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ABSTRACT

Axisymmetric fiber-reinforced polymer composite structures such as pressure
vessels and piping manufactured by braiding and filament winding are being
widely used in different industrial applications where combined loading
conditions may be applied. The aim of this study was to determine the distribution
of fiber angles along the longitudinal direction of the structure to achieve the best
mechanical performance when subjected to combined loadings. A further aim was
to develop a suitable failure criterion for structural design. To this end,
generalized complex shape mandrel geometries based on variable cross-sections
were developed to define mandrel surface equations. Fiber angle variation along
the length of an axially symmetric composite structure with variable cross-section
was determined considering different ratios of axial loading and internal pressure
and by implementing netting analysis design theory. This work was extended to a
thorough investigation of failure analysis to provide the critical value of fiber
orientation needed to design and analyze complex composite structures subjected

to specific loading conditions by incorporating a Tsai-Wu failure criterion.



PREFACE

This thesis is based on work done in the Advanced Composite Materials
Engineering and the Biomedical and Composite Materials groups of Mechanical
engineering Department, University of Alberta from September 2009 to April
2012 on the design of complex composite structures. The idea of conducting the
theoretical study on this topic came forward in order to develop an integrated
methodology for the design and analysis of axisymmetric composite structure
with variable cross-sections along their length by braiding and filament winding
manufacturing processes. This thesis is written in paper format. It consists of five
different chapters. In Chapter 1, a brief literature review on the applications and
methodologies of designing composite structures by braiding and filament
winding technique is presented. At the end of this chapter, the shortcomings of
current methods as well as the necessities of the fiber orientation determination
and strength analyses are summarized and the objectives of this study to
overcome the literature gap are given. In Chapter 2, the design of complex shape
mandrels with variable cross-sections and the developed analytical technique to
define those characteristic mandrel surface equations are clearly explained.
Chapter 3 consists of the methodology for finding the distribution of fiber
orientation along the longitudinal direction of the structure subjected to internal
pressure and axial loading by implementing netting analysis design theory This
work is extended to a thorough investigation of failure analysis to provide the

critical value of fiber orientation needed to design and analyze complex



composite structures subjected to combined loading conditions by incorporating a
Tsai-Wu failure criterion in Chapter 4. Finally, in Chapter 5, the summary of the
thesis and the further recommendations are presented to overcome the limitations

of this study.
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NOMENCLATURE

A, Cross section area of fiber per unit length
E Fiber Young’s Modulus
F Axial load
F, Axial force per unit length
Fy Hoop force per unit length
H Heaviside step function
K Dimensionless variable
R Radius of the surface path of midsection
a Axial stress
b Hoop stress
f Tsai-Wu failure index
k Ratio between hoop and axial stress
m Semi-major axis
n Semi-minor axis
p Internal pressure
r(z) Mandrel radius along z direction
t Dimensionless variable
a Fiber angle
Vha Shear strain
) An infinitesimal variable with dimension of length
Ea Axial strain
&n Hoop strain
Eq Fiber strain
0 The angle measured from the semi-minor axis.
Oy Axial stress
oy, Hoop stress
Oritical Critical fiber angle

Oy Fiber stress



CHAPTER 1

INTRODUCTION

11 COMPLEX COMPOSITE STRUCTURES

Composite material structures are widely accepted and successfully
employed in the aerospace, marine, automotive, infrastructure and energy
industry, where high strength, low weight and chemically resistant components
are required. Composite material production versatility provides the opportunity
for the design of highly efficient structures [1].

Molded and cast products often require complex shaped structures [2].
Achieving complex shape design requires meeting stiffness and strength
requirements best assessed through advanced modeling capable of determining
how the individual geometric and structural features interact [3].

An ever increasing range of applications requires complex-shaped
composite structures, which in turn necessitates efficient and robust
manufacturing methods. The fabrication of complex-shaped composite
components may be achieved with established manufacturing techniques such as
braiding and filament winding in conjunction with innovative mandrel systems.
These two techniques are well suited to produce high performance composite
structures [4]. Through adaptation and further development these manufacturing

techniques are promising means for producing complex composite structural
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components at competitive cost compared to other manufacturing techniques,

such as dry lay-up, resin transfer molding and pultrusion.

1.2 BRAIDING AND FILAMENT WINDING

Extensive investigations have been carried out for designing and
developing the models of complex composite structures by braiding and filament
winding. Braiding is a composite material preform manufacturing technique in
which a braiding machine deposits continuous, intertwined fiber to create a
braided preform before or during the impregnations of fibers with polymeric resin
[5]. Filament winding is a manufacturing process where continuous strands of
reinforcing fibers are impregnated with resin, then placed onto a rotating mandrel
under controlled tension and usually produces cylindrical axisymmetric structures
[6]. Munro and Fahim [7] presented the major differences and similarities
between braiding and filament winding in terms of design and manufacturing
methodology; they found that it was not possible to draw a general conclusion on
the better process as selection of the manufacturing technique would be product

dependent.

121 Complex Structures Design by Braiding

In the context of braiding complex-shaped structures, Brookstein [8]

provided a detailed analysis including the optimum fiber orientation for structural
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products enabling them to satisfy different load carrying requirements. The
analysis was applied to some classical applications of braided structures, where
braid reinforcement had replaced conventional materials in many components
such as pressure vessels, rods, shafts, plates and structural columns. For example,
shafts produced by braiding processes provided stiffness when the fibers were
placed along axial direction, and torque transmission reinforcement was provided
by +45° braid. Due to higher specific strength and tailorable mechanical
properties, two-dimensional (2D) braiding has been used to manufacture other
complex structural components as well. For example, Kobayashi et al. [9]
described manufacturing of a braided graphite-epoxy composite truss joint; White
[10] focused on manufacturing, testing and cost analysis of Kevlar 49/epoxy blade
spar; Casale et al. [11] developed a model for the design and fabrication of
sporting equipment, such as a braided bicycle frame using Kevlar/graphite
braided hybrid preforms impregnated with epoxy resin. Through a modeling
process consisting of altering lamina sequence, Swanek and Carey [12] developed
a golf shaft using braided laminas, which would have mass, stiffness and torque
comparable to commercially available composite and steel shafts. Moreover,
braid reinforced composite materials have been extensively studied for bio-
medical applications. Hudgins et al. [13] proposed a prosthetic intervertebral disc
to replace a natural disc with a core of elastomeric polymer and a braid reinforced
outer shell providing compressive strength to the design. To enhance rigidities of
conventional catheters, Carey et al. [14] investigated the application of braided

composites for the design of medical catheters.
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Several studies have been conducted to design, determine and achieve
fiber orientations for different shaped braided preforms [15-19]. Michaeli and
Rosenbaum [15] described a computer control system for a braiding machine,
which ensured the desired fiber orientation on a symmetric mandrel. However, it
was supposed to be difficult to vary the braid angle or to braid parts with varying
mandrel diameter. Du and Popper [16] developed a process model considering the
micro geometry, such as, braid angle and fiber volume fraction of a conical axi-
symmetric braided preform. The authors suggested that a better and uniform braid
microstructure can be achieved while braiding over large to small mandrel
diameters, and that severe transients in braid angle caused by shape transition can
be minimized as well as the uniformity of the braid structure can be improved by
reversing the direction of mandrel movement. Kessels and Akkerman [17]
presented a fast and efficient model to predict fiber angles for complex bi-axially
braided preforms. The model was validated with experiments for two differently
shaped mandrels; experimental and numerical results were found to be in good
agreement. Liao and Adanur [18] provided a geometric model of braided
preforms using the computer aided geometric design technique to represent the
fiber path to be braided over the mandrel. According to the authors, the generation
of fiber paths on braided preforms based on geometric model often becomes
complex whenever the geometry and shape of the desired braided product
changes. Another geometrical model was developed by Rawl et al. [19] to provide
the fiber orientations of braided preforms with mandrels of different shapes

(circular, conical and square prism). They stated that the fiber path on a mandrel



Chapter 1 5

is dependent upon the shape of the mandrel. However, the development of
characteristic equations for defining the outer surface of mandrels can be a better
approach in the case of generating the desired fiber orientation relative to complex

mandrel shapes.

1.2.2 Complex Structures Design by Filament Winding

In the case of filament winding, due to the high degree of precision with
which the reinforcing fibers can be placed onto the surface of the mandrel, the
stiffness and strength of a component can be carefully controlled and hence may
be tailored to suite specific design requirements [20]. Current applications of
filament-wound composites include chemical processing where the outstanding
chemical resistance of the material is employed and aerospace and automotive
components where high strength-to-weight ratios are important [21]. During the
design process, an appropriate set of loads is usually considered and imposed
upon the part geometry to verify that it satisfies strength and stiffness
requirements. It is a common approach to place the fibers in the direction of
maximum stress due to the highly directional nature of continuous fiber
reinforcement. In order to predict the mechanical behavior of a composite
structure subjected to combined loading, a suitable fiber architecture along the
longitudinal direction of the wound structure must be developed.

Filament winding and associated design and analysis work has mostly

been conducted for cylindrical axisymmetric composite structures. For example,
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an experimental investigation was carried out by Mertiny et al. [22] to find the
effect of multi-angle filament winding on the strength of tubular composite
structures. Beakou and Mohamed [23] pointed out the influence of design
variables, such as strengths and loadings on the optimal fiber winding angle of
axially loaded cylindrical pressure pipes. It was found that the design of
composite structures requires the determination of the fiber orientation based on
applied loads and other design constraints. Wild and Vickers [24] presented an
analytical procedure based on classical laminated plate theory to assess stresses
and deformations of different filament-wound structures under combined loading
conditions. In this work also the effects of wind angle variation through the
cylindrical wall was assessed. To date, filament winding has mostly been
restricted to tubular and other relatively simple axisymmetric shapes, which
constitute a significant limitation on the range of items that can be fabricated [7].
Recently, researchers have attempted to extend the filament winding technique to
more complex shape structures for specific design requirements. For example, to
effectively utilize the filament winding capabilities, Mazumdar and Hoa [25-27]
presented geometry-based approaches to generate the desired fiber distribution on
cylindrical, axisymmetric as well as complex-shaped mandrels. According to the
authors, winding on non-cylindrical mandrels with curved cross-sections was not
addressed in their work. Carvalho et al. [28] developed a methodology with an
integrated numerical (finite element) analysis for the design of filament-wound
parts. The test case of a conical filament-wound part was presented for a

simplified torsional loading condition. This methodology included the
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determination of ideal fiber orientations using finite element analysis, generation
of feasible fiber paths, determination of the final lay-up sequence, and an analysis
to adapt the final lay-up to meet strength and stiffness requirements. The proposed
methodology produced a final optimum fiber orientation after a few iterations. For
more demanding part configurations it was suggested to proceed with additional
iterations. Several works were also dedicated to winding the dome geometry of
non-spherical pressure vessels. In this context Jones et al. [29] conducted a
geometric analysis to derive a winding technique for improved layup efficiency
and mechanical performance. It was recommended to develop an accurate wind
angle distribution to precisely predict the behavior of the wound dome part. Teng
et al. [30] attempted to optimize the design of dome shaped composite vessels to
withstand a maximum internal pressure. The design variables used to optimize the
dome geometry were the winding angle and the ratio of major and minor axes of
the dome part. Park et al. [31] studied the behavior of the dome part of pressure
vessel subjected to internal pressure, calculated the wind angle variation at the
dome geometry, and also quantified the fiber angle change through the thickness

direction.

1.2.3 Implementation of Design Criterion

Braided and filament-wound structures are frequently used in applications

in which combinations of internal/external pressure, bending, torsion and axial

loading may be present. To devise a suitable fiber architecture it is generally
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necessary to employ an approach which implements a design or failure criterion.
Damage in cylindrical composite structures under combined loading is a complex
phenomenon involving a variety of failure mechanisms [32]. Understanding the
failure process and the development of reliable failure criteria is an essential
prerequisite for efficient analysis and design. There are various methods for
analyzing stresses and strains associated with combined loading conditions,
including netting analysis [24], orthotropic analysis [33], and finite element
analysis [28, 34]. Netting analysis is a simplified yet expedient approach for the
design of fiber-composite structures, providing the relationship between the fiber
orientations and the loading conditions applied to the structures. Under the
assumption of plane stress, orthotropic analysis may be used to predict the
behavior of a composite structure under loading and thus determine fiber
orientations. Finite element analysis further allows for modeling the composite as
a detailed layered laminate and defining optimal ply stacking [28]. The lay-up
may thus be modified to achieve strength and stiffness requirements.

In order to fulfill the design requirements for the complex structures
considered herein, it is essential to suitably adapt some of the aforementioned
design and failure criteria. At a certain applied load, composite failure starts
within the most stressed lamina in a laminate, followed by the sequence of next-
to-be-most-stressed lamina leading eventual to ultimate failure when all the layers
have failed. To this end, a lamina criterion is usually assumed along with
employing lamina input and lamination theory to evaluate stresses and strains in

the various plies. For example in [35], using laminate theory and netting analysis,
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theoretical failure envelopes were obtained and contrasted to experiments carried
out for £55° angle-ply pipes subjected to biaxial loading of internal pressure and
axial force. Similarly, experimental data were gathered in [36] to show the
influence of fiber orientation on the deformation and strength of filament-wound
glass fiber reinforced tubes subjected to a variety of uniaxial and biaxial
membrane stresses. The experimental results demonstrated the variation of failure
strengths of glass fiber reinforced epoxy tubes with £45°, +55° and +£75° fiber
architectures for different combinations of internal pressure and axial load. It was
observed that netting analysis reasonably predicted ultimate strength, noting that
it is only applicable to one specific hoop-to-axial stress ratio for each layup
configuration as it cannot be used to predict resin-related contributions to
mechanical performance. In the same manner, material non-linearities cannot be
captured. Notably, netting analysis did not necessarily predict the maximum
measured biaxial stress state for the samples tested. Apart from netting analysis,
in order to analyze the stresses and strains in a multi-layer cylindrical shell
(orthotropic analysis), Lekhnitskii [33] developed a solution for the problem of
plane stress in the shell which is cylindrically orthotropic and subjected to internal
and external pressures. In the case of filament-wound composite pressure vessels
with dome shaped parts the design of the dome is a major part of the design as it
tends to be the location of failure. This is due to the fact that the dome region
undergoes the highest stress levels, making it the most critical locations from the
viewpoint of structural failure. For example, Hofeditz [37] discussed the use of

netting theory and orthotropic analysis methods to solve design problems
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involving dome shapes; Hojjati et al. [38] designed dome contours based on the
theory of orthotropic plates; Lin and Hwang [39] established design techniques
for dome shapes based on composite failure criteria and for determining dome
contours based on the theory of orthotropic analysis. Finite element analysis may
be considered as alternative approach for the design of fiber-composite layered
laminate. For example, Neto et al. [34] investigated the behavior under burst
pressure testing of a pressure vessel liner, where the design and failure prediction
of the composite laminate polymeric liner was conducted using finite element
analysis. The carbon/epoxy laminate was built using angle-ply layers. Six
different preliminary finite element analysis simulations were carried out using
sub-laminates with layers oriented at +10°, £20°, £30°, +40°, £50° and +60°.
According to these simulations the £40° laminate showed the best performance in
terms of strength.

In addition to the abovementioned design criteria, further research work
has focused on the failure analysis of laminated composite structures over the
years. Several approaches have been proposed, including non-linear viscoplastic
constitutive modeling, fracture mechanics, damage mechanics and macroscopic
(global) failure criteria [40]. Although many investigations have formulated
composite failure criteria, phenomenological failure criteria are still the
predominant choice for the design in industrial applications [41]. Such failure
theories are based on the local stresses or strains in a lamina. For an angle lamina,
global stresses/strains first need to be transformed into a local fiber-based

coordinate system. Then a judgment can be made whether the lamina will fail or
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not. The most common failure criteria can be grouped into two different classes:
linear and quadratic. To be more specific, there are three major types of
engineering failure criteria for unidirectional composite materials: maximum
stress criterion, maximum strain criterion, and quadratic interaction criteria, such
as the Tsai-Hill and Tsai-Wu failure theories [42].

For design and analysis of composite structures, the linear and quadratic
failure criteria have been employed in different industrial applications under
combined loading conditions. For example, Eckold et al. [43] described a
theoretical approach to the prediction of failure envelopes for filament-wound
materials under biaxial loading using a maximum stress failure criterion that
provided the mode of failure. Good correlation was found with experimental
results. However the employed failure criterion was found to be less accurate than
a distortional energy failure approach for assessing the strength of the material
under axial load and internal pressure with reasonable accuracy. Gargiulo et al.
[44] predicted the failure behavior of composite tubes where internal or external
pressure and axial loads were applied simultaneously to produce a variety of
biaxial stress conditions. The authors examined the effect of the winding angle of
fiber reinforcements on the failure loads and provided numerical and experimental
data on the strength of the filament wound pipes. Finite element analysis was
applied to the problem using Tsai-Wu failure criterion in order to predict the
specimen failure for a comparison with experimental results. Onder et al. [40]
investigated the burst pressure of filament-wound composite pressure vessels

under alternating pure internal pressure and experimental approaches were
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employed to verify the optimum winding angles. The Tsai-Wu failure criterion
and the maximum stress theory were applied and contrasted with burst failure
pressures of the vessels. However, failure analyzed was only based on pure
internal pressure rather than a wide range of loading conditions. Srikanth and Rao
[45] presented the experimental strength and stiffness properties of both braided
and filament-wound carbon fiber reinforced polymer composites, fabricated with
varied fiber orientations (2° to 88°). The properties of braided and filament-
wound composites decreased with increased fiber orientation. Also, filament-
wound composite exhibited initial higher modulus and strength values compared
to braided composites (up to 30° fiber orientation). This difference vanished for
larger angles in both braided and filament wound composites. Their work also
showed good correlations with predictions made by conventional modeling

approaches, i.e. classical laminate theory and the Tsai-Wu criterion.



Chapter 1 13

1.3 SCOPE OF THE STUDY

From the above review it becomes apparent that a number of research
articles are available in the technical literatures that recognize the growing need
and potential application of braided and filament-wound composites. However,
literature providing methodologies for braiding and filament winding over
complex-shaped mandrels to design and analyze complex composite structures
subjected to combined loading conditions is limited. Even though research work
on braiding of complex structures is available to some extent, the same cannot be
said for complex structures made by filament winding. Most of the available
modeling predicts an ideal fiber orientation to satisfy strength and stiffness
requirements for conventional filament-wound structures (i.e. cylindrical piping
and pressure vessels) or dome-shaped vessels under specific loading conditions.
No models were found for the design of complex-shaped structures with variable
cross-section along the mandrel length under combined loadings to determine the
fiber orientation and its variation along the longitudinal direction. Hence,
providing an expedient technique using a suitable design theory such as netting
analysis for computing the fiber angle variation along the length of an axially
symmetric part with variable cross-section subjected to different ratios of axial
loading and internal pressure is considered an innovative contribution.

As mentioned above, through netting analysis only a single fiber angle can
be found for a fixed ratio between hoop and axial stresses. Such a fiber angle

would not necessarily comply with variable loading conditions composed of e.g.
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internal pressure and axial traction. Thus, the design process must incorporate the
examination of properties such as strength for stress ratios that deviate from initial
netting analysis results. For this purpose a suitable quadratic failure theory may be
implemented providing an enhanced and safer design approach. The present study
thus presents an innovative expedient methodology for determining the fiber
angle distribution for given complex part geometries and loading conditions by
initially incorporating netting analysis theory. The methodology is then extended
by implementing Tsai-Wu failure analysis in order to provide critical fiber
orientations needed to assess the structure performance and strength for combined
loading conditions. This study is seen as the foundation for a design framework
yielding braiding or filament winding manufacturing parameters for complex-

shaped structures subjected to variable loading conditions.



Chapter 1 15

1.4  THESIS OBJECTIVES

The objectives of research work described in this thesis are as follows:

1. Design of axially symmetric complex-shaped mandrels with varying
dimensions and cross-sections along their length, and development of an
analytical technique for defining the characteristic complex-shaped

mandrel surface equations.

2. Determination of the fiber angle variation along the length of the
composite structures with variable cross-section considering different
ratios of axial loading and internal pressure. As an initial step, netting
analysis design theory is implemented, providing the relationship between

the fiber orientation and a given loading condition applied to the structure.

3. Development of a methodology based on the Tsai-Wu failure criterion to
assess feasible fiber angles for variable loadings. The aim is to obtain
critical fiber angles for the variation of axial and/or hoop stress. The
theoretical investigation will consider two different material systems, i.e.

E-glass fiber/epoxy and carbon fiber/epoxy.
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CHAPTER 2

2.1 INTRODUCTION

Complex shapes are often found in molded and cast consumer products
and parts that possess complicated draft surfaces, smooth surface continuity
between part faces, and surface geometries that are based on splines rather than
line and arc profiles [1]. Growing demand exists for more complex yet
aesthetically pleasing designs in several industries [2]. The need for structural
components with high specific stiffness and strength is increasing rapidly in
several fields as well, which drives the development of efficient and robust
methods for the manufacturing of fiber-reinforced polymer composites. Polymer
composites made by braiding and filament winding have significant potential for
improving the performance of complex-shaped structural components [3]. Both of
these fabrication methods can be highly automated and thus produce low-cost and
reliable composite structural components [4]. Through adaptation and further
development, braiding and filament winding have become promising methods for
producing complex structural components.

Several studies were carried out for developing models of braided and
filament-wound complex-shaped structures [5-15]. Braiding is a versatile textile
process experiencing a resurgence because of its diverse applications [4] and new
opportunities in near net shape manufacturing of structures with high damage
resistance. A detailed method for geometrically describing the braided preforms

was reported by Wang and Wang [5, 6] who determined that the geometry is
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characterized by a set of physical parameters. Values for these parameters can be
determined by measuring certain physical features on the preform exterior.
However a general mandrel shape design has not been given preference in this
study which limits an increased flexibility for the design of different braided
preforms. The same authors [7] also explored a concept that links the initial braid
design to the final composite properties using a braided preform with tubular
cross-section. Moreover, Wang and Wang [8] developed a general methodology
for determining the permissible fiber orientation of two preforms that have similar
yarn structures but with different shapes such as rectangular and curvilinear cross-
sections. Rawl et al. [9] reported that the fiber path on a mandrel is dependent
upon the shape of the mandrel, e.g. for a circular shape the path will be in the
form of a helix whereas for a cubical body the path will be in the form of straight
lines. They also presented mathematical models to generate fiber orientations for
mandrels of different shapes (circular, conical and square prism). However it was
recommended that development of characteristic equations for such mandrel
shapes would expedite the process of generating desired fiber orientation relative
to mandrel shape. Liao and Adanur [10] developed another geometric model of
braided preforms using a computer aided geometric design technique. At first the
way to represent the fiber path to be braided over the mandrel is presented and
finally some applications of the modeling on net-shape structures were
demonstrated. Clearly, there was a need for an accurate data base on the physical
properties of braided composites and the derivations of respective mandrel surface

equations, reported by the authors, which was indicated as their future work.
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Filament winding has been used extensively for the manufacturing of
cylindrical axisymmetric structures. For example, an experimental investigation
was carried out by Mertiny et al. [11] to find the effect of multi-angle filament
winding on the strength of tubular composite structures. To effectively utilize the
capabilities of filament winding, some geometry-based approaches have been
presented by Mazumdar and Hoa [12] to determine the desired fiber distribution
along a cylindrical axisymmetric mandrel surface. During the past two decades,
several authors [13-15] have performed detailed analyses utilizing analytical and
experimental approaches to filament winding on the design and fabrication of
dome shaped pressure vessel. This is due to the fact that the dome regions
undergo the highest stress levels and are the most critical locations from the
viewpoint of structural failure [15]. Teng et al. [14] focused on the application of
dome shape pressure vessel design to provide optimum fiber angle under pure
internal pressure. However further development to this procedure should be
included in this study for the selection of feasible wind angles along with
application of other loading conditions.

The above literature review shows that different methodologies are
available for predicting the fiber orientation for mostly rather simple braided and
filament-wound preforms. It is proposed to use derivatives of these models to
extend them to more complex-shaped mandrels. The objective of part of this
research project is to design complex-shaped mandrels with varying dimensions
and cross-sections along their length and develop models for the design of braided

and filament-wound preforms subjected to loading conditions. This paper focuses



Chapter 2 25

on the development of generalized complex shape mandrel geometries based on
different cross-section shapes and the development of an analytical technique for

defining complex-shaped mandrel surface equations.

22 USE OF MANDREL SURFACE EQUATIONS FOR

DETERMINING FIBER ORIENTATION

As mentioned above, this research aims at developing complex-shaped
composite structures that can be manufactured using braiding and filament
winding processes. This task can be divided into a combination of several
processes, i.e. the design of a mandrel shape, the analytical description of the
mandrel surface, and the determination of fiber orientations based on material
properties and loading conditions that best satisfy design requirements such as
strength and stiffness. Simulating the structure under applied loadings allows for
deriving ideal fiber orientations for fiber path planning. In many cases the ideal
fiber orientation is in the resultant force direction. To obtain accurate fiber
placements, fibers must not slip on the surface during winding/braiding. Also,
depending on the geometry of the structure, problems of fiber bridging may occur
[12]. Fiber path planning may involve geodesic fiber paths (shortest distance
between two points on a mandrel surface), which can be generated considering
the start winding/braid angle at the origin. During winding this angle may then be

varied to achieve a feasible fiber path for a given mandrel geometry [14].
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It is apparent that the mandrel shape plays an important role in
determining fiber orientation. Generally the orientation along the mandrel surface
cannot be obtained directly for complex-shaped mandrels. Modeling of relevant
mandrel shapes and determining characteristic mandrel surface equations is
therefore an important step towards generating variation of fiber orientation along

the mandrel surface subjected to different loading conditions.

2.3 DEFINITION OF DIFFERENT COMPLEX-SHAPED MANDREL

GEOMETRIES

Here, mandrel geometries were chosen to represent common practical
shapes of complex composite structures. The geometry and coordinate system

(Cartesian shown) of the various mandrel models are defined in Figure 2.1.

¥

i
44— Sec#1 —Fi* Sec.#2 ->|1— Sec #3 —W

Figure 2.1: Generalized mandrel shape.

The mandrel geometry was divided into three sections along its length in

z-direction. These sections have lengths (za — Zo)’ (zc— za) and (z . zc) respectively.

For the first section, a uniform characteristic dimension » was defined, which in
a
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the present case is equal to the dimension of the third section. In the second
section the cross-section was assumed to be convergent-divergent along the
section length. The dimension at point B along the mandrel length was defined as

r,- In the present analysis four different cases were considered. These are shown

as solid models in Figure 2.2, i.e. mandrels with cross-section shapes that are
circular with either abruptly changing section slopes or smoothly changing slope
along the middle section, ellipsoid and rectangular are shown in Figures 2.2(a) to
2.2(d) respectively. The solid models, which are suitable for fabricating physical
mandrels, were produced using SolidWorks CAD software (Concord,

Massachusetts, USA).

(a) (b)

(c) (d)

Figure 2.2: Mandrel shapes with different cross-sections: (a) circular

(abruptly changing slopes), (b) circular (smoothly changing slope), (c)

ellipsoid, (d) rectangular.
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24  ANALYTICAL MODEL DEFINING MANDREL SURFACE

The surface of an axisymmetric mandrel having similar cross-sections at
both ends, such as cones, ellipses, parabola and spheroids, can be generated by

revolving a curve about an axis [12] and is represented by,

r=f(z) (D
where 7 is the radial distance of a point on the mandrel surface from the central
axis and z is the axis of revolution. Note that a description using cylindrical
coordinates is conducive to braiding and filament winding where machine
motions are defined in the same manner. Similarly, ruled surfaces cover a wide
range of mandrel shapes, such as axisymmetric, non-axisymmetric, cylindrical
and non-cylindrical geometries [1].

An effective way for determining the relative position of the mandrel and
delivery point for a desired fiber lay-down path is representing the total mandrel
surface as a combination of several shapes. For example, a ruled surface mandrel
can be approximated as a number of trapezoidal faces, whereas an axisymmetric
mandrel can be approximated by truncated cones [12]. Such approximations

reduce the analytical model complexity.

Circular cross-section throughout mandrel length

For the mandrel shapes considered herein, surface equations were

developed for each segment, and finally, combining each segment provided the
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global equation set. For example, if the cross-section is circular throughout the
mandrel length, i.e. case (a) in Figure 2.2, the characteristic equation of the

mandrel surface is:
r(z):raxH(t)+[K><ra+(1—K)rb]><H(—t) )
where K =|z, —z|(z, - z,)'a dimensionless variable is used to characterize the

convergent-divergent section; ¢=(z,,, —z)z,, —z)" is another dimensionless
variable used with the Heaviside step function H; and ¢ is an infinitesimal
variable with dimension of length.

From Eq. (2), for the first section in Figure 2, i.e. 0 <z <z,, the value of
Hz)isr when ¢ > 0. Similarly for the third section, z <z<IL, the value of 7(z) is
r when ¢ > 0. But for the second section, z<z2z and z,<z=z, the value of
(z), when ¢ < 0, is defined by the term [Kx7, +(1-K)r]. At point B, the
dimension is Ty and elsewhere the dimension is determined by K. It could be
mentioned here that z,- z, and z.- z;, were taken to be equal in length and none of
the quantities can be negative.

The equation for circular mandrel cross-section shapes with smoothly

changing slope along the midsection (Figure 2.2 (b)) is given by:

r(z)= r,x H(t)+ {Fa +\/R2 _(zb -z, )2 _\/RZ _(zb —z)2 } x H(—t) 3)

where R is the radius of the surface path of midsection and can be expressed by

the following equation:
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2
(Zb -z )
R=(1/2)| (r —rb)——a
a (rb - ra)
The difference between Eq.(2) and (3) lies in the second section. In Eq.(2)
the change from the first to second section or from the second to third section is

sudden and the surface path within the second section is linear, whereas for Eq.(3)

the above changes are continuous and the surface path is arc-shaped with radius

R.

Ellipsoidal cross-section throughout mandrel length

The characteristic dimension of an ellipsoid cross-section is defined by
r(z,0). So for ellipsoid mandrel (Figure 2.2 (c)), 6 is the parameter to be

considered along with z to find the surface equation as the following:

r(z,0)=r,0)x H(t)+[K x7,(0)+(1-K)r,(0)]x H(-1) (4)
where, 7, (9) = Mol and
\/nj cos’ @+m’ sin® @
myn,

) (‘9)

\/nf cos’ @+m; sin’ 0

In Eq.(4), m and n are semi-major and semi-minor axes, respectively. Here, m and
n correspond with the y and x axes; 0 is the angle measured from the semi-minor

axis.
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Rectangular cross-section throughout mandrel length

For quadrilateral cross-section shapes (e.g. rectangle) a Cartesian
representation was defined first, i.e. x(z) and y(z) for rectangles. Then an
appropriate transformation should be provided for cylindrical coordinates. Using a
cylindrical coordinate system (theta and z) seems conducive to our problem, for
both braiding and filament winding, where the mandrel is rotating with theta and

the fiber path is traveling along the mandrel z-position.

x(z)=x, x H(t)+[K xx, +(1-K)x, |x H(~ 1) (5a)

y(z) =y, xH()+[K xy, +(1=K)y, |x H(-1) (5b)

The following expression is used to transform above equations for rectangular

cross-section shapes ((Figure 2.2 (d)) into cylindrical coordinates:

6
r(@‘ o T ) (6)

-1 -1
where, = 6 —arctan(yx " )+0 0 —r—arctan(yx )+
27 — 6@ —arctan(yx 1) -0

ﬁ—H—arctan(yx_l)—é‘
Point clouds shown in Figures 2.3(a) to 2.3(d) correspond to Egs.(2) to (6);
parameters were chosen arbitrarily. Graphs were produced using MathWorks

MATLAB numerical computing software (Natick, MA).



Chapter 2 32

(a) (b)

(c) (d)
Figure 2.3: Point cloud representing characteristic equation for mandrel
shape with different cross-sections, (a) circular (abruptly changing slopes),

(b) circular (smoothly changing slope), (c) ellipsoid, (d) rectangular.
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2.5 CONCLUSIONS

An analytical technique that represents different complex-shaped mandrels
for braiding and filament winding was developed by defining appropriate mandrel
surface equations. Four sample cases of mandrels with different cross-section
shapes were presented. Based on the characteristic surface equations, different
mandrel shapes can be defined, which will be used determine the desired fiber
orientation of any complex mandrel shape using braiding or filament winding.
Work presented herein is considered a first step towards developing an expedient
method for fabricating complex-shaped braided or filament-wound structures. In
future work, an analytical model will be developed that provides the variation of
fiber orientation along the length of mandrel surfaces with variable cross-sections

under combined loading conditions.
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CHAPTER 3

3.1 INTRODUCTION

Composite materials provide multiple functionalities that have
successfully been employed in the aerospace, marine, automotive, infrastructure
and energy industry [1]. Complex-shaped composite structures, such as molded
and cast components, possess a wide range of applicability [2]. The
manufacturing of these composite components can also be achieved with efficient
and robust techniques such as braiding and filament winding by using innovative
mandrel systems. These fully automated manufacturing techniques are well suited

to produce high performance complex composite structures [3].

Braiding has been used for many applications requiring shaped parts
because of structural integrity, design flexibility, damage tolerance, repair ability
and low manufacturing cost [4]. Because of its diverse applications and new
opportunities in near net shape production, braiding is seeing resurgence in the
field of composite manufacturing [5]. On the other hand, filament winding has
extensively been used for the manufacturing of axisymmetric cylindrical

structures [6].

Designing complex-shaped mandrel geometry to achieve the best
combination of part shape and manufacturability is a non-trivial task. It is
proposed to develop appropriate design methodologies for complex-shaped

mandrels to be implemented in braiding and filament winding production.
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Several investigations have been carried out [4-18] to develop models to
determine the fiber orientation required for braided and filament-wound
composite structures. Brookstein [7] provided a detailed analysis for braided
structures where braid reinforcement replaced conventional materials in
components such as pressure vessels, rods, shafts, plates and structural columns.
The author also provided the optimum fiber orientation for some of these braided
structures to satisfy different load carrying requirements. Michaeli and
Rosenbaum [8] described a computer control system for a braiding machine,
which ensured the desired fiber orientation on a symmetric mandrel; the control
algorithm could not adapt the braid angle to changing mandrel diameter. Kessels
and Akkerman [9] presented a fast and efficient model to predict fiber angles for
complex bi-axially braided preforms; however numerical predictions of the
change in braid angle along the mandrel length in regions of changing mandrel

cross-section were not accurate.

To effectively use filament winding production capabilities, Mazumdar
and Hoa [10-12] presented geometry-based approaches to generate the desired
fiber distribution on cylindrical, axisymmetric as well as complex-shaped
mandrels. Winding on non-cylindrical mandrel with curved cross-sections was not
addressed in their work. Carvalho et al. [6] developed a methodology with
integrated numerical analysis for the design of filament-wound parts which
included the determination of ideal fiber orientations using finite element
analysis; generation of feasible paths; determination of the final lay-up sequence;

and an analysis to adapt the final lay-up to meet strength and stiffness
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requirements. The conical filament wound part was loaded in simple torsion. The
methodology required multiple iterations to provide proper solutions; for more

complex shaped part, it was suggested that more iterations would be needed.

Composite structures are widely used in applications in which
combinations of internal/external pressure, bending, torsion and axial loading may
be present. There are various methods for analyzing stresses and strains associated
with these loading conditions, including netting [13], finite element [6,14], and
orthotropic [15] analysis. Netting analysis is a simple yet expedient approach to
design cylindrical filament-wound structures. Orthotropic analysis is used to
predict the behavior of a loaded composite structure and determine required fiber
orientations [15]. Finite element analysis is performed to define optimal ply
stacking, where the final laminate is modeled as layered lamina [14]. The lay-up
is then adapted until strength and stiffness requirements are achieved to determine

optimum fiber orientation.

An analytical procedure was developed by Wild and Vickers [16] to assess
stresses and deformations of three different filament wound structures, i.e. a
pressure vessel, a centrifuge rotor, and a flywheel, each under particular loading
conditions, to assess the effects of wind angle variation through the cylindrical
wall. As an example, using netting analysis for a thin walled cylindrical pressure
vessel case, the optimum value of the wind angle was derived as the well-known
54.74°. The authors also reported that the wind angles in each layer can be varied
so as to provide both a more even distribution of the strength ratio (i.e. ratio of

applied stress to strength) and higher failure pressure. Jones et al. [17] conducted
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a geometric analysis of the dome of filament wound pressure vessels. They
described that the curvilinear fiber path leads to a continuous change in winding
angle and laminate thickness. Because the feasibility of a fiber path depends on
the surface on which it is wound, winding angles may vary in the longitudinal and
thickness direction of a wound structure. Its mechanical behavior was predicted
from the fiber alignment and thickness distribution along the dome ended zone of
pressure vessel using delta- axisymmetric method, which calculated the winding
pattern over the dome. Clearly, an accurate wind angle distribution must be
known to precisely predict the behavior of the wound part. Park et al. [18] studied
the behavior of cylindrical filament wound pressure vessels subjected to internal
pressure as well as the wind angle variation in the dome section. They calculated
the fiber angle distribution in the dome section using finite element analysis and

guantified the fiber angle change through the thickness direction.

The above literature review presents different methodologies available for
predicting the ideal fiber orientations required to satisfying strength and stiffness
requirements for conventional braided and filament-wound shapes (e.g.
cylindrical piping and pressure vessels) under specific loading conditions. No
models were found to provide fiber orientations along the mandrel for the design
of complex-shaped structures with variable cross-sections. The aim of the present
study is to provide an expedient technique for computing the fiber angle variation
along the length of a composite structure having variable cross-section geometry
for combined loading conditions. Here a method based on netting analysis theory

is presented as an initial approach to determine the fiber orientation along the
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length of an axially symmetric mandrel for different ratios of axial loading and
internal pressure. This work is seen as the foundation for a design framework
yielding braiding or filament winding manufacturing parameters for complex-
shaped structures subjected to a range of applied loadings.

To meet these objectives, it is necessary to obtain an analytical description
of the mandrel surface and determine fiber orientations that satisfy design
requirements such as strength and stiffness. These steps are described in the

following sections.

3.2 DEFINING MANDREL SURFACE EQUATIONS

Composite structures may be designed to have an intricate geometry that
is contoured to a complex mandrel shape. Mandrel shape plays an important role
in determining the fiber orientation distribution as they will greatly affect local
stresses. Generally, the fiber orientation along the mandrel axis cannot be
obtained directly for complex-shaped mandrels. Modeling of relevant mandrel
shapes and providing characteristic mandrel surface equations is necessary to

determine fiber orientation variation along the mandrel length.

In chapter 2 and in Hossain et al. [19], mathematical expressions were
presented for some complex mandrel geometries with cross-section shapes and
dimensions that vary along mandrel length representing practical composite
structures. These equations will be used here to determine the variation of fiber
angle along the length of a composite structure subjected to simple and combined

loading conditions.
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A brief review on the definition of mandrel surface equations is presented
below for two particular cases, as the details derivations were provided in the
previous chapter. Geometry and coordinate system (Cartesian shown) for the

various mandrel models are defined in Figure 3.1.

L
Sec.#1 —rit Sec.#2 ->|<— Sec.#3

Figure 3.1: General mandrel shape.

In the present study two different complex shape mandrels are considered
to find the fiber angle variation along mandrel length. These are shown as solid
models in Figure 3.2, for mandrels with circular cross-section with either (a)
abruptly or (b) smoothly changing slopes along the converging-diverging mandrel
midsection. The surface equations of other mandrels, such as, ellipsoid and
rectangular can be implemented as well in order to generate the desired fiber

orientation, when subjected to loading conditions.
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Figure 3.2: Circular mandrel shapes with (a) abruptly (top most) and (b)

smoothly (lower most) changing midsection slope.

For the mandrel geometries considered herein, surface equations were
developed for each segment. Combining each segment provides a global equation
set [19]. For the circular mandrel shape with abruptly changing midsection slope

the characteristic equation of the mandrel surface is:
r(z)=r,xH(t)+[Kxr, + Q- K)r, |x H(-1) (1)

The equation for the circular mandrel cross-section shape with smoothly changing

midsection slope is given by:

r(z)= r, xH(t)+{ra +\/R2_(zb -z, )2 _\/RZ _(zb —z)2 } x H(~t) (2

where R is the radius of the midsection surface path. R is determined by:
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(z, —2,)°

R=(1/2) (ra -r (3)

b)_ (rb _ra)

All other variables are defined in Figure 3.1.

3.3 FIBER ANGLE DETERMINATION USING NETTING ANALYSIS

During the design process, material parameters are selected to ensure that
the structure satisfies strength and stiffness requirements. Due to the highly
directional nature of continuous fiber reinforcement, it is a common approach to
place the fibers in the maximum stress directions. The stress direction is obtained
by an appropriate strength of materials analysis along the filament-wound part
and throughout the different layers [6]. It shall be emphasized here that the
properties of fiber reinforced polymer composites are highly tailorable, allowing a
designer to achieve characteristics such as optimal strength at minimum weight.
For example, a common notion is that material is effectively wasted for the axial
direction of a pressure vessel when fabricating it from an isotropic material since
the hoop stress is twice the axial stress within its cylindrical section (considering a
thin-walled vessel under closed-end pressure loading) [20]. Constructing a vessel
with fiber composites alleviates this problem by placing fibers with a bias in the
hoop direction to withstand the higher stress. For the filament winding process,

such an optimization implies the appropriate selection of winding angles along the
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structure, followed by verifying that they can be achieved during the

manufacturing process [21].

From among the different possible design methods, netting analysis theory
was deemed adequate to determine a suitable fiber orientation and its variation
along the length of a complex-shaped mandrel subjected to internal pressure, p,

and axial traction loading, F. As such, the following assumptions were made:

e All loads are supported by the fibers in tension only, shear stresses in the
composite plies are negligible and any contribution from the matrix material
was neglected.

e Fiber architectures considered herein are helical windings oriented at
corresponding angles of *a, representative of braiding and filament winding
angle-ply reinforcement strategy.

e Hoop and longitudinal stresses arising from combined loadings were resolved

into a single resultant force in the fiber direction.

Considering a circular cross-section structure with variable radius along its
length, the mandrel surface equations for »(z), Egs. (1) and (2), were used in
subsequent analyses. The hoop and axial directions are denoted by ~ and a
respectively. The model is based on the physical interpretation that hoop and axial
strains can be measured to find the strain, and subsequently, stress along the fiber
direction. The fiber strain ¢, at an angle « from the axial direction is given in
terms of the hoop and axial strains, ¢, and ¢,, by the following transformation

equation:
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e, =¢g,8ina+e,cos’a+y,sinacosa (4)

The term involving the shear strain, y;, is neglected for netting analysis
since fibers are assumed to be loaded in tension and shear stresses in the

composite plies are negligible. The fiber stress can thus be calculated as:
o, =Ec, =E(g,sin*a+e¢,cos’ ) (5)

where E is the fiber Young’s modulus since any matrix contribution is neglected.

The cross sectional area per unit length of a strand along the layup
direction shall be denoted as 4, (i.e. 4, has a dimension of length) [22]. The
strand area along the hoop and axial directions per unit length are therefore
A= A,sina and A, = A, cosa, respectively. Using these expressions and the fiber
stress given by Eqg. (5) the force components per unit length in the hoop and axial

directions can respectively be resolved as:

Fy =0, A, sin‘a (6)
and
F, =0, A, cos’a (7)

Using Egs. (6) and (7), equations of equilibrium can be established for the
internal forces caused by internal pressure and axial traction. The latter is
considered in the form of a superposition of forces in axial direction only. Hence
force balance considering the mandrel cross-section should be established along
both hoop and axial direction as in Figure 3.3. Details derivation can be found in

Appendix A.1.
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Figure 3.3: (a) Hoop stress and (b) Axial stress developed in the mandrel

cross-section due to internal pressure and axial loading.

For the hoop direction the equilibrium equation is:

pxr(z)=c, 4, sin’ a (8)

— *
- o-hoop A

Here the area is considered as, 4 = L x¢, and for unit length, L=1, A=t (thickness).

Therefore A4, should be assumed as area per unit length [22].

For the axial direction, considering internal pressure and axial traction loading,

the equilibrium equation becomes:

pr(r(z))’ +F =2rr(z)o, A, c0s’ a
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or priz), F =0, A, Cos* a 9)
2 27 r(z)

axial *A
Dividing Egs.(8) by (9), an expression for the ratio of hoop to axial stress is

derived as:

O
hoop _tanZa _ pr(z) _ 2

O-axial - - pV(Z) + F - 1 (Fj

(10)

2 27 r(z) 1+ z(r(2)? ;

Therefore, the fiber orientation and its variation along the length of a
complex composite structure with variable cross-section radius 7(z), subjected to a

combination of internal pressure p and axial load F, can be determined:

2

1+ 1.£Fj
z(r(2)* \ p

a(z) = arctan (11)

3.4  RESULTS AND DISCUSSION

In this section the variation of the fiber angle « (z) along the length of the
structures shown in Figure 3.2 is considered for different ratios of applied internal
pressure and axial loading, F/p. For clarity these ratios are also expressed in terms

of hoop to axial stress, o,/0,, which is termed by k. The intent is to illustrate the
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effect of cross-sectional geometry and applied loads on the fiber orientation
determined through netting analysis.

The stress ratios considered herein are ox/o, = k=21, 11, 1/2, 1/4, 1/10.
Assuming an internal pressure of unity (i.e. 1 MPa) and a major cross sectional
radius of » = 25 mm at point 4 ( i.e. the constant mandrel radius r, in Figure 3.1),
values for the axial load F were determined to obtain the applied loading ratio,

Flp, and fiber orientations. Using Egs. (6) to (9), an expression for F'is derived as:
FIZﬂVZ(E—Ej (12)
k2

Accordingly, Flp ratios for k=2, 1, 1/2, 1/4, 1/10 are 0 mm™, 1964 mm,
5890 mm?, 13744 mm™ and 37307 mm™. Note that units of mm™ for the Fip
ratios are omitted herein for convenience. For the various F/p ratios, results for
the fiber angle along mandrel length were plotted in Figures 3.4 and 3.5 for the
mandrel shapes with abruptly and smoothly changing midsection slope,

respectively.
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Figure 3.4: Fiber angle variation along the length of a circular cross-
section structure with abruptly changing slope in midsection for different
ratios of axial load F and internal pressure p. [square brackets represent

the hoop to axial stress ratio].
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Figure 3.5: Fiber angle variation along the length of a circular cross-
section structure with smoothly changing slope in midsection for different
ratios of axial load F and internal pressure p. [square brackets represent

the hoop to axial stress ratio].
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From Figures 3.4 and 3.5 it can be observed that that the F/p ratio as well
as the change in part geometry may have a significant effect on the fiber
orientation along the length of the structure. When F/p =0, i.e. no axial load,
Figures 3.4 and 3.5 show that the fiber angle is 54.74°, which is to be expected
from netting analysis for a circular structure subjected to only internal pressure.
For an increasing axial force, F, the fiber angle decreases approaching zero
degrees when axial traction loading dominates. This decrease in fiber angle is
more pronounced in the converging-diverging midsection. It should be noted here
that fiber angles approaching the extremes of 0° and 90° are usually not practical

for braiding and filament winding.

Also seen in Figure 3.4 is that along the midsection of the circular cross-
section structure with abruptly changing slope some curves are found as linear
[1H : 10A] whereas others are curved [1H : 1A]. The reason behind this issue is
that according to Eq. (11), « is a function of #(z)’ and F/p. Therefore, when the
values of F/p ratios are small, a is dominated by ()’ and the variation of a with z
along the midsection is parabolic. Conversely, when the values of F/p ratios are

greater, « is dominated by F/p, a linear relationship.
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3.5 CONCLUSIONS

When designing fiber reinforced composite structures, it is necessary to
determine fiber orientation to support applied loads and other design constraints.
This is particularly challenging for complex geometries. In this chapter, netting
analysis theory was implemented in an initial approach to determine the fiber
orientation for structures with circular cross-section and converging-diverging
midsections. The approach developed in the chapter provides a relationship
between fiber orientation and the internal pressure and axial loading applied to the
complex-shaped structure. An extension of this work, presented in the next
chapter, will incorporate appropriate material failure criteria to determine the

optimal fiber layout for braiding and filament winding manufacturing methods.
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CHAPTER 4

4.1 INTRODUCTION

Structures made from fiber-reinforced polymer composites (FRPC) such
as pressure vessels and piping have found growing acceptance and application in
industry due to in part their high specific properties and corrosion resistance.
Complex-shaped structures provide considerable practicality and effectiveness for
many industrial applications, examples of which are molded and cast components
[1]. An ever increasing range of applications requires complex-shaped FRPC
structures, which in turn necessitates efficient and robust manufacturing methods
such as braiding and filament winding. Employing these established
manufacturing methods, complex-shaped composite components can be produced
in conjunction with innovative mandrel systems.

Composite structures are widely used in applications in which a
combination of internal/external pressure, bending, torsion and axial loading may
be present. There are various design criteria for analyzing stresses and strains
associated with these loading conditions, including netting analysis [2], finite
element method [3], and orthotropic analysis [4]. Netting analysis is a simplistic
yet expedient approach to the design of cylindrical filament-wound structures.
Under the assumption of plane stress, orthotropic analysis may be used to analyze
stress and strain and predict the behavior of a composite structure under loading
and thus determine fiber orientations [4]. Finite element modeling allows for

analyzing a composite laminate as a layered structure. Lamina sequence and fiber

56
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orientations can thus be optimized until strength and stiffness requirements are
met [3].

Damage in composite structures is a complex phenomenon involving
various failure mechanisms. Understanding the failure process and the
development of reliable failure criteria is an essential prerequisite for an effective
analysis of composite materials [5]. Failure in a composite laminate initiates in
the most stressed lamina (with respect to anisotropic material strength), followed
by a sequence of next-to-be-most-stressed lamina leading eventually to ultimate
failure. To this end, a lamina failure criterion is often used in conjunction with
lamination theory to evaluate stress and strains in the various plies. For example,
a theoretical and experimental analysis of the strength of +55" and +75° pipes
under biaxial loading of internal pressure and axial force was carried in [5]. In this
study, theoretical failure envelopes were obtained using laminate theory and
netting analysis. Other extensive research work on failure analysis of laminated
composite structures focused on approaches such as non-linear viscoplastic
constitutive modeling, fracture mechanics, damage mechanics and macroscopic
(global) failure criteria [6].

Linear and quadratic failure criteria have been popular for the design and
analysis of composite structures for a variety of industrial applications in which
combined loading conditions are present. Srikanth and Rao [7] experimentally
determined strength and stiffness properties of both braided and filament wound
carbon fiber reinforced polymer composites that were fabricated with varied fiber

orientations. They found good correlations between experimental data and
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predictions made by conventional modeling approaches, such as classical
laminate theory (CLT) and the Tsai- Wu failure criterion. Eckold et al. [8]
predicted the failure envelopes for filament-wound materials under biaxial
loading using a maximum stress failure criterion and found good agreement with
experimental results. However, the maximum stress failure criterion was less
accurate than the distortional energy failure criterion in assessing material
strength under internal pressure and axial loading conditions. Gargiulo et al. [9]
delineated the failure behavior of composite tubes under simultaneous internal or
external pressure and axial loads producing a variety of biaxial stress conditions.
Finite element analysis in conjunction with the Tsai-Wu failure criterion was used
to predict specimen failure. Onder et al. [6] investigated the burst pressure of
filament-wound composite pressure vessels under alternating pure internal
pressure; experimentation was employed to verify optimum winding angles.

The review of the technical literature clearly showed that a failure analysis
must be comprehensive for combined and variable loading conditions. Through
netting analysis only a single fiber angle can be determined for a specific loading
condition, such as a certain ratio between hoop and axial stresses. Such a fiber
angle would not necessarily comply with variable loading conditions caused by
e.g. internal pressure and axial traction being changed independently from each
other. Thus, a design process based on netting analysis (such as presented in
Chapter 3 and [10]) should be enhanced with an examination of strength
properties for stress conditions that deviate from initial netting analysis results.

The technical literature is limited with respect to such a design approach, which
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provides opportunities for an expedient and efficient design methodology. In the
present study an attempt was made to enhance the design methodology of
composite structures subjected to combined loads and manufactured by either
braiding or filament winding by implementing netting analysis and a suitable
quadratic failure criterion to provide a safe and practical design approach that also
affords considerable design flexibility. The design process for braided or
filament-wound composite structures as described in Chapter 3 and [10] was
expanded by implementing a Tsai-Wu failure analysis to ascertain critical fiber
orientations and to assess the structure performance and strength. Herein two
material systems, i.e. glass fiber/epoxy and carbon fiber/epoxy were considered to
explore and compare failure behavior under combined and variable loading

conditions.

42  TSAI-WU FAILURE ANALYSIS TO DETERMINE CRITICAL

WINDING ANGLES

The Tsai-Wu failure criterion was used to determine critical winding
angles. In accordance with previous work, i.e. Chapter 3 and [10], a local
coordinate system comprised of perpendicular axes ‘1’ and ‘2’ was defined to
signify the longitudinal and transverse fiber directions respectively [11]. A global
X-Y coordinate system was established where the angle between axes X and ‘1’ is
denoted the winding angle a. Therefore, the stress transformation relations

between the two coordinate systems can be given as shown in Eq.(1).
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o, o, cos’ a sin’ & 2sinacosa ||o,
o, =[T]yo, = sin’ « cos’ a —2sinacosa |J0,
T, .| |-sinacosa sinacosa cos’a—sin’a || 0
2 s a2 2
o,co8" a+o,sin" a (0,—0,)cos”" a+o0,
c 2 2 s 2
= o,sin" a+0,cos” a =4(o,-0,)sin" a+o0,
o,sinacosa+o,sinacosa ~(o, -0, )sin2a
o, (a—b)cos’ a+b
or 192(= (a—b)sin® a+b (1)
1 .
T 5(b—a)sm2(x

where hoop and axial stresses o, and o, were replaced respectively by the
simplified notation of @ and b for convenience.

In the general form of Tsai-Wu failure analysis, a failure index f'is expressed by
f=Ho +H,0,+Hg,+ 1_111(712 + H22(722 + H66T122 +2H,,0,0, (2)
where components H;, H>, Hs, H;;, H2,, Hss and H, are strength parameters of a

unidirectional lamina [11]. The failure index f'is defined such that failure does not

occur if f<1. Substituting#tresses 7;, o, and 7;, from Eq.(1) into Eq.(2) yields
Eq.(3).
) - 1 .
f=H{(a-bycos’ a+b |+ H,{(a—b)sin>a+b }+ H6{§(b—a)s1n2a}
B 2 .2 2
+Hy{a-bycos’ a+b | +Hy{a—b)sin> a+b | + 3)

2
Hﬁﬁ{%(b—a)sinZa} JrZle{(a—b)cos2 0{+b}<{(a—b)sin2 a+b}
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Defining a stress ratio k between a and b such that b = k a, then Eq.(3) becomes,

(k= (k=1)cos’ a [H, + H, {(k — (k- ))sin® & |- H, {% (k—l)sin2a}

+aH,{(k—(k=)cos & | +2a Hy,{(k—(k-1)cos’ a fj(k—(k-)sin’ a || (4)

~
Il
)

+a Hyy{(k—(k=1)sin a ' +Hy, {% a(k —1)* sin? 20(}

A critical fiber angle a.iicar 18 determined by the failure index f so that
failure is impending for the different material systems. Table 4.1 shows the
strength properties for the two material cases, i.e. E-glass/epoxy (S2-449 43.5k/SP
381) [11] and carbon fibre/epoxy (AS4-12K/938) [12]. In the present analysis it
was chosen to vary the values of axial stress a and the ratio between hoop-to-axial
stress ratio k. The strength components H;, H>, Hs. H;1, H>2, Hss and H;, for the
Tsai-Wu failure index in Eq. (2) given in Table 4.2 were determined according to
[13] using respective strength data for both materials.

It should be noted here that the present approach deliberately ignores any
load sharing contribution from adjacent laminae, which would have the same fiber
angle but with negative inclination. In other words, it is assumed that each lamina
carries identical stresses, i.e. the average hoop and axial stress of the structure.
Considering strain continuity in the different laminae of a laminate it becomes
apparent that stresses in the directions parallel and transverse to the fibers would
not develop in the same manner as when assuming a fully independent lamina.
The reason the present analysis approach was chosen is that it ensures

conservative designs by ignoring load sharing effects.
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Table 4.1: Material strength properties
Material Properties GI/aeSSOZSer Ca;tgsgxgber
Ultimate longitudinal tensile strength
( Glr)ultﬂ (MPa) 1062 1875
Ultimate longitudinal compressive strength
(Ulc )., (MPa) 610 1455
Ultimate transverse tensile strength
(67),1> (MPa) ! 02
Ultimate transverse compressive strength
(03 )i (MPa) He 210
Ultimate in plane shear strength
(712)ui> (MPa) 7 %0
Table 4.2: Components for determining the Tsai-Wu failure index
Component Expression GI/ass fiber Carbon fiber
epoxy lepoxy
-1 1 1 -4 -4
H; (MPa) = - @) -6.977 x 10 -1.542% 10
B 1 1
H> (MPa) = - ). 0.0238 0.011
H; (MPa)™! H;=0 0 0
H;; (MPa)™ % 1.544 x 10 3.665 x 107
(01 )i (07
H>; (MPa)™ % 2.734 x 107 7.723 x 107
(02) i (03) i
Hgs (MPa)? ! 5 1.93 x 10 1.245 x 10"
(T12)un
H;> (MPa)? —% -4.433 x 107 -1.422 x 107
() )
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43  RESULTS AND DISCUSSION

In the first part of the examination the variation of the failure index f with
fiber angle a is presented for varying axial stress values while maintaining a
constant hoop-to-axial stress ratio. The different ratios of applied axial loading
and internal pressure F/p are expressed in terms of hoop-to-axial stress ratios k for
convenience. The loading case of F/p = 10 was assumed herein, and the mandrel
cross-section radius was taken as » = 12mm (at point B along the z-direction, see
Figure 3.1 in Chapter 3). Thus, according to Eq. (10) in Chapter 3, k= 1.96.
Results for the failure index are shown for glass fiber/epoxy and carbon
fiber/epoxy materials in Figures 4.1 and 4.2 respectively. Similar trends for the
failure index with varying fiber angle can be observed for axial stress values a
ranging correspondingly from 10 MPa to 32 MPa (glass/epoxy) and 10 MPA to
64 MPa (carbon/epoxy). A safe design is given for a failure index of /<1
indicated by the dotted line in the figures (i.e. termed herein the ‘safe design line’
or ‘failure line’). Figure 4.1 shows that for axial stresses up to @ = 16 MPa any
fiber angle from 0° to 90° is possible without failure. For any a > 16 MPa failure
index curves cross the safe design line. When a > 32 MPa the failure index curve
remains entirely above the safe design line. The intersection of failure index curve
and safe design line determines the critical fiber angle ositica, Which signifies the
smallest fiber angle that ensures no failure. For example, when a = 22 MPa agitical
is found as 49.5° for glass fibre/epoxy (see Figure 4.1); for carbon fiber/epoxy,

Olcritical 1S 42.3° for an axial stress value of 40 MPa (Figure 4.2). Moreover, for the
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present case of k= 1.96 the glass/epoxy and carbon/epoxy materials will fail for
all fiber angles when a > 32 MPa and a > 64 MPa respectively.

Similar to the preceding investigation a second assessment of failure index
with respect to fiber angle and critical fiber angle oyriticat Was conducted, the
difference being that axial stress was kept constant while varying the stress ratio
k. Corresponding data for different k& values for a fixed axial stress value of
a =20 MPa are shown in Figures 4.3 and 4.4 for glass fiber/epoxy and carbon

fiber/epoxy, respectively.

e "

Glass/Epoxy

For a =22 MPa, ¢ ;- 49.5

0 10 20 30 40 50 60 70 80 90

& (in degree)

Figure 4.1: Variation of failure index f'with fiber angle a in glass/epoxy for a

constant stress ratio k and different axial stresses, with failure line at f=1.
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1.5 o
- k=b/a=1.96 a=64
Carbon/Epoxy

For a =40 MPa, d ;= 42.3 \ —a=10
0 10 20 30 40 50 60 70 80 920
¢ (in degree)

Figure 4.2: Variation of failure index f'with fiber angle « in carbon/epoxy for

a constant stress ratio k and different axial stresses, with failure line at f= 1.

Noteworthy insights for design purposes can be gained from Figures 4.3
and 4.4. The data for glass fiber/epoxy (Figure 4.3) and carbon fiber/epoxy
(Figure 4.4) show that all winding angles are feasible for any stress ratios & less
than correspondingly 1.57 and 3.16. For higher & a critical fiber angle can be
found. Taking for example k=4 the agiica are 66.6° and 37.8° for glass
fiber/epoxy (Figure 4.3) and carbon fiber/epoxy (Figure 4.4) respectively. Failure
will not occur for angles greater than these critical angles for any given stress
ratio k£ unless k > 40 for glass fiber/epoxy and k > 84 for carbon fiber/epoxy,
which constitute limit hoop-to-axial stress ratios at which the materials will

always fail.
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1.6 - a=20MPa

—

. For k=4, a ;= 66.6
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Figure 4.3: Variation of failure index f'with fiber angle a in glass/epoxy for a

constant axial stress a and different stress ratios k, with failure line at f= 1.

Critical fiber critical angles over a range of axial stresses as shown in the
separate graphs in Figures 4.1 (glass fiber/epoxy) and 4.2 (carbon fiber/epoxy)
were compiled into a single graph in Figure 4.5 (stress ratio of k=1.96) to
provide more concise information. Similarly, using data from Figures 4.3 and 4.4,
critical fiber angles over a range of stress ratios and a fixed axial stress of
a =20 MPa were plotted for both material systems into a single graph, which is
presented in Figure 4.6.

From Figure4.5 it is found that for glass fiber/epoxy and carbon
fiber/epoxy the critical angle curves intersect the abscissa (i.e. Ocritica = 0°) at

approximately a = 16 MPa and a = 32 MPa respectively, whereas from Figure 4.6
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corresponding values for the hoop-to-axial stress ratio are k=1.57 and k =3.16.
Below these a and k values a design will not fail for any given fiber angle.
Conversely, for the maximum possible fiber angle of 90°, limiting a and £ exist
beyond which no fiber angle provides a feasible design. For example, this limiting
value is @ = 32 MPa for glass fiber/epoxy as shown in Figure 4.5, and thus for a
between 16 MPa to 32 MPa a safe fiber design is delineated by the critical fiber
angle curve. In other words, any design point to the left of the critical fiber angle
curves (f<1) can be interpreted as a safe design, while the right side (f >1)

indicates failure. In both figures, these regions are greater for carbon fiber/epoxy

as would be expected from this stronger and stiffer material.

2 T \ 1 9 \ i
| | | =84
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1.6 - | | || ——k=35
(|| —— k=25
1.4 - @ =20 MPa | | l — k=20
| | | — k=15
i —k=10
\ | X
AV —e
'] 'l —k=6
\ | | —k=4
\\ k=35
\\\ —— k=316
: \ |\
\\\ —k=3
\ ~' —=2
N \ —k=15
0.2 1 ) —k=1
—_— For k=4, ¢.iiar-37.8 —_—k=05
0 T T T "I/ T T T T 1
0 10 20 30 40 50 60 70 80 90
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Figure 4.4: Variation of failure index f'with fiber angle « in carbon/epoxy for

a constant axial stress @ and different stress ratios k, with failure line at f= 1.
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Regarding Figure 4.5 one might expect that with increasing axial stress a
the critical fiber angle o.riicat Should tend to 0 degree as this would align the fibers
in the axial direction. However, Figure 4.5 shows a different trend for the
following reason. It is important to note that & is defined as the ratio of hoop-to-
axial stress, meaning that for an increasing axial stress the hoop stress increases
proportionally. Consequently, the critical fiber angle is affected by the axial and

hoop stresses simultaneously, causing o.ritical to tend to 90° for an increasing a and

k>1.
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Figure 4.5: Variation of critical fiber angle acriticas With axial stress a in

glass/epoxy and carbon/epoxy for a constant stress ratios k = 1.96.
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Data compiled in Figure 4.6 provides design guidance similar to the graph
in Figure 4.5. Hoop-to-axial stress ratios of £ < 1.6 and k < 3.2 constitute limiting
values below which all fiber angles provide a safe design for glass fiber/epoxy
and carbon fiber/epoxy respectively. With increasing & values (increasing hoop
stress; axial stress is a constant 20 MPa for Figure 4.6) the feasible fiber angles
increase rapidly towards a pure hoop direction. For example, when k=5 the
critical angle is 70° for glass fiber/epoxy. When £k reaches values of 39.9 and 83.0
correspondingly for glass fiber/epoxy and carbon fiber/epoxy the critical angle is
90°, which indicates (noting that fiber angles cannot exceed 90°) that for greater k&

the failure index will exceed unity constituting failure.

920
80 |
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60 -

@ ritical (degree)
r.n
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40
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A —5—Glass/Epoxy
20 -
10 -
¢
0 1©A : : : : : :
0 10 20 30 40 50 60 70 80

k
Figure 4.6: Variation of critical fiber angle acriticat With hoop-to-axial stress

ratio & in glass/epoxy and carbon/epoxy for an axial stress a = 20 MPa.
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Critical design data can be condensed further as shown in Figures 4.7 and
4.8. Figure 4.7 depicts a.ritical OVer a range of k values for different constant axial
stresses, i.e. a =10, 20, 30 MPa. Similarly, Figure 4.8 compiles critical fiber
angles for a range of axial stresses for constant stress ratios of k= 1.96, 4 and 10.

Figure 4.7 shows that for higher constant axial stress values the acitical
versus k curves shift toward the left side of the graph indicating a narrowing safe
design zone. For example, the maximum allowable & for glass fiber/epoxy for an
axial stress a = 30 MPa equals 20 whereas a significant higher k£ of 80 is possible
for a =10 MPa. Note that for the limiting case of zero axial stress (pure hoop
stress), i.e. k becomes infinity, no solution can be obtained. In such a case a

design curve based Eq.(3) instead of Eq.(4) may be used.

90 90 -
80 - 80 -
70 - 70 -
Glass/Epoxy
60 - ~60 Carbon/Epoxy
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> o~
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F40 - 240
¥= —-—= ! ¥
30 1 a=10 MPa 30 - ~—2=10 MPa
Y Y | St
A ) —=—a=30 MPa
10 ! 10 |
&
N S
0 10 20 30 40 50 60 70 80 O 10 20 30 40 50 60 70 80 90
k k
® ®)

Figure 4.7: Variation of acriticat With stress ratio & in (a) glass/epoxy and

(b) carbon/epoxy for constant axial stresses of a = 10, 20 and 30 MPa.
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o 60 -
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20 - k=4
0 . . . .
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a

Figure 4.8: Variation of acritica With axial stress a in glass/epoxy for constant

hoop-to-axial stress ratios k£ = 1.96, 4 and 10.

The span between limiting axial stress values for ogritica = 0° and 90°
degrees should increase for rising & (if £ > 0). This is clearly shown in Figure 4.8,
i.e. the span between axial stress values at agitical = 0° and 90° (i.e. the end point of
each curve) are 16 MPa, 24.8 MPa and 29.5 MPa for stress ratios k= 1.96, 4 and
10 respectively. If k is increased further, this range will also become larger.

Interesting results can also be obtained for a stress ratio k£ = 0, meaning the
absence of hoop stress. In this case aiticar Will approach 0° with increasing axial

stress a, which is clearly shown in Figure 4.9.
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Figure 4.9: Variation of acritical With axial stress a in glass/epoxy

for pure axial loading (£ = 0).

The analysis presented in Figure 4.9 is similar to work by Srikanth and
Rao [7]. As mentioned earlier they determined elastic and strength properties of
filament-wound and braided structures experimentally with specimen made with
fiber angles ranging from 2° to 88° under tensile loading. In conjunction with
their experimental work they presented strength predictions for 0°, 15°, 30°, 45°,
60°, 75° and 90° based on CLT and the Tsai-Wu failure criterion. Predictions
were in good agreement with experiments. Critical fiber angles were herein
determined for this loading case (k= 0) based on uniaxial strength data given in

[7], and results are presented and compared to the work by Srikanth and Rao [7]

in Figure 4.10.
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It is clearly seen from Figure 4.10 that curves describe a similar trend and
converge and coincide towards the extremes of the critical fiber angles (i.e. 0° and
90°). Nevertheless, the curves diverge considerable for angles greater than zero
and less than about 45° that is, the present analysis provides conservative data.
Such an outcome was to be expected considering the present analysis neglected
any reinforcement effects from adjacent plies (single lamina analysis) whereas
Srikanth and Rao [7] based their predictions on two-ply filament-wound
structures using CLT. Nevertheless, in the present context it is considered

favorable using conservative data to provide design guidance.

1400
k=0
1200
1000 —/\—Present analysis
—&—Srikanth and Rao [7]
=
g 800
= \
2 600 \
A
\
400 -
\
200
e = -2
0 - ! ‘
0 15 30 45 60 > %0

A ritical (d€GTEE)

Figure 4.10: Comparison of acritical from present analysis with results by

Srikanth and Rao [7] for pure axial loading (k = 0).
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Preceding analyses clearly demonstrate that a composite structure
featuring a single specific cross-ply fiber architecture may able sustain variable
loading conditions, provided that strength limits are not violated. Netting analysis
as applied in Chapter 3 is a convenient approach to determine fiber angles for
complex-shaped filament-wound or braided structures. The caveat associated with
this method is its inability of capturing variable loading conditions, which quite
possibly may occur during the operation of such structures. An approach based on
a comprehensive failure theory as described in this section enables an expedient
and convenient design process in which netting analysis can be applied for the
initial design of complex structures. Multiaxial failure analysis and the notion of
critical fiber angles can then be employed in a subsequent step or in an iterative
fashion to validate the suitability of the initial fiber architecture found by netting
analysis. For this to occur a designer requires knowledge of material strength
properties and the target and additionally possible loading conditions for the
analysis input. In this fashion an expedient and convenient design methodology

can be established.
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44  CONCLUSIONS

The design of filament-wound or braided composite structures includes
the determination of the fiber orientation based on applied loads and other design
constraints. This is particularly challenging for complex geometries. In this
chapter, Tsai-Wu failure theory was employed to assess critical fiber angles at
which applied loadings would cause a structure to fail. The developed
methodology is conservative in nature, and it supplements the design process
based on netting analysis described in Chapter 3. In combination, netting analysis
and the failure theory based approach constitute a design process for complex-
shaped structures that is expedient and convenient in nature since mathematical
processes are relatively simple; underlying theory is well established and material
properties can be obtained with relative ease experimentally or from the technical

literature.
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CHAPTER 5
DISCUSSIONS AND CONCLUSIONS

The overarching objective of the proposed research was to develop an
expedient and efficient design method for the design of braided and filament
wound axisymmetric composite structures with variable cross-section geometry
along their length. Specifically, the motivations and objectives were to propose a
methodology for the braiding and filament winding techniques that
simultaneously focuses on the analytical description and design of complex shape
mandrel surfaces; the analysis of fiber orientations for preliminary design
requirements; and a thorough investigation of failure analysis methods to assess
the structure performance and strength under combined loading conditions (i.e.
axial loading and internal pressurization), and provide critical fiber angles at
which failure is impending. Employing multi-axial failure analysis and the notion
of critical fiber angles it was intended to validate the suitability of the initial fiber

architecture found by netting analysis.

51 SUMMARY

The major findings of the present research can be summarized as follows:

e Axially symmetric complex shaped mandrels with varying dimensions and
cross-sections along their length were designed. Using Solid Works

computer aided design software, solid models of four complex shape

78
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mandrels were developed that meeting some complex shape requirements,
i.e. mandrels with circular cross-section and diameter following an abruptly
and smoothly changing slope along the midsection, ellipsoid mandrels and
rectangular mandrels. Characteristic mandrel surface equations were
developed to define these complex mandrel shapes.

e An expression was derived to provide the relationship between fiber
orientation and loading conditions applied to complex shape mandrels with
variable cross-section along the midsection by implementing netting
analysis theory. Netting analysis is rarely associated with braiding;
therefore this methodology was considered primarily for filament winding.
Upon further investigation and validation it is conceivable that the work
presented herein also provides an approach suitable for braiding; however,
such development was beyond the scope of this thesis. Also it should be
noted that only mandrels with circular cross-section and diameter following
an abruptly and smoothly changing slope along the midsection were
considered in this analysis. The variation of the fiber angle for different
hoop-to-axial stress ratios was only evaluated for these two mandrel
shapes. Developed expressions are functions of axial load to pressure ratio
(F/p) and mandrel surface radius, »(z). Therefore, implementing other
mandrel geometries should provide some similar results but may require
special attention to specific mandrel features (such as sharp changes

geometry).
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It was found that the F/p ratio and changes in mandrel geometry have a
significant effect on the fiber orientation along the length of the structure.
For clarity F/p ratios were also expressed in terms of hoop-to-axial stress,
onlas. When F/P =0, meaning pure internal pressure and no axial load is
applied, the fiber angle becomes 54.74°, which is the expected result from
netting analysis for a circular structure subjected to internal pressure only .
For an increasing axial force, F, the fiber angle decreases, and this decrease
is more pronounced in the converging-diverging midsection.

An attempt was made to enhance the design methodology for composite
structures subjected to combined loads by implementing a suitable
quadratic Tsai-Wu failure criterion to ascertain critical fiber orientations
and to assess the structure performance and strength. The developed
methodology involved the determination of a failure index f as well as a
critical fiber angle o to avoid failure for different materials. Glass
fiber/epoxy and carbon fiber/epoxy were used as case studies. Again, the
analysis focuses mainly on filament winding, as the braiding process may
require a methodology for determining the critical angle that possibly needs
to consider strong fiber interlacing. The methodology developed herein can
thus only been seen as an approximate approach for braiding unless further
validation has been conducted.

Aforementioned case studies showed that for a given axial load all fiber
angles are feasible below a limiting stress ratio 4. Critical fiber angles were

computed for a range of axial stresses. Failure will not occur for angles
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greater than these critical angles for any given stress ratio 4. Similarly,
critical angle curves can be derived for a given stress ratio. The abscissa
intersects of these curves (i.e. ocriticat = 0°) indicate that a design will not fail
for any given fiber angle below these axial stress values.

e Critical fiber angle curves can be interpreted such that any design point to
the left of a curve (f< 1) constitutes a safe design, while the right side
(> 1) indicates failure. The safe design zone was found to be greater for
carbon fiber/epoxy as would be expected from this stronger and stiffer
material.

e Since the presented analyses are based on hoop-to-axial stress ratios for
biaxial loadings the hoop stress necessarily increases proportionally with
the increase of axial stress. Thus the critical fiber angle is affected by the
axial and hoop stresses simultaneously, causing acritical to tend to 90° for an
increasing @ and £ > 1.

e For rising axial stress values the oritica VErsus & curves shift toward the left
side of the critical fiber angle graph indicating a narrowing safe design
zone.

e For the limiting case of zero axial stress (pure hoop stress), i.e. k£ becomes
infinity and no solution is obtained in this case. Also, interesting results can
be found for a stress ratio £ = 0, meaning the absence of hoop stress. In this
case acriticat Will approach 0° with increasing axial stress.

e The present analysis provides conservative data as it neglects any

reinforcement effects from adjacent plies (single lamina analysis). However
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5.2

it is considered favorable using conservative data to provide design

guidance.

CONTRIBUTIONS

The proposed research contributes to the field of study in several ways:

The development of characteristic mandrel surface equations for four
different complex-shaped mandrels for braiding and filament winding
using an analytical technique is a significant step towards generating fiber

orientations along the length of the mandrel.

An expedient theoretical study was conducted for determining the fiber
angle variation along the length of a mandrel with variable cross-section
considering different ratios between axial load and internal pressure. This
work represents the foundation for a design framework providing the
manufacturing parameters for complex-shaped filament-wound structures
subjected to a range of applied loadings using netting analysis.

A single fiber angle can be determined through netting analysis for a
specific loading condition, such as a certain ratio between hoop and axial
stresses. Such angle would not necessarily comply with variable loading
conditions caused by internal pressure and/or axial loading being changed
independently from each other. To fulfill design requirements for

filament-wound structures a Tsai-Wu failure criterion was incorporated to
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5.3

assess feasible fiber angles under variable loadings. Thus an expedient and
convenient design methodology can be established, which demonstrates
that a composite structure featuring a simple cross-ply fiber architecture
may be able to sustain variable loading conditions, provided that strength

limits are not violated.

FURTHER RECOMMENDATIONS

The findings of this research make a valuable contribution to the design of

braided and filament wound complex composite structures. Further investigations

in this context are however recommended to overcome limitations of present

analyses.

Analyses for the design of complex-shaped structures were carried out
mainly for two particular mandrel geometries, i.e. mandrels with circular
cross-section and diameter following an abruptly and smoothly changing
slope along the midsection. Similar work should be performed for other
complex mandrel shapes with variable cross-sections, such as ellipsoid
and rectangular mandrels.

In this thesis it was chosen to compute results related to biaxial loading for
combinations of applied axial stresses and hoop-to-axial stress ratios.
Corresponding analyses could also be performed for applied hoop stresses
in conjunction with hoop-to-axial stress ratios, which may be useful for
certain design problems (e.g. when internal pressurization is a dominating

design parameter).
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e The developed methodology may be applied to any other composite
material system for a variety of loading conditions apart from glass
fiber/epoxy and carbon fiber/epoxy. The approach can also be employed
with other failure criteria, e.g. maximum stress and maximum strain
failure theory.

e It should be noted that instead of netting analysis Tsai-Wu failure theory
and similar methods may be implemented to find the variation of fiber
angle along the length of a mandrel.

e Much of the work presented herein focused on filament winding because
of its simpler fiber architecture. The work should be expanded to braiding
which generally features considerable fiber interlacing

e Two-dimensional braiding and filament winding are processes seldom
used for manufacturing complex-shaped fiber-reinforced polymer
composites because of the difficulty of mapping strand paths to obtain
desired full or partial coverage during production. To make these
processes more competitive, an expedient method for deriving the fiber
path trajectory in order to analytically map the surface of different
complex-shaped mandrel geometries subjected to certain loading
conditions would be very beneficial.

e Finally, it is recommended to develop an analytical model that relates
machine process parameters with the braiding and filament winding
design parameters for desired complex shape geometry as developed in

this work.



APPENDIX

A.1 Mathematical formulation of determining fiber angle using Netting
Analysis

A circular cross-sectional structure with variable radius along its length,

r(z) under internal pressure and axial loading is considered here for the analysis.

6 “oo?

(a) (b)

Figure A.1: (a) Hoop stress and (b) Axial stress developed in the mandrel cross-

section due to internal pressure and axial loading.

Equations of equilibrium for the internal forces caused by internal pressure and
axial traction are developed. Therefore force balance considering the mandrel

cross-section should be established.
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Force in hoop direction due to pressure p,
F, = px Area
=pX Lxd
=p><L><2><r(z) (1)
Force induced due to hoop stress,
E1 = Ghoap X Area
= O jpp X 2% Lt ()
Force in axial direction due to pressure p and axial load F,
F, =p*xArea+ F
=pxm’+F )
Force induced due to axial stress,
F,=0,.,*Area
=0, X2XTXT Xt 4)

axial

The cross sectional area per unit length of a strand along the layup direction shall

be denoted as A, (i.e. 4, has a dimension of length). The strand area along the

hoop and axial directions per unit length are therefore A, =A,sina and

A, = A, cosa, respectively. The force components per unit length in the hoop

direction can respectively be resolved as:

- in2
F,=0,4,sn" a

_ 2
F,=0,4,cos" a

()

(6)
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Force in hoop and axial directions for the fiber oriented at = a direction (valid

according to the model assumptions using netting analysis described in section

3.3),

F,=2x0,4,sin’ a (7)
F =2x0,4,co8’ a (8)
Using Egs. (1), (2), and (7)
prx2xr(z) = Ohoop X2XLxt =2x0,4, sin’ a
i.e. from Egs. (1) and (7),
prxer(z) =2x0,4,sin’ a
Or, pxr(z)=c, A, sin’ a [for unit length L=1] )

From (2) and (7),

— s 2
Ohoop X2XLxt =2x0,4,sin" a

Or, Oroop ¥A =0, A,sin” & [where 4= L*t, when L=1, A=1] ~ (10)

From (9) and (10),

pxr(z)=0c,4,sin’ a = O ooy A (11)
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Similarly, using Egs. (3), (4), and (8),

priz)  F =0, A4, cos’ a (12)
2 2rr(z)
O-axial * A
Dividing Eq. (11) by (12),
o
o _pn () 2
O-axiul pl"(Z) + F 1 F
I+ ————
2 27 r(z) z(r(z)* \ p

2

orls
I+ ——— —
z(r(z))" \p

a(z) = arctan
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