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Abstract

Service-oriented architectures (SOA) enable interaction among multiple entities,

loose composition of components, service substitution, dynamic run-time binding,

and a network-driven infrastructure. These potential benefits, regardless of the tech-

nology providing them, introduce challenges: multiple organizations interacting, be-

havior that changes at run-time, and “black box” functionality. Service interactions

can be governed by service level agreements (SLAs) specifying quality of service

standards; meeting these standards is an ongoing challenge.

This dissertation advances the state of the art for configuring, deploying, and

managing service systems. First, it demonstrates that authoring a simulation of a

service-oriented system need not be prohibitively difficult, and that such simula-

tions can produce a narrative that offers useful and realistic information about the

predicted performance of a software system. This is in contrast to the results of

a systematic survey of current frameworks. A framework is described and imple-

mented that improves on the state-of-the-art in key areas.

Second, this approach is used to simulate two real-world service systems. They

are validated to accurately predict performance, and serve as testbeds for demon-

strating simulation-driven methodologies.

Third, a novel view on how service level agreements are negotiated, deployed,

and evaluated is described. A simulation-driven methodology and tool allows con-

sumers to explore trade-offs among configuration goals, based on a desire to pro-

duce an SLA that maximizes perceived value for the consumer and the provider.

Another simulation-driven tool answers questions posed by administrators seeking

configurations that will adhere to an SLA. A third tool enables run-time testing

and monitoring of a service system. The tools are implemented and tested in both

simulated and real scenarios.

Finally, an autonomic manager capable of re-configuring an application at run-

time is presented. A decision model is created before the service is deployed by



running the simulation (either manually or automatically), collecting traces of per-

formance, and constructing a state-transition model that identifies the (abstract)

states of an application and the transitions among them. This is implemented and

tested both in simulation and in a real-world cloud computing environment. Ques-

tions about the granularity of the abstract states and the size of the state space are

asked and answered using empirical results.
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Chapter 1

Introduction

Service-oriented architectures and flexible, scalable computing infrastructures promise
useful functionality such as interoperability across organizations, software service
systems that can be deployed and run quickly, managed infrastructure, and align-
ment of business processes with technical implementations of those processes. Service-
oriented architectures are loosely coupled, componentized, and standards-based.
This composability, interoperability, and standardization enables re-use and the
seamless replacement of one service with another offering the same interface. SOA
is a potentially flexible architecture that enables interaction among multiple service
providers and service consumers, creation of complex functionality by composing
several simpler components, and a network-driven infrastructure.

The current state of the art for providing this functionality is services-oriented
architectures and cloud computing. Regardless of the ability of these specific tech-
nologies to meet their promises, this functionality will continue to be sought.

This functionality introduces challenges inherent to complicated systems: there
are multiple organizations involved, the behavior of the system is difficult to pre-
dict based solely on the behavior of the individual components, and technical deci-
sions may be dictated by business decisions made without consideration of technical
challenges. Generally speaking, flexibility leads to complexity in decision-making.
Complexity cannot be removed from a closed system; it can only be moved from
one component or stage to another. By allowing organizations to integrate soft-
ware systems, the complexity is transferred from information sharing to creating
and implementing the agreements that govern such interactions. The missing step
is hiding that complexity from non-technical decision makers by offering tools and
methodologies that simplify this process. A flexible computing infrastructure poses
the challenge of actually configuring and managing that infrastructure in the face of
changing business requirements and technical abilities. Distributed, loosely-coupled
software systems solve interaction problems and can reduce development time, at
the cost of making configuring, deploying and testing the software system more
complex.

1.1 Research Problem and Objectives

Research in configuration management has attempted to address the challenge of
configuring software of increasing complexity. The typical approach to configuring a
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deployed software service system involves a trial-and-error reactive approach loosely
based on a set of application-specific best practices. There is some expertise in the
area of configuring at the systems level - servers and networks - but application-level
configuration expertise is domain- or application-specific when it exists at all. The
result is an expensive and time-consuming process of configuring a deployed service,
or maintaining a sophisticated replica testing environment, or investing in an emu-
lation environment to test possible configurations. In the case of a multiple-entity
service composition, such testing may be impossible or prohibitively expensive.

Another way to meet the configuration challenge is self-managing (autonomic)
systems. A key challenge for such systems is producing a decision model - some-
how translating raw metrics monitored from a service system into actions that re-
configure the system (or, inaction). An approach more involved than simply making
changes when a threshold is exceeded is desired; in particular, an approach that is
able to make pro-active configuration changes to avoid thresholds completely. There
is general distrust of many decision models because they are difficult to understand
- the model is seen as a black-box oracle that produces re-configuration actions that
are difficult to understand.

Given that service providers have difficulty understanding and configuring their
own services, it may be surprising that service consumers are expected to partici-
pate in establishing agreements specifying minimum performance standards for the
services they use. Research shows that consumers who are able to experience a
product are better able to assess its quality and make decisions about cost versus
quality trade-offs. Typically this can’t happen until a service is deployed - after
which changes are more expensive and more disruptive.

A solution that addresses each of these problems is to produce a simulated ver-
sion of the target service system, then use simulation-generated data to assist in
configuring services, to construct decision models for self-managing systems, and to
inform and educate service providers and consumers. Unlike a pure analytic model,
simulation can predict a narrative for a service system in a given scenario over time,
making the results explainable and understandable. The current state of the art in
simulating service-oriented systems is a) more focused on composition bottlenecks
instead of on the QoS attributes of each component of a service system, and b)
less focused on tools to help communicate a plausible narrative (visualizations, met-
rics generation, probabilistic models). Existing solutions also require substantial
modeling and/or development effort and expertise specific to the simulation tool.

The aim of this dissertation is to absorb some of the complexity of configuring,
deploying, governing, and managing service systems. The four research objectives
are as follows. First, to demonstrate that authoring a simulation of a service-oriented
system need not be prohibitively difficult, and that such simulations can produce
a narrative that offers useful and realistic information about the predicted perfor-
mance of a software system. Second, to use this approach to produce simulated
versions of real-world service systems using real performance data. Third, to show
that simulation-driven tools can be used to help manage the governance of software
systems throughout the cycle of negotiating standards for service performance, con-
figuring the service to meet those standards, and evaluating and monitoring ongoing
compliance with those standards. Fourth, to demonstrate that a decision model gen-
erated in simulation can be used to reason about a real-world software system, to
the point that such reasoning can be trusted to re-configure the service at run-time.
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1.2 Achieving the Research Objectives

In support of these objectives, a series of contributions advancing the state of the
art in understanding and managing services are described.

To achieve the first objective, a standardized set of dimensions and character-
istics is used to describe and compare existing service simulation frameworks in a
systematic, comprehensive literature review. No such review or set of characteristics
existed previously. To address the identified shortcomings, a simulation framework
and prototype implementation that improves on state of the art simulation frame-
works is described. The framework excels at producing a narrative of the predicted
performance of a service system based on past exemplars. It achieves this by offering
a powerful and extensible engine for collecting and visualizing metrics and the abil-
ity to generate a simulation from an existing standardized description of the service,
reducing development effort. Integration with real-world components enables sim-
plified validation in real situations. The unique ability to systematically run large
numbers of varied experiments simplifies generating volumes of performance data.

The second objective is achieved by using this framework to produce simula-
tions of two real-world service-oriented systems, which have been demonstrated to
accurately predict performance-related metrics. The resulting simulations produce
narratives of predicted system performance over time for a given configuration. One
of the simulations is statistically validated and used as a test-bed for later contri-
butions; in cases where simulated implementations are tested in the real world, the
simulation is shown to be an accurate predictor of their behavior.

In support of the third objective, a novel view on the lifecycle of a Service Level
Agreement (SLA) is described. It improves over traditional perspectives by learning
from known problems with SLAs and incorporating research from other disciplines
on perceived quality and value. This view of the lifecycle is supported by a series
of novel methodologies and tools. First is a novel simulation-driven approach to
sharing information, exploring trade-offs, and increasing understanding of a service
while negotiating desired service levels. This is motivated by an understanding of
perceived value and the problems with SLA negotiation and the need to translate
low-level metrics to higher-order constructs that assess value. A tool implementing
the approach is also presented. The second contribution to SLA lifecycle support is
an innovative simulation-driven question-answering methodology and tool to assist
administrators responsible for configuring and deploying a service system to meet a
service level agreement. Finally, a state-of-the-art tool allows run-time testing and
monitoring of a deployed service system to ensure its compliance with a service level
agreement by using the emulation capabilities of the simulation framework. The
focus of the SLA management is on measurable (or approximable) qualities with
defined thresholds, which are sometimes called Service Level Objectives (SLOs),
rather than the more vague textual descriptions offered by SLAs. The term SLA
is used generically to refer to any workable expression of the goals of the SLA,
even if they take the specific form of SLOs. From a consumer standpoint, the
exact form the SLA is expressed in is less important. Certain qualities described
within the SLA - e.g., privacy, security, usability - are more difficult to quantify and
the current tools and methodology will not support them. Other qualities - e.g.,
availability, reliability - can be managed using the approach described here, though
the motivating example used throughout this work is capacity planning.
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The fourth objective is achieved through an abstract decision model in the form
of a state-transition model, constructed from simulation-generated data, useful for
identifying the state of an application and predicting future states. No existing deci-
sion model generates a state-transition model from simulated data. A novel method
for creating a self-managing software system is described, using the decision model
to make configuration and re-configuration decisions based on predicted futures.
This is implemented and tested both in simulation and by using the self-manager to
make configuration changes in a real-world cloud computing environment. Finally,
a novel approach (and implementation) systematically explores the state space of an
application to construct a decision model automatically. This leads to an assessment
of what level of granularity offers the best abstraction of continuous data to produce
the best translation between simulated environments and the real world.

1.3 Organization of this Dissertation

The existing state of the art is described in Chapter 2, including a background on
services; a comprehensive literature review of simulation support for service oriented
software; an introduction to value-related concepts like perceived value, perceived
quality, and perceived cost; and current research in capacity planning and configu-
ration management and self-managing software. A novel contribution is provided in
the form of a set of characteristics useful for characterizing and comparing simulation
frameworks for service-oriented systems (§2.2).

Chapter 3 introduces the Services-Aware Simulation Framework (SASF), a novel
contribution designed to create a virtual model of a service oriented system. SASF
improves on existing solutions by offering automatic generation of simulations from
existing data about the service, a powerful approach to recording & visualizing
simulation-generated metrics, support for integrating with real-world components,
and an extensible library of common service tasks. SASF uniquely offers accurate
replication of performance characteristics of services, an API and a user interface
for interacting with a running simulation, and an innovative language and tool to
systematically modify simulation configuration files and execute simulations.

In Chapter 4, SASF is used to simulate two service systems. The first, a propri-
etary enterprise-level system that includes SOA-based interfaces, is used to demon-
strate simulations at a higher level of abstraction with less library support. The
simulation models a distributed architecture used to publish files to thousands of
remote endpoints. It is shown that the simulated version produces results compara-
ble to the real-world system (§4.1 and §4.2). The second is a text-analysis tool that
provides a public web services interfaces. It is used to demonstrate automatically
generating a simulation with a one-to-one mapping between simulated components
and real-world components (§4.3 and §4.4). Its CPU-bound operations are com-
plex and interesting operations, but the relatively small number of these operations
make it more manageable as a case study. This simulation, called TAPoRsim, is used
as a platform for demonstrating simulation-driven methodologies in the remaining
chapters.

Chapter 5 is organized around the first contribution, a novel formulation of the
life cycle of a Service Level Agreement (SLA). These documents govern the inter-
actions between a service provider and a service consumer; they are cyclic because
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they should be re-negotiated and re-evaluated periodically as business and technical
needs change. The second contribution draws on an understanding of perceived
value to describe the problems with SLA negotiation and identify a simulation-
driven approach to sharing information and increasing understanding of the service
(§5.1). The third describes a simulation-driven approach to answering specific ques-
tions posed by those responsible for configuring and deploying a service system that
complies with the SLA (§5.2). The fourth contribution describes a SASF-supported
approach to testing and monitoring a deployed service system (§5.3). Each contri-
bution is implemented and demonstrated using TAPoRsim.

A novel method for creating a self-managing software service system is described
in Chapter 6. Configuration management is a complex task, even for experienced
system administrators, which makes self-managing systems a desirable contribution.
The first contribution is an abstract decision model in the form of a state-transition
model, useful for identifying the state of an application and predicting future states
(§6.1). A second contribution uses this model as the basis for self-management fea-
tures that use predicted futures to make decisions on configuration changes (§6.2).
This is validated both in simulation and by using the self-manager to make config-
uration changes in a real-world cloud computing environment. Third, an approach
and an implementation to systematically explore the state space of an application
to support constructing a decision model (§6.3). Finally, the granularity required
for such a decision model to be effective is described and tested empirically.

The contributions are summarized and future work is presented in Chapter 7.
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This chapter introduces background,
terminology, and the current state of
the art. Given the breadth in the areas
touched by the contributions described
in this work, the various subsections
cover a diverse range of topics, ranging
from industry standards to simulation
to autonomic computing to marketing
literature.

Basic services terminology is intro-
duced in §2.1, including how service
provision can be governed by Service
Level Agreements (SLA) and how typ-
ical implementations exhibit shortcom-
ings (§2.1.1). Services are a recurring
theme throughout this work, but this
section is most relevant to Chapter 3
where a simulation framework for ser-
vices is described, and to Chapter 5
where some of the shortcomings of SLAs
are addressed.
§2.2 describes a set of characteris-

tics for characterizing, describing, and
comparing simulation frameworks, with a focus on simulation frameworks used to
simulate service-oriented or componentized software systems. This set is a novel
contribution, described here as it is important to §2.3.

In §2.3, the results of a comprehensive survey of simulation frameworks for
service-oriented and componentized software systems are presented. The system-
atic survey identified 6 specific frameworks; each is described and characterized
using the characteristics defined in §2.2. Finally, a discussion guided by the char-
acteristics shows while each framework has strengths in several dimensions, the
framework presented in this work meets several previous unmet requirements and
broadly covers the desirable aspects of a simulation. This survey is most relevant
to the description of the services-aware simulation framework (Chapter 3).
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An introduction to concepts like perceived value, perceived cost, and perceived
quality follows in §2.4. Included is a discussion on whether an implementation of
a service-oriented architecture should rightly be considered a product or a service
(§2.4.1). A survey of marketing literature reveals how individuals evaluate value and
service quality when making purchasing decisions. This background is important to
the discussion of an SLA creation methodology in §5.1 and §5.1.1.

Selected state-of-the-art work on configuration management and capacity plan-
ning is presented in §2.5. Provisioning sufficient resources to meet expected demand
is most relevant to the question-answering methodology contribution that is intended
to help system administrators translate customer non-functional requirements to a
configured software system (§5.2.1).

Autonomic computing related work is reviewed in §2.6. The goal of an autonomic
system is to be self-managing; the more specific focus is on self-configuring software
systems. The archetypical architecture is presented, and the areas advanced by this
work are identified. This section is most relevant to the simulation-based autonomic
computing methodology presented in Chapter 6.

2.1 Services Overview

Service-oriented Architecture (SOA) is a relatively new software architecture for-
malization. It has been embraced by academic researchers and companies. It’s
primary defining characteristic is meeting needs with capabilities: broadly speak-
ing, units of functionality are discovered and loosely-coupled to meet a need. The
building blocks of a Service-oriented Architecture are services. In the context of
service-oriented computing, a service is a mechanism for accessing a capability via
a well-defined interface [10].

While this definition is implementation-agnostic, a common software implemen-
tation specification is Web Services (WS), which offers a well-defined interface to
server-side software and a suite of standards1. This narrows the definition to a net-
work accessible endpoint that communications using XML standards. A Web service
is “a software system designed to support interoperable machine-to-machine inter-
action over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner pre-
scribed by its description using SOAP2-messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-related standards” [20].

A binding describes how to move from a specification to implementation; it is an
“association between an interface, a concrete protocol and a data format. A binding
specifies the protocol and data format to be used in transmitting messages defined
by the associated interface” [20].

An operation is an action supported by the service. A service is capable of
providing at least one action and potentially more. For example, a car rental service
might have two operations: searching for a car to rent, and booking a car to rent.

Another specific form of service is a RESTful service. Such services use HTTP

1These standards, sometimes called the WS-* standards, are agreed to by major corporations,
freely available online, and will not be discussed at length here.

2SOAP is officially no longer an acronym, it is a term unto itself; the original meaning was
Simple Object Access Protocol.
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without a SOAP message wrapper to transmit messages. The responses are usually
still in a standardized form: XML or JSON are common. One school of thought
considers RESTful services to be architecturally different, to be resource-oriented
rather than service-oriented. The terms and language used throughout this docu-
ment are those used for Web Services; this is done without loss of generality and
without endorsing one type of service over the other. The implemented tools do
have dependencies based on WS technologies; including RESTful services is not a
methodological question, but rather an implementation issue.

Services can be composed to provide more complex functionality. Composed
services can be managed by choreography (where the services are told how to work
together, and possibly intermediaries are created to help the two communicate,
but there is no central control) or orchestration (where a central controller guides
the sequence of services and transforms data as needed). The specification of how
services are composed can use the Business Process Execution Language (BPEL),
which “defines a model and a grammar for describing the behavior of a business
process based on interactions between the process and its partners” [29]. It is
a script multiple partners can follow to ensure execution of their shared business
process.

Web services allows for multiple-entity compositions. While not part of the
WS-* standards, Service Level Agreements (SLAs) can be used to govern these
interactions. A service level agreement (SLA) is a contract between two parties
promising a certain level of service. The level of service expected can be technical
(response time, CPU load) or non-technical (time to helpdesk problem resolution),
but is typically measurable. There may be penalties for dropping below this level
of service.

2.1.1 Service Level Agreements

Service Level Agreements (SLAs) can be used to govern interactions between service
providers and service consumers. A service level agreement (SLA) is a contract be-
tween two parties promising a certain level of service. The level of service expected
can be technical (response time, CPU load) or non-technical (time to helpdesk prob-
lem resolution), but is typically measurable. There may be penalties for dropping
below this level of service. The items in a service level agreement are called Service
Level Objectives (SLOs).

One type of SLA is static and used for all customers, like those dictated by
service providers (e.g. Amazon EC2). One can be a customer or not; this is the
extent of “customization” available. Metrics are recorded by the consumer and must
be reported to and validated by the provider in order for the penalty clause of a 10%
refund to take effect. The other type are individual and specific based on the needs
of the consumer and capabilities of the provider, in which case they are negotiated
and include organization-specific guarantees. Typically these service providers have
an SLA template which can be tailored to the needs of the customer. This tailoring
can happen in a series of meetings prior to beginning the service experience; there are
also methods for negotiating SLAs automatically at run-time (e.g. [65, 44, 85, 35]).

Services covered by SLAs typically have reporting requirements so both the
provider and consumer can compare actual performance to target performance.
These reports are typically high-level; for example, “green” means a service level
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objective was met, “red” means it was missed, and “yellow” means that there was
trouble meeting the objective.

Although SLAs are the current standard practice, they do not always ensure
customer satisfaction. Blomberg [6] conducted a study of interactions between con-
sumers and providers. She identified five problems with how SLAs were used in
those interactions, three of which are particularly relevant. A 2008 Forrester Re-
search study [19] and a paper identifying SLA principles and best practices by
Fitsilis [18] support her conclusions and offer additional problems, as follows:

• Information is difficult to understand. A Forrester study [19] concluded most
SLAs are defined in technical terms not accessible to business users. Fit-
silis [18] emphasizes the difficulty in mapping service levels from low-level
measurable information to higher-level meaningful information, reporting that
only technical specialists understand SLAs. He also emphasizes the impor-
tance of changing this: the first two best practices identified are “service level
definitions should be business-based, meaningful to the users...” and “service
level definitions should be easily defined and measurable”. The author also
recognizes that “the ultimate measure of service-level performance is customer
perception and satisfaction”, but that this end-user experience is difficult to
measure.

• Satisfied SLA metrics don’t mean satisfied customers. The SLA reports are
useful in the first few months as the provider adjusts service delivery to ensure
the metrics are “green”. However, once the service delivery is satisfied, they
appear to become less important, and may not indicate customer satisfaction.
A 2008 Forrester study [19] refers to “misalignment”, the distance between
consumer expectations and what the provider is trying to achieve. In pointing
out that SLAs often aren’t actually agreements, the report claims “... at the
end of a budget period, business managers can say ‘it was not good enough for
me to do my business’, even if the IT service levels were met on a mathematical
basis from the IT point of view.” They advocate for improved understanding
of higher-level requirements. Fitsilis [18] reports that requirements are often
poorly specified and difficult to enforce.

• Information is hoarded. Providers are reluctant to provide unfettered, un-
nuanced access to performance data. This sometimes extends from an honest
desire to provide meaningful interpreted performance data that has been an-
alyzed and summarized for the client. A reasonable theory, though one as
yet unsupported by evidence, is since SLAs are legally binding contracts, the
provider may hesitate to give clients access to information that could be used
to enforce penalty clauses if not properly “interpreted”.

• SLAs are not proactive enough. Clients remarked that they wanted more
from their service providers: a proactive approach to help the client identify
their needs and proactively meet them. As Blomberg points out, this requires
a broad sharing of information that may not always be possible or popular.
It also requires technical staff to have the ability to elicit requirements from
business users, and these two groups may not be able to communicate on the
same level. Fitsili [18] remarks that by only penalizing performance below
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a minimum standard, providers are incentivized to strive for minimum levels
and no better.

• SLA obligations are not met. Forrester [19] reports that SLAs are unmet 75%
of the time, and suggests the problem is that IT has moved from managing
servers and networks to managing the applications (or at least the middleware)
that runs on them.

Chapter 5 describes a set of contributions that improve on the challenges with
SLAs above; respectively:

• Simulation-driven metrics visualization relates low-level metrics to higher-level
constructs. The tools give consumers a chance to perceive quality in simulation
before deploying to a real environment.

• The lifecycle proposed involves periodic re-evaluation of SLAs. Simulation
allows customers to view a narrative of the expected performance of the service
before it is deployed. The configuration question answering tool helps service
providers align their configurations to service level obligations.

• By making information easier to understand, the incentive to hoard informa-
tion is minimized. Substantial simulation-generated data can help satisfy the
desire for more information or prepare customers to receive larger volumes of
information from providers.

• The SLA negotiation tool enables an approach where the SLA is co-created
to maximize value to the client and help resolve trade-offs to the satisfaction
of the customer.

• The question-answering tool helps translate SLA requirements to configuration
values. The evaluation and monitoring tool simplifies periodic testing of the
service to ensure SLA obligations are being met. Additionally, Chapter 6
describes an approach to automatically re-configure a service system to meet
SLAs in rapidly changing environments.

2.2 Characteristics of Simulation Frameworks

To better classify simulation frameworks and compare them to the framework pro-
posed in Chapter 3, the following set of simulation framework characteristics is
defined:

1. The first interesting characteristic feature of a simulation framework is its
purpose. Generally, a framework has one of two general objectives: (a) the
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examination of the system behavior in order to identify possibly undesirable
interactions in the composition of the system constituent services, and (b) the
analysis of the system performance.

2. The software design and functionalities of the simulation environment. An
overview is in Figure 2.1 with the details of each branch in Figure 2.2.

• Basics: Based loosely on Sulistio et al. [73], this covers the fundamen-
tals of the simulation. Continuous simulations are capable of tracking
a system through any point of time, usually based on differential calcu-
lus. Discrete-event simulations track a system based on specific moments
in time (time-based), as events occur (event-driven), or based on traces
from real-world applications. A deterministic simulation will produce the
same output for a given set of inputs every time it is run; stochastic or
probabilistic simulations use probability distributions and will produce
output that varies based on the given distributions. Simulations can run
in parallel, serially, or distributed (perhaps in a service-oriented architec-
ture).

• Authoring: Typically a simulation is implemented using a language or by
programming using an API or library. Some simulation frameworks aim
to ease the process of simulating a system by offering authoring assistance
such as visual simulation authoring, generating code automatically based
on the model or on the service itself (e.g. from WSDLs). Some simulation
development environments offer tools intended to debug simulations.

• Interaction: Once a simulation is running, can the configuration, simu-
lated entities, or other components be modified by a user (manual), by
the system itself (autonomic), or via an API (programmatic)?

• Metrics gathering: Real-world systems can be instrumented to produce
a variety of data. While simulations can be created to generate many
types of data, often the focus is on a particular type of data (targeted).
Others collect every metric generated by the simulation (comprehensive).
Frameworks may be easily extensible to collect other metrics (for exam-
ple, via an API).

• Visual Interface: Simulation results are usually reported in some textual
representation during the simulation run, or upon its completion. In
addition, some frameworks include a visual component to visualize the
simulation or the metrics with either static images (default) or animated
images. Also of interest is the ease with which the framework can be
extended to improve, augment, or annotate the visualizing functions.

• Emulation: Some simulations offer the ability to interact with real-world
services or entities. Others could require it as they cannot function on
their own (for example, a simulation of a service broker might rely on
real-world services).

• Speed: Simulations can run faster than real time, in real time, or theo-
retically slower than real time (perhaps due to computation required).

3. Different simulation frameworks adopt different modelling languages, ab-
stract representations, or formalisms for specifying the systems under exami-
nation. Each of these languages may make explicit (or alternatively, ignore)
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different aspects of the system’s constituent services, their composition, their
underlying infrastructure, their behavior and performance, etc..

4. Finally, each of the examined simulation frameworks has been evaluated or
validated, by simulating real-world systems, by simulating toy problems, or by
proofs.

2.3 Simulation Frameworks for SOAs

Simulation involves building a model of an entity or phenomenon, implementing
that model, and running experiments by way of executing the implementation. The
purpose of a simulation is to gather information from the experiments to understand
the entity, to reason about it, or to evaluate it. In support of computer-based sim-
ulations, there exist many simulation languages, tools, methodologies, applications,
standards, and frameworks at varying levels of generality. Specific frameworks can
reduce implementation time and effort by providing functionality specific to a do-
main in libraries, but have less flexibility. On the other hand, general approaches
allow the user to gain proficiency in a methodology and with a suite of tools that
can be used for multiple purposes. Here, a simulation framework is a set of software
components and tools intended to specify, execute, visualize, and analyze simulation
implementations reflecting a range of systems within a domain.

Services, as described in §2.1, are challenging to understand and reason about
given the possibility for multiple participants, complex deployments, and compo-
sition. Similarly, deploying and testing service-oriented systems is time-consuming
and expensive. A contribution described in Chapter 3 includes a simulation frame-
work for service-oriented systems that addresses the limitations of existing frame-
works. This section discusses other frameworks in detail, and characterizes each
of them using the dimensions described in §2.2; see Tables 2.1, 2.2, and 2.3. A
discussion of the frameworks is provided in Section 2.3.7.

The focus here is specific frameworks that support the simulation of service-
oriented or, more generally, componentized software systems. More general frame-
works and tools can also be used to simulate such systems, but more general ap-
proaches are covered in other surveys (no single survey could cover the depth and
volume of all simulation support software; see for example [49, 61, 74, 42]). As
the term “service-oriented simulation frameworks” is already used to refer to sim-
ulation frameworks that are implemented based on service-oriented principles, the
term “framework” will be used to refer to those frameworks that are within scope
of the survey, unless specified otherwise.

A systematic search for frameworks was conducted using the ACM Portal, IEEE
Xplore, Google Scholar and Springer Link. The search terms were “services simulat(e|ion|ing|or)”,
“software component simulation”, and “service-oriented simulat(e|ion|ing|or)”. The
results were pre-filtered using the scope defined here, by reading titles and abstracts.
A total of 16 candidate papers were identified. These papers were read in sufficient
detail to either exclude them from the survey or complete a detailed reading and
incorporate them. For each the list of references was examined for other papers to
be included in the survey; this process resulted in three additional candidate papers.
Ultimately, the list was narrowed to six frameworks, described here.
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3.1 Interface and Monitoring of Simulation Data 

 DEVS-Suite user interface consists of four parts: (1) 
Model Viewer at the top left corner, (2) Simulator Control 
at the bottom left corner, (3) simView at the top right hand 
corner, and (4) TimeView at the bottom right hand corner 
(see Figure 3). In order to make better use of available dis-
play space, the Model Viewer and Simulator Control are 
combined to form a part which we call MVSC.  A user, 
therefore, can choose to view any one of the TimeView, 
SimView, or MVSC parts within the DEVS-Suite interface 
since any two of the three parts can be hidden. A user may 
also view MVSC with either TimeView or SimView. Alter-
natively, the user can hide the MVSC part and only view the 
TimeView and SimView while executing the model using 
the execution buttons provided in the menu bar.  

 Both block and tree views of hierarchical model com-
ponents are available. It provides flexibility in that a user 
can select animation and/or tracking of simulation model 

components as time trajectories. The tree view is used for 
choosing model components and deciding which input and 
output ports to monitor. For atomic models, pre-defined 
state variables and basic simulator variables can also be 
chosen and tracked. The block model is used for animation. 

 The dynamics of every atomic and coupled model can 
be individually displayed with TimeView. The semantics of 
the data generated by the Model module in DEVS-Suite is 
applied to the TimeView. Therefore, to display time-based 
state and input/output data, simulation time is used to syn-
chronize generation of the time trajectories. Users have the 
flexibility to select animation and tracking view options for 
any number of atomic/coupled models. They can set the unit 
for data that is to be monitored as well as the time axis. The 
time increment, units, and the selection of data to be ob-
served can be set as shown in Figure 4.  

  

 

 
Figure 3: DEVS-Suite UI with Model Viewer, Simulator Control, simView, and TimeView 

   
Figure 2.3: The DEVS-suite visual representation of a simulation (from [33]).
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software systems.  Furthermore, the SOA is not the same 
as dynamic structure DEVS even though the structure of a 
coupled model can be modified during simulation.  

5 SOAD SIMULATOR FRAMEWORK 

In the previous section, we described that there are basic 
similarities and differences between the SOA elements and 
those of DEVS. SOA framework has a higher level of ab-
straction as compared with DEVS framework. The basic 
SOA model elements can be divided into two groups. First, 
services, service description, and messages represent the 
‘static’ part of SOA. Second, communication agreement, 
messaging framework, and service registry and discovery 
represent the ‘dynamic’ part of the SOA. To create the 
SOAD Simulator (i.e., a generic SOA-complaint simula-
tor), counterparts of the basic elements of SOA are needed. 
As shown in Table 1, we have defined a set of DEVS ele-
ments that represent the static and dynamic aspects of the 
SOA. Three DEVS atomic models are proposed. Three of 
these have a one-to-one correspondence with the SOA ser-
vices. The generic DEVSJAVA entity class is extended to 
represent SOA service description. Entity is also extended 
to represent SOA messages.  

The publisher, subscriber, and broker services are the 
basic elements for both service-oriented software systems. 
The services can be synthesized to form primitive and 
composite service composition. Next, these two service 
compositions are described. A simple model of a network 
is used to complement the software aspect of SOA with the 
hardware aspect. It is defined as a link with finite capacity, 
transportation delay, and FIFO message queuing. This 
component is not a service – it models the medium through 
which services send and receive messages.  

5.1 Primitive SOAD Models 

The generic primitive service composition using DEVS 
atomic models (publisher, subscriber, and broker) is shown 
in Figure 2. Messages produced by a service and consumed 
by another are shown as envelops. As noted above, a mes-
sage may contain a service description or other content 
consistent with a chosen messaging framework. For exam-
ple, the message from the Broker to the Subscriber is a ser-
vice description which contains an abstract definition (an 
interface for the operation names and their input and output 
messages) and a concrete definition (consisting of the bind-
ing to physical transport protocol, address or endpoint, and 
service). Another message could be from the Publisher to 
the Subscriber where the result of the requested service (re-
turned message from the Publisher). The implementation 
of these messages can be based on SOAP.  In the basic 
SOA framework, the internal operations of atomic services 
and their interactions are deferred to specific standards and 
technologies (e.g., .NET (Lenz & Moeller 2003)). 
 

Table 1: DEVS and SOA elements. 

SOA Model Elements SOAD Model Elements 

services (publisher, sub-
scriber, broker) 

atomic models (publisher, sub-
scriber, broker) 

service description entity (service-information) 
messages entity (service-lookup & ser-

vice-message) 
messaging framework ports & couplings 
service registry & discovery executive model 
service composition coupled models (primitive and 

composite) 
 

Publisher/Subscriber with Broker Coupled Model

Identify-
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publisher
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data service messages publish messages

msg

msg

Publisher/Subscriber with Broker Coupled Model

Identify-
publisher

Broker

identify-
publisher

found-
publisher

Publisher

request-
services

publish-
service

publish-
service

Subscriber

Found-
publisher

publish-
service

identify-
publisher

request-
service
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request and response messages input port output port
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request and response messages input port output port
data service messages publish messages

msgmsg
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Figure 2: SOAD primitive service composition  

5.2 Composite SOAD Models 

An essential capability for simulating service-based soft-
ware systems is to support modeling of composite service 
composition. As shown in Figure 2, a composite service 
composition has publisher or subscriber service which it-
self is a primitive service composition. Since broker ser-
vice is required for both primitive and composite service 
composition, two cases can be considered – i.e., either a 
single broker service or multiple broker services are used. 
Both cases can be supported. Use of a single broker service 
is shown in Figure 3. To avoid cluttering Figure 3, the bro-
kers shown in the Subscriber and Publisher services are the 
ones that are used for these brokers (this is shown with 
shaded background for the two brokers and their cou-
plings). The three kinds of couplings provided in coupled 
DEVS models supports use of a single broker for the pri-
mitive service compositions (i.e., Subscriber and Pub-
lisher) and their composite (hierarchical) service composi-

849

Figure 2.4: The atomic models of Sarjoughian’s DEVS-based model of SOA (from
[67]).
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2.3.1 SOAD and DEVS

The Discrete Event System Specification (DEVS) [80] is a formal language for mod-
eling system structure and behavior. Its behavioral model defines states, events
(inputs), and outputs, where each state has a lifespan, and transitions occur in re-
sponse to inputs or the end of a states’ lifetime, and optionally generate output.
A component modeled in this fashion is considered atomic, but can be hierarchi-
cally coupled together with other atomic components via similar formalism. These
hierarchical DEVS models can be simulated [81]. Since it was introduced, various ex-
tensions, simulation engine implementations, and variations have been introduced.
Implementations include DEVSJAVA [66] and DEVS-suite [33]. The latter offers
visual construction of simulations, as well as observation of and interaction with the
simulation using a GUI (Figure 2.3).

Sarjoughian et al. propose an extended version of DEVS called SOAD [67] which
maps service-oriented concepts to the existing component-based model, and describe
a general simulator based on that model. Their goal is to verify logical correctness
of the service composition in terms of its throughput, timeliness, accuracy and
quality. The majority of the modeling and simulation are based on the existing
DEVS formalism and tool sets, with some extensions for SOA concepts for which
there is no direct translation; for example, composition is modeled as a series of
nested hierarchies. They build their simulator on DEVS-suite.

They consider a “simple” Web Services scenario, with composed, loosely-coupled
services that communicate using SOAP over a “simple” network hardware model
(which includes delay and transmission volume). They use three atomic components:
producers, subscribers, and brokers. Figure 2.4 (from [67]) shows the communication
links between the atomic elements. Metrics are primarily QoS metrics, and are
recorded and visualized by DEVS-suite in an animated time series. To validate,
hard-code deterministic values are used [67]: the simulator is implemented and used
to model a fictional travel-planning service composition with deterministic timings.
The validation is declared successful because the output metrics whose expected
value is obvious based on the fixed input metrics have the correct value; the fact that
the composition produces output indicates the validity of the composition. There is
no integration with real-world implementations, and no metrics are generated.

Related work called DEVSI4WS from Seo et al. [70] uses a similar translation to
a DEVS model and implements a simulation in DEVSJAVA (which includes a visual
simulation builder). The focus is on service composition in the context of BPEL:
sequentially calling services based on identifying common primitive data types in the
WSDLs of two or more services to identify valid BPEL compositions. Functions of
BPEL other than message sequences are not implemented. Their model uses WSDLs
and SOAP messages. Matching is based on the name of the parameter in the WSDL
message specification or the specification of complex data types. The simulation is
based on the flow of data through the composition and not on performance or
QoS metrics. A proof-of-concept composition of services related to purchasing and
registering a car is presented. This example is also not validated using real-world
systems.
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2.3.2 DDSOS

The Dynamic Distributed Service-Oriented Simulation Framework (DDSOS) is the
work of Tsai et al. [75, 76]. Their goal is to support the development of service
systems by testing compositions in simulation. The approach begins at design-time,
when a prospective service-oriented system is modeled using PSML-S (Process Spec-
ification and Modeling Language for Services) [77]. They intend for this language
to provide the same features for SOA design that UML provides for object-oriented
design (there is no translation support between the two). At the composition-level,
the relationships can be specified visually; the service details and specifications are
modeled manually. The PSML model allows for model-checking of an SOA design,
as well as the generation of test suites. From the PSML-S model and a simulation
configuration file, code is automatically generated and deployed to a distributed,
multi-agent simulation engine, where it can be validated using the test suites. [76]
is a thorough explanation how how SOA concepts map to PSML concepts, and how
the result is simulated.

The simulation engine is a discrete-event, event-driven, distributed, extensible,
engine. It is itself a service, which processes incoming queues of events. The sim-
ulation engine and all other framework components all run as services themselves,
and are deployed at run-time for execution. A simulation federation client looks up
deployed engines to which a generated simulation can be uploaded and run. The
results are recorded at each agent involved in the simulation and retrieved once
execution completes. The simulation runs as quickly as the engines are capable
of processing the event queues. No emulation is supported; the service-oriented
architecture would allow it theoretically, just as it would theoretically support pro-
grammatic interaction with a running simulation, but neither are available “out of
the box”. Similarly, the potential for visualization is there but is limited in support.

They describe [76] the process and results of simulating a service-oriented so-
lution to an escape problem: a runner and a bait entity collaborate at run-time
to get past a guard. There is no real-world service for comparison, however they
do identify several issues with their collaboration strategy from iteratively running
simulations, analyzing results, and changing their general collaboration strategy.

2.3.3 MaramaMTE

Grundy et al. used an existing performance test-bed generator (MaramaMTE) [21]
to generate stress tests for static service compositions. Their goal was to support the
meeting of non-functional requirements (particularly QoS) in service compositions
by providing architects with information about potential interactions. They use
BPMN or their own custom visual WS composition modeling language (ViTABaL-
WS [41]) to model the high-level service composition. A custom software archi-
tecture notation can be used within the tool to model lower-level service interface
details. Performance requests can be sent to the actual services or to generated stub
services (in the paper, the service stubs are SQL queries executed on a database;
there does not appear to be an attempt to replicate actual service behavior).

The composed services are stress-tested with load intended to emulate a remote
client. Loads are created manually (using time delays between requests of services
in a composition) and by a method based on the Form Charts formalism from [17].

16



Figure 2.5: Screenshot of the SOPM visual model building tool (from [7]).

The intent is to emulate the actions of a user issuing a series of service requests by
navigating a web site front-end.

They modeled and implemented a service composition based on searching for
flights, choosing a flight, and choosing a seat. They identify this implementation
as “simplistic”, but were able to identify potential resource contention issues in
concurrent requests. The results are accurate when assessing composition but do not
predict or emulate real-world service performance. The strengths of their approach
are suited to design-time performance considerations.

2.3.4 SOPM

Service-Oriented Performance Modeling (SOPM) is a framework developed Brebner
et al. at NICTA3 [7, 9, 8]. It models a system of services using a visual tool to
define existence of services and structure of compositions. A performance model
is constructed for each component by sending a series of single requests to identify
single-request response time, or by using instrumentation of the code to report per-
formance metrics. This model is deterministic and cannot be modified stochastically.
The model is made of building blocks like services, servers, workloads (workflows
annotated with timing details), and metrics (Figure 2.5). The building blocks are
not intended to be extensible; only simulations with a one-to-one mapping from
real to simulated components are possible. From this manually-created model, a
simulation is automatically generated to be run on their custom simulation engine
(discrete-event, serial, local). The simulation allows for interaction at simulation-
time to modify parameters dynamically. The simulation runs produce metrics for
each simulated component.

Their system has been used to model substantial services and many-service work-

3National ICT Australia.
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Figure 2.6: The KarmaSIM environment, showing the Congo example in execution
(from [50]).

flows for service systems currently being developed. In [7], they describe using it
to model an Enterprise Service Bus called Mule and calculate the total through-
put. Their validation compared simulation-generated metrics to real-world metrics
in identical configuration. They found a margin of error of up to 15%, which is
explained by elements in the real world not included in the simulation model. They
were able to make performance predictions based on the scenarios they simulated.

2.3.5 Narayanan (DAML)

Narayanan et al. [51, 50] described a knowledge representation that can be used for
simulation (among other things) for Web service compositions. They do not mention
SOA or most of the WS standards, but their composition-oriented approach is in
line with SOA principles. They model services using a markup language intended
for the semantic web, the DARPA agent markup language for services (DAML-
S), which has since been superseded by OWL-S4. DAML-S is a process modeling
language. This model is mapped to a first-order logic language to allow for situation
calculus-based reasoning.

To simulate the modeled system, they translate the DAML-S representation to
Petri nets. Petri nets have visual representations, yet allow mathematical analysis

4http://www.w3.org/Submission/OWL-S/
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Figure 2.7: SoapUI, shown exploring the WSDL for Amazon EC2: a generated
request and an Amazon response, a running mock service, and a load testing applet.

of processes; they support stochastic modeling; and they are commonly used to
model distributed systems. They include places, transitions, and arcs: transitions
are essentially events, places are roughly states, and a set of input arcs to a transition
are roughly pre-conditions on the occurrence of events. Though Petri nets support
continuous values, they choose to model a discrete-event system in their approach.

Their implementation translates DAML-S representations to Petri nets that can
be executed in a simulator called KarmaSIM [52]. This visual tool shows the path of
“execution” through the network (Figure 2.6). Since each transition has a probabil-
ity of actually being taken even when pre-conditions are met, a variety of analyses
can be conducted - detecting deadlocks, for example. Interactive simulations can be
used to test compositions. A related benefit is the ability to automatically compose
services to achieve a provider’s goal. [50] describes modeling a book-buying web ser-
vice for Congo.com. Their analysis identified a potential deadlock in user account
creation workflow.

2.3.6 Commercial Solutions

This set of services testing and development tools available commercially (which in-
cludes soapUI5, GH Tester6, and CloudPort7) offers the ability to generate a service
stub from a WSDL (emulation, which they refer to as simulation), to generate and
send SOAP messages based on a WSDL (collecting performance metrics from the
responses), and to perform similar functions for other communications protocols.
The stated purpose is typically testing, including composition testing (using service
stubs in place of outside services), automated testing (with a variety of messages),
and load testing (with a large number of messages sent in parallel). Figure 2.7 shows
the soapUI tool, including a load testing panel with the results of a load test on all

5http://www.soapui.org/
6http://www.greenhat.com/ghtester/
7http://www.crosschecknet.com/products/cloudport.php
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Goals

SOAD verify logical correctness of the service composition pre-development

DDSOS support the development of service systems by testing compositions pre-
development

MaramaMTE help meet non-functional requirements in service composition before and dur-
ing development

SOPM understand performance and scalability pre-deployment

Narayanan “enable ... automated reasoning technology to describe, simulate, automati-
cally compose, test and verify Web service compositions” [50]

Commercial composition and load testing automatically from WSDLs

SASF create a virtual model of a componentized software application focused on
capacity planning

Table 2.1: Goals of various simulation frameworks.

of the Amazon EC2 operations. The raw numbers shown there can be displayed in
a line graph, which is typical of the entire set. The metrics are focused on response
time and bytes transferred.

These tools meet the inclusion criteria as they offer simulated services and met-
rics gathering, but the simulated services are based on a model of the interface (i.e.,
the WSDL) and not on the behavior of performance of the service being simulated.
Though performance metrics can be gathered from the simulated services, their use
would be limited to identifying bottle-necks or incompatible compositions. The pur-
pose of the performance testing tools is to gather metrics from real services, which
is useful but outside the scope of this survey.

The focus on individual services means that support for composition requires
the manual piecing together of a workflow, often in the form of scripting or perhaps
in a GUI. Other tools, like Oracle BPEL Process Manager8 offer superior support
for load testing compositions, but offer fewer options at the individual service level.

2.3.7 Discussion and Comparison

The simulation frameworks described in this survey each have strengths best-suited
to certain scenarios. This section describes the differences and similarities among
the frameworks, based on the characteristics defined in §2.2. The properties of each
framework are summarized in Tables 2.1, 2.2, and 2.3.

There are varied reasons for simulating service-oriented systems, and each sim-
ulation framework has strengths best-suited to certain scenarios.

1. Goals and tasks of the simulation. The most common task supported by
the frameworks is to test compositions before full-scale deployment. SOPM
and SASF were the exceptions, focusing instead on capacity planning and per-
formance testing. Both SOPM and SASF offer library support for composing
services; rather than the main goal, it is a means to enable capacity planning
based on simulated performance. Commercial solutions are also focused on the
performance testing of individual services, though composition can be scripted
into the load testing manually.

8http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
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Modeling Coupling Evaluation

SOAD DEVS (SOAD) broker, static com-
position (choreogra-
phy)

Simple proof-of-concept

DDSOS PSML-S static composition
(choreography)

Simple composed problem, identi-
fied composition problems

MaramaMTE BPMN,
ViTABaL-
WS

static composition
(orchestration)

“Simplisti” composed service, iden-
tified resource contention issues

SOPM Visual, JMeter
for perfor-
mance

stochastic composi-
tion (orchestration,
choreography

Numerous uses; sample app within
15%

Narayanan DAML-S stochastic composi-
tion

Modeled example network, found
deadlock

Commercial WSDL via script authoring –

SASF WSDL + per-
formance pro-
files

stochastic composi-
tion (orchestration)

Modeled two applications; statisti-
cally validated metrics

Table 2.3: The modeling, coupling, and evaluation properties.

2. Properties and features of the simulation environment9.

• Basics: A surprising number of frameworks offer only deterministic simu-
lations: given the same set of input data, they will return the same result
every time. Only DAML and SASF offer completely stochastic simu-
lators; of these, SASF best supports the option to deterministically fix
otherwise stochastic elements for systematic and repeatable testing. All
of the frameworks examined offered or employed discrete-event simulation
engines (this is the more common simulation method in other domains,
as well). DAML offers the most potential for a continuous simulator, as
the underlying model is petri nets, which have been extended in a num-
ber of ways to enable continuous simulations (e.g., [16, 2]). The majority
are time-driven simulations; only SOAD and DDSOS offer event-driven
simulations, which make them a better solution for simulating systems
where events are sparse. The engines all run individual simulations seri-
ally, except DDSOS which can optionally be run in a parallel mode. Only
DDSOS offers the ability to run a distributed simulation.

• Authoring: Only two frameworks offer automatic generation of a simula-
tion, each with its own caveat. The Commercial tools generate a running
real-world service from the WSDL, but this version makes no effort to
replicate the performance or behavior of the model. SASF generates
simulated services from the WSDL, but uses performance testing results
obtained semi-automatically: the SOAP requests need human input to
be parameterized before being sent to the real-world system to generate
a performance profile. Both approaches work for SOAP-based services,
but not REST. The other tools offer visual environments to help build
models of the system; simulations can be generated automatically from

9The various Commercial solutions are disregarded here; their environment is determined by the
real-world and not a simulation engine.
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these models. If a WSDL does not exist, a visual tool for modeling is a
better option. Some frameworks (like DAML) use the same approach to
model the service at design time and guide implementation, which gives
dual-purpose to the modeling stage.

• Interaction: Here SASF is quite distinct, as compared to the other ap-
proaches. Only SOPM, DEVS, and DAML offer even the basic ability
to interact with a running simulation; the others are launch-and-forget.
SASF goes further, offering both an API and internal functions for modi-
fying the parameters of a running simulation (including properties of the
simulation environment and the simulated application).

• Metrics gathering: Again SASF is a standout; the features and APIs
enabling the collection and dissemination of metrics require minimum
effort by the simulation author. Only SOPM offers such customizable
metrics gathering.

• Visual: The standard here is the generation of visual depictions of metrics
or of the system architecture, often animated. Only DDSOS and Mar-
maMTE fall short in this category. SASF requires less developer effort
when introducing additional metrics to the visualizations.

• Emulation: Commercial solutions offer total integration with real-world
services, where simulated services can even participate in compositions
with already implemented services (with syntactically correct but seman-
tically meaningless data). Only SASF and MarmaMTE offer any ability
to integrate real-world services with simulated services that accurately
reflect the behavior of the service.

• Speed: As a consequence of their emulation abilities, the Commercial
and MarmaMTE frameworks cannot run faster than a real-world service.
SOAD also has this constraint. SASF runs at an accelerated pace, except
when in optional emulation mode.

3. Modeling language and methods, abstract representations, or formalisms.
SASF and commercial solutions rely on the existing model of a service as
expressed in WSDL. This is advantageous if the service already exists and is
described using a WSDL; if not, the increases expressiveness of other models
may be superior. The others use typically more rigorous formalisms that allow
the use of formal methods and proofs. SOPM offers a purely visual model.

4. Support for service coupling. All of the frameworks support composition
to some extent. MarmaMTE is notable for its use of BPMN as a modelling
language.

5. Evaluation method. SASF is noteworthy, as it has been used to model full-
size real-world componentized software systems and statistically validated to
accurately predict service performance, then used to reason about the system.
SOPM has also been used to address research problems.
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2.4 Value, Quality, and Cost

To make configuration decisions by reasoning with simulation-generated data, a
target must be defined. This target is often defined using technical metrics such
as response time or throughput. Though these metrics are easily definable and
measurable, they are not sufficient when asking non-technical users to understand
or compare configurations. As discussed in Section 2.1.1, SLAs are often described
in technical terms not accessible to business users. This section turns to marketing
and business literature to understand higher-order attributes like value, quality,
satisfaction, and cost. In particular, how perceived value, quality, and cost inform
the decision-making process is described.

Value is not a constant definition with all consumers, and it varies from person
to person and from product to product. Zeithaml [82] offers an overall definition:
“perceived value is the consumer’s overall assessment of the utility of a product based
on perceptions of what is received and what is given.” To us, that means “they do a
cost-benefit analysis”. There is a trade-off inherent to value: customers are willing
to sacrifice some attributes in exchange for gains in other attributes. For example,
they may give up convenient twist-top lids in exchange for 100% pure juice, or they
may pay more for a product they consider environmentally friendly. Decisions can
be guided by single attributes (e.g., monetary cost) or some combination. In simple
terms, one can think of perceived value as “what I get for what I give”, where each
individual may consider various attributes to ‘give’ in exchange for various attributes
they ‘get’. The total of what is given up (or sacrificed) is the perceived cost.

Researchers agree that value is a conclusion reached based on a variety of factors
and attributes. Essentially, low level attributes imply quality, quality and cost imply
value, value affects value to me personally. Sawyer and Dickson [68] defined value
as “a ratio of attributes weighted by their evaluations divided by price weighted by
its evaluation”. They separate price from the other attributes. Though this is a
formula that implies numeric analysis, it can be difficult to quantify the variables.

Quality is, at an abstract level, a measure of excellence or superiority [82]. It is
not an attribute; rather, it is a high-level construct formed in the minds of individuals
based on their assessment of a product or service. Research distinguishes between
actual quality and perceived quality. Actual quality is some quantifiable and verifiable
measure of excellence, compared to some norm or ideal. We measure water quality in
parts-per-million of substances that should not be in pure (ideal) water. We measure
manufacturing quality in terms of the number of defects per item produced, with an
ideal of “0”. Perceived quality is a more complex measure that factors in customer
expectations, customer experience, comparator sets, and other factors to form a
global assessment of quality. It is a customer’s judgment about the superiority or
excellence of a product. It is this definition that most influences perceived value.

Perceived quality, in its reliance on experience and knowledge, is assessed based
on what the consumer knows about the product and all competing products. Which
products are ‘competing’ is up to the consumer (Ford might think their competition
is Toyota, but to some consumers it may be Vespa).

There are varying schools of thought on how to assess quality. Perhaps the
best known is SERVQUAL [59], which assesses quality based on the gap between
what the consumer expects and what they actually experience. Over the 25 years
since was proposed, it has been refined several times (e.g., [57, 83]). It measures
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the gap between expectation and perception in five primary categories: Reliability,
Assurance, Tangibles, Empathy, and Responsiveness (RATER). It is driven funda-
mentally by satisfaction, where the smaller the gaps, the greater the satisfaction.
Over the same time period, it has also attracted criticisms and alternatives. One
of the best known contenders is SERVPERF [13], which is performance-based or
attitude-based: Cronin and Taylor assert that perceived service quality can be best
measured by a customer’s “perceived” attitude about the service. The debate (e.g.,
[14, 60]) has continued since and will not be re-produced here10. This background
section is influenced by the gap/satisfaction model.

Lutz [43] proposes that we consider two other forms of quality: “affective quality”
and “cognitive quality”. A cognitive judgment is one based primarily on attributes
that can be determined without actually consuming a product (brand, reputation,
packaging), while affective quality is determined by actual experience. He suggests
that service quality is an affective judgment: that is, global assessment of service
quality is based on personal experience.
§2.4.2 presents a set of propositions that help understand perceived value, per-

ceived quality, and perceived cost. These propositions motivate an SLA negotiation
approach described in Chapter 5. The propositions relate to products; to assess
their applicability, we must first establish that a web service shares properties with
traditional definitions of products (§2.4.1).

2.4.1 Web Services as Products

In business and marketing literature, organizations can traditionally market prod-
ucts and/or services. The intuition of these concepts is easily determined; however,
the distinction between them is more subtle. The academic community does not
entirely agree on the distinction. The idea of a service offered online without ever
talking to a person was still a foreign idea when much of the foundational literature
in service quality was written. The expectation given the name “web service” is
that it would align with the notion of a service in marketing literature. In fact, a
web service has qualities in common with both.

Zeithaml, Parasuraman, & Berry [58] conducted a review of services literature
and concluded that the prevailing characterizations of services were “intangibility,
inseparability of production and consumption, heterogeneity, and perishability”.
That is, services are difficult to measure, they are consumed at the moment they are
produced, they are not always consistent, and they cannot be stored. The difficulty
in measuring the outcome of a service led to the consideration of the process of a
service rather than the outcome (e.g. [47, 53]). Table 2.4 lists how electronic web
services compare with this traditional definition.

Nilsson explored intangibility in more depth and concluded that there are few
objective reference points for consumers to use in perceiving value in services. Any
cues are ambiguous at best; therefore, the personnel offering the services can in-
fluence how the consumer perceives quality. The literature in marketing frequently
refers to “service encounters”: quality assessment, decision-making, and so forth are

10The notion that a one paragraph summary can adequately represent almost 3 decades of ongoing
debate, refinement, and extension is, of course, ridiculous. Google Scholar reports 6776 citations for
the original SERVQUAL paper and 3557 for SERVPERF, and in the thousands for the key debate
papers.
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Similarities between services and Web Services

Production and consumption cannot be separated.

Services are “perishable”: they cannot be stored.

The quality of a service is difficult to measure (outside of a few non-deterministic
cues, and necessary-but-not-sufficient attributes).

The assessment of quality can be guided by the personnel helping offer the
service, though they may be distant from actual service encounters.

Distinctions between services and Web Services

They are “intangible” because they are electronic, but some aspects of a web
service can be measured: transactions per second, response time, up time, and
so forth.

Generally a service is NOT heterogeneous: for a given input, it will produce the
same output.

“Service encounters” are two pieces of software “encountering” each other for
milliseconds at a time.

Table 2.4: Comparing traditional definitions of services to Web Services.

based on individual encounters, with people involved. To Levitt [38], everything is
a service to a greater or lesser degree: sometimes the service was “back stage” and
out of view, other times it was at the forefront.

Vargo and Lusch [78] argue that distinguishing a good from a service is meaning-
less, and is tied to a manufacturing-driven model of the world. They address each
of the classic characterizations of services and explain why each is not applicable to
services as we see them today (Figure 2.8). Two of their implications are particularly
interesting - that customization is preferable to standardization, and that consumer
involvement in value creation should be maximized. The SLA negotiation approach
in §5.1 describes how simulation can be used to customize SLAs by involving the
consumer and improving their ability to contribute to the creation of an SLA that
meets their unique needs.

2.4.2 Propositions on Value

Zeithaml [82] presented propositions about value and quality; in particular, how
low-level attributes map to higher-order constructs like quality. Her work focuses on
regular consumers making personal decisions about products (groceries, travel plans,
and so forth), and not individuals making decisions about electronic services on
behalf of an enterprise. The assumption in this work is that the concepts are largely
transferable. The propositions described here are limited to those that impact the
contributions of this dissertation. Unless otherwise noted, they are paraphrased
directly from [82].

• Consumers use lower level attribute cues to infer quality. The per-
ception of “high quality” is based on cues from low-level attributes. Empirical
studies have shown that “large size” is a cue indicating a high-quality speaker,
that “100% pure” is a signal of good fruit juice, and that the amount of suds
indicates high-quality detergents. Though more complex metrics are available
for each of those products, one or two easily-compared attributes are used to
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Bitner 2000). We argue that the intangibility, heterogene-
ity, inseparability, and perishability characterizations fail
to delineate services from goods adequately. We also argue
that (a) these characteristics are inaccurate and misleading
about the nature of market offerings, (b) their implications
for marketing strategy are contradictory to a market and
consumer orientation, and (c) their implications should be
inverted (see Table 1). In short, what we have learned by
studying service can and should be applied to all of ex-
change. Although this argument is consistent with our pro-
posed, revised positive definition of service, it is not
contingent on the definition.

Intangibility

The myth. The primary distinguishing characteristic of
services in relation to goods is normally considered to be
intangibility. Despite the appealing nature of such a clear-
cut line of demarcation, at worst it does not hold up, and at
best it has little or no relevance. Several service scholars
(e.g., Shostack 1977; Swartz, Bowen, and Brown 1992)
have noted that by the intangibility criteria there are no
pure services or goods. Their argument is based on the ob-
servation that essentially all goods have a service compo-

nent, whereas essentially all services have some form of
tangible representation.

Partially because the most that can be done with this
characteristic is to attempt to array goods and services on a
continuum according to the relative degree of tangibility, a
number of scholars (e.g., Gummesson 1995, 2000; Rust
1998) have questioned what its delineation really pro-
vides. Iacobucci (1992) investigated the perceived ser-
vices versus goods nature and the perceived tangibility of a
wide array of offerings and found that “while goods are in-
deed perceived to be relatively more tangible than ser-
vices, all these stimuli are perceived to be rather tangible in
an absolute sense” and concluded that “the tangibility rat-
ings are an example of where the data were not closely
aligned with theoretical expectations” (pp. 33, 49).
Beaven and Scotti (1990) maintained that “service pro-
cesses and their outcomes result in specific sensory impres-
sions that are stored in the mind as concrete, tangible
facts,” and thus the distinction is “illusionary” (p. 8). Con-
versely, Gummesson (2000) argued, “If I am operated on
in the hospital I am myself the ‘machine,’ the ‘object of re-
pair and maintenance.’ It is unpleasant; it may hurt. I can
get better, worse, or die. Can it get much more tangible?”
(p. 123)
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TABLE 1
Limitations and Implications of

Distinguishing Characteristics of Services

Dimension Dispelling the Myth Perspective Inverted Implication

Intangibility
Services lack the tactile quality

of goods
Services often have tangible results
Tangible goods are often purchased

for intangible benefits
Tangibility can be a limiting factor

in distribution

The focus on manufactured output
is myopic and goods oriented

Consumers buy service even when
a tangible product is involved

Intangibles such as brand image are
more important

Unless tangibility has a marketing
advantage, it should be reduced
or eliminated if possible

Heterogeneity
Unlike goods, services cannot

be standardized
Tangible goods are often heteroge-

neous
Many services are relatively stan-

dardized

Homogeneity in production is
viewed heterogeneously in con-
sumption

The normative marketing goal
should be customization, rather
than standardization

Inseparability
Unlike goods, services are

simultaneously produced and
consumed

The consumer is always involved
in the “production” of the value

Only manufacturing benefits from
efficiency of separability

Separability limits marketability

The normative marketing goal
should be to maximize consumer
involvement in value creation

Perishability
Services cannot be produced

ahead of time and inventoried
Tangible goods are perishable
Many services result in long-

lasting benefits

Value is created at the point of con-
sumption, not in the factory

The normative goal of the enter-
prise should be to reduce inven-
tory and maximize service flows

Both tangible and intangible capa-
bilities can be inventoried

Inventory represents an additional
marketing cost

Figure 2.8: Limitations of the distinguishing characteristics of services, from [78].

serve as reliable signals of quality. Consumers instinctively look for low-level
attributes that consistently signal high-quality services.

For complex decisions, relying on one or several low-level attributes can be
misleading. To avoid this, a high-level or aggregate attribute should be used
to help decision-makers determine quality more explicitly, rather than relying
on each individual to choose their own set of low-level attributes.

• The intrinsic product attributes that signal quality are product-
specific, but dimensions of quality can be generalized to product
classes or categories. Researchers divide attributes into intrinsic (physical
composition of the product: color, shape, size, taste) and extrinsic (product-
related but not part of the product: brand, price, level of advertising). Intrinsic
properties are consumed as the product is consumed. Of course, there is
ambiguity here.

The few intrinsic attributes a consumer considers when determining quality
vary by product. The cues that signal quality for juice differ from the cues
for lamps. Even similar products show variation: thick tomato juice is good,
thick grape juice is bad. However, some aspects of quality apply generally to
whole classes of products. The more abstract an attribute, the more likely it
is to apply to a large set of products. Comparing two different things, like
stereos and vacations, requires consumers to use very abstract concepts like
“entertainment value”.

When asked to consider service industries, Parasuraman [58] found that con-
sumers consistently judged quality based on reliability, empathy, assurance,
responsiveness, and tangibles.

• Extrinsic cues serve as generalized quality indicators across brands,
products, and categories. Unlike intrinsic cues, most extrinsic cues are

27



already abstract and generalizable across product classes. Brand, price, war-
ranty, seals of approval, and endorsements are all extrinsic cues. Research in
this area has shown that in the absence of all other information, high price
means high quality. Brand name offers a bundle of information that can in-
tellectually be the same as experiencing the product: if you’ve used a service
provider to book a flight and preferred it, you may be more likely to rent a
car from the same provider.

• When customer’s rely on intrinsic or extrinsic attributes. Consumers
depend on intrinsic attributes more than extrinsic attributes:

1. at the point of consumption,

2. in pre-purchase situations when intrinsic attributes are search attributes
(rather than experience attributes), and

3. when the intrinsic attributes have high predictive value.

Consumers depend on extrinsic attributes more than intrinsic attributes:

1. in initial purchase situations when intrinsic cues are not available (e.g.,
for services),

2. when evaluation of intrinsic cues requires more effort and time than the
consumer perceives is worthwhile, and

3. when quality is difficult to evaluate (experience and credence goods).

Intrinsic attributes are more useful while consuming a product: when drinking
a beverage, you measure your satisfaction by the taste, not by the brand name.
Search attributes are those that can be assessed prior to purchase (e.g. “100%
pure” for juice, “no blemishes” for fruit), whereas experience attributes are
assessed only during consumption (e.g., “smooth” for juice, “not under- or
over-ripe” for fruit). In pre-purchase situations, intrinsic cues are used when
they can be assessed prior to purchase. When they cannot be, extrinsic cues
are used. Services have few intrinsic cues, and those available can typically
not be assessed until the service encounter has begun. Thus, services are
frequently initially judged using only extrinsic cues.

Intrinsic attributes are used when they can be readily assessed and are known
to have high predictive value. If there are barriers to evaluating intrinsic
attributes, extrinsic ones will be used instead. Similarly, if easily evaluated
intrinsic cues are not sufficient to differentiate between two products (e.g.,
identical memory and processor configurations), the consumer will resort to
extrinsic cues.

Intrinsic attributes are useful and generally preferred, but are limited by being
requiring experience to assess them. This is a strong motivator for the use of
simulation: experience can be simulated, allowing the use of intrinsic attributes
in situations where it would otherwise be impossible or cost-prohibitive.

• Monetary price is not the only sacrifice perceived by consumers.
This point is perhaps obvious; when you make a decision, you weigh many
trade-offs, only one is price. The literature divides the elements of a purchase
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decision into two sides: what you give versus what you get. Those things you
“give” are considered sacrifices, and this includes price. However, consumers
are also aware that there are other sacrifices. If you pay a lower price but have
to assemble your own furniture, the additional work required is part of the
sacrifice. Travel time, search time, evaluation time, maintenance time, and
more may all be factored in to the total “sacrifice”. The result is a distinction
between the actual price and the perceived price. People have different ways of
encoding the price or sacrifice, for example: “expensive”, “a bargain”, “you get
what you pay for”. The overall sacrifice is part of the equation for determining
perceived value.

• Extrinsic attributes serve as “value signals” and can substitute for
active weighing of benefits and costs. Consumers are generally “mind-
less” [36]; there is not careful consideration so much as there is overall im-
pression. “Trusted brand”, “it’s cheaper than it was last week”, and similar
cues are used in place of hard facts. There are some consumers who spend
time and effort to give purchases careful consideration; Zeithaml theorizes that
more rational evaluation is used when there is lots of information available, lots
of time, lots of processing ability, and high involvement in the purchase. One
theory is that as the cost of the product goes up (or, as the cost of choosing
the wrong product goes up), more careful consideration is more common.

Ongoing service delivery requires more than an initial purchase decision; a
decision based on facts is likely to prove more satisfying than one based on
instinct. Thus, when establishing an SLA steps should be taken to encourage
rational evaluation: high involvement with the customer in establishing the
SLA and furnishing the customer with as much information as they need are
two key ways to do this.

• The perception of value depends on the frame of reference in which
the consumer is making an evaluation. Value determination is situa-
tional and depends on context. Zeithaml reports that value changes between
purchase time, preparation time, and consumption. The use of simulation al-
lows consumers to incorporate their (predicted) value at consumption time at
purchase time, limiting “buyer remorse”.

• Perceived value affects the relationship between quality and pur-
chase. Customers do not always purchase the highest quality option; they
make a decision that balances their perceived quality and perceived sacrifice:
their perceived value. The trade-off is the key factor and should be incorpo-
rated into decision support tools.

2.5 Capacity Planning and Configuration Management

The problem of capacity planning is very general and highly relevant to manufac-
turing and service-delivery business strategy. According to Balachandran et al. [5],
the cost of capacity resources typically account for 30% to 60% of the total costs
in manufacturing and 70% to 80% of the total costs in service organizations. This
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high cost percentage gives rise to the need for capacity planning, so that organi-
zations can obtain all necessary resources at once, ahead of time, as opposed on
as-needed basis, which would potentially further increase the cost ratio. In their
1997 work, they considered the general problem where product production requires
resource consumption (under some stochastic model) and product price is a function
of product cost (as implied by the cost of the consumed resources) and a random
profit. They distinguished between ‘soft’ and ‘hard’ constraints on resources that can
(and cannot) be acquired on an as-needed basis in case of shortfall. Note that this
formulation clearly relates the problems of capacity planning at deployment config-
uration time and autonomic capacity adjustment at run time. Through simulation
experiments they found that simplifying capacity planning to focus on an expected
bottleneck resource dominates product- or resource-level capacity planning, when
all resources impose hard constraints and the firm’s product mix is significant.

More specifically, in the context of computer-based service delivery systems, re-
search has been conducted on capacity planning for different types of architectures.
Kant et al. [30] examined, both with analytical and simulation models, the perfor-
mance behavior of a traditional symmetric multiprocessor web server, under different
types of benchmark loads. They found that using the virtual interface architecture
improves performance, especially in the case of workloads with increased memory
bandwidth. Furthermore, they predicted that more I/O capacity is required when
the network processing is offloaded.

Almeida and Menasce [46] developed a general method for capacity planning
in client-server systems, making explicit the need for models of workloads that the
architecture is expected to support and the way its performance may change when
aspects of the workload change. This approach is not service-focused and does not
use simulation to produce data.

Zhang et al. created R-Capriccio, a capacity-planning tool that uses available
performance information to make predictions and decisions about future capacity
requirements [84]. The tool identifies the most popular client transactions, estimates
the CPU requirements, and uses queueing networks to project capacity requirements
for changing workloads. The tool is limited to CPU-bound services, and requires
logs of both server access and CPU utilization under existing load.

Finally, Rossi and Tari developed a method for web-service self-adaptation to
mitigate the impact of changes in the environment on performance and resource
utilization [64]. They use middleware to move services among nodes in a cluster
to balance load, based on real-time performance metrics. Services are distributed
among nodes in order to optimize an “efficiency value” derived from various perfor-
mance metrics.

2.6 Autonomic Computing: Self Management

The demand for dynamic, distributed, component-driven software has led to in-
creased adoption of service-oriented software systems. The nature of these systems
limits the effectiveness of design-time configuration decisions; additional copies of
service instances may be deployed at run time; new services may be removed and
new services may be introduced in an existing composition; the provisioned network
bandwidth can be changed. This is why deploy-time and even run-time configu-
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• A homogeneous group scope aggregates resources of the same type. An 

example of a homogeneous group is a pool of servers that an autonomic 

manager can dynamically optimize to meet certain performance and 

availability thresholds.

• A heterogeneous group scope organizes resources of different types. An 

example of a heterogeneous group is a combination of heterogeneous 

devices and servers, such as databases, Web servers and storage 

subsystems that work together to achieve common performance and 

availability targets.

• A business system scope organizes a collection of heterogeneous 

resources so an autonomic manager can apply its intelligent control 

loop to the service that is delivered to the business. Some examples are 

a customer care system or an electronic auction system. The business 

system scope requires autonomic managers that can comprehend the 

optimal state of business processes—based on policies, schedules and 

service levels—and drive the consequences of process optimization back 

down to the resource groups (both homogeneous and heterogeneous) 

and even to individual resources. 

These resource scopes define a set of decision-making contexts that are 

used to classify the purpose and role of a control loop within the autonomic 

computing architecture.

The touchpoint autonomic managers shown previously in Figure 2 are each 

dedicated to a particular resource or a particular collection of resources. 

Touchpoint autonomic managers also expose a sensor and an effector, 

Symptom

Change
Request

Change
Plan

Analyze Plan

Monitor

Knowledge

Execute

Single Resource Homogeneous Group Business SystemHeterogeneous Group

Figure 3. Four common managed resource arrangements

Figure 2.9: The Model, Analyze, Plan and Execute model of autonomic computing,
from [26].

ration decisions are required to manage the system in the face of varying business
requirements, service providers and consumers, and available resources [54]. The
frequency of changes and decisions required for just-in-time resource provisioning
precludes manual intervention; an autonomic, self-managed system is desired in-
stead [32, 48, 56].

Like its namesake in biology, the goal of an autonomic system is to be self-
managing. According to the IBM blueprint for autonomic computing [26], self-
management involves four main activities: Monitoring, Analysis, Planning, and
Execution (MAPE). The monitoring stage uses sensors to measure key load and
performance attributes of the system. The analysis stage identifies any metrics
that are outside the expected/desired ranges or violate rules stated in the system’s
SLA (Service-Level Agreement). Furthermore, it attempts to identify the cause of
the problem: perhaps a server is under-performing, or perhaps the load suddenly
increased. Proactive-analysis methods might also attempt to predict the future by
identifying trends or matching current behavior to past behavior patterns. In the
planning stage, the system decides how to react to the fault by identifying a set
of actions that may remedy the situation. These actions are implemented in the
execution stage via actuators.

The autonomic adaptation of software systems is studied extensively. Approaches
to run-time adaptation vary in their approach, for example explicit models of the sys-
tem’s performance [11, 40, 79] like ACUS, linear programming formulations [3, 12],
and hybrid approaches [39].

The contributions described in Chapter 6, referred to here as Autonomic Config-
uration using Simulation (ACUS), focus on the analysis and planning stages. Moni-
toring and execution are out of scope. The underlying assumption is that monitoring
data can be acquired accurately and with enough frequency; similarly, that execution
(i.e., reconfiguration) can occur without prohibitive overhead or delay. Allowances
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are made for monitoring overhead and for reaction time to autonomic changes. The
evaluation throughout this work used environments where these assumptions hold
true.

ACUS distinguishes itself from state of the art autonomic approaches in
several ways. A popular web services autonomic adaptation is to substitute one ser-
vice for another equivalent service. ACUS is focused on enabling a service provider
to meet service targets; substitution is not a viable solution. Service providers are
not incentivized to participate in automatic discovery and dynamic composition if
their service will simply be substituted. Service consumers can derive more value
from a service interaction if the provider is instead incentivized to meet service level
targets without substitution.

Much work in autonomic adaptation is at the server level, monitoring load av-
erages and memory. In contrast, ACUS is generally applicable to many applica-
tions, but the simulation creation and the knowledge base once created are done at
the application level, monitoring application-specific metrics and capable of mak-
ing changes to the application rather than to system infrastructure. The ACUS
knowledge base is created entirely in simulation, then augmented in reality. ACUS
deliberately uses a model that can be visualized and used to explain why the auto-
nomic manager made a certain decision, in contrast to black-box approaches.

Mancini et al. [45] use simulation to autonomically configure applications.
A simulation is created based on a high-level modelling language, a parameter to
optimize is identified, and a target for the parameter is defined - all manually. At
run-time, a decision module generates a list of simulations to be executed based
on a set of simple rules, passes the list to a simulation engine, and retrieves the
results. The configuration that produces results closest to the target is chosen and
the configuration changes made. The claim is that this process is predictive, but
there is no indication of how and when to trigger this adaptation process. As a
run-time system, only a few simulations can be performed before it will be too late
to make configuration changes proactively. No evaluation is presented. In contrast,
ACUS does not need to be told what its goal state is. It does not generate a
decision model at run-time, but instead simulates each scenario once and caches the
results in a decision-model, adding to the model at run-time if needed. It predicts
future behavior based on past performance in similar situations, and proactively
makes changes based on these expected futures. The simulation that informs ACUS
can constructed automatically. ACUS is evaluated in a real-world cloud computing
scenario.

Calinescu and Kwiatkowska [11] use a Markov model of a software appli-
cation to generate an autonomic manager for that application, using the PRISM
probabilistic model checker as an engine. The Markov model is created during a
formal-verification process of the application (or later following the same process).
Decisions are chosen by the engine based on the maximizing of a utility function.
They describe empirical results for Markov chains with a small number of states, for
two scenarios: energy saving by putting hard drives to sleep and cluster availability
in a data center. They call their method model-driven architecture for autonomic
computing. It is not clear how accurately the deterministic model reflects reality,
or how well this method translates to a real system at run time. Constructing the
decision model is labor-intensive, particularly if the application was not previously
formally verified. This approach is system-level management, in contrast to the
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application-level management enabled by ACUS.
Bahati et al. [4] use a state-transition model to encode past decisions and

their results. A state consists of metrics (based on the metrics described in the
policies being enforced) and the various transitions already tried when in this state.
The dividing line between states is the threshold of any metric. For example, if
there is only one policy, which says response time must be less than 2 seconds, there
would be two states: one for response time over 2 seconds, and one for response
time under 2 seconds. A state-transition graph is built over time as the deployed
system is manually transitioned from state-to-state. The autonomic manager iden-
tifies the state in which the system is and the transitions that could potentially
move the system to an acceptable state. In comparison, ACUS builds a behavioral
model offline (skipping the expensive learning stage) and offers variable granularity
for each metric which allows more fine-tuned control, rather than a simple binary
compliant/non-compliant discretization. Finally, their approach does not address
the problem of over-provisioned systems; ACUS provides a more complete solution
to the problem of self-configuration.

Nou et al. [55] describe a framework for autonomic control of Grid computing
environments that used simulation. This is system-level autonomic management,
not application-level, and is not specific to services. At run-time, they build a
model of the load of the system based on the jobs running and their respective
SLAs and predict the expected QoS and throughput using Queueing Petri Nets.
Resources can be added if needed to achieve desired QoS levels. They evaluated
this approach in a real-world computing environment (though with an artificial
workload), and found that their approach was capable of meeting almost all of
the SLAs. In contrast, ACUS offers application-level management with a focus on
the predicted user experience (and not on provider throughput). They use online
simulation (at run-time), which is repetitive and requires resources at run-time. A
limited number of configurations with a limited amount of flexibility can be tested
in the narrow time frame afforded by the necessity of real-time changes.

2.7 Summary

This chapter introduced services and service-oriented architectures, particularly as
implemented using W3C standards like SOAP. Services are governed by Service
Level Agreements, but these agreements are often poorly understood, measure the
wrong things, are not observed, and in general are not perceived by service con-
sumers to add value to services-based interactions.

A set of proposed canonical characteristics for describing, comparing, and mea-
suring simulation frameworks was offered in §2.2. This set draws from existing
characteristics in simulation literature but is tailored for services-specific simulation
frameworks. A comprehensive and systematic survey of simulation frameworks used
these characteristics to guide the description and comparison of seven simulation
frameworks, including the one contributed in this dissertation. The existing frame-
works provided only partial coverage of the desirable characteristics of a simulation
framework.
§2.4 introduced service quality and perceived value, quality, and sacrifice, as un-

derstood in business literature. Propositions related to value were introduced and
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how they should influence the formation of service level agreements was described.
Customization is preferable to standardization, consumer involvement in value cre-
ation should be maximized, the best way to measure and predict value and quality
is based on experience with the product, that monetary sacrifice is not the only
relevant trade-off when calculating value, and that the highest quality option isn’t
always the right choice (the trade-off is more important).

Existing approaches to configuration management (§2.5) do not make use of
simulation to predict performance; instead, data from real-world deployed systems
is used directly. This data is more expensive to produce, though is by definition
accurate. When simulation is used, it is used to predict bottlenecks and resource
contention issues; the work described in this dissertation takes a different approach,
focusing on maximizing user-centric value and explicitly guiding users through man-
aging trade-offs.

Related work in the area of autonomic computing was reviewed in §2.6; though
state-transition models have been used before to construct an abstract representa-
tion of the behavior, their construction based on simulation-generated data is novel.
There is little real-world validation of autonomic self-configuration approaches. Au-
tonomic work in services focuses on substituting services with other services that
perform the same function; the approach taken in this dissertation is to instead
re-configure the original service to make its continued use possible. The approach
described in this dissertation is at the application-level, instead of the more common
approach of hardware-level or infrastructure-level management. Finally, a short-
coming of autonomic approaches is they are difficult to understand or explain; the
simulation-generated narrative of predicted performance and the visualizable state-
transition model presented here allow re-configuration decisions to be explained.
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The services-aware simulation frame-
work (SASF, sass-if ) is a suite of tools
implementing a methodology designed
to create a model of a service-oriented
system and execute the model in a vir-
tual environment. The intended use is
the generation and capturing of data
predicting the performance under dif-
ferent resource configurations and work
loads. The advantage of time-based
simulation over an analytic model is the
ability to predict not just end results,
but to predict an ongoing narrative of
system performance at each moment of a simulation. The models built using this
methodology, and the prototype tools, are focused on a set of metrics related to
capacity planning (sometimes called performance metrics). An early version of the
framework was first described in [71]; the complete description below reflects the
current state of the framework, including several extensions.

The framework consists of four main components (Figure 3.1) and two exten-
sions, each described further in the following sections.

1. the Simulation Engine, which provides functionality for running simulations
(clock management, etc.) and a set of extensible libraries that implement
common functionality (§3.1);

2. wsdl2sim, which takes the document describing the service interface and gen-
erates a simulation (§3.2);

3. JIMMIE, a tool to systematically re-configure the simulation and re-run it to
test a variety of scenarios (§3.3);

4. the Metrics Engine, which facilitates collecting, storing, and visualizing met-
rics generated by the simulation or from recordings of simulations, and creating
a dashboard for presenting the visualizations (§3.4);
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Figure 3.1: The primary components and extensions of SASF.

5. the Emulation extension, which enables integrating simulated components
with real-world services (§3.5); and

6. the Service Testing Modules extension, which provides request generators and
monitors requests/responses to produce metrics (§3.6).

3.1 Simulation Engine

The discrete-event time-driven simulation engine is implemented in Java, using ob-
jects to represent the real world entities. These simulation entities are designed to
simulate the behavior of their real-world counterparts, in some cases at a higher
level of abstraction1. Obvious mappings between simulated entities and real-world
entities simplify the task of a simulation creator, one of the main goals of the en-
gine. An extensible set of existing functionality reduces the “rote” code writing to
create simulated entities, allowing the simulation creator to focus on implementing
functionality.

The engine considers services and groups of services as entities on interconnected
networks. These entities are linked by the exchange of messages over the network.
By default, each entity is run in its own thread and only communicates with other
entities over the network. The engine provides a set of Java classes implementing
web services at different levels of granularity; simulation creators extend this base
set of classes and override key methods with their own functionality (these imple-
mentations can be automatically generated, see §3.2). Several useful functionalities
and sets of Java libraries are provided by the engine, including the following:

1For example, a simulated message is “transmitted” by the simulated network in the amount of
time it would take the real-world network, but the process of creating packets and IP headers and
so forth is abstracted away.
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Figure 3.2: A class diagram of selected extensible service objects.

• Timing and clock control: All entities in the simulation deal with time in ac-
tual time units, and the engine handles conversion to simulation time. The
number of real seconds that pass in a simulated environment second is config-
urable based on the complexity of the simulation and the computation power
available. The clock also offers timed events (e.g., the creator of the simula-
tion can add requests to be notified in n minutes with a specific message or
function call).

• Network transfers: Simulated services need only identify the intended recip-
ient and the message to send. The required network bandwidth limitations,
routing, and the actual transmission over time are handled by the engine. The
engine enforces capacity limits based on configuration properties and records
metrics.

• Basic service behavior: The structure of the simulated application is shown
in Figure 3.2. This simplified UML diagram shows classes and their relation-
ships; additional support such as interfaces and utility classes are not shown.
Each application has a topology, describing its servers, networks, and what
runs on those servers. Simulated entities are assumed to be resident on a par-
ticular server, which has a fixed amount of computation resources. Default
implementations for topologies and servers with their computation resources
are provided. These are integrated with the metrics engine, and are extensible.
Each class is documented using javadoc, the standard Java API documenta-
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tion.

Barring changes to the default structure, a simulation creator can start from
any of the pre-defined starting points: NetworkedEntity, WebService, WebServiceOperation,
or *ServiceOperation.

NetworkedEntity offers the most basic functionality: joining a network, pack-
aging messages, sending messages and listening for messages. The simulation
creator would implement the message creation and message processing en-
tirely. It is also thread-safe, and is structured to be run in a Thread. This is
the most flexible approach but also requires more development effort (though
still less than starting from a blank page). It is useful to group similar ser-
vices (or services that collectively perform a function) into a single simulated
component.

A WebService has the functionality of a NetworkedEntity, plus it knows
that incoming messages are destined for a WebServiceOperation. It provides
some helper functions for its member operations (including metrics gather-
ing/reporting functions that integrate with the metrics engine, and timing it
obtains from the simulation engine). It manages queues of waiting requests
and enforces service-level limits on member operations. This is particularly
useful if the simulation creator does not want to simulate at the level of indi-
vidual operations, and would prefer to have a single implementation simulate
the behavior of all individual operations. Otherwise, the default implemen-
tation can simply be used in its current form, routing request to simulated
service operations.

A WebServiceOperation receives requests routed by a WebService and sends
a response. These offer a “blank slate” for simulation creators who wish to
implement at the operation level but do not wish to make use of existing
skeleton implementations.

Finally, the *ServiceOperations offer stub implementations of *-bound oper-
ations; i.e., CPU-bound, memory-bound, and IO-bound. A simulation creator
need only extend these stubs and initialize a set of parameters for the equations
used to calculate total processing time and resource consumption. The exist-
ing implementation will perform the calculations based on the limits expressed
in the ComputationResource, wait the prescribed period of time, then send a
response. The equations, and all other processing behavior, can be extended.

• Web Service messages: Simulated web services communicate using Messages.
An interface is provided and can be extended by simulation creators. The
BaseMessage can be used, but more commonly will be extended to include
methods and fields required by a simulation (Figure 3.3). Messages are sent
using the Network, which wraps all communication in Data packages that need
to know the size of the message.

• Dynamic configuration: A simulation is configured and run based on XML
configuration files, allowing simulation creators to easily move configurable
parameters to external files outside the code base. The JIMMIE module can
systematically modify these configuration files. In addition to a generic name-
value style file, a topology file defines nested layers of servers, services, and
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Figure 3.3: A class diagram of selected message objects.

<server id="1" memory="512" processor-count="2" processor-speed="2200">

<service type="TaporWebService" class="org.ualberta.tapor.TaporWebService" id="1" parameters="2;1;">

<operation id="2" name="ListWordsOperation" class="org.ualberta.tapor.ListWordsOperation" />

<operation id="3" name="DateFinderOperation" class="org.ualberta.tapor.DatefinderPlainOperation"/>

<operation id="4" name="AcronymFinderOperation" class="org.ualberta.tapor.AcronymFinderOperation"/>

</service>

</server>

<server id="2" memory="512" processor-count="2" processor-speed="2200">

<service type="TaporWebService" class="org.ualberta.tapor.TaporWebService" id="2" parameters="2;1;">

<operation id="1" name="WordCloudOperation" class="org.ualberta.tapor.WordCloudOperation" />

</service>

</server>

Figure 3.4: A sample two-server, four-operation topology descriptor. The simulation
using this topology is described in §4.4.

operations that allow changes to the topology of the simulated web service at
run-time. Each layer specifies the Java class file that implements that layer.
A sample topology descriptor is shown in Table 3.4.

• Service composition: A ComposedMessage type is provided; the load genera-
tors can generate messages of this type, which consist of an ordered sequence
of services to call. The orchestration of this sequence is handled by the engine.

3.2 wsdl2sim

This framework component generates a simulation from the WSDL specification of
the service under consideration. The basic structure of a WSDL (shown in Fig-
ure 3.5) includes parts that describe the service with some abstraction, and other
parts that describe implementation details (the URI endpoint of the service, for
instance).
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Figure 3.5: The high-level structure of a WSDL document. Each component can be
characterized as a more abstract description or as being more about implementation.

XML Type Java Type

xsd:string String

xsd:decimal double

xsd:float double

xsd:integer int

xsd:boolean boolean

xsd:date java.util.Date

xsd:time java.util.Date

Table 3.1: Mapping from standard XML simple data types to Java data types.

The types section is for defining complex message types used by the service
operations. The outer <types> tag wraps a series of tags based on the XML Schema
Document syntax (XSD). Though not all tags are supported, wsdl2sim searches
for <xsd:element> declarations inside <xsd:complexType> tags. (Nested complex
types are not supported). A simulation data container object is created with fields
for each simple data type listed there (based on the translation from standard XML
types to Java data types given in Table 3.1). A constructor and getter and setter
methods are also provided. This data container provides a mapping from the types
being added to the XML schema to types in the simulation. Figure 3.6 shows one
portion of the <types> section of an example included in the WSDL specification2,
and the corresponding automatically generated Java code.

The messages sent and received by the web service are generated from the
<messages> section. Objects representing messages all extend the BaseMessage

class. Each message stub class includes the necessary constructor, fields, getters,
and setters to create and use message objects that represent actual messages. The
simulation creator can then add or remove code to customize the representation.
Code is also generated to instantiate a message object populated with syntacti-

2http://www.w3.org/TR/wsdl
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<complexType name="Item">

<all>

<element name="quantity" type="int"/>

<element name="product" type="string"/>

</all>

</complexType>

(a) A complexType declaration from a WSDL file.

public class ItemComplexType {

private int quantity;

private String product;

public ItemComplexType(int quantity, String product) {

this.quantity = quantity;

this.product = product;

}

public int getQuantity() {

return quantity;

}

public void setQuantity(int quantity) {

this.quantity = quantity;

}

public String getProduct() {

return product;

}

public void setProduct(String product) {

this.product = product;

}

}

(b) The Java class produced to represent the complexType.

Figure 3.6: A portion of the <types> section of a WSDL document and the code
produced.

cally correct but semantically meaningless data. Translation follows the mapping
in Table 3.1, with the additional mappings from complex types to their Java class
representations.

The operations of the web service are created in a series of classes that extend the
base class WebServiceOperation. The approach and simulation methodology can
use any number of models or implementations to adequately represent the behavior
of a ServiceOperation. This proof-of-concept implementation focuses on CPU-bound
operations that can be modelled using a linear equation with a single variable and
margins of error. Extending this implementation to model using other mathematical
functions is a straightforward matter of writing code.

The simulation does not rely on this performance profile-driven approach; the key
element is that the simulated implementation of the operation adequately predicts
the behavior of the operation in the dimensions important to the simulation. For
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instance, a modelling the operation using a queueing-theory model based on analysis
of data or of code could produce accurate predictions for the behavior of interest.

CPU-bound operations, for which CPU time as a function of input size is the
primary determinant of performance, make use of CPUServiceOperation. These
generated classes include performance profiles. The simulation creator is asked if
the operation is CPU-bound, and, if so, to provide a performance profile. This per-
formance profile is a linear equation expressing CPU time used per byte of input,
plus some constant initialization time, plus some error factor representing the dis-
tance between the linear performance profile and the actual service performance3.
Thus, the CPU time used is y = mx + b + e, where m is CPU time per byte, b is
initialization time, e is the error; for input of size x bytes. The CPU time is adjusted
by a scale factor that represents how much faster/slower the test CPU is than the
base processor. The performance profile also includes a similar equation for calcu-
lating the size of the returned response. The current implementation uses linear
regression on metrics gathered automatically by sending requests of varying size to
the operation under various service configurations and recording the results. This
metrics generation is done using a tool that is functionally equivalent to WSUnit4 or
soapUI’s stress testing features, with the addition of templates: an automated way
to populate the content of a series of SOAP messages with semantically meaningful
information. See §4.4.1 for more on the performance profile in practice.

In cases where no performance profile is available, the generated code extends the
more abstract class, WebServiceOperation, instead. The generated code receives
incoming requests and returns an empty response. When the performance profile
is available, the generated code defaults to receiving a response, waiting an amount
of time appropriate given the size of the input, processing queues based on service
concurrency, and sending a response whose size based on the size of the input.

A web service is represented by generating a class that extends WebService.
This foundation class is capable of receiving requests and sending responses over
the network. The automatically generated code instantiates operation objects and
handles routing of incoming requests to the appropriate operation. It then transmits
the response received from the operation. It also includes a computation resource
that calculates how long it takes to process requests based on the number of requests
currently being processed, the size of the request, and the performance profiles for
that type of request. A corresponding testing class is also generated, which simply
sends a WSDL-compliant message to the simulated service for each operation and
reports what response is received.

Finally, an overall simulation controller object is generated, extending from
BaseSimulator. This controller loads configuration properties from an XML con-
figuration file and instantiates the generated web services, as well as the network
and other essentials.

The generated classes all use the dashboard component to track metrics such as
CPU utilization, response time, and number of messages received over time. The
final results of wsdl2sim compile and run, but may not be an accurate simulation un-

4https://wsunit.dev.java.net/
4This example describes the CPU-bound formula. The memory-bound and IO-bound formulae

proceed analogously: for example, the linear regression expresses the expected memory use as a
function of message size. If it depends on a factor other than message size, the base functionality
must be extended.

42

https://wsunit.dev.java.net/


<?xml version="1.0" encoding="UTF-8"?>

<p:experiment count="1000" saveOutput="true" xmlns:p="http://www.ualberta.ca"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="..">

<configDocList>

<use URI="configure.xml" name="config"/>

<use URI="./topology[0].xml" name="topology"/>

</configDocList>

<do>

<range from="1" to="1000">

<document id="topology">

<changeElement name="location" withId="main">

<addAttribute name="width" to="3"/>

<changeAttribute action="increment" by="100" name="height" />

</changeElement>

<addElement name="hello" parent="second" withId="hello_element_id">

<removeElement id="some_id" name="useless" withId="123"/>

</document>

</range>

</do>

</p:experiment>

Figure 3.7: A sample JIML document, which increments by 100 the height attribute
of the <location> tag that has id “main” for each of the 1000 experiments, add
an attribute width to the same element, add a new element hello, and remove the
element useless with id 123.

til the automatically generated classes are further extended. Further extensions can
add functionality not supported by the original application but relevant to simula-
tion: for example, reporting metrics, allowing run-time modification of configuration
parameters, or simulating failures / service timeouts.

3.3 JIMMIE: Systematic Simulation Configuration

The SASF framework is used for the simulation of a system under a set of systemat-
ically varied configurations and work loads. JIMMIE5 is the framework component
responsible for automatically and systematically modifying the simulation config-
urations, represented in an XML-based syntax. JIMMIE is essentially an XML
transformation tool that makes potentially thousands of transformations based on
a set of user-defined rules, saves each iteration, uses it to run an experiment, and
manages the output produced by the dashboard/metrics module to allow for easy
retrieval. Once configured it runs autonomously; the experimenter can view and
compare the results as they appear in the database. JIMMIE is designed to work
on any XML document with any schema and to handle any number of configuration
files.

JIMMIE takes its directions from an XML document that conforms to the JIML
(JIMmie Language) schema (e.g., Figure 3.7). JIML defines a number of experi-
ments and identifies to which experiments each instruction applies (start to end, 1
to 500, etc.). Within each range, it identifies the tags in the simulation configura-

5JIMMIE stands for Just Imagine Many Many Interesting Experiments.
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tion XML document and describes the desired values and attribute values for that
tag. The values can be specified as an enumerated list of items, as a range with
step values, as a loop (like a range but repeated), as an equation, or “hard-coded”.
Hard-coding is based on the experiment ID: [on the kth experiment, set value v
to y]. A JIMMIE plugin based on an existing templating library6 allows for the
use of templates, which allows XML documents to be systematically modified with
variable text content (replacing special template tags with defined blocks of text).

The modification of XML may remind the reader of XSLT. JIMMIE offers fea-
tures akin to that of an XSLT engine specialized to systematically modify an XML
file in a variety of ways producing potentially thousands of modified XML files. In
addition, it manages invoking the simulation and tracking the location of the results;
it is easier to learn and use (instead of being general and broad like XSLT); it can
be integrated into an existing codebase, accessed via its library API, or run as a
separate application.

3.4 Metrics Engine

The metrics and dashboard module is a general library for recording, storing, and
visualizing metrics. A simulation creator can have any component of the simulation
register itself as a reporter, record metrics, and report them via one of several API
calls. This module then stores and distributes the metrics to interested objects.
Metrics are a three part tuple: a time stamp, a name for the metric, and a value
(number or text). The simulation engine uses this module to report certain metrics
for every simulation, such as network utliization, execution time, and the current
state of services (if they implement the state reporting feature). Similarly, the
service testing modules report request and response metrics.

The metrics module specifies metrics listeners which are notified each time a
metric is added. Two listeners are provided by default. The database metrics
listener caches metrics and periodically stores them in a database table (a new table
is created for each simulation). The visualizing metrics listener generates graphs
for each type of metric it receives and updates the graph as more metrics arrive.
It also creates a 600 second rolling average line by default. In short, a simulation
creator can store and visualize data with very little effort. Figure 3.9 shows the
visualization metrics listener and automatically constructed graphs.

The overall structure of the metrics reporting / observing engine is shown in Fig-
ure 3.8. Simulation creators can easily add MetricsReporters and MetricsListeners
by implementing the appropriate interfaces. Base implementations suitable for ex-
tension are also provided.

Beyond the default functionality, a simulation creator can define their own met-
rics listener to handle metrics in other ways. For example, in one of the case studies
(see Section 4.2), a visualization other than the standard graphs was needed, as was
the ability to modify simulation parameters at run-time. Figure 3.10 shows a screen-
shot of the metrics listener created for the task. It uses a pie graph, a line graph,
and a custom visualization of client state (green = served, yellow = waiting, blue =
currently being served). The sliders on the right can be used to change the server
capacity and the network capacity. Another example, extending the dashboard to

6http://code.google.com/p/hapax/
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Figure 3.8: A class diagram of selected metrics objects.

allow for run-time modification of the simulation, is shown in Figures 4.11. For an-
other application, a listener capable of modifying the simulation was implemented:
an autonomic computing module that would monitor metrics, make decisions, and
implement changes.

An additional feature of the metrics engine is the simulation player, which al-
lows one to select an experiment and loads the metrics recorded for that experiment.
Using the existing visualization metric listener, these metrics can be “played back”
(rewound, fast-forwarded, at various speeds) to review the results of a past simula-
tion.

The dashboard may also be used to modify simulation configuration parame-
ters at run-time, though this requires more complex integration by the simulation
creator.

3.5 Emulation Extension

The role of the Emulation extension is to integrate the simulated environment with
a real-world environment. Simulated applications allow for inexpensive performance
testing and enable the implementation of features that may be easier to develop and
test in a simulated environment than in the real world. Validating these testing
results or new features in simulation is a first step, and implementing them in the
real world is the final step. In between lies testing a simulated feature in the real
world.

The extension includes a translation layer that converts simulation Messages to
corresponding SOAP messages. The simulation creator specifies a mapping between
simulated messages and the SOAP messages described in a WSDL, and a mapping
between the WSDL operations and the simulated operations. The emulation layer
converts simulation-generated messages into SOAP messages, and vice versa. This
allows the use of simulation request generators, a mix of real and simulated services,
and the interaction of simulated components with real-world services. A second
translation layer aggregates metrics from real-world entities and includes them in the
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Figure 3.9: The visualization metrics listener displaying two of the metrics being
captured by a simulation.

metrics engine; the existing metrics listeners, including the visualization dashboard,
function as they do in simulation. The time-driven clock of the simulation engine is
governed by actual time.

This extension was employed to test load balancing strategies and an autonomic
management feature, both implemented in simulation, using simulation-generated
requests.

The use of this extension requires a one-to-one mapping between simulated en-
tities and real-world entities. Simulated Servers cannot host real services, and real
servers cannot host simulated services.

3.6 Service Testing Modules Extension

The purpose of the STM extension is the generation, transmission, reception, and
metrics reporting of simulated service requests to enable testing. Request generation
for web servers itself is well understood; however, request generation for services,
and in particular for services in simulation is under-developed. This extension pro-
vides an extensible ServiceTester class, which employs a Generator to create
requests. The base testing class is notified on each “tick” of the simulation engine,
and requests from the Generator a set of requests to send for that particular point
in the simulation. A set of Generator implementations is provided with different
strategies for producing this set. A simplified class diagram is shown in Figure 3.11.

Incoming requests vary based on several parameters: the arrival rate of requests,
the type of each request (i.e., the operation being invoked, as each has a different
performance profile), and the size of each request. These values depend on the fol-
lowing generators, each of which records and reports metrics on how many requests
were generated and of what size:
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Figure 3.10: A custom metrics listener and the playback control.

• Fixed: The type of all requests, the size of each request, and the number of
requests are described in a pre-defined configuration. These requests are gen-
erated as quickly as they can be processed. This is useful for performing tests
that stress the application. This type of generation is used when validating
the simulation.

• Reading: The generator reads from a log file that specifies a series of requests.
For each request, the arrival time, type, and size are defined. This is useful
when generating traffic based on logs of the existing service, or to generate
identical traffic every time when conducting specific tests.

• Stochastic: Requests are generated based on a probabilistic distribution.
The number of requests for any given second are determined by a Poisson
distribution, where λ is a configurable job arrival rate. The type of each
request is based on a weighted random distribution derived from logs of the
real-world service. For the size of each type, the request sizes were extracted
from the logs, then curve-fitting was used to identify and parameterize an
appropriate distribution (usually exponential or Guassian). This is useful for
generating roughly consistent but randomly varying traffic that can be used
directly or recorded and used as input to the reading generator.

• Modifiable Stochastic: Requests are generated as in the stochastic genera-
tor, but some parameters can be modified at run-time: the job arrival rate and
the weights for the type distribution (Figure 4.11). This is useful for creating
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Figure 3.11: A class diagram of selected Service Testing Module (STM) components.

loads that are believably consistent for the same purposes as the stochastic
generator.

3.7 Using Simulation-driven Methodologies

The goal of this simulation framework is to reduce the development time required
to create a simulation capable of accurately predicting the behavior of a software
system. This simulation is anticipated to be useful generally in better understanding
the application, but can also be used for specific purposes and methodologies (in
Chapters 5 and 6, a variety of simulation-driven methodologies are presented). For
completeness, however, described here are the various scenarios in which such a
methodology would be useful.

A simulation is useful in the planning and design stage. Alternate ways
of structuring, architecting, composing, or generally designing the system can be
simulated and tested to empirically evaluate design decisions. This framework was
not originally intended to be used for this purpose, but is general enough that it
could be. Some features of SASF (e.g., the ability to generate requests from logs, and
to generate a simulation from an implementation) are not applicable to simulating
at this stage.

Simulation is useful in the testing stage, where implemented services can be
used in combination with simulated services to create a complete service system for
testing. This is the approach supported best by commercial simulation tools like
soapUI, as described in §2.3.6. SASF is not intended to replace these commercial

48



tools, but does offer integration between simulated and real-world services that could
be used for this purpose.

One key area of applicability addressed here is the pre-deployment stage. Once
all of the services are implemented, a simulation can be created and used to create
an appropriate deployment for the service system. Supporting the process of better
understanding, and systematically analyzing, an implemented service system is one
of the primary uses of simulation contemplated in this work. This is addressed in
§4.2 and Chapter 5.

The second primary use of simulation in this dissertation is post-deployment
and run-time. After deployment, the simulation can be improved using the SASF
tools by capturing more accurate performance profiles and logs of actual requests.
Alternative configurations can be attempted in simulation to improve some aspect
of the service system (here, primarily the performance). Off-line simulation can
reason about the service system without interfering with it. This approach is used
exclusively in Chapter 6, and in tandem with pre-deployment simulation in Chap-
ter 5.

3.8 Known Issues and Threats to Validity

The prototype of SASF is a proof-of-concept and has a number of limitations, some
of which have already been mentioned.

The currently implemented CPU-bound operations, on which the automatic gen-
eration depends, require a performance profile that is O(n) in time complexity, where
n is the size of the input. To support service operations with different performance
profiles, the existing library would have to be extended. This is a matter of writing
code; conceptually, the same approach applies. The methodology - curve-fitting to
a variety of metrics produced by load-testing the service - still applies, but is not
yet implemented.

Complex services, particularly more complex service compositions, will still re-
quire hand-coding, though less than would be required without a starting point.
Support for composed messages is available for simple sequences, but more complex
compositions - conditionals, loops, parallel processing - are not yet implemented in
the framework. A simulation creator would have to provide a composition engine
appropriate for their needs.

The wsdl2sim is mainly useful when considering a one-to-one simulation, where
every operation in the web service has a corresponding object in the simulation.
If a higher level of abstraction is required, its usefulness is limited. It is limited
to only CPU-bound operations, though the automatically generated code can be
modified to extend other service operation simulation templates. It also requires a
request-response web service. Chapter 4 illustrates creating a simulation both with
and without using automatic generation.

No one other than the author and those who helped implement the simulation
framework have used it to simulate applications; no user study of its usability for
producing simulated services has been conducted. Details of how to create a sim-
ulation and important metrics like lines of code manually written are presented in
Chapter 4, where it is clear that less work is required when using SASF. The exact
improvement is not quantified. It should be noted that while this is reported as a
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threat to validity, this level of evaluation actually exceeds current practice in the
area.

3.9 Summary

This chapter introduced SASF, a novel simulation framework for services-oriented
software systems. SASF is built around extensible libraries for common web service
functionality that offer more features than the current state of the art. Develop-
ment effort is reduced using automatic generation of basic simulations from existing
data about the service: from the services WSDL and a performance profile, an exe-
cutable simulation is generated automatically, ready for extension and enhancement.
The basic generated simulation can accurately replicate the performance character-
istics of a real service; existing solutions focus on composition issues and not on a
minute-by-minute replication of performance metrics. A narrative of the predicted
performance of a simulation can be produced using the extensible and flexible met-
rics gathering support system with its own API, which out-of-the-box is capable of
visualizing, recording, and playing back metrics generated during a simulation.

SASF also offers the ability to interact with a running simulation, including not
just the usual user interface, but also an API so both the simulation components
and external applications can modify configuration parameters during simulation
execution. It can integrate simulated components with real-world components by
translating requests and messages from the simulated environment to a real-world
environment. It can generate requests based on real request logs or stochastic dis-
tributions modelled on known request patterns. Finally, JIMMIE is an innovative
language and tool to run systematically modified simulations in sequence or parallel
to generate data.

These contributions are compared to the current state of the art in §2.3.7; SASF
meets or exceeds the state of the art in all areas.

SASF is used to generate, test, and validate simulations in Chapter 4. The
simulated versions are validated against their real-world counterparts and prove to
produce the same performance results.
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This chapter demonstrates the util-
ity of the services-aware simulation
framework described in Chapter 3, by
creating simulations for two service-
oriented systems. Those systems, and
the details of the simulation approach,
are described in this chapter. One sim-
ulated system will be used as a test bed
for additional simulation-related tools
and methodologies in Chapters 5 and 6.

The first case study is a component
of a proprietary enterprise-level sys-
tem that includes SOA-based interfaces,
Tivoli Provisioning Manager (TPM). Its
focus is on the distribution of data to
a large set of endpoints using a dis-
tributed architecture (potentially geo-
graphically distributed). It is simulated
at a higher level of abstraction without
using the automatic simulation genera-
tion feature; referring back to the simulation engine (§3.1), the least amount of
library support (NetworkedEntity) is used. Instead of a one-to-one mapping of
service operations to simulation objects, a set of composed or related services that
implement a set of features is simulated as a single simulation object. This show-
cases the ability to simulate a complex application at an abstracted level, where a
set of web services is grouped into a virtual component and a series of messages into
a virtual communications group. This higher-level groups are then the simulated
objects. TPM is introduced in §4.1; its simulation is described in §4.2.

The second is a text-analysis tool that provides a public web services inter-
face, TAPoRware, the back-end support to the Text Analysis Portal for Research
(TAPoR). Its primary focus is on data processing (CPU-bound), with the move-
ment of data being a secondary but still important concern. It is simulated using
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the automated simulation generator wsdl2sim, using a one-to-one mapping of ser-
vice operations to simulation objects, and the greatest amount of library support
(CPUServiceOperation) is used. The application is described in more detail in §4.3,
and its simulation is covered in §4.4. The simulated version of TAPoRware, TAPoR-
sim, is used as a platform for demonstrating simulation-driven methodologies in the
remainder of this work.

4.1 Tivoli Provisioning Manager

Tivoli Provisioning Manager (TPM) is designed to automate the management of an
enterprise’s software, servers, storage, and networks. It allows enterprises to man-
age and change the configuration of IT infrastructure including servers, operating
systems, middleware, applications, storage and network devices1. Detailed descrip-
tions of TPM and configuration best practices are outside the scope of this paper;
consult the TPM information center2, the deployment Redbook [22], the large-scale
deployment white paper [28] and the scalability white paper [37] for more details.
This description - and the simulation - is based on version 5.1.1, from 2008. Up-
dates to TPM since (currently 7.2; there was no 6.x version) have changed some
components and functionality. This description, and the accompanying simulation,
are still suitable candidates for demonstrating the usefulness of SASF.

The specific motivating example is the scalable Software Distribution Infrastruc-
ture (SDI), an SOA-based distributed architecture used by TPM to distribute files
(install files, patches, configuration files, etc.) throughout an organization, and to
obtain inventory information in return. It consists of a collection of loosely-coupled
services that can be federated to different locations to distribute load and reduce
network load. Throughout the remainder of this section, the term TPM is used to
mean the distributed component of TPM, the SDI.

One usage scenario is an organization managing several data centers around the
world. Communication within the data center is fast, though bandwidth between
the different data centers might be lower. The SDI allows the organization to deploy
federated services at each site, enough to meet demand at that physical location. A
central installation is chosen to host the federators and the non-federated services.
A conceptual model of this scenario is shown in Figure 4.1.

The SDI consists of a number of logically or physically separate entities that
communicate using web services, as follows:

1. Endpoints: Each entity managed by TPM is called an endpoint. Common
examples of endpoints include the computers deployed to an organization’s
employees, or collections of servers in data centers. Endpoints all contain an
installation of the Tivoli Common Agent (TCA), which handles all communi-
cations with the SDI. In general, references to “endpoints” can be interpreted
as references to the TCA installation on the endpoint.

2. Central Manager: The central manager of TPM includes a database for
persistent storage, the user interface, and most of the functionality of TPM not
included in the SDI. Provisioning requests originate here, whether invoked by

1http://www-306.ibm.com/software/tivoli/products/prov-mgr/
2http://publib.boulder.ibm.com/infocenter/tivihelp/v20r1/index.jsp
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Figure 4.1: A conceptual model of the SDI in an example scenario.

an administrator through the user interface, called by an external command,
or triggered autonomously. Provisioning requests are jobs, and include lists of
files to download and actions to perform and are targeted to a defined set of
endpoints. When a job is created, it is sent to the Device Manager Service,
and the files needed are uploaded to the upload server.

3. Device Manager Service (DMS): Endpoints regularly poll this service to
obtain lists of outstanding jobs, and report the success or failure of these jobs.
To share the workload, DMS services can be federated to servers in different
regions. When DMS services are federated, the federator is co-located with
the central manager, and is responsible for distributing job information to,
and collecting job status information from, the federated agents.

4. Content Delivery Service management center (CDS-M): This entity’s
primary role is to manage content uploaded by the central server, usually
files needed to execute jobs. The CDS-M maintains a directory of these files,
oversees the distribution to the appropriate CDS Depots (see below), receives
requests for files from endpoints, returns download plans (listing appropriate
download depots), and collects statistics from the endpoints and depots.

5. Content Delivery Service Depot (CDS Depot): These are repositories
of content for distribution to endpoints. The CDS-M distributes content on
the depots, and endpoints request content from the depots when needed to
complete their assigned jobs. Depots are placed strategically throughout an
organization to meet the downloading needs of the endpoints, based on the
expected jobs. File distribution is the one aspect of SDI that runs outside the
SOA; file transfers are done using an efficient protocol.

53



Sequence Diagram1 2011/03/03 powered by astah* 

Sequence Diagram1sd 

TPM DepotsCDS-MDMS

1: Publish Job()

2: Upload Files()
2.1: Upload Files()

3: Request DL Stats()

Statistics

Figure 4.2: A high-level sequence diagram of job publishing.

6. Regions: Regions are not technically entities, but can be thought of as group-
ings that organize TPM into manageable areas. Each endpoint belongs to a
region and communicates primarily with the federated DMS and the depots
assigned to service that region.

These entities collectively execute provisioning requests (jobs), a process that
involves first a top-down push of instructions and files, and then a bottom-up pull
of the same information, as described in the following subsection. §4.1.2 describes
the current state of the art for capacity planning for TPM and the motivation for a
simulated implementation.

4.1.1 Executing Jobs using the SDI

Executing jobs on endpoints requires two separate but related processes. The first
is job publishing, and the second is job distribution.

A high-level sequence diagram for job publishing is shown in Figure 4.2. Step
0, not shown, is for a job to be created using the user interface (or the API). The
job includes a set of actions to be executed and a list of files required by the job.
The administrator defines which jobs apply to which endpoints. For example, jobs
can apply only to endpoints in a certain defined region, or only to endpoints with a
certain operating system. Once the job is created, it must be published to the other
services in the SDI. First, the job files are uploaded to depots, a process overseen
by the CDS-M. Second, the job is sent to the DMS (in fact, the DMS polls TPM
regularly to see if new jobs are available). The DMS stores the job.

Job distribution is shown in Figure 4.3. This process is driven primarily by the
endpoint, which periodically contacts the DMS to request any pending jobs. When
the endpoint receives a job, it first contacts the CDS-M to request a download plan.
The CDS-M uses statistics from previous file downloads, the network topology, and
the proximity of endpoints to depots to create a download plan listing a set of
depots to contact such that a level of service quality is maintained. The endpoint
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Sequence Diagram0sd 
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Figure 4.3: A high-level sequence diagram of job distribution.

then contacts the first depot to request the file. If the depot is busy, the endpoint
retries later, or attempts to contact a secondary depot as listed on the download
plan. Once it receives the file, the endpoint executes the job: applying a security
patch, updating virus definitions, whatever the task may be. The results of the job
(success or failure) are reported to the DMS. The DMS collects results and when
enough results are received, notifies the central server that job results are available.

One variation on this sequence is that endpoints can download content from their
peers, if peer-to-peer downloads are enabled. This shifts traffic from the wide-area
network to the local-area network. When enabled, the CDS-M returns download
plans that include other endpoints as sources. This is a useful feature for distributed
sites not large enough to justify a dedicated depot server and with only a low-speed
connection to other depot servers. Peering can also work in concert with depots;
experiments have shown a 50% reduction in distribution time when both peering
and depot servers are used on a topology with 55,000 endpoints [28].

4.1.2 Capacity Planning for TPM

The current state of the art for creating configurations for TPM, and in particu-
lar the SDI, is a manual process. As described in IBM white papers [28, 37], an
emulation environment is manually set up and configured in a testing lab. Virtual
machines running on 45 physical machines emulate up to several hundred thousand
endpoints. Bandwidth throttling is used to emulate network speeds and closely
model the target network topology (this part of the process is semi-automated).
Using some rules-of-thumb known to the development team, regions are defined,
and depots and federated DMS agents are deployed to these regions. A central
server is installed alongside the DMS federator and the CDS-M. Based on the ex-
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Figure 4.4: Current process plus the capacity planning tool.

pected use of the infrastructure, jobs are configured and deployed using TPM. A
variety of performance metrics are collected and use to refine the initial deployment.

Once the emulation is running, TPM is deployed in the actual target environment
based on the working test deployment. The process of refining this deployment
varies; however, changes are made to the initial configuration, and continue to be
made as the topology changes or as the actual use of TPM varies from the expected
use.

The expected role for simulation is in the form of a capacity planning tool.
Configuration changes in the actual environment are very costly in terms of time
and resources. Emulation changes are easier, but still occupy time and resources
given the trial-and-error process of refining a configuration. These changes also
at present occur at the development team’s time and expense. Our simulation
method offers negligible costs, but could have reduced accuracy. The expected role
is to reduce the amount of real-world or emulation-level work required. Figure 4.4
shows how our capacity planning tool (once complete) would fit in with the TPM
deployment process (and similarly, how it could fit with any deployment process).

The capacity planning tool, built as a simulation of TPM as described in §4.2 and
called TPMsim, reads from the same topology configuration file as the emulation
environment and builds a simulation environment. The infrastructure, topology, and
a set of jobs are all determined by configuration documents. TPMsim can be used
interactively, or automatically using JIMMIE-based systematic modifications to the
configuration files, to determine an appropriate TPM configuration. The candidate
configuration can be replicated in the emulation environment for validation, using
configuration files generated by TPMsim, or provided to a customer to employ in
their installation.
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Figure 4.5: The class hierarchy implemented for the simulation.

A simulation TPM could also be useful in other ways. For instance, at run-
time the download plans produced by the CDS-M could be modified in response
to their simulation-predicted impact. At development itme, modifications to the
architecture could be tested before the software is released.

4.2 Simulating TPM

The 6 entities described in §4.1 are treated as separate entities in the simulation;
though each may comprise many different web services and operations, each is mod-
elled as a single entity. Figure 4.5 shows the classes implemented to replicate the
behavior of the TPM entities; each is extended from NetworkedEntity, part of the
library support provided by the SASF simulation engine (§3.1). Each communicates
with other entities using messages that implement the library Message interface.

In capacity planning for simple web requests, often the consumers of services are
modelled only by a request arrival rate, with the performance metric being response
time. In TPM, the endpoints are the entity most analogous to consumers; however,
the behavior of endpoints is more complex. The types of messages an endpoint
sends, and when it sends messages, is closely controlled based on timing and on its
state. For this reason, the SASF service testing modules are not suitable; instead, an
endpoint class is created, similar to but distinct from the TPM services. Thousands
of endpoint objects are instantiated to simulate the behavior of endpoints. The
implementation of endpoints is essentially a state machine, where the transmission
or arrival of messages and certain timed events spur the moves from one state to
another.

To illustrate this state transition, consider the sequence diagram in Figure 4.3.
The endpoint starts out ‘sleeping’; it has no contact with the SDI during this time.
At step 1, it sends a job request to the DMS and enters the “waiting for job” state.
When the job response arrives, it either re-enters the sleep state, or sends a download
plan request and enters the “waiting for download plan” state. When it receives
the download plan, it will request a file and enter the “downloading file” state. If
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<?xml version="1.0"?>

<topology>

<location name="winward" count="1" endpointCount="2000">

</location>

<location name="mahwah" count="1" endpointCount="2000">

<wan speed="10000000" targetLocation="winward"/>

</location>

<location name="winward-branch" count="240" endpointCount="100">

<wan speed="1540000" targetLocation="winward"/>

</location>

<location name="winward-vpn" count="1" endpointCount="1500">

<wan speed="10000000" targetLocation="winward"/>

</location>

<location name="mahwah-branch" count="240" endpointCount="100">

<wan speed="1540000" targetLocation="mahwah"/>

</location>

<location name="mahwah-vpn" count="1" endpointCount="1500">

<wan speed="10000000" targetLocation="mahwah"/>

</location>

</topology>

Figure 4.6: The topology XML document used to configure the simulated networks.

<?xml version="1.0"?>

<infrastructure>

<cam host="tca0103" registrationPassword="******"/>

<cds serverURL="https://tca0104:9046"/>

<dms-region name="central">

<server name="tca0106.tca.tod.torolab.ibm.com" address="192.168.2.106"

protocol="https" port="9046" uri="/dmserver/SyncMLDMServlet"/>

<server name="tca0107.tca.tod.torolab.ibm.com" address="192.168.2.107"

protocol="https" port="9046" uri="/dmserver/SyncMLDMServlet"/>

<server name="tca0151.tca.tod.torolab.ibm.com" address="192.168.2.151"

protocol="https" port="9046" uri="/dmserver/SyncMLDMServlet"/>

<location name="central"/>

<location name="backup"/>

<location name="branch"/>

<location name="ATM-1"/>

<location name="ATM-2"/>

</dms-region>

<cds-region name="barclays">

<depot name="tca0105.tca.tod.torolab.ibm.com" address="192.168.2.105"

location="central"/>

<depot name="tca0108.tca.tod.torolab.ibm.com" address="192.168.2.108"

location="central"/>

<zone location="central" peeringEnabled="false"/>

<zone location="backup" peeringEnabled="false" peeringMaxSpeed="3000"/>

<zone location="branch" peeringEnabled="true" peeringMaxSpeed="3000"/>

<zone location="ATM-1" peeringEnabled="false"/>

<zone location="ATM-2" peeringEnabled="false"/>

</cds-region>

</infrastructure>

Figure 4.7: The document describing the TPM infrastructure.
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a busy response is received, it will contact the other depots; if all busy responses
are received, it will enter a “waiting for available depot” state where it sleeps for
a period of time before waking to request files again. Once it finishes downloading
the file, it runs the job, reports its status, and returns to sleep.

Since endpoints spend the majority of their time dormant, and since the engine
must be capable of simulating up to hundreds of thousands of endpoints, each end-
point does not run in its own Thread. Endpoints wake up after timed intervals or
whenever they receive a message, and request a thread in which to run. They are
then allocated a thread from a pool of threads, which they use to complete their
processing.

The other entities are considered service providers. Each runs in its own thread.
For performance reasons, they do not constantly check for new messages; rather,
the thread sleeps and wakes frequently to check for new messages. At this time,
the load at the hardware level on most service providers is not simulated though
it is recorded; they are capable of responding to requests almost immediately. The
exception is the depot, which limits the number of files it will serve at any given
time. This is a reasonable simplification because the depot is understood to be the
primary bottleneck in the SDI.

The existing metrics engine is used to report some metrics (requests / hour for
the services, network utilization, etc.), but the more interesting metrics component
is a MetricsListener implementation that visualizes the current state of all the
endpoints. Endpoints were augmented with MetricsReporter functionality, and
periodically report their state. A dashboard was created that compiles live statistics
on how many endpoints are in each possible state. Mentioned previously in §3.4 and
shown in Figure 3.10, it provides a single-glance dashboard view of job completion
status. This can be run at simulation time, or recorded and played back later.
The dashboard also uses the configuration API to change the simulated application
configuration at runtime, allowing the user to adjust network capacity and depot
capacity to see the impact on the application.

TPMsim uses the existing emulation configuration documents as direct input,
using the simulated entities to mimic the network topology (Figure 4.6) and the
TPM infrastructure (Figure 4.7). These can be systematically modified using JIM-
MIE. Implementation-specific information (e.g., IP addresses) is not included, but
otherwise every component is simulated.

The final version of TPMsim is almost 3,000 lines of code developed manually;
the total framework is almost 9,000 source lines of code (Figure 4.8). This case
study offers a unique comparison point. TPMsim was first implemented entirely
using hand-coding, without using the simulation framework3. This original pre-
framework version of TPMsim was approximately 7,000 lines of code. The use of
the framework, even without using automated features or the most detailed libraries,
requires almost 60% fewer lines of source code.
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Figure 4.8: Source lines of code for the TPMsim-specific code and the framework.

Figure 4.9: Time required to send a 10M file to endpoints, simulated vs. emulated.

4.2.1 Validation

The primary way in which the SDI differs from a ‘typical’ service composition is its
role of file distribution. Network utilization is the expected bottle-neck, as opposed
to individual server performance [37, 28]. Thus, accurate timing on message sending
and network usage were priorities for this prototype. The primary metric collected
in this evaluation is the amount of time required to distribute a file to all endpoints.

This metric is compared to the emulated performance tests described by Leitch
et al. [37]. They describe a topology consisting of a single DMS and one depot
server. The number of endpoints varies between 1,000 and 12,500. They test the
time required to distribute a 10 megabyte file. These tests were done using TPM
version 5.1. The white paper identifies some but not all of the values used for the
configuration parameters. The important parameters, and the values used in this
validation, are listed in Table 4.1. These values were based on the documentation
and TPM best practices, and are reasonable assumptions.

3In fact, portions of the SASF implementation are generalized versions of the original TPMsim
implementation; features general to service-oriented simulations were pulled out into a common set
of libraries, tools, and features.

60



Parameter Value

Speed of the network 100 Mbps

Max. speed per file transfer 2.5 Mbps

Depots max. number of simultaneous file transfers 40

Endpoint sleep time between checking for jobs 3600 s.

Endpoint sleep time waiting for available depot 600-2400 s.

DMS sleep time between checking for jobs 600 s.

Table 4.1: Configuration parameters.

To compare the simulation environment to the existing emulation environment,
TPMsim was configured and executed with a job that included a 10 megabyte
file. Simulation performance is an important consideration when simulating tens
of thousands of entities over extended periods of time. The experiment described
above with 12,500 endpoints and a 10M file was run at 25 times real-world speed
(that is, 25 simulated seconds went by during each real second). The simulation
ran on a Pentium 4 2.80 GHz machine. Depending on the state of the simulation,
it required 10-20% of the CPU and less than 35MB of memory. The simulation
can be either sped up or slowed down, depending on the available resources and
performance.

The total time to distribute this file to 1000, 3000, 5000, and 12500 endpoints was
compared to the same metric from the Leitch results, and are shown in Figure 4.9.
The solid line is the simulation; the dotted line is the emulation. Evidence indicates
that for this limited evaluation, our simulation is producing similar results.

Using the state observation implemented in the metrics engine, the state of
each endpoint was captured every minute during the 5,000 endpoint experiment.
Figure 4.10a shows the number of endpoints sleeping and waiting for depot, the two
most common states, over time. An endpoint “waiting” is a potential indicator of an
overloaded depot. Figure 4.10b shows the number of endpoints actively downloading
a file (or attempting to download file) and the number of endpoints doing any other
task (checking for jobs, waiting for a download plan). Note the difference in the
scale of the y-axis between the two graphs. There is no data with which to compare
these figures, so they may not be an accurate reflection of what the endpoints are
doing in reality.

4.2.2 Known Issues and Threats to Validity

Some aspects of TPM are present in TPMsim but not validated here; most notably,
configurations with a federated DMS and configurations using peer-to-peer transfers.
Data from real-world or emulated installations of TPM is not available for these
features. There was an emulation lab at the software development facility, but it
is not available for use. Alternatively, this data could be produced by creating a
local emulation environment, either on local hardware or on leased machines from
a cloud computing provider such as Amazon. Approximately 5000 real or virtual
endpoints would be required to produce meaningful results. Fine-tuned control over
the network would also be required to emulate varying network topologies.

Similarly, though the simulation offers metrics tracking and recording, without
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(a) The number of endpoints waiting for a depot and sleeping.

(b) The number of endpoints actively downloading a file and doing
anything other than waiting, sleeping, or downloading.

Figure 4.10: Custom visualizations in the TPM simulation dashboard.

real world data with which to compare, validation of these metrics is not possible.
Only the most crucial metric, total distribution time, is shown to match that of the
emulated environment. For this reason, TPMsim is not used in further demonstra-
tions of simulation-driven methodologies.

The data to which the simulation-generated data is compared appears in a white
paper that does not describe the values used for a variety of configuration param-
eters. Statistical analysis of these results is not possible as detailed results of their
testing is not available. However, the values assumed by the simulation are believed
to be reasonable estimates, as indicated by colleagues of the authors of the source
paper. They follow best-practice recommendations from the TPM deployment team.
This threat could be further reduced by producing a validation data set where the
configuration values are specified.

The load and performance at the hardware level (CPU, memory, or disk bot-
tlenecks) for most TPM components is not simulated. The number of attempts to
access each component per time unit is recorded, but the component is capable of
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Operation Description

List Words Count, sort and list words of the source text in different orders.
It can strip words user specified from the list, or common stop
words.

Concordance Find user specified word/pattern anywhere in the text with its
context. Display the result in KWIC format.

Co-
occurrence

Find user specified pattern and co-pattern in a given length of
context. Highlight the patterns in the result.

Word Cloud Using the top k frequent words reported by List Words, gener-
ate a visualization of those words and their relative frequency.

Table 4.2: TAPoR operations (from http://taporware.mcmaster.ca/˜taporware/textTools/ )

responding to requests almost immediately (not including network transfer time).
The exception is the depot, which limits the number of files it will serve at any given
time. This is a reasonable simplification because the depot is understood to be the
primary bottleneck in the SDI. A more detailed simulation could be authored which
would use the computation resource tracking features of SASF to produce load and
performance results for all TPM components.

4.3 Text Analysis Portal for Research

The Text Analysis Portal for Research (TAPoR) is a web-based application that
provides a suite of text-analysis tools to scholars and researchers in the Digital-
Humanities [63]. It includes a front-end portal and a back-end web service called
TAPoRware.

TAPoRware is a single web service with 44 operations, implemented in Ruby us-
ing the SOAP4R libraries4. Each operation runs in time linear with respect to the
size of the input. The subset of operations covered here includes listing the words
with their counts, generating word clouds, finding the use of a word in context (con-
cordance), and finding two words located near each other in text (co-occurrence).
These operations are described in (Table 4.2). In addition to accessing the functions
via web services, they may also be accessed via CGI.

Many of these operations appear “in triplicate”, where the exact same function-
ality is applied to documents in different formats, namely plain-text, HTML, and
XML. Some operations are implemented for only plain-text. When HTML and XML
are explicitly supported, the functionality offered allows one to identify from which
tag or tags to extract text. As the service matured, it created one operation for
extracting text from HTML which could be composed with other operations, and
operations implemented since this happened have only included plain-text versions.

A typical usage scenario begins with the end user identifying a piece of text to
analyze with a given tool. Then via a web-services client or the web front-end, the
user selects the relevant parameters for the analysis. Common options include word
stemming, excluding stop words, and the number of words/sentences/paragraphs
to display results in-context. In addition, each operation has its own configuration

4http://rubyforge.org/projects/soap4r/
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options. The entire text to be analyzed and the configuration options are encoded
in a SOAP request and transmitted to the web service.

The primary challenge facing TAPoRware is performance. The service performs
CPU-intensive operations on potentially large text corpora. Though it is capable
of handling a small number of users, performance challenges can become critical
with an increased user population, which can critically throttle its adoption. The
web service as implemented extends Ruby’s Webrick server and can process only
one request at a time; this cannot be changed in a configuration file. Though
reasonable for single-processor machines, parallelism via an upgraded multi-core or
multi-processor machine will not improve response time.

4.3.1 TAPoRware 2.0

To address the parallelism problems, the base system was modified in two important
ways. First, the ability to process multiple simultaneous requests was “faked” to
allow the software to take advantage of multiple processors or cores when available.
This was implemented by running multiple instances of the single-request version
on different ports on the same server. Incoming requests are services by one of the
running processes. Any number of processes can be run, depending only on the
resources available to the server: this parallelism will only improve performance
when there is more than one processor.

To balance the requests among all running processes, Apache 25 was installed and
configured to listen on a single port and load balance all incoming requests among
the available single-request instances6. The bybusyness load balancing algorithm is
used; it keeps track of the outstanding requests for each process and sends requests
to the process that is least busy7. The underlying implementations are not modified
in any way.

Second, instead of a single web service containing all of the different operations,
the service is split into many web services, each containing a subset of the different
operations. The division is a natural one, and is used to introduce the ability
to partition the service over multiple servers (as opposed to replicating it). This
partitioning makes the problem of composing services more interesting. Once again,
the underlying implementations are not modified in any way.

This modified version, called TAPoRware 2.0, is the basis of the simulation de-
scribed in the following section. Throughout the remainder of this work, “TAPoR-
ware” and “TAPoRsim” will be used to refer to TAPoRware 2.0 and its simulation,
respectively.

4.4 Simulating TAPoRware

This case study describes in more detail the process (following the SASF method-
ology and using SASF tools) for generating a one-to-one simulation of TAPoRware,
TAPoRsim, where every real-world entity is mapped to a simulated entity. This
allows more of the support provided by SASF - libraries, automatic generation,

5http://httpd.apache.org/
6The same approach can be used to load balance over multiple servers.
7http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
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metrics gathering, configuration APIs - to be showcased and shown to be effective.
TAPoRsim is used throughout the remainder of this work as a motivating example
or a platform for demonstrating simulation-driven methodologies and tools.

There are four steps in this process: 1) building a performance profile of the
service, 2) automatically generating code and customizing the code to better mimic
the service functionality and/or to offer simulation features (e.g., additional visual-
izations, run-time configuration), 3) validating that the simulated service matches
the real-world service, and 4) running the simulation systematically.

4.4.1 Building Performance Profiles

To determine the performance of a TAPoR operation, a performance tool sent re-
peated requests of varying size and with varying levels of concurrency. These re-
quests were automatically generated using a combination of soapUI and a template
engine. The empty SOAP messages generated by soapUI were augmented with tem-
plate tags: notations where custom content is needed. Those tags were replaced by a
template engine (Hapax8) with values from a configuration file. Most input options
except the text to analyze were set to default values. The final SOAP messages
included data to be processed, text of several fixed lengths (from 50 up to 175,000
words, or 250 to 1,000,000 bytes). The text was from English-language novels on
Project Gutenberg (most frequently Mary Shelley’s Frankenstein or Last Man or
portions thereof).

These sample messages had to be both syntactically and semantically correct,
as error messages produce a different performance profile than actual responses.
Syntax was handled automatically, but semantics requires a user who understands
the service to enter appropriate values. This could be automated by observing real
traffic to the service if there is an existing deployment, or by using default values
specified in documentation.

TAPoRware was installed on a web server running in a virtual machine (with
a dedicated processor and reserved memory), which was configured with varying
amounts of memory. The Apache Benchmark (ab) tool9 was used to send the SOAP
requests to the service with varying levels of concurrency. Where possible, only the
plain-text tools were tested, as the performance of the plain-text, HTML and XML
versions of the operation did not differ significantly.

To construct a profile, the amount of time required to process a single request
of a given size was calculated. Requests of several varying sizes were sent repeat-
edly to acquire this information. Next, the time required when concurrent requests
were sent was calculated; this determined the effect of concurrency on performance.
Performance scaled linearly: when concurrency was doubled, so did response time.
This indicates that a single request was sufficient to completely use the single pro-
cessor of the test machine. From this data, a linear regression was computed, as
well as the error in the regression (the distance of the line from the actual data).
This linear regression represents the performance profile. It is limited to operations
with performance of O(n) or better. Finally, stress testing was used to identify the
limit of the service: that is, the point at which requests start failing. The data for
the List Words operation with concurrency of 1 is shown in Table 4.3.

8http://code.google.com/p/hapax/
9http://httpd.apache.org/docs/2.0/programs/ab.html
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Bytes Response Time (ms) Time per Byte

250 62 0.2499

56469 3086 0.0547

217012 8010 0.0369

416818 13537 0.0325

1000732 29235 0.0292

Table 4.3: List Words operation response times for input of varying size submitted
one request at a time.

4.4.2 Generating and Extending Code

Using a portion of the TAPoRware WSDL and the performance profiles from the
previous section as input to wsdl2sim (§3.2), a simulation to be run on the simula-
tion engine was generated automatically. This automatically generated portion was
actually capable of replicating the performance of the service and its operations at
a granular level. It is used in the validation process.

However, to make the simulation tool more useful as an experimental platform,
features not included in the original application were added - generating a topology
from an XML file, additional metrics capturing code to create a dashboard, a simu-
lated load balancer based on load balancers used elsewhere but never with TAPoR,
and extending the configuration files to allow for JIMMIE integration. Additionally,
the ability to modify crucial elements of the configuration at run-time was added
(Figure 4.11).

Future uses of TAPoRsim vary the inputs (systematically and repeatably) to
predict behavior in different conditions. The behavior of the simulated applica-
tion is determined by two main factors: (a) the configuration of TAPoRware in the
simulation, and (b) input to the simulation (basically, incoming requests and their
parameters). The latter are configured using the Service Testing Module extension
(§3.6). For the former, TAPoRsim is configured using an XML topology configu-
ration file supported by the simulation framework. This file identifies the servers,
services, and operations that form the simulated web service(s). It includes unique
identifiers and the names of the classes that implement the topology in the simula-
tion. Modifying this file and another Properties-style file are sufficient to modify
the configuration of the simulated application. These configurations can be modified
systematically using JIMMIE. A sample topology descriptor was previously shown
in Table 3.4.

This extended version was used to generate data later employed when reasoning
about the application.

Using wsdl2sim, 1,145 source lines of code (SLOC) were created for a 6-operation
sample simulation. (In comparison, the framework itself is 8,500, Figure 4.12.)
The customizations collectively account for 1000 SLOC (primarily UI, run-time
configuration, and metrics). An additional 1,000 SLOC were generated by a Java
UI creator that was used to create portions of the new user interface. A breakdown
showing simulation-specific code is shown in Figure 4.13.

The resulting simulation is the base TAPoRsim. Add-ons to this base are used
in subsequent chapters to demonstrate approaches or tools, but do not form part of
the core simulation.
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(a) Modifying request arrival rate (b) Modifying request type distributions

Figure 4.11: The modification tool for modifying parameters of request-generation
in real time.

Request Block Mean Response Time
Configuration Mean Absolute Error

c=1, size=56000 11.8%

c=1, size=217000 11.7%

c=1, size=1000000 1.3%

Average 8.3%

Table 4.4: Mean Absolute Error when comparing the linear regression prediction
for the List Words operation to the real-world operation.

4.4.3 Validation

To evaluate the accuracy of the simulation, the simulation-generated metrics are
compared to the real-world metrics for each operation. Using Apache Benchmark,
requests of various fixed sizes were sent to the real-world operation. The exact
response time (to the millisecond) was recorded. This data represented reality.

The test requests were organized into blocks of requests. Each block included 50
requests with the same properties - same request size, same level of request-sending
concurrency (with concurrency=1, only request is sent at a time). The sizes were
56469, 217012, or 1000732 bytes. The concurrencies were 1, 2, 5, and 10.

A single TAPoR service was deployed to a single-processor Pentium 4 machine
with 2 GB of RAM and a 100Mbps network connection10 between the client and
the server (i.e., network delay is a non-factor). It was configured to process up to
two requests simultaneously, queuing any other requests (a single-processor machine
will not benefit from additional parallelism). The metrics collected were response
time and total time to process the blocks of request (i.e., throughput).

This real-world environment was replicated in simulation - same hardware profile,
same configurations, and same blocks of requests. The automatically generated code
was used without modification.

10There is no motivation for hardware selection other than availability.
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Figure 4.12: The proportion of hand-written code versus code provided by a library
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Figure 4.13: The proportion of hand-written code versus automatically-generated,
excluding framework code.
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Figure 4.14: Normalized distributions of service response times to single concur-
rent requests, comparing reality to the theoretic model (linear regression) and the
implemented model (simulation).

For brevity, details are provided only for the results of evaluating the List Words
operation. The results do not differ substantially across all operations.

Visually, Figure 4.14 shows the normalized distribution of response times for the
List Words service under two input sizes for the real service, the simulated service,
and for the response times predicted by the linear regression model of the service.

A two-way ANOVA (response time in milliseconds versus real/simulated) and
found that the two sets of results were not statistically different (response time in
milliseconds, p < .05).

Recall that the simulation is built on performance profiles generated from linear
regressions. The predicted response time based on the linear regression (exclud-
ing the expected error information) was compared to the actual response time as
measured empirically. The linear regression only predicts single-concurrency perfor-
mance, so only three test request blocks are applicable. For each block, the Mean
Absolute Error of the two values was calculated and expressed as a percentage. As
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Figure 4.15: The total time required for the real service and the simulated service
to respond to all 50 requests for varying input sizes.

shown in Table 4.4, the mean absolute error over all three applicable test blocks is
8.3%.

The performance model was based on real-world service performance for single
concurrent requests, which are projected to scale to higher concurrency. Increas-
ing concurrency beyond the approximate capacity of the server results in increased
response times for clients, but may reduce overall time spent processing a fixed
number of jobs. (Overall test time is of interest to the service owner; individual
response time is of interest to the consumer). Comparing total processing time in
the real-world service with the same metric in the simulation, for concurrency of
1 and concurrency of 10, the simulation accurately predicts total processing time
(Figure 4.15). However, for concurrency of 10, the simulation is too optimistic about
the improvement in overall processing time. Improvements were made to the model
to decrease this margin of error: the original performance model failed to adequately
account for request processing overhead when managing a queue of pending request.

4.4.4 Systematic Simulation

The simulation-generated data used for validation was created by varying three con-
figuration parameters: the size of the requests sent, the concurrency with which the
requests were sent, and the concurrency with which the service processes requests.
In fact a broader set of data than that used for the validation was generated: 1,
2, 5, and 10 request concurrency; 1 or 2 service concurrency; and request size 250,
56469, 217012, 416818, and 1000732 bytes. There are 40 possible combinations of
these values.

To demonstrate the systematic simulation of varying configurations, this data
was generated using JIMMIE. The JIML file used is shown in Figure 4.16. A default
configuration file is set with all of the configuration parameters required by TAPoR-
sim; three of these are modified by JIMMIE: serviceConcurrency, requestConcurrency,
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and size (of requests generated). The default value for each variable is set in the
default configuration file (to 2, 10, and 250, respectively). JIMMIE only modifies
the attributes when the default must be modified. So for instance, one command
changes serviceConcurrency to 1 instead of 2 for half of the simulations (experi-
ments 1 through 20); for the remainder, the default value is used. JIMMIE system-
atically creates all combinations of the possible values, leaving untouched default
parameters. All requests were sent to the List Words operation.

The simulation was run on a Pentium 4 machine with 1.75 GB of RAM, and
simulated the TAPoRware service running on a Pentium 4 machine with 2GB of
RAM. The results produced by JIMMIE are shown in Table 4.5. Sending more than
one request at a time to a single-processor service increases the overall response time
as requests contend for resources or spend time waiting in a queue; the total time
taken to process the requests doesn’t change.

Using this systematic simulation as well as stand-alone simulations, over 1,000,000,000
individual metrics have been collected during the experiments described in this dis-
sertation.

4.4.5 Known Issues and Threats to Validity

The automatic generation (wsdl2sim) is limited to operations with performance of
O(n) or better. This could be extended by replacing the linear regression and linear
models used; regression analysis and curve-fitting is generally applicable to higher-
order polynomials (though limited by the abilities of curve fitting on higher-order
polynomials), exponential growth, etc..

The validation was performed on two key metrics (response time and total time)
in a straightforward application configuration. The assertion is that the validity
of (some) other metrics and the validity of metrics in more complex scenarios fol-
lows from this validation. Though these two key metrics are used predominantly
throughout the remainder of this work, other metrics are occasionally employed and
are not as thoroughly validated. In most cases, a real-world implementation is tested
to further validate the simulation-based results.

Only the CPU use is tracked and used to govern response time; if a machine
has substantially more CPU available than memory, memory may prove to be the
bottleneck. Such scenarios are not anticipated by the simulation.

4.5 Summary

This chapter described the process of using SASF (Chapter 3) to simulate Tivoli
Provisioning Manager and the back-end service for the Text Analysis Portal for
Research. The first demonstrates use of basic library functionality, the simulation
engine, and the metrics engine. The second adds the use of additional libraries,
automated simulation generation, systematic simulation using JIMMIE, and the
Service Testing Module. One remaining SASF extension, the emulation extension,
will be used in later chapters and is not used in the base versions of TPMsim or
TAPoRsim.

The use of the framework reduced development time and effort that would have
been required otherwise. In the case of TPMsim, the framework is estimated to
have offered a 45% reduction in development effort. In the case of TAPoRsim, its
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behavior was replicated without manually authoring a single line of code. A set
of extensions was added, and still only 28% of the TAPoRsim-specific code was
hand-coded.

TAPoRsim will be used to test, demonstrate, and validate the methodologies
and tools in the following chapters.
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<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<experiment xmlns="http://www.ualberta.ca"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" count="40" saveOutput="true"

xsi:schemaLocation="jimmie.xsd">

<configDocList>

<use URI="config[0].xml" name="config"/>

</configDocList>

<do>

<!-- table name changes in all documents -->

<document name="config">

<!-- [0] will be updated to a unique id for this sim run -->

<changeElement name="variable" withId="tableName">

<changeAttribute name="value" to="table[0]" action="increment"/>

</changeElement>

</document>

<!-- serviceConcurrency = 1 -->

<range start="1" end="20">

<document name="config">

<changeElement name="variable" withId="serviceConcurrency">

<changeAttribute name="value" to="1"/>

</changeElement>

</document>

</range>

<!-- requestConcurrency = 1 -->

<range start="1" end="5">

<document name="config">

<changeElement name="variable" withId="requestConcurrency">

<changeAttribute name="value" to="1"/>

</changeElement>

</document>

</range>

<range start="21" end="25">

<document name="config">

<changeElement name="variable" withId="requestConcurrency">

<changeAttribute name="value" to="1"/>

</changeElement>

</document>

</range>

... omitted for 2 and 5 for brevity...

<!-- requestSize = 56469 for 2, 7, 12 ... -->

<range start="2" step="5" end="2">

<document name="config">

<changeElement name="variable" withId="requestSize">

<changeAttribute name="value" to="56469"/>

</changeElement>

</document>

</range>

... omitted for 217012, 416818, 1000732 for brevity ...

</do>

</experiment>

Figure 4.16: The JIML file describing what parameters to modify for a series of
experiments.
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Figure 4.17: The data produced by JIMMIE; the relative size of the request is
shown by the size of the point. The overlap between service concurrency of 1 and 2
shows that this factor doesn’t affect the results. The average response time increases
as the request load on the service increases.
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Service Conc. Conc. Requests Size Total Time Resp. Time

1 1 250 74 1.47 ± 0.39

2 1 250 80.5 1.58 ± 0.5

2 2 250 46 1.79 ± 0.78

1 2 250 75 2.96 ± 0.76

1 5 250 71.5 6.67 ± 1.46

2 5 250 80 7.69 ± 1.43

1 10 250 75.5 13.62 ± 3.43

2 10 250 76 13.94 ± 3.58

1 1 56469 156.5 3.12 ± 0.51

2 1 56469 157.5 3.14 ± 0.55

2 2 56469 136 5.37 ± 0.97

1 2 56469 151.5 5.98 ± 0.69

2 5 56469 155 14.89 ± 2.39

1 5 56469 156.5 14.97 ± 2.35

1 10 56469 151.5 27.82 ± 6.63

2 10 56469 152.5 27.89 ± 6.2

2 1 217012 379 7.57 ± 0.57

1 1 217012 387.5 7.74 ± 0.56

2 2 217012 364 14.42 ± 1.26

1 2 217012 378.5 14.96 ± 1.27

2 5 217012 375 36.27 ± 6.52

1 5 217012 385.5 36.9 ± 5.75

1 10 217012 384 69.81 ± 16.9

2 10 217012 384 70.42 ± 15.66

2 1 416818 665 13.28 ± 0.52

1 1 416818 668 13.35 ± 0.5

2 2 416818 649 25.93 ± 1.13

1 2 416818 664 26.27 ± 1.85

1 5 416818 660.5 63.31 ± 9.84

2 5 416818 675 65.35 ± 12.93

2 10 416818 658 120.74 ± 27.18

1 10 416818 665.5 121.04 ± 29.48

1 1 1000732 1491.5 29.81 ± 0.48

2 1 1000732 1492 29.83 ± 0.53

2 2 1000732 1471 58.76 ± 0.97

1 2 1000732 1487 58.88 ± 4.12

1 5 1000732 1488 142.92 ± 22.34

2 5 1000732 1505 145.77 ± 32.28

1 10 1000732 1492 271.54 ± 65.77

2 10 1000732 1502.5 276.42 ± 60.93

Table 4.5: List Words operation response times and total processing time for con-
figurations that vary in request concurrency, service processing concurrency, and
size.
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Chapter 5

Informing the SLA Lifecycle
using Simulation

Chapter Contents
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An SLA can be viewed as a three-
way relationship among the producer,
the consumer1, and the service. The
typical lifecycle of an SLA involves
creation (negotiation), implementation
and assessment, and eventually termi-
nation (Figure 5.1). This is the pre-
vailing view on SLA lifecycles (e.g.,
[23, 24]). Others recognize the need for
the SLA to evolve and be re-negotiated
over its lifetime (e.g., [6, 25]). The lat-
ter view is adopted here, and extended:
the SLA should evolve as business needs change, based on periodic review, and as
the service implementation itself evolves (for example, to add new features).

This modified view of the SLA lifecycle is shown in Figure 5.2 by changing the
linear process into a more realistic cycle. An initial SLA is negotiated to document
the desired qualities of the service delivery. The service is configured and deployed
to meet the SLA. Service interactions are monitored and evaluated to ensure that
the terms of the SLA are met. The important part is the SLA is not static - it
is periodically re-negotiated, or at least re-examined, to ensure it is still practical.
Good points for re-examination are when the software is updated and when business
needs change. The result of the evaluation or the re-negotiation may be to terminate
the SLA.

Each phase of the lifecycle and a simulation-driven method addressing that phase
is described in the following sections. §5.1 describes the challenges that face a con-
sumer negotiating with a service provider who has more information and under-
standing about the service. It presents simulation-driven approaches to assisting in
making choices and trade-offs explicit and well understood to strike a balance that
provides actual and lasting quality to the consumer. §5.2 describes the process of
translating an SLA into a configuration, and introduces a simulation-driven question

1The consumer is not an individual; it is any entity that consumes a service. A service is not
technically “consumed”, but the term “user” is even more overloaded.
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customer and a service provider. The objective of Section 3 is to 
initiate discussion at the workshop on novel dynamic pricing 
strategies and Section 4 provides a high level architecture for SLA 
management. Future research is presented in Section 5 followed 
by a conclusion. 

2. SLA LIFECYCLE 
EServices are services that provide their functionality 
electronically and the interaction between the customer and 
provider is through a communication network. There is no 
constraint as to what these services provide – they could provide 
simple weather forecasts and stock quotes or resource intensive 
simulations of complex systems.  

Before a customer gets access to a provider’s service, they need to 
establish a contract that regulates that access. SLAs are one 
expression of such a contract. A typical scenario between a 
customer and a service provider is that they first negotiate an SLA 
that includes price, service type and quality of service attributes. 
We envisage that SLAs provide the foundations to the successful 
establishment of a sustainable eServices marketplace. Service 
usage will be governed by SLAs under a well-established legal 
framework. 

A key parameter in determining a base price for a service is the 
cost for the provider to provide the service. The cost includes the 
purchase and maintenance of hardware and software, network 
access, and risks. Non-functional properties in an agreement are 
another important parameter in negotiating a price for the service 
– an SLA with tight time constraints will be of greater risk to the 
provider and thus will incur a greater price.  

The complete lifecycle of an SLA is described by the 
TeleManagement Forum [3] and is split into six distinct phases as 
listed below: 

• Development of Service and SLA Templates 

• Discovery and Negotiation of an SLA 

• Service Provisioning and deployment 

• Execution of the Service 

• Assessment and corrective actions during execution 
(parallel phase to execution of the service) 

• Termination and Decommission of the Service 

There is still ongoing discussion as to whether the creation of a 
service and SLA template should be part of the lifecycle or 
whether is it a predecessor of the lifecycle. We see it as a 
predecessor and not as part of the lifecycle as depicted in Figure 
1. 

 

Figure 1: SLA life cycle 

The creation of SLA templates for an eService identifies and 
defines the non-functional quality of service attributes and the 

price, which impacts all the later stages of the SLA lifecycle 
including negotiation, monitoring and service provisioning. 

Introducing dynamic pricing into SLA negotiation affects the 
service and SLA template development stage. In addition to 
developing the service and its associated SLA templates, 
additional effort needs to be invested in developing and realizing 
pricing policies that match the service function and quality 
attributes.  

After the negotiation of an SLA the service provider has to 
configure his system accordingly to provide the service to the 
customer. He is now prepared for the execution of the service 
whose quality will be assessed (e.g. for accounting and billing 
purposes) until the SLA is terminated. Within this paper we 
concentrate on the first phase of the SLA lifecycle – the 
negotiation.  

Negotiation between customer and provider is achieved through a 
negotiation protocol. Our position is that the eServices 
community should adopt the protocol that has been abstractly 
defined by contract law [6] and it is surprisingly simple and well-
defined. Essentially, the customer uses the SLA template to make 
the service provider an offer, the provider acknowledges the 
receipt of the offer and then either accepts or rejects the offer. In 
the former case, an SLA has been established while in the latter 
the provider may provide reasons (similar to a quote) as to why 
the offer was rejected to aid the customer make a new offer that is 
more likely to be accepted.  

The reason why service providers do not make offers is to prevent 
denial-of-service attacks as explained in Parkin et al. [7]. In 
contract law, quotes are not legally binding meaning that a service 
provider has no legal obligations to accept an offer based on a 
past quote – however, rejecting offers based on quotes may 
damage a provider’s reputation and reduce its profitability. 

With dynamic pricing, the price may change while the customer 
and service provider are negotiating an SLA. Essentially, the 
service provider needs to calculate a price in real time based on 
the current state of the marketplace (supply and demand), 
historical data to predict future supply and demand, the provider’s 
business objectives and risks. The price can in practice, for the 
same SLA, change every minute in a highly dynamic marketplace 
similar to stock markets. 

It is important to note that once a SLA has been established the 
price is fixed between the service provider and customer.  

3. DYNAMIC PRICING 
Dynamic pricing refers to the continuous changing of the price for 
goods and services. The fluctuation results from the constant 
change in the supply and demand of the marketplace – in general, 
prices go up when supply is low or demand is high while prices 
go down when supply is high or demand is low. Dynamic pricing 
affects how customers and providers negotiate SLAs as the price 
can change significantly during negotiation. However, it is 
important to note that once an SLA has been agreed to – that is, a 
contract has been established – then the price is fixed for the 
remainder of the lifetime of the SLA. The establishment of an 
SLA and the setting of a certain price affect that particular 
provider-consumer interaction only. The price for the same 
service provided to another customer might be different. 

Figure 5.1: The traditional view of an SLA lifecycle (from [24]): a linear run from
negotiation to termination.

Negotiate

Configure 
& Deploy

Execute & 
Assess

Terminate

Figure 5.2: The lifecycle of an SLA: negotiated, implemented, assessed, then re-
negotiated or terminated.

answering tool that a service provider can use to better understand the software ap-
plication and create configurations more probable to meet a defined SLA. §5.3 briefly
introduces service execution and assessment before describing a SASF-supported ap-
proach to testing and monitoring a deployed service system. Each simulation-driven
approach is demonstrated using TAPoRsim.

5.1 Negotiation

An ideal SLA negotiation would involve two parties with equal knowledge and bal-
anced power over the transaction (symmetric information and no duress), both with
understanding of the technology and systems of the provider. The standards agreed
upon would be based on a complete requirements elicitation from all of the stake-
holders, trade-offs would be balanced optimally, and the proposed service levels
would be tested vigorously before entering production. Penalties would provide ex-
actly the right incentive to ensure the targets are met if at all practical. The terms
of the SLA would revisited regularly, and when change events occurred in either
the provider or consumer. The reporting metrics would be well-understood by all
parties, and unvarnished understandable detailed data would be available to both
the provider and consumer.
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Figure 5.3: Diagram of the current state of SLAs: providers implement SLAs
by converting them into SLMs and ultimately system configurations. Consumers
interact with an SLA directly, but there is no information on how it maps to customer
satisfaction.

This idyllic situation is not found in reality, as discussed in §2.1.1. The parties
typically are not working with symmetric information, are not equal, and often
the consumer has no complete understanding of the service system. A knowledge
gap may be unavoidable, but the distance of this gap can be controlled by careful
execution of the SLA lifecycle2.

The assertion here is the root of this knowledge gap is a fundamental discon-
nect between the level at which non-technical service consumers evaluate services
and the level at which SLAs are specified.

Figure 5.3 shows a broad view of a common SLA situation. The service provider
uses the SLA to create Service Level Management (SLM) policies: internal objectives
specifying what has to happen in order for the SLA to be met. Beyond simple service
levels, SLM policies (and the entire SLM infrastructure) monitor and evaluate the
provider’s performance with regard to the objectives. Autonomic management,
if applicable, is part of the SLM infrastructure. Based on the SLM (or on many
SLA+SLM combinations), a system configuration is created (and updated over time)
intended to meet the service levels. This translation can be semi-automated but
mostly relies on technical staff who map SLA terms all the way to configuration-
level decisions. One consequence of this process is the terms in an SLA tend to
be dictated by the available configuration options and thus are inherently technical
documents.

On the other side of the SLA, the service consumer has a negotiating team that
attempts to identify the requirements of the stakeholders: end users, employees, and
so forth. From these requirements, they specify required service levels. However,
the mapping from what their stakeholders need to the measurable, enforceable ob-
jectives of an SLA is not clear. It is analogous to a requirements elicitation for a
software project where the user is asked to translate “nice user interface” to what
colour the shadow of the submit button should be. Without detailed knowledge and
understanding of the provider’s service system, the consumer is at a disadvantage:

2The largest gap, and a prevalent case, is when the SLA is unilaterally dictated by a provider
and there is no negotiation. In this case, this section applies to the provider as they author and
re-examine this mandated SLA.
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Figure 5.4: Expanding the top-level goal of “satisfaction” to one level is feasible;
the direct link between SLA terms and satisfaction is less clear.

information is asymmetrical.
Figure 5.4 offers a more concrete example based loosely on a real-world SLA.

“Customer satisfaction” is broken down into three high-level goals: service is up
when I need it, service is as fast as I need it to be, the service is safe and secure.
A fictional (and murky) translation to measurable metrics is also shown. “Avail-
able when I need it” is translated to three-nines (99.9%) availability. This level is
likely over-provisioned and the consumer will end up paying for availability they
don’t need. Conversely, if the .1% of allowable downtime each year occurs as 8
consecutive hours at a critical time, the customer is still dissatisfied. Regarding the
average response time of 1 second, “1” is likely a magic number with no basis in the
customer’s needs. The SSL channel will secure the transport layer, but provides no
guarantee of any other security.

In short, SLAs used for automated negotiation and enforcement rely on measur-
able data. This data exists at a relatively low level: at best, it consists of metrics
calculated from a series of lower-level observations over a service period. Notions
like customer satisfaction, perceived quality, and perceived value are higher-order
constructs. The question is how to map the information available to the higher
order, and vice versa.

From the discussion on perceived value §2.4, we know it is evaluated in the con-
text of perceived quality versus perceived sacrifice. Sacrifice is everything exchanged
to ensure the level of perceived quality, which is more than simply the cost of that
level of quality. Perceived quality is evaluated based on the information available,
which can include the perceived sacrifice. Extrinsic and intrinsic attributes3, even at
a low level, can be used as cues to infer perceived quality. Extrinsic cues - especially
price - are more important when intrinsic cues are not available or are difficult to

3Recall that intrinsic attributes are measurable properties of the service - in this case, attributes
like response time, latency, throughput. Extrinsic attributes are product-related like branding and
pricing.
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evaluate; they are used as “value signals”. Intrinsic cues are more important when
they are search attributes4 and tend to be accurate predictors of value. Intrinsic
attributes that are more abstract are more broadly application. §5.1.1 describes
simulation support for negotiation that is an early attempt at addressing these is-
sues.

Service providers are motivated to provide value to service consumers at eval-
uation time: in an ongoing service-relationship, customer satisfaction is necessary
for the continuation of the relationship5. In service encounters, a trusted provider
has the opportunity to influence how the consumer perceives quality (Nilsson, [53]).
Though perceived value and perceived quality can be influenced at negotiation time
by exploiting the understanding of value as described above, this influence will be
diminished at evaluation time. As discussed in §2.4, assessment of perceived value is
situational and can change between purchase time and deployment, as more infor-
mation becomes available. An SLA negotiated with artificially skewed perceptions
of quality and cost will likely prove to be unsatisfactory once implemented, and the
trust relationship may be impacted. The service provider is incentivized to assist
the consumer in reaching an SLA that satisfies them.

5.1.1 Simulation-supported SLA Negotiation

Creating an SLA involves reconciling a set of goals, which might be well-specified or
only intuitively understood, and might be complementary or might conflict. This
trade-off analysis methodology supports decisions involving the balancing of con-
flicting goals, whereby one might relax goals in one area in order to achieve other
goals, perceived as more important. Without loss of generality, this discussion is
focused on cost and performance metrics, as they are common and more readily
quantifiable. One of the shortcomings of SLAs identified by Blomberg [6] was that
the parties involved in creating SLAs lacked the information and intuition needed to
make appropriate decisions about quality of service levels; this approach attempts
to provide both information and intuition when planning.

Experts can ask and answer specific questions about a software service system.
When the goal is a general exploration of the trade-offs, a large number of possible
configurations can be simulated to generate a knowledge base that powers a decision
support tool. Using this knowledge base, various conflicting or correlated metrics are
visualized to understand the impact that one goal will have on another. The system
manager can select potentially viable configurations using a visual tool. Based on
their selections, a “fitness score” is calculated for each configuration.

Visual Selection Tool. The configuration exploration simulations are visu-
alized as a series of weighted scatter plots in a two-dimensional space, where the
two axes correspond to two metrics, offering a head-to-head comparison. For ex-
ample, Figure 5.5 shows a sample plot of correlated values, the average response
time (x) versus the total time required to complete the processing. The configu-
rations are clustered based on their values for the two metrics. Each point on the
plot corresponds to a cluster, and is sized based on the number of configurations
that belong in this cluster. The user is shown a series of these plots and is asked

4Recall that search attributes can be assessed before experience with the product or service;
experience attributes are assessed only during consumption.

5Excluding, of course, monopolies and oligopolies
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Figure 5.5: A visualization of configurations’ Average Response Time versus their
overall time to process.

to draw a rectangle around the configurations that meet the requirements of the
system under configuration. Each successive plot would have clusters colored differ-
ent shades based on how many configurations in that cluster have been previously
selected. Once the user has made all of their selections, he is presented with a list
of candidate configurations based on how often those configurations were selected
on individual plots. To select a final configuration, the user can watch a recording
of the simulation for each candidate to observe metrics in action, choose based on
a simple metric (such as the cheapest, the most energy efficient...), or trust a more
complex fitness score (as explained in the next section). Hovering over a point pro-
duces a “tool-tip” listing the configurations involved, important metrics, and key
configuration parameters.

Fitness Score. Based on the user’s selected simulations, the visual tool com-
putes a fitness score. Each configuration, in each head-to-head comparison, is given
a comparison score hij based on its values for the compared metrics i and j:

hij = weightij [i] ∗ valueij [i] + weightij [j] ∗ valueij [j]

The weight is determined by two factors. First, how many configurations were
selected out of the total set: if the user accepted a metric’s value for most configura-
tions, that metric is relatively unimportant in distinguishing between good and bad
configurations. Second, how much of the total range of that metric is selected. If
the user was more selective, the metric is more important. For example, consider a
comparison of average response time (x) and cost (y) that plots 100 configurations,
where response time ranges from 1 to 101 seconds and cost from 200 to 500 dollars.
The user draws a selection box from (1,200) to (10,400); there are 34 configurations
with response time between 1 and 10, and 56 configurations with cost between 200
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and 400. The first factor is 1 − 34
100 = .66 for response time and 1 − 56

100 = .44

for cost. The second factor for response time is 1 − (10−1)
101−1 = .91 and for cost is

1 − 400−200
500−200 = .33. Thus weightij [r.t.] = 1.57) and weightij [cost] = .77. Note that

response time and cost may have different weights when compared to other metrics.
The valueij [k] is normalized based on the relative position of the configuration’s

value for metric k: at the “good” end of the selection is 2, at the “bad” end is 1,
everything in between on a linear scale. Values outside the selection have value 0.
The intuition is that a configuration deserves value for even being in the selection,
but even then should be valued differently depending on its relative “goodness”.
Returning to the example, a configuration with response time of 1 (best in the
selection) and cost of 500 (outside the selection) would have values 2 and 0, re-
spectively. The fitness score for that configuration for this pair of metrics would be
hij = 1.57× 2 + .77× 0 = 3.14 out of a possible 8 points.

This fitness score is open to revision; the key contribution is producing configu-
rations and the metrics associated with them. From there, any selection algorithm
can be implemented. Though little work has been done on negotiating an SLA
such that the service delivery meets consumer expectations, more research exists
on selecting services from a pool of functionally equivalent services based on their
non-functional attributes (like quality of service). Similar methods are appropriate
for choosing a configuration from among a set of functionally equivalent configu-
rations (for instance, mid-level splitting [72] or the web services relevance function
[1]). Some even explicitly use hypothetical services to establish weights (e.g., [72]);
this simulation-driven methodology allows one to instead use the same service with
different hypothetical configurations to establish weights.

Demonstration. JIMMIE was used to generate all possible distributions of 6 ser-
vices on 2 and 3 servers, where each service corresponded to a single operation. Traf-
fic was generated directly from the logs of the existing service. This provides data
representing a performance versus cost trade-off for approximately 800 candidate
configurations. Using the visual selection tool, ranges were selected in head-to-head
comparisons based on the perceived desires of the user community (fast response,
consistently, at low cost). Comparisons deemed unimportant were ignored (value
= 0). There were 6 metrics, and

(
6
2

)
= 15 potential head-to-head comparisons;

only 6 comparisons were considered meaningful. Using the visual selection tool, 153
candidate configurations were identified, each having been selected 4 times.

This reduced the candidate configurations by 81%. There remained variation
within the remaining configurations; the fitness score allows us to rank the con-
figurations using preferences expressed in the visual tool. The fitness score was
computed for each of the six comparisons. Of the 153 candidate configurations
identified by the visual tool, 9 were missing from the top 153 of the new ranked
list, in all cases due to being very close to the boundaries of the selection box (i.e.
marginal candidates). This identified 49 top configurations (all within .1 of 41.2,
with the remaining configurations under 40, on a theoretical maximum score of 48).
This is a 94% reduction in the number of candidate configurations. �
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5.2 Configuration and Deployment

After an SLA is created, the service provider deploys, provisions, and makes available
the services agreed upon. As described in §5.1, the service provider maps the terms
of the SLA to service level management policies that are more technically specific.
Based on these, the service is deployed and made available.

The difficulty lies in creating a configuration that is capable of meeting the
negotiated SLA. The service provider is expected to have some expertise in this area,
but may still wish to test candidate configurations, or to ask specific configuration-
related questions. The following section describes using the simulation to answer
questions.

5.2.1 Simulation-supported Configuration and Deployment

After creating an SLA using the methods and tools described in §5.1.1, the same tool
set can be used to understand how an application reacts to changing configuration
options (e.g., by testing a variety of configurations and measuring their performance
levels, or by watching traces of application behavior in simulation). This section
addresses other ways to support configuration and deployment using simulation:
question answering, for administrators with a solid understand of the application
but in need of specific answers to specific questions. Answerable questions can be
asked in the form How does changing configuration variables x1, x2, · · · , xi affect
metrics m1,m2, · · · ,m3?

The question answering approach here systematically modifies a simulated ap-
plication to test a series of configuration options, and the results are compared to
answer the question of interest. The methodology is best described using examples.
Consider two questions based on real-world TAPoRware issues, namely the impact
of concurrent requests and what distribution of services on what number of servers
is best suited to meet expected load.

First, How does sending multiple concurrent requests to the List Words opera-
tion change the overall response time and throughput? What if more processors are
added? The question asks about outputs (response time and throughput) based on
environments where two configuration variables are changed: request arrival con-
currency, and number of processors. The performance profiling has established that
one process processing one request can use one entire processor, so this serves as
a demonstration of how question answering will proceed and does not offer any
particular insight.

To answer this question, JIMMIE was used to generate configuration files speci-
fying 50 requests of the List Words type, size 1000KB, but with requests being sent
with various levels of concurrency: from 1 up to 6 requests sent simultaneously. The
simulated application was configured with varying numbers of processors: 1, 2, or
4. Recall that TAPoRware (2.0) launches one process per processor and distributes
requests to each process based on availability and queue length. A separate simula-
tion was run for each of the 18 configurations; for each, the average response time
for the 50 requests and the total throughput was recorded.

The results are shown in Figure 5.6. For the single processor configurations,
as the number of concurrent requests increases6, the average response time also

6Note that only concurrency up to 4 is shown; the line continues straight - 72.2 and 87.0 seconds
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increases: a single request is using all of the resources available, so once more arrive
they compete for the same resources. However, the throughput does not change.
For two processors, moving from one concurrently arriving request to two doubles
throughput without changing the average response time: there is spare capacity
to handle the increases load. Greater concurrency has an insignificant negative
impact on throughput (perhaps due to resources dedicated to queue management),
and increases the average response time (though at half the rate of increase when
compared to a single processor system). In general, k processors can handle from 1
to k concurrent requests without increasing response time. Maximum throughput
for a server with k processors is achieved when the concurrency is k. This is the
expected answer.

Validation: To verify the accuracy of the answers, a smaller set of tests was
performed in the real world. The TAPoRware service was deployed to a high-CPU
Medium Amazon Web Services instance (5 ECUs, 2 cores, 1.7 GB memory, moderate
I/O performance). A 1-processor system was emulated by configuring TAPoRware
to process only one request at a time, using only one CPU at a time. A Micro AWS
instance (bursting to 2 ECUs, 613 MB memory, low I/O performance) was set up
to imitate the clients sending the concurrent requests (using the Apache Benchmark
tool). The set of requests was identical to those in simulation. Only 1 or 2 processors
are tested, with request concurrency of up to 3.

The results are shown in Figure 5.7. Note that the results cannot be compared
directly to the real world, as a) the hardware was similar but not identical, and b) the
variability of cloud resources make direct comparisons to non-virtualized hardware
difficult. However, the curves are correlated: the same factors of improvement and
worsening are seen in the real world as were predicted by simulation. �

The second question considers the preferable distribution of 6 operations over
2 or 3 servers in order to achieve the best throughput to cost ratio. The goal is
to partition the 6 operations used most often into separate services, distributed
over several servers to balance the expected load. A normal approach might be to
separate the more resource intensive operations, or to group them. In this example,
the variable element is the number of servers, and which operations are assigned to
which server. The measured outcome is throughput, in this case expressed as the
total time taken to process a set of requests.

JIMMIE was used to generate all possible distributions of 6 services on 2 and
3 servers, where each service corresponded to a single operation7. Traffic was gen-
erated directly from the logs of the existing service. The simulation was run faster
than real time, so each configuration was simulated in between 2 and 4 minutes.

The best total times for 1, 2, and 3 servers are shown in Figure 5.8. The fastest
two-server configurations took 140 minutes to process all of the incoming requests,
i.e., twice the cost, half the time. The fastest three-server configurations completed
shortly after the traffic generator stopped generating requests (120 minutes), 57%

for concurrency of 5 and 6, respectively.
7The idea of using different distributions instead of a complete mirror of the service allows faster

operations to be assigned to one server and slower operations to another; a fast operation stuck
behind a slow operation in a queue will experience a more dramatic increase in its response time.
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Figure 5.6: Simulation-generated answers for how the List Words operation handles
varying levels of concurrency for varying numbers of processors/cores.

less time. This represents 3 times the cost for a 2.3 performance improvement
factor: a more expensive improvement for the expected load. Service distribution
is important: 75% of the three-server configurations performed worse than the best
two-server configuration.

Validation: Before running the simulations, a configuration was created manually
using the same information available to the simulation, as well as personal experi-
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Figure 5.7: Real-world answers for how the List Words operation handles varying
levels of concurrency for varying numbers of processors/cores.

ence with the performance behavior of the application. This configuration made
use of detailed information: expected arrival rate and frequency of each service, the
total size of all requests to the given service, and so forth (Table 5.1). Based on the
expected number and size of requests, as well as the total predicted processing time,
the three most resource intensive operations were allocated to three different servers.
The fourth busiest service was paired with the third busiest service, and the remain-
ing two were put with second service. This manually-designed configuration took
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Figure 5.8: Distribution question answering results.

Operation # Re-
quests

Total size
(MB)

Expected Total
Processing Time (h)

Proportional
Load

WordCloud 23421 1261 17.3 51.14%

ListWords 11283 1178 9.6 24.64%

Date
Finder

265 61 0.0286 0.58%

Acronym
Finder

95 7 0.0022 0.21%

Concor-
dance

8376 1980 0.5767 18.29%

Collocation 2354 1774 10.3 5.14%

Table 5.1: Some of the meta data about the expected requests that informed the
manual configuration.

137 minutes to run, 14% longer than the best three-server configurations and 2%
faster than two servers. The question answering methodology was able to produce
better results. This confirmed the intuition that configurations produced by experts
based on their understanding of the software, expected load, and environment may
not necessarily meet the properties desired of the system. �

5.3 Execution and Assessment

Once a configuration is chosen, the service is configured, deployed, and accessed.
The mechanics of deployment and service integration are outside the scope of this
work.

Once the service system is deployed in production, ongoing monitoring is re-
quired to ensure the service complies with SLAs. Service assessment involves mon-
itoring the running service and the consumer experience to ensure compliance with
the SLA and internal management policies. A balance must be struck so that rea-
sonable monitoring is available, but does not impair the performance of the system.
Performance data is sometimes made available to the customer, though typically
abstracted. Ongoing testing can be used to test the system performance using re-
quests that do not have SLA penalties for non-compliance associated with them (for
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Figure 5.9: IBM Netcool Service Quality Manager (from [27]Distribution question
answering results.

instance, during off-peak hours or scheduled maintenance windows). A dashboard-
type view can be presented (for example, IBM Netcool Service Quality Manager;
sample screenshot in Figure 5.9).

A complete discussion of monitoring is out of scope for this work; see e.g. [15,
62, 31, 27].

The following section describes a SASF-driven approach to ongoing testing and
monitoring of a deployed service system, including a demonstration of integrating
real-world and simulated components. Additional contributions to this portion of
the SLA lifecycle are described in Chapter 6, which describes automatically adjusting
a configuration after deployment.

5.3.1 SASF-supported Execution and Assessment

At this point, the service is deployed and assessed in reality; the utility of simulated
results is diminished. However, one area where SASF can be employed to assist in
executing and assessing services is post-deployment testing and monitoring, using
the Emulation extension. Once a service is configured and deployed, it may be re-
configured in response to a changing environment. Pure simulation is less useful for
testing when a real-world system is already deployed. The methodology proposed
here involves integrating simulation tools with real-world services and metrics. The
advantage is the tools are familiar from the negotiating, training, configuring, and
deploying stages. This is not a substitute for a comprehensive monitoring framework;
rather, it is a straightforward way to test and monitor the non-functional behavior
of a deployed software system8.

8Real-world testing is also performed during the configuration and deployment stages, and the
methods described here are useful for that as well.

88



The methodology starts with the Emulation extension (§3.5). The extension
allows the Service Testing Modules (§3.6), the Metrics reporting and visualizing
framework, and any features implemented in simulation to be combined with real-
world services. The result is a hybrid emulation model where requests are generated
in simulation and sent in the real-world to a real-world service, and responses are
received back in simulation and reported and visualized using tools from SASF.

This extension is then adapted to also receive and visualize metrics directly from
the hardware supporting the service: CPU use, memory use, disk IO, etc., as well as
the service itself. These metrics are combined in a single dashboard to provide an
overall view of how the deployed service is responding to incoming requests. Using
the STM, a service provider can vary the size, distribution, frequency, and type
of requests arriving. Visual correlations can be made to diagnose system behavior
(e.g. between high response time and high disk IO) using the unified view of both
low-level hardware performance metrics and higher-level metrics like response time.
Using the SASF metrics system enables visualization as well as recording directly to
a database for replay later at any speed: the testing can be performed automatically
at the slow pace of the real services, than observed at high speed.

Demonstration: To demonstrate the potential of this approach, the TAPoR
simulation was unified with a deployed TAPoR service. The real deployment was
to an Amazon Web Services instance (High-CPU Medium / c1.medium type, 1.7
GB of memory, 5 EC2 Compute Units on 2 virtual cores, 32 bit, Moderate I/O
Performance). It was configured to run one TAPoR service per core, load balanced
using Apache 2. The simulation component used a pre-recorded trace of requests
to send a series of service requests to the real service, emulating tens of different
clients. The simulation component was run on a Core 2 Duo 2.66 GHz, 4GB, 64-bit
machine running Mac OS X on physical hardware.

The AWS feature CloudWatch was enabled for the deployed instance, with gran-
ularity of 1 minute. A translation component was written to query the CloudWatch
API, obtain metrics, and pass them to the SASF metrics dashboard. There is a
slight delay (60-120 seconds) after the measurements are taken before CloudWatch
statistics become available to the API; the results shown in the dashboard are time-
delayed. The API can report aggregate metrics for larger deployments, or can
produce per-instance metrics. Though AWS was used in this demonstration, similar
translators can be created to obtain metrics from virtualization frameworks, physi-
cal systems, or monitoring frameworks. Using Java and the Java library for AWS,
the translator is under 100 lines of code.

A sampling of the graphs shown in the Metrics dashboard is provided in Fig-
ure 5.10, illustrating the blend of real and simulated data. The queued requests are
created and managed by the simulation; the CPU utilization is a real-world metric
that is recorded and reported entirely in the real world and brought in through
the translator; average response time is a property of the real world system that is
calculated by the STM. �

5.4 Summary

Service providers and service consumer mediate their relationship using service level
agreements. This chapter introduced a different perspective on SLAs - that they

89



are lasting, cyclic documents that last as long as the interaction between a ser-
vice provider and service consumers. They must be periodically reviewed and re-
negotiated if necessary to match the changing business requirements or technical
properties. Like existing SLA lifecycles, a configuration is created from the SLA
and deployed; the running service is tested and monitored to ensure compliance. It
will eventually be necessary to terminate the SLA.

This chapter described simulation-driven contributions that assist each phase of
the lifecycle. Each was implemented in simulation and validated to produce results
that met the requirements; two were also tested on real-world deployments to verify
their viability.

• A methodology, tool, and numeric representation of trade-off balance cost-
benefit analysis to assist in understanding and choosing the balance between
dependent metrics. It was demonstrated that hundreds of candidate config-
urations could be tested, visualized, and presented to a user who chose their
preferred trade-offs. The tool narrowed down the candidate configurations by
94%.

• A question-answering methodology and tool that assists a service provider in
producing a configuration that meets the SLA (through his or her interaction
with the tool), and in better understanding a service system generally. The
approach was demonstrated on two questions, on both the simulation and on
a real-world deployment. The question was answered with more detail than
would be possible without a simulation; for the tests feasible in the real world
environment, it was shown that the answers were the same as the simulation-
produced answers.

• A monitoring and assessment tool that integrates simulated components with
real-world services to use the flexible and powerful service testing modules
and the metrics/dashboard framework of SASF to produce, visualize, and
store real-world data. The tool was demonstrated exercising a real-world de-
ployment of TAPoR and visualizing simulation-generated metrics alongside
real-world metrics.

The primary threat to validity is these simulation-driven approaches have not
been validated in user studies that demonstrate that SLAs, configurations, and
assessments are actually producing results that satisfy users. Though the method-
ologies and tools meet the derived requirements (more co-created value, more infor-
mation sharing, analysis of trade-offs), and are shown to perform as designed, the
last step of a user study is not taken.
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(a) Number of queued requests (created and managed in simu-
lation).

(b) CPU utilization in percent (real world).

(c) Average response time in seconds (created in real world, mea-
sured by simulated component).

Figure 5.10: The actual graphs displayed in the Metrics Dashboard, unifying real-
world metrics with metrics created or measured by the simulation.
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Configuration management is a
complex task, even for experienced sys-
tem administrators, which makes self-
managing systems a desirable contribu-
tion [32, 48, 56]. This chapter describes
a novel approach to self-managing sys-
tems, implemented as an autonomic
configuration tool.

The self-configuration decision-making
methodology uses a simulation model of
the subject system and systematically
executes it in order to collect examples
of its expected behavior under differ-
ent conditions of load, configuration and
SLA constraints. The motivating re-
configuration scenarios involve adapting
the number of servers on which the sys-
tem services are deployed.

From these examples of behavior, a
behavioral state-transition model is created. The metrics recorded in each moni-
toring step are discretized to produce a more coarse-grained representation of the
recorded data, which is clustered into classes, each of which represents a behav-
ioral state. Two states are related with a transition between them if an instance of
the source state is followed in time by an instance of the destination state. These
transitions represent changes in demand (when the system load metrics increase)
or changes in the system configuration (when the system configuration changes).
Precise definitions of the states and transitions, and the details of how the complete
model is created, are provided in §6.1.

The autonomic manager (§6.2) monitors the system at run-time, taking periodic
snapshots of its load and configuration. This data enables it to identify in which of
the behavioral states it is, tracking the progress of the system through the state-
transition model. When the system is in a state known to violate (or to potentially
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lead to violations of) its SLA, a search for a configuration change transition (or a
series thereof) that will lead to a satisfactory state is initiated. The required changes
are executed; that is, the subject system is reconfigured and monitoring resumes.

To demonstrate and validate the methodology, a state model is created using
TAPoRsim (§4.4). An autonomic manager is implemented and verified in sim-
ulation, then TAPoRware is deployed to a cloud computing environment and the
autonomic manager is tested in a real-world environment. §6.2.1 and §6.2.2 describe
the experiment and demonstrate a decision model generated entirely in simulation
can be used to make accurate changes to a real-world application.
§6.3 examines the process of generating the state-transition model in more detail.

The experiments used for verification use states gleaned from the simulation while
it is being exercised by an expert user. The most expensive part of the process is
the involvement of an expert. An alteration to the methodology involves exercising
the simulation automatically and systematically, in an attempt to cover all feasible
states. To test this approach, the performance of the autonomic manager is tested
in two scenarios: one where the expert-generated traces are used to construct the
state-transition model, and a second where traces from thousands of systematically
configured simulations are used instead.

The nature of the state-transition model and the attempt to cover “all feasible
states” raises questions about how much data is needed to produce an autonomic
manager of sufficient quality. The volume and granularity of data is important to
understand - the potential issue is that if too many states are required to accurately
represent the system, problems of scale will arise. The usefulness of the autonomic
manager with even a small number of states is demonstrated in §6.3.3.

6.1 State-Transition Model

The decision model used to inform the autonomic manager is a set of states and
transitions between them. This section defines states and transitions, and discusses
how the model is obtained by monitoring a simulation.

6.1.1 States

A snapshot is a tuple of metrics recorded within a period of time that show the
behavior of the application at a moment in time. For each snapshot, a snapshot
descriptor is calculated and recorded. A snapshot descriptor has three parts. The
first part defines the state’s compliance with the SLA: Satisfactory, Unsatisfactory,
or Boundary (the SUB metric). Boundary states are states which meet the SLA,
but which have transitions to unsatisfactory states1. The second element is a set
of configuration-related parameters, i.e., a set of metrics related to the current
environment (number of incoming requests, etc.). Finally the third value of the
snapshop triple is a set of performance metrics:

S = 〈(S | U | B), 〈Configuration〉, 〈Environment〉, 〈Metrics〉〉

The internal structure of the snapshot descriptor, namely the actual metrics in-
cluded in the configuration-parameter and performance-metrics set, depends on the

1Note that this value is not static: the same simulation data with a different SLA will produce
different states as the SUB metric may change.
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1. SUB metric

2. Configuration

(a) Number of servers.

(b) Number of processors.

(c) Limit on concurrent requests

3. Environment

(a) Requests / 5 seconds (sliding window)

(b) Request size / 5 seconds (sliding window)

4. Performance

(a) Total queued requests

(b) CPU utilization (over all processors)

(c) Average response time (rolling)

(d) Response time standard deviation

(e) Largest queue at single servers

(f) Highest CPU utilization at single server

(g) Smallest queue at single server

(h) Lowest CPU utilization at single server

(i) Throughput (responses / minute)

(j) Memory footprint

Table 6.1: The elements of a snapshot descriptor for TAPoRsim.

subject system. The challenge is to identify a tuple that includes measurable infor-
mation sufficient to characterize the performance of the system without including
extraneous information. The snapshot descriptor used for TAPoRsim is shown in
Table 6.1.

To control the size of the state space, snapshot descriptors are clustered into
equivalence classes, called states. The snapshot descriptors within each state are
“similar enough”, in that there is no significant difference in their environment,
performance, or configuration metrics2. Each state is annotated with a cost, the
cost of the cheapest configuration of all its snapshot descriptors. The function used
to determine the configuration costs could be the cost of hardware, the cost of
maintenance, the “green-ness”, etc.

Whether two values of a performance metric are “similar enough” depends on
the level of precision/abstraction at which metrics are examined. At the lowest
level of abstraction, any variation in any metric is considered a change. If the
metrics involved are measured using real numbers (and not restricted to a range of
integers), the state space is theoretically infinite. To restrict the size of the state
space while still producing meaningful results, the ranges of values are discretized
into “windows” where all values within a window are considered equal to each other.
For enumerated performance metrics, each enumerated value defines a “window”;

2Note that the SUB metric is ignored in the clustering process.
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for example, the SUB metric has 3 possible values and has window size 3. For
numeric metrics, the size of the window is chosen to give the desired number of
windows and therefore the desired state space, while remaining appropriate for that
metric. Three different discretization strategies are defined and implemented:

1. A fixed window size based on the theoretical range of values. For example,
average response time can range from 0 seconds to 30 seconds (the timeout
point). The window size is then 30 seconds

desired # of windows .

2. A fixed window size based on the actual or expected range of values. Based on
the collected simulation data, the actual range of observed values is divided
by the desired number of windows, to produce the window size. For example,
the average response time might actually range from .2 to 5.5 seconds, so

5.5−.2 seconds
desired # of windows .

3. A window size chosen to ensure an equal number of values in each window. If
k = # of values

desired # of windows , then the first k values make up the first window, the
next k values make up the second, and so on.

The granularity and accuracy of the model determines the size of the state space
and the eventual performance of the autonomic manager. If the window size is too
large, it is not possible to understand what is actually happening in the application
at each point in time, since one window many contain significantly different snapshot
descriptors. If the window size is too small, the state space will be larger and as
the number of transitions increases, the computation time involved in analyzing the
possible future alternatives will also increase. To avoid both of these shortcomings
when deciding on a window, one can empirically test a variety of window sizes
and observe whether the resulting equivalence classes contain sufficiently similar
simulation metrics. In parallel, one can calculate theoretical state size, based on the
number of windows resulting from the chosen sizes, and ensure it is acceptable.

Once the number of windows for each metric wm is decided, if d is the number
of metrics included in the descriptor, then the state space size is the product of the
window size of each descriptor as follows:

State Space Size =

d∏
n=1

w[n]

or

State Space Size =

d∏
n=1

r[n]

ws[n]

For example, consider a snapshot descriptor that includes only the SUB metric
(w1 = 3), a CPU utilization metric, and a memory usage metric. CPU utilization
ranges from 0-100 (percent); with a window size of 5, there are 20 windowsw2 =
100
5 = 20. In the example, memory usage ranges from 0-4096 (MB); with a window

size of 512, there are 8 windows. w3 = 4096
512 = 8. The theoretical state space for the

example is therefore 3× 20× 8 = 480.
The actual number of states achievable in practice is less than this theoretical

maximum, as some states are not possible in reality. For example, a snapshot that
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Figure 6.1: A hypothetical fragment of a state diagram; states can be satisfactory,
unsatisfactory, or boundary; transitions occur when the load changes or the config-
uration changes.

shows the SLA being violated (U-state) but low CPU use and low memory use is
not typically possible. If only the top window for CPU and the top 3 for memory
are possible in a U state, then the theoretical state spaces is the number of possible
U-states plus the number of possible B- and S-states. There are 5× 8 = 40 possible
B-states and S-states, and 1 × 3 U-states: 83 total. A simple constraint on the
theoretical state space reduces it by almost 400 states.

6.1.2 Transitions

The model includes two types of transitions between states. First, need-based transi-
tions (n-transitions) occur when the environment changes, and the software is asked
to provide out-of-the-ordinary service (this new level may be the new “ordinary”).
In the ongoing example of performance, this takes the form of a load change: in-
creased requests, increased request size, network congestion, and so forth. Thus, a
need-based transition implies that there is a pair of states, ssrc and sdest, such that
(a) ssrc is followed by sdest in the simulation and (b) the load in sdest has significantly
different load metrics associated with it from the load metrics associated with ssrc
(i.e. the former load metrics fall in different windows from the latter load metrics).
In addition to the metrics that change between ssrc and sdest, a n − transition is
characterized by its cost differential, namely cost(ssrc) − cost(sdest). Recall that
the cost here need not be explicitly financial. For example, increased load will in-
crease power consumption; decreased throughput may incur costs as specified in an
SLA; increased response time may result in customer frustration or a decline in use.
These costs are implicitly financial; that is, they have some quantifiable financial
cost that can be determined. For instance, customer frustration can be mapped to
lost revenue and failed conversions.

The second type of state transitions, configuration-based transitions (c-transitions),
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occur when the configuration changes (i.e., sdest has a different configuration from
ssrc). This transition may be caused by a system administrator or the autonomic
manager. These transitions are also annotated by their cost differential. However,
they also imply a secondary cost, namely the cost of actually making the change.
For example, adding a second server involves a deployment cost in addition to the
ongoing maintenance and energy costs (operational costs) implied by the additional
server.

As each state may have any number of these transitions, the number of oc-
currences of a given transition t in the simulation traces is calculated. Then, the
estimated probability of a given transition occurring is given by its occurrence count
relative to the other transitions, namely occ count(t)

n∑
i=0

occ count(txi)
.

The process also identifies an additional type of transitions, performance tran-
sitions. While a configuration and the incoming load on the software will define
the system’s performance, it generally takes some time after a load or configuration
change for the system to stabilize, during which the configuration and load will not
change, but the performance will (i.e., sdest has the same configuration and load as
ssrc but different performance metrics). The process recognizes these transitions,
but they do not alter the conceptual model: if there is a chain of performance tran-
sitions following a configuration or need transition, this “chain” can be followed to
the eventual end state.

Figure 6.1 depicts a hypothetical fragment of a state diagram. The system begins
in State A, a satisfactory state. There are three transitions out of this state. The
transition to State B is a load-change transition (need-based). An implicit loopback
transition represents the possibility that the system remains in this state. If the load
changes, the system is in a boundary state, with direct transitions to unsatisfactory
states, namely States C and D (with probability above a given threshold). At this
point the load could change again back to where it started, and move the system
to State A. Or, it could continue to increase and move the system into one of these
two unsatisfactory states. The final option is for a manager to intervene and change
the configuration, moving the system to the satisfactory State E. Note here that if
the load decreases back to its original levels, the system moves to State F, where a
configuration change will move back to the cheaper State A.

6.1.3 Expert-driven Model-Construction

The model-construction process used the stochastic but realistic request generator
from the Service Testing Module (§6.1) to generate requests. The request arrival
rate and the configuration (number of servers) were modified manually by an expert
using the user interface. A total of 18 hours of simulation traces were created (in
approximately 30 minutes of elapsed time). This is a small training set and was
not intended to be comprehensive. The simulation records the system behavior at
5-second intervals. As each new snapshot descriptor is recorded, its abstracted repre-
sentation is calculated using the second discretization method, substituting metric
values for the corresponding intervals. If a state already exists for this abstract
representation, the original descriptor is clustered in it, and the state-population
counter is incremented. Otherwise, a new state entry is added to the model. A
sample real state-transition model (from only 3 similar simulation traces) is shown
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Figure 6.2: The states identified in three simulation traces; a permissive SLA ensures
they are all S-states, each transition is annotated with its probability.
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in Figure 6.2. The actual number of states identified was 83.
If two subsequent snapshot descriptors are not equivalent, the model-construction

process analyzes what has changed: the configuration, the environment, or both.
For configuration changes, the deployment cost is calculated and a c-transition is
created. For load changes, a n-transition is created. When both types of metrics
have changed, first a n-transition is created (where only load-related elements in
the snapshot descriptor change), creating a new intermediate state if an equivalent
state does not already exist. Next, a c-transition is also created (again creating a
placeholder if need be). Two transitions are considered equivalent if they are both
the same type (n or c) and they transition between the same two states; a counter
is incremented when duplicates are encountered. The probability of each transition
out of a given state is determined after state-transition detection completes. 228
unique transitions were identified (total 1,525).

The result of the model-construction process is a decision model containing the
system states, their associated snapshot descriptors, and the transitions between
them. Although the process does not ensure complete coverage of the system be-
havior, it ensures that any unsatisfactory states in the decision model have at least
one c-transition from them to a satisfactory state. After construction of the state-
transition model, and after any change to the SLA, all unsatisfactory states that
do not have a c-transition are identified and new simulations are run to replicate
each state. Once the target state is reproduced in the new simulation, configuration
changes are made and the state-transition model is amended by adding the resulting
states and transitions.

6.2 Autonomic Management

The autonomic management methodology specifies decision-making by monitoring
the application, periodically recording a snapshot of its metrics, and classifying the
snapshot as an instance of a corresponding state in the state-transition model of
the system behavior. The decision on whether to make any changes to the system
configuration, and which change exactly, rests on the SUB metric of the identified
state.

If the current system state is classified as an unsatisfactory state, the state
space is searched, starting from the current state and following only c-transitions
until a satisfactory state is found. The search algorithm used for that purpose
is iterative-deepening depth first search (IDDFS) [34]. Based on observations of
the generated state spaces, a satisfactory state is likely to be within a few levels
of the current state. IDDFS finds such states quickly with space-complexity sim-
ilar to depth first search (DFS). It can be aborted and will return the best result
found so far (e.g., a state with improved performance but a boundary state) if
it does not find a satisfactory state in the time allotted. The c-transition iden-
tified by the search algorithm is executed and the application is observed to en-
sure the target state is reached. A timestamp of the last change is recorded. If
the search fails, the algorithm chooses from among a null action and any actions
that offer an improved but not satisfactory state, based on the lowest total cost
(= transition cost + (ongoing costs × expected time to remain in this state).

If the current state is classified as a boundary state, a search is initiated just
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Figure 6.3: The performance / cost trade-offs for the linearly increasing data set in
simulation.

as for the unsatisfactory state; however, the configuration changes implied by the
transition sequence are only executed if the identified target state is superior to the
current boundary state (an S-state, or a B-state with improved performance and/or
lower cost).

If the current state is classified as a satisfactory state, a search for a path of c-
transitions that leads to another satisfactory state is initiated. If a path is identified,
it is executed if (a) the time elapsed since the last change is sufficient (for a defined
threshold; 5 minutes in the implementation, but configurable), and (b) the new state
is cheaper than the current state. This will remove over-provisioned resources while
avoiding “churn” of repeated adds/removes for performance levels at or near SLA
levels.

If the SLA changes, each of the recorded snapshot descriptors is revisited to
recalculate its associated SUB metric. If after this process the system is found to
be in an unsatisfactory state, the adaptation algorithm above is invoked in order to
transition to a satisfactory state. Recall that every unsatisfactory state must have at
least one c-transition to a satisfactory state; if new unsatisfactory states are added
as a result of the SLA change, this requirement might be violated and additional
simulations may be required to update the state-transition model.

Depending on the completeness of the simulation-generated state-transition model,
the running application may encounter states not yet seen in the simulation traces
or may transition to existing states via previously undetected transitions. In these
cases, the model-construction algorithm adds the appropriate states and transitions
to the model. If the new state is unsatisfactory, there is no strategy to adapt the
configuration. The current implementation identifies this situation and notifies an
administrator. The methodology specifies that ultimately an update to the state-
transition model must be scheduled, but the immediate reaction is to use a modified
state equivalence function to identify similar states that violate the SLA in the same
way and use one of their c-transitions to attempt a move to a satisfactory state.
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Config Resp. Time Cost Performance

4 192.59 0.0% 0.0%

5 43.39 15.8% 77.5%

6 2.95 34.4% 98.5%

Manual 2.45 -43.1% 98.7%

Autonomic 30.17 -60.9% 84.3%

Table 6.2: Cost and performance metrics (and improvements) for 6 configurations
and the linearly increasing data set in simulation.

6.2.1 Evaluation in Simulation

To demonstrate and test the methodology, an autonomic manager was implemented,
comprising three components:

1. TAPoRsim and the SASF framework, which generate simulation traces;

2. Decision model constructor, which produces a state-transition model from
simulation traces;

3. Autonomic decision maker, which uses the decision model to make re-configuration
decisions.

The simulation traces and the decision model are produced offline in advance
of the deployment of the autonomic decision maker; for this evaluation, the state
model described in §6.1.3 was used. The autonomic decision maker is built on the
SASF framework and runs in simulation. It uses a MetricListener implementation
to monitor the running simulation, and modifies the configuration of the simulated
application using the provided API.

The evaluation is based on monitoring and adapting the simulated version of the
application by adding or removing servers in response to changing request loads.
The service level objective was a very ambitious response time of 5 seconds, with a
maximum queue length of 20 requests (recall this is not a simple web request, but
CPU-intensive analysis of texts up to 7 MB in size).

Two pre-recorded but pseudo-randomly generated series of requests served as
test input for the experiments. These sets of requests were not used or known when
constructing the state model. For the first, an individual not familiar with this
project generated 3 hours of request traffic using the modifiable stochastic request
generator (variable data set). The second used a linearly increasing load, from 500
to 70,000 requests per hour, increasing by 600 requests a minute. The requests (size,
type, and time) were recorded and used as input to the simulated application in 5
different conditions as follows:

• In the first three conditions, a fixed number of servers (4, 5, and 6, respectively)
was used, reflecting static configurations, with no configuration changes made
at run time.

• For the fourth condition, an expert user monitored performance metrics us-
ing the visualization dashboard and added or removed servers as he deemed
appropriate (from 1 server to a maximum of 6 servers). The expert user had
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Figure 6.4: The performance / cost trade-offs for the variable data set in simulation.

Config Resp. Time Cost Performance

4 83.792 0.0% 0.0%

5 2.927 24.2% 96.5%

6 2.412 49.1% 97.1%

Manual 2.445 -14.2% 97.1%

Autonomic 3.9521 -11.4% 95.3%

Table 6.3: Cost and performance metrics (and improvements) for 6 configurations
and the variable data set in simulation.

no prior knowledge of the contents of the recorded requests; his decisions were
based on watching the recorded performance metrics, primarily the load on
each server, the queue at each server, and the overall response time. This sce-
nario reflects configuration management by a system administrator whose only
job is actively monitoring the system performance and reacting appropriately.

• For the fifth condition, the autonomic manager using 1-6 servers monitored
and changed the system configuration as it deemed appropriate, based on
management method described above.

For each of the above five conditions, the performance measure was recorded
average response time. Configuration cost was based on total active CPU time
(loosely, a private cloud computing scenario3). A server contributed to the cost if it
was configured to process requests, whether it actually received requests or not. A
slight delay was imposed to emulate start-up time for a new server, and another delay
was imposed before server shutdown was initiated to give the autonomic manager
time to reverse its decision and re-add the server.

A fixed four-server configuration was set as the baseline; comparisons were made
relative to this baseline. Figure 6.3 and Table 6.2 show the cost/performance trade-
off for each of the five conditions, for the linearly-increasing set of requests. The

3The estimated costs depend on the price model assumed; in this work, a hardware-leasing model
is assumed. Given alternative cost-calculation models, the estimated costs would be different. This
work is independent of any particular cost models.
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Config Resp. Time Cost Performance

4 Servers 91.59 0.0% 0.0%

5 Servers 6.36 18.8% 93.1%

6 Servers 3.36 42.1% 96.3%

Autonomic 6.61 -3.6% 92.8%

Table 6.4: Cost and performance metrics (and improvements) for 6 configurations
and the variable data set as tested in a real cloud.

autonomic condition offered performance 33% better than the 5-server configuration,
at one-third the cost, though it was an order of magnitude worse than the manual
“expertly managed” condition. Given the monotonic increase in load, the cause of
the inferior performance - and the lower cost - is that new servers were not added
quickly enough; the rate at which the load increased was faster than autonomic
manager was prepared to act. Nonetheless, an 84% improvement in performance
with a 60% reduction in cost over the baseline is a substantial improvement.

Turning to the more realistic data set (based on values from actual logs), Fig-
ure 6.4 and Table 6.3 show the same results for the variable data set. The manually
and autonomically adapted conditions were cheaper than all three fixed-configuration
conditions, and had similar performance: the manual adaptation had an average re-
sponse time .03 worse than the best. The autonomic adaptation, though slightly
worse then a manual process, offered a 95% performance improvement over the base-
line and was well within the service level objectives. The autonomic approach was
more expensive; this is likely due to the fact that the autonomic management pro-
cess is conservative in removing resources from over-provisioned satisfactory states.
Cost-improving reconfigurations only occur if some time has elapsed since the last
change, where a system manager is not so constrained.

One advantage of a simulation-driven approach is the ability to see how an ex-
periment unfolds. Figure 6.5a shows a directed graph that visualizes the sequence
of states encountered in a three-hour trace of TAPoRsim being autonomically man-
aged4. The set of variable requests was sent. The color of the state node indicates
Satisfactory (green), Unsatisfactory (red), or Boundary (yellow). The directional
arrows indicate that the simulation was in statesrc immediately before being in
statedst. Visually, the arrows indicate the number of times that sequence was en-
countered in simulation: the lightest dashed arrows (e.g., 832 to 633) are the least
frequent; solid arrows with progressively darker shades of grey are more frequent
(e.g., 633 to 193); black arrows with progressively greater thickness are the most
frequent (e.g., 633 to itself). Figure 6.5b uses the same visualization approach to
the sequence of states encountered in a three-hour trace of TAPoRsim with a static
5-server configuration. This configuration was mostly compliant, but spent most of
its time in boundary states.

6.2.2 Evaluation in Reality

To validate this approach in a real world scenario, the experiment conducted in
simulation was replicated in the real world. The components as described in §6.2.1

4Note: some outlying nodes were cropped from this image
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(a) With autonomic manager.

(b) With fixed 5-server configuration.

Figure 6.5: Directed graph showing the states and transitions from a 3-hour execu-
tion of the simulation. Colors show the SUB metric; color and thickness of edges
show frequency of transition.
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Figure 6.6: The components of the real-world testing architecture.

were used. Using the Emulation extension of SASF, simulated components were in-
tegrated with real-world components so actual service performance and performance
metrics could be used. The actual manager still runs in a simulated environment,
but with real data as input. The architecture of the testing infrastructure is shown
in Figure 6.6.

The TAPoR web service was installed on an Amazon Elastic Compute Cloud5

(EC2) instance, size small (32-bit system with 1.7 GB of memory and one EC2
compute unit, which is roughly a 1.0-1.2 GHz 2007 Xeon processor). TAPoRware
was deployed as a single endpoint per instance, with requests balanced between
two running TAPoRware processes per instance. An Amazon machine image was
created to enable easy replication. Instances were deployed to match the number of
servers used in the various simulated experiments (namely 4, 5, or 6 servers).

A load balancer acts as a single endpoint to which clients send requests, tracks
the number of instances that are provisioned (either fixed or varied by the autonomic
manager), and forwards incoming requests to the instance with the smallest number
of outstanding requests.

On a local machine, SASF was run in emulation mode, emulating thousands of
web service client requests to TAPoR services, in exactly the same sequence as in
the variable data set described in the simulated evaluation, using the Service Testing
Module. The metrics module of SASF was used to capture, store, and optionally
visualize metrics generated by the testing application. The unmodified code used
to autonomically manage the simulation framework was used to manage the real
world system, via calls to the load balancer informing it that the number of servers
has changed. The simulation-generated decision model as described in the previous
section was used, unmodified.

The results are shown in Figure 6.7 and Table 6.4. The autonomic approach costs

5http://aws.amazon.com/ec2/
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Figure 6.7: The performance / cost trade-offs for the variable data set as tested in
a real cloud.
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Figure 6.8: The number of servers over time as configured by the autonomic manager
in the real-world testing.

less than a 4 server configuration, yet offers performance comparable to having 5
servers. Compared to the usual 4-server baseline, it reduces response times by 93%
while reducing costs by 4%. Comparing these results to Figure 6.4 and Table 6.3
shows a strong correlation between the real world and the simulated testing.

Figure 6.8 shows the changing number of servers during the real-world testing
of the autonomic manager. When a server is shown being added or removed only
briefly, that change was typically not actually implemented in the testing infras-
tructure; a slight time delay is imposed on the changes requested by the autonomic
manager to allow it to change its mind.

6.3 Systematic Exploration of the State Space

The autonomic approach, though effective, raises several questions. First, an expert
user was required to “exercise” the simulation. This section explores replacing (ex-
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Figure 6.9: The high-level architecture of the systematic exploration.

pensive) expert knowledge with an automatic algorithm that tests the simulation in
a variety of realistic simulations. Starting from a single simulation, each time a new
state is encountered, a set of new simulations is launched to test mutations of that
state - increasing load, adding servers, and so on. This approach does not require
(expensive) expert domain knowledge, discovered more states and transitions, had
fewer “missing” states at run-time, and produced better results in a new set of ex-
periments. Statistics about the automatic generation of state-transition models are
also examined.

Second, the challenge of defining a manageable search space with sufficient gran-
ularity to differentiate between states without impairing the decision-making ability
of the algorithm was not addressed. This section uses various abstraction methods
for calculating states from raw performance metrics, and examines how each impacts
the state-transition model and the autonomic manager that uses it. A state space
that is too big or too small loses effectiveness. Though intuitively a highly-granular
model is desirable, the higher the better, this makes it more likely that the states
encountered at run-time will be considered new and different and the quality will
decrease. If there is too little granularity, predictive ability is lost.

6.3.1 Exploration-driven Model Construction

To systematically explore the configuration/performance state space of a service-
oriented system, its behavior is examined in realistically possible states. There are
four actions that influence the state of an application: adding a server, removing a
server, increasing the rate at which requests arrive, and decreasing this rate. The
simulated system must be observed to see what happens in each state when each of
these actions occurs.

To achieve this, the model creation approach is changed. Rather than generat-
ing hours of simulation traces and from them extracting a state-transition model,
the model is built iteratively, where every metrics snapshot from the simulation
application is converted into a snapshot descriptor (using fixed window sizes, §6.1),
which is evaluated to determine if it belongs to an existing state or if a new state
should be added to the decision model. A simulation is started, and its metrics
are monitored by the autonomic manager (via the metrics engine) at 5-second in-
tervals. The state of the application at each interval is identified. If this state has
already been seen, execution continues. If this is a new state, the steps taken to
reach this state are stored: the application’s topology, the configuration file, all re-
quests sent, and any actions taken previously (and the time or state at which these
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actions occur; Figure 6.10). A new experiment is created for each action, where
an experiment is a tuple e = [id, topology, configuration, requests, actions]. The
actions element includes all actions taken up to this point in the simulation, as well
as the new action to be tested. A new experiment is not created if the action in
this state would breach a threshold: a minimum / maximum number of servers, or
a minimum / maximum request arrival rate. The new experiments are placed on
a FIFO queue (implemented in a database), awaiting execution. The originating
simulation continues execution.

A simulation hypervisor is responsible for retrieving experiments from this queue
and executing them. The system architecture (Figure 6.9) allows for any number of
hypervisors, each running any number of simulations (the limiting factor is system
resources). The hypervisor is responsible for creating the environment described by
the experiment, including the same topology, instructing the simulation to simulate
the exact requests used in the originating simulation (then switching to stochastically
generated requests), and informing the simulation of the times and states where
actions would be performed. It also monitors and stores the output of the simulation,
and waits for the simulation to exit before launching the next experiment.

As each simulation runs, new states are encountered and the queue grows. Each
simulation will run until one of three possible normal termination points is reached:
(a) the simulated application enters an implausible or failed state (e.g. the simulated
server is so overloaded that it fails); (b) all actions have been taken but no new states
have been seen for 20 minutes of simulated time; and (c) the state the simulation
was launched to test is not reached within the time threshold. In the third case, the
experiment is re-queued and attempted again. For each new state encountered, 2-4
new simulations are added to the queue.

The initial simulation is started and ended manually, and is called “experiment
0”. This experiment forms generation 0. Each experiment it enqueues belongs to
generation 1, which will enqueue experiments belonging to the 2nd generation, and
so on. In this experiments, the mutations continue out to the 10th generation, after
which no new experiments are enqueued. Figure 6.11 shows the number of experi-
ments belonging to each generation. Figure 6.12 shows the number of experiments
enqueued by each generation (except the 0th generation). The number of new ex-
periments enqueued at each generation approaches 0 very quickly. Other than the
start point, the only manual intervention occurred during the fifth generation when
2,914 experiments were manually pruned from the queue, as they were guaranteed
to enter implausible scenarios immediately.

A total of 17,122 experiments were queued and executed over a 105 hour period
on commodity hardware (Core 2 Duo processor, 4GB RAM). The majority of these
experiments (82.7%) did not find any new states; 94.2% found only one new state
(Figure 6.13). The total number of states identified was 5,123; 3,369 of them were
unsatisfactory; there were 34,139 transitions in total. There were 720 abstracted
states with 14,798 transitions.

6.3.2 Evaluation

To evaluate the automatic exploration model, another state-transition model is cre-
ated using expert knowledge. This model uses the first discretization method, fixed
window sizes, to match that used by the automatically generated model. As be-
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<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<configuration id="1815ADDSERVER">

<atTime action="ADDSERVER" time="1637"/>

<onState action="LOADINCREASE" stateId="367"/>

<onState action="ADDSERVER" stateId="531"/>

<onState action="ADDSERVER" stateId="1815"/>

</configuration>

Figure 6.10: A sample actions XML document, naming actions to be taken when
the given states are encountered.
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Figure 6.11: Number of simulations in each generation (log scale).

fore, using the interactive version of the simulation, an expert varied the request
arrival rate of a stochastic but realistic request generator, changing the number of
servers manually to adequately service the requests. The goal was to execute as
many different scenarios as possible. The result was 18 hours of simulation traces
with metrics captured every 5 seconds.

From this data set, 1,465 states were identified, with 2,698 total transitions.
1,304 of the states were unsatisfactory. The number of abstracted states used in
the search process was 89, with 472 transitions. Given the values used in discretiza-
tion, the theoretical state space is approximately 57,024,000. The majority of the
theoretical state space is also impossible in reality.

The primary question for the evaluation is the relative quality of the models
constructed (a) by the expert’s monitoring of the simulated system and (b) by the
automated state-space exploration manager, for the purpose of supporting auto-
nomic run-time configuration management. To that end, in this experiment the
simulated application is monitored and managed by adding or removing servers in
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Figure 6.12: Average number of simulations enqueued per simulation for each gen-
eration.

response to changing request loads. The service level objective was a very ambitious
response time of 5 seconds, with a maximum queue length of 20 requests (recall this
is not a simple web request, but CPU-intensive analysis of texts up to 7 MB in size).

The input requests were the same as those used to evaluate the autonomic man-
ager in §6.2.1 and §6.2.2 (3 hours of request traffic generated using the modifiable
stochastic load generator, recorded and used for all configurations). The configu-
ration conditions included a fixed number of servers [4-6], an autonomic manager
deploying 1-6 servers based on the expert decision model, and the autonomic man-
ager based on the automatic exploration decision model.

Figure 6.14 shows the results when comparing the expert and exploration condi-
tions. The automatic exploration approach provided superior performance, servicing
requests on average 3 times faster, with a cost increase of only 45%. This is when
using the same discretization method; the expert data set does not perform as well
using this discretization method as it does when using the other two. Another com-
parison metric is the number of unknown states encountered during the simulated
tests. The expert data set encountered 730 new states (49.8% of the original total),
723 of them unsatisfactory states where remedial actions could have been taken.
The exploration data set encountered 188 new states (3.6% of the original total,
185 unsatisfactory). (Most of the new states were beyond the threshold of what
was considered plausible when generating the state-transition model; the thresholds
could be adjusted).

6.3.3 Data Volume and Granularity

The second set of comparisons examines the relative merits of high versus low gran-
ularity when generating the decision model. If the window size is too large, it is not
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Figure 6.13: The number of experiments (y, log scale) that enqueued the given
number of experiments (x).
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Figure 6.14: The performance / cost trade-offs for the test configurations.

possible to understand what is actually happening in the application at each point
in time, since one window many contain significantly different snapshot descriptors.
If the window size is too small, the state space will be larger and as the number
of transitions increases, the computation time involved in analyzing the possible
future alternatives will also increase. It is also not desirable to be too precise - this
differentiates between states that are essentially the same.

To test for appropriate levels of granularity, the same simulation trace data is
used, but with changed window sizes: the window size is both doubled and tripled
(except for discrete values). The iterative construction of the state-transition model
was not used; rather, the granularity of the existing model was reduced. The changes
to state space and granularity are shown in Table 6.5. The theoretical state space
is large, but many of the theoretical states are impossible in reality. The systematic
exploration identified 3 to 10 times as many states as the expert-driven approach.
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Figure 6.15: The performance / cost trade-offs for the test configurations with
various granularity.

WS 1 WS 2 Drop WS 3 Drop

Total 57,000,000 150,000 99% 14,000 91%

Expert 1465 (.003%) 312 (.21%) 79% 231 (1.7%) 26%

Exploration 5123 (.009%) 3009 (2.0%) 41% 1306 (9.3%) 56%

Table 6.5: The changes to state space and coverage with changing granularity.

The exploration-generated model has better coverage and lost fewer states as the
window size grew; from this, it appears that the automatically driven traces had a
greater variety of states.

The impact on the autonomic modification of the system is shown in Figure 6.15
(overlaid on the data from Figure 6.14). Doubling the window size (decreasing gran-
ularity) actually improved the expert-driven modifications at first, though tripling
the window size produced practically unusable results. It appears the tripled win-
dow size was not granular enough; the unmodified window size was too granular.
The exploration model saw increased costs and worse response time for both window
sizes. As the number of states decreases, the probability of encountering a state seen
previously increases, improving recall at a cost to precision. This is more beneficial
to the model that is sparse to begin with; the more complete model sees a smaller
improvement to recall in exchange for the same cost to precision.

6.4 Threats to Validity and Shortcomings

Amazon EC2 provides one unit of computation and a certain amount of memory
and IO performance, but one study showed the available resources and performance
varied [69]). To minimize the impact of this variance, each experiment used three
hours of requests, 12,000 in total. No direct numeric comparisons are made between
local computing resources and cloud computing resources; the performance of the
autonomic manager was assessed based on how a condition with a fixed number of
servers performed in exactly the same environment.
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Where an expert user was required, the author played this role.
The creation of the decision model used a request arrival rate and a configuration

that were both set manually by the author over the 18 hours of simulated time.
However, the request set used in the evaluation was entirely disparate and created
by a third party.

A three hour sequence of requests is not insignificant, but repeated tests and
statistical analysis are needed to ensure the correlation between the real and sim-
ulated evaluations and the improvements offered by the autonomic manager are
statistically significant.

The evaluation of this approach relied on the relatively simple task of adding and
removing servers based on load. Further, the service system used 6 web services per
server, with the servers all hosting the exact same services. As the configurations
grow more complex (distributing services across servers, for instance), the state
space will grow and coverage will be more challenging.

6.5 Summary

This chapter introduced a simulation-based autonomic adaptation approach to con-
figuring and re-configuring a service system at run-time. Simulation-generated data
is used to develop a state-transition model of the behavior of the system, in terms of
its configuration and performance. This model essentially captures how the system’s
performance is impacted by the changes in the request load that the environment
imposes to the system and changes to its configuration. At run time, the system’s
actual behavior is tracked against this model and when the autonomic manager
finds the system in a state that may lead to possible futures that violate service
level agreements, its configuration is changed to move the system to a safer future
state.

A case study implementation demonstrated the effectiveness of the process: the
autonomic manager achieved results comparable to manual changes by an expert,
though not quite at the same level. Given the potential impracticality of expert
non-stop monitoring of an application, the autonomic approach has value.

In addition to the benefits provided by any self-adaptation system, the novel
methodology and implementation described here offers several key benefits.

1. It is based on simulation. Assuming an accurate simulation (§4.4.3), it is
known ahead of time what results any changes will produce without trial-and-
error lag time which can be expensive if an SLA is being violated. Simulation
data is less accurate than actual run-time data, but a greater volume of data
can be acquired at a lower expense.

2. The majority of the “training” of this system occurs offline prior to deploy-
ment. There is no learning phase where the system is not useful while it
monitors the behavior of a live application. At the same time, the system is
still capable of learning at run-time: though it starts with a model built on
simulation-generated data, the model grows and “learns” from manual changes
or previously unknown states.

3. It is fairly explainable; a state model can be easily displayed showing what
state the system was believed to be in, and what remedial action was chosen
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as a result. Using the dashboard that is part of the simulation framework, a
system manager can review simulated “what if” scenarios. This understanding
is intended to help resolve issues that administrators may have with allowing
an application to make its own decisions.

4. It supports dynamic SLAs, in that, changing the service level agreement does
not require re-learning the entire model; new SLAs can be accommodated
by a relatively inexpensive refresh of the state-transition model, where the
classification of the equivalence behavioral classes are updated to reflect their
conformance to the new SLA.

This set of contributions was further extended to replace the (expensive) expert
user with an automated system that recursively simulated various mutations of
each state of a simulated application, creating a more complete decision model.
This automatic creation of a decision model offers a low-cost solution for autonomic
self-configuration, which in this case was able to achieve average results closer to a
defined service level objective.

Finally, the challenge of creating a state-transition model that balances accu-
racy, size of the state space, and the granularity of the discretization. Empirical
results were presented on the growth of the state-transition model over the various
generations of the automatic creation. Trade-offs in granularity when discretizing
raw performance metrics into states that meaningfully differentiate between actual
application states were studied, finding that it is possible to be too vague and to
be too precise, and establishing empirically the appropriate balance for this ap-
plication. Though the quality of the exploration-generated model deteriorated as
granularity decreased, the low cost of CPU time versus expensive expert knowledge
gives automatic exploration an advantage.
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Chapter 7

Conclusion and Future Work

Service-oriented systems offer useful and desirable features like loose-coupling, en-
capsulation, network management, and enable interoperable multiple-entity service
interactions. The complexity introduced by these features can result in unsatisfy-
ing interactions between service consumers and service providers: they are difficult
for providers to manage and difficult for consumers to specify, particularly non-
functional requirements like performance.

This dissertation explored some of these challenges: the problems with current
approaches to service level agreements, the motivation to involve the customer in an
understandable process to increase their perceived value, the difficulty in asking con-
sumers to perceive value without experience and in understanding how consumers
trade-off desired quality and trade-offs, and in general the benefits of understand-
able, explainable, available information.

Simulation was examined as a promising solution. A set of proposed canonical
characteristics was defined and used to assess the existing state-of-the-art solutions
for simulating service-oriented architectures. These solutions offered inadequate
support for metrics gathering and visualizing, run-time interaction, emulation, ex-
tensibility, and automatic generation: generally, they had insufficient inability to
accurately predict a performance-based predicted narrative for the behavior of a
service, and required substantial effort to produce. One primary research objective
was to develop a framework, an approach, and a set of tools to support simulat-
ing service-oriented systems with emphasis on metrics generation and minimizing
development effort. A second objective was to employ this framework to produce
working, accurate simulations for real-world service systems, to demonstrate not
only the framework but also simulation-driven tools.

Existing approaches to configuration management do not make use of simula-
tion to predict performance; instead, data from real-world deployed systems is used
directly. This data is more expensive to produce, but is guaranteed to be accurate.
When simulation is used, it is used to predict bottlenecks and resource contention
issues. Consumer-driven trade-off management is rarely considered. The problems
with SLAs and the potential of simulation to generate useful data to better inform
the process of managing the lifecycle of an SLA led to the third objective, to use sim-
ulation to manage an SLA throughout each phase of its lifecycle: (re-)negotiation,
conversion to a configuration, and deployment.

One option for managing complex systems is self-management, or autonomic
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computing. Existing approaches rely on real-world data, generated from a running
system that is not self-managed. This training phase is expensive. Autonomic work
in services focuses on substituting services with other services that perform the same
function, ignoring managing at the application level. Decisions made autonomically
may be difficult for administrators to understand; decisions that can be explained are
rare in existing systems. This motivated the fourth research objective, constructing
an autonomic manager based on simulation-generated data, using an explainable
decision model, that re-configured the application and works in both simulation and
in the real world.

The following section describes how each objective was achieved by describing a
set of novel contributions in more detail.

7.1 Contributions Supporting Research Objectives

Objective: Demonstrate that authoring a simulation of a service-oriented system
need not be prohibitively difficult, and that such simulations can produce a narrative
that offers useful and realistic information about the predicted performance of a
software system.

A services-aware simulation framework (SASF) was introduced in Chapter 3.
A systematic, comprehensive review of simulation frameworks for service-oriented
systems (using the proposed canonical characteristics) revealed shortcomings with
existing approaches. This contribution excels at producing a narrative of the pre-
dicted performance of a service system based on past exemplars. It achieves this
by offering a powerful and extensible engine for collecting and visualizing metrics
and the ability to generate a simulation from an existing standardized description
of the service, reducing development effort. Extensible libraries for common web
service functionality offer support better than (or at least comparable to) the state
of the art. The ability to replicate performance of service systems, and to test the
services using requests generated based on probabilistic models derived from real
data, improve the quality of the predicted narrative. Integration with real-world
components allows for simplified validation in real situations. The unique ability
to systematically run large numbers of varied experiments simplifies generating vol-
umes of performance data.

These key contributions are compared to the current state of the art in §2.3.7;
SASF meets or exceeds the state of the art in all areas.

Objective: Use the simulation approach to produce simulated versions of real-world
service systems using real performance data.

SASF was used to simulate Tivoli Provisioning Manager and the back-end service
for the Text Analysis Portal for Research. The first demonstrates use of basic library
functionality, the simulation engine, and the metrics engine. The second adds the
use of additional libraries, automated simulation generation, systematic simulation
using JIMMIE, and the Service Testing Module.

The use of the framework reduced development time and effort that would have
been required otherwise. In the case of TPMsim, the framework is estimated to
have offered a 45% reduction in development effort. In the case of TAPoRsim, its
behavior was replicated without manually authoring a single line of code. A set of
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extensions was added, and still only 28% of the TAPoRsim code was hand-coded.
TAPoRsim was statistically validated and shown to replicate response times with

millisecond accuracy with 95% confidence. Both simulations contribute valuable
test-beds to use for testing not only the specific application simulated, but also
general simulation-driven methods and tools.

Objective: Show that simulation-driven tools can be used to help manage the gover-
nance of software systems throughout the cycle of negotiating standards for service
performance, configuring the service to meet those standards, and evaluating and
monitoring ongoing compliance with those standards.

The first step in achieving this objective was contributing a new SLA lifecycle,
one with a focus on re-evaluation and re-negotiation of the SLA as technical and
business needs change. Three additional contributions use simulation to assist each
phase of the lifecycle.

First, a methodology, tool, and numeric representation of trade-off balance and
cost-benefit analysis to assist in understanding and choosing the balance among
dependent metrics. It was demonstrated that hundreds of candidate configurations
could be tested, visualized, and presented to a user who chose their preferred trade-
offs. The tool narrowed down the candidate configurations by 94%.

Second, a question-answering methodology and tool that assists a service provider
in producing a configuration that meets the SLA (through his or her interaction with
the tool), and in better understanding a service system generally. The approach
was demonstrated on two questions, on both the simulation and on a real-world
deployment. A positive correlation between simulation-generated answers and the
real-world answers was observed. When asked to identify the best configuration
from a set of hundreds of possible configurations, the answer produced by the ques-
tion answering tool produced a configuration that performed better than the one
proposed by an expert with access to perfect information about the test scenario.

Finally, a monitoring and assessment tool that integrates simulated components
with real-world services to use the flexible and powerful service testing modules
and the metrics/dashboard framework of SASF to produce, visualize, and store
real-world data. The tool was demonstrated exercising a real-world deployment of
TAPoR and visualizing simulation-generated metrics alongside real-world metrics.

Objective: Demonstrate that a decision model generated in simulation can be used
to reason about a real-world software system, to the point that such reasoning can
be trusted to re-configure the service at run-time.

A set of contributions centered on autonomically re-configuring a software system
at runtime achieves this objective. Simulation-generated data was used to contribute
a state-transition model of the behavior of the system, in terms of its configuration
and performance. This model essentially captures how the system’s performance is
impacted by the changes in the request load that the environment imposes to the
system and changes to its configuration. At run time, the system’s actual behavior
is tracked against this model and when the autonomic manager finds the system
in a state that may lead to possible futures that violate service level agreements,
its configuration is changed to move the system to a safer future state. Simulation
allows for generating more data than might otherwise be available, all occurring
offline. The state-transition model can also be updated at run-time, both by adding
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new states and by changing the SLA in response to business needs. This model can
be visualized and is explainable, addressing a need not usually met by autonomic
systems.

A case study implementation demonstrated the effectiveness of the process: the
autonomic manager achieved results comparable to manual changes by an expert,
though not quite at the same level. This was tested in both simulation and a real-
world cloud computing environment. Given the potential impracticality of expert
non-stop monitoring of an application, this contribution has value.

To further this contribution, the decision model construction process was ex-
tended to add an automated system that recursively simulated various mutations
of each state of a simulated application, creating a more complete decision model.
This automatic creation of a decision model offers a low-cost solution for autonomic
self-configuration, which in this case was able to achieve average results closer to a
defined service level objective.

For the final contribution, the challenge of creating a state-transition model that
balances accuracy, size of the state space, and the granularity of the discretization
was addressed. Empirical results were presented on the growth of the state-transition
model over the various generations of the automatic creation. Trade-offs in granu-
larity when discretizing raw performance metrics into states that meaningfully dif-
ferentiate between actual application states were studied, finding that it is possible
to be too vague and to be too precise, and establishing empirically the appropriate
balance for this application.

7.2 Future Work

The SASF service testing module is useful for generating web service requests us-
ing statistical distributions based on real-world information. However, in §4.2,
this module proved insufficient to model more complex client behavior. Adding
a StateMachineDrivenEndpoint to the SASF Simulation Engine libraries would
allow simulation authors to define a state machine that governs the behavior of
an endpoint, and a set of messages that move it from one state to another. This
would further reduce simulation development time when more complex behavior is
required.

Currently, SASF’s CPU-bound operation support is limited to performance pro-
files for operations that are O(n) in time complexity, where n is the size of the input.
Extending this support to more intensive operations, or modifying n to be another
factor, is a planned extension. The CPUServiceOperation library class will be ex-
tended to offer a more flexible approach to instantiating a formula to calculate the
processing time required for a request. This will better support simulation authors
and will make wsdl2sim available to more types of services.

Though simple composition of services is provided, more complex composition
support can be implemented by a simulated BPEL engine. This engine would read
existing BPEL documents and orchestrate a series of simulated messages to replicate
the behavior of a real-world BPEL engine. Though composition testing support is
available in existing simulation frameworks, adding BPEL support to SASF would
integrate composition testing support with a framework capable of predicting a
narrative and generating accurate performance metrics. Such a model would be
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capable of supporting run-time composition.
No one other than the author and those who helped implement the simulation

framework have used it to simulate applications; no user study of its usability for
producing simulated services has been conducted. The framework will be released
as an open-source project; this would allow further assessment of its usefulness. The
framework could also be employed in a course project. This could identify additional
features that would be useful to SASF.

Though TPMsim is shown to accurately replicate results from an emulation envi-
ronment, no systematic approach using TPMsim to assist in configuring a real-world
TPM deployment is described. Future work includes recommending deployments
given an input network topology. The approach would use JIMMIE to systemati-
cally modify the number and location of content distribution depots, test how each
performs when distributing files of varying sizes, and choose a configuration that
best balances overall cost and total deployment time using the trade-off analysis
tool.

An emerging area of research is migrating existing software infrastructure to
cloud-based infrastructures. These systems have different hardware profiles and dif-
ferent cost-models, both of which are not always well understood. A future project
involves using simulation to predict both performance and cost in a leased com-
puting environment (e.g., Amazon EC2). This migration question is believed to be
application-specific, which makes an application-level simulation that can be auto-
matically generated a useful tool for providing an answer. The current hardware
profile of SASF is based on a non-virtualized machine. This profile would be modified
to correspond to an Amazon compute unit, their defined unit of computation. The
process of constructing a performance profile would also change: IO performance is
the biggest differentiator between “real” and virtualized systems, so accurate rep-
resentation of the predicted IO of a service is important. The first step in this
work will be the migration of applications from physical computing environments
to virtualized environments to better understand the differences.

The simulation-driven approaches to managing the SLA lifecycle have not been
validated in user studies that demonstrate that SLAs, configurations, and assess-
ments are actually producing results that satisfy users. Though the methodologies
and tools meet the derived requirements (more co-created value, more information
sharing, analysis of trade-offs), and are shown to perform as designed, the last step
of a user study is a future project. The challenge of such a user study is asking indi-
viduals to make decisions to maximize their perceived value in a service-management
scenario where they may have no intuitive sense of what is valuable. The study will
translate this problem to a more common situation - instead of services processing
requests, the scenario might be cashiers processing customers in a retail environ-
ment. Users will be asked to establish an SLA based on their intuition, then will be
asked to use the trade-off analysis tool to choose SLA targets that maximize their
perceived value. The SLA target they specify will be simulated and the results will
be presented to them. Gap analysis will be used to measure their satisfaction with
the performance of the resulting configuration; the hypothesis is there will be less
of a gap between expectations and satisfaction when the trade-off analysis tool is
used.
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ments in the cloud: observing, analyzing, and reducing variance. Proc. VLDB
Endow., 3:460–471, September 2010.

[70] Chungman Seo and Bernard P. Zeigler. Automating the devs modeling and
simulation interface to web services. In SpringSim ’09: Proceedings of the
2009 Spring Simulation Multiconference, pages 1–8, San Diego, CA, USA, 2009.
Society for Computer Simulation International.

[71] Michael Smit, Andrew Nisbet, Eleni Stroulia, Andrew Edgar, Gabriel Iszlai,
and Marin Litoiu. Capacity planning for service-oriented architectures. In
CASCON ’08: Proceedings of the 2008 conference of the Center for Advanced
Studies on collaborative research, pages 144–156, New York, NY, USA, 2008.
ACM.

[72] Abhishek Srivastava and Paul G. Sorenson. Service selection based on cus-
tomer rating of quality of service attributes. Web Services, IEEE International
Conference on, 0:1–8, 2010.

[73] A Sulistio, C Yeo, and R Buyya. A taxonomy of computer-based simulations
and its mapping to parallel and distributed systems simulation tools. Software-
Practice and Experience, Jan 2004.

[74] James J. Swain. Simulation software survey: To boldly go. OR/MS Today,
36(5), October 2009.

125



[75] W Tsai, Chun Fan, Yinong Chen, and R Paul. DDSOS: a dynamic distributed
service-oriented simulation framework. Simulation Symposium, 2006. 39th An-
nual, 2006.

[76] W.T. Tsai, Zhibin Cao, Xiao Wei, Ray Paul, Qian Huang, and Xin Sun. Mod-
eling and simulation in service-oriented software development. Simulation,
83(1):7–32, 2007.

[77] WT Tsai, R.A. Paul, B. Xiao, Z. Cao, and Y. Chen. PSML-S: A process
specification and modeling language for service oriented computing. In The
9th IASTED international conference on software engineering and applications
(SEA), Phoenix, pages 160–167, 2005.

[78] Stephen L. Vargo and Robert F. Lusch. The four service marketing myths.
Journal of Service Research, 6(4):324–335, 2004.

[79] K. Verma, P. Doshi, K. Gomadam, J. Miller, and A. Sheth. Optimal adaptation
in web processes with coordination constraints. In Web Services, 2006. ICWS
’06. International Conference on, pages 257 –264, September 2006.

[80] Bernard Zeigler. Theory of Modeling and Simulation. Wiley Interscience, New
York, 1st edition, 1976.

[81] Bernard Zeigler. Hierarchical, modular discrete-event modelling in
an object-oriented environment. Simulation, 49(5):219–230, Nov 1987.
10.1177/003754978704900506.

[82] V.A. Zeithaml. Consumer perceptions of price, quality, and value: a means-end
model and synthesis of evidence. The Journal of Marketing, 52(3):2–22, 1988.

[83] V.A. Zeithaml, A. Parasuraman, and L.L. Berry. Delivering quality service:
Balancing customer perceptions and expectations. Free Pr, 1990.

[84] Qi Zhang, Ludmila Cherkasova, Guy Mathews, Wayne Greene, and Evgenia
Smirni. R-capriccio: a capacity planning and anomaly detection tool for
enterprise services with live workloads. In Middleware ’07: Proceedings of
the ACM/IFIP/USENIX 2007 International Conference on Middleware, pages
244–265, New York, NY, USA, 2007. Springer-Verlag New York, Inc.

[85] Farhana Zulkernine, Patrick Martin, Chris Craddock, and Kirk Wilson. A
policy-based middleware for web services sla negotiation. In Proceedings of
the 2009 IEEE International Conference on Web Services, ICWS ’09, pages
1043–1050, Washington, DC, USA, 2009. IEEE Computer Society.

126


	Introduction
	Research Problem and Objectives
	Achieving the Research Objectives
	Organization of this Dissertation

	Background and Related Work
	Services Overview
	Service Level Agreements

	Characteristics of Simulation Frameworks
	Simulation Frameworks for SOAs
	SOAD and DEVS
	DDSOS
	MaramaMTE
	SOPM
	Narayanan (DAML)
	Commercial Solutions
	Discussion and Comparison

	Value, Quality, and Cost
	Web Services as Products
	Propositions on Value

	Capacity Planning and Configuration Management
	Autonomic Computing: Self Management
	Summary

	Services-Aware Simulation Framework
	Simulation Engine
	wsdl2sim
	JIMMIE: Systematic Simulation Configuration
	Metrics Engine
	Emulation Extension
	Service Testing Modules Extension
	Using Simulation-driven Methodologies
	Known Issues and Threats to Validity
	Summary

	Simulating Service Oriented Applications
	Tivoli Provisioning Manager
	Executing Jobs using the SDI
	Capacity Planning for TPM

	Simulating TPM
	Validation
	Known Issues and Threats to Validity

	Text Analysis Portal for Research
	TAPoRware 2.0

	Simulating TAPoRware
	Building Performance Profiles
	Generating and Extending Code
	Validation
	Systematic Simulation
	Known Issues and Threats to Validity

	Summary

	Informing the SLA Lifecycle using Simulation
	Negotiation
	Simulation-supported SLA Negotiation
	Demonstration.


	Configuration and Deployment
	Simulation-supported Configuration and Deployment
	Validation:
	Validation:



	Execution and Assessment
	SASF-supported Execution and Assessment

	Summary

	Autonomic Configuration using Simulation
	State-Transition Model
	States
	Transitions
	Expert-driven Model-Construction

	Autonomic Management
	Evaluation in Simulation
	Evaluation in Reality

	Systematic Exploration of the State Space
	Exploration-driven Model Construction
	Evaluation
	Data Volume and Granularity

	Threats to Validity and Shortcomings
	Summary

	Conclusion and Future Work
	Contributions Supporting Research Objectives
	Future Work

	Bibliography

