.022321 0.017967 0.033492 0.000000
Input CW • 69 froa Stato 2 with likalihood 0.2600 • 0.2600 a 0.0625 to Stata 0 W
Coneat CW la 6927 10110000100111 •> 1011 0000100 111 0.016625 a 1 1 0 1 lan-7 lo.002232 0.004464 0.000000 0.0099291
Coneat CW la 6963 10110001010011 -> 1011 00010100 11 0.015626 a 3 1 1 0 lan-9 0.006696 0.004464 0.006696 0.000000
Coneat CW la 6969 10110001101001 -> 1011 000110100 1 0.016626 a' 2 2 1 0 lan-9 0.004464 0.009929 0.006696 0.000000
Concat CW la 693A 10110000111010 •> 1011 000011101 0 0.016626 a 2 0 1 1 lan-9 0.004464 0.000000 0.006696 0.009929

Total ao far: 0.040179 0.035714 0.063671 0.017957
Input CW a 27 froa Stata 3 with likalihood 0.2600 • 0.2600 a 0 .0 6 2 6 to Stata 6
Concat CW la 2769 01001111011000 -► 0100 1111011 000 0.016626 a 1 1 0 1 lan-7 0.002232 0.004464 0.000000 0.009929
Concat CW la 272C 01001110101100 -» 0100 11101011 00 0.015626 a 3 1 1 0 lan-9 0.006696 0.004464 0.006696 0.000000
Concat CW la 2716 01001110010110 •> 0100 111001011 0 0.016626 a 2 2 1 0 lan-9 0.004464 0.009929 0.006696 0.000000
Concat CW la 2746 01001111000101 -> 0100 111100010 1 0.016626 a 2 0 1 1 lan-9 0.004464 0.000000 0.006696 0.009929

Total ao far: 0.069036 0.053571 0.073661 0.036714
Input CW ■ <8 froa Stata 4 with likalihood 0.0625 • 0.2600 a 0.0156 to Stata 2
Concat CW la 6969 10110001011000 — 1011 0001011 000 0.003906 a 2 1 1 0 lan-7 0.001116 0.001116 0.001674 0.000000
Concat CW la 6953 10110001010011 •> 1011 00010100 11 0.003906 a 3 1 1 0 lan-9 0.001674 0.001116 0.001674 0.000000
Coneat CW la 6969 10110001101001 -► 1011 000110100 1 0.003906 a 2 2 1 0 lan-9 0.001116 0.002232 0.001674 0.000000
Concat CW la 5946 10110001000101 -> 1011 000100010 1 0.003906 a 3 0 2 0 lan-9 0.001674 0.000000 0.003349 0.000000

Total ao far: 0.063616 0.069036 0.092031 0.036714
Input CW a (8 froa Stata 6 with likalihood 0.1975 * 0.2600 a 0.0469 to Stata 2
Concat CW la 6969 10110001011000 -► 1011 0001011 000 0.011719 a 2 1 1 0 lan-7 0.003349 0.003349 0.006022 0.000000
Concat CW la 6963 10110001010011 -> 1011 00010100 11 0.011719 a 3 1 1 0 lan-9 0.006022 0.003349 0.006022 0.000000
Coneat CW la 6969 10110001101001 •> 1011 000110100 1 0.011719 a 2 2 1 0 lan-9 0.003349 0.006696 0.006022 0.000000
Coneat CW la 6946 10110001000101 -► 1011 000100010 1 0.011719 * 3 0 2 0 lan-9 0.006022 0.000000 0.010046 0.000000

Total ao far: 0.090367 0.071429 0.107143 0.036714

Figure 4-23: Runlength probabilities with SW 0

SW 1
Input CW ■ 63 froa Scata 0 with likalihood 0.1676 * 0.2600 •
Concat CW ia 6327 10100110100111 -► 10100 110100 111
Concat CW la 632C 10100110101100 -> 10100 1101011 00
Concat CW la 6316 10100110010110 -» 10100 11001011 0
Concat CW la 633JI 10100110111010 -> 10100 11011101 0

Input CW ■ 63 froa Stato 1 with likalihood 0.0626 * 0.2600 ■
Concat CW la 6327 10100110100111 •> 10100 110100 111
Concat CW la 632C 10100110101100 -> 10100 1101011 00
Concat CW la 6316 10100110010110 -> 10100 11001011 0
Concat CW la 6331 10100110111010 — 10100 11011101 0

Input CW ■ 63 froa Scata 2 with likalihood 0.2600 * 0.2600 •
Concat CW la 6366 10100111011000 -> 10100 111011 000
Concat CW la 632C 10100110101100 -> 10100 1101011 00
Concat CW la 6316 10100110010110 •> 10100 11001011 0
Concat CW la 6346 10100111000101 •» 10100 11100010 1

Input CW • 2C froa Scata 3 with likalihood 0.2600 • 0.2600 •
Concat CW la 2C27 01011000100111 •»> 01011 000100 111
Concac CW la 2C63 01011001010011 -> 01011 0010100 11
Concat CW la 2C69 01011001101001 -► 01011 00110100 1
Concat CW la 2C3A 01011000111010 -> 01011 00011101 0

Input CW • 2C froa Stata 4 with likalihood 0.0626 • 0.2600 •
Concat CW la 2C66 01011001011000 -> 01011 001011 000
Concat CW la 2C63 01011001010011 -> 01011 0010100 11
Concat CW la 2C6S 01011001101001 •> 01011 OOliOlOO 1
Concat CW la 2C46 01011001000101 -> 01011 00100010 1

0.0469 to Stato 3
0.011719 '
0.011719 *
0.011719 '
0.011719 '

0.0156 to Scata 3
0.003906 '
0.003906 '
0.003906 '
0.003906 '

0.0626 to Stata 6
0.016625 *
0.016626 *
0.016626 «
0.016626 «

0.0625 to Stata 0
0.016626 '
0.016626 '
0.016626 '
0.016626 '

0.0166 to Stata 2
0.003906 •
0.003906 •
0.003906 «
0.003906 a

Input CW ■ 2C froa Scaca 6 with likalihood 0.1976 * 0.2600 • 0.0469 to Stata 2
01011001011000 -» 01011 001011 000 0.011719 ’
01011001010011 -> 01011 0010100 11 0.011719 •
01011001101001 •> 01011 00110100 1 0.011719 ’
01011001000101 -> 01011 00100010 1 0.011719 *

Concat CW la 2C69
Concat CW la 2C63
Concat CW la 2C69
Concat CW la 2C46

Total ao far: 0.090367 0.071429 0.107143 0.036714

0 lana6
0 lan-7
0 lan-9
0 lan-9
Total ao far:

0 lan-6
O lan-7
0 lan-9
0 lan-9
Total ao far:

0 lan-6
0 lan»7
0 lan-6
0 lan-9
Total ao far:

0 lan-6
0 lan-7

Total i far:

0 lan-6
0 lan«?
0 lan-9
0 lan-9
Total ao far:

0 lan-6
O la n**7
0 lan-9
0 lan-9

0.003349
0.006022
0.003349
0.006022
0.097091

0.001116
0.001674
0.001116
0.001674
0.102679

0.002232
0.006696
0.004464
0.004464
0.120636

0.002232
0.006696
0.004464
0.004464
0.139393

0.001116
0.001674
0.001116
0.001674
0.143973

0.003349
0.006022
0.003349
0.006022

0.006696
0.006696
0.010046
0.003349
0.099214

0.002232
0.002232
0.003349
0.001116
0.107143

0.004464
0.009929
0.0133930.000000
0.133929

0.004464
0.009929
0.0133930.000000
0.160714

0.002232
0.002232
0.003349
0.001116
0.169643

0.006696
0.006696
0.010046
0.003349

0.0000000.0000000.000000
0.006022
0.112166

0.0000000.000000
0.000000
0.001674
0.113939

0.006696
0.000000
0.000000
0.013393
0.133929

0.006696
0.000000
0.000000
0.013393
0.164019

0.000000
0.000000
0.000000
0.001674
0.166692

0.000000
0 . 000000 0.000000
0.006022

0.000000
0.000000
0.000000
0.000000
0.036714

0.0000000.000000
0.0000000.000000
0.036714

0.0000000.000000
0.000000
0.000000
0.036714

0.000000
0.000000
0.000000
0.000000
0.036714

0.000000
0.000000
0.000000
0.000000
0.036714

0.000000
0.000000
0.000000
0.000000

ratal 88 far: 0.160714 0.196429 0.160714 0.036714

Figure 4-24: Runlength probabilities with SW 1

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n t
Input CV • (9 Iron State 0 with likelihood 0.1671 * 0.2(00 «
Concat CV 1« (927 11010010100111 110100 10100 111
Coneat CV 1» (92C 11010010101100 •> 110100 101011 00
Coneat CV i« «91(11010010010110 •> 110100 1001011 0
Coneat CV It (991 11010010111010 -► 110100 1011101 0

Input CV ■ (9 Iron Stato 1 with likelihood 0.0(21 • 0.2(00 •
Coneat CV la (927 11010010100111 -» 110100 10100 111
Coneat CV la (92C 11010010101100 -► 110100 101011 00
Concat CV la (91(11010010010110 -> 110100 1001011 0
Coneat CV la 699X 11010010111010 -» 110100 1011101 0

Input CV • (9 Iron Stato 2 with likolihood 0.2(00 * 0.2(00 •
Concat CV la (9(6 11010011011000 -> 110100 11011 000
Coneat CV la (92C 11010010101100 -> 110100 101011 00
Concat CV la (91(11010010010110 110100 1001011 0
Coneat CV la (94(11010011000101 -> 110100 1100010 1

Input CV ■ 1(iron Stato 9 with likolihood 0.2(00 * 0.2(00 ■
Coneat CV la 1(27 00101100100111 -> 001011 00100 111
Coneat CV la 16(3 00101101010011 » 001011 010100 11
Coneat CV la 1((9 00101101101001 -► 001011 0110100 1
Coneat CV la 169X 00101100111010 -> 001011 0011101 0

Input CV » 16 Iron Stata 4 with likolihood 0.0626 • 0.2(00 ■
Coneat CV la 1((S 00101101011000 -► 001011 01011 000
Coneat CV la 1((9 00101101010011 -► 001011 010100 11
Coneat CV la 1(69 00101101101001 -> 001011 0110100 1
Coneat CV la 164(00101101000101 -> 001011 0100010 1

0.04(9 to Stata 9
0.011719 <
0.011719 '
0.011719 1
0.011719 «

0.01((to Stata 9
0.003906 '
0.009906 <
0.009906 *
0.009906 1

0.0626 to Stata (
0.01(626 < 0.01((2(«
0.01(626 «
0.01((2(*

0.0621 to Stata 0
0.01(626 •
0.01(626 •
0.01(626 «
0.01(626 •

0.01(6 to Stata 2
0.009906 •
0.009906 •
0.009906 •
0.009906 •

Input CV ■ 16 Iron Stata (with likalihood 0.1876 • 0.2(00 a 0.0469 to State 2
0.011719 <
0.011719 <
0.011719 <
0.011719 1

,Concat CV la 16(8
Concat CV la 16(9
Coneat CV la 1669
Coneat CV la 1646

00101101011000 •> 001011 01011 000 00101101010011 *► 001011 010100 11 00101101101001 -► 001011 0110100 1 00101101000101 -► 001011 0100010 1

Total

lana(
lana(
lana7
lan-7

io tar:

0 lena(0 lan-6
0 lan-70 lan-7
Total ao tar:

0 lan-60 lan-6
0 lan-70 lan-7
Total ao far:

0 lan-(0 lan-6
0 lan-7
0 lan-7
Total ao far:

0 lan-10 lan-6
0 lan-7
0 lan-7
Total ao lar:

0 lan-l0 lan-6
0 lan-7
0 lan-7

0 . 0 0 (0 2 2
0.006696
0 . 00(022
0.00(696
0.1841(2

0.001674
0.002292
0.001674
0.002292
0.191964

0.002292
0.001929
0.00(696
0.004464
0.214286

0.002292
0.008929
0.00(696
0.004464
0.296607

0.001674
0.002292
0.001674
0.002232
0.244420

0 . 0 0 (0 2 2
0.006696
0 . 0 0 (0 2 2
0.006696

0.009948
0.009348
0.006(960.000000
0.209821

0.001116
0.001116
0.0022320.000000
0.214286

0.008929
0.004464
0.008929
0.004464
0.241071

0.008929
0.004464
0.008929
0.004464
0.2678(7

0.001116
0.001116
0.0022920.000000
0.272921

0.009948
0.009948
0.0066960.000000

0.0000000.0000000.000000
0 . 00(022
0.16(797

0.0000000.0000000.000000
0.001674
0.167411

0.0000000.0000000.000000
0.006696
0.174107

0.0000000.0000000.000000
0.006696
0.180804

0.0000000.0000000.000000
0.001674
0.182478

0.0000000.0000000.000000
0 . 0 0 (0 2 2

0.0000000.0000000.0000000.000000
0.09(714

0.0000000.0000000.0000000.000000
0.09(714

0.0000000.0000000.0000000.000000
0.09(714

0.0000000.0000000.0000000.000000
0.09(714

0.0000000.0000000.0000000.000000
0.09(714

0.0000000.0000000.000000
0,000000

Total ao far: 0.2678(7 0.28(714 0.187(00 0.03(714

Figure 4-25: Runlength probabilities with SW 2

111
Input CV • 3X froa Stata 0 with likelihood 0.187S * 0.2(00 ■
Coneat CV la 3X18 01110101011000 •> 011101 01011 000
Coneat CV la 3 X 0 011101010100U -► 011101 010100 11
Coneat CV la 9X69 01110101101001 — 011101 0110100 1
Coneat CV la 9X4(01110101000101 -> 011101 0100010 1

Input CV • 3X froa Stato 1 with likelihood 0.0626 * 0.2(00 •
Concat CV la 3X(8 01110101011000 — 011101 01011 000
Coneat CV la 3 X 0 01110101010011 -> 011101 010100 11
Coneat CV la 3X69 01110101101001 -> 011101 0110100 1
Concat CV la 3X4(01110101000101 -> 011101 0100010 1

Input CV - 46 froa State 2 with likelihood 0.2(00 • 0.2(00 •
Coneat CV la 4(27 10001010100111 -► 100010 10100 111
Concae CV la 4 (0 10001011010011 -► 100010 110100 11
Coneat CV la 4(69 10001011101001 -► 100010 1110100 1
Coneat CV la 4 M X 10C01010111010 -► 100010 1011101 0

Input CV ■ 3X froa State 9 with likelihood 0.2(00 * 0.2(00 ■
Coneat CV la 3X(8 01110101011000 » 011101 01011 000
Coneat CV la 3X2C 01110100101100 -> 011101 001011 00
Coneat CV la 3X16 01110100010110 •> 011101 OOOlOli 0
Coneat CV la 3X4(01110101000101 -> 011101 0100010 1

Input CV ■ 46 froa 8tate 4 with likelihood 0.0626 * 0.2(00 •
Coneat CV la 4(27 10001010100111 -» 100010 10100 111
Coneat CV la 4(2C 10001010101100 -> 100010 101011 00
Coneat CV la 4616 10001010010110 -► 100010 1001011 0
Coneat CV la 4(3X 10001010111010 100010 1011101 0

Input CV - 4(froa State 6 with likelihood 0.1876 • 0.2(00 •
Coneat CV la 4(27 10001010100111 -> 100010 10100 111
Coneat CV la 4S2C 10001010101100 -> 100010 101011 00
Concat CV la 4(16 10001010010110 -> 100010 1001011 0
Coneat CV la 4(31 10001010111010 -► 100010 1011101 0

0.0469 to State 2
0.011719 '
0.011719 «
0.011719 «
0.011719 *

0.01(6 to State 2
0.009906 '
0.003906 «
0.003906 '
0.003906 •

0.0626 to State 1
0.01(626 «
0.01(626 «
0.01(626 •
0.01(626 •

0.0626 t State 4
0.01(626 <
0.01(626 ’
0.016626 ’
0.01(626 '

0.01(6 to State 3
0.003906 '
0.003906 *
0.003906 •
0.003906 *

0.0469 to State 3
0.011719 •
0.011719 *
0.011719 '
0.011719 '

0 len-60 len-60 lan-7
0 len-7
Total ao far:

0 lan-(0 lan-6
0 len-7
0 len-7
Total ao far:

0 len-60 len-6
0 len-7
0 len-7

far:T o ta l

0 len-60 len-60 len-7
0 len-7
Total ao far:

0 len-S0 len-6
0 len-7
0 len-7

far:Total

0 len-60 len-60 len-7
0 len-7
Total to far:

0 . 0 0 (0 2 2
0.006696
0 . 0 0 (0 2 2
0.006696
0.29129(

0.001674
0.002232
0.001674
0.002292
0.299107

0.006696
0.004464
0.004464
0.008929
0.329661

0.006696
0.004464
0.004464
0.008929
0.348214

0.001674
0.002232
0.001674
0.002232
0.3(6027

0 . 0 0 (0 2 2
0.006696
0 . 0 0 (0 2 2
0.006696
0.379464

0.009948
0.003948
0.0066960.000000
0.299107

0.001116
0.001116
0.0022920.000000
0.303(71

0.004464
0.008929
0.0044640.000000
0.321429

0.004464
0.008929
0.0044640.000000
0.399286

0.001116
0.001116
0.0022320.000000
0.3497(0

0.009948
0.009348
0.0066960.000000
0.9(7149

0.0000000.0000000.000000
0 . 0 0 (0 2 2
0.192(22

0.0000000.0000000.000000
0.001674
0.194196

0.0000000.000000
0.006696
0.006696
0.207(89

0.0000000.000000
0.006696
0.006696
0.220982

0.0000000.0000000.000000
0.001674
0.2226(6

0.0000000.0000000.000000
0 . 0 0 (0 2 2
0.227679

0.0000000.0000000.0000000.000000
0.09(714

0.0000000.0000000.0000000.000000
0.03(714

0.0000000.0000000.0000000.000000
0.09(714

0.0000000.0000000.0000000.000000
0.03(714

0.0000000.0000000.0000000.000000
0.09(714

0.0000000.0000000.0000000,000000
0.03(714

Figure 4-26: Runlength probabilities with SW 3

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.12. Code Word Search

In order to determine the best AddCW sets, the effect that different AddCW sets

have on the number of transitions and runlength probabilities must be evaluated. To do so

involves testing each set of AddCWs using the above Markov chain analysis and

searching for the set that has the best statistics. This was done through an exhaustive

computer search. For example, for the (7,1) code the exhaustive search will begin with

the AddSW set {0h,2h,4h,6h,9h,Bh,Dh,Fh}, since SWs 2h, 4h and 6h are the first SWs to

meet the selection criteria from Section 3.5 and Figure 3-21. Furthermore SWs 9h, Bh

and Dh are chosen because they are the SW complements of 2h, 4h and 6h, and SWs Oh

and Fh are chosen since it was recommended that all AddCW sets include the all-zero

and all-one CW. Note that this AddSW set must be encoded into its corresponding

AddCW set. After gathering statistics on this AddSW set the exhaustive search will

increment SW 6h to the next SW 7h, whose complement is 8h, and as a result the

AddSW set {0h,2h,4h,7h,8h,Bh,Dh,Fh} will be tested. In this fashion the computer

search would continue testing the following AddSW sets {0h,2h,5h,6h,9h,Ah,Dh,Fh},

{0h,2h,5h,7h,8h,Ah,Dh,Fh}, {0h,3h,4h,6h,9h,Bh,Ch,Fh}, {0h,3h,4h,7h,8h,Bh,Ch,Fh},

{0h,3h,5h,6h,9h,Ah,Ch,Fh} and {0h,3h,5h,7h,8h,Ah,Ch,Fh}, for testing a total of eight

sets. Note that the total number of AddSW sets tested agrees with the number given by

Equation 3.1.

'• F im lA IIP ro b sA llC W C o m b ln a tio n f

W«tngto<(«l

'(o k) coda----------- --------------
'

|(7.2] ■=!'

-SeleetionCnteiia- - -— ~ _ _ —

{Lowest RDS

P ; Supptett (M inting watt C W » (tmala fie]

: |y'DoirttpftlheFSM.cdaJtfealptobi

an |

r Start al -

rol |
Slap!
erf 4

Go

17 AlowMSWTett

Writ* CW* to fle with Hamring
Waiflht and Group

Figure 4-27: CW search program

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To perform this computer search the program FindAllProbs.exe in Figure 4-27

was created, which is a combination of the two programs BuildEuCu.exe and

CalcPIMandProbs.exe.

Like the previous two programs FindAllProbs allows the user to choose the

selection criteria and the expurgated code of interest. The major difference here is that the

AddSWs are not specified. Instead this program runs through all possible AddSW sets

(automatically converting them to AddCW sets) and tallies the statistics. For the (7,2)

code considered so far, FindAllProbs will test the four AddSW sets {0h,4h,Bh,Fh},

{0h,5h,Ah,Fh}, {0h,6h,9h,Fh} and {0h,7h,8h,Fh}.

jfete Edt Ffirnut Help i f V.':' A-1-', .t ijS jVf* £"?■
AddSW* (not CWs), followed by NuaStates, followed by prob of 1, 2, 3, .. 30. Lastly is what they sub to

RDS,Tran,HSW,lstTran

Ixpect Co cesc 4 secs

0 4 B r
1
0.379464231165

2
0.357142636516

3
0.227676569034

4
0.035714309130

5
0.00000000*4000 ;/.i

0 5 A r 0.352676573424 0.419642792749 0.227676677599 O. 00000000*4000 o . 0 0 0 0 0 0 0 0 * 4 0 0 0 :;j

0 6 9 f 0.37053S901062 0.374999942524 0.254464156393 0.00000000*4000 0.00000000*4000 x;

0 7 0 r 0.357142657143 0.250000000000 0.334821428571 0.035714285714 0.022321428571

* atens thae che AddCW
1 aeans that che AddCW

set
set

was
lad

not better chan the best
either too aany states, or the all 1 or 0 CU present

There were 4 CoodSecs out of 4 tested
There were 0 BadSets out of 4 tested
HOTI: bad sets had too aany states, or the all 1 or 0 CW present

Suaaary of che runs...

1 2 3
4 4 4

4
2

5 6
1 O

7 8
0 O

9 10
O O

11 12
0 0

13 14
0 0

BestHadHaxRun • 3

1

Figure 4-28: CW search results for the (7,2)

Figure 4-28 shows the results for the (7,2) code found by FindAllProbs. It can be

seen that for the AddSWs {0h,4h,Bh,Fh}, the runlength probabilities match the results

from the previous example in Figure 4-22. Furthermore, using the AddSWs

{0h,7h,8h,Fh} leads to runs of length five 2.2% of the time, confirming the result shown

in Figure 4-10.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inspection of this output file shows that the two sets {0h,5h,Ah,Fh} and

{0h,6h,9h,Fh} are the best since they only have runs up to length 3, i.e. a transition will

occur in the output sequence at worst case every three bits. Deciding on a clear winner

between these two sets however is subjective, since even though set {0h,6h,9h,Fh} has

the highest probability of runs of length one with 37%, it also has a higher probability of

runlengths of length three with 25.4%.

4.13. Analysis and CW Search on larger codes

Up to this point only the (7^) codes have been discussed since their small size

makes them easy to present and demonstrate. However, this multimode coding scheme

with a length n = l code suffers greatly in terms of code rate from the increased

redundancy. Therefore larger codes such as the (15,11) and (31,26) codes are now

considered.

With eight AddCWs the (15,11) code is expurgated to a (15,8) code resulting in

28 = 256 possible SWs. This means there will be (l) (2 8)(2 8)(2 8) (l) (l) (l) (l) = 2U

AddCW sets to analyze based on the arguments from Section 3.6.5 and Equation 3.1. For

each AddCW set the state diagram of the encoder must be constructed. This can only be

found by testing all possible SWs, determining the CWs produced, and keeping track of

the resulting states. For each newly discovered state however, the process must be

repeated because each CW transmitted has the potential to cause a new state.

For instance, consider the case of transmitting the 15-bit all-one CW from the

(RDS,LB) state of (0,0). This would put the system into a new state of (15,1). If the all-

one CW is transmitted again it would put the system into another new state of (30,1) and

so on. This scenario simply illustrates how each CW has the potential to cause new states.

On the other hand, if lowest RDS is the primary metric (balanced transmission), many of

the states discovered should be duplicates. That is, the number of states in the system

should not grow unbounded since ideally the system is attempting to return to the states

with an RDS of 0. However, if the maximum transitions or MSW selection criteria is

used as the primary metric, then as successive words are encoded, it is possible for the

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

encoder to have an infinite number of states. For example, many CWs contain numerous

transitions but they are unbalanced. Consider the case when the system chooses one of

these CWs that results in the (RDS,LB) state of (7,1). In the next encoding interval one of

these CWs might be chosen again, resulting in the (RDS,LB) state of (14,1). Continuing

in this fashion with maximizing transitions as the primary metric, it is entirely possible

that the system will continue choosing these CWs causing the number of states to be

(21,1), (28,1), (35,1) and so on, and therefore grow unbounded as encoding proceeds.

To limit the evaluation time a hard upper limit of 256 states was established for

the number of states considered by FindAllProbs regardless of the primary decision

metric. Any AddCW set that exceeds this limit is discarded.

Once the state diagram is found, the 0U, Eu and Cu matrices must be constructed

in order to build the transition matrix and solve for the invariant distribution. Once this

information is complete the runlengths can be found using the analysis presented in

Section 4.10. Recapping this information shows how this problem grows in complexity.

With this (15,8) code and 256 possible SWs, it can be estimated that each state

can be entered and exited 256 ways. Assuming that there are only 32 states (well below

the upper limit of 256), this will represent (256z)(32) iterations. This amount of work

however is only for a single AddCW set and must be done once for each of the 2U sets

(from Section 3.6.5). Furthermore each iteration involves numerous matrix

multiplications. As a result the computer search for the (15,8) code needed to be run over

a three month period using sixteen Pentium 3 machines. This intensive task was split up

such that each computer worked on sets of 262144 AddCWs at a time, with each set

taking approximately one week to complete running twenty-four hours a day.

It is obvious then that conducting the same CW search for the (31,26) code is just

not feasible since even when expurgated down to a (31,23) code it still has over 269

possible AddCW sets to test (from Section 3.6.5). Therefore the results gathered for the

(15,8) code will be used to make suggestions on what constitutes a good AddCW set for

larger codes, which can be extrapolated to (31,*) codes, (63,*) codes and larger.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.14. CW Search Results

Recall from Figure 3-22 that the AddCWs (or AddSWs since the codes

considered are systematic) a, b, and c must have their MSbs in the binary format 001, 010

and O il. As a result the (15,8) CW search compared the 11-bit SWs a, b, and c in the

range lOOh to IFFh, 200h to 2FFh and 300h to 3FFh respectively. Out of all the

AddSW/AddCW sets tested only four had maximum runlengths of 7. As well each of

these four AddCW sets had a maximum of 14 states which means the RDS values of the

sequences only varied in the range ±3 (Note that this means RDS values of -3, -2, -1, 0,

+1, +2, and +3 are possible, as well as LB values of 0 and 1). Therefore these four

AddSW/AddCW sets were considered to be the best. They are shown in Table 4-7 and

their runlength probabilities are shown in Table 4-8.

Table 4-7: Best AddSW sets from the (15,8) search

A Oh 107h 2C8h 323h 4D C h 5 37h 6 F 8 h 7F F h
B Oh 14Dh 29Bh 370h 4 8 F h 56 4 h 6B 2h 7F F h
C Oh 1AAh 29Bh 323h 4D C h 564h 655h 7 F F h
D Oh 1E7h 2C8h 323h 4D C h 5 37h 6 18h 7FF h

Table 4-8: Runlength probabilities for the Best AddCWs

1 2 3 4 5 6 7 8
A 0.3 5 1 5 9 9 3 1 2 5 0 . 3 2 5 2 3 6 5 1 8 7 0 . 1 9 1 7 7 8 6 8 0 3 0 . 0 9 6 6 9 1 8 0 1 9 0 . 0 2 8 8 1 5 1 2 3 7 0 . 0 0 5 6 4 5 8 6 4 9 0.0 0 0 2 3 2 8 5 7 2 0
B 0.3 6 9 8 3 2 3 5 5 5 0 . 3 2 3 8 0 7 6 5 2 4 0 . 2 0 2 9 5 3 2 9 1 0 0 . 0 7 6 5 0 6 8 9 3 2 0 . 0 2 0 9 1 3 6 5 4 9 0 . 0 0 5 9 5 1 4 7 7 9 0.0 0 0 0 3 4 7 3 4 7 0
C 0.3 5 8 2 5 7 9 2 4 0 0 . 3 1 8 9 9 7 4 6 3 1 0 . 1 9 8 0 5 2 8 1 0 3 0 . 0 8 4 4 2 9 2 4 4 5 0 . 0 3 4 0 6 7 1 8 2 7 0 . 0 0 5 6 2 6 3 4 1 6 0.0 0 0 5 4 9 2 5 8 8 0
D 0.3 5 4 9 3 5 9 8 8 3 0 . 3 2 3 8 7 1 5 6 4 2 0 . 1 8 8 6 0 1 0 7 1 1 0 . 0 9 6 3 5 5 2 0 7 5 0 . 0 2 9 2 3 4 3 0 6 8 0 . 0 0 6 7 1 9 9 2 1 2 0.0 0 0 2 8 1 8 1 4 1 0

Inspection shows that these four best AddSW sets could guarantee runlengths of

four or less 96.53% of the time. This means that the output sequence will have a

transition every four bits (or less) 96.53% of the time. Furthermore these AddSW sets

could guarantee runlengths of five or less 99.41% of the time, and six or less 99.97% of

the time. Only 0.023% of the time would runlengths ever be higher than this to a

maximum of seven. These are great results considering the CW length is fifteen.

In addition there were only four AddCW sets considered to be the worst. These

sets had maximum runlengths of 15 and a maximum of 28 states representing system

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RDS values that varied in the range ±7. These sets are shown in Table 4-9 with their

runlength probabilities shown in Table 4-10.

Table 4-9: Worst AddSW sets from the (15,8) search

E Oh 108h 200h 300h 4FFh 5FFh 6F7h 7FFh
F Oh 10Ch 200h 300h 4FFh 5FFh 6F3h 7FFh
G Oh 120h 200h 300h 4FFh 5FFh BDFh 7FFh
H Oh 130h 200h 300h 4FFh 5FFh 6CFh 7FFh

Table 4-10: Runlength probabilities for the Worst CWs

1 2 3 4 5 6 7 6
B 0 . 3 2 8 4 7 3 5 6 5 0 . 3 0 4 6 5 6 1 9 0 0 . 1 8 9 2 8 4 2 6 3 0 . 1 0 6 3 8 3 2 1 6 0 . 0 4 4 7 3 8 9 6 1 0 . 0 1 5 9 3 2 9 3 9 0 . 0 0 4 9 6 1 4 3 3 0 . 0 0 3 0 1 0 1 1 0
F 0 . 3 3 7 6 6 7 1 2 3 0 . 3 0 9 8 3 8 5 2 3 0 . 1 8 2 7 9 3 7 2 7 0 . 1 1 7 4 0 8 2 3 9 0 . 0 3 6 3 6 9 7 6 3 0 . 0 1 1 9 6 9 8 0 1 0 . 0 0 3 1 4 1 9 1 4 0 . 0 0 0 6 7 1 5 3 2
6 0 . 3 2 8 8 1 6 0 6 0 0 . 3 0 6 9 6 7 8 7 4 0 . 1 9 4 4 9 5 3 2 8 0 . 1 0 3 7 2 9 2 6 9 0 . 0 4 0 3 4 5 6 9 0 0 . 0 1 9 0 7 2 7 5 6 0 . 0 0 3 5 1 3 4 4 4 0 . 0 0 2 9 0 3 7 0 2
H 0 . 3 3 0 0 5 5 2 7 1 0 . 3 0 6 0 4 0 3 4 1 0 . 1 9 6 4 5 8 3 9 2 0 . 1 1 0 3 8 6 1 6 1 0 . 0 3 6 4 0 8 9 2 3 0 . 0 1 5 8 0 2 7 9 2 0 . 0 0 1 5 0 5 1 3 3 0 . 0 0 0 8 4 6 7 6 3

9 10 11 12 13 14 15 16
B 0 . 0 0 2 5 0 8 0 2 4 3 . 7 4 0 7 1 1 - 0 5 1 . 2 5 3 4 4 S - 0 5 9 . 9 4 4 3 9 8 - 0 7 2 . 3 1 3 6 3 B - 0 7 7 . 4 S 7 S B - 0 8 2 . 7 2 7 6 B - 0 8 0
E 0 . 0 0 0 1 0 7 5 6 9 2 . 4 9 2 7 3 B - 0 S 5 . 1 2 4 6 7 B - 0 6 1 . 4 8 2 1 3 B - 0 6 1 . 8 2 6 8 9 B - 0 7 4 . 9 9 0 1 B - 0 8 2 . 6 7 3 3 B - 0 8 0

C 0 . 0 0 0 1 3 2 1 0 8 1 . 8 1 3 1 6 E - 0 5 4 . 1 4 2 2 7 B - 0 6 1 . 1 5 8 8 9 B - 0 6 1 . 9 8 4 2 8 B - 0 7 7 . 3 2 9 3 B - 0 8 2 . 6 9 1 3 8 - 0 8 0

H 0 . 0 0 2 4 4 5 8 7 3 4 . 1 1 7 3 3 B - 0 5 2 . 9 4 8 5 1 8 - 0 6 5 . 9 3 4 3 2 B - 0 6 1 . 8 6 4 4 9 B - 0 7 5 . 1 5 0 7 E - 0 8 2 . 7 5 9 3 B - 0 8 0

Even though these four AddSW sets had the worst statistics, they could still

guarantee runlengths of four or less 92.87% of the time, runlengths of seven or less

99.44% of the time, and only 0.56% of the time would runlengths be higher than this to a

maximum of fifteen. Note that the probability of a run of fifteen occurring is extremely

small at 0.00000027% (i.e. 2.7276E-6%).

4.15. AddCW recommendations

No distinct pattern emerges from inspection of Tables 4-7 to 4-10. However some

general conclusions can be drawn from these results and recommendations can be made.

Details of the worst AddCW sets from Table 4-9 are shown in Table 4-11 to

Table 4-14. These tables show that on average the Hamming weight is 3.5, the average

number of transitions is 4.9, and ratio of 0-bits to 1-bits is 11.5 to 3.5. Clearly these

AddCWs are unbalanced with few transitions and on average will do very little to help

the constrained sequence goals of the system.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4-11: AddSW set {0h,108h)200h,300h,4FFh,5FFh,6F7h,7FFh}

SW CW W eight Tran RDS 0:1
108h 1084h 3 6 -9 12:3
200h 200Dh 4 5 -7 11:4
300h 3002h 3 4 -9 12:3

Table 4-12: AddSW set {0h,10Ch,200h,300h,4FFh,5FFh,6F3h,7FFh}

SW CW Weight Tran RDS 0:1
lOCh 10C8h 4 6 -7 11:4
200h 200Dh 4 S -7 11:4
300h 3002h 3 4 -9 12:3

Table 4-13: AddSW set {0h,120h,200h,300h,4FFh,5FFh,6DFh,7FFh}

SW CW Weight Tran RDS 0:1
120h 1205h 4 7 -7 11:4
200h 200Dh 4 5 -7 11:4
300h 3002h 3 4 -9 12:3

Table 4-14: AddSW set {0h,130h,200h,300h,4FFh,5FFh,6CFh,7FFh}

SW CW Weight Tran RDS 0:1
130h 1300h 3 4 -9 12:3
200h 200Dh 4 S -7 11:4
300h 3002h 3 4 -9 12:3

Therefore the first recommendation to make regarding the choice of a good

AddCW set regardless of code size is to choose relatively balanced AddCWs that contain

a significant number of transitions. This is validated by inspecting the statistics of the

best AddCW sets as shown in Table 4-15 to Table 4-18. Here the average Hamming

weight is 7.5, the average number of transitions is 7.5 and the average ratio of 0-bits to

1-bits is also 7.5.

Table 4-15: AddSW set {0h,107h,2C8h,323h,4DCh,537h,6F8h,7FFh}

SW CW Weight Tran RDS 0:1
107h 1076h s 6 -2 9:6
2C8h 2C8Fh 8 7 +1 7:8
323h 323Dh 8 7 +1 7:8

Table 4-16: AddSW set {0h,14Dh,29Bh,3701i,48Fh,564h,6B2h,7FFh}

SW CW Weight Tran RDS 0:1
14Dh 14DCh 7 8 -1 8:7
29Bh 29B8h 7 8 -1 8:7
370h 3 70Ah 7 8 -1 8:7

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4-17: AddSW set {0h,lAAh,29Bh,323h,4DCh,564h,655h,7FFh}

SW CW Weight Tran RDS 0:1
lAAh lAA6h 7 10 -1 CO -1

29Bh 29B8h 7 8 -1 8:7
323h 323Dh 8 7 +1 7:8

Table 4-18: AddSW set {0h,lE7h,2C8h,323h,4DCh,537h,618h,7FFh}

SW CW Weight Tran RDS 0:1
lE7h lE75h 9 7 +3 6:9
2C8h 2C8Fh 8 7 +1 7:8
323h 323Dh 8 7 +1 7:8

Closer inspection of CWs 2C8Fh and 323Dh in Tables 4-15 and 4-18 show that

they are cyclically shifted versions of one another. As well all CWs in Table 4-16 are

cyclically shifted versions of one another. However the CWs in Table 4-17 show no such

symmetry.

As a result it is difficult to make precise recommendations on what constitutes a

good AddCW set. Furthermore it is tempting to assume that in this system all eight

AddCWs are used equally. This however is not the case as can be seen in Figure 4-29.

Here the SimFPGA output shows that AddCWl (1076h), AddCW2 (2C8Fh) and their

CW complements AddCW5 (5370h) and AddCW6 (6F89h), are each used approximately

16% of the time. On the other hand AddCW3 (323Dh) and its CW complement AddCW4

(4DC2h) are used less at approximately 13%. Finally the all-zero and all-one CWs

(AddCWO and AddCW7) are only used approximately 3.7% of the time. Thus, deciding

on what constitutes a good AddCW is made more difficult by the fact that not all

AddCWs are used with the same frequency. Note that this information is found simply by

counting how many times each AddCW is used when building the state diagram.

M M M H nW H H .ibixi
. Ejle Ed* Fermat fcMp

AddCBO
0 .0 3 7 7 2 9 8 2

AddCUl
0 .1 6 3 1 6 1 6 8

AddCW2
0 ,1 6 2 5 9 9 1 9

AddCU3 AddCIM
0 .1 3 6 4 6 9 3 2 0 .1 3 6 0 5 6 8 2

AddCUS
0 .1 6 2 6 1 9 1 8

AddCU6
0 .1 6 3 7 0 9 1 8

AddCU7 j t
0 .0 3 7 7 5 4 8 1 f?

K

- 0 .0 1 8 1 5 9 7 3 (- 2 ,1) - 0 .0 2 8 8 0 9 5 7 1 - 1 ,0) - 0 .1 1 0 8 1 3 3 3 (2 ,1) “ 0 .0 3 7 6 3 4 4 3 (- 2 ,0)

iJ J Si
Figure 4-29: SimFPGA keeps track of percentage of time each AddCW is used

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It can be stated that in general for codes with odd length, a good AddCW will

belong to a set of CWs that are balanced in the fashion (w - l) /2 : (n + l) /2 or

(n + l) / 2 : (n - l) / 2 . From this set the best AddCWs will consist of those with as many

transitions as possible. Furthermore if any of the AddCWs can be cyclically shifted to

yield other AddCWs whose MSbs are in the form 001, 010, O il (as shown in

Figure 3-21), then these are most likely good AddCWs.

However since CWs such as 1076h exist in the best set, and such CWs are not

balanced and have less than the average amount of transitions, this is a loose

recommendation. Nevertheless when these recommendations are followed the maximum

runlengths produced can be expected to be near the minimal values observed of

(n - 1) /2 , where n is the CW length.

Further analysis on what constitutes good AddCWs can also be done in the

frequency domain by inspecting the power spectral density of these codes. This is

considered in Chapter 5.

/ 97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Power Spectral Density Results

Chapter 3 introduced the multimode coding technique and Chapter 4 discussed

how to model it as a finite state machine and how to analyze it using Markov chain

theory. Chapter 4 then continued by presenting the results of the AddCW enumeration for

the (7,x) and (15,x) codes. It was shown that a great deal of insight about what constitutes

a good AddCW set can be found by analyzing these time domain statistics. However an

equally suitable method of assessing this combined EC and CS code is to calculate its

power spectral density (PSD). This is because the coding rules of this technique will

directly influence the shape of the power spectrum. This chapter presents how to

theoretically calculate the PSD of an encoded sequence and how to interpret the results.

5.1. Relationship between the time and frequency domain

As discussed in Section 2.19 a binary sequence using bipolar coding maps logic 0

values to a negative square pulse shape -p(t), and logic 1 values to a positive square pulse

shape +p(t). When a transmitted sequence contains an overall equal number of logic Os

and Is the transmission is said to be balanced. This is because the transmitted signal has a

negative amplitude half of the time and an equal but opposite positive amplitude the other

half of the time. As a result the dc average is 0 volts. Therefore inspecting this balanced

signal in the frequency domain would reveal that the PSD would have a null at 0 Hz. For

example Figure 5-1 shows the PSD of the Manchester code presented in Section 2.21.

Recall that this line coding scheme maps logic 0 values to the 2-bit pattern 10, and maps

logic 1 values to the complement 2-bit pattern 01. This guarantees at least one transition

per bit as well as a completely balanced transmission [5j. As a result it can be seen that the

PSD of this balanced coding technique has a null (zero power) at 0 Hz. This is shown on

both the linear and logarithmic scales in Figure 5-1.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

: » I g d t l /w r t Ioob WMow

flD G f f l f l U
.^ v - ; '.v)'.', ■ u ^g’’* . . S im ple P8D of • botancod coda (Null at OHi) * Unaar ■

«®rnnja

AhA-«3a1i&

* J 3

3 £ n

» : d,
'Shift

\

1 NuUjaOljxj I
i" (mto d<j content)

........

. J ...
2

• kH r
3.6 4

110*

Pa 6* »aw font ftob Hfnim b*> > ■-•inixl

j|0*H«U A * /
. -00

■90

•100
•110

•120

•130

•140

•ISO

•160,

; S a m p le P S D of • b d a n c o d V o d a ^ lu ll i t O H i) * U rsatkhm lc

; Null at OH*
».......i........

........

‘ \ '
' ' " ’" i' X

1 1 \ 1 / j \

........\M -i........ A .

ii____111____ ! \
. . . i, ..a, , ' i - 4 - s . \3vfe.:?’5!‘& 8%

Figure 5-1: Demonstrating nulls at 0 Hz on both linear and logarithmic scales

To understand how coding can effect the shape of the PSD, consider Figure 5-2

which shows an output sequence with long runs of 0s and Is. It is clear that a signal such

as this will appear as a slowly varying square wave. As a result the PSD of this sequence

would have the majority of its power at low frequencies.

lo w frequency 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1

Figure 5-2: Low frequency content of a signal

On the other hand consider an output sequence that has numerous transitions as

shown in Figure 5-3. A signal such as this will appear as a rapidly changing square wave.

These rapid changes are indicative of high frequencies in the signal. As a result this

sequence would have a significant amount of its power at high frequencies.

high frequency [T [o J T l ^ j T L o J T l o J l ^ ^

Figure 5-3: High frequency content of a signal

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the multimode coding technique of Chapter 3 is designed to remove long

runs of like valued bits (low frequencies) and introduce more transitions (high

frequencies), the PSD of the encoded waveform is expected to have most of its power at

high frequency and less power at low frequency. Thus the performance of the multimode

coding system can be evaluated by analyzing the PSD of the output sequence.

5.2. Evaluating the Power Spectral Density

Communication signals are inherently random. This is because the receiver does

not know beforehand the message that the transmitter sent. As a result a communication

signal is usually treated as a random process, since the data is random with time. Each

possible waveform is called a sam ple function and the collection of all possible

waveforms is called the ensemble of the random process [23].

To completely characterize the random process a probability density function

(PDF) or cumulative distribution function (CDF) would need to be known at every

instant in time. Since this information is usually difficult to obtain, random processes are

often characterized in terms of average sequence statistics [23]. There are generally two

approaches used to evaluate the average statistics. A tim e average considers a single

sample function over all time, and an ensemble average considers all possible sample

functions and averages them at a single point in time. Processes where the time averages

equal the ensemble averages are called ergodic [23]. If the random process has statistics

that do not change with time it is also called stationary [23].

Useful information to obtain about a random process is the m ean or expected

value, as well as how quickly the process is expected to change which is given by its

autocorrelation function [23]. The mean value of a random process has an intuitive

meaning as the dc content of the signal and the autocorrelation function gives an

indication of the frequency content of the random process. This is due to the fact that the

correlation of a random process with itself at two different points in time depends on how

rapidly the amplitude is expected to change with time [23]. All of these topics are

investigated in detail with examples in Appendix A.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3. Evaluating the Power Spectral Density of a Coded System

As previously stated the coding rules of the multimode coding system introduced

in Chapter 3 will have a direct influence on the shape of the PSD. Furthermore these

coding rules make calculating the PSD slightly more complicated. As a result this section

demonstrates through example the efficient procedure for calculating the PSD of a coded

system as outlined by Cariolaro and Tronca [24]. Their method uses the finite state

machine model of the encoder first presented in Section 4.7, and the Markov chain

analysis presented in Section 4.9.

The multimode coding system is designed to transmit an output sequence with an

equal number of Os and Is even if the source statistics are unbalanced. Thus if the logic

values 0 and 1 are represented with voltage levels of OV and IV respectively, the average

value transmitted is (0 + 1)/2 = 0.5V. However if a system used the polar NRZ format

from Section 2.19 with Os and Is mapped to ± p (t) , with p (t) being a square pulse shape

of amplitude IV, then the average value transmitted would be 0 since (-1 + 1)/2 = 0V .

Therefore in terms of output CWs one can intuitively expect that the average CW will be

the all-zero sequence. The output is collectively known as the mean sequence and the

average CW is called the mean symbol vector rjc [24].

Recall from the Markov chain analysis in Section 4.9 the input probability

matrix 0U, code word matrix Cu and long term invariant distribution vector 7t .

Using these definitions it can be seen that each CW cu(i) will occur with probability

7t(i)du (i, i) . Therefore with mutually exclusive input symbols the mean symbol vector T]c

or average CW is defined as

(5-D
u=1

Continuing with the example from Section 4.9 the mean symbol vector would be

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tjc = [.1 8 7 5 .0625 .25 .25 .0625 .1875!

Vc =1

0 0 0 0 0
.25 0 0 0 0
0 .25 0 0 0
0 0 .25 0 0
0 0 0 .25 0
0 0 0 0 .25

1 3 3
1 3 3
1 1 3
3 3 I
3 1 1
3 t 1

(5.2)

,5 .5 .5 .5 .5 .5 .5

The result in Equation 5.2 is intuitively pleasing since it demonstrates that the

average CW (without bipolar NRZ mapping) is in-between the all-zero and all-one CW,

i.e. a vector of all 0.5. However if the bipolar NRZ mapping had been used the mean

symbol vector would have been the all-zero vector as shown in Equation 5.3.

T]c = [.1 8 7 5 .0625 .25 .25 .0625 .1875]

T]c = [o 0 0 0 0 0 o]

.25 0 0 0 0 0 0 2 0 0 -2 2 2
0 .25 0 0 0 0 0 2 0 0 -2 2 2
0 0 .25 0 0 0 4 -2 0 0 -2 -2 2
0 0 0 .25 0 0 -4 2 0 0 2 2 -2
0 0 0 0 .25 0 0 -2 0 0 2 -2 -2
0 0 0 0 0 .25 0 -2 0 0 2 -2 -2

(5.3)

This confirms that the transmitted sequence of this encoder has a dc average of zero volts,

verifying that the goal of balanced transmission has been obtained.

From Appendix A the correlation of a random process with itself is called

autocorrelation [4] and leads to spectral information of the random process. For

comparison the au tocorrelation function R ^(t,,t2) of a random process X(t) is shown

below in Equation 5.4.

^ \ A) = J \ x , x 2f x {xv x2\t„t2)dx{dx2
—CO —CO

Rxx(tl,t2) = E[X(t l)X(t l +T)]

(5.4)

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the autocorrelation function of a stationary process only depends on time

separation r = r2- f , , it is often represented in terms of the expectation operator [4] as

shown in Equation 5.5.

Rx(T) = E[X(t) X(t + T)] (5.5)

As a result Cariolaro and Tronca define the CW sequence autocorrelation RCk as

Rc,k = E[cnc„+k] (5.6)

Evaluation of Rck at time separation & =0 is Rco = E [cncn\ . Since CW cu(i)

will occur with probability 7r(i)0u(i , i) , its contribution to Rco will be

Rco = cl(i)n (i)6 (i , i) . To find the contribution from all CWs to Rco it is helpful to

define A as an L-square diagonal matrix such that

A (i,/) = f (° i = 1 (5.7)
0 otherwise

Then the autocorrelation with zero time separation can be obtained by summing over all

CWs as shown in Equation 5.8.

(5.8)
M=1

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Continuing in this manner and using the definitions defined by Cariolaro and Tronca,

when the input symbols are independent of state, the autocorrelation for all time

separations k can be shown to be

^C,k ~ '

2 > J a 0„c„ * = o
«=1 :

«=1 v=l

RTc,k k < - i

(5.9)

Then continuing with the example there are four SWs and as a result the

autocorrelation at zero time separation Rc o is found by summing up the four matrices

CqA 0 oco + c,t A^,c, + c jA 0 2c2 + c]A 03c2 shown in Equation 5.10. This was done by

mapping the CW matrices in Equation 4.25 to ±A with A = 1.

-

+r - r +r +r - r - r - r - r +r - r - r +r +r
- r +r - r - r +r +r +r - r +r - r +r +r - r - r
+r - r +r +r - r - r - r + r - r +r - r - r +r .+*■
+r - r +r + r - r - r - r c,TA ^c, - - r - r +r +r - r ~r
- r +r - r - r +r +r +r +r - r +r +r - r - r
- r +r - r - r +r +r +r +/* - r +r - r - r +r +r
- r +r - r - r +r +r +r +r - r +r - r - r +r +r_

c2A 0 2c2 =

(5.10)
+r +r - r + r -r -r +r - r - r - r +r - r +r
+r +r - r + r •r -r +r - r +r +r +r - r +r - r
-r -r + r - r +/• +r -r - r +r +r +r - r +r - r

+r - r + r -r •r +r ^3 ^ -^ 3 ^ 3 “ - r +r +r +r - r +r - r
•r -r + r • r +r +/• -r +r - r - r - r +r +r
-r -r + r • r +r +r -r ~ r +r +r +r - r +r - r

+r +r • r +.r -r -r +r + r - r - r - r +r - r +r

where r = 0.25.

Using Equation 5.9 the autocorrelation obtained for all CWs at time separation 0

is shown in Equation 5.11.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rc,o ~

1 -.5 0 0 -.5 -.5 .5
-.5 1 -.5 .5 0 0 0
0 -.5 1 0 -.5 .5 -.5
0 .5 0 1 -.5 -.5 -.5

-.5 0 -.5 -.5 1 0 0
-.5 0 .5 -.5 0 1 0
.5 0 -.5 -.5 0 0 1

(5.11)

The interpretation of this autocorrelation matrix is as follows. Equation 5.11 is

showing how correlated the individual bits (0 through 6) of any 7-bit CW are with

themselves at time separation k = 0 . For instance the diagonal ones indicate that the 1st

bit is 100% correlated with the 1st bit, the 2nd bit is 100% correlated with the 2nd bit and

so on down to the 7th bit is 100% correlated with the 7th bit. Conversely, the correlation

between the 1st bit with the 2nd bit is -.5 . This means that the first two bit combinations of

any CW are more likely to be 1,-1 or -1,1 then they are to be 1,1 or -1,-1. Continuing in

this fashion the correlation between bit 0 and bit 2 is zero, which indicates that knowing

the value of the 1st bit gives no indication of the value o f the 3rd bit. Hence all four

combinations -1,-1, -1,1, 1,-1 or 11 are equally likely. The rest of the matrix can be

understood in this fashion.

Before evaluating the autocorrelation of the encoded sequence for time separation

&> 0 , inspection of Equation 5.9 suggests that the second summation term can be

computed separately as shown in Equation 5.12 since it does not change with k.

V=l

0 .5 0 0 -.5 .5 .5
0 .5 0 0 -.5 .5 .5
1 -.5 0 0 -.5 -.5 .5

-1 .5 0 0 .5 .5 -.5
0 -.5 0 0 .5 -.5 -.5
0 -.5 0 0 .5 -.5 -.5

(5.12)

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus Rc, is evaluated as

Rc I = (cjAeo£on°+cirA01£1nO+cfAe2£2nO+c3 A%e3n0)

A . =

-.125 .0625 0 0
0 -.0625 0 0

.125 -.0625

.125 -.0625
0 .0625 0 0
0 -.0625 0 0

.0625-.25

0 0
0 0

0 0

.0625 .0625 -.0625

.0625 -.0625 -.0625
-.0625 -.0625 .0625
-.0625 -.0625 .0625
-.0625 .0625 .0625

.0625 -.0625 -.0625

.1875 .0625 -.0625

.5

.5
-.5

.5
-.5
-.5

0 -.5
0 -.5
0 -.5

.5 .5

.5 .5
-.5 .5

.5 -.5
-.5 -.5
-.5 -.5

(5.13)

This autocorrelation matrix indicates how similar any CW is with the preceding CW on

the channel. Clearly the correlation falls off rapidly. This is because in this example

knowing the value of the 1st bit in the first CW only gives a marginal -.125 indication of

the value of the 1st bit in the next CW and so on. Nevertheless the autocorrelation can be

evaluated for greater time separation as shown in Equation 5.14.

A 2 ~

0 0 0 0 0 0 O' 0 0 0 0 0 0 o'
.0625 -.03125 0 0 -.03125 -.03125 -.03125 0 0 0 0 0 0 0

0 0 0 0 0 0 0

A
0 0 0 0 0 0 0

0 0 0 0 0 0 0 i ” 0 0 0 0 0 0 0
-.0625 .03125 0 0 .03125 .03125 -.03125 0 0 0 0 0 0 0

.0625 -.03125 0 0 -.03125 -.03125 .03125 0 0 0 0 0 0 0

.0625 -.03125 0 0 -.03125 -.03125 .03125 0 0 0 0 0 0 0_

ĉ,100

'0 0 0 0 0 0 o' 0 0 0 0 0 0 0*
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 A ~ = 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.

(5.14)

Notice that by time separation k = 3 the autocorrelation matrices have converged

to the all-zero matrix, which demonstrates that this random process loses correlation with

itself very rapidly. Further notice that the autocorrelation matrix at & = can also be

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

obtained by multiplying the transpose of the mean symbol vector with itself as shown in

Equation 5.15.

= vine = rfc (5.15)

Autocovariance matrices can also be found which indicate how the random

process varies with time separation. They are related to the autocorrelation matrices as

shown in Equation 5.16.

Kc ^ Rc,k~fc

R c,k ~ R c,k ■R.
(5.16)

It can be seen from this expression that if the mean symbol vector is zero, the

autocovariance matrices are equal to the autocorrelation matrices. As noted previously

this will occur when the output transmission is balanced and bipolar signaling is used.

K cS> is given by Rcfi- R c<a>, while Kc] =Rc l - R coa and K c 2 = Rc l - Rc„ and thus as k

tends to infinity Rck tends to Rc oa and the all-zero matrix is reached as shown below in

Equation 5.17

K c,0 =

1 -.5 0 0 -.5 -.5 .5 '-.125 .0625 0 0 .0625 .0625 -.0625*
-.5 I -.5 .5 0 0 0 0 -.0625 0 0 .0625 -.0625 -.0625

0 -.5 1 0 -.5 .5 -.5 K,,
.125 -.0625 0 0 -.0625 -.0625 .0625

0 .5 0 1 -.5 - 5 -.5 ~~ .125 -.0625 0 0 -.0625 -.0625 .0625
-.5 0 -.5 -.5 1 0 0 0 .0625 0 0 -.0625 .0625 .0625
-.5 0 ,5 -.5 0 1 0 0 -.0625 0 0 .0625 -.0625 -.0625

. *5 0 -.5 -.5 0 0 1 -.25 .0625 0 0 .1875 .0625 -.0625.

*„2 =

0 0 0 0 0 0 O' 0 0 0 0 0 0 0
.0625 -.03125 0 0 -.03125 -.03125 -.03125 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Kr„ =C,oo

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

-.0625 .03125 0 0 .03125 .03125 -.03125 0 0 0 0 0 0 0
.0625 -.03125 0 0 -.03125 -.03125 .03125 0 0 0 0 0 0 0
.0625 -.03125 0 0 -.03125 -.03125 .03125 .0 0 0 0 0 0 0.

(5.17)

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The PSD is obtained using the autocorrelation and autocovariance matrices and it

can be defined in terms of a continuous component X c(f) , and a discrete component

X D(f) . These components are weighted by the Fourier Transform of the pulse

shape P (f) .

where

W (f) =
2 /

NT * c (/) +
X D(f)

NT
mf0
N y)

X c (f) = v -}2njkNT

k=1

(5.18)

(5.19)

X D(f) = vRcy

■ i[iv _ , L eJt*.fr e J4nJT e J6nfT ^ e J2nf{N-\)T

(5.20)

(5.21)

In this balanced transmission example Rc „ = 0 and by Equation 5.20 there is no

discrete component X D(f) . Therefore Equation 5.18 can be rewritten as

W (/) = ! ^ L (X c (/) + 0)
NT

(5.22)

Since the covariance matrices are only non-zero up to k = 2 , X c (f) is found to be

X c (f) = v

I -.5 0 0 -.5 -.5 .5
*.J 1 -.5 .5 0 0 0
0 - .5 I 0 -.5 .5 -.5
0 .5 0 I -.5 -.5 -.5
-.5 0 -.S -.5 1 0 0
-5 0 .5 -.5 0 1 0
,5 0 -.5 -.3 0 0 1

+ 2 t , K ,C,k*
-J2nfkNT

k=1

(5.23)

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where

V _ [l eJ2xJT eJ4njT eJ6nJT &i%nfT ^XOnJT g)l2f/rj (5.24)

The result is a continuous function of frequency / that is weighted by the pulse

shape. If a square pulse shape is used and normalized to A = 1V with duration T = 10ps,

Equation 5.25 shows its time domain representation and Fourier transform. The PSD is

then this function (pulse shape) squared, and plotted on either a linear or logarithmic

scale as shown in Figure 5-4.

p(t) = Arect ' t ' <-» P{(o) = A7sinc ' a f T '

P (f) = (lOps) sine (^ /1 0 p s) (5.25)

’ .JOD

Fourier TX

Figure 5-4: PSD of a square pulse shape plotted on linear and logarithmic scales

Therefore using Equation 5.22 and evaluating X c (f) at / = 500H z , for example, gives

X c (500) = .0543+ .215j = .2216e13233;' (5.26)

|(l0z/5)sinc(^500*10//5,)|2 . .
W(500) = |V ’---------------- ;|..(.0543 + .215j)

W(500) = 7 .7 5 £ -8 + ;3 .0 7 £ - 7

|W(500)| = 3 .1 6 7 £ -7

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This is the PSD calculated at a single frequency. This evaluation however needs

to be done as a continuous function of frequency since by definition the power

contribution of a single point on a density curve is zero [4]. This time consuming

operation is best performed using mathematical software such as Matlab.

5.4. Evaluating the Power Spectral Density using Matlab

Recall from Section 4.11 the program Build_EuCu.exe. This program allows the

user to select the expurgated code, selection criteria, source statistics and AddSWs to use.

It then generates three files. The first two files created were shown in Figure 4-19 and

Figure 4-20. They dealt with the number of states in the encoder and created the 6U, Eu

and Cu matrices used to calculate the runlength probabilities of the code.

Continuing from the example in Section 4.11, the third file will contain a

combination of the information found in the first two files, and it is used to evaluate the

PSD. An example of this file is shown in Figure 5-5. This file begins with some

comments and general information about the code used. Following this is each Input

word (SW) along with its probability of occurrence which is read into the 9U matrices,

followed by the Eu and Cu matrices which are written in binary form.

, - * •<

* Input 111* (7,4) ahortanad to <7,Z) lor Lina Coda Pewar Spactral Annlyai*. p

• Unbraakabla Tl« ■ 0 DunTiaa • 0 out Ol 71 . !
f

length of Input word*:
langth of ancsdad word*; i b
Dunbar of atatoa In aneodor: * plourc* chanctitiitlci: 0.1000 logic on* probability of Indapandant bit*, b'
Dunbar 01 plat point*: 101 £>

Input word: 00 6
Probability: Z.*00000a-001 %
000100 0100111 1000100 0100111 .1100000 1011000
000001 0100111
001000 1011000
001000 1011000

Input word: 01
Probability: Z.C00000a-O01
000100 1010011
000100 1010011
000001 1010011
100000 0101100
001000 OlOilOO i
001000 0101100

<| r i .il!

Figure 5-5: Input file for PSD calculation

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The 6U, Eu and Cu information is used by a Matlab program called

“calcCompletePSDfromLCODEPWRIN.m”. Additional parameters are entered into the dialog

box as shown in Figure 5-6. These are a) the number of autocorrelation and

autocovariance matrices to compute, b) whether or not the system uses NRZ mapping

(i.e. balanced mapping), c) frequency stepping resolution, d) which figure number to use,

e) maximum frequency to calculate values for and f) the duration of a single bit in

seconds. Note that the pulse shape is hard coded to be square and normalized to 1 volt to

match with the hardware implementation. This Matlab script will also output the PSD

with and without the influence of the square pulse shape. This was done in order to see

the effect of the coding alone on the shape of the PSD.

iiiBM iiri
« Enter th e N unber o f AU oCorreM icn/Covariencemfltrtx iM tric fer * 1
; | »
V W e M for Belenced . o r 0 lo r U nB etanced - '

I I ' t

S o e d fv lh a F re au e n cv R e to U io n ' - J
1100 I
F i a r e num ber

f |20 1
s C eicuW e to maximum fre au e n cv
| 200000

? S h c ie B ID w M lo n ' lt,*<
>: 10.00001 t

OK |' Cmxl ’ 1

Figure 5-6: Information required for PSD calculation

Continuing the previous example with the parameters in Figure 5-6, the

continuous component X c (f) can be plotted on a linear scale without the effect of the

pulse shape as shown in Figure 5-7. This plot demonstrates the influence of the combined

EC and CS coding scheme alone.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tfe I* tim U*
a * t , t/rt \<

ProbOn SO LCODEPWR (72) p A B f l Lowait M B M

teekrW ndm t * ••.!:.

fllD'cftH 6 l ’fc A / / I P J S O
' 1 v ' PrahOfl 60 LCODEPWR (F.2) I O .W I L n n tl ROD li t

(a) (b)

Figure 5-7: Linear PSD of the multimode system (no pulse shape included)

There are a few things to notice about this PSD. First of all as a result of the

discrete nature of the autocorrelation the PSD is periodic in the frequency domain as

shown in Figure 5-8a. Secondly since the symbols are all real valued the PSD is an even

function and thus symmetrical about 0 Hz as shown in Figure 5-8b. Therefore the PSD

repeats in this fashion to infinity where each lobe is a replica of the previous one as

shown in Figure 5-7b.

(b)(a)

Figure 5-8: Showing that the PSD is periodic and an even function

However once the pulse shape of Figure 5-4 is taken into consideration, the PSD

begins to decay as sine squared. This effect makes the null at 0 Hz less noticeable, but

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

since this PSD is periodic, it is clear that the null is present. This is shown in Figure 5-9

on both the linear and logarithmic scale.

: Iw* Mhdw U* ___
I l D i c s y # ! > ■ A / V | 0 j i o “

■OBRcl

■IIS 7 Pro b o n 60 LCODEPWR (75) 1 0 .4 ,6 /1 Lowest RDS 111

* 0 0 1 4

'o ra
„ •
. . ora

r r----- .

$
L-‘

ora

o.

t“ ------- ;

- j " -■.............. |!

.......... ..
■nl.m ...

1 J1'V:,Jvk/
110*

» _ U m f r m l I n k * n d q » M l . ____

jD SBC! U / ZlP'ftO
l u l n l x l

U'S.W.

Pm bOfl 50 LCODEPWO L w m R 0 S . i l . t S "

1 5 2 2 .5 V 3 - 3 5 , S 4

V< Suvf

Figure 5-9: Effect of the square pulse shape plotted on a linear and logarithmic scale

Note that the logarithmic scale is used in order to compare theoretical spectra with

those measured from the FPGA implementation in the lab. This is because digital

oscilloscopes and spectrum analyzers often display frequency domain results in decibels.

For example Figure 5-10 shows this PSD plotted for the first two lobes as generated by

this Matlab script, with the measured PSD from the FPGA implementation beside it. It is

clear that the Cariolaro and Tronca approach matches closely with the measured values.

This aspect will be more fully discussed in Chapter 6.

- f rw frH rt .lp c Ii W vkm b * > ..
BBWSfinnH

■|!D 'c£ H a l K A /* / i O'

7 ProbOfl 60 LCOOEPWR (7,2) p . 4 , 0 /) Lowest R 0S .txt

- O ' 0 2 0 4 0-6 1,2 1 4 1.6 1 8

Re 0 sfltten 30 dB

Stop 2S0 kHz
m 1 kHz Sweep 407.4 ms (401 pts)

Start 0 Hz
Res BH 1 kHz

Figure 5-10: Comparing the spectrum analyzer to Matlab spectrum

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5. Understanding the Discrete-Like Nature of the PSD

A final source of confusion is why the PSD sometimes has a “spiky” shape.

Normally strong spectral spikes are indicative of periodic sequences in the time domain.

These present themselves as discrete components in the PSD. However these strong

spectral peaks are not caused by periodic sequences with this coding scheme. In this case

the concentrated power in narrow bands in the frequency domain actually come from the

sometimes limited selection of CWs. This is best seen by example.

Consider the (7,1) Hamming code from Table 3-3 using the eight AddCWs

{00h,16h,27h,31h,4Eh,58h,69h,7Fh}. Figure 5-11 shows this code as a state diagram.

This small code is interesting to analyze since there are only two input SWs, 0 and 1.

Furthermore, even though there are eight AddCWs in this system, the simplicity of this

code results in only four CWs {69h,53,2Ch,16h} ever being transmitted.

0 /6 9

Figure 5-11: Simplest FSM model for the (7,1) code

The FSM model in Figure 5-11 indicates that the only possible CW sequences

that leave state 0 and return are {69h,16h}, {69h,2Ch}, {53h,16h} and {53h,2Ch}. One

may expect this system to produce a discrete PSD since the transmitted sequences appear

periodic. However this is not the case since even though there are only four possible

sequences, they are emitted randomly. This results in the continuous PSD shown in

Figure 5-12. This PSD was calculated assuming all four sequences are equally likely.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WHRi) f ig u re No. 10

g» Edt Mwl 100b »N°»_ tWp _
fo'cS q & I * A / /] & o

Figure 5-12: PSD of the multimode code shown in Figure 6-50

At first glance this spectrum appears to have discrete components. Understanding

why this is can be found by analyzing the Fourier Series (see Appendix A) of the four

sequences that can leave state 0 and return. As discussed above these sequences are

{69h,16h}, {69h,2Ch}, {53h,16h} and {53h,2Ch}, and their Fourier Series

representations are shown in Figure 5-13 and 5-14. All four figures have seven frequency

components in common as shown in Figure 5-15.

Comparing the spectrum in Figure 5-15 with the PSD in Figure 5-12 explains

where the apparent discrete components come from. These seven frequency components

will be dominant in this system regardless of randomness. For example if the output of

the encoder was ever forced to always be one of the four sequences, then the output

would be one of the four Fourier Series spectra shown below. However, since the output

at any point in time is one of the four sequences chosen in a random fashion, each one of

the four spectra is prevalent, but overall yields a continuous spectrum.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-13: PSD of the periodic sequences {6916h} and {692Ch}

m >5
l is p ? it an ' -u v ;

*

i l f p t*
*

\
K̂

i f 'J A* /•
f

I*' J*/# * t * : "V * > i * ,

iS ii h’*
1 f ii j . .

’
i .

E3*

mmm & m v * ‘

M B ' ;

U '

~ * i t M&lS

Figure 5-14: PSD of the periodic sequences {5316h} and {532Ch}

nw eoa 11a m incoo ix m # ito » a iwooo im « o um o# i m h iwooo w m i

f j p s p g s iff

M l
B

’

r
\

'
’

S»
■'
* >

Pi
->

l/
‘‘ ' ' '

y v ̂a"* ■ ;

K .
« 4 _1 L .

\ >r::

|-o -C cn W '« l|

Figure 5-15: Average of the seven frequency components

5.6. Spectra of various codes

The CW search results of Section 4.14 for CWs of length 15 revealed that the

coding technique on average could guarantee runlengths o f 4 or less 94% of the time.

Only 6% of the time would runlengths be higher than this to a maximum of 11.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furthermore out of the 16777216 AddCW sets tested, only four sets were considered to

be the worst since they could have runlengths as high as 15. However these runlengths

would occur with very low probability and they could still guarantee runlengths of 4 our

less 92% of the time. The four best AddCW sets on the other hand could guarantee

runlengths of 4 or less 96% of the time, and no runlengths higher than 7. This section

now investigates the PSD of these codes.

For comparison the PSDs are calculated using two heavily unbalanced source

statistics of 10% probability of a logic 1 and 90% probability of a logic 1. Furthermore

only the four best and four worst AddCW sets are calculated, as all other AddCW sets

will have statistics within their range.

wrrTaixi
I?* w*" w?•'llotfoaiVA *

ProbOfl 90 LCODEPWR (IS A 10,107,208,323,400,07£ f 8 7 F F | Low*it ROS lit
•20 r - ------

0 2 > 0 4 0 6 0 8

J4» frMrt-Iwb-HNow tub'
iD (SB*h>:A * /W&'O

; ProbOfl 90 LCODEPWR (IS A p ,H 0 1290,370i48 f J5B4J502JFFI R
■20 r

0 0 2 0 4 0 6 0 8 1 1 2 , 1 4 fc 1 6 ,

 .iifr, •>!16 am
y. V * lr«rt lerto. tM.

•Id & ~b a! m / '/ ~ s* & o

i .

I j f ! t

M 1

....JL..I.... j....

f \

t

....t... yj... |.... M

... I ... i " \ 7 7 i ...__ i__ i__LxJ_t__ i
0 0 2 . 0.4 0 6 - 0 8 .

fritj
1.2 1.4 1.6 1.6 2

HO4

ECSBEIẐ HHGHHH
t f r b f t I « * o n to - a * .

taaa

1 PrebOT90U:00£P™OS«)|0.1E7aC8ja.<DĈIB7Fr|U«i>rBDŜ
■20 r ' ! !

p
i :

VI i
\ VW] Vi

f
....i.....

i_i_ -ft
0 4 0 0 0 0 1 U , 1 4 1 0 1 0 - . 3 ‘'• >.| tfl

Figure 5-16: 90% ones - AH four Best AddCW sets

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-16 shows the PSD of the four best AddCW sets with a source that emits

logic Is with 90% probability. It is clear that the coding scheme is working since the

nulls are still present and quite wide. The “spiky” nature of the PSD however is a result

of the unbalanced source. Since the likelihood a SW containing many Is is very high,

only a limited number of the available CWs are being transmitted. That is since only a

subset of available SWs is being selected (i.e. SWs comprised mostly of Is), only a

subset of available CWs is being transmitted. Hence the correlation between CWs is

higher and the PSD shows spiky peaks indicative of a periodic-like transmission. In other

words, the same group of CWs is being repeatedly transmitted but in a random fashion.

I?*

•30

.'•60

06
« 10*

U*

•25

•45

-65

•25

•30

1 10*

llpfx!
0* C* V«* I"Hrt I«* ti*
jjo t f B A i > A v y I && o ■.

ProbOfl 10 LCODEPWR (ISjS) p.1E7.2Ca,323,4DC,S37,E1Q.7FFi LpwiH RPSfo-ff-

12 14 1.5 a»y0.2 04 : 05 0.6

Figure 5-17:10% ones - AH four Best AddCW sets

Similarly Figure 5-17 shows the PSD of the four best AddCW sets with a source

that emits logic Is with 10% probability. This is of course the same but opposite problem

as above since now the likelihood of a logic 0 is 90%. Thus the PSD still exhibits the

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

spiky response. Nevertheless the attenuation of the PSD near dc shows that lower

frequencies are less likely than higher frequencies, and hence these PSDs are indicative

of a balanced sequence that has numerous transitions even with these unbalanced source

statistics.

Note that when the source is balanced the PSD loses its spiky nature. Figure 5-18

shows the PSD of two of the best AddCW sets with a balanced source. Since all the SWs

are equally likely the entire set of available CWs is used and hence the discrete-like

components disappear from the PSD. It is now more “smooth” and similar to the PSD of

a random binary waveform with the addition of the null at dc. Note that the PSD of all

(15,8) codes are practically identical when the source is balanced, and as a result they all

resemble those presented in Figure 5-18.

ProbOfl 6 0 ICOOEPWR (ISffi {0,t W 98 ,323 ,4D C ,S64<B567fF] Lfrrti

•30•30

•3S

45

,•60

0.8

Figure 5-18: PSD of (15,8) codes with a balanced source

Continuing with this analysis Figure 5-19 shows the PSD of the four worst

AddCW sets with a source that emits logic Is with 90% probability. The null at dc

indicates that the coding scheme is working, however since runlengths of up to length 15

are possible, the null is narrower. Furthermore it is clear that the worst AddCW sets have

more power at low frequencies than the best AddCW sets.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.’]bc*H«l>’AV / ! « £ 0
• ProbOfl so ic o o E P w n (n * i p , io e jo o jo t i .< F F if f£ f7 ; f f i L m i i post*

} ■’ 'r --

, 1 ‘ * 0 0 2 0 4 0 6 0 8 1 1 2 14 1 6 1 8 2

H i} *' '___________ **i x io*

Ek D* »« IM ft* »*>• b* .. _____ _
!jo*b*iVA A /foeo ‘ _ J /■ J’

' Pnbon so loooEPMn (iso) p.tocjao w p r t r r i h f r f f i im I n
•30 r ...

l-iafi3

~ 0 0 2 0 4 0 8 0 8 1 " 1 2 « 1 4 1-6 ' . . 1 8 - r 3 ^ 7

M l/wmi lot* tfbcM y * ■'

JJOltfB IIi k
^.ProbOfl 6 0 IC0D6PWB (ISfl) J0.120 200,300,4FF;5FF,fiDF7FF| Lowitl ROStrt

S>>* .>,-.20r — -)-----1 " i l l-----1— — i....).'

b?i ^ 0 ;/<02 r04 06 0.8, 1r x t * M

EH (i* Vm frw t I t * U P *" I I* « _ _
jD i saa . ^A /• /\ss>0 o x • * ,

■•'■■■•"■■ PiobOfl SO LCOOEPWH (163) p,130^^03,xW'yr^cf,7ff|Lowip

Figure 5-19: 90% ones - All four Worst AddCW sets

Similarly Figure 5-20 shows the PSD of the four worst AddCW sets with a source

that emits logic Is with 10% probability. While the best AddCW sets had PSDs with

convex shapes, the worst AddCW sets have almost concave shapes. This indicates that

the highest frequencies are less likely than some of the midband frequencies. On the other

hand the power at low frequencies is still quite small but clearly larger than the PSD of

the comparable best AddCW sets. For example Figure 5-21 shows the PSD of one of the

best AddCW sets beside one of the worst AddCW sets when the probability of the source

emitting logic Is is 90%.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

|JdV b # I a' / /l> jsT o '-

n a r e i

FgobOfl 1 0 LCODEPWR (15fl) p^IQBjOO jn d j W 'A t f J W / f f l U w w l 8 0 3 1*1

p> .t*_ . i«* iaww*_ i
■infirei

j lD«B0l> A^Vl W O ^ ,

-■ Pwkon <o lc o o e p w h (isjB) |g.tiie^jtB ^i^jrw Vff|1fciiim «ia^{

„..l. L i If r I ...

f e ' v i] t A / ✓ ,| * 0 O "

arforxt

(VotOfl'lO LCOOEPWH (16*) |0,12n300;300,4FFi5FFJ60F,FFF| Um*M R D S Iili'i

*$&&&■??
I -

I * 'dm ftM rtleoh .tfrdpw b * :"'

jO t fU*1* A~>/|4>J90 . , .
- *•*/•» i <4 i o .n »*S Id-

ProbOfl in LCOOEPWR (l5 a) P .1 3 0 a i0 ja i ,4 F F E f F E C F 7 F F | Lm w tl R

I'i ,3MS,m-

1< 13,(4,') S \ .1.8 v 3*•6 , - -tWD2 0 4 0 6

Figure 5-20:10% ones - All four Worst AddCW sets

H~Tar>j]
; P H « i D w > » l IbbM:Vtotom B »

Jo * n i s i »" A * / 1 p d> o
PnbOri 90 LCOOEPWR (1SJ&) (0,1AA29B,323<tDC«*^657Ff| Lswttl ROS tit .-

 •

0 } 0 4 0 6 9 6 \2 14 16 16

f)» If* »w |M I t* tt*
jDtfHdi t A / / | P ^ O

TlHtKt

Proton 90 LCOP6PWR (15ffi |0,100,230,300,4Ff£ffg37FF] Jumj W »t«

■ I ,■ ■ «>■'>?££
.in- •

Figure 5-21: 90% ones - Best AddCW set followed by a worst AddCW set

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While it is obvious that the best AddCW set has more power at high frequency it

is most evident when they plotted together as shown in Figure 5-22. Here it is clearly

seen that not only does the best AddCW set have most of its power at higher frequencies,

it also has a wider null width indicating its ability to limit runlengths.

•20

•25

M a x ru n le n g th = 15

a'HC35

A -60

*55

•60,
0.2' 04 0 6 0.B

Figure 5-22: 90% ones - Best and worst AddCW set

5.7. Spectra of larger codes

Based on the AddCW recommendations of Section 4.15 the PSD of larger codes

based on the (31,26) Hamming code are now investigated. The PSD of these codes

however cannot easily be calculated using the Cariolaro and Tronca technique used so

far. This is because their method involves modeling an encoder as a FSM and analyzing it

as a Markov chain which involves numerous calculations for every possible way into and

out of a state. In the case of the (15,8) codes this meant on average 28 ways into a state,

28 ways out of each state, and sometimes as many as 28 states. Thus the number of

calculations is on the order of 2563. Furthermore the file sizes for the intermediate 6U,

Eu and Cu matrices are on the order of 1MB . Consequently for the (31,23) codes the

number of calculations is on the order of (223)3 = 83886083 with file sizes for the

intermediate du, Eu and Cu matrices well past the order of 1GB. Thus calculating exact

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PSDs for larger codes proved to be impractical with today’s computing power. Thus an

alternative approach used was to simulate the encoding scheme and calculate the PSD

using FFT techniques.

I f iiW Write averagci eveiji [TOOOOOO : bite on thg channel

Slop hm ehei | l lie wile* PiobOH; [SO*

* Selection Ditctia

jLowestRDS .— Dn thwjQverlap P tocetting FFT : •
» Q 9 9 H H 8 B R j < I joget • i.uet 64 FFT eveteget)

17 AlowM SW Te«l r A tow M SR Tw t

|00000000 J 000001M 100000296 110000032

|00000000 |00001AA6 ,|000029B8 1 |00Q0323_

, rrAddSW /AddCW Finished Simulation

Go Kil Simulation

-In fo— ^

NumStote* 14 :
NumFieWfitei 1

Figure 5-23: Simulation for finding the PSD

Figure 5-23 shows the program Sim FPG A w ithFFT written to find the PSD

through simulation. This program uses a technique called FFT overlap processing with a

Hanning window to find an accurate spectrum representation. This technique involves

windowing 1024 CWs, taking an FFT, sliding the window by 256 CWs (i.e. overlapping

768 CWs), taking an FFT, and repeating over 64 windows and averaging the results.

Figure 5-24 shows two PSDs found through simulation. Comparison with Figure 5-21

shows the accuracy of this technique. The noisiness of the spectra is due to the fact that

the transmission is random and an infinite number of samples would need to be averaged

in order to precisely match the PSD of Figure 5-21.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

J O . f l t B f l f k A > /
Oi*f1»p P rK M iInq . (I S # J0 .1 M J9 B J2 3 |« 90%

*• *30

‘ •40

•CO
■70

•00

-90

■100,■100,
kKt

Figure 5-24: 90% ones - best AddCW set followed by a worst AddCW set

Using the AddCW recommendations of Section 4.15, Figure 5-25 shows the PSD

of the (31,23) code, with a source emitting logic Is with 10% probability, using the

AddSW sets {0000000h , 084D4D4h, 1 3 2 3232b , 189B9B9h, 2 7 6 4 6 4 6 h , 2CDCDCDh,

37B2B2Bh, 3FFFFFFh} and {OOOOOOOh, 08AAAAAh, 1 5 55555h , 1832323h ,

27CDCDCh, 2AAAAAAh, 3 7 5 5 5 5 5 h , 3FFFFFFh}. It is immediately obvious from

Figure 5-25 that the first AddCW set appears to have many bands of high power at high

frequency. On the other hand the second AddCW set has a majority of power at high

frequencies. This is indicative of a transmitted sequence that has very short runlengths.

RESESQ̂ HHi
IMb

•JQ <*H«] /\fi 0 O
* i ‘ Procuring • (31 ,23) pfl4P4M,1323232,1

•10

<30

•40

•60

<00

AH!

Figure 5-25:10% ones - Two (31,23) codes

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This can be further understood by inspecting the statistics of the transmitted

sequence. In addition to the PSD the SimFPGAwithFFT program generates a file

containing the number of states in the encoder, maximum runlengths and AddCW usage.

These files are shown in Figures 5-26 and 5-27 respectively.

H H H H I H H B I ^ a l x i
#0®? EditFarmat ttalp ' . •*

i | P r o b l ProbO
: 1 0 . 1 2 8 9 . 8 8

CWs S e n t B i t s 2 A v g O v e r
3 2 2 5 9 1 0 0 0 0 2 4 . 0 0 0 0

MRl MR0 MRDS
1 0 . 0 1 0 . 0 1 1 . 0

mRDS
- 1 3 . 0

aMRl '±
3 . 3 9 8 0 I

V

; N u w S t a t e s = 30

:i!.v- ' "" - . I

(0 , 0) = 0 . 1 4 6 1 5 6 2 3 (3 , 0) = 0 . 0 2 8 0 8 4 3 2 (- 2 , 0) = 0 . 0 3 9 2 7 4 6 4

.. S .
(5 (31,23)_£0,I09A9A07,2G464G4B,3l37372C,4EC0CGD3,59B9B9B7,6F656578,7FFFFFFFJ_WTMI_Stflt*.tHt - Notepad.

liEte - " Farmat belp
W = IS 3

D . 2 7 5 2 7 3 3 9 3 4 0 . 4 0 7 3 1 4 2 2 4 5 0 . 2 0 7 6 3 1 0 1 6 9

(0 , 1) = 0 . 1 4 7 5 8 2 1 5 (- 3 , 1) = 0 . 0 2 9 1 6 9 2 5

l£l". . ' J

4 5 6 j t
0 . 0 7 1 3 2 2 2 8 0 3 0 . 0 1 9 1 7 4 5 3 9 8 0. 0 1 S 5 | |

(2 , 1) = 0 . 0 3 9 3 9 8 6 4 (6 , 1) = 0 . 0 0 1 3

■ ■>•!*!«

Figure 5-26: Statistics of the (31,23) code with the 1 AddCW set

■ ■ ■ ■ ■ ■ I
& tt;,F o rm a t. Help ■

; P r o b l ProbO
1 0 . 1 2 8 9 . 8 8

CHs S e n t B i t s 2 A v g O v e r
3 2 2 5 9 1 0 0 0 0 2 7 . 0 0 0 0

MRl MRO MRDS
1 1 . 0 1 1 . 0 1 2 . 0

mRDS
- 1 4 . 0

aMRl i
3 . 2 6 0 5 jpt

N u m S t a t e s = 43 (0 , 0) = 0 . 1 4 2 0 3 3 4 8 (- 1 , 0) = 0. 0 9 7 3 6 5 1 6 (4 , 1) = 0 . 0 1 1 6 8 6 3 0 11

: *! ’■■■ 1 > f j

H H H H m w . i p i x t
0e Edit Farmat Help, . . .
1
0 . 6 0 4 1 0 6 6 8 7 0

2 3
0 . 1 2 4 8 2 2 6 2 9 8 0 . 1 8 4 7 8 0 0 1 0 9

4 5
0 . 0 3 8 2 2 6 9 6 7 9 0 . 0 3 5 8 6 9 0 3 1 5 0 . 0 0 7 |

(0 , 1) = 0 . 1 4 4 7 6 1 3 2 (- 3 , 0) = 0 . 0 4 2 1 2 6 4 7

iJ I

(4 , 0) = 0 . 0 0 5 0 5 2 7 0 (- 2 , 1) = 0. 02'.

2M

Figure 5-27: Statistics of the (31,23) code with the 2nd AddCW set

Comparison of these two files shows that the first set only has maximum

runlengths of 10 (MRl = MR0 = 10), while the second set has maximum runlengths of 11

(MRl = MR0 = 11). On the other hand, the second set has a 60.4% chance of runlengths

of length 1, while the first set only 27.5%. This was clearly evident from the PSD plots.
125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly it was noticed that the first set had more power at intermediate

frequencies than at its highest frequencies. This can be seen in the statistics file since the

probability of a run of length 2 is 40.7% and the probability of a run of length 3 is 20.7%.

5.8. PSD Summary

The multimode coding technique introduced in Chapter 3 is designed to guarantee

balanced transmission and remove long runs of like valued bits. An output sequence that

has long runs of Os and Is will appear as a slowly varying square wave, and an output

sequence with short runs of Os and Is will appear as a rapidly varying square wave.

Hence these sequences can be analyzed in the frequency domain in terms of their PSD.

Cariolaro and Tronca [24] outline an efficient procedure for calculating the PSD of

a coded system, the details of which were demonstrated in this chapter, with further

examples found in Appendix A. It was shown that in systems where the number of states

or size of the code is too large, it is preferred to simulate the PSD.

The following chapter looks at the FPGA hardware implementation of this

multimode encoder. It also compares measured PSD results to the theoretical and

simulated PSDs calculated in this chapter.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Im plem enting the M ultim ode E ncoder and D ecoder in H ardw are

The previous chapters introduced the combined EC and CS coding concept, as

well as outlined how to evaluate performance in both the time and frequency domain.

This chapter chronicles how a working transmitter and receiver was implemented on two

FPGA boards and PSD measurements were taken for comparison with results from

Chapter 5. For proof of concept the goals of this communication system were simple:

1. Implement the combined CS coding and EC coding technique;

2. Transmit a file from transmitter to receiver to verify the encoding and

decoding techniques;

3. Measure the PSD of the transmitted sequence to verify it agrees with

calculations.

A block diagram of the communication system is shown in Figure 6-1. It consists

of the two FPGA boards TX FPGA and RX FPGA, the three wires over which they

communicate, and the controlling computers TX PC and RX PC. Computer control

allows for a more sophisticated user interface than what is present on the FPGA boards

themselves. Furthermore this setup allows a user to select any file on the local TX PC and

transmit it to the RX PC using the combined EC and CS coding technique. Typically no

distinction will be made between the PC and the FPGA and they will collectively be

referred to as the TX and the RX.

gnd

data
clock

TX
FPGA

EX PCEX
FPGA

TXPC

Figure 6-1: Block diagram of the FPGA communication setup

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The TX and RX communicate using three wires: serial data, serial clock and

ground. The serial data line transmits the actual coded sequence and the ground is simply

the common line between the two FPGAs. These two wires together would form what is

commonly known as a twisted pair. A third wire is also included which allows the RX

clock to synchronize with the TX. This is because a typical RX must synchronize to the

clock rate of the TX in order to determine the duration of a single bit. Conventional

communication systems accomplish this using a phase lock loop (PLL) to derive this

clock from the transitions in the incoming bit stream on the serial data line. In fact the

combined EC and CS code introduced in this thesis is designed to aid PLLs to

accomplish this task. However the added complexity of designing a stable PLL for use

with the RX was considered unnecessary since the analysis reported in Chapters 4 and 5

has proven that the outgoing bit stream of this multimode coding technique contains

numerous transitions. Furthermore this coding technique was designed to be added to an

existing communication system. Therefore as long the calculated PSDs presented in

Chapter 5 match with the measured PSDs of this hardware implementation, the system

would be proven to be valid even without the implementation of a PLL at the receiver. As

a result, to simplify the receiver circuitry a clock signal was connected directly from the

transmitter.

Figure 6-2: FPGA transmitter and receiver communicating

Figure 6-2 shows the laboratory setup of the block diagram of Figure 6-1. Two

PCs and two FPGAs using three connecting wires are shown. The TX and RX each
128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consisted of a Digilent Digilab 2E (D2E) development board as shown in Figure 6-3, and

a Digilent Digital I/O board 2 (DI02) expansion board shown in Figure 6-4. The D2E

boards each featured a 200K-gate Xilinx Spartan 2E FPGA (XC2S200E) in a PQ208

package running at 50MHz with 143 user I/O pins. The D I02 boards provided input and

output functions with fifteen push buttons, eight toggle switches, sixteen LEDs, an LCD

screen and four 7-segment displays.

2.5VPC
ltd!

50M Hz MaliislPower S PROM

9 .M H itu m n ii iy u , 4JI5-(>vi)c:
rcuuhitoi

Xilinx Spjinan2
XC2S200-PQ20S

E P P o rS P P
parallel port

rr'l ~m ,;]j , t)m-. 'J|j l« • .•

ifrnwffiTWfffi' .fffiTfffftnriTi

•••• W - . - y acuiim tit >#
Expansion H

Expansion I

p— .ITAG
£ Port
3

ay
I’ori'p roy

control
switch

Expansion A

lixpansion li

Figure 6-3: Digilent Digilab FPGA board

j : C 'o n n c c i n r A [| C Vu i n c c ^ ^ r .B ^ J

~TF
5V D C

mutilator

Y %
Vi)l> t e

> (< ' ' 4 . ' s ;

l'S2
|H)|I

V O iA
P»'I1

l(>.\2
IflJ

it

X C V IO S
l'CX4

i-T—T -

r
O O Q Q 1 1 1

4 7-m̂ . Is I U K IsHutk’u
d|>|>Ui» U‘yp4>l

Figure 6-4: D I02 peripheral board for input and output

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1. Pinouts

On each FPGA board pin 1 was the common ground (GND), pin 73 was the serial

data (SDATA) and pin 74 was the serial clock (SCLK). The data and clock pins were

easily accessed from the D-connector on the development boards in locations D40 and

D39 as shown in Figure 6-5. These translated into the physical pin locations on the FPGA

as pin 73 and 74 respectively.

Spartan 2

T r a n s m i t t e r
Hame P in « In /O u t

SDATA 40 Out
SCLK 39 o u t
GND 1 -

R e c e i v e r
Hame P in tt In /O u t

SDATA 40 In
SCLK 39 In
GND 1 -

Pin 3 9 . SCLK P i n 3 : 3 . 3 V v . Pin l : U N D / P i n 39
 s t z -----

DCinpcnnai:icn0Di'JLinmrinaD3n[jnr;nr_ir:i[:jLi:]rxilxojli, nnnnrnnnnrnnncinhnnnnnnnririnn'ir.innmnrinnnnn:
Pin 4 0 \

o J BBssmnFn J ---- ItffBBHIIIIIBr

SDATA Pin 4 Pin 2: M l Pin 4 0

Figure 6-5: The pinouts used on the FPGA boards

6.2. SDATA and SCLK signals

Figure 6-6 shows a typical data and clock sequence. It is clear from the digital

oscilloscope screenshots that SCLK rises halfway through SDATA. Thus the RX samples

SDATA midway through each bit on the rising edge of SCLK.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6-6: SDATA sequence (top) and SCLK sequence (bottom)

6.3. Controlling the FPGAs over the PC parallel port

The D2E development boards each had a 25-pin parallel port connector that is

used during programming. This port could also be used to communicate with the FPGA

after programming. The parallel port of a PC, when accessed in standard parallel port

(SPP) mode, is typically located at address 378h (BIOS configurable), and is made up of

three individual ports. Of the 25 pins there is an 8-bit bi-directional data port (address

378h), a 5-bit input only status port (address 379h) and a 4-bit output only control port

(address 37Ah). The remaining 8 pins are all grounds as shown in Figure 6-7.

D' D6 DS D4 03 d; DL D(

<& r© r® i ® 0 0 0 0 0 8 6 9
• • m M • • • • © r © /

S' se S5 S4 s:

c: c: C ' CO

Figure 6-7: Parallel Port connector on the back of a PC

It is also important to note that some of the bits of the SPP are inverted by PC

hardware (7404 inverters) for legacy printer reasons. This must be compensated in

software by inverting these bits before writing to the write only control port, and by

inverting these bits when reading from the read only status port.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PC parallel ports when used in SPP mode run at 125 kHz. This means that new

data can be written to or read from the SPP bus every 8 us. However when writing data

there is often a 2us settling time in the form of random transitions on the parallel port

data bus. For example, using the Agilent Logic Wave logic analyzer it can be seen that

there are transient values on the data bus when the data is changing from 65h to OOh as

shown in Figure 6-8.

Transient Transient

~ u / u — " u ------- T r ^ ..
: — L J * U --------------L J -U — I W ^ I '

OGOCM 2£CffiDCSX^XiE3g: X ~5g~XSi£_G£> ' ' "y-gT D K Z j :
OOQl "V 0002 X 0003 X POST 0001 X 0002 iT

Figure 6-8: The ‘transient’ nature of the parallel port when switching values

This presents a small problem when dealing with an FPGA that can sample the

parallel port inputs at 50 MHz. For instance, if the transient values that occur when the

data is changing from 65h to OOh proceeds through the series 65h, 61h, 21h, 20h, OOh, the

FPGA would see the above sequence as five separate and valid data values. This issue

must be resolved by implementing a debouncing circuit in VHDL code. That is, before

reading any change on the parallel port inputs, a timer should begin that will re-sample

the parallel port bits after the 2us settling time has passed. Then a simple comparison

with the original data determines what the new value is, and the transient values are

ignored as shown in the FSM in Figure 6-9.

Change on parallel
,s>^ port bit*

Wait
3us

It it a
valid

change

Service
request

Done

Figure 6-9: FSM model of the parallel port debounce circuit
132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4. T ransm itter FPGA State M achine

The transmitter FPGA runs a main state machine that consists of four states as

shown in Figure 6-10. On power up it is forced into state 1 which is the reset state that

initializes the encoder. After this the FSM cycles through states 2, 3, and 4 indefinitely.

Only by powering the FPGA off and on, or through user input in state 2 will the system

ever enter the reset state again.

Check for
i input .

Reset

Service
Output

Running
Mode

Figure 6-10: Main transmitter FPGA FSM

1. Reset S tate - this state is entered during power on or through specific user

input (such as command Eh in Table 6-1). Once entered all variables and buffers

are cleared and the system is ready to accept further commands such as

transmitting a file.

2. Check fo r Inpu t - in this state the transmitter checks for input commands from

the parallel port as discussed in Section 6-3. User input is set up as follows. The

4-bit control port of the SPP is used to issue one of sixteen individual commands

to the FPGA, with additional data for each command coming from the 8-bit data

port. These are summarized in Table 6-1.

For example, to write the data value AAh to the FPGAs RAM at address

0E20h, begin by placing the FPGA into a HighZ state by issuing command Fh.

This makes the FPGA back-off the bi-directional data bus so the parallel port can

write data without any bus contention. The next step is to assign the RAM address

to modify by writing the address to the 12-bit FilePointer. Since the data bus is
133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

only 8-bits this must be done is two steps. First the upper 4-bits of the address is

written to the data bus by writing data value OEh followed by command 2h. Then

the lower 8-bits is written to the data bus by writing data value 20h followed by

command 2h. At this point the FPGA has latched the value E20h into the

FilePointer register. Finally in order to write a new value AAh into this RAM

location, simply write data value AAh, followed by command lh.

Table 6-1: Commands for both the transmitter and receiver FPGAs

4 bit Control
Port Command

Function Description

Oh RAM Read mode
Latch file pointer RAM address
Enable RAM read mode
Increment file pointer

lh RAM Write mode
Latch file pointer RAM address
Enable RAM write mode
Increment file pointer

2h Assign File Pointer Write to file pointer. This allows for
non-sequential access to RAM

3h Assign File Size File size of the data written to RAM
4h,5h Write AddSWs Assign AddSWs
6h,7h Read AddCWs Read AddCWs

Sh Set number of AddCWs Set either 0,2,4 or 8 AddCWs
9h Initialize the Encoder This builds the AddCWs from the AddSWs

Ah Running Mode Continuous
Begins transmitting the file continuously.
When it reaches the end of the file, it does
not stop and simply wraps around.

Bh Running Mode Once Begins transmitting the file, and when it
reaches the end of the file it stops.

Ch Set Serial Transmission Speed Either 1 kHz, 10 kHz, 100 kHz or 1MHz

Dh Enable RAM
If RAM is in ReadMode (0), data is now put
onto the data bus. If RAM is in WriteMode (1)
it will read data from the data bus and store it.

Eh Reset Reset all variables

Fh HighZ
Similar to reset, except not all variables are reset, and
data bus that is connected to the parallel port is put
into HighZ state.

3. Service O u tpu t - This state involves writing data to the 16 character by 2 line

LCD screen (32 ASCII characters) on the D I02 expansion board. The LCD was

used for debugging and testing purposes. For instance in order to verify that the

multimode coding system was choosing the correct CW at each coding interval, a

debug mode was set up that allowed stepping through the CW selection process.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this mode there needed to be a way to display up to a 32 bit number (8-hex

characters). The LCD screen was the only viable choice since the D I02 board

only had four 7-segment displays and thus could only display 4-hex characters.

It is important to note that the LCD screen uses the Samsung KS0066

controller which has enough Display Data RAM (DDRAM) to handle up to a 40

character by 2 line display. Thus each of the 80 DDRAM location corresponds to

a single character location on the screen even though physically the LCD screen

only has 32 character locations as shown in Figure 6-11. This must be taken into

account in order to see the text displayed correctly. Thus it is not immediately

obvious but the simplest way of writing the 10 character string “Hello” and

“World” on two separate lines is to use 45 characters, not 10. This is

accomplished in the following manner.

Displaying the 5 character string “Hello” on the first line is trivial since it

requires placing the LCD screen into data mode followed by sending the five

ASCH characters 48h, 65h, 6Ch, 6Ch, 6Fh for ‘H \ ‘e \ ‘1’, ‘1’, ‘o’. Writing the 5

character string “World” on the second line however is a bit more involved.

In order to get to the next line on the LCD screen the cursor must

manually be moved 35 locations to the right since the generic KS0066 controller

has 40 DDRAM locations per line. One method to do this is to switch the LCD

screen into control mode followed by sending the “move cursor right” command

35 times. While this is not difficult, switching into control mode can be avoided

by just writing 35 spaces instead (ASCII character 20h). It is then just a matter of

writing the string “World” which is done by sending the 5 ASCII characters 57h,

6Fh, 72h, 6Ch, 64h, for ‘W \ ‘o ’, ‘r ’, ‘1’, ‘d ’. This is illustrated in Figure 6-11,

where the LCD and corresponding DDRAM locations are shown.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OsaQBasflssaoagggQ ©
OOh A— --------- ► orh JLOh ' A " ► OOh

40‘6S‘6C!6C 61* 20 20 '20 20 20 20 20 20 :20 ‘20;20 20 20 2
! \ . j

0 ;? ' .20-20

57,6F 72 6C 64 20 20 20 20 20 20 20 20 20 20 20 2 0 |? ' 20 20:20 20
! . ? I ■

20h A---------------- ► 07h OOh A-------- ► 4rh

Figure 6-11: LCD screen and corresponding DDRAM locations

Accordingly the simplest way to display a string on the LCD screen

without any additional overhead is to pad the string out to 80 characters with

spaces. In this manner each string starts at the first location of the LCD screen and

overwrites every DDRAM location. This has the added benefit of erasing any past

characters that were on the LCD, thus clearing the screen before displaying each

new string without ever having to switch modes.

Table 6-2: String table held in the first 400h bytes of RAM

Ram Address String

OOOh Multimode Coder Online

051h Source Word

0A2h Code Word

0F3h Hamming Code is

144h Number o f AddCWs

195h RDS

lE 6h Num Tran

237h 1st Tran at lo c /M S W

288h Winning Location

2D9h Last Bit is

32Ah Not Updating RDS or LB for Test

37Bh Updating RDS and LB as normal

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For this reason all strings displayed on the LCD are stored in RAM as 80

bytes plus a 0 terminator for a total of 81 bytes (51h). That is, the 1st string is

stored from OOOh to 050h, the 2nd string is stored from 051h to OAlh and so on.

Therefore the first 1024 bytes (400h) of RAM are used to hold a string table that

consists of 12 strings as shown in Table 6-2.

In accordance with the above discussion the following FSM in Figure 6-12

illustrates how to display information on the LCD screen. One of the 12 strings to

display must be chosen, followed by an optional number.

Display
Number

Display String
signal received
n» uw mi

Yes

Get string addres N = 1
Yes

Data = upper 4 bits
ofN um ber

Increment N

Read D ata from RAM
Increment address

No
N = 8

Yes
Data — 0 Shift number

left 4 bits
Convert Data

to a s c h

N o

Send to LCD

Figure 6-12: FSM for displaying strings and numbers on the LCD screen

4. R unning M ode - When the TX is in this state it is transmitting data serially to the

RX. This process involves reading SWs from RAM, encoding them as CWs,

performing the multimode CW addition, calculating statistics for each candidate CW

to see which one maximizes the CS coding requirements, and finally transmitting

these CWs serially. There are two modes of operation.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I. R un Once M ode - This mode is used for sending a data file once from the TX

to the RX. The file is stored in the FPGA’s RAM, and the TX sends each CW

on the channel until the end of file is reached. Once the end of file is reached the

TX automatically appends a OOh data byte to indicate the end of the file. Note

that depending on the code and AddCWs used, this OOh byte is transmitted fully

EC and CS coded.

II. R un Continuously M ode - This mode is used when measuring the PSD so the

spectrum analyzer has a continuous signal to measure. In this mode the file is

transmitted repeatedly which means when the end of file is reached, the

transmitter wraps around to the beginning of the file.

Showing a complete block diagram of the Running mode FSM is not

practical due to its size and complexity. Instead Figure 6-13 shows a high-level

block diagram with a text description of the functionality of each state.

Read RAM and Hamming Codeword
SW Packing Encoder Addition

Send
Serially

Select Best
Update channel Stats

Collect
Stats CW7

Figure 6-13: High-level block diagram of the running mode state FSM

Each block in Figure 6-13 represents a sequential FSM. As the FPGA was

programmed with VHDL, each block also represents a VHDL module. The

following section briefly describes the functionality of each one of these modules

as well as the corresponding test benches to verify their functionality.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Read RAM and SW Packing: Since a data file is organized as a series of 8-bit

bytes, the first major task is to take the file data and convert it into SWs of sizes

as small as 1-bit and as large as 26-bits depending on the code being used. This is

not straightforward since, for example, with the (15,11) code 11-bits are needed to

form a single SW. This would require reading two bytes from RAM to get 16-bits,

to then form an 11-bit SW with 5 bits left over. Building the next SW however

only requires reading from RAM once (unlike twice the last time) to get an

additional 8-bits for a total of 13-bits. The next 11-bit SW can now be created

leaving 2-bits this time and so on. Thus the number of bits left over and the

number of RAM reads varies for each coding interval depending on the code

being used.

= n _
:o , T i . . 2 13 :4 & (6 ir~ :z_ us A K5 fc n SB
:o is =13= Jo 19
:o IB 10 'fT W ~

:o ;o :i
:ooo :400 [401

l— 1

S3 iBA
DO 63 BA 14 ...
D0000000 11 D00000C6 J000C)0C7

Figure 6-14: Testbench for SW packing

Figure 6-14 shows the testbench for this module called SW Packing. This

particular test shows a (15,9) SW being formed. From initialization the number of

bits needed to form the SW (oneed) is set to 9. The first byte of the file is read

(theram_dout) from RAM address 400h (otheram_addr). Its value is 63h and it

is latched (oram_readlatched). The 8-bits are then loaded into osw and it can be

seen that one more bit is needed (oneed) to form the 9-bit SW. Thus another byte

is read (theram_dout) from address 401h (otheram_addr) and its value 8Ah is

latched (oram_readlatched). Here only the MSb is taken from

oram_readlatched and it is shifted left by one bit leaving 14h. Now the complete

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9-bit SW is formed (osw) which is 0C7h or 011000111b. Thus 7-bits remain

(oneed) in oram _readlatched for building the next SW. To clarify how the two

bytes 63h and 8Ah form the 9-bit SW C7h, the process is shown in Figure 6-15.

6 3 BA
01100011 10001010

C 7

Figure 6-15: 63h and 8Ah form the 9-bit SW C7h or 011000111b

H am m ing Encoder: As discussed in Section 2-14, the EC Hamming code can be

implemented using very low level logic blocks. It is a configurable stand-alone

module that allows selecting the generator polynomial as well as the length of the

code. In addition, encoding can be done in parallel on the FPGA so a SW to CW

conversion takes only a single clock cycle.

J--------L

(■ M O M O W

L

n'liiii 1'inr—

J--------L

I000007FF
I codeword. [100000026 100007FFF

Figure 6-16: Testbench for the Hamming encoder

Figure 6-16 shows the testbench for the Hamming encoder module using a

(15,11) code. Encoding of the SWs OOlh, 002h, OOFh, and 7FFh each take a

single clock and are encoded to 0013h, 0026h, 00F2h and 7FFFh respectively.

Note that all SWs and CWs are represented using 32 bits and are truncated before

serial transmission according to the n and k values of the (n,k) code.

Codeword Addition: CW addition is the simplest block/module of Figure 6-13.

As discussed in Section 2.5, modulo-2 addition can be done using XOR gates. It

too can be done in parallel on the FPGA. Figure 6-17 shows the testbench for the

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(15,9) encoder. The CW 0C70h (ocw) is added modulo-2 to the four AddCWs

OOOOh, 024EBh, 5B14h and 7FFFh, to form the new CWs (onewcwO to

onewcw3) 0C70h, 289Bh, 5764h, and 738Fh. Note that the flexible algorithm

used always adds each CW to eight AddCWs for simplicity. Thus the testbench in

Figure 6-17 displays eight new CWs, but only the first four are valid. The last

four (onewcw4 to onewcw7) new CWs would not be considered for transmission.

_ ! ortewcwl
S H _J onaV5cw2

E H "I onewcw3

E - L J onew'cw4

Et-j" | onewcw5

E)T"| opewcvJS
EJ-f j onewcw?

e s h i m onE
mum
E O O L

(00000000 : IOOOOOOC6 IOOOOOOC7 oooooooo
feoooooooo .. . 100 I00C70
JxXxXxXxX (00000C70
fĵ xXXX** [0000289B

[00005764
lx»C«X>00< j(0000738F
JjOOOOOCkX OOOOOC70
!XX>00000< 00000C70
lxx><><>ooo< 00000C70

OOOOOC70

Figure 6-17: Testbench for CW addition

Collect Statistics: As discussed in Section 4-1, the multimode coder evaluates the

CW statistics and selects the best CW that minimizes the RDS and/or the MSW as

well as maximizes the transitions. These statistics are gathered using the module

called StatsGen. This module is instantiated once for every possible AddCW and

thus the statistics for all 8 AddCWs can be calculated in parallel.

— L _ JL _ J : |___ J L _ J I___ J L _ J ..I___ J L _

•1 0

(-7 1-8 1-7 13
1 ■ J

17 14
15 14 ' ...
1412 1575 1412 184

Figure 6-18: Testbench for the StatsGen module

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6-18 shows the testbench for the StatsGen module. As discussed in

Sections 4-2 and 4-3 the encoder keeps track of the current RDS (irds) and

current last bit (ilastbit) of the previous CW transmitted on the channel (these

comprise the state of the encoder). This continuous feedback is updated with

every CW sent. To verify this functionality the testbench of Figure 6-18 collects

the statistics on the same input CW (icw) 022Ch for the (15,9) code three times,

but with different irds and ilastbit equaling (0,0), (-1,0) and (0,1). As a result

when the first CW 022Ch is sent, the calculated RDS is -7 and the number of

transitions is 6. However when the CW is sent a second time the current RDS is at

-1 , resulting in a calculated RDS that is one less than before at -8. This however

has no effect on the number of transitions but does result in a higher MSW. The

third and final time CW 022Ch is sent the RDS is back at 0 resulting in an RDS of

-7 again. However since the current last bit was changed to a 1 this results in an

extra transition for a total of 7. This extra transition occurs between the last bit

and the start of the CW. Finally the testbench also transmits CW 7A0Fh with an

irds and ilastbit of (0,1). This CW is more balanced than 022Ch resulting in an

RDS of 3. However this CW has fewer transitions with only 4. The results from

the testbench in Figure 6-18 are summarized in Table 6-3.

This StatsGen module is the most important block of Figure 6-13. This is

because the information gathered in this module is used to decide which new CW

will represent the original SW, i.e. the multimode coding. This information is

passed to the next block Select Best, which decides which of the new CWs will

be transmitted.

Table 6-3: Summary of the StatsGen module gathering statistics

CW Current RDS Current LB RDS Tran MSW IstTran
022C 0 0 -7 6 412 5
022C -1 P -8 6 575 5
022C 0 1 -7 7 412 5
7A0F 0 1 3 4 84 4

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Select Best and Update Channel Statistics: Once the statistics have been

collected a decision must be made to determine which CW will be sent on the

channel. In the (15,x) and (7,x) encoders the decision was based on which of the

new CWs had th$ lowest RDS, followed by the tie breaking criteria which

included most transitions, lowest MSW, and the CW with the first transition. Note

that the CW with the first transition test was only used to provide a final tie break

in order to always be able to predict which CW the encoder would select in the

unlikely event that two or more CWs had the identical RDS, MSW, and number

of transitions. Simulations demonstrated that this selection metric was used less

than 1% of the time with any AddCW set.

Also note that for the (31,x) codes only the lowest RDS, most transitions

and first transition metrics were used. This was due to the size and resource

limitations of the FPGA. Missing the MSW test has very little impact on the code

performance, since the RDS and transitions test were the most important, and the

MSW test was only used to break ties.

w i n n
M H M

w i n
SHE!

WUUlj u w u i
m s m

ifin n ri
□EESi

ru in n n
GCBH

w i n n
SEDEE

in n n n
□ c n x

"LfUUUl
□ o n n c

W U U l□arcW U U l
□ c u r

OOOOOtJOO Koooooc; 0 100002398 XOOO35764 tOI00738F
i n r n

0 :1 |2 X3 ft n r - _ J2 L _ . 13 ft....
X .. l-s i
X X4
X........ X3.
X "IT 6
X' •1
X....... . 9
X T“
X...... . n
X J1
X ntio
X xi.......
X....... . 172 ...
X XS -
X X5....
X X3
X ■mr
p d (2
OP...... (05 (01
OS (04..... (09 109
00 (0? (01-
0000 ,0074..... 10040

Figure 6-19: Testbench for the SeiectBest module

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Continuing with the example from Figure 6-17 the testbench for the

SelectBest module is shown in Figure 6-19. Here the statistics are compared for

the four CWs 0C70h, 289Bh, 5764h, and 738Fh. This is done sequentially. The

algorithm initially chooses CWO to be the best, and then the module compares

each new CW ’s statistics to the current best statistics and only updates the winner

if the statistics are better. For example from Figure 6-19 it can be seen that the

winning location (owloc) is temporarily changed from 0 to 1, before location 2 is

selected as the best.

This process is summarized in Table 6-4 where it can be seen that CW1

(289Bh) is better than CWO (0C70h) since it has a lower absolute RDS of -1 as

compared to -5 . CW1 (289Bh) is then the current best until comparison with

CW2 (5764h) indicates that they are tied in terms of lowest absolute RDS. Since

both of these CWs will minimize the RDS, preference should be given to the CW

that has the most transitions. Thus CW2 (5764h) with 10 transitions is chosen to

be the best CW to transmit since it has one more transition than CW1 (289Bh).

Comparison with CW3 (738Fh) indicates that CW2 (5764h) is still the better

choice and thus it is the overall winner and is selected for transmission.

Table 6-4: Summary of the SelectBest module

location CW RDS Tran MSW IstTran
0 0C70h -5 4 116 3
1 289Bh -1 9 72 1

2 5764h 1 10 72 1

3 738Fh 5 3 116 3

Send Serially: Once the best CW is selected it must be transmitted serially along

with a serial clock to the RX FPGA. Figure 6-20 shows the testbench for the

Parallel2Serial module. Here the best CW 5764h chosen from the testbench above

in Figure 6-19 is being transmitted serially. Once the go pulse is received the data

is sent starting with the MSb first on the sdata line. The sclk signal is also sent

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with a low to high transition occurring midway between each data bit. Once the

entire 15-bits are transmitted the Parallel2Serial module signals that it is ready to

transmit another CW. This hand shaking is used to prevent the FPGA that is

running at 50MHz from swamping the Parallel2Serial module that transmits at a

maximum rate of 1MHz.

5 7 6 *....... 4

Figure 6-20: Testbench for the Parallel2Serial module

6.5. PC Software: C ontrolling the TX FPGA

The TX FPGA was controlled using Windows software with the interface shown

in Figure 6-21. As shown in Table 6-1 all sixteen commands were issued using the

control port, with additional instructions coming from the data port. In order to explain

the operation and features of the software, an example is given illustrating how to

transmit a file.

--** Control (15,x)a n d (7 ,x)encoder*

ChootooflotoSond

JcndHtr be to IT" Numbyt** to
retd bock

: E*od bock from FPGA

What wo* toad b o c k -

"3 S ond numbot of AddCW*

: Rood AddSW (rant flo !

RoorfCncodwFie
Sond Encodoi Flo •ovotto ..■■■.■

'T M oodeockU f'

Conpofo Fie load bock wih Flo iont

-PotoM2 SarM $pe«d-

S m lid d S W |

K$end£mno* Chock Sttre*

jlOKHt 3
Send |

f -R A M S w -------------------

[2560

SotAkM Ss* I

fiotaiFPOABoflid -

H ftZ F P G A eottd

. Intoiw Encodei. . j

Rw riioH odoQ epeoi) I

RumhgModeQlnc*]

Figure 6-21: Software that controls the TX FPGA

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6. Transmitting a File

This section briefly describes how to transmit a standard ASCII text file that

contains the 11 byte string “Hello World”. The first step after powering on the board is to

ensure that the FPGA is in a known state by pressing Reset FPGA Board. This forces

the FPGA into the reset state and initiates the main FSM of Figure 6-10. Since the FPGA

has just powered up the string table from Table 6-2 must be loaded into the first 400h

bytes of RAM. This is accomplished using the Send Strings button and pressing the

Check Strings button reads back the string table from RAM to verify that they were

stored without error. Now the number of AddCWs can be set up as 0, 2, 4 or 8 using the

drop down box as shown in Figure 6-22. For example with length 31 Hamming CWs, this

would set up a (31,26), (31,25), (31,24), or (31,23) code respectively.

Check Strings

Send number of AddCWs

SendAddSW

BeadfiddCW ;

Figure 6-22: Setting up the number of AddCWs

Once the number of AddCWs has been selected, pressing the Send num ber of

A ddC W ’s button writes this value to the FPGA. The resultant code is immediately

displayed on the D I02 boards 7-segment display. For example, eight AddCWs has been

selected resulting in the (31,23) code as shown in Figure 6-23.

Figure 6-23: Eight AddCWs have been selected for use with the (31,x) code

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Once the encoder knows the number of AddCWs to use it must be told what these

AddCWs are. This is done by sending the encoder AddSWs which it then encodes into

AddCWs. Pressing the Read A ddSW ’s from File button allows selection of an ASCII

text file that contains the desired AddSWs as shown in Figure 6-24. Note that only the

first four AddSWs are stored in this file. This is because the system is set up to

automatically use the CW complements. Hence these four AddSWs are encoded to four

AddCWs and four AddCW complements, resulting in a total of eight AddCWs.

Q jg Q g g

9 a Edit Farmat Help : Ao d
8AAAAA
1 5 5 5 5 5 5
1 8 3 2 3 2 3 ,-1

i l - t i l E

The AddSWtare.

00000000
008AAAAA

01832323

OK

Figure 6-24: Reading the AddSWs from file to use with the (31,23) code

The Send A ddSW ’s button writes these AddSWs into the FPGA memory. The

Initialize Encoder button causes the encoder to encode the four AddSWs to eight

AddCWs using the Hamming encoder module as explained above. The encoder then

automatically writes these AddCWs back to the PC to allow for verification that they

were encoded correctly, as shown in Figure 6-25.

in.........■■■win
A ddSW

0 0 0 0 0 0 0 0
008A A A A A
0 1 5 5 5 5 5 5
0 1 8 3 2 3 2 3
027C D CD C
02AAAAAA
0 3 7 5 5 5 5 5
0 3 F F F F F F

AddCW
0 0 0 0 0 0 0 0
1 1 5 5 5 5 4 C
2AAAAAB0
3 Q 6 4 6 4 6 B
4 F 9 B 9 B 9 4
5 5 5 5 5 5 4 F
6EAAAAB3
7 F F F F F F F

The AddCW* are

— * 00000000
1155554C
2AAAAAB0
30646468
4F909B94
5555554F
6EAAAAB3
7FFFFFFF

■ - 4 }

1

Figure 6-25: Encoder writes back the 8 AddCWs it is going to use

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The file to transmit is selected by pressing the Choose a file to Send button

which brings up a file selection dialog box. Once a file is selected it is transferred to the

FPGA’s RAM by pressing either the Send the file to FPGA button or the Send Encoder

File button as shown in Figure 6-26. The difference between these two functions is that

the Send the file to FPGA button writes the file contents into the string tables address

space. This is done to allow the loading of different strings into the string table (other

than the default hard coded ones) if required. The Send Encoder File button writes the

file contents directly above the string tables’ address space.

> UAfrr) t l i FC_Cneod»JPGA.«»J3VlrciTfte_

j) MMoUlwot.ttt

jjj H*feWarfcb.t)t
jpbcto.bt J rr*oc 1 irt thnj« r

vlKnKlnit.tii
■j htfc.Ut JJ CtP-trt

jjl *Mcewordt t it

3 ThX>»rtrt

<1 " ' J •!

Fko*** |H«fcWoUti« L a*" 1
Fktrfbf* (itrfFtot i* t>i| -J C M |

•̂Control (31,x)

ZSB3+ £letoSend"Helc^/ofkLlxtH: 11 bj4«

< ^ T « n d lh» (h lo F P G A ^ J Numtfttetto-

Head back from FPGA |n

£wl ».Rtad AddSW ftm'l
I fib

-W W wat read back-

/ Send Encoder Fie .' J ? , eaves to:
— "FieReedBacieM",;

Read Encode* Fie

Figure 6-26: Two ways to transmit the file into FPGA RAM

There are two ways to verify that the file was loaded correctly. First by pressing

the Read Encoder File saves to "FileReadBack.txt", the file is read back from the

FPGA and a byte by byte comparison is done with the original file that was sent. Any

errors that occurred are displayed in a popup box and the file read back is saved to the file

FileReadBack.txt. This allows for saving and inspection of the data at a later time.

Secondly by pressing the Read back from FPGA button the file is read back and

displayed in the two windows as shown in Figure 6-27. The top window displays the

ASCE representation of the data, while the bottom window shows the decimal

representation. Figure 6-27 shows the file “Hello World” was read back and what a

possible error might look like.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'■ £ ile to S e n d : "H e llo W o tld .tx t" : 11 b y tes £ ile lo S e n d . "H e llo W o rld tx t" : 11 b y te* • - *<

Send the file to FPGA Num bytes to
lead back

Send the fie to FPGA

flead back from FPGA F flead back from FPGA

Num byte* to r i
readback>:: - -H

F
What was read back -W hat was read back - . *

Hello World HeljitoWoild i5£||;

j J \
72101 108108111 3287111 114108100 72101 108(109)111 32 87111 114108100 wjjf.

d
ife- 1 PS. £ J j-

Figure 6-27: Reading back the file Hello World, and what a possible error might look like

Once the file is loaded into the FPGA’s RAM and the AddCWs are selected, the

next step is to select the serial transmission speed. This is done by selecting the Parallel

2 Serial Speed as either 1kHz, 10kHz, 100kHz or 1MHz as shown in Figure 6-28. These

various speeds were useful for testing and trouble shooting. For example, the logic

analyzer could capture far more samples at 1kHz than it could at 1MHz. However, the

spectrum analyzer could not measure frequencies below 9kHz, and thus having the ability

to select different speeds proved quite useful.

rrParallel 2 Serial Speed—

10 KHz d
1 MHz
100 KHz

1 KHz

- Parallel 2 Serial Speed-

3110 KHz

Send

Figure 6-28: Choosing the serial transmission speed

Another debugging feature implemented was the ability to change the amount of

RAM the encoder could use, specified as RAM Size. This is because when transmitting a

file repeatedly, the end of the file is inevitable reached and the file data is deliberately

wrapped around back to the start. In order to verify that the rollover occurred correctly, it

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

was easier and faster to simply reduce the size of RAM (as far as the FPGA was

concerned) to force a roll over sooner than it was to load in a smaller version of the file.

'i-R A M Size— ------------------ y

[1024 '
Set RAM Size | .

Figure 6-29: Setting the amount of RAM that the FPGA could use

The final step is to select which method to use when transmitting the file. If

R unning M ode (Once) is selected then the file is transmitted until the file in RAM is

exhausted. That is, this mode is used to transmit a single file once from the TX to the RX.

The other method of transmitting a file is to choose R unning M ode (Repeat). In this

mode the transmission runs continuously, sending the file over and over again until the

transmitter is stopped by pressing either Initialize Encoder or Reset FPGA Board. This

mode is used when measuring PSDs since the digital oscilloscope and spectrum analyzer

are designed to monitor continuous signals.

6.7. Debug mode of the FPG A

Once the system was designed and implemented it had to be verified that the

encoder was indeed selecting the best CW for transmission. When switch 0 (SWO) is set

on the D I02 board, the encoder is put into a debug mode where with alternate use of

buttons 8 and 9, each phase o f the CW selection process can be stepped through.

As discussed in Section 4-4, a simulation called Sim FPGA was developed to

emulate the way the FPGA hardware would perform the encoding. Table 6-5 shows a

small sample of the output file created with this program. In this example the (31,26)

code is expurgated to (31,23) using 8 AddCWs created from the set of four AddSWs

which are { Oh, 0800000h, lOOOOOOh, 1800000h}. Since this is a large code the FPGA

needs to read from RAM three times in order to obtain enough data to form the 23-bit

SW. In this case the three bytes read are 2Ah (00101010b), 22h (00100010b) and 56h

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(01010110b). These three bytes (24-bits) form the 23-bit SW 015112Bh

(00101010001000100101011b) with 1-bit left over. Table 6-5 shows the 31-bit CW

added to all eight AddCWs along with the RDS, number of transitions, MSW and first

transition location statistics.

Table 6-5: Output from SimFPGA

****** RamRead = 2A FilePointer = 0 of 49 ******

****** RamRead = 22 FilePointer = 1 of 49 ******

****** RamRead = 56 FilePointer = 2 of 49 ******

SW = 0015112Bh RDS TRAN MSW IstTran
02A22562h -11.0 18.0 1768.0 6.0
12A2256Ch -7.0 20.0 880.0 3.0
22A2257Eh -3.0 18.0 744.0 2.0
32A22570h -7.0 18.0 448.0 2.0
4D5DDA8Fh +7.0 19.0 448.0 2.0
5D5DDA81h +3.0 19.0 744.0 2.0****
6D5DDA93h +7.0 21.0 880.0 3.0
7D5DDA9Dh +11.0 19.0 1768.0 6.0

Figure 6-30 shows the encoder in debug mode displaying this process on the LCD

screen. Note that all values are given in hexadecimal including negative numbers. For

example an RDS of -11 is really F5h (using two’s complement representation) and 18

transitions would be displayed as 12h.

Figure 6-30: Encoder in debug mode showing the CW selection process

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From Table 6-5 it can also be seen that the 6th CW or CW5 is the winner with an

RDS of +3, 19 transitions and an MSW of 744. Figure 6-31 demonstrates that after

stepping through all possible CWs and their statistics, the FPGA selects the Winning

Location to be CW5.

Figure 6-31: Winning location is CW5 or 5D5DDA81h

6.8. Receiver State M achine

The RX FPGA runs the same main state machine as the TX which consists of four

states as shown in Figure 6-10 or Figure 6-32. On power up it is forced into state 1 which

is the reset state that initializes the decoder. After this the FSM cycles through states 2 ,3 ,

and 4 indefinitely. Only by powering the FPGA off and on, or through user input in state

2 will the system enter the reset state again.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6-32: Main receiver FPGA FSM

1. Reset S tate - Identical to the TX reset state

2. Check for Inpu t - Identical to the TX check for input state.

3. Service O utpu t - Identical to the TX service output state.

4. R unning M ode - This is the main mode of the communication system. It is

similar to the equivalent TX state in that many of the same operations are present.

The major difference however is that most functions are now in reverse. When the

RX is in this state it is receiving data serially from the TX and processing it to

recover the original data. This involves combining the serial data into CWs,

performing error correction, extracting the MSbs to apply the CW addition again

to remove the CS coding and finally storing these SWs into RAM.

Serial to
Parallel

Hamming
Decoder

SW
unpacking

Check MSb's
CW Addition

Figure 6-33: High-level block diagram of the running mode state FSM

Showing a complete block diagram of the Running mode FSM is not

practical due to its size and complexity. Instead Figure 6-33 shows a high-level

block diagram with a text description of the functionality of each state. Each

block represents either a VHDL module and/or a sequential FSM.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Serial to Parallel Conversion: Once in running mode the RX continuously

monitors for changes on the serial clock line. The serial data (sdata) is sampled

when a rising edge (low to high transition) occurs on the serial clock (sclk).

Whenever the RX has sampled n bits it packs them into an zi-bit CW which is

passed to the Hamming Decoder for error correction and conversion to a SW.

Figure 6-34 shows the testbench for the Sedal2Parallel module. The CW

5D5DDA81h has been received serially and stored into data. At this point the

Serial2Parallel module signals that a CW is ready.

n J U U T T L
D

m u u m
5

m u u m
) D

m u u m
A

m u u m
8

r u u u m
i

T

| m o i t i ~ n o r~n o 1 1 0 1 1 1 1 j£U 1 11 1 LB. l | l 1 0 1 1 1 0 1T 1 o o o | o d o m
i 1

- ' - $ 7 ^ tOOOOQCKJQ 1 I5D5DDA8

- F

Figure 6-34: Testbench for the Serial2ParalleI module

Ham m ing Decoder: Once a CW has been received it is sent to the Meggitt

Decoder (see Figure 2-6) which attempts to correct any errors in the CW. Recall

from Section 2-12 that Hamming codes can correct single bit errors per CW. Thus

if the number of errors exceeds the power of the error correction code there will

possibly be error extension. Therefore Figure 6-35 shows the CW 5D5DDA81h

from above being decoded in three different scenarios. The first time the CW does

not contain any errors and it is correctly decoded to SW 2EAEED4h. The second

time however the CW is forced to contain two bit errors. This results in CW

5D5DDA87h being decoded to SW 2EAEFD4h. Note that this SW still contains

one error. In the last case the CW only has a single bit error resulting in CW

5D5DDA80h being decoded to the correct SW 2EAEED4h.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

II 1 I— I} J Ae$tdecodei02/clk

O Ae*ldeeod8r02/enabte ,
E h J /ie'ldfcodei02/codeword m g C ^ ^ g»K»I»7iT=II

Q Aesldecodei02/active , ,
EH ~ [/tesldecoder02/sou(cewoid | (02EAEED4

J-- - - - L

5D5DDA87

j— ~l

K02EAEFP4

r

Figure 6-35: Testbench for the Meggitt Decoder module

CW Addition: As described in Section 3-2 when a CW has been received and

corrected the original CW can be recovered by adding the same AddCW that was

added at the TX. This is done by checking the MSbs of the CW as shown in

Figure 3-20. However an alternative and equally valid approach takes advantage

of the fact that CWs used in this system are systematic (see Section 2.4). Since the

Meggitt Decoder module returns the error corrected SW (ohamd_sw), the CW

addition module can recover the original SW by adding the correct AddSW. The

testbench in Figure 6-36 demonstrates this.

Continuing with the example presented in Table 6-5 the original SW

015112Bh was transmitted as CW 5D5DDA81h. This was error corrected and

decoded by the Meggitt Decoder module to the SW (ohamd_sw) 2EAEED4h. In

order to recover the original SW the three MSbs of this 23-bit SW are inspected to

determine that the winning location (owloc) must have been 5. Therefore adding

AddSW5 (oaddsw5) which is 2FFFFFFh to this SW recovers the original SW

(ointsw) 015112Bh.

• I /t&sUheswaddition/clkjn

E H f Aesttheswaddit!on/ohamd_sw j
E h i Aesttheswaddition/owloo j
E h " 1 /tesllheswaddilion/oinlsw j

EthJ f Aestlheswaddiliori/oaddswQ ■ ' ' \
E h J /testtheswadditionVpaddswl

E h I Aosttheswaddition/oaddswZ'
E h } Aesttheswaddition/oaddsw3

E h I /testthaswaddition/oaddsw4
E h J AesUhe*wadditfon/oaddsw5 '
E h ' I /testtheswaddilion/oaddswS ; ra f f i& ra M jM S S i
E H I AesUheswadditiqn/'oaddsw7 S w v ^ S r i t i a a a:

«<X«x><;iQ2EAEEK4

« « « « ___ K0Q15112B

<x<x<<<roooooQoo
<X<<<<X<1Q0800Q0Q
x < x « « ro io o o Q o o

EE
EE
EE

Figure 6-36: Testbench for the CW addition module

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SW Unpacking: The final step in this process is to recover the original 8-bit data

values (bytes) from the &-bit SWs and store them into RAM. However, similar to

the SW Packing module, this is complicated by the variable &-bit SW size. For

instance if k is a small number as in the case of the (7,1) code, it will take eight

SWs to fill a single byte. However if k is a large number, as in the case of the

(31,25) code, a single SW will fill three bytes in a row with one bit left over.

Figure 6-37 shows the testbench for the SW Unpacking module. Here SW

015112Bh from Figure 6-36 is unpacked and stored into RAM. The 23-bit SW is

8-bits + 8-bits + 7-bits. Thus 2Ah is stored at address 400h, and 22h is stored at

address 401h. Referring back to Table 6-5 shows that these are the correct values.

The remaining 7-bits will not be written to RAM until the next SW arrives.

%imrmrLjh J T J T J lT L l ruuinrilIrruin
' *xX>OOOC<>< (0015112B I15112BOO)C11260000 35800000
■iff >0<X J(400 *401 1402.

*x 12A 22 I2B
m i x lEJEJUaJSlK o o n o i (o n o n z i WJSZKK.
0 IB m .).e... 0 *8 *1
0 23.... . *15 7 w .
0 :8 17

Figure 6-37: Testbench for the SW Unpacking module

6.9. PC Software: C ontrolling the RX FPGA

As shown in Figure 6-38, the RX software has many of the same functions as the

TX software. This is because the RX FPGA needs to set up the same Hamming code, use

the same AddCWs and so on. The difference however is that the RX can receive the bit

sequence at any of the predetermined transmission rates without having to specifically

select one. Furthermore the RX was constantly in a state of monitoring the clock and data

lines for activity. In order to explain the operation and features of the software an

example follows which outlines how to receive a file.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V.PC_FPGA Receiver afl codes - A. Hughes

£hooie a fie lo Send

E l

Send Encoder Fie

9c n d t h e file t o F P G A

fieed beck from FPGA

Num bytes to
read back

Reed Encoder Fie
saves to "FBeReadBack.W.'

Compeie Fie read beck with Fie sent

rw h a t wat lead back---------- --------------- :— ■----------------—

z i
z i

z i

Set RAM size (max 2560] q

Set | [400
fle»et FPGA Boaid

UigKZ FPGA Boatd

Read AddSW fiom fie XnUatzs Encodet

Send AddSW Burning Mode

ReedAddCW

- . SendSltingt Check Sb'ngt |o zi Send number of AddCWV |
Exit , ■

Figure 6-38: Software that controllers the RX FPGA

6.10. Receiving a File

This section briefly describes how to receive a standard ASCII text file such as

the eleven byte “Hello World” file discussed in Section 6.6. Initializing the RX FPGA is

almost identical to the TX FPGA. The first step after powering on the board is to ensure

the FPGA is in a known state by pressing Reset FPGA Board. This forces the FPGA

into the reset state shown in Figure 6-32, and therefore begins the main FSM. After this

the string table from Table 6-2 is loaded, the number of AddCWs is set up and the

AddSWs are loaded into the FPGA memory in the exact same manner as the TX FPGA.

At this point however the setup changes.

To receive a file what is typically done is to first set up the RX RAM with a

preloaded dummy file. Then any data received by from the TX will overwrite this data to

verify that communication was successful. For example, Figure 6-39 shows the dummy

file “num bers.tx t” loaded into the RX FPGA’s RAM. This is displayed when the Read

back from FPGA button is pressed. The top window displays the ASCII representation

and the bottom window displays the decimal representation, i.e. T = 49 decimal,

'2' = 50 decimal and so on.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

' (E ie to Send: "numbeit txt": 40 bytea

£ end the (le to FPGA Num bytea to
teed back '

j;- fleed beck from FPGA I40

r.W hat was laad back-- ‘

n i l 111111111222222222233333333334444444444 3 > ‘

49 49 49 49 49 49 49 49 49 49 50 50 50 50 50 50 50 j J
50 50 50 51 51 51 51 51 51 51 51 51 51 52 52 52 52 I
5 2 5 2 5 2 5 2 5 2 5 2 ,!

Figure 6-39: Dummy file read back from the RX FPGA RAM

Pressing the R unning M ode button places the RX into a mode where any data

received on the sdata line is automatically stored into the RX RAM. Thus when the TX

transmits the “Hello World” file in the R un Once Mode, the 11-byte file plus OOh byte

terminator is sent to the RX. Pressing the Read back from FPGA button now shows the

current RAM contents.

■Ele to Send: "numbe«.(xt": 40 b/et

: ' ;• Send the lie to FPGA Num bytea to -
lead back

B ead back liom FPGA [40 ’

'*

Halo W ald

;

72 101 108108111 32 87111 114 108 100 0 50 50 * | f
50 50 50 50 50 50 51 51 51 51 51 51 51 51 51 51 52
52 52 52 52 52 52 52 52 52 tzi:

Figure 6-40: RAM contents read back from the RX FPGA

Figure 6-40 shows how the received 11-byte file has overwritten the RAM

Contents. Notice that the top window only shows the string “Hello World”, while the

bottom window still displays the 40 byte RAM contents. This is because in the Run

Once M ode the TX automatically appends a OOh byte to indicate the end of the

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transmission. In the lower window it ean be seen that the 12th byte is a 0 terminator. In

the top window the ASCII representation stops displaying data at this point since strings

in C++ are 0 terminated. However, since it was requested that 40 bytes were to be read

back from RAM, the lower window still shows all 40 bytes in decimal form.

6.11. Verify th a t the system could correct single b it e rro rs

In this 3-wire system the channel length was less than 10 cm and the maximum

transmission rate was 1MHz in base band. Hence the channel was practically ideal

(noiseless). Therefore, in order to test the error correcting abilities of the combined code,

errors were intentionally introduced into the transmitted bit stream. Using SW(6) or

SW(7) a 1-bit or 2-bit error per CW could be introduced on every CW sent on the

channel as shown in Figure 6-41.

Stopping
Mode

\

Figure 6-41: How the switches on the D I02 board controlled the TX FPGA

To verify that bit errors were being introduced the RX was configured to store all

received CWs into a file called FiIeReadBack.dat, to compare with the file transmitted.

Figure 6-42 shows the same sixteen CWs transmitted using the (7,2) code with and

without SW(6) on. The top line shows the CWs all have a single bit error in the LSb

position while the bottom line shows the CWs without errors. Note that as a result of the

error correcting ability, single bit errors have no effect on the accuracy of the SWs and

they will still be decoded correctly.

159

Introduce 1 bit
error per CW ,

Introduce 2 bit
errors per CW

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 0 0 0 0 0 45 3A 69 45 27 5 8 58 53 2C 27 3A 45 16 69 27 58 E : i E ' X X S , ' : E . i ’X

0 0 0 0 0 0 44 3B 68 44 26 5 9 59 52 2D 26 3B 44 17 68 26 59 D ; hD&YYR-&; D . h&Y

Figure 6-42: Top line is CWs with single bit errors, bottom line is error free CWs

6.12. The effect of more than single bit errors

When SW(7) is set the TX introduces 2-bit errors per CW into the transmitted bit

stream. This number of errors exceeds the error correcting ability of the EC code, and

thus the SWs will no longer be decoded correctly. This effect can be demonstrated best

by observing the result of transmitting the “Hello World” file again with SW(7) on. The

resulting decoded data is displayed in Figure 6-43.

It is obvious from Figure 6-43 that the text in the ASCII window is completely

unrecognizable when compared to Figure 6-40. This is because the excess bit errors

resulted in the wrong SWs being decoded and as a result the decoded ASCII text is

garbled. Another interesting result is that the original dummy file “numbers.txt” appears

in both the ASCII and decimal windows in its entirety. This is because the terminating

OOh byte which followed the “Hello World” text was also corrupted (the 12th byte is

decoded as a 1 as shown in the lower window in Figure 6-43). Thus without the 0 to

terminate the string the entire requested 40 bytes is displayed.

Send Ihe file to FPGA

Bead back from FPGA

Num bytes to
lead back :

[40“

rW h a t was lead back-

ldmmnlvnsmm|2222222233333333334444444444 T J

z]
7 3 1 0 0 1 0 9 1 0 9 1 1 03 3 1 18 1 1 01 1 51 0 9 10 9 1 5050
50 50 50 50 50 50 51 51 51 51 51 51 51 51 51 51 52
52 5252 52 5252 52 52 52

z l

Figure 6-43: “Hello World” file received with 2-bit errors per CW

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.13. Equipment used to measure the PSD

The two devices used to measure the spectral characteristics of the transmitted

sequences were the Agilent 54621A Digital Oscilloscope (DO) and the Agilent E4402B

9kHz - 3GHz Spectrum Analyzer (SA) as shown in Figure 6-44.

Figure 6-44: Digital oscilloscope and spectrum analyzer used

6.14. Testing discrete spectra - 50% duty cycle square wave

In order to have confidence in the measured spectra some initial tests were

performed. The first step was to observe the spectrum of a unipolar 3Vpp, 100kHz, 50%

duty cycle square wave on the SA and DO, then compare this spectrum to calculations.

The actual lab signal measured was -31mV to 2.875V or approximately 2.9Vpp. The

measured average voltage was 1.438V and the measured RMS voltage was 2.046V, as

shown in the DO screenshots in Figure 6-45.

A g ilen t T e c h n o lo g ie s ?] £ : A g ilen t T echno log ies

! i ! i i i j— n r tE 1 i i — 1j —
: .j -i ! ; 1t . 1 i. -J j H H I—1

Figure 6-45: 50% duty cycle unipolar square wave
161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Calculating the ideal average and RMS value is shown in Equations 6.1 and 6.2.

\ f (t) d t Avg =
10Tn

t 0 i 2 r„

f 2 .875* + J -0 .3 1 *
0 7J./2

= 1.42 V (6.1)

RMS
 "" | “y* j 2 J1

= f c - J (/ (0) 2<ft m s = , h k J (2.875)3cfr+ J (-0 .3 1)2 df
\ 7 0 r0 V 0 L 0 r0/2

= 2.03V (6.2)

Table 6-6: Calculated AVG and RMS versus measured

Ideal M easured

AVG 1.42 V 1.43 V

RMS 2.03V 2.04V

Table 6-6 shows how the actual square wave produced by the FPGA agrees with

calculations in terms of average and RMS voltages.

6.15. F ourier Series Representation

Converting periodic signals from the time domain to the frequency domain can be

done with a Trigonom etric F ou rier Series. The most general form is

2 n
ancos(n£Ot) + bnsin(ncut)) where ct) = — (6.3)

n=l

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an = — f° f(t)cos(na)t)dt 71 = 1,2,3.
To *
2 #

bn = — yf(f)s,m {ncot)dt n = 1,2,3.
Tn

(6.4)

Using the relation

an zos(jiwt) + bn sin(nax) = Cn cos(ncot + On) (6.5)

where

Cn ='jcin2 + bn2

6n = tan -i (6 .6)

this can also be written as a Com pact Fourier Series which has the form:

f (t) = C0 +]T Cn cos(nO)t + 0tz)
n=l

(6.7)

This form gives a one-sided spectrum identical to what is displayed on a DO and

SA. In addition it is very easy to evaluate a magnitude and phase spectrum that together

completely describe the waveform. Calculating the Com pact Fourier Series of the 50%

duty cycle square waveform yields:

r0n

aQ = J 2.875dt+ j -0 .3 lr* = 1.42 (6.8)
Tnl2

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71/2 \
J* 2.875cos(myf)cfr + J -03 lcos(n(O t)d t

7 1 / 2

= 0 for n = 1,2,... (6.9)

(7 1 / 2

=■ | 2.875sin (ncvt)dt+ J -0.3{s\n[noJt)dt
7 1 / 2

_ .0098(cos(2nn) -93 .74 l(cos(/7^)-0 .989))
(6 .10)

n
for n = 1,2,...

Using these values the Cn coefficients of the Compact Trigonometric Fourier

series can be calculated. The result is shown in Table 6-7.

Table 6-7: First nine C „ terms from Compact Fourier Series (linear scale)

Harmonic Frequency (kHz) Calculated

1 - F u n d a m e n t a l 100 1 . 8 5
0 2 0 0 1 . 3 9 E - 15

3 300 0 . 6 1 6

4 4 0 0 4 5 . 2 6 E - 1 5

5 500 0 . 3 7 0

6 6 0 0 3 0 . 1 7 E - 1 5

7 700 0 . 2 6 4

8 8 0 0 4 6 . 4 9 E - 1 5

9 900 0 . 2 0 5

These C„ values represent peak values of sinusoids and can be used to recreate the

waveform. Also since ideal 50% square waves contain no even harmonics, these values

are extremely small (approximately zero) as shown in Table 6-7, and only exist as a result

of calculator precision (i.e. machine precision).

In order to compare these values with the DO and SA they must be converted to

the decibel (dB) scale. The DO displays its results in terms of dB per volt RMS

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(cIBVrms) across a 1 Mohm load (ideally infinite), while the SA displays its results in dB

per milliwatt across a 50 ohm load (dBm). Therefore in order to get the same units for

comparison the following conversions are used.

dBVrms = 10 Log

dBm = 10 Log

(r r

Cn)2 ^

(50/lm W)

(6.11)

(6 .12)

Table 6-8 shows the first nine Cn values converted to dBVrms which are compared

to measured values from the DO.

Table 6 - 8 : First nine C „ terms from Compact Fourier Series in (IB V rm s

Harmonic Frequency (kHz) DBVrms (measured) DBVrms (calculated)

Fundament a l 1 0 0 2 . 5 2 . 3 3

1..! 0 < - 6 0 < - 6 0

3 3 0 0 - 7 . 1 9 - 7 . 2 1

4 4 0 0 < - 6 0 < - 6 0

5 5 0 0 - 1 1 . 5 6 - 1 1 . 6 4

6 6 0 0 <■ - o u < - 6 0

7 7 0 0 - 1 4 . 4 4 - 1 4 . 5 7

8 8 00 < - 6 0 < - 6 0

9 9 0 0 - 1 6 . 5 6 - 1 6 . 7 7

Note that the Fourier Series indicates that there should only be odd harmonics.

However the PSD measured on the DO clearly shows even harmonics less than -60

dBVrms as shown in Figure 6-46. This is due to the fact that the square waves emitted

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the FPGA are not perfect, i.e. they do not have an infinitely fast rise time. Hence

there will be some power in the even harmonics. For comparison the -30dBVRMs value is

the center line of Figure 6-46 allowing one to gauge that the first peak is near 2 dBVRMs-

Agilont T echnologies

Figure 6-46: PSD measured on the DO and SA

Table 6-9: First nine C „ terms from Compact Fourier Series in dBm

Harmonic Frequency (kHz) DBm (measured) DBm (calculated)

F u n d a m e n t a l 100 1 5 . 4 4 1 5 . 3 2

2 0 0 < 4 (J < - 2 0 0

3 300 6 . 1 1 5 . 7 8

4 4 0 0 < - 4 0 < - 2 0 0

5 500 1 . 6 5 1 . 3 4

f) 6 0 0 ' - 4 0 < - 2 0 0

7 700 - 1 . 3 7 - 1 . 5 7
p c"’ i •* U < - A 0 < - 2 0 0

9 900 -3 . 45 - 3 . 7 5

Figure 6-46 also shows the PSD as measured on the SA. In this case the first peak

has a marker on it which indicates the peak is at 15.44 dBm. Table 6-9 shows how well

the calculations match up with the SA measured values. The even harmonics are also

noticeable on the SA which again are due to the fact that the square waves are not ideal.

In addition, both PSDs should ideally be line spectra, however the resolution settings on

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the DO and SA and the imperfect nature of the square waves result in these broader

spikes (concentrated frequency bands) in the frequency domain.

6.16. Accuracy of discrete PSD measurements

While the DO is useful for displaying time domain waveforms it is generally not

considered to give the most accurate PSD. This is because the PSD is based on the FFT

and using various digital signal processing (DSP) techniques such as windows. Therefore

the majority of measured PSDs presented in this thesis will be from the SA since it is

considered to give a more accurate representation of the PSD.

When measuring spectra with the SA one factor that has to be taken into

consideration is its bandwidth (BW) of 9kHz to 3GHz. The manual stated that frequency

measurements below 9kHz were not accurate. This is demonstrated in Figure 6-47 where

a 6.25% duty cycle square wave is measured on the SA and compared with calculations.

Clearly it can be seen that as the frequency falls below the low end of the bandwidth of

the analyzer the measured values no longer agree with calculations. In addition, neither

the DO nor SA is capable of giving accurate readings at DC (0 Hz). As a result the DC

value shown in Figure 6-47 is the measured DC averages from the time domain.

First point at 6.25kHz, below the 9kHz lower range of the SA.
Next point at 12kHz, just above 9kHz and correct.

0 20000 40000 00000 00000 IOOOOO 120000 140000 100000 100000 200000
Wf

1
> dBm SHU U v * droit

4k
(f;

S, y 1 ii.
• ■ ' / ‘y a f f i l *

1 - CkulmdKS'
IjL

$ 1. 1 T f ’t*

£ ‘ 4. ■ ■ o , ‘i
t

1 : £

I
%
V. ■f ;

’*
1

</ f ‘
(

:
‘ i l M j 1

Figure 6-47: Shows how the SA is not accurate below 9kHz

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.17. Accuracy of continuous PSD measurements

The BW of the SA must also be taken into account when measuring continuous

spectra. For example Figure 6-48 demonstrates the difference between the measured PSD

of a random binary waveform and the calculated PSD. The 9kHz cutoff frequency of the

SA has a pronounced effect on the measured PSD in that the power seems to drop

dramatically, only to ramp up very high at DC. The power drop off results from the BW

limitation of the SA and the ramp up at DC is due to the DC marker of the SA. This is a

feature found on many SA’s since PSD measurements are often double sided. That is, any

spectrum appearing to left of the DC marker (negative frequency range) is essentially a

mirror image of the spectrum to the right of the marker (positive frequency range). These

two effects at low frequencies should not be the present as shown in the PSD plot

generated by Matlab.

R«f 20 dBm « R m n 38 dB _
Samp
log Problem occunjhcrc (d..lPSOof.w^om'.'quOTwm

Figure 6-48: PSD of a random binary square wave, measured versus calculated

Another factor that needs to be taken into account is the resolution bandwidth

(ResBW) of the SA. When the SA takes power measurements it does so using banks of

analog filters. It dwells in certain frequency bandwidths set by ResBW, and measures the

power in these bands. As a result, large ResBWs tend to give a more coarse picture of the

shape of the PSD, while smaller ResBWs tends to give a more detailed picture of the

shape of the PSD. Aside from the shape, the actual power measured will differ depending

on the ResBW also. For example in Figure 6-49 the same PSD is measured using a

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ResBW of 3kHz and 1kHz respectively over a bandwidth of 300kHz and lOOKHz

respectively. The power is measured at 50kHz is different in both plots at -0.825 dBm

and -5.042dBm respectively.

ipiik’Stifch’
Mkrl 50.8 kHz

..:______ _ -0.825 dBm.

A il cnA*-*'-”1

Raf 20
Samp
log

dBm Rtten 30 dB

s s s s
10
dB/

, \

VfWg
100

.... :.... V ... : V : \
HI S2
S3 FC flfl

! 1 : \

. ; L . . . | ,... ;

.
Start 0 Hz Stop 1*0 kHz
Res BH 3 kHz VBH 3 kHz Saeep 67.91 ms (401 pts)

R.l 20 dBm fltt.n M_<B
Samp
Log

1/ ■■
Marker
5B.BBB kHz

5.B42 dBm

S un 0 Hz
R.s BH 1 kHz
n:\scREHiee.oir file

Figure 6-49: Same PSD measured with two different ResBW’s

The 3kHz ResBW plot on the left shows a coarser picture of the shape of the PSD

and a high measured power of -0.825 dBm at 50kHz. However the 1kHz ResBW plot on

the right shows a detailed picture of the shape of the PSD over one lobe, and a smaller

measured power of -5.042dBm at 50kHz. This three times increase in ResBW directly

corresponds to approximately a 10 log[3] = 4.77dB change in the measured power, i.e.

5 .042-.825 = 4.2dB . As shown in the following section, this difference in measured

power is to be expected with continuous spectra, and for every factor of 10 increase in

ResBW, the measured power should drop by a factor of lOdB, and vice versa.

6.18. How the ResBW affects the PSD

Recall from Figure 5-12 the PSD of the (7,4) Hamming code expurgated to a (7,1)

code from Section 5-5. Figure 6-50 shows the PSD measured on the SA with different

ResBWs. The top line corresponds to a ResBW of 3kHz, the middle line to 1kHz and the

bottom line to 300Hz. The first thing to notice is that the ResBW has a factor of 10

difference between the 3kHz plot and the 300Hz plot, and this directly relates to a lOdB

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

difference in continuous power levels. What is happening is that when the ResBW is set

to 3kHz, the SA measures power in 3kHz bands and plots the result as a single point in

the spectrum. Hence it more crudely estimates where the power is located since it is

unable to distinguish frequencies smaller than 3kHz. Contrast this with the 300Hz

ResBW which has 10 times the frequency resolution. The SA now measures and plots

power in the 300 Hz bands. While it takes longer for the SA to generate this plot, it can

display more accurate information with these smaller bands. As a result the plot appears

more spiky. Also the more the ResBW is lowered the more the continuous component of

the PSD drops. This is because the SA is measuring and plotting the power in smaller

frequency bands. However, when there are strong spectral components in narrow

frequency ranges, their power will not change as the ResBW is decreased. This can be

seen in Figure 6-50 where the dominant discrete like components maintain their relative

power levels as the ResBW is decreased. Clearly, when comparing measured PSDs to

calculated PSDs, it is only practical to compare their relative shapes and not their overall

power levels.

3kHz
1kHz
300Hz

Center 150 kHz
*Res BH 300 Hz

Figure 6-50: The effect of decreasing the ResBW

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.19. Comparing spectra of various codes

This section deals with measuring the PSDs of various codes with different

AddCW sets and comparing the results to the theoretical PSDs presented in Section 5.6.

As discussed in that section, two heavily unbalanced source statistics of 10% and 90%

probability of a logic 1 are considered. The source statistics were generated using the

computer program BuildRandomBitFile as shown in Figure 6-51.

Figure 6-51 demonstrates the use of this program to generate a file of size 1024

bytes that contains approximately 10% logic Is. The file generated in this example

actually had 9.83% probability of a logic 1. The output file consists of 1024 bytes or 8192

bits which are primarily logic 0s as shown in Figure 6-52. This file is then transmitted

repeatedly on the channel using Run Mode Continuously by the TX.

r 1% r 99X
10* r 90*

r 25* r so* r 75*

F ieS ae 11024

-G o .

OK

Cancel
A

Number oM 's
Number of 0's
Percent l's
Percent 0's
Total Bytes
Total Bits

E~Tq<_

606
7386
9.638867 '
90,161133
1024
8192

Figure 6-51: BuildRandomBitFile program for generating random data flies

*. M i c r o s o f t V i s u a l C + + - [R a n d o m _ o n e s _ 1 0 _ S i z e I s l 0 2 4 J) l n]

j EHe Edit SJew Insert &oJect fluid loots SSSndow tfelp -■'Ciji.xi
-a! o r e s [fee IB-JB.W.FWST
ooooooooooio
0 0 0 0 2 0
0 0 0 0 3 0
0 0 0 0 4 0
0 0 0 0 5 0
0 0 0 0 6 0
0 0 0 0 7 0
0 0 0 0 8 0
0 0 0 0 9 0
OOOOaO
OOOObO
nnnn<~n
Ready

0 0 0 0 00 £ 0 01 81 00 0 0 0 0 81 01 80 0 0 0 0 0 0 2 0
0 0 0 8 CO 0 0 00 10 02 0 0 4 8 40 80 00 0 0 8 0 0 3 60 . . ,H 9 .
01 0 0 02 0 0 04 00 01 0 0 0 4 0 0 02 00 0 0 0 0 64 81
0 0 0 0 04 5 0 0 0 81 20 0 1 3 0 0 0 20 00 0 0 0 2 0 0 0 0 . . . p . . . 0 .
0 0 01 0 0 0 0 1 0 0 0 0 0 0 0 0 9 0 0 40 00 0 0 00 8 0 0 0 9
14 CO 28 09 0 0 00 10 2 6 1 0 0 0 CO 00 2 0 00 0A 0 0
08 04 00 40 01 A1 45 0 0 1A 0 0 22 00 0 0 24 0 0 1 0 . . . 9 . . E . . . * .6
08 0 0 AO 42 0 0 11 0 0 0 0 0 0 00 0 1 0 0 4 4 00 0 4 0 0 . . ,B .
00 80 80 00 2 0 80 20 01 0 1 00 0 0 0 0 0 0 08 0 0 6 8
40 80 08 01 89 40 0 0 0 0 0 0 80 0 0 0 0 0 1 0 0 0 0 0 0 9 ____ i>............
02 0 0 8C 00 88 0 0 00 0 8 4 9 02 0 2 01 4 0 01 6 8 0 0 . . . 1 . . 9 .
08 10 18 0 0 50 00 00 20 0 2 20 26 6 0 0 8 40 0 0 0 0P . . . L . 9
04 nR 07 0(1 0 4 R7 on no nn on 10 no n n nn m m > 1

OK 000000. H e n 000000 |PV R |R E A 0 . |j

Figure 6-52: ‘Random_ones_10_SizeIsl024.bin’ shows the file is mostly logic 0s

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.20. (15,8) Best AddCW sets

The following PSDs were measured with the SA using the randomly generated

8192-bit files. Analysis of these PSDs can be found in Section 5.4.

R af 2 0 dBm
Sim p

i f l i t a n 3B dB R ef 2 0 dBm
Sim p

•R tte n

S to p 2 9 0 kHz
i/BH 1 kHz Sw eep 4 0 7 .4 ms (4 0 1 p ts)

S t i r t 0 Hz
R es BH 1 kHz

S to p 2 0 0 kHz
4 0 7 .4 ms (46 1 p ts)

S ta r t 0 Hz
R es BH 1 kHzkHz Sw eep

Ref 2 0 dBm 'R t t e n 3 0 dB R ef 2 0 dBm 'R t t e n 3 0 dB
Samp

VldSoBH

S to p 2 0 0 kHz
VBH 1 kHz Sw eep 4 0 7 .4 ms (4 0 1 p ts)

S ta r t 0 Hz
Res BH 1 kHz

S to p 2 0 0 kHz
VBH 1 kHz Sw eep 4 0 7 .4 ms (40 1 p ts)

S ta r t 0 Hz
R es BH 1 kHz

Figure 6-53: 90% ones — AH four Best AddCW sets. Compare with Figure 5-16

Note that in all of the above PSD plots, the SA is set to lOdB per division, while

the comparable plots of Section 5.6 are 5dB per division. The following Figure 6-54

shows how one of the spectra would compare on the same scale. The agreement of the

curves is clear.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

' 1 ' " ' 1 -l|D « Q « i f *•» « /> isc&̂Tf
ProbOft 90 LCOOEPWR (ISffi P.1AA39B.3ZM&C * 6 4 # S 7 f f l

R e f 0 dBm
Samp
Log
5
d B /

• R t te n 3 0 dB

S ta r t ISO kHz S top 2 0 8 kHz
S w eep 2 0 3 .7 ms (401 p ts)R es BH 1 kHz

fraq .

Figure 6-54: Comparing the 90% ones best AddCW set 1AA on the 5dB/div scale

R ef 2 0 dB<n
Samp

• R t te n 3 0 dB Ref 2 0 dBm tR t t e n 3 0 dB
Samp
Log

iorfi'4•v, •»■r * ‘iHone,

S ta r t 8 Hz
R es BH 1 kHz

S to p 2 0 6 kHz
VBH 1 kHz Sw eep 4 0 7 .4 ms (4 0 1 p ts)

S ta r t 0 Hz
Res BH 1 kHz

S to p 2 0 0 kHz
VBH 1 kHz S w eep 4 0 7 .4 ms (4 0 1 p ts)

R ef 2 0 dBm
Samp

Ref 2 0 dBm •R t te n 3 0 dB

S to p 2 0 0 kHz
VBH 1 kHz S w eep 4 0 7 .4 ms (4 0 1 p ts)

S ta r t 0 Hz
R es BH 1 kHz

S to p 2 0 0 kHz
VBH 1 kHz Sw eep 4 0 7 .4 ms (40 1 p ts)

S ta r t 0 Hz
Res BH 1 kHz

Figure 6-55:10% ones - All four Best AddCW sets. Compare with Figure 5-17

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•A lto n 3 d R ef 2 0 dBm R tte n 3 0 dB

VAvg 100
HI S2
S3 FC Rfl

S top 2 0 0 kHz
VBH 1 kHz Sw eep 4 0 7 ,4 ms (40 1 p t s)

S te r t 0 Hz S top 2 8 0 kHz
VBH 1 kH z Sweep 4 0 7 .4 ms (401 p ts)

S t e r t 0 Hz
R es BH 1 kHzR es BH 1 kHz

Figure 6-56: 50% ones shows little difference between codes - Compare with Figure 5-18

Figure 6-56 once again demonstrates that comparing these codes with balanced

source statistics does not portray the effectiveness of this coding technique.

6.21. (15,8) Worst AddCW sets

R ef 2 0 dBm
Sim p
Log
10
d B /

VRvg
100
HI S2
S3 FC flfl

S ta r t 0 Hz
R as BH 1 kHz

S top 200 kHz
Sweep 4 07 .4 ms (401 p ts)

BiSBH
wia«£wi

g m B t g g

• R t te n 3 0 dB

•rv w A

S to p 2 0 0 kHz
VBH 1 kHz Sw eep 4 0 7 .4 ms (4 0 1 p t s)

S t a r t 0 Hz
R es BH 1 kHz

Figure 6-57: 90% ones - two of the Worst AddCW sets. Compare with Figure 5-19

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6-58:10% ones - two of the Worst AddCW sets. Compare with Figure 5-20

S B 6 i > A X >] 0 ' f
ProbOfl 90 UOOEPWR (15« p . io o ? ic jo o ^ fF ,£ f fA n ;f i

Figure 6-59: Comparing the 90% ones worst AddCW set 108 on the 5dB/div scale

Again the majority of the PSD plots were taken on the lOdB per division scale,

while the comparable plots of Section 5.6 are 5dB per division. Figure 6-59 compares the

PSDs on the same scale in the same manner as Figure 6-54.

As in Section 5.6 the PSDs can be contrasted side by side. For example the PSD

of one of the best AddCW sets plotted beside one of the worst AddCW sets when the

probability of the source emitting a logic 1 is 90% is shown in Figure 6-60. While it is

obvious that the best AddCW set has more power at high frequency, it is most evident

when they are both plotted on the same scale as shown in Figure 6-61.

.■ 175 ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W k
R ef 2 0 <ffiai • A tta n 3 0 dB at •R t te n 3 0 dB

vflv o
100
HI 52
S3 FC fifl

S ta r t 0 Hz
R ea BH 1 kHz

S to p 2 0 0 kHz
VBH 1 kHz S treep 4 0 7 .4 m l (4 0 1 p ta)

S ta r t 0 Hz S to p 2 0 0 kHz
VBH 1 kHz S treep 4 0 7 .4 m i (4 0 1 p ta)Rea BH 1 kHz

Figure 6-60: 90% ones - Best AddCW and Worst AddCW set - Compare with Figure 5-21

Ref 20 dBm
Samp

• R t t e n

' V W \

Stop 200 kHz
VBH 1 kHz Sweep 407.4 ms (401 p ts)

S ta r t 0 Hz
Res BH 1 kHz

Figure 6-61: 90% ones - Best AddCW and Worst AddCW set - Compare with Figure 5-22

In Figure 6-61 it is clearly seen that not only does the best AddCW set have most

of its power at higher frequencies, it also has a wider null indicating its ability to limit

runlengths and generate a signal with less baseline wander.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.22. Spectra of larger codes

Based on the AddCW recommendations in Section 4.15, the PSD of larger codes

based on the (31,26) Hamming code are now compared to those of Section 5.7. Recall

that these spectra could not be calculated exactly using the Cariolaro and Tronca method.

Instead they were simulated using the SimFPGA program. Comparing the spectra in

Figure 6-62 with Figure 5-25 show how closely they match.

R ef 2 8 dBm •R t te n 3 0 dB
Sim p
Log
10
d B /

......... 1 ' ■
. . .

! 1 ■ 1 . | \

VRvg
180
HI S2
S3 FC

Rfl

i 1 I t
" ; - j [■■■' r

! ' :l ■ !
i I i :

J j -];; I j \
1 ; !

S t i r t 8 H i
Re» BH 1 kHz

S to p 2 8 0 kHz
VBH 1 kHz S w eep 487 .4 m i (40 1 p ts)

Ref 2 8 dBm iR t t e n 30 dB
Sim p
Log

i. J 'nil

S t i f t 8 Hz
R es BH 1 kHz

S to p 2 8 8 kHz
VBH 1 kHz Sw eep 4 8 7 .4 ms (40 1 p ts)

Figure 6-62:10% ones - Two (31,23) codes. Compare with Figure 5-25

6.23. Summary

This chapter outlined and explained the methods used to create a hardware proof

of concept system for the multimode coding technique introduced in Chapter 3. The

communication system was implemented on two FPGA boards, one as a transmitter and

the other as the receiver. There were two modes of operation. The first was used to

transmit a file once on the channel to be decoded by the receiver. The second mode was

used to transmit the file repeatedly on the channel in order to allow for measurement of

the PSD. The PSD was measured in order to verify that the calculations presented in

Chapter 5 were correct and that the coding technique operates as designed.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. B it Error Rate Performance

In this chapter the bit error rate (BER) performance of the multimode coding

technique is investigated. This is achieved through simulations on a high-pass additive

white Gaussian noise (AWGN) channel that models ac-coupled receivers.

7.1. Channel model

Recall from Section 2.19 that the serial bit stream requires periodic maintenance

as it travels on the channel in order to combat the accumulation of noise and signal

distortion. This requires that the signal be received and regenerated for further

transmission. Receivers that derive their clock from the incoming bit stream require

numerous transitions for adequate clock recovery. If there is a long series of Is or Os in a

row the receiver’s oscillator frequency may drift and lose synchronization, consequently

losing track of where it is supposed to sample the transmitted data.

Recall that in the frequency domain these strings of like valued bits can be

considered low frequency content as shown in Figure 5-2. Furthermore a bit stream with

many transitions is considered to contain high frequency content as shown in Figure 5-3.

Therefore receivers that derive their clock from the incoming bit stream can be

summarized in the frequency domain as requiring a signal to have a majority of high

frequency content and little low frequency content.

It is also very common for receivers to be AC coupled since they are easier to

design and are capable of better performance tis.iej. However this results in the frequency

response of the receiver being limited by the RC time constant of the dc blocking

capacitor and input impedance of the receiver [is]. These types of receivers not only block

the average DC value, but they also tend to integrate the detected signal giving rise to

baseline wander [16].

Therefore the effects and demands of this type of receiver are simplified by

considering it as a distinct type of channel referred to as a dc-constrained channel, i.e. a

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

channel that heavily attenuates the low frequency and dc power of a signal [17]. As a result

one simple model of a dc-constrained channel is that of a first-order high pass filter

(HPF) concatenated with an AWGN source [17] as shown in Figure 7-1. This model will

be referred to as the HPF channel model.

Hoist

HPF

Figure 7-1: dc-constrained channel - HPF concatenated with AWGN

Using this channel model it will be illustrated that the time domain waveform of

the transmitted bit stream will decay exponentially towards zero during each symbol

interval, where the rate of decay will be dependent on the value of the RC time constant

T . For example, letting Vs<k and Ve lc be the voltages at the start and the end of the &th bit

interval (k > 0) , the voltage during the klh interval is represented by Equation 7.1 [17]. The

instantaneous voltage at the end of the interval is represented by Equation 7.2 [i7], where

T denotes the duration of each bit interval.

y ^ = Vske-^T)>r (7.1)

where kT < t < { k + l) T and t = R C / T , and

(7-2)

At the start of the next interval the starting voltage VsMl takes on one of the values:

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ve k , if logic values are the same
VsMl = - Ve k + 2 , if logic values change from -1 to 1

Ve lc - 2 , if logic values change from 1 to -1

(7.3)

Using Equations 7.1 to 7.3 the effect of this channel model can be demonstrated

using Matlab. For example, consider transmitting the bit sequence 1,0,0,1,1,1,0 using

bipolar coding with a square pulse shape. Figure 7-2 (a) shows the time domain

waveform on a noiseless channel, while for reference Figure 7-2 (b) shows the midpoints

of the symbols in order to see the individual bit locations.

N w n l i i r t l lm f , N p*** 1N o n w i l td l im t, M p « rM ■ 1 . : t

Figure 7-2: (a) Binary sequence [1 ,0 ,0 ,1 ,1 ,1 ,0] transmitted using bipolar coding.

(b) Midpoint locations

Figure 7-3 on the other hand shows the binary sequence on the HPF channel with

RC time constants of r = 10 and r = 2 respectively. In both cases it is clear that the time

domain waveform decays exponentially towards zero due to the frequency response of

the channel. That is, the more like valued bits in a row transmitted on this channel (i.e.

the greater the low frequency content), the more severe the power loss is to the

intelligible signal. Conversely the AWGN is practically unaffected on this channel since

the distribution of white noise has zero mean. As a result it is clear that the output SNR of

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the receiver will not be constant over a symbol period. The loss of the low frequency

portion of the signal power causes a fluctuating SNR that degrades the BER.

0» WJN** W lw'tw **
HPF IMlW, RC MMtMt ft 2 ’

1 , % ,3
Noffm*l*d I n f H pwfod ■ I L

Figure 7-3: Showing the effect of the HPF channel with R C time constants 10 and 2, and how the

SNR is not constant over a bit period

While Figure 7-3 demonstrates how the output SNR is not constant per symbol

interval, a greater problem occurs if there are not adequate transitions in the output

sequence. If for example there was a long run of logic Os, the signal would decay to

practically 0V as shown in Figure 7-4. In this case no amount of equalization can recover

the time domain waveform since in this extreme situation the receiver is working with

practically zero signal power.

as

•os

NMMlf *d limt, lM ptffed «1

mnnnn
jQ oFQ A l* A / \ && O c v

* » HPF mow. 1$ comimi H
1 5

t
05

•16

■2,

' \ 1u-----,
T" !.....:

/ / Y* !
V r

* < j1•j - « • - i ii' n h i*w!r;vr
N«mMi»4 Im , M pirted ■ 1

Figure 7-4: HPF channels effect of a long run of logic Os with an R C constant of 10 and 2. It can be

seen that the voltage is decaying to 0 Volts

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus the motivations to create a coding technique that can combat the effects'of

this type of channel are clear. For improved BER performance on this channel the

transmitted sequence not only needs to be balanced, but it also must contain numerous

transitions and have limits on the length of consecutive like valued bits.

7.2. Sim ulation

In order to test the multimode coding technique on this HPF channel model a

simulation called HPF._BER_Sim.exe was written; the user interface for this program is

shown in Figure 7-5. This program allows the user to select the linear block code,

selection criteria and AddCWs to use, similar to the SimFPGA program introduced in

Section 4.4. The source statistics can be controlled using the Source Probability of a 0

and the RC time constant of the channel can be controlled using the RC tim e constant

Tau. The simulation runs at each SNR until the set number of decoding errors has been

encountered. Finally, the type of filtering in the receiver can be chosen as either a

R ectangular F ilter or M atched Filter. Note that the channel can also be specified as

Not a H PF channel, at which time the receiver uses a M atched Filter.

» Find D£R on a Channel Model

i' S elect a 19s f itt
Waiting to s la t

(o k) code “ - i - *t*

litiJiliMni'iiiiii'ii'MWiJ Go

| Lowest ROS . < K i Simulation

i— ~ r i— r
U pdats

- S a u c e Piobabiftiy ol 0 —

Choo»e the probability out
of 100. i s . 1 0 * it 10

50

[- Etrort to look (or par SNR

I 100
R C tim eco ro lan tT ao

f 30

S N flin d B ------------------ —

I 5.5 dB to I 15 5 ' dB

StepSize | 0 5 ; dB

p T y p o o fR a c e iv e i— ;------

f? Rectangular Filer

C: M atched F#ei

(" Not a HPF channel

Figure 7>5: HPF channel model simulation

182

with permission of the copyright owner. Further reproduction prohibited without permission.

An example is shown in Figure 7-6. Here the simulation was configured to run the

(31,23) code using eight AddCWs. The source statistics were balanced and the RC time

constant t was set to 30.

* * F i n d HER o n a C h a n n e l M o d e l

C W t te n t 18252388
N um S W w 1

(o k) co d e

Go

| Lowell ADS z\

[OOOOOCCO |5jMAMA 101555555 |0 1 832323 [iffiTiTT | W > I W 'p M R T F F |03F F F H T

[uUAMUtW | a W ;.l'.l,'L] . “i t I'jt.HJ! I. |4 | II l-f i .i l (vTTTTTl

' S o u c e P r o b e b i ty of 0 — : - E n o t t l o loo k fot p e t S N R -i r S N R i n d B -

’ |cjififri. jnrrrrrr U pdate

1000 1 iC hoose th e p r o b a b ly ou t (! I , u w j i r — r r i— r r
o f 1 0 0 . l e .1 0 X is 1 0 | :< j l & 5 dB 1o I 10 dB

R C lime co n s tan t T a o — i j t— —
S ta p S b e | 0 .5 <fiI 50 ! I

T ype of R e o erv e t-----------

(• R a c te n g J a f F i a t

C M a tched FKet

r N ot a H PF channe l

Figure 7-6: Looking for 1000 errors at each SNR from 5.5dB to lOdB with t = 30

7.3. BPSK Simulation results

The channel was first tested without coding using bipolar signaling (BPSK) with

matched filtering as a benchmark. The RC time constant chosen for all channel

simulations was t = 30. This value was selected in order to test the performance of the

multimode coding technique on a channel that was highly sensitive to baseline wander.

BPSK on HPF Channel w lthTaoB30 using a Matched Filter

1 . 0 0 E - 0 1

1 .OOE-02

BPSK 90% zeros
BPSK 50% zeros
BPSK 50% zeros NOT HPF channel

IU 1 .0 0 E - O 3

1 .O O E -O S

1 4 . 512.5 13.58.5 1 1 56.5 9.5

Figure 7-7: BPSK on an AWGN channel versus the HPF channel with AWGN

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7-7 demonstrates the effect of the channel on a BPSK signal that does not

use any form of EC or CS coding. For comparison a regular BER curve is also plotted for

a BPSK signal on a typical AWGN channel (i.e. not the HPF channel).

The arrow in Figure 7-7 clearly shows how the BER of the BPSK signal on the

HPF channel is worse than the BER on a standard AWGN channel. However the lower

two curves only show the BER when the source emits logic Os and Is with equal

probability. If the instantaneous source statistics become unbalanced to the point where

logic Os are transmitted 90% of the time, the BER curve almost flattens out. Thus the

BER performance is highly dependent on the source statistics. Figure 7-8 shows the

approximate range of BER values that a BPSK signal would experience on this channel

with different statistics of the source.

BPSK on HPF Channel withTao»30 using a Matched Filter

1 .OOE-02

—♦—BPSK 90% zeros
—• —BPSK 50% zeros
- ± - BP SK 50% zeros NOT HP F channel

U1 1 .00E-03

1.00E-04

15.512.5 14.57.5 11.5 13.55.5 6.5 6.5 9.5

Figure 7-8: Range of RER values that occurs with changing source statistics

7.4. Effect of error control codes

It is of interest to determine if error control coding can alleviate the BER

degradation on this channel. Figure 7-9 demonstrates the limited effectiveness of the

simple Hamming codes used so far in this thesis. In the case of an unbalanced source

only marginal improvement is observed with diminishing returns as larger error control

codes are used.
184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BPSK on HPF Channel with Tao=30 using a Matched Filter

1 D O B 01

1 0 0 B Q 2

- 4 —BPSK 90% zeros
—• —BPSK 50% zeros

* (7 , 4)90% zeros
—o —(15,11) 90% ones
—*—(31,26) 90% zeros1 D O B 0 4

1 D O B OS
1 5 50 .5 1 0 .5

Eb/No (dB)
5 .5 7 .5

Figure 7-9: Effect of EC codes on this channel is minimal

7.5. Simple multimode code

As discussed in Section 3.1 and 3.2, a primary goal of this multimode coding

technique is to guarantee balanced transmission regardless of the source statistics. It was

shown that the use of a single extra bit of redundancy for CS coding is sufficient for this

to be achieved. As confirmation Figure 7-10 shows the BER improvement using this

technique with the (15,11) code expurgated to (15,10).

BPSK on HPF Channel with Tao=30 using a Matched Filter

1 D 0 E K D

1 0 0 5 0 1

1 0 0 5 0 3

1 D O B 0 4

1 D O B 0 5

BPSK 90% zeros
• -B P S K 50% zeros
.. (15,11)50% zeros
•-(15 ,10)50% zeros

1 0 0 6 0 7 —

1DOB00 —

1 0 0 6 1 0
1 3 .51 1 .5 12.610.65 6 8.6

Figure 7-10: Comparison of performance of (15,11) and (15,10) codes with balanced source

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This figure demonstrates that both codes have the ability to correct single bit

errors per CW, and at low SNRs the (15,11) code actually performs slightly better than

the (15,10) code. This is because with the extra bit of redundancy the overall per bit

energy versus noise spectral density is slightly lower for the (15,10) code than the (15,11)

code. At low SNRs the coding gain of the (15,10) code is not realized as the signal

energy is simply too low. However around an SNR of 8.5dB a crossover occurs. It is at

this point that the ability of the (15,10) code to guarantee balanced transmission results in

improvement of the BER over that of the (15,11) code, and it can be seen that the BER

curves are actually diverging. This is a significant improvement considering only a single

extra bit of redundancy was used. It is not dramatic however since analysis in Chapter 4

showed that the (15,10) code has minimal ability to limit runlengths. As shown in

Figure 7-11 maximum runlengths (MR1 and MR0) of 22 like valued bits in a row are still

possible. Furthermore, the average runlength (aM Rl and aMRO) with balanced source

statistics is approximately 3.6 like valued bits in a row. With unbalanced source statistics

however the maximum runlengths (MR1 and MR0) are actually less at 13, but the

average run (MR1 and MR0) has increased to approximately 5 like valued bits in a row.

These results are still better than the (15,11) code which can have runlengths that are

completely unbounded.

■ ■ ■ I
J r > ^ * »- - / M i

Probl ProbO
49.25 50.75

CBs Sent Bits2AvgOver
66667 1000003.0000

MR1 MR0
21.0 22.0

MRDS
17. 0

raRDS aMRl
-18.0 3.5731

aMRO *
3.5678 1

NumStates = 58
0) = 0.00003000

(0, 0) = 0. 08110338 (5, 0) =
(13, 1) = 0. 00018000 (-13, 1)

0.01322974
= 0.00004500

(4,1) =
(-11,1)

0.02807944
= 0.00001500

(-1,0) = 1
(-11,0) = |

Probl ProbO
89.72 10.28

CBs Sent Bits2AvgOver
66667 1000003.0000

HR1 MR0
13.0 12.0

MRDS
13. 0

mRDS aMRl
-13.0 5.0600

1aMRO p
5.0645 I

W

NumStates = 38 (0, 0) = 0. 03659927 (-9, 1) = 0. 01249475 (-6,0) = 0.02029459 (-5,0) = i;

<L..... .1 /, I f i

Figure 7-11: SimFPGA results for the (15,10) code showing runlength probabilities

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7-12 compares the range of BER values the (15,10) code can assume

compared with BPSK. Clearly the range of results for the (15,10) code is less than the

corresponding range of the BPSK signal. As well, when the SNR is greater than 9dB, the

performance of the (15,10) code with unbalanced source statistics (90% chance of a logic

0) is actually better than the performance of the BPSK signal with balanced source

statistics (50% chance of a 0). It can be concluded that the multimode coding technique is

removing the BER dependency on the source statistics.

BPSK on HPF Channel with Tao=30 using a Matched Filter

1 .0 0 6 0 2

1 .0 0 6 0 3

1 .0 0 6 0 4

1 .0 0 6 0 5

1 .0 0 6 0 7

1 .0 0 6 1 0
1 1 .50.6

Eb/No (dB)
1 0 5 1 2 57 .56 .6

Figure 7-12: Range of BER results for the (15,10) code

7.6. Effect of 8 AddCWs with the (15,8) code

In Chapter 4 and Chapter 5 the (15,11) code expurgated to a (15,8) code with

eight AddCWs was analyzed in great detail. Using the (15,8) code with any one of the

four best AddCW sets results in the BER curve shown in Figure 7-13. With balanced

source statistics the first test demonstrates the ability of this code to further improve the

BER curve on the HPF channel beyond the performance of the (15,10) code at high

values of SNR. This ability is a result of the fact that the (15,8) code is not only balanced,

but that the worst case maximum runlength is only 7, versus 22 with the (15,10) code.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BPSK on HPF Channel with Tao»30 using aM atchad Filter

10OSO1
10OSQ2

ill 100606

-♦-BPSK 90% zeros
-■—BPSK 50% zeros
a (15,11)50% zeros
•■—(15,10) 50% zeros
•♦—(15, 8) 50% zeros

100607 —

10OBOO —

1 DOB 10
11.6 126 13.68.6 0.6 10.6

Eb/No (dB)
66 76

Figure 7-13: BER performance of the (15,8) code

The benefits of this coding technique are appreciated more when compared to

BPSK signaling on a regular AWGN channel. In Figure 7-14 it can be seen that the BER

curve of the (15,8) code is approaching the BER curve of the original BPSK signal on a

regular AWGN channel.

BPSK on HPF Channel with Tao=30 using aM atched Filter

1 .00E+00

1.00E-01

1.00E-02

1.00E-03

1.00E-04
C£
UI 1.00E-05 m

1.00E-06

1.00E-07

1.00E-08

1.00E-09

1.00E-10
5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 1 3.5 14.5

Eb/No (dB)

Figure 7-14: The (15,8) code on the HPF channel compared to BPSK on an AWGN channel

Finally, when using the (15,8) code with an unbalanced source, simulation results

show that the BER curve remains fixed. That is, the BER curve for the 50% zeros and

188

•BPSK90%aros
-BPSK 50 % x ros
■(15,8)50% »ros
BPSK 50% zros NOT HPF channel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90% zeros are identical. This is shown in Figure 7-15 which demonstrates that the source

statistics no longer have any effect of the BER curve performance as a result of the GS

coding features of this multimode coding technique.

BPSK on HPF Channel with Taos30 using aM atched Filter

1.00&01

Ui 1 .00605

1.00606

1.00607

1.006CQ

1.00610

11.57.5 0.5
Eb/No (dB)

1 0 5 12.55.5 6 5 8 5

Figure 7-15: Performance of the (15,8) code does not change with varying source statistics

7.7. Performance of larger codes

It was suggested in Chapter 3 that the additional redundancy of the multimode

coding technique can be minimized by using larger codes. Based on Section 7.5 and the

results of the (15,10) code, the performance of the (31,26) code expurgated by 1-bit to a

(31.25) code with two AddCWs is now investigated.

Figure 7-16 shows the range of values the BER curve can assume for the (31,25)

code. At first glance it may be surprising to see that the range of BER values is far greater

than the corresponding (15,10) code considered in Section 7.5. This can be understood by

looking at the SimFPGA results. As shown in Figure 7-17 when the source statistics are

balanced the maximum runlength (MR1 and MR0) of the (31,25) code is approximately

20, which is 2 less than the (15,10) code. As well, while the average runlength (aMRl

and aMRO) of approximately 4.5 is slightly higher than that of the (15,10) code, the

redundancy in the (31,25) code is considerably less. Thus with a balanced source the

(31.25) code performs slightly better than the (15,10) code. '

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BPSK on HPF Channel with Ta©*30 using a Matched Filter

lOOS 02
1.00603

1.00604

1.00600 ►—BPSK 90% zeros
BPSK 50% zeros

k - (31,25) 90% zeros
(31,25)50% ®ros

1.00607

1.00600

13585 105 11.6 12.50.5 7.5 0.0
Eb/No (dB)

Figure 7-16: BER performance of the (31,25) code

Conversely when the source statistics become unbalanced, the (31,25) code

generated maximum runlengths (MR1 and MRO) of approximately 25 like valued bits in

a row, versus only 13 for the (15,10) code. In addition the average runlength (aMRl and

a MRO) increases to approximately 8.7, versus only 5 for the (15,10) code. Hence the

BER curve for the (31,25) code with unbalanced source statistics is significantly worse

than the curve for the corresponding (15,10) code, and hence the range of BER values for

the (31,25) code is much greater as shown in Figure 7-18.

H H H H ■ K l M f x l
!0« ft* Ffonv* ttt> . v.-»

P r o b l ProbO
4 9 . 9 7 5 0 . 0 3

CDs S e n t B i t a 2 A v g O v e r
3 2259 1 0 0 0 0 2 7 .0 0 0 0

HRl MRO
2 0 . 0 1 9 . 0

MRDS
2 2 . 0

mRDS aMRl
- 2 2 . 0 4 .4 9 8 3

aMRO «
4 . 4 8 9 5 1

N u m S ta t e s = 76 (0, 0) = 0. 0 5 7 3 1 5 5 6 (3, 1) = 0. 0 3 4 7 7 9 9 1 (2 , 1) = 0 .0 4 1 1 0 3 5 3 (- 3 , 1) 1

P r o b l ProbO
9 0 . 0 5 9 . 9 5

CBs S e n t B i t s 2 A v g O v e r
32259 1 0 0 0 0 2 8 . 0D00

MRl MRO
2 5 . 0 2 5 . 0

MRDS
2 7 . 0

mRDS aMRl
- 3 0 . 0 8 .7 0 7 5

aMRO 1
B . 7 4 6 3 S

N u m S ta t e s = 102

!' ’ I- i

(0 , 0) = 0 .0 3 5 1 5 1 8 9 (- 2 1 , 0) = 0 .0 2 0 0 8 6 8 0 (- 2 , 1) = 0 .0 2 7 1 6 9 8 7 (1 7 ,0) .

Figure 7-17: SimFPGA results for the (31,25) code showing runlength probabilities

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BPSK on HPF Channel with Ta©"30 using a Matched Filter

1.00601

1.00602

1.006-04

1.006-05

1.006-00

1.006-07

1.006-08-------

1.006-10
60 100 11.60.0 00 6.0

Eb/No (dB)

Figure 7-18: Range of BER values for the (31,25) code versus the (15,10) code

7.8. Effect of 8 AddCWs with the (31,23) code

Using the AddCW recommendations of Section 4.15, the (31,26) code expurgated

to (31,23) with eight AddCWs is now investigated. In general it can be seen from

Figure 7-19 that this code performs better than the (15,8) code. This is due to the fact that

the (31,23) code has less redundancy than the (15,8) code, while still providing EC and

CS abilities. Figure 7-19 also demonstrates that like the (15,8) code, the performance of

the (31,23) code is not affected by the source statistics.

BPSK on HPF Channel with Tao«30 using a Matched Fitter

1.006-01

1.006-02

1.00603

1.00604

UJ 1.00605

1 .0 0 6 0 0 ------ —♦—BPSK 90% s ro s
— BPSK 50% s ro s
~-£~(15£)90% aros
- o - (15,8) 50% aro s
— (31,23)90%»ros
-* -(3 1 ,2 3) 50% aero*

1.00607

1.00610
1000.0

Eb/No (dB)
7.0

Figure 7-19: BER performance of the (31,23) code is better than that of the (15,8) code

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally it can be seen in Figure 7-20 that the BER performance of the (31,23)

code is actually better than BPSK signaling on an AWGN channel only. This clearly

demonstrates how with larger codes the drawbacks associated with redundancy in this

multimode coding technique can be minimized. With larger codes the efficiency

increases and consequently the BER penalty incurred decreases.

BPSK on HPF Channel with Tao»30 using a Matched Filter

1.00&01

1.00BQ2

1.00B03

LU 1.00G-03

1.00&00
— BPSK 90% zeros

BPSK 50% zero#
•—*—(31 £3)90% w o s

(31 ?3) 50% ®ros
— BPSK 50%zeros NOT HPF channel

1 .0 0 6 0 7 -----

1.00610
1327.8 0.2

E b/N o(dB)
102 11.6

Figure 7-20: BER performance of the (31,23) code on the dc-constrained channel is better than the

BER performance of BPSK on an AWGN channel

7.9. Conclusions

This chapter has investigated the BER performance of the multimode coding

technique on a dc-constrained AWGN channel. On this type of channel the source

statistics play a significant role in BER performance. As the source statistics change, so

too does the BER experienced in the system.

It was shown that on this type of channel EC coding techniques alone do little to

overcome this dependency on source statistics. However by using the multimode coding

technique introduced in Chapter 3, the BER performance of the system can be improved.

With a single extra bit of redundancy it was shown that the range of BER values

experienced can be restricted and improved versus a system that does not use this coding.

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition, it was shown that once the system incorporates three additional bits of

redundancy, the BER performance can be improved and completely lose its dependency

on the source statistics. Furthermore, the redundancy required to obtain this CS coding

effect can be minimized by using larger block codes.

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8. Conclusion

This thesis has introduced a new combined EC and CS code based on linear block

codes. This chapter summarizes the development of this coding technique and offers

suggestions for future work.

8.1. Thesis summary

Following the introduction and discussion of the concepts of EC and CS coding

presented in Chapter 1 and 2, Chapter 3 introduced a novel combined EC and CS code

which is based on multimode coding. It was apparent that with a single extra bit of

redundancy any linear block code that includes the all-zero and all-one codeword can be

used to construct a balanced dc-free code since the CWs are effectively partitioned into

two complementary sets, giving the encoder two CW choices per SW. It was also shown

that this partitioning can be accomplished through linear code word addition.

Furthermore this technique was extended by giving the transmitter four and eight CW

choices per SW through the use of four and eight AddCWs respectively, thus it is called a

multimode coding technique.

Chapter 4 reviewed the mathematics required for analyzing the encoder as a

Markov chain and evaluating its performance in the time domain. This involved a

computer search to find the best AddCW sets, and results were presented contrasting the

performance between the best and worst AddCW sets. The chapter concluded with

recommendations and applications of this technique to other systems.

Chapter 5 investigated the frequency domain characteristics of the multimode

coding scheme, and the power spectral densities of various code configurations were

evaluated and analyzed. Chapter 6 presented the hardware implementation that used two

FPGAs and compared their measured time domain and frequency domain results to the

results in Chapter 4 and 5, demonstrating how they agreed with calculations.

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally Chapter 7 looked at the bit error rate performance of this combined coding

technique on a dc-constrained channel and clearly showed how its performance is

superior to uncoded systems.

8.2. Future work

In this thesis thorough analysis was completed on the (15,11) Code expurgated to

a (15,8) code. It was shown that four sets of AddCWs had the best performance in terms

of limiting runlengths. However no specific pattern emerged from these results. While

most of the AddCWs were balanced and had numerous transitions, there was the odd

exception that did not adhere to this rule. Therefore only general guidelines could be

recommended for selecting AddCWs for use with larger codes where a computer search

was impractical. While it was shown in Chapter 7 that these recommendations with the

(31,23) code produced excellent results, the optimum AddCW sets for this code and

larger codes remain unknown. Further work could quantify the results from the analysis

of the (15,8) code and extend them to larger codes.

Finally, as proof of concept, the only linear block code considered in this thesis

was the simple Hamming code. Future work could apply this multimode coding

technique to other more powerful error control block codes.

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] R. Togneri, C. Desilva, Fundamentals o f Information Theory and Coding Design,

Chapman & Hall/CRC, London, 2003.

[2] P. Sweeney, Error Control Coding: From Theory to Practice, John Wiley & Sons

Ltd, Chichester, 2002.

[3] T. Cover, J. Thomas, Elements o f Information Theory, Wiley-Interscience, New

York, 1991.

[4] B. Lathi, Modem Digital and Analog Communications Systems, Third Edition,

Oxford University Press, New York, 1998.

[5] B. Sklar, Digital Communications: Fundamentals and Applications, Second

Edition, Prentice Hall PTR, New York, 2001.

[6] I. J. Fair, Y. Xin, “A method of integrating error control and constructed sequence

coding,” Elec Letters, vol. 36, pp. 210-215, February 2003.

[7] F. Zhai, Y. Xin, I. J. Fair, “DC-Free Multimode EC Block Codes,” Proceedings o f

the 2003 IEEE International Symposium on Information Theory, p. 76, Yokohama,

Japan, June 29 - July 4, 2003.

[8] I. J. Fair, D. R. Bull, “DC-Free Error Control Coding through Guided

Convolutional Coding,” Proceedings o flS IT 2002, p. 297, Lausanne, Switzerland,

June 30 - July 5, 2002.

[9] I. J. Fair, Y. Xin, “Constrained Sequences with Embedded Redundancy for Error

Control,” Elec Letters, vol. 36, pp 215-217, February 2000.

[10] T. Wadayama, A. J. Han Vinck, “DC-Free Binary Convolutional Coding,” IEEE

Trans. Infor. Theory, vol 48, no. 1, pp. 162-173, January 2002.

[11] R. H. Deng, M. A. Herro, “DC-Free Coset Codes,” IEEE Trans. Infor. Theory, vol.

34, pp. 786-792, July 1988.

[12] CE Shannon. “A mathematical theory of communication,” Bell System Technical

Journal, Journal 27 pp. 379-423, July and October 1948.

[13] G. Clark Jr., J. Cain, Error-Correction Coding fo r Digital Communications,

Springer Plenum US, 1981.

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[14] I. J. Fair, W. D. Grover, W. A. Krzymien, R. I. MacDonald, “Guided Scrambling:

a new line coding Technique for High Bit Rate Fiber Optic Transmission

Systems,” IEEE Trans. Commun., vol. 39, no. 2, pp. 289-297, February 1991.

[15] S. D. Personick, “Receiver design for optical fiber systems,” Proc. IEEE, vol. 65,

pp. 1670-1678, December 1977.

[16] T. Van Muoi, “Receiver design for High-Speed Optical-Fiber Systems,” Journal

Lightwave Tech, vol. LT-2, no. 3, pp 243-267, June 1984.

[17] F. Zhai, Y. Xin, and I. J. Fair, “Performance Evaluation of DC-Free EC Block

Codes,” Proceedings o f the 2004 Ninth International Conference on

Communication Systems, pp. 451-455, Singapore, September 6 - 8 , 2004.

[18] G. Byeong, C. Seok, Scrambling Techniques fo r Digital Transmission, Springer-

Verlag Ltd, Great Britain, 1994.

[19] K. A. S. Immink, Codes fo r Mass Data Storage System, Shannon Foundation

Publishers, The Netherlands, 1999.

[20] I. J. Fair, V. K. Bhargava, Q. Wang, “Evaluation of the power spectral density of

Guided Scrambling Coded Sequences,” IEEProc.-Commun., vol. 144, no. 2, April

1997.

[21] S. Al-Bassam, B. Bose, “Design of Efficient Balanced Codes,” IEEE Trans.

Comput, vol. 43, no. 3, March 1994.

[22] T. Floyd, Digital Fundamentals, Eighth Edition, Prentice Hall, New York, 2002.

[23] A. Papoulis, S. Pillai, Probability, Random Variables and Stochastic Processes,

Fourth Edition, McGraw-Hill Science, New York, 2001.

[24] G. L. Cariolaro, G. P. Tronca, “Spectra of Block Coded Digital Signals,” IEEE

Trans Commun, vol. Com-22, no. 10, pp 1555-1564, October 1974.

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A - Calculating Power Spectral Density

The energy spectral density (ESD) is a measure of the energy contributed by all

spectral components of an energy signal. If a signal has infinite energy it is considered to

be a power signal and its power spectral density (PSD) is a measure of the power

contributed by all spectral components. Both the ESD and PSD are important quantities

in evaluating the performance of a communication system. For example, in Figure A-l,

modulation shifts the spectrum of a baseband signal to a higher frequency band. If the

allocated BW for this system was 100kHz, measuring the ESD or PSD on a spectrum

analyzer would indicate whether or not the system is operating within this limit.

m(t) c o s ojJ.

£ 1 1

Figure A-l: PSD displays the contribution of power at each frequency

A.I. Determining the Power Spectral Density

There are three ways to find spectral densities

1. Measure them with a Digital Oscilloscope or Spectrum Analyzer

2. Calculate them mathematically

3. Simulation

The first approach can be difficult since it involves actually building a working

system. This may not be practical if you are only interested in the PSD of some new

communication approach. The second approach can also be difficult simply due to the

mathematics involved, and it becomes more challenging once coding is introduced. For

example, what is the PSD of a Hamming code? The third approach is therefore often

used. In this Appendix, the second approach is considered in detail.
198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Binary Hamming
Source

...... w
Encoder

..—"W-► PSD = ?

Figure A-2: Once coding is introduced, calculating the PSD can be challenging

A.2. How to calculate RMS for non-sinusoidal signals

Quite often measuring equipment such as oscilloscopes work in RMS when

dealing with time varying voltages. Therefore to compare calculations with measured

values it is convenient to also work in RMS. Thus it is useful to review this concept.

The RMS (root mean square) value of a signal is defined in general as the

square root of the power of a time varying signal. It was originally used to determine the

equivalent DC voltage required to deliver the same power as a sinusoidal signal.

Example 1 - RMS: Consider a lVpp sine wave at 1MHz. This is a signal that varies

from -0.5V to +0.5V and would be written as y,(/) = 0.5sin { i n f t) . Find the power and

RMS voltage with t0 = 1 / / .

T»»TiTzoowlTy ae«Tlt«^Kc rhTt?o»>Ipr o wTKn[?cf 1 rTooT»lftlf«bKg[/o3lcfDfhl«rrf'i,JrnlDlci/a^r 11,1 ■

O.eO f f l

' • ' 1 2 3 .1 * - 3 f v ," .’W *

'SERIES. ROD RUTH FUNC FSERIES . RAD AIITO FUNC i / J O FSERIES.

Figure A-3: Calculating the power and RMS of a sine wave

As shown in Figure A-3 the power is found to be 125mW assuming the voltage is

dissipated over 1 ohm. The square root of the power gives 353.55mV RMS. Thus

353.55mV is the equivalent DC voltage that would give the same power over 1 ohm, that

is (353.55mV DC)2 = 125mW.

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A simplified way to find the RMS voltage for sinusoidal waveforms is:

RMS = M RMS = Vpeak
2 V 2 V 2

(A.l)

Either way the result is
1 V p p _

2 V 2
= 353.55m V" ^ - = 353.55mV

• A gilent Technologies ' A gilent Technologic* .

m m
tn»3aU98wV̂ rwHMClWli005WW>ffH»MiWMTNTSW;

Figure A-4: Digital oscilloscope measurements

Oscilloscope screen shots shown above in Figure A-4 have a peak to peak value

of 1.073V and as a result the measured the RMS value is 381mV. This matches very

closely to 379.36mV and 1.073/(2V2) = 379.36mV.

A.3. Comparing Fourier calculations to spectrum analyzer output

Converting periodic time domain signals to the frequency domain is done with

Fourier Series representations. These are classified as the Trigonometric Fourier Series,

the Compact Fourier Series and the Exponential Fourier Series.

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.4. Trigonometric Fourier Series
oo

/ (o = ^ + Z (« flc ° s (« ® ^) + M in (w® ® o) (A -2)
n=I

2nwhere a)0 = — , T0 is the period
Tn

" o - — { ' / «) < *

an =— j^ f(t)cm(nto0t)dt n = 1,2,3.. (A.3)
0

bn= 7 r t s^ o O d t n = 1,2,3.T0

A.5. Compact Fourier Series

An equivalent form of the trigonometric Fourier series is to combine the sine and

cosine terms into a single sinusoid using the identity

an cos(jtQ)0t) + bn sin(nco0t) = Cn cos(jno)0t + dn) (A.4)

C n ~ y la „2 + b n

d„ = tan-1
r - b A f (t) = Co + '£ C ncos(na>ot + 0n) (A.5)

n

\ a n :j
n=1

A.6. Exponential Fourier Series

This is the most compact form of the Fourier series and it is based on the Euler

identities since each sinusoid is expressed as the sum of two exponentials.

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

eje -e~ j0 eJ0 + e~J0sin(0) = ------ ;— and cos(0) = ------------ (A.6)
2 j 2

m = where m < r ™ i t (A.7)
O ' °

The important thing to note with an Exponential Fourier Series is that it is a two-

sided series. Thus there are negative and positive frequency components that range from

-oo to +oo. This is in contrast to the Compact and Trigonometric Fourier Series that are

one-sided series that only have positive frequency components in the range 0 to +oo. Note

that these two forms are related by Equation A.8 for real valued signals.

C„ = 2Dn n = 1,2,3— (A.8)

Example 2 - Compact Fourier Series: Calculate the Fourier series of a 100kHz, 2.9V,

50% duty cycle unipolar square wave.

A gilent tec hno log ic*A gilent T echno log io r

r » r /A X ^ ^ 'O M B g iW T f A W g l» ? M O V » ! M ? i rA v q I2 3 t ~ I * 3 Z V .-i W # E HKSC 2) l<

Figure A-5: 50% duty cycle square wave on scope

tii'U lq 1 tffhsjcom » octico1xl' . "1. ■■■; fMfllfjGlSSa1iTfH3lcew»actfcoMil«xI 11
M y *■ i-v \ ̂ ^ 5l-t \ *i f to "
^ J ? " 2-875<it + J £ '■0 Z U i " T S ' J? "(C 2 .8 7 5)2) c i t+ | ^

S'. *____ 1 .4 2 2 eO ____________________2 .0 3 3 0 5 eQ

rS E B lE J' h e m e s

Figure A-6: Calculating the average and RMS

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figures A-5 and A-6 show that the calculated average and RMS values are

practically identical to the measured values. Calculating the Trigonometric Fourier Series

by Equation A.3 with /„ =100kHz and t0 = l / / 0 = lOps is shown below in Figures A-7

and A-8.

B E i p p s g u ,

(*lH(6tf283l9t0
42210

AUTO-r‘> A " . ’J ricuEi

Figure A-7: Calculating ao and a„

fMainiai»§4liTfrl5lc«n>«tlc«wi>U»l .;■■■ 1
 ̂ fiy'1 (

■ b n f (2 . 8 7 5 , 0 , + b n f [- . 0 3 1 , - y - , t o] •» bn ,

1̂ 9 .8 6 7 6 1 e -3 * (0 0 5 (6 . 2 8 3 1 9 e 0 t Q - 9 3 . 7 4 1 9 e 0 (c o s d .1 4 1 5 9 B 0 i?

I f f l T O H f M I I M f l f f l f f lrSERIES- » RAD EltlTO FUNC , 1/10 t

Figure A-8: Calculating b„

Figure A-7 shows that a0 = 1.422V which is identical to the DC average shown in

Figure A-6. As well, the an and bn values are calculated for n -1,2,3,... which are used

to calculate the Compact Fourier Series using Equation A.5.

' Fi*T Fi* T F3*T > FH* T FS* I Mflln (Sloboli iTrtJ Contact CorwUx 1 |'F1»T F2- tfl-T FA- T rs- f 1 Main Globali TrIJ C«mR4ct C«mrl«x| 1 f f i s b S i i e u s u u i i a M M
: ' cny =

!*any 'fjCO.EO 986.761 e -18 -657>
■\bny
••Cl . 85002e0 "986. 761e "!£►

•T<anyA2+bnyA2:>

FSERIES RFID AUTO FllhiC 2/10 FSERIES ROD AUTO FIJNt HWH3 FSERIES .-» .- JRRD A O T l a j * r i l l t f . l l l i ' l i HIM

Figure A-9: Shows the a„ and b„ values in a list, and the conversion to find the C„ values

vi't. ' ' v > i , ^ y $$$#!
EcnxUfV.it* t , l, ,* ”,J i 1 i ' v' • ' k.*'* i v ’

1.42210 1.85002e0 1.3954?!-13 616,672* "3 43.26641-15 ,370.0031-3. 30.1776fl3.. 264.
0’.'«0‘ 100. (3 200. *3 300.13 400. *3, , 300.13 600. «3.' ' '<i .7W&
O. *0 l.ko_____2 .iQ 3 .cO 4.*0 *' 3.*0 6.«0' ‘ , V . . 7.:«0̂
SRlS;kitiufi w iK '.njir 1 *• - > '' *!

Figure A-10: Cn values in a list with frequency values and n index below

m

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure A -ll: 0n values shown in iist with frequency values and n index below

Figures A-10 and A -ll above show the Compact Fourier Series representation of

the signal. These magnitude and phase values indicate exactly how to recreate f (t) . That

is you would need a DC level of 1.422V, plus a 1.85V peak cosine wave of frequency

100kHz with initial phase -1.57 rad, plus a 0.616V peak cosine wave of frequency

important when converting to RMS.

A.7. Comparing to a Spectrum Analyzer and Digital Oscilloscope

In order to compare measured results to calculations, two things must be taken

into account. First, most spectrum analyzers (SA) and digital oscilloscopes (DO) only

show one-sided spectra, and second, SAs and DOs often work in RMS, and display their

results in decibels (dB). Specifically the DOs considered here work in dBVRMs, which is

dB per I V r m s normalized to 1 ohm, and SAs work in dBm, which is dB per lmW

normalized to 50 ohms.

As a result the Compact Fourier Series is a natural choice since the C„ values are

already one sided. All that is required for comparison is to convert them to dB. This can

easily be done by dividing them by -Jl first (Equation A -l) since they are Vpeak, and

then converting them to the appropriate dB scale as shown in Equations A-9 and A-10.

300kHz with initial phase -1.57 plus and so on. Clearly these are peak values which is

dB VRMS =10 Log (A.9)

dBm =10 Log (A. 10)

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example Figure A-12 shows the square wave from Example 2 in the

frequency domain. Figure A-13 shows the dBVRMs values calculated from the C„ values,

and Table A-l shows how these calculated values match up with the measured values

from the DO.

Figure A-12: DO showing the frequency domain PSD of this square wave

■7v20921eO -269 .695 eO -I1 .6 4 6 2 e0 -2 7 3 .4 I7 eO -14.5687e0 -269 /662 e0

Figure A-13: Calculated dBVRMs values of the square wave

Table A -l: Showing how the measured and calculated values match up

Harmonic Frequency (kHz) DBVrms measured Calculated
F u n d a m e n t a l 1 0 0 2 . 5 2 . 3 1

<■-.('

3 3 0 0 - 7 . 1 9 - 7 . 2 2

•' ,Vi -■ U!'l

5 5 0 0 - 1 1 . 5 6 - 1 1 . 6 6

7 7 0 0 - 1 4 . 4 4 - 1 4 . 5 8

■:. t < ij (i

9 9 0 0 - 1 6 . 5 6 - 1 6 . 7 6

Clearly this approach is very accurate.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly Figure A-14 shows the same output on the SA. Figure A-15 shows the

dBm values being calculated from the C„ values, and Table A-2 shows how these

calculated values match up with the measured values.

Figure A-14: SA showing the frequency domain PSD of this square wave

"r M y , v M / - '

-2 3 -
^ lg & 4 3 5(0«g287£ lQ 5E 0 '0o5 .8Q]09(0 -296 .884(0 1 .36411«0 -260.406(01
lOilog

■ ■ - v
-1 .99845(0 -296 .651(0 A i 3

Figure A-15: Calculated dBm values of the square wave

Table A-2: Showing how the measured and calculated values match up

Harmonic Frequency (kHz) dBm measured Calculated
F u n d a m e n t a l 1 0 0 1 5 . 4 2 1 5 . 3 2

, < 2 0 !)

3 3 0 0 6 . 1 1 5 . 7 8

■. 0 0 - . 2 0 0

5 5 0 0 1 . 6 5 1 . 3 4

. A 0 2 0 0

7 7 0 0 - 1 . 3 7 - 1 . 5 7

At ,

9 9 0 0 - 3 . 4 5 - 3 . 7 5

Clearly this approach is very accurate.

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 3 - Repeat Example 2 with a square wave that does not have a 50% duty cycle:

r Agilent Technologies Agilent Technologies

r a w
Figure A-16: Square wave with a 6.25% duty cycle

Figure A-16 shows a square wave with one lOus pulse every 160us. This can also

be thought of as a 100kHz square wave with a 6.25% duty cycle. Looking at Figure A-16

shows that there is a slight DC offset of approximately 94mV, so the 2.65V peak to peak

signal swings from 94mV to 2.75V.

f h l a i r i l a i c t a l i l T H i j c t A m c (Ic« p i> H kI i- 1 f j^ o in T G lo S o l iT ^ S T c ^ M r V c d c o w p lS a J S ^ y ^ y i

i . . 0 9 4 - 1 5 . 2 . 7 5 1

1 6 + 1 6
! 2 6 0 . E r 3

f e g M b B H M i a S B n r
FSERIES- .. . RRD RUTD . J F U N '

(. 0 9 4) • 1 5 . (2 . 7 5) , t - 1 , ■ >{

1 6 + 7 6 . 0
6 9 3 ; 4 9 8 E r 3

Figure A-17: Calculating Average and RMS values for the 6.25% duty cycle square wave

Figure A-17 shows how to calculate the average. The signal has 94mV for 15716th

of the period, and 2.75V for l/16th of the period for an average of 260mV, or 271.2mV

measured. As well, the same approach can be used for the RMS voltage where 693.5mV

is calculated and 692.lmV is measured. Note that 15/16Ul of the period can also be

considered as 15 out of 16 bits and l/16th of the period can be considered 1 out of 16 bits.

As shown in Figure A-18 the measured spectra appear more dense and more like

the spectrum that corresponds to a single square wave. This result is pleasing since as the

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

duty cycle decreases the pulses become farther apart and the time domain signal itself

begins to appear more and more like a single square wave. Therefore the Fourier

Transform could almost be used to calculated the spectrum (or “frequency content of the

signal”) instead of the Fourier Series.

Agilent Technologic*

Figure A-18: 6.25% duty cycle square wave in the frequency domain on the DO and SA

Table A-3: Measured vs calculated for dBm and dBVRMs for 6.25% duty cycle square wave

Harmonic Frequency
(kHz)

dBm

measured

dBm
calculated

D B V rms

measured
D B V rms

calculated
i 6 . 2 5 - 1 . 5 0 . 3 4 7 - 1 2 . 8 1 - 1 2 . 6 6

2 1 2 . 5 0 - 0 . 1 0 . 1 7 8 - 1 2 . 8 1 - 1 2 . 8 3

3 1 8 . 7 5 - 0 . 1 1 - 0 . 1 0 5 - 1 3 . 1 3 - 1 3 . 1 1

4 2 5 . 0 0 - 0 . 3 7 3 - 0 . 5 0 8 - 1 3 . 4 4 - 1 3 . 5 1

5 3 1 . 2 5 - 0 . 8 5 7 - 1 . 0 3 9 - 1 3 . 7 5 - 1 4 . 0 5

6 3 7 . 5 0 - 1 . 5 2 - 1 . 7 0 8 - 1 4 . 3 8 - 1 4 . 7 1

7 4 3 . 7 5 - 2 . 3 8 - 2 . 5 2 7 - 1 5 . 3 1 - 1 5 . 5 3

8 5 0 . 0 0 - 3 . 4 4 - 3 . 5 1 9 - 1 6 . 2 5 - 1 6 . 5 2

9 5 6 . 2 5 - 4 . 6 7 - 4 . 7 1 0 - 1 7 . 5 - 1 7 . 7 2

10 6 2 . 5 0 - 6 . 1 6 - 6 . 1 4 - 1 9 . 0 6 - 1 9 . 1 5

11 6 8 . 7 5 - 7 . 8 2 - 7 . 8 8 - 2 0 . 9 4 - 2 0 . 8 9

12 7 5 . 0 0 - 9 . 9 1 - 1 0 . 0 5 - 2 2 . 8 1 - 2 3 . 0 6

13 8 1 . 2 5 - 1 2 . 6 4 - 1 2 . 8 4 - 2 5 . 6 2 - 2 5 . 8 5

14 8 7 . 5 0 - 1 6 . 4 7 - 1 6 . 7 2 - 2 9 . 6 9 - 2 9 . 7 3

15 9 3 . 7 5 - 2 2 . 7 6 - 2 3 . 1 7 - 3 5 . 9 4 - 3 6 . 1 8

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

A.8. Random Binary Signals

Examples so far have considered only the cases of repeating periodic signals. A

different approach is needed when these signals are random. Consider a random binary

waveform that takes on two different values + A and - A , with transitions that occur only

at integer multiples of the symbol period 7& with symbol values that are equally likely.

This can be considered a discrete time random process with the probability density

function (PDF) shown in Figure A-:19.

G M w . G T

-A -A

Figure A-19: PDF for the discrete time random process

Since this is now a random process (random signal) there is no easy way to do

Fourier analysis. Therefore how does one find the PSD of a signal that is not

deterministic? Clearly this signal can take on an infinite number of sequences. The PSD

would be known if the duty cycle was always 50% or 6.25% like in Example 1 and 2,

however now the signal can have any duty cycle at any given time. Since each sequence

is different and not periodic the best we can realistically do is to evaluate this signal in

terms of some average statistics of bit sequences. In order to do this we need the concept

of a random process.

A random process (also known as a stochastic process) is a mapping of an

experimental outcome to a function of time. Each waveform associated with an

experiment is called a sample function. The collection of all sample functions is called

the ensemble of the random process. In general there are two approaches to evaluating

average statistics of random processes:

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Time average: Examine one sample function from the ensemble (collection of

sequences) over an extended period of time, i.e. examine a typical sequence

2. Ensemble average: Take averages over all possible different sample functions.

This is usually the more comprehensive approach since we don’t know if any one

sample function is representative of the entire ensemble.

A process whose ensemble statistics don’t change with time is a stationary

process. They are usually called strict sense stationary (SSS) processes if all statistics

do not change with time. i.e. PDF’s and CDF’s do not change with time. They are wide

sense stationary (or weak sense stationary) (WSS) if at least the first and second order

statistics do not change with time, i.e. the mean and variance. Processes in which all time

averages of all sample functions are equal to the ensemble averages are called strict

sense ergodic processes. If at least the first and second order time averages are equal to

the first and second order ensemble averages then the process is called wide sense

ergodic (or weak sense ergodic).

Note that in reality there is no such thing as a stationary process. However many

processes can be considered stationary for the time interval of interest and this stationary

assumption allows for a manageable mathematical model.

Some

. •

NOTE: When processes are zero mean (such as noise) the variance is the total power and

the standard deviation is the total RMS value.

210

common sta tistics about random processes that are often useful

E[x] - Expected value or average. Indicates the DC level of the signal

E [x 2~\ - Expected square value - Total power (AC+DC) of the signal

a 2 = E[x 2] - (E [x])2 - Variance - Total AC power (i.e. subtracting DC power)

a = Standard Deviation - RMS value of the AC components

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In general only two statistics are usually considered which are the mean and the

autocorrelation of the random process. The autocorrelation of a random process is a

measure of how similar the process is to itself as time increases. That is, correlating the

function with itself as a function of time separation gives an indication of how quickly

one can expect the random process to change. This will be demonstrated by example.

Example 4 - A random process: Consider the transmission of a signal from a TX to an

RX where the frequency is given a s /H z and the attenuation is minimal. The received

phase can be any value from 0 to I n . This is shown in Equation A. 11:

where A and co are constants and the phase © is a uniform random variable over

[~n,n] . Therefore the PDF is shown in Figure A-20.

As shown in Equations A.12 and A.13 respectively, the first step is to find the

time averaged mean and ensemble mean.

Time averaged mean:

X(t) = Acos(wt + 0) (A. 11)

f M

0 otherwise
- T V n

Figure A-20: PDF of the random process for Example 4

(x(t)) = lim — J A cos (cot + &)dt

0 -TqI2

(A.12)

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ensemble mean:

jux(» =■£[*(*)] = / Acos(ax + 0)f9 09)d0
—e e

A 00
= — [cos(a)t + 0)dd = 0

In 1

(A. 13)

By inspection the average value of any cosine wave regardless of phase will be 0,

i.e. no DC value. Thus even when considering the ensemble mean (all sample functions)

there will be an equal number of sample functions above and below zero and thus the

mean is still 0. Therefore this process is Ergodic in the mean since (x(t)) = 2i[X(0]

The next step is to find the time averaged autocorrelation and ensemble

autocorrelation as shown in Equations A.14 and A.15 respectively.

Time averaged autocorrelation:

Rxx(r) = {x (t)x (t + T)}

R^ir) = lim— J A2cos(fltf+0)cos(ty(f+T)+0)df
r - > ” ^ - T 12

_ Tq/2 j
Rxx(T) = — J — [costy/+cos(2<yr + 20+tt>r)]dt

j 7 7 2

(A.14)

0 - r 0/ 2

R ^ it) - — cosm
2

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ensemble autocorrelation:

*„(f,f + r)= £ [X (/)X (f + r)]

S A 2 „

A 2 "f l (A.i5)
^ (t j + r) = — J — cos cot + cos (2cot + 20 + (OT)dd

*2*7T . 2—ft

QOS COT

This process is Ergodic in the autocorrelation since (x(t)x(t + r)) = E [X {t)X (r + r)].

Furthermore since the mean is constant (does not depend on time) and the

autocorrelation is a function of time separation t only (does not depend on time) then we

can conclude that this process is wide sense stationary (WSS).

Example 5 - Random Binary Signal. Recall from Section 2.19 the random binary

waveform where 0 is mapped to -A and 1 is mapped to +A. Transitions occur only at

integer multiples of the symbol period Tb and the symbol values are equally likely. If we

let A = 1 then by inspection we can see that if 50% of the time there are -Is, and 50% of

the time there are + ls, then the mean value (DC value, expected value) of this random

process should be 0. This is found to be true as shown in Equation A.16.

Note that Equation A.16 finds the ensemble average and not the time average.

Time averages are not as useful as ensemble averages in this case since a single sample

function will not be indicative of all sample functions. Thus only ensemble averages will

be considered from this point on.

(A.16)

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The autocorrelation of a random binary waveform is not as straightforward as the

previous example since it is known as a cyclostationary random process. This means

that by the above definitions this random binary process is not strictly stationary, or even

wide sense stationary. However it turns out that the statistics (mean, autocorrelation etc)

are periodic. Therefore an average over mean and an average autocorrelation can be

evaluated to obtain a stationary result. Hence the term cyclostationary (cyclically

stationary).

To analyze random binary processes it is useful to interpret discrete time signals

as trains of delta functions as shown in Figure A-21 and Equation A.17. This maps a

discrete time random process to a continuous time random process.

Discrete Time +A +A +A -A +A -A

(+A) (+A) (+A) (+A)
A A A A

Continuous Time ------ ------------- ------------- ----------— — ---------- —

T ▼
(■A) C-A)

Figure A-21: Discrete time random process mapped to continuous time with delta functions

x(t)= ^ akS (t-k T b) (A. 17)
k=-+o

This works well since we can consider the final waveform to be the convolution

of the train of delta functions with a pulse shape p(t) as shown in Figure A-22 and

Equation A-18.

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure A-22: Waveform is a convolution of the pulse shape and train of delta functions

x (t) - p(t) * akS (t-k T b)
* = - »

(A. 18)

Therefore the average autocorrelation function for cyclostationary random

processes as a function of time separation t is defined as

£ E[v „ t]S (r -k T J
k=-

(A.19)

Equation A. 19 is indicating that to evaluate the autocorrelation of this

cyclostationary process, first convolve the pulse shape with itself, then convolve the

result with the autocorrelation of the source symbols averaged over all time. An example

of a square pulse shape being convolved with itself is shown in Figure A-23.

p tt P(-T) P(t)*p(-T)

. T

-T/2 T/2 -712 T/2 -T

Figure A-23: Square pulse shape being convolved with itself

Equation A.20 shows the autocorrelation of the source symbols.

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

„ l k = 0 E[x2n] = A 2

1 ^ 0 £ [V f l + J = ^ J £ U „ +J = 0
(A.20)

Finally the autocorrelation by Equation A.19 is shown graphically in Figure A-24.

A

-T/2 T/2

autocorrelation

-T

Figure A-24: Graphical depiction of Equation A.19

The Fourier Transform of the autocorrelation function of a random process is the

power spectral density.

only place
where delta

function exists

1
- j a n t

Sx(co) = T [Rx(t)]

S x(ro) = j ^ E [a ka k„ t] - e
/ / * «*=-« ^

effect o f correlation of
pulse shape symbols

Figure A-25: Fourier transform of the autocorrelation function is the PSD

Mew Iext Bebug areekpow* Web Window Uet>

IS 'is : f l f l l gl € l I ©t UH

| d cs a a l *t a 2> / i ^ P p
. . , t Y- w'

4

f k PSD o£ a b i n a r y random w a v e fo r m
a - A - 2 ;

i? ‘3 T - i ;r 4- C - l ;

i 5 ■- f - l O t . 0 1 : 1 0 ;
6- Sx • A * 2 * T * (a l n (2 » p i « £ « t * T / 2) . / (2 * p i » £ ' C * T / 2)) . * 2 ;7 dBSx > 1 0 * l o g l 0 (((((s q r t (S x) / a q r c (2)) . * 2) / , 0 0 1) / S O)) ;
e - s u b p l o t (2 , l , l)

'i ,9 p l o t (t , S x)
M O w s u b p l o c (2 , l , 2)
I* 11 - p l o t (t , d B S x) ;
t 12 a x i s ([0 , 1 0 , - 4 0 , 2 0]) ;

d -

!4|> PBDblnary.m I

fReady

9®

»V,i7tfW&S
-iU«

Figure A-26: Matlab script showing PSD that matches with Example 3
216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure A-25 shows the process to find the PSD from the autocorrelation function.

Figure A-26 shows the Matlab script that performs this calculation and plots the PSD.

Comparing the shape of this PSD to that found in Example 3 shows their similarity. The

difference is that this PSD is continuous since this random process contains every

possible duty cycle square wave. Thus Example 5 demonstrated how to find the spectrum

of a random binary waveform.

A.9. Finding the PSD of a Coded Binary Signal

This challenging topic was first covered by Cariolaro and Tronca. Their approach

is to first model the communication system as a finite state machine, then analyze it using

the theory of Markov Chains.

A.10. Finite Stale Machines

Any system which operates at discrete instants of time and takes on a finite

number of configurations can be represented as a Finite State Machine (FSM). A general

description of a FSM is a system that operates on a finite number of inputs and assumes a

specific internal state based on those inputs. The output of the FSM can be determined in

two ways.

1. Moore machine: The output is a function of the internal state only.

2. Mealy machine: The output is a function of the internal state and the

present input.

A general Mealy FSM is shown in Figure A-27. In this model let Sn, Cn and Ln

represent the input, output and internal state values of the system respectively. The

system then operates in time intervals T , with a new state being generated every t = n T .

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore using this FSM to model a coded system, Sn would be the input SWs, C„

would be the output CWs, and Ln would represent the internal state o f the encoder.

Memory
Next State

Combinational
Logic

Output
Combinational

Logic

Cn

Figure A-27: Mealy Finite State Machine (FSM)

Cn = f [L n,Sn]

k + i — 8 I k i >̂ n]
(A.21)

A FSM can also be represented graphically by a state diagram which shows the

progression of states through which the system operates and the resulting outputs based

on specific inputs.

Example 6 - FSM encoder: Below is a typical Vi rate convolutional encoder with

constraint length 2. The Vi comes from the fact that 1 source bit (SW) is encoded to 2

coded bits (CW).

XOR
gato

LSBM SB

Figure A-28: Rate V t convolutional encoder

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, consider the encoded output corresponding to the following input sequence

10 1 0 0

Details of the operation of the circuit are:

and the output sequence would be

1 1 1 0 0 0 1 0 1 1

Modeling this convolutional encoder as a FSM allows creation of the state

diagram as shown in Figure A-29. This is done by considering all possible states with the

corresponding inputs and outputs.

Figure A-29: FSM of the convolutional encoder of Example 6

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Clk Regs
00

i/p o/p

l 01 1 11

2 10 0 10

3 01 1 00

4 10 0 10

5 00 0 11

Clearly the FSM model of a communications system is useful since once the FSM

model is complete, the behavior of the system can be determined very easily. As well,

Cariolaro and Tronca require modeling the coding system as a FSM and analyzing it as a

Markov Chain in order to find the PSD.

A .l l . Markov Chains

A random process X(t) is a Markov Process if the future value (or state) of the

process is dependent only on its immediate present value (or state). In other words, the

process is independent of the past, and its future value is dependent only on its present

value. Equation A.22 indicates that the probability of X (t) assuming a new value given

all the past values for all time is equal to the probability of X (t) assuming a new value if

only the immediate value xk is considered.

P [X (t lJ = xM \X (h) = xk,. . . ,X(tl) = xl] = P[X(tM) = x t , l \ X i t t) = xk] (A.22)

An integer valued Markov Process is a discrete time random process that is called

a Markov Chain. Here the random variable X n takes on a countable number of values at

discrete moments in time, where T is the interval between discrete time events. The value

of X n at the discrete time n is referred to as the state of the process at time n .

X „ = X (n T) (A.23)

In Markov chains the probability distribution functions (PDFs) that are

conditioned on several time instants always reduce to one PDF that is conditioned only

on the most recent time instant. This is known as the Markov property. For this reason

the value of X n at the discrete time n is referred to as the state of the process at time n .

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.12. Markov Chain Properties

In general a system can be modeled by a Markov chain if the sequence of trials

satisfy the following properties:

1. Each outcome belongs to a finite set of outcomes {a\ ,0 2 , • • • ,am} called the
state space of the system. If the outcome on the nth trial is a,-, then the
system is defined to be in state a; at time n, or the system is in state a,- at
the /Ith step.

2. The outcome of any trial depends at most upon the outcome of the
immediately preceding trial and not upon any other previous outcome.

3. There is a given probability py that state aj occurs immediately after the
occurrence of a,-. Therefore if the system is currently in state a,-, then py is
the probability o f moving to state aj.

The numbers ptj from requirement 3 are called the transition probabilities and they

can be arranged in a matrix called the transition matrix as shown in Equation A.24.

vector that sums to 1. In addition to the transition matrix a Markov chain has an initial

probability vector p that indicates the starting state. This is best shown in an example.

p =n =
Pl 1 P n ••• P\m

P21 P22 P2m (A.24)

_Pm\ P m2 '' P mm J

The transition matrix H is a stochastic matrix since each row is a probability

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 7 - Simple Markov Chain: After work a woman enjoys either working out or

playing tennis. Since the workout can be quite tiring she never works out 2 days in a row.

However if she plays tennis one afternoon, she is just as likely to play tennis the next

afternoon as she is to work out. This can be modeled as a Markov chain since the

outcome on any day depends only on what happened the preceding day. The transition

matrix is shown in Figure A-30.

w T
W I 0

1 1

- t |
1
2

1
2 /

Figure A-30: Transition matrix for Example 7

In this figure, W denotes working out and T denotes playing tennis. The rows

denote the activity on the current day, and the columns denote the activity on the next

day. This matrix is then read in the following manner. If the woman worked out one

afternoon she definitely plays tennis the next afternoon (i.e. she never works out 2 days in

a row). If however she played tennis one afternoon, 50% of the time she will play tennis

the next afternoon and 50% of the time she will work out the next afternoon. This can

also be shown as a state diagram as shown in Figure A-31.

1 :

(wQ 7 X > . 5

' 0 5

Figure A-31: State diagram for Example 7

Here it is very easy to see that if she works out one day she does not work out the

next. However if she plays tennis one day she is just a likely to play tennis the next day as

she is to work out.

■ 222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now consider this. What is the likelihood that she will play tennis two days from

the current day? This is easy to solve. If she works out today she definitely plays tennis

the next day (100%), and then two days later there is a 50% chance of playing tennis. If

she plays tennis today she works out the next day 50% of the time and plays tennis 50%

of the time. Two days from now if she had worked out she definitely plays tennis (100%),

otherwise there is a 50% chance that she will play tennis. In terms of a probability tree

there are two ways she can play tennis again and one way she will work out again in 2

days. So to summarize

If the woman is currently working out, two afternoons from now:

• the probability that she will work out again is 1/2.

• the probability that she will play tennis is 1/2.

If the woman is currently playing tennis, two afternoons from now:

• the probability that she will work out is 1/4.

• the probability that she will play tennis again is 3/4.

Notice that this can be done elegantly using matrix powers as shown in Figure A-32.

w T
f 0 (°

w/ 1 Tl \
(0 1 1 1 1 1 \ W 2 2

1
\ 2

1
2 J

P = l
' 2

1
2 u

1
2 J ’ ! 1

I 4
3
4 I

Figure A-32: Matrix powers can And the two step probability

The component py in the transition matrix P of a Markov chain is the probability

that the system changes from the state ai to the state a} in one step (i.e. one time instant).

From the above example in one time instant we can move from either state 1 to 2, or from

state 2 to 1, or stay in state 2. The probabilities in the transition matrix then show the one-

step probabilities.

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However we may want to know the probability of moving from state at to state aj

in two or more steps. This can be accomplished simply by matrix multiplication as shown

in Equation A.25

p 2 = p p or r r = n n (A.25)

Based on this result, it is easy to evaluate the probability of this woman working

out or playing tennis in four days, five days or even one hundred days using

P 4,P 5, andP100 as shown in Figure A-33.

«»TilfliftfK«lfficIoKtKl>AwinTc»t?i7uyK1 fTUTjflik̂ J/oVcInfclf/iwinlcifaVû lit&l

’0 1 ' ■ p4 " [.3 7 5 . 625 ''
: u 2 •■X/2\ [.3 1 2 5 . 6875,

^ , i , 'U 2 . 1/2' ■ p5 r.3 1 2 5 .6875 '
,U 4 3/4. L. 34375 .65625, ."P

100

2 / 3 0 FSCRIES

 .6 6 6 0 2 -
, 3 3 3 0 1 ' | 6 6 6 9 ? j
. 3 3 3 3 3 ; ^ 6 6 6 6 | |
. 3 3 3 3 3 .6 6 6 6 7]

2 /3 0 FSERIES. ifFuHc. . -2/30!

Figure A-33: 4-step, 5-step and 100-step probabilities for Example 7

The interesting thing to note in Figure A-33 is that these matrix powers are

converging to a special matrix that has identical rows. After a certain number of steps

(matrix powers), the probability of being in state W or T approaches a constant regardless

of the starting state. This special matrix is called the transition matrix n (sometimes

called the T matrix) and the rows of this matrix are known as the invariant probability

vector n (also sometime called /l„).

A.13. Partial Summary

It would be useful to summarize the most important concepts so far.

• Oscilloscopes and spectrum analyzers generally work in RMS and dB

• Communication systems must be analyzed as random processes

• Coding in systems adds an extra dimension of difficulty
224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Cariolaro and Tronca developed a way to find the PSD of these systems,
they require modeling the system as a FSM, and then analyzing the system
using Markov Chains.

With these definitions the PSD of systems that use coding can be performed using

the approach developed by Cariolaro and Tronca. Their approach is quite involved and

two more examples will be explored to explain how their approach works.

A.14. PSD of Coded Systems - Simplest Example

Example 8 - 50% duty cycle square wave revisited: Evaluate the PSD of the same

50% duty cycle square wave from Example 2, with 2.9V peak and fundamental

frequency of 100kHz.

While this is not really a coding system it can be considered a coding operation

with the mapping 1 -410 and 0 —> 10. Hence this is a 1:2 mapping and each CW is 2-bits

long. Secondly we can assume that the source outputs a 1 or a 0 bit (SW) with equal

probability. The first step is to represent the system as a finite state machine and draw a

state diagram. However in this example system there would only be one state no matter

what the input symbols are and the output would always be 10 as shown in Figure A-34.

Figure A-34: Original state diagram of the example system

This would lead to a very trivial example and therefore the model used in this

example will be modified to have two states as shown in Figure A-35. This does not

change the functionality since the system is still always outputting a 50% duty cycle

square wave.

225

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 / 1 0

0/10

1/10

0/10

Figure A-35: Expanded state diagram for the example system

This model is adequate since we can consider:

• Is and Os are equally likely

• In state So a 1 is mapped to a 10 and a 0 is mapped to a 10

• In state Si a 1 is mapped to a 10 and a 0 is mapped to a 10

A couple observations:

• Due to this coding procedure (mapping), the source statistics are irrelevant (on

purpose). That is, even if the source outputs Is constantly, the output sequence

will always be 10101010 etc.

• Since both a 1 or a 0 forces a move to the other state, we can intuitively

determine that 50% of the time is spent in each state.

• Since the output is always 10 repeatedly, if we had to determine the average

output it would have to be 10.

The next step is to define the input probability matrix Qu for u = 1,2,...,5 as

shown in Equation A.26, where S is the number of SWs. In this example, S = 2 since the

1-bit SWs are either 0 or 1. Equation A.26 is showing the probability of a particular SW

being chosen given the current state. It is written in diagonal form for mathematical

convenience.

p r w m - e a , t - l p (s w ! ''> • i = '
< 1 ')* ' o otherwise

(A.26)

226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Also define Eu for u = 1,2,...,5 as the next-state matrices, where Eu(i, j) = 1 if

and only if state lj is entered from state /,• given input Su. Thus for each possible SW S„,

the system will move to only one state so the Eu matrices will have a single 1 on each

row. Finally define Cu for u =1,2,...,5 as the CW matrix, where Cu(i , j) is the CW

generated when state lj is entered due to a given input Su. These are shown in Equations

A.27 and A.28.

*0 =

0 . =

'0.5 0 " '0 1' '10'
E0 = c 0 =

0 0.5 U _1 0 u 10

0.5 0 ' '0 f '10'
Ei = c , =

0 0.5 I 1 0 1 10

(A.27)

(A.28)

Therefore by considering all the ways in which these state transitions can occur

and the probability of their occurrence, it is clear that a transition probability matrix

can be constructed by Equation A.29.

p=.n
U=1

(A.29)

p = n =
'0.5 0 ' '0 l '

+
'0.5 0 " '0 l' '0 1'

0 0.5 _1 0 0 0.5 1 0 1 0
(A.30)

The transition probability matrix P in Equation A.30 indicates that if the system is

currently in state 0, the probability of moving to state 1 is 100%. Likewise if the system

is currently in state 1 the probability of moving to state 0 is 100%, as expected.

Once the transition probability matrix is found the invariant probability

distribution can be found by taking P to high powers. However from Markov Chain

Theory it is found that P is a non-regular, irreducible, periodic Markov Chain with d=2.

227

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus the subsequent powers will oscillate between d different matrices. However like

most things in probability, we can once again average over these matrices to find a

stationary distribution. Therefore finding the invariant stationary distribution is

(A.31)

, 1 f '0 1' '1 O' '.5 .5'
M = - + =

2 \ 1 0 0 1 J .5 .5_
therefore n - [.5 .5] (A.32)

Thus vector n indicates, as expected, that this system spends 50% of the time in

each state. As well the CW cu (i) will occur with probability 7i{i)du (i,i) and thus the

average CW or mean symbol vector can be found by summing over all CWs multiplied

by their likelihood as shown in Equation A.33.

V c = ^ e uc u = l 5 -5]
K=1

.5 0
0 .5

20
20

= [.5 .5]
10
10

= [10] (A.33)

As expected the average CW is 10. As already discussed this is the only CW so it

must obviously be the average CW.

Now consider evaluation of the symbol sequence autocorrelation

K ,k = E [c ncn+k]. Consider first Rco or evaluation of E\cncn\ . Since symbol cu(i)

occurs with probability n(i)du(i, i), the contribution of this symbol to Rco is

cl(i)n(i)0u (i, i) . Therefore to find the contribution from all CWs to Rc o , Cariolaro and

Tronca first define A as the L-square diagonal matrix such that

228

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M U j) =
f 7 t (i)

I 0
t = J

otherwise
(A.34)

Then summing over all CWs gives

^C,0 ~ ' £ i Cu A @uCu
«=i

(A.35)

Therefore when the input symbols are independent of state the autocorrelation is

be shown to be

Rc,k ~

s

' Z CuA 0 uC«
iv = 1

oII

S S

X c l A 0 uE un k- l Y 0 vc v
U= 1 V = 1

£ > 1

R l - k

1V
I

(A.36)

Continuing with the example above, there are two SWs so the autocorrelation at

zero time separation Rc o is found by summing up CqA0ocq + c^A ^c,.

^qA ^ ô o —

c j A0,c, =

1 1

0 0

1 1

0 0

" I" .5 O ' ' .5 O ' |"l O' ' .5 O'

0 .5 0 .5 1 0 0 0

.5 0 .5 0 1 0 .5 0

0 .5 0 .5 1 0 0 0

c,tA 0 , c, =
'1

0

O'

0

(A.37)

229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Equation A.37 depicts the correlation of all the CWs. In order to continue this

evaluation for the first few time separations it is important to notice that in Equation A.36

the second summation term does not change with k, and thus it can be computed

separately as shown in Equation A.38.

E * v < v =
V —1

.5 0
0 .5

1 0
+

.5 0 1 0
= 2 •5 0 ___ 1 o '

1 0 0 .5 1 0 [.5 o j [l o j
(A.38)

Thus Rc , is found to be the same as Rc o as shown in Equation A.39.

= A t f A n ' - ’X & c ,
M = 1 V = 1

1 Q o '
* c i = 2 X A (W i

«=1

* c .,= 2 » e,E,
M=1

1 -1

1 0

«=1

1 0 1 0
0 1 I_1 0_

1 o' '1 I '.5 O' '.5 O' '0 1" '1 O'
= 2

1 0 0 0 0 .5 0 .5 1 0 1 0

Rc* = 2
'.5 0"
0 0̂

1 o

0 0

(A.39)

Continuing with this approach it is found that

R c , 0 ~ * C ,1 — R c , 2 ~ R c , 3 — — R C.~

1 0

0 0
(A.40)

where

R c , ~ = v ! v c (A.41)

230

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is the transpose of the mean symbol vector multiplied by itself. Finally the

autocovariance is found as

K c,k = R c,k ~ V c

Kc,k = R c,k - R Cl„
(A.42)

This means that if the mean symbol vector is zero, the autocovariance matrices

are equal to the autocorrelation matrices. As discussed previously, the mean symbol

vector will be zero if the output waveforms are balanced, i.e. if 0 is mapped to -1 and 1 is

mapped to +1.

Thus Kc o is found by Rc o - Rc „ as Kcx = Rcx - RC oa and K cx = Rcx - RC aa and

thus as k tends to infinity the all zero matrix results as shown below.

Kc<k Rc,k Rc,°°
0 0

0 0
as k — (A.43)

In the example above Kc,k is all zero for all k. This makes sense since the output

never varies. In other words the output is periodic and in the frequency domain there is

no continuous component. Finally the PSD is found by

where

W (f) =_ i w i
NT

X c (f) + x o (f) g
NT

X c (f) = v Kc,0 ■*" 2 X C ,k e J
A=-~

-] 2 n J k N T

N
(A .44)

X D(f) = vRc>S (A.45)

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v _ | " j e j 2 * J T e J4>rJT e J 6 i r f T ^ e J 2 n f (N - \) T J (A.46)

In this example since the covariance matrices are all zero there will be no

continuous component and X c (f) = 0 and therefore

W (/) = IP ^ 1 f o + * ° ^ - V s (f — ^
NT I NT mt L { N

(A.47)

and the discrete PSD component is found to be

* „ (/) = [i
'1 o ' 1

0 0 . e ~J2nfr .
= [l] where v = [l e12lT1T] (A.48)

Therefore the overall PSD reduces to

W (f)
NT T , s f -

\ A T v

m f o)

N
(A.49)

Equation A.49 indicates that the PSD of this signal is a train of delta functions

weighted by the Fourier Transform of the pulse shape squared. Since the pulse shape is a

square wave we can find the Fourier transform from tables or by Equation A.50.

• 1 0 0 k H z ■

• lO u s -
2.9V

■ 5 u s -

Figurc A-36: Square pulse shape used in Example 8

232

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Arect

2.9 rect

<-> Arsinc
12)

' t A
<-» 2.9 {5 ns) sine (2nf5-^

\ 25 fis

P (f) = (14.5//.9) sine (/rf5 jus)

(A.50)

With this pulse shape define the weight value as

weight = L from W (/) = l— - 1
6 w r w r - 1:4 mfo

N T ^ V N yy
(A.51)

Since it is a magnitude function squared it is now in the form of power dissipated

over 1 ohm. However to match the oscilloscope we want it to be in dB and RMS.

Therefore we need to take the square root weight .

Furthermore Cariolaro and Tronca define this PSD as a two sided spectrum, i.e.

the Fourier Transform of the pulse shape is related to the complex exponential Fourier

Series. Therefore to match a one sided spectrum the weight needs to be multiplied by

two as indicated by Equation A.8 i.e. 2sJweight. Therefore the final form to match the

digital oscilloscope and spectrum analyzer is

WV ■ (/) : = lOlOg
2^ weight 'j

k N T ; t
I > \ f ~

mfo
N

(2yj weight

{ 45.) f 1 t , s\ N T
(f » t f o Y |
I N J J

50(.00l)

(A.52)

(A.53)

Note: Equations A.52 and A.53 are general forms for this example only. Some values for

cIBVrms are given in the following figures.

233

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fr«»iifi>)̂ VjifoVjâ VV/5Mi»Tci»Vu»rn . ' frTiTjftif«bi-af̂ iclriKT̂ îaTeli/jĥ ri
M k ' ’:{ - ' . f , f , / <', " « 2 + rt *, • i 2 i ' yj** * 5 $ ^ * :lH
■ r r ^ r 2- + Binc(x) Done • « 5 . E-6 -» t 5 . E-6;

| f $ ^ E-6; . s i n o (^ ^) , p (0

IfeaieI " 'k ib ’uliio"

Done
P', 10 0 E 3".''' J.. •'' ■ IH T / ■*' ■ ie i g h I

8 .5 2 1 1 e_^

75tT FSERIESTUNC 3/30

Figure A-37: Stores the pulse shape P (f) and weight, finds the dBVRMS value at 100kHz

fr^W foo ^nE W F ^lalc i^U Fl.l:

i
£ 1 0 -log

2- (p(200000.))2
2,

n ’t
12
n - t

1 Op 1 og (< (2*1 (. (p <■ 2UOU00..

i S J i tbra

10*log

. jfpCSDQdDa;))?-
• ‘■I - - n ' t ;

J2
n - t

' RAD AUTO - TUNC ‘ > 2/30

-7.2272E0 „'i
FSERIES AAD AUTQ FUNC . 3/30 —

Figure A-38: Find dBVRMs values at 200kHz and 300kHz

ftoolilAlfltrol&̂ Taf t̂rlfr̂ wlDlcnVnllFl 1

■;10-log

2- (p(500000.))2
n ’t

f2

rSEAlEJ AAD AUTO

-U .6 6 4 e0

FUME H/30

:oic ath<r Frsnio citan UaToon AisoDra

(p(7aoooo;a%

■ 10-log[----------- -T n r
• • • ; ■14;587iO‘Sl

- RAD BUTD i'̂ •? .“rUNC'ii»t?rf;5/JO«5

Figure A-39: Find dBVRMs values at 500kHz and 700kHz

Continuing in this fashion for dBm:

fT>oilfA13«DFol/o3lcfDlhtFfFF3WIDlci/llA*uJ 1 froMliAl/tDFoIca^clD^AFlFFlwi'Dlcn^VliJl"?-

‘ (p t 100000.
,, S n t 4 w ig h t » 10'lo g

FSEAIESAAD AUTD FUNC 1/30 FSERIES

f 2-lu)eight,1-A-
I ■J2, 'v j ‘:';

n - t
,5 0 v .0 0 i

15i326EE

Figure A-40: Finding the dBm value at 100kHz

I t

10*log ■ 10*log

if/lcTnihFrlpFawinlcitaV uf! 1 IrftT̂ iffer̂ Ĵ ictSSrlprSiSM JneAMTuJoE-al̂ wl
2 1 i t , ... ^ ^ Z l j

£§
I
|||

1

2 \
Cp (300000.))2

n ’t
i2

2- (p(500000. 2
. n ’t -
f5

rvt'SO-.OOl
< ■ 5.7031EO
IMTOMMrawmHIHIHMi tMHEHHamB!___________
rSEAIES AAD AUTD FUNC 1A/30 FSERIES AAD AUTO FUNC .clS/30

.001. "Vi-/
1.3462E0

Figure A-41: Finding the dBm values at 300kHz and 500kHz

2 3 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparing the <3BVrms results in Figures A-37, A-38 and A-39 to Table A -l, and

the dBm results in Figures A-40 and A-41 to Table A-2 demonstrates the accuracy of this

method.

While this example is much more complicated than Example 2, it does show the

generality of the Cariolaro and Tronca method of finding PSDs. Their approach however

is intended for more complicated systems as the next example will show.

A.15. PSD of Coded Systems - Real World Example

Example 9 - Random Binary Signal: From Example 5 consider a ±A random square

wave with pulse width 5us, modeled as a FSM as shown in Figure A-42.

i / + i

0 /-1

Figure A-42: State diagram of the random binary signal

The first thing to notice here is that this output will be truly random. Therefore

there will definitely be a continuous component in the PSD. As well since the output is

balanced, i.e. ± A , there will be no discrete component in the PSD. Like Example 8, the

first things to define are the 0U, Eu and Cu matrices as shown in Equations A.54 and A.55.

*o =

3 =

0.5 o ' ' 0 1 " -llc0 =
0 0.5_ u 1 0

u -1_

'0.5 0 ' 0 1 ' T
E,= c. =

0 0.5 1 1 0
1

1

(A.54)

(A.55)

235

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By considering all the ways these state transitions can occur and the probability of

their occurrence it is clear that a transition probability matrix will be the same as in

Example 8.

n =
'0.5 0 ' '0 f '0.5 0 ' '0 1' '0 l'

+ =:
0 0.5 1 0 0 0.5 1 0 l 0

(A.56)

(A.57)

1
f 'O' 1 “ ' 1 0 “

N '.5 .5'
M = - + =

2 \ 1 0 _ 0 1 J .5 .5_
therefore n = [.5 .5]

As expected this system spends 50% of the time in each state. As well the CW

cu(i) will occur with probability 7i(i)du{i,i) and thus the average CW or mean symbol

vector can be found by summing over all the 1-bit CWs.

% = * E 3 . c . . = [- 5 -5]
« = i

'.5 O' -1"
+ [.5 .5]

'.5 O' "1'
0 .5 -1 L J 0 .5_ _ 1 _

= [0] (A .58)

As expected the average CW is 0 since 50% of the time the system outputs a -1

and the other 50% of the time the system outputs a +1.

Furthermore, since there are two SWs the autocorrelation at zero time separation

Rco is found by summing up cjA 0oco + q’A^c, as shown in Equation A.59,

236

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C oA 0oC o = [- l _ 1]
'.5 O' '.5 O' ■ -r

0 5_ 0 .5_ - i
= [.5]

c j A O f y = [1 1]

Rc,0 ~ CqA & qCq + C] A0A = [l]

'.5 O' '.5 O' 'l'
0 .5_ 0 .5_ 1

= [.5] (A.59)

Equation A.59 depicts the correlation of all the CWs at zero time separation. Like

Example 8 the second summation term does not change with k so it can be computed

separately.

i > A =
V = 1

'.5 O' ' - 1 '
+

10V
O

1

' 1 ' ___ "O'
0 .5_ - 1 .0 .5_ _ 1 _ _0

(A.60)

Thus Rc l is found to be

« c .,
K = 1 V = 1

* 0

w=l 0
=[0]

(A.61)

Continuing with this approach shows that

* c , l — ^ C , 2 — ^ C , 3 — ^C ,~ — [®] (A.62)

Finally the autocovariance is found as

*c.o=«c.o-Kc,.=[1H°H1]
K Ci = K ca = Kc,_ = Rca - = [0] - [0] = [0]

(A.63)

237

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This shows that there will be a continuous component. Noting that the only covariance

matrix that is non-zero is Kc,o, the result is

* c (/) = v K c ,0 + ^ K c ,k e
jlnJkN T

X c (f) = v K C'0v

x c (/) = [i « J 2 W] [i]
1

= 2

Therefore the PSD in this case reduces to

W) = J ^ L (2 + 0)

Like Example 8, since the pulse shape is a square wave,

find that

Arect ' t '

2 red

J j

V

<-> Arsinc

/

COT

\

2sinc
K1/ ¥)

P (/) = 2 sin c(^ /)

The final expression for the PSD in this example is then

W(f) =
8sinc2(^ /)

IT

238

(A.64)

(A.65)

from Fourier Tables we

(A.66)

(A.67)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-) hqurc ̂ o. I RFIElj
1-.. . * t

FSERIES

fFW F2*T « iT E*l VT P5»T rfi»TF7H[»n lT»»ulz»frrt|Trqc«lft«qr4FhlM̂hl&MwlFtfihC

^SERIES FSERIES

Figure A-43: Ti-89 and Matlab plotting the spectrum

Inspection of the PSD from Example 5 shows the identical result. Therefore this

approach by Cariolaro and Tronca can be applied to very complex coding systems to

obtain the PSD.

239

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B - AddSWs, AddCWs and Codes

This Appendix lists all possible AddSWs that can be used with each Hamming

code considered in this thesis. Encoding to AddCWs is accomplished as outlined in

Section 2.14 using the generator polynomial g(x) = 1011 = Bh for (7,*) codes, the

generator polynomial g(x) = 10011 = 13h for (15,*) codes, and the generator polynomial

g(x) = 101111 = 2Fh for (31,*) codes. They are presented in the format introduced by

Figures 3-18 and 3-22. The number of AddSW/AddCW sets is defined in Equation 3.1.

B.l. (7,x) codes

Table B-l: (7,3) AddSWs - (23)0 = 1 set

0 0 . . . 00 1 1 . . . 1 1
0 F

Table B-2: (7,2) AddSWs - (22)1 = 4 sets

. . 0 0 a 7 1 1 . .

0 4 B F
0 5 A F
0 6 9 F

0 7 8 F

Table B-3: (7,1) AddSWs - (21)3 = 8 sets

. . 00 a b c c b" a 1 1 . .

0 2 4 6 9 B D F

0 2 4 7 8 B D F

0 2 5 6 9 A D F

0 2 5 7 8 A D F

0 3 4 6 9 B C F

0 3 4 7 8 B C F

0 3 5 6 9 A C F

240 ■ ■ ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2. (15,x) codes

Table B-4: (15,10) AddSWs - (210)0 = 1 set

0 0 . . . 0 0 1 1 . . . 1 1

0 7FF

Table B-5: (15,9) AddSWs - (29)1 = 512 sets

0 0 . . . 00 a a 1 1 . . . 11

0 200 5FF 7FF

0 201 5FE 7FF

0 202 5FD 7FF

0 7FF

0 • . : 7FF

0 3FE 401 7FF

0 3FF 400 7FF

Table B-6: (15,8) AddSWs - (28)3 = 16777216 sets

. . 0 0 a b c c b a 1 1 . . .

0 100 200 300 4FF 5FF 6FF 7FF

0 100 200 301 4FE 5FF 6FF 7FF
0 100 200 302 4FD 5FF 6FF 7FF

0 . . • • • .. . • * • . . 7FF

0 100 201 300 4FF 5FE 6FF 7FF

0 100 201 301 4FE 5FE 6FF 7FF

0 100 201 302 4FD 5FE 6FF 7FF

0 • . * • * * 7FF

0 101 200 300 4FF 5FF 6FE 7FF

0 101 200 301 4FE 5FF 6FE 7FF

0 101 200 302 4FD 5FF 6FE 7FF

0 • t • • 7FF

0 IFF 2FF 3FF 400 500 600 7FF

241

V ' V ^ A ;-V ^ V ^ ' : #

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.3. (31,x) codes

Table B-7: (31,25) AddSWs - (225)0 = 1 set

0 0 . . . 0 0 1 1 . . . 1 1

O 3FFFFFF

Table B -8 : (31 ,24) AddSW s - (224)1 = 16777216 sets

0 0 . . . 0 0

o

0

0

0

0

0

lOOOGOO
1000001

1FFRFFE
lFFR FFF

a

2FFFFFF
2FFFFFE

2000001
2000000

1 1 . . . 1 1

3FFFFFF
3FFFFFF

3FFFFFF
3FFFFFF
3FFFFFF
3FFFFFF

Table B-9: (31,23) A d d S W s - (2M)3= 590295810358705651712 sets

. . 00 a b c : c b a 1 1 . . .1 1

0 800000 1000000 1 8 0 0 0 0 0 27FFFFF 2FFFFFF 37FFFFF 3FFFFFF

0 800000 1000000 1800001 27FFFFE 2FFFFFF 37FFFFF 3FFFFFF

0 800000 1000000 1 8 0 0 0 0 2 27FFFFD 2FFFFFF 37FFFFF 3FFFFFF

0 • • . • • • , . . • • . . • • . . . 3FFFFFF

0 • • • , . . • • • • . 3FFFFFF

0 FFFFFF 17FFFFF 1FFRFFF 2000000 2800000 3000000 3FFFFFF

2 4 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

