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Abstract

Geostatistical techniques produce fine scale models of facies and petrophysical 

properties to represent the geological heterogeneity and complexity. Direct use of 

large fine scale models in reservoir simulation is computationally expensive and 

inefficient. Generally, some coarsening or scale-up operations are required to 

generate suitable models for flow simulations. This process often requires 

unstructured grids and permeability tensors that are computationally complex to 

calculate for large 3D reservoir models.

Using multivariate statistics for direct simulation of permeability tensors for 

unstructured grids is a new research avenue. This requires calculating the 

permeability tensor and other geological and geometric parameters for unstructured 

grid blocks to build the required multivariate distribution.

The objective of this work is to build the required tools for multivariate modeling of 

permeability tensors and geologic and geometric parameters for unstructured grid 

blocks. This thesis proposes methods for: (1) accounting for geological heterogeneity 

within and between unstructured grid blocks (2) calculating permeability tensors on 

unstructured grid elements, (3) determining directions of geological continuity and 

unstructured grid geometry. For the first task, a conventional indicator kriging and 

simulation approach is used to simulate connected blocks one at a time, with 

successively increased conditioning to previously simulated locations. For the second
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task, a new flow-based upscaling method based on a numerical finite difference 

solution of the steady state flow equations, random boundary conditions and 

optimization is applied. The third task uses the moment of inertia concept to 

automatically determine the geological continuity direction and orientation of 

unstructured grid element.
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Chapter 1 : Introduction

1.1 Problem Setting

The main objective in describing a reservoir is the characterization of heterogeneities 

that influence the flow of fluids through the reservoir. Geostatistical methods are used 

in order to integrate geological, geophysical, and petrophysical information to make 

inferences about static reservoir properties at unsampled locations. Generally, 

geostatistical realizations provide models of reservoir properties for millions of grid 

blocks to better capture heterogeneity based on multiscale information. These 

reservoir models can then be used in reservoir simulation for flow prediction. 

However, due to the limitation in flow simulators, using large fine scale models for 

flow simulation is impractical and inefficient. Thus, flow simulation grids are often 

selected coarser than the geostatistical modelling cells. Some coarsening or upscaling 

techniques must be applied in order to average the fine scale properties to coarse 

blocks (Prevost, 2003).

The coarse flow simulation grids can be either regular or unstructured. Unstructured 

grids are becoming more commonly used in flow simulation in order to resolve 

complex features such as faults, channels or reservoir boundaries. Using this kind of 

grids leads to more accurate flow simulation results (Verma and Aziz, 1997); 

however, characterization of properties such as permeability for unstructured grids is 

more time consuming and requires further considerations. This is due to the fact that 

irregularly shaped grids do not conform to the underlying fine scale model and this 

irregularity changes the assumption of simulators which consider that the pressure 

equation has a diagonal permeability tensor. Flow simulation on unstructured grids

1
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requires directional permeability or full tensor permeability to be specified (Edwards, 

1998).

Different approaches are often used to characterize reservoir properties on 

unstructured grid blocks. The most common approach is to first generate appropriate 

fine scale properties such as facies, porosity and permeability using geostatistical 

modelling. Then the fine scale model is subjected to flow simulation. The fine scale 

flow results and all geological and engineering information are gathered to generate 

the coarse unstructured grid model. The last step is to upscale the fine scale model to 

coarse grid blocks (Prevost, 2003). This procedure is computationally expensive and 

complex for large 3D reservoir modelling (Wen et al., 2003).

Direct simulation is another approach. The idea of direct simulation is to simulate in 

the original data unit in order to avoid transformation (to Gaussian unit) and to 

account for data of various support volume (Manchuk et al., 2004). Direct simulation 

of permeability tensor on an unstructured block scale requires the multivariate 

distribution of permeability tensor, geological parameters and geometric parameters 

of unstructured grids. Examples of geological parameters are geological facies 

proportion, average petrophysical properties and direction of continuity; an example 

of grid geometric parameters is the orientation of grid blocks according to the 

coordinate system and grid volume. Here the main idea is to calculate these 

parameters for some representative unstructured grid, build the multivariate 

distribution, and then use this distribution and Monte Carlo simulation to estimate for 

all unstructured blocks.

The focus of this work is on the first part which is related to the development of new 

tools for calculation of geological and geometric parameters. These tools can be used 

to create data points for informing the multivariate distribution by processing high 

resolution training images through flow simulation.

2
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1.2 Grids in Flow Simulation

Solving the flow equations with numerical approaches requires discretizing the 

reservoir system into a set of grid blocks. Various types of grid specifications exist 

for the purpose of flow simulation. There are generally two common kinds of grid; 

regular grid and unstructured grid. This section briefly reviews the different types of 

flow simulation grids that one may be confronted with in the numerical modelling 

process.

1.2.1 Regular Grid

Regular Cartesian grids are used most commonly in reservoir simulation (Aziz, 

1993). The grid blocks are generated along the orthogonal coordinate directions. The 

identifying point of a grid can be either located at the center of block (block-centered) 

or any other location inside the block (point-distributed). The block size can be 

different from one location to another location. Regular grids are usually preferred in 

flow simulation due to the simplicity. Figure 1.1 shows an example of regular grids.

Figure 1.1 Regular Cartesian Grids. Block-centered (left) and point-distributed grids (right) 

(redrawn from Aziz, 1993).

1.2.2 Unstructured Grid

Reservoir geometries are usually not convenient enough to be discretized by a regular 

Cartesian grid. Unstructured grids are widely used in such complex reservoir 

geometry. Today’s reservoir simulators are capable of handling irregular grids such as

3
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comer point geometry, and PEBI (Perpendicular Bisection) or voronoi grids (Palagi 

and Aziz, 1991). An example of an unstructured grid is shown in Figure 1.2.

Comer point grids are the most popular unstructured grid and are often used in 

complex field studies. The grids basically have a polygonal shape and are specified 

with the coordinates of each vertex. The flexibility in shape provides a good 

adaptation to the reservoir boundary, faults or horizontal wells while preserving the 

simplicity o f calculating the geometric quantities in flow equation (Aziz, 1993).

Fl aVt z 2 0 0 S A

PeimX(MDAR0 V>

Figure 1.2 An Example of an Unstructured Grid Model (Source: Eclipse Floviz 2005A, Tutorial)

1.3 Tensors and Principal Directions

An anisotropic medium is one in which the value of a property is direction dependent. 

Tensors are commonly used to show the value of an anisotropic property with respect 

to all coordinate axes. They are widely used in mathematics and physics. In 

mechanics, tensors are used to describe the strain, stresses and the moment of inertia. 

In petroleum engineering, the directional rock permeability is characterized as a 

tensor.

4
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Tensor is a 2 by 2 matrix in 2D or a 3 by 3 in 3D cases. The main diagonal 

component of each tensor indicates the value of anisotropic variable in the principal 

coordinate axes (e.g. X, Y  and Z Cartesian coordinates) while the off-diagonal terms 

shows the value with respect to other arbitrary axes.

Given the components of the symmetric tensor in a coordinate system, we can find all 

components in any other coordinate system. Consider an anisotropic property, A, in 

an anisotropic medium. The value of variable A based on the coordinate axes of X, Y 

and Z is shown with the following symmetric tensor:

A A AX X xy x z

A A Ay* yy yx
A A Azx xy z z

in which Axy=Ayx, Axz = Azx and Ayz = A^ .

For a new coordinate system (X , F  and Z’) which is orientated at an angle#apart 

from the original axes the relationship can be derived (Beer et. al., 1988). For the two 

dimensional case, these relationships are:

A .. = Axx +Ayy + Axx ~ Ayy cos 2 9 - A ^  sin 2# (1.2)
2 2 v

A ,, = A™AA2L _ - g ..cos 2 6 + Axv sin 2# (1.3)
y y  2  2  ^

A ,. = Axx~ Ayy sin 26+ <  cos 29 (1.4)xy 2 -V v 7

where A .., A .. and A are the component of tensor in new coordinate system.
x x  y y  x y  x

5
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Equation (1.2) and (1.4) are the parametric equation of a circle. This circle is called 

Mohr’s circle. Figure 1.3 shows an example of Mohr’s circle. Mohr’s circle shows the 

variation of tensor components when the angle # is changing. According to this circle 

we can find an angle# such that the cross terms become zero and the tensor is 

diagonal ( Ax, , = Ay,x, = 0). Points B and D on the circle show two cases where the

tensor is diagonal and,AX,X, is minimum and maximum, respectively. Those directions 

that have these properties are called the principal directions of the tensor. The 

angle#can be defined by the following formula:

2A„
tan 2# = — —

A - Axx yy

(1.5)

The equation defines two values of 2# which are 180° apart and thus two values of # 

which are 90° apart. In order to define which angle is related to Amax and which one is 

related to the Amin, we can substitute both values of#  into equation (1.2) and define 

the maximum value of A.

■■■■ 'S i.,' ■ c D

Figure 1.3 Mohr’s Circle (redrawn from Beer et. al., 1988)

For three dimensional, tensors, the principal directions can be defined by eigenvalue 

and eigenvector decomposition. This requires solving the following equation:

6
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where vx,vy and vz are the components of the eigenvector in the principal direction 

and X is the corresponding eigenvalue.

The three eigenvalues of equation (1.6) are the roots of the following cubic equation:

them into equation (1.5). Finally we have three eigenvalues and three corresponding 

eigenvectors which represent the principal directions. It has been shown (Beer et. al., 

1988) that the eigenvalues are the values of the variable A in the principal directions. 

Based on this, the major principal direction is related to the one with the greater 

eigenvalue.

1.4 Thesis Outline

The objective of this work is to generate the appropriate tools to calculate the required 

parameters for multivariate modelling of permeability tensor on unstructured grid

-4 “ ^  A z y  A x z

Ayx A ^ - X  A^ = X *-aX 2 + b X -c  = 0

A z z  A zy  A z z ~ ^

(1.7)

where the coefficients are:

(1.8)

Once the eigenvalues are calculated, the eigenvectors are determined by substituting

7
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elements. These parameters are facies proportion, permeability tensor, geological 

continuity direction and unstructured block orientation.

In Chapter 2, different methods of geological facies modelling are reviewed and a 

methodology is proposed for accounting for geological heterogeneity within and 

between coarse unstructured grid blocks. A conventional indicator kriging and 

simulation approach is used to simulate connected blocks one at a time, with 

successively increased conditioning to previously simulated locations.

In Chapter 3 the available upscaling techniques are reviewed and a new flow-based 

upscaling method based on a numerical finite difference solution of the steady state 

flow equations, random boundary conditions and optimization is applied.

In Chapter 4 the methodology for determination of continuity direction in geological 

setting and also the unstructured grid element is presented. Moment of inertia concept 

is used to automatically determine the geological continuity direction and orientation 

of an unstructured grid element.

Chapter 5 summarizes the results and addresses other research ideas as a result of this 

work.

8
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Chapter 2 : Geological Heterogeneity

Modelling

Conventional reservoir modelling permits heterogeneity characterization of different 

aspects of the reservoir and involves several modelling tasks. It is common to begin 

by defining the key structural features, such as relevant horizons and fault block(s). 

Geological facies distributions between horizons and within fault blocks are then 

considered. Finally, petrophysical properties, such as porosity and permeability, are 

then characterized within these defined facies. This is a fairly standard procedure, 

and assumes that staitionarity of the petrophysical properties is valid within each 

facies. Geostatistics permits heterogeneity modelling within a stationary domain and 

since the facies model fundamentally defines these stationary zones, we can consider 

that the petrophysical distribution within a facies is heterogeneously homogeneous. 

As a result, the facies model which can be constructed via geostatistics captures a 

higher (macroscopic) level of heterogeneity (Caers, 2005).

In this chapter we review the available facies modelling techniques. A different 

approach is examined for facies modelling within the coarse regular and unstructured 

grid blocks followed by some sensitivity analyses.

2.1 Background

The reservoir architecture is represented by heterogeneity modelling techniques. 

Three main approaches are typical: cell-based modelling, object-based modelling and 

most recently, multiple point geostatistics using training images. Of the three primary 

approaches to facies modelling, cell based models remain the most common in 

practice.

9
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2.1.1 Cell-based Facies Modelling

In cell-based modelling, the reservoir volume is commonly discretized into a regular 

Cartesian grid and relies on the two-point variogram statistic to capture structural 

correlations. Indicator and truncated Gaussian methods are common in this class of 

techniques; the former indicator approach is more common in practice. Indicators are 

widely used in modelling categorical variables because the distribution of uncertainty 

can be estimated directly (Joumel, 1983). The categorical facies data are transformed 

into a binary variable via the following transform:

, . f 1, if  facies k  is present at u
[0, otherwise

where k=l,...,K  categories, and ua represents a location in domain A- The mean 

indicator and variance are then defined as:

Var{i(u;k)}= p k( l -  p k) 

where p k is proportion of Facies k within the domain.

Inference using indicators can be performed in one of two modes: estimation and 

simulation. In the former case, indicator kriging (IK) yields the estimated probability 

of each threshold at unsampled locations:

ft

= Pk} + Pk
a=1

where Xa is the weight assigned to the indicator value at location ua. In the latter 

case, sequential indicator simulation (SIS) permits global and local uncertainty to be 

assessed on the reservoir model (Seifert et. al., 1999). Note that the estimation with 

indicator results in a continuous attribute (a probability), while SIS results in 

realizations that consist of categorical values (that represent a specific facies).

10
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Truncated Gaussian simulation is another cell-based facies model. Matheron et al. 

(1987) proposed this method. In this method, spatial distribution of categorical 

variables is modeled using a continuous multi-gaussian random function. Truncation 

is applied at a series of thresholds to create categorical facies realizations. The 

advantage of this simulation technique is that ordering relationships may be 

reproduced. However, the indicator variogram reproduction is not good because 

simulation is based on only one variogram.

Truncated pluri-gaussian simulation (Galli et al., 1994; Le Loc’h and Galli, 1997) is 

an extension of truncated Gaussian simulation which allows simulation of more 

complex geometry of lithofacies. More variables are simulated by considering 

multiple random functions and then the multivariate distribution is truncated.

2.1.2 Object-based Facies Modelling

Object-based models are suitable when geo-body geometries are well understood and 

can easily be specified using simple objects. It is primarily a boolean simulation 

wherein geo-objects are stochastically populated within the model; the presence of 

many conditioning wells can be problematic and remains a long-standing challenge to 

these approaches (Deutsch, 2002). The fluvial setting is a common example of 

reservoirs which are modeled with the object-based techniques (Omre, 1992; 

Georgsen and Omre, 1993; Hatloy, 1995). FLUVSIM is an object-based algorithm 

for building stochastic fluvial ribbon models (Deutsch and Wang, 1996; Deutsch and 

Tran, 2002). The method produces realistic models, but is inefficient at honoring a 

realistic level of conditioning data.

2 .1 .3  M u ltip o in t G eo sta tistic s

Multiple point geostatistics has received much attention recently and relies on 

extracting multiple point statistics derived from training images. This technique was 

first proposed by Joumel and Alabert (1989) and then used in simulation by Deutsch

11
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(1992). Single normal equation simulation (SNESIM) is an efficient multiple-point 

geostatistical algorithm which was firs proposed by Guardiano and Srivastava (1993) 

and then improved by Strebelle (2002).

The main idea is to select a template of n-points and then calculate the conditional 

probabilities of an outcome by scanning the template over the training image. The 

method does not require a variogram. The variogram and histogram are implicit to the 

training image. The method can yield a realistic geology model, but relies heavily on 

the training image thus representativity of the image is an important issue.

2.2 Proposed Methodology

Suppose that a large reservoir model is to be constructed using an unstructured grid. 

Using this kind of grid will almost certainly introduce different block sizes in the field 

of study. A fine grid is needed in parts of the reservoir where saturation and pressure 

changes rapidly, such as near wells and faults. However, there is no need to discretize 

the whole reservoir with a very fine grid and some parts can be discretized by coarser 

grids. This may help to reduce the computational storage, effort and time in flow 

simulation.

Geologic heterogeneity is generally not an issue for fine scale blocks since a 

sufficiently small block may be adequately characterized by a single facies. However, 

as the block scale becomes progressively larger as we move away from wells, these 

coarser blocks may consist of multiple facies and/or geologic sequences. A geologic 

description of these coarser blocks must inherently require statements regarding 

constituent facies proportions; this information, however, is insufficient to capture the 

facies continuity within and between these coarse blocks. This heterogeneity is 

important because they may have an impact in the hydrocarbon flow between wells 

and/or across faults. There is a need to capture the heterogeneity of irregularly-shaped

12
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multiscale blocks, particularly if coarse scale blocks encompass multiple facies or 

even multiple sequences. As such, the following methodology is proposed:

1) Perform indicator kriging on the entire field conditioning to the facies data 

from wells. This yields the local facies proportion at each grid block, and 

forms the only information available for coarse grid blocks.

2) Refine the geological heterogeneity for a chosen coarse grid block via:

a. Choose an appropriate fine scale resolution for this grid block.

b. Perform sequential indicator simulation conditioned on the well data 

and the local facies proportions from Step (1) above for this refined 

grid.

c. Add this locally refined grid simulation to the database and proceed to 

the next coarse block chosen for selective refinement. Refined 

simulation of all subsequent coarse blocks will be conditioned on (i) 

original well data, (ii) local facies proportion for that coarse block, and 

(iii) any nearby previously refined coarse blocks.

2.3 Application to Unstructured Block

Since the conventional geostatistical methods are based on a Cartesian grid, the 

proposed method cannot be directly applied to an unstructured grid. One 

straightforward idea is to approximate an unstructured block using a fine Cartesian 

grid, and then performing SIS for this fine scale grid. In this case each coarse 

unstructured block is locally refined by a high resolution point scale grid. An example 

will be presented in the next section.

13
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2.4 Synthetic Examples

In order to check the validity of the methodology, two examples are considered. In 

the first example regular coarse blocks are considered. In the second example, 

connected unstructured blocks are examined.

2.4.1 Regular Blocks

Consider a field whose extents are 2000 m in Easting (X), 2000 m in Northing (Y) 

and 15m in the vertical (Z) resolution. Geological survey shows that there are three 

different sequences in this field: SI, S2 and S3. Both sequences S2 and S3 are 

composed of two different facies (See Figure 2.1).

Based on this schematic illustration, a reference model was generated using SIS on 

the field at a fine resolution with the following variograms for the five different 

facies:

(h )= 1-0 Sphahm^ =X500(h)
ah_  min-1000 
avert=5

X2(h) = 1 . 0 ^ aAmax=900(h)
tf/t_min=180 
avert=5

r3(h) = l.0Sphah max=900(h)
tf/»_rain=180 
avert=5

y4 (h) = 0.05 + 0.95 Sphafi mM=mo(h)
ah _min=500 
avert=5

r5 (h) = 0.05 + 0.95 SphahmM=mo(h)
ah_  min=500 
avert=5

where the yi(h) is the variogram model corresponding to the i'h facies, and ah max is 

the range in the maximum continuity direction (in this case, north), and ahjn in  is the 

range in the minimum continuity direction (east), and avert is the range in the vertical 

direction. For image cleaning purposes, the resulting model was then post-processed

14
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using a maximum a-posteriori selection (maps) program (Deutsch, 1998). Figure 2.2 

shows a 3-D view of the reference model.

Sand in Seq. 1

Sand in Seq. 2

Shale in Seq. 3soooo
Northing (m)

Code

2

4

S

3

Figure 2.1 Schematic illustrations of three different sequences consisting of five facies exist 
in the field of study and their corresponding codes.

Suppose that six wells are sampled and the declustered facies proportions are 

recorded. Figure 2.3 shows the well locations and the declustered histogram of facies. 

Using these six wells and the declustered proportions, indicator kriging is performed 

on the full field for a grid size of 10m in easting, 25m in northing and 15m in 

elevation (for a total o f400000 blocks).
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Figure 2.2 3-D reference model generated by SISM.
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Figure 2.3 Location of sample wells in the field (left) and declustered histogram of facies 
proportions from well data (right).

For the purpose of a refined geological heterogeneity description, five blocks at a 

northing-elevation cross section is arbitrarily chosen at an Easting of 1000m and a 

Northing between 400 and 525m. This is sufficiently far away from the available 

wells and little to no local information is available. Figure 2.4 shows the cross section 

of the reference model at X=1000 m (where X is aligned in the easting direction).

16
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400.00 Norihingfm) 525.00

Figure 2.4 Cross section at easting of 1000/n showing the five arbitrarily chosen blocks for 
local refinement of the geology model.

As we proceed with applying indicator simulation for local refinement, two issues are 

considered for detailed analysis: local grid discretization and the simulation order of 

the five blocks. For the first issue of grid discretization, we consider simulation of 

only the first block centered at a northing of 412.5m. Three different grids are 

examined: 50 x 30 cells (for a cell size of 0.50/w x 0.50m), 50 x 60 cells (for a cell 

size of 0.50m x 0.25m), and 100 x 60 cells (for to a cell size of 0.25m x 0.25m). 

Figure 2.5 shows simulated and reference block 1 with three different grid sizes. Of 

the three examined grids, the result with 50 x 60 cells appears to show relatively good 

agreement with the reference model and is a good compromise between the coarse 

results of the 50 x 30 cell grid and the noise from the 100 x 60 cell grid. Using very 

fine cells is not efficient especially for the cases that we deal with many coarse scale 

blocks.

In order to check the sensitivity of results on the block simulation order two different 

block simulation orders are examined; (a) regular path from left to right (1,2,3,4 and 

5) and (b) random path (1,3,5,2 and 4). For the case (a) block 1 is simulated first 

using the surrounding well data and then the adjacent block (block 2) is simulated 

using well data plus simulated values from the previous block. Five connected blocks 

are simulated sequentially with the same method. In case (b) we have conditioning 

data from both sides (not only from left side). Block 1, 3 and 5 are simulated with the 

same method and after that block 2 and 4 are simulated using left and right hand side 

blocks (block 1 and 3 for block 2, and block 3 and 5 for block 4) plus the well data. 

Figure 2.6 shows the results for five connected blocks with two different simulation 

sequences.
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Figure 2.5 Reference (Top) and simulated models of Block 1 (Bottom row) at different grid 
discretization.

Reference Model (Easting of X=1000m)
15.000

400.00 Northing jm)

Simulated Model (order: 1,2,3,4,5)
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15.000

400.00 Northing (m) 525.00

■8 1 -S a n d

W%mlIHll
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Figure 2.6 Reference model (Top) and Five blocks simulated with order from Left to right 
(Middle row) and order of 1,3,5,2,4 (Bottom row).
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2.4.2 Unstructured Blocks

The same setting as the previous example is considered. For the purpose of a refined 

geological heterogeneity description, three connected unstructured blocks are 

considered far away from the available wells. Figure 2.7 shows the location of wells 

and the unstructured coarse blocks.

Each unstructured block is surrounded by a bounding box and simulated separately. 

We start from block 1 and then add the results to the well data and proceed to the next 

blocks. Three simulated blocks are shown in Figure 2.8.

Locations of Walts
2000.

1200. _

800. _

400. _

0. 400. 800. 1200. 1600. 2000.
Easting(m)

Figure 2.7 Location of wells and the imposed unstructured blocks (left) and the declustered 
facies proportion (right).
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Figure 2.8 Reference model (top) and three connected blocks which are separately simulated 
(bottom).

2.5 Discussion

Modelling the geological heterogeneity and facies is important in reservoir 

characterization. Depending on the grid discretization and sequences used in 

simulation the number of conditioning data increases and this requires more 

computational time. However this methodology is supposed to be used for large 

blocks and there is no need to implement it on small grids where internal facies 

connectivity is not so important. Here the issue would be to select the big blocks to be 

refined. This is very subjective and mainly depends on the practitioner judgment. One 

idea is to define a volume threshold and pick the blocks with volume greater than that 

threshold. The threshold can be a function of many factors such as dispersion 

variance of point scale data and block scale, block volume and etcetera.
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Choosing block simulation path is another important factor. According to the 

synthetic example in section 2.4.1, there is no significant difference between the 

results of two regular and random paths which were used for simulation. However, 

the random path is preferred to the regular path because in the regular path the 

conditioning data are always from one side (left side for example in section 2.4.1) and 

this can results in artifacts (McLennan, 2002).

Facies ordering may be more important in some special cases. Using truncated 

Gaussian simulation or even truncated pluri-Gaussian simulation are alternatives to 

sequential indicator simulation and may yield better results.

Facies are generally modeled first because it narrows the range of possible porosity 

and permeability (Deutsch, 2002). Results of facies modeling from this chapter lead 

to more accurate permeability models in fine scale and better upscaled permeability. 

Facies proportions ait large block scales, which account for facies connectivity 

between blocks, can be used for multivariate modelling purpose described in Chapter 

1.
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Chapter 3 : Permeability Tensor Upscaling 

for Unstructured Grid Block

In the case o f a homogeneous permeability field, rock permeability is considered as a 

constant value in any direction. However, real reservoir rocks exhibit heterogeneity at 

different scales. Due to this heterogeneity, the rock permeability is direction 

dependent and presented as a tensor. The permeability tensor is needed to correctly 

solve the flow equation in heterogeneous cases. This becomes more important when 

unstructured blocks are used in flow simulation problems because the unstructured 

blocks are generally not aligned to the principal directions of flow.

In this chapter, a brief review o f available permeability upscaling is presented and 

then the proposed methodology is described. Some sensitivity analyses are also 

presented.

3.1 Background

Permeability upscaling refers to a procedure in which the underlying fine scale 

permeability is averaged up, to return the effective permeability o f a larger domain. 

There are several upscaling techniques available in the literature. These techniques 

are generally divided into two main categories: direct method and flow-based method. 

The direct method is based on the simple averaging o f heterogeneous permeability 

within the coarse block. However, in flow-based upscaling the coarse block’s 

permeability is calculated based on the solution o f flow equation. Depending on the 

complexity o f the problem and the level o f accuracy required, both methods can be 

applied.
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In an ideal case, the simple averaging methods are fast and easy to implement. For 

example, the equivalent permeability for a group o f fine grids serially arranged has 

been analytically proven to be equal to their harmonic average. If the blocks are 

arranged in parallel to the flow direction, the equivalent permeability is equal to their 

arithmetic average (see Figure 3.1) (Deutsch, 1987; Kelkar and Perez, 2002). These 

two basic cases are the worse and the best case o f connectivity in the direction o f 

flow, respectively.

Arithmetic and harmonic averages are the upper and lower limits for calculated block 

permeability, respectively (Cardwell and Parsons, 1945). Joumel et. al. (1986), 

Deutsch (1989) and Desbarats and Dimitrakopoulos (1990) showed different 

applications o f power averaging in estimation o f equivalent block permeability:

where kv is the coarse block permeability, V is the coarse block volume, ka is fine 

scale permeability and p  e [-1,1] depends on the number o f factors such as 

heterogeneity at small scale, the block shape and flow conditions inside the block.

King (1989) used the renormalization technique to compute the block permeability. In 

this method the upscaling starts from a small block and the size o f block is increased 

successively until the flow simulation block size is reached. This method is very fast 

and simple but it does not work very well in highly anisotropic media.

For more complex cases with increasing heterogeneity, flow-based upscaling 

techniques yield more accurate results. In this type o f upscaling the flow equation is 

solved for pressure and the results are used to obtain the block permeability. 

Choosing appropriate boundary conditions is very important in flow-based upscaling. 

Figure 3.2 shows examples o f boundary conditions which are commonly used in the 

literature. Warren and Price (1961) applied this technique with constant pressure and 

no-flow boundary conditions for regular coarse blocks to obtain the diagonal tensor.
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Usually cases that involve the use o f irregular block or a heterogeneous permeability 

field at fine scale require calculation o f the full permeability tensor. White and Home 

(1987) were the first to propose a technique to fully determine non-diagonal block 

permeability tensors. They used different sets o f boundary conditions and solved the 

flow equation for the entire field o f study. The resulting block permeability tensors 

are neither always symmetric nor positive-definite. Gomez-Hemandez (1994) used 

many linear boundary conditions and solved the flow equations over an area 

comprising the coarse block and a skin region. They calculated the full tensor for 

regular coarse blocks. Durlofsky’s (1991) idea o f periodic boundary returns 

symmetric and positive definite full permeability tensor in a medium with periodic 

condition (for example, repetitive geological structures).

Almost all o f the abo ve mentioned techniques are applied on regular blocks. Tran 

(1995) proposed a method in which the pressure is calculated in the smallest rectangle 

that includes the irregular block. However, the calculated permeability is diagonal. He 

(2000 and 2004) applied Durlofsky’s periodic boundary condition and solved the 

flow equations with a finite element method for general quadrilateral grid blocks. 

This method gives the same accuracy as finite difference method in 2-D quadrilateral 

blocks but it is not efficient for 3-D blocks. Prevost (2003) implemented both 

permeability and transmissibility upscaling on general 3-D blocks and showed that 

the transmissibility upscaling is generally more accurate, but it is time consuming 

because the flow equation must be solved for all block interfaces.

In this thesis, a new approach is introduced for calculation o f permeability tensor for 

comer point unstructured grid block. This method is based on the finite difference 

discretization and an optimization technique. The random boundary conditions are 

used instead o f conventional boundary conditions. The following sections describe 

the methodology in more detail.
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Figure 3.1 Upscaled effective permeability for simple cases of serial (left) and parallel (right) 
layers. Redrawn from Kelkar and Perez (2002).

20 mK—1—:—:—*1

sa

P = 0 P = 0 P * 0

P « 1 P = 0

Pss 1 p . 1 P*1

Figure 3.2 Linear boundary conditions (Gomez-Hemandez, 1994) in top row, constant 
pressure and no-flow boundary conditions (White and Home, 1987) in bottom row. Hatch 
lines show the no-flow faces.
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3.2 Proposed Methodology

Flow based upscaling technique is used to calculate effective permeability o f coarse 

block. Consider single rectangular block (2-D) or a regular box (3-D) imposed on a 

fine scale uniform Cartesian grid (See Figure 3.3). The idea here is to calculate the 

pressure at fine scale with specific boundary conditions applied at the boundary o f the 

coarse block and then use this solution to calculate the permeability tensor for the 

coarse block. The work flow for permeability upscaling is shown at the end o f this 

chapter.

3.2.1 Random Boundary Condition

As discussed earlier in the previous section, flow boundary condition is a key factor 

in the calculation o f permeability tensors. To obtain a robust and realistic 

permeability tensor, general linear boundary conditions are considered here.

In this technique four pressures in 2-D (or eight pressures in 3-D) are randomly 

assigned to the comers o f the coarse block. In 2-D, the pressure gradient at each edge 

is considered to change linearly between the pressures at the two adjacent comers. In 

3-D, each face will have a different pressure distribution, defined by using different 

pressures at the four comers and applying a bilinear interpolation. This provides a 

smooth map o f pressure at six sides o f a 3-D coarse block (See Figure 3.4).
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Figure 3.3 Regular coarse blocks imposed on 2-D and 3-D fine scale grids.

P,

A

Pressure (ps/)
..55.000

Figure 3.4 Eight pressures are randomly assigned to the comers (left) and the pressure 
distribution is generated by bilinear interpolation (right).
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3.2.2 Flow Equation

Once the boundary conditions are assigned, the flow equation is solved for all fine 

grids inside the coarse block. The single phase steady state flow equation with the 

assumption o f incompressible fluid and rock is considered:

f ,  dP'] d / dP ) d / dP '
K  — + — kv + k7----

v. d x , y
\ dy j dz z

\ d z ,

where P  is the pressure, and kx , ky and kz are the fine scale permeability in x, y  and z  

direction, respectively.

The next step is to calculate the average pressure differences and flow rates. The 

pressure differences are determined by calculating the average o f all fine scale 

pressures over the coarse block volume:

The flow rates are the volume average o f flow rates between the fine scale points:

(3.2)

'a c tu a l - x

a c tu a l - y

a c tu a l - z
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where nlol= n Kx n y x n zm d T i - V 2 J , k  _  2 x _ _ £K hM x k xJ,k (A yxA z).
[ K x'J'k + K j 'k ) Ax

IS the

transmissibility term.

3.2.3 Optimization

Applying many different boundary conditions and having sets o f pressure differences 

and flowrates, we can fit a tensor with the minimum error using an optimization 

technique. In this technique we start with an initial assumed tensor. The predicted 

flow rates (Q*x,Q*y and Q*z ) are calculated using the following general Darcy’s law

considering an initial permeability tensor and the calculated averaged pressure 

differences for the first boundary condition:

~ < £ K K

Q 'y =  - K k .vy K
■ A P y ( 3 . 4 )

Q l . K K K _ M .

An initial objective function (error) is calculated by using the following formula:

£ a c tu a l  QSSI Q .
Qbj = - ^ d t -----

n b c X n d ir

( 3 . 5 )

where the inside summation is the flow rate taken over the directions (X,Y and Z), the 

outside summation is over different boundary conditions, nbc in number o f boundary

conditions and ndir is number o f directions,.

We proceed by proposing a change in tensor and calculating the new objective 

function. The change is kept if  the new objective function is smaller than the previous 

one. This process is repeated many times until reaching the acceptable error. There is 

a flexibility to fit full, symmetric or diagonal tensor by adding a simple constraint for 

the cross terms in tensor to be equal (symmetric) or zero (diagonal).
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3.3 Application to Unstructured Block

The methodology discussed above is straightforward for Cartesian grids, but can also 

be applied to an unstructured block via some simplifying modifications. The coarse 

irregular block is surrounded by the smallest rectangle (2-D) or smallest box (3-D); 

consider this as a bounding box (Figure 3.5). We can discretize the irregularly shaped 

coarse scale block using the underlying fine scale model. This can be easily 

determined by evaluating whether or not the centre point o f a fine scale block falls 

inside the irregular coarse block. The pressure differences and flowrates are averaged 

over the fine scale grids that comprise the coarse block. A more accurate 

approximation to the irregular coarse scale block can be obtained i f  the underlying 

heterogeneity model is at a sufficiently fine scale.

Figure 3.5 Bounding Box around 2-D (left) and 3-D (right) unstructured block. Shaded fine 
scale blocks lie inside the coarse irregular block are considered for the calculation of effective 
permeability.

In 2-D cases, any polygonal shape can be easily handled. For 3-D cases, comer point 

geometry is considered. The unstructured block is defined by two sets o f comer 

points which indicate the upper and lower planes. Both upper and lower planes should 

have the same number o f vertices in a way that each comer point in the upper plane 

has the corresponding points in the lower plane. Two upper and lower planes are 

considered to be connected by planar surfaces. The grid blocks are not necessarily 

aligned vertically and can be tilted in some direction to conform to geologic 

structures. Figure 3.6 shows examples o f this comer point block.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.6 Example of comer point structured (left) and unstructured blocks (other). The 
areal cross section is a convex polygon.

3.4 Sensitivity Analysis

The permeability tensor calculated by flow based upscaling techniques is non unique 

and depends on many factors, such as the flow boundary condition, size o f bounding 

box, the fine scale permeability assigned to the buffer zone, the geological features 

inside the coarse block and the orientation o f grid block. Indeed, there is an ambiguity 

about the type o f permeability tensor (full, symmetric or diagonal). These factors are 

described in more detail in the following sections:

3.4.1 Number of Flow Boundary Conditions

It has been shown (Gomez-Hemandez, 1994 and White et. al., 1987) that the block 

effective permeability not only depends on the fine scale heterogeneity but also on the 

flow boundary conditions. Different pressures at the boundary impose different flow 

regimes inside each block and this affects the value o f permeability which is 

numerically calculated or experimentally measured. This becomes more important 

when considering the permeability tensor which has cross-flow terms. Generally, 

linear pressure gradient and no-flow boundaries are considered. However, this is not 

what realistically haptpens in a reservoir. In this work we considered random 

pressures assigned at the comer o f coarse block so that flow may not be imposed in a 

specific direction and this will help to appropriately capture the effect o f cross-flow in 

the coarse block. Since many different boundary conditions are needed for this 

method, the minimum number o f boundary conditions required to get a stable 

permeability tensor is an issue. This can be approximately determined by the 

following example.
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In this example we considered a synthetic permeability model with a single 3D block 

imposed on it. Ten different permeability realizations are generated by SGSIM 

(Sequential Gaussian Simulation) at resolution o f 100x100x20 (1 m x \m  x \m  cell 

size). Model are considered as the fine scale permeability in X  and Y  direction 

( kx and ky). The permeability in Z direction is considered multiple o f kx by a constant

factor (e.g.kz = 0 . l x k x ).

Different block shapes are examined. Figure 3.7 shows the permeability models and 

the irregular blocks. The full permeability tensor is calculated for different numbers 

o f random boundary conditions varying from 3 to 50. Variation o f permeability tensor 

and the minimum error are compared with the number o f boundary conditions. Figure 

3.8 shows the variation o f permeability tensor components and error with the number 

o f boundary conditions for realization 8. As we can see in the figure the tensor 

components are stable for approximately 10 boundary conditions.

In order to find the minimum number o f boundary conditions for each case, the 

stabilizing criterion is defined as follows:

3  3

IE«=1 y=l

k l - k refUS r&IJ
refti j

< 1% 1 = 3..... ,50

where k  is the permeability tensor, i and j  indicate the row and column o f the 

permeability tensor and kref is the tensor calculated for 50 boundary conditions (more

stable). The minimum I which satisfies this condition is considered as the minimum 

number o f boundary conditions. Figure 3.9 shows the histogram o f the number o f 

boundary conditions calculated for this example. It shows that almost 10 boundary 

conditions are enough to get stable permeability tensor.
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Figure 3.7 Ten permeability realizations with a single unstructured block considered for this 
example.
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Figure 3.8 Permeability tensor variation with number of random boundary conditions for 
realization 8.
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Figure 3.9 Histogram of number of boundary conditions needed for ten different cases.
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3.4.2 Bounding Box

In flow-based upscaling the flow equation is usually solved locally for a specific 

block. Here we consider a bounding box around the unstructured block and solve the 

flow equation for this box. Two factors may affect the value o f the permeability 

tensor for this case; the size o f bounding box and the permeability value assigned to 

the fine cells inside the bounding box and outside o f the irregular block (call this the 

buffer zone).

To observe the impact o f these factors, we generate a 3-D synthetic permeability 

model (at a resolution o f 100 x 100 x 50 grids). A single unstructured block is 

considered in this field. The bounding box for this block comprises o f 20 x 20 xlO 

fine grids. The full permeability tensor is calculated for the coarse block considering 

three cases with different bounding box size: (a) 20 x 20 x 10), (b) 40 x 40 x 20 and 

(c) 60 x 60 x 30 (see Figure 3.10).

Permeability (mD)

Easting (m) 100.000

. . . .  C a se  (a) 20x20x10 
—  C a se  (b) 40x40x20 
 C ase  (c) 60x60x30

Figure 3.10 Three different bounding box sizes considered for this example.
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Consider the case o f a heterogeneous buffer zone, Figure 3.11 shows the results o f 

calculating and comparing the diagonal components o f the permeability tensor; we 

see that as the bounding box size increases the main diagonal component o f the 

permeability tensor (kxx,kyyikzz') decreases slightly, but the error drops significantly.

However, if  comparing the computing time for these three cases, considering a larger 

bounding box is inefficient.

In order to check the sensitivity o f permeability to the buffer zone permeability, this 

example is evaluated for a large bounding box (case 3) and homogeneous 

permeability values o f 1, 10, 20, 100 and 500 mD. As Figure 3.12 shows, the 

permeability tensor calculated for an unstructured block of this example increases as 

the buffer zone permeability increases. The error also increases systematically as 

buffer zone permeability increases.
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J r ■A

Kxx

Kyy

Kzz

Bror

C ase
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Figure 3.11 Variation of permeability tensor with bounding box size.
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Permeability Tensor vs. Buffer Zone Permeability
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Figure 3.12 Variation of permeability tensor with buffer zone permeability.

3.4.3 Geological Continuity Direction

The fine scale heterogeneity has a significant effect in the coarse block permeability. 

In some cases the geological features are not aligned with the coarse block sides. This 

may lead to the appearance o f cross flow terms. This is further discussed with the 

following example.

Consider a single regular block with size o f 40m by 40m imposed in the middle o f  a 

field. Sequential Gaussian simulation is run for a square field (100m x 100m with 

cells at lm  x lm  resolution) and the permeability is modeled for different continuity 

directions (0° to 90° azimuth in increments o f 5°). An anisotropic variogram with a 

70m range in the maximum and 10m range in the minimum direction is considered. 

The permeability models are considered as fine scale permeability in both X  and Y  

directions ( k x =ky ; where X  and Y  are aligned with easting and northing,

respectively). Figure 3.13 shows the permeability models and the single block located 

at the centre o f the field. The full permeability tensor is calculated for each case. As
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expected, the permeability in X  direction increases and the permeability in Y  direction 

decreases when the orientation o f geological features changes from 0° to 90° azimuth. 

In order to quantify the variation in the cross-flow terms, we define a cross-flow 

index as follows:

( K + k » )cross-flow index =

As we can see in Figure 3.14, the index is smaller when the flow is dominated in the 

X  or Y  direction and this happens when there is more connectivity in those directions 

(0° and 90°).
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mzfmuth:35uth:30100.0 00.0
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Figure 3.13 Permeability models with different direction of continuity and the location of 
coarse block.
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Permeability Tensor vs. Geological Continuity Direction
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Figure 3.14 Variation of permeability tensor with direction of continuity in fine-scale 
permeability model.
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3.4.4 Grid Block Orientation

In this section the sensitivity o f permeability tensor with respect to the block 

orientation is discussed with an example. A permeability model is selected from the 

example in section 3.4.3 (with major continuity aligned in 90° azimuth). A single 

block is imposed in the middle o f the field. The block is rotated and the permeability 

tensor is calculated for each case. Figure 3.15 shows 12 cases with the same 

permeability model and different block orientations (0° to 360° azimuth in increments 

o f 30°). The permeability tensor for each case is also shown in the Figure 3.15.

Results show that the permeability tensor components changes when the block 

orientation changes but the geological continuity has more effect on the results (as we 

can see that is always high).

3.4.5 Full, Symmetric and Diagonal Permeability Tensor

As discussed in section 3.2.3, fitting a full, symmetric or diagonal permeability tensor 

is straightforward. The error (objective function) is defined based on the difference 

between the actual flow rates and the flow rates when the tensor o f permeability is 

considered. In this section we want to show the amount o f error introduced when each 

o f the full, symmetric and diagonal permeability is fitted. This can be further 

investigated with the following example.

The same permeability model and unstructured block as the example in section 3.4.2 

is considered with a large bounding box (60x60x30) and 20 random boundary 

conditions. The full, symmetric and diagonal permeability tensors are fitted. The 

results are shown in Figure 3.16.

The results show that the full tensor introduces a fitting error o f less than 2%  (for this 

example) and the error increases when symmetric or diagonal tensor is fitted. This
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example reveals the fact that using full permeability tensor returns the flowrates 

which are more similar to the actual flowrates.

100.01
azimuth

azimuth:30.0
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0.29 0.55
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0.31 0.29

2.39 0.14 

0.25 0.28

2.56 0.18 

0.24 0.32

Figure 3.15 Variation of permeability tensor with grid block orientation.
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Fitting Error v.s. Different Type of Perm eability  Tensor

3.5 8.242 0.0 0.0

0.0 0.0 0.839

8.240 0.122 0.056
0.122 4.372 -0.002

0.056 - 0.002 0.8348.235 0.083 0.083
0.139 4.375 -0.006 
0.148 -0.005 0.837

Full Symmetric Diagonal

Figure 3.16 Fitting error for full, symmetric and diagonal permeability tensor.

3.5 Discussion

A flow-based upscaling technique with sets o f random boundary conditions is 

developed. Sensitivity analysis reveals that the calculated permeability tensor depends 

on number o f random boundary conditions, bounding box size, geological 

heterogeneity and also the grid block shape and orientation. Minimum 10 sets o f 

random boundary conditions are required to get stable permeability tensor. A 

relatively large bounding box with heterogeneous permeability value assigned to the 

buffer zone is recommended. Shape o f permeability tensor is still under discussion o f 

researcher. Some researcher believes that the permeability tensor is symmetric (Bear 

1972, Gelhar and Axness 1983), other believes that it is not necessarily symmetric 

and can be asymmetric (Ababou 1988; King 1993). There is evidence that the tensor 

could be asymmetric with non-linear boundary conditions. Here we showed that 

fitting the full permeability tensor returns a smaller error in the calculated flow rate 

compared to the symmetric and diagonal tensor.
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Chapter 4 : Determination of Geological 

Continuity Direction and Unstructured 

Block Geometry

The geological continuity is a key factor for prediction of fluid flow in reservoir. The 

geological continuity and variogram continuity are direction dependent (Deutsch, 

2002). In Chapter 3 we show that the permeability tensor depends on the geological 

continuity direction aind the grid block orientation. This chapter introduces a new 

approach to determine the geological continuity direction and orientation of an 

unstructured grid block by using the moment of inertia tensor.

4.1 Moment of Inertia

The moment of inertia of a rigid body is related to the distribution of the mass

throughout the body and quantifies the rotational inertia of a rigid body (Beer at. al., 

1988).

where m is mass and r is the perpendicular distance from the axis of rotation.

Generally, there are two forms of moment of inertia; scalar form which is used when 

the axis of rotation is known and the tensor form that summarizes all moments of 

inertia for different axes of rotation with one quantity.

For a rigid body consisting of Appoint masses,^. i = l , . . . ,N , the 3D moment of 

inertia tensor are defined as follows:

(4.1)
v
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xx xy xz

(4.2)

Iyz=I y z= 'Z miyiZi

Ixy=Iyx= 'E miXiyi

i=l
N

<=1
N

N

1=1 1=1

where xi,y i and z, are the distances of point i from the coordinate axes. Here the 

physical meaning of /„  is the moment of inertia around the x-axis when the objects 

are rotated around the x-axis and /  is the moment of inertia around the y-axis when 

the objects are rotated around the x-axis.

Since the moment of inertia is an anisotropic quantity and presented as a tensor, the 

principal directions cam be determined with the same approach as discussed in section

1.3. Here the principal directions of moment of inertia show the directions in which 

the rigid body is more closely distributed or less distributed. In this case the major 

direction is the one that is related to the smaller moment of inertia. This interesting 

property leads us to determine the major and minor direction of continuity in the 

geological setting or define the principal direction of an unstructured grid block.

4.2 Direction Determination Through Moment of Inertia

Generally, the directions of continuity in variables are determined prior to 

geostatistical modelling. A fairly standard approach is to plot the variogram maps and 

detect the maximum and minimum continuity direction based on the range of 

variogram. Geological information and interpretations are another source to detect the 

continuity direction in lithofacies. This process is subjective and requires user
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judgment. In cases where we are dealing with a large number of variables and 

geological facies, applying this method could be frustrating. Moment of inertia tensor 

can be used to automatically determine the continuity in geological models and 

geometry of unstructured grid elements.

4.2.1 Geological Models

The correlation indicates the strength and direction of a linear relationship between 

two random variables, U  a n d F .

_ Cov{U,V) E {(U -M „)(V -H y)}
Pu,v ~ ~  v*’"3/

CTj/ .Gy Gfj ,GV

where gv is standard deviation of U , gv is standard deviation of V ,fiv is mean of 

U  and Hy is mean of V .

The correlation varies between -1 to 1. Correlation of 1 shows the perfect linear 

relationship and -1 indicates an inverse linear relationship. The closer the coefficient 

is to either -1  or 1, the stronger the correlation between the variables. If  the variables 

are independent the correlation is zero.

The correlation map shows the calculated correlation of a data set for different lag h 

and directions. If we consider the correlation as a mass quantity, then the correlation 

map can be considered as a rigid body and we can find the maximum and minimum 

direction of continuity analogous to the method used to calculate the principal axes 

for moment of inertia.

Given any continuous geological variable model or categorical facies model, the 

following steps allow us to find the direction of continuity:
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1. Generate the correlation map for continuous model. For categorical model, 

each code can be considered as a mass quantity.

2. Calculate the moment of inertia tensor for the point masses according to the 

X, Y  and Z axes pass through the center of mass.

3. Determine the principal direction of continuity using the method in section

1.3.

We verify the method with the following examples.

Examples

Two models are considered and the principal directions are determined. For the first 

example a continuous model is generated with unconditional sequential Gaussian 

simulation (SGS) with the azimuth angle of 60° and dip angle of 0°. The correlation 

map is calculated and plotted for the range of 1/3 of the field size. Figure 4.1 shows 

the model and the correlation map.

*

30 M r

m

I
0 4 0 0 0

H .

Figure 4.1 A synthetic continuous Gaussian model generated with azimuth of 60° (left) and 
the calculated correlation map (right).

The moment of inertia tensor is calculated and the principal directions are defined.

V '4514.33 4712.47'

Jy* V 4712.47 10408.78
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tan 20 = -
0, = 6 1 .0 1 °

0, =-28.99°

The major direction is defined by substituting ^ an d  6̂  into the equation (1.2). The 

angle with the smaller moment of inertia is the major direction (0, = 61.01°).

For the second example a single ellipsoid is generated with the azimuth angle of

I* '114976.0 53370.0'

I  yy _ 53370.0 75764 _

The angles are calculated and the major direction is determined with the same method 

as last example (0l =-69.82° ,02 =21.18° ). The azimuth angle is reproduced with 

error of 5.8%.

2 2

20° and the dip angle of 0°. The grids inside the ellipse are coded as 1 and the outside 

as code 0 (Figure 4.2). The methodology is applied on this model and the inertia 

tensor is calculated.
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0.0 Easting (m) 100000

Figure 4.2 A simple categorical example generated w ith azim uth angle o f  20°.

4.2.2 Locally Varying Angles

The anisotropy in the geological setting varies from one point to another due to 

heterogeneity. In some complex geological setting such as fluvial setting which 

contains channel features, the continuity direction significantly changes from one 

region to another. Geostatistical modelling techniques such as sequential Gaussian 

simulation or sequential indicator simulation with a global variogram orientation and 

search parameters can not reproduce these local changes in continuity direction. Some 

attempts have been done to change the simulation algorithms in order to consider the 

locally varying angles (Leuangthong et. al., 2006).

In the cases where representative training images or other geological model is 

available, the methodology discussed in section 4.2.1 can be applied locally to 

determine the local varying continuity direction. This is further explained with the 

following example.
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Example

A 2D training image is considered. The model has 256 cells in both x  and y  direction. 

There are three facies in the model. In order to locally determine the continuity 

direction a window is considered which contains 16 fine grid cells in x and y  

direction. Figure 4.3 shows the training image and the windows which are considered.

A constant value (mass) is assigned to facies type 2 which represents the channels. 

The mass of other facies are set to 0. The moment of inertia is calculated for each 

window and the results are plotted in Figure 4.4.

4.2.3 Unstructured Grid Element

The orientation of unstructured grid blocks is an important factor in calculating the 

upscaled permeability tensor. The upscaling technique discussed in Chapter 3 is based 

on the fine grid cell permeabilities which are considered for the volume averaging. It 

is shown in Chapter 3 that for a single unstructured grid block imposed on a specific 

fine scale permeability model, the upscaled permeability tensor is related to the 

orientation of unstructured grid block.

The orientation of unstructured blocks can be determined with the same method as 

discussed in previous section. Each unstructured block is refined locally with the fine 

Cartesian grid cells and then the inside cells are coded as 1 while the outside cells are 

defined as code 0. Then the moment of inertia tensor is calculated and the major 

direction is defined. This is investigated by the following example.

A 2D unstructured grid model is considered. There are 25 grid blocks in this model. 

Figure 4.5 shows the unstructured grid model. The methodology is applied for each 

unstructured grid block and the orientation is determined. Figure 4.6 shows the 

orientation of each grid blocks in the unstructured model.
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Figure 4.3 The training image considered for determination of locally varying angle. The 
squares show the windows.
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direction for each window.
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Figure 4.5 The unstructured grid model used for this example.

Grid Orientation
100.

24.305
35.853 41.297

46.627
38.666

43.958
80. _

42.329
48.082

51.501

43.336
60. _

56.017
O) 47.075

57.199 55.126

Z  40. _ 51.1

43.967
45.111

1.511
20. _

58.93750.985

32,765 35.852

40.0. 20 . 100.80.60.

Azimuth Angle (degree) 

.50.000

■11111Pillllliiliyi

u

40.000

30.000

Easting (m)
Figure 4.6 The unstructured grid orientation. The points show the centre of mass of each grid 
and the numbers show the azimuth angle of major direction.
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4.3 Discussion

A new method is presented to determine the continuity direction of geological models 

(continuous and categorical) by analogy to the moment of inertia. The orientation of 

an unstructured grid block can also be detected with the same approach. Two 

orthogonal vectors in 2D and three orthogonal vectors in 3D representing the major 

and minor continuity directions are determined. These angles will be used as a 

parameters needed for multivariate modelling of permeability tensor.
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Chapter 5 Conclusions and Future Work

Unstructured grids are commonly used in reservoir simulation in order to better 

capture the flow response in complex geological features and or near deviated wells. 

The characterization of geological heterogeneity within the unstructured block is 

essential.

Different facies modelling techniques are reviewed and a new approach is examined. 

The main idea in this method is to simulate each block individually and then add the 

results to the conditioning data. The method is applied for a synthetic regular and 

unstructured grid blocks. Each unstructured grid block is locally refined and 

simulated and then die inside grids are extracted. The connectivity of facies were 

reproduced well. Since so many conditioning data are used for simulation, the method 

is computationally expensive. However, the method can be applied for limited 

number of blocks which are far away from the well data.

Much research has been done in the flow-based upscaling of the permeability. In this 

thesis a flow-based upscaling technique with random flow boundary conditions is 

proposed. Different sets of boundary conditions are applied on the coarse block and 

the flow equation is solved based on the finite difference scheme. For each set of 

boundary conditions the pressures are randomly assigned to the comer of each grid 

blocks. Then the results are fed into an optimization technique to fit the components 

of permeability tensor. The method is flexible to fit full, symmetric and diagonal 

tensor. The method can be applied for unstructured grid blocks. A Fortran code called 

p  t e n s o r  is developed to calculate the upscaled permeability for sets of regular or 

unstructured grid blocks.
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Sensitivity analyses on the upscaled permeability tensor show that almost 10 sets of 

random boundary conditions are sufficient to get a stable permeability tensor.

The size of bounding box significantly changes the error in flow rates. It has been 

shown that the error decreases to one fourth when the size of bounding box increases 

three times. However using the larger bounding box is computationally expensive. 

Further, the permeability values of buffer zone also affect the upscaled permeability 

tensor. The components of permeability tensor stabilize when the permeability of 

buffer zone is sufficiently large (for example, k  = 100m D ).

Since the proposed upscaling technique is based on the fine scale permeability, the 

calculated permeability tensor varying as the fine scale heterogeneity direction is 

changing. This is confirmed by an example. Grid block orientation also affects the 

results. Fitting the full permeability tensor returns a smaller error in the calculated 

flow rate compared to the symmetric and diagonal tensor. The error was less than 2% 

for the specific example considered in this thesis.

A novel approach is developed to automatically determine the continuity direction 

based on the characteristics of moment of inertia tensor. The method works for both 

continuous and categorical models. The orientation of an unstructured grid block can 

also be detected with the same approach. The method is applicable to determine the 

continuity direction locally when we have a representative training image or available 

geological model. The result of locally varying angles can be fed into any simulation 

or estimation techniques which accounts for local variation in continuity direction.

Methodologies presented in Chapter 2 to Chapter 4 can be used to calculate the 

required parameters for multivariate modelling of permeability tensor on unstructured 

grid block. The multivariate space of the geological continuity, grid geometry, and 

permeability characteristics is high dimensional. For example, there may be up to 20 

variables describing geological parameters (facies, porosity, directions and magnitude 

of continuity), up to 20 variables describing each grid element (size and orientation),
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up to nine variables describing the permeability tensor. There are other variables 

including boundary conditions, the spatial distribution of grid blocks etcetera. One 

could imagine a multivariate distribution with more than 100 dimensions.

Future Work

Based on the methods explained in this thesis, we have the appropriate tools to 

characterize the permeability tensor for any comer points unstructured grid blocks 

and to automatically determine the continuity direction of geological setting and 

unstructured grid cell orientation.

We have seen that the permeability tensor depends on the geological continuity 

direction and also the unstructured grid orientation. An interesting future research 

would be to establish a relationship between these three factors.

Another research avenue is to generate the library of multivariate distribution of 

parameters for unstructured grid blocks. Having a large multivariate distribution 

library would enable us to populate the permeability tensor for any unstructured grid 

blocks without using the upscaling techniques. Data points to inform this multivariate 

distribution could be created by processing high resolution training images through 

flow simulation. The high dimensional distribution could be modeled with a variety 

of techniques.
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Appendix A 

Fortran Code: Permeability Tensor
( p t e n s o r )

The GSLIB-style program, called p te n s o r ,  is developed to calculate the 

permeability tensor for 2-D and 3-D unstructured grid block. It is based on the finite 

difference solution of single-phase, steady-state flow equation and optimization 

method. The p t e n s o r  program permits different options related to the shape of 

coarse grid (Polygon in 2-D or comer point geometry in 3-D), size of the buffer zone, 

the permeability value inside this zone, and an option to fit full, symmetric or 

diagonal tensor. The parameters required for this program are:

P a r a m e t e r s  f o r  P T E N S O R

Line S T A R T  O F  P A R A M E T E R S :

1 2 - 2 - D  ( X / Y )  o r  3 - D  ( X / Y / Z )

2 p e r m . d a t - i n p u t  d a t a  f a i l e  w i t h  p e r m e a b i l i t y

3 1 2  3  0 0  0 - c o l u m n s  f o r  k x ,  k y ,  k z ,  k y / k x , k z / k x

4 5 0  5 0 1 0 -  i n p u t  :  n x ,  n y ,  n z

5 1 . 0  1 . 0 1 . 0 -  i n p u t  :  d x ,  d y ,  d z

6 p t e n s o r . o u t - f i l e  f o r  p e r m e a b i l i t y  t e n s o r  o u t p u t

7 p t e n s o r . d b g - f i l e  f o r  d e b u g g i n g  o u t p u t

8 u s g . d a t - f i l e  f o r  u n s t r u c t u r e d  g r i d

9 1 -  N u m b e r  o f  g r i d s

10 1 1 1 1 1  1
- B u f f e r  z o n e  s i z e : X - l e f t , X - r i g h t , Y - l e f t , Y - r i g h t , Z

r i g h t

11 1 - B u f f e r  z o n e  :  H o m o g e n e o u s ( 1 ) ,  H e t e r o g e n e o u s ( 0 )

12 2 0 -  i f  ( 1 ) , c o n s t a n t  p e r m i b i l i t y  v a l u e

13 2 0 - N u m b e r  o f  B o u n d a r y  C o n d i t i o n s

14 6 9 0 6 9 - r a n d o m  n u m b e r  s e e d

15 1 - f i t t i n g  o p t i o n :  l = d i a g ,  2 = s y m m ,  3 = f u l l

16 0 . 0 0 1  5 0 0 0 - m i n i m u m  o b j e c t i v e  f u n c t i o n ,  m a x  p e r

In the first line there is an option to choose the dimension. Both 2-D  and 3-D  cases 

are acceptable. The information about the fine scale permeability data file are input in 

Lines 2 and 3. The number and size of grid cells in the input file should be specified 

in Lines 4 and 5. In Line 6 and 7, the name of output and debugging files are 

specified. The debugging file comprised of the flow simulation results for each coarse
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grid. The file for unstructured grids is specified in line 8. In unstructured grid file the 

number of comer points for each grid is provided first. In the following lines, the 

coordinates are specified by two triples of X, Y and Z coordinates, representing two 

corresponding points in upper and lower planes (description o f 3-D grids are 

described in the paper). Below is an example of acceptable unstructured grid file.

Unstructured grid file
5 3 . 2 4 8 . 6  7 5 3 . 2 4 8 . 6 3
3 8 . 2 30 7 3 8 . 2 30 3
5 7 . 4 1 2 . 9  7 5 7 . 4 1 2 . 9 3
8 7 . 5 4 0 . 5  7 8 7 . 5 4 0 . 5 3

8 10 7 8 10 3
20 10 7 20 10 3
29 6 7 29 6 3
25 5 7 25 5 3
10 S 7 10 5 3

Six integer numbers in line 10 control the size of buffer. Each integer value shows the 

number of fine grid which should be added to the smallest rectangular region. For 

example “2 2 2 2 2 2” means that the bounding box should be expanded by two fine 

grids at each side. There is an option for the permeability value of buffer zone. Lines 

11 and 12 enable the user to choose if the buffer zone is homogeneous or 

heterogeneous and what is the homogenous permeability value is (if put 1 in line 11). 

In the line 13, the number of random boundary conditions for which the flow 

simulation should be solved is specified. The random number seed is specified in line 

14. It should be a large odd number. Three options are available to fit the tensor (full, 

symmetric or diagonal). Line 15 corresponds to these options. The minimum 

objective function (error) and the number of iterations for tensor fitting are specified 

at the last line.
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