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1. Introduction

1.1 Kinetic energy storage using flywheels

Devices employing the concept of kinetic energy storage date back to ancient times. Pottery
wheels and spinning wheels are early examples of systems employing kinetic energy storage
in a rotating mass. With the advent of modern machinery, flywheels became commonplace as
steam engines and internal combustion engines require smoothing of the fluctuating torque
that is produced by the reciprocating motion of the pistons of such machines.
More recently, flywheel systems were developed as true energy storage devices, which are
also known as mechanical or electromechanical batteries. A remarkable example of such a
system was the sole power source of the ’Gyrobus’ - a city bus that was developed by the
Maschinenfabrik Oerlikon in Switzerland in the 1930’s, see Motor Trend (1952). This vehicle
contained a rotating flywheel that was connected to an electrical machine. At regular bus
stops, power from electrified charging stations was used to accelerate the flywheel, thus
converting electrical energy to mechanical energy stored in the flywheel. When traveling
between bus stops, the electrical machine gradually decelerated the flywheel and thus
converted mechanical energy back to electricity, which was used to power the electrical motor
driving the bus. The disk-shaped flywheel rotor was made of steel, had a mass of about 1.5
metric tons and reached a maximum angular velocity of 314 rad/s or 3000 rounds per minute
(rpm). In regular operation, deceleration of the flywheel was limited to about half of the
maximum disk speed. The amount of energy thus made available allowed the Girobus to
travel for a distance of up to 6 km in regular traffic.
Contemporary flywheel energy storage systems, or FES systems, are frequently found in
high-technology applications. Such systems rely on advanced high-strength materials as
flywheels usually operate at speeds exceeding 10,000 rpm. Vacuum enclosures and magnetic
bearing systems are frequently employed to minimize energy losses due to friction. Only
through the use of advanced technology have FES systems become commercially viable for
a range of applications, causing FES research and development to be an active and rapidly
evolving field.
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Fig. 1. Example of a commercial flywheel energy storage system (courtesy of POWERTHRU,
Livonia, MI, USA - www.power-thru.com)

1.2 FES applications and industrial significance

FES systems and electrochemical batteries can be designed to have comparable energy storage
capacities. But, FES systems offer superior energy discharge rates which are considerably
higher than in comparable electrochemical battery systems. This characteristic makes FES
systems attractive for certain applications. FES systems may provide a cost-effective means
in cases where stand-by and rapidly engaging power supply is required. For example, FES
units can be used as an uninterruptable power supply (UPS) to protect data centers from
grid power failures, cf. Brown & Chvala (2005). For the same reasons FES technology is
becoming increasingly popular as a means of ensuring reliable electricity supply to consumers
(Bornemann & Sander (1997); Tarrant (1999)). An example of a commercial flywheel energy
storage system is shown in Figure 1. The installation of clusters of FES units provides
for power capacity in the megawatt-level, which enables electrical utilities to perform
fast-response regulation of the grid frequency. FES technology lends itself to a range of similar
applications, such as peak power support in off-grid industrial systems and energy supply
management infrastructure involving renewable energy sources (wind and solar power).
Examples of FES systems given in the preceding section can be categorized as stationary
applications. Interest in such systems is presently considerable, yet even greater attention
has been given to the development mobile FES systems over the last decades. Even more so
than rapid energy charge and discharge capabilities, the comparatively high specific power,
i.e. power per unit mass makes FES systems highly attractive for applications in which
the mass of the energy storage unit is of substantial importance. Space applications have
traditionally been at the forefront of research and development activities in this context, see
e. g. Christopher & Donet (1998). More recently, emerging segments in the automotive field,
such as highly energy efficient and hybrid vehicles have become another area of applications.
So-called kinetic energy recovery systems (KERS) are currently under development for use
primarily in motorsports. A cutaway model of a KERS unit is shown in Figure 2, which
reveals the flywheel rotor. In conjunction with an advanced mechanical transmission this
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Fig. 2. Flywheel in a Kinetic Energy Recovery System (KERS) (courtesy of Flybrid Systems
LLP, Silverstone, Northamptonshire, England

Fig. 3. FES system in a high-performance hybrid automobile (courtesy of Dr. Ing. h.c. F.
Porsche AG, Stuttgart, Germany)

flywheel rotor is able to reach top speeds around 60,000 rpm. The energy storage and
power capacity of the shown unit with mass of 25 kg is 400 kJ and 60 kW respectively. It
is important to note that this and other KERS devices do not necessarily involve energy
conversion from electrical to mechanical, and vice versa; instead, mechanical energy is
transferred directly to the flywheel rotor using advanced transmission systems. Conversely,
electrical-mechanical energy conversion is often required for hybrid vehicles. Shown in
Figure 3 is the electromechanical battery unit for a high-performance hybrid automobile.
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1.3 Advantages and disadvantages of FES systems

Several advantages are associated with the use of FES systems compared to electrochemical
batteries. Most commonly cited are the superior power and excellent energy capacity per
system mass of FES units. The specific power of many FES systems ranges between 5
and 10 kW/kg whereas values for electrochemical batteries are typically smaller by one
order of magnitude. The specific energy of advanced FES systems may exceed 200 Wh/kg
(Arnold et al. (2002)), and values of 100 Wh/kg are commonly achieved. Specific energies
of electrochemical systems are usually around 30 Wh/kg for lead-acid batteries and in
excess of 100 Wh/kg for lithium-ion batteries. The situation is different when comparing
FES technology to electrochemical batteries on a cost basis. Compared to lead-acid battery
systems, an up to eight times higher purchase cost per amount of energy stored can be
expected for FES systems (Hebner et al. (2002)). However, the considerably higher price of
FES systems is offset by their significant longer life, which may exceed that of electrochemical
batteries by the same factor. In this context it is often emphasized that FES units can sustain
a practically unlimited number of charge/discharge cycles without reductions in energy
storage capacity, whereas for electrochemical batteries the number of charge/discharge cycles
is limited due to decreasing battery performance. Cost consideration also must include the
storage system’s energy recovery efficiency. Modern FES units are 90 to 95% efficient whereas
corresponding values for electrochemical batteries are typically much lower, i.e. 60 to 70% for
lead-acid batteries. Other advantages of FES technology are a lesser environmental impact
due to the absence of harmful chemicals that are usually part of electrochemical batteries, and
the ability of FES units to operate effectively over a wide temperature range; electrochemical
batteries perform effectively only within a relatively narrow temperature band.

1.4 Basic working principle

The central part of every FES unit is the flywheel rotor. When set in rotation the rotor acquires
angular momentum and stores mechanical energy. The rotor is accelerated or decelerated by
an electrical machine, usually a combined motor/generator unit. Note that also mechanical
systems are used for this purpose in some applications (e.g. the aforementioned KERS). As
mentioned above, flywheel rotors usually rotate at high angular velocities. Magnetic bearings
and vacuum enclosures are therefore often used to minimize frictional losses that occur in
the bearings and with the air surrounding rotating components, respectively. The typical
components of advanced FES cells are shown in Figure 1. The energy stored in the rotor
is increased by accelerating the rotor to higher speeds, i.e. the FES is being charged. In
electromechanical systems, the rotor is accelerated by the electrical machine operating in
motor mode. When required the energy stored in the rotor can be released by operating
the electrical machine in generator mode producing electricity. Conditioning of the electrical
power to or from the motor/generator unit is achieved by power electronic systems. Figure 4
illustrates the power flow affecting flywheel rotor rotation for the charge and discharge cycle.

1.4.1 Kinetic energy

The kinetic energy stored in a flywheel rotating with an angular velocity ω is given by the
following equation:

Ekin =
1

2
Iω2 , (1)

where I is the mass moment of inertia of the rotating components. Assuming a cylindrical
rotor made from a single material with density �, and having an inside and outside radius of
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Fig. 4. Schematic showing power flow in FES system

ri and ro and a height of h, a further expression for the kinetic energy stored in the rotor can
be determined as

Ekin =
1

4
�πh(r4

o − r4
i )ω

2 . (2)

From the above equation it can be deduced that the kinetic energy of the rotor increases
quadratically with angular velocity, and hence high rotational speeds are desirable. The
equation also shows that the rotor diameter has an even greater influence on kinetic energy.
One must however consider the constraint that mechanical strength of the rotor material
imposes on the rotor diameter and angular velocity. Considering a thin rim rotor as an
approximation, it can be shown that the product of maximum rotor radius and angular
velocity is dependent on the square root of the specific strength of the rotor material, i.e.,

ro,maxω =

√
SΘΘ

�
, (3)

where SΘΘ is the strength of the material in circumferential or hoop direction. Hence, rotors
are preferably made from low density, high strength fiber-reinforced polymer composite
(FRPC) materials that are filament-wound in circumferential direction.

1.4.2 Flywheel configurations

An important aspect of flywheel design, in addition to rotor material selection and
dimensioning, is the structure connecting the rotor to the electrical machine. Such a structure
also needs to support the rotor within the housing of the FES unit. It is common to connect the
rotor via a hub to a rotating shaft that is supported by bearings. In these cases the electrical
machine is either directly connected to the hub, or it drives the rotor using the common shaft.
In other designs the electrical machine is integrated into the rotor hub structure.
During rotor rotation, centrifugal forces generate stresses in the circumferential as well as in
the radial direction. As hoop tensile stresses are dominant, high material strength is required
for this direction. In composite flywheel rotors this is accomplished by circumferentially
aligning the fiber reinforcement phase. Hoop stresses are not uniform along the rotor radius.
For rotors made from a single material the maximum tensile hoop stress is to be expected
on the inside of the rotor, see e. g. Krack et al. (2010c). The rotation induced loading thus
causes a mismatch in rotor growth creating tensile stresses in the radial direction. Since fiber
composite rotors generally lack reinforcement in the radial direction, causing low strength
transverse to the fiber direction, rotors are more likely to fail due to cracking of the polymer
phase (delamination) rather than fiber breakage (Tzeng et al. (2005)). A central part of
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rotor design is therefore the reduction of radial tensile stresses. Researchers have proposed
and implemented several solutions to this design problem based on material selection and
manufacturing considerations, which will be discussed in subsequent sections.
An appropriately designed hub structure may also reduce radial stresses in flywheel rotors.
This is accomplished by providing a compliant hub structure that due to the action of
centrifugal forces superimposes compressive loading in the radial direction. Ha et al. (2006)
proposed a hub structure that is split at multiple locations along its length. Hub segments are
therefore able to impose the desired radial compressive load on the inside of the rotor.

1.5 Objectives in flywheel design

The design of FES units usually follows two different yet related objectives. For applications in
which the FES unit is part of a mobile system, e.g. automobile or spacecraft, designers strive
to maximize specific kinetic energy of the flywheel for given constraints and requirements.
Such an approach implies incorporating rotor materials with maximum specific strength,
which is usually associated with high cost. For stationary FES systems in e.g. UPS and
utility applications, the energy storage capacity and not the mass of the flywheel are typically
an important design factor. Such systems are usually of considerable size, requiring large
volumes of material, and material cost is therefore an additional key design consideration.
Flywheel design based on cost considerations is a rather new approach, which will be
described further in subsequent parts of this article.

2. Flywheel rotor manufacturing

2.1 Filament winding

Filament winding is the most common manufacturing technique for flywheel rotors. In
this method filamentous reinforcement is wrapped circumferentially onto suitable mandrels
creating a rotor rim with high hoop strength. The reinforcement phase is embedded in
a polymer matrix, which is applied along with the fibers either as a liquid phase (wet
winding), semisolid or solid phase (i.e. winding of towpreg or prepreg material). In the
latter cases the polymer phase must usually be liquefied upon deposition by heating to enable
fiber consolidation. Thermoset polymer matrices such as epoxies are common for these
processes, but alternative polymers such as elastomers have also been employed successfully
(Gabrys & Bakis (1997)). Thermoset polymer phases further require curing, typically at
elevated temperatures, which may occur after or even during the winding process. Elevated
temperature curing may induce residual thermal stresses, which can affect the radial tensile
strength of a composite rotor. Hence, thermal effects need to be considered during rotor
design. Following the filament winding process the rotor rim may require removal of the
winding mandrel and machining to specific tolerances.

2.2 Rotor composition and assembly

Flywheel rotors can be filament-wound as a single material, single rim rotor. Rotor and hub
may be assembled by interference fit to mitigate aforementioned radial tensile stresses during
flywheel operation. An interference fit is frequently produced by appropriately heating and
cooling the rotor and hub to exploit thermal expansion effects for the assembly. By varying
fiber tensioning during filament winding some additional compressive radial pre-stressing of
the rotor may be achieved.
Although the manufacture of thick single rim rotors is feasible, such designs generally
result in suboptimal energy storage capacity. Rotors with a large ratio of outside to inside
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radius were found to provide only limited radial tensile strength (Arvin & Bakis (2006)).
Better performance can be achieved by assembling a rotor from several individual rims
of the same material by mechanical press-fit, thermal shrink-fit and pressurized adhesion
(Ratner et al. (2003)). In this manner a compressive radial pre-stressing of the rotor can be
tailored that enables the flywheel to operate at higher rotational speeds without failure;
greater energy storage capacity is thus achieved.
A hybrid rotor structure consisting of multiple rings made from different fiber and/or
resin materials may further reduce radial tensile stresses, see Genta (1985); Portnov (1989).
Rotor performance was shown to improve by placing rims with higher material density
and/or lower YOUNG modulus on the inside radius of the rotor (promoting increased
expansion of these rims in radial direction during flywheel rotation). Conversely, rims with
progressively lower density and higher modulus should be located toward the outside of
the rotor (constraining radial displacement) (Ha, Kim & Choi (1999)). Similarly, a tailoring
method called ’ballasting’ was proposed for reducing radial tensile stresses and attaining a
more uniform stress field in the rotor. In this method, the ratio of hoop YOUNG modulus

to mass density, EΘΘ

� , is increased along the outward radial direction of the flywheel rotor

by tailoring fiber winding angles and/or the type of fiber material with respect to the radial
position. ’Ballasting’ may even include low modulus regions that contain resin with little or
no reinforcement. To further mitigate the risk of failure, a polymer phase with high strain to
failure and reduced YOUNG modulus may be considered. However, highly radial compliant
rotors may become susceptible to adverse dynamic behavior. Incorporating compliant elastic
or elastomeric interlayers between rims was also shown to improve rotor performance. This
approach aims at inhibiting the transmission of radial stress between rims, thus relieving
radial stresses.
To overcome the problem of circumferential crack propagation in filament-wound flywheel
rotors, Gowayed et al. (2002) discussed flywheel configurations containing reinforcement
fibers in the circumferential as well as the radial direction. In the same manner, rims may
be made of so-called polar woven composites (Huang (1999)). In this approach, rims are
composed of a circular or spiral weave incorporating fibers in the radial and circumferential
directions to achieve a balance between radial and hoop strength. Limitations for this type
of rotor were found to arise from failures in resin-rich zones and matrix cracking induced by
fiber kinking and ensuing high local stresses.

3. Modeling

During service, the flywheel rotor undergoes large rotational speeds, typically in the range
of 10, 000 to 100, 000 rmp. Moreover, the rotor is subjected to fast charge and discharge
operations. Thus, the load spectrum of a flywheel rotor is characterized by large static
centrifugal loading as well as transient accelerating/braking load. In order to perform an
accurate stress analysis, the interaction with the surrounding components, in particular the
flywheel hub, is also of importance.
The stress distribution has a significant impact on the failure criteria that represent nonlinear
constraints of the design optimization problem formulated in Section 4. Simplified analytical
and finite element (FE) approaches exist in order to calculate the stress distribution within
the rotor and they are presented in Subsections 3.1 and 3.2, respectively. Remarks concerning
the benefits of either approach are given in Subsection 3.3. Since multi-rim rotors of different
fiber reinforced polymer composites are state-of-the-art technology, this chapter focuses on
this type of rotor design.



Fig. 5. Multi-rim setup of the flywheel rotor

3.1 Analytical approaches

In Figure 5, a multi-rim flywheel rotor is illustrated. Its geometry is typically modeled
as axially symmetric. This assumption appears sound since the balancing in terms of
achieving axisymmetry is an important objective in the manufacturing of a flywheel rotor.
Danfelt et al. (1977) was one of the first to publish an analytical method of analysis for
a hybrid composite multi-rim flywheel rotor with rim-by-rim variation of transversely
isotropic material properties. The method presented in this subsection generalizes DANFELT’s
approach in terms of its various extensions. Thorough validation of the method by means of
FE analysis and experiments is given in references Ha et al. (2003); Ha & Jeong (2005); Ha et al.
(2006).
To the authors’ knowledge all publications regarding analytical solutions to the described
problem assume a constant rotational velocity. Hence, the transient behavior of charging
and discharging operations which might indirectly limit the allowable maximum rotational
speed, cannot be accounted for. The local equation of equilibrium in the radial direction of the
cylindrical coordinate system for purely centrifugal loading due to the rotational velocity ω
reads as

∂σrr

∂r
+

1

r
(σrr − σΘΘ) + �ω2r = 0 . (4)

For typical strains in flywheel applications, the nonlinearity of the FRPC material behavior
can be neglected. Thus, a linear relationship between stress σ , strain ε and temperature ΔT
can be stated,

σ = Q (ε−αΔT) . (5)

Herein, α is the vector of thermal expansion coefficients and Q is the global stiffness matrix.
The stresses and strains are written as vectors of generally six elements of the symmetric
stress tensor in cylindrical coordinates. The stress vector therefore comprises the three normal
stresses σrr, σΘΘ, σzz and the the shear stresses σΘz, σzr, σrΘ. Using the temperature difference
ΔT, the effect of residual stresses from the curing process can be studied, see Ha et al. (2001).
Viscoelasticity can also be considered by means of the analytical modeling. This effect may
have a significant influence on the long-term stress state within the flywheel rotor. Tzeng
et al. (2005); Tzeng (2003) investigated this effect by transforming the thermoviscoelastic
problem into its corresponding thermoelastic problem in the LAPLACE space. The resulting
thermoelastic relationship is similar to Eq. (5) and can thus be solved in an analog manner,
cf. reference Tzeng (2003) for details. It was shown, however, by Tzeng et al. (2005)
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that stress relaxation occurs when time progresses. Thus, the constraining state which
has to be considered in the optimization procedure is the initial state so that effects of
thermoviscoelasticity are not considered in the following.
Only unidirectional laminates shall be studied. Thus, transversely isotropic material behavior
is assumed. Ha et al. (1998) were one of the first authors to investigate effects of varying
fiber orientation angles on optimum rotor design. For this type of lay-up, the fiber direction
does not coincide with the circumferential direction so that the local and the global coordinate
systems are not identical. The global stiffness matrix Q then has to be computed from the
local stiffness matrix Q̄ by means of a coordinate transformation,

Q = T T(ψ)Q̄T (ψ) . (6)

The local stiffness matrix Q̄ only depends on the material properties and can be assembled e. g.
using the well-known five engineering constants for unidirectional laminates (Tsai (1988)),

Q̄ = Q̄(E1, E2, G12, ν12, ν23) . (7)

Typically, the rotor geometry qualifies for a reduction of the independent unknowns in terms
of a plain stress or a plain strain assumption. It is thus possible to obtain a closed-form solution
of the structural problem (Ha et al. (1998); Krack et al. (2010c); Fabien (2007)). The assumption
of plain stress is valid only for thin rotors (h � ri), whereas thick rotors (h � ri) can be treated
with a plain strain analysis.
Assuming small deformations, the quadratic terms of the deformation measures can be
neglected, resulting in a linear kinematic. The relationship between the radial displacement
distribution ur and the circumferential and radial strains holds,

εΘΘ =
ur

r
, εrr =

∂ur

∂r
. (8)

Substitution of Eqs. (5)-(8) into Eq. (4) yields the governing equation for ur, which represents
a second-order linear inhomogeneous ordinary differential equation with non-constant
coefficients. A closed-form solution is derived in detail in reference Ha et al. (2001). Since
the governing equation depends on the material properties, the solution is only valid for a
specific rim.
The unknown constants of the homogeneous part of the solution for each rim are determined
by the boundary and compatibility conditions, i. e. the stress and the displacement state at the

inner and outer radii of each rim j, ri
(j) and ro

(j) respectively. Regarding compatibility, it has
to be ensured that the radial stresses are continuous along the rim interfaces of the Nrim rims,

whereas the radial displacement may deviate by an optional interference δ(j),

σ
(j+1)
ri

= σ
(j)
ro

, for j = 1(1)Nrim − 1 and (9)

u
(j+1)
ri

= u
(j)
ro

+ δ(j) , for j = 1(1)Nrim − 1 . (10)

The effect of interference fits δ(j) was studied in reference Ha et al. (1998).
It has to be noted that the continuity of radial stresses implies that the rims are bonded to
each other. This is generally not the case for an interference fit since mating rims are usually
fabricated and cured individually. Hence, no tensile radial stresses can be transferred at the
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interface. A computed positive radial stress would mean detachment failure in this case.
Therefore, the general analytical model does not take care of implausible results so that the
results have always to be regarded carefully.
The required last two equations are obtained from the radial stress boundary conditions at the
innermost and outermost radius of the rotor

σ
(1)
ri

= pin , σ
(Nrim)
ro

= −pout . (11)

The pressure at the outermost rim pout is typically set to zero, the inner pressure pin can be
used to consider the interaction with the flywheel hub. The conventional ring-type hub can
simply be accounted for as an additional inner rim. It should be noted that the typically
isotropic material behavior of a metallic hub can easily be modeled as a special case of
transversal isotropy. A split-type hub was studied in reference Ha et al. (2006). Therefore,
the inner pressure was specified as the normal radial pressure caused by free expansion of the
hub,

pin = ω2�hub

(
r
(1)
i

)3
−

(
r
(hub)
i

)3

3
(

r
(1)
i

) . (12)

In the generalized modified plain strain assumption used in reference Ha et al. (2001), a linear
ansatz for the axial strain was chosen. Thus, two additional constraints were introduced: The
resulting force and moment caused by the axial stress for the entire rotor was set to zero.
According to Ha et al. (2001), the linear ansatz for the axial strain yielded better results than
its plain stress or plain strain counterparts in comparison to the FE analysis results.
In conjunction with the solution, the compatibility and boundary conditions can be compiled
into a real linear system of equations for the Nrim + 1 unknown constants of the solution. It
can be shown that the system matrix is symmetric for a suitable preconditioning described
in reference Ha et al. (1998). Once solved, the displacement and stress distribution can be
evaluated at any point within the rotor.

3.2 Numerical approaches

In comparison to the analytical approaches, finite element (FE) approaches offer several
benefits in terms of modeling accuracy. For a general three dimensional or two dimensional
axisymmetric FE analysis, a plain stress or strain assumption is not necessary. Furthermore
nonlinearities can be accounted for, including the contacting interaction of rotor and hub, the
nonlinear material behavior and the nonlinear kinetmatics in case of large deflections. Also,
more complicated composite lay-ups other than the unidirectional laminate could be modeled.
Another advantage is the capability of examining the effect of transient accelerating or braking
operations on the load configuration of the rotor.
In order to provide insight into the higher accuracy of the numerical model, the radial and
circumferential stresses for a two-rim rotor similar to the one presented by Krack et al. (2010b)
is illustrated in Figures 6(a)-6(b). The rotor consists of an inner glass/epoxy and an outer
carbon/epoxy rim and is subjected to a split-type hub (not shown in the figure).
It should be noted that apart from the non-axisymmetric character of the stress distributions,
the stress minima and maxima are no longer located at the same height. This indicates
that optimization results that are only based on plain stress or strain assumptions and axial
symmetry should at least be validated numerically. It has to be remarked that the normal
stress in the axial direction and the shear stresses, which are not depicted, are generally
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(a) Radial stress σrr in N/m2 (b) Circumferential stress σΘΘ in N/m2

Fig. 6. Stress distributions in the finite element sector model for a rotational speed of
n = 30000 min−1

non-zero which cannot be accurately predicted by the analytical model.
Despite the higher accuracy of the numerical model, comparatively few publications can be
found in the literature concerning the design of hybrid composite flywheels using numerical
simulations. Ha, Kim & Choi (1999) developed an axisymmetric finite element and employed
it to find the optimum design of a flywheel rotor with a permanent magnet rotor. Takahashi
et al. (2002) examined the influence of a press-fit between a composite rim and a metallic
hub employing a contact simulation technique in an FE code. Gowayed et al. (2002) studied
composite flywheel rotor design with multi-direction laminates using FE analysis. In Krack
et al. (2010b), both an analytical and an FE model were employed in order to predict the stress
distribution within a hybrid composite flywheel rotor with a nonlinear contact interaction to
a split-type hub.

3.3 Remarks on the choice of the modeling approach

The main benefit of the analytical model is that it is much less computationally expensive.
Since there are typically several orders of magnitude between the computational times of
analytical and numerical approaches, this advantage becomes a significant aspect for the
optimization procedure (Krack et al. (2010b)). Some optimization strategies, in particular
global algorithms require many function evaluations and would lead to an enormous
computational effort in case of using an FE model. The choice of the model thus not only
affects the optimum design but also facilitates optimization. On the other hand, the FE
approach facilitates a greater modeling depth and flexibility, since there is no need for the
simplifying assumptions that are necessary to obtain a closed-form solution in the analytical
model.
Owing to the capability of greater modeling depth, numerical methods gain importance for
the design optimization of flywheel rotors. If effects such as geometric, material and contact
nonlinearity or complex three-dimensional loading need to be accounted for in order to
achieve a sufficient accuracy of the model, the FE analysis approach renders indispensable.
Furthermore, increasing computer performance diminishes the significant disadvantage of
more computational costs in comparison to analytical methods. Methods that combine the
benefits of both approaches are discussed in Subsection 4.4.



12 Will-be-set-by-IN-TECH

4. Optimization

Various formulations for the design optimization problem of the flywheel rotor have been
published. A generalized formulation reads as

Maximize f (x) = f (Ekin(x), M(x), D(x), · · · )

with respect to x = {set of geometric variables, rotational speed, material properties}

subject to structural constraints and

xmin ≤ x ≤ xmax . (13)

Thus, the objective of the design problem is to maximize a function generally depending
on the kinetic energy stored Ekin, the mass M and the cost D. The design variables can
be any subset of all geometric variables, rotational speed and material properties. The
optimum design is always constrained by the strength of the structure. In addition, bounds
for the design variables might have to be imposed. The concrete formulation of the design
problem strongly depends on the application, manufacturing opportunities and other design
restrictions. Different suitable objective function(s) are discussed in Subsection 4.1, common
design variables are addressed in Subsection 4.2 and constraints are the topic of Subsection 4.3.
Depending on the actual formulation of the design problem, an appropriate optimization
strategy has to be employed, see Subsection 4.4.

4.1 Objectives

Regardless of the application, all objectives for FES rotors are energy-related. The total kinetic
energy stored in the rotor can be expressed as

Ekin =
1

2
Izzω2 , (14)

where Izz is the rotational mass moment of inertia. It was assumed that the rotation of the
flywheel is purely about the z-axis with a rotational velocity ω.
For small deflections, Izz can approximately be calculated considering the undeformed
structure only,

Izz =
1

2

Nrim

∑
j=1

mj

[(
r
(j)
o

)2
+

(
r
(j)
i

)2
]
=

π

2
h

Nrim

∑
j=1

�j

[(
r
(j)
o

)4
−

(
r
(j)
i

)4
]

, (15)

with the masses mj, the rotor height h and the constant density �j of each rim. It becomes
evident from Eq. (14) that the kinetic energy increases quadratically with the rotational speed
ω and only linearly with the inertia Izz. The inertia of the outer rims has more influence
on the kinetic energy than the one in the inner rims. It should be noted that in typical FES
applications the total energy is not the most relevant parameter, instead the difference between
the maximum energy stored and the minimum energy stored, i. e. the energy that can be
obtained by discharging the FES cell from its bound rotational velocities ωmax and ωmin is
relevant.
Another important aspect is the minimization of the rotor weight. This is particularly
significant for mobile applications. The total mass M of the rotor reads as

M =
Nrim

∑
j=1

mj = πh
Nrim

∑
j=1

�j

[(
r
(j)
o

)2
−

(
r
(j)
i

)2
]

. (16)
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In case of stationary applications, it might be even more critical to minimize the rotor cost.
Therefore, the total cost D (Dollar) has to be calculated,

D = πh
Nrim

∑
j=1

dj�j

[(
r
(j)
o

)2
−

(
r
(j)
i

)2
]

. (17)

Herein, the weighting factors dj are the price per mass values of each material. Thus, it is
assumed that the total cost can be split up into partitions that can directly be associated with
the mass of each material. It should be noted that these prices are often hardly available in
practice and are subject to various influences such as the manufacturing expenditure and the
required quantities. The former aspect is usually strongly influenced by the complexity of the
rim setup, i. e. the number of rims and optional features such as interference fits. Conclusions
directly drawn from an optimization for an arbitrarily chosen set of prices should therefore be
regarded as questionable. In Krack et al. (2010c) and Krack et al. (2010a), the optimization is
therefore performed with the price as a varying parameter.
Naturally, trade-offs between the main objectives have to be made. A large absolute energy
value can only be achieved by a heavy and expensive rotor. Minimizing the cost or the weight
for a given geometry would result in selecting the cheapest or lightest material only. However,
the benefits of hybrid composite rotors, i. e. rim setups using different materials in each rim
have been widely reported.
In order to obtain a design that exhibits both requirements, i. e. a large storable energy and
a low mass or cost, it is intuitive to formulate the optimization problem as a dual-objective
problem with the objectives energy and mass or energy and cost. As an alternative, the
ratio between both objectives can be optimized in order to achieve the largest energy for the
smallest mass/cost, resulting in a single-objective problem. The ratio between energy and
mass is also known as the specific energy density SED,

SED =
Ekin

M
. (18)

The energy-per-cost ratio reads as follows:

ECR =
Ekin

D
. (19)

The following discussion regarding single- and multi-objective design problem formulations
addresses the trade-off between storable energy and cost. However, the statements generally
also hold for the goal of minimizing the mass instead of the cost.
Solving optimization problems with multiple objectives is common practice for various
applications with conflicting objectives, (e. g. Secanell et al. (2008)). The solution of
a multi-objective problem is typically not a single design but an assembly of so called
PARETO-optimal designs. In brief, PARETO-optimality is defined by their attribute that it is not
possible to increase one objective without decreasing another objective. The dual-objective
approach thus covers a whole range of energy and cost values associated to the optimal
designs. This is the main benefit compared to a single-objective optimization with the
energy-per-cost ratio as the only objective, which only has a single optimal design. It is
generally conceivable that this design with the largest possible energy-per-cost value might
exceed the maximum cost, or its associated kinetic energy could be too low for a practical
application.



Fig. 7. Reduction of the multi-objective to a single-objective design problem using the scaling
technique

For the particular mechanical problem of a rotor with a purely centrifugal loading and
linear materials, however, Ha et al. (2008) showed that any flywheel design can be linearly
scaled in order to achieve a specified energy or cost/mass value. Due to the linearity of
Eqs. (4)-(8), the stress distribution remains the same if all geometric variables are scaled
proportionally and the rotational velocity inversely proportional to an arbitrary factor c. After
scaling, the energy, Ekin

0, and cost, D0, of the original optimal design would increase by
the factor c3 so that the energy-per-cost value Ekin

0/D0 = c3Ekin
0/(c3D0) is also constant.

This design scaling is illustrated in Figure 7. If scaling is possible, i. e., the total radius
of the rotor is not constrained, then, scaling can be used in order to achieve a rotor that
always has the maximum energy-per-cost ratio. Therefore, if scaling is possible, all other
points in the PARETO fronts in Figure 7 would be suboptimal compared to scaling the
design in order to achieve the maximum energy-per-cost ratio. A new PARETO front for
the dual-objective design problem in conjunction with the scaling technique would therefore
be a line through the origin with the optimal energy-per-cost value as the slope. This
pseudo-PARETO front is also depicted in Figure 7 (dashed line). If size is constrained, other
points in the PARETO set will have to be considered for the given geometry. It should be
noted that it is assumed that scaling opportunity still holds approximately also for nonlinear
materials and large deformations within practical limits. It is also important to remark
that there are more established and computationally efficient numerical methods for the
solution of single-objective design problems than for multi-objective problems. Therefore,
the single-objective problem formulation should be preferred if the mechanical problem and
the constraints of the problem Eq. (13) allow this. In the following, it shall be assumed that
this requirement holds. Hence, the specific energy density or the energy-per-cost ratio can be
applied in a single-objective design problem formulation. For problems where mass and cost
are of inferior significance, it is also common to optimize the total energy stored as the only
objective, f = Ekin.
It should be noted that there is generally no set of design variables that maximizes all of
the objectives but there are different solutions for each purpose (Danfelt et al. (1977)). The
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total energy stored was considered as objective in Ha, Yang & Kim (1999); Ha, Kim & Choi
(1999); Ha et al. (2001); Gowayed et al. (2002). The trade-off between energy and mass, i. e.
maximization of the specific energy density SED was addressed in the following publications:
Ha et al. (1998); Arvin & Bakis (2006); Fabien (2007); Ha et al. (2008). Particularly for stationary
energy storage applications, the aspect of cost-effectiveness might be more relevant. Krack
et al. (2010c); Krack et al. (2010b); Krack et al. (2010a) addressed this economical aspect by
maximizing the energy-per-cost ratio ECR.

4.2 Design variables

Various design variables have been investigated for the optimization of the composite rotor
and hub design for FES. A list of the most relevant design variables is given below:

• Rotational speed

• Material properties (Eij, νij, �)

• Interferences

• Fiber direction angle

• Rim thicknesses

• Rotor height

• Hub design

Many design variables directly influence the rim setup. It was shown in Ha, Yang & Kim

(1999) that a lay-up with radially increasing hoop stiffness to density ratio EΘΘ

� is most

beneficial in terms of energy capacity. An increasing value EΘΘ

� ensures that the outer

part of the rotor prevents the inner part from expanding. Thus, the radial stresses tend to
be compressive during operation, and the more critical tensile stresses across the fiber are
reduced.
Apparently this type of rim setup can be achieved by designing the material properties in a
suitable manner. Discrete combinations of rims with piecewise constant material properties,
i. e. hybrid composite rotors are state-of-the art. By using different materials in the same rotor,
the hoop stiffness as well as the density can be varied. A continuously varying fiber volume
fraction is also conceivable but more complex in terms of design and manufacturing. Due to
anisotropy, the hoop stiffness can also be decreased by winding the fibers not circumferentially
but with a non-zero fiber angle (fiber angle variation).
The overall radial stress level can also be decreased by introducing interferences between
adjacent rims. It should be noted that interferences are also necessary in order to accomplish
compressive interface stresses for the torque transmission within the rotor. By adapting the
hub design, e. g. by employing a split-type hub, the strength of the rotor can also be increased,
as it will be shown later in this subsection.
Naturally the rotational speed is also a common variable that influences not only the kinetic
energy stored but also increases the centrifugal loading. Thus, there exists a critical rotational
speed for any type of rotor. However, the rotational speed is different from the design
variables discussed above in that it varies with service conditions. Consequently, the
rotational speed can be treated as a design variable or a constant parameter that determines
the size of the flywheel design in terms of the scaling technique as in Ha et al. (2008), see
Subsection 4.1. In fact, for the case of a single-material rotor with constant inner and outer
radii, the rotational speed could also be treated as an objective in order to optimize the kinetic



(a) Optimal designs for different numbers of rims (b) Optimal energy-per-cost ratio depending on
the number of rims

Fig. 8. Influence of the number of rims per material

energy, cf. Ha et al. (1998).
In Danfelt et al. (1977), the POISSON ratio, the YOUNG modulus and the density were
considered as design variables for a flywheel rotor with rubber in between the composite
rims. Ha et al. (1998) optimized the design of a single-material multi-rim flywheel rotor
with interferences and different fiber angle in each rim. They were able to increase the
energy storage capacity by a factor of 2.4 compared to a rotor without interferences and
purely circumferentially wound fibers. They also concluded that interferences had more
influence on the increase of the overall strength than fiber angle variation. In a following
publication, Ha, Yang & Kim (1999) studied the design of a hybrid composite rotor with
up to four different materials and optimized the thickness of each rim for different material
combinations. Fiber angle variation was also addressed in Fabien (2007). The authors
considered the optimization of a continuously varying angle between the radial and the
tangential direction for a stacked-ply rotor.
It should be noted that it is also conceivable to optimize the rotor profile, i. e. to vary the height
along the radius, see Huang & Fadel (2000a). However, the winding process impedes this
type of design optimization in case of an FRPC rotor. Consequently, the height optimization is
uncommon to FES using composite materials and instead the ring-type architecture is widely
accepted.
In what follows, two design optimization case studies will be presented: (1) The optimization
of the discrete fiber angles for a multi-rim hybrid composite rotor and (2) the investigation of
the influence of the hub design on the optimum design of a hybrid composite rotor.

4.2.1 Optimum fiber angles for a multi-rim hybrid composite rotor

The effect of fiber angle variation on the optimum energy-per-cost value for a multi-rim hybrid
composite rotor with inner Kevlar/epoxy and outer IM6/epoxy rims has been studied. The
optimization was carried out for different numbers of rims per material. Due to increased
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complexity in manufacturing and assembly the potential for increased expenditure exists
with increasing number of different rims. However, such cost-increasing effects were not
considered in the modeling. Thus, it is interesting to study the influence of the number of rims
on the optimal energy-per-cost value. In Figures 8(a) and 8(b) the results are depicted with (a)
their corresponding optimal designs and (b) optimal objective function values. There are only
rims with nonzero fiber angles for the Kevlar/epoxy material. The fiber angle is decreasing
for increasing radius. The optimal fiber angle for the IM6/epoxy rims is zero. The reason for
this is probably that the critical tensile radial stress level in the Kevlar/epoxy rims would be
increased by more compliant outer rims. Hence, a non-zero value for the IM6/epoxy fiber
angle might lead to delamination failure in this case. Theoretically, it is thus not necessary to
increase the number of rims for the IM6/epoxy material to obtain the optimal energy-per-cost
ratio. In order to show that the fiber angle still vanishes for additional rims, however, the
redundant rims have not been removed in Figure 8(a).
It can be postulated that there is an optimal continuous function for the fiber angle with
respect to the radius. In that case, the optimization method would try to fit the discontinuous
fiber angle to this continuous function by adjusting the thicknesses and fiber angles of the
discrete rims. This assumption is supported by the results of Fabien (2007) which include the
computation of an optimal continuous fiber angle distribution. In that reference, however, the
fibers are aligned in the radial direction so that the optimization results cannot be compared
to the ones in this paper.
As expected, the objective function value increases monotonically with additional design
variables. The energy-per-cost value for the configuration with four rims per material exceeds
the corresponding value for the single rim configuration by 13%. Since the total thickness
of each material remains approximately constant, the normalized cost does not decrease
significantly. Thus, the increase in the energy-per-cost ratio is mainly due to the increase
of the energy storage capacity. However, it can be seen well from Figure 8(b) that the
optimal objective converges with increasing numbers of rims per material. Hence, additional
manufacturing complexity is not necessarily worthwhile considering the comparatively slow
decrease of the energy-per-cost ratio with respect to the number of rims.

4.2.2 Optimization of the hub geometry

The optimization of the hub geometry connected to a two-rim glass/epoxy, carbon/epoxy
rotor with ri = 120 mm and ro = 240 mm was examined for two common hub types: The
conventional ring-type hub and the split-type hub as proposed in Ha et al. (2006). The
basic idea of the split-type hub is to interrupt the circumferential stress transmission by
splitting up the hub into several segments, facilitating the radial expansion during rotation
of the split-ring. This expansion causes compressive hub/rim interface stresses, which makes
interference fits or adhesives unnecessary in terms of torque transmission. Furthermore, the
compressive hub/rim interface stresses reduce the magnitude of radial tensile stress within
the composite rims. Since the radial tensile stress is often the speed-limiting constraint for
rotating filament wound composite rings, the energy storage capability can thus be increased.
On the other hand, the pressure loading causes increased hoop stresses within the composite
rims, which also have the potential of limiting the energy storage capability. Thus, there exists
an optimum thickness of the ring part of the hub, as shown in Ha et al. (2006); Krack et al.
(2010b). Both hub configurations were considered in the optimization of a hybrid two-rim
rotor with prescribed inner and outer rotor diameter. The design variables were the rotational
speed n, the inner rim thickness t1 and the hub thickness thub.
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ring-type hub split-type hub

t
opt
1
tall

[%] 58.28 66.91

nopt [min−1] 46846 44872

t
opt
hub [mm] 0.00 3.80

f opt

f
opt
no hub

[%] 100 103.7

Table 1. Optimization results for different hub architectures with an optimized hub thickness

The optimal hub thickness became zero in the case of the ring-type hub. This means that a
ring-type hub generally weakens the strength of the rotor for the given material properties.
However, a minimum thickness for the hub ring would be necessary in order to avoid failure
and to transmit torque between rotor and shaft. Hence, the results for the optimized ring-type
hub with vanishing hub thickness have to be regarded as only theoretical extremal values.
For this extreme case, the optimum energy-per-cost value is identical to the one for the case
without any hub, i. e., the relative value equals 100%.

On the other hand, an optimal hub thickness of t
opt
hub = 3.80 mm was ascertained for the

split-type hub. With this optimal design, the energy-per-cost value for the split-type hub is
3.7% higher than for the model with an optimized ring-type hub in this example. Therefore,
it is proven that a split-type hub with an optimized thickness enhances the strength of the
hybrid composite rotor and thus increases the optimal energy-per-cost value.

4.3 Constraints

The design problem stated in Eq. (13) is constrained by the strength limits of the structure,
geometrical bounds and dynamical considerations. Geometrical bounds arise from the design
of the surrounding components. A given shaft, hub or casing geometry can restrict the
dimensions of the rotor, i. e. the inner and outer radii as well as the axial height. The aspect
ratio and the absolute size in conjunction with the bearing properties can also necessitate size
constraints in terms of dynamic stability for large rotational speeds, cf. Ha et al. (2008).
The most critical constraints are, however, the structural ones. Various failure criteria have
been studied for the design of flywheel rotors. The most common criteria are the Maximum
Stress Criterion, the Maximum Strain Criterion and the TSAI-WU Criterion. As the constraints
represent the boundary of the feasible region and the optimal designs can typically be found
at this boundary, cf. Danfelt et al. (1977), the choice of the failure criterion is essential to the
solution of the design problem. The influence of the failure criterion on the optimum design
was investigated by Fabien (2007) and Krack et al. (2010c). The stress state in a typical flywheel
rotor is dominated by the normal stresses. Thus, the deviations between these failure criteria
are often not crucial.
In Figure 9, the feasible region for the two design variables, rotational speed n and inner rim
thickness t1

tall
for a two-rim glass/epoxy and carbon/epoxy rotor is illustrated. The feasible

region is composed of the nonlinear structural constraints in terms of the Maximum Stress
Criterion and the bounds of the thickness. The structural constraints are labeled by their
strength ratio R between actual and allowable stress for each composite (glass/epoxy or
carbon/epoxy). The first index of the strength ratio corresponds to the coordinate direction
(’1’ for across the fiber, ’2’ for in the fiber direction), the second index denotes the sign of the
stress (’t’ for tensile, ’c’ for compressive).
In case of concavely shaped constraint functions, it was shown in Krack et al. (2010c) that



Fig. 10. Optimal designs and objective function values dependent on the cost ratio

in particular the intersecting points of different strength limits that bound the feasible region
are candidates for optimal designs. Figure 10 shows the value of the design variables and
objective function at different cost ratios for the hybrid composite flywheel rotor described
above. The rotor design was optimized in terms of the energy-per-cost ratio objective ECR, cf.
Eq. (19). It is remarkable that the optimum design variables turn out to be discontinuous over

Fig. 9. Composition of the nonlinear constraint for the Maximum Stress Criterion
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the cost ratio. At specific cost ratios, the optimum thicknesses t1
tall

and the rotational speed
n jump between two different values. Between these jumps, i. e. for wide ranges of the cost
ratio, the optimum design variables remain constant in this case.
Four different optimal design sets have to be distinguished according to Figure 10 depending
on the cost ratio interval. At very high or very low cost ratio values, i. e. relatively
expensive carbon or glass based composite materials respectively, a single rim rotor with the
correspondingly cheaper material is preferable. Hence, a value of t1

tall
= 0 % or t1

tall
= 100 %

corresponding to a full carbon/epoxy or a full glass/epoxy material rotor respectively, is
obtained. In between these trivial solutions, two additional optimal designs exist.
While the total energy stored and the specific energy density have discrete values for a
varying cost ratio, the actual objective, i. e. the optimal energy-per-cost value ECR changes
continuously with the cost ratio as illustrated in Figure 10. In this figure, the objective
function for each of the four design sets is depicted dependent on the cost ratio. Note
that the discontinuities of the optimal design variables coincide with intersections of the
design-dependent objective function graphs.
It can be concluded from this section that the constraints are essential to the design problem
but the decision which design is optimal also depends significantly on the shape of the
objective function with respect to the design variables.

4.4 Optimization strategies

Based on the previous discussion, the flywheel design problem in Eq. (13) is a multi-objective,
multi-variable nonlinear constrained optimization problem. This section of the chapter
discusses possible optimization algorithms that can be used in order to solve such
optimization problems. Subsection 4.2 outlined the design variables for the problem which
include lay-up materials, fibre angles and thickness, hub geometry and rotational speed. Most
of these variables are real variables; therefore this section will focus on optimization strategies
for optimization problems with real design variables.
The solution of multi-objective, multi-variable nonlinear constrained optimization problems
is a challenging endeavor. First, in a nonlinear optimization problem, there are usually many
designs that satisfy the Karush-Kuhn-Tucker (KKT) optimality conditions, see A. Antoniou &
W.-S. Lu (2007). All these designs, known as local optima, meet the necessary requirements
for optimality, but usually one of these designs will provide better performance than the
others. Therefore, the optimization algorithm needs to search not only for an optimal
design, but for the optimal design among optimal designs. In addition to the nonlinear
nature of the optimization problem, since there are multiple criteria to be optimized, the
most optimal design will depend on the relative importance of each one of the design
objectives. Therefore, a methodology needs to be used to identify the different trade-offs
between design objectives. Finally, optimization problems usually involve a large number
of complex numerical simulations, e. g., a detailed multi-dimensional FE simulation of the
flywheel. Therefore, it is necessary to select optimization strategies that can minimize the
computer resources necessary to solve the design problem.
Subsection 4.4.1 will discuss the advantages and disadvantages of the optimization algorithms
that can be used to solve nonlinear constraint optimization problems. Subsection 4.4.2
provides an overview of multi-objective optimization and presents two alternative methods
that can be used to solve such problems. Finally, Subsection 4.4.3 will present several
methodologies that have recently been used in order to reduce computational resources.



Fig. 11. Objective function and analytical and numerical nonlinear constraints depending on
the relative inner rim thickness t1/tall and the rotational speed n

4.4.1 Constraint optimization algorithms

As discussed, for many nonlinear optimization design problems, multiple local optima may
exist which makes solving the optimization problem more difficult. Figure 11 shows the
design space for the flywheel optimization problem solved by Krack et al. (2010c). It can be
observed in Figure 11 that there are two points that can be considered optimal solutions, i.e.
(n, t1/tall) = (4.25× 104, 0.4) and (n, t1/tall) = (4.0× 104, 0.7). Therefore, even for monotonic
objective functions and a small number of design variables multiple local optima occur due
to the introduction of strongly nonlinear constraints. Hence, it is important to verify that the
optimum detected by a specific method is a global optimum and not only a local one.
Nonlinear constraint optimization algorithms can be classified as local methods and global
methods. Local methods aim to obtain a local minimum, and they cannot guarantee that
the minimum obtained is the absolute one. These methods are usually first-order methods,
i.e. they require information about the gradient of the objective function and the constraints.
The most commonly used local methods include the method of feasible directions (MFD) and
the modified method of feasible directions (MMFD) (see Arora (1989); Vanderplaats (1984));
sequential linear programming (SLP) (see Arora (1989); Lamberti & Pappalettere (2000);
Vanderplaats (1984)); sequential quadratic programming (SQP) (see A. Antoniou & W.-S. Lu
(2007)); nonlinear interior point methods (see A. Antoniou & W.-S. Lu (2007); El-Barky et al.
(1996)), and; response surface approximation methods (RSM) (see Rodríguez et al. (2000);
Wang (2001)). Local methods are prone to finding an optimum in the nearby region of the
initial starting guess; however, these methods work very efficiently in the vicinity of the
optimum.
Global methods aim at obtaining the global minimum. These methods do not require any
information about the gradient, and they employ primarily either a stochastic-based or an
heuristic-based algorithm. Therefore, the use of global methods can reduce the likelihood of
missing the global optimum. (Albeit there is no guarantee of finding the global optimum.)
Global methods, however, have the disadvantage of requiring far more function evaluations.
Particularly in the case of computationally expensive function evaluations, e. g. nonlinear FE
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analyses with a large number of elements, global methods are often not applicable in practice.
Global methods either solve the constraint nonlinear problem directly, or they transform the
problem into an unconstrained problem using a penalty method (see Vanderplaats (1984) for
a description of common penalty methods). Common optimization algorithms that solve
the constrained problem directly include covering methods and pure random searches. If
the constrained optimization problem is transformed into an unconstrained one, common
unconstrained global optimization problems include genetic algorithms (see Goldberg (1989)),
evolutionary algorithms (see Michalewicz & Schoenauer (1996)) and simulated annealing (see
Aarts & Korst (1990)).
Although local methods do not aim at obtaining a global optimum, several approaches can
be used to continue searching once a local minimum has been obtained, thereby enabling
the identification of all local minima. Once all local minima have been obtained, it is easy
to identify the global minimum. Some of these methods are: random multi-start methods
(e.g., He & Polak (1993); Schoen (1991)), ant colony searches (e.g., Dorigo et al. (1996)) and
local-minimum penalty method (e.g., Ge & Qin (1987)).
Another approach to obtaining a global solution when the computational resources are
limited is to combine a global and a local optimization algorithm. Global optimization
algorithms are usually relatively quick at obtaining a solution that is near the global optimum;
however, they are usually slow at converging to an optimal solution that meets the optimality
conditions. In order to reduce computational resources during the later stages of finding an
optimal solution, a global optimization algorithm can be used during the initial stages of
the solution of the design problem. Then, the sub-optimal solution obtained by the global
optimization algorithm can be used as the initial guess to the local method. Since local
optimization algorithms usually converge very quickly to the optimal solution, a reduction
in computational resources can usually be achieved. Further, since the initial solution was
already in the vicinity of the global optimum, it is likely that the local optimization algorithm
will converge to the global optimum. This approach was recently used to design a hybrid
composite flywheel by Krack et al. (2010c). In order to show the benefits of the proposed
multi-strategy scheme, the optimization problem was solved with a global method, i.e. an
evolutionary algorithm (EA), a local method, i.e. a nonlinear interior-point method (NIPM),
and the multi-strategy scheme, i.e. start with EA algorithm and switch to the interior-point
method after a relatively flexible convergence criteria was achieved. Krack et al. (2010c)
showed that the multi-strategy scheme was 35% faster than the global method.

4.4.2 Multi-objective optimization algorithms

The optimization formulation in Eq. (13) contains multiple objectives that need to be
optimized simultaneously such as kinetic energy stored, mass and cost. In the
late-nineteenth-century, Edgeworth and Pareto showed that, in most multi-objective
problems, an utopian solution that minimizes all objectives simultaneously cannot be obtained
because some objectives are conflicting. Therefore, the scalar concept of optimality does
not apply directly to design problems with multiple objectives that need to be optimized
simultaneously.
A useful notion in multi-objective problems is the concept of Pareto optimality. A design,
�x, is a Pareto optimal solution for problem (13), if and only if the solution �x∗ cannot be
changed to improve one of the objectives without adversely affecting at least one other
objective (Ngatchou et al. (2005)). Based on this definition, Pareto optimality solutions, �x∗,
are non-unique. The Pareto optimal set is defined as the set that contains all Pareto optimal
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solutions. Furthermore, the Pareto front is the set that contains the objectives of all optimal
solutions.
Since all Pareto optimal solutions are good solutions, the most appropriate solution will
depend only upon the trade-offs between objectives; therefore, it is the responsibility of the
designer to choose the most appropriate solution. It is sometimes desirable to obtain the
complete set of Pareto optimal solutions, from which the designer may then choose the most
appropriate design.
There is a large number of algorithms for solving multi-objective problems, see e.g. Das &
Dennis (1998); Kim & de Weck (2005; 2006); Lin (1976); Messac & Mattson (2004); Ngatchou
et al. (2005). These methods can be classified between: a) classical approaches; and, b)
meta-heuristic approaches as proposed by Ngatchou et al. (2005). Classical approaches are
based on either transforming the multiple objectives into a single aggregated objective or
optimizing one objective at a time, while the other objectives are treated as constraints.
Examples of classical methods are the weighted sum method and the ε-constraint method
(see Ngatchou et al. (2005)). In the weighted sum method (e.g., Kim & de Weck (2006)),
the multiple objectives are transformed into a single objective function by multiplying each
objective by a weighting factor and summing up all contributions such that the final objective
is:

Fweighted sum = w1 f1 + w2 f2 + · · ·+ wn fn (20)

where fi are the objective functions, wi are the weighting factors and ∑i wi = 1. Each single set
of weights determines one Pareto optimal solution. A Pareto front is obtained by solving the
single objective optimization problem with different combinations of weights. The weighted
sum method is easy to implement; however it has two drawbacks: 1) a uniform spread of
weight parameters rarely produces a uniform spread of points on the Pareto set; 2) non-convex
parts of the Pareto set cannot be obtained, (see Das & Dennis (1997)).
Meta-heuristic methods are population-based methods using genetic or evolutionary
algorithms. Meta-heuristic methods aim at generating the Pareto front directly by evaluating,
for a given population, all design objectives simultaneously. For each population, all designs
are ranked in order to retain all Pareto optimal solutions. The main advantage of these
methods is that many potential solutions that belong to the Pareto set can be obtained in one
single run. Examples of multi-objective meta-heuristic methods include the multi-objective
genetic algorithm (MOGA), the non-dominated sorting genetic algorithm (NSGA) and the
strength Pareto evolutionary algorithm (SPEA). A detailed description of these methods can
be found in Ngatchou et al. (2005) and Veldhuizen & Lamont (2000).
Multi-objective optimization of flywheels has recently been attempted by Huang & Fadel
(2000b) and Krack et al. (2010b). In both cases, the weighted sum method was used in order to
solve the optimization problem. Huang and Fadel aimed at maximizing kinetic energy storage
while minimizing the difference between maximum and minimum Von Mises stresses for an
alloy flywheel with different cross-sectional areas. The flywheel was divided into several
rims and the design variables were the height of each rim in the flywheel. Krack et al. (2010b)
aimed at maximizing kinetic energy storage while minimizing cost. Stress within the flywheel
was included as a constraint in the optimization problem. In their case, the flywheel was a
composite flywheel with several rims and the design variables were the thickness of each rim
and the flywheel rotational speed.



Fig. 13. Convergence histories of the cost optimization of a hybrid composite flywheel rotor
with a split-type hub for different optimization strategies

4.4.3 Multi-fidelity and surrogate-based optimization

Accurate predictions of stress and strain in variable geometry flywheels and hubs require
solving a set of complex multi-dimensional partial differential equations (PDEs). The system
of PDEs is usually solved using the finite element method (FEM). Multi-dimensional FEM
simulations of complex geometries require a substantial amount of computational resources.
Further, since in order to solve a flywheel optimization problem many flywheel designs
will need to be evaluated, the computational expense associated with flywheel design and
optimization is a major challenge for solving such problems.
In order to reduce the computational resources associated with solving optimization
problems, optimization strategies based on combining analysis tools of different accuracy
have emerged in the literature (see Alexandrov et al. (2000); Forrester & Keane (2009); Simpson
et al. (2001)). In multi-fidelity and surrogate-based optimization strategies, the optimization
method only iterates on an approximate model. The multi-dimensional flywheel model is
then used sporadically in order to apply a correction to the approximation. In multi-fidelity
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Fig. 12. Schematic of a multi-fidelity simulation. The high-fidelity finite element simulation is
called to correct the lower-fidelity analytical model
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models, the approximation is usually a simplified version, i.e. a lower fidelity model,
of the original problem such as a one-dimensional simplification of the multi-dimensional
flywheel problem. In surrogate-based optimization, the approximation or meta-model, called
a surrogate, is simply a fit to numerical or experimental data and, therefore, it is not based on
the physics of the problem. Various approaches exist to construct a surrogate model, including
the commonly used polynomial response surface models (RSM) and neural networks. Many
of them are described in great detail in references Forrester & Keane (2009); Simpson et al.
(2001).
Krack et al. (2010b) used a multi-fidelity approach to minimize the computational time
required to solve a flywheel optimization problem. A variant of the approximation model
management framework (AMMF) proposed by Queipo et al. (2005) was used in order to
solve the problem. In this case, the optimization is performed using the low fidelity model
and the FEM model is used to correct the low fidelity model for accuracy. The correction,
a first order polynomial that is added to the solution of the low fidelity model, is obtained
using the FEM model. The correction guarantees that the low fidelity model matches the FEM
predictions for the design objective and constraints and its gradients at a specified design
point. A schematic of the interaction between the low and high fidelity model is shown
in Figure 12. The optimization algorithm uses information from the low fidelity model to
obtain the optimal solution. After the optimal solution using the low fidelity model has been
obtained, a correction polynomial is obtained using FEM and a new optimization problem is
solved in the corrected low fidelity model. This process is repeated until both FEM and low
fidelity model result in the same optimal design. In reference Krack et al. (2010b), using the
multi-fidelity approach the computational resources were reduced three fold from 3,025 sec.
to 1,087 sec. Figure 13 compares the convergence history of three different strategies to solving
the problem: a) using only a high-fidelity model; b) using the low- and high-fidelity models
sequentially, i.e. solve the optimization problem using the low-fidelity model and then,
use the solution as the initial design for a new optimization problem with the high-fidelity
model; and, c) the multi-fidelity approach. Red circles indicate infeasible designs. Using the
multi-fidelity model involves the least number of evaluations of the high-fidelity model.

5. Conclusion

An overview of rotor design for state-of-the-art FES systems was given. Practical design
aspects in terms of manufacturing have been discussed. Typical analytical and FE modeling
approaches have been presented and their suitability for the design optimization process
regarding accuracy and computational efficiency has been investigated. The design of a
hybrid composite flywheel rotor was formulated as a multi-objective, multi-variable nonlinear
constrained optimization problem. Well-proven approaches to the solution of the design
problem were presented and thoroughly discussed. The capabilities of the suggested
methodology were demonstrated for various numerical examples.
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