
Large-Scale Transient Stability Simulation
of Electrical Power Systems

on Parallel GPUs
Vahid Jalili-Marandi, Student Member, IEEE, Zhiyin Zhou, Student Member, IEEE, and

Venkata Dinavahi, Senior Member, IEEE

Abstract—This paper proposes large-scale transient stability simulation based on the massively parallel architecture of multiple

graphics processing units (GPUs). A robust and efficient instantaneous relaxation (IR)-based parallel processing technique which

features implicit integration, full Newton iteration, and sparse LU-based linear solver is used to run the multiple GPUs simultaneously.

This implementation highlights the combination of coarse-grained algorithm-level parallelism with fine-grained data-parallelism of the

GPUs to accelerate large-scale transient stability simulation. Multithreaded parallel programming makes the entire implementation

highly transparent, scalable, and efficient. Several large test systems are used for the simulation with a maximum size of 9,984 buses

and 2,560 synchronous generators all modeled in detail resulting in matrices that are larger than 20,000� 20,000.

Index Terms—Graphics processors, instantaneous relaxation, large-scale systems, multiple GPUs, Newton-Raphson method,

parallel multithreaded programming, power system simulation, power system transient stability, sparse direct solvers.

Ç

1 INTRODUCTION

ELECTRICAL power systems are the largest man-made
distributed nonlinear structures that are composed of a

variety of equipment such as generators, transformers,
transmission lines, and customer loads, strewn across a vast
geographic area spanning thousands of kilometers. Con-
tinuous growth in electricity demand accompanied by
system expansion and complex interconnections within
the grid are creating major operational and control
problems which require significant computational re-
sources for real-time or near-real-time intervention by
system operators in energy control centers. Maintaining
power system stability is paramount for a secure and
uninterrupted supply to the customers. Transient stability
simulations analyze the impact of potential grid distur-
bances (contingencies) in a transient time frame which is
normally up to about 10 seconds after a disturbance.

Online dynamic security assessment (DSA) has become

the linchpin for improved reliability and security of modern
stressed power systems. According to [1] DSA is the process
of determining the degree of risk in a power system’s ability
to survive imminent contingencies without interruption to
customer service. Many utilities world wide are implement-

ing online DSA in their control centers to prevent crippling

economic fallout from massive blackouts such as the one that
occurred in Northeastern US and Canada on August 14,
2003. The five main stages of online DSA are [2]: measure-
ments, modeling, computation, visualization, and control. A
real-time snapshot of the power system under study is
captured through measurements by supervisory control and
data acquisition (SCADA), and a base model is established
using the state estimator and system equivalencing. Detailed
time-domain simulations are then carried out for a list of
credible contingencies, and security indices (for transient
and voltage stability) are determined for reporting to system
operators. The entire DSA cycle is required to be completed
within a 10-30 minute time frame to allow operators
sufficient time to initiate preventive control actions before
the next snapshot is taken. The complete hardware and
software architecture for implementing online DSA can be
found in [3]. Essentially the main hardware components
consist of the energy management system (EMS), the data
server, the DSA client stations, the computational servers,
and several user workstations, all of which communicate on
a secure LAN. The conventional methods to improve the
cycle time for online DSA includes three strategies:
1) utilizing distributed computation on multiple CPU-based
computational servers, 2) contingency screening to identify
critical contingencies for which run the time-consuming
simulations, 3) early termination of simulations based on
improved security indices. Nevertheless, computational
speed still remains a bottleneck owing to the sequential
operation of the CPUs that are required to solve several
thousand nonlinear differential algebraic equations (DAEs)
in each time-step due to the detailed mathematical modeling
of grid components. Using a software tool developed by the
Electric Power Research Institute (EPRI) [4], the computer
time to perform hundreds of contingency simulations was

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012 1255

. V. Jalili-Marandi is with the OPAL-RT Technologies Inc., 1751
Richardson, Suite 2525, Montreal, Quebec, Canada H3K 1G6.
E-mail: vahidj@ualberta.ca.

. Z. Zhou and V. Dinavahi are with the Department of Electrical and
Computer Engineering, University of Alberta, ECERF 9107 116 Street,
Edmonton, Alberta, Canadas T6G 2V4.
E-mail: {zhiyin, dinavahi}@ualberta.ca.

Manuscript received 17 June 2011; revised 2 Sept. 2011; accepted 8 Nov. 2011;
published online 29 Nov. 2011.
Recommended for acceptance by S. Ranka.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-06-0397.
Digital Object Identifier no. 10.1109/TPDS.2011.291.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

READ O
NLY

reduced to about 20 to 30 minutes; however, improved
numerical algorithms and computer systems are still needed
today, to reduce this time to less than 5 to 10 minutes for real-
time operation. The objective of this paper is to explore the
use of multiple graphics processing units (GPUs) as the core
computational engine for the transient stability simulation of
large-scale power systems.

The field of high performance computing (HPC) has
been dominated by GPUs recently. Many intractable
problems that have traditionally required a supercomputer
are now being solved on GPU-based desktop computers.
GPU clusters have tremendously accelerated many HPC
applications such as molecular dynamics, bioinformatics,
computational fluid dynamics, finance, weather, and atmo-
sphere modeling [5], [6], [7], [8], [9], to name just a few. The
GPU is a massively parallel processor composed of
hundreds of computational cores known as stream proces-
sors (SPs) which execute identical instructions on threads
that are mapped to individual data elements. Unlike a
multicore CPU which has fewer computational cores and
consequently can execute only a few parallel threads at a
time, the GPU is classified as a many-core processor which
can execute hundreds of threads simultaneously based on a
single instruction multiple data (SIMD) architecture. The
GPU can be programmed by the compute unified device
architecture (CUDA) language [10], [11] which has a C-like
syntax and shares many of its constructs. The GPU cannot
work as a stand-alone processor; it needs the CPU to initiate
and keep track of kernel (functional program) execution. In
fact, many of the currently available off-the-shelf HPC
servers are hybrid GPU-CPU servers, in that they integrate
one or more multicore CPUs with multiple GPUs on the
same chassis. It is conceivable that clusters made up of such
hybrid servers can be used for online DSA computations in
energy control centers. In [12], the transient stability
simulation of large-scale systems on a single GPU was
presented. The classical transient stability simulation
approach was used and compared with CPU-based im-
plementation to illustrate advantages of general purpose
GPU (GPGPU) computations for large-scale systems.
Although, no sparse methods are exploited for system
solution in [12], the application of GPU for power system
dynamic simulation was proven to be promising.

This paper proposes a multi-GPU implementation of
large-scale transient stability simulation based on an accurate
and robust relaxation method. The instantanous relaxation
(IR) method, first suggested and implemented on a CPU-
based distributed real-time simulator [13], uses implicit
Trapezoidal integration, full Newton-Raphson iterations,
and sparse LU factorization methods to solve dynamic
equations of the subsystems of a decomposed network. The
IR method has proven to be a coarse-grained program-level
parallel technique; thus, its implementation on a multi-GPU
computational server where each of the individual GPUs has
a fine-grained parallel architecture enables significant accel-
eration of the transient stability simulation.

The paper is organized as follows. Section 2 provides a
brief overview of the transient stability simulation and the
application of parallel processing in this area. Section 3
explains IR method and its application for transient stability
simulation. In Section 4, the multi-GPU system hardware
and the proposed multithreaded programming aspects are

presented. A sparse linear solver suitable for the transient
stability simulation and the SIMD-based architecture of
GPUs is proposed in Section 5. In Section 6, the experi-
mental results of multi-GPU-based transient stability
simulation for various large-scale test systems and a
comprehensive discussion are presented. Finally, Section 7
gives the conclusion of the work.

2 TRANSIENT STABILITY SIMULATION

2.1 Overview

Power system stability is the ability of an electric power
system, for a given initial operating condition, to regain a
state of operating equilibrium after being subjected to a
physical disturbance, with most system variables bounded
so that practically the entire system remains intact [1]. If an
interconnected network is subjected to a perturbation, the
analysis of the ability of the power system to keep its
rotating machines in synchronism, during and after the
perturbation, is the transient stability analysis. From the
system theory viewpoint, power system transient stability is
a strongly nonlinear problem. It can be mathematically
described by a set of nonlinear differential-algebraic
equations (DAEs) as follows:

_x ¼ fðx;v; tÞ; ð1Þ

0 ¼ gðx;v; tÞ; ð2Þ

xðt0Þ ¼ x0; ð3Þ

where x is the vector of state variables, x0 is the initial
values of state variables, and v is the vector of network bus
voltages. fð:Þ and gð:Þ are nonlinear functions, and (1)
describes the dynamic behavior of the system resulting
from the synchronous machines, while (2) describes the
algebraic network constraints on (1), such as load demands
and transmission line power flows. Further detail on the
system representation is given in the Appendix.

Discrete solution of these equations in time-domain
requires the use of numerical integration techniques which
are either explicit or implicit [14]. Modified Euler [15] and
Trapezoidal [16] methods are the most commonly used
explicit and implicit techniques, respectively, for transient
stability simulations. Explicit methods are easy to imple-
ment and fast, but are prone to numerical instability with
large step-sizes; however, implicit methods are numerically
stable and can tolerate larger step-sizes. In explicit
techniques (1) and (2) are solved separately, whereas an
implicit method allows simultaneous solution of (1) and (2)
wherein it is possible to discretize (1), and then lump the
resulting equations with (2) to make a larger set of
nonlinear algebraic equations. However, an implicit method
needs an extra iterative procedure such as the Newton-
Raphson [17] or the Predictor-Corrector [18] technique to
linearize the implicit equations. Ultimately, a set of linear
algebraic equations must be solved, in each iteration and
time-step, to find the value of the state and algebraic
variables. LU factorization along with and forward and
back substitution is a common approach for this purpose.

1256 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012

READ O
NLY

2.2 Application of Parallel Processing

The complexity of power systems simulation has increased
with the system size and modeling detail with a concomi-
tant increase in computational time. Due to the time critical
nature of such computation, the need for parallel processing
for the transient stability simulation of realistic systems was
recognized decades ago.

In the 1950s, G. Kron developed a solution method for
large networks known as “diakoptics” [19]. The basic idea
of diakoptics is to solve a large system by tearing it apart
into smaller subsystems. These subnetworks are then
analyzed independently as if they were completely de-
coupled, and then the solutions of the torn parts are
combined and modified to yield the solution of the original
problem. The solution of the entire network can be obtained
by injecting back the link currents into the corresponding
nodes. The result of the procedure is identical to one that
would have been obtained if the system had been solved as
one. The parallel-in-space algorithms are step-by-step meth-
ods based on partitioning the original system into sub-
systems and distributing their computation among the
parallel processors [20]. These algorithms address the task-
level parallelism wherein serial algorithms are converted
into various smaller and independent tasks that may be
solved in parallel. In the transient stability calculation of a
large-scale power system the obvious part where paralle-
lism can be exploited is the solution of linear algebraic
equations. Despite the sequential nature of the initial value
problem which derives from the discretization of differ-
ential equations, parallel-in-time approaches have been
proposed for parallel processor implementation. The idea
of exploiting the parallelism-in-time in power system
applications was first proposed in [21] and [22] to
concurrently find the solution for multiple time-steps. In
this method, the simulation time is divided into a series of
blocks that contain a number of steps which lead to the
solution of the system. The waveform relaxation (WR) method
[23], was an attempt to exploit both space and time
parallelism for the transient stability problem. The WR
method is an iterative approach for solving the system of
DAE over a finite time span where the original DAE is
partitioned into smaller groups that can be solved inde-
pendently. Each subsystem uses the previous iterate wave-
forms of other subsystems as guesses for its new iteration.
Nevertheless as shown in [13] the WR method has draw-
backs which preclude its implementation for real-time
transient stability simulation.

From the hardware point-of-view various types of
parallel processing architectures such as multiple-instruc-
tion multiple-data (MIMD), single-instruction multiple-
data, distributed memory, and shared memory [24], [25]
machines have been employed for the transient stability
problem. Supercomputers [26], multiprocessor networks
[27], [28], array-processors [29], [30], and real-time simula-
tors based on clustered general purpose processors [13], [31]
all have been examined and reported for this application.
Although these hardware-based approaches helped to
speed up the simulation, they were limited by many factors
such as cost, communication issues, programmability, and
the system size.

Recently, graphics processing units which were origin-
ally developed for rendering detailed real-time visual
effects in the video gaming industry, have become pro-
grammable to the point where they are a viable general
purpose programming platform [10], [11]. General purpose
programming on the GPU (also called GPGPU) is garnering
a lot of attention in various scientific communities due to
the low cost and significant computational power of recent
GPUs. The use of parallel GPUs as an alternative to the
parallel CPU-based cluster of computers in simulations that
need highly intensive computations has become a real
possibility that has not yet been investigated in power
system dynamic stability simulation.

This paper proposes to combine several aspects of
parallelism to utilize the full capability of GPUs as
efficiently as possible. Three types of parallelism are used
in the transient stability implementation.

. Algorithm-level. This is a top-level or coarse-grain
parallelism which happens before any numerical
method starts solving the system equations. It is also
known as program-level parallelism [23]. Here, the
objective is not to address task definition and
scheduling, but the parallelism inherent in the
overall algorithm.

. Task-level. In this type of parallelism, the traditional
serial algorithm is converted into various smaller
and independent tasks which may be solved in
parallel. For example, to solve a linear set of
equations in the form of Ax ¼ b, the task-level
parallelism entails decomposing the A into various
submatrices that can be solved in parallel. Using
sparsity-based solution methods, or converting A
into a block-bordered diagonal matrix are examples
of the task-level parallelism approach.

. Data-parallelism. This is the fine-grained type of
parallelism that can be used on the SIMD-based
architectures such as vector processors and GPUs. A
given problem must have the capability to be
expressed in the data-parallel format in order to
take advantages of the SIMD hardware.

Both the algorithm-level and task-level approaches can
take advantage of data-parallel techniques. In the next
sections, it will be shown how the proposed algorithm-level
parallel method, i.e., instantaneous relaxation (IR), and a
task-level parallel sparse matrix solver, can be implemented
on data-parallel architecture of multiple GPUs the transient
stability simulation.

3 INSTANTANEOUS RELAXATION FOR LARGE-SCALE

TRANSIENT STABILITY SIMULATION

The Instantaneous Relaxation technique utilizes a coarse-
grained parallel method that decomposes a system,
mathematically described by a set of nonlinear DAEs, into
smaller subsystems and solves each subsystem indepen-
dently in one time-step. Each subsystem is solved for its
internal variables while the required external variables are
kept constant during the time-step. At the end of each time-
step the external variables of all subsystems are exchanged
and updated for the next time-step. Thus, IR method offers

JALILI-MARANDI ET AL.: LARGE-SCALE TRANSIENT STABILITY SIMULATION OF ELECTRICAL POWER SYSTEMS ON PARALLEL GPUS 1257

READ O
NLY

a program-level parallelization that enables equal distribu-
tion of computation load on parallel computers [13].

3.1 Formulation

In the IR technique, the analysis to determine independent
blocks of work (subsystems) that may subsequently be
processed in parallel is performed in an initial step. To
apply the IR method for the solution of a set of nonlinear
DAEs, as described in (1) and (2), the preliminary step is to
cluster variables into groups which can be solved indepen-
dently. After partitioning the system into n subsystems, the
following set of DAEs are prepared to describe the
dynamics of each subsystem

_xint ¼ fðxint;xext;vint;vext; tÞ; ð4Þ

0 ¼ gðxint;xext;vint;vext; tÞ; ð5Þ

where xint and vint denote state and algebraic variables that
define the dynamic behavior of Subsystem i, and xext and
vext denote the state and algebraic variables that define all
subsystems external to subsystem i. Therefore, x ¼
xint

S
xext and v ¼ vint

S
vext are the set of all state and

algebraic variables that describe the original-size system.
Using the Gauss-Jacobi iteration scheme the pseudocode for
the GJ-IR method is as follows.

Fig. 1 illustrates the above mentioned steps to apply the
IR method for a power system. It should be noted that the
system decomposition must be done in such a way that
components inside each subsystem (xinti) are tightly inter-
dependent while the dependency between components in
two different subsystems (xinti and xintj) is weak to ignore
the interconnection. This loose dependency allows sub-
systems to be relaxed from their external connection during
each iteration, and thus the Gauss-Jacobi iteration scheme
can be efficiently utilized at the top-level.

To solve each subsystem, (4) is first discretized resulting
in a new set of nonlinear algebraic equations. Here, the
implicit Trapezoidal Rule is used to discretize the differ-
ential equations as follows:

0 ¼ xi � h
2
½f iðxi;vi; tÞ þ fiðxi;vi; t� hÞ�; ð6Þ

where i ¼ 1; 2; . . . ; n indicates the subsystem, and h is the
integration step-size. Then, (5) and (6) can be linearized by the
Newton-Raphson method (for the jth iteration) as follows:

Jðzij�1Þ ��zi ¼ �Fiðzij�1Þ; ð7Þ

where J is the Jacobian matrix, zi ¼ ½xi;vi�, �zi ¼ zij � zij�1,
and Fi is the vector of nonlinear function evaluations.
Equation (7) is a set of linear algebraic equations which can

be solved with LU factorization and forward and back
substitution.

The transient stability simulation includes two main
solvers: differential-solver and the network-solver. What is
explained up to this point was the differential solver that
solves and updates the state variables of the system. The
network-solver, however, solves the nodal equations of the
network to provide the link between electrical machines
and the network that includes transmission lines, transfor-
mers, and loads. The nodal equation of a power system is
of the form i ¼ Yv, where Y is the admittance matrix of
the system, i is the vector of injected currents at each node,
and v is the vector of node voltages. This equation is
solved for v. The network-solver used in this paper is
based on Gauss-Seidel iterations. The two solvers work
alternately, i.e., at each time-step the network-solver
updates the differential-solver with the bus voltages, and
the differential-solver updates the network solver with the
machine injected currents at the buses the machines are
connected to. Then, the two solvers continue with their
new inputs to the next time-step.

Benchmarking revealed that a majority of execution time
in the transient stability simulation is spent for the nonlinear
solution. By using the IR method, however, and by
distributing the subsystems over several parallel GPUs, a
large-scale system is decomposed into individual subsys-
tems whose Jacobian matrices as well as its admittance
matrix are smaller, resulting in faster computations. Follow-
ing the convergence of iterative solutions in all subsystems,
the external state and algebraic variables are updated.

3.2 System Partitioning

A prerequisite for implementing the IR method on parallel
processors is the decomposition of the original system into
subsystems in which tightly coupled variable are grouped
together. The slow coherency method [33] is used in this paper

1258 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012

Fig. 1. Decomposing a power system into n subsystems to apply the IR
algorithm.

READ O
NLY

for the system partitioning. While there are other methods
[32] for system partitioning, they are stymied by the
computational load balancing problem or implementation
issues. Finding tightly coupled variables in a partitioned
system has a physical meaning from the power system point
of view. Coherent generators are those whose rotors oscillate
in lock-step within any given area. Following a large
disturbance in the system, some generators lose their
synchronism with the rest of the network. Thus, the system
is naturally partitioned into several areas in which gen-
erators are in-step while there are oscillations among the
different areas. Since the coherency characteristic reflects the
level of dependency between generators in an area, coherent
generators can be grouped into the same subsystem which
can then be solved independently from other subsystems
using the IR method. The partitioning achieved using the
coherency property has the advantages [33] that the coherent
group of generators are independent of the location or the
severity of disturbance (i.e., topology of the system), and the
level of detail used in the generator modeling.

4 GRAPHICS PROCESSORS

4.1 Hardware Architecture

The hardware used in this work is one unit of Tesla S1070
GPU server from NVIDIA [34]. The Tesla S1070 server is
equipped with four independent T10 GPUs each with 4 GB
of memory so that the total memory of the S1070 unit is
16 GB. The internal configuration of Tesla S1070 and its
connection to the host CPU are shown in Fig. 2.

The GPU and CPU communicate via the PCIe 2:0� 16
bus that supports up to 8 GB/s transfer rate. When a GPU
instruction is invoked, blocks of threads (with the max-
imum size of 512 threads per block) are defined to assign
one thread to each data element.

Each streaming multiprocessor (SM) shown in Fig. 2,
includes eight stream processor cores, an instruction unit,
and on-chip memory that comes in three types: registers,
shared memory, and cache. Threads in each block have

access to the shared memory in the SM as well as to a global
memory in the GPU. When a SM is assigned to execute one
or more thread blocks, the instruction unit splits and creates
groups of parallel threads called warps. The threads in one
warp are managed and processed concurrently on the eight
stream processors.

Each pair of the T10 GPUs is connected to one I/O
Switch. On the host motherboard a host interface card (HIC)
must be plugged into the PCIe bus to establish connection
between each pair of T10 GPUs and the host CPU. This
implies that the Tesla S1070 cannot behave as a unified
processor. To circulate data between the 4 GPUs of the Tesla
S1070, data from one GPU is first transferred to the host’s
main memory, and it is then uploaded to the other GPUs.
This deficiency is alleviated by using multiple CPU threads
as explained in the Section 4.2.

4.2 Multithreaded Parallel Programming

The Tesla S1070 is a CUDA-enabled device. A CUDA
program consists of multiple phases that are executed on
either the CPU (host) or the GPU (device). The GPU runs its
own user specified CUDA kernel independently but is
controlled by the CPU [35]. A single T10 GPU can execute
only one kernel at any given time; whereas a multi-GPU
server such as the Tesla S1070 can run multiple kernels
simultaneously. To have 4 GPUs working in parallel, in a
Tesla S1070 4 CPU cores are required to control the GPUs
simultaneously. This minimizes the overhead that occurs in
data copying and kernel invocation. Therefore, multi-
threaded CPU programming is required to manage the
parallel CPU cores. In this work, the C-runtime library is
used for this purpose. Synchronizing the resource access
between CPU threads is a common problem when writing
CPU multithreaded applications [36]. Having two or more
CPU threads simultaneously access the same data can lead
to undesirable and unpredictable results. For example,
one CPU thread could be updating the contents of a
structure while another CPU thread is reading the contents
of the same structure. To control synchronization among

JALILI-MARANDI ET AL.: LARGE-SCALE TRANSIENT STABILITY SIMULATION OF ELECTRICAL POWER SYSTEMS ON PARALLEL GPUS 1259

Fig. 2. Hardware configuration of Tesla S1070 GPU server connected to a host CPU motherboard.

READ O
NLY

the CPU threads, events are used. Events allow CPU threads
to be synchronized by forcing them to pause until a specific
event is set or reset.

Fig. 3 illustrates the flowchart of multithread program-
ming to manage operations of up to 4 GPUs connected to a
quad-core CPU. The main thread on the CPU first creates
four child threads which are responsible for handling each
GPU. Child threads begin execution by setting one indivi-
dual device (GPU) and initializing it, and then wait until the
Start event is set. As soon as the main thread sets the Start
event the computations in the individual GPU belonging to
each child thread are activated. The main thread goes into a
waiting state until all the threads are finished by the GPU
computations before setting the End event. Thereafter, the
four child threads exchange and update the required data
with the aid of the CPU, and the simulation continues.

5 PARALLEL DIRECT SPARSE LINEAR SOLVER FOR

TRANSIENT STABILITY SIMULATION ON GPU

A direct, noniterative, method for matrix solution is
developed for this work. Although iterative methods such
as the conjugate gradient algorithm [37] have been
implemented on the GPU, the parallelism is only available
within a single iteration. Since the next iteration depends on
the previous one, iterations cannot be processed in parallel
although the same algorithm is used within the iterations.

Moreover, since the number of iterations determined by
the convergence of each matrix is dissimilar even for
matrices of the same dimension, extra considerations are
necessary to synchronize with other parallel tasks.

Compared with iterative methods, direct methods can
give conformable solutions with multielement parallelism
and stable solution time regardless of the elements in the
matrix, although at the cost of higher algorithmic complex-
ity. In the literature GPU accelerated direct solvers have
been proposed for symmetric sparse matrices using
Cholesky decomposition [40], and multifrontal computa-
tions [41], showing a significant speedup. However, since
the Jacobian matrix in power system stability computations
is unsymmetrical it requires a specific method for an
efficient solution.

As a direct method for solving a linear equation set
Ax ¼ b, LU factorization is applied to decompose the matrix
into the product of lower and upper triangular matrices

PA ¼ LU; ð8Þ

where P is a permutation matrix for solution stability
formed by exchanging the rows of A.

Forward substitution is used to solve for y as

Ly ¼ Pb; ð9Þ

and then backward substitution is used to solve for x

Ux ¼ y: ð10Þ

The parallel dense LU algorithm on GPU has already been
efficiently implemented, and commercial packages exist
such as CULA (GPU-accelerated LAPACK) [42]. The
Jacobian matrix for the transient stability formulation,
however, is nonsymmetric and sparse, as shown in Fig. 4a.
In contrast to a dense algorithm, a sparse algorithm can
significantly reduce the computational burden by only
dealing with the nonzero elements. The computation of
sparse matrices in Matlab is rightly based on this idea. By
improving the traditional Fortran BLAS routine and devel-
opment with C [43], the lu() function in Matlab is a more
efficient sparse algorithm compared with other commercial
and noncommercial sparse software on CPU.

For a nonsymmetric matrix, the method is depended on
the pattern of asymmetry of the matrix. Because of the
nonregular structure of the general sparse matrix, it is
difficult to parallelize the LU algorithm due to the weak
support for dynamic and branching operations on the GPU.
Fortunately, the Jacobian matrix has an important feature
that alleviates the problem: it has a block diagonal structure
which enables its implementation on the GPU. Since all
blocks in the matrix are decoupled, they can be decomposed
in parallel. Each block can be treated as a dense node, as
shown in Fig. 4b and 4c. Thus, the data structure of this
sparse matrix is in the format of block node sparse. The
typical size of the matrix blocks is 9� 9; although a few of
them have various sizes, all the blocks are within 16� 16. The
number of threads per CUDA block can adapt to a variety of
block node dimensions so as to maximize efficiency.

Effective dense LU methods and linear solvers on GPU
exist [38], [39] albeit they are used for solving a single
large dense system. However, the power system dynamic

1260 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012

Fig. 3. Multithreaded program flow to control 4 GPUs using a quadcore
CPU.

Fig. 4. The block node sparse LU algorithm for a typical Jacobian matrix.
(a) Original sparse matrix in dense data structure on CPU. (b) Sparse
data structure on CPU; Step 1 is dense to sparse conversion. (c) Sparse
data structure on GPU; Step 2 is parallel LU factorization. (d) LU factors
on GPU in the sparse data structure (Step 3).

READ O
NLY

Jacobian has a block node sparse structure with individual
dense blocks. Therefore, a high performance dense matrix
LU algorithm is designed to process the LU factorization
for each dense block of the sparse Jacobian matrix.
Because the size of each block is small enough (typically
9� 9), all computations of LU decomposition can be
implemented inside the shared memory of the CUDA
block, which significantly improves the data bandwidth by
avoiding global memory access, one of the bottlenecks of
GPU implementation.

Since there is no overlap between the L and U matrices, a
matrix A

A ¼ Lþ U � I; ð11Þ

is used to store them both, where I is the identity matrix.
Before partial pivoting, the maximum element of the column
i of A is found asAði; rmaxÞ ¼ maxðAði; iþ 1 : n� 1ÞÞ, where
rmax denotes the row index of the maximum element of the
column i of A.

The binary scan operation [44] is applied to parallelize
partial pivoting, which reduces the step complexity from
OðNÞ to Oðlog2NÞ. The update for column of L is
Aðk; iÞ ¼ Aðk; iÞ=Aði; iÞ, while the update for row of U and
the rest of the matrix is Aðk; kÞ ¼ Aðk; kÞ �Aðk; iÞ �Aði; kÞ,
where k ¼ iþ 1 : n� 1. The entire algorithm and its CUDA
map is shown in Fig. 5.

This algorithm can handle various block dimensions by
introducing a index vector for the block compress sparse
data structure. The LU factorization of a singular square
matrix whose rank is less than its order can also be
supported by this algorithm. Table 1 shows a comparison of
the sparse LU algorithm implementation on the CPU (using

Matlab) by leveraging the power of the 4 cores of the AMD
Phenom 9850 CPU, and the GPU for various Jacobian
matrices gleaned from test systems described in the
Section 6. As can be seen for increasing size of the matrix
the GPU implementation can be highly efficient.

6 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we demonstrate results of the IR-based
transient stability implementation on multiple GPUs. The
entire simulation code is written in C++ integrated with
CUDA and CUBLAS library [45] and all calculations
employ 64-bit floating point number representation. The
accuracy of the simulation has been verified using the PSS/
E software from Siemens Energy Inc.

6.1 Test Systems

As shown in Fig. 6, several test systems of increasing size were
constructed to explore the efficiency of the multi-GPU-based
simulations. The specifications of each test system in terms of
the number of generators, buses, the total number of DAEs, as
well as dimensions of the Jacobian matrix required for the
system modeling are listed in Table 2. The Scale 1 system is
the IEEE’s New England test system with 10 generators and
39 buses. This system was duplicated several times and
interconnected via appropriate number of transmission lines
to create larger systems that are highly meshed. Thus, test
systems with Scale of 2, 4, 8, 16, 32, 64, 128, and 256 were
obtained. TheScale 256 system was constructed based on the
maximum compute capacity of the current host computer
hardware. The steady-state and dynamic stability of these
systems have been examined and verified by Siemens’ PSS/E
software. A flat start was used for all the state variables in the
system, i.e., voltage and angle of all buses set to 1:0ff0�p.u.,
and PSS/E was used to find the initial load flow results. The
developed GPU software is interfaced with PSS/E’s *.raw
file format, so that the load flow data can be fed directly into
the prepared simulation codes.

6.2 Implementation of the IR Algorithm on the
Tesla S1070

The IR method was implemented on the multi-GPU Tesla
S1070 server. This implementation is a combination of
algorithm-level-parallelism (coarse-grain) and data-paralle-
lism (fine-grain). Fig. 7 illustrates the flowchart of the IR
implementation. In Table 2, the computation time to
simulate a duration of 1,580 ms using 1, 2, and 4 GPUs is

JALILI-MARANDI ET AL.: LARGE-SCALE TRANSIENT STABILITY SIMULATION OF ELECTRICAL POWER SYSTEMS ON PARALLEL GPUS 1261

Fig. 5. (a) Pseudocode for the sparse LU algorithm, and (b) its CUDA
map.

TABLE 1
Comparison of Sparse LU Implementation on CPU

and GPU for Power System Jacobian

READ O
NLY

listed. In the case of 1 GPU, the serial IR method was
implemented, where the subsystems are solved sequentially
instead of simultaneously. For 2 and 4 GPUs, however, the
parallel IR method has been used as described in Section 2.
With 4 GPUs the Scale 1 system was ignored because the
communication and computation times are too similar to
reveal any computational advantage of using 4 GPUs.

Figs. 8 and 9 illustrate time-domain results for the

terminal voltages and rotor angles of the 30 generators

closest to the disturbance location in the Scale 256 system.

This system entirely occupies Tesla S1070 to solve 27,392

DAEs. The network is perturbed by a three-phase fault at

time 0.5 s that is cleared after 80 ms. Obviously, buses close

to the fault area are affected more than buses geographically
farther from the disturbance. Similar results were observed
for other system scales as well.

6.3 Observations

6.3.1 Transparency

In the developed C++ code the IR method was implemented
to work with 1 to 4 GPUs, depending on the required
compute capacity. Transparency in parallel processing soft-
ware development refers to the ease with which software
written for a set number of processors can be reformulated
for another group of processors [46]. While the SIMD
hardware architecture of the GPU and the way kernels are

1262 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012

Fig. 6. Construction of test systems for transient stability simulations. The Scale 1 system shows the one-line diagram of the IEEE’s New England
Test System. READ O

NLY

invoked and run by multiple threads offers a high degree of
transparency, the developed software itself is effectively
controllable by changing one variable at the compile time to
work with increasing number of parallel GPUs.

6.3.2 Data Structure

Table 2 shows that the Jacobian matrix size increases
quadratically with the system scale. The memory (DRAM)
required in GB to store a dense Jacobian matrix of size m
with 4 bytes per floating point number is ðm �m � 4Þ=
ð1,0243Þ; for system scales 128 and 256 this number is quite
large—of the order of 0.5-2 GB during the simulation run.
Moreover, this matrix is the interface between the sparse
linear solver explained in Section 5 and the transient
stability model. While the theoretical data transfer band-
width between GPU and CPU is 1-8 GB/s, in the current
hardware configuration it is only 1.35 GB/s. Transferring
data in the order of a few GB with a slow transfer rate takes
significant time. Therefore, to eliminate the storage space
requirement and to overcome the transfer bandwidth
limitation a sparse data structure was used to save only
the nonzero elements of large-scale matrices.

6.3.3 Scalability

Another important issue in a parallel processing-based
simulation technique is the scalability characteristic [46].
The scaling factor (SF) is defined as follows:

SF ¼ computation time of Single GPU

computation time of Multiple GPUs
: ð12Þ

The SF reveals how efficient the parallel multi-GPU
simulation is in comparison with the single-GPU simula-
tion. Ideally, using n parallel processors running simulta-
neously to solve a problem which takes Ts on a single
processor, the simulation time would break down to T

n s.
However, this is not true in practice due to several
software development issues such as task scheduling,
processors’ communication, and the parallel processing
algorithm. Thus, SF is always less than n, and the closer it
is to n, the higher the efficiency of the multiprocessing-
based technique. This factor was computed for the IR
method for 2 and 4 GPUs, and for all system scales. The
results are depicted in Fig. 10. For the IR method in both
the 2 and 4 GPUs, as the test system size expands, the SF
grows closer to the number of parallel GPUs in use. This
means that the IR method is scalable, and if the GPU-CPU
communication overhead could be reduced, for example,

JALILI-MARANDI ET AL.: LARGE-SCALE TRANSIENT STABILITY SIMULATION OF ELECTRICAL POWER SYSTEMS ON PARALLEL GPUS 1263

Fig. 7. Pseudocode of IR algorithm implementation on multiple GPUs;
CPU thread #i ¼ 1; 2; 3, or 4.

Fig. 8. Terminal voltages of 30 generators in the Scale 256 system.

Fig. 9. Rotor angles of 30 generators in the Scale 256 system.

TABLE 2
System Scale versus GPU Computation Time for Various Configurations for a Simulation Duration of 1,580 ms

READ O
NLY

by hardware upgrade or advancement in GPU cluster
technology, the SF will increase further.

6.3.4 Communication Overhead and Efficiency

As explained earlier, the GPUs inside the Tesla S1070 have
no internal communication, i.e., their only recourse is to
exchange data using the CPU as the conduit. This unavoid-
able communication adds extra latency which is negligible
for small scale systems. For large-scale systems with large
data sets, however, this GPU-CPU communication results in
significant communication overhead. As shown in Fig. 2, the
data transfer bandwidth between the GPU and CPU is
limited to 8 GB/s, which is quite slow compared to that of
each GPU and its own memory (20-140 GB/s). Therefore,
from the programming viewpoint, higher efficiencies can be
realized by minimizing the amount of data transfer to the
CPU. In the developed CUDA kernel global memory access
is avoided as much as possible in order to maximize
efficiency. The impact of this issue on the simulation time
is observable in Table 2 for 2 and 4 GPUs. In 4 GPU cases,
there are more GPU-CPU communications which shadow
the benefits of dividing the system into four smaller
subsystems in comparison with the 2 GPU cases.

7 CONCLUSION

This paper investigated the potential of using multiple
GPUs for transient stability simulation which is a main
component of any dynamic security assessment (DSA) tool.
For implementation on a multi-GPU computational server a
robust relaxation-based method was used as a coarse-
grained program-level parallel processing-based technique.
The instantaneous relaxation algorithm exploits implicit
Trapezoidal integration rule, Newton-Raphson iteration,
and sparse LU decomposition methods. Traditional meth-
ods for transient stability simulation do not have a structure
suitable for exploiting the parallel architecture of GPUs. The
GJ-IR algorithm, however, reveals a two-level parallel
structure: individual blocks of the Jacobian matrix are
independent, and each of these blocks may be inverted by a
data-parallel LU decomposition algorithm. Therefore, the
GJ-IR is an ideal algorithm for mapping to modern GPUs,
and is able to achieve both good scaling and high overall
performance.

A GPU-based efficient parallel sparse linear solver is

proposed that exploits the block diagonal structure of the

Jacobian matrix. This solver relies on the binary scan-based

partial pivoting, block node sparse data structure, and

SIMD dense model. It is demonstrated that this linear solver

is at least 2-10 times faster than an efficient sparse CPU-

based solver.
The simulation codes for the GPU implementation are

quite flexible and extensible; they are written entirely in

C++ integrated with GPU-specific functions. The accuracy

of the simulation was validated by the PSS/E software. The

efficiency was evaluated for several large test cases by

utilizing 1, 2, and 4 GPUs working in parallel. The largest

scale system includes 2560 generators all modeled in detail

within 27,392 DAEs. The developed software that takes

advantage of CPU-based multithread programming style

was shown to be transparent, scalable, and efficient from

the data storage and GPU-CPU communication viewpoint.

Performance of the multi-GPU algorithm can be further

increased by direct GPU-to-GPU communication such as

the new GPUDirect technology which allows peer-to-peer

between GPUs on the same PCIe bus. Moreover, newer

generation of GPUs, for example the Fermi architecture

from NVIDIA, have the capability to run multiple parallel

kernels which would make it easier to implement a parallel

processing-based transient stability technique, and alleviate

the GPU-CPU data bandwidth bottleneck.

APPENDIX

POWER SYSTEM REPRESENTATION FOR THE

TRANSIENT STABILITY ANALYSIS

The mathematical modeling of the transient stability

phenomena involves a set of nonlinear differential equa-

tions modeling the dynamics of the synchronous machines

and a set of nonlinear algebraic equations that model

nonrotating components. In this paper, each synchronous

generator is represented by a detailed 9th order model with

the excitation system including the automatic voltage

regulator (AVR) and the power system stabilizer (PSS).

The state equations of the machine are given as follows:

_�ðtÞ ¼ !R:�!ðtÞ; ð13Þ

_�!ðtÞ ¼ 1

2H
½TeðtÞ þ Tm �D:�!ðtÞ�; ð14Þ

_ fdðtÞ ¼ !R:½efdðtÞ �RfdifdðtÞ�; ð15Þ

_ 1dðtÞ ¼ �!R:R1di1dðtÞ; ð16Þ

_ 1qðtÞ ¼ �!R:R1qi1qðtÞ; ð17Þ

_ 2qðtÞ ¼ �!R:R2qi2qðtÞ; ð18Þ

_v1ðtÞ ¼
1

TR
½vtðtÞ � v1ðtÞ�; ð19Þ

1264 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012

Fig. 10. Scaling factor for the IR method using 2 and 4 GPUs, SF2 and
SF4, respectively.

READ O
NLY

_v2ðtÞ ¼ Kstab: _�!ðtÞ � 1

Tw
v2ðtÞ; ð20Þ

_v3ðtÞ ¼
1

T2
½T1 _v2ðtÞ þ v2ðtÞ � v3ðtÞ�: ð21Þ

The stator voltage equations are

edðtÞ ¼ �RaidðtÞ þ L00q iqðtÞ �E00d ðtÞ; ð22Þ

eqðtÞ ¼ �RaidðtÞ � L00didðtÞ �E00q ðtÞ;

where

E00d 	 Laq
 q1
Lq1
þ q2
Lq2

� �
; ð23Þ

and

E00q 	 Lad
 fd
Lfd
þ d1

Ld1

� �
:

The electrical torque of the machine is given as

Te ¼ �ð adiq � aqidÞ; ð24Þ

where

 ad ¼ L00ad �id þ
 fd
Lfd
þ d1

Ld1

� �
; ð25Þ

and

 aq ¼ L00aq �iq þ
 q1
Lq1
þ q2
Lq2

� �
:

!R, H, D, Rfd, R1d, R1q, R2q, Ra, Lfd, Ld1, Lq1, Lq2, L00d, L00q , Lad,
Laq, L

00
ad, L

00
aq, TR, Tw, T1, T2, and Kstab are constant system

parameters whose definition can be found in [43]. Accord-
ing to this formulation the vector of state variables in (1)
and (2) for the synchronous generator is given as

x ¼ ½� �! fd d1 q1 q2 v1 v2 v3�t: ð26Þ

The algebraic equations are based on the nodal equations
for the network

Yv ¼ i; ð27Þ

where iðnþrÞ�1 ¼ ½in�1
..
.

0r�1�t. n denotes the number of
generator nodes and r denotes the number of remaining
nodes. Y and v are the admittance matrix and the voltage
vector of the network. This equation is solved for v.

ACKNOWLEDGMENTS

Financial support from the Natural Science and Engineer-
ing Research Council of Canada (NSERC) is gratefully
acknowledged.

REFERENCES

[1] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions,
“Definition and Classification of Power System Stability,” IEEE
Trans. Power Systems, vol. 19, no. 2, pp. 1387-1401, May 2004.

[2] K. Morison, L. Wang, and P. Kundur, “Power System Security
Assessment,” IEEE Power and Energy Magazine, vol. 2, no. 5, pp. 30-
39, Sept./Oct. 2004.

[3] L. Wang and K. Morison, “Implementation of Online Security
Assessment,” IEEE Power and Energy Magazine, vol. 4, no. 5, pp. 46-
59, Sept./Oct. 2006.

[4] EPRI TR-104352, “Analytical Methods for Contingency Selection
and Ranking for Dynamic Security Analysis,” Power and Energy
Soc. General Meeting, Conversion and Delivery of Electrical Energy in
the 21st Century, Project 3103-03 Final Report, Sept. 1994.

[5] D. Blythe, “Rise of the Graphics Processor,” Proc. IEEE, vol. 96,
no. 5, pp. 761-778, May 2008.

[6] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C.
Phillips, “GPU Computing,” Proc. IEEE, vol. 96, no. 5, pp. 879-899,
May 2008.

[7] W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig, “Streaming
Algorithms for Biological Sequence Alignment on GPUs,” IEEE
Trans. Parallel and Distributed Systems, vol. 18, no. 9, pp. 1270-1281,
Sept. 2007.

[8] R. Weber, A. Gothandaraman, R.J. Hinde, and G.D. Peterson,
“Comparing Hardware Accelerators in Scientific Applications: A
Case Study,” IEEE Trans. Parallel and Distributed Systems, vol. 22,
no. 1, pp. 1045-9219, Jan. 2011.

[9] W.J. van der Laan, A.C. Jalba, and J.B.T.M. Roerdink, “Accelerat-
ing Wavelet Lifting on Graphics Hardware Using CUDA,” IEEE
Trans. Parallel and Distributed Systems, vol. 22, no. 1, pp. 132-146,
Jan. 2011.

[10] NVIDIA CUDA: Programming Guide, June 2008.
[11] T.D. Han and T.S. Abdelrahman, “hiCUDA: High-Level GPGPU

Programming,” IEEE Trans. Parallel and Distributed Systems, vol. 22,
no. 1, pp. 78-90, Jan. 2011.

[12] V. Jalili-Marandi and V. Dinavahi, “SIMD-Based Large-Scale
Transient Stability Simulation on the Graphics Processing Unit,”
IEEE Trans. Power Systems, vol. 25, no. 3, pp. 1589-1599, Aug. 2010.

[13] V. Jalili-Marandi and V. Dinavahi, “Instantaneous Relaxation
Based Real-Time Transient Stability Simulation,” IEEE Trans.
Power Systems, vol. 24, no. 3, pp. 1327-1336, Aug. 2009.

[14] B. Stott, “Power System Dynamic Response Calculations,” Proc.
IEEE, vol. 67, no. 2, pp. 219-241, Feb. 1979.

[15] F.F. de Mello, J.W. Felts, T.F. Laskowski, and L.J. Opple,
“Simulating Fast and Slow Dynamic Effects in Power Systems,”
IEEE Computer Applications in Power, vol. 5, no. 3, pp. 33-38, July
1992.

[16] H.W. Dommel and N. Sato, “Fast Transient Stability Solutions,”
IEEE Trans. Power Apparatus and Systems, vol. PAS-91, no. 4,
pp. 1643-1650, July 1972.

[17] W. Gear, “Simultaneous Numerical Solutions of Differential-
Algebraic Equations,” IEEE Trans. Circuit Theory, vol. CT-18, no. 1,
pp. 89-95, Jan. 1971.

[18] L. Elden and L. Wittmeyer-Koch, Numerical Analysis—An Intro-
duction. Academic Press Inc., 1990.

[19] G. Kron, Diakoptics-Piecewise Solutions of Large Systems, vols. 158/
162, General Electric and Also Published by McDonald, 1963.

[20] M. La Scala, G. Sblendorio, A. Bose, and J.Q. Wu, “Comparison of
Algorithms for Transient Stability Simulations on Shared and
Distributed Memory Multiprocessors,” IEEE Trans. Power Systems,
vol. 11, no. 4, pp. 2045-2050, Nov. 1996.

[21] F.L. Alvarado, “Parallel Solution of Transient Problems by
Trapezoidal Integration,” IEEE Trans. Power Apparatus and
Systems, vol. PAS-98, no. 3, pp. 1080-1090, May/June 1979.

[22] M. La Scala, R. Sbrizzai, and F. Torelli, “A Pipelined-in-Time
Parallel Algorithm for Transient Stability Analysis,” IEEE Trans.
Power Systems, vol. 6, no. 2, pp. 715-722, May 1991.

[23] M.L. Crow and M. Ilic, “The Parallel Implementation of the
Waveform Relaxation Method for Transient Stability Simula-
tions,” IEEE Trans. Power Systems, vol. 5, no. 3, pp. 922-932, Aug.
1990.

[24] M.J. Flynn, “Very High Speed Computing Systems,” Proc. IEEE,
vol. 54, no. 12, pp. 1901-1909, Dec. 1966.

[25] J.R. Gurd, “A Taxonomy of Parallel Computer Architectures,”
Proc. Int’l Specialist Seminar Design and Application of Parallel Digital
Processors, pp. 57-61, Apr. 1988.

[26] H.H. Happ, C. Pottle, and K.A. Wirgau, “An Assessment of
Computer Technology for Large Scale Power System Simulation,”
Proc. IEEE Conf. Power Industry Computer Applications, pp. 316-324,
May 1979.

[27] F.M. Brasch, J.E. Van Ness, and S.C. Kang, “Simulation of a
Multiprocessor Network for Power System Problems,” IEEE
Trans. Power Apparatus and Systems, vol. PAS-101, no. 2, pp. 295-
301, Feb. 1982.

JALILI-MARANDI ET AL.: LARGE-SCALE TRANSIENT STABILITY SIMULATION OF ELECTRICAL POWER SYSTEMS ON PARALLEL GPUS 1265

READ O
NLY

[28] S.Y. Lee, H.D. Chiang, K.G. Lee, and B.Y. Ku, “Parallel Power
System Transient Stability Analysis on Hypercube Multiproces-
sors,” IEEE Trans. Power Systems, vol. 6, no. 3, pp. 1337-1343, Aug.
1991.

[29] H. Taoka, S. Abe, and S. Takeda, “Fast Transient Stability Solution
Using an Array Processor,” IEEE Trans. Power Apparatus and
Systems, vol. PAS-102, no. 12, pp. 3835-3841, Dec. 1983.

[30] M. Takatoo, S. Abe, T. Bando, K. Hirasawa, M. Goto, T. Kato,
and T. Kanke, “Floating Vector Processor for Power System
Simulation,” IEEE Trans. Power Apparatus and Systems, vol. PAS-
104, no. 12, pp. 3360-3366, Dec. 1985.

[31] P. Forsyth, R. Kuffel, R. Wierckx, J. Choo, Y. Yoon, and T. Kim,
“Comparison of Transient Stability Analysis and Large-Scale Real
Time Digital Simulation,” Proc. IEEE Porto Power Tech, vol. 4,
pp. 1-7, Sept. 2001.

[32] J.S. Chai and A. Bose, “Bottlenecks in Parallel Algorithms for Power
System Stability Analysis,” IEEE Trans. Power Systems, vol. 8, no. 1,
pp. 9-15, Feb. 1993.

[33] H. You, V. Vittal, and X. Wang, “Slow Coherency-Based
Islanding,” IEEE Trans. Power Systems, vol. 19, no. 1, pp. 483-491,
Feb. 2004.

[34] NVIDIA, “Specification: Tesla S1070 GPU Computing System,”
Oct. 2008.

[35] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: A Unified Graphics and Computing Architecture,” IEEE
Micro, vol. 28, no. 2, pp. 39-55, Mar./Apr. 2008.

[36] Visual Studio Developer Center, http://msdn.microsoft.com/
en-us/library/, 2012.

[37] L. Buatois, G. Caumon, and B. Lévy, “Concurrent Number
Cruncher: A GPU Implementation of a General Sparse Linear
Solver,” Int’l J. Parallel, Emergent and Distributed Systems, vol. 24,
no. 3, pp. 205-223, June 2009.

[38] M. Fatica, “Accelerating Linpack with CUDA on Heterogenous
Clusters,” Proc. Second Workshop General Purpose Processing on
Graphics Processing Units, pp. 46-51, Mar. 2009.

[39] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense Linear
Algebra Solvers for Multicore with GPU Accelerators,” Proc. IEEE
Symp. Parallel and Distributed Processing (IPDPS ’10), pp. 1-8, Jan.
2010.

[40] G.P. Krawezik and G. Poole, “Accelerating the ANSYS Direct
Sparse Solver with GPUs,” Proc. Symp. Application Accelerators in
High Performance Computing (SAAHPC ’10), 2010.

[41] R.F. Lucas, G. Wagenbreth, D.M. Davis, and R. Grimes, “Multi-
frontal Computations on GPUs and Their Multi-Core Hosts,” Proc.
Ninth Int’l Conf. High Performance Computing for Computational
Science (VECPAR ’10), vol. 6449, pp. 71-82, 2011.

[42] CULA, http://www.culatools.com/, 2012.
[43] J.R. Gilbert, C. Moler, and R. Schreiber, “Sparse Matrices in

Matlab: Design and Implementation,” SIAM J. Matrix Analysis and
Applications, vol. 13, pp. 333-356, 1992.

[44] M. Garland, “Sparse Matrix Computations on Manycore GPU’s,”
Proc. 45th Ann. Design Automation Conf., pp. 2-6, June 2008.

[45] NVIDIA, “CUDA CUBLAS Library,” Mar. 2008.
[46] IEEE Task Force on Computer and Analytical Methods, “Parallel

Processing in Power Systems Computation,” IEEE Trans. Power
Systems, vol. 7, no. 2, pp. 629-638, May 1992.

[47] P. Kundur, Power System Stability and Control. McGraw-Hill, 1994.

Vahid Jalili-Marandi (S’06) received the BSc
and MSc degrees in power systems engineering
from the University of Tehran, Iran, in 2003 and
2005, respectively, and the Phd degree at the
University of Alberta, Edmonton, Canada, in
2010. Currently, he is working at OPAL-RT
Technologies Inc., Montreal, Canada. His re-
search interests include transient stability stu-
dies, real-time simulations, parallel processing,
and high-performance computing on GPUs. He

is a student member of the IEEE.

Zhiyin Zhou (S’10) received the BSc degree in
electronic engineering from Nanjing University,
China, in 2000. Currently, he is working toward
the MSc degree at the University of Alberta,
Edmonton, Canada. His research interests
include large-scale parallel and distributed com-
puting, multithread processor system prallel
programming, power system simulation, and
electromagnetic transient studies. He is a
student member of the IEEE.

Venkata Dinavahi (S’94-M’00-SM’08) received
the PhD degree in electrical and computer
engineering from the University of Toronto, in
2000. Currently, he is working as a professor at
the University of Alberta. His research interests
include real-time simulation of power systems
and power electronic systems, large-scale sys-
tem simulation, and parallel and distributed
computing. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1266 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 7, JULY 2012

READ O
NLY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

