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ABSTRACT 

 Tool wear morphology is one of the established topics in the field of manufacturing. Wear 

morphology monitoring offers significant information about the machining process such as, the 

condition of the tool and the quality of the machined component, but the information has not been 

utilized to its full potential in the automation of the machining processes. The objective of the 

thesis is to proposes different systems that utilize this tool wear morphology information for tool 

condition monitoring (TCM), machining quality improvement, and machining parameter 

optimization. The proposed study has four objectives. First, the development of a new definition 

for TCM considering the barriers between present TCM systems and their deployment in machine 

shops around the world. Second, the development of a TCM system that achieves the proposed 

new definition of TCM. Third, the development of a fuzzy controller that helps in machining 

parameters optimization decision making with the objective of tool life improvement utilizing the 

wear morphology information as feedback. Lastly, a TCM methodology for monitoring form tools 

that develop wear on different tool surfaces is proposed. Monitoring the wear morphologies also 

helps the developed systems to work with different, workpiece materials, tool geometries and tool 

grades; this allows a faster transition of the proposed systems to industrial setups. The proposed 

systems use advanced artificial intelligence technologies life Convolution Neural Network, 

Transfer Learning, and Fuzzy logic to achieve the objectives. 
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Chapter 1:  Introduction 

  The age of industrial automation is also an age of many theories. Although these theories 

are different, there are, however, many overlapping objectives. Value stream mapping (VSM) talks 

about non-value adding activities (NVA), necessary but non-value-adding activities (NNVA), and 

value-adding activities (VA) [1]. Similarly, “lights out machining” (LOM) is the utopian concept 

of eliminating all human intervention activities in machine shops [2]. Zero defect manufacturing 

(ZDM) talks about reducing the number of defected parts to zero [3]. But to eliminate all the non-

value adding activities, supervision, and the production of defective parts, a reliable data source 

that is obtained in time is essential. Tool condition monitoring can be this reliable data source that 

is obtained at the in time to achieve the elimination of non-value adding activities for VSM, 

elimination of supervision for LOM, and preventing the production of defective parts for ZDM. In 

the rest of this chapter, the background of different non-value adding activities addressed by this 

thesis is discussed. Finally, the objectives of the proposed study are discussed in Section 1.6.  

1.1 Background 

 The world is in the cusp of the fourth industrial revolution, which is commonly known as 

“Industry 4.0.” This industrial revolution has pushed for more autonomous and intelligent 

manufacturing setups around the world. The objective of the push towards autonomous machines 

is to prepare the machines for operations without the intervention of human operators, which is 

also known as “lights out machining” [4]. This transition towards lights out machining presents 

the opportunity to develop algorithms and frameworks to do the work traditionally expected from 

the Computerized Numerical Control (CNC) machine operators. Traditional responsibilities of an 

operator included TCM, tool replacement, optimization of machining parameters for better tool 

life, and looking out for quality deviation of the manufacturing processes. The motivation of the 
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study is to provide frameworks and intelligent algorithms that can replicate the human operator 

decision making in performing the tasks mentioned above. The autonomous solutions not only 

provide an alternative for human intelligence but also provide the prediction capabilities. The 

prediction capabilities help in two ways: 

1)  Improving the tool life, which can account for up to 12 percent of production cost [5].  

2)  It helps in the prevention of using wrong tools that result in the production of non-

conforming parts before they are produced. The prediction capabilities help save the 

tooling overheads, raw material cost, and other resources that might have been wasted 

in the production of these non-conforming components. 

 Thus, the replication of human decision making for lights out machining and the 

advantages of predicting machining outcomes in machine shops around the world form the 

underpinning motivations for the study. 

1.2 Tool condition monitoring (TCM) 

 TCM is one of the extensively studied fields in the past decades, and over the years, many 

indirect and direct monitoring techniques have been developed [6]. Indirect monitoring systems 

are real-time systems that give feedback on the change in tool behavior, and these changes are 

correlated to the definition of tool condition. There are different methods within indirect 

methodologies, acoustic[7], force [8], vibration [8–10], to name a few. On the other front, direct 

methods rely on visual evidence [11] of the tool, which limits the scope of making direct systems 

the real-time systems, which means TCM can not take place while the machining operation is in 

progress. The direct systems, however, are less prone to noise [12], which is a barrier for indirect 

monitoring for the full deployment in machine shops around the world. The direct systems 

frameworks, on the other hand, can be developed to work between machining cycles [13] when 
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the tool is not in use. Thus, taking advantage of accurate measurements while making the systems 

in-process and impervious to different noise signals ordinarily present in the machine shops. 

 While there are many works of literature on monitoring the tools and their applications, it 

is worth noting that there is no single definition for the tool condition. Some studies use TCM for 

the detection of defects in the tools [14], TCM is also used as a prediction tool to predict the tool 

life [15], others consider TCM as the quantification of wear on the cutting tool [16], and very few 

studies correlate TCM with machining quality. This lack of a formal definition has resulted in 

systems that work in ideal lab conditions but fail to work in real-world machine shops. The thesis, 

therefore, proposes a new definition of TCM. TCM, according to the new proposed definition, has 

two objectives. One is to define a good tool that produces a component that meets the design 

requirement (conforming parts) and a bad tool that produces a component that does not meet the 

design requirements (non-conforming parts). Second, TCM detects the transaction of a tool from 

good to bad and the threshold between them. The detection allows the system to warn the machine 

or the machinist to prevent the production of non-conforming parts.  

 This versatile definition of the TCM presents another challenge of generalization. The 

component can be classified as non-conforming because of a variety of reasons or defects. 

Therefore, the TCM systems must be capable of generalizing and working with a variety of quality 

and functional requirements. 

1.3 Quality management in machine shops around the world 

 Quality management in industries around the world has moved towards a qualitative 

approach with the application of GO / NO GO gauges. GO / NO GO gauges are traditionally used 

to manage material conditions in holes and shafts [17]. GO gauges are designed to accept all 

possible tolerances that meet the design requirements, while NO GO gauges are designed to reject 
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all possible tolerances that don’t meet the design requirements [17]. This concept gives the quality 

management in a machine shop floor two advantages. One, it makes quality management faster as 

the quality engineer doesn’t have to measure the quantity of the deviation from the base 

specification. Second, it is easier to teach the operators to manage the quality as it requires no 

expert skills or knowledge, and the skills and knowledge that are necessary can be easily taught to 

anyone with no knowledge prerequisites. 

 GO / NO GO gauges have inspired the development of our frameworks for TCM using 

artificial intelligence. GO / NO GO approach allows the developed system to be qualitative, which 

is accept or reject the component rather than quantitative. The quantitative approach has been taken 

by most of the studies [15, 16, 18, 19]. The quantitative method also forms one of the barriers to 

the deployment of TCM in machine shops around the world, discussed later in Section 2.4. GO / 

NO GO concept used in the developed framework also allows the system to be flexible so that it 

can be generalized for different quality and functional requirements. GO /NO GO approach also 

makes the framework more proactive in dealing with quality management. Therefore ideally, the 

TCM framework developed rejects the use of all tools that produce a component that does not 

meet the design requirements, and also, allow the use of all tools that produce a part that matches 

the design requirements. 

1.4 Machining parameters optimization 

 Cutting speed, feed rate and depth of cut are the three most important parameters of metal 

cutting. The combination of these three parameters have an effect on various facets of machining, 

for example, surface finish [20–25], power consumption [24], production time [26], material 

removal rate [27] among others. Therefore, the optimization of the above-mentioned parameters 

has attracted many studies, and since the parameters affect various aspects of machining, the 
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objective of optimization has also been different. Tool life is one of such objectives for machining 

parameter optimization.  

 Generalization is one of the biggest challenges in the context of machining parameter 

optimization. Most of the studies are experiment-based systems; in these systems, many different 

parameter combinations are tried, and the best objective is chosen for the concerned objective. 

Experiment based systems have their constraints when there is need for generalization. Changing 

one or more aspects of the experiment renders the results of the experiment unusable in the new 

setup. The machines shops around the world have different applications and working materials. 

Therefore, the experimentation approach is not the best when it comes to the deployment of 

parameter optimization systems. 

 Machining parameter optimization with tool life as objective and with the aid of TCM is 

one of the least explored fields of machining parameter optimization. In tool wear, there are desired 

and undesired wear patterns [28]. The desired wear patterns must persist for the full utilization of 

tool life. TCM techniques can be repurposed for the detection of undesired wear patterns and 

suggest the remedy for optimization of machining parameters for the full utilization of the tool 

life. Since the optimization is based on the evidence of tool wear mechanisms, these frameworks 

provide a higher degree of flexibility, to accommodate different workpiece materials, and for 

deployment in machine shops around the world. 

1.5 TCM for form tools 

 TCM in form tools like thread cutting tools needs a different approach than an approach 

taken for a single-point cutting tool. The V-shape wear pattern is one of the commonly seen wear 

patterns in forming tools [29] since these tools take a higher depth of cut and feed rates, different 

faces and nose of the tools come in contact with the workpiece as compared to only nose contact 
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in single-point cutting tools. Therefore, the system for TCM with respect to form tools need a 

three-dimensional description of the cutting edge. The three-dimensional description allows for 

the inspection of all the faces of the tool. The three-dimensional approach also improves TCM in 

a single-point cutting tool as it presents the opportunity of monitoring different rake angles. 

1.6 Research objectives 

 The research objectives are derived from the deployment barriers and gaps identified in the 

field of TCM and its applications. TCM used to achieve different objectives is the theme of the 

presented thesis. The main objectives are listed and briefly summarized in Fig.  1.1 and the 

following points. 

 

Fig.  1.1 Research objectives and contributions 
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1. Understand the barriers to deployment of TCM in the industry. Despite a variety of 

technologies, TCM has failed to transition from a laboratory setup to an industrial 

setup. The first objective is to understand the reasons for these failures and to develop 

a new definition for TCM that can overcome these barriers. 

2. Develop a framework to implement the new definition. This software framework must 

be ready for deployment. 

3. Develop a machining parameter optimization controller. This controller must be able 

to accommodate the changes in workpiece material, tool geometry, and tool coating 

grades. 

4. Develop a TCM framework for forming tools such as threading and grooving tools that 

take heavy depth of cuts. This framework must be able to work with different nose 

radius and shapes of forming tools. 
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Chapter 2: Barriers to the translation of TCM from laboratory to machine-

shops 

 TCM is one of the standard topics for research and development in manufacturing, which 

has been explored for the last four decades. The advancement in TCM has failed to translate from 

a laboratory setting to an industrial setting. In this chapter, the reasons and barriers for this 

translation are explored. Before discussing the barriers, the study discusses the advancement in 

TCM, types of TCM technologies, and the preconceived notions concerning types of TCM and 

how these notions are challenged with the advancement in technologies. Finally, the study 

proposes a new definition for TCM that helps bridge the gaps between existing TCM systems and 

TCM systems that can be deployed in machine shops around the world. The following topics are 

summarized based on studies listed in Annexure a. 

2.1 Importance of tool condition monitoring 

 The world of manufacturing is undergoing a technological transformation of Industry 4.0. 

One of the objectives of this technological transformation is to make manufacturing more 

autonomous [30] to achieve the concept of “lights out machining.” Lights out machining refer to 

making manufacturing facilities run without the need for human operations, and the monitoring 

can be done remotely [2, 31] to change the processes if necessary. TCM is one of the significant 

challenges in the realization of these autonomous and remotely manageable manufacturing 

systems. 

 TCM is one of the classical problems in the field of mechanical engineering, solutions to 

which are being developed since 1980 [5]. TCM is traditionally is the responsibility of the machine 

operator [32]. Machining operations rely on the expert knowledge of the machine operator to 

monitor the tool condition [33], and based on that knowledge, tools are changed as and when 
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required. The primary objective of TCM is to replace this human intervention to achieve the lights 

out machining concepts. In the case of high precision machining where the tolerances are tight, 

and the cost of rejection is high, the human expert judgment can not be relied upon [32]. Therefore 

TCM is critical is developing tool changing policies [34] that can be autonomously executed 

without the need for human intervention. 

 Apart from the autonomous machining systems, the condition of the tool also affects other 

manufacturing aspects; as much as 20 percent of the machine downtime is attributed to machine 

tools; machine tools also contribute up to 12 percent to machining cost [5]. Tool condition also 

affects geometrical and dimensional features of the component being machined [35]. The use of a 

tool in bad condition contributes to loss of time invested in the preprocessing of the part leading 

up to the machining, raw material, and human resource, invested in the component [36]. Full 

utilization of tool life is another problem addressed by TCM. Underutilization of cutting tools is a 

problem in machine shops around the world due to the conservative approach machine operators 

take towards tool life to prevent rejection of components; in some cases, the tool can be used only 

for 50 percent of its life [37]. Considering the points mentioned above, a proactive TCM system 

can potentially reduce the machine downtime, reduce the machining cost, reduce the rejection of 

machined parts by monitoring the quality and help in full utilization of tool life.  

 As discussed in Section 1.2, TCM system can be classified into direct and indirect systems. 

Both the direct and indirect technologies developed to date have failed to translate their success 

from laboratory setups to industrial setups. The first objective is aimed to understand the existing 

systems and identify the barriers that block the translation. The rest of the chapter is organized as 

follows. Section 2.2 discusses the indirect systems and technologies which are summarized at the 

end of the section. Section 2.3 addresses the direct technologies followed by the summary of the 
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direct technologies. Finally, in Section 2.4, a new definition for TCM is proposed that helps the 

TCM technologies make the transition from laboratory settings to industrial settings. 

2.2 Indirect methods 

 Indirect methods are classified as online systems considering that they don’t need the tool 

to be disassembled from the machine to conduct the tool inspection; instead, the signals generated 

during the machining are captured and analyzed [35]. Indirect methods can also be classified as 

non-invasive methods [38]. In this section, different indirect signal acquisition methods are 

discussed, and at the end of the section, various advantages, disadvantages of indirect systems are 

discussed. 

2.2.1 Force signals 

 Force signals are the most popular signals analyzed when it comes to indirect systems [13]. 

For the cutting of metal to take place, some force is exerted by the cutting tool on the workpiece. 

As the cutting tool gets used, the cutting edge loses is sharpness, which results in more cutting 

force required to perform the same cutting action [5]. This forms the basis of force-sensing 

technology. Usually, a dynamometer is placed near the to where the cutting is taking place to 

measure the force [39, 40]. Modern  CNC machines also have the cutting load on the machine 

displayed on the machine console. Machine operators have relied on this load gauge to determine 

the condition of the tool. 

 Wang et al. [41] developed a system that has a dynamometer installed on the work 

clamping device, and the force signals are detected and recorded at the same time the tool is 

classified into different levels of wear using an optical microscope. The force signals are then 

correlated with corresponding wear patterns. Liu and Jolley [39] developed a system to acquire 

tangentially, radial, and longitudinal force, using a dynamometer near the cutting operation at the 
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same time the tool wear level was measured offline. As illustrated by the two studies, force-based 

TCM technologies require the installation of sensing devices close to the cutting operations, which 

is unfeasible in practical applications where the machine handles a variety of workpieces.  

 The force-based systems are also challenging to generalize across different materials and 

tool geometries. As the models have to be retrained for different tool geometries and materials as 

the force exerted by roughing tools is higher when compared to force exerted by finishing tools. 

Similarly, the force required to cut a cast iron material is different when compared to the aluminum 

component. The changes in tool geometry or the working material render the optimized models of 

the studies unusable.  

2.2.2 Vibration signals 

 The cutting action generates vibrations in the machine tool due to the effort put by the 

machine on the tool [35]. As the conditions deteriorate, the behavior of these signals changes, 

vibration-based systems rely on the detection of this change in behavior. Vibration-based systems 

use an accelerometer placed on the spindle [42, 43]. The signals from the accelerometer are then 

preprocessed before useful features are extracted to develop descriptions of the tool conditions. At 

the same time, the tool condition is measured and classified into different levels of wear using a 

microscope [43]. 

 Vibration-based systems are better off when compared to force sensor-based systems as 

they do not need sophisticated sensors close to workpiece or cutting action. However, the 

vibration-based system suffers from generalization problems too. The vibration signals generated 

to develop the prediction models are generated using one machining parameter [42] when these 

machining parameters like feed rate, depth of cut, cutting speed, and tool engagement are changed, 

the assumption renders the model unusable. The vibrations on the machine tool are also influenced 
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by the stability and rigidity of the machine tool makers. Considering the different machining 

parameters and machine tools makers, vibration-based TCM is not the best approach when 

generalization for deployment in real machine shops around the world. 

2.2.3 Acoustic emission sensing  

 Ravindra et al. [44] define acoustic emission as a transient elastic wave generated by the 

rapid release of energy from a localized source or source within a material when subjected to a 

state of stress. These acoustic signals change with the change in the internal structure of the 

material; this forms the basis of the concept of acoustic emission sensing based systems. When the 

cutting tool geometry changes due to plastic changes in the tool, the acoustic signal behavior 

changes. Typically a microphone is placed close to the cutting operation to detect these signals. 

The useful features that give the tool condition descriptions are then extracted from the acoustic 

signals. 

 The cutting tool itself has five sources of acoustic emission, plastic deformation in the 

primary shear zone, plastic deformation in the secondary shear zone, friction due to sliding contact, 

chip fracture, and sliding contact between the work surface and the tool flank face [7]. When these 

systems are deployed in the machine shops, they also have to deal with the environmental noise 

generally found in busy machine shops, and this limits the use of this technology in real-world 

machine shops. The system also requires sensors close to the metal cutting, which constraints the 

size of the workpiece [45]. The predictive models in acoustic sensing based systems have to be 

retrained for different tool geometries as different tool geometries behave differently when 

generating acoustic signals.  
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2.2.4 Sensor and data fusion 

 The complexity of the machining process means that no one indirect sensory feature can 

adequately describe the tool condition [46]. Setiawar et al. [31] combined signals from an 

accelerometer, temperature sensor, and power consumption monitoring device, to develop 

descriptions of tool condition. Jemielniak et al. [47] used five domains extracted from acoustic 

emission sensors, accelerometer, and force sensors to develop tool condition information, and the 

study also pointed to the difficulty in determining which domain has the best description while the 

signals are being acquired. Massol et al. and Geramifard et al. [45, 48], both developed systems 

that relied on sensory information from the accelerometer, acoustic emission, dynamometer to 

develop tool condition description. All the sensor fusion-based technologies require an additional 

step of selecting the right domain and sensor for tool description; this adds to the complexity of an 

already intricate system. The sensor fusion-based systems also require sensors that are close to the 

cutting operations, which is not feasible for deployment in machine shops as the machines are 

expected to machine components of different sizes and shapes.  

2.2.5 Indirect systems summary  

 Indirect systems are online systems, which rely on the passive signals generated during the 

cutting action. The literature review concerning indirect systems revealed the following takeaways, 

• No one signal is capable of developing a tool condition description. 

• The systems are sensitive towards the proximity of sensors to the cutting actions. 

Therefore, they need sensors close to the cutting action. 

• The systems are prone to noise, which limits their practical deployment in machine shops. 

• The CNC machines require to handle different sizes and shapes of workpieces, the 

proximity of the sensors close to cutting action limit the size of the workpiece. 
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• There is an added step of feature extraction in indirect systems, and another added step of 

feature selection in sensor fusion based indirect systems. 

• Generalization is not addressed in any of the studies, when the tool geometry, the working 

material or the quality requirement change, the models have to be retrained. 

• Most of the studies concentrate on developing systems to quantify the tool condition, 

usually in terms of millimeters of flank wear, while TCM in machine shops is qualitative. 

• There is a need for the development of TCM systems that can accommodate and execute 

different tool change policies depending on the design and quality requirements. 

2.3 Direct systems 

 Direct systems rely on the detection of physical changes on the tool to develop tool 

condition descriptions instead of passive signals from cutting, which makes them more accurate 

in comparison to indirect systems [13]. Detection of physical changes also means the data 

acquisition cannot happen while the cutting action is in the process; this is why the direct systems 

are called offline systems. However, the offline nature of direct systems is not a crippling 

disadvantage, as presented by most of the indirect system literature. The TCM is predictive, and 

the machinist is interested to know if the tool is used weather it produces a conforming part or a 

non-conforming part. In other words, the machinist has a tool change policy in mind, which 

prevents him, from using a tool that produces a non-conforming part. The direct systems can be 

developed to work between cycles [13] to develop and implement these tool change policies 

autonomously and independently while taking advantage of their higher accuracy and ability to be 

impervious to different noises. Considering the advantages of higher accuracy, ability to be 

unaffected by environmental noise, and ability to proactively work in between cycles to predict 
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the consequence of using the tool, direct methods are the most suitable systems for deployment of 

TCM systems in machine shops around the world. 

 The direct methods are broadly classified into three categories, optical-based systems, 

radiation-based systems, and resistance-based systems [13]. Optical-based systems rely on the 

image sensors to capture the images of the cutting tools. Radiation based systems the cutting edge 

surface of the tools are made radioactive, and the presence of radioactivity is measured to 

determine the tool condition [49]. The radiation-based systems, while were accurate they were also 

hazardous and costly systems due to which these systems lost popularity in the early 90s. For the 

cutting to take place, three rules must be followed; 1) there must be relative motion; 2) the metal 

being cut must be softer than the cutting tool; 3) the tool must have the wedge shape or must be 

sharp. When the sharpness of the tool is reduced, the contact area between the tool and the 

workpiece increases, and the resistance for the electric flow decreases, resistance-based systems 

detect this change in resistance to determine the tool condition [13]. Wilkinson [50] developed a 

resistance-based system for lathe turning operations. The system is accurate; however fails when 

there is no continuous contact between the tool and the workpiece, which is typically seen in 

machine shops (example interrupted cuts, milling operations). Considering the limitations of 

radiation-based system and resistance based systems mentioned above; optical-based systems are 

the most popular direct TCM systems [51]. 

2.3.1 Optical-based system 

 Optical-based systems are the most popular direct measurement systems. Optical systems 

rely on the detection of the change in geometrical features of the tool for TCM [5]. Optical systems 

also replicate human decision making when it comes to TCM, which relies on understanding the 

wear morphology of the inserts [52]. Using the visual evidence of the cutting tool allows the system 
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to be impervious to any type of noise generally present in machine shops. The direct systems, 

however, are affected by the cutting oil and chips surrounding the tools; therefore, the tools need 

to be cleaned before TCM. Even though the vision systems are considered more accurate and less 

affected by different noises, indirect systems have prevailed as the optical-based systems are 

considered invasive systems that interrupt the process flow. 

 Optical systems have moved from invasive systems (Where the tool is disassembled from 

machine tool for TCM) to non-invasive systems (Where the tool does not have to be disassembled 

from the machine tool for TCM). Often literature states the invasive nature of the old optical-based 

system as one of the disadvantages and reason for not using optical-based systems, and this has 

changed with the development of modern image sensing sensors as illustrated by Wu et al. and 

Sun et al. [16, 19]. 

 Optical-based systems are also making a transition from systems where human intervention 

is needed for feature extraction to image processing and artificially-intelligent (AI) systems where 

the features are extracted either by image processing algorithms or autonomously by the AI 

algorithms. Lanzetta [52] developed a wear morphology classification system that uses threshold 

and recognition criteria defined by human intervention using quantitative parameters like flank 

wear. Image processing systems also need human intervention, but they do not rely on quantitative 

parameters; instead, they rely on image transformation techniques. For example, Sun and Yeh [16] 

used a straight line Hough transform and grayscale threshold to determine the wear morphology. 

Both the quantitative methods and image processing methods need human intervention to wear 

morphology classification. With the advancement in AI, this feature extraction step has become 

more autonomous and less reliant on human intervention. Wu [19] used convolution layers which 

help in automatic detection of the region of interest and develop useful descriptions that can be 
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used to define the wear morphology this eliminates the need for the definition of quantitative 

parameters or the need to determine the image transformation as the convolution layers do them 

automatically. 

2.3.2 Direct systems summary 

 The following are the takeaways from the direct systems literature:  

• Direct systems are more accurate because they rely on evidence that is physical changes 

on the cutting tools. 

• Direct systems are classified as offline systems, as data acquisition can't happen during the 

cutting process. 

• The offline nature of the direct system is not a crippling disadvantage as the systems can 

be designed to work in between machining cycles. 

• Optical based systems are the most popular type of direct systems considering they cost 

less, do not pose a health risk, and can accommodate different machining operations. 

• Optical based systems also the closest to the human decision-making process for tool 

condition monitoring. 

• Optical systems are making a transition from invasive (tool needs to be disassembled form 

the machine for condition monitoring) to non-invasive systems (no need for a tool to be 

disassembled for condition monitoring). 

• Optical systems are making a transition from systems that need human intervention for 

feature extraction (quantitative threshold and image processing techniques) to systems that 

do not need human intervention for feature extraction (convolution neural network-based 

AI algorithms). 
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2.4 A new definition of tool condition monitoring 

  TCM has seen a slow evolution of technology over the past three decades, and the 

evolution has made the TCM more autonomous in the last decade with the advancement in 

machine learning algorithms. The machine learning algorithms help in automation of the feature 

extraction and decision making steps, which mostly relied on expert human interventions. But the 

evolution is yet to yield a TCM technology that can be adopted in every machine shop in the world. 

The variety of ideas for TCM has further hindered the development of a deployable TCM system; 

various concepts of TCM as perceived by the existing literature is discussed in Section 1.2. In this 

section, the barriers for the current systems for their deployment in machine shops are discussed, 

and a new definition of TCM is also proposed. The proposed definition addresses the barriers to 

the deployment of TCM in machine shops. 

 In TCM, the existing studies are developing technologies to estimate and quantify wear on 

the cutting edge [15, 16, 18, 19]. But the quantification of wear on the cutting tool provides very 

little information about the useability of the tool. The useability of the tool is determined by the 

quality requirements prescribed by the engineering drawing. These quality requirements are 

captured in tool change policies (TCP) some of the examples for TCP are given in Table 2.1. The 

machine operators are looking for the reject quality indicators like poor surface finish, the 

occurrence of chatter marks, burr on edges, feed marks, among others. When these indicators are 

evident, the operator understands that the tool life is completed, and it must be changed. The 

quantification of wear on the tool has no direct way to describe the TCP, and this is one of the 

barriers for current systems for their deployment in machine shops. Therefore the primary 

objective of the TCM must be to carry out TCP [34]. 
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Table 2.1 Examples of different quality indicators used by machine shops for TCP. 

Surface finish Chatter marks Burr on edge Feed marks Quality 

    

Accepted quality 

    

Reject quality 

 Another barrier for current TCM systems is their inability to translate from a laboratory 

setting to the industrial setting of machine shops. There is more than one reason for the inability 

to translate. The inflexibility of the system to accommodate different TCP being one of them, 

depending on the complexity of the component being machined, a Computerized Numerical 

Control (CNC) machine uses more than three tools for machining the part. For example, there is a 

different tool for turning, facing, and finishing each tool has its TCP. The systems are not designed 

to accommodate the different TCP effortlessly.  

 On the other hand, the material of the workpiece, type of tool, and the coating grades can 

also vary; when one of the parameters changes, the findings from the optimized prediction systems 

can not be used. For example, the model trained for roughing geometry can not be used to predict 

the life of a finishing tool as the signals (force, vibration, and acoustic signals) generated during 

cutting are different. This is the inability of the systems to generalize across different applications. 

The specific dynamics and capabilities of the CNC can also influence the TCP. The variety of 
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machining environment presents a mammoth challenge for generalization of TCM systems, but 

yet only five research papers [40, 45, 48, 53, 54] out of forty-two research papers reviewed in 

Annexure a for generating literature review mention generalization. 

 The industrial environment provides a different set of challenges, especially for indirect 

systems that rely on signals generated during cutting. The noise of the industrial setup, like from 

other machines, machine shop operations can influence the signal acquisition, which can translate 

to errors in predictions of tool condition. 

 Considering the limitations of current TCM systems and the different constraints that limit 

the translation of systems from the laboratory to the industrial set up; the study has developed the 

following definition for TCM. The following definition needs to be achieved to bridge the gap 

between the current TCM system and a TCM system that can be deployed in machine shops around 

the world. 

 “The quality indicators determine the usability of a tool; these quality indicators are 

captured in tool change policies. Tool condition monitoring is the detection, adaptation, and 

implementation of different tool change policies, autonomously, and independently in different 

industrial environments.” 
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Chapter 3: Teaching Machines, a lesson on quality: Using CNN and transfer 

learning 

 The previous chapter identified three barriers in the existing systems that need to be 

addressed for a TCM solution to be implementable to carry out the tool change decision making 

autonomously and independently in machine shops around the world. One, these systems are not 

flexible to include different quality requirements of the machine shops. The existing studies only 

consider one quality aspect, for example, surface finish for their study, which is difficult to 

generalize across different quality requirements like concentricity or burr on edges commonly seen 

in machine shops. Second, the studies try to quantify the tool condition, while the answer that 

matters is if the tool produces a conforming part or a non-conforming part. Third, the qualitative 

answer of if the tool produces a conforming part or a non-conforming part requires a large amount 

of data to train the predictive models. Finally a new definition for TCM that addressed these 

barriers was developed.The system proposed in this chapter is the implementation methodology 

for the proposed new definition. The system is using the concepts of computer vision, Convolution 

Neural Network (CNN), and Transfer Learning (TL), to teach the machines how a conforming 

component producing tool looks and how a non-conforming component producing tool looks. 

3.1 Introduction 

 The last decade has been the decade of the fourth revolution in the industry (Industry 4.0) 

for manufacturing around the world using smart systems and technology. Industry 4.0, uses 

concepts of machine learning and big data to reduce waste of time and resources and makes the 

production process more efficient [55]. The concepts of Industry 4.0 require machines that are 
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smart and autonomous [56], and this presents an excellent opportunity for the development of 

machine learning algorithms that improve the operations and help in the reduction of wastes. 

 Smart systems are essential for the implementation of Industry 4.0 in machine shops, but 

what is the definition of a smart machine in the context of machining quality control. There is no 

clear definition proposed in past studies. A smarter machine in the context of machining quality 

control can be understood as a machine with the intelligence to understands and implement the 

quality requirements. This machine only produces the parts that meet the design requirements or 

conforming parts and detect the changes in machining parameters or environmental factors. These 

changes in environmental factors might result in the manufacturing of parts that don’t meet the 

design requirements or non-conforming parts. In other words, the machine has the intelligence to 

predict if the machine produces a conforming part or non-conforming part based on the 

environmental inputs. 

 In a mass manufacturing facility, the environmental factors like machine used, jigs, and 

fixtures in which the machining is taking place are reasonably stable, and there are changed only 

when the production lines are repurposed to produce different components. Given the stable 

environmental factors, the quality of the machining largely depends on the consumables like 

cutting tools, coolant oils, among others used by these machines processes [43, 57]. If the 

consumables are used for too long, they contribute to the production of non-conforming parts, and 

if the consumables are underutilized, they add to the overheads and wastage [58]. The process of 

defining the limits for an overused and underused tool can be termed as a Tool Change Policy 

(TCP) illustrated later in Section 3.4. In an intelligent TCM system, the definition and 

implementation of TCP should be carried out autonomously and independently. 
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 TCM is one of the classical problems of manufacturing, and it is extensively studied in the 

last four decades [5]. However, three barriers have been identified by the presented study that 

challenged the deployment of existing studies in machine shops around the world. One, the 

inflexibility of the systems to accommodate different TCP, tool condition affects different aspects 

of machining like surface finish, dimensional accuracy [35, 59]. For example, TCP for one tool is 

when the chatter marks start to appear, while another tool TCP is related to a burr on edge. The 

existing studies fail to provide flexibility to accommodate different TCP. 

 Quantification of tool wear ignores the concept of TCP and diverts the attention to the 

quantification of wear on inserts, and this is the second identified challenge for deployment of 

current TCM systems. The studies try to quantify the wear on inserts in terms of millimeters of 

flank wear  [15, 16, 18, 19]. This quantification provides no information about the usability of the 

tool. In machine-shops around the world, quality management is not seen as a process that directly 

adds value to the component, and from an economic point this process must be limited to absolute 

necessary [60]; that is why the manufacturers are interested to know if components meet the design 

requirements (a conforming part) or they do not meet design requirements (a non-conforming 

part). One of the examples for this qualitative approach is GO (conforming part) / NO GO (non-

conforming part) gauges [17] discussed later in Section 3.3. Therefore, the central objective of 

TCM must also be qualitative that recognizes the GO (tool that produces conforming part) quality 

tool and NO GO (tool that produces non-conforming part) quality tool. 

 The final barrier identified is the large amount of data and time required to collect and train 

these systems, which is the most significant barrier in the accommodation of different TCP. The 

models have to be retrained for different quality requirements that require changing the parameters 

learned by the predictive systems. For example, Wu et al. [61] used 5880 images to train the model 
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for the detection of different wear patterns. Considering four cutting edges per insert, the model 

has used 1470 inserts to train the model. Collecting these extensive data for every machine and 

TCP is infeasible considering hundreds of different quality requirements in machine shops around 

the world. 

 The proposed system is an integrated solution to the three barriers mentioned above. The 

system relies on monitoring the wear of cutting tools and classifies the tools as GO / NO GO tools 

that help the machine operator take the decision of whether the tool can be used for the next 

machining cycle. The system uses state of the art tool wear classification CNN and principles of 

TL. These concepts are discussed in Section 3.3. The novelty of the system is its ability to correlate 

the tool condition with machining quality and the accommodation of different quality requirements 

using TCP with the requirement of fewer data to achieve the accommodation. 

 The rest of the chapter is structured as follows; in Section 3.2, the relevant studies are 

discussed. Section 3.3 explains the methodology used in the system, which can be divided into 

offline state and online state. In Section 3.4, the case study and the implementation of the proposed 

system are discussed. The methodology is evaluated in Section 3.5, followed by the suggested 

future direction in the tool condition monitoring. In the last section, the conclusions drawn from 

the study are discussed. 

3.2 Qualitative TCM literature review 

The TCM methods are classified into direct and indirect methods [62]; direct methods 

mostly involves the use of computer vision [16, 19], radiation [49], electrical resistance [50], 

whereas indirect methods use online monitoring methods that use vibration  [8–10], force [8], 

temperature and sound [7] signals. Indirect methods are less complicated and can be implemented 
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straightforwardly and monitored in real-time [59] but, they are prone to noise and are less accurate 

than the direct methods [63]. Real-time monitoring is also not a crippling disadvantage for direct 

systems as there is enough time in between machining operation and cycles [13] to get the required 

data without disturbing the sequence of operations of a machine shop. Also, the unidirectional 

execution of existing G-code based systems doesn’t allow for real-time changes in the machining 

parameters [64–66] therefore, there is no way to integrate the response generated by indirect 

systems in real-time. Considering direct methods are more accurate systems, the study adopts the 

direct monitoring methodology. 

Vision-based systems are the most popular systems when it comes to direct TCM systems. 

Vision systems have also improved in recent years and are being used in different facets of 

machining like collision avoidance [67, 68] which also demonstrate the ability of vision systems 

to detect changes while maintaining distance from cutting process. The computer vision systems 

are used to monitor the changes in wear morphologies of an insert. Wear morphology classification 

has attracted many studies in the past years; Lanzetta [52] used vision systems for wear 

morphology classification using quantitative definitions of different wear patterns. The 

conventional TCM used in machine shops use the quantitative approach. For autonomous systems, 

the quantitative approach proves difficult for implementation considering the variety of qualitative 

parameters that need to be hardcoded into the system to identify a variety of wear morphologies. 

The hard coding of parameters is also computationally expensive; thus, there is a need for a system 

that identifies the features of different types of wear. The need for identification of different 

morphologies is satisfied to an extent using CNN by Wu et al. [61]; this study has inspired the base 

wear classification model discussed later in Section 3.3.1. 
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Autonomously detecting the damages to the inserts before they are used in machining is 

one of the essential solutions in making the tool monitoring autonomous. Fernandez-Robles et al. 

[69] developed a vision-based system to detect the broken inserts in the milling cutters 

automatically. Sun et al. [16] used image processing and image segmentation techniques to 

develop a system that could identify built-up edge, fracture, and other insert deformations. These 

studies used image processing techniques, which require human intervention to develop features 

descriptions; this limits the independent implementation of these systems for a variety of wear 

morphologies. As opposed to image processing techniques, the CNN approach learns to identify 

the Region Of Interest (ROI) and features description to identify different wear morphology, and 

this eliminates the need for human feature descriptions step needed in other techniques [70]. 

Considering the utility of autonomous feature extraction, the proposed study uses CNN approach 

for tool condition monitoring. 

Even though TCM is one of the classical problems, there are fewer publications in the 

context of correlation of tool condition with the quality of the component. Jain and Lad [71] 

developed a system that correlates tool condition and production quality. The study also developed 

a multi-level categorization of the wear using support vector machine methodology. Jain and Lad 

[72] study explored the relationship between the surface finish and tool wear and found the Pearson 

correlation coefficient between surface finish and tool condition to be significant to establish a 

strong correlation. The study used a random forest-based fault estimation model to get the relation 

between surface finish and tool condition. Grzenda and Bustillo [73], developed a semi-supervised 

model to predict the surface finish using the vibration signals, Fourier transformation was used to 

transform signals to frequency space, and further only the relevant frequency ranges wear 

considered for the study. Wu et al. [61] developed a two-stage system that aimed at determining 
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the type of wear in the first stage and tried to quantify the wear of the insert in a milling cutter. 

The system uses CNN to determine the type of wear, and the wear value is obtained using the 

relation between image pixel value and actual value and width of the minimum circumscribed 

rectangle. Dutta et al. [74] used surface texture descriptions to determine the tool life using the 

grey level co-occurrence matrix, the images of the resulting surface finish were captured, and the 

tool wear was measured using a microscope. García-Ordás et al. [63] used a computer vision 

system to determine the usefulness of the milling cutters. The system used a support vector 

machine methodology to classify the wear patterns. The system identified the state of the tool with 

about 90 percent accuracy.  

The studies mentioned above correlate the tool condition with the specific quality and design 

requirements like surface finish. As discussed in Section 3.1, there are a variety of quality and 

design requirements that are defined by TCP. These different TCPs form the ultimate definition of 

TCM; considering this, a TCM that is flexible to accommodate different TCP is the need of the 

hour. Most of the studies are also limited by the materials and tool geometries they have used, 

changing any one of the factors means the findings of the studies can not be used. For the TCM to 

be autonomous and independent, it must be capable of working with different materials and tool 

geometries and tool coating grades. The requirement of flexibility to work with different TCP and 

the ability to generalize the system for different working materials, tool geometries and tool 

coating grades form the basis for the development of the proposed system. 
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3.3 Qualitative TCM system 

The system is developed to operate in three stages, as shown in Fig.  3.1. The training of 

the base model is where the architecture of the base model and the central intelligence of the system 

is developed; this training is done remotely. The architecture and training parameters of the base 

model are discussed in Section 3.3.1. The offline state of the system is operational in the machine 

shops when the production lines are set up. In this state, the system is receiving training to identify 

the TCP. The knowledge from the base wear classification model is used to expedite this training 

process using the TL technique discussed later in Section 3.3.2. The output of the system is inspired 

by the GO / NO GO gauges. The goal of GO gauge is to accept as many good parts as possible 

that satisfy the material condition specification, and NO GO gauges are designed to reject all the 

parts that violate the material condition specification [17]. The GO / NO GO gauge in this system 

Fig.  3.1 Overview of the system architecture 
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is envisioned as an implementation of TCP. When a tool of GO quality is detected, the tool is 

accepted and used for production. Similarly, when a NO GO quality tool is detected, the operator 

is asked to change the tool before resuming the production. The GO / NO GO arrangement allows 

for the flexibility to adapt the system for different TCP. In the online state of the system is 

discussed in Section 3.3.3, the system is executing the TCP autonomously after every machining 

cycle, making sure the tools are in GO condition before they are used, and in this way, prove a 

proactive approach to TCM. 

3.3.1 The base wear classification model 

 CNN is one of the most promising approaches to image processing and pattern recognition 

[70]. CNN layers are part of the architecture; it is standard practice to use convolution layers at the 

starting of the model to develop feature descriptions of the images. These layers are good at 

narrowing down the ROI and require less computational memory when compared to conventional 

models. These are the reasons they have seen a wide range of applications in a variety of areas, 

from hand gesture recognition [75] to disease recognition in plants [76]. One of the other 

advantages of the convolution layers is its ability to extract features autonomously. Some of these 

transformations are shown in Fig.  3.2. In Fig.  3.2 b, each row is the output of convolution or max-

pooling layers. It can be seen in the successive layers. The layer transformation and filtering further 

define the description of the wear features. This step in image processing techniques is done 

manually, which is the disadvantage of image processing techniques. 

The base model architecture used by the system is shown in Fig.  3.3The input to this 

architecture is a 200*200*3 Red Green Blue image (RGB). The convolution layers have sparse 

interaction with the input of the previous layer [77]. For the convolution layer, 3*3 kernel is used 
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with 32 filters in the first and second convolution layers. For the last two convolution layers, 64 

filters are used with 3*3 kernel. A kernel can be imagined as a 3*3 window sliding over 200*200 

in the step of a one-pixel slide. This concept helps in the detection of small meaningful features 

and also reduces the parameters to be stored and computed [77]. The output of the convolution 

layer is then fed to the pooling layer, in the case of the developed model, it is max pooling layer, 

where kernel reports the maximum value of the kernel size input. This layer helps in making the 

model more robust in response to small translations to the inputs [77]. This is summarized in 

equation 1, where A is the crrosponding pixel value in row i and column j, and this equation is 

valid for the 2*2 kernel used for max pooling layers. 

CNN filters  

ROI 

a) b) 

Fig.  3.2 Image transformation and filtering by convolution and max pooling layers 

Fig.  3.3 Base CNN architecture with respective size of the layers for insert wear 

classification 
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Max pooling 

layer 

Oi, j = max { Ai, j , Ai+1, j , Ai, j+1 , Ai+1, j+1 } (1) 

 The output of the last max-pooling layer is then flattened to 1*𝑛 vector, which forms the 

input to the Fully Connected Layers (FCL) for further processing, where 𝑛 is the number of inputs 

to the neural network. The number of inputs 𝑛 also determines the width of FCL of the network. 

FCLs are the basic type of neural network where each input interacts with each output of 

the previous layer [77], the different layers in the network are modeled as different functions, 

which are the function of the previous layer. In the proposed model shown in Fig.  3.3 base model, 

we have four FCL layers which can be written as f(1), f(2) , f(3) and f(4) respectively therefore using 

the chain concept we can rewrite these function as f(xi) = f(4)( f(3) ( f(2) ( f(1 )( xn ) ) ) ) [77], where 

xn is the data from the convolution layers. The objective of the neural network is to best estimate 

f(xn; θ) to function f * (xn), where f * (xn) is the ideal (real-world relation) function that maps the 

inputs from the convolution layer to their classes of wear and θ is free parameter adjusted to 

optimize the best estimation of ideal function [77]. 

The architecture in Fig.  3.3 uses a rectified linear unit (ReLU) activation function in the 

intermediate layers, which is a common practice for CNNs to improve the training speed [76]. 

ReLU returns zero for half of its domain and input for the other half of the domain that is zero for 

inactive nodes and node output for active nodes, which helps make the gradients of the loss 

function large and constant [77]. ReLU is used in all the layers except the output layer in the 

proposed model shown in Fig.  3.3. ReLU is summarized in equation 2, where z is the output of 

the node. 
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 ReLU(z) = max⁡{0, z} (2) 

 

The softmax activation function was used in the last layer of the base model architecture, 

which is also common in multiclass classification CNNs [76]. Softmax activation usually used in 

the output layers of the neural networks gives the probability distribution over n possible values. 

It ensures the prediction of z belonging to a class for n different classes is between 0 and 1, and 

the sum of probabilities is equal to 1 [77]. This is summarized in equation 3, where zp is the output 

of the node for p class.  

 softmax(zp) = ⁡
ezp

∑ ezc3
c=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (3) 

 

The loss of a model can be defined as a function that quantifies the performance of the 

system [70]; the study uses categorical cross-entropy as the loss function. ADAM, which is a 

stochastic optimizer that is computationally efficient and combines the advantages of RMSProp 

and AdaGrad [78], was used to optimize the weights of the base model. This facilitates faster 

convergence to an optimal solution[78]. The parameters used in ADAM are learning rate = 0.001, 

beta1 = 0.9, and beta2 = 0.999. The algorithm for ADAM implementation can be found in [78]. 

3.3.2 CNN image classifier trained for TCP 

The base model developed and discussed in Section 3.3.1 forms the central intelligence for 

the TCM. The base model helps narrow down the ROI and extract useful features and descriptions 

of the tool, as shown in Fig.  3.2. This intelligence is developed in the base model is rolled out as 
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a trained network. The offline stage of the system is in the machine shops, where the model has to 

be repurposed to identify and implement different TCP. Considering that there are thousands of 

different TCP unique to each machine shop, retraining a complete network presents a significant 

data and training time challenge. TL is one of the lifelines to overcome this data and training time 

challenge. 

Given the importance of TL, we now adapt the definitions of TL in [79] for our application. 

In the proposed system, the knowledge developed during the training of wear classification model 

that is trained to identify what type of wear pattern or damage the cutting tool has is optimized 

using TL to differentiate between a good tool that produces conforming parts and a bad tool that 

produces non-conforming parts. Every classification model has a domain D, which forms the pool 

for data extraction and a task which, in the case of the study, is classification. Pan and Yang [79] 

define domain D consisting of two components a feature space X and marginal probability P(X). 

Task T also consists of two-component Y labels and a predictive function f(.), since neural 

networks have a large number of trainable parameters they can choose from different functions 

that best predict the tasks which in the case of study is image classification. Therefore D⁡ =

⁡{X, P(X)}⁡and T⁡ = ⁡ {Y, f(. )},⁡considering these definitions, we can define source domain and 

target domain. The source domain is images captured form cutting inserts used in machining (DS), 

and the task is to identify wear type classification (TS). Similarly, the target domain is images of 

inserts used in production (DT), and the task is the quality classification (TT). 

The images for the base model are drawn for the inserts used in production. Similarly, 

images used for the target model are also drawn from inserts used in production. Therefore, the 

methodology is built around the assumption that the images for the source and target model have 

a similar domain, which is reasonable considering that the images used to train base model wear 
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morphology classification are also used in production in a machine shop. Given the similarity of 

domains, XS = XS, PS(X) = PT(X), and DS = DT, that is, the feature space, and the marginal 

probability of data distribution for both models, are the same. 

 The tasks of source and the target models are different as the labels are different, therefore 

TS ≠ TT as the YS ≠ YT, as given by equations 4 and 5. But the predictive function could be similar 

or different since the neural networks are black-box models. There is no way to know if the same 

or different function was used for source and target tasks. 

 YS = {
⁡0 ⁡if⁡⁡the⁡insert⁡is⁡damaged⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
1 ⁡if⁡the⁡insert⁡has⁡deformation
⁡⁡2 ⁡if⁡the⁡insert⁡has⁡normal⁡wear⁡

 (4) 

 

  YT = {⁡
⁡0 if⁡the⁡component⁡is⁡Conforming⁡(GO)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡1 if⁡the⁡component⁡is⁡Non − conforming⁡(NO⁡GO)⁡⁡⁡⁡⁡⁡⁡
 (5) 

The target task is tied up to the traditional concepts of GO/NO GO gauges discussed at the 

start of Section 3.3. GO / NO GO gauges are one of the most popular gauges to evaluate the 

material conditions in holes and shafts. The TCM system developed extends and generalizes this 

definition of GO/ NO GO gauges to other quality requirements. In the target task, the model is 

retrained to identify a GO part producing tool and NO GO part producing tool. This concept makes 

the proposed methodology qualitative and gives the model the flexibility to adapt its knowledge 

across different TCP. The offline state requires an expert to generate the GO / NO GO labels for 

the training and adaptation of the task to TCP. 
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3.3.3 CNN image classifier adapted for TCP 

The online state of the system is working seamlessly without the need for human 

intervention to identify the tools that produce a NO GO part. The system takes a picture before the 

machining starts and, based on the training during the offline state, classifies the tool as a useable 

or unusable tool. There are many tools on the machine, and the quality demand from each tool is 

different. Therefore, the offline part of the system where the tool condition is associated with GO 

/ NO GO quality of operation has to be done to each tool during the production setup. This allows 

the system to run without quality inspection in the online state. 

3.4 Qualitative TCM system experimental setup 

 The images of the CNMG 120408/12, TNMG 160408/12, and VNMG 160408 turning 

inserts used in the turning application  are captured using the DFK 33GP006 GigE color camera 

with TCL 3520 5MP lens. Initially, the top, side, and front views are considered for the 

classification. A processor with Intel i7 and 16 GB RAM was used to develop the classification 

model, and the models were implemented using R computer language with kears package using 

TensorFlow backend. The examples of these pictures can be seen in Table 3.1. Table 3.1 shows 

that the top and side view provides very less description of the type of wear, and the wear is easily 

distinguishable in fount view images; therefore, only fount view images were considered for the 

classification model. The setup for capturing the images of different views can be seen in Fig.  3.4. 

The images are captured in standard room lighting without any dedicated light source. As we can 

see from Fig.  3.2, the background of the insert has no impact on the feature extraction process. 
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Table 3.1 Wear patterns and different views 

Wear pattern Top view Side view Front view 

Damaged    

Deformation 
   

Abrasive 
   

 

 

CCD camera 
Insert holder 

Fig.  3.4 Image capturing station 
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 The process starts with collecting the front-view images of the inserts for three different 

categories, 79 images were captured of damaged inserts, 121 images of deformed inserts, and 128 

images of abrasive wear inserts were captured. All the pictures were then resized to 200 pixels 

(width) x 200 pixels (height).  

 The model must be made robust against variation and transformation one of the ways to do 

this is to use data augmentation where the data is subjected to various transformation like rotation, 

flipping, shearing the images this helps in improving the generalization error as the model is trained 

to be invariant to these transformations [77].  The training dataset was then subjected to data 

augmentation, with an allowed rotation range of 10 degrees, width shift range of 20 percent, height 

shift range of 10 percent, zooming range of 20 percent. The parameters for augmentation were 

chosen carefully not to alter the wear description of the images but to accommodate for poor 

quality images that can be seen when the system is deployed in machine shops. An example of this 

data augmentation can be seen in Fig.  3.5. It must be noted that the validation images wear not 

subjected to data augmentation.  

Rotation 

Shearin

Height 

Zooming 

Fig.  3.5 Examples of rotation, shearing, height shift and zooming data augmentation applied to 

training images 
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 The augmented data is then fed to the neural networks. The images were first subjected 

to the image transformations of the convolution and max-pooling layers, where the ROI is 

identified, useful features are extracted from the images autonomously. The data in the final layers 

form the last max-pooling layer forms the input to the densely connected layers. The images are 

converted to pixel data, and each pixel forms the input to the first FCL the data is mapped to the 

labels of the pictures, the output of the FCL is the prediction of wear type. The base model can 

now identify the nuanced differences in the cutting insert by identifying if the insert has 

deformation, normal wear, or damage. The knowledge developed in the base model can now be 

used to identify the change in quality by retaining the model. 

 For the target model, the images of inserts are classified into GO / NO GO categories ; 

for this part of the study, only CNMG 120408 turning inserts are used; one of the examples for 

GO / NO GO can be seen in Table 3.2. Table 3.2 also gives an example for different TCP accessible 

in machine shops. The objective of the case study with respect to the target model is to prove that 

the model identifies the nuance differences in change in wear morphology and predicts the 

consequence of using a tool that is if the tool produces a GO quality part or NO GO quality part 

while using lesser images and training time and iterations so that the TCP deployment is fast-

tracked. 
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Table 3.2 GO, NO GO, and examples of different tool change policies used in machine shops 

around the world 

NO GO GO GO GO GO Quality 

     

Insert 

wear 

image 

 

     

Surface 

finish  

     

Burr on 

edge 

     

Chatter 

marks 

     

Feed 

marks 
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 For this part of the study, the inserts that are relatively new and have typical wear patterns 

are manually classified as GO category inserts, and the inserts that have higher wear levels, as 

shown in NO GO part of Table 3.2, are classified as NO GO category inserts. These images are 

used to train the target model, and the training images are subjected to similar data augmentation 

shown in Fig.  3.5. The architecture of the target model is shown in Table 3.3. The parameters 

learned by the base model are frozen, and only 382 parameters of layers 12 and 13 are optimized 

for the target model. 

Table 3.3 Target model architecture 

 Layer type Input Shape Output Shape Filter Size Trainable Parameters 

 Input layer 200,200,3 200,200,3 0  

1 Convolution layer 200,200,3 198,198,32 3,3,32 0 

2 Max pooling layer 198,198,32 99,99,32 2,2,32 0 

3 Convolution layer 99,99,32 97,97,32 3,3,32 0 

4 Max pooling layer 97,97,32 48,48,32 2,2,32 0 

5 Convolution layer 48,48,32 46,46,64 3,3,64 0 

6 Max pooling layer 46,46,64 23,23,64 2,2,64 0 

7 Convolution layer 23,23,64 21,21,64 3,3,64 0 

8 Max pooling layer 21,21,64 10,10,64 2,2,64 0 

9 flatten (Flatten) 10,10,64 6400,1 0 0 

10 Dense layer 6400,1 50,1 0 0 

11 Dense layer 50,1 35,1 0 0 

12 Dense layer 35,1 10,1 0 360 

13 Dense layer 10,1 2,1 0 22 
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3.5 Qualitative TCM system results and discussions 

The training of the base model was carried out using 223 images, and 105 images were 

split from original dataset for validation; the validation data set consists of approximately 33 

percent of each damaged, deformation, and abrasive wear categories.  Fig.  3.6 (a) gives accuracy 

for base model training runs. The validation accuracy stabilized around the 200th epoch, and the 

validation accuracy is 83.75 percent. Fig.  3.6 (b) presents the loss of over 250 epochs, and the loss 

is the indication of the magnitude of deviation between prediction and the actual value.  

For the second part, the objective is to demonstrate the capability of the system to adapt to 

the new task of TCP deployment using fewer images and less training time. For this, the data is 

partitioned into three sections, training, validation, and test dataset; various training runs are 

carried out using a different number of images. The summary of the number of images used for 

each run is shown in Table 3.4. All the images in the three sections are different and were not 

repeated. The images in the test data set can be seen in Fig.  3.7; the GO category images have no 

wear or have typical wear pattern; these tools produce conforming parts, and the NO GO category 

have visible wear on the edges; these tools produce non-conforming parts. 

a) b) 

Fig.  3.6 (a) Accuracy of the base model. (b) Loss convergence graph of the base model 
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  Fig.  3.7 Test image data a) GO images b) NO GO images. 

Table 3.4 Training, validation, and test data split for different runs 

Table 3.5 Confusion matrix for run 5 

 Fig.  3.8 shows the accuracy and loss values for different runs. It can be seen from Fig.  3.8 

b the loss value plateaued around the 5th epoch in most of the runs signifying that the optimization 

of the parameters requires fewer iterations, which enables the system to accommodate a variety of 

RUN Training pictures Validation pictures Test pictures 

1 13 10 20 

2 18 12 20 

3 23 16 20 

4 27 18 20 

5 37 26 20 

                                                Prediction 

Actual GO NO GO 

GO 7 0 

NO GO 3 10 

a) b) 
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TCP and with less training requirements. Fig.  3.8 c and d show the accuracy and loss of the trained 

models on the test dataset. It can be seen that the accuracy of the models is increasing with the 

number of images used in training the model. Run 4 had lesser loss value when compared to run 5 

but yet had lower accuracy; this can be attributed to overfitting of data which led to miss 

classification of images in NO GO category test data as GO category. Run 5 had the best results 

in terms of accuracy on test data where 37 images are used in training the model. The accuracy on 

the test data for run 5 was 85 percent; the confusion matrix for run 5 can be seen in Table 3.5. The 

model predicted all NO GO label images correctly and predicted 3 images of GO labels incorrectly. 

 The final part of the study is the deployment of the system using a Graphical User Interface 

(GUI). Fig.  3.9 gives a view of the GUI; the output of the GUI is feedback to the operator. The 

feedback is NO GO for tools that the target model predicts will produce a non-conforming part, 

and GO for tools that the model predicts will produce a conforming part. The machine operator is 

Fig.  3.8 Results for target model training run on validation and test datasets 
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encouraged to replace the tool when the GUI displays NO GO. The prediction is generated within 

5 seconds, facilitating the mass production without interruptions of quality inspections.  

 The proposed system directs the TCM from a quantitative to a qualitative approach using 

TCP, and this makes the system more flexible to accommodate different quality requirements seen 

in machine shops around the world. The system uses feature extraction capabilities of CNN and 

the ability of these models to learn new features using TL. Future development in the proposed 

system has three fronts; first, the development of the camera system to be integrated into the 

machine, the image acquisition in the study was independent of the machine, but the system has 

demonstrated that the images acquired from a reasonable distance away from the cutting operation 

can be used and classified by the system. The system used standard room lighting; There are 

systems discussed in studies done by Sun et al. [16], which are capable of generating the required 

light intensity and protecting the camera from the cutting oil. Second, the improvement of 

Fig.  3.9 GUI for quality management system 
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intelligence and accuracy of the system by integrating more diverse wear images into the base 

model, since the base model is the central nervous system and target models have similar data 

distribution, the accuracy of GO / NO GO model can be improved with fewer iterations 

requirements, with a more robust base model . Finally, the proposed system is designed for the 

turning process, considering that the wear mechanisms in milling are different; there is a need to 

develop a similar system for milling applications. A similar neural network can be trained with 

milling inserts data to repurpose the framework for a milling application. The CNN architecture is 

a standard approach when it comes to image recognition, and identification-related neural network 

architectures, the area of deep learning also continues to evolve; therefore, there is a need to keep 

an eye out for new techniques that can improve the training time and accuracy of the system. 

3.6 Conclusion 

 The proposed study redirects the TCM from tool wear quantification to the objective of 

providing a more proactive qualitative approach to quality management that saves the resources 

used in the production of non-conforming parts. A tool change policy is employed to detect these 

changes in quality indicators and change the tools when they occur. Given the different quality 

requirements, there are a variety of tool change policies. Therefore, a TCM that is flexible to adapt 

to different tool change policies is developed. The developed systems can adapt to a new tool 

change policy requiring as few as 37 images and 12 training iterations using concepts of transfer 

learning and convolution neural networks. The study also developed a qualitative approach to 

TCM since the answer that is more important than quantifying the wear on cutting tool is the 

answer to if the tool produces a conforming part or a non-conforming part. This is captured in the 

system by extending the concept of GO / NO GO gauges to different quality requirements through 

tool conditions. The tools that are predicted to produce a conforming part are categorized as GO 
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tools, while non-conforming part producing tools are classified as NO GO tools. The developed 

system can identify the GO / NO GO quality tool with 85 percent accuracy. Lastly, a graphical 

user interface is also developed to give feedback to machine operators about the usability of the 

tools. The system is designed to operate in between machining cycles, checking the usability of 

every tool before they are used. The system only takes a few seconds to determine the usability of 

the tools. This concept helps in making the proposed methodology an in-process TCM system. 
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Chapter 4: Improving tool life by optimizing machining parameters: Using 

autonomous fuzzy logic controller and image data 

 In the previous chapter, the ability of the CNN model to detect the nuanced differences in 

wear morphology is demonstrated. In this chapter a machining parameter optimization system is 

developed using the ability of CNN to detect different wear morphologies. Optimization of 

machining parameters like cutting speed, feed, and depth of cut is one of the extensively studied 

fields in the past two decades [80]. While researchers agree optimization of these parameters is 

essential, there is no conscience as to what the objective of the optimization should be. The studies 

consider production cost, production time, surface finish, among others, as the objective of 

parameter optimization [20–26, 81, 82], but there are very few studies that consider the 

manufacturer prescribed tool life as the criteria for parament optimization. It is worth noting that 

every tool is designed to achieve manufacturer prescribed contact time or length. When the tool is 

used under abrasive wear conditions which tooling engineers call normal flank wear, the 

prescribed tool life or full utilization of cutting edge is achieved [28]. Therefore, the objective of 

machining parameter optimization must be to achieve desired outcomes in the context of 

reasonable tool life. The methods used by studies that do consider tool life [83–85] as an 

optimization objective are facing challenges to generalize when the machining material changes 

or the tool geometry changes. Considering this, a novel image feedback using a convolution neural 

network-based method combined with principles of fuzzy logic is used to optimize machining 

parameters. Since the system is based on online feedback from the images of the inserts, it can be 

used for different materials, and the system is invariant to the different tool geometries, and grades 

as the decisions are based on the wear mechanisms detected. The hybrid system is validated 

through experimentation; the results of the experiment concluded that the tool life could improve 
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by up to 100 percent with the use of system suggested machining parameters as discussed later in 

Section 4.4. 

4.1 Introduction 

 In the past decades optimization of machining parameters like cutting speed, feed, and 

depth of cut are extensively studied. The studies are warranted as these parameters affect different 

facets of machining, which include but not limited to surface finish, load on the machine, power 

consumption, tool life [80]. Considering this, the objectives of the optimization of these parameters 

have also been different. Usually, these parameters are optimized at the initial stages of the 

production setup through trial and error and are mostly based on the expert knowledge of the 

machine operator and empirical rules in machine data handbooks [86]. If the tooling engineer has 

selected the right tools for the right material conditions, and the machine operator has selected the 

right machining parameters, the manufacturer prescribed tool life, as well as other desired 

outcomes, are achieved. The studies that consider various objectives for parameter optimization 

have ignored tool life as a criterion for optimization. Considering that tooling can account for up 

to 12 percent of the production cost [5], it is essential to optimize other outcomes like surface 

finish, power consumption, keeping in mind tool life. 

 The studies so far take an experimental approach to get the best tool life in which various 

machining parameters are tried, and the parameters with the best tool life are adopted. This 

approach presents a challenge of generalization, when the tool geometry, coating grades, or the 

workpiece material changes, the assumptions in the experimentation of the studies render the 

optimized parameter unusable. Tool manufacturers prescribe monitoring the wear morphology to 

optimize the machining parameters to achieve the best tool life [87–89]. There are different wear 

morphologies, and some of them are desired, and others are undesired morphologies. To achieve 



49 

 

the maximum tool life, the desired wear morphology must prevail. The desired and undesired wear 

morphologies are discussed in Section 4.2. The decision based on the wear morphology also helps 

the tooling engineers generalize their knowledge across different tool geometry, coating grades, 

and working materials. The tooling engineers are taught to troubleshoot tool life using the wear 

morphologies, and the remedy to those wear morphologies [87–90]. This helps the tooling 

engineers generalize their knowledge.  

 In this study, the authors take the approach a tooling engineer takes to optimize the 

machining parameters based on the visual information available. A tooling engineer first looks at 

the tool for the type of wear and approximates the level of wear based on this evidence the engineer 

changes the parameter appropriate for the level of wear and type of wear. These appropriate 

changes are relative to the initial machining parameters, and the decision of the magnitude of 

changes in parameters is a skill developed over the years by the engineers. The presented study 

replicates this decision making through an autonomous system that first recognizes the type of 

wear, then the level of recognized wear is measured, and finally, the skills are captured in the 

system through fuzzy logic rules. Thus, performing the task of tooling engineer autonomously and 

independently. This autonomous decision-making system equips the new inexperienced machine 

operators with the preemptive remedy actions to achieve full utilization of the tool life. Also, the 

system can be used in fast-tracking of identification of the best machining parameters for new 

exotic materials. With the full integration of the proposed system with the machine controllers, the 

study can contribute to the concept of lights out machining without the need for human 

intervention. 

 The contribution of the study is a fuzzy controller that replicates human decision making 

when it comes to machining parameter optimization with tool life as the objective. The detection 
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of wear morphology and measured values of the detected wear morphology serve as feedback to 

the controller, thus makes the proposed system a closed-loop system. This approach also helps in 

generalizing the system across different working materials, tool geometries, and tool grades as the 

decisions are based on visual evidence of wear morphology. 

 The rest of the chapter is structured as follows. The background literature is discussed in 

Section 4.2. In Section 4.3, the methodology is proposed starting with the overview followed by 

the basic concepts used in the system. In Section 4.4, the case study and the results are 

demonstrated. Finally, the further development needed in the full deployment of the system and 

the conclusions are given in Section 4.5.  

4.2 Machining parameters optimization literature review 

 Optimization of machining parameters is one of the extensively studied fields of 

manufacturing, but the objectives of the optimization have been different in different studies. 

Surface finish [20–25] is one of the primary objectives to optimize the machining parameters 

where inputs to prediction models are cutting speed, feed and depth of cut, among others, and the 

model is expected to predict the surface finish. The effects of various parameters on power 

consumption [24] are also studied extensively to provide the best working parameters that consume 

the least power. Cycle time or production time [26] and Manufacturing cost [81, 82] are also a 

common objective to optimize the cutting parameters. Other than the above-mentioned objectives, 

some studies have also considered cutting force or load on machine [24], and material removal 

rate [27] as the objective to optimize the machining parameters. A complete review of different 

optimization objectives can be found in the study done by Rana et al. [91]. 

 The machining parameter optimization objectives mentioned in the previous paragraph are 

essential as they affect machining quality and production cost. On the other hand, if surface finish, 
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power consumption, and production cost are considered without considering tool life, the 

manufacturers run the risk of underutilizing the tool or, in the worst-case, end up using the wrong 

tool, which drives up the tooling cost. Therefore, there is a need for a system that can optimize the 

tool life. In the context of optimized tool life, if the other desired outcomes like surface finish, 

production time, and cost are not achieved, the tool selection is wrong and must be changed in 

consultation with tooling engineers. 

 The parameter optimization study has used a variety of methodologies to achieve the 

desired objectives. Artificial Neural Network (ANN) is one of the new methodologies used in the 

last decade [24]; this methodology establishes the nonlinear relations between the input variables 

and target variables. The relation later helps in the prediction of outcomes of using individual 

machining parameters combinations. The genetic algorithm [92] is also a commonly used 

methodology based on the basic principle of selection of the best solution to the optimization 

problem. Experimentation, which involves trying different parameters and determining the best 

paraments of the lot, is also a common approach; the Taguchi method [22] is used to design these 

experiments. In the experimentation approach, which forms the basis of the above-mentioned 

methodologies, there is no room for a closed-loop system, which can adjust the parameters based 

on the online feedback from the change in a machining environment. The experimental approaches 

are also limited to the material they are experimenting with or the tool geometries that are used in 

the studies. If the material or the tool geometry or the tool coating grade changes, the assumptions 

make the generalization of the findings for a different material or tool impossible.  

 The proposed system develops a feedback loop and a closed system by optimizing the 

parameters based on the wear condition of the tools. The wear on the cutting tool is unavoidable. 

There are, however, desired and undesired wear patterns. The desired wear morphologies must 



52 

 

prevail for the full utilization of cutting tools. Abrasion wear is the removal of small fragments 

[28] from the tool, which relatively preserves the rake angles of the cutting tool, giving the best 

life designed by the manufacturer. The abrasion wear pattern is also termed as normal flank wear 

by the tooling engineers. The other wear mechanism is plastic deformation, which significantly 

changes the working angles [28] of the insert rendering it unfit for machining in a short cutting 

time, this type of tool wear is commonly seen while machining high melting point material at high 

cutting speeds. The adhesive wear pattern is the other commonly seen wear pattern in the cutting 

insert, where the material being cut adheres to the cutting edge and the rake face [28], this leads to 

change in cutting angles and poses a risk to smooth chip flow which makes the tool unfit for 

machining, Built-Up Edge (BUE) is the industrially used term for this kind of wear pattern. 

Considering that the plastic deformation and adhesive wear patterns drastically reduce the usability 

of the cutting tools, tool manufacturers prescribe remedy actions to achieve abrasive wear pattern, 

that is ideal wear pattern to realize the full life of the cutting tool. The remedy actions to achieve 

abrasion wear patterns are discussed later in Section 4.3.3. 

  Parameter optimization based on TCM can be done using indirect and direct monitoring 

methods [93]. Indirect methods use data from one or more of vibration [8–10], sound [7], and force 

[8] sensors. On the other hand, direct methods rely on first-hand evidence, like images of tools 

[11]. While indirect methods are online systems and give information on real-time bases, they are 

less accurate and susceptible to noise when the systems are deployed in machine shop floors [12]. 

Indirect systems are also trained for predictions based on specific experimental data provided by 

the sensors, and the model needs to be retrained if any of the parameters in the experiment change. 

For example, if the vibration sensor-based model is trained for finishing geometry, the same model 

can not be used if the geometry changes to roughing geometry as the vibration levels are higher 
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for roughing geometry; the same can be implied for other indirect methods. Direct systems like 

vision-based systems are not real-time systems but are in process systems; they can be designed to 

work in between cycles [13] and tool change programs. Since direct systems are based on first-

hand evidence, they present the advantage of higher accuracy. Also, the vision systems can be 

placed away from the metal cutting this allows them not to  interfere with machining operations, 

that is why vision systems have gained popularity in inspects [94], collusion detection [64, 65], 

and other applications. Direct systems can also be trained to monitor wear morphologies, which 

have specific remedy actions to achieve desired wear morphology. These remedy actions are 

common to different tool geometries, coating grates and workpiece materials. The ability to work 

with wear morphologies allows the system to generalize the remedy rules for different 

applications. Considering Higher accuracy of direct methods, combined with the ability to 

generalize remedy rules the computer vison based direct method is selected to create a feedback 

loop for a closed machining parameter optimization system, that can respond to change in tool 

condition. 

 The gap in machining parameter optimization in the context of tool life is an area with 

scarce publications. It is evident in the literature discussed in the previous paragraphs; the proposed 

system is designed to address this gap. The developed system is a combination of a Convolutional 

Neural Network (CNN) and Fuzzy Logic (FL) methodology. The previous studies use FL for TCM  

[95, 96], but FL is not the best approach for feature recognition since the feature descriptions have 

to be hardcoded in terms of fuzzy rules which takes a considerable amount of computational 

memory and also FL systems can not accommodate new situations not bound by the rules [97]. In 

this regard, CNN approaches are more accurate and also do not require the feature definition stage 

[61], This expedites the training process and also improves the ability to recognize a variety of 
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wear morphologies. FL, however, is efficient in converting human knowledge into variables  that 

computers can understand [97]. The FL in the proposed methodology is used to model the expert 

and tool manufacturer’s troubleshooting knowledge. The proposed hybrid system uses CNN as the 

feedback and FL as the controller, which selects and adapts the machining parameter. 

4.3 Hybrid Fuzzy controller with an image feedback system 

 The overview of the proposed fuzzy controller can be seen in Fig.  4.1. The proposed 

system is divided into the controller and the feedback sections. The feedback section consists of 

the wear classifiers that classify the type of wear on the tool, and the approximates amount of wear 

on the tool. The type of wear, amount of wear, the component diameter, and spindle revolutions 

per minute (RPM) form the inputs to the controller; this is further elaborated in Section 4.3.1. The 

first step in the controller is the fuzzification, where the change in cutting speed, wear type, and 

lever of wear are converted to linguistic variables discussed in Section 4.3.2. In Section 4.3.3, the 

rule base, which forms the intelligence of the controller for remedial actions as suggested by 

tooling engineers and tool manufacturers, is developed. The output of the controller is a crisp 

number that is used to control the cutting speed of the machine. The output of the system is a 

remedial action to achieve desired wear morphology that improves tool life. The process of relying 

on the evidence of wear morphology, amount of wear, and the initial machining parameters 

replicate the tooling engineer decision-making process when it comes to machining parameter 

optimization. The techniques of output inference and defuzzification are discussed in Section 

4.3.4.  
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4.3.1 Inputs to controller 

 The controller uses four inputs diameter of the component, RPM, type of wear, and level 

of wear. The cutting speed (Vc) in meters per minute is calculated using Equation 1 [98], where D 

is the diameter of the component to be machined in millimeter, and N is RPM of the workpiece.  

 There have been many studies in wear type identification and wear amount estimation 

fields. Sun and Yeh [16] developed image processing methodology that can recognize the type of 

wear, and the level of wear is estimated by accounting for the number of pixels in the wear region. 

Wu et al. [61] took a neural network approach to identify the type of wear pattern and used a 

minimum circumscribed rectangle to get the quantity of the wear. The proposed system uses a 

neural network approach to identify the type of wear automatically by capturing the images of the 

 Vc = (πDN)/1000 (1) 

Fig.  4.1 Overview of the fuzzy controller. 
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used tools, and the amount of wear is manually calculated. However, there are other technologies 

developed that can also automate the amount of wear calculation. 

 Neural networks are one of the most used methods in image recognition. The neural 

network allows for automatic feature extraction by learning the nuanced differences in the images. 

The images are manually classified into different wear categories and are used to training and 

validate the classification models. Once the training is complete, the model can automatically 

identify the different wear patterns by uploading the new images. 

 The CNN architectures use different layers which perform different actions on the images. 

The convolution layers, narrow down on the region of interest and create useful descriptions of the 

images which make them best suited to work with images [70]. The output of the convolution 

layers then passes through the pooling layer, which in the case of the proposed architecture is a 

max-pooling layer which reports the maximum value in the predefined image pixel neighborhood. 

Max pooling layers make the proposed architecture more robust against small translation in image 

pixel data [77]. The dense layers are the fully connected layers where each neuron is interacting 

with all the neurons of the previous layers. [78]. The last dense layer has the same amount of 

neurons as the number of wear classes, the output of the layer is the network’s prediction for the 

image belonging to three classes, this is summarized in Equation 2 where yp is the prediction of 

the model. 

 yp =⁡{
0
1
2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

if⁡the⁡image⁡has⁡BUE
if⁡the⁡image⁡has⁡deformation

if⁡the⁡image⁡has⁡normal⁡wear
 (2) 

 Activation functions are commonly used in the neural network to allow them to 

accommodate and learn non-linear functions [77], Rectified Linear Unit (ReLU) is commonly used 

in hidden layers of the network architectures as they return zero gradient values of negative nodes 
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and the node value for positive inputs this prevents the gradiaent from becoming too small and in 

process improve the ease of computation [99]. The softmax activation function is used in the final 

layer to represent probability distribution over different classes, which is a common practice in 

classifier architectures [77]. 

 The parameters are where the intelligence of the layers are stored in terms of weights. 

These weights are fine-tuned by backpropagation in the training process. The model uses 

categorical cross-entropy as loss function [77] and ADAM as the optimizer for training and 

optimizing the weights[78]. More information about the training and optimization neural network 

architectures can be found in [61, 77, 78, 99, 100]. The proposed system uses the CNN architecture 

proposed in Table 4.1 to classify the wear type. 

Table 4.1 CNN architecture for wear type classification model. 

 Layer type Input Shape Output Shape Activation function Parameters 

1 Convolution layer 200,200,3 198,198,32 ReLU 896 

2 Max pooling layer 198,198,32 99,99,32  0 

3 Convolution layer 99,99,32 97,97,32 ReLU 9248 

4 Max pooling layer 97,97,32 48,48,32  0 

5 Convolution layer 48,48,32 46,46,64 ReLU 18496 

6 Max pooling layer 46,46,64 23,23,64  0 

7 Convolution layer 23,23,64 21,21,64 ReLU 36928 

8 Max pooling layer 21,21,64 10,10,64  0 

9 flatten (Flatten) 10,10,64 6400,1  0 

10 Dense layer 6400,1 50,1 ReLU 320050 

11 Dense layer 50,1 35,1 ReLU 1785 

12 Dense layer 35,1 10,1 ReLU 360 

13 Dense layer 10,1 3,1 Softmax 33 
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 The amount of wear is manually demarcated on the images of the used tools, although the 

magnitude can also be automatically generated by technologies discussed in [16, 61, 101], and 

many other studies, this work is not replicated. The type of wear (yp), amount of wear in terms of 

micrometers, and cutting speed (Vc) form the inputs to the fuzzy controller. 

4.3.2 Fuzzification 

 There are two variables, type of wear 𝜒𝑇 and the amount of wear 𝜒𝐴 which form the input 

to the fuzzy systems. ℒ𝑇 = {"BUE,"⁡⁡"Deformation, "⁡⁡"Normal⁡wear"}, and ℒ𝐴 =

{"Low,"⁡"Medium,"⁡"High"} are the family of linguistic values for the type of wear and amount of 

wear, respectively. LT is the label used from family ℒ𝑇 and LA is the label used from family ℒ𝐴 

this is summarized by Equations 3 and 4. 

 LT =⁡ {
BUE

Deformation
Normal⁡wear

 (3) 

 LA =⁡ {
Low

Medium
High

 (4) 

 The amount of wear has trapezoidal membership function [102]; this is summarized in 

Equation 5, where xa is the measured value of wear on the cutting tool in micrometers. The 

different values of p, q, r, and s boundary points are summarized in Table 4.2. The pictorial 

representation of the wear type and amount of wear is shown in Fig.  4.2a and Fig.  4.2b, 

respectively, where the values on the x-axis in Fig.  4.2b are the micrometers of wear on the cutting 

tool. Similarly, for the type of wear, the membership function is singleton given in Equation 6, 

where x0 =⁡yp.  
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 μA(xa; ⁡p, q, r, s) =

{
 
 

 
 0
(x − p)/(q − p)

1
(𝑠 − x)/(s − r)

0

⁡⁡⁡⁡⁡

xa ≤ p
p < xa ⁡≤ q
q⁡ < xa ⁡≤ r
r < xa ⁡≤ s
xa > s

 (5) 

 μT(xT; x0⁡) = ⁡f(x) = {
1
0
⁡⁡⁡⁡⁡⁡⁡⁡⁡

xT = x0
xT ≠ x0

 (6) 

Table 4.2 Boundary points for wear amount membership functions. 

𝐴𝑥 p q r S 

Low 10000 200 300 400 

Medium 350 600 900 1100 

High 900 1200 1500 10000 

  

 The response (ℜ) is divided into seven linguistic variables ℛ. Where, ℛ = {⁡Deformation 

High (DH), Deformation Medium (DM), Deformation Low (DL), Normal (N), BUE High (BH), 

BUE Medium (BM), BUE Low (BL)}. R is the label used form family ℛ. The Gaussian 

membership function [102] for response variable (μR) is given in equation 7. The c and s values 

for R are summarized in Table 4.3. Where c is the mean of the distribution, s is the standard 

Fig.  4.2 Linguistic input variables a) type of wear b) amount of wear. 
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deviation, and y is the output value. The mean of the linguistic response variables is dependent on 

the initial cutting speeds. 

Table 4.3 Mean and standard deviation values for different response linguistic variables. 

R c s 

BH Vc + (0.6 Vc) 3 

BM Vc + (0.4 Vc) 3 

BL Vc + (0.2 Vc) 3 

N Vc 3 

 
 

R c s 
DL Vc - (0.2 V c) 3 

DM Vc - (0.4 V c) 3 

DH Vc - (0.6 V c) 3 

   

4.3.3 Rules 

 The rules for the fuzzy controller are developed using the knowledge base of 

troubleshooting guides from different tool manufacturers. The different statements extracted from 

troubleshooting guides are given in Table 4.4. The troubleshooting guides only suggest the overall 

remedy actions, but the magnitude of change in cutting speed or the feed rate is the skills developed 

by tooling engineers over time and experience, these skills are captured in the fuzzy rules. 

Table 4.4 Remedy actions from knowledge base troubleshooting guides published by tool 

manufacturers. 

Wear 

mechanism 

detection 

Remedy statement for 

cutting speed 

Reference Remedy statement for 

feed rate 

Reference 

BUE  Increase cutting speed    [87, 88, 103]   

Normal wear Desired wear pattern  [89, 90, 103]    Desired wear pattern       [89, 90, 103] 

Deformation  Decrease cutting speed    [87, 88, 103] Decrease feed rate      [87, 88] 

 Based on the information from the knowledge base and the tooling engineer’s skills, the 

fuzzy rules (ℋ𝑖) are developed, the basic fuzzy rule is given by Equation 8. The different linguistic 

values of LT, LA, and R for rule i are summarized in Table 4.5. The fuzzy rules model the expert 

 μR⁡(y; c, s) = ⁡ e
(−⁡
(y−c)2

2s2
)
 

(7)  
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statement, for example, rule 1 states that if the wear type is “BUE” and wear amount is “High” 

then increase the cutting speed by “BH,” where “BH” is the increase of 60 percent of initial cutting 

speed.  

 ℋ𝑖 =⁡{IF 𝜒𝑇 is LT AND 𝜒𝐴⁡ is LA THEN ℜ 𝑖𝑠 R}i=1
9  (8) 

 

Table 4.5 Linguistic variables for different fuzzy rules. 

i LT LA R 

1 BUE High BH 

2 BUE Medium BM 

3 BUE Low BL 

4 Normal High N 

5 Normal Medium N 

6 Normal Low N 

7 Deformation Low DL 

8 Deformation Medium DM 

9 Deformation High DH 

4.3.4 Inference and defuzzification 

 Mamdani-Assilan fuzzy inference method is used for fuzzy inference. This method is 

suitable for the application at hand as it can work with the conjunctive interpretation of fuzzy rules 

in the canonical form given in Equation 8 [102]. The conjunctive “AND” is interpreted as the 

minimum (∧) [102]. The inference results from each rule are finally added using maximum (∨) 

operation [102]. The final inference value μR∗(y), which gives the area under all the triggered rules 

is given in Equation 9. 
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 μR∗(y) =⁡∨i=1
9 [⁡μT

i (xT) ∧ μ
A
i (xA) ∧ μ

R
i (y)]⁡⁡⁡⁡y⁡

⁡
→ ⁡𝕐  (9) 

 

 The defuzzification is done using the center of gravity (COG) method [102] where the crisp 

number for new cutting speed ynew is returned by the controller. The COG of the aggregate area 

of all the rules represented by Equation 9 is calculated using Equation 10. ynew is the new cutting 

speed used for the new machining cycle, which is influenced by initial cutting speed, type of wear, 

and amount of wear detected on the tool, used in the previous cycle. 

 ynew =
∫ y μR∗(y) dy
⁡

𝕐

∫ μR∗(y) dy
⁡

𝕐

 (10) 

 The fuzzy controller developed can only work with the cutting speed. Similarly, the fuzzy 

controllers can be developed for other machining parameters like feed rate and depth of cut. 

Cutting speed was considered as there is a consensus among the previous studies that the cutting 

speed is one of the most influential factors when it comes to tool life [104–106]. 
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4.4 Hybrid Fuzzy controller case study 

 The case study started with the training and deployment of wear classification CNN. For 

the training, first, the images of used cutting tools that have BUE, deformation, and normal wear 

patterns are acquired using a GigE DFK 33GP006 image sensor with TCL 3520 5MP lens with a 

35 mm focal length; the setup can be seen in Fig.  4.3. The examples of images from different 

categories can be seen in Fig.  4.4. The image sensor has a resolution of 2592 * 1955. The neural 

network models were built and trained in the Intel Core i5 processor using the Tensorflow backend 

and Keras higher level package. For the wear classification model, a total of 207 images were used 

to train the model discussed in Table 4.1, and 89 images were used for validation of the model. 

The images, when captured, were of different sizes but were resized to 200*200*3 RGB images 

using the EBImage [107] package. 

 The confusion matrix of wear type classification model’s predictions on the validation data 

set is shown in Table 4.6. The model has 86.52 percent accuracy and 0.3752 loss on the validation 

data set. The confusion matrix illustrates that the model performed reasonably well in identifying 

the wear patterns; the numbers in the diagonal of Table 4.6 are the correct predictions.  

 

 
Fig.  4.4 Examples of 200 x 200 pixels image for a) 

Deformation, b) BUE and c) Normal wear 

a b c 

Fig.  4.3 Image capturing setup. 
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Table 4.6 Base model confusion matrix. 

Actual label 

 

Prediction label 

BUE NORMAL DEFORM 

BUE 20 2 0 

NORMAL 3 27 1 

DEFORM 1 5 30 

 The wear classification model is then deployed using a Graphical user interface (GUI). The 

GUI asks the user to upload the image of the used tool, and the output is the type of wear, this is 

manually fed to the fuzzy controller. The example of the deployed GUI can be seen in Fig.  4.5.  

The amount of wear can be automatically measured using various technologies discussed in 

Section 4.3.1; however, in the proposed system, the measurement is done manually using IC 

Measure software [108]. The examples of the measurements can be seen in Fig.  4.6. 

  

Fig.  4.5: GUI for the wear classification model. 
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Fig.  4.6 Amount of wear measurement using IC Measure software. 

 For the fuzzy controller evaluation, Micro-Mark mini-lathe 7x16 is used for machining. 

The tools used are uncoated high-speed steel tools. The workpiece material is Stainless steel 304. 

The cutting speed was monitored by recording the diameter of the component and the RPM 

(measured using REED instruments R7050 photo tachometer and counter). The standard operating 

procedure in Table 4.7 was followed for collecting the data; the steps are repeated after every cut 

of 78mm. 

Table 4.7 Standard operating procedure for collecting data. 

Step 1: Start the rotation and set the RPM to a predetermined level, as indicated by the fuzzy controller. 

Step 2: Carry out the metal cutting using automatic leadscrew feed. 

Step 3: Capture the image of the used tool and record the wear detected by wear classification GUI. 

Step 4: Measure the wear on the tool using IC Measure software if the wear is BUE or Deformation. 

Step 5: Record the diameter of the workpiece after the machining.  

Step 6: Input the diameter, RPM, type of wear, and measured wear to the fuzzy controller. 

Step 7: Record the cut number, cutting speed, and RPM suggested by the fuzzy controller. 
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 The data is collected for four cutting edges; the result of the experiment is shown in 

Annexure b and summarized in Fig.  4.7. Tool 1 and Tool 3 are initiated with abnormally low (23 

m/min) and high (39 m/min) cutting speeds, respectively, which generated BUE and Deformation. 

The use of tools is stopped when the undesired wear patterns are detected. The life for Tool 1 and 

Tool 2 in terms of contract length is 312mm and 234mm, respectively. When the undesired wear 

patterns are detected, the fuzzy controller suggested the change in cutting speed, when the 

suggestion is used while machining with Tool 2 and Tool 4, the tool life improved by more than 

100 percent as shown in Fig.  4.7. 

 The study illustrates the ability of the system to detect different wear morphologies and 

take remedy actions by changing the cutting speed to achieve the desired wear patterns and, in this 

process, achieve better tool life. The system can work with different materials and tool geometries 

as the remedy actions are based on the wear morphologies. The system was evaluated on a manual 

lathe, which did not allow for the control of feed rate. Similar fuzzy rules, as discussed in section 

4.3.3, can be developed for remedy actions that involve controlling feed rates to achieve desired 

wear patterns. The study only discusses BUE and Deformation as undesired wear patterns. 

However, there are other undesired wear patterns like chipping, crater wear, among others, which 

32 m/min 

23 m/min 

31 m/min 

39 m/min 

Fig.  4.7 Consolidated results from the experimental data presented in Annexure b. 
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have different remedy actions. There is a need to further develop the system to work with other 

wear patterns. There is also a need to make the system completely automatic by integrating the 

outputs of the wear classification model, wear amount measurement tool with the input to the 

controller, this process in the proposed study is done manually. 

4.5 Conclusion 

 Machining parameter optimization is one of the extensively studied fields of 

manufacturing, with the objective of optimization being different. The proposed system uses the 

theory of wear mechanism to optimize the machining parameters. The objective of the study is to 

get the desired wear pattern when undesired wear patterns are detected to achieve better tool life. 

This problem is divided into two sections first, the detection of wear mechanism and level of wear, 

and in the second section, these detections are used as signals to trigger fuzzy rules, which change 

the machining parameter to obtain the desired wear pattern in the next cutting edge. The system 

uses CNN for the detection of wear mechanisms. The fuzzy controller uses the output of wear 

classifier, amount of wear, and current state of machining parameters as input to suggest changes 

to the machining parameters for the next cutting edge. The case study developed illustrates that 

when the suggested changes are incorporated, the tool life can be improved by 100 percent. Since 

the system is dependent on the wear morphology as feedback to the deployed parameters, the 

system is not limited by the working material or tool geometries.  
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Chapter 5: TCM framework for threading and grooving tools 

  In the previous chapters, we defined the definition of TCM and also developed new systems 

that utilize the TCM to achieve different objectives like quality and machining parameters 

optimization. TCM, in case of forming tools, however, is different. The heave depth of cuts and 

feed rates [109], which forming tools like threading tools and grooving tools take, expose different 

faces of the tool to the workpiece. Therefore there is a need to monitor three faces of forming tools. 

In this chapter, a methodology that uses three-dimensional descriptions of tool and feature 

extraction capabilities of neural networks to classify images of the forming tools like threading 

and grooving tools based on the wear morphology is proposed and validated using synthetic data. 

The algorithm is designed to generalize across wear patterns as it doesn't need any qualitative or 

image processing input. 

5.1 Introduction 

Machine-shops around the world are moving towards Industry 4.0 [56], the equipment in 

the machine-shops are gaining the ability to self-manage their activity [68, 110, 111] hence it is 

critical to look at TCM and product quality through machining tending prism. There is enough 

literature to demonstrate mechanical and vision capabilities [112], [113], but there is a need to 

develop the artificial intelligence and control systems for fully autonomous machine tending 

capabilities [6] as presented in “lights out working” case study in [4]. In view of these 

developments, research related to the Autonomous Quality Management and Control Program 

(AQMCP) has taken a central stage. Tool condition self-management is part of AQMCP, the loss 

due to rejection of machined parts is not limited to rejected workpieces but also to the allocated 

opportunity cost related to the human and machine time spent to work the rejected workpieces 

[36]. Since the tool on the machine is consumable, monitoring their condition becomes vital and 
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prerequisite to manage production cost [15] and production quality [114]. Traditionally the 

machine operator has been the single source of information used to measure tool condition [115]. 

Lately, with the advancement in sensors and visual systems, the TCM has been modified to some 

extent, the complete review of which can be found in [59]. The TCM is classified into indirect and 

direct methods [62]. While indirect methods are online measurement systems and provide 

feedback on a realtime basis, direct methods are more accurate [59] and try to replicate the human 

monitoring process [52]. Hence the proposed methodology uses direct methods, considering the 

advantages it provides and enough time between machining cycles in a practical setting to 

determine the condition of the tool. 

TCM in case of form tools like threading cutting and grooving tools have different 

requirements when compared to a single-point cutting tool. In forming tools, all the faces of the 

tool come in contact with the workpiece due to the large depth of cuts [116]. The undesired wear 

in these forming tools result in imperfections like feed marks and chatter marks, which might lead 

to operational failure of the components [116]. Therefore, it is imperative that the TCM in the case 

of form tools takes the three-dimensional view before determining the condition of the tool. 

The proposed framework combines the concepts of machine tending and TCM for forming 

tools. The proposed system classifies the type of wear pattern, considering the three-dimensional 

description of the tools. The methodology takes inspiration from the previous study done by [16, 

19, 52]. Lanzetta starts with the classification of the tool based on the wear morphology and then 

takes a quantitative approach based on the parameters like the width of flank wear and crater wear, 

among others. Sun and Yeh [16], designed, and implemented the visual hardware system and used 

image processing and filtering techniques to determine the wear patterns. The disadvantage of this 

technique is that it needs different filters and transformation principles of image processing for 
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identifying different types of wear. Wu et al. [19] developed a neural network-based system for 

tool wear detection and estimation. The ability of the neural network to automatically extract and 

learn the wear features provides the advantage of skipping the feature extraction step, which is 

necessary for other approaches. Hence the proposed methodology provides a framework using 

feature extraction capabilities of the densely connected deep neural networks (DNN) [117] to work 

with raw image data, and which requires, no qualitative inputs or image preprocessing functions 

and which can be easily replicated for the purpose of wear morphology classification for Built-Up 

Edge (BUE), Edge Deformation (ED) and abrasion wear, also known as normal wear (NOR) as 

seen in Fig.  5.1. The aforementioned systems, however, are not suitable to be implemented in 

TCM of forming tool as they do not consider the damages, large depth of cuts can impose on 

different faces of the tool, considering this a TCM system based on a three-dimensional description 

of the tool is proposed. 

5.2 Neural network methodology for wear type classification 

DNN, also called as multilayer perceptrons is a black-box model where we are trying to 

estimate a function f ⋆(𝐱) that best resembles the actual function f(𝐱)  [77]. The random variable y 

represents the category or wear, which can take  three possible values. Equation 1 is the actual 

Fig.  5.1 left image is BUE wear pattern image, middle image is edge deformation wear pattern and 

right image is normal wear pattern 
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function that maps the pixel data to y. Equation 2 is our estimation of the actual function, where 𝜃 

is the parameter estimated given the data 𝐱 = {x1, x2, x3… , xa}. In the proposed framework, yt is 

the target label for the picture and yp is the prediction from the neural network for the picture, and 

the 𝐱 is the pixel values from the image, where a = 30000. 

y = {⁡
⁡⁡⁡0⁡if wear is BUE
1⁡if wear is ED

⁡⁡⁡⁡2⁡if wear is NOR

 

 yt = f(𝐱) = f(x1, x2, x3… , xa) (1) 

 yp = f
⋆(𝐱; θ) = f ⋆(x1, x2, … , xa; θ) (2) 

Fig.  5.2 gives the architecture of the neural network used in the classification. This 

architecture is finalized after careful tuning. Each node in the network acts as a linear aggregator, 

where it takes in the inputs from the previous layer multiplies it with the weights (strength of 

synaptic links) aggregates the product and then transforms with a non-linear activation function 

[77, 118, 119]. This is summarised in equations 3 and 4. 𝐰a,b in equation 3 is the weight of synaptic 

link, i is layer of the network, j is the node in layer i, n is number of nodes in layer i-1 and φ is 

nonlinear activation function. 

 
Hi,j =⁡∑𝐱𝐰a,b

T ⁡

n

a=1

 
(3) 

 hi,j = ⁡φ(Hi,j) (4) 
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The activation function φ used in the hidden layers is a rectified linear unit (ReLU) and 

softmax for the output layer. ReLU summarized in equation 5 is used in the hidden layer as it 

makes the optimization process easy [77]. Softmax summarized in equation 6 gives the probability 

distribution of yp over c possible classes [77]. 

 

 

hi,j = max(0, Hi,j)⁡⁡⁡⁡⁡⁡⁡ (5) 

 
yp =⁡

eYp

∑ eYc3
c=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
(6) 

 

The optimizer and loss functions used were Adam and categorical cross-entropy, 

respectively. Adam was selected as it uses adaptive momentum [77], and because it is more 

efficient than other optimizers and gives better results with fewer iterations, the details of Adam 

algorithm can be found in [78]. Equation 7 provides the cross-entropy loss function optimized by 

the Adam algorithm. 

Fig.  5.2 DNN architecture used for insert wear morphology classification 
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  The parameters used in Adam optimizer were learning rate = 0.001, the beta1 = 0.9 and 

beta2 = 0.999. The validation batch split of 30% was used, the training was terminated at the 50th 

epoch as the model stabilized; accuracy is used as the metrics for evaluation. 

5.3 Three dimensional data-preparation 

Fig.  5.3 is a flowchart that gives an overview of the entire classification method. The data 

set consists of one hundred thirty-five synthetic image data points, which are then combined to get 

forty-five images with fifteen images belonging to BUE, NOR, and ED wear patterns, as seen in 

Fig.  5.1. The data set is then partitioned randomly to get fifteen images for testing the DNN; this 

set is not used in the training of DNN. Then the image is localized to a region of interest by a 

simple automatic zooming algorithm that concentrates on the working tip of the insert. The image 

 
loss = ⁡−∑yt,clog⁡(yp,c) ⁡

m

c=1

 
(7) 

Fig.  5.3 Flow chart for insert wear classification method 
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at this stage is of size [100, 100, 3], where [100, 100] are the width and height of the picture, and 

3 refers to the RGB channels of the image. Each image is then converted to a one-dimensional 

vector with dimension [30000, 1], then the rows are combined to one data frame where each row 

is an image, and the columns represent the pixel data [18], the vector then forms the input to the 

neural network. These inputs are then multiplied with free parameters 𝑤𝑎,𝑏 the process is repeated 

for all the hidden layers. The output layer of the neural network has three nodes, which give the 

probability of the image belonging to BUE, ED, or NOR wear. The most significant probability is 

assigned as the prediction label for the picture. 

5.4 Forming TCM framework results and discussions 

Fig.  5.4a gives an increase in accuracy for different iterations. Fig.  5.4b presents the loss 

function, which presents the magnitude of the difference between the prediction and the actual 

value. After fitting the model, it was tested for a new data set that was not used for training or 

validation. The model performed reasonably good with 93.33 percent accuracy on the test dataset. 

A Processor with Intel i5 and 12GB RAM was used for training and testing the model.  The 

confusion matrix for the test data result can be seen in Table 5.1. As illustrated in the confusion 

matrix, only one image was miss classified as NOR wear when the actual wear pattern was ED. 

Fig.  5.4 a) Accuracy of wear classification neural network for 50 epochs. b) Loss of wear 

classification algorithm for 50 epochs 
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Table 5.1 Confusion matrix for the wear classification model. 

Actual label 

 

Prediction label 

BUE ED NOR 

BUE 3 0 0 

ED 0 6 0 

NOR 0 1 5 

 A software architecture for TCM specific to forming tools is proposed. The proposed 

system used synthetic data for evaluation. In the future study, a station for extraction of a three-

dimensional description of the cutting tool is to be developed and deployed on the CNC machine. 

5.5 Conclusion 

 A framework which uses raw image data with no quantitative inputs or image 

processing techniques that can be generalized to different types of wear pattern is proposed. Three-

dimensional representation of the inserts is used to train the model, and this is explicitly targeted 

for forming tool condition monitoring. DNN architecture is tuned to give the best results for the 

classification using adam optimizer; this architecture is capable of extracting underlying features 

of the images and is used to determine the useability of the tool. This intelligent framework is the 

first step in tool-related machine tending, which will be implemented in the vision-based systems, 

which takes the pictures of the inserts when it is in the CNC machine pocket, waiting for the next 

cycle to start.    
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Chapter 6: Final conclusions and future work 

 Tool Condition Monitoring (TCM) is one of the most extensively studied fields of 

manufacturing. The need for a perfect TCM system has resulted in the development of a variety 

of technologies used in tool condition monitoring, and these can broadly be classified into direct 

and indirect systems. The advanced TCM systems and its applications, however, have failed to 

transition from lab setup to machine shop setup. The failure can be attributed to numerous reasons; 

one of the main reasons is the lack of objective for TCM. TCM, in itself, adds no value to the 

manufacturing process. TCM, on the other hand, can be an ally if used with a proper objective. 

Tool condition affects different facets of machining like quality, tool life, production time, 

production cost, among others; therefore, the objective of TCM can also be different. TCM system 

developed with one of the objectives mentioned previously gives the machine operators the vision 

to see the future.  

 The presented work is an effort to provide objective and direction to TCM and has four 

parts. In the first part, the barriers to the transition of TCM from laboratory setups to machine shop 

setups are investigated; in the second part, a framework that uses TCM for machining quality 

management is developed; in the third section, a fuzzy controller is developed. The controller uses 

TCM as feedback to make the right decision. In the final section, a three-dimensional description 

is developed to carry out TCM for forming tools. The developed frameworks and systems set an 

example for how TCM can be used with a specific objective. 

 

 

 



77 

 

6.1 Contribution of the study 

 Earlier in Section 1.6, the objectives of the studies were defined. Fig.  6.1, gives an 

overview of these objectives and the contributions; each is summarised in the following points: 

1. The first objective was to understand the barriers to the translation of existing TCM 

technologies from laboratory setup to an industrial setup. As part of these objectives, an 

extensive review of the existing technologies involving 42 studies, as summarised in 

Annexure a is done. The review resulted in redefining TCM; the new definition and the 

barriers it addresses are summarised in Section 2.4. 

2. The new definition that overcame the barriers to the transition from laboratory setup to 

industry setup needs a new framework that implements the new definition; this is the 

second objective of the study. The developed framework uses concepts of convolution 

Fig.  6.1 Research objectives and contributions 
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neural network and transfers learning. This framework classifies the cutting tools into GO 

category (i.e. conforming parts) and NO GO (i.e. non-conforming parts) with 85 percent 

accuracy using just 37 images for training and 12 training iterations. 

3. Machining parameters are critical manufacturing variables as they affect various facets 

such as surface finish, load on machine, power consumption, and tool life. Usually, these 

parameters are optimized by trial and error using expert knowledge. The need for a 

generalized system for machining parameter optimization that can work with different 

materials, tool geometries, and grades was evident from the literature. In response, a fuzzy 

controller using deep learning TCM framework as feedback is developed. The experiments 

showed that using the controller can improve tool life by 100 percent. 

4. A TCM framework for forming tools such as grooving and threading is developed. The 

framework makes a case for using three-dimensional descriptions of the forming tools to 

determine the tools' useability. Since these tools take the heavy depth of cuts, which 

engages multiple surfaces of the tools. 

6.2 Limitation of the study  

 The frameworks that are developed as part of the research objectives are carefully 

examined with the existing literature. There are, however, particular limitations and reasonable 

assumptions that are used in the evolution of the proposed method. These limitations and 

reasonable assumptions are as follows: 

• Data limitation is one of the overarching limitations of all the systems developed. For 

example, to train the qualitative model, 79 images of damaged inserts, 121 images of 

deformed inserts, and 128 images of abrasive wear are used. While care was taken to 

validate the systems using test data sets not used in training, more image data can improve 
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accuracy, which currently is 85 percent, and the systems' reliability. Generating the data, 

however, is a costly affair. Cutting tools have to be used to their full life using abnormal 

cutting conditions, which requires new cutting inserts and CNC machine time. 

• For a framework that correlates TCM with machining quality, the study reasonably 

assumes the machining environment like fixtures, condition of the CNC machine, and 

machining parameters are stable and are not changing. This assumption is justified as the 

mass production lines are set up, these environmental factors are optimized, and after the 

optimization, they are rarely changed. 

• For a framework that uses TCM as feedback for machining parameter optimization, the 

study is limited by the capabilities of the mini late machine used in the evaluation. The 

machine only allowed cutting speed control. The feed was automatic by means of 

leadscrew engagement. The feedback of the type of wear to the fuzzy controller, and the 

implementation of the cutting speed change suggested by the fuzzy controller are done 

manually. 

• The images for the qualitative framework and the fuzzy controller are captured using 

standard room lighting using an external station. The station has about one meter between 

the tool holder and the camera. 

• The TCM framework developed and discribed in chapter Chapter 5: for forming tools is 

validated using synthetic data. The three-dimensional description of the tools is recreated 

in synthetic data, and it is assumed the synthetic data closely resembles the real data.  

• The Forming TCM framework is developed for a single point forming tool and can’t be 

used for multipoint threading or grooving tools. 
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6.3 Future work 

 Each of the frameworks developed has certain advancements that need to be achieved 

before these frameworks are ready to be deployed in a real machine shop environment. These 

advancements are discussed in the following sections. 

6.3.1 Quality framework advancements 

 The image acquisition for the training and validation of the framework is done offline 

station. For the framework to be integrated into the machine, the camera needs to be integrated 

into the CNC machine. The camera is working in between machining cycles to determine the 

useability of the tools. But there are challenges related to lubrication and metal chips that might 

interfere with the image. There is a need to develop a protective cover before the integration. 

 The internet of things (IOT) implementation of quality management, where the person 

monitoring remotely can be notified to change the cutting tool, will also go a long way in the 

realization of lights out machining.  

6.3.2 Machining parameter optimization advancements 

 The machining parameter optimization framework only considers cutting speed; there is a 

need to integrate feed and depth of cut in the controller before it can be characterized as a complete 

parameter optimizer. There is also a need to automate the interaction between the TCM feedback 

and the fuzzy controller. Finally, the output of the fuzzy controller also has to be integrated with 

the CNC machine controller, which can manipulate the cutting speed, feed, and depth of cut, this 

will allow the CNC machine to manage machining parameters autonomously. 

 The fuzzy controller responses are modeled around the remedy actions suggested by the 

cutting tool manufacturer's suggestions but thses remedy actions only give the direction of change 

in terms of increase or decrease in cutting paramenter; there is a need to further develop data about 
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the impact of the magnitude of changes in the machining parameters. More data about the impacts 

of changes will further improve the fuzzy controller actions and improve the tool life. 

6.3.3 Forming tool condition monitoring 

The forming TCM framework is validated using synthetic data taken from virtual models, mainly 

because developing a three-dimensional description requires a special setup. In future work, a 

system that is capable of generating a three-dimensional description as shown in Fig.  6.2 must be 

developed before the artificial intelligent framework can be deployed.  

Fig.  6.2 Examples of three dimensional discriptions for tool condition monitoring 
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Annexures a 

SLN0  Reference Method Technology 

AI 

Algorithm System input System output Disadvantages Generalization  Need for TCM and notes 

1 

Teti.R et.al 

2010[59]       

Doesn't 

address  

1) Many process variables 

are affected by the condition 

of the tool. 

2 

Kilundu.B et 

al. 2010[35] Indirect 

Vibration 

sensor 

Singular 

spectrum 

analysis 

Vibration to 

system Tool wear 

Vibration 

signal 

processing is 

prone to noise  

Difficult to 

generalize the 

system for 

different tool 

and operations  

1) Tool condition affects 

dimensional tolerance and 

other quality aspects of 

machining. 

2) ANN working explained 

can be referred 

3 

Wang.G et 

al. 2012[41] Indirect Force sensor 

Distributed 

Gaussian 

ARTMAP Force signals Tool condition 

Complex 

system for 

deployment 

Doesn't 

address  

1)Contribution of AI to tool 

condition monitoring has 

improved. 

4 

Wang.G.F et 

al. 2014[43] Indirect 

Vibration 

sensor 

Support 

vector 

machine 

Vibration 

sensor  Tool condition 

Vibration 

related to four 

types of wear 

have been 

collected this 

limits the 

useability of 

the system  

Doesn't 

address  

1)Tool condition has effects 

on different aspects of 

machining. 

5 

Painuli.S 

et.al 

2013[120] Indirect 

Vibration 

sensor 

K-star 

algorithm 

Vibration 

signals 

Tool condition / 

surface finish 

The complex 

system as it 

requires 

vibration 

signal receiver 

closer to metal 

cutting  

doesn't 

address  

1) Importance of tool 

condition monitoring for 

autonomous manufacturing 

systems. 

 2) Direct methods more 

accurate. 

6 

Balsamo.V 

2015[46] Indirect 

Acoustic 

Emission  

Force and 

acoustic signals 

Catastrophic tool 

failure  

The complex 

system that 

uses force and 

acoustic 

signals and 

there is a delay 

in failure 

detection 

doesn't 

address  

1) Tool condition 

monitoring can aid in full 

utilization of tool life. 

 2) Tool condition 

monitoring defined by three 

steps, sensing signals, signal 

processing, classification. 
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3) Catastrophic tool failure 

during machining is bad. 

7 

Dongre.P 

2013[53] Indirect 

Acoustic 

Emission 

Acoustic 

signature 

Analysis 

Acoustic 

Emissions 

Tool condition 

and failure 

Requires 

sensing of 

signals close 

to cutting 

operation 

Considered 

generalization 

for different 

cutting 

operations like 

milling, 

turning, 

drilling 

1) Early tool changing is a 

problem. 

2) Tool condition 

monitoring is necessary for 

autonomous manufacturing. 

3) Tool condition 

monitoring is not just 

monitoring tool wear.   

8 

Aghazadeh. 

F 2018[14] Indirect 

Electrical 

resistance 

Support 

vector 

machine, 

Bayesian 

rigid 

regression, 

Nearest 

neighbor 

regression, 

Decision 

tree 

Electrical 

signals from 

spindle 

Tool wear 

estimation 

Complex 

system for 

analysis  

Doesn't 

address  

1) Tool defects can be 

considered as one of the 

most common and costly 

faults of machining 

processes. 

2) Tool condition 

monitoring improves 

accuracy, reduces the 

production cost and 

increases productivity. 

3) Direct methods more 

accurate. 

 4) Direct methods more 

expensive and not suitable 

for online applications. 

9 

Roth.J 

2010[121]        

1) There is a need for a 

single unified approach, and 

a unified approach will 

enable rapid expansion of 

tool condition monitoring 

into other processes and 

tighter integration.  

2) Tool condition 

monitoring extracting 

features that help in 

determining the health of 

the equipment. 

3) Different sensors are used 

to obtain those features. 
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4) Historical behavior or 

human expertise can be used 

to define the undesired 

features. 

5) Quantitative health 

assessment is common. 

6) The online systems are 

done in a harsh and extreme 

condition which may affect 

the performance.  

10 

Torabi.A.J 

2016[40] Indirect Force sensor 

Clustering 

methods  

Force and 

vibration  

Surface quality/ 

tool wear 

Requires 

sensing of 

signals close 

to cutting 

operation 

Mentions 

generalization 

1) Can be used to explain the 

force-sensing concept. 

11 

Kaya.B 

2012[32] Indirect Force sensor 

Support 

vector 

machine, 

Genetic 

algorithm 

Force and 

acoustic signals Tool condition  

Doesn't 

address  

1) The quality of the 

machine has a direct 

correlation with the tool 

condition. 

2) sharp tools for finishing. 

3) Operator judgment may 

be flawed in high precision 

machining. 

4) machine operator is 

responsible for tool 

condition assessment. 

5) Tool condition 

monitoring is a barrier for 

unmanned machining. 

6) High-class tool condition 

monitoring is essential for 

high volume manufacturing 

like in automotive. 

7) Three-component of 

TCM sensing, feature 
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extraction, and decision 

making. 

12 

Shi.C 

2018[42] Indirect 

Vibration 

sensor 

Deep 

learning Acccelerometer  

Tool life 

quantification 

Quantification 

of tool wear is 

not required 

for tool 

condition 

monitoring  

Doesn't 

address  

1) Deep learning has been 

used in manufacturing 

classification tasks to 

forecast part quality. 

2) The microwear of tools 

affects the quality of the 

products manufactured. 

3) Classified the algorithms 

used into two a) Man-made 

expert knowledge-based 

feature extraction b) 

Shallow layer model 

development and study like 

NN, HMM, SVM. 

4) Models developed are 

only used in labs and are 

prone to noise and 

uncertainty when applied to 

real life. 

5) There is a need for 

autonomous feature 

extraction. 

6) NN can learn features 
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13 

Geramifard. 

O 2012[48] Indirect 

vibration 

sensor 

Markov 

models 

Accelerometer, 

Acoustic 

sensor, 

Dynamometer Tool health 

Complex 

setup for 

deployment 

Addresses 

generalization 

1) Specifies the need for 

flexible decision-making 

systems for different quality 

requirements  

14 

Massol.O 

2010[45] Indirect 

Acoustic 

Emission 

Neuro-

Fuzzy 

model 

Accelerometer, 

Acoustic 

sensor, 

Dynamometer Tool health 

Complex 

setup requires 

sensors closer 

to cutting 

operation 

Talks about 

insufficient 

generalization 

capabilities of 

systems 

1)Talks about insufficient 

generalization capabilities 

of systems. 

2) Different tools perform 

differently. 

15 

Jemielniak. 

K 2012[47] Indirect 

Acoustic 

Emission 

Signal 

processing  

Accelerometer, 

Acoustic 

sensor, 

Dynamometer 

Tool wear 

estimation 

Requires 

complex 

features 

extraction 

Doesn't 

address   

16 

Liu.T 

2015[39] Indirect Force sensor 

Neural 

networks Dynamometer 

Tool state / Tool 

wear value 

Complex 

setup requires 

sensors closer 

to cutting 

operation 

Doesn't 

address  

1) TCM has the potential of 

eliminating catastrophic 

failure and maintain quality.  

17 

Shankar.S 

2018[122] Indirect Force sensor 

Neural 

networks 

Dynamometer, 

Microphone 

Progress of tool 

wear  

Predefined 

level of wear 

is defined, and 

this is a 

problem for 

generalization 

Doesn't 

address  

1) Tool condition 

monitoring can be divided 

into two parts direct and 

indirect. 

2) Usually tool maker 

microscope is used to 

quantify the tool wear 

indirect methods. 

18 

Wang.G 

2014[54] Indirect Force sensor 

Support 

vector 

machine, 

Hidden 

Markov 

model, 

radius basis 

function Dynamometer Tool wear state 

Requires 

sensing of 

signals close 

to cutting 

operation 

Mentions 

generalization 

1) Tool condition 

monitoring helps in 

improving machining 

efficiency and guarantee 

workpiece quality. 

2) TCM needs a robust 

classifier of good and bad 

tools using relationships 

between sensor signals and 

tool condition. 
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19 

Siddhpura.A 

2012[13]       

Doesn't 

address  

1) Flank wear is 

unavoidable wear pattern. 

2) TCM is a) Signal 

acquisition b) Feature 

extraction c) Decision 

making. 

3) Direct methods include 

optical, radioactive, 

electrical. 

4) Good source for direct 

methods review. 

5) Optical method most 

popular indirect methods. 

6) Force most popular 

indirect methods 

20 

Ali.Y.H 

2014[123] Indirect 

Acoustic 

Emission     

Doesn't 

address  

1) A good source for AI 

technologies. 

2) AI allows for the 

integration of new data  

21 

Zhang.K 

2015[124] Indirect 

Acoustic 

Emission 

Support 

vector 

machine Microphone  Tool condition 

Requires 

sensors to be 

mounted near 

to cutting 

Doesn't 

address  

1) Proposes data fusing or 

sensor fusion technique. 

22 

Dutta.S 

2013[38] Direct 

Computer 

vision 

Image 

processing  

Camera and 

lighting Surface quality 

Tool 

condition 

monitoring 

not directly 

addressed 

Doesn't 

address  

1) Excessive wear and 

breakage is one of the severe 

causes of downtime. 

2) Indirect tool monitoring 

is studying different 

behavior of machine tools. 

3) There is research on 

making direct methods 

noninvasive. 

4) The direct purposes 

require processing the 

images  

23 

Ghani.J.A 

2011[5] Indirect Force sensor 

Data 

analysis Strain sensor Tool wear 

1) 

Quantification 

of tool wear is 

not required 

for tool 

Doesn't 

address  

1) 20% of downtime 

attributed to machine tools 

and between 3 to 12 % 

production cost. 
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condition 

monitoring 2) 

Used images 

of tool to 

generate y 

labels for the 

Study using a 

microscope 

2) TCM studied since the 

1980s. 

3) Direct methods have the 

advantage of capturing the 

geometrical changes in 

tools. 

24 

Loizou.J 

2015[33] Direct 

Computer 

vision 

Image 

processing  Microscope Tool wear 

Requires 

image 

processing 

and 

concentrates 

on 

quantification  

Doesn't 

address  

1) Tool wear is an 

unavoidable irreversible 

process that can lead to 

nonconforming parts, poor 

surface finish, a catastrophic 

failure like tool breakage. 

2) Usually tool condition 

monitoring is based on 

expert opinion by 

classifying wear into 

different levels or stages. 

25 

Dutta.S 

2013[51] Direct 

Computer 

vision 

CCD 

camera    

Doesn't 

address  

1) Improvement in vision 

system has made direct 

methods  more popular. 

2) Tool condition 

monitoring is inevitable for 

higher production rate and 

lower production cost. 

3) Different types of wear 

like flank wear, crater wear, 

and abrasive wear are 

discussed. 

4) Digital image processing 

technique is useful for fast 

detection of crater wear, 

chipping and fracture 

difficult in other indirect 

techniques. 

26 

Chethan.Y.D 

2014[34] Direct 

Computer 

vision 

image 

processing  camera  

Establish a 

relation between 

cutting 

Sophisticated 

image 

processing 

and feature 

Doesn't 

address  

1) Tool wear highly 

correlated with production 

time and cost. 
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parameters and 

tool wear  

extraction 

required and 

only limited to 

drilling 

application 

2) One of the primary 

objectives of tool condition 

monitoring is establishing 

tool change policy. 

27 

Chethan.Y.D 

2015[125] Direct 

Computer 

vision 

Image 

processing  camera  

Tool status and 

time for 

replacement  

Requires 

prepocessing 

and 

segmentation 

operation 

Doesn't 

address  

1) Tool condition 

monitoring facilitates in full 

utilization of tool by 

reducing unnecessary tool 

change. 

2) Different direct 

monitoring techniques 

Visual inspection, laser 

beam, electrical resistance. 

3) Indirect methods tool 

condition is estimated using 

signal features  

28 

Mandal.S 

2014[126]        

1) There is a need or tool 

condition monitoring in 

batch production. 

2) Metal cutting results in 

tool wear which can be seen 

consequences like 

machining force, 

deformation, chatter and 

vibration. 

3) The datasheets for 

machining parameters don't 

sometimes work as they 

don't give all combinations 

of optimal parameters. 

29 

Abdul-

Ameer.H.K 

2011[127] Direct 

Computer 

vision 

Image 

processing  camera  Surface quality 

Limited to 

surface finish 

Doesn't 

address  

1) The Study doesn't 

concentrate on the tool but 

surface finish of the 

machined component this 

limits the Study to just 

surface finish. 

30 

Sharma.K 

2017[128] Direct 

computer 

vision 

image 

processing  camera  

Tool state normal 

or worn 

Requires 

feature 

extraction and 

Doesn't 

address  

1) Tool condition necessary 

for evaluation of tool life 

and timely replacement. 
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concentrates 

on measuring 

the wear 

2) Defines flank wear. 

3) Indirect monitoring can 

be costly. 

4) Different image 

processing techniques are 

stated. 

31 

Prasad.B.S 

2011[129] Indirect 

Vibration 

sensor 

Real-time 

monitoring 

no 

prediction 

using AI 

Laser doppler 

vibrometer, 

CCD camera 

Tool 

condition/surface 

finish 

Complex 

system for 

deployment 

and mainly 

concentrates 

surface finish 

Doesn't 

address  

1) Important to detect and 

replace worn tool in time. 

2) None of the developed 

methods have been able to 

universally apply the tool 

condition monitoring due to 

the complexity of the 

machining process. 

32 

Elgargni 

2014[130] Direct 

Vibration 

sensor 

Principle 

component 

analysis, 

Discrete 

wavelet 

transform, 

neural 

networks 

Infrared sensor, 

vision systems Tool health 

Uses complex 

infrared image 

processing 

and AI models  

Doesn't 

address  

1) Noncontact technology is 

essential for tool condition 

monitoring. 

2) Indirect signals are case 

dependent. 

3) Sensors used in one study 

not successful in other 

studies. 

4) Location of sensors is a 

problem in indirect 

methods. 

33 

Hou.Q 

2019[12] Direct 

Computer 

vision 

Image 

processing  

Camera and 

lighting 

Tool wear 

estimation 

Uses complex 

lighting 

systems  

Doesn't 

address  

1) Tool condition 

monitoring is essential for 

high volume manufacturing. 

2) Tool condition 

monitoring can save up to 

30 % of processing cost. 

3) Indirect methods are not 

accurate and are easily 

affected by the industrial 

environment.  

34 

Setiawan. 

2018[31] Indirect Temperature  

Data 

analysis 

Temperature 

sensor, 

Accelerometer, 

Electrical 

power Tool wear 

Using a 

complex 

system with 

three sensors 

and requires 

Doesn't 

address  

1) Industry 4.0 needs assets 

to be remotely monitored. 
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consumption 

sensor 

human 

intervention to 

determine the 

tool condition 

35 

Zaretalab.A 

2018[131] Direct  

Policy 

method   

Develops a 

policy that is 

similar to 

what is used in 

the industry 

and based on 

any 

autonomous 

systems   

36 

Klancnil.S 

2015[132] Direct 

Computer 

vision 

Image 

processing, 

K nearest 

neighbor 

and neural 

network CCD camera Tool condition 

Requires 

feature 

extraction and 

requires 

further 

development 

for turning 

Doesn't 

address   

37 

Wu.J 

2019[133]   Data fusion 

Deep long 

short term 

memory 

neural 

network   

Remaining 

useful life 

prediction 

The model is 

for engine 

useful life 

prediction    

1) Remaining useful tool 

life prediction helps in 

preventing significant 

economic losses and 

catastrophic consequences. 

2) Classifies tool condition 

monitoring into a) model-

based methods b) data-

driven methods c) hybrid 

methods. 

3) ADAM algorithm is used 

this can be used for 

reference. 
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38 

Sun.H 

2019[37] Indirect Data fusion 

Convolution 

neural 

network 

Dynamometer, 

Accelerometer, 

Acoustic 

emission sensor 

Forecast flank 

wear values 

Complex 

setup requires 

sensors closer 

to cutting 

operation 

Doesn't 

address  

1) There is a need for a 

proactive approach to tool 

condition monitoring. 

2) Study show that only 50 

to 80% of tool life is used. 

3) Tool wear estimation is 

challenging because it is 

dynamic, time-varying 

nonlinear and stochastic 

process. 

4) Every cutting tool has a 

unique wear curve. 

5) Data-driven methods are 

more feasible because of 

unavailability of reliable 

physical-based model. 

39 

Wu.J 

2017[134] Indirect Data fusion 

Neural 

networks, 

Fuzzy logic 

Dynamometer, 

Accelerometer, 

Acoustic 

emission 

sensor, Motor 

current sensor Flank wear 

Complex 

setup requires 

sensors closer 

to cutting 

operation 

Doesn't 

address  

1) The tool wear is nonlinear 

and stochastic which makes 

it challenging to develop the 

relation between extracted 

features and tool wear. 

2) Gives classification of a) 

Model-based methods b) 

Data-driven methods. 

3) model-based methods 

quantitatively characterize 

failure behavior. 

4) Data-driven methods use 

data acquired from sensors 

to do tool condition 

monitoring. 

5) Data-driven methods 

more equipped to handle the 

complexity of failure 

mechanisms 

40 

Kurek.J 

[135] Direct 

Computer 

vision 

Convolution 

neural 

network, 

transfer 

learning, camera  Tool condition 

Only limited 

to holes 

challenging to 

apply to other 

shapes 

Doesn't 

address  

1) Transfer learning reduces 

the data requirement.  



102 

 

Support 

vector 

machine 

41 

Wu.X 

2019[61] Direct 

Computer 

vision 

Convolution 

neural 

network CCD camera 

Tool wear 

estimation 

Concentrates 

on 

quantification 

of tool wear 

but tool wear 

is subjective 

to different 

quality 

requirements  

Doesn't 

address  

1) Traditional visual 

methods require expert 

experience to obtain wear 

information. 

2) Signals in indirect 

methods are contaminated 

by the noise, which 

compromises the accuracy 

of models in industrial 

setups. 

3) Direct methods are more 

accurate. 

4) Neural networks allow to 

exclude data preprocessing 

from the system.  

42 

Sun.W.H 

2018[16] Direct 

Computer 

vision 

Image 

processing  CCD camera Tool condition 

Requires 

feature 

extraction 

Doesn't 

address  

1) The system identifies the 

different types of wear 

patterns. 

2) To get the best machining 

quality, the manufacturers 

must be aware of tool 

behavior and determine 

when the tool needs to be 

changed. 

3) Flank wear gradually 

occurs due to erosion of a 

portion of the insert in 

contact with workpiece 

which is unavoidable. 

4) External environment 

affects indirect methods. 

 

  



103 

 

Annexures b 

Input to the fuzzy controller Output of the fuzzy controller 

Cut Diameter rpm GUI output Vc 
New 

diameter 

Amount of 

wear 
New Vc New rpm Length 

TOOL 1 

1 28.11 260 Normal 23 27.93 0 23 262 78 

2 27.93 262 Normal 23 27.55 0 23 266 156 

3 27.55 266 Normal 23 27.21 0 23 269 234 

4 27.21 269 BUE 23 26.73 0.44 32 383 312 

TOOL 2 

1 26.73 383 Normal 32 26.37 0 32 388 78 

2 26.37 388 Normal 32 26 0 32 394 156 

3 26 394 Normal 32 25.82 0 32 397 234 

4 25.82 397 Normal 32 25.23 0 32 406 312 

5 25.23 406 Normal 32 25 0 32 410 390 

6 25 410 Normal 32 24.6 0 32 417 468 

7 24.6 417 Normal 32 24.32 0 32 422 546 

8 24.32 422 Normal 32 23.98 0 32 428 624 

TOOL 3 

1 24.6 500 Normal 39 24.46 0 39 503 78 

2 24.46 503 Normal 39 23.8 0 39 517 156 

3 23.8 517 Deformation 39 28.53 0.33 31 345 234 

TOOL 4 

1 28.53 345 Normal 31 28.14 0 31 350 78 

2 28.14 350 Normal 31 27.75 0 31 355 156 

3 27.75 355 Normal 31 27.41 0 31 359 234 

4 27.41 359 Normal 31 26.92 0 31 366 312 

5 26.92 366 Normal 31 26.53 0 31 371 390 

6 26.53 371 Normal 31 26.24 0 31 375 468 

7 26.24 375 Normal 31 25.8 0 31 381 546 

8 25.8 381 Normal 31 25.45 0 31 386 624 

 


