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Oil Sands Research and Information Network 

The Oil Sands Research and Information Network (OSRIN) is a university-based, independent 

organization that compiles, interprets and analyses available knowledge about managing the 

environmental impacts to landscapes and water impacted by oil sands mining and gets that 

knowledge into the hands of those who can use it to drive breakthrough improvements in 

regulations and practices.  OSRIN is a project of the University of Alberta’s School of Energy 

and the Environment (SEE).  OSRIN was launched with a start-up grant of $4.5 million from 

Alberta Environment and a $250,000 grant from the Canada School of Energy and Environment 

Ltd. 

OSRIN provides: 

 Governments with the independent, objective, and credible information and analysis 

required to put appropriate regulatory and policy frameworks in place 

 Media, opinion leaders and the general public with the facts about oil sands 

development, its environmental and social impacts, and landscape/water reclamation 

activities – so that public dialogue and policy is informed by solid evidence 

 Industry with ready access to an integrated view of research that will help them 

make and execute reclamation plans – a view that crosses disciplines and 

organizational boundaries 

OSRIN recognizes that much research has been done in these areas by a variety of players over 

40 years of oil sands development.  OSRIN synthesizes this collective knowledge and presents it 

in a form that allows others to use it to solve pressing problems. 
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REPORT SUMMARY 

The oil sands industry in Alberta produces large volumes of process-affected water (PAW), 

which is known to contain heavy metals and organic compounds (such as naphthenic acids, 

naphthalene, phenanthrene, pyrene, etc.) that are toxic and hazardous to the environment.  The 

industry has an ongoing need to improve the monitoring of concentrations and breakdown of 

these compounds.  Currently, this is mainly accomplished by collecting samples for shipment to 

a laboratory for analysis.  Portable and ideally distributed and real-time monitoring techniques 

would greatly improve efficiency and the base of knowledge with respect to these environmental 

concerns. 

The principal aim of the project was to develop a prototype lab-on-a-chip (LOC) based sensor 

for optical detection of target molecules in PAW using spectrally resolved fluorescence 

detection.  The proposed sensor would offer a high level of integration between the fluidic and 

optical components, potentially reducing the cost and complexity of the overall system while 

also improving the performance (sensitivity, signal to noise ratio (SNR), alignment tolerance, 

etc.).  In the long term, such miniaturized sensors hold promise as low-cost, highly distributed 

environmental monitoring devices. 

Most of the primary milestones of the project were successfully completed, as follows: 

1. A silicon-based air-core waveguide technology was developed and optimized for the 

ultraviolet-visible wavelength band of interest.  These waveguides employ low-loss 

TiO2/SiO2 Bragg reflectors deposited by sputtering deposition at the U of A 

nanoFab. 

2. Tapered air-core waveguides were assembled and tested as visible-band micro-

spectrometers.  These micro-spectrometers provide resolution on the order of 1 nm 

over a 100 nm operational band (e.g., wavelengths in the 500 to 600 nm range), and 

offer compelling advantages for lab-on-a-chip and optofluidic microsystems. 

3. Prototype sensing systems were developed, by combining the aforementioned micro-

spectrometers with PDMS-based microfluidics.  Fluorescence spectroscopy was 

successfully demonstrated for commercial dyes with fluorescence bands in the ~500 

to 600 nm wavelength range. 

At the time of writing, ongoing work is aimed at translating the operational band of these sensors 

to the ~400 to 500 nm wavelength range.  This effort has been delayed by processing difficulties, 

but is expected to reach a successful conclusion in summer 2013.  Further work is aimed at 

extending the operational range of the micro-spectrometers (e.g., 400 to 650 nm), by using more 

sophisticated multilayer designs.  We hope that this work will enable the detection of native 

fluorescence from hydrocarbon molecules, including the multiplexed detection of multiple 

species, and intend to pursue this objective in the coming months. 
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1 INTRODUCTION 

Oil sands tailings ponds present significant environmental and reclamation challenges.  In 

particular, naphthenic acids as a byproduct of oil sands refining represent a significant hazard to 

water systems and animals (Allen 2008, Rogers et al. 2002).  Currently, monitoring of these 

contaminants relies mainly on the collection of samples from tailings ponds and transport to 

remote laboratories equipped for detailed sample analysis
1
.  Portable analysis equipment based 

on optical fluorescence detection have been proposed and implemented (Kavanagh et al. 2009, 

Taschuk et al. 2013), however using bulk optical componentry and commercial spectrometers.  

Such schemes are still relatively bulky and expensive, and require significant power.  

Nevertheless, optical sensors have well-known advantages, including immunity to 

electromagnetic interference, compatibility with harsh environments, and potential for non-

destructive analysis of samples.  Miniaturization of sensors using microfluidics and lab-on-a-chip 

(LOC) techniques is a long-held goal and there is great interest in chip-scale optical sensors, 

enabled by co-integration of microfluidics and integrated optics.  However, the development of 

LOC sensors is currently hindered by the lack of integration of optical detection methods.  To 

date, most systems rely on large-scale and expensive off-chip optical devices such as confocal 

microscopes and optical spectrum analyzers (Meyers and Lee 2008).  For applications such as 

field-deployable toxin and environmental hazard detectors, this has delayed the widespread 

commercial deployment of LOC techniques. 

The main objective of this project was the development of a portable sensor technology for the 

detection and identification of hydrocarbon molecules (based on their native fluorescence 

spectra) in process-affected waters (PAW) produced by the oil sands industry.  The hypothesis 

was essentially that we could apply a previously developed set of technologies (integrated 

hollow waveguides and micro-spectrometers based on tapered hollow waveguides) to the 

implementation of chip-scale systems that can enable laser-induced fluorescence (LIF) 

spectroscopy of liquid-phase samples.  We proposed that this chip-based technology (with 

optical part < 1 cm
2
) could replace the functionality provided by existing systems based on bulk 

optics and commercial spectrometers, which are relatively expensive and much larger in size. 

Our methodology was as follows: 

1. We developed a micro-spectrometer operating in a suitable range (UV-visible 

region) for UV-induced fluorescence of unlabeled hydrocarbon molecules. 

2. We integrated this micro-spectrometer technology into a prototype optofluidic 

system to facilitate the efficient excitation of a small-volume liquid sample using a 

laser or LED source, and the efficient collection of fluorescence light by the micro-

                                                 

1
 See Zhao, B., R. Currie and H. Mian, 2012.  Catalogue of Analytical Methods for Naphthenic Acids Related to Oil 

Sands Operations.  OSRIN Report No. TR-21.  65 pp.  http://hdl.handle.net/10402/era.26792 for information on 

traditional lab-based analysis of naphthenic acids. 

http://hdl.handle.net/10402/era.26792
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spectrometer part.  Various strategies involving PDMS-based microfluidics or micro-

capillaries were explored. 

3. Preliminary proof-of-concept testing of the prototype sensors employed commercial 

fluorescent dyes to confirm the basic operation of the micro-system.  These dyes 

were selected based on the operational range (~500 to 600 nm wavelength) for the 

micro-spectrometers fabricated to date. 

4. In ongoing work, we are attempting to detect and resolve native fluorescence from 

hydrocarbon samples.  Typically, these molecules fluoresce in the ~350 to 500 nm 

wavelength range, outside the range supported by the first-generation prototype 

mentioned above.  Second-generation samples tuned to this band are under 

development. 

2 RESULTS 

We aimed to implement a chip-scale, spectrally resolved fluorescence detection sensor, in which 

all components except for the light source are integrated onto a single chip.  The proposed 

system would offer close integration between microfluidic and optical componentry, and builds 

on previous work in our laboratory: 

1. We developed a novel hollow waveguide and microcavity technology using silicon-

compatible materials (Allen et al. 2011, Epp et al. 2010).  These hollow waveguides 

are capable of acting as both an optical waveguide and a microfluidic channel, so 

that light-analyte interactions can be significantly enhanced compared to 

conventional approaches. 

2. We developed a miniature micro-spectrometer based on tapered versions of our 

hollow waveguides (DeCorby et al. 2009), as illustrated schematically in Fig. 1. 

Image sensor

white

light

mode m

 

Figure 1. Schematic illustration of a tapered waveguide spectrometer. 

The waveguide comprises an air core (cavity) bounded by omnidirectional Bragg 

reflector mirrors.  Polychromatic light is spatially dispersed due to the spectral 

dependence of the mode cutoff position in the taper.  Due to the omnidirectional 

reflection properties of the claddings, the cutoff light is vertically radiated from the 

waveguide at cutoff and the spatial pattern can be captured by an image sensor.  

Spatial-to-spectral mapping of this pattern is the basis of a compact spectrometer. 
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The goal of the project was to adapt and optimize these technologies for the on-chip detection of 

native fluorescence from hydrocarbon molecules in process-affected water.  To this end, we 

developed new waveguide mirrors, new techniques for tapered waveguide assembly, and new 

strategies for optofluidic integration. 

The one-year project encompassed four milestones, and progress towards each of these 

milestones is described in the following sub-sections.  With respect to the milestones, the project 

has proven to be a nearly complete success.  There is admittedly some optimization work that 

remains, however, especially related to packaging and fluidic interface to the prototype sensor. 

2.1 Milestone 1: Studies on Fluid Flow Through Hollow Waveguides 

We conducted an extensive series of experiments on interfacing external fluid connectors to our 

hollow waveguide chips.  These mainly involved the use of PDMS (a rubbery polymer employed 

extensively in microfluidics).  Two different strategies were explored: 

1. We deposited PDMS layers directly onto spectrometer chips containing channel 

waveguides, and developed a technique to connect micro-fluidic syringe interfaces 

to these chips.  Full details will be described in Brian Drobot’s M.Sc. thesis (Drobot 

2013).  This development was not completely successful, as we discovered it was 

very challenging to pump fluids through our channel waveguides, due mostly to their 

small cross-section (they are a few m tall, typically).  Furthermore, we anticipated 

significant challenges with respect to real-world PAW samples (due to particulates). 

2. These challenges prompted us to explore alternative strategies, in which the hollow 

waveguide based spectrometer is simply placed in close proximity to a separate 

microfluidic channel or reservoir (such as a micro-capillary or PDMS-based 

channel), as shown for example in Fig. 2.  This strategy led to new insights into 

superior ways for applying our spectrometer to fluorescence spectroscopy, which is 

the subject of a Report of Invention filed with Tec Edmonton in late 2012 and 

described in greater detail below. 
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(a) (b)
Tapered
waveguide

Fluidic
reservoir

PDMS
holder

 

Figure 2. Photographs of taper spectrometer chips interfaced to PDMS microfluidics. 

(a) the photograph shows a taper spectrometer chip placed in a pre-fabricated PDMS 

holder, (b) The photograph shows light collected and radiated by a taper; 

approximately 7 modes are present in the radiated light.  The green lines are the 

cutoff radiation associated with the green laser light used to excite a laser dye.  The 

bands of orange and red are the dispersed light from a fluorescent laser dye. 

2.2 Milestone 2: Development of Hollow Waveguides for Visible Wavelengths 

We adapted our (recently patented) technology for fabrication of on-chip, air-core channel 

waveguides using stress-driven buckling assembly.  This work involved the development and 

optimization of thin film deposition processes at the U of A nanoFab
2
, using SiO2 and TiO2 as 

low and high index mirror layers (see Fig. 3).  Significant progress was made, but the process 

proved to be somewhat sub-optimal due to the limited amount of compressive stress we were 

able to realize using the available sputtering system. 

As a result of the challenges mentioned above, we decided to employ a back-up strategy for 

implementation of the proposed spectroscopic sensors.  A hybrid integration technique 

(see Fig. 4) based on wafer bonding was used to fabricate hollow slab waveguides.  By using 

appropriate mirrors, we are able (in principle) to customize the spectrometer operating range to 

lie within any part of the visible spectrum (with a typical operating bandwidth of ~100 nm). 

 

                                                 

2
 See http://www.nanofab.ualberta.ca/ 

http://www.nanofab.ualberta.ca/
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Figure 3. Results from the development of sputtered SiO2/TiO2-based Bragg mirrors and 

tapered waveguides are shown. 

(a) Normal-incidence transmittance for a typical mirror is shown, with the stop-band 

spanning the wavelength range ~480 to 650 nm.  The solid curve shows theoretical 

predictions and the dashed curve is the experimental result. 

(b) Reflectance versus wavelength for several incidence angles and for 

TE polarization.  The operating range of the spectrometer is defined by the 

omnidirectional band of the mirrors, in the case shown spanning the wavelength 

range ~490 to 570 nm. 
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Figure 4. A tapered slab Bragg waveguide. 

(a) Schematic illustration of a tapered slab Bragg waveguide fabricated by bonding a 

glass substrate to a patterned Si substrate. 

(b) SEM image showing the end facet (wide end) of a taper.  For scale reference, the 

spacing between adjacent SU-8 posts is 150 m. 

In addition to providing simplified assembly and fabrication, the slab waveguide tapers provide 

additional advantages for the fluorescence spectroscopy application of interest: 

1. The input aperture is effectively much larger, since the slab waveguide can be 

arbitrarily large in the transverse direction (i.e., normal to the page in Fig. 4(a)).  

This increases the light collection efficiency of the spectrometer. 
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2. The taper height and slope can easily by varied by adjusting the height of the SU-8 

posts, allowing the spectral dispersion and number of supported modes to be 

customized. 

Details of the fabrication process can be found in a recent publication (Drobot et al. 2012). 

2.3 Milestone 3: Development of Visible Band Waveguide Spectrometer 

Using the hybrid assembly technique, we were able to implement waveguide tapers with air-core 

height tapered from approximately 2 to 5 m (i.e., at the wide end of the taper) to approximately 

0 m over a distance of several millimetres.  These tapers were coupled (via suitable optics) to a 

CMOS or CCD-based image sensor.  Resolution on the order of ~1 to 2 nm, with an operating 

bandwidth of ~100 nm in the visible region was verified, and full details can be found elsewhere 

(Drobot et al. 2012).  As an example, Fig. 5 shows the spectral dispersion of an input white light 

source.  Each ‘rainbow’ band corresponds to the light associated with cutoff of a particular 

waveguide mode. 

White

light in

(a) (b) m=4m=5

 

Figure 5. Spectral dispersion of visible-band white light by a tapered air-core Bragg 

waveguide. 

The camera captures the spectrum of the input light from the spectral dispersion of 

the cutoff point for each mode order (m). 

After Drobot et al. (2012). 

2.4 Milestone 4: Assembly and Test of Prototype Sensing System 

A schematic of the prototype sensing system is shown in Fig. 6.  Several variations on this 

design have been conceived, and are described in greater detail in DeCorby (2012).  In work to 

date, two different strategies have been pursued for interfacing fluid samples to the micro-

spectrometer.  In the first approach, tapered waveguide chips were embedded into custom-built 

PDMS microfluidic holders (see Fig. 2 above), so that fluid samples could be introduced near the 

wide end of the tapered waveguide.  In the second approach, fluid samples were sealed in small 

sections of commercial micro-capillaries.  These capillaries were then simply assembled in close 

proximity to the waveguide tapers, so that fluorescence light could be coupled with reasonable 

efficiency.  Further details can be found elsewhere (Drobot et al. 2013). 
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Figure 6. A general schematic of the proposed micro-system for spectrally resolved detection 

of the light scattered or fluoresced by an analyte. 

Some of the fluorescent or scattered light from the analyte is coupled into resonant 

waveguide modes, and propagates towards the narrow end of the taper.  Owing to the 

polarization-dependent properties of the cladding mirrors (for the case shown), only 

TE-polarized modes propagate with low loss, and the waveguide acts as a very 

efficient polarizer.  A significant fraction (typically ~0.1) of the light in the low-loss 

TE-polarized modes is spatially dispersed and radiated in a nearly vertical direction 

at mode cut-off.  This radiated light can be detected by an image sensor 

(photodetector array), placed either above or below the tapered waveguide, and used 

to reconstruct the spectrum of the fluorescent or scattered light. 

 

As mentioned above, first-generation prototypes operate in the ~500 to 600 nm wavelength 

range.  For proof-of-principle testing purposes, we obtained commercially available fluorescent 

dyes (Fluospheres, Invitrogen Inc.) with emission spectra matched to this operational range.  

Figs. 7 and 8 show example spectra extracted from experiments using these commercial dyes 

(Drobot et al. 2013). 
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Figure 7. Fluorescence spectrum of Orange FluoSpheres. 

(a) Camera image of spectrally-resolved fluorescence spectra from ‘Orange’ 

FluoSpheres (Invitrogen, Inc.) excited near the wide end of a taper.  Mode orders 

m = 2 to m = 5 are shown.  The discrete lines are due to scattered light from the 

543 nm laser used to excite the fluorescence. 

(b) Fluorescence spectrum of the Orange FluoSpheres (and the residual laser light at 

543 nm), extracted from the radiated light collected from mode order m = 2.  As 

shown, the fluorescence spectrum agrees well with that collected using a commercial 

spectrometer. 
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Figure 8. Fluorescence spectrum of Orange FluoSpheres using a 532 nm wavelength excitation 

laser. 

(a) Camera image of spectrally-dispersed light associated with cutoff of mode orders 

1 and 2. 

(b) Fluorescence spectrum extracted from mode order 1. 

 

While these results confirmed the general principle, we believe that significant optimization is 

possible by using improved taper design, optics, and microfluidic interface (Drobot et al. 2013). 
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3 ONGOING AND FUTURE WORK 

3.1 Ongoing Work 

The primary piece of unfinished work is the spectral detection of native (UV) fluorescence from 

target hydrocarbon samples.  We fully intend to pursue this goal, and hope to achieve the 

milestone during the summer of 2013.  Key personnel (M.Sc. student Aaron Melnyk, summer 

student Min Choi) are still working in our lab, and will be leading the hands-on portion of the 

work.  In addition to the work described above, we have made the following progress towards 

this goal: 

1. Through a collaboration with the Tsui group (Taschuk et al. 2013), we have obtained 

hydrocarbon samples and verified their fluorescence spectra using conventional 

spectrometry. 

2. We have successfully developed Bragg mirrors for the target range of interest near 

400 nm wavelength (see Fig. 9). 

(a) (b)

 

Figure 9. Experimental results for Bragg mirrors centred near 400 nm wavelength. 

(a) Reflectance versus wavelength for various incident angles 

(b) Normal-incidence transmittance. 

 

Completion of this milestone has been delayed by unexpected problems with tapered waveguide 

assembly.  These problems are mundane in nature, arising from challenges with respect to the 

definition of the SU-8 features (see Fig. 4).  We don’t anticipate any fundamental barriers to final 

prototype implementation, once these processing issues are sorted out. 

3.2 Future Work 

There are several interesting strategies to explore in future work.  For example, the main 

limitation of the existing prototype is its operational range, since the micro-spectrometer chips 

we have realized to date can resolve spectral content over ~100 nm of the wavelength spectrum 

in the visible range.  This is already very useful, especially if the part is specifically designed to 

target a specific molecule with native fluorescence centred at a known wavelength.  However, it 

would be preferable if the operational range of the sensor could be expanded, for example to 
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cover the entire 400 to 700 nm wavelength range of the visible spectrum.  This would allow 

flexibility in terms of identifying multiple target molecules (possibly simultaneously) with a 

single chip.  There are at least two promising strategies to achieve this goal, as follows: 

1. We aim to explore the use of higher index contrast mirror materials.  For example, 

GaP is an interesting high-index material (Gao et al. 2011).  Alternatively, photonic 

heterostructures (multilayers containing two or more offset quarter-wave-stacks) 

could be explored. 

2. We believe that a single PDMS enclosure could easily be designed to hold multiple 

taper spectrometer chips, each independently customized to cover a unique part of 

the spectrum.  For example, three taper chips with their omnidirectional stop-bands 

offset by 100 nm will allow us to design a system that operates over the entire visible 

spectrum (~400 to 700 nm wavelength) using the materials employed to date. 

A major emerging theme within LOC-based sensors is the use of cell-phones to support POC and 

distributed instrumentation.  This is partly motivated by the incredible market penetration of cell-

phones (there are estimated to be ~6 billion cell-phones in use, most in the developing world). 

The effort is furthermore supported by the impressive computing power, convenient software 

development interface, and optoelectronic capabilities (i.e., the CMOS-based image sensor) 

embedded within these devices.  Many research groups, especially the Ozcan group at UCLA 

(Zhu et al. 2011) have already demonstrated impressive results using cell-phones as a basis for 

low-cost, portable microscopy, with applications to diagnostics and sensing. 

To date, there have only been a few efforts to implement a spectrometer using a cell-phone 

platform.  Smith et al. (2011) combined a commercially available diffraction grating with a cell-

phone camera, and achieved a reasonably good resolution (~10 nm) in the visible part of the 

spectrum.  However, the device required the attachment of a collimating tube (~10 cm in length) 

with an entrance slit, to ensure only collimated light reached the diffraction grating.  It is not 

clear that such a device would have great utility in the context of LOC-based POC diagnostics.  

We believe that we have potentially developed a better solution for such applications.  In future 

work, we hope to develop a high-resolution spectrometer attachment for cell-phone-based 

diagnostics and sensing (see Fig. 10). 
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Figure 10. Proposed future implementation of the LOC spectral sensor as field-deployable and 

portable optofluidic system. 

The optical and microfluidic parts will be designed to clip or mount onto the camera 

lens of a standard smart phone.  The smart phone will provide the image capture and 

data analysis to facilitate quantitative analysis of target molecules. 
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5 GLOSSARY 

5.1 Terms 

Bragg Mirror 

An optical mirror based on two or more dielectric materials, where reflection from multiple 

interfaces is made to constructively interfere so as to produce high reflection over a certain range 

of wavelengths. 

Diffraction Grating 

An optical device with periodic apertures that produces a spatial dispersion of polychromatic 

light. 

Fluorescence 

Light emitted by a molecule following absorption of shorter-wavelength light. 

Lab-on-a-chip 

Micro-systems that incorporate microfluidic channels and related elements to facilitate sensing, 

chemical reactions, etc. on a chip. 

Microcavity 

A micro-scale optical resonant cavity. 

Optofluidics 

Micro-systems that combine microfluidics and integrated optics, often for sensing or detection in 

lab-on-a-chip systems. 

Spectrally-Resolved Fluorescence Detection 

The detection of the range of wavelengths emitted by a fluorescent molecule, as opposed to 

simply detecting the emitted power, for example. 

Spectrometer 

An optical instrument that provides the spectral content of an input optical signal. 

Sputtering / Sputtered 

A thin-film deposition technique based on the acceleration of noble gas ions towards a target. 

Waveguide 

A structure that confines light (or electromagnetic energy, in general) to propagate along a given 

direction. 

5.2 Acronyms 

CCD Charge-coupled device 

CMOS Complementary metal-oxide-semiconductor 
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LED Light Emitting Diode 

LIF Laser-induced Fluorescence 

LOC Lab-on-a-chip 

OSRIN Oil Sands Research and Information Network 

PAW Process-affected water 

POC Point-of-care 

SEE School of Energy and the Environment 

SEM Scanning electron microscope 

SNR Signal-to-noise-ratio 

TE Transverse electric 

TM Transverse magnetic 

UV Ultraviolet 

5.3 Chemicals 

GaP Gallium phosphide 

PDMS Polydimethylsiloxane 

Si Silicon 

SiO2 Silicon dioxide 

TiO2 Titanium dioxide 
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