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Abstract 

Industrial process modeling is currently undergoing a fundamental transformation, leading 

towards interconnected closed-loop twins of models, i.e., the parametrically-controlled real-world 

physics model, and its corresponding digitalized virtual system model. However, with the 

application of advanced manufacturing technologies to industrial processes, the digitalized 

modeling of the physics phenomena becomes the obstruction to realizing this transformation. Thus, 

this research proposes a semantic conceptual framework for industrial process modeling in the 

context of digital twins. Based on a hierarchical structure of digital twins, this framework 

modularizes the modeling process in terms of the semantic information modules of physics in the 

real-world phenomena and clarifies inter-module associations and near-real-time data processing 

so that the time-sensitive phenomenon information objects distributed on virtually-separated sub-

level physics models can be supported for representing the real-world process comprehensively. 

Advanced feature concept is adopted to construct the digital models as the basic compositions of 

any virtual industrial process. The related feature definitions are extended in this work so that the 

common characteristics in the concept of digital twins could be generically and concisely 

represented.  

The high-velocity oxygen-fuel (HVOF) thermal spraying process is used as an example to 

demonstrate the modeling methods in the framework. Firstly, the partial feature concepts are 

implemented to develop a core multiple-view and yet integrated model template covering 

numerical modeling, numerical analysis, and parameter optimization, where the simulation intent 

can be associated with the optimization intent. This template models the physicochemical 

phenomena existing in the HVOF nozzle. Further, the WC-12Co coating properties are optimized. 

The final experimental verification indicates the proposed framework can generate positive effects 
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on the real world. Secondly, a parametrically controlled model for simulating the coating thickness 

in HVOF processes is developed based on a hierarchically multiple-model integration method. The 

effects of the commonly used operating parameters, particle properties and size range, and spray 

path on the coating thickness distribution are taken into account, which shows excellent 

comprehensiveness. Meanwhile, the comparison between the experiment results and simulation 

results indicates that the modeling method can properly mirror the real scenario on the virtual side 

and predict the coating distribution with a small error. Thirdly, the digital model of a prototyped 

HVOF coating process system has been constructed to validate the phenomenon synchronization. 

The data from the nozzle trajectory, the flame and the in-flight particle behavior, and the transient 

thermal performance of the coating layer and substrate are synchronously incorporated for 

simulating the transient phenomena of the substrate component temperature and coating thickness 

distribution on the substrate surface. The final simulation result validates that the feature-based 

digital model is able to timely reflect the real-world scenario on the virtual side. 
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Chapter 1: Introduction 

1.1 Background 

1.1.1 Digital Twins in Industry 

An increasing level of interest in research has been on digital twins (DTs) of industrial processes 

within a reality background of the digital industry over the recent years. Digital twins of industrial 

processes refer to two mutually synchronized and coexisted information models, one controls real-

time industrial processes with interactional data transmissions and on-site data analysis while the 

other model carries out model-based simulation and optimization, and creates intelligence to 

provide timely and useful feedback to the real-world process, so that these two collaborative 

models can generate positive impacts on all aspects of an ideal state of the industry [1–3].  

So far, the research works related to DT technologies can be divided into two domains, the 

conceptual and the realization ones. The conceptual domain displays the futuristic goal of the 

framework, which requires technical and communal advancements to reach reality or is not easily 

achievable at present [4]. So, in this domain, emerging technologies are used to construct different 

frameworks for a futuristic industry, while the difficulties of applying the current industrial 

processes into the conceptual frameworks are largely ignored.  

In contrast, the realization domain research works are generally based on the capabilities of 

existing tools as the common goal is to deliver promising benefits in the industry as soon as 

possible. For example, in the manufacturing sector of the past decades, many computer-aided tools 

have been developed from a specifically-restricted control code to a sophisticated platform, these 
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available tools form the foundations for the realization domain. However, with the higher data 

sharing and collaboration requirements within the current rapidly-evolving digital ecosystem, their 

applications in the networked manufacturing process control and simulation are more and more 

challenging.  

1.1.2 Industrial HVOF Thermal Spray Process 

High-velocity oxygen-fuel (HVOF) deposition is a thermal spraying technology used to protect or 

improve the surface performance of workpiece substrate [5]. It is a complex physicochemical 

process [6]. As shown on the left side of Figure 1.1, during the process, the thoroughly mixed fuel-

oxygen gases (typically hydrocarbon and oxygen) and micro particles are fed into the gun chamber, 

where a combustion reaction takes place, which, in turn, generates a hot sonic or supersonic 

multiphase gas stream. Within the stream, micro particles of metals, alloys, and/or ceramics are 

accelerated, heated, and ultimately deposited onto a substrate at high speeds to form a functional 

coating layer [7]. Due to the complicated phenomena, it is a non-trivial task to develop a digital 

model for representing the real-world process comprehensively, especially mirroring the real-

world physicochemical phenomena on the virtual side. In the contemporary manufacturing 

industry, with the increasing demand for accurate coatings on component surfaces, robots or 

handling systems have been utilized to control the movement of the spray torch relative to the 

surfaces as depicted on the right side of Figure 1.1, which increases the difficulty. 
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Figure 1.1 Industrial HVOF thermal spray process 

1.2 Problem Statement 

In the aspect of the conceptual domain of DTs, the major problems involved in this research are: 

• The concept of DTs has been mature. However, there are still numerous challenges to 

implementing the concept in the industry. To the author’s best knowledge, there has been 

published work on a systematic method of leveraging existing tools for realizing or partially 

realizing the concept. 

• Generally, the previous studies about the framework or structure of DTs concerned the 

domains of DTs, requisite components, and technologies involved. To date, no consensus has 

been reached regarding a DT framework concerning the near real-time physics phenomenon 

and their control in industrial processes. 

In the context of DTs, the challenges for utilizing the traditional modeling tools are: 
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• In real industrial processes, data formats differ from machine to machine, and the characteristic 

data structure from material to material; such situations force the repetitive modeling steps to 

generalize their solutions.  

• The traditional model integration process does not pay special attention to the synchronization 

of phenomenon semantics, which makes real-virtual mirroring difficult. 

1.3 Research Objectives 

The objectives of this research are outlined as follow: 

• O1: Develop a semantic conceptual framework for industrial process modeling in terms of the 

semantic information modules of physics in real-world phenomena. 

• O2: Apply advanced feature technology in this framework and extend related feature 

definitions to represent the common characteristics generically and concisely in the concept of 

DTs. 

• O3: Develop and prototype a method of constructing a digital counterpart (a series of digital 

models) of an HVOF coating process system for the sake of validation. 

• O4: Achieve informed modeling validation, real-situation monitoring, and guided interactions 

for an HVOF coating system. 

1.4 Research Methodology 

To achieve the realization of the proposed framework, this research adopts the methodologies, 

advanced feature technology [8], computer-aided engineering [9], and multiple-response surface 

method [10]. 
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• In the previous research works, advanced feature technology was widely used in product 

modeling to capture interdisciplinary entities as well as association relationships between 

different stages or domains of the whole product lifecycle [8]. In my research, it aims to 

develop a standardized model template that can guide the modeling process to cater to the trend 

of DTs in the industry by clarifying the model elements and organizing their functional 

relationships such that they are dependent, associated, and aggregated. Further, a multiple-

view and closed-loop mechanism is constructed by using these elements and relationships. 

• Computer-aided engineering (CAE) refers to the techniques of using computers and 

information technology to simulate the performance of a product in order to improve the design 

or facilitate engineering problems for various industries [11]. It mainly includes finite element 

analysis (FEA) [12], computational fluid dynamics (CFD) [13], multibody dynamics (MBD) 

[14], durability and optimization [15]. In this research, CAE works to understand complicated 

physics phenomena involved industrial processes on the virtual side with offline or online data 

processing. 

• Response surface method (RSM) is a collection of mathematical and statistical techniques 

useful for the modeling and analysis of problems in which a response of interest is influenced 

by several variables and the objective is to optimize the response [10]. Multiple-response 

surface method (MRS) solves problems involved the analysis of several responses [10]. In the 

application of the proposed modeling method, multi-objective optimization was carried out by 

using MRS with desirability functions [10] under a feature-based environment for improving 

HVOF coating properties. 
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1.5 Thesis Outline 

Chapter 1 provides the background of DTs in industry and industrial HVOF thermal spraying. The 

motivations of this research are summarized from the challenges from the implementation of 

existing simulation tools in the concept of DTs. A brief statement on the objectives of this research 

and the main methodologies used are also presented at the end of this chapter. 

Chapter 2 is a general state of the art summary on the main topics covered in this thesis, 

including industrial process modeling in the view of DTs, advanced feature technology, and 

industrial HVOF process modeling.  

Chapter 3 presents the proposed conceptual framework of feature-based modeling in a digital 

ecosystem. This chapter mainly introduces the proposed concepts in this thesis and the ideal 

collaborative environment. The realized functions in the proposed framework, multiple-view 

integration and closed-loop optimization, inter-module associations and intelligent physics solvers, 

and synchronization of physics phenomena, are separately introduced and validated by an 

industrial HVOF process in the subsequent chapters. 

In Chapter 4, a core multiple-view and yet integrated model under the feature-based 

environment, covering numerical modeling, numerical analysis, and parameter optimization, is 

elucidated, where the simulation intent can be associated with the optimization intent. A prototype 

environment was developed to model the HVOF system configurations, working conditions, and 

then derive optimal process parameters. To validate the modeling method, an actual HVOF spray 

system depositing WC-12Co coating was modeled. The optimal process parameters generated by 

the model were implemented in the HVOF coating system and its coating properties were tested 

experimentally to verify the capacity of generating positive impacts on the real physics behavior. 
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Chapter 5 explains inter-module data processing so that the phenomenon information objects 

distributed on virtually separated sub-level physics models can be integrated for representing the 

real process comprehensively. In the validation part, a parametric simulation of the coating 

thickness in HVOF processes was constructed via the integration of a static in-flight behavior 

model, a rule-based coating growth model, and a predefined nozzle path. At the end of this chapter, 

to verify the developed model’s effectiveness, four sets of operating parameters with a single 

straight path were experimentally implemented. The width and height of the bead-like shape 

coating were in good agreement with the simulated results. The normalized root-mean-square 

errors of the cross-section profile heights were around 10%. 

Chapter 6 describes the capacity of synchronization of physics phenomena proposed in the 

framework. The feature concept for realizing this capacity, user-defined boundary condition, is 

validated by using HVOF processes. A digital model of an HVOF coating process system was 

constructed as the case study. The data from the nozzle trajectory, the flame and the in-flight 

particle behavior, and the transient thermal performance of the coating layer and substrate were 

synchronously incorporated for simulating the transient phenomena of the substrate component 

temperature and coating thickness distribution on the substrate surface. The final simulation result 

validates that the feature-based digital model is able to comprehensively reflect the real-world 

scenario on the virtual side, and it can also provide meaningful feedback to the real-world control.  

Finally, Chapter 7 summarizes the work done in this thesis. The limitations and future works 

are also discussed.  
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Chapter 2: State of the Art 

To lead the course of this research towards the objectives identified in the last chapter, this chapter 

reviews previous research works of three areas, industrial process modeling in the view of DTs 

(Section 2.1) for the objective of the proposed framework construction, feature technology 

(Section 2.2) for the information management in the framework, and industrial HVOF process 

modeling (Section 2.3) for the validation of the proposed ideas. The review of industrial process 

modeling in the view of DTs starts from the existing concepts and frameworks of DTs, and then 

looks into some examples of the DT models in the industry. The review of feature technology 

briefly gives feature modeling historical evolution first. Subsequently, feature interoperability and 

information consistency are discussed. As an industrial HVOF coating process is used as an 

example for validating the feature concepts and partial functions (especially process optimization) 

in the proposed framework, Section 2.3 reviews industrial HVOF processes from the aspect of 

process optimization firstly. The necessity of developing digital models for this process is also 

discussed by comparing different optimization strategies. Further, the numerical modeling of the 

flame and in-flight particle behavior and dynamic coating performance is reviewed. In this 

research, these models work as the foundations in the developed digital models for understanding 

the physics phenomena involved. 

2.1 Industrial Process Modeling in the view of Digital Twins 

2.1.1 Evolution of Digital Twins  

DTs originate from the concept of using “twins”. It could date back to NASA’s Apollo program 

(National Aeronautics and Space Administration), where at least two identical space vehicles were 

built to allow mirroring the conditions of the space vehicle during the mission. The “twin” working 
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on earth was used extensively for training during flight preparation and simulation for analysis 

during flight missions [16]. The first appearance of the DT was given by Grieves in his course on 

“product lifecycle management” in 2003 [17]. However, due to the technological limitations 

during its early development, the significance of DTs was underestimated. The first journal paper 

about how DTs worked for the aircraft structural life was published in 2011 [18]. In 2012, the 

definition of DTs was formalized by NASA. DTs have experienced exponential growth since then. 

Later, in 2014, the first white paper was published, which reflected the growth of DTs from one 

conceptual idea to numerous practical applications [17]. With more concerns on DTs, the concept 

was extended to many different industries beyond the aerospace industry. More recently, as could 

computing, big data, Internet of Things (IoT), and sensor technologies grew rapidly, the concept 

of DTs was further completed to leverage these emerging technologies [19]. Considering the 

current momentum, some researchers believed that the DT research would keep on the rapid 

growth in the next few years [2]. 

When the DT concept first appeared on Grieves’s course in 2003, its preliminary form only 

contained three parts: physical product, virtual product, and their connections [17]. These became 

the basis for the following development. In 2021, this concept was revisited by NASA, which 

defined a DT as a multiphysics, multiscale, probabilistic, ultra-fidelity simulation that reflects the 

state of a corresponding twin based on the historical data, real-time sensor data, and the physical 

model in a timely manner [20]. With the extension of the concept to different areas, the meaning 

of DTs was more concrete, bringing some special notions such as the airframe DT and 

experimental DT [21,22]. For example, in the experimental DT, a DT should focus on simulation 

containing models of its data (the geometrical model of a part, the material of a part, …), its 

functionality (motion analysis, structural analysis, …), and its communication interfaces [22,23]. 
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On the basis of the early efforts, Tao et al. [19] gave a more complete concept, as shown in Figure 

2.1, including five dimensions: physical part, virtual part, connection, data, and service. In their 

definition, DTs referred to evolved models with high fidelity, continuous interactions between 

physical and virtual spaces and fused data converging those two spaces. 

 

Figure 2.1 Conceptual model of DTs [19,24]. 

2.1.2 Existing Frameworks of Digital Twins 

Much research about the framework of DTs focused on two main objectives. One is the 

identification of the requisite components and technologies requested by DTs and mutual supports 

among these elements. For example, at the infancy of DTs, a preliminary framework of DTs only 

contained three parts: physical product, virtual product, and the connections [17]. Gabor et al. [25] 

proposed that the main part of DTs was a special simulation with other assisted elements, such as 

expert knowledge and real data. With the concept’s extension, Tao et al. [26,27] presented enabling 

technologies for a fully functional DT, as shown in Figure 2.2, and emphasized that DTs were the 

concept relevant to the entire product lifecycle, covering the characteristics, behaviors and 
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performance in the course of manufacturing, use, Maintenance, Repair & Overhaul (MRO), 

disposal, and other operations of the physical entities, as well as, their corresponding mirror images 

and mapping in the virtual space. Based on the earlier literature, Autiosalo and his colleagues [4] 

identified the common characteristics of DTs, e.g. identifier, coupling, computation, artificial 

intelligence (AI), virtual reality (VR) and so on. They demonstrated the roles of these 

characteristics in DTs and correlations between them. For example, VR is a branch of computer 

graphics. It makes the user immersed in a responsive virtual world, which provides an effective 

interaction between the virtual space and physical space. Besides, they proposed two different data 

connections, a grid-style structure for a DT with a small number of features, and a star-style 

structure for a DT with a great number of features. 

 

Figure 2.2 Enabling technology of DTs [26]. 
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Another is the structure for applying the DT concept. Schroeder et al. [28] developed a DT 

modeling architecture including five layers, device layer, user interface layer, web service layer, 

query layer, and data repository layer. Erkoyuncu et al. [29] developed a DT design framework 

that uses ontologies to enable co-evolution with complex engineering systems by capturing data 

in terms of variety, velocity, and volume across the asset life-cycle. Schluse et al. [23] provided a 

general structure that combines DTs with model-based systems engineering (MBSE) and 

simulation technology for a variety of different applications from development over optimization, 

verification, user interfaces, and training, up to the realization of intelligent systems.  

Generally, the previous studies about the framework or structure of DTs concerned the 

domains of DTs, requisite components, and technologies involved. To date, no consensus has been 

reached regarding the physics phenomenon modeling in a DT framework, e.g., heat transfer, 

solidification, residual stress, and so on. 

2.1.3 Realization of Digital Twins in Industry 

Looking into the application level, Schroeder et al. [30] used AutomationML to develop a DT of 

an industrial valve. This DT concentrated on the operation monitoring of the industrial valve via 

data acquisition. Moreno et al. [31] constructed a DT for a sheet metal punching machine with the 

consideration of movements, machining operations, and connectivity with robotic arms. Tao et al. 

[26] collected data from the entire bicycle lifecycle and then constructed the virtual counterpart 

via the collection to form a DT for the bicycle. Their application work concentrated on using big 

data and the constructed DT to redesign the bicycle. In summary, these works primarily focused 

on data fusion, interaction and collaboration, and service. 
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Regarding the field concerned in my research, DTs of physics phenomena, their applications 

were relatively limited. At the early stage of this concept, Tuegel et al. [18] proposed a conceptual 

model of how the DT could be used for predicting the life of aircraft structure. They first presented 

that each type of physics should have a separate model. These models can be computational fluid 

dynamics (CFD) models, structural dynamics models (SDM), thermodynamic models, and other 

material state evolution models. With the DT concept, these models would be integrated into a 

single unified model where the physics involved would be seamlessly linked. Iglesias and his 

colleagues [32] used three complementary simulation tools and experimental measurements to 

establish a DT application of a JET divertor. An overall workflow scheme for their integration was 

depicted in their publication. They highlighted that the integration of tools tackling different 

specific phases is important to provide the needed functionality of a model. Soderberg et al. [33] 

proposed a DT setup method for increased quality of welded components, which comprehensively 

includes information model, the welding simulation, the selective assembly and virtual matching. 

Hierarchical information flows down was developed to represent the way how the top product 

characteristics affect the subsequent variations. They emphasized the importance of variation 

propagation in a DT. Built on previous models of 3D printing machines, DebRoy et al. [34] 

developed DTs of 3D printing machines containing major physics phenomena involved in 3D 

printing. They provided a perspective of the current status and research needs for the main building 

blocks of a first-generation DT of AM from the viewpoints of researchers from several 

organizations. From the relevant applications for physics phenomena, several points can be 

summarized as follows: (1) a virtual model toward a digital-twin environment needs integration of 

different sub-level models with synchronized phases or phenomena [32–34]; (2) currently most 

applications of DTs involved physics phenomena were built on traditional models and assisted by 
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IoT, experimental measurement, artificial intelligence, and radio frequency identification (RFID) 

[32–35]; (3) the virtual models tend to be flexible, automatic, and intelligent to derive solutions 

for the real system [13,36,37]. 

Hence, the conceptual framework proposed in my research pays special attention to the DT 

modeling of the physics phenomena in an industrial process through adopting existing CAE tools. 

It describes an industrial process on the virtual side from the perspective of involved physics 

phenomena.  

2.2 Feature-based Modeling 

2.2.1 Evolution of Feature Definitions 

Features have been developed for more than 40 years. In the traditional paradigm, features were 

only at a low level of geometrical shapes. Soon the initial geometrical level of features was 

associated with other types of engineering information. More recently, in objected-oriented 

programming, a feature was represented as a class with some attributes [38]. With the 40-year 

development, in general, they are viewed as modeling elements in CAx systems and used as 

representations of quantitative and qualitative data related to engineering intents. Shah and 

Mäntylä [38] gave a general description of features. They read features from two perspectives, on 

the one side as an “information cluster” for the integrated representation of engineering data, on 

the other side as “a physical constituent of a part”. 

So far, features have developed into a series of heterogeneous definitions according to their 

different applications and engineering intents, mainly including form feature, functional feature, 

CAE feature, and assembly feature [8]. They are briefly explored as follows. 
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In the infancy of feature technology, form features were geometric specifications according 

to repetitive shapes used for product development like hole, slot, pocket, boss, and chamfer [39]. 

These geometric entities were usually simple, primitive, or atomic geometries that could not be 

decomposed into any other smaller units [40]. In the early stage of product modeling, a major goal 

of these features was to continuously use repetitive modeling steps of components via describing 

similar geometric entities in a standard way [41]. 

With the development of concurrent engineering, purely geometric information could not 

satisfy the requirements of product designs. Therefore, functional features were developed and 

used in product designs to link different levels of product or system design. However, there are 

some different understandings about the function description subject to application scenarios. In 

design research specifically, it is widely accepted that a function is a relationship between input 

and output of energy, material, and information [42]. Schulte et al. [43] argued that if function 

information is embedded throughout the design process, it would be more valuable for design 

engineers. They believed that the functional features should be “a set of functional faces, which 

embody the active surface of a physical effect to meet the requirements of a certain design (sub-) 

function”. The main purpose of functional features is to keep on expressing the customer’s 

requirement from the conceptual design stage to subsequent design stages. In general, functional 

features contain both purposes of design objects such as support, stability, or strength and 

behaviors of the design objects, like movement, rotating, or picking up [44]. 

For the sake of the structural optimization of products, the physics behaviors of a product 

are usually analyzed by CAE tools. CAE features are used to represent the specific knowledge 

involved in this process. It is a common practice that the topologies of product models by CAD 

have to be converted to specific geometries for CAE [45]. Thus, CAE features were developed for 
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this purpose. Typically, they adapt to a CAE environment via removing the details and reducing 

the dimension of a CAD model [46]. 

In a manufacturing stage, the fundamental function of machining features is used to represent 

volumes of raw material to be removed [47]. With further development, machining features are 

defined from a purely geometric perspective to an object with geometric and topological 

characteristics which are associated with their machining information (such as tools and operations) 

[48]. To improve the manufacturability of products, some researchers raised this feature by 

embedding extra attributes and constraints, such as enriched machining feature [49] and 2.5D 

machining feature [50]. 

In an assembly stage, assembly features are used in assembly modeling and assembly 

planning via defining relationships between two groups of parts that need to be related [51]. 

Assembly features are no longer at the geometrical level. They contain the notations of design 

intent, technical function, technological solution, and manufacturing process [52]. Although the 

definitions were not consistent in literature, all focused on the relations between components. 

Typically, the relationships comprise face connections, constraints, parameters, kinematic 

relations, and structural relationships. In general, assembly features are defined as an information 

carrier for assembly-specific information within modeling and planning [51]. At the application 

level, this concept could support an automatic virtual model construction for complex components 

or systems. More recently, some extensions to the traditional assembly feature allowed product 

architectures to constrain the modular design of assembly geometry. This extension formed a new 

feature, called the associative assembly design feature [53]. 
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2.2.2 Feature Interoperability and Information Consistency 

Although various feature concepts provide a concise and clear way to represent the 

knowledge and information involved in the production modeling, they always lead to other 

problems, especially interoperability problems. Interoperability is defined as the ability of two or 

more systems or components to exchange and use information [54]. From different modeling 

perspectives, the same geometric shape may represent different engineering information. For 

example, a through hole is specified as a functional feature if described from its functionality, but 

the same hole may be classified as a machining feature if the focus is on the operations of the hole 

realization. However, these features are not always independent of each other. Multiple views are 

always integrated for managing activities in a complex system or throughout the lifecycle of a 

product. In a feature-based modeling environment, features usually model the entities involved in 

each view. As the feature semantics is drastically determined by different stages, the 

interoperability issue arises when they are used in a multiple-view integration [55]. Thus, feature 

conversion plays a critical role in feature-based multiple-view modeling. To develop sophisticated 

mechanisms of feature conversion, some research works have been done to maintain information 

(or data structure) consistency and provide intelligent and intuitive functional support that 

minimizes the possibility of process errors among multiple views. They are briefly introduced as 

follows. 

In the early publications, some researchers developed multiple-view integration architecture 

with one-way feature conversion. An original design view usually drives the other views (e.g., 

finite-element analysis view and manufacturing planning view) [56,57]. Later, Smit and 

Bronsvoort [58] emphasized that the feature-based multiple-view modeling paradigm should 

propagate the changes in a multi-directional manner. Bronsvoort and Noort [59] proposed a 
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multiple-view feature modeling covering conceptual design, assembly design, part design, and part 

manufacturing planning. Each view contains a feature model specific for the corresponding phase. 

In their work, the consistency of different features is kept on the basis of the consistency conditions 

that have been defined between their elements, such as degrees of freedom between references on 

the components.  

More recently, with the occurrence of some new feature concepts, like new functional feature 

[60], physics feature [61], CFD boundary feature [62], and so on, the feature technology has been 

able to model complex integration systems. Brunetti and Golob [63] introduced a conceptual 

feature-based integration system that can represent conceptual design information and support the 

evolution of product semantics along a product development process. Due to more factors 

considered in concurrent design and engineering, the original definition of functional feature 

proposed by Schulte [43] is unable to carry functional information and specific engineering 

knowledge for the subsequent modeling stages, Cheng and Ma [60,61] proposed a new functional 

feature-based CAD modeling framework to solve this problem, as shown in Figure 2.3. This 

modeling approach applies functional decomposition to break down an overly abstract function 

into several more detailed primitive functions that can guide designers to use abstract geometry 

features to construct robust CAD part models within a functional framework. Further, physics 

feature, in the form of named variables and a set of mathematical equations for understanding 

physics phenomena, was used in their work for obtaining the performance of products [61].  
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Figure 2.3 Functional feature modeling cube [61]. 

Looking into some applications in specific domains, Li et al. [64] proposed a feature-based 

CAD/CFD/optimization integration modeling method. Their method realized a seamless 

information transfer among CAD and CFD by clarifying the associations between the entities in 

CAD and CFD views, for instance, the functional fluid geometries are itemized as CFD boundary 

conditions like inlet and outlet. On the basis of this feature-based environment, to face the 

challenge from the emerging technologies, they developed an intelligent solver so that the 

knowledge from the CAD view can drive the physics feature to generate high-fidelity CFD models 

intelligently for the product development and industrial processes involved in fluids [13]. Besides, 

in order to fix the interoperability problem across mechanical and chemical engineering fields, Xie 

and Ma [65] developed an inter-domain functional feature. The associative relationships between 

the two domains were established by abstracting the design knowledge into the model constraints, 
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such as design codes, expert rules, and numerical laws. These associations provide precise 

contextual information as well as convenient updates of functional mapping. 

In summary, although feature technology has been mature enough in the area of system 

integration, its application in the digital ecosystem is in its relative infancy. 

2.3 Industrial HVOF Process Modeling 

The proposed framework in this research mainly services industrial processes. HVOF thermal 

spray process is selected to demonstrate the method because of its complexity. HVOF process 

optimization has remained a continuous challenge. As the developed digital model in Chapter 4 

aims to provide optimal solutions to real-world operations, the previous strategies for optimizing 

the process are reviewed in this section (Section 2.3.1). To support the physics phenomenon 

simulation, this section also reviews the HVOF process numerical modeling in the past 20 years, 

which experienced two important periods, in-flight behavior modeling and dynamic coating 

process modeling. The in-flight behavior modeling focuses on understanding the physicochemical 

phenomenon of the combustion reaction, gas-flow dynamics, and in-flight particle behavior by 

using the CAE technique (Section 2.3.2). The dynamic coating process modeling concentrates on 

simulating the coating/substrate dynamic behavior during a robot-assisted thermal spray process 

(Section 2.3.3). 

2.3.1 HVOF Process Optimization 

According to the coating formation mechanism [66,67], the mechanical properties of the spray 

coating are significantly affected by the physical and chemical states of the in-flight particles, such 

as velocity, temperature, degree of melting, and oxidant contents. The in-flight particle behavior, 

however, is coupled with the gas dynamics, which are directly related to the process parameters, 
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such as the gas flow rate, the fuel/oxygen ratio, spray distance, and other various operational 

conditions, like the spray system used and the fuel/oxidant types [68]. Because of the complexity 

of the process, exploring strategies for optimizing coating performance has remained a continuous 

challenge in the relevant research field. In the past two decades, generally, two approaches have 

been taken to optimize the HVOF process, numerical and experimental.  

Experimental works focused on studying the effect of the critical process parameters on the 

coating properties based on statistical techniques; the ‘best’ operation parameter sets for specific 

coating properties can be obtained through various optimization methodologies. For example, 

Thiruvikraman et al. [67] conducted 32 sets of experiments to develop empirical relationships to 

maximize adhesion bond strength and lap shear bond strength of WC-CrC-Ni coatings by using a 

specific HVOF system. Vignesh et al. [69] used a similar method to generate the coating with 

minimum porosity and maximum hardness on 316 stainless steel, and Thermsuk and Surin [70] 

generated the coating with a maximum hardness, minimum porosity, maximum thickness, and 

minimum surface roughness on SUS 400 stainless steel. Based on experimental data, Praveen et 

al. [71] adopted the Taguchi method to optimize spray parameters for optimal erosion resistance 

by using their developed coating materials. In summary, this experimental approach usually needs 

a number of experiments to establish the effective impact relations produced by the process 

parameters that affect the specific coating properties. Although the experimental approach is 

reliable for a specific industrial scenario, it is expensive and time-consuming. In addition, the 

solution derived for one specific scenario may not be applicable to other scenarios where different 

configurations or parameters, (e.g., nozzle configuration, powder, or fuel type) are involved [72–

74]. Hence, in the current imperative technology demanding context, the numerical analysis 

approach is of greater importance. 
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Another optimization strategy is based on the traditional numerical study. Typically, the 

numerical study approach focused on the fundamental modeling of the process, such as 

combustion, gas dynamics, and the in-flight particle behavior, and then the simple parametric 

analysis was usually applied to find out an optimum solution. With the rapid development of 

computer-aided engineering (CAE), computational fluid dynamics (CFD) simulation, as an 

important component of CAE, has reached a high level of sophistication, which makes parametric 

analysis of the process feasible. Some researchers aiming to explore the optimal operational setups 

have established different numerical models by using CFD. Li and Christofides [72] proposed a 

hybrid fundamental model for the physicochemical behaviors and revealed the effects of the 

chemical reaction on the in-flight behaviors of the particle-gas jet; an optimal equivalence ratio 

close to 1.2 for propylene-oxygen combustion is analyzed. Baik et al. [73] created a similar 

computational model to investigate the qualitative relationship between nozzle geometries and the 

physics properties of the flame by using parametric analysis. Based on their conclusions, the nozzle 

geometry could be optimized to obtain the optimal status of the flame. The combustion models in 

these two works were built on propylene-oxygen combustion via 2-D simulation. By using a 

similar computational model, Khan and Shamim [75] further explored the effect of nozzle 

geometries and investigated the physicochemical performance in a dual-stage HVOF system. 

Emami et al. [76] kept on the research works on the dual-stage HVOF system and discussed the 

effects of two combustion models on the temperature and velocity fields in this system. Pan et al. 

[6] built a 2-D liquid-fueled HVOF model but with kerosene-fueled chemical reaction and further 

optimized the shape factor and inject velocity of the particles to reach an ideal status of the in-

flight particle behavior. Kamnis and Gu [74] constructed a 3-D kerosene-fueled HVOF model to 

examine the effects of the liquid fuel droplets on the thermodynamics of the combustion gas flow. 
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More recently, some researchers concentrated on the numerical modeling of the more advanced 

Suspension HVOF (SHVOF) process and the expensively two-way Eulerian-Lagrangian scheme 

that was used to simulate interactions between the evaporative suspension droplets with the gas 

phase [77,78]. In general, to the authors’ best knowledge, even though the numerical study is 

becoming increasingly mature, most previous research works have only aimed at qualitative 

interpretations of parameter sensitivities to the process, and there has been no published work on 

the multiple-view modeling method which is expected to enable an integrated HVOF numerical 

modeling and optimization methodology.  

2.3.2 Numerical Modeling of the In-flight Behavior 

In this thesis, the in-flight behavior refers to the physicochemical behavior of the flame and in-

flight powder particles before and after the injection from the nozzle, as described above. Based 

on the mechanism of HVOF processes, the in-flight behavior model should at least cover the 

physicochemical phenomenon simulation of combustion, gas dynamics, and the in-flight particle 

behavior. Regarding the droplet deformation and solidification, an individual model was always 

used for this phenomenon, however, the inputs (e.g., powder particle melting ratio, velocity, etc.) 

should come from the in-flight behavior model. To support low-level computations in this thesis, 

the numerical models commonly used in related publications for understanding these phenomena 

are summarized in this subsection in terms of the different physicochemical phenomena involved. 

As the flame flow in HVOF processes is subsonic/supersonic, the flow should be treated as a 

high-Reynolds-number turbulent compressible flow. For complex turbulent flow problems, 

Reynold and Favre averaging was used to simplify the small-scale turbulent fluctuations [68,77]. 

To represent the effect of turbulence, the Reynolds stress term was estimated by using the k-ε 

turbulence model (normalization group k-ε turbulence model or realizable k-ε turbulence model 
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was usually used) [73,77,79]. The mass fraction of each species after the reaction was governed 

by the convection-diffusion equation [72,78]. Based on the fact that the fuel and oxygen are mixed 

thoroughly before feeding to the combustion chamber, a single step and eddy-dissipation model 

was always used to simulate the combustion [79,80]. On the particle dynamics side, owing to the 

very low particle loading (less than 4% usually) [81], a one-way coupling between the gas phase 

and the particulate phase was assumed in [82–84]. According to the analysis in [85], it is reasonable 

to assume that the particle coagulation process is negligible and the powder size distribution does 

not change during the process. The motion of the particles was governed by Newton’s law with 

the major drag force [6]. Regarding numerical discretization methods for solving the 

corresponding governing equations, a first-order upwind scheme was used first to get a convergent 

solution, then the shock diamonds at the nozzle’s exit could be refined by using a second-order 

upwind scheme if necessary [86]. Some of these models have been verified by experiments, like 

flame behavior and the shock diamond existence [80]. Owing to this sophisticated modeling 

technique, these models are used in this thesis. The mathematical representation of these models 

is presented in Appendix 1. 

2.3.3 Dynamic Coating Modeling in Robotized Thermal Spraying 

To explore the effects of the kinematics on the coating process, several research teams proposed 

numerical models for robot-guided thermal spraying processes. Bolot et al. [87] proposed a 

dynamic process model that allows taking the robot dynamics into account. The spray pattern for 

thermal flux and coating thickness was estimated by mathematical derivations based on a vacuum 

plasma spraying, which limits the model to be applicable for different vacuum plasma spraying 

systems. Candel et al. [88,89] presented an idea enabling to remedy the shortcoming in Bolot’s 

model. The calculation of the contribution of the flame and particles to the total thermal load could 
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be done by considering CFD simulations of the combustion and in-flight behavior of the flame and 

particles. However, the approach integrating the CFD spray model into torch trajectories was not 

introduced in their publications. In addition, in their research, to overcome the issue of the 

difference between the time step in CFD tools and the time interval among trajectory points, every 

trajectory point was associated with the nearest node of the substrate surface mesh, which may 

increase the simulation error when the time interval is increased. 

As the robotized thermal spray process modeling gets sophisticated, the prediction and 

optimization of the coating thickness and substrate temperature have been brought to the fore. 

Based on a simulation model, Hegels et al. [90] concentrated on optimizing a given nozzle path to 

improve the coating thickness uniformity on a workpiece with flat and curved regions through an 

iterative post-optimization. The 3D coating height profile used in their simulation was analytically 

formulated, which did not consider some specific operating parameters, like electric arc current in 

the plasma spraying or fuel gas flow rate in HVOF thermal spraying. Chen et al. [91] constructed 

a numerical coating profile model through a Gaussian distribution fitting. Chen’s model is specific 

to the cold spray process and focuses on the kinematic parameters, such as spray angle, spray 

distance, and nozzle traverse speed. Zhang et al. [92] created a spherical surface coating thickness 

model. A spherical coordinate system was employed to describe the Gaussian coating profile 

which required a preliminary experiment to estimate the height of a single coating profile. Their 

model was validated by a specific set of parameters in the plasma spraying. More recently, Deng 

et al. [93] reported an approach predicting coating thickness for components with complex curved 

surfaces, especially in the case of shadow effects. They further developed the Gaussian coating 

profile model concerning the parameters of spray angle, spray distance, nozzle traverse speed, and 

deposition efficiency. However, since the data used for constructing the Gaussian coating profile 
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was obtained in cold spraying, their model is limited to this technology. As to the aspect of HVOF 

thermal spraying, the coating thickness prediction is still in its relative infancy due to the 

complexity. Li and Christofides [94] presented a stochastic simulation method to predict the 

microstructure of HVOF coatings. Besides, based on experimental validation, Mostaghimi et al. 

[95] proposed a set of rules to simulate the build-up of a small area of the coating. However, the 

coating thickness simulation was not shown in their papers. Regarding the field of substrate 

temperature, the influence of robot trajectory on thermal history was first studied by Nylen and 

Edberg [96]. A heat transfer model between the plasma and component was built by using the FEA. 

Candel and Gadow [88] firstly proposed a coupling mechanism to link a CFD of the in-flight 

behavior of gases and particles and a finite element model of the substrate component so that the 

heat flux calculated by the CFD model can be used for simulating the substrate temperature. Liu 

et al. [97] developed a finite element model for the transient analysis of the temperature and 

residual stress formation of the substrate component. The contribution of sprayed particles to 

substrate heating was taken into account using a heat flux presenting a Gaussian distribution profile. 

Their work focuses on the physic understanding and lacks the capacity for various working 

scenarios. 

Based on the above-mentioned findings, most models mainly concentrated on the effect of 

the kinematic parameters on the development of the coating. Some operating parameters and 

working conditions in specific thermal spray technologies, e.g., the gas flow rates and the nozzle 

geometry in HVOF processes, are not involved. 

To sum up, even though the numerical studies of HVOF thermal spraying are becoming 

increasingly mature, most previous research works have only aimed to understand the 
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fundamentals of the complex phenomenon. The applications of these models into the DT concept 

are still restricted. 
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Chapter 3: Conceptual Framework of Feature-based Modeling in a 

Digital Ecosystem 

3.1 Chapter Overview 

The concept of DTs has been gradually mature. A complete conceptual model containing 

multidisciplinary technologies has been given in recent publications [24,36]. The applications of 

the concept are increasingly being embraced by manufacturers. However, most studies focused on 

the applications of emerging technologies in the concept, like artificial intelligence, virtual reality, 

augmented reality, and big data. Research works relevant to the simulation model construction and 

real-world data processing in the simulation, especially real-world physics phenomenon 

simulation involved in the industry, are limited. As mentioned in Section 1.3, this thesis 

concentrates on the modeling of industrial processes in the context of DTs, which concerns physics 

in real-world phenomena.  

Therefore, instead of looking for futuristic goals of the DT’s framework, the first objective 

of this thesis is to develop a practical framework of digital twins toward the current industrial 

status. In the framework, an industrial process will be divided into some sub-level models in terms 

of physics phenomena involved, where CAE tools are mainly utilized here with near-real-time 

input data for simulating the phenomenon in each sub-level model. This framework clarifies the 

data processing in the CAE environment for challenges from the digital twin concept. Meanwhile, 

it also provides the capacities for adding the new features in digital twins with the supports of real-

world systems in the future, e.g., data acquisition system and control system [98].  

Before the concept of digital twins, feature technology [55] had achieved great success in 

the modeling of production and manufacturing process to capture interdisciplinary entities as well 
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as association relationships between different stages or domains of the whole product lifecycle [8], 

which enhances simulation models to a smart and flexible level. With its significant advantages of 

information fusion and multiple-view integration [38], creating multi-view models for complex 

manufacturing processes is no longer a cumbersome task. However, in view of the recent progress 

of emerging technologies, because of the new structural formalism and transmission of the data, 

feature modeling is facing challenges with the new-generation information technologies, such as 

the Internet of Things (IoT), artificial intelligence (AI), and big data. To enhance the flexibility of 

the proposed framework for different processes and scenarios, advanced feature technology is 

adopted to model the sub-level models for the basic compositions in the proposed framework and 

capture interdisciplinary entities and association relationships for the foundation level. The feature 

concepts are extended in this work so that the common characteristics in the concept of digital 

twins can be considered.  

Some industrial process modeling in the view of digital twins and the evolution of feature 

modeling have been separately reviewed in Sections 2.1and 2.2. The remainder of this chapter is 

organized as follows: In Section 3.2, the terminology in the previous literature is introduced. Based 

on these concepts, a hierarchical structure for describing an industrial process is proposed. Section 

3.3 outlines a conceptual framework for clarifying the roles of these concepts in a digital ecosystem. 

In Section 3.3.2, the real-world data processing and mutual supports among different modules in 

the framework are outlined. Section 3.4 introduces the feature concepts tackling the challenges 

from the DT concept. 

3.2 Terminology 

The traditional industrial process information models tend to have a weak hierarchy, which adds 

much difficulty to the clear organization and standard expression of process information. To 
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overcome this issue and apply the proposed modeling method in a digital environment, the 

concepts commonly used in the clutter of digital twin-related literature are identified firstly. Then 

relying on these, a concept, feature-based digital model, as a foundation, is proposed to form a 

hierarchical structure for modeling industrial processes.  

The terminology in the current digital-twin related literature is shown as follows: 

− Digital twin (DT) is a virtual counterpart that is linked to a real-world entity. The information 

can be distributed among different systems, but the pieces of information should be linked to 

each other to form one coherent entity. The term digital twin serves as a common noun for any 

kind of digital twin object [26,36,99]. 

− Digital twin instance (DTI) represents the virtual counterpart of a specific real-world industrial 

process. It should describe and serve a physical process comprehensively, including rule-based 

methods for generating robust models, a structural database for representing physical 

phenomena, strategies for deriving engineering solutions, and so on. To achieve this, it might 

be composed of virtually separated units for describing different physicochemical phenomena 

involved in a process. It must be constantly available on the Internet to ensure the constant 

flow of data [4,100]. Each DTI has a unique identification that can be used to connect to the 

Internet and fulfill works related to big data and AI. 

− Digital twin class (DTC) refers to a virtual model temple of a series of real-world industrial 

processes with similar features. These similar industrial processes are treated as DTIs, as 

depicted in Figure 3.1. They can be represented in a virtual environment in a standardized way 

[4]. In this research, the standardized way is described by the advanced feature technology. 

However, the models built on these concepts might not be primitive enough. This research 

further decomposes the virtual model into smaller granularities, as shown in Figure 3.1. Meanwhile, 
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to apply the advanced feature technology, the concept of a feature-based digital model is proposed 

to build a base of a hierarchical structure for describing an industrial process. 

− Basically, an industrial process comprises multiple devices and involves various physical 

phenomena. On the virtual side, it is hard to capture all information by a single simulation 

module because a module in simulation tools is usually designed for a series of specific 

physical phenomena with similar physical characteristics. For comprehensively modeling an 

industrial process, feature-based digital models (FDM) use the advanced feature technology to 

construct standardized templates for basic units of a digital twin whose behaviors are 

commonly simulated in a single simulation module and then clarify the inter-model 

associations among them, as shown in Figure 3.1. Thus, a feature-based digital model refers to 

a unit on the virtual side, and its model is built on a specific simulation tool, yet containing all 

information, e.g., computation, analysis, intelligence, and optimization. The idea of modularity 

has been accepted in previous related publications [4,33], although the modularized objectives 

are different. 
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Figure 3.1 A hierarchical structure of digital twins 

Based on the fact that an industrial process always comprises multiple devices and involves 

various physics phenomena, the digital twin class could be decomposed into several modules, as 

shown in Figure 3.1, where every module is defined as a feature-based digital model and serves 

for specific physics in the real world, such as the UML (unified modeling language) representing 

template for generally modeling the in-flight behavior existing in various HVOF spray guns 

(Section 4.3) and the template for generally modeling different substrates and coating layers 

(Section 6.3.1). Different modules (feature-based digital models) connect with others via some 

characteristic parameters. Like the coupling methods commonly used in numerical modeling, 

sometimes, iterative coupling algorithms need to be specifically designed so that robustness could 

be achieved. These connected feature-based digital models form a standardized template of the 
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whole process which is called the digital twin class. Owing to the feature-based modeling 

environment, an industrial instance can be easily created by carrying out its actual scenario, like 

the value of operating parameters. All digital twin instances generated by a digital twin class have 

the same model structure and data format. This hierarchy magnifies the benefits of implementing 

emerging technologies. 

3.3 Conceptual framework 

3.3.1 Introduction of the conceptual framework by using an HVOF process 

Figure 3.2 schematically illustrates the proposed conceptual framework by using an HVOF process. 

It composites three major units. In the concept of digital twins, each unit has a real entity and a 

corresponding virtual representation. Each virtual representation could be treated as an individual 

feature-based digital model. These feature-based digital models associate with each other to realize 

the real connection in the virtual side, as well as communicate with a cloud database for 

implementing the new-generation technologies [101]. To realize the connection, communication 

and data transfer are critical procedures. A digital twin class for an industrial process usually needs 

multiple feature-based digital models which closely work together. They are always connected via 

Ethernet or parallelly run on a single processor. Thus, a consistent Ethernet protocol, e.g., 

EtherCAT, might be used to standardize the communication functions. Due to the global 

distribution of the DTs and the types for different fields, the data might be transmitted to the 

collaboration environment via different interfaces and communication protocols (e.g., Profibus, 

TCP/IP, and Modbus [19]), which increases the difficulty to execute the data analysis. Hence, 

these protocols should be mapped to the ISO Open Systems Interconnection (OSI) model [3].
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Figure 3.2 Schematic representation of the conceptual framework by using a homemade Dimond Jet HVOF system. 



 

35 

 

 

The concept of a feature-based digital model is further elaborated by using a relatively 

complicated unit, the Dimond Jet gun system, as shown in the left of Figure 3.2. The realization 

of the DT concept needs at least four levels, physical equipment, data acquisition device, 

simulation model, and cloud platform. In a Dimond Jet gun system, the thoroughly mixed fuel-

oxygen gases (typically hydrocarbon-oxygen) and micro particles are fed into the gun chamber 

where a combustion reaction takes place which in turn generates a hot-sonic/supersonic multiphase 

gas stream. Within the stream, micro particles of metals, alloys, and/or ceramics are accelerated, 

heated, and ultimately deposited onto a substrate at high speed [66,102]. The gas flow rates and 

powder feed rate are monitored and controlled by the gas controller and powder controller as 

shown in Figure 3.2. By connecting the equipment with special sensors and actuators, the system 

can reach a DT level. State changes on the physical side are monitored by sensors, then collected 

and transmitted to the virtual side. Some communication protocols, e.g., ControNet and DeviceNet 

[3,103], are needed here to bridge the different data structures and formats. By modifying these 

protocols to satisfy the real-time and reliability requirements of the DT concept, the real-time state 

is able to be sent to the virtual model as setup parameters and vice versa. For instance, specific 

sensors could be embedded in the gas controller system for detecting the real-time gas flow rates. 

This data will be transferred to the virtual model via a protocol that adjusts the data format and 

defines the transmission. Apart from these requisite rulers and methods for bridging the physical-

virtual connection, a concept of the physical identifier is proposed as an attribute in a feature-based 

model to accurately link these parameters in the real world, like fuel, oxygen, nitrogen mass rate, 

and so on, with the ones on the virtual side, where the components in the virtual model are 

abstracted as class levels with standardized attributes. The feature concepts will be illustrated in 
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Section 3.4. In the feature-based model, an intelligent solver is often necessary to respond to the 

changes of real-time input data when the real-world operations change. Facilitated by the internet-

based connections and communications in manufacturing, the simulation results from the virtual 

side should be self-organized into resource communities and then further analyzed in a 

manufacturing collaboration environment by emerging technologies with their labels, digital 

identifiers. 

3.3.2 Real-world Data Processing and Mutual Supports among Different Models 

In a real industrial process, typically, partial operating parameters or conditions are always 

changing with progress. Others might be constant, or their changes with the progress can be 

determined and predictable. Based on this fact, the input data processing in the modeling process 

and mutual supports among different models are further illustrated in Figure 3.3 to realize the 

synchronization of phenomena. After receiving the input information, the first step is to determine 

whether it should be dealt with an online mode or offline mode. Generally, the data inputted to the 

CAE environment could be divided into two types, real-time data that changes with the real 

scenario, and known data whose change throughout the simulation can be known in advance. An 

online mode means the simulation state is synchronized with the real-world scenario and/or real-

time phenomena of other models, where every time step the model reads data from the sensors 

and/or outputs by other models and updates its boundary conditions and/or setup parameters with 

this information. In terms of the time interval for receiving this information, the feature-based 

digital model should set up the same or integral multiple time step size of the time interval so that 

it can read and load the synchronous data every certain time interval. Then, according to the real-

world scenario, the model could calculate the time length, which in turn determines the number of 

time steps. It is worth noting that, after starting to run the model, the time reference of the data 
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from other models could be different from the feature-based digital model. Thus, the data must be 

adjusted to the same time reference. The online mode requires that every time step the model must 

read the synchronous real-world and/or inter-model data, and then update the CAE setup 

parameters and/or boundary conditions. After completing the input setups, the physics solvers are 

activated. Then, the obtained periodic results for each time step are exported and recorded by 

ASCII files which can be uploaded to a could database or transferred to “common data models” 

for other feature-based digital models. On the other hand, an offline mode does not link to real-

time updates. Before the initialization of simulation, the change of setup parameters and boundary 

conditions can be determined and predictable in advance. There are two ways to synchronize the 

phenomena among different models. One is the same as the online mode if any other models adopt 

the online mode. Another one, as depicted on the right side of Figure 3.3, is to acquire the data 

from sensors and/or run other models in advance, where the other models must fully run in the 

offline mode, and then construct functions of time and/or store the data into a “common data 

model”. These functions can be assigned to time-dependent setup parameters and/or boundary 

conditions in the feature-based digital model. The data from the “common data model” could be 

loaded into the CAE environment beforehand. The variable of time should be matched with the 

time in the feature-based digital model as well.  

In general, in a real digital-twin system, the changing scenario is detected by the data 

acquisition devices and sent to the virtual side. To timely replace the corresponding setups in the 

CAE model with the latest data, every CAE time step, the online mode reads the file and loads the 

data via defined associations. For the known operating parameters or conditions throughout the 

progress of the simulation, the offline mode loads all the information before running the simulation. 

Thus, the online mode can synchronize the changing input data, however, it costs more simulation 
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time for approaching data transmission. The offline mode avoids the time-consuming data 

transmission during the simulation, which can enhance the timeliness for the real-time capacity. 

However, the change of setup parameters and boundary conditions must be known in advance. 

 

Figure 3.3 Procedure and data flow for the real-world data processing and mutual supports among 

different models. 
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It can be noticed that the proposed framework enhances the construction of the digital twin 

of an industrial process to be manageable and systematic. Furthermore, the modularization idea in 

the framework significantly raises the capacity of timeliness. Typically, a single virtual model with 

the consideration of all physics phenomena involved is hard to realize. Moreover, a full-scale 

physics model usually requires many hours of computing time. In this case, the capacity for the 

interaction of operation support would be compromised. The proposed framework modularizes an 

industrial process simulation in terms of different physics phenomena. In this way, the complex 

modeling is simplified, and the professional solvers can be appropriately used for the specific 

physics phenomena, which remarkably increases the timeliness capacity.  

From a low-level point of the model application, as shown in the left of Figure 3.2, by 

embedding physics performance criteria, artificial intelligence algorithms, and optimization 

methods, the feature-based digital model is capable of providing some local services, like 

predictions or advice for its real twin. For instance, in Section 4.3.2, under the optimization-driven 

mechanism, the operating parameters, such as gas flow rates and spray distance, were 

automatically outputted from a robust model for the in-flight behavior of the powder particles to 

obtain excellent coating properties of porosity, deposition efficiency, and adhesion strength in 

HVOF processes. Besides, owing to the increased timeliness capacity, the complicated physics 

behaviors can be monitored with the real process progress. By equipping with a control system, 

like the inverse way of receiving the real-time inputs from the data acquisition systems, the feature-

based digital model can control and execute the real-world process. The optimal operating 

parameters for expected working performances and real-time adjustments for correcting operating 

errors and avoiding unexpected performances could be translated to control signals which 



 

40 

 

command the actuators to carry out such model outputs on the real side. In this way, it could 

achieve a tight interconnection between the virtual model and its real twin.  

In view of a high-level application, the feature-based modeling method works as a template 

for collecting data from similar industrial processes globally. As shown in the right of Figure 3.2, 

running with a collaborative environment, the same data format and structure from different 

machines or materials could collaborate. The proposed feature-based digital modeling will 

enhance global industry development from the virtual world, where the global information 

collection will support big-data driven optimization for industrial processes [26,27]. 

In terms of the above description, it is obvious that information fusion and data management 

also play significant roles in constructing a virtual model toward the concept of digital twins. In 

the next section, the capacity of the feature technology is extended to cover these challenges. 

3.4 Feature-based Semantics Model 

This section proposes a standardized model template that can guide the modeling process to cater 

to the trend of digital twins in the industry by clarifying the model elements and organizing their 

functional relationships such that they are dependent, associated, and aggregated. Further, a 

multiple-view integration framework is constructed by using these elements. The interior 

relationships among the views are also elucidated in this section. 

Advanced feature technology has been applied in product modeling to capture 

interdisciplinary entities as well as association relationships between different stages or domains 

of the whole product lifecycle [8]. In this research, except the traditional association relationships, 

the application of feature technology is to manage the periodic update of the interior relations so 

that the real-world data can timely control the running of subsequent views, and also keep the 
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inter-model consistency which enables the phenomenon synchronization among models. To 

leverage the advanced feature technology in the concept of digital twins, some feature concepts 

are extended to deal with the key characteristics of digital twins, like physical-virtual 

communication, real-time capacity, and process optimization. 

As depicted in Figure 3.4, CAD functional feature as an extension of the functional feature 

[60] is defined as a class of virtual representation of real basic units that are composed of 

geometrical entities and non-geometrical entities (e.g. equipment specifications, physics behaviors 

existing on the geometrical entities, and geometrical functions), where these entities could change 

with the real-world scenario via the physical identifier which is also embedded as an attribute in 

the CAD functional feature. Physical identifier [4] is defined as the identifier linking the physical 

space to the digital space. Hence, the physical identifier enables local sensors access to the virtual 

model, serving as a gateway between the physical assets and their digital counterpart. For example, 

in a thermal spraying factory, a group of nozzles might be used. These nozzles have different 

functions due to their characteristics. To distinguish them, they generally have a unique 

identification code in the real system. Correspondingly, their virtual models should have an 

identifier so that the real-time state and information of the real nozzle exactly link to the virtual 

side. This identifier could use the same code in the real system. Another new concept missed in 

the previous feature modeling is digital identifier [4] which is a way to connect a feature-based 

digital model to a network. The digital identifier has two requirements. It should i) be unique at a 

sufficient level, optimally globally, and ii) enable access to the feature-based digital model from 

any part of a digital twin network, optimally the Internet [4]. For example, the uniform resource 

identifier (URI) [4] can be used as the digital identifier, which is the parent category of the common 

URL addresses. As a feature-based digital model is defined as a digital block of a unit with similar 
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characteristics, by adding the digital identifier concept to a feature-based digital model, the 

solution can be transmitted to a ‘cloud’ and analyzed using big data analytics and AI technique. 

When CAD models are built, geometrical entities, e.g., faces, edges, and points, are allocated to 

these two identifiers so that the real-time data and the model outputs could be exactly linked and 

transferred to virtual models and a cloud platform respectively. 

Looking into the CAD/CAE integration view of Figure 3.4, in this mechanism, typically the 

geometrical entities in the CAD functional feature are mapped to specific counterparts in the 

subsequent simulation tools. For example, the volumes enclosed by faces could form 

computational domains in a CAE view, and the process functional geometries might be itemized 

as setup parameters of the subsequent view models, such as symmetry planes/axes, gas/particle 

inlets, and inner faces enclosing fluid space. The non-geometrical entities (e.g., manufacturing 

system specifications) define setup parameters or constraints. CAE boundary feature is defined as 

a class of features that contains such mapping relations of geometrical dependencies between CAD 

entities and their associated CAE mesh representations as well as non-geometrical dependencies 

[62]. In this way, the virtual models in subsequent views are controllable from the previous views. 

In addition, the real-time data from sensors could be transmitted to these views via the feature 

association and the geometries linked to the identifiers. 

In the previous applications of the feature technology, different features were usually used 

to model the entities in an individual model. The multi-view integration also focused on the 

information fusion within one model. The mechanism for real-world data control and the 

information communications among different models were not covered. In this research, the CAD 

functional feature and user-defined boundary condition feature work together for dealing with 

these problems. In contrast to a boundary condition with a constant value, the user-defined 
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boundary condition in Figure 3.4 is defined as a new feature concept containing time-dependent 

variables controlled by the real-time data from the sensors or other models with a series of 

algorithms for automatically employing the time-dependent variables to establish changing setup 

parameters and/or boundary conditions over time. As depicted in the upper-left corner of Figure 

3.4, based on the above CAD/CAE associations, once the non-geometrical entities in a “common 

data model” attached to the CAD functional feature are updated with the real-world scenario, the 

value of the associated time-dependent variables in the user-defined boundary condition feature 

will correspondingly change. When the next time step starts, the algorithms embedded in the user-

defined boundary condition feature will replace the old value with the newest value of the time-

dependent variables before triggering the physics solvers in the CAE analysis view. As mentioned 

in Section 3.3, special attention must be paid to the time reference of the input data. To realize the 

synchronization with the real world and/or other online models, the feature-based digital model 

should set up the same or integral multiple time intervals of the data transmissions from sensors 

and/or the online models’ time iteration so that the user-defined boundary condition can read and 

load the synchronous data every certain time intervals.  

According to the above mechanism, a feature-based digital model also needs a good capacity 

to respond the real-time data synchronously and automatically from sensors and/or other models. 

Therefore, an intelligent solver is a prerequisite to automatically understand the physics behaviors 

behind processes when a new set of data is sent to the virtual model. Typically, the solver can be 

featured to realize the intelligent and automatic abilities for a specific physical behavior [64]. For 

this purpose, at the upper-right corner of Figure 3.4, physics feature is defined as a class that 

contains the related modeling parameters and the corresponding governing equations for a specific 

phenomenon with the aggregation of intelligent solver including a set of knowledge-based rules to 
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determine the solver setup parameters and criteria for confirming the robustness of the model. To 

automatically generate a robust numerical model without human interactions, an effective 

approach is to embed artificial intelligence or knowledge into the modeling system. This 

embeddedness generally needs physical knowledge and the best practices in specific fields 

[13,104]. Taking the HVOF process as an example, an intelligent solver for understanding the 

complicated physicochemical phenomenon of the combustion, flame, and in-flight particle, will 

be explained in Section 4.4. This physics solver can flexibly adjust the model setups to fast respond 

to the variations in the real world. It starts from the commonly used operating parameters and 

contains the process of computational domain determination, reaction formula calculation, solver 

setup, and convergence analysis. In the case study, it was used directly for solving the physics 

phenomena involved in the static in-flight behavior model. 

Finally, the robust analysis model will run to generate analysis results. These results are 

further clustered into a feature concept, phenomenon feature in the bottom-right corner of Figure 

3.4, in which, the different physics behaviors are established. The proposed feature primarily 

works as an interface that enables the phenomenon information from the CAE model to be usable 

for the optimization view. In addition, the phenomenon feature contains the methods for 

visualizing the complicated physics data obtained from the analysis model. It also should be 

noticed that, with the concept of digital twins, most solvers are switched to the transient mode. 

Thus, all obtained analysis results are time-dependent. The phenomenon feature stores the result 

every time step or every certain time step subject to the application. As shown at the bottom of 

Figure 3.4, the end users are able to access this feature to check the results. 

So far, under the aforementioned scheme, the model can easily communicate with other 

models, as well as, support the real-time capacities. Regarding process optimization, like reducing 
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cost, shortening time, and improving quality, an effective optimization model should be clearly 

devised. To systemically integrate the optimization process, the process optimization feature is 

proposed here as an extension of the associative feature concept into manufacturing process 

optimization. As shown in the bottom-left corner of Figure 3.4, it contains optimization intents 

that are derived from manufacturing requirements, and optimization attributes, like design 

variables, constraints, optimization equations, and optimization algorithms, and so forth. To 

generate a process optimization feature model for a specific industrial scenario, clear association 

rules are required to support information transfers between variables of the optimization process 

and entities of the feature-based CAD/CAE integration mechanism. Apart from the parameter 

association mechanism, due to the implicit expression of optimization objectives, constructing a 

fit-for-purpose model is also crucial for the optimization process, which enables the conversion 

from engineering problems to mathematical models. This process is usually implemented through 

expert knowledge and best practices in engineering optimization. With this mechanism, firstly the 

complex physics phenomena behind the industrial processes are visualized on the virtual side so 

that the end users without special knowledge could readily understand them. Secondly, the physics 

phenomena are monitored on the virtual side with a slight delay. Some criteria could be added as 

triggers to ensure that the real system runs reasonably. Thirdly, with the interior associations 

established, the model could be optimization-driven for providing engineering solutions for the 

real world. For instance, in Section 4.3, the optimization view drove the system and calculated the 

optimized operating parameters for improving the HVOF coating quality. In the future, with a 

control system joining, these optimized parameters could be fed back as control signals for the 

actuators in the real operating system. 
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Further, to enhance the optimization to a level toward future manufacture, the concept of 

digital identifier [4] is also used and aggregated into the process optimization feature as illustrated 

in the bottom-left corner of Figure 3.4. Finally, as depicted in Figure 3.4, a real-time, optimization-

driven, closed-loop, and multi-view digital block template for the basic unit in industrial processes 

is completed. 

 

Figure 3.4 Feature class diagram representing inter-feature associations based on UML (Unified 

Modeling Language). 
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3.5 Conclusions 

Against a background of smart manufacturing, an increasing level of interest in research on digital 

twins has been witnessed over recent years. With the development of the new-generation 

information technologies, digital twins of manufacturing processes refer to an ideal state of 

manufacturing, in which real-time transmission and analysis of data from across manufacturing 

processes, along with model-based simulation and optimization, create intelligence to yield 

positive impacts on all aspects of manufacturing. However, the recent works mostly focused on 

the implementation of the emerging technologies into the concept. The digital counterparts of 

physics phenomena involved in manufacturing processes are always ignorable. In the view of 

traditional simulation tools, like CAE, CFD, and so on, the works on a systematic method of 

leveraging them in the aspect of digital twins are very limited. 

Thus, this study contributes to the modeling method of industrial processes in the context of 

digital twins. Based on the hierarchical structure of digital twins in previous research works, a 

semantic information modeling framework toward the realization and integration has been 

developed. Distinguished from other existing digital twin frameworks, the proposed framework 

modularizes industrial processes in terms of the semantic information modules of physics in the 

real-world phenomena and adopts CAE tools to construct achievable digital physics models of 

industrial processes. The inter-module associations and near-real-time data processing in the 

modules are also clarified in the framework so that the phenomena distributed on separated sub-

level physics models can be time-sensitive mutual supported for representing the real-world 

process comprehensively. The common characteristics for modeling industrial processes in this 

framework are identified and organized systematically via the advanced associative feature 
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technology. Further, a feature-based digital model template has been established for the physics 

phenomena contained in the basic compositions of an industrial process. 

In summary, this chapter describes the proposed framework from an overall perspective, 

which aims to the realization of the functions, multiple-view integration, and closed-loop 

optimization within a proposed feature-based digital model, inter-module associations for 

comprehensively describing a manufacturing process, and synchronization of physics phenomena. 

The validations of these functions will be elucidated in the following chapters respectively. 
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Chapter 4: Multiple-view Integration and Closed-loop Optimization 

4.1 Chapter Overview 

As described in Chapter 3, the proposed feature-based digital model is capable of not only 

mirroring the real-world physics phenomena on the virtual side but also providing some local 

services, like advice for its real twin. To achieve this goal, the partial feature concepts in Chapter 

3 are implemented to realize a multiple-view integration with a closed-loop optimization 

mechanism, which can significantly enhance the automatization for solving engineering problems. 

The engineering intents from the optimization view drive the CAE analysis and receive outputs 

from it as the feedback loop. To validate this mechanism, HVOF thermal spraying is used as an 

example. It is worth noting that CFD, as an important branch of CAE, is used in the analysis stage 

for understanding the main physicochemical phenomena involved in this chapter. Due to the 

similar computation mechanism, the main associations in the proposed feature-based integration 

environment are not affected. 

High-velocity oxygen-fuel (HVOF) thermal spraying is an advanced thermal spraying 

technology involving a controlled complex physicochemical phenomenon process with parameters. 

Optimizing the process while considering interwoven multidisciplinary aspects is a non-trivial 

research challenge. To overcome the two existing challenges in the optimization of the HVOF 

process, the low generalization capacity and the lack of the integration of optimization 

methodology, this work in this chapter establishes a closed-loop and optimization-driven model 

for the HVOF process from a multi-view approach, integrating CAD (computer-aided design), 

CFD analysis and optimization views. Based on the progressive HVOF numerical modeling 

development, the proposed model adopts a new idea to optimize the spray coating by controlling 
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the in-flight behavior of the gas-particle jet. Thus, this proposed model is able to enhance the 

simple parametric analysis in the previous numerical studies to a higher level with systematic 

optimization so that the traditional numerical modeling can generate a positive impact on the real 

process. At the core, advanced feature technology [8] was used to guide the realization of seamless 

information transfer among CAD, CFD, and optimization views by allowing associations among 

them, which supports the optimization-driven mechanism. Besides, advanced feature technology 

was used to model the semantic entities involved in the modeling architecture of the virtual process 

so that the multi-view integration can support spray system configurations for various industrial 

HVOF processes and provide a high generalization capacity. 

To validate the modeling method, an actual HVOF spray system depositing WC-12Co 

coating was modeled. The optimal process parameters generated by the model were implemented 

in the HVOF spray system, and its coating properties were tested experimentally to verify the 

model effectiveness. 

4.2 Conceptual Model of the HVOF Coating Optimization 

The coating formation process consists of stages of splatting molten or semi-molten particles, 

sintering of the deposited particles onto the substrate, solidification, and deformation. Ideally, the 

in-flight particles are heated to a semi-molten state. When the particles hit a substrate, the sudden 

deceleration causes a pressure build-up at the particle-substrate interface. The high energy inside 

the particles forces the molten material to flow laterally or the ductile solid material to deform. 

The liquid bonding material spreads outward from the point of impact and forms a splat [67]. 

According to the studies of the coating formation mechanism [66,67], the mechanical properties 

of the spray coating are significantly affected by the physical and chemical states of the in-flight 

particles, such as velocity, temperature, degree of melting, and oxidant contents. The in-flight 
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particle behavior, however, is coupled with the gas dynamics which are directly related to the 

operating parameters, such as the gas flow rate, the fuel/oxygen ratio, spray distance, and other 

various operational conditions, like the spray system used and the fuel/oxidant types [80]. That 

means the coating properties can be controlled indirectly by the operating parameters via the states 

of the in-flight particles. 

Figure 4.1 presents a conceptual model and the predominant steps of the proposed 

optimization strategy by integrating CAD/CFD/Optimization. The conceptual model consists of 

two stages, numerical model construction and optimization process. For providing reasonable 

generality and high fidelity of the real world, the numerical model has been constructed with due 

regard to real system specifications, coating requirements, and working conditions in diverse 

scenarios. The rules associating with the real operational conditions and the numerical model setup 

parameters have been established and detailed, which makes the model easy to apply in different 

cases using HVOF technology. The detailed association rules are given and explained in Section 

4.3. 

In the process optimization stage, optimization intents are identified corresponding to the 

scales of the in-flight particle properties and/or other engineering intents (e.g., cost). For example, 

the cost could be added as an objective by calculating the total gas flow rate. Then the cost 

objective can be optimized to achieve an energy-efficient spray process. The specifications 

typically describe the operations of the system, like operating parameters and their ranges. In the 

optimization view of Figure 4.1, the operating parameters define the variables of the design of 

experiments (DOE) [105], and their ranges are used for the design matrix generation and further 

determine a feasible region for the optimization process. An example optimization model is given 

in Section 4.6.1, which shows the implementation of a case study. The substrate properties, particle 
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properties, and working conditions (e.g., working space) could be further modeled as constraints. 

For example, the in-flight particle temperature of small particles could be added as a constrain to 

strictly avoid overheating. In most real HVOF systems, the operating parameters are fuel, oxygen, 

nitrogen gas flow rate, particle feedback rate, and spray distance [67,71]. Thus, the proposed 

optimization strategy works on these commonly used parameters to improve the coating quality. 

As the coating performance is usually influenced by multiple in-flight properties of the particles, 

the multi-response surface (MRS) [105] is used to model the mathematical relationships between 

the common operating parameters and the in-flight properties of the particles. Further, desirability 

functions [10] are carried out to construct a single objective function for accommodating these 

properties and reaching the best in-flight state of the particles. During the construction of the 

desirability functions, the information mapping consistency between coating requirements and the 

optimization intents is crucial for ensuring the model is reusable, for which specific knowledge 

and rich experience are required and formally captured. Besides, to create an effective testing 

design space, the design of experiment (DOE) [105] approach is adopted for design /response 

variable validation. Finally, by implementing the optimization method, the ideal operating 

parameters are calculated subject to predefined optimization intents. It is worth mentioning that 

this model conceptually presents potential factors as many as possible which may not be 

completely considered in the case study of this work. However, in the future, these potential factors 

could be implemented by following this verified model template.
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Figure 4.1 Conceptual model of the HVOF coating optimization
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4.3 Feature-based Data Model for the In-flight Behavior in HVOF processes 

4.3.1 Associations in the feature-based CAD/CFD Integration 

Implementing the idea outlined above requires a persistent domain integration solution so that the 

information transmission mapping among different domains can be resolved. The integration 

needs to respect two aspects: automating the model construction and maintaining the engineering 

information mapping consistency. Although both aspects have been extensively studied in 

different areas, a mature integration solution for industrial processes with complex 

physicochemical phenomena is still not available. In light of the complexity of the HVOF process, 

a multiple-view integration method for HVOF processes is proposed by expanding the proposed 

features introduced in Section 3.4 into a multiple-view framework following the Unified Modeling 

Language (UML) convention [106], which is depicted in Figure 4.2. This figure supports the 

conceptual model shown in Figure 4.1 and illustrates the interdisciplinary views and entities 

involved. The components are abstracted as class levels with standardized attributes; by doing so, 

the model structure can be well organized and reusable according to an object-oriented approach. 

Such a class structure supports the construction of the associations among different views. This 

section explains some instances of the feature concepts in Section 3.4 for the specific process of 

HVOF thermal spraying and describes the association mechanism among them. 

This chapter focuses on providing a unified model compatible with different HVOF spray 

guns, and the CFD model is intended to be created and maintained likewise to achieve feature-

based CAD/CFD integration. In the proposed model structure shown in Figure 4.2, the following 

feature instances are introduced conceptually: HVOF nozzle CAD functional feature, CFD 
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boundary feature, HVOF physicochemical feature, HVOF gas dynamics feature, HVOF in-flight 

particle feature, HVOF process optimization feature, and coating feature. Among those defined 

feature instances, their information entities are clustered and managed as functional views 

(modules) while at a lower level, the detailed parameters are associated, and the mapping relations 

are further illustrated in Figure 4.3. All the attributes and their values are organized and store into 

a common data model [9] named “HVOF coating system specifications” (non-geometric 

information) and permanently stored as a data file periodically by the user. During the run time, 

these entities in Figures 4.2 and 4.3 are associated. 

Looking into the CAD/CFD integration view of Figure 4.2, the HVOF nozzle CAD functional 

feature of the HVOF system, as an instance of the CAD functional feature [60] for HVOF 

processes, is composed of a spray gun geometry model, functional fluid geometry, functional 

elements, controlling parameters. The HVOF computational domain of the combustion and flame 

is determined by incorporating the HVOF nozzle CAD functional feature module, such as spray 

gun geometry, functional elements, and fluid geometry [64], and the control parameters (associated 

with process parameters), such as of the spray distance. Note process parameters are extracted 

from the process optimization module and mapped as control parameters in the CAD functional 

feature. To achieve closed-loop virtual CFD physics simulation with flexible applications, the 

frequent yet robust information flow and interactions between CAD models and CFD setups are 

necessary. To conduct a set of systematic simulation scenarios as per DOE methodology, the 

HVOF CFD models can be automatically generated or updated through its input interface, where 

the input parameter values of CAD models and process parameters are generated from the DOE 

scenario testing matrix. 
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Figure 4.2 UML model representing inter-feature associations in the feature-based digital model for the in-flight behavior in HVOF processes. 
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Figure 4.3 Partial associations in the proposed feature-based digital model for the in-flight behavior in HVOF processes. 
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The detailed associations among multiple-view features are shown in Figure 4.3. The 

aforementioned system specifications define the material and the cooling method of the chamber 

wall, as well as the range of each process parameter, which is recognized and used in the 

optimization view to generate a design space. For example, the parameters of spray distance 

defined in the optimization interface protocol are associated with the target substrate surface 

position in the functional elements of the HVOF nozzle CAD functional Feature. 

Next, as shown in the CFD Boundary Feature of Figure 4.3, a parametrized computational 

domain with CFD-specific knowledge can be established via CAD geometry extraction and 

meshing operations. This CFD boundary feature has been defined as a specific one of the CAE 

boundary features for the field of CFD. It contains the mapping relations of geometrical 

dependencies between CAD entities and their associated CFD mesh representations as well as non-

geometrical dependencies [62]. As an example, the process functional geometry defined in the 

computational domain can be itemized as symmetry planes/axes, gas/particle inlets, inner faces 

enclosing fluid space, and flame outlet. 

Then, to systematically set up the simulation, HVOF physicochemical feature, as an instance 

of the physics feature, is proposed as shown in Figure 4.2 and defined to contain a series of 

candidate CFD-solving models for simulating the physicochemical phenomenon. Because the 

HVOF physicochemical feature is designed to compute physicochemical phenomena during the 

process, the related modeling parameters and the corresponding governing equations are defined 

as attributes and constraints separately. Through investigating previous research efforts, the related 

CFD models and the corresponding governing equations attached in the HVOF physicochemical 

feature are further explained in Appendix 1. However, a robust simulation requires not only 
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reasonable model selections but also complicated solver setups that should correspond to actual 

operational conditions. Thus, the HVOF intelligent solver feature aggregated into the HVOF 

physicochemical feature contains a set of knowledge-based rules to determine the solver setup 

parameters and generate a stable CFD model, which will be elaborated in Section 4.4. Such rules 

will enhance the flexibility and intelligence of the numerical model. 

When the computational domain is transferred to the HVOF physicochemical feature (a CFD 

environment) shown in Figure 4.3, its entities are recognized as the functional geometry input by 

using the mapping tree embedded in the CFD boundary feature. For the detailed interpretation of 

the mapping relations, the reader could refer to [64]. Consequently, a controllable input interface 

of the HVOF CFD solver, including parametrized geometry and boundary elements, can be 

established. 

Finally, before the optimization view, the modular solvers corresponding to the different 

simulation models, e.g., instantaneous equilibrium model and eddy-dissipation model, will run to 

generate simulation results. These results are further clustered into two specific features from the 

concept of the phenomenon feature, the HVOF gas dynamics feature and the HVOF in-flight 

particle feature in the bottom-right corner of Figure 4.2, in which, the behaviors of the fuel-oxygen 

combustion gas dynamics and in-flight particles are established. The proposed features primarily 

work as an interface that enables phenomenon information generated from the simulation to 

become usable for the optimization view. In other words, after building a robust HVOF numerical 

model, all the physics behavior of the flame and particles could be exported from the simulation 

results to the downstream optimization view. Typical attributes describing the behavior of the 

flame and particle are indicated in Figure 4.2. Besides, it can be observed that between the in-flight 
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particle behavior model and the flame gas behavior model, a “one-way dependency” symbol is 

used to reflect the physics reality. 

4.3.2 Feature-based optimization process setup 

In this subsection, Figure 4.2 is used again for demonstrating the feature-based optimization view 

setup. Under the aforementioned feature-based association mechanism, the inputs of the HVOF 

numerical model can be orderly and iteratively executed to search for the optimal in-flight particle 

properties and the corresponding process parameters. However, because of the large number of 

process parameters and their wide ranges, it is impractical to implement an exhaustive algorithm 

without an effective optimization methodology. Based on the associative feature concept, the 

HVOF process optimization feature is proposed here as an instance of the process optimization 

feature to implement the optimization process in the HVOF process systemically, shown in the 

lower-left corner of Figure 4.2.  

HVOF process optimization feature contains optimization intent that is derived from 

manufacturing requirements, and optimization attributes, like design variables, constraints, 

optimization equations, and optimization algorithms. For example, a dense coating requirement 

can correspond to an optimization intent for reducing the particle ‘side-spreading’ (radial) velocity 

prior to the impact. To generate a process optimization feature model for a specific HVOF scenario, 

clear association rules are required to support the information transfer mechanism between the 

variables of the optimization process and entities of the feature-based CAD/CFD integration view. 

The optimization design variables are associated with the itemized functional geometries attached 

to the HVOF nozzle CAD functional feature, and the optimization response variables are derived 

from the manufacturing requirements which are in turn, associated with the corresponding in-flight 

particle properties. In this way, the optimization view can drive the CFD analysis and receive 
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outputs from the CFD analysis view as the feedback loop. The optimization model according to 

the DOE matrix will be reflected as a series of the non-geometry attributes and functions that drive 

the CAD functional feature parameters for different scenarios. In turn, the system specifications 

defined in the common data model determine the optimization domain. 

As the coating quality is controlled by the in-flight flame and particle properties, and their 

relationships are relatively tricky, constructing a fit-for-purpose model is crucial during the 

optimization process. To fill the gap, knowledge-based association reasoning is necessary. Some 

possible relationships have been summarized in Table 4.1, based on the currently available 

investigation results of pertinent literature. This table could be extended in the future with further 

research development of this area and new associations may appear. On the other hand, to obtain 

a high-quality coating, typically more than one key in-flight flame and particle property needs to 

be well controlled. Thus, as shown in Figure 4.2, multi-objective optimization is used here 

coupling constraints derived from manufacturing conditions which are abstracted as coating 

feature (which is a specific instance of the manufacturing feature). Finally, an optimization-driven, 

closed-loop, and multi-view model for HVOF process optimization is completed.  

  



 

62 

 

Table 4.1 Knowledge-based optimization associations for HVOF process optimization 

Particle/gas in-flight 

property 

Coating property Potential decisions Reference 

Particle temperature  

(Melting degree) 

Bonding strength The temperature should be controlled 

within a certain range to ensure 

particles with a molten or semi-

molten state. 

[67,68,72] 

Porosity [69,107] 

Residual stress [107–109] 

Particle velocity  Bonding strength Higher particle velocity means more 

conversion of the particle kinetic 

energy into the coating formation. 

[110] 

Porosity [69] 

Deposition efficiency [72,89] 

Particle impact 

orientation 

Deposition efficiency For high deposition efficiency, an 

orientation perpendicular is expected. 

[89,111] 

 

4.4 Parametric-controlled Intelligent Solver 

Coupled with the optimization process, the HVOF numerical model needs to be flexibly adjusted 

so that it is able to provide a fast response to the variations of the process parameters. Thus, a 

parameterized HVOF numerical modeling method is designed in this work. It starts from the 

commonly used process parameters and contains the process of computational domain 

determination, reaction formula calculation, solver setup, and convergence analysis, as shown in 

Figure 4.4. 

Note that the computational domain is derived from the HVOF nozzle CAD functional 

feature by combining the geometric entities and the process parameters, such as the spray distance, 
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and its functional attributes guide the mesh generation. The physics models for calculating the gas 

flow and particle behavior are set up according to the attributes of the HVOF physicochemical 

feature. The values of process parameters, like the gas flow rates, are assigned to boundary 

conditions via the association mechanism embedded in the CAD/CFD integration view. To 

integrate the information from the system specifications (a common data model) into the proposed 

model, it is worth noticing that the powder particles, such as their thermophysical properties and 

shape equivalent factors, and the substrate properties such as the material properties, are set 

accordingly as the setup conditions of the CFD model. Thus, these real factors are taken into 

consideration to obtain the corresponding particle behaviors which will be further applied in the 

optimization view to construct the response functions. 

Typically, the HVOF process is fueled by hydrocarbon gases, like propylene, propane, and 

many others or hydrocarbon liquids as kerosene. Oxygen and compressed air (which is assumed 

to comprise oxygen and nitrogen only) are usually used as the oxidant. Thus, the process starts 

with fuel gas selection. When the combustion temperature reaches above 2000 K, the combustion 

of hydrocarbon gases is complex because the reaction products will be dissociated into a number 

of low-molecular species [112]. To model the combustion model accurately, the reaction is 

considered as the following form  

𝑛1𝐶𝛽𝐻𝛾 + 𝑛2𝑂2 → 𝑛3𝐶𝑂 + 𝑛4𝐶𝑂2 + 𝑛5𝐻 + 𝑛6𝐻2 + 𝑛7𝐻2𝑂 + 𝑛8𝑂 + 𝑛9𝑂𝐻 + 𝑛10𝑂2 (4.1) 

The stoichiometric coefficients can be calculated by using a chemical equilibrium code developed 

by Gordon and McBride [113]. After a reaction formula has been generated, the chemical reaction 

model can be completely set up by using the aforementioned analysis attributes of the HVOF 

physicochemical feature as discussed in Section 4.3. 
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Figure 4.4 Parametrically-controlled intelligent solver for the in-flight behavior in HVOF 

processes 

These stoichiometric coefficients rely on the equivalence ratio and combustion pressure P, 

and they are affected by the process parameters, e.g., the gas flow rate, or even the geometric 
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entities of the spray gun. However, the stoichiometric coefficients and combustion pressure P are 

mutually dependent. Therefore, the chamber pressure P in Figure 4.4 will be assumed with a 

reasonable input initially to calculate the stoichiometric coefficients in Equation (4.1) and then 

carry out an initial simulation. The output of the CFD simulation will result in a new value of the 

P parameter, denoted as P’. Then when the difference between P and P’ is larger than acceptable 

tolerance, P’ value replaces the original assumption P value and reiterates the CFD simulation 

until their difference is small enough to be accepted. 

For obtaining a convergent simulation, the last step of the solver setup is to construct the 

simulation solution monitoring conditions to check the convergence state with iterations. Typically, 

the solution convergence checking looks into the important physics properties and integral 

quantities which should be evolved to stable ranges of allowed tolerances. When the simulation 

encounters non-convergence problems, mesh grid adaption will be triggered. The local mesh may 

be adjusted so that simulation nodes are increased. If the simulation still has the non-convergence 

problem or is oscillating after several mesh rounds of adjustment, the under-relaxation factors have 

to be prudently reduced to increase the solution stability, although this is not recommended. After 

obtaining a convergent solution, grid independence verification will be conducted to further check 

the stability and accuracy. This step can be completed by inspection of plotting the sensitive 

parameters against the number of nodes [114], or an estimation of the order p of the discretization 

scheme [115]: 

𝑝 ≈
log(

𝜙Δ𝑥2
−𝜙Δ𝑥1

𝜙Δ𝑥3
−𝜙Δ𝑥2

)

log(𝛼)
  where 𝛼 =

Δ𝑥1

Δ𝑥2
=

Δ𝑥2

Δ𝑥3
            

(4.2) 
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where Δx1, Δx2, and Δx3 are three grid levels, represented by the grid spacing; α is the refinement 

rate, and ϕΔx1, ϕΔx2, and ϕΔx3 are the characteristic parameters corresponding to the three grid levels. 

Grid independence is achieved if p is in the range of 0 to 2. 

So far, all the steps for systematically generating a robust numerical model are described as 

a sequential solution in Figure 4.4, which is defined as a simulation setup template for a number 

of simulations required by the optimization view.  

4.5 Optimization Methodology 

4.5.1 Response surface method 

In order to correlate the process parameters and in-flight particle characteristics, statistical 

techniques are developed based on the feature-based optimization view concept as shown in Figure 

4.2 with the associated functional attributes of the HVOF nozzle CAD functional feature. Some 

widely used statistical techniques include the kriging method, the radial basis function (RBF)-

based method [116], and the response surface method (RSM), where the RBF-based and kriging 

methods are more suitable for exploring highly nonlinear problems, but the RSM fits better for 

engineering problems with a small group of input variables and a low-degree polynomial function 

[64]. In this case, RSM is used to model the empirical relationships between the in-flight particle 

properties and the converted design variables. The relationship type is explained by using a second-

order polynomial equation 

𝑌 =  𝛽𝑜 + ∑ 𝛽𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ 𝛽𝑖𝑖𝑥𝑖

2𝑘
𝑖=1 +∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘
1≤𝑖≤𝑗 + 𝜀  (4.3) 

where Y is the predicted response, βo is the interception coefficient, βi is the linear coefficient, βii 

is the quadratic coefficient, βij is the interaction coefficient, k is the number of input variables, and 

ε is the error.  
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To provide a systematic and revealing optimization model without a great deal of data to 

support the original hypotheses, the RSM must establish a Design of Experiments (DOE) matrix 

[10]. Herein, a full-factorial Central Composite Design (CCD) [117] is adopted to generate scaled 

design points. Those design points link with process parameters to drive the parametrically-

controlled numerical model to obtain the correspondingly in-flight flame and particle properties. 

Then, the empirical relationships can be modeled. 

After obtaining an initial response function, analysis of variance (ANOVA) technique [105] 

is carried out to identify the adequacy of the predictive model. Several criteria are used to assess 

the model, such as the coefficient of determination (R2), probability value (p-value), Mean 

Absolute Error (MAE), and Root Mean Squared Error (RMSE). If the model has an unacceptable 

error, some additional design points will be generated and used as new inputs for the next round 

of regression analysis. 

4.5.2 Basic desirability functions 

Generally, more than one particle property needs to be well controlled to get a high-quality coating. 

Therefore, several response surfaces should be constructed and optimized simultaneously via the 

multi-response surface method with the desirability function approach proposed by Harrington 

(1980) [10]. As there are several response functions to optimize synchronously, each of the 

functions is transformed into a compromised “desirability” function corresponding to a type of 

optimization goal, such as the maximum, minimum, or target respectively shown in Equation (4.4) 

to (4.6). For obtaining an optimization solution compromising different response functions, an 

overall desirability function is measured by the geometric mean as shown in Equation (4.7). All 

the transformed desirability responses are dimensionless variables that range from 0 to 1, where a 

high value indicates a desirable level and a low value is corresponding to an undesirable level.  
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𝑑𝑟
𝑚𝑎𝑥 = {

0                     if 𝑓𝑟(𝑿) < 𝐴

(
𝑓𝑟(𝑿)−𝐴

𝐵−𝐴
)
𝑠

       if 𝐴 ≤  𝑓𝑟(𝑿) ≤ 𝐵

1                     if 𝑓𝑟(𝑿) > 𝐵

  (4.4) 

𝑑𝑟
𝑚𝑖𝑛 = {

0                     if 𝑓𝑟(𝑿) > 𝐵

(
𝑓𝑟(𝑿)−𝐵

𝐴−𝐵
)
𝑠

       if 𝐴 ≤  𝑓𝑟(𝑿) ≤ 𝐵

1                     if 𝑓𝑟(𝑿) > 𝐴

  (4.5) 

𝑑𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

=

{
 
 

 
 (

𝑓𝑟(𝑿)−𝐴

𝑡0−𝐴
)
𝑠1
       if 𝐴 ≤  𝑓𝑟(𝑿) ≤ 𝑡0

(
𝑓𝑟(𝑿)−𝐵

𝑡0−𝐵
)
𝑠2
       if 𝑡0 ≤ 𝑓𝑟(𝑿) ≤ 𝐵

0                        otherwise

  (4.6) 

𝐷 = (∏ 𝑑𝑟
𝑅
𝑟=1 )1/𝑅  (4.7) 

In the equations above, A and B are limit values and t0 is the target value. The exponent s 

determines the importance of achieving the desired value (A, B or t0). X is the design variable 

matrix and fr is the model generated by RSM. 

4.6 Case Study 

4.6.1 Implementation of the feature-based model 

The process of splat formation is an important phase of coating deposition that determines both 

the microstructural and macroscopic characteristics of the coating. This process strongly depends 

on the state of the particles prior to their impact on the substrate. Generally, higher particle velocity 

means more conversion of the particle kinetic energy into the work of viscous deformation and 

surface energy during the transient impact. Moderate particle temperature can prevent powder 

particles from superheating or vaporization and simultaneously decreases the dynamic viscosity 

of the molten bonding material to some extent, which protects the material properties of the powder 

particles and facilitates the liquid bonding material to spread outward from the point of impact. 
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Thus, optimum particle temperature together with a high particle velocity can significantly 

improve the microstructural and macroscopic characteristics of the coating.  

 

Figure 4.5 A homemade Diamond Jet spray system. 

Based on the above analysis, in this subsection, the proposed feature-based model is used to 

optimize the velocity and temperature of the particles prior to their impact on the substrate within 

an operating environment that was based on a homemade Diamond Jet HVOF spray system and 

an ABB IRC5 M2004 robot system, as shown in Figure 4.5. More detailed features and parameters 

of the spray gun are available in Figure 4.6. Five crucial process parameters, i.e., oxygen, fuel, air, 

and nitrogen flow rates and spray distance, were selected for this purpose. Spray angle was kept 

constant (perpendicular to the substrate) during the simulation and experimental verification.  

To validate the modeling method, WC-12Co powder with an 11.63-µm volume median 

diameter was used in this case, and the in-flight particle behavior was calculated with ANSYS 

Fluent as the solver; the particle size distribution and thermophysical properties are given in Table 

4.2 [118]. Driven by the optimization intent, the optimal process parameters were obtained by the 
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HVOF model. The characteristics of the deposited coating were tested experimentally. The tested 

results verify the effectiveness of the proposed model. 

Table 4.2 Particle size and thermophysical properties of WC-12%Co particles [118]. 

Density (kg/m3) 14320 

Specific heat (J/kg K) 295 

Latent heat of fusion (106 J/kg) 0.42 

Melting point (K) 1523.15 

Surface emissivity 0.4 

d10 (µm) 8.35 

d50 (µm) 11.63 

d90 (µm) 16.12 

 

In the Diamond Jet spray system, the premixed fuel gas (propane) and oxygen are fed into a 

combustion chamber, where they react to produce high-temperature combustion gases. The 

exhaust gases together with the air injected from the annular inlet orifice expand through the nozzle 

to reach supersonic velocity. Nitrogen gas carrying powder particles is injected into the nozzle at 

the central inlet orifice. Table 4.3 indicates the system specifications and partial associations 

among the multiple views. Oxygen-propane combustion is used in this system.  

Table 4.3 Partial system specifications and associations among the multiple views 
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System specifications 

HVOF 

Process 

optimization 

feature 

HVOF 

nozzle CAD 

functional 

feature 

CFD 

boundary 

feature 

HVOF 

physicochemical 

feature 

Item Unit Description/Range 
Process 

parameter 

Functional 

element 

Boundary 

condition 

Solver setup 

parameter 

Fuel type — Propane — — — Fuel selection 

Fuel flow 

rate 
SLPM 100⁓200 Fuel flow rate Fuel & inlet Flow inlet Flow rate 

Oxygen 

flow rate 
SLPM 550⁓650 

Oxygen flow 

rate 

Oxygen & 

inlet 
Flow inlet Flow rate 

Nitrogen 

flow rate 
SLPM 76⁓116 

Nitrogen flow 

rate 

Nitrogen 

flow inlet 
Flow inlet Flow rate 

Airflow 

rate 
SLPM 475⁓675 Airflow rate 

Airflow 

inlet 
Flow inlet Flow rate 

Spray 

distance 
mm 120⁓200 Spray distance 

External 

flow length 

Computational 

domain 
— 

 

Figure 4.6 illustrates the feature conversion in the CAD/CFD integration view and the CFD 

analysis view. The functional geometry which has been itemized as functional elements is shown 

in Figure 4.6(a). Figure 4.6(b) shows the crucial geometric information that was acquired from the 

direct measurement of the spray gun. Following feature conversion in the CAD/CFD integration, 

the parametrically-controlled CFD boundaries of the domain were tagged and associated with the 

corresponding design variables of the multi-objective optimization feature via the functional 

elements attached to the CAD functional feature, as shown in Figure 4.6(c). Besides, the physical 

attributes attached to the tags were used to guide the mesh generation as shown in Figure 4.6(d). 

Figure 4.6(e) and (f) present the temperature and velocity contours of the flame flow with a set of 
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process parameters (refer to case DP43 in Appendix 2), which is a visual representation of the 

HVOF gas dynamics feature. Figure 4.6(g) and (h) plot the temperature and velocity of the particle 

along the centerline of the spray gun with the same process parameters, which is a visual 

representation of the HVOF in-flight particle feature. 

To illustrate the proposed HVOF numerical modeling, here, case DP43 in Appendix 2 is 

used as a sample to explain the procedure for generating a robust HVOF model. Regarding other 

experimental points, the computational domain and setup parameters can be easily updated subject 

to changes in the attribute value of the HVOF nozzle CAD functional feature by using the 

Configuration Manager provided in ANSYS Workbench. The number of cells, in this case, is 

157,688. This case was set up in the feature-based template, thus the boundary conditions were set 

up according to the feature conversion as shown in Figure 4.6(a) and (c). As to the gas flow inlets 

(air, nitrogen, propane & oxygen) indicated in Figure 4.6(a), the boundary condition of the mass 

flow inlet was used for describing the flow rate. In the external flow field, the radial extent of the 

computational domain is chosen to be 50 mm which is much wider than the throat radius. The 

pressure outlet condition and wall condition were respectively specified to the outer boundaries 

and the substrate, as shown in Figure 4.6(c) [81]. For respecting the computational time and 

convergence problems, a temperature boundary for the substrate surface and the chamber wall was 

set up as a constant temperature of 300 K. Although it may change with the spray process, the 

variation in the temperature is small when compared with the temperature of the adjacent flame. 

After obtaining a stable simulation of the flame jet, the values given in Table 4.2 were 

correspondingly assigned to the setup parameters for the DPM. It is worth noting that the particle 

diameter was approximately assumed to be 10 µm with the shape factor of 1, because about 80% 

of the powder particles were around 10 µm. 
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Figure 4.6 Schematic representation of the feature conversion in the CAD/CFD integration view 

and analysis view: (a) partial sectional view of the spray gun CAD model with non-geometric 

attributes; (b) the front view of the spray gun CAD model with geometric attributes; (c) 

parametrized CFD boundaries of the domain; (d) mesh generation; (e) temperature contour of the 

flame flow; (f) velocity contour of the flame flow; (g) particle temperature along the centerline of 

the spray gun; and (h) particle velocity along the centerline of the spray gun 
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The parameter monitors of the chamber pressure and heat flux integral quantity on the 

substrate surface were set up in the CFD session to check the convergence and stability of the 

simulation. 7-bar chamber pressure was presumed to get a starting point for the combustion. As 

shown in Table 4.4, the formula coefficient error in the last two iterations is quite small and can 

be ignored, thus the reaction formula was determined via several iterations.  

Table 4.4 Reaction formula determination for the center point simulation. 

Iteration 

No. 

Presumed 

pressure 

Reaction formula Simulation 

pressure 

1 7.0 bar 
𝐶3𝐻8 + 4.786𝑂2 → 1.769𝐶𝑂 + 1.222𝐶𝑂2 + 0.333𝐻 + 0.513𝐻2

+ 2.88𝐻2𝑂+ 0.308𝑂 + 0.855𝑂𝐻 + 0.658𝑂2 

6.5 bar 

2 6.5 bar 
𝐶3𝐻8 + 4.791𝑂2 → 1.769𝐶𝑂 + 1.222𝐶𝑂2 + 0.342𝐻 + 0.521𝐻2

+ 2.872𝐻2𝑂+ 0.308𝑂 + 0.855𝑂𝐻 + 0.667𝑂2 

6.6 bar 

3 (Final) 6.6 bar 
𝐶3𝐻8 + 4.791𝑂2 → 1.769𝐶𝑂 + 1.222𝐶𝑂2 + 0.342𝐻 + 0.521𝐻2

+ 2.872𝐻2𝑂+ 0.308𝑂 + 0.855𝑂𝐻 + 0.667𝑂2 

6.6 bar 

 

After obtaining an acceptable reaction formula, the independence analysis was carried out to 

further check the stability of the simulation model. Three grids were systematically refined around 

the rate of 1.9, and the order p of 0.6 obtained by Equation (4.2) gives the confidence that the 

simulation results with 0.1 million nodes are no longer grid insensitive. So far, a robust simulation 

for a set of process parameters has been achieved. The log file recording the particle temperature 

and velocity along the centerline could be processed in the optimization view. 

The optimization-driven mechanism needs a guaranteed HVOF numerical modeling, as well 

as a systematic optimization modeling to enable the coverage of all constraints and optimization 

objectives. Table 4.3 shows some system specifications of the minimum and maximum values that 
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can be associated with different process parameters. Based on the mapping relations embedded in 

the process optimization feature, such associative information is converted into design variables 

and parametric relations (expressions) at the experimental design level feeding the values of the 

parameters for the RSM, as shown in Table 4.5. To provide accurate predication models without 

a great deal of data to support the regression theory, the RSM uses an experimental design matrix 

of full-factorial Central Composite Design (CCC) with the five selected factors, which consists of 

32 sets of factorial experimental design, 10 sets of star point and two sets of center points as shown 

in Appendix 2.  

Table 4.5 The experimental design levels of the independent variables. 

Design variables Notation Unit 

Levels 

-2.3784 -1 0 1 2.3784 

Fuel (propane) flow rate F SLPM 100 128.977 150 171.023 200 

Oxygen flow rate O SLPM 550 578.977 600 621.023 650 

Nitrogen flow rate N SLPM 20 37.386 50 62.614 80 

Air flow rate A SLPM 475 532.955 575 617.045 675 

Spray distance S mm 120 143.182 160 176.818 200 

 

The particle behavior prior to impact on the substrate shown in Appendix 2 was extracted 

from the log file recording the simulation results, which was used to fit regression models for the 

velocity and temperature in the optimization view. Second-order polynomial models were 

constructed for each response in the following forms: 
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𝑦1 = 589.2775 + 10.2914𝐹 + 6.8826𝑂 − 4.4622𝑁 + 2.2645𝐴 − 1.7666𝑆 + 2.327𝐹𝑂

+ 0.1866𝐹𝑁 − 1.6777𝐹𝐴 + 0.1897𝐹𝑆 − 0.4111𝑂𝑁 + 0.2947𝑂𝐴

+ 0.1882𝑂𝑆 − 0.4657𝑁𝐴 + 0.1519𝑁𝑆 + 0.0045 𝐴𝑆 − 3.4752𝐹2

− 0.4366𝑂2 + 0.5382𝑁2 − 0.4312𝐴2 − 0.9582𝑆2 

(4.8) 

𝑦2 = 1508.288− 1.4387𝐹 + 13.54𝑂 − 49.083𝑁 − 8.3512𝐴 − 25.9316𝑆 + 8.64𝐹𝑂

+ 2.2131𝐹𝑁 − 0.5588𝐹𝐴 + 3.3769𝐹𝑆 − 1.0738𝑂𝑁 − 3.7519𝑂𝐴

− 1.665𝑂𝑆 + 2.2863𝑁𝐴+ 1.6819𝑁𝑆 + 2.8425𝐴𝑆 − 12.9867𝐹2

− 0.6733𝑂2 + 7.5336𝑁2 − 0.2985𝐴2 − 3.1756𝑆2 

(4.9) 

where y1 is the particle velocity and y2 is the particle temperature while F, O, N, A, and S are the 

design variables that represent the coded value shown in Table 4.5. 

For checking the adequacy of the regression model, the ANOVA results for the particle 

velocity and temperature are presented in Table 4.6 and Table 4.7. It is found that the regression 

models are adequate. In the tables, the Fisher ratio (F value) with a very low probability value (p-

value) (1.0146e-13 for the particle velocity regression model and 1.3314e-12 for the temperature 

model) demonstrates the selected terms in the models are significant. The coefficient of 

determination (R2) was calculated as 0.974 for the particle velocity (Table 4.6) and 0.967 for the 

particle temperature (Table 4.7), implying that the regression model can explain 97.4% of the 

variability in the velocity response and 96.7% of that in the temperature response. Additionally, 

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) were calculated to be 3.1845 

and 1.6699 for the velocity regression model, and 15.4258 and 7.7848 for the temperature 

regression model, which indicates that the prediction error of the two models is small and 

acceptable. Collectively, these results indicate the excellent capability of the regression models. 
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Table 4.6 ANOVA results for particle velocity 

Variables Df 
Sum of 

Sq. 
Mean Square F Value p Value Sig. Code 

F 1 4587.5165 4587.5165 452.3614 < 0.0001 *** 

O 1 2051.7647 2051.7647 202.3184 < 0.0001 *** 

N 1 862.4397 862.4397 85.0426 < 0.0001 *** 

A 1 222.1031 222.1031 21.9009 0.0001 *** 

S 1 135.1803 135.1803 13.3297 0.0013 ** 

F*O 1 173.2731 173.2731 17.0859 0.0004 *** 

F*N 1 1.1142 1.1142 0.1099 0.7433  

F*A 1 90.0650 90.0650 8.8810 0.0067 ** 

F*S 1 1.1518 1.1518 0.1136 0.7392  

O*N 1 5.4079 5.4079 0.5333 0.4726  

O*A 1 2.7783 2.7783 0.2740 0.6057  

O*S 1 1.1329 1.1329 0.1117 0.7412  

N*A 1 6.9406 6.9406 0.6844 0.4166  

N*S 1 0.7384 0.7384 0.0728 0.7897  

A*S 1 0.0007 0.0007 0.0001 0.9936  

F2 1 389.5398 389.5398 38.4114 < 0.0001 *** 

O2 1 6.1493 6.1493 0.6064 0.4441  

N2 1 9.3434 9.3434 0.9213 0.3471  

A2 1 5.9983 5.9983 0.5915 0.4497  

S2 1 29.6156 29.6156 2.9203 0.1009  

Residual 23 233.2491 10.1413 1.0000 0.5000  

R2 = 0.974, Adjusted R2 = 0.952, F value = 43.262, p value = 1.0146e-13, RMSE = 3.1845, 

MAE = 1.6699 

Df: Degrees of freedom; F value: Fisher ratio; p-value: Probability; R2: Coefficient of 

determination; RMSE: Root Mean Squared Error; MAE: Mean Absolute Error. 

Significance code: ‘***’ High; ‘**’ Moderate; ‘*’ Low. 
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Table 4.7 ANOVA results for particle temperature 

Variables Df Sum of Sq. Mean Square F Value p Value Sig. Code 

F 1 89.6485 89.6485 0.3767 0.5454  

O 1 7940.7764 7940.7764 33.3711 < 0.0001 *** 

N 1 104348.7857 104348.7857 438.5254 < 0.0001 *** 

A 1 3020.7726 3020.7726 12.6948 0.0017 ** 

S 1 29126.1724 29126.1724 122.4026 < 0.0001 *** 

F*O 1 2388.7872 2388.7872 10.0389 0.0043 ** 

F*N 1 156.7335 156.7335 0.6587 0.4253  

F*A 1 9.9904 9.9904 0.0420 0.8395  

F*S 1 364.9051 364.9051 1.5335 0.2281  

O*N 1 36.8940 36.8940 0.1550 0.6974  

O*A 1 450.4501 450.4501 1.8930 0.1821  

O*S 1 88.7112 88.7112 0.3728 0.5475  

N*A 1 167.2621 167.2621 0.7029 0.4104  

N*S 1 90.5185 90.5185 0.3804 0.5434  

A*S 1 258.5538 258.5538 1.0866 0.3081  

F2 1 5440.0186 5440.0186 22.8617 0.0001 *** 

O2 1 14.6223 14.6223 0.0615 0.8064  

N2 1 1830.6487 1830.6487 7.6933 0.0108 * 

A2 1 2.8746 2.8746 0.0121 0.9134  

S2 1 325.2728 325.2728 1.3670 0.2543  

Residual 23 5472.9377 237.9538 1.0000 0.5000  

R2 = 0.967, Adjusted R2 = 0.939, F value = 34.18, p value = 1.3314e-12, RMSE = 

15.4258, MAE = 7.7848 

Df: Degrees of freedom; F value: Fisher ratio; p-value: Probability; R2: Coefficient of 

determination; RMSE: Root Mean Squared Error; MAE: Mean Absolute Error. 

Significance code: ‘***’ High; ‘**’ Moderate; ‘*’ Low. 
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To intuitively indicate the effect of each design variable on responses, Figure 4.7 gives the 

prediction plots of interactions. The green lines show the response surface against a single design 

variable, with all other variables held fixed at the center point of the design space. The red curves 

indicate a 95% simultaneous confidence band for the fitted response surface. Apart from the 

intuitive contour results, the effect of design variables on the responses was quantitatively assessed 

by the F value and p value from the results of ANOVA, as shown in Table 4.6 and Table 4.7. From 

the results of ANOVA and the prediction plots of interactions, obviously, the velocity response is 

highly affected by the fuel flow rate and oxygen flow rate, and the temperature response is highly 

affected by the nitrogen flow rate and spray distance. 

 

Figure 4.7 Influence of the design variables: (a) the velocity response, and (b) the temperature 

response. 
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In this case, the optimization process aimed to maximize the particle velocity and control the 

particle temperature around the melting point before their impacts on the substrate. Based on the 

optimization strategy introduced in Section 4.5, firstly, the obtained velocity response function (y1) 

and temperature response function (y2) were further transformed into a compromised “desirability” 

function respectively corresponding to a maximum goal and a target goal as shown in Equation 

(4.10) and (4.11), and then an overall desirability function, as shown in Equation (4.12), was 

constructed as the objective function by the geometric mean of the two “desirability” functions. 

The range of operation determines a feasible region for the optimization process. This feasible 

region is formulated as the constraint function. 

𝑑1 =

{
 

 
0                     𝑖𝑓 𝑦1 < 𝑉𝑚𝑖𝑛

(
𝑦1 − 𝑉𝑚𝑖𝑛
𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

)
𝑠

       𝑖𝑓 𝑉𝑚𝑖𝑛 ≤  𝑦1 ≤ 𝑉𝑚𝑎𝑥

1                     𝑖𝑓 𝑦1 > 𝑉𝑚𝑎𝑥

 (4.10) 

𝑑2 =

{
 
 

 
 (

𝑦2 − 𝑇𝑚𝑖𝑛
𝑇𝑚𝑒𝑙𝑡𝑖𝑛𝑔 − 𝑇𝑚𝑖𝑛

)

𝑠

       𝑖𝑓 𝑇𝑚𝑖𝑛 ≤ 𝑦2 < 𝑇𝑚𝑒𝑙𝑡𝑖𝑛𝑔

(
𝑦2 − 𝑇𝑚𝑒𝑙𝑡𝑖𝑛𝑔
𝑇𝑚𝑒𝑙𝑡𝑖𝑛𝑔 − 𝑇𝑚𝑎𝑥

)

𝑠

       𝑖𝑓 𝑇𝑚𝑒𝑙𝑡𝑖𝑛𝑔 ≤ 𝑦2 ≤ 𝑇𝑚𝑎𝑥

0                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.11) 

𝑚𝑎𝑥.    𝐷 =  (𝑑1𝑑2)
1/2 (4.12) 

𝑠𝑡.     

{
 
 

 
 
−2.3784 ≤  𝐹 ≤ 2.3784
−2.3784 ≤  𝑂 ≤ 2.3784

−2.3784 ≤  𝑁 ≤ 2.3784
−2.3784 ≤  𝐴 ≤ 2.3784

−2.3784 ≤  𝑆 ≤ 2.3784

 (4.13) 

In the equations above, y1 and y2 are the velocity response function (Equation (4.8)) and 

temperature response function (Equation (4.9)). Vmin and Vmax are the minimum value and 

maximum value of the velocity response (y1) from Table 6 respectively. Tmin and Tmax are the 
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minimum value and maximum value of the temperature response (y2) from Appendix 2. Tmelting is 

the melting point of WC-12%Co particles shown in Table 4.2. F, O, N, A, and S are the design 

variables that represent fuel, oxygen, nitrogen, air gas flow rate, and spray distance respectively. 

The optimization methodology was implemented by using a desirability function “R” 

package [119] with the Nelder-Mead simplex method [120]. Based on the associations indicated 

in Table 4.3, the real system specifications determined the ranges of the process parameters, which 

were further converted to the optimization process and formed a feasible region for implementing 

the optimization methodology. The optimization intents and results are shown in Table 4.8. The 

first two rows present the optimization objectives and the corresponding optimal values. The range 

of each particle property was estimated according to Appendix 2. Table 4.8 also shows the process 

parameter values for generating the optimal result. The overall desirability is 1, which indicates 

the optimal result satisfies the optimization intent. This set of parameter values was validated by 

simulation, and the simulation results of the particle velocity and temperature are respectively 

611.293 m/s and 1534.08 K, which gives a relative error of 0.14% and 0.71%. Meanwhile, the 

equivalence ratio (1.209) at the optimal point is consistent with the conclusion given in [72], which 

indicates the validity of the optimal solution to a certain extent. 
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Table 4.8 Optimization result for specific optimization intent. 

Variable Optimization intent Min. Max. Coded value Actual value Desirability 

y1 (m/s) Max 550 610 610.420 610.420 1 

y2 (K) Target (1523.15 K) 1200 1850 1523.150 1523.150 1 

F (SLPM) In range 100 200 1.455 180.596 1 

O (SLPM) In range 550 650 1.217 625.586 1 

N (SLPM) In range 20 80 -0.875 38.970 1 

A (SLPM) In range 475 675 0.070 577.924 1 

S (mm) In range 120 200 1.152 179.379 1 

Overall Desirability 1 

 

4.6.2 Verification of the optimization result 

For validating the model, the coating properties of porosity and deposition efficiency were tested 

by conducting the process parameters as suggested by the model. Further, three additional sets of 

experiments were conducted to verify the effectiveness of the optimization process. Two of them 

were conducted above and below the optimal parameter values, and one with random process 

parameters within the optimization space was conducted. The tested coating properties are 

presented in Table 4.9. Moreover, the coating structures were examined with a ZEISS Imager.A2m. 

It can clearly be seen from Table 4.9 and Figure 4.8 that the coating produced by the optimal 

parameters is dense, and has low porosity and high deposition efficiency. In Table 4.9, the 

experiment with Contrast 3 (random parameters) has a relatively higher deposition efficiency than 

the optimal one, this was caused by the low inertia of the small particles resulting in a rapid 

increase of the radial velocity with an increase in the spray distance. From these experimental 
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results, it can be inferred that a high-quality coating with consideration of a real industrial scenario 

can be obtained by the proposed model. 

Table 4.9 Experimental results of coating properties. 

Experiment no. 

Process parameter Coating property 

F 

(SLPM) 

O 

(SLPM) 

N 

(SLPM) 

A 

(SLPM) 

S 

(mm) 
Porosity 

Deposition 

efficiency 

Adhesion 

bonding 

strength 

(MPa) 

Optimal 180.6 625.6 39.0 577.9 179.4 1.41% 57.45% 31.0 

Contrast 1 (Low) 107.9 557.9 24.7 490.9 126.4 >10% 53.20% 8.8 

Contrast 2 (High) 192.0 642.0 75.2 659.1 193.6 3.09% 53.85% 16.2 

Contrast 3 (Random) 112.8 641.2 57.9 494.8 142.3 2.30% 58.65% 22.2 

 

 

Figure 4.8 Microstructure of the coatings viewed on a ZEISS Imager.A2m. (a) the coating structure 

with the optimal parameters; (b) the coating structure of Contrast 1; (c) the coating structure of 

Contrast 2; (d) the coating structure of Contrast 3. 
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4.7 Conclusions 

This chapter contributes to the implementation of the feature concepts introduced in Chapter 3 for 

developing multiple-view integration covering HVOF numerical analysis and process 

optimization, where the spray coating is optimized by controlling the in-flight particle behavior. 

The whole engineering process is modeled in terms of three views, CAD/CFD integration view, 

CFD analysis view, and optimization view. In order to map the real working conditions and HVOF 

system specifications into different models’ setups, the entities involved in each view are 

constructed by using the feature concepts, hence seamless information transfers among the views 

are achieved. Built on top of the previous research efforts on the HVOF numerical modeling, an 

integrated solution for constructing HVOF interdisciplinary CAD/CFD/Optimization model has 

been proposed. A closed-loop complex engineering process optimization method has been 

developed. In this method, the optimization intent drives the numerical analysis scenarios via a 

parametrically controlled CAD/CFD integration solution. The optimization is conducted via the 

multi-response surface method with the desirability function approach used to derive the optimal 

process parameters. 

The effectiveness of the interdisciplinary modeling method was demonstrated through a case 

study of an HVOF spray system depositing WC-12Co coating. It should be highlighted that the 

proposed system has been systematically modeled in a feature-based environment. For example, a 

parametric template of the numerical analysis was constructed for carrying out a group of 

simulations requested by the optimization intent. A set of sampled design points was taken to 

illustrate the numerical model generation progressively. Finally, the RSM method was used to 

construct the optimization objectives of the particle velocity and temperature and then these two 

objectives were converted into a single optimization objective via the desirability function. The 
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derived parameter values from this optimization objective were experimentally verified via 

reviewing the coatings. That means the virtual model is able to provide meaningful feedback to its 

real twin. Besides relying on the proposed association mechanism, the modeling method can be 

applied to various industrial process scenarios without repetitive tasks. Therefore, it can be 

concluded that the proposed approach is generic for industrial HVOF processes and useful for the 

real-world process. 
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Chapter 5: Inter-module Data Processing 

5.1 Chapter Overview 

As introduced in Chapter 3, for comprehensively describing a physics phenomenon, multiple 

modules’ outputs in the proposed framework should be integrated together. This chapter keeps on 

using HVOF processes as an example for explaining the associations among multiple modules 

with interdisciplinary dependencies. Coating thickness is selected as the target phenomenon. 

Like most coating processes, in HVOF processes, the coating thickness is a critical property 

that should be precisely controlled during the process [91,121]. In view of green, smart, and digital 

manufacturing, the coating thickness prediction model is demanded to produce high-quality 

coatings efficiently. In the aspect of HVOF thermal spraying, the modeling is still highly 

challenging due to its complex system and multidisciplinary process parameters. Its coating 

thickness models, especially for studying the specific HVOF parameters, are still in relative 

infancy. Most research works were devoted to the kinematic parameters’ effects, e.g., scanning 

speed, scanning step, and spray distance, on the coating thickness [91,122]. The operating 

parameters and working conditions specifically used in the HVOF coating, e.g., the gas flow rates 

and the nozzle geometry, are also critical factors of determining the coating quality [123]. However, 

they have not been considered in the previous research works. Moreover, most of the previous 

models were empirical models derived from the experimental data. Although these models are 

reliable for specific applications, they may not be applicable to other systems and working 

conditions, and these modeling methods based on experiments are time-consuming and expensive, 

which does not satisfy the requirement of the DT concept. Therefore, this chapter proposes a 
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parametric and flexible model for HVOF coating thickness control with due regard to the complex 

spray system and the multidisciplinary parameters by using numerical modeling. 

The related works have been reviewed in Section 2.3. The remainder of this chapter is 

organized as follows: Section 5.2 demonstrates the procedure of the proposed model by simulating 

a specific scenario. The associations among the above-described models are also clarified in this 

section. In section 5.3, the simulation results and experimental validations under four sets of 

operating parameters are presented to verify the effectiveness of the model. 

5.2 Associations among the Multiple Modules for HVOF Coating Thickness 

Simulation 

The general procedure for constructing the model is presented in Figure 5.1. The first step is to 

simulate the in-flight flame/particle behavior by using the in-flight behavior model developed in 

Chapter 4. Due to the revolved structure of the nozzle chamber, the model in Chapter 4 is always 

built on a 2D axisymmetric CFD model to reduce the computation cost. Once the steady behaviors 

of the combustion, flame, and in-flight particles are obtained, the particle landing distribution on 

the substrate surface can be extracted from the HVOF in-flight particle feature. To evaluate the 

influence of particle size on the deposition distribution, by suiting the Rosin-Rammler diameter 

distribution [124,125] the particle size range is discretized into a number of groups that are 

separately inputted to the in-flight behavior model and get their landing distributions on the 

substrate surface. Then, according to the particle landing distribution, a rule-based coating growth 

model captures an initial coating profile in the second step. The third step is to convert this initial 

coating profile built on the in-flight behavior model to a 3D single coating profile and fit the 

converted profile by a Gaussian distribution. The last step is to apply the Gaussian distribution and 
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simulate the coating thickness with a spray path through a proposed linking method. The details 

of each step are presented in the following subsections. 

 

Figure 5.1 The procedure for simulating the coating thickness in HVOF processes. 

5.2.1 In-flight behavior modeling and particle trajectory simulation 

5.2.1.1 HVOF in-flight behavior under a specific operating scenario 

As the coating formation process in the HVOF is determined by the in-flight particle behavior 

prior to the impact on the substrate surface, which, in turn, is affected by the combustion, flame, 

and in-flight particle behavior, these physicochemical phenomenon simulations are noticeable for 

the coating thickness modeling. Based on the study in Chapter 4, the in-flight behavior is controlled 

by the operating parameters, such as the gas flow rates, spray distance, and other operational 

conditions, like the nozzle configuration and particle properties. Thus, for predicting the coating 
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thickness profile, the HVOF in-flight behavior should be obtained firstly. To demonstrate the steps 

for modeling coating thickness, a set of operating parameters indicated in Table 5.1 (recommended 

by the manufacturer) is used here. The same homemade Diamond Jet Hybrid gun as shown in 

Figure 4.6(a) and (b) is still used in this chapter. By setting up these initial operational conditions 

on the developed in-flight behavior model, for example, Figure 5.2 presents partial properties of 

the flame under the operating parameters given in Table 5.1, the velocity magnitude contour and 

pressure contour of the flame flow. 

Table 5.1 A specified set of operating parameters for the coating thickness model demonstration. 

Case Propane 

flow rate 

(SLPM) 

Oxygen 

flow rate 

(SLPM) 

Nitrogen 

flow rate 

(SLPM) 

Air flow 

rate 

(SLPM) 

Powder 

feed rate 

(g/min) 

Spray 

distance 

(mm) 

Baseline 257 954 52 469 53.3 160 

 

 

Figure 5.2 Flame properties with the specified operational parameters: (a) velocity magnitude 

contour of the flame flow; (b) pressure contour of the flame flow. 
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As mentioned in the literature review, owing to the very low particle loading (less 4% usually) 

[81], a one-way coupling between the gas phase and the particle phase is assumed, in other words, 

the momentum and heat of the particle are solved by the Lagrangian approach after the gas flow 

fields are determined, and the particles have no influence on the gas phase [82,83]. It should be 

noted that this model for computing the in-flight particle behavior was widely used in previous 

studies, and partial particle properties have been tested against experimental results [72,77,81]. 

For example, the simulated particle velocity and temperature at impact in Li and Christofides’s 

work [80,81] are consistent with experimental observations of Zhao et al. [126]. In a more recent 

publication, this algorithm, computing particle behavior after solving the gas phase, was further 

tested in a more advanced HVOF technology, suspension HVOF [77]. In this publication, the 

simulated particle velocity and temperature at different standoff distances were in good agreement 

with the experiment, and the variation trend was similar. Collectively, this model is adequate for 

simulating particle behavior. 

Therefore, in this work, once the flame behavior simulation reaches a certain stable state, 

powder particles can be inserted into the model through the corresponding boundary condition as 

shown in Figure 4.6(c) and released from the grid nodes. The length of releasing particles along 

the feedstock inlet boundary shown in Figure 4.6(a) and (c) and the initial particle velocity are 

carefully set up according to considerations of the real scenario and may need to be reasonably 

tuned to provide results for important characteristics of the coating profile (such as the width of 

the single coating profile) that are consistent with the available experimental results. For the 

homemade HVOF system used in this work, this length is set up as 3.5 mm from the axis of the 

gun along the radial direction, and the particles are released from the feedstock inlet boundary with 

an initial velocity of 0.01 m/s. The powder particles should be evenly dispersed on the area of the 
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feedstock inlet. Their thermophysical properties and shape equivalent factors can be 

correspondingly assigned to the parameters shown in Appendix 1. In this work, WC-12Co powder 

particles are still used to demonstrate the modeling process. Table 4.2 [118] shows their 

thermophysical properties. However, for getting an obvious bead-like shape for the coating profile 

measurement, the particle size distribution is different. The particle size distribution used in this 

chapter’s work is given in Figure 5.4 in the next subsection. Figure 5.3 is a scanning electron 

microscope (SEM) image of the WC-12Co powder particles, which indicates the spherical 

particles should have a shape factor of 1. Apart from these parameters, particle size distribution is 

a critical factor affecting the coating profile [85]. The following subsection introduces the particle 

size discretization and gives a demonstration of the in-flight particle behavior simulation. 

 

Figure 5.3 SEM image of the WC-12Co powder particles. 

5.2.1.2 Particle size distribution and the in-flight particle behavior simulation 

Because the size distribution of the powder particles used in HVOF thermal spraying is 

polydisperse, and particles of different sizes have different dynamic behavior during the flight due 
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to different momentum, the particle size distribution [81] should be taken into account for 

accurately calculating the particle deposition distribution on the substrate. The Rosin-Rammler 

distribution of cumulative mass [127] widely exists in the literature and industry for describing the 

powder particle size [81,124]. To simulate this effect, this approach discretizes the particle size 

range into numerous groups of different sizes with the same number of particles firstly. Then these 

groups are separately inserted into the stable flame simulation for computing the in-flight trajectory 

of particles of different sizes. Meanwhile, the Rosin-Rammler distribution of cumulative mass is 

converted to the count distribution of particles [127], which will be introduced in the next 

subsection to simulate an initial coating thickness by combining a rule-based coating growth model. 

For further demonstrating this step, taking the WC-12Co powder particles as an example, 

however, it should be noted that the particle size is from 7.5 µm to 50 µm, which is different from 

the size in Section 4.6.1 and follows a Rosin-Rammler distribution of cumulative mass as shown 

in Figure 5.4. The model computes the trajectories of 30 groups of different particle diameters. 

The discretized particle sizes are represented by the orange circles in Figure 5.4. The star signs are 

the measurement result from a laser diffraction analyzer, which validates this Rosin-Rammler 

distribution. Figure 5.5 shows the trajectories of the partial particles under the above flame 

behavior. Please note that, for including the effect of turbulent velocity fluctuations on the particle 

trajectories, the particle motion in the turbulent flow is calculated in a stochastic tracking approach 

[124] and up to 15 independent stochastic particle tracking calculations are performed to obtain 

the statistical description of the particle trajectories in the gas flame. Therefore, in the simulation, 

480 particles per group are released on the boundary condition and computed in the gas flame (this 

number is also relevant to the node number at the particle-insert boundary condition). Appendix 4 

is the MATLAB code for automatically carrying out the simulation of the particle trajectories. 
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Apart from the particle trajectories, other in-flight particle parameters with the consideration of 

the particle size distribution, e.g., temperature, melting ratio, and flight time, can be computed 

according to the equations shown in Appendix 1. 

 

Figure 5.4 Cumulative mass distribution of the WC-12Co powder particles and particle size 

discretization for the demonstration of the coating thickness modeling. 

 

Figure 5.5 Trajectories of the partial particles under the specific operating parameters and 

conditions. 



 

94 

 

5.2.2 The coating profile based on the in-flight behavior model 

5.2.2.1 Splat morphology approximation and coating growth 

Once the particle trajectory calculations are completed, the particle physics behavior and 

distribution at impact (on the substrate surface as shown in Figure 4.6(a)) can be extracted from 

the HVOF in-flight particle feature. Then, based on the extracted data, an initial coating thickness 

on the area in the red rectangle shown in Figure 5.6 can be computed by modeling the coating 

growth.  

 

Figure 5.6 Schematic depiction of the single coating profile calculation. 

However, coating growth is a complicated process. Generally, thermally sprayed coatings 

mainly consist of lamellar splats interspersed with a small number of pores and unmelted particles 

as shown in Figure 5.7(b). The splats are the major building blocks of the coating, which are 

formed by the impact, deformation, spreading, and solidification of the individual powder particles 

[94,128]. Each particle is accelerated and heated in the flame during the process, after which it 

impinges on the substrate or previously deposited coating layer in a molten, partially molten, or 

solid state. At impact, the sudden stagnation of the particles leads to a pressure buildup and 
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deformation occurs. Then the molten part of particles spreads outward from the point of impact 

and forms a splat [94,129]. Figure 5.7(a) gives a scanning electron microscope (SEM) image of a 

single splat on a flat substrate surface. These pores as shown in Figure 5.7(b) are deformed by the 

interaction of the new deposited particles and the previously deposited coating layers. The coating 

growth process can be treated as the pile-ups of these compositions as depicted in Figure 5.7(c). 

 

Figure 5.7 The major characteristics of coating formation: (a) SEM image of a single splat under 

a set of specific operating parameters; (b) microstructure of a thermal spray coating; (c) schematic 

of the coating formation. 

It is obvious that the complete virtual model with the consideration of all physics phenomena 

involved is hard to be realized. Moreover, modeling the impact and solidification of just a single 

drop even requires many hours of computing time. Simulating the pile-ups of a huge number of 

particles is impractical. Since this work concentrates on the macro coating thickness profile (the 

radius of a single coating profile is typically several millimeters), the micro-level splat morphology 

(the radius of a single splat typically ranges from several micrometers to several hundred 

micrometers) is simplified with reasonable assumptions, which are discussed in the following 

paragraphs. Here the splat morphology [130] is the final shape of a single particle on the substrate 

or previously deposited coating layer after the impact, spreading, and solidification. In addition, 

according to the above major characteristics of the coating formation, some rules for calculating 
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the pile-ups of particles are adapted in this work on the basis of previous related research works 

[72,80,94]. 

Regarding the particle deformation at impact, there are two assumptions in HVOF processes. 

As shown in Figure 5.8(a), if a particle can reach a fully melted state just prior to impact, the 

droplet becomes a lamellar splat as a result of deformation which can be treated approximately as 

a cylinder shape [131,132]. The splat flattening degree ξ is defined by the following equation: 

𝜉 =
𝐷

𝑑𝑝
 

(5.1) 

where D is the approximated diameter of the splat and dp is the particle diameter prior to impact. 

The previous research indicated that for HVOF coatings ξ predominantly depends on the Reynolds 

number which represents the viscous dissipation of the inertia forces [94,131]. The flattening ratio 

can be approximated by a function of this parameter as follows [94,131]: 

𝜉 = 1.2941𝑅𝑒0.2 
(5.2) 

where, Re is the Reynolds number of the droplets. (Re = dpυp/νp, where νp is the kinematic viscosity 

of the droplets, υp is the droplet velocity prior to the impact on the substrate surface.) 

If a particle is partially melted, the unmelted particle will form a hemisphere with the 

equivalent volume and the melted part will form a ring around the hemisphere as depicted in Figure 

5.8(b) [94,133]. The flattening ratio of the melted part can be calculated by using the above 

equation.  
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Figure 5.8 Deformation of a fully melted particle (a) and partially melted particle (b) upon impact 

on the substrate (adapted from [94]). 

To simulate the pile-ups of splats, some rules are adapted in this work on the basis of the 

related research works [72,80,94] to program different events that might take place when a particle 

hits the substrate and previously deposited coating layer. A brief summary of these rules is given 

here. For a more detailed interpretation, the reader could refer to [94]. 

1. As shown in Figure 5.9(a), if a particle at impact is partially melted, the unmelted part will 

form a hemisphere on the previously deposited layer, and the melted part will form a ring around 

this hemisphere. Besides, if the unmelted part of the particle locates at the previously deposited 

layer where cavities exist, pores will form under the hemisphere. 

2. If the unmelted part of the particle hits at the previously deposited layer that is formed by 

an unmelted particle, it will bounce off and only the melted part will be deposited (Figure 5.9(b)). 

3. If the particle is able to cover a whole step and the splat encounters a dead end, it will 

break at the corner of the step as shown in Figure 5.9(c). 
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4. If the particle impinges at the corner or boundary of a step, and the ratio of the height of 

the step to the thickness of the splat is not great, the splat will flow over the corner and outer 

surface as shown in Figure 5.9(d). 

5. If the splat comes to the previously deposited layer with small gaps as shown in Figure 

5.9(e), the splat will cover the gaps, and pores will form. 

6. In the fourth rule, if the ratio is large enough, the splat will flow over the corner and form 

a slope at the corner as shown in Figure 5.9(f). 

 

Figure 5.9 Splat formation rules (adapted from [94]). 

5.2.2.2 Combination of the in-flight particle behavior and the splat morphology approximation 

By combining the above rules and the particle parameters at impact from the in-flight behavior 

model (e.g., Reynolds number, melting ratio, particle distribution), the coating growth can be 

calculated. Finally, an initial coating height based on the 2D numerical model with the 

consideration of the particle size distribution is the summation of these groups by multiplying their 

corresponding count distribution, as shown in Figure 5.10, derived from the abovementioned 
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cumulative mass distribution. The result of this step is corresponding to the initial coating height 

on the area highlighted by the red rectangle in Figure 5.6.  

 

Figure 5.10 Count distribution of the WC-12Co powder particles. 

5.2.3 Single coating profile construction 

5.2.3.1 Initial single coating profile calculation 

After getting the initial coating height on the area of the red rectangle in Figure 5.6, the next step 

is to create a circular pattern of the initial coating height model using the axis of the nozzle and 

calculate the overlapping parts, like the overlapping area of the red and yellow rectangles as shown 

in Figure 5.6. It is worth noting that, for getting a continuous coating distribution, the instances in 

the circular pattern could be evaluated by Equation (5.3)-(5.6). 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 =
2𝜋

𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒/𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
 

(5.3) 
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where Length of sample can be estimated by the maximum radial distance of the particle 

distribution at impact, Width of sample can be calculated by using the average diameter of particles 

as the following equations: 

𝐶𝑀𝐷 =
∑𝑛𝑖𝑑𝑖
𝑁

 
(5.4) 

where CMD is the count mean diameter; di is the median value of the particle diameter in the 

groups in Figure 5.10; ni is the count distribution; N is the total count of the particles. 

𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 = 2 × (
4/3𝜋(𝐶𝑀𝐷/2)3

𝜋ℎ𝑠𝑝𝑙𝑎𝑡(𝐶𝑀𝐷)
)

1/2

 
(5.5) 

where hsplat is the function of the equivalent height of the splat which can be derived from 

Equations (5.1) and (5.2). 

Figure 5.11(a) presents the initial coating model after the circular pattern construction. 

Through numerical and experimental validations, for most thermal spray processes, the Gaussian 

distribution can be used to accurately represent the single coating profile [91,122,134]. Hence, a 

symmetric Gaussian distribution is applied to characterize the cross-sectional profile of the coating 

model, as illustrated in Figure 5.11(b). Equation (5.6) is its mathematical expression. 

𝜑 = 𝛿(�̇�, 𝛾)𝑎𝑒−(
𝑟−𝑏
𝑐
)
2

 (5.6) 

where φ, called the single coating profile, is the coating height of the position r meters away from 

the position of the center of peak (b) where the nozzle stationarily stays at a position for one second. 

Thus, the unit of φ is m/(m2·s). a is the height of the curve’s peak and c is the standard deviation. 

For the scenario described above, a equals 4.271×10-5, b is 4.292×10-7, and c is 3.743×10-3. 
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𝛿(�̇�, 𝑑�̅� , 𝛾) is a function relevant to the powder feed rate (�̇�) and the deposition efficiency (𝛾) 

[135]. Their estimations will be introduced in the following subsection. 

In the Cartesian coordinate system, the distance away from the position of the center of the 

peak, r, can be calculated by the following equation: 

𝑟 = √(𝑥 − 𝑢𝑥)2 + (𝑦 − 𝑢𝑦)
2
 

(5.7) 

where (𝑢𝑥, 𝑢𝑦) is the center coordinate of the coating profile on a substrate surface. 

 

Figure 5.11 Gaussian fitting of the coating profile: (a) Initial single coating profile; (b) Gaussian 

curve fitting of the cross-sectional profile. 

5.2.3.2 Deposition efficiency determination 

So far, the mass rate of the powder particles and the deposition efficiency have not been considered 

in the modeling. In HVOF processes, in addition to the unmelted particles bouncing off the 

substrate, the deposition efficiency is affected by many other parameters and factors, like the spray 

distance, gas flow rates, robot kinematic parameters. Among these parameters, the fuel flow rate 

is a critical one. A low fuel flow cannot heat the particle to reach a molten state, which results in 

deposition efficiency reduction. On the other side, a high fuel flow may overheat particles and 
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cause particle oxidation, which also leads to a low deposition efficiency. For simplification, in this 

work, only this critical parameter, fuel flow rate, was studied to quantify the variation of the 

deposition efficiency. A series of fuel flow rates changing from 80 to 380 SLPM were implemented 

for measuring their deposition efficiencies. The experimental measurement results and the 

regression model are given in Figure 5.12. 

 

Figure 5.12 Empirical model of the fuel flow rate and the deposition efficiency. 

5.2.3.3 Single coating profile model 

After determining the deposition efficiency under a specific gas flow rate, the number of the 

deposited particles can be estimated by using Equations (5.8) and (5.9). The unmelted particles 

bouncing off the substrate, which is introduced in Section 5.2.2.1, should not be considered as the 

deposited particles. 

�̇�𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 = 𝛾�̇�𝑡𝑜𝑡𝑎𝑙  
(5.8) 
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where �̇�𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑  is the number of deposited particles per second, and �̇�𝑡𝑜𝑡𝑎𝑙  is the total number of 

particles fed into the nozzle per second, which can be approximated by the following equation: 

�̇�𝑡𝑜𝑡𝑎𝑙 =
�̇�

4
3𝜋𝜌𝑝 (

1
2𝑑�̅�)

3 

(5.9) 

where 𝜌𝑝 is the density of powder particles, �̇� is the powder feed rate, and 𝑑�̅� is the diameter of 

mass average [127], which can be derived by using the count distribution. 

𝛿(�̇�, 𝛾) used in Equation (5.6) is a function to include the effect of the powder feed rate and 

the deposition efficiency on the single coating profile. Its analytical derivation is given by 

Equations (5.10) and (5.11). 

𝛿 =
�̇�𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑
∑𝑛𝑖𝑁𝑔𝑟𝑜𝑢𝑝

 
(5.10) 

where 𝑛𝑖 is the count percentage of different size particles, for example, for the WC-12Co used in 

this work, the count percentage of different size particles is given in Figure 5.10. 𝑁𝑔𝑟𝑜𝑢𝑝 is the 

number of particles in the groups of discretized particle sizes. 

Then, substitute Equations (5.8) and (5.9) into Equation (5.10). 𝛿(�̇�, 𝛾) is given as: 

𝛿(�̇�, 𝛾) =

𝛾
�̇�

4
3𝜋𝜌𝑝 (

1
2𝑑�̅�)

3

∑𝑛𝑖 𝑁𝑔𝑟𝑜𝑢𝑝
 (5.11) 

Finally, by substituting Equation (5.11) into Equation (5.6), a single coating profile model 

can be obtained. Figure 5.13 shows the 3D model of the single coating profile under the scenario 

described above. Equation (5.12) is its mathematical expression. The algorithm is performed in 

the software Matlab 2020b on a 64-core CPU with a utilization of 70-80%. 



 

104 

 

 

Figure 5.13 3D model of the single coating profile under the specific scenario. 

𝜑 = 1.790 × 10−3𝑒
−(

(𝑥2+𝑦2)
1
2⁄ −9.205×10−7

3.809×10−3
)

2

 (5.12) 

5.2.4 Integration of the spray path for the coating thickness simulation 

By combining the numerical model of the single coating profile with the parameters relevant to 

the nozzle movement, e.g., scanning speed and scanning step, it is able to build the model of 

coating thickness distribution on a substrate surface deposited by a nozzle path. Firstly, the 

substrate surface needs to be meshed by refined grids. Secondly, the spray path should be dispersed 

into a series of target points (nozzle trajectory). Then, the target points on the nozzle path are 

transformed into mapped target points on the substrate surface along with the orientation of the 

spray nozzle. After the target point transformation, for a moment that the nozzle passes through a 

target point, the coating height at each grid node can be calculated by substituting the node 

coordinate (x, y) into the integral in Equation (5.13). Lastly, by repeating this step with the progress 

of the nozzle movement, coating thickness distribution on the entire substrate surface can be 
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simulated. In this way, it can simulate the effect of the nozzle movement parameters on the coating 

thickness distribution, such as scanning step and scanning velocity. The schematic depiction of the 

spray path integration will be further discussed in the next chapter. For a more detailed explanation 

of this part, the reader could refer to Section 6.3 and 6.3.2. 

∅𝑖 = ∅𝑖−1 +∫

(

  
 
∫𝛿(�̇�, 𝛾)𝑎𝑒

−(
((𝑥−𝑢𝑥𝑖)

2+(𝑦−𝑢𝑦𝑖)
2
)
1
2⁄
−𝑏

𝑐
)

2

𝑑𝑥𝑑𝑦

)

  
 
 𝑑𝑡 

(5.13) 

where ∅𝑖 is the coating height at the node coordinate (x, y) when the nozzle passes through the ith 

mapped target point (𝑢𝑥𝑖, 𝑢𝑦𝑖). 

5.3 Experimental Verification for the Coating Thickness Model 

5.3.1 Experimental setup 

For verifying the integrated modeling method, its simulation and corresponding experimental 

investigations under different operating parameters were implemented. The experiments were 

carried out by a homemade Diamond Jet HVOF spray system and a YASKAWA DX200 MA2010 

robot system. For keeping the information consistency between the experiments and simulations, 

this section keeps using the feature-based in-flight behavior model in Section 4.6.1 for obtaining 

the flame behavior under different operating parameters. The building elements and geometries of 

the nozzle are the same as the ones used in Section 4.6.1, as depicted in Figure 4.6(a) and (b). The 

WC-12Co powder particles used in Section 5.2 for the modeling demonstration were kept on using 

in the experiments as feedstock to coat a flat-plane steel substrate (size: 200 mm × 200 mm × 20 

mm). To reduce the effect due to the robot kinematics as much as possible, the spray path used for 

coating is designed as simple as possible, which is a straight line shown in red in Figure 5.14. 
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Besides, to avoid the deformation of the coating profile due to gravity during the coating formation, 

the substrate was placed horizontally. The impact of gravity on the in-flight particles can be 

neglected due to the high velocities and high-velocity gradients [81,136]. In order to obtain an 

obvious bead-like shape for observation and measurement, the nozzle reciprocated up and down 

along the red path with a scanning velocity of 300 mm/s for12 passes. Furthermore, the lateral 

distance is 100 mm, which is far away from the substrate edge, so that the robot can reach a stable 

motion before passing through the substrate. The spray distance was kept constant during each 

experiment. Table 5.2 shows the detailed spray distance and operating parameters for different 

experiments. Apart from the parameters (baseline) for the model demonstration in Section 5.2, 

three additional sets were conducted to further evaluate the predictive capability of the proposed 

model. Two of them were conducted respectively above and below the gas flow rates of fuel and 

oxygen in Case 1, and one is a set of parameters with a shorter spray distance. 

 

Figure 5.14 Experiment setup for the verification of coating thickness. 
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Table 5.2 Operating parameters in the experiments and simulations. 

Case Propane 

flow rate 

(SLPM) 

Oxygen 

flow rate 

(SLPM) 

Nitrogen 

flow rate 

(SLPM) 

Air flow 

rate 

(SLPM) 

Powder 

feed rate 

(g/min) 

Spray 

distance 

(mm) 

1 (Baseline) 257 954 52 469 53.3 160 

2 353 1105 52 469 53.3 160 

3 257 954 52 469 53.3 100 

4 150 580 52 469 53.3 160 

 

5.3.2 Results and discussion 

The results of experiments and simulations under the scenarios in Table 5.2 are introduced in this 

subsection. The left side from top to bottom in Figure 5.15 respectively shows the top views of the 

coatings after 12 passes in the experiments of Case 1, Case 2, Case 3, and Case 4. The right side 

in Figure 5.15 is their corresponding simulation results. It is known that the simulated coating 

thickness along the path direction is almost continuous and same due to the very short time step 

(0.1 ms). Thus, only partial lengths of the coatings are displayed in Figure 5.15 as the 

representatives of the simulation results. To conveniently compare the width of the coating profile, 

the origin of coordinates lies at the entry point of the nozzle on the substrate surface. The positive 

and negative values of the width all mean the radial direction of the coating profile. From Figure 

5.15(a) and (b), it can be observed that the width of the coating bead in the experiment is around 

17 mm, which is very closed to that of the simulation. Similarly, in Figure 5.15(c)-(h), we can 

observe the widths of Case 2, Case 3, and Case 4 are about 15 mm, 12 mm, and 16 mm, which are 
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also in good agreement with the simulated widths. From these observations, it can be confirmed 

that the developed model is able to simulate the coating distribution. 

 

Figure 5.15 Coating distribution comparison of experiment and simulation: (a) Experiment result 

of Case 1; (b) Simulation result of Case 1; (c) Experiment result of Case 2; (d) Simulation result 
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of Case 2; (e) Experiment result of Case 3; (f) Simulation result of Case 3; (g) Experiment result 

of Case 4; (h) Simulation result of Case 4. 

For accurately evaluating the capability of the developed model, in the experiments, the 

cross-section at the middle of the length of the coating beads was measured by contour measuring 

equipment (HOMMEL ETAMIC nanoscan 855). These measurement results were compared with 

the corresponding simulation results, as shown in Figure 5.16. The measurement results under the 

4 sets of parameters (Case 1, Case 2, Case 3, and Case 4) are displayed in orange in Figure 5.16(a)-

(d) respectively. The blue plots in Figure 5.16(a)-(d) are their simulated cross-sections. Obviously, 

the simulated coating profiles fit well with the measured ones. It also can be found that the coating 

thickness of Case 2 (Figure 5.16(b)) is higher than that of Case 1 (Figure 5.16(a)), but the width is 

narrower than that of Case 1 (Figure 5.16(a)). This was because the higher gas flow rates in Case 

2 generated a flame jet with a higher axial velocity, which, in turn, accelerated the powder particles 

along the axial direction. Hence, the radial displacement of powder particles was relatively reduced, 

and the particles tended to impact around the center of the coating profile. A similar phenomenon 

was found in Case 3 (Figure 5.16(c)). The short spray distance in Case 3 also reduced the radial 

displacement of the powder particles. Case 4 (Figure 5.16(d))  has a flat coating profile with the 

lowest peak value due to a low deposition efficiency. When the gas flow rates came to a low level, 

most powder particles did not reach a molten state, so they could not stick on the substrate. Besides, 

the low gas flow rates generated a low-power flame which could not restrain the particle from 

depositing around the center of the coating, so the profile tended to be flat. For quantitatively 

assessing the capacity of the model, the mean absolute error (MAE) and root-mean-square error 

(RMSE) of the cross-section profile heights were calculated via more than 10,000 measurement 

points, where MAE represents the average of the absolute difference between the actual and 
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predicted values in the dataset, and RMSE represents the square root of the average of the squared 

difference between the original and predicted values. Further, for providing an intuitive 

understanding of the accuracy, the normalized root-mean-square error (NRMSE) of the cross-

section profile heights was calculated to interpret the error as a fraction of the overall range. Table 

5.3 shows the calculation results. The MAE, RMSE, and NRMSE are around 0.04, 0.05, and 10% 

for the first three cases, which is acceptable. Case 4 has a relatively large error. In general, these 

results and analysis indicate that the proposed model enables the prediction of the coating thickness 

in HVOF processes with respect to the kinematic parameters for describing the spray path and 

HVOF specific operating parameters. 

 

Figure 5.16 Cross-sectional profile comparison: (a) Cross-sectional profiles of Case 1; (b) Cross-

sectional profiles of Case 2; (c) Cross-sectional profiles of Case 3; (d) Cross-sectional profiles of 

Case 4. 
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Table 5.3 Quantitative estimation of the accuracy of the developed model. 

Case Number of 

measurement points 

MAE RMSE NRMSE 

1 20778 0.0244 0.0343 8.28% 

2 18107 0.0351 0.0417 8.67% 

3 12068 0.0507 0.0606 11.68% 

4 12068 0.0472 0.0608 41.55% 

 

However, due to the complexity of the technology, there exist differences between the 

experimental and numerical results. Multiple reasons induce the differences. From the 

experimental point of view, the continuously high-energy jet during the coating may lead to the 

substrate to deformation, which affects the measurement accuracy. It can be found that, due to the 

thermal deformation, the experimental profiles, especially in Figure 5.16(a) and (b), are not 

symmetric and tend to be rightward. From the simulation point of view, the particle trajectories 

were solved by the stochastic tracking approach under the Reynold and Favre averaging flame. 

The particles may tend to land around the center of the profile. Thus, it can be observed that the 

simulated coating profiles are narrower and higher than the experimental results. In addition, the 

particle deformation at impact and the coating growth is approximately modeled with the 

consideration of very limited factors. However, the process is very complicated and affected by a 

number of factors. In the future, more factors can be consolidated in the empirical function to 

enhance the accuracy of the model. 
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5.4 Conclusions 

This chapter contributes to an integration mechanism of multiple modules for simulating the 

coating thickness in HVOF processes. The kinematic parameters for describing spray paths are 

incorporated into the coating thickness model, thus the effect of spray paths on the coating 

thickness can be studied. Besides, the Gaussian coating profile is obtained via the feature-based 

in-flight behavior model. The HVOF specific parameters, such as fuel type and gas flow rates, and 

working conditions, like nozzle chamber geometry and powder particle property, are used to 

construct the Gaussian coating profile. Hence, the developed model can also analyze the influence 

of the HVOF specific parameters and conditions on the coating distribution. Through experimental 

investigations, the capacity of the model has been verified in this work.  

Although some models built on experiments [92,93] also provide good accuracy, these 

models are usually reliable for a specific industrial scenario. When the working conditions change, 

the adjustment of these models will be expensive and time-consuming. The results in this chapter 

indicate that my model can flexibly simulate the coating thickness while considering different 

HVOF scenarios, like different operating parameters, different system configurations, and so on. 

This flexibility provides a possibility for developing a fully digital-twin model of this phenomenon, 

which will be further explained in the next chapter. 
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Chapter 6: Synchronization of Physics Phenomena 

6.1 Chapter Overview 

To face the challenges from digital twins, except the multiple-view integration, closed-loop 

optimization, and inter-module associations introduced in the above chapters, another important 

function in the proposed framework for constructing digital-physics phenomenon counterpart is 

the synchronization of phenomena and time-sensitive mutual supports among different models. 

The theoretical introduction about this function has been given in Sections 3.3.2 and 3.4. In this 

chapter, to validate the proposed function mechanism and the user-defined boundary condition 

feature, a feature-based model of synchronized coating performance is developed. 

As introduced in Section 3.3.1, a robotized HVOF process usually consists of three major 

units, a Diamond Jet spray gun system which essentially contains the physicochemical 

phenomenon of the in-flight behavior of the flame and particles [72,80,81], a robot arm for 

handling the spray gun which usually concerns the dynamics and control [88,137,138], and a 

substrate to be coated which mainly involves the dynamic effect of the substrate and coating layers 

[87,88,139], for example, the temperature distribution of the substrate, and the coating growth. 

Regarding the Diamond Jet spray gun system, a feature-based model has been expanded upon in 

Chapter 4. The results from this model are used here directly. For a more detailed interpretation, 

the reader could refer to Chapter 4. The robot arm system does not have too many physics 

phenomena, so it is not the concern of this work. In this chapter, major attention is paid to the 

construction of a feature-based digital model for the coating layer and substrate. 

In the following sections, the substrate temperature and coating thickness are selected as the 

main simulation intents while considering the synchronized physics phenomena which are 
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obtained from the models developed in the above chapters. Here, the data processing among these 

models is the offline mode depicted in Figure 3.3. The remainder of this chapter is organized as 

follows: Section 6.2 presents a hierarchical key characteristic flow of HVOF processes. Section 

6.3 demonstrates the offline mode of the data processing for the substrate temperature and coating 

thickness simulation. Section 6.3.1 describes the implementation of the feature-based modeling 

for the substrate temperature and coating thickness simulation. In Section 6.3.2, the user-defined 

boundary condition feature is further schematically depicted. Section 6.3.3 gives the simulation 

results with the synchronization of nozzle trajectory, coating thickness growth, and substrate 

temperature distribution. Section 6.4 is a branch of this study that compares two different 

turbulence models for the dynamic temperature performance of the HVOF process with 

experimental verification. 

6.2 Hierarchical Key Characteristic Flow of HVOF Processes 

As shown in Figure 6.1, the key parameters are marked in blue and the red color represents the 

key physics properties and a partial hierarchical information flow, which assist to build the inter-

model associations for the phenomenon of the substrate temperature and coating thickness. For 

example, the substrate temperature field is determined by the heat flux on the substrate surface. 

The heat flux is contributed by two components, the flame, and the coating layer. As outlined in 

Figure 6.1, the heat flux from the flame can be extracted from the substrate wall in the feature-

based in-flight behavior model developed in Chapter 4. Besides, as described in Chapter 5, a single 

coating profile can be developed via the particle landing distribution on the substrate wall in this 

model and a rule-based coating growth model. In terms of the coating profile, a transient thermal 

analysis model for estimating the change of the heat flux from the coating material is established 

with the initialization of the coating temperature by using the particle temperature prior to the 
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substrate surface, where the particle temperature is also extracted from the in-flight behavior model. 

In the substrate temperature model, the changing heat flux from the coating materials, the constant 

heat flux from the flame, and the spray gun trajectory are read by a user-defined boundary 

condition which enables to update the boundary condition every time step. Meanwhile, the coating 

thickness distribution with the progress is computed based on the coating profile obtained from 

the in-flight behavior model. 

The green marks explain the links between the real-world system and the virtual models. For 

instance, the operating parameters, e.g., gas flow rates and powder feed rate, can be monitored by 

the controller system. Their real-time values link the corresponding setup parameters of the CAE 

model via the proposed CAD functional feature and CAE boundary feature. The intelligent solver 

enables to deal with their changes. Based on the developed closed-loop and optimization-driven 

mechanism (Section 4.6.1)[129], a set of optimal operating parameters for improving the coating 

quality can be obtained and transmitted to the real system. Apart from this, the real-time trajectory 

from the robot is converted by the robot communication protocol and stored into a temporary file 

which is periodically read by the user-defined boundary condition feature.
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Figure 6.1 A hierarchical key characteristic flow of an industrial HVOF process with the links between the real and virtual world.
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According to the above hierarchical characteristic flow, the following subsections present 

the digital modeling process for the substrate temperature and coating thickness distribution in the 

scenario given in Figure 6.2 under the proposed feature-based environment. The nozzle started 

from the left and reciprocated along the spray path with a scanning velocity of 300 mm/s for 10 

passes. The building elements and geometries of the spraying nozzle are the same as the ones used 

in Section 4.6.1, as depicted in Figure 4.6(a) and (b) (which were accurately measured from the 

real spray gun directly). To provide a mirrored space on the virtual side for the computation, this 

information was still used in this chapter to construct the in-flight behavior model. Table 6.1 gives 

the corresponding operating parameters used here, which were obtained from the developed 

closed-loop and optimization-driven mechanism (Section 4.6.1) and are the optimal solution for 

improving coating properties, e.g., adhesion, porosity, and deposition efficiency. WC-12Co 

particles used in Section 4.6 were still used as the feedstock (Table 4.2 presents the thermophysical 

properties of the particle feedstock and the particle size distribution), which were inputted to the 

in-flight behavior model and the rule-based coating growth model for obtaining the particle 

temperature prior to the impact, particle landing distribution, and the single coating profile. 
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Figure 6.2 A spray path and an AISI-1045 steel substrate. 

 

Table 6.1 A specified set of operating parameters for the demonstration of the phenomenon 

synchronization. 

Operating 

parameters 

Propane 

flow rate 

(SLPM) 

Oxygen 

flow rate 

(SLPM) 

Nitrogen 

flow rate 

(SLPM) 

Air flow 

rate 

(SLPM) 

Powder 

feed rate 

(g/min) 

Spray 

distance 

(mm) 

180.6 625.6 39.0 577.9 47.1 179.4 
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6.3 Application of the Real-world Data Processing and Mutual Supports among 

Different Models 

6.3.1 Implementation of the Feature Concepts for the Synchronized HVOF Phenomena 

As described in Section 3.4, with the feature-based CAD/CAE integration mechanism, the 

functional geometry attached in the substrate CAD functional feature can be itemized as the CAE 

boundary elements enclosing the computational domain. For example, in the substrate temperature 

model, as shown in Figure 6.3(b), the lateral faces and the bottom face of the substrate are 

recognized as the boundary condition of a wall with external radiation at room temperature. The 

face to be coated is recognized as the user-defined boundary due to the change of the coating layer 

with the progress. The volume enclosed by all faces forms the computational domain. Except for 

the basic capacity, the substrate CAD functional feature is capable of storing non-geometrical 

information which is associated with other models and periodically updated via the digital 

identifier. In this example, it can read LS files from robotic software packages and extract the 

nozzle trajectory information. Typically, the nozzle trajectory is a series of target points with the 

corresponding nozzle movement speeds. In terms of these data, for describing the movement of 

the coverage area of the heat flux from the flame and coating layer, the target points on the nozzle 

path (nozzle trajectories) are transformed into mapped target points (mapped trajectories) on the 

substrate surface along with the orientation of the spray nozzle, as depicted in Figure 6.4. Besides, 

the “non-geometrical data model” associates with two other external models as well, the in-flight 

behavior model and the transient thermal analysis model of the heat flux from the coating layer to 

the substrate, so that the physics information can be inputted into the substrate temperature model. 

All information coming to the substrate CAD functional feature should assign with the faces IDs 

of the space geometry so that it can be transferred to the corresponding elements in the subsequent 
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views periodically and exactly. Keeping using the same example of nozzle trajectories, these 

mapped points organized and stored into the non-geometrical information of the substrate CAD 

functional feature are transferred to the substrate physics feature via the associated geometric entity, 

the substrate surface to be coated. During this process, the user-defined boundary condition plays 

a critical role to convert these mapped points to a changing boundary condition of heat flux via a 

series of data processing. The detailed application of the user-defined boundary condition will be 

demonstrated in the next subsection. 

 

Figure 6.3 Schematic representation of the feature conversion in the CAD/CAE integration view 

and analysis view: (a) partial geometrical entities and non-geometrical information; (b) 

parametrized CAE boundaries of the domain; (c) the physics feature (coating thickness) at the 

corresponding time; (d) the physics feature (substrate temperature) at the corresponding time. 
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Figure 6.4 Transformation of the nozzle trajectory. 

When the computational domain of the substrate component is transfer to the CAE analysis 

view and the user-defined boundary condition is activated, the solver setup is relatively simple for 

the temperature simulation. According to the changing boundary condition, the transient model 

needs to be turned on firstly, which means all parameters are time-dependent. Then the related 

modeling parameters and the corresponding governing equations for the heat conduction, 

convection, and radiation should be defined as attributes and constraints in the substrate physics 

feature separately. Apart from the modular solvers for understanding the phenomenon, the 

substrate physics feature also guarantees the stability and accuracy of the model via checking grid 

independence verification. This step can be completed by inspection of plotting the sensitive 

parameters against the number of nodes [114], or an estimation of the order p of the discretization 

scheme [115]. Finally, the modular solvers will run before the next view to generate time-periodic 
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simulation results of the substrate temperature field and coating thickness distribution. Figure 6.3(c) 

and (d) present the coating thickness distribution and the substrate temperature with the specific 

operating parameters given in Table 6.1 at a moment when the nozzle is passing the point in Figure 

6.3(a). These time-periodic results are stored in the phenomenon feature with their time sequence 

and waited to be further processed in the optimization view. The phenomenon feature also contains 

the visualization methods of the computational results, which allows the understanding of the data. 

After obtaining the data for the physics phenomenon, the last view aims to provide 

engineering solutions, like coating thickness uniformity optimization and substrate temperature 

optimization. For example, the thickness uniformity can be optimized via controlling the 

parameters of scanning velocity, scanning step, and spray distance based on the “surface of 

equivalent area” theory [140]. However, this falls out of the scope of the case study. This section 

concentrates on the validation of the feature concepts in the HVOF process and user-defined 

boundary condition for synchronously associating information from other models. 

Finally, a feature-based digital model for describing the coating layer and substrate 

performance is formed. By connecting with the feature-based digital model of the in-flight 

behavior (Chapter 4) and robot system, a digital twin class is created. An instance could be 

generated by carrying out an actual scenario, such as the operating parameters, spray gun, and 

spray path given at the beginning of this section. A major advantage of implementing these feature 

concepts is to provide outstanding flexibility. The developed model satisfies the demand of the DT 

concept on the flexible response to the changing real-world scenario. For example, in the real 

process, when a different substrate material is used, by replacing the values of the attributes 

attached to the CAD functional feature, the developed model is able to fast mirror the change in 

the real process without redundant adjustments. 
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6.3.2 Application of the User-defined Boundary Condition in HVOF processes 

In this study, the user-defined boundary condition proposed in Chapter 3 is to transfer the non-

geometrical information from the substrate CAD functional feature, including the mapped 

trajectory points, heat flux from the deposited coating material, and heat flux from the flame to a 

time-related boundary condition in a CAE environment for the substrate temperature simulation. 

As introduced at the beginning of Section 6.2, the temperature is contributed by two components, 

the heat flux generated by the flame and the heat flux from the coating materials. Due to the 

revolved structure of the nozzle chamber, the heat flux from the flame has an axisymmetric 

characteristic. Theoretically, such physics property can be represented by a mathematical function 

of the radial distance from the flame center on the substrate surface. Through numerical and 

experimental validations, for most thermal spray processes, the Gaussian distribution can be used 

to represent this physics property. The coverage area of this Gaussian distribution moves with the 

trajectory of the flame center point, as shown in Figure 6.5. In this designed user-defined boundary 

condition, every time step, the flame center location is updated and the amount of the flux on each 

cell is recalculated. Regarding the heat flux from the deposited coating materials, the difference is 

that, once they are deposited on the substrate, they continuously heat the substrate until their energy 

dissipate eventually. To simulate this behavior, the heat flux from the deposited materials is 

described by a time-related function, like heat flux source_i (Фi(ti,ri)) in Figure 6.5. Once the 

materials are deposited, the center location of the heat flux from these materials will not change 

with the movement of the nozzle and this moment will be recorded and set up as the time reference 

for calculating the amount of heat flux in the subsequent time steps. In the user-defined boundary 

condition, as illustrated in Figure 6.5, a number of the heat flux sources of the deposited materials 

for different time steps are coded, where the number is estimated by the time step length and the 
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duration for the energy dissipation of the deposited materials. Every time step the heat flux source 

of the new deposited materials will replace the oldest one whose energy can be ignorable. 

However, the time step in a CAE model may not be the same as the time interval between 

nozzle trajectory points. To overcome this barrier, the user-defined boundary condition calculates 

the heat flux source center point at the time steps in the CAE model. Due to the extremely short 

distance and the time interval between two adjacent nozzle trajectory points, the nozzle movement 

between the two adjacent points can be assumed to be uniform-rectilinear. Correspondingly, the 

center location of the heat flux source at the CAE time step can be calculated by Equation (6.1): 

𝑿𝑠(𝑖) = 𝑿𝑀(𝑘) +
𝑡𝑇(𝑘 + 1) − 𝑡𝑇(𝑘)

𝑡(𝑖) − 𝑡𝑇(𝑘)
∙ [𝑿𝑀(𝑘 + 1) + 𝑿𝑀(𝑘)],

𝑡𝑇(𝑘 + 1) < 𝑡(𝑖) < 𝑡𝑇(𝑘) 

(6.1) 

where XS(i) is the flame center location on the substrate surface at the ith time step in the CAE 

model, XM(k) is the location of the kth mapped trajectory point, tT(k) is the time corresponding to 

the kth nozzle trajectory point, t(i) is the time at the ith time step. 

Finally, at the current time step, the total heat flux on the substrate surface is the sum of these 

heat fluxes from the coating materials and the flame. For example, the total heat flux on the surface 

cell highlighted in green shown in Figure 6.5 is calculated by Equation (6.2): 

Ф𝑐𝑒𝑙𝑙(𝑛) = Ф𝑓𝑙𝑎𝑚𝑒(𝑟1(𝑛)) +∑Ф𝑗(𝑡𝑗, 𝑟𝑗(𝑛))

𝑗=1

 
(6.2) 

where Фcell(n) is the total heat flux on the nth surface cell at the current time step, Фflame(r1(n)) is 

the heat flux from the flame, r1(n) is the distance from the cell location to the flame center, this 

distance is also the distance from the cell location to the center location of the heat flux from the 

newest deposited materials, Фj(rj(n)) is the heat flux from the coating materials which are deposited 
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at previous time steps, and rj(n) is the distance from the cell location to the center location of the 

heat flux from deposited materials. 

The pseudocode of the user-defined boundary condition for the scenario above is provided 

in Appendix 5. 

 

Figure 6.5 Schematic representation of the user-defined boundary condition. 

Regarding the coating thickness calculation, the mechanism is similar. The flame heat flux 

source on the substrate surface can be replaced by a single coating profile (typically in the thermal 

spray process, a Gaussian distribution is widely used to describe this profile). Then the transient 

coating thickness distribution on the substrate surface can be calculated according to the algorithm 

given in 5.2.4. 
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6.3.3 Synchronization of Nozzle Trajectory, Coating Thickness Growth, and Substrate 

Temperature Distribution 

Based on the works in Chapter 4 and Chapter 5, the operating parameters in Table 6.1 were 

inputted to the in-flight behavior model for computing the behaviors of the fuel-oxidant 

combustion and flame jet. Then, the particle size range in Table 4.2 was discretized into 30 groups 

of different particle diameters. Appendix 3 is the MATLAB code for discretizing the particle size 

distribution. As shown in Figure 6.6, the discretized particle sizes are marked by the orange circles 

and the star signs are the measurement result from a laser diffraction analyzer. These particle 

groups were separately inserted into the obtained flame model for computing the particle landing 

distribution on the substrate surface, meanwhile, the thermal thermophysical properties in Table 

4.2 were correspondingly set up in this model for accurately simulating the in-flight behavior of 

the particles. With the particle landing distribution, the particles’ morphology after impacting and 

coating growth was modeled based on the series of rules introduced in Section 5.2.2.1. Finally, a 

3D single coating thickness profile model was developed by constructing a circular pattern using 

the axis of the nozzle. Further, this profile was smoothened by a Gaussian model and its 

mathematical expression was obtained in Equation (6.3). 

𝜑 = 2.955 × 10−3𝑒
−(

(𝑥2+𝑦2)
1
2⁄ −1.665×10−5

3.016×10−3
)

2

 (6.3) 

To estimate the change of the heat flux from the deposited materials with time, this single 

coating profile formed a computational domain of a transient thermal analysis model. As shown 

in Figure 6.7(a), due to the axisymmetric profile of the single coating model, a 2D axisymmetric 

model was used to reduce the computation cost. The shape of the cell zone of the coating was 

generated according to the obtained Gaussian function (Equation (6.3)). The thermal 
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thermophysical properties of WC-12Co were assigned to the coating zone. The bottom of the 

coating zone contacts with a zone assigned with the substrate material, AISI-1045 steel. The height 

of the substrate zone is 5 mm, which is the same as the height in the aforementioned scenario. The 

coating and substrate zone were enveloped by an external flow zone which was filled with air. The 

radial extent of the external flow field was chosen to be twice the substrate width. The coating 

zone was initialized with a temperature of 1523 K, which was the temperature of the powder 

particles prior to the impact on the substrate surface. As the coverage area of the flame on the 

substrate surface is larger than the coating distribution, the substrate is heated by the flame for a 

short period before the deposition of the particles. Therefore, the temperature of the substrate zone 

was initialized with a value of 350 K. The surrounding air was initialized with a temperature of 

300 K. For exactly capturing the change of the heat flux on the substrate surface, the time step for 

the transient analysis was set up as 0.005 s. Figure 6.7(b)-(f) show the temperature contour of the 

coating layer and the substrate at 0.005 s, 0.025 s, 0.05 s, 0.075 s, and 0.1 s separately.  

 

Figure 6.6 Cumulative mass distribution of the WC-12Co powder particles and particle size 

discretization for the demonstration of the phenomenon synchronization. 
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Figure 6.7 Transient temperature contour of the coating layer and the substrate: (a) initial 

conditions of the model; (b) temperature contour at 0.005 s; (c) temperature contour at 0.025s; (d) 

temperature contour at 0.05 s; (e) temperature contour at 0.075 s; (f) temperature contour at 0.1 s. 
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Figure 6.8 Heat fluxes on the coating-substrate interface at different moments. 

Further, to associate this transient model with the substrate temperature simulation, the data 

of the transient heat fluxes at more moments were extracted from the log file recording the transient 
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physics property. The blue star signs in Figure 6.8 are the node values of the heat flux on the 

interface. The x axis is the radial distance from the center of the coating profile and the y axis is 

the heat flux at the corresponding location. Here only the heat flux in the first one-tenth second is 

used since the heat flux after this time is too short when compared with the value in the first one-

tenth second. To save the computational resource, its effect on the substrate temperature can be 

ignorable. For this physics property at different moments, it is obvious that a second-order 

polynomial function, as Equation (6.4), is able to represent the relationship between the heat flux 

and the radial distance, where the coefficients of the function should be changed with time.  

Therefore, the data presented in Figure 6.8 were used to fit the second-order polynomial 

model, and the coefficients corresponding to different moments were further recorded as marked 

by the blue star signs in Figure 6.9. To mathematically represent this changed heat flux, the 

changes of its coefficients with time were modeled by several functions, like the second-order 

polynomial function, the Gaussian function, and the exponential function. By the visual 

investigation, the exponential function provided a best fitting result and was used to model these 

changes, as shown by the black line in Figure 6.9. The x axis is the time in the transient model and 

the y axis is the value of the coefficients. The regression models are expressed as Equations (6.5)-

(6.7). 

 

Figure 6.9 Regression models of the coefficients of the heat flux from the coating materials. 
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Ф𝑗(𝑡𝑗, 𝑟𝑗(𝑛)) = 𝐶𝑜𝑒𝑓1(𝑡𝑗) ∗ 𝑟𝑗(𝑛)
2 + 𝐶𝑜𝑒𝑓2(𝑡𝑗) ∗ 𝑟𝑗(𝑛) + 𝐶𝑜𝑒𝑓3(𝑡𝑗) (6.4) 

where, 

𝐶𝑜𝑒𝑓1(𝑡𝑗) = −1.387 ∗ 10
12 ∗ 𝑒(−40.119∗𝑡𝑗) − 8.139 ∗ 1011 ∗ 𝑒(−8.935∗𝑡𝑗)  

(6.5) 

𝐶𝑜𝑒𝑓2(𝑡𝑗) = 1.483 ∗ 10
−6 ∗ 𝑒(−62.671∗𝑡𝑗) + 7.502 ∗ 10−7 ∗ 𝑒(−19.773∗𝑡𝑗) 

(6.6) 

𝐶𝑜𝑒𝑓3(𝑡𝑗) = 2.529 ∗ 10
8 ∗ 𝑒(−206.801∗𝑡𝑗) + 5.487 ∗ 107 ∗ 𝑒(−16.082∗𝑡𝑗) 

(6.7) 

The heat flux generated by the flame was extracted from the boundary condition of the wall 

in the static in-flight behavior model. Through an iterative coupling method (which will be 

introduced and verified in Section 6.4), this heat flux is precisely expressed as Equation (6.8). 

Ф𝑓𝑙𝑎𝑚𝑒(𝑟1(𝑛)) = 6.18 ∗ 10
3 ∗ 𝑒

−(
𝑟1(𝑛)−8.81∗10

−10

1.26∗10−4
)

2

+ 40716.15 ∗ 𝑒
−(
𝑟1(𝑛)−6.94∗10

−7

4.80∗10−3
)

2

+ 3.51 ∗ 105 ∗ 𝑒
−(
𝑟1(𝑛)−10.00∗10

−7

0.01 )

2

+ 1.75 ∗ 105 ∗ 𝑒
−(
𝑟1(𝑛)−6.42∗10

−3

0.02 )

2

+ 1.67 ∗ 105 ∗ 𝑒
−(
𝑟1(𝑛)−6.76∗10

−3

0.02 )

2

+ 4.30 ∗ 105 ∗ 𝑒
−(
𝑟1(𝑛)−1.99∗10

−7

0.05 )

2

 

(6.8) 

Under the feature-based environment, all the above information was stored into a common 

data model named “model specifications” (non-geometric information) and permanently stored as 

data files which can be updated periodically by other models, like the transient thermal analysis 

model and the static in-flight behavior model. After converting this special knowledge into 

mathematical expressions, the user-defined boundary condition can identify this data via the 

associated geometrical entity (the substrate surface to be coated). The mechanism introduced here 

has been coded in C language, which was embedded in the user-defined boundary condition. All 

algorithms have been parametrically designed in this code so that the data, like the coefficients 

from the other models, can be directly implemented in a CAE environment. Finally, in the 

programming, by substituting Equations (6.4)-(6.8) into Equation (6.2), the boundary condition of 
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the heat flux was yielded. The transient temperature simulation of the substrate was constructed 

via loading this boundary condition in the corresponding thermal analysis models. In this case 

study, the thermal analysis was solved by ANSYS Fluent [141]. The code for constructing the 

changed boundary condition was compiled by ANSYS Fluent. Besides, by substituting Equation 

(6.3) into Equation (5.13) and setting up the same time step, a synchronized coating thickness 

distribution was also obtained. For acquiring the continuous physics phenomena and reliable 

transient results, a time step of 0.01 seconds was used in this case study. Figure 6.10 just shows 

the synchronized coating thickness distribution and the substrate temperature at partial moments. 

The maximum temperature of the substrate reaches 1032.709 K. The range of the substrate 

temperature at the end of the process is 67.437 K. The maximum thickness is 0.7142 mm and the 

maximum thickness tolerance is 0.0293 mm. 

From the above demonstration, excellent comprehensiveness is achieved by executing the 

user-defined boundary condition feature, which caters to the demand of the DT concept on high 

fidelity and comprehensiveness. Concerning the model capacity of timeliness, a single time step 

for the substrate temperature simulation on a 4-core parallel-processing CPU with the residuals of 

absolute criteria of 10e-8 needs around 0.01 s, which is close to the time step size (0.01 s). Thus, 

the model even on a low-performance CPU is able to support a near-real-time physics phenomenon 

synchronization with an approximate 0.01 s delay. 

On the basis of the near-real-time physics phenomenon synchronization, when an online 

trajectory planning (as depicted in Chapter 3 by the left flow in Figure 3.3) has to be carried out, 

every CAE time step, the digital model is capable of carrying out the synchronization of the 

substrate temperature and coating thickness distribution via adding the data transmission with an 

ignorable delay. That means, without expensive temperature and contour measuring equipment, 
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the digital model enables the monitoring of the substrate temperature and coating thickness 

distribution on the virtual side.  

 

Figure 6.10 Synchronized coating thickness distribution and the substrate temperature: (a) 

substrate temperature at 0.3 s; (b) coating thickness at 0.3 s; (c) substrate temperature at 0.6 s; (d) 
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coating thickness at 0.6 s; (e) substrate temperature at 0.9 s; (f) coating thickness at 0.9 s; (g) 

substrate temperature at 1.2 s; (h) coating thickness at 1.2 s; (i) substrate temperature at 1.5 s; (g) 

coating thickness at 1.5 s; (k) substrate temperature at 1.8 s; (l) coating thickness at 1.8 s; (m) 

substrate temperature at 2.1 s; (n) coating thickness at 2.1 s; (o) substrate temperature at 2.4 s; (p) 

coating thickness at 2.4 s; (q) substrate temperature at 2.57 s; (r) coating thickness at 2.57 s. 

In addition, by adding some assessment criteria for the physics performance into the code, 

the developed model is capable of providing signals for detecting operating errors or unexpected 

working performances. Further, with the implementation of the optimization view, the model 

enables the real-time adjustments of the real process for achieving an ideal working performance. 

With the assistance of a feedback controlling system, the derived solutions could be translated to 

execution signals which command the actuators to carry out them on the real side. For instance, as 

shown in Figure 6.11, when powder particles have been selected, the static in-flight behavior 

model derives the optimal operating parameters for reaching the best behavior of the particles 

[129]. These parameters are carried out by the gas flow controller. The feature-based digital model 

for the coating layer and substrate mirrors the real-world performance with a near-real-time 

capacity. If the substrate temperature reaches a critical range of damaging the substrate material, 

the model could provide an alarm signal to the controller. By adding some optimization algorithms, 

the model could also provide real-time feedback to the robot controller for adjusting the trajectory 

so that the substrate temperature is timely controlled within a reasonable range. If the substrate 

temperature is reasonable, the model could further optimize the parameters for obtaining a uniform 

coating layer. For example, with the “surface of equivalent area” theory, the overlapping of the 

single Gaussian coating profile on the substrate surface is optimized to generate a uniform coating 

thickness via adjusting the operating parameters, such as gas flow rates, spray distance, scanning 
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velocity, scanning step and so on. In the future, with the assistance of physical properties, this ideal 

cyber-physical system can be realized without many enhancements to the virtual side.  

 

Figure 6.11 A proposed DT setup of the developed model. 

6.4 A Branch of This Work: The Comparison of Two Turbulence Models for 

the Dynamic Temperature Performance of HVOF Process 

During the HVOF process, the flame is forced to impact the substrate, which leads to a sharp rise 

in the substrate temperature. To avoid residual stress due to a sharp change in the temperature, the 
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thermal prediction of the substrate is noticeable. In this section, the substrate temperature heated 

by the flame will be precisely simulated and verified by experimental data. 

The convective heat transfer between the flame flow and substrate surface is related to two 

dynamic properties of the reactive flow, the velocity and temperature functions, which are affected 

by the turbulence model selection due to the high Reynolds and Mach numbers of the flame flow 

[77,83]. In the previous research works, the renormalization group (RNG) k-ε turbulence models 

[72] or the realizable k-ε turbulence models [6] were widely used to estimate the turbulent eddy 

viscosity. However, to the author’s best knowledge, in the HVOF process, the best-fit turbulence 

model for the substrate heating by the flame has not been studied thoroughly. Before comparing 

these two turbulence models, to improve the robustness of the simulation result, an iterative 

method to calculate the dynamic characteristics of the substrate by coupling the in-flight behavior 

and dynamic coating process modeling is developed in this section. Regarding other turbulence 

models, although some of them present better results in some cases of turbulence simulations and 

researchers tried to use them to simulate thermal spray processes, for example, the Reynolds stress 

equation model (RSM) has been used to simulate the plasma spray process [142], these models 

have not been widely accepted in the area of the HVOF modeling [79]. Thus, this study does not 

consider these models. 

6.4.1 Methodology 

6.4.1.1 An Iterative Coupling Method 

In order to coherently capture the full dynamic substrate temperature during the HVOF process, 

the iterative coupling method consisting of two stages, the in-flight behavior and dynamic coating 

process model, is illustrated in Figure 6.12, which enables the dynamic sharing of the parametric 
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data of the flame jet physics characteristics from the in-flight behavior model with the dynamic 

coating process model. 

The first stage is the same as the procedure of the intelligent solver for the feature-based in-

flight behavior modeling (which is introduced in Section 4.4). Some steps have been omitted here 

for brevity. For a detailed illustration, the reader could refer to Figure 4.4. Once the in-flight 

behavior model reaches a certain stable state, in the second stage, the flame properties could be 

extracted and further fed to calculate the dynamic coating performance with the progress of a spray 

path. To achieve this purpose, the in-flight properties are converted into corresponding physics 

fields on the substrate surface, e.g., heat flux. Typically, this physics field is symmetrical about 

the centerline of the flame due to the axisymmetric nozzle shape, and a Gaussian distribution is 

used to model the distribution of these properties on the substrate surface [83,90,143]. For 

searching a best-fitting Gaussian model, several criteria are used to assess the model, such as 

coefficient of determination (R2), Mean Absolute Error (MAE), and Root Mean Squared Error 

(RMSE). The spray path is transformed into a mapped path on the substrate surface along with the 

orientation of the spray gun, as depicted in Section 6.3.2. Then the corresponding dynamic 

temperature of a substrate can be computed by linearly discretizing the physics field center path at 

the time step of CFD tools, which also has been elucidated in detail in Section 6.3.2. 
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Figure 6.12 Flow chart of the iterative coupling method. 

However, the temperature behavior from the dynamic coating process simulation and the 

corresponding one from the in-flight model may be inconsistent, because the temperature behavior 

from the dynamic coating process simulation is affected by the physics field derived from the in-
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flight model, and the derivation of the physics field relies on the state of the boundary condition 

of the substrate surface in the in-flight model which is unknown beforehand and expected to obtain 

from the dynamic coating model. To make up the gap, the boundary condition in the in-flight 

model is assigned a presumptive or ideal state to get a starting point for calculating the physics 

field. After obtaining the dynamic coating process model by using this physics field, the 

temperature field from the dynamic coating process simulation replaces the presumptive or ideal 

boundary condition in the in-flight HVOF model to recalculate the physics field, as depicted in 

Figure 6.12. Several iterations of this part will be carried out until an acceptable error between the 

property from these two models is reached. In this work, the acceptable error is simply assessed 

by visual inspection of plotting these properties. In this way, the dynamic physics of the coating 

can be captured accurately.  

6.4.1.2 Turbulence Models to be Compared 

It is obvious that, from the explanation of the in-flight behavior modeling in Chapter 4, the 

turbulence model has a remarkable influence on the simulation result of the in-flight behavior 

which further affects the accuracy of the substrate dynamic simulation. In this section, the RNG k-

ε turbulence model and the realizable k-ε turbulence model are implemented separately with the 

above coupling method to investigate the effects on the dynamic behavior of the substrate, and 

then a better one to be chosen. According to the Boussinesq hypothesis [15],[16], the Reynolds 

stress term representing the effect of turbulence [18] in the governing equations can be related to 

the mean velocity gradients: 

−𝜌𝜐𝑖′′𝜐𝑗′′̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜇𝑡 (
𝜕�̃�𝑖
𝜕𝑥𝑗

+
𝜕�̃�𝑗
𝜕𝑥𝑖

) −
2

3
(�̅�𝑘 + µ𝑡

𝜕�̃�𝑙
𝜕𝑥𝑙

) 𝛿𝑖𝑗, (6.9) 

where µt is the turbulent viscosity and k is the turbulence kinetic energy. 
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To estimate the effect of turbulence, the RNG k-ε turbulence model has the following form 

[72]: 

𝜕

𝜕𝑡
(�̅�𝑘) +

𝜕

𝜕𝑥𝑖
(�̅��̃�𝑖𝑘) =

𝜕

𝜕𝑥𝑗
[𝛼𝑘(𝜇 + 𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑗
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𝑘
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𝑘
− 𝑅𝜀 , (6.11) 

where ε is the turbulence dissipation rate, Gk is the generation of turbulent kinetic energy arising 

from the mean velocity gradients, and YM is the contribution of the fluctuating dilatation in 

compressible turbulence to the overall dissipation rate. αk and αε are inverse effective Prandtl 

numbers for the turbulent kinetic energy and its dissipation. Rε is an additional term in the ε 

equation. C1ε = 1.42, C2ε = 1.68. 

The transport equations of the realizable k-ε turbulence model are [77]: 

𝜕
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, (6.13) 

where ε, Gk, and YM have the same definitions as the RNG turbulence model. σk and σε are the 

turbulent Prandtl numbers for k and ε, respectively. C2 = 1.9, σk = 1.0 and σε = 1.2. 

From the above equations, there are three major differences between the two models: the 

turbulent Prandtl numbers for k and ε; the generation and destruction terms in the equation for ε; 

and the method of calculating turbulent viscosity. In Section 6.4.3, the substrate temperature 

obtained from the dynamic simulations by these two models will be compared with experimental 

results. 
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6.4.2 Experimental Procedure 

To validate the modeling method and compare the accuracy of the two turbulence models, 

dedicated experiments were carried out and the common setup is shown in Figure 6.13, consisting 

of an infrared thermometer (SCIT-3S7, Beijing Sanbo Zhongzi Technology Co., Ltd), and a 

homemade Diamond Jet spray system with ABB IRC5 M2004 robot system. The temperature at 

the center point on the top surface of an AISI-1045 steel substrate (300 mm × 300 mm × 30 mm) 

was continuously measured by the infrared thermometer during the process. A Diamond Jet HVOF 

nozzle carried by the robot arm moved along the centerline of the top surface with a pre-defined 

spray distance and scanning velocity, which is the same as the path depicted in Figure 5.14. The 

nozzle orientation was always perpendicular to the substrate surface during the movement. The 

same homemade Diamond Jet Hybrid gun as shown in Figure 4.6(a) and (b) was still used in this 

experiment. Two sets of operation conditions, as shown in Table 6.2, were carried out with two 

scanning velocities, 5 mm/s and 10 mm/s. It is worth noticing that for the sake of the convenience 

of temperature measurement in the experiment, the spray velocity used here is quite lower than the 

real industrial process and all the spray processes were carried out without powder particles. It 

should also be noted that Condition 2 is the optimal solution obtained from the developed feature-

based in-flight behavior model. The experiment results are presented and compared with the 

simulation results in the next section (Section 6.4.3). 
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Figure 6.13 Experimental temperature measurement of the substrate surface. 

Table 6.2 Simulation and experiment operating parameters. 

Operating 

parameters 

Propane 

flow rate 

(SLPM) 

Oxygen 

flow rate 

(SLPM) 

Nitrogen 

flow rate 

(SLPM) 

Air flow rate 

(SLPM) 

Spray 

distance 

(mm) 

Condition 1 334.6 972.0 32.8 758.1 170.0 

Condition 2 180.6 625.6 39.0 577.9 179.4 

 

6.4.3 Results and Discussion 

Regarding the simulation, two sets of operating conditions as shown in Table 6.2 were conducted 

in the developed in-flight behavior model to simulate the flame behavior. Then, the dynamic 

temperature field behavior of the AISI-1045 steel substrate with the two different scanning 

velocities (5 mm/s and 10 mm/s) were simulated based on the aforementioned spray path 

integration mechanism with the coupling algorithm. To illustrate the coupling method in detail, 
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Condition 2 in Table 6.2 with a 5 mm/s scanning velocity is used as a sample here to explain the 

procedure for getting the simulation result. 

For exactly calculating the heat flux, the substrate surface at the right end of the domain of 

the flame, as shown in Figure 4.6(c) was set up as a wall boundary condition with the material 

properties of AISI-1045. The thickness of the wall boundary condition was adjusted to 30 mm 

which is the same as the thickness of the substrate. Regarding the temperature of this boundary 

condition, the room temperature was presumed to get a starting point for calculating the heat flux 

on the substrate surface. The chamber wall is cooled by water. Its boundary condition was set up 

as a constant temperature of 300 K for the purpose of simplification. Once the in-flight model has 

been completely set up, the heat flux by the flame can be extracted from the simulation results. 

Figure 6.14(a) presents a temperature contour of the flame flow by using the RNG turbulence 

model. 

In the dynamic coating process modeling, the obtained heat flux was derived and converted 

to a best-fitted Gaussian-distribution physics field. Then, by implementing the user-defined 

boundary condition feature, the dynamic temperature field of the substrate with the spray path was 

calculated at the time step of the CAE environment. However, the initial round computation result 

is inaccurate because the heat flux was derived based on a hypothetical boundary condition of the 

substrate surface of the in-flight model (room temperature). To fix this issue, the instantaneous 

temperature field from the dynamic coating process model corresponding to the moment when the 

torch moves to the center point of the top surface was reassigned into the simulation model as the 

boundary condition of the in-flight model to recalculate the heat flux and the temperature field of 

the dynamic coating process model, as depicted in Figure 6.14(a) and (b). This procedure was 

carried out iteratively until the heat flux dynamic properties become stabilized into an acceptable 



 

144 

 

range, as shown in Figure 6.14(c). Consequently, a converged dynamic temperature field of the 

substrate could be obtained.  

 

Figure 6.14 Schematic representation of the key steps during the modeling of Condition 2 with the 

RNG turbulence model and 5 mm/s scanning velocity: (a) the temperature contour of the flame 

flow; (b) the instantaneous temperature field corresponding to the moment when the torch moves 

to the center point of the top surface; (c) the iteration result of the instantaneous temperature field. 

According to the procedure above, the two sets of operating conditions given in Table 6.2 

with two different scanning velocities were all computed. Figure 6.15 shows the temperature of 

the center point changes over time. The profiles from the simulation results and experimental 

measurements present the same variation trend. The temperature of the measurement point 

increases sharply and reaches a peak value when the torch moves toward it. After the peak, the 

profiles experience a gradual decrease. To quantitatively estimate the error between the 

experimental results and the simulation results, the RMSE of the experiment temperature related 

to the simulation temperature is calculated. Table 6.3 shows the Root-Mean Square Error (RMSE) 

for each case. All cases demonstrate that the simulated temperature profiles by the RNG k-ε 

turbulence model agree with the experimental data, and the realizable k-ε turbulence model 

generated lower temperature distribution than the experimental results. 
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Figure 6.15 The temperature of the center point versus time: (a) condition 1 with a 5 mm/s velocity, 

(b) condition 1 with a 10 mm/s velocity, (c) condition 2 with a 5 mm/s velocity, and (d) condition 

2 with a 10 mm/s velocity. 

Table 6.3 The RMSE of the experiment results related to the simulation results. 

Cases 

The RMSE related to 

the RNG model 

The RMSE related to 

the realizable model 

Condition 1 with a 5 mm/s velocity 50.7 72.3 

Condition 1 with a 10 mm/s velocity 35.0 46.0 

Condition 2 with a 5 mm/s velocity 15.7 24.2 

Condition 2 with a 10 mm/s velocity 8.8 16.7 
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6.5 Conclusions 

In this chapter, a feature-based digital HVOF model was constructed under the proposed template 

for acquiring the synchronized phenomena of the coated substrate temperature and coating 

thickness distribution, the nozzle trajectory. To demonstrate the data processing in the proposed 

framework, the data from the flame and the in-flight particle behavior, and the transient thermal 

performance of the coating layer and substrate was synchronously used. The final simulation result 

validates that the feature-based digital model is able to mirror the near-real-time scenarios with a 

light delay. It should be noted that the application of the feature-based digital model is not limited 

to understanding physics phenomena. With the further implementation of the proposed framework, 

real-time monitoring and control, prediction, and process optimization will be the outputs of the 

feature-based digital model. The operation data could be uploaded to a cloud platform via the 

proposed digital identifier for conducting the emerging technologies. 

In addition, as a branch of this research work, to improve the prediction accuracy of the 

developed digital model, a coupling method has been developed based on the proposed user-

defined boundary condition feature, which realizes an iterative link between the in-flight behavior 

model and dynamic coating model. For verifying this coupling method and testing the influence 

of two turbulence models, the RNG k-ε turbulence model and the realizable k-ε turbulence model, 

on the dynamic temperature simulation of the substrate, two operation conditions with two 

different scanning velocities were conducted in the simulation and experiment. Through the 

evaluation of the simulation results with experimental process measurements, it can be concluded 

that the RNG k-ε turbulence model works more accurately than the realizable k-ε turbulence model. 

The realizable k-ε turbulence model tends to generate a relatively lower temperature distribution. 
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The distinctions between this developed model and the traditional numerical model of the 

substrate temperature [87,108] are (1) the developed model aims to simulate the operational 

dynamics of the substrate temperature and the traditional models usually concentrate on the 

understanding of this physics phenomenon (they might be static simulations or the state at a 

moment); (2) the developed iterative coupling method increases the fidelity of the simulation, 

which is highly required by the DT concept. 
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Chapter 7: Conclusion, Discussion & Future Work 

7.1 Conclusions 

Our futuristic goal of the industrial process holds the promise of a state, in which real-time 

transmission and analysis of data from across processes, along with model-based simulation and 

optimization, create intelligence to yield positive impacts on all aspects of the industry. So far, 

some research works have contributed to this goal from different domains, like futuristic 

framework construction and emerging technology implementation. To date, the concerns about the 

DT modeling of physics phenomena in industrial processes, e.g., heat transfer, solidification, 

residual stress, and so on, are very limited. However, with more advanced manufacturing 

technologies applied to our industry, e.g., additive manufacturing and thermal spraying, this is 

critical to reaching the ideal state of the industry. Therefore, the research presented aims to develop 

a new framework that modularizes industrial processes in terms of the semantic information 

modules of physics in real-world phenomena and adopted CAE tools to construct achievable 

digital physics models of industrial processes. To achieve this goal, the following three modeling 

mechanisms are embedded into the framework: (1) multiple-view integration and closed-loop 

optimization, (2) inter-module associations, and (3) synchronization of physics phenomena. 

To illustrate the above framework and the embedded modeling mechanisms, the high-

velocity oxygen-fuel (HVOF) thermal spraying process is used as an example. Firstly, the physics 

behaviors in the spray nozzle, including the combustion in the spray nozzle, the flame, and the in-

flight particle, are selected as the main concerns. For enhancing the flexibility of the model, the 

entities involved in the process are abstracted and modeled as different feature concepts. Through 

clarifying the associations among the features, a seamless information transfer is achieved. Built 
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on these associations, a closed-loop process optimization method has been created, where the 

optimization intents can drive the numerical analysis for obtaining outputs specific for 

optimization. The effectiveness of the method is demonstrated by modeling a homemade HVOF 

spray system depositing WC-12Co coating. The coating properties are optimized by the developed 

model, which indicates that the model can provide effective solutions to the real-world system. 

Secondly, a parametrically controlled model for simulating the coating thickness in HVOF 

processes is developed by linking three individual models, the in-flight behavior model, a rule-

based coating growth model, and nozzle trajectory. This integrated model considers the effect of 

the commonly used operating parameters, particle properties, and size range, and spray path on the 

coating thickness distribution, which shows excellent comprehensiveness. Meanwhile, the 

experiment results indicate that the modeling method can properly mirror the real scenario on the 

virtual side and predict the coating thickness with small errors. Thirdly, based on the real-world 

connections among different units, the user-defined boundary condition feature is further carried 

out for the synchronization of substrate temperature and coating thickness in HVOF processes. For 

realizing the synchronized phenomena, the data from the nozzle trajectory, the flame, and the in-

flight particle behavior, and the transient thermal performance between the coating layer and 

substrate is synchronously used. The final simulation result validates that the feature-based digital 

model is able to mirror the near-real-time scenarios with a light delay. 

7.2 Research Contributions 

The main contributions of this research are summarized as follows: 
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• In the theoretical part, developed a conceptual framework that modularizes industrial processes 

in terms of the semantic information modules of physics in the real-world phenomena and 

adopted CAE tools to construct achievable digital physics models of industrial processes. 

• Designed a workflow for the data acquisition, data analysis, data processing, and data 

validation in the proposed framework and mutual supports among different models in the CAE 

environment. 

• Extended related feature definitions and developed a feature-based model template that can 

guide the modeling process to cater to the trend of digital twins in the industry by clarifying 

the model elements and organizing their functional relationships. 

• Through applying partial feature concepts, developed a closed-loop and optimization-driven 

modeling method for improving HVOF coating properties under various scenarios. 

• Proposed a novel approach to optimize the HVOF coating by controlling the in-flight behavior 

of the gas-particle jet. 

• Developed a parametrically controlled HVOF coating thickness model. This model links the 

outputs from three individual modules, the in-flight behavior model, a rule-based coating 

growth model, and nozzle trajectory, so that the effect of the commonly used operating 

parameters, particle properties and size range, and spray path on the coating thickness 

distribution can be comprehensively studied. 

• Developed a hierarchical key characteristic flow of HVOF processes which assists to build the 

inter-model links for comprehensively describe HVOF processes. 

• Implemented the user-defined boundary condition feature for constructing the association of 

the data from the flame and the in-flight particle behavior, and the transient thermal 

performance between the coating layer and substrate via the nozzle trajectory. 
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• Realized a feature-based digital model which enables to mirror the near-real-time simulation 

of the substrate temperature and coating thickness with a light delay. 

7.3 Limitations and Future Work 

Despite the achievements, the research presented is confronted by particular limitations and can 

be addressed in future work: 

• The proposed framework is only demonstrated by a specific industrial process, the HVOF 

process. Other industrial processes which have complex physicochemical phenomena need to 

be studied in the future to improve the generalization of the framework. 

• The implementation of the framework only concentrates on partial functions concerned by 

digital twins, e.g., the ability to generate positive impacts on the real world, comprehensiveness 

of the virtual world for representing the real world, synchronization of physics phenomena. 

However, other functions mentioned in the framework, e.g., big-data driven optimization and 

real-time interaction, are not covered in this research. In the future, by running with a 

collaborative environment, the same data format from the same template could be easily 

navigated. The global information collection will support a big-data driven optimization for 

industrial processes. In the aspect of the real-time interaction, with the assistance of the 

physical properties in the future, such as a control system, the outputs from the model could 

be translated to execution signals which command the actuators to carry out them on the real 

side. 

• Regarding the specific modeling process for the HVOF coating optimization, to better control 

the HVOF in-flight particle properties, the optimization process can be further enhanced by 

incorporating more objectives and specific constraints in the conceptual model (Figure 4.1), 
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for example, reducing spray distance can be added to optimization constraints for obtaining a 

concentrated deposition profile synchronously. The optimization will be extended to spray path 

planning so that more process parameters can be considered and optimized. 

• The developed coating thickness model is still in its infancy. The modeling of the splats’ 

morphology and coating growth is not sophisticated. In the future, it can be captured by 

applying a more advanced numerical model that encapsulates the more physics features of the 

coating formation, such as the deformation of the previously deposited coating due to the 

impinging of the flame and particles. In addition, the substrate surface in the HVOF in-flight 

behavior model will be changed to different geometries for exploring the coating distribution 

on different substrate shapes. A 3D CFD model for the in-flight behavior simulation can be 

developed so that the spray angle of the nozzle relative to the substrate surface can be adjusted. 
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Appendix 1 Mathematical Representation of the HVOF Numerical 

Model 

The flame flow in the HVOF process is a high-Reynolds-number turbulent compressible flow. The 

flame flow is solved by Reynolds-averaged (�̅� = (1/∆𝑡) ∫ 𝜙d𝑡
𝑡0+∆𝑡

𝑡1
) and Favre-averaged (�̃� =

𝜌𝜙̅̅ ̅̅ /�̅�) governing equations as follows [72]: 

𝜕�̅�

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(�̅��̃�𝑗) = 0, (A.1) 
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+

𝜕

𝜕𝑥𝑗
[µ (

𝜕�̃�𝑖
𝜕𝑥𝑗

+
𝜕�̃�𝑗
𝜕𝑥𝑖

−
2

3
𝛿𝑖𝑗
𝜕�̃�𝑙
𝜕𝑥𝑙

)] +
𝜕

𝜕𝑥𝑗
(−𝜌𝜐𝑖′′𝜐𝑗′′̅̅ ̅̅ ̅̅ ̅̅ ̅), 𝑖

= 1, 2, 3, 

(A.2) 

where ρ is the density, p is the pressure, x is the coordinate, µ is the molecular viscosity, and δij is 

the Kronecker delta. According to the Boussinesq hypothesis, the Reynolds stress term 

representing the effect of turbulence can be related to the mean velocity gradients: 

−𝜌𝜐𝑖′′𝜐𝑗′′̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜇𝑡 (
𝜕�̃�𝑖
𝜕𝑥𝑗

+
𝜕�̃�𝑗
𝜕𝑥𝑖

) −
2

3
(�̅�𝑘 + µ𝑡

𝜕�̃�𝑙
𝜕𝑥𝑙

) 𝛿𝑖𝑗, (A.3) 

where µt is the turbulent viscosity and k is the turbulence kinetic energy, because of the supersonic 

flow and the large pressure gradients in the nozzle.  

Here, the renormalization group turbulence model is used as the representative. The 

renormalization group (RNG) k-ε turbulence model is used to estimate the turbulent eddy viscosity 

with the non-equilibrium wall function treatment used to enhance the wall shear and heat transfer 

[72,112,144]: 
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𝜕

𝜕𝑡
(�̅�𝑘) +

𝜕

𝜕𝑥𝑖
(�̅��̃�𝑖𝑘) =

𝜕

𝜕𝑥𝑗
[𝛼𝑘(𝜇 + 𝜇𝑡)

𝜕𝑘
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𝑘
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𝜀2

𝑘
− 𝑅𝜀 , (A.5) 

where ε is the turbulence dissipation rate, Gk is the generation of turbulent kinetic energy arising 

from the mean velocity gradients, and YM is the contribution of the fluctuating dilatation in 

compressible turbulence to the overall dissipation rate. αk and αε are inverse effective Prandtl 

numbers for the turbulent kinetic energy and its dissipation. Rε is an additional term in the ε 

equation. C1ε = 1.42, C2ε = 1.68. Within the chemical reaction, the convection-diffusion equation 

governs the mass fraction of each species, Yi [72]: 

𝜕

𝜕𝑡
(�̅�𝑌𝑖) +

𝜕

𝜕𝑥𝑗
(�̅�𝑌𝑖�̃�𝑗) =

𝜕

𝜕𝑥𝑗
(𝐽𝑖) + 𝑅𝑖 ,     𝑖 = 1, . . . , 𝑁 − 1,  (A.6) 

where Ji is the diffusion flux of species i calculated by Maxwell-Stefan equations, Ri is the net rate 

of production of species i by chemical reaction, and N is the total number of species involved in 

the reaction. The energy conservation is represented by: 
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) −
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𝑖=1 ] + 𝑆𝐸 ,  

(A.7) 

where T is the temperature, H is the total enthalpy, and SE is the source term. 

The modeling of the particulate phase in the HVOF thermal spray is typically based on the 

Lagrangian approach. First, the average distance between individual particles in the HVOF thermal 

spray process can be estimated based on the analysis in the previous research works [68]. 

Specifically, 
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𝐿𝑑

𝑑𝑝
= [

𝜋

6

1+𝑘

𝑘
]
1/3

,    (A.8) 

where Ld is the distance between two particles, dp is particle diameter, and k is the particle/gas 

mass flow ratio divided by the particle/gas density ratio. Usually, the particle loading is about 4% 

and the density ratio is about 103 to 104, therefore Ld/dp is about 20-50, which implied that the 

individual powder particles are isolated from each other[68,72]. Therefore, it is reasonable to 

assume that particle coagulation is negligible, and the powder size distribution does not change 

during the flight. 

In typical HVOF thermal spray conditions, due to the supersonic flame and microparticles, 

the major force acting on a particle is the drag force, and other forces, such as gravitational force, 

thermophoresis force, etc., can be neglected. The motion of the particles is governed by Newton’s 

law with the major drag force [6], which can be described as: 

𝑚𝑝
𝑑𝜐𝑝

𝑑𝑡
=

1

2
𝐶𝐷𝜌𝑔𝐴𝑝(𝜐𝑔 − 𝜐𝑝)|𝜐𝑔 − 𝜐𝑝|,    (A.9) 

where mp and υp are the mass and velocity of the particle, υg and ρg are the velocity and density of 

the gas, Ap is the projected area of the particles on the plane perpendicular to the flow direction, 

and CD is the drag coefficient representing the effect of the particle shape. With the assumption of 

negligible particle vaporization and heat transfer via radiation and oxidation, the energy equation 

for a single particle can be described as follows: 

𝑚𝑝𝑐𝑝p
𝑑𝑇𝑝

𝑑𝑡
= ℎ𝐴𝑝

′ (𝑇𝑔 − 𝑇𝑝),    (A.10) 

where mp , Tp, Ap’, and Cpp are the mass, temperature, surface area, and heat capacity of the particle, 

respectively. Tg is the temperature of the gas. The heat transfer coefficient h can be obtained by 

the Ranz-Marshall empirical equation [72]. 
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Appendix 2 The full Set of Design Variables and Responses 

Run 

no. 

Coded Value Particle (10 µm WC-12CO) behavior Equiv. 

ratio F O N A S y1 (Ptcl. Vel. (m/s)) y2 (Ptcl. Temp. 

(K)) temperature 

(K) 

DP1 -1 -1 -1 -1 -1 575.492 1580.35 0.933 
DP2 -1 -1 -1 -1 1 568.838 1519.04 0.933 
DP3 -1 -1 -1 1 -1 581.464 1573.19 0.91 
DP4 -1 -1 -1 1 1 576.441 1517.37 0.91 
DP5 -1 -1 1 -1 -1 565.301 1482.1 0.933 
DP6 -1 -1 1 -1 1 561.808 1437.23 0.933 
DP7 -1 -1 1 1 -1 571.443 1472.55 0.91 
DP8 -1 -1 1 1 1 568.35 1428.32 0.91 
DP9 -1 1 -1 -1 -1 579.64 1621.14 0.88 
DP10 -1 1 -1 -1 1 576.91 1538.03 0.88 
DP11 -1 1 -1 1 -1 590.116 1569.96 0.859 
DP12 -1 1 -1 1 1 585.741 1519.16 0.859 
DP13 -1 1 1 -1 -1 571.887 1505.71 0.88 
DP14 -1 1 1 -1 1 569.221 1416.93 0.88 
DP15 -1 1 1 1 -1 580.123 1469.5 0.859 
DP16 -1 1 1 1 1 576.271 1427.52 0.859 
DP17 1 -1 -1 -1 -1 588.342 1551.3 1.238 
DP18 1 -1 -1 -1 1 584.564 1501.46 1.238 
DP19 1 -1 -1 1 -1 591.66 1533.71 1.207 
DP20 1 -1 -1 1 1 588.504 1481.66 1.207 
DP21 1 -1 1 -1 -1 584.65 1445.47 1.238 
DP22 1 -1 1 -1 1 581.325 1404.17 1.238 
DP23 1 -1 1 1 -1 582.546 1441.63 1.207 
DP24 1 -1 1 1 1 579.207 1400.82 1.207 
DP25 1 1 -1 -1 -1 607.875 1592.2 1.167 
DP26 1 1 -1 -1 1 605.204 1545.41 1.167 
DP27 1 1 -1 1 -1 608.647 1564.73 1.139 
DP28 1 1 -1 1 1 605.753 1520.67 1.139 
DP29 1 1 1 -1 -1 598.239 1502.06 1.167 
DP30 1 1 1 -1 1 594.633 1455.71 1.167 
DP31 1 1 1 1 -1 599.364 1477.68 1.139 
DP32 1 1 1 1 1 596.318 1436.04 1.139 
DP33 -

2.3784 

0 0 0 0 539.27 1403.19 0.694 
DP34 2.3784 0 0 0 0 601.486 1470.91 1.387 
DP35 0 -

2.3784 

0 0 0 566.102 1465.84 1.118 
DP36 0 2.3784 0 0 0 609.031 1547.57 0.973 
DP37 0 0 -

2.3784 

0 0 605.436 1679.27 1.041 
DP38 0 0 2.3784 0 0 580.726 1426.99 1.041 
DP39 0 0 0 -

2.3784 

0 581.277 1529.41 1.072 
DP40 0 0 0 2.3784 0 593.917 1488.24 1.011 
DP41 0 0 0 0 -2.3784 588.572 1553.4 1.041 
DP42 0 0 0 0 2.3784 580.66 1431.7 1.041 
DP43 0 0 0 0 0 589.776 1509.75 1.041 
DP44 0 0 0 0 0 589.776 1509.75 1.041 
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Appendix 3 MATLAB code for discretizing the particle size 

distribution 

clf 

clear all 

load('ParticleSize.mat'); 

intervno=30; % evenly divide the total length of the particle size into xx interval  

stardia=ParticleSize(1); % stardia and endia are used for describing the length of the particle 

enddia=ParticleSize(end-1);   % the unit here is um 

interval=(enddia-stardia)/intervno; % the distance of each interval 

interstar=zeros(intervno,1); 

interstar(1)=stardia; % the starting point of the first interval is same as the starting point of the total 

length 

interweight=zeros(intervno,1); % the volume weight of each interval 

middia=zeros(intervno,1); % the diameter for representing each interval 

countfreq=zeros(intervno,1); % a raw count number frequency of each interval 

rescalfreq=zeros(intervno,1); % rescale the raw frequency so that the sum is 1 

% Calculate distribution density 

for i=1:intervno 

    interweight(i)=myfun2(interstar(i)+interval)-myfun2(interstar(i)); % calculate the volume 

weight of each interval 

    middia(i)=interstar(i)+0.95*interval; 

    countfreq(i)=interweight(i)/((4/3)*pi*(middia(i)/2)^3); 
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    interstar(i+1)=interstar(i)+interval; 

end 

totalmass= ParticleSize(end); % total mass rate of the powder particle 

intermass=totalmass*interweight; % mass rate per interval 

% Scale frequency from 0 ~ 1 

freqsum=sum(countfreq); 

for i=1:intervno 

    rescalfreq(i)=countfreq(i)/freqsum; % rescale the raw frequency so that the sum is 1 

end 

figure(1); 

bar(middia,rescalfreq,1,'FaceColor',[1 1 1]); 

xlabel('Particle diameter d_{i} (\mum)','FontSize',14,'FontName','Times New Roman'); 

ylabel('Count distribution n','FontSize',14,'FontName','Times New Roman'); 

set(gca,'FontSize',12); 

% Compare cumulative plot 

totalvol=0; 

for i=1:intervno 

    totalvol=totalvol+rescalfreq(i)*((4/3)*pi*(middia(i)/2)^3); 

end 

cumvol=zeros(intervno,1); 

cumvolfrac=zeros(intervno,1); 

for i=1:intervno 

    cumvol(i+1)=cumvol(i)+rescalfreq(i)*((4/3)*pi*(middia(i)/2)^3); 
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    cumvolfrac(i)=cumvol(i+1)/totalvol; 

end 

experdiameter=stardia:0.0001:enddia; 

expercumulative=myfun2(experdiameter); 

dLaser=ParticleSize(1:end-1); 

Rd=myfun2(dLaser); 

figure(2); 

plot(dLaser,Rd,'*','MarkerSize',10,'LineWidth',1.5); 

hold on; 

plot(middia,cumvolfrac,'o','MarkerSize',5); 

hold on; 

plot(experdiameter,expercumulative,'color','k','LineWidth',1.5); 

xlim([5 50]) 

set(gca,'YTick',[0:0.1:1],'FontSize',12); 

xlabel('Particle diameter d_{p} (\mum)','FontSize',14,'FontName','Times New Roman'); 

ylabel('Cumulative mass F_{mass}','FontSize',14,'FontName','Times New Roman'); 

legend({'Diameter by laser diffraction','Discretized particle group','Rosin-Rammler plot'}, 

'FontSize', 12, 'FontName','Times New Roman'); 

hold off; 

% Estimate volume(mass) average diameter; dv_average is the estimated 

% average 

volfreq_sum=0; 

for i=1:intervno 
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    % (4/3)*pi*(dv_average)^3=sum(rescalfreq*(4/3)*pi*(middia)^3) 

    volfreq_sum=volfreq_sum+rescalfreq(i)*(4/3)*pi*(middia(i))^3; 

end 

% Assume the count number of minimal middia (countno(1)) is xx, then calculate the 

% particle count number for each interval 

countno=zeros(intervno,1); 

countno(end)=1; % assume the count number of minimal middia is xx 

for i=1:(intervno-1) 

    countno(i)=round((countno(end)/rescalfreq(end))*rescalfreq(i)); 

end 

countnomatrix=[middia,countno,intermass/2,rescalfreq]; 

save('countnomatrix.mat','countnomatrix');  

figure(3); 

bar(middia,countno); 

dv_average=(volfreq_sum/((4/3)*pi))^(1/3) % mass(volume) averaging 

function y=myfun2(x) 

y=1-exp(-(x/33.1873).^4.9532); % Gaussian distribution of the particle size 

end 

  



 

177 

 

Appendix 4 MATLAB code for automatically carrying out the 

coating thickness simulation 

%% Particle group generation 

clear all 

load('countnomatrix.mat'); 

countnomatrix(:,3)=countnomatrix(:,3)*10^6; 

for i=1:size(countnomatrix,1) 

filename = sprintf('particlefile%d',i); 

fid_write = fopen(filename,'w+'); 

fprintf(fid_write,'((injection-%d ((type . inert) (injection-type . surface) (cone-type . solid-cone) 

(numpts . 2) (dpm-fname . " ") (surfaces 35) (boundary -1) (stochastic-on . #t) (random-eddy-on . 

#f) (ntries . 2) (time-scale-constant . 0.15) (cloud-on . #f) (cloud-min-dia . 0.) (cloud-max-dia . 

100000.) (material . wc-12co) (scale-by-area . #t) (use-face-normal . #t) (random-surface? . #f) 

(devolatilizing-species . #f) (evaporating-species . #f) (oxidizing-species . #f) (product-species . 

#f) (rr-distrib . #f) (rr-uniform-ln-d . #f) (evaporating-liquid-on . #f) (evaporating-material . #f) 

(liquid-fraction . 0.) (dpm-domain . none) (collision-partner . *dem-unknown*) (multiple-surface) 

(parcel-number . 500) (parcel-mass . 1e-09) (parcel-diameter . 1e-05) (parcel-model . 0) (drag-law . 

"spherical") (shape-factor . 1.) (cunningham-correction . 1.) (drag-fcn . "none") (brownian-motion . 

#f) (seco-breakup-on? . #t) (seco-breakup-tab? . #t) (seco-breakup-wave? . #f) (seco-breakup-

khrt? . #f) (seco-breakup-ssd? . #f) (seco-breakup-madabhushi? . #f) (seco-breakup-tab-y0 . 0.) 

(number-tab-diameters . 2) (seco-breakup-wave-b1 . 1.73) (seco-breakup-wave-b0 . 0.61) (seco-

breakup-khrt-cl . 5.7) (seco-breakup-khrt-ctau . 0.5) (seco-breakup-khrt-crt . 1.) (seco-breakup-

ssd-we-cr . 6.) (seco-breakup-ssd-core-bu . 1.73) (seco-breakup-ssd-np-target . 1000.) (seco-
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breakup-ssd-x-si . -0.1) (seco-breakup-madabhushi-jet-diameter . 0.001) (laws (law-1 . "Inert 

Heating") (law-2 . "Inactive") (law-3 . "Inactive") (law-4 . "Inactive") (law-5 . "Inactive") (law-6 . 

"Inactive") (law-7 . "Inactive") (law-8 . "Inactive") (law-9 . "Inactive") (law-10 . "Inactive") 

(switch . "Default")) (udf-inject-init . "none") (udf-heat-mass . none) (components) (volume-

specification . zone) (volume-zones) (volume-bounding-shape circle 0 0 0 0 . 0) (volume-streams-

spec . total-parcel-count) (volume-streams-total . 100) (volume-streams-per-cell . 2) (mass-input-

on . #f) (rotation-on? . #f) (rot-drag-law . "none") (rot-lift-law . "none") (cone-type . "solid-cone") 

(uniform-mass-dist-on? . #f) (spatial-staggering/std-inj/on? . #f) (spatial-staggering/atomizer/on? . 

#t) (stagger-radius . 0.) (rough-wall-on? . #f) (cphase-domain . none) (x-pos . 0.) (x-pos2 . 0.) (y-

pos . 0.) (y-pos2 . 0.) (z-pos . 0.) (z-pos2 . 0.) (ff-center-x . 0.) (ff-center-y . 0.) (ff-center-z . 0.) 

(ff-virtual-origin-x . 0.) (ff-virtual-origin-y . 0.) (ff-virtual-origin-z . 1.) (ff-normal-x . 1.) (ff-

normal-y . 0.) (ff-normal-z . 0.) (x-vel . 0.) (x-vel2 . 0.) (y-vel . 0.) (y-vel2 . 0.) (z-vel . 0.) (z-vel2 . 

0.) (x-ang-vel . 0.) (x-ang-vel2 . 0.) (y-ang-vel . 0.) (y-ang-vel2 . 0.) (z-ang-vel . 0.) (z-ang-vel2 . 

0.) (atomizer-x-axis . 0.) (atomizer-y-axis . 0.) (atomizer-z-axis . 1.) (diameter . %fe-6) (diameter2 . 

1e-06) (temperature . 300.) (temperature2 . 300.) (flow-rate . 1e-20) (flow-rate2 . 1e-20) (unsteady-

start . 0.) (unsteady-stop . 0.) (unsteady-ca-start . 0.) (unsteady-ca-stop . 0.) (vapor-pressure . 

10000.) (inner-diameter . 0.001) (outer-diameter . 0.005) (half-angle . 0.34906585) (plain-length . 

0.001) (plain-corner-size . 1e-05) (plain-const-a . 4.9) (pswirl-inj-press . 1000000.) (airbl-rel-vel . 

100.) (effer-quality . 0.08500000000000001) (effer-t-sat . 373.) (ff-orifice-width . 0.001) (phi-start . 

0.) (phi-stop . 6.28318531) (sheet-const . 12.) (lig-const . 0.5) (effer-const . 0.33) (effer-half-angle-

max . 0.261799388) (ff-sheet-const . 3.) (atomizer-disp-angle . 6.) (x-axis . 0.) (y-axis . 0.) (z-axis . 

1.) (vel-mag . 0.01) (ang-vel-mag . 0.) (cone-angle . 0.) (inner-radius . 0.) (radius . 0.) (swirl-frac . 

0.) (total-flow-rate . %fe-06) (total-mass . 1e-20) (rr-min . 1e-06) (rr-max . 0.0001) (rr-mean . 1e-
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05) (rr-spread . 3.5) (rr-numdia . 10.) (x-posr . 0.) (y-posr . 0.) (z-posr . 0.) (x-posu . 0.) (y-posu . 

0.) (z-posu . 0.))))', i,countnomatrix(i,1),countnomatrix(i,3)); 

fclose(fid_write); 

end 

%% fluent injection journal file generation 

folderno=24; 

particleno=30; 

filename = sprintf('readinjection'); 

fid_write = fopen(filename,'w+'); 

fprintf(fid_write,'/file/set-tui-version "18.2"\n'); 

fprintf(fid_write,'(cx-gui-do cx-set-list-tree-selections "NavigationPane*List_Tree1" (list 

"Setup|Models|Discrete Phase (Off)|Injections"))\n'); 

fprintf(fid_write,'(cx-gui-do cx-list-tree-right-click "NavigationPane*List_Tree1" )\n'); 

fprintf(fid_write,'(cx-gui-do cx-activate-item "MenuBar*PopupMenuTree-

Injections*Import...")\n'); 

fprintf(fid_write,'(cx-gui-do cx-set-file-dialog-entries "Select File" 

''( "E:/Dropbox/PhD_Jiangzhuo Ren/Journal #3/Matlab/Single coating thickness 

distribution/Particleinjection/%d/particlefile1") "Injection Files ()")\n',folderno); 

for i=2:particleno 

    fprintf(fid_write,'(cx-gui-do cx-set-list-tree-selections "NavigationPane*List_Tree1" (list 

"Setup|Models|Discrete Phase (Off)|Injections"))\n'); 

    fprintf(fid_write,'(cx-gui-do cx-list-tree-right-click "NavigationPane*List_Tree1" )\n'); 
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    fprintf(fid_write,'(cx-gui-do cx-activate-item "MenuBar*PopupMenuTree-

Injections*Import...")\n'); 

    fprintf(fid_write,'(cx-gui-do cx-set-file-dialog-entries "Select File" ''( "particlefile%d") 

"Injection Files ()")\n',i); 

end 

fprintf(fid_write,'(cx-gui-do cx-activate-item "MenuBar*WriteSubMenu*Stop Journal")\n'); 

fclose(fid_write); 
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Appendix 5 Pseudocode for the User-defined Boundary Condition 

Algorithm: accumulative heat flux calculation with respect to nozzle trajectory, flame behavior, 

and thermal analysis between the coating layer and the substrate main() 

Inputs:  

    a1,b1,a2,b2,a3,b3                                          heat flux function coefficients 

   t                                                                       time sequence for the trajectory 

File “Trajectory”                                           file contains position(x,y,z) and time(t) for the 

nozzle end 

t_step                                                              fluent time step length 

fluxdur                                                            dissipation duration of heat flux by particle 

FILE “particle_heat_flux_Cof”                     file contains particle heat flux coefficients 

PcofN                                                              required particle coefficient numbers 

FILE “Cofile”                                                 file contains flame heat flux coefficients 

flow-time                                                         current dynamic flow time in ANSYS Fluent 

Nt_number                                                      number of points in the heat effect zone 

F_CENTROID(pos,f,t)                                    current mesh element centroid position and time 

#Define heat flux functions func1, func2, func3 

    func1(a1,b1,t)=a1*exp(b1*t) 

    func2(a2,b2,t)=a2*t+b2 

    func3(a3,b3,t)=exp(b3*t) 

#Get number of trajectory points 

    initialize counter  to 0 

    open File “Trajectory” 
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    do while file ”Trajectory” has data 

    add 1 to counter 

    scan the next datum of the file 

end do 

close File “Trajectory” 

set variable trano to counter/4          #each point has 4 data, position(x,y,z) and time(t) 

#Get particle flux iteration number 

set flutime to t_step                                #input fluent time step 

set PfluxDur to fluxdur                            #input dissipation duration of heat flux by particle 

set PfluIter to floor(PluxDur/flutime)   #round down (PluxDur/flutime) as flux iteration number 

#Initilization of calculation variables 

initialize position pointer *xa,*ya,*za and time pointer *t  to NULL 

initialize heat flux function coefficient number pointer *c1,*c2,*c3 to NULL 

initialize effect zone pointers of position, radius, time, and heat flux to NULL 

#Preprocessing, allocating dynamic memory to variables 

set xa, ya, za , ta memory space sized float*trano respectively 

set c1,c2,c3 memory space sized float*trano respectively 

set EffectZone_x, EffectZone_y, EffectZone_z, EffectZone_r, EffectZone_t, EffectZone_Heatflux 

memory space sized float*PfluIter respectively 

#Initialize x position as the original position 

    while the x counter is less than PfluIter 

        set current x position to -0.2             #The initial point’s position is (-0.2,0,0) 

        add 1 to x counter 
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    end 

#Read and store required particle heat flux coefficients 

initialize an array Pcof with the length of PcofN 

open File “particle_heat_flux_Cof” 

while Pcof counter is less than PcofN 

    scan a datum from the file and store it to the current position of Pcof 

    add 1 to Pcof 

end 

close File ”particle_heat_flux_Cof” 

#Read and extract flame heat flux coefficients 

#Count number of coefficients 

    set number counter to 0 

    open File “Cofile” 

    do while File “Cofile” has data 

        add 1 to counter 

        scan the next datum of the file 

    end do 

    close File “Cofile” 

#extract coefficients to three groups of Gussian term coefficients a,b, and c 

    set cofno to counter/3 

    initialize 3 arrays, a[cofno], b[cofno], c[cofno] to zero 

    set coefficient number counter l to 0 

    while l is less than cofno 
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        set group identifier m to 0 

     while m is less than 3 

            scan a datum (data) from the file 

            if m equals to 0 

                set a[l] to data 

            if m equals to 1 

                set b[l] to data 

            if m equals to 2 

                set c[l] to data 

            add 1 to m 

        end 

    end 

#Define heat flux and load as a boundary condition 

    #Linear interpolation of the current position and time based on trajectory and flow time 

    set ftime to flow-time 

    while time counter k is less than trano-1 and current trajectory time ta is less than ftime 

        set ft to (ftime-ta[k-1])/(ta[k]-ta[k-1])                    #linear interpolation of current time 

        set x_source to xa[k-1]+ft*(xa[k]-xa[k-1])             #linear interpolation of current x position 

        set y_source to ya[k-1]+ft*(ya[k]-ya[k-1])             #linear interpolation of current y position 

           set z_source to za[k-1]+ft*(za[k]-za[k-1])           #linear interpolation of current z position 

           add 1 to k 

    end 

#Dynamically update the effect zone position and time 
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    initialize time index number Nt_index to 0 

    while Nt_index is less than Nt_number 

        set EffectZone_x[Nt_index] to x_source 

        set EffectZone_y[Nt_index] to y_source 

        set EffectZone_z[Nt_index] to z_source 

        set EffectZone_t[Nt_index] to ftime 

        if Nt_index equals to (Nt_number-1) 

            set Nt_index to 0             #A new round of Effect Zone update begins 

        add 1 to Nt_index 

    end 

#Calculate accumulative flame heat flux 

    begin_f_loop(f,t)             #begin the dynamic loop of mesh element and time 

    F_CENTROID(pos,f,t)       #extract current centroid position and time of the mesh element 

    set r to sqrt(pow((pos[0] - x_source), 2) + pow((pos[1] - y_source), 2) + pow((pos[2] - 

z_source), 2))           #Calculate the radius of the current mesh element centroid to source 

    set flame heat flux coefficient counter j to 0 

    set accumulative flame heat flux (Flame_heat_flux) to 0 

    while j is less than cofno 

        set FlameGaussian to (a[j])* exp(-(pow(((r - (b[j])) / c[j]), 2)))          #calculate current 

flame gaussian term 

add FlameGaussian to Flame_heat_flux                    #Add current term to the accumulative 

flame heat flux 

    end 
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#Calculate accumulative particle heat flux 

    set particle heat flux iteration number m to 0 

    set accumulative particle heat flux (Particle_heat_flux) to 0 

    while m is less than PfluIter 

        set c1[m] to func1(PCof[0], PCof[1], ftime - EffectZone_t[m])     #calculate coefficient c1 

        set c2[m] to func2(PCof[2], PCof[3], ftime - EffectZone_t[m])     #calculate coefficient c2 

        set c3[m] to func3(PCof[4], PCof[5], ftime - EffectZone_t[m])     #calculate coefficient c3 

        set effect zone radius (EffectZone_r[m]) to sqrt(pow((pos[0] - EffectZone_x[m]), 2) + 

pow((pos[1] - EffectZone_y[m]), 2) + pow((pos[2] - EffectZone_z[m]), 2))  #calculate effect 

radius 

        if EffectZone_r[m] is less than threshold 0.006m 

             set effect zone heat flux Gaussian term(EffectZone_Heatflux[m]) to 

c1[m]*pow(EffectZone_r[m], 2) + c2[m] * EffectZone_r[m] + c3[m]    #calculate effect heat flux 

        else 

             set effect zone heat flux Gaussian term(EffectZone_Heatflux[m]) to 0    # if the distance 

is so far away, the heat flux will be neglected 

    Add EffectZone_Heatflux[m] to Particle_heat_flux          #Add current term to the 

accumulative particle heat flux 

    Add 1 to m 

    end 

#Calculate the accumulative heat flux in total (Flame+Particle) 

FPROFILE(f,t,i)=Flame_heat_flux+Particle_heat_flux    #set the boundary condition as 

the total accumulative heat flux 
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    end_f_loop(f, t)        #end the dynamic loop of mesh element and time 

 


