
Experimental Evaluation of Object Detection
Algorithms for UAV Tracking

by

Bingsheng Wei

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

University of Alberta

©Bingsheng Wei, 2019

Abstract

Object detection is an image processing technology to detection different classes

of objects using computer vision, i.e. putting bounding boxes over objects from

a camera video feed. A landmark detection method was the Viola-Jones Al-

gorithm introduced in 2001. The object classifier in this algorithm is called

the Cascade Classifier, and was used to detect human faces in real-time. How-

ever, the Cascade Classifier is poor at detecting objects which have different

features or poses than on those it was trained, or when the object is presented

with a complex background. In order to achieve a more robust and accurate

detection result than Cascade Classifier, deep learning techniques are used as

an object detection solution for real-time aerial robotics detection. Two state-

of-the-art deep learning frameworks, Darknet and TensorFlow, were imple-

mented in Robot Operating System (ROS) and tested in experiment. Compu-

tational costs and reliability among various classifiers in the two deep learning

frameworks were tested and compared. The experiments were conducted on a

commercially available Parrot AR.Drone 2.0 Unmanned Aerial Vehicle (UAV)

flying over various backgrounds. Experimental results show that a real-time,

accurate and consistent UAV detection can be achieved by using deep learning

techniques, and the results can be extended to the more challenging case of

UAV tracking.

ii

Preface

This thesis is an original work by Bingsheng Wei. No part of this thesis has

been previously published.

iii

Acknowledgements

It has been a pleasant experience to stay at Dr. Martin Barczyk’s mechatronics

lab for two years.

I wish to thank Dr. Barczyk for his supervision and support. It was a great

help to this thesis.

Adam Casey helped to optimize the communication between Parrot ARDrone

2.0 and lab computers.

Pranoy Panda helped to train Darknet APIs and optimized Re3 for tracking

Parrot ARDrone 2.0.

iv

Table of Contents

1 Introduction 1

1.1 Background and Motivation 1

1.2 Thesis Research Gap, Challenge and Objective 2

1.3 Outline of Thesis . 4

1.3.1 Statement of Contributions 4

2 Theoretical Background 6

2.1 Overview . 6

2.2 Machine Learning and Deep Learning 7

2.3 Deep Learning Frameworks . 9

2.3.1 Overview . 9

2.3.2 TensorFlow . 10

2.3.3 Darknet . 12

2.4 Artificial Neural Network . 12

2.4.1 Convolutional Neural Networks (CNN) 13

2.4.2 Mean Average Precision (mAP) 15

2.4.2.1 Intersection over Union (IoU) 15

2.4.2.2 Recall and Precision 16

2.4.2.3 Average Precision (AP) 16

2.4.3 Faster Region-based Convolutional Neural Network (Faster

RCNN) . 17

2.4.4 You Only Look Once (YOLO) 19

2.4.4.1 Single Shot MultiBox Detector (SSD) 20

2.4.4.2 You Only Look Once v2 (YOLO v2) 20

2.4.5 MobileNet . 21

v

2.4.6 Inception . 22

2.5 Distance Estimation from a Monocular Camera 23

2.6 Camera Calibration . 28

2.7 Uncertainty Measurement . 29

3 Experimental Tools 31

3.1 Overview . 31

3.2 Hardware Tools . 31

3.2.1 Vicon Motion Capture System 31

3.2.1.1 Layout of Vicon System Setup 31

3.2.1.2 Vicon System Vero Cameras and Markers . . 33

3.2.1.3 Vicon Vero Camera Calibration 35

3.2.2 Graphics Processing Unit (GPU) 42

3.2.3 Parrot ARDrone 2.0 42

3.2.3.1 Parrot ARDrone 2.0 Onboard Camera Calibra-

tion . 44

3.3 Software . 48

3.3.1 Robot Operating System (ROS) 48

3.3.2 CUDA . 49

3.3.3 Tracker . 49

3.3.4 AR.FreeFlight 2.0 . 50

3.3.5 Vicon Bridge . 50

3.3.6 OpenCV . 51

3.3.7 Matlab . 51

3.4 Experiment Summary . 51

4 Experimental Results 53

4.1 Overview . 53

4.2 Object Detection API Training 54

4.2.1 Overview . 54

4.2.2 TensorFlow APIs Training 55

4.2.3 Darknet APIs Training 57

vi

4.3 Object Detection Experimental Results 59

4.3.1 Running Speed . 60

4.3.2 Accuracy . 60

4.3.2.1 Offset in Vicon Camera System 62

4.3.2.2 Root Mean Square Error (RMS Error) 65

4.3.2.3 Camera Calibration Results 66

4.3.2.4 Accuracy of Object Detection Systems 68

4.3.3 Consistency Results Discussion 79

4.4 Further Discussion . 80

4.5 Assumption Assessment . 81

4.6 Uncertainty Analysis . 83

4.6.0.1 Uncertainty in Vicon Camera System 83

4.6.0.2 Uncertainty in Camera Calibration 86

4.6.0.3 Uncertainty in Distance Estimation from Bound-

ing Box . 89

5 Conclusions and Future Work 91

5.1 Summary . 91

5.2 Limitations of the Work . 91

5.3 Future Work . 92

Appendices 103

A Code Developed 104

A.1 ROS Wrapper for TensorFlow 104

A.2 Bounding Box Information Retrieval for TensorFlow 105

A.3 3D Location Estimation from Bounding Box 107

A.4 Training Data Extraction of Darknet 119

A.5 Monte Carlo Method for Uncertainty Analysis 120

B Supplementary Data 123

B.1 Loss Curves of Training for Object Detection Systems 123

B.2 Detection Results . 125

vii

B.2.1 Differences between Distance Estimations and Vicon Data126

B.2.2 Root Mean Square Error 221

B.2.2.1 SSD MobileNet v1 Root Mean Square Error . 221

B.2.2.2 SSD Inception v2 Root Mean Square Error . 223

B.2.2.3 Faster RCNN Inception v2 Root Mean Square

Error . 225

B.2.2.4 YOLO v2 Root Mean Square Error 227

B.2.2.5 Tiny YOLO Root Mean Square Error 231

B.2.3 Mean Average Precision 235

B.2.3.1 SSD MobileNet v1 mAP 235

B.2.3.2 SSD Inception v2 mAP 236

B.2.3.3 Faster RCNN Inception v2 mAP 237

B.2.3.4 YOLO v2 mAP 239

B.2.3.5 Tiny YOLO mAP 241

B.3 Camera Calibration Files . 243

viii

List of Tables

2.1 Summary of Evolution from RCNN to Faster RCNN 19

3.1 Camera Calibration Feedback 41

3.2 AR.Drone 2.0 LED Light Indications 43

4.1 Lab Computer Specifications 54

4.2 TensorFlow Object Detection API Training Settings 56

4.3 Darknet Object Detection API Training Settings 58

4.4 Batch Size and Subdivision Settings of Darknet API Training 58

4.5 Object Detection Systems Speed Comparison 60

4.6 Difference of TensorFlow Detection Results on Rectified and

Unrectified Videos . 66

4.7 Difference of YOLO v2 Detection Results with Different Setup 67

4.8 Average RMS Errors of Side and Height Translation Flights

with White Background, Training Unrectified/ Video Unrecti-

fied Setup . 69

4.9 Average RMS Errors of Side and Height Translation Flights

with White Background, Training Rectified/ Video Rectified

Setup . 69

4.10 Average RMS Errors of Side and Height Translation Flights

with Complex Background, Training Unrectified/ Video Unrec-

tified Setup . 70

4.11 Average RMS Errors of Side and Height Translation Flights

with Complex Background, Training Rectified/ Video Rectified

Setup . 70

ix

4.12 Average RMS Errors of Depth Translation Flights with White

Background, Training Unrectified/ Video Unrectified Setup . . 71

4.13 Average RMS Errors of Depth Translation Flights with White

Background, Training Rectified/ Video Rectified Setup 71

4.14 Average RMS Errors of Depth Translation Flights with Com-

plex Background, Training Unrectified/ Video Unrectified Setup 72

4.15 Average RMS Errors of Depth Translation Flights with Com-

plex Background, Training Rectified/ Video Rectified Setup . 72

4.16 Average RMS Errors of Pure Rotation Flights with White Back-

ground, Training Unrectified/ Video Unrectified Setup 73

4.17 Average RMS Errors of Pure Rotation Flights with White Back-

ground, Training Rectified/ Video Rectified Setup 73

4.18 Average RMS Errors of Pure Rotation Flights with Complex

Background, Training Unrectified/ Video Unrectified Setup . . 73

4.19 Average RMS Errors of Pure Rotation Flights with Complex

Background, Training Rectified/ Video Rectified Setup 74

4.20 Average RMS Errors of Complex Flights with White Back-

ground, Training Unrectified/ Video Unrectified Setup 74

4.21 Average RMS Errors of Complex Flights with White Back-

ground, Training Rectified/ Video Rectified Setup 74

4.22 Average RMS Errors of Complex Flights with Complex Back-

ground, Training Unrectified/ Video Unrectified Setup 75

4.23 Average RMS Errors of Complex Flights with Complex Back-

ground, Training Rectified/ Video Rectified Setup 75

4.24 Average RMS Errors of Object Detection Systems with Training

Unrectified/ Video Unrectified Setup 76

4.25 Average RMS Errors of Object Detection Systems with Training

Rectified/ Video Rectified Setup 76

4.26 Overall mAP of Tested Object Detection Systems 79

4.27 Decision Matrix of Selecting an Object Detection API 81

4.28 Normality Test Vicon System Measurements 85

4.29 Uncertainty in Vicon System Measurements 86

x

4.30 Normality Test for Parameters in Camera Matrices 88

4.31 Normality Test for Parameters in Projection Matrices 88

4.32 Uncertainty in Parameters in Camera Matrices 88

4.33 Uncertainty in Parameters in Projection Matrices 89

4.34 Normality Test for Distance Estimation from Bounding Box . 90

4.35 Uncertainty in Distance Estimation from Bounding Box 90

B.1 Test Configuration and Abbreviation 126

B.2 Accuracy of SSD MobileNet v1, Pure Translation in Side and

Height . 221

B.3 Accuracy of SSD MobileNet v1, Pure Translation in Depth . . 222

B.4 Accuracy of SSD MobileNet v1, Pure Rotation 222

B.5 Accuracy of SSD MobileNet v1, Complex Flight 223

B.6 Accuracy of SSD Inception v2, Pure Translation in Side and

Height . 223

B.7 Accuracy of SSD Inception v2, Pure Translation in Depth . . 224

B.8 Accuracy of SSD Inception v2, Pure Rotation 224

B.9 Accuracy of SSD Inception v2, Complex Flight 224

B.10 Accuracy of Faster RCNN Inception v2, Pure Translation in

Side and Height . 225

B.11 Accuracy of Faster RCNN Inception v2, Pure Translation in

Depth . 225

B.12 Accuracy of Faster RCNN Inception v2, Pure Rotation 226

B.13 Accuracy of Faster RCNN Inception v2, Complex Flight . . . 226

B.14 Accuracy of YOLO v2, Pure Translation in Side and Height . 227

B.15 Accuracy of YOLO v2, Pure Translation in Depth 228

B.16 Accuracy of YOLO v2, Pure Rotation 229

B.17 Accuracy of YOLO v2, Complex Flight 230

B.18 Accuracy of Tiny YOLO, Pure Translation in Side and Height 231

B.19 Accuracy of Tiny YOLO, Pure Translation in Depth 232

B.20 Accuracy of Tiny YOLO, Pure Rotation 233

B.21 Accuracy of Tiny YOLO, Complex Flight 234

xi

B.22 Consistency of SSD MobileNet v1, Pure Translation in Side and

Height . 235

B.23 Consistency of SSD MobileNet v1, Pure Translation in Depth 235

B.24 Consistency of SSD MobileNet v1, Pure Rotation 235

B.25 Consistency of SSD MobileNet v1, Complex Flight 236

B.26 Consistency of SSD Inception v2, Pure Translation in Side and

Height . 236

B.27 Consistency of SSD Inception v2, Pure Translation in Depth . 236

B.28 Consistency of SSD Inception v2, Pure Rotation 237

B.29 Consistency of SSD Inception v2, Complex Flight 237

B.30 Consistency of Faster RCNN Inception v2 , Pure Translation in

Side and Height . 237

B.31 Consistency of Faster RCNN Inception v2 , Pure Translation in

Depth . 238

B.32 Consistency of Faster RCNN Inception v2 , Pure Rotation . . 238

B.33 Consistency of Faster RCNN Inception v2 , Complex Flight . 238

B.34 Consistency of YOLO v2, Pure Translation in Side and Height 239

B.35 Consistency of YOLO v2, Pure Translation in Depth 239

B.36 Consistency of YOLO v2, Pure Rotation 240

B.37 Consistency of YOLO v2, Complex Flight 240

B.38 Consistency of Tiny YOLO, Pure Translation in Side and Height241

B.39 Consistency of Tiny YOLO, Pure Translation in Depth 241

B.40 Consistency of Tiny YOLO, Pure Rotation 242

B.41 Consistency of Tiny YOLO, Complex Flight 242

xii

List of Figures

2.1 TensorFlow Graph . 11

2.2 A typical MLP Structure . 13

2.3 Lenet-5 Architecture . 14

2.4 Ground Truth and Bounding Box 15

2.5 Classification of Items in a Detection 16

2.6 RCNN Structure . 18

2.7 YOLO Detection Model . 20

2.8 Depthwise Separable Convolutions 22

2.9 Structure of Inception v1 Dimension Reduced Model 22

2.10 3D Axis Illustration in Camera Video Frame 24

2.11 Image Formation of a Pinhole Camera in 2D Plane 24

2.12 Bounding Box Given by Object Detection Systems 27

3.1 Picture of Vicon Cameras Fixed to Wall 32

3.2 Vicon Camera Layout in the Lab 33

3.3 Vicon System Active Calibration Wand 33

3.4 Vicon System Vero Camera 34

3.5 Black UAV with Marker Attached and its Representation in

Vicon Tracker . 35

3.6 White UAV with Marker Attached and its Representation in

Vicon Tracker . 35

3.7 Landmark for Vicon Vero System 36

3.8 Wand Markers after Adjusting Vero Cameras 37

3.9 Poorly Detected Wand . 37

3.10 Stray Reflections in View of Cameras 38

xiii

3.11 3D View Before Defining Origin 38

3.12 Wand is 3D View from Well-adjusted Camera 39

3.13 Vicon Vero Camera Calibration Process 40

3.14 Camera View after Calibration 41

3.15 Parrot ARDrone 2.0 and Indoor Hull 44

3.16 Unrectified Camera View . 44

3.17 Marker Visual Feedback on Chessboard 45

3.18 Rectified Camera View . 46

3.19 Comparison of an Image before and after Calibration 46

3.20 CUDA Work Flow Chart . 49

3.21 Position of a Rigid-body (UAV) in Tracker 50

3.22 Experimental Setup Summary 52

4.1 SSD MobileNet v1 Total Loss 55

4.2 SSD MobileNet v1 Total Loss after Filtering 56

4.3 YOLO v2 Total Loss . 57

4.4 Zoomed and Smoothed YOLO v2 Total Loss 58

4.5 White Curtain Setup . 61

4.6 Complex Background Setup 61

4.7 Offset in the Vicon Camera System 63

4.8 Zero Distance in Distance Estimation 63

4.9 Distance Estimation in Depth before Offset Calibration 64

4.10 Distance Estimation in Depth after Offset Calibration 65

4.11 Examples of Accurate Bounding Box 77

4.12 Examples of Loose Bounding Box 78

4.13 Examples of Wrong Bounding Box 78

4.14 SSD MobileNet v1 Pure Translation in Side and Height Di-

rection Test 1 With Complex Background with Video Unrec-

tified/ Training Unrectified Difference Probability Distribution

Histogram . 79

4.15 Error Change with Acceleration in Side 82

4.16 Error Change with Acceleration in Depth 82

xiv

4.17 Measurement Probability Distribution in Side Direction 84

4.18 Measurement Probability Distribution in Height Direction . . 84

4.19 Measurement Probability Distribution in Depth Direction . . . 85

4.20 Camera Matrix Parameters Probability Distribution 87

4.21 Projection Matrix Parameters Probability Distribution 87

B.1 SSD Inception v2 Total Loss 123

B.2 SSD Inception v2 Total Loss after Filtering 124

B.3 Faster RCNN Inception v2 Total Loss 124

B.4 Faster RCNN Inception v2 Total Loss after Filtering 124

B.5 Tiny YOLO Total Loss . 125

B.6 Zoomed and Smoothed Tiny YOLO Total Loss 125

B.7 SSD MobileNet v1 Pure Translation in Side and Height Direc-

tion Test 1 With White Curtain with Video Unrectified/ Train-

ing Unrectified Difference Probability Distribution Histogram . 126

B.8 SSD MobileNet v1 Pure Translation in Side and Height Direc-

tion Test 1 With White Curtain with Video Rectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 127

B.9 SSD MobileNet v1 Pure Translation in Side and Height Di-

rection Test 1 With Complex Background with Video Recti-

fied/ Training Unrectified Difference Probability Distribution

Histogram . 127

B.10 SSD MobileNet v1 Pure Translation in Side and Height Direc-

tion Test 2 With White Curtain with Video Unrectified/ Train-

ing Unrectified Difference Probability Distribution Histogram . 128

B.11 SSD MobileNet v1 Pure Translation in Side and Height Direc-

tion Test 2 With White Curtain with Video Rectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 128

B.12 SSD MobileNet v1 Pure Translation in Side and Height Di-

rection Test 2 With Complex Background with Video Unrec-

tified/ Training Unrectified Difference Probability Distribution

Histogram . 129

xv

B.13 SSD MobileNet v1 Pure Translation in Side and Height Di-

rection Test 2 With Complex Background with Video Recti-

fied/ Training Unrectified Difference Probability Distribution

Histogram . 129

B.14 SSD MobileNet v1 Pure Translation in Depth Direction Test 1

With White Curtain with Video Unrectified/ Training Unrecti-

fied Difference Probability Distribution Histogram 130

B.15 SSD MobileNet v1 Pure Translation in Depth Direction Test 1

With White Curtain with Video Rectified/ Training Unrectified

Difference Probability Distribution Histogram 130

B.16 SSD MobileNet v1 Pure Translation in Depth Direction Test

1 With Complex Background with Video Unrectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 131

B.17 SSD MobileNet v1 Pure Translation in Depth Direction Test

1 With Complex Background with Video Rectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 131

B.18 SSD MobileNet v1 Pure Translation in Depth Direction Test 2

With White Curtain with Video Unrectified/ Training Unrecti-

fied Difference Probability Distribution Histogram 132

B.19 SSD MobileNet v1 Pure Translation in Depth Direction Test 2

With White Curtain with Video Rectified/ Training Unrectified

Difference Probability Distribution Histogram 132

B.20 SSD MobileNet v1 Pure Translation in Depth Direction Test

2 With Complex Background with Video Unrectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 133

B.21 SSD MobileNet v1 Pure Translation in Depth Direction Test

2 With Complex Background with Video Rectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 133

B.22 SSD MobileNet v1 Pure Rotation Test 1 With White Curtain

with Video Unrectified/ Training Unrectified Difference Proba-

bility Distribution Histogram 134

xvi

B.23 SSD MobileNet v1 Pure Rotation Test 1 With White Curtain

with Video Rectified/ Training Unrectified Difference Probabil-

ity Distribution Histogram . 134

B.24 SSD MobileNet v1 Pure Rotation Test 1 With Complex Back-

ground with Video Unrectified/ Training Unrectified Difference

Probability Distribution Histogram 135

B.25 SSD MobileNet v1 Pure Rotation Test 1 With Complex Back-

ground with Video Rectified/ Training Unrectified Difference

Probability Distribution Histogram 135

B.26 SSD MobileNet v1 Pure Rotation Test 2 With White Curtain

with Video Unrectified/ Training Unrectified Difference Proba-

bility Distribution Histogram 136

B.27 SSD MobileNet v1 Pure Rotation Test 2 With White Curtain

with Video Rectified/ Training Unrectified Difference Probabil-

ity Distribution Histogram . 136

B.28 SSD MobileNet v1 Pure Rotation Test 2 With Complex Back-

ground with Video Unrectified/ Training Unrectified Difference

Probability Distribution Histogram 137

B.29 SSD MobileNet v1 Pure Rotation Test 2 With Complex Back-

ground with Video Rectified/ Training Unrectified Difference

Probability Distribution Histogram 137

B.30 SSD MobileNet v1 Random Flight Pattern Test 1 With White

Curtain with Video Unrectified/ Training Unrectified Difference

Probability Distribution Histogram 138

B.31 SSD MobileNet v1 Random Flight Pattern Test 1 With White

Curtain with Video Rectified/ Training Unrectified Difference

Probability Distribution Histogram 138

B.32 SSD MobileNet v1 Random Flight Pattern Test 1 With Com-

plex Background with Video Unrectified/ Training Unrectified

Difference Probability Distribution Histogram 139

xvii

B.33 SSD MobileNet v1 Random Flight Pattern Test 1 With Com-

plex Background with Video Rectified/ Training Unrectified

Difference Probability Distribution Histogram 139

B.34 SSD MobileNet v1 Random Flight Pattern Test 2 With White

Curtain with Video Unrectified/ Training Unrectified Difference

Probability Distribution Histogram 140

B.35 SSD MobileNet v1 Random Flight Pattern Test 2 With White

Curtain with Video Rectified/ Training Unrectified Difference

Probability Distribution Histogram 140

B.36 SSD MobileNet v1 Random Flight Pattern Test 2 With Com-

plex Background with Video Unrectified/ Training Unrectified

Difference Probability Distribution Histogram 141

B.37 SSD Inception v2 Pure Translation in Side and Height Direction

Test 1 With White Curtain with Video Unrectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 141

B.38 SSD Inception v2 Pure Translation in Side and Height Direc-

tion Test 1 With White Curtain with Video Rectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 142

B.39 SSD Inception v2 Pure Translation in Side and Height Direc-

tion Test 1 With Complex Background with Video Unrecti-

fied/ Training Unrectified Difference Probability Distribution

Histogram . 142

B.40 SSD Inception v2 Pure Translation in Side and Height Direction

Test 1 With Complex Background with Video Rectified/ Train-

ing Unrectified Difference Probability Distribution Histogram . 143

B.41 SSD Inception v2 Pure Translation in Side and Height Direction

Test 2 With White Curtain with Video Unrectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 143

B.42 SSD Inception v2 Pure Translation in Side and Height Direc-

tion Test 2 With White Curtain with Video Rectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 144

xviii

B.43 SSD Inception v2 Pure Translation in Side and Height Direc-

tion Test 2 With Complex Background with Video Unrecti-

fied/ Training Unrectified Difference Probability Distribution

Histogram . 144

B.44 SSD Inception v2 Pure Translation in Side and Height Direction

Test 2 With Complex Background with Video Rectified/ Train-

ing Unrectified Difference Probability Distribution Histogram . 145

B.45 SSD Inception v2 Pure Translation in Depth Direction Test 1

With White Curtain with Video Unrectified/ Training Unrecti-

fied Difference Probability Distribution Histogram 145

B.46 SSD Inception v2 Pure Translation in Depth Direction Test 1

With White Curtain with Video Rectified/ Training Unrectified

Difference Probability Distribution Histogram 146

B.47 SSD Inception v2 Pure Translation in Depth Direction Test 1

With Complex Background with Video Unrectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 146

B.48 SSD Inception v2 Pure Translation in Depth Direction Test

1 With Complex Background with Video Rectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 147

B.49 SSD Inception v2 Pure Translation in Depth Direction Test 2

With White Curtain with Video Unrectified/ Training Unrecti-

fied Difference Probability Distribution Histogram 147

B.50 SSD Inception v2 Pure Translation in Depth Direction Test 2

With White Curtain with Video Rectified/ Training Unrectified

Difference Probability Distribution Histogram 148

B.51 SSD Inception v2 Pure Translation in Depth Direction Test 2

With Complex Background with Video Unrectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 148

B.52 SSD Inception v2 Pure Translation in Depth Direction Test

2 With Complex Background with Video Rectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 149

xix

B.53 SSD Inception v2 Pure Rotation Test 1 With White Curtain

with Video Unrectified/ Training Unrectified Difference Proba-

bility Distribution Histogram 149

B.54 SSD Inception v2 Pure Rotation Test 1 With White Curtain

with Video Rectified/ Training Unrectified Difference Probabil-

ity Distribution Histogram . 150

B.55 SSD Inception v2 Pure Rotation Test 1 With Complex Back-

ground with Video Unrectified/ Training Unrectified Difference

Probability Distribution Histogram 150

B.56 SSD Inception v2 Pure Rotation Test 1 With Complex Back-

ground with Video Rectified/ Training Unrectified Difference

Probability Distribution Histogram 151

B.57 SSD Inception v2 Pure Rotation Test 2 With White Curtain

with Video Unrectified/ Training Unrectified Difference Proba-

bility Distribution Histogram 151

B.58 SSD Inception v2 Pure Rotation Test 2 With White Curtain

with Video Rectified/ Training Unrectified Difference Probabil-

ity Distribution Histogram . 152

B.59 SSD Inception v2 Pure Rotation Test 2 With Complex Back-

ground with Video Unrectified/ Training Unrectified Difference

Probability Distribution Histogram 152

B.60 SSD Inception v2 Pure Rotation Test 2 With Complex Back-

ground with Video Rectified/ Training Unrectified Difference

Probability Distribution Histogram 153

B.61 SSD Inception v2 Random Flight Pattern Test 1 With White

Curtain with Video Unrectified/ Training Unrectified Difference

Probability Distribution Histogram 153

B.62 SSD Inception v2 Random Flight Pattern Test 1 With White

Curtain with Video Rectified/ Training Unrectified Difference

Probability Distribution Histogram 154

xx

B.63 SSD Inception v2 Random Flight Pattern Test 1 With Com-

plex Background with Video Unrectified/ Training Unrectified

Difference Probability Distribution Histogram 154

B.64 SSD Inception v2 Random Flight Pattern Test 1 With Complex

Background with Video Rectified/ Training Unrectified Differ-

ence Probability Distribution Histogram 155

B.65 SSD Inception v2 Random Flight Pattern Test 2 With White

Curtain with Video Unrectified/ Training Unrectified Difference

Probability Distribution Histogram 155

B.66 SSD Inception v2 Random Flight Pattern Test 2 With White

Curtain with Video Rectified/ Training Unrectified Difference

Probability Distribution Histogram 156

B.67 SSD Inception v2 Random Flight Pattern Test 2 With Com-

plex Background with Video Unrectified/ Training Unrectified

Difference Probability Distribution Histogram 156

B.68 SSD Inception v2 Random Flight Pattern Test 2 With Complex

Background with Video Rectified/ Training Unrectified Differ-

ence Probability Distribution Histogram 157

B.69 Faster RCNN Inception v2 Pure Translation in Side and Height

Direction Test 1 With White Curtain with Video Unrectified/

Training Unrectified Difference Probability Distribution His-

togram . 157

B.70 Faster RCNN Inception v2 Pure Translation in Side and Height

Direction Test 1 With White Curtain with Video Rectified/

Training Unrectified Difference Probability Distribution His-

togram . 158

B.71 Faster RCNN Inception v2 Pure Translation in Side and Height

Direction Test 1 With Complex Background with Video Unrec-

tified/ Training Unrectified Difference Probability Distribution

Histogram . 158

xxi

B.72 Faster RCNN Inception v2 Pure Translation in Side and Height

Direction Test 1 With Complex Background with Video Rec-

tified/ Training Unrectified Difference Probability Distribution

Histogram . 159

B.73 Faster RCNN Inception v2 Pure Translation in Side and Height

Direction Test 2 With White Curtain with Video Unrectified/

Training Unrectified Difference Probability Distribution His-

togram . 159

B.74 Faster RCNN Inception v2 Pure Translation in Side and Height

Direction Test 2 With White Curtain with Video Rectified/

Training Unrectified Difference Probability Distribution His-

togram . 160

B.75 Faster RCNN Inception v2 Pure Translation in Side and Height

Direction Test 2 With Complex Background with Video Unrec-

tified/ Training Unrectified Difference Probability Distribution

Histogram . 160

B.76 Faster RCNN Inception v2 Pure Translation in Side and Height

Direction Test 2 With Complex Background with Video Rec-

tified/ Training Unrectified Difference Probability Distribution

Histogram . 161

B.77 Faster RCNN Inception v2 Pure Translation in Depth Direction

Test 1 With White Curtain with Video Unrectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 161

B.78 Faster RCNN Inception v2 Pure Translation in Depth Direc-

tion Test 1 With White Curtain with Video Rectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 162

B.79 Faster RCNN Inception v2 Pure Translation in Depth Direc-

tion Test 1 With Complex Background with Video Unrecti-

fied/ Training Unrectified Difference Probability Distribution

Histogram . 162

xxii

B.80 Faster RCNN Inception v2 Pure Translation in Depth Direction

Test 1 With Complex Background with Video Rectified/ Train-

ing Unrectified Difference Probability Distribution Histogram . 163

B.81 Faster RCNN Inception v2 Pure Translation in Depth Direction

Test 2 With White Curtain with Video Unrectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 163

B.82 Faster RCNN Inception v2 Pure Translation in Depth Direc-

tion Test 2 With White Curtain with Video Rectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 164

B.83 Faster RCNN Inception v2 Pure Translation in Depth Direc-

tion Test 2 With Complex Background with Video Unrecti-

fied/ Training Unrectified Difference Probability Distribution

Histogram . 164

B.84 Faster RCNN Inception v2 Pure Translation in Depth Direction

Test 2 With Complex Background with Video Rectified/ Train-

ing Unrectified Difference Probability Distribution Histogram . 165

B.85 Faster RCNN Inception v2 Pure Rotation Test 1 With White

Curtain with Video Unrectified/ Training Unrectified Difference

Probability Distribution Histogram 165

B.86 Faster RCNN Inception v2 Pure Rotation Test 1 With White

Curtain with Video Rectified/ Training Unrectified Difference

Probability Distribution Histogram 166

B.87 Faster RCNN Inception v2 Pure Rotation Test 1 With Com-

plex Background with Video Unrectified/ Training Unrectified

Difference Probability Distribution Histogram 166

B.88 Faster RCNN Inception v2 Pure Rotation Test 1 With Complex

Background with Video Rectified/ Training Unrectified Differ-

ence Probability Distribution Histogram 167

B.89 Faster RCNN Inception v2 Pure Rotation Test 2 With White

Curtain with Video Unrectified/ Training Unrectified Difference

Probability Distribution Histogram 167

xxiii

B.90 Faster RCNN Inception v2 Pure Rotation Test 2 With White

Curtain with Video Rectified/ Training Unrectified Difference

Probability Distribution Histogram 168

B.91 Faster RCNN Inception v2 Pure Rotation Test 2 With Com-

plex Background with Video Unrectified/ Training Unrectified

Difference Probability Distribution Histogram 168

B.92 Faster RCNN Inception v2 Pure Rotation Test 2 With Complex

Background with Video Rectified/ Training Unrectified Differ-

ence Probability Distribution Histogram 169

B.93 Faster RCNN Inception v2 Random Flight Pattern Test 1 With

White Curtain with Video Unrectified/ Training Unrectified

Difference Probability Distribution Histogram 169

B.94 Faster RCNN Inception v2 Random Flight Pattern Test 1 With

White Curtain with Video Rectified/ Training Unrectified Dif-

ference Probability Distribution Histogram 170

B.95 Faster RCNN Inception v2 Random Flight Pattern Test 1 With

Complex Background with Video Unrectified/ Training Unrec-

tified Difference Probability Distribution Histogram 170

B.96 Faster RCNN Inception v2 Random Flight Pattern Test 1 With

Complex Background with Video Rectified/ Training Unrecti-

fied Difference Probability Distribution Histogram 171

B.97 Faster RCNN Inception v2 Random Flight Pattern Test 2 With

White Curtain with Video Unrectified/ Training Unrectified

Difference Probability Distribution Histogram 171

B.98 Faster RCNN Inception v2 Random Flight Pattern Test 2 With

White Curtain with Video Rectified/ Training Unrectified Dif-

ference Probability Distribution Histogram 172

B.99 Faster RCNN Inception v2 Random Flight Pattern Test 2 With

Complex Background with Video Unrectified/ Training Unrec-

tified Difference Probability Distribution Histogram 172

xxiv

B.100Faster RCNN Inception v2 Random Flight Pattern Test 2 With

Complex Background with Video Rectified/ Training Unrecti-

fied Difference Probability Distribution Histogram 173

B.101YOLO v2 Pure Translation in Side and Height Direction Test 1

With White Curtain with Video Unrectified/ Training Unrecti-

fied Difference Probability Distribution Histogram 173

B.102YOLO v2 Pure Translation in Side and Height Direction Test 1

With White Curtain with Video Rectified/ Training Unrectified

Difference Probability Distribution Histogram 174

B.103YOLO v2 Pure Translation in Side and Height Direction Test 1

With White Curtain with Video Unrectified/ Training Rectified

Difference Probability Distribution Histogram 174

B.104YOLO v2 Pure Translation in Side and Height Direction Test

1 With White Curtain with Video Rectified/ Training Rectified

Difference Probability Distribution Histogram 175

B.105YOLO v2 Pure Translation in Side and Height Direction Test

1 With Complex Background with Video Unrectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 175

B.106YOLO v2 Pure Translation in Side and Height Direction Test

1 With Complex Background with Video Rectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 176

B.107YOLO v2 Pure Translation in Side and Height Direction Test

1 With Complex Background with Video Unrectified/ Training

Rectified Difference Probability Distribution Histogram 176

B.108YOLO v2 Pure Translation in Side and Height Direction Test

1 With Complex Background with Video Rectified/ Training

Rectified Difference Probability Distribution Histogram 177

B.109YOLO v2 Pure Translation in Side and Height Direction Test 2

With White Curtain with Video Unrectified/ Training Unrecti-

fied Difference Probability Distribution Histogram 177

xxv

B.110YOLO v2 Pure Translation in Side and Height Direction Test 2

With White Curtain with Video Rectified/ Training Unrectified

Difference Probability Distribution Histogram 178

B.111YOLO v2 Pure Translation in Side and Height Direction Test 2

With White Curtain with Video Unrectified/ Training Rectified

Difference Probability Distribution Histogram 178

B.112YOLO v2 Pure Translation in Side and Height Direction Test

2 With White Curtain with Video Rectified/ Training Rectified

Difference Probability Distribution Histogram 179

B.113YOLO v2 Pure Translation in Side and Height Direction Test

2 With Complex Background with Video Unrectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 179

B.114YOLO v2 Pure Translation in Side and Height Direction Test

2 With Complex Background with Video Rectified/ Training

Unrectified Difference Probability Distribution Histogram . . . 180

B.115YOLO v2 Pure Translation in Side and Height Direction Test

2 With Complex Background with Video Unrectified/ Training

Rectified Difference Probability Distribution Histogram 180

B.116YOLO v2 Pure Translation in Side and Height Direction Test

2 With Complex Background with Video Rectified/ Training

Rectified Difference Probability Distribution Histogram 181

B.117YOLO v2 Pure Translation in Depth Direction Test 1 With

White Curtain with Video Unrectified/ Training Unrectified

Difference Probability Distribution Histogram 181

B.118YOLO v2 Pure Translation in Depth Direction Test 1 With

White Curtain with Video Rectified/ Training Unrectified Dif-

ference Probability Distribution Histogram 182

B.119YOLO v2 Pure Translation in Depth Direction Test 1 With

White Curtain with Video Unrectified/ Training Rectified Dif-

ference Probability Distribution Histogram 182

xxvi

B.120YOLO v2 Pure Translation in Depth Direction Test 1 With

White Curtain with Video Rectified/ Training Rectified Differ-

ence Probability Distribution Histogram 183

B.121YOLO v2 Pure Translation in Depth Direction Test 1 With

Complex Background with Video Unrectified/ Training Unrec-

tified Difference Probability Distribution Histogram 183

B.122YOLO v2 Pure Translation in Depth Direction Test 1 With

Complex Background with Video Rectified/ Training Unrecti-

fied Difference Probability Distribution Histogram 184

B.123YOLO v2 Pure Translation in Depth Direction Test 1 With

Complex Background with Video Unrectified/ Training Recti-

fied Difference Probability Distribution Histogram 184

B.124YOLO v2 Pure Translation in Depth Direction Test 1 With

Complex Background with Video Rectified/ Training Rectified

Difference Probability Distribution Histogram 185

B.125YOLO v2 Pure Translation in Depth Direction Test 2 With

White Curtain with Video Unrectified/ Training Unrectified

Difference Probability Distribution Histogram 185

B.126YOLO v2 Pure Translation in Depth Direction Test 2 With

White Curtain with Video Rectified/ Training Unrectified Dif-

ference Probability Distribution Histogram 186

B.127YOLO v2 Pure Translation in Depth Direction Test 2 With

White Curtain with Video Unrectified/ Training Rectified Dif-

ference Probability Distribution Histogram 186

B.128YOLO v2 Pure Translation in Depth Direction Test 2 With

White Curtain with Video Rectified/ Training Rectified Differ-

ence Probability Distribution Histogram 187

B.129YOLO v2 Pure Translation in Depth Direction Test 2 With

Complex Background with Video Unrectified/ Training Unrec-

tified Difference Probability Distribution Histogram 187

xxvii

B.130YOLO v2 Pure Translation in Depth Direction Test 2 With

Complex Background with Video Rectified/ Training Unrecti-

fied Difference Probability Distribution Histogram 188

B.131YOLO v2 Pure Translation in Depth Direction Test 2 With

Complex Background with Video Unrectified/ Training Recti-

fied Difference Probability Distribution Histogram 188

B.132YOLO v2 Pure Translation in Depth Direction Test 2 With

Complex Background with Video Rectified/ Training Rectified

Difference Probability Distribution Histogram 189

B.133YOLO v2 Pure Rotation With Test 1 White Curtain with Video

Unrectified/ Training Unrectified Difference Probability Distri-

bution Histogram . 189

B.134YOLO v2 Pure Rotation With Test 1 White Curtain with Video

Rectified/ Training Unrectified Difference Probability Distribu-

tion Histogram . 190

B.135YOLO v2 Pure Rotation With Test 1 White Curtain with Video

Unrectified/ Training Rectified Difference Probability Distribu-

tion Histogram . 190

B.136YOLO v2 Pure Rotation With Test 1 White Curtain with Video

Rectified/ Training Rectified Difference Probability Distribu-

tion Histogram . 191

B.137YOLO v2 Pure Rotation With Test 1 Complex Background

with Video Unrectified/ Training Unrectified Difference Proba-

bility Distribution Histogram 191

B.138YOLO v2 Pure Rotation With Test 1 Complex Background

with Video Rectified/ Training Unrectified Difference Probabil-

ity Distribution Histogram . 192

B.139YOLO v2 Pure Rotation With Test 1 Complex Background

with Video Unrectified/ Training Rectified Difference Probabil-

ity Distribution Histogram . 192

xxviii

B.140YOLO v2 Pure Rotation With Test 1 Complex Background

with Video Rectified/ Training Rectified Difference Probability

Distribution Histogram . 193

B.141YOLO v2 Pure Rotation With Test 2 White Curtain with Video

Unrectified/ Training Unrectified Difference Probability Distri-

bution Histogram . 193

B.142YOLO v2 Pure Rotation With Test 2 White Curtain with Video

Rectified/ Training Unrectified Difference Probability Distribu-

tion Histogram . 194

B.143YOLO v2 Pure Rotation With Test 2 White Curtain with Video

Unrectified/ Training Rectified Difference Probability Distribu-

tion Histogram . 194

B.144YOLO v2 Pure Rotation With Test 2 White Curtain with Video

Rectified/ Training Rectified Difference Probability Distribu-

tion Histogram . 195

B.145YOLO v2 Pure Rotation With Test 2 Complex Background

with Video Unrectified/ Training Unrectified Difference Proba-

bility Distribution Histogram 195

B.146YOLO v2 Pure Rotation With Test 2 Complex Background

with Video Rectified/ Training Unrectified Difference Probabil-

ity Distribution Histogram . 196

B.147YOLO v2 Pure Rotation With Test 2 Complex Background

with Video Unrectified/ Training Rectified Difference Probabil-

ity Distribution Histogram . 196

B.148YOLO v2 Pure Rotation With Test 2 Complex Background

with Video Rectified/ Training Rectified Difference Probability

Distribution Histogram . 197

B.149YOLO v2 Random Flight Pattern Test 1 With White Curtain

with Video Unrectified/ Training Unrectified Difference Proba-

bility Distribution Histogram 197

xxix

B.150YOLO v2 Random Flight Pattern Test 1 With White Curtain

with Video Rectified/ Training Unrectified Difference Probabil-

ity Distribution Histogram . 198

B.151YOLO v2 Random Flight Pattern Test 1 With White Curtain

with Video Unrectified/ Training Rectified Difference Probabil-

ity Distribution Histogram . 198

B.152YOLO v2 Random Flight Pattern Test 1 With White Curtain

with Video Rectified/ Training Rectified Difference Probability

Distribution Histogram . 199

B.153YOLO v2 Random Flight Pattern Test 1 With Complex Back-

ground with Video Unrectified/ Training Unrectified Difference

Probability Distribution Histogram 199

B.154YOLO v2 Random Flight Pattern Test 1 With Complex Back-

ground with Video Rectified/ Training Unrectified Difference

Probability Distribution Histogram 200

B.155YOLO v2 Random Flight Pattern Test 1 With Complex Back-

ground with Video Unrectified/ Training Rectified Difference

Probability Distribution Histogram 200

B.156YOLO v2 Random Flight Pattern Test 1 With Complex Back-

ground with Video Rectified/ Training Rectified Difference Prob-

ability Distribution Histogram 201

B.157YOLO v2 Random Flight Pattern Test 2 With White Curtain

with Video Unrectified/ Training Unrectified Difference Proba-

bility Distribution Histogram 201

B.158YOLO v2 Random Flight Pattern Test 2 With White Curtain

with Video Rectified/ Training Unrectified Difference Probabil-

ity Distribution Histogram . 202

B.159YOLO v2 Random Flight Pattern Test 2 With White Curtain

with Video Unrectified/ Training Rectified Difference Probabil-

ity Distribution Histogram . 202

xxx

B.160YOLO v2 Random Flight Pattern Test 2 With White Curtain

with Video Rectified/ Training Rectified Difference Probability

Distribution Histogram . 203

B.161YOLO v2 Random Flight Pattern Test 2 With Complex Back-

ground with Video Unrectified/ Training Unrectified Difference

Probability Distribution Histogram 203

B.162YOLO v2 Random Flight Pattern Test 2 With Complex Back-

ground with Video Rectified/ Training Unrectified Difference

Probability Distribution Histogram 204

B.163YOLO v2 Random Flight Pattern Test 2 With Complex Back-

ground with Video Unrectified/ Training Rectified Difference

Probability Distribution Histogram 204

B.164YOLO v2 Random Flight Pattern Test 2 With Complex Back-

ground with Video Rectified/ Training Rectified Difference Prob-

ability Distribution Histogram 205

B.165Tiny YOLO Pure Translation in Side and Height Direction Test

1 With White Curtain with Video Unrectified/ Training Recti-

fied Difference Probability Distribution Histogram 205

B.166Tiny YOLO Pure Translation in Side and Height Direction Test

1 With White Curtain with Video Rectified/ Training Rectified

Difference Probability Distribution Histogram 206

B.167Tiny YOLO Pure Translation in Side and Height Direction Test

1 With Complex Background with Video Unrectified/ Training

Rectified Difference Probability Distribution Histogram 206

B.168Tiny YOLO Pure Translation in Side and Height Direction Test

1 With Complex Background with Video Rectified/ Training

Rectified Difference Probability Distribution Histogram 207

B.169Tiny YOLO Pure Translation in Side and Height Direction Test

2 With White Curtain with Video Unrectified/ Training Recti-

fied Difference Probability Distribution Histogram 207

xxxi

B.170Tiny YOLO Pure Translation in Side and Height Direction Test

2 With White Curtain with Video Rectified/ Training Rectified

Difference Probability Distribution Histogram 208

B.171Tiny YOLO Pure Translation in Side and Height Direction Test

2 With Complex Background with Video Unrectified/ Training

Rectified Difference Probability Distribution Histogram 208

B.172Tiny YOLO Pure Translation in Side and Height Direction Test

2 With Complex Background with Video Rectified/ Training

Rectified Difference Probability Distribution Histogram 209

B.173Tiny YOLO Pure Translation in Depth Direction Test 1 With

White Curtain with Video Unrectified/ Training Rectified Dif-

ference Probability Distribution Histogram 209

B.174Tiny YOLO Pure Translation in Depth Direction Test 1 With

White Curtain with Video Rectified/ Training Rectified Differ-

ence Probability Distribution Histogram 210

B.175Tiny YOLO Pure Translation in Depth Direction Test 1 With

Complex Background with Video Unrectified/ Training Recti-

fied Difference Probability Distribution Histogram 210

B.176Tiny YOLO Pure Translation in Depth Direction Test 1 With

Complex Background with Video Rectified/ Training Rectified

Difference Probability Distribution Histogram 211

B.177Tiny YOLO Pure Translation in Depth Direction Test 2 With

White Curtain with Video Unrectified/ Training Rectified Dif-

ference Probability Distribution Histogram 211

B.178Tiny YOLO Pure Translation in Depth Direction Test 2 With

White Curtain with Video Rectified/ Training Rectified Differ-

ence Probability Distribution Histogram 212

B.179Tiny YOLO Pure Translation in Depth Direction Test 2 With

Complex Background with Video Unrectified/ Training Recti-

fied Difference Probability Distribution Histogram 212

xxxii

B.180Tiny YOLO Pure Translation in Depth Direction Test 2 With

Complex Background with Video Rectified/ Training Rectified

Difference Probability Distribution Histogram 213

B.181Tiny YOLO Pure Rotation Test 1 With White Curtain with

Video Unrectified/ Training Rectified Difference Probability Dis-

tribution Histogram . 213

B.182Tiny YOLO Pure Rotation Test 1 With White Curtain with

Video Rectified/ Training Rectified Difference Probability Dis-

tribution Histogram . 214

B.183Tiny YOLO Pure Rotation Test 1 With Complex Background

with Video Unrectified/ Training Rectified Difference Probabil-

ity Distribution Histogram . 214

B.184Tiny YOLO Pure Rotation Test 1 With Complex Background

with Video Rectified/ Training Rectified Difference Probability

Distribution Histogram . 215

B.185Tiny YOLO Pure Rotation Test 2 With White Curtain with

Video Unrectified/ Training Rectified Difference Probability Dis-

tribution Histogram . 215

B.186Tiny YOLO Pure Rotation Test 2 With White Curtain with

Video Rectified/ Training Rectified Difference Probability Dis-

tribution Histogram . 216

B.187Tiny YOLO Pure Rotation Test 2 With Complex Background

with Video Unrectified/ Training Rectified Difference Probabil-

ity Distribution Histogram . 216

B.188Tiny YOLO Pure Rotation Test 2 With Complex Background

with Video Rectified/ Training Rectified Difference Probability

Distribution Histogram . 217

B.189Tiny YOLO Random Flight Pattern Test 1 With White Curtain

with Video Unrectified/ Training Rectified Difference Probabil-

ity Distribution Histogram . 217

xxxiii

B.190Tiny YOLO Random Flight Pattern Test 1 With White Curtain

with Video Rectified/ Training Rectified Difference Probability

Distribution Histogram . 218

B.191Tiny YOLO Random Flight Pattern Test 1 With Complex Back-

ground with Video Unrectified/ Training Rectified Difference

Probability Distribution Histogram 218

B.192Tiny YOLO Random Flight Pattern Test 1 With Complex Back-

ground with Video Rectified/ Training Rectified Difference Prob-

ability Distribution Histogram 219

B.193Tiny YOLO Random Flight Pattern Test 2 With White Curtain

with Video Unrectified/ Training Rectified Difference Probabil-

ity Distribution Histogram . 219

B.194Tiny YOLO Random Flight Pattern Test 2 With White Curtain

with Video Rectified/ Training Rectified Difference Probability

Distribution Histogram . 220

B.195Tiny YOLO Random Flight Pattern Test 2 With Complex Back-

ground with Video Unrectified/ Training Rectified Difference

Probability Distribution Histogram 220

B.196Tiny YOLO Random Flight Pattern Test 2 With Complex Back-

ground with Video Rectified/ Training Rectified Difference Prob-

ability Distribution Histogram 221

xxxiv

Chapter 1

Introduction

1.1 Background and Motivation

Human being has the ability to identify objects in the three-dimensional (3D)

world. The human brain can effortlessly differentiate between various kinds

of an object, e.g. different species of cats or dogs. In order to mimic human

perception of objects, the study of computer vision can be traced back to 1966

when an undergraduate student at Massachusetts Institute of Technology was

asked to get computer to know what it saw from a camera [1]. Nowadays, com-

puter vision has applications such as simultaneous localization and mapping,

surveillance, object detection, etc.

One significant achievement in object detection was the Cascade Classifier

introduced by Paul Viola and Michael Jones in 2001 to detect human faces [2].

However, the Cascade Classifier could not identify the same face unless detec-

tion was conducted in the same fashion as training. For instance, detection

would fail if a face presented to the classifier was rotated or presented over a

complex background.

Inspired by the human brain’s structure, the deep learning neural network

was applied to object detection [3]. One big achievement of object detection us-

ing neural networks was the AlexNet winning the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) in 2012 [4]. Deep learning object detection

systems work by extracting features from images perceived by a computer,

then use algorithms which train a model, which is then used to detect the

object in future images. Deep learning detection is different from Cascade

1

Classifier detection. Not only can it detect objects, it can also distinguish

between different types of the same object. For instance, it can determine

the size and species of a dog. Deep learning training and detection require

huge amounts of computational power. A Graphics Processing Unit (GPU)

solves this issue by enabling computing on thousands of CUDA cores in par-

allel, reducing learning time and enabling object detection on real-time video

streams.

For the purposes of UAV tracking and following, the quality of UAV de-

tection is crucial as the onboard control system needs information in the form

of bounding boxes to determine the location of a target drone. In Pablo Mar-

tinez Rodriguez’s work [5], the Cascade Classifier is used for detecting a target.

While this algorithm does the job of detecting drones, it is extremely unstable

in realistic conditions. The system can only detect the target UAV over a pure

white background and in the absence of noise or disturbances.

This thesis proposes the implementation of deep learning neural networks

to perform UAV detection and tracking. This research will be a foundation

of a UAV tracking project, serving as the computer vision input to a control

system performing following to a target UAV. The TensorFlow and Dark-

net machine learning frameworks were employed with convolutional networks

SSD MobileNet v1, SSD Inception v2, Faster RCNN Inception v2, YOLO v2

and Tiny YOLO to perform UAV detection and demonstrate improved per-

formance over the Cascade Classifier, while being efficient enough to provide

real-time detection performance.

1.2 Thesis Research Gap, Challenge and Ob-

jective

The research gap of this thesis is that the cascade classifier can barely detect a

target UAV over a complex background. This is a limitation on the detection

consistency. No reliable detection system was achieved for the UAV detection

project in the lab.

The challenge of this thesis is to make TensorFlow and Darknet API run in

2

the Robot Operating System (ROS) environment and quantify the accuracy

of detection result. Mean average precision (mAP) is used as a performance

metric for deep learning object detection systems, such as Faster RCNN and

YOLO [6] [7]. However, as discussed in Section 2.4.2, mAP only reflects the

rate of correctly detected object in a set of data, it does not quantify the

difference between a detected bounding box and the ground-truth (the exact

size of the bounding box). In order to serve as a foundation of a UAV tracking

project, the location of a target UAV need to be known to send information

to a control system so that a tracking UAV can be moved to follow the target

correctly. The difference between the detected object location derived from

its bounding box and its real-world location need to be compared to quantify

the accuracy of a detection. In this thesis, the algorithm to estimate relative

positions of a target and a tracking UAV from bounding box is derived to

quantify accuracy, and convolutional networks, namely SSD MobileNet v1,

SSD Inception v2, Faster RCNN Inception v2, YOLO v2 and Tiny YOLO, are

benchmarked and compared.

Objectives of this thesis are listed below:

• Apply deep learning neural network to UAV detection project.

• Make detection systems work in ROS (Robot Operating System) and

communicate with a Parrot ARDrone 2.0.

• Compare the performance of SSD MobileNet v1, SSD Inception v2,

Faster RCNN Inception v2, YOLO v2 and Tiny YOLO taking efficiency,

accuracy and consistency into consideration.

• Test the impact of camera calibration of Parrot ARDrone 2.0’s onboard

camera on the detection accuracy.

• Suggest an object detection system that is fast enough for real-time de-

tection and capable of detecting target UAV over a complex background.

• Estimate relative 3D positions of the target and observing UAV from 2D

bounding box information.

3

1.3 Outline of Thesis

This Chapter provides an overview of the thesis and motivation for the re-

search. A statement of contributions is given at the end of this Chapter.

Chapter 2 covers the theoretical background of the work, surveys the state-

of-the-art technology in deep learning, and covers the required background

tools from computer vision.

Chapter 3 explains the tools used for the UAV detection project includ-

ing the indoor motion capture system and its calibration, computing hard-

ware, UAV, camera models and calibration, and software tools such as ROS,

OpenCV, CUDA and Matlab.

Chapter 4 presents detailed experimental evaluations of the learning and

detection performance of both TensorFlow and Darknet applied to UAV de-

tection. Position and depth estimation errors relative to ground-truth from

the motion capture system are quantified and analyzed.

Chapter 5 summarizes and discusses the experimental results. A recom-

mendation is made regarding the choices of deep learning framework and con-

volutional network. Limitations of the present work and suggestions for future

research are provided.

1.3.1 Statement of Contributions

The research contributions of this thesis are:

• Deploy two state-of-the-art deep learning frameworks, TensorFlow and

Darknet, for real-time UAV detection within ROS. A wrapper of Ten-

sorFlow in ROS is developed as detailed in Appendix A.1. This code

makes TensorFlow work in ROS and retrieve information from robotic

hardware, such as image feed from UAV’s onboard camera.

• A 3D location estimation algorithm is derived in this thesis using images

from a monocular camera and bounding box information so that the

accuracy of an object detection system can be quantified.

4

• Detailed benchmarking and performance comparison of detection results

are conducted under various convolutional networks, namely SSD Mo-

bileNet v1, SSD Inception v2, Faster RCNN Inception v2, YOLO v2 and

Tiny YOLO to select a best overall performer in ROS environment.

• Codes developed for bounding box information retrieval and 3D location

estimation are detailed in Appendix A.2 and A.3. This automates the

location estimation process and can be used as a direct input to a control

system for UAV tracking.

• Code developed for training data extraction of Darknet is detailed in

Appendix A.4. This is code is important for monitoring the training

process of Darknet.

5

Chapter 2

Theoretical Background

2.1 Overview

Through a combination of an offline training stage and an online detection

stage, Cascade Classifier was able to achieve real-time object detection in a

video stream, specifically facial recognition [2]. However, the Cascade Clas-

sifier is poor at detecting objects in different conditions from the training

dataset. For example, if the Cascade Classifier is trained with pictures of a

drone heading left over a white background, it has difficulties detecting the

same drone when it is heading right, or if flying over non-white backgrounds.

Thanks to the rapid growth in Artificial Intelligence (AI), the method of

deep learning has brought in more powerful techniques for object detection

such as artificial neural networks. Various deep learning frameworks are now

publicly available including TensorFlow, Caffe, Keras, Darknet, etc. Good

support and frequent updates from Google made TensorFlow the most popular

deep learning framework in 2018 [8].

The object detection APIs within Darknet and TensorFlow are only offi-

cially supported under Linux, Windows or Mac OS. In order to interface the

object detection system with the Parrot ARDrone 2.0 UAV used in our lab,

the APIs were modified and implemented to run within ROS. The resulting

output information such as bounding boxes, runtime speed, detection proba-

bilities and reliability metrics were logged to the ground station computer.

In this chapter, the theoretical background of this thesis is covered. It starts

with a brief introduction of deep learning. Then, the Artificial Neural Network

6

and its extensions, namely Convolutional Neural Networks, Faster Region-

based Convolutional Neural Network (Faster RCNN), Single Shot MultiBox

Detector and You Only Look Once (YOLO) are detailed. Different schemes to

process data, for instance MobileNet and Inception are explained. Performance

metrics for these methods are introduced. Finally, the equations for estimating

3D positions from 2D images are derived, followed by the distortion model and

calibration procedure used for monocular cameras.

2.2 Machine Learning and Deep Learning

The idea of “machine learning” was first introduced in 1959 at IBM by Arthur

Samuel describing the process of a machine learning from sets of data, a very

early stage of development in Artificial Intelligence (AI). In 1997, a more

formal and widely accepted definition of machine learning was given by Tomas

Mitchell: Machine learning is a computer program improves its performance

over a task given experience to learn from [9] [10].

A machine learning example following the definition by Tomas Mitchell is

Google’s AlphaGO. AlphaGO uses Monte Carlo tree search (MCTS) method to

determine its next move in the classic board game from its training experience

using artificial neural networks [11].

Deep learning was proposed for machine learning in 1986 by R. Dechter,

with applications such as object detection, natural language processing, ad-

vertising, etc [12] [13]. It has the following definition:

• Deep learning uses numerous non-linear processing layers to extract and

transform features, analyze and classify patterns in a supervised or un-

supervised manner [14].

• A “deep architecture” is described by a hierarchical structure which uses

lower-level features and concepts to represent higher-level ones [14].

• Deep learning uses the idea of artificial neural networks. The same lower-

level features could contribute to the construction of many higher-level

features [14].

7

There are three main deep learning architectures: generative deep architec-

ture, discriminative deep architecture and hybrid deep architecture. Genera-

tive deep architecture is normally interpreted by graphical models [15]. There

are three typical generative deep architecture models: deep belief network

based on sigmoid belief network proposed by G.E. Hinton in 2006 [16], deep

autoencoder and deep Boltzmann machine [17].

Discriminative deep architectures are usually divided into three approaches:

Linear classifiers, logistic regression and support vector machine. The differ-

ence between generative and discriminative architectures is that the former

uses joint probability while the latter uses conditional probability [18]. Given

a training dataset of input xinput and corresponding output youtput, a linear

classifier is used to represent the behavior of the dataset as [19],

f(xinput;w) = arg max
youtput

[wTφ(xinput, youtput)]

where w is a weight vector of object class, φ(xinput, youtput) is the joint feature

vector, wTφ(xinput, youtput) generates a score for likelihood of input xinput to be

the class youtput, and arg maxyoutput chooses the class with the highest score.

Empirical risk is introduced to optimize the training performance [19],

RD(w) =
1

n

∑
i

l0/1(xinputi , youtputi , c(xinputi ;w))

where l0/1(xinputi , youtputi , c(xinputi ;w)) is a 0/1 loss function evaluating the

likelihood of score vector c(xinputi ;w) with training data, 0 for positive and 1 for

negative, c(xinputi ;w) is a vector of scores wTφ(xinput, youtput), n is the number

of input and corresponding output pair, i is the ith data. By minimizing the

empirical risk, training performance can be optimized.

Logistic regression is an alternative to the 0/1 loss function when deter-

mining RD in a probabilistic way, defining conditional probability distribution

p(youtput|xinput;w) [19],

8

p(youtput|xinput;w) =
1

Z(xinput;w)
exp(wTφ(xinput, youtput))

Z(xinput;w) =
∑

youtput

exp(wTφ(xinput, youtput))

where Z(xinput;w) is a partition function.

Another alternative to 0/1 loss function is “hinge-loss” measuring difference

the maximum confidence in the classifier that the confidence in the correct

class. “hinge-loss” is defined as [19],

lhinge(xinputi , youtputi , c(xinputi , youtputi ;w)) =maxyoutputi (w
Tφ(xinputi , youtputi)

+ l0/1c(xinputi , youtputi ;w))

− wTφ(xinputi , youtputi)

Due to the fact that hinge-loss function is continuous, however not differ-

entiable, a constrained optimization problem could be studied as an equivalent

substitute to minimize loss and weight vector w can be determined as [19],

w =
∑
i

αi(youtputi)(φ(xinputi , youtputi)− φ(xinputi , youtputi)

where α is a non-zero variable used for solving the constrained optimization

problem.

The method using “hinge-loss” function is called a support vector ma-

chine [20]. Finally, hybrid deep architectures are a hybrid of generative and

discriminative deep architectures [21].

2.3 Deep Learning Frameworks

2.3.1 Overview

In this Section, deep learning frameworks implemented for UAV detection

in this thesis are introduced. Various detection models are available: Single

Shot MultiBox Detection (SSD), Faster Region-based Convolutional Neural

Network (Faster RCNN), Mask Region-based Convolutional Neural Network

(Mask RCNN) for TensorFlow [22] and You Only Look Once (YOLO), Tiny

9

YOLO for Darknet [23]. Different from all the other detection models, Mask

RCNN has an extra mask output over a class label and bounding box. This

slows down the detection speed, it only ran at 5 fps on Nvidia Tesla P100 GPU

with 16 GB of HBM2 memory, 3584 CUDA cores and a maximum memory

bandwidth of 732 GB/s [24] [25]. GPU used in the lab is a Nvidia GTX 1080

Ti with the same amount of CUDA core, while less memory and bandwidth

than Tesla P100. Hence, the running speed on lab computer is expected to be

less than 5 fps [26]. This is not acceptable for real-time detection tasks and

thus not tested in this thesis.

2.3.2 TensorFlow

TensorFlow is an open source software library for machine learning devel-

oped by Google based on DistBelief, a closed-source machine learning frame-

work [27]. “Tensor” stands for multi-dimensional data and “Flow” stands for

the manner of processing this data. TensorFlow computation is represented

by the data flow graph containing nodes representing computations and the

directed edges into and out of nodes are tensors as visualized in Figure 2.1.

TensorFlow supports programming languages including Python, C++, Java,

Haskell, GO and Rust.

10

Figure 2.1: TensorFlow Graph

There are various modules in TensorFlow:

• High Level API is used to build and train deep learning models, write

TensorFlow code, create pipelines to bring data into TensorFlow [28].

• Estimators save training checkpoints, process data of different types [28].

• Accelerators optimizes speed of TensorFlow by dividing tasks between

CPU and GPU hardware [28].

• Low Level APIs handles computation tasks, saves and restores variables

and models [28].

• Embeddings introduces embedding layers into TensorFlow [28].

• TensorBoard is a tool to visualize deep learning processes [28].

• Debugging is used for debugging TensorFlow code [28].

11

Various publicly available detection models are used in this thesis, namely

SSD MobileNet v1, SSD inception v2 and Faster RCNN inception v2, which

will be trained, tested and benchmarked for our purposes.

2.3.3 Darknet

Darknet is an open source machine learning framework written in C language

and CUDA [23]. Compared to TensorFlow, Darknet has the following advan-

tages:

• Darknet is faster than TensorFlow in specific tasks, for instance, object

detection as shown in Section 4.3.1. Running speed becomes important

when running without a high-end GPU.

• A ROS package written in C++ is publicly available on Github, which

gives better compatibility with ROS.

Object detection models You Only Look Once (YOLO) and Tiny YOLO

are trained, tested and benchmarked within Darknet and ROS environment.

2.4 Artificial Neural Network

The idea of artificial neural networks (ANN) comes from the brain’s biological

neural network. Neurons are input/output elements arranged in layers and

their interconnection forms a neural network [29].

Three types of ANNs are deep feed-forward networks, convolution neural

networks and recurrent networks. Deep feed-forward networks take data input

into an input layer, proceed through multiple hidden layers, and give the

results on an output layer. Convolution neural networks is an extension of

deep feed-forward networks. CNN are detailed in Section 2.4.1. Unlike deep

feed-forward networks, recurrent networks use feedback from output of layers

when processing among neurons [30].

A traditional neural network is Multilayer Perceptron (MLP) that uses

activation functions between neurons, where a perceptron is the simplest form

of a neural network model [29] and activation functions are defined below.

12

An example of a typical MLP is illustrated in Figure 2.2, inputs are weighted

through layers and gives corresponding outputs.

Figure 2.2: A typical MLP Structure

Output from the layers can be described by [29],

youtputi(t+ 1) = ϕ(
n∑

j=1

wijxinputj(t))

where ϕ(
∑n

j=1 wijxinputj(t)) is called the activation function, which maps the

sum of weighted inputs to the output. The input to a neuron can be computed

from the output youtputi of another neuron by the propagation function [31],

kinputj(t) =
∑
i

youtputi(t)wij

2.4.1 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are one type of artificial neural network

which specifically assume the inputs are images [32]. The first deep learning

convolution neural network was Lenet proposed by Yann LeCun in 1998 for

character recognition [33]. Figure 2.3 illustrates the architecture of Lenet-5,

which has 7 trainable layers.

13

Figure 2.3: Lenet-5 Architecture

Based on the architecture of Lenet-5, it can be seen that there are three

components in convolutional neural networks:

• The Convolutional Layer is the most important part of a CNN. It applies

filters to input data with height M , width N and depth K (M ∗N ∗K)

to output features from the data [32].

• The Pooling Layer is placed between convolutional layers. The purpose

of the pooling layer is to reduce the resolution of the output from a

convolutional layer so that computing process are eased. Typical pooling

methods are max-pooling, min-pooling and average-pooling, described

by [34],
Poolingj = max(fn∗n

i sregion(n, xinput))

Poolingj = min(fn∗n
i sregion(n, xinput))

Poolingj = avg(fn∗n
i sregion(n, xinput))

where sregion is regions on feature map, n is the number of regions.

14

• The Fully Connected Layer connects all activations and neurons in the

previous layers to compute the outputs through activation functions [32].

It parallels the MLP discussed in Section 2.4.

CNNs can be trained to identify specific objects. A measurement of the

performance of training is “loss”. Loss describes the difference between the

ground truth and what the detection predicts as detailed in Section 2.2. The

lower the loss, the better the detection performance of the trained CNN.

2.4.2 Mean Average Precision (mAP)

The performance of an object detection system is measured by its Mean Av-

erage Precision(mAP). The calculation of mAP relies on the concepts of recall

and precision. The subsections below describe the details of mAP.

2.4.2.1 Intersection over Union (IoU)

Intersection over Union (IoU) measures the quality of the bounding box of a

detected object. An example of a detected Parrot ARDrone 2.0 bounding box

is shown in Figure 2.4.

Figure 2.4: Ground Truth and Bounding Box

The blue rectangle is the exact boundary of the object, usually known

as the ground truth in object detection systems. The red rectangle is the

bounding box obtained from detection. IoU is then calculated as [35],

15

IoU =
Ground Truth Area

⋂
Bounding Box Area

Ground Truth Area
⋃

Bounding Box Area

In this thesis, bounding boxes with an IoU of 0.5 or more are considered to

be a positive detection. This is also the default threshold used by TensorFlow

object detection APIs.

2.4.2.2 Recall and Precision

Recall describes the rate of detecting targets. Precision describes the accuracy

of these positive detections. Figure 2.5 illustrates the classification for items

being detected in a dataset .

Figure 2.5: Classification of Items in a Detection

Recall and precision can be calculated as follows [36],

Recall =
DC

DC + UC

Precision =
DC

DC + DI

The higher the values of recall and precision, the more accurate the detec-

tion.

2.4.2.3 Average Precision (AP)

Both recall and precision need to be considered when measuring the accuracy

of a detection system. Average precision (AP) is the area under the precision-

16

recall curve. AP is calculated as [36],

AP =
n∑

i=1

p(i)∆r(i)

where p(i) is the precision at each detection, ∆r(i) is the recall difference

between detection i− 1 and i.

Mean average precision (mAP) takes an average over different detection

sets and thus measures the overall accuracy of the object detection system.

The calculation of mAP is shown below [37],

mAP =
1

n

n∑
i=1

AP (i)

where n is the number of detection sets, and AP (i) is the average precision at

each set.

2.4.3 Faster Region-based Convolutional Neural Net-
work (Faster RCNN)

Regions with CNN features (RCNN) was proposed by Girshick in 2013 [38].

According to Girshick (2013), the structure of RCNN can be illustrated by

Figure 2.6. RCNN first extracts region proposals (around 2000) from the

input image, extracts a feature vector from each region using a CNN, then

scores each feature using its corresponding SVM [38]. It outperformed other

approaches on the PASCAL VOC 2010 image dataset with its 50.2 mAP.

However, the speed of RCNN is still not usable for real-time video processing

since it requires around 10 seconds to process an image [38].

17

Figure 2.6: RCNN Structure

Fast RCNN is an extension of RCNN developed by the first author of RCNN

in 2015 [39]. According to Girshick (2015), instead of running each region

proposal through a CNN, the input image is run through several convolutional

and max pooling layers to produce a convolutional feature map. Then, for

each region proposal a pooling layer extracts a feature from the feature map,

meaning feature extraction is done only once. Each feature is passed to a

sequence of fully connected layers which yield classification probability and

bounding box estimates using softmax layers for objects. Fast RCNN achieved

68.4 mAP on Pascal VOC 2012 dataset while RCNN only achieves 62.4 mAP.

Image processing speed for Fast RCNN was 146 times faster than RCNN [39].

Faster RCNN was proposed by Ren and colleagues in 2015 [7] with the

goal of optimizing the speed of Fast RCNN further. According to Ren (2015),

Faster RCNN works by employing region proposal networks (RPN), a CNN

which produces region proposals, to replace selective search algorithm in Fast

RCNN. In this way the region proposal step can be carried out in around 10

milliseconds, allowing real-time object detection for the overall pipeline. On

COCO dataset, Faster CNN achieved 41.5 mAP while Fast RCNN achieved

38.6 mAP. Running speed of Faster RCNN was about 10 times faster than

Fast RCNN [7].

18

An overall evolution process from RCNN to Faster RCNN is listed in Ta-

ble 2.1 [7] [38] [39].

Table 2.1: Summary of Evolution from RCNN to Faster RCNN

Detection
Model

Feature

RCNN Selective Search (SS) algorithm for region pro-
posal; SVM for classification; CNN for feature
extraction; Bounding-box Regression to minimize
loss

Fast RCNN SS algorithm for region proposal; Softmax layer for
classification; CNN for feature extraction; Multi-
task loss function to minimize loss

Faster RCNN RPN for region proposal; Softmax layer for clas-
sification; CNN for feature extraction; Multi-task
loss function to minimize loss

2.4.4 You Only Look Once (YOLO)

You Only Look Once was introduced by Redmon and colleagues in 2015 [40].

According to Redmon (2015), YOLO employs an end to end single neural

network to reframe classification problem into regression problem that predicts

bounding boxes and their associated probabilities in one evaluation pass to

avoid complex pipeline [40].

Figure 2.7 illustrates the YOLO detection model. An image is split into

an S ∗S grid, and combinations of grids predicts bounding boxes, confidences

and probabilities [40]. By setting a threshold, different combinations of grids

with probability greater than the threshold will be presented.

19

Figure 2.7: YOLO Detection Model

2.4.4.1 Single Shot MultiBox Detector (SSD)

Single Shot MultiBox Detector was proposed by Liu et al. in 2015 claiming to

be both faster and more accurate than Faster RCNN and YOLO [41]. Accord-

ing to Liu (2015), SSD employs a base feed-forward convolutional network to

produce an initial collection of bounding boxes and their associated detection

probabilities, followed by a set of convolutional feature layers which progres-

sively decrease in size and allow predictions at multiple scales. On the VOC

2007 dataset, SSD achieved 59 FPS and a mAP of 74.3 while Faster RCNN

got 7 FPS, 73.2 mAP and YOLO got 45 FPS, 63.4 mAP [41].

2.4.4.2 You Only Look Once v2 (YOLO v2)

YOLO v2 is a newer version of YOLO which increases detection accuracy as

well as efficiency proposed by Redmon in 2016 [6]. According to proposed

by J. Redmon (2016), YOLO v2 employs batch normalization, training the

classification network with higher-resolution images (448 ∗ 448 vs 224 ∗ 224 on

20

YOLO), using anchor boxes to predict bounding boxes, finding good priors

in the training dataset by using k-means clustering on the bounding boxes,

predicting box location coordinates relative to the grid cells, concatenating

low resolution (13 ∗ 13) and high resolution (26 ∗ 26) features for the detector,

and training the network with a range of input image dimensions to make it

capable of predicting across a range of input resolutions. Most of these features

contribute to an improvement in mAP scores except for the anchor box, which

increases recall. Overall, YOLO v2 is both faster and more accurate than

YOLO. On VOC 2007 dataset, YOLO v2 achieved running speed as fast as

91 fps and mAP as high as 78.6, depending on image resolution [6].

2.4.5 MobileNet

MobileNet is a small and fast CNN architecture proposed by Howard et al.

in 2017 [42]. It is optimized for low-power mobile and embedded vision ap-

plications. A standard convolution both filters and combines in one step. In

MobileNet, this is replaced by depthwise separable convolutions, consisting of

a separate layer for filtering and a separate layer for combining as illustrate in

Figure 2.8. This dramatically reduces both computation and model size. Stan-

dard convolutions have the computational cost of DK ∗DK ∗M ∗N ∗DF ∗DF

where M,N are the number of input and output channels and DK ∗ DK ,

DF ∗ DF are the kernel and feature map dimensions, respectively. Mean-

while depthwise separable convolutions have a computational cost of only

DK ∗ DK ∗ M ∗ DF ∗ DF + M ∗ N ∗ DF ∗ DF , or a fraction 1/N + 1/D2
K

of the standard convolution cost. According to Howard (2017), depthwise sep-

arable convolutions requires 8 times less computational power than a regular

full convolution, with only 1.1% lost in accuracy [42].

21

Figure 2.8: Depthwise Separable Convolutions

2.4.6 Inception

Inception v1 is a detection architecture proposed by Szegedy et al. (also from

Google) in 2015, built on top of the Network-in-Network CNN introduced by

Lin et al. in 2013 [43] [44]. The original design, Inception v1, consists of two

models: “Naive” model and dimension reduced version model. An illustration

of dimension reduced model over “Naive” model is shown in Figure 2.9.

Figure 2.9: Structure of Inception v1 Dimension Reduced Model

As shown in Figure 2.9, the “Naive” model was introduced with input

data with 3 different sized filters and a max pooling layer. However, this was

inefficient and required an excessive amount of computation power. Extra 1 *

22

1 convolutions were thus added before the 3 * 3, 5 * 5 convolutions and after

the max pooling layer. This reduces the dimension of the input to enhance

efficiency [43].

In order to improve detection accuracy and speed, Inception v2 was in-

troduced by the first author of Inception v1 in 2016 [45]. The architecture

consists of a series of convolution steps, followed by Inception modules and

a pooling filter bank leading to classification. The overall architecture is 42

layers deep and provided superior performance relative to other architectures

achieving 21.2%, top-1 and 5.6% top-5 error for single crop evaluation on the

ILSVRC 2012 dataset [45].

2.5 Distance Estimation from a Monocular Cam-

era

Cameras like the Kinect have the ability to directly measure 3D images [46].

However, the Parrot ARDrone’s front camera is a 720P monocular camera

which can only capture 2D images. In order to track a UAV, its 3D location

must be provided to the onboard tracking control system. Thus, we developed

an algorithm to estimate relative positions between the target and the tracking

drone from the onboard monocular video.

In order to verify the accuracy of estimated depth, the estimated results

need to be compared against a ground truth. In this thesis, this information

will be provided by the Vicon motion capture system discussed in Section 3.2.1.

The comparison results will be provided in Section 4.3.2.

The Parrot’s onboard camera is a monocular camera with resolution of

1280 * 720, capturing video at 30 fps with a 92-degree diagonal wide-angle

lens [47]. The camera is modeled as a pinhole camera to estimate the relative

horizontal, vertical and depth distance of the detected object to the optical

center of the camera.

Figure 2.10 illustrates the 3D coordinate system defined for estimating

the relative location between the target UAV and the observing UAV in the

onboard camera video frame. Notice that the physical size of the object,

23

i.e. the height and width of the UAV need to be known for the algorithm in

this section to work. If the size of the object changes, the relative position

estimated would be changed as well.

Figure 2.10: 3D Axis Illustration in Camera Video Frame

Figure 2.11 gives a schematic view of the object projection into the 2D

image plane of a pinhole camera, assuming a ray from the object passes through

the center of the lens and the object is always the same size and shape.

Figure 2.11: Image Formation of a Pinhole Camera in 2D Plane

The distance of the object from the camera lens can be calculated as

Distance = Height ∗ Focal Length

Image

where distance, height and focal length are all expressed in SI Units.

Now extend this equation to 3D coordinate with the defined directions

shown in Figure 2.10,

24

xy
1

 =

f X
Z

f Y
Z

1

 =
f

Z

XY
Z
f

 =
1

Z

f 0 0 0
0 f 0 0
0 0 0 1

X
Y
Z
1

=
1

Z

f 0 0
0 f 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

X
Y
Z
1

(2.1)

where (X, Y , Z) are the 3D coordinates of the object projected to (x, y)

on 2D image frame, f is the focal length. Notice that all the parameters in

equation 2.1 are in SI units, i.e. meters, centimeters or millimeters. In order

to relate the pixel length in a digital camera with SI units, transformation is

done by,

x
′
= sxx+ cx

y
′
= syy + cy

(2.2)

where sx and sy are in pixel/m scaling x and y in SI units to pixels, (cx, cy) is

the coordinate of the optical axis on the image, x
′
and y

′
are the coordinates of

the object projected on the image. Combining equation 2.2 and equation 2.1,

x′

y
′

1

 =
1

Z

sxf 0 cx
0 syf cy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

X
Y
Z
1

 (2.3)

where the intrinsic camera matrix K is [48],

K =

sxf 0 cx
0 syf cy
0 0 1

 =

fx 0 cx
0 fy cy
0 0 1

where fx and fy are focal lengths in x and y direction in units of pixels. The

intrinsic camera matrix K is upper-triangular and all of its diagonal entries

are non-zero, thus K has an inverse. Projection matrix P is defined as,

P =

sxf 0 cx
0 syf cy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

 =

fx 0 cx 0
0 fy cy 0
0 0 1 0

25

Relative position of the object and the camera lens can be estimated by

the following assumptions:

• Object detection system provide precise bounding boxes around the tar-

get.

• The physical dimension of the object is known. (In this thesis, the

dimension of the Parrot ARDrone 2.0 is measured to be 50.56 cm *

50.56 cm * 12.59 cm (width * depth * height).)

• The target’s visible size, i.e. width and height, does not change much

during the detection.

The third assumption requires the yaw, pitch, roll angles of the target

relative to the observation target to be close to zero. For instance, the di-

mensions of Parrot ARDrone 2.0 are 50.65 cm in width and 12.59 cm in

height from measurement using a metric ruler. However, if the drone yaws

by 45◦, its width perceived by the object detection system is equivalent to
√

50.652 + 50.652 = 71.63 cm. One approach to avoid this assumption is to

train the object detection systems to classify different orientations of the target

UAV and dynamically assign a visible width and height.

Equation 2.3 gives the relationship between the image coordinate (x
′
, y

′
)

and 3D coordinate (X, Y, Z),

x
′
= fx

X

Z
+ cx

y
′
= fy

Y

Z
+ cy

(2.4)

Bounding box width w
′

and height h
′

in pixels are calculated from the

detection result of the object in the digital camera as shown in Figure 2.12.

Information of bounding boxes are given in pixels as x
′
min, y

′
min, x

′
max, y

′
max.

26

Figure 2.12: Bounding Box Given by Object Detection Systems

Bounding box width w
′

and height h
′

can be calculated as,

w
′
= x

′

max − x
′

min

= (fx
Xmax

Z
+ cx)− (fx

Xmin

Z
+ cx)

= fx
Xmax −Xmin

Z

= fx
W

Zw

h
′
= y

′

max − y
′

min

= (fy
ymax

Z
+ cy)− (fy

ymin

Z
+ cy)

= fy
Ymax − Ymin

Z

= fy
H

Zh

(2.5)

where (c
′
min, y

′
min) is the top left coordinate of the bounding box, (Xmin, Ymin)

is the corresponding top left coordinate in 3D, (x
′
max, y

′
max) is the bottom right

coordinate of the bounding box,(Xmax, Ymax) is the corresponding bottom

right coordinate in 3D, W is the width of the object and H is the height of

the object, Zw and Zh are the perpendicular distance between the object and

the camera lens estimated from width and height of the bounding box. From

equation 2.5, perpendicular distance can be calculated by taking average of

Zw and Zh,

27

Z =
Zw + Zh

2
=

fxW

w′ + fyH

h′

2
(2.6)

From equation 2.4, the 3D location (X, Y) of projected 2D point (x
′
, y

′
)

can be obtained as,

X =
x

′ − cx
fx

Z

Y =
y

′ − cy
fy

Z

(2.7)

The midpoint of bounding box on the image frame cane be calculated as,

x
′

mid =
x

′
max + x

′
min

2

y
′

mid =
x

′
max + x

′
min

2

(2.8)

Combine equation 2.8 and equation 2.7, relative distance between the mid-

dle of the object and the camera lens in x and y direction can be calculated,

Xmid =
x

′

mid − cx
fx

Z

Ymid =
y

′

mid − cy
fy

Z

(2.9)

Relative position between the object and the camera lens can be obtained

as (Xmid, Ymid, Z). Notice that Z, the perpendicular distance to the camera,

would not be correctly estimated if the third assumption, that the target’s

visible size does not change much during the detection, is violated.

2.6 Camera Calibration

In Section 2.5, equation 2.3 gives the mapping from 3D coordinates (X, Y ,

Z) in SI units with respect to camera lens to 2D coordinates on the image

frame (x
′
, y

′
) in pixels based on the assumption that no distortion is on the

image frame. However, as shown in Figure 3.16, the image frame from the

onboard has observable distortions, i.e. curving the edges of the closet. In

order to calibrate this distortion, the OpenCV built-in plumb-bob distortion

28

model, also known as the Brown-Conrady model [49] is used. The calibration

process is conducted in ROS as detailed in Section 3.2.3.1.

Plumb-bob model calibrates the distorted image frame coordinate (xd, yd)

to rectified image frame coordinate (x, y) by [48],

r2 = x2
d + y2

d

x = xd(1 + k1r
2 + k2r

4 + k3r
6) + 2p1xdyd + p2(r2 + 2x2

d)

y = yd(1 + k1r
2 + k2r

4 + k3r
6) + p1(r2 + 2y2

d) + 2p2xdyd

(2.10)

where k1, k2, k3 are radial distortion coefficients caused by wide angle lens, p1

and p2 are tangential distortion coefficients caused by the lens plane not being

perfectly parallel to the imaging sensor plane. Notice that (xd, yd) and (x, y)

are in SI units.

Radial distortion coefficient, tangential distortion coefficients, intrinsic cam-

era matrix K and projection matrix P can be obtained by performing camera

calibration process as detailed in Section 3.2.3.1. Notice that the projection

matrix P in the .yaml file shown in Section 3.2.3.1 is used to project 3D coor-

dinates to calibrated 2D coordinates on the image frame [50].

2.7 Uncertainty Measurement

Uncertainty measurement is performance to evaluate the accuracy of measured

distances by Vicon camera system, camera calibration matrices and length

measurements using a ruler. Two types of errors are considered for uncertainty

analysis: random and bias errors. Random error is the difference between the

measured values of a repeated measurement. Bias error is the offset between

the actual value and measured value [51]. In this thesis, bias error is caused by

observation of metrics on a ruler when measuring the dimension of the Parrot

ARDrone 2.0’s indoor hull. Random error occurs in Vicon camera system

measurements and camera calibrations.

From Section 4.6.0.1 and Section 4.6.0.2 discussing uncertainties in Vicon

camera system and camera calibration, it can be seen that the distribution of

29

the samples are very close to normal distribution. The uncertainty for normal

distribution can be calculated as [52] [53],

U = z∗
σ√
N

σ =

√∑N
i=1(xi − x)2

N − 1

(2.11)

where z∗ is critical value defining the boundaries of the acceptance region [54].

z∗ value depends on the confidence interval [55]. σ is standard deviation of

measured dataset, N is the number of measurements, xi is each measurement

and x is the average of the measurements [56].

Student’s t-distribution is used instead of normal distribution when the

sample size is small [57], i.e. if the sample size is less than 30. If the sample size

is large, t-distribution is similar to normal distribution [58]. The uncertainty

calculation is similar to equation 2.11,

U = t
σ√
N

σ =

√∑N
i=1(xi − x)2

N − 1

(2.12)

where t is critical value for Student’s t-distribution. It depends on the degree

of freedom and confidence interval [59].

In order to calculate the uncertainties in side, height and depth distance

estimation, Monte Carlo method is used. Monte Carlo method introduces the

idea of random sampling to investigate uncertainty [60]. In equation 2.6 and

equation 2.9, it can be obtained that the uncertainties comes from camera

and projection matrices and measurement on height and width of the Parrot

ARDrone 2.0. 1000 random samples are simulated on measurements of height

and width of the UAV as well as fx, fy, cx and cy in camera matrices and

projection matrices. One detection result of bounding box is used to calcu-

lated uncertainty. The Matlab code for Monte Carlo Simulation is shown in

Appendix A.5.

30

Chapter 3

Experimental Tools

3.1 Overview

In this chapter, the hardware and software involved in the research are dis-

cussed. The Vicon Vero camera system is used to measure the true relative

distance between the target drone and the tracking drone, both being the

Parrot AR.Drone 2.0. A Nvidia GTX 1080 Ti GPU is used for acceleration

of deep learning frameworks. The Robot Operating System (ROS) used to

interface between the drones and ground computer is introduced. The Tracker

3 software processes the data from the Vicon Vero cameras. Other software

including AR.FreeFlight 2.0 to control drone flight, TensorFlow and Darknet

APIs to perform UAV detection and Matlab to process data are also discussed.

3.2 Hardware Tools

3.2.1 Vicon Motion Capture System

3.2.1.1 Layout of Vicon System Setup

Vicon is a motion capture system originally developed by Oxford Metrics in

Oxford, England. Vicon has two types of cameras, namely the Vero and Van-

tage models [61] [62]. The Vantage is a high-end model which can be used

outdoors, while the Vero is more affordable and only usable indoors. Due

to the fact that the experiments conducted in this thesis are all in a lab en-

vironment, Vero cameras were used. The accuracy of 0.003 cm uncertainty

in measurements (Vicon measurement uncertainty analysis is detailed in Sec-

31

tion 4.6.0.1), low latency of 3.6 ms [63] and high frame rates of 330 fps [63] of

Vero camera make it sufficient for capturing the motion of Unmanned Aerial

Vehicles (UAV) in this thesis.

For the purpose of our project, the Vero cameras are mounted on lab walls

as shown in Figure 3.1.

Figure 3.1: Picture of Vicon Cameras Fixed to Wall

Fixing the cameras on the wall provides stable tracking capability for ex-

perimental tests. Also, this saves time since the cameras do not need to be

re-calibrated after setup. However, camera calibration is still periodically re-

quired to maintain optimal performance. The full set of cameras in the lab

are illustrated in Figure 3.2. This setup defines the area that an object can be

detected.

32

Figure 3.2: Vicon Camera Layout in the Lab

The green icons on the screen are the locations of the camera in the lab.

The black and white grids are the valid capture area of the camera setup.

Information from the Vicon cameras is transferred to a lab computer through

individual Ethernet cables connected to a central gigabit Ethernet router.

3.2.1.2 Vicon System Vero Cameras and Markers

Vicon cameras need to be calibrated after they are fixed in place and anytime

one of them is moved in order to provide accurate positioning performance.

The wand used for calibration is shown in Figure 3.3. The LED lights on the

wand in the figure are detected by the Vicon cameras as the wand is swung

around the capture volume of the lab.

Figure 3.3: Vicon System Active Calibration Wand

33

Vicon Vero v2.2 cameras are employed in our lab. Videos are captured with

2.2 MP (2048 * 1088) resolution at 330 frames per second (FPS). This gives

good and smooth motion capture performance. The cameras are equipped with

a 6.5 - 15.5 mm varifocal lens, 44.1 * 23.6°(Horizontal * Vertical) for minimum

standard field of view (FOV) and 98.1 * 50.1°for minimum wide FOV. Camera

latency of 3.6 ms provides very low time delay in the system [63]. A picture

of the Vero camera is shown in Figure 3.4. There are three rings on the

Vicon Vero camera for adjusting zoom, aperture and focus. A good optical

adjustment of the Vero camera results in the passive optical markers being

recognized by the system.

Figure 3.4: Vicon System Vero Camera

Passive reflective markers are illuminated by infrared (IR) strobes on the

Vicon cameras and recognized by the Vicon system. By attaching a set of

markers to an object, its set of detected markers can be defined as a rigid

body in the Vicon tracker software. Examples of UAVs with markers and their

representation within the Tracker software are shown in Figures 3.5 and 3.6.

The two UAVs have different combinations of markers to identify themselves

as a tracking and target UAV.

34

Figure 3.5: Black UAV with Marker Attached and its Representation in Vicon
Tracker

Figure 3.6: White UAV with Marker Attached and its Representation in Vicon
Tracker

3.2.1.3 Vicon Vero Camera Calibration

The Vicon motion capture system is capable of estimating optical marker

positions with an uncertainty of 0.003 cm in lab environment with the setup

as shown in Figure 3.2. Discussion on Vicon system measurement uncertainty

is detailed in Section 4.6.0.1. This allows it to be used as a ground truth in

experimental UAV testing.

In order to provide this level of accuracy, the system needs to be calibrated

every time the cameras are moved or disturbed. The wand shown in Figure 3.3

with active LED lights is placed on a floor landmark illustrated in Figure 3.7.

For consistency, this landmark is used as the universal origin for all data

collection experiments. The T-section of the landmark can guide the wand to

35

the same place when setting the origin. The calibration is performed within

the Vicon Tracker software.

Figure 3.7: Landmark for Vicon Vero System

Lack of calibration is manifested in a number of ways. Compared with

Figure 3.8, it could be seen in Figure 3.9 that the wand is not fully seen by

the Vero cameras. There are also stray reflections which show up as white

dots as seen in Figure 3.10. Both these factors will degrade the performance

of the position estimates. The world frame is also set randomly as shown in

Figure 3.11.

36

Figure 3.8: Wand Markers after Adjusting Vero Cameras

Figure 3.9: Poorly Detected Wand

37

Figure 3.10: Stray Reflections in View of Cameras

Figure 3.11: 3D View Before Defining Origin

To calibrate the camera system, Vicon Vero cameras need to be adjusted to

recognize the wand properly. As introduced in Section 3.2.1.2, zoom, aperture

and focus can be adjusted by twisting the rings on the camera. The camera

3D view of the wand from a well-adjusted camera are shown in Figure 3.12,

all the markers are recognized correctly.

38

Figure 3.12: Wand is 3D View from Well-adjusted Camera

Reflections which appear as white dots on the ground can be eliminated

by adding a “mask” to the camera view. This manually eliminates any white

reflections seen by the camera when no optical markers are present. The

masking process needs to be performed when the wand is out of the view of

camera system. Otherwise, the wand’s marker positions will be incorrectly

masked out by the Tracker software.

Once the static calibration is done, the wand needs to be manually moved

around the capture volume in order to calibrate the cameras’ triangulation

of markers. During this stage, the Vero camera indicator LEDs are red in

colour. Once the calibration is complete these lights turn purple. Figure 3.13

shows the UI of Tracker3 for the wand calibration phase. Trajectory of the

calibration wand is represented in the camera views and error of each camera

during calibration process is displayed on the left bottom corner.

39

Figure 3.13: Vicon Vero Camera Calibration Process

Once a sufficient number of data points are captured in the wand cali-

bration process, Tracker can perform the calibration of the motion capture

system. A typical layout of this process is shown in Figure 3.14, the process

bar will reach 100 % to indicate the completion of calibration. The green

background in the error section shows that the motion capture system will

deliver satisfactory positioning performance. Table 3.1 lists the numbers ob-

tained following a calibration, indicating the errors achieved by each camera.

Due to the fact that each camera receives different poses of the wand during

calibration process as shown in Figure 3.13, the errors are not the same for

every camera. For the purpose of this thesis, world errors around 0.2 mm are

considered sufficiently good for running UAV experiments.

40

Figure 3.14: Camera View after Calibration

Table 3.1: Camera Calibration Feedback

Camera Wand Count World Error
(mm)

Image Error
(px)

1 (Vero v2.2) 1799 0.187225 0.0601539
2 (Vero v2.2) 1522 0.144902 0.0409097
3 (Vero v2.2) 1078 0.148984 0.0469451
4 (Vero v2.2) 1530 0.226449 0.0658557
5 (Vero v2.2) 1227 0.189931 0.0708165
6 (Vero v2.2) 1319 0.185475 0.0564809
7 (Vero v2.2) 1336 0.224614 0.0682547
8 (Vero v2.2) 1482 0.195843 0.0855455
9 (Vero v2.2) 1002 0.123955 0.059924
10 (Vero v2.2) 2136 0.165665 0.0462446

The world frame needs to be placed such that a consistent coordinate

system is used for each set of experiments. The calibration wand is thus

placed on the landmark on the floor shown in Figure 3.7. Tracker then places

the origin of the world frame at this location.

41

3.2.2 Graphics Processing Unit (GPU)

There are two pieces of hardware in a computer for processing information,

namely the Central Processing Unit (CPU) and Graphics Processing Unit

(GPU). The CPU is designed for general computations. It is optimized for

fast complex calculations due to its cores working at high frequencies, i.e. up

to 5.0 GHz for an Intel I9 processor [64]. However, deep learning requires

massive data processing in parallel [65]. A GPU is better at handling this

due to its large amount of computing cores allowing parallelization of the

calculations. Typically, a consumer class CPU has 8 to 12 computing cores,

while a GPU can have upwards of 3000 computing cores [26] [64]. As a result,

deep learning on a GPU can be accomplished well over 50 times faster than

on a CPU [12].

This thesis employs two types of deep learning frameworks, Darknet and

TensorFlow. The speeds of Darknet and TensorFlow depend heavily on the

hardware they run on as GPUs can provide more computation cores than

CPUs. To achieve real-time detection, a performance of at least 10 FPS is

required. A GTX 1080 Ti CUDA-based graphics card built by Aorus is used to

run Darknet and TensorFlow on the lab computer. This card has 3584 Nvidia

CUDA cores with boost clock speed of up to 1746 MHz, 11 GB GDDR5X

memory with 352-bit interface width and 494 GB/s bandwidth [26]. The

technical specification of a GTX 1080 Ti may have minor differences depending

on the manufacturer. A laptop-class Nvidia GTX 1060 GPU is used for data

collection tasks, i.e. extracting bounding box information. It has 1280 Nvidia

CUDA cores with boost clock speed up to 1708 MHz, 6 GB GDDR5 memory

with 192-bit interface width and 192 GB/s bandwidth [66].

3.2.3 Parrot ARDrone 2.0

Parrot ARDrone 2.0 is a lightweight UAV drone designed for both indoor

and outdoor flights[67]. It has a 720P (1280*720) onboard front camera with

92°diagonal angle capturing video at 30 fps [47]. The camera transmits the

video feed via a Wi-Fi connection to a tablet, smart phone or computer. A

42

1500 mAh Lithium-Polymer (LiPo) rechargeable battery provides around 12

minutes of flying time. Parrot ARDrone 2.0 comes with an ARM Cortex A8

1 GHz 32-bit processor running Linux and a video Digital Signal Processor

(DSP) running at 800 MHz [5]. An ultrasonic altimeter is located at the bot-

tom of ARDrone 2.0 monitoring distance between the drone and any object

beneath it using an emission frequency of 40 kHZ [67]. Other sensors include

a 3-axis gyroscope, 3-axis accelerometer, 3-axis magnetometer and a barome-

ter. Each propeller is driven by a brushless 14.5 W in-runner motors running

at 28500RPM [47]. LED lights are located under each propeller to indicate

the status of the drone; detailed information on their meanings are listed in

Table 3.2 [67].

Table 3.2: AR.Drone 2.0 LED Light Indications

LED Light Condition Indication
4 LED lights are all red Power is connected but there is a

problem with the drone
4 LED lights are all green Drone is ready for takeoff
2 LED lights are green, other two
are red

Used to distinguish front and
back while flying

LED lights flash one after another Motors initiating

Hulls with or without guard rings are attached to the drone before flight

for indoor and outdoor use respectively. The AR.FreeFlight 2.0 application

to pilot and monitor the Parrot ARDrone 2.0 is available on both iOS and

Android. The set of ARDrone 2.0 parts is shown in Figure 3.15. The hull with

markers is attached to the UAV so that it can be recognized by Vicon camera

system.

43

Figure 3.15: Parrot ARDrone 2.0 and Indoor Hull

3.2.3.1 Parrot ARDrone 2.0 Onboard Camera Calibration

The Parrot ARDrone 2.0 is equipped with an onboard wide-angle monocular

camera causing barrel distortion as shown in Figure 3.16. The closet in the

background is presented with curve on its edges and the metal rod on the right

hand side is also curved. In reality, all these edges should be straight.

Figure 3.16: Unrectified Camera View

To rectify this distortion, the camera needs to be calibrated. A ROS pack-

age based on OpenCV’s camera calibration module provides a tool to do this.

A 5 * 7 chessboard with 0.032 * 0.032 m squares is printed for camera cal-

ibration. The ROS package identifies the chessboard in the camera frames,

and provides visual feedback in the form of markers as shown in Figure 3.17,

the connection points are marked as data points and perceived for calibration.

By manually moving and tilting the chessboard, data points are collected by

44

the ROS package. Once all the shown indicators, namely x, y, size and skew,

turn green, the system has sufficient data points to calculate the calibration

parameters of the camera. The number of data points collected by ROS pack-

age for calibration is not limited. However, excessive number of data points

may cause the package to crash.

Figure 3.17: Marker Visual Feedback on Chessboard

Following the calibration process, a rectified view of the scene in Figure 3.16

is shown in Figure 3.18. The metal rod on the right hand side is straight after

calibration, the bottom of the closet is straight, however, the top right part

of the image is still distorted. The calibration process is a one-time process,

meaning that after a calibration is done, ROS will load the same calibration

file to calibration the camera for further operations.

45

Figure 3.18: Rectified Camera View

A side by side comparison of an image before and after calibration can be

seen in Figure 3.19. It can be seen that the calibration gives good rectification

in vertical, however, it still has distortions in horizontal, especially on the top

right part of the image.

Figure 3.19: Comparison of an Image before and after Calibration

The reason that the calibration is not perfect in all the directions of the

images is the limitation of the hardware. The ROS driver for Parrot ARDrone

2.0 limits the resolution to 640 * 360 instead of native 720P in order to achieve

low latency in video transportation over Wi-Fi. This low resolution results in

poor precision of calibration. The size option in Figure 3.17 never reaches full

scale because the camera cannot identify the checkerboard when it is placed 2

meters away from the lens. Also, the size of the squares on the checkerboard is

3.2 cm * 3.2 cm, however, camera calibration package only acceptable integers,

i.e. we have to input 3 cm * 3 cm instead of 3.2 cm * 3.2 cm. All these factors

affect the output of the calibration.

46

Although the calibration is not perfect, it still gives good calibration in

most part of the image, i.e. in Figure 3.18, only the top right corner of the

image has pincushion distortions. Most importantly, it requires little compu-

tational power and gives desirable speed for real-time tasks when working with

deep learning networks which requires intense computational power.

The camera calibration parameters can be saved to a .yaml file and used

in subsequent experiments. The calibration file containing camera matrix,

distortion coefficients, rectification matrix and projection matrix used for this

thesis is shown below. The file needs to be loaded every time the system

restarts.

image_width: 640

image_height: 360

camera_name: ardrone_front

camera_matrix: K

rows: 3

cols: 3

data: [568.0748474282261, 0, 330.5770829093369, 0,

↪→ 568.7139402113011, 193.6023640202218, 0, 0, 1]

distortion_model: plumb_bob

distortion_coefficients: D

rows: 1

cols: 5

data: [-0.5521437396858673, 0.2841312811070593,

↪→ -0.0050346665442643, 0.006753347352338298, 0]

rectification_matrix: R

rows: 3

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix: P

rows: 3

cols: 4

data: [449.2703857421875, 0, 344.3868504957354, 0, 0,

↪→ 534.8646850585938, 194.3035218322311, 0, 0, 0, 1, 0]

The pipeline of ROS camera calibration package is detailed as follow-

ing [50]. ROS transforms the distorted raw video through the inverse of camera

matrix K, changing the units of the coordinates on the images from pixels to

SI units. The scaled coordinates are run through plumb-bob distortion model

with distortion coefficients in distortion matrix D to rectify the distorted co-

47

ordinates. Rectification matrix is only applied for stereo cameras, it does not

do anything here as the onboard camera is a monocular camera. Finally, pro-

jection matrix P is used to change the calibrated coordinates from SI units to

pixels.

3.3 Software

In this Section, software used in this thesis is described.

3.3.1 Robot Operating System (ROS)

The Robot Operating System (ROS) is an open-source, meta-operating sys-

tem designed for robotics built on top of Linux [68]. It supports robots such as

jackal unmanned ground vehicle, Parrot ARDrone 2.0 used in this thesis, etc.

ROS is designed to run on Ubuntu Linux, however it can also run on top of

other Debian-based distributions and potentially on Apple OS X as well [69].

However, running in OS X is still an experimental feature. Three important

structures in ROS are nodes, topics and messages. Nodes are executable mod-

ules which realize specific functions. Messages are classes of data sent between

nodes. Different types of messages from a single node are organized into groups

called topics [68]. Topics are published by a node and can be subscribed to

by another node if desired. A topic can be subscribed to by multiple nodes at

the same time.

One advantage of ROS is that it supports various programming languages

including C++ and Python. This allows porting codebases such as OpenCV

into ROS where they are run through a software wrapper. An example of

custom Python wrapper used is can be found in Appendix A.1.

For this thesis, ROS Kinetic is used running on top of Ubuntu 16.04. ROS

support for Parrot ARDrone 2.0 was obtained from the ardrone autonomy

ROS driver available on GitHub, which supports this ROS distribution.

48

3.3.2 CUDA

CUDA is a programming platform for using GPUs developed by Nvidia [70].

Certain applications, for example, TensorFlow and Darket, can run over 50

times faster on GPUs supported by CUDA than on a CPU or other GPUs

without CUDA support [12]. The main advantage of CUDA is that it auto-

matically handles the back-end details of parallelizing computations and com-

bining the results [65]. The thousands of cores on a GPU versus a traditional

CPU with 8 cores makes it much more efficient for computations such as deep

learning. Figure 3.20 illustrates CUDA work flow chart. It can be obtained

that the CUDA core works in parallel to compute information.

Figure 3.20: CUDA Work Flow Chart

3.3.3 Tracker

Tracker is a software developed by Vicon for tracking objects using optical

markers captured by Vicon’s cameras. The software can process data with a

latency of 1.5 ms at more than 500 fps [71]. Camera calibration and rigid body

object tracking is performed by this software as discussed in Section 3.2.1.2.

As shown in Figure 3.21, Tracker can display the position of a logged rigid

body from the Vero cameras for visualization convenience, the list of logged

rigid bodies are listed in the right.

49

Figure 3.21: Position of a Rigid-body (UAV) in Tracker

3.3.4 AR.FreeFlight 2.0

AR.FreeFlight 2.0 is an application available on iOS and Android. This appli-

cation provides various functions including piloting, recording the video from

the onboard camera view, and setting the flight parameters such as speed limit,

rotation limit, tilt angle limit, etc. This application is used to pilot the target

UAV to do various flying patterns.

3.3.5 Vicon Bridge

Tracker introduced in Section 3.3.3 provides real-time tracking information

about defined rigid bodies within view of the cameras. However, the current

version of Tracker as of the day this thesis is written only runs on Windows

10 x64. Experiments in this project required to record pose information about

the tracking UAV and target UAV from Tracker while running object detection

UAV control modules on a Linux computer with ROS. This would require at

least two people working at the same time to perform an experiment. A second

problem would be the difficulty of matching the time indices between the two

computers.

Vicon Bridge is a ROS package which allows streaming Tracker-produced

data as a ROS topic. This solves the issue of synchronizing the time stamps of

the Vicon information with the object detection modules, since both employ

the same ROS timing clock. This also provides the ability to perform real-

50

time pose data processing in a ROS environment. For instance, Vicon Bridge

can output the relative position between target UAV and tracking UAV, while

Tracker can only output their individual poses.

3.3.6 OpenCV

Open Source Computer Vision (OpenCV) is a library of functions mainly

used for real-time computer vision applications [72]. OpenCV is a free cross-

platform library fist developed by Intel in 1999. It is now used in various deep

learning frameworks including Caffe, TensorFlow, Torch and Darknet. The

older Cascade Classifier algorithm is also supported in OpenCV. However,

supports for APIs may not always be stable across different distributions of

operation system. For instance, cascade classifier is not stable when testing

object detection in Ubuntu 16.04 and ROS Kinetic with default OpenCV 3

library.

3.3.7 Matlab

Matlab is a numerical computing environment which provides a large num-

ber of mathematical functions and data visualization tools. It also provides

a numerical simulation environment and a wide variety of field-specific tool-

boxes. There are object detection APIs available within Matlab which could

potentially work for object detection task in this thesis [73]. However, they

are not usually at the cutting edge, and slower than implementation of other

programming languages such as C++ [74]. Thus, only the Linux-based Ten-

sorFlow and Darknet frameworks are used for object detection. Matlab is

mainly used to implement the offline algorithms for depth estimation intro-

duced in Section 2.5, accuracy calculation, Darknet object detection system

training visualization and error calculation.

3.4 Experiment Summary

In this section, a summary of the experimental setup is presented in Fig-

ure 3.22. Parrot ARDrone 2.0 is used as both target and detect UAV. From

51

its onboard camera, the location of a target drone can be presented as a bound-

ing box given by object detection systems. The detecting Parrot ARDrone 2.0

is connect to a lab computer for video processing, camera feed is presented

as a topic in ROS and subscribed by object detection systems. By using the

equations introduced in Section 2.5 and Section 2.6 for Plumb-bob camera

calibration model built in OpenCV, the relative position of the two UAV can

be calculated. The target UAV is piloted by AR.FreeFlight 2.0 on an Android

tablet. Object detection systems are running on a GTX 1080 Ti GPU. Vicon

camera system gives ground-truth location information of the two UAVs via

Tracker and publishes the positions as a ROS topic using Vicon Bridge. Vi-

con Bridge gives real-time relative positions of the two UAVs as comparisons

against detection results.

Figure 3.22: Experimental Setup Summary

52

Chapter 4

Experimental Results

4.1 Overview

Using the drone’s onboard monocular video camera, 2D bounding boxes for a

detected drone can be obtained in a 2D plane, allowing direct tracking of hor-

izontal and vertical motion of the target. However, motion in the depth (into

the plane) axis cannot be measured directly. In order to track the detected

target drone in 3D, an algorithm was derived in Section 2.5 to transform 2D

bounding box information in pixels into 3D positions in SI units.

In this Chapter, the performances of the studied object detection APIs,

namely YOLO v2, tiny YOLO, SSD MobileNet v1, SSD Inception v2 and

Faster RCNN Inception v2, are compared for efficiency, accuracy and consis-

tency. Pose data from Vicon Vero camera system are used as the ground truth

for the various object detection APIs. A trial drone flight captured by the

Parrot ARDrone’s onboard camera is recorded to a ground computer while

Vicon bridge interface logs the poses of both UAVs. The recorded videos are

then fed through the various object detection systems, and their detection re-

sults are compared against the Vicon logged data to assess their accuracy and

consistency. Efficiency is tested by comparing the individual object detection

systems’ training time and running speed. In order to have a fair compari-

son, all training is conducted with the same set of images and the detection

APIs are run on the same hardware platform, whose specifications are listed

in Table 4.1.

53

Table 4.1: Lab Computer Specifications

Computer Component Specification
CPU Intel I7-8700K @ 3.70 GHz
RAM 32 GB DDR4-2666MHz
GPU Nvidia GTX 1080Ti
Storage 2TB HDD 7200 rpm

4.2 Object Detection API Training

4.2.1 Overview

In this Section, the training efficiency of each object detection API is tested

and compared. In order to make the comparison fair, all of the object detection

APIs are trained on the same set of 1750 images and on the same computer

whose specifications were listed in Table 4.1. The images were taken from

videos recorded by a tracking UAV hovering and the target drone controlled

to fly in different poses in the lab. Location of the target UAV is labelled

manually as the ground-truth for training purpose. However, the batch size

configuration for each API is customized to maximize its training efficiency.

Batch size is a setting that controls the size of the data set being processed

at each training step and affects the overall efficiency of training process [75].

Low batch size results in overly long training times, while setting the batch

size too high leads to system crashes due to excessive resource demands.

The TensorFlow object detection APIs, namely SSD MobileNet v1, SSD

Inception v2 and Faster RCNN Inception v2 come with convolutional weights

pre-trained on the COCO (Common Objects in Context) dataset [76], a large

(328k) set of images of common objects together with classification, localiza-

tion and segmentation information of each. However, despite the pre-trained

weights, the APIs were found to be poor at detecting the Parrot ARDrone 2.0.

For this reason, further training of the COCO-derived weights was required.

Note that training of the TensorFlow object detection APIs from scratch is

possible, this would require an enormous amount of computation time.

The Darknet framework object detection APIs, namely YOLO v2 and tiny

YOLO were trained in VOC format due to the fact that only pre-trained

54

weights on VOC dataset are available for YOLO v2 and Tiny YOLO by the

time they were trained for experiments. However, it could not detect anything

when YOLO v2 trained from a pre-trained weight caused by overfitting. Tiny

YOLO did not exhibit this problem and worked fine training from a pre-trained

weight. For fairness of comparison with YOLO v2 and TensorFlow APIs, a

fully customized dataset is used for training. YOLO v2 and Tiny YOLO are

significantly faster compared to the TensorFlow-based APIs on both train-

ing and detection as shown in this Section and Section 4.3. The efficiency

of YOLO v2 and tiny YOLO make it possible to train from scratch. Anno-

tations and training files are treated the same way for VOC dataset, which

are interchangeable with COCO dataset and would give the same detection

result if trained using COCO’s format from scratch as well. The same dataset

(1750 images) was used to train YOLO v2 and Tiny YOLO as that for SSD

MobileNet v1, SSD Inception v2 and Faster RCNN Inception v2 to provide a

consistent comparison.

4.2.2 TensorFlow APIs Training

The training process of SSD MobileNet v1 was finished in 37 hours and 40

minutes. Tensorboard was used to monitor the training process. Training

went through 200k steps with a batch size of 42. Figure 4.1 illustrates the

curve of loss function of the training process.

Figure 4.1: SSD MobileNet v1 Total Loss

55

Loss function is detailed in Section 2.2. The loss curve is spiky which makes

it difficult to read the trend. Curve smoothing was conducted using a built-in

feature of Tensorboard to add a low pass filter, resulting in the curve shown

in Figure 4.2.

Figure 4.2: SSD MobileNet v1 Total Loss after Filtering

It can be seen that the total loss stabilizes and converges to 2.00. Table 4.2

lists the training parameters for SSD MobileNet v1, as well as SSD Inception

v2 and Faster RCNN Inception v2. The loss curves of the latter two are shown

in Appendix B.1.

It can be seen from the plots that the training processes completed with

a converged loss curve using the default 200k step setting. Among the con-

verged total loss values, Faster RCNN Inception v2 had the lowest at 0.05.

Thus Faster RCNN Inception v2 can be expected to have the best detection

performance among the three TensorFlow object detection APIs. Detailed

results are listed in Table 4.2.

Table 4.2: TensorFlow Object Detection API Training Settings

TensorFlow Object
Detection API

Steps Batch
Size

Training
Time
(hr)

Converged
Total
Loss

SSD MobileNet v1 200k 42 37.67 2.00
SSD Inception v2 200k 24 21.43 2.00
Faster RCNN Incep-
tion v2

200k 1 5.6 0.05

56

4.2.3 Darknet APIs Training

The training process of YOLO v2 finished in 14 hours and 30 minutes. The

loss curve is shown in Figure 4.3.

Figure 4.3: YOLO v2 Total Loss

Figure 4.3 illustrates the overall trend of the loss curve of YOLO v2 train-

ing. It can be seen that the total loss converges to a certain value, meaning

the training is successful. However, due to the initial loss value of 274.6, it is

hard to identify the converged loss value. In order to visualize the trend of the

trend better, the figure is zoomed and smoothed as shown in Figure 4.4.

57

Figure 4.4: Zoomed and Smoothed YOLO v2 Total Loss

Figure 4.4 shows a zoomed-in and smoothed version of the loss curve. It

can be seen that the total loss curve converges to 0.55. Table 4.3 lists the

training parameters of both YOLO v2 and Tiny YOLO. The value of batch

size divided by subdivision is the actual information feeding rate. Table 4.4

gives the actual batch size and subdivision settings used. Loss curve as well

as zoomed and smoothed of Tiny YOLO can be obtained in Appendix B.1.

Table 4.3: Darknet Object Detection API Training Settings

Darknet Object
Detection API

Steps Batch
Size/-
Subdivi-
sion

Training
Time
(hr)

Converged
Total
Loss

YOLO v2 45000 8 14.5 0.55
Tiny YOLO 40200 16 9.33 0.93

Table 4.4: Batch Size and Subdivision Settings of Darknet API Training

Darknet Ob-
ject Detection
API

Batch Size Subdivision

YOLO v2 64 8
Tiny YOLO 64 4

58

4.3 Object Detection Experimental Results

In this Section, the performances of each object detection system are evalu-

ated. Three factors are considered to be the determinants when evaluating

the performance of object detection systems: running speed, accuracy and

consistency.

Running speed evaluates the efficiency and feasibility of an object detection

system. An important part of UAV tracking is to acquire real-time target

position information from the detection system. To qualify the requirement

of “real-time”, at least 10 fps detection should be achieved. Notice that all

the detection tests are run on a full-tower computer with a GTX 1080 Ti

GPU. The running speed could vary dramatically with a different model of

GPU, for instance, YOLO v2 runs 71 fps on the GTX 1080 Ti used in lab

while only runs around 25 fps on a GTX 1060. Lower frame rates could be

expected when running on a smaller form factor and lower-power GPU such

as the Nvidia Jetson TX2 with only 256 CUDA cores [77].

Accuracy is evaluated by taking the root mean square (RMS) error between

the detected location given by the object detection system and the actual loca-

tion from the Vicon motion-capture system. This is the most important part

of the performance evaluation process. Accuracy is tied to the detection algo-

rithm of an object detection API and cannot be easily optimized by upgrading

hardware or changing the code parameters.

Consistency is measured by the capture rate of a target by the object de-

tection system. It is inevitable for a detection system to lose the target over

a complex background from time to time. Consistency indicates the perfor-

mance of an object detection system in a complex working environment. To

compensate for loss of feedback from the detection system when the target is

lost, a tracker such as Re3 or a Kalman Filter could be implemented. These

two methods are beyond the scope of this thesis and will only be briefly in-

troduced. Throughout this Section, the Average Precision metric introduced

in Section 2.4.2 is used to evaluate the consistency of the object detection

systems.

59

Tests of the object detection systems include the differences between the

object detector’s estimated position and the Vicon motion capture system in

the side(x), height(y) and depth (z) axes. Both rectified and raw video feeds

as illustrated in Section 3.2.3.1 from the onboard camera are processed by

the Darknet object detection APIs in order to assess the impact of camera

calibration. Due to the poor running speed of TensorFlow APIs in ROS, only

raw video feeds are processed to save computational power. Further tests and

optimizations of TensorFlow-based APIs are expected in the future.

4.3.1 Running Speed

Running speeds of different object detection systems are tested on a lab com-

puter with the specifications given in Table 4.1. Running speeds in both

“native” Linux and in ROS are compared. From the testing, all TensorFlow

and Darknet APIs run faster on Linux than in ROS. This is expected as ROS

is an operating system running on top of Linux. As shown in Table 4.5,

Tiny YOLO and YOLO v2 are qualified for real-time tasks in both Linux

and ROS. TensorFlow-based APIs SSD MobileNet v1, SSD Inception v2 and

Faster RCNN v2 are only qualified for real-time performance in Linux. Notice

that the ROS wrapper for TensorFlow is self-developed in Python as shown

in Appendix A.1. This leads to the limitation on the speed of TensorFlow in

ROS.

Table 4.5: Object Detection Systems Speed Comparison

Object Detection API Speed in
Linux (fps)

Speed in ROS
(fps)

SSD MobileNet v1 188.35 2.72
SSD Inception v2 107.32 1.98
Faster RCNN v2 21.25 1.97
YOLO v2 71.11 67.30
Tiny YOLO 140.51 73.80

4.3.2 Accuracy

In this Section, detection results of a target UAV as shown in Figure 3.6 from

SSD MobileNet v1, SSD Inception v2, Faster RCNN v2, YOLO v2 and Tiny

60

YOLO are compared against Vicon motion capture system data in the side

(x), height (y) and depth (z) directions. Root mean square error (RMS Error)

is used to evaluate the performance of the detection results.

Eight trials are conducted to collect data. A white curtain is used to

provide a simple background for the object detection systems to capture the

target UAV as the best case scenario as shown in Figure 4.5. The unrectified

camera view is shown on the left and the rectified camera view is shown on the

right. There is very little noise in the background and good detection results

can be expected.

Figure 4.5: White Curtain Setup

In order to get more realistic testing conditions, a more complicated back-

ground is also used for detection tasks as shown in Figure 4.6. Both the

unrectified and rectified camera view is shown in Figure 4.6.

Figure 4.6: Complex Background Setup

There are similar patterns to the UAV presented in the background such as

an indoor UAV hull sitting on the middle part of the bench and the rectangular

sized shapes can also confues the detection system with a real target UAV.

TensorFlow APIs are trained with unrectified images recorded from the

onboard camera. This is the image dataset used for training comparison in

Section 4.2. Notice that the CNNs used for TensorFlow and Darknet APIs

61

could detect target drone in rectified images as well despite the fact that it

is trained with unrectified images. Both rectified and unrectified (raw) video

streams are processed by the object detection systems to test the impact on

accuracy from camera calibration. YOLO v2 and Tiny YOLO are trained

with both unrectified (the same dataset as TensorFlow) and rectified images

to provide more comparisons in experimental testing. Due to the fact that

YOLO v2 and Tiny YOLO qualifies the speed for real-time detection, they

are more likely to be used for the extension of the UAV tracking project.

The comparison between detection result of unrectified and rectified training

dataset can quantify the impact of a rectified training dataset. Notice that all

the relative distance estimations from the detection results are calculated with

the three assumptions discussed in Section 2.5. Validation of the assumptions

is discussed in Section 4.5.

A systematic error analysis is used when conducting experiments. First,

two trials of simple movements in side and height directions are operated, as

this is a 2D movement which can be directly observed in the onboard camera

view. Next, two trials of back and forth movements in the depth direction

are operated. This is more difficult for detection since the onboard monocular

camera cannot give position information in the depth direction. Depth esti-

mation solely relies on the algorithm derived in Section 2.5. Next, two trials of

UAV rotations are conducted. Due to the shape of the Parrot ARDrone 2.0,

rotation of the vehicle causes the bounding box to change size. These two tri-

als of rotation movement are thus intended to test detection reliability when

the target changes yaw angle. Finally, two trials of complex flight patterns

are conducted. These two operations are intended to replicate realistic flight

scenarios. Detailed experimental results are listed in Appendix B.2.

4.3.2.1 Offset in Vicon Camera System

In Vicon camera system, the two UAV are logged as rigid bodies as shown in

Figure 3.21. Relative distances are measured from the center of one rigid body

representing a UAV to the center of the other one as shown in Figure 4.7.

62

Figure 4.7: Offset in the Vicon Camera System

However, the relative distances calculated from the bounding box using

the equations in Section 2.5 are calculating the distance between the surface

of the UAV facing the camera and the center of the lens. The rigid body

can represent the relative movement of the two UAVs, however, due to the

difference between the structure of the logged rigid and physical UAV, there

are offsets in side, depth and height directions. Vicon bridge allows to align

the center of the rigid bodies to the physical center of the UAVs in order to

eliminates the offset in the side and height direction, however, the offset in

the depth direction cannot be eliminated due to the physical structure of the

UAV.

Figure 4.8: Zero Distance in Distance Estimation

Figure 4.8 illustrates a 0 distance between the two UAV for depth distance

estimation from bounding box calculation. There are two offsets occur: the

63

offset from Vicon after aligning the center of rigid bodies in Vicon bridge

and the physical offset from the camera to the front surface of the UAV. The

calculation of the offset from Vicon depth and depth estimation using bounding

box is:

Depthoffset = Viconoffset − Physicaloffset

Viconoffset is 50.56 cm and Physicaloffset is measure to be 6.19 cm. Offset in

depth can be calculated as 44.37 cm. The distance estimation of translations

in depth direction (Z direction) before and after calibrating for the offset

from one set of the Faster RCNN Inception v2 detection results is shown in

Figure 4.9 and Figure 4.10.

Figure 4.9: Distance Estimation in Depth before Offset Calibration

64

Figure 4.10: Distance Estimation in Depth after Offset Calibration

Comparing Figure 4.9 and Figure 4.10, it can be obtained that the offset

in depth distance estimation is eliminated by offset calibration.

4.3.2.2 Root Mean Square Error (RMS Error)

Root mean square error (RMS Error) is used as an accuracy metric in this

thesis. The expressions to calculate RMS Error is shown below [78],

Errorp = Detection Datap − Vicon Datap

Root Mean Square Error =

√√√√ 1

n

n∑
p=1

(Errorp)2

where detection data is calculated from the estimated bounding box infor-

mation together with the equations derived in Section 2.5, Vicon data is used

as “true” value, n is the number of data points in each trial of the detection

tests.

The errors in the first trials of detection tests, namely pure translation in

the side, height and depth directions with white curtain background, trained

by unrectified images and detect in unrectified camera views are plotted fully

to visualize the accuracy and consistency of the object detection systems. All

65

the other errors are summarized by a single RMS value in the tables and listed

in Appendix B.2.

4.3.2.3 Camera Calibration Results

In Appendix B.2, RMS errors between distance estimations from bounding

boxes of object detection systems, namely SSD MobileNet v1, SSD Inception

v2, Faster RCNN Inception v2, YOLO v2 and Tiny YOLO, and Vicon system

data in side, height and depth directions are listed. In this Section, discussions

on the impact of camera calibration on both camera video and training dataset

are detailed.

Despite the fact that TensorFlow APIs are trained on unrectified image

dataset, object detection system can detect target UAV in both rectified and

unrectified camera videos. The percentage difference between detection re-

sults on rectified and unrectified videos are listed in Table 4.6. With positive

percentages means that more error is presented in rectified videos.

Table 4.6: Difference of TensorFlow Detection Results on Rectified and Un-
rectified Videos

Detection System Difference
in Side x
(%)

Difference
in Height
y (%)

Difference
in Depth
z (%)

Average
Differ-
ence(%)

SSD MobileNet v1 6.21 18.42 72.11 36.30
SSD Inception v2 3.85 25.74 73.59 35.70
Faster RCNN Incep-
tion v2

127 14.95 56.08 68.24

It can be obtained from Table 4.6 that all of the detection systems performs

worse on rectified videos. This is the results of insufficient training on rectified

images. Faster RCNN Inception v2 has the most difference in the detection

results.

Darknet APIs are trained with both rectified and unrectified images. YOLO

v2 is able to detect target UAV in both rectified and unrectified camera videos

with unrectified or rectified training dataset. The difference on detection re-

sults with various setup is listed in Table 4.7. With positive percentages means

that more error is presented in the later compare setup. For instance, training

66

rectified/ video unrectified vs training rectified/ video rectified giving 15.09%

indicates that the former setup has less error.

Table 4.7: Difference of YOLO v2 Detection Results with Different Setup

Setup Difference
in Side x
(%)

Difference
in Height
y (%)

Difference
in Depth
z (%)

Average
Differ-
ence(%)

Training Unrectified/
Video Unrectified vs
Training Unrectified/
Video Rectified v1

3.92 18.83 40.45 24.8

Training Rectified/
Video Unrectified vs
Training Rectified/
Video Rectified

16.51 28.68 4.61 15.09

Training Unrectified/
Video Unrectified vs
Training Rectified/
Video Rectified

80.63 94.38 1.8 28.37

It can be obtained from Table 4.7 that detection on rectified videos are

worse than the detection results on unrectified videos with both training rec-

tified and unrectified. It is reasonable that detection result is better with

training unrectified/ video unrectified setup than training unrectified/ video

rectified setup. This is because the object detection system is more familiar

with unrectified images. Ideally, training rectified/ video rectified setup should

be better than training rectified/ video unrectified setup as the object detec-

tion system is more familiar with rectified images. Training rectified/ video

rectified setup is worse than training unrectified/ video unrectified indicates

that camera calibration process introduces error in detection results. Poor

detection results of flights patterns with complex background contributes the

most to the huge increase in error. For instance, with white background, the

error difference between training unrectified/ video unrectified and training

rectified/ video rectified is 1.9 % decrease in side, 18.05 % increase in height

and 3.06 % increase in depth. With complex background, error in side in-

creases by 163.13 %, error in height increases by 170.71 % and the error in

depth increases by 0.54 %. The reason for camera calibration gives worse accu-

67

racy is that the projection matrix used to calculate the relative position is not

accurate. The uncertainties in camera and projection matrices are detailed in

Section 4.6.0.2.

Unlike YOLO v2, Tiny YOLO cannot detect anything with unrectified

training dataset. The reason can be insufficient training data or overfitting.

With rectified training dataset, Tiny YOLO is able to detect target UAV

in both rectified and unrectified camera videos. Compared to detection on

unrectified camera videos, detection on rectified camera videos is 5.01 % worse

in distance estimation on side x axis, 9.66 % worse on height y axis and 1.5

% better on depth z axis. Overall, the average of the distance estimations on

x, y and z axes are 1.53 % worse with rectified camera videos. The reason for

the training rectified/ video rectified setup to be worse is the same as YOLO

v2 and detailed in Section 4.6.0.2.

4.3.2.4 Accuracy of Object Detection Systems

In this Section, accuracy of each object detection system is compared. Due to

the fact that all the tested object detection systems are trained with unrecti-

fied image dataset, the training unrectified/ video unrectified setup is used to

compare the accuracy of SSD MobileNet v1, SSD Inception v2, Faster RCNN

Inception v2 and YOLO v2. Tiny YOLO does not detect anything with this

setup, thus YOLO v2 and Tiny YOLO are compared using training rectified/

video rectified setup as both of the detection systems are trained with rectified

image dataset as well as unrectified image dataset.

Test flights that the target drone is moving in side and height direction,

i.e. pure translations on x and y axis, are conducted in order to assess detec-

tion accuracy on simple movements. The average RMS errors in x, y and z

directions are listed in the tables below. Table 4.8 and Table 4.9 lists the RMS

errors when the flight is conducted with white background and Table 4.10 and

Table 4.11 lists the RMS errors when the flight is conducted with complex

background.

68

Table 4.8: Average RMS Errors of Side and Height Translation Flights with
White Background, Training Unrectified/ Video Unrectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

SSD MobileNet v1 12.08 9.84 37.21 19.71
SSD Inception v2 11.43 8.00 23.57 14.33
Faster RCNN Incep-
tion v2

11.33 7.76 19.96 13.02

YOLO v2 12.37 6.48 19.35 12.73

It can be obtained that Faster RCNN Inception v2 has the lowest error

in x direction, YOLO v2 has the lowest error in y and z direction. Overall,

YOLO v2 has the lowest average error. This makes YOLO v2 to be the most

accurate one in the 4 systems for the two test flights.

Table 4.9: Average RMS Errors of Side and Height Translation Flights with
White Background, Training Rectified/ Video Rectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

YOLO v2 11.84 7.06 20.82 13.24
Tiny YOLO 13.18 5.64 32.19 17.00

Comparing YOLO v2 and Tiny YOLO, it can be obtained that Tiny YOLO

has more side RMS error, depth RMS error and less height RMS error. Overall,

YOLO v2 has less average RMS error.

69

Table 4.10: Average RMS Errors of Side and Height Translation Flights with
Complex Background, Training Unrectified/ Video Unrectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

SSD MobileNet v1 11.69 15.93 18.88 15.50
SSD Inception v2 10.62 14.70 8.58 11.30
Faster RCNN Incep-
tion v2

16.81 9.14 32.41 19.45

YOLO v2 15.01 11.39 40.19 22.20

Table 4.11: Average RMS Errors of Side and Height Translation Flights with
Complex Background, Training Rectified/ Video Rectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

YOLO v2 47.72 19.82 37.53 35.02
Tiny YOLO 14.96 10.15 44.15 23.09

From Table 4.10 and Table 4.11, it can be obtained that all these object

detection systems gives similar detection results when the target UAV is fly-

ing with complex background. SSD MobileNet v1 and SSD Inception v2 has

lower RMS errors compared to the flights with background due to their better

accuracy in depth estimation. Faster RCNN Inception v2, YOLO v2 and Tiny

YOLO have more error with complex background.

Test flights of a target flying over a white and complex background in

depth z direction are conducted and processed by object detection systems.

This flight pattern is used to test the robustness of the distance estimation.

Unlike flights on side and height axis (only the locations of the bounding box

change), when flying on depth axis the only change is the size of bounding

boxes. The RMS errors are listed in the tables below.

70

Table 4.12: Average RMS Errors of Depth Translation Flights with White
Background, Training Unrectified/ Video Unrectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

SSD MobileNet v1 12.86 6.86 30.44 16.72
SSD Inception v2 12.52 4.78 21.02 12.77
Faster RCNN Incep-
tion v2

11.61 5.42 17.23 11.42

YOLO v2 12.45 4.28 17.25 11.33

Table 4.13: Average RMS Errors of Depth Translation Flights with White
Background, Training Rectified/ Video Rectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

YOLO v2 12.04 4.95 18.89 11.96
Tiny YOLO 11.80 3.75 20.27 11.94

From Table 4.12 and Table 4.13, it can be obtained that YOLO v2 is more

accurate than any of the TensorFlow systems and have similar RMS error with

Tiny YOLO when the UAV is flying over a white background. Also, it can

be obtained that the average RMS error is less than pure translations on side

and height axis. However, the difference in RMS errors of the object detection

systems between the two flight patterns is 2.31 cm on average. This is not a

substantial difference considering that the relative distances between the two

UAVs during all test fights are usually more than 2 meters.

71

Table 4.14: Average RMS Errors of Depth Translation Flights with Complex
Background, Training Unrectified/ Video Unrectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

SSD MobileNet v1 7.65 16.18 22.70 15.51
SSD Inception v2 7.50 13.10 17.15 12.58
Faster RCNN Incep-
tion v2

11.33 7.21 25.69 14.75

YOLO v2 15.17 10.20 37.67 21.01

Table 4.15: Average RMS Errors of Depth Translation Flights with Complex
Background, Training Rectified/ Video Rectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

YOLO v2 39.73 24.05 41.10 34.96
Tiny YOLO 15.04 12.23 59.65 29.98

With complex background, SSD MobileNet v1 and SSD Inception 2 has

improvement on side and depth distance estimation, but has more error in

height estimation compared to flight with white background. All the other

systems are less accurate with complex background. SSD Inception v2 has

the least average RMS error. It can also be obtained that SSD Mobilnet v1,

SSD Inception v2 and YOLO v2 have similar average RMS error with pure

translations on side and height direction (0.01 cm difference on average for the

three detection systems). Thus, the distance estimations on side, height and

depth directions are robust because the detection results have similar RMS

errors when the UAV is doing pure translations on side and height direction

or depth direction.

Test flights with a target UAV doing pure rotation around y axis (yaw) is

conducted to investigate the impact of yaw angle change (visible size to the

camera change) to the detection results. The rotation angle has a maximum

of 360 °. Detection results are listed in the tables below.

72

Table 4.16: Average RMS Errors of Pure Rotation Flights with White Back-
ground, Training Unrectified/ Video Unrectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

SSD MobileNet v1 16.38 7.02 31.43 18.28
SSD Inception v2 16.49 5.21 20.28 14.00
Faster RCNN Incep-
tion v2

15.31 4.92 19.13 13.12

YOLO v2 15.57 4.31 18.87 12.92

Table 4.17: Average RMS Errors of Pure Rotation Flights with White Back-
ground, Training Rectified/ Video Rectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

YOLO v2 15.88 4.70 16.91 12.50
Tiny YOLO 17.15 4.08 26.44 15.89

From Table 4.16 and Table 4.17, it can be obtained that YOLO v2 has the

least RMS error on average. Notice that comparing to the test flights that

the target is doing pure translations in side, depth and height direction, doing

rotation does not have a substantial increase in error. Detailed comparison is

detailed in Section 4.5.

Table 4.18: Average RMS Errors of Pure Rotation Flights with Complex Back-
ground, Training Unrectified/ Video Unrectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

SSD MobileNet v1 14.62 14.96 15.22 14.93
SSD Inception v2 13.70 11.96 19.45 15.04
Faster RCNN Incep-
tion v2

18.90 7.01 33.84 19.91

YOLO v2 20.84 9.35 37.28 22.49

73

Table 4.19: Average RMS Errors of Pure Rotation Flights with Complex Back-
ground, Training Rectified/ Video Rectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

YOLO v2 34.52 11.80 37.80 28.04
Tiny YOLO 20.74 9.20 39.02 22.99

When rotation flights are conducted over a complex background, SSD Mo-

bileNet v1 has less average RMS error while the rest of the systems has an

increase of error. The comparison between the errors in pure rotation and

pure translations are detailed in Section 4.5.

In order to mimic realistic flight patterns, complex flight motions are con-

ducted. The flights include translations as well as rotations.

Table 4.20: Average RMS Errors of Complex Flights with White Background,
Training Unrectified/ Video Unrectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

SSD MobileNet v1 14.69 5.67 28.91 16.42
SSD Inception v2 13.78 5.12 21.68 13.53
Faster RCNN Incep-
tion v2

13.76 5.94 18.35 12.68

YOLO v2 14.79 3.92 15.00 11.24

Table 4.21: Average RMS Errors of Complex Flights with White Background,
Training Rectified/ Video Rectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

YOLO v2 14.46 5.43 14.96 11.62
Tiny YOLO 14.74 3.42 19.32 12.49

From Table 4.21 and Table 4.21, it can be obtained that with white back-

ground, YOLO v2 has the least average error. Compared to pure translations

74

with white curtain, SSD MobileNet v1 has a 9.23 % decrease in average RMS

error, SSD Inception v2 has a 0.16 % increase in average RMS error, Faster

RCNN Inception v2 has a 4.25 % increase in average RMS error, YOLO v2

has a 6.92 % decrease in average RMS error and Tiny YOLO has a 10.95 %

decrease in average RMS error.

Compared to pure rotations with white curtain, SSD MobileNet v1 has a

10.14 % decrease in average RMS error, SSD Inception v2 has a 3.34 % decrease

in average RMS error, Faster RCNN Inception v2 has a 3.33 % decrease in

average RMS error, YOLO v2 has a 10.03 % decrease in average RMS error,

and Tiny YOLO has a 21.38 % decrease in average RMS error.

Table 4.22: Average RMS Errors of Complex Flights with Complex Back-
ground, Training Unrectified/ Video Unrectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

SSD MobileNet v1 13.62 16.51 18.92 16.35
SSD Inception v2 13.18 19.17 30.49 20.95
Faster RCNN Incep-
tion v2

17.68 7.75 34.25 19.89

YOLO v2 15.89 7.06 52.38 25.11

Table 4.23: Average RMS Errors of Complex Flights with Complex Back-
ground, Training Rectified/ Video Rectified Setup

Detection System Average
x RMS
Error
(cm)

Average
y RMS
Error
(cm)

Average
z RMS
Error
(cm)

Average
RMS
Error
(cm)

YOLO v2 44.59 29.99 44.68 39.75
Tiny YOLO 17.42 10.42 50.31 26.05

From Table 4.22 and Table 4.23, it can be obtained that with complex

background, SSD MobileNet v1 has the least average error. Compared to

pure translations with complex background, SSD MobileNet v1 has a 5.44

% decrease in average RMS error, SSD Inception v2 has a 75.93 % increase

in average RMS error, Faster RCNN Inception v2 has a 18.58 % increase in

75

average error, YOLO v2 has a 14.96 % increase in average RMS error, and

Tiny YOLO has a 1.37 % increase in average RMS error.

Compared to pure rotations with complex background, SSD MobileNet v1

has a 9.48 % increase in average RMS error, SSD Inception v2 has a 39.32

% increase in average RMS error, Faster RCNN Inception v2 has a 0.12 %

decrease in average RMS error, YOLO v2 has an 26.71 % increase in average

RMS error, and Tiny YOLO has a 13.33 % increase in average RMS error.

As a summary of the detection results, all the five object detection systems

are working for flights with and without white curtain. Given that the detec-

tion results are accurate (with white background), the difference of average

RMS errors between complex fight patterns and simply flight patterns are not

substantial. In most cases, depth estimation has the most error compared to

the errors in side and height distance estimation. This is because the camera

and projection matrix is not precise as discussed in Section 4.6.0.1. The qual-

ity of the bounding box is crucial to the accuracy of distance estimation as

well.

Table 4.24: Average RMS Errors of Object Detection Systems with Training
Unrectified/ Video Unrectified Setup

Detection System Average RMS Er-
ror With White
Curtain (cm)

Average RMS Er-
ror Without White
Curtain (cm)

SSD MobileNet v1 17.78 15.57
SSD Inception v2 13.66 14.97
Faster RCNN Incep-
tion v2

12.56 18.50

YOLO v2 12.50 22.70

Table 4.25: Average RMS Errors of Object Detection Systems with Training
Rectified/ Video Rectified Setup

Detection System Average RMS Er-
ror With White
Curtain (cm)

Average RMS Er-
ror Without White
Curtain (cm)

YOLO v2 12.33 34.44
Tiny YOLO 14.33 25.27

76

From Table 4.24 and Table 4.25, it can be obtained that Faster RCNN

Inception v2 and YOLO v2 has the lowest average RMS error when the back-

ground has little noise (with white background) and SSD Inception v2 has the

lowest RMS error when the background is complex. Putting all the test results

with training unrectified/ video unrectified setup together, SSD MobileNet v1

has an average RMS error of 16.68 cm, SSD Inception v2 has an average RMS

error of 14.32 cm, Faster RCNN Inception v2 has an average RMS error of

15.53 cm and YOLO v2 has an average RMS error of 17.61 cm. With training

rectified/ video rectified setup, YOLO v2 has an average RMS error of 23.39

cm and Tiny YOLO has an average RMS error of 19.08 cm. Hence, SSD In-

ception v2 is the most accurate detection system followed closely by Faster

RCNN Inception v2.

Notice that, the average errors are noticeable (from 12.33 cm up to 34.44

cm) due to the fact that the bounding boxes may not always be accurate.

Figure 4.11 illustrates the best case scenario that the detected bounding boxes

are accurate and tight around the target. Figure 4.12 and Figure 4.13 illus-

trates two types of situations that the bounding boxes are not accurate. The

red bounding box represents a perfect bounding box. The green bounding box

represents the real detection result. In Figure 4.12, it can be obtained that

the actual bounding boxes are loose. Figure 4.13 illustrates bounding boxes

are confused by the background. The detection results do not have the target

inside the bounding box.

Figure 4.11: Examples of Accurate Bounding Box

77

Figure 4.12: Examples of Loose Bounding Box

Figure 4.13: Examples of Wrong Bounding Box

Distribution graph of difference between detection results and ground-truth

Vicon data can be used to represent the probability of the bounding box

to be accurate. From Figure 4.14, it can be obtained that the probability

distribution of the difference in detection results and ground-truth does not

follow normal distribution. This implies that the bounding box is not always

accurate. For instance, there are two peaks in the distribution on y axis (height

direction), this implies that some detected bounding boxes does not have the

target inside as illustrated in Figure 4.13. Distribution graphs for the rest of

the test flights are shown in Appendix B.2.1.

78

Figure 4.14: SSD MobileNet v1 Pure Translation in Side and Height Direction
Test 1 With Complex Background with Video Unrectified/ Training Unrecti-
fied Difference Probability Distribution Histogram

4.3.3 Consistency Results Discussion

In this Section, consistency of the object detection systems in different ex-

perimental trials are evaluated. The average precision (AP) introduced in

Section 2.4.2.3 is used as a metric of consistency. IoU threshold settings for

all of the detection systems are set to 0.5. This is the default of threshold

of SSD MobileNet v1, SSD Inception v2 and Faster RCNN v2. The default

thresholds of YOLO v2 and Tiny YOLO are 0.2, and these were adjusted to

0.5 to make the comparison fair. mAP of the object detection systems are

shown in Table 4.26. It can be obtained that Faster RCNN Inception v2 is the

most consistent system having the highest mAP of 0.98.

Table 4.26: Overall mAP of Tested Object Detection Systems

Object Detection System mAP
SSD MobileNet v1 0.71
SSD Inception v2 0.64
Faster RCNN Inception v2 0.98
YOLO v2 0.83
Tiny YOLO 0.38

79

4.4 Further Discussion

In this Section, overall performance of the object detection systems is evalu-

ated considering efficiency, accuracy and consistency and a decision matrix is

made to assess the object detection systems. Efficiency has the least weight

(0.2) as it can be optimized by coding, i.e. develop a ROS package for Tensor-

Flow in C language. Accuracy and consistency are related to the architecture

of object detection systems and training dataset. They can be improved by

training with better image datasets, i.e. more representative images. However,

further training requires huge amount of computational power and the detec-

tion results may suffer from overfitting problem. Hence, accuracy (0.4) and

consistency (0.4) have more weights as they are harder to improve comparing

to efficiency.

Efficiency is scored based on running speed. The higher fps the better. In

this thesis, only speed in ROS is compared for efficiency scoring because the

real-time tasks are performed in ROS to communicate with observing UAV.

Take 100 fps to be score 10, and thus SSD MobileNet v1 scores 0.27, SSD

Inception v2 scores 0.20. Faster RCNN scores 0.20, YOLO v2 scores 6.73 and

Tiny YOLO scores 7.38.

Accuracy is scored based on the average RMS error. The lower error the

better. Training unrectified/ video unrectified setup are used to compare and

Tiny YOLO is scaled with respect to YOLO v2 to be comparable in this setup.

For instance, YOLO v2 has an average RMS error of 17.61 cm with training

unrectified/ video unrectified setup and 23.39 cm with training rectified /

video rectified setup. Tiny YOLO has an average RMS error of 19.08 cm with

training rectified / video rectified setup and scaled to 19.08/23.39*17.61 =

14.37 cm error with training unrectified/ video unrectified setup. Define that

0 cm error scores 10 and 30 cm error scores 0, SSD MobileNet v1 scores 4.44,

SSD Inception v2 scores 5.23, Faster RCNN Incepion v2 scores 4.82, YOLO

v2 scores 4.13 and Tiny YOLO scores 5.21.

Consistency is scored based on mAP values. The higher mAP the better.

Take mAP of 1 to score 10 and 0 to score 0, SSD MobileNet v1 scores 7.06,

80

SSD Inception v2 scores 6.44, Faster RCNN Inception v2 scores 9.76, YOLO

v2 scores 8.28 and Tiny YOLO scores 3.78.

Table 4.27: Decision Matrix of Selecting an Object Detection API

Object Detection
API

Efficiency
(0.2)

Accuracy
(0.4)

Consistency
(0.4)

Score

SSD MobileNet v1 0.27 4.44 7.06 4.65
SSD Inception v2 0.20 5.23 6.44 4.71
Faster RCNN v2 0.20 4.82 9.76 5.87
YOLO v2 6.73 4.13 8.28 6.31
Tiny YOLO 7.38 5.21 3.78 5.07

From decision matrix Table 4.27, it can be obtained that YOLO v2 is the

best object detection system considering efficiency, accuracy and consistency.

Thus, YOLO v2 is suggested in this thesis to be the object detection system

used for UAV tracking project.

4.5 Assumption Assessment

Calculations of the relative distance using bounding box information are re-

stricted by three assumptions discussed in Section 2.5. The first and second

assumptions, assuming object detection system to be precise and the physical

dimension to be known, are straight forward. In this section, the third as-

sumption, the impact of visible size change of UAV is assessed. As discussed

in Section 4.4, YOLO v2 has the best overall performance and suggested to be

the object detection system used for control system in the future plan of UAV

tracking project. Validation of the third assumption is made based on the

detection results from YOLO v2 with training unrectified/ video unrectified

setup flying over white background.

In Section 4.3.2.4, YOLO v2’s RMS errors of the flights that target UAV

is doing pure translations and pure rotations are listed. Comparing the RMS

errors of pure translations and pure rotation, there is 25.48 % increase in side,

16.41 % decrease in height and 3.46 % decrease in depth. Overall, there is a

7.75 % increase in average RMS error. Yaw angle changes has the largest im-

81

pact on side and height distance estimation and does not affect depth distance

estimation by much.

The change of roll and pitch angle is conducted by the Parrot ARDrone 2.0

to provide thrust so that it can do translation movements in side and depth

direction. The larger the acceleration, the larger angle change in roll and pitch.

Figure 4.15: Error Change with Acceleration in Side

Figure 4.16: Error Change with Acceleration in Depth

82

Figure 4.15 and Figure 4.16 illustrates the error change with respect to

acceleration change in side and depth direction. Although higher acceleration

has larger errors, similar errors occur when the acceleration is low. Overall,

the error caused by visible size change of the target UAV is acceptable. Hence,

assumption 3 is reasonable.

4.6 Uncertainty Analysis

In this Section, uncertainties in the experiments are assessed. As discussed

in Section 2.7, two sorts of uncertainties are measured, namely bias uncertain

and random uncertainty. Tests for analyzing uncertainty in bounding box

coordinate output is conducted by feeding the same image to object detection

systems for 100 times. All the detection results are exactly the same, thus the

uncertainty in bounding box coordinate output is 0. Bias uncertainty in UAV

dimension measurement is 0.01 cm because the minimum scale on the ruler is

0.1 cm. Detailed calculation on uncertainty in Vicon system measurements,

camera calibration and distance estimation are discussed in the sections below.

4.6.0.1 Uncertainty in Vicon Camera System

In this Section, the uncertainty in Vicon camera system measurements are

investigated. The uncertainties are measured in three directions, side x, height

y and depth z. Experiments are conducted by placing a UAV at a known

location and then move to a known distance in one of the x, y, and z directions.

Vicon data at the original location and final location is recorded to calculate

the distance moved in Vicon measurements. 331 samples were taken for each of

the experiments. Probability distribution of the measurements are illustrated

in Figure 4.17, Figure 4.18 and Figure 4.19.

83

Figure 4.17: Measurement Probability Distribution in Side Direction

Figure 4.18: Measurement Probability Distribution in Height Direction

84

Figure 4.19: Measurement Probability Distribution in Depth Direction

From Figure 4.17, Figure 4.18 and Figure 4.19, it can be obtained that the

probability distributions are close to normal distribution. The normality test

parameters of the samples are listed in Table 4.28.

Table 4.28: Normality Test Vicon System Measurements

Mean of Test Dis-
tance

Excess Kurtosis Skewness

30.646 cm in x 0.81 -0.27
61.221 cm in x -0.06 0
6.989 cm in y 0.10 -0.04
31.434 cm in y 1.42 -0.70
30.541 cm in z 0.68 0.23
60.867 cm in z -0.07 0.53

Kurtosis measures the peakedness and skewness measures the asymmetry

of a distribution. In this thesis, excess kurtosis is used to measure peakedness.

Excess kurtosis is simply kurtosis value subtract by 3. Ideally, for a perfect

normal distribution, both excess kurtosis and skewness value should be 0 [79].

From Table 4.28, it can be obtained that the absolute values of excess kurtosis

is less than 7 and absolute value of skewness is less than 2 in all the experi-

ments. Since the samples size is larger than 300, samples in all the experiments

85

follows normal distribution [79]. z∗ equals to 1.96 for 95% confidence interval

for a normal distribution [55]. Using equation 2.11, the uncertainty with 95 %

confidence interval can be calculated as:

Table 4.29: Uncertainty in Vicon System Measurements

Mean of Test Distance Uncertainty (cm)
30.646 cm in x 0.004
61.221 cm in x 0.002
6.989 cm in y 0.004
31.434 cm in y 0.003
30.541 cm in z 0.003
60.867 cm in z 0.002

From Table 4.29 it can be obtained that the uncertainties in Vicon system

measurement are minor and can be neglected. There is no bias uncertainty in

Vicon measurement because all the data are generated from computer.

4.6.0.2 Uncertainty in Camera Calibration

As discussed in Section 3.2.3.1, there are two hardware limitations that restrict

the performance of camera calibration: low camera resolution in ROS and

inaccurate checkerboard size input. In order to quantify the uncertainty in

camera calibration, 12 trials of camera calibration process is conducted and

the camera calibration file which gives the best rectification on the image by

eye observation is shown in Section 3.2.3.1. The other 11 calibration files can

be seen in Appendix B.3. All the 12 calibration files give similar but different

camera matrices and projection matrices. All these tests are provided with

enough calibration data points, i.e. the x, y, size and skew are all green in

Figure 3.17. Only random uncertainty is discussed for camera calibration.

This is because there is no measurement reading by human, all calibration

data is measured and calculated by computer. The probability distribution of

the camera and projection matrices are plotted as shown in Figure 4.20 and

Figure 4.21.

86

Figure 4.20: Camera Matrix Parameters Probability Distribution

Figure 4.21: Projection Matrix Parameters Probability Distribution

Table 4.30 and Table 4.31 gives normality test parameters for the camera

matrices and projection matrices in calibration files. Excess kurtosis, skewness

and standard error (SE) are generated by excel.

87

Table 4.30: Normality Test for Parameters in Camera Matrices

Parameter in Cam-
era Matrix

Excess Kurtosis/
SE

Skewness/ SE

fx -0.05 -0.21
cx -0.21 -0.25
fy -0.08 -0.21
cy 0.51 -0.26

Table 4.31: Normality Test for Parameters in Projection Matrices

Parameter in Cam-
era Matrix

Excess Kurtosis/
SE

Skewness/ SE

fx -0.08 -0.24
cx -0.11 -0.09
fy -0.01 -0.19
cy 0.27 -0.28

The normality test is conducted by dividing excess kurtosis and skewness

value by standard error. For small samples, i.e. sample amount less than

50, excess kurtosis and skewness value divided by standard error should not

exceed 1.96 for a normal distribution with 95 % confidence interval [79]. From

Table 4.30 and Table 4.31, it can be obtained that the absolute value of excess

kurtosis and skewness value divided by standard error for parameters in both

camera matrices and projection matrices are less than 1.96. Hence, the sample

data are assumed to follow normal distribution.

Since there are only 12 sets of calibration data point, student’s t-distribution

is used to calculate uncertainty instead of normal distribution. For sample size

of 12 and confidence interval of 95 % (two-sided), degree of freedom is 11 and

t value is 2.201 [59]. Using equation 2.12, the uncertainties of parameters in

camera and projection matrices are:

Table 4.32: Uncertainty in Parameters in Camera Matrices

Parameter in Camera Matrix Uncertainty (pixel)
fx 8
cx 6
fy 8
cy 4

88

Table 4.33: Uncertainty in Parameters in Projection Matrices

Parameter in Projection Ma-
trix

Uncertainty (pixel)

fx 8
cx 8
fy 8
cy 4

It can be obtained that the uncertainties in the camera matrices are 1.44

% for fx, 1.81 % for cx, 1.44 % for fy and 2.06 % for cy. The uncertainties

in the projection matrices are 1.83 % for fx, 2.47 % for cx, 1.54 % for fy

and 2.33 % for cy. Although the calibration matrices are not perfect, i.e.

camera and projection matrices differ for every calibration, the uncertainty is

not substantial.

4.6.0.3 Uncertainty in Distance Estimation from Bounding Box

As discussed in Section 2.7, the uncertainties in side, height and depth distance

estimation calculated by Monte Carlo method. The Matlab code used for this

simulation is shown in Appendix A.5. The normality of fx, fy, cx and cy

in camera matrices and projection matrices are proved in Section 4.6.0.2 and

thus 1000 random samples of fx, fy, cx and cy following normal distribution are

taken. 1000 random simulated measurements of height and width are taken

following normal distribution with standard deviation of 0.01 cm, mean of

12.59 cm for height and standard deviation of 0.01 cm, mean of 50.65 cm for

width. One of the bounding boxes with coordinates (x
′
min, y

′
min, x

′
max, y

′
max)

of (359, 99, 490, 127) from YOLO v2 is used for calculations. The simulations

are conducted for detection on both unrectified and rectified videos. The

normality test on the results are listed in Table 4.34.

89

Table 4.34: Normality Test for Distance Estimation from Bounding Box

Distance Direction/ Video
Calibration

Excess Kurto-
sis

Skewness

Side/ Video Unrectified -0.02 -0.09
Side/ Video Rectified -0.10 0.07
Depth/ Video Unrectified -0.20 0.04
Depth/ Video Rectified 0.09 0.06
Height/ Video Unrectified -0.03 0.09
Height/ Video Rectified 0.01 -0.12

From Table 4.34, it can be obtained that the simulated data follows nor-

mal distribution because all of the absolute values of excess kurtosis is less

than 7 and absolute value of skewness is less than 2 for 1000 samples [79].

Remember that z∗ equals to 1.96 for 95% confidence interval for a normal

distribution [55]. For 95 % confidence interval, using equation 2.11, the mean

value of the random samples and uncertainties can be calculated:

Table 4.35: Uncertainty in Distance Estimation from Bounding Box

Distance Direction/ Video
Calibration

Mean (cm) Uncertainty
(cm)

Side/ Video Unrectified -46.5 0.2
Side/ Video Rectified -46.4 0.4
Depth/ Video Unrectified 230.7 0.2
Depth/ Video Rectified 200.7 0.2
Height/ Video Unrectified 29.4 0.2
Height/ Video Rectified 27.7 0.2

From Table 4.35, it can be obtained that the uncertainties in distance

estimations are not substantial.

Notice that the uncertainty is a function of x
′
min, y

′
min, x

′
max, y

′
max and will

change when the bounding box information changes. Due to the fact that

x
′
min, y

′
min, x

′
max, y

′
max are random numbers from object detection systems, it

is tedious to quantify uncertainties for all the bounding boxes knowing that

the uncertainties in distance estimations are minor.

90

Chapter 5

Conclusions and Future Work

5.1 Summary

This thesis has tested and benchmarked deep learning object detection systems

in both Linux (Ubuntu 16.04) and ROS environment, namely SSD MobileNet

v1, SSD Inception V2 and Faster RCNN Inception v2 for TensorFlow as well

as YOLO v2 and Tiny TOLO for Darknet to propose a feasible solution to

real-time UAV detection. The training process is done offline and detection is

done by using the Parrot ARDrone 2.0’s onboard camera.

Uncertainties involved in experiments and measurements are also discussed.

Bias error in this thesis comes from the measurements on the dimensions of

Parrot ARDrone 2.0. Due to the limitation of the camera resolution and the

checkerboard quality, the camera calibration is not precise causing random

error in calibration process. Another source of random error is the distance

measurements by Vicon camera system.

Efficiency, accuracy and consistency of each detection system are compared,

YOLO v2 turns out to be to best all-around system for real-time UAV tracking

project.

5.2 Limitations of the Work

This thesis demonstrated a monocular camera-based object detection solution

for UAV tracking purposes. However, there are still limitations:

• The use of the GTX 1080 Ti GPU constrains the mobility of the design,

91

i.e. at this stage, tests can only be run offboard the UAV in a lab

environment. A potential substitute for the GTX 1080 Ti is the Nvidia

Jetson TX2. This is a low-power single-board form factor GPU. Carrying

a Jetson TX2 onboard the UAV could give it the capability to accomplish

tracking tasks without the aid of a desktop-sized computer console.

• YOLO v2 turns out to be the object detection system with the best all-

around performance. However, it comes with compromises in accuracy

and consistency. Faster RCNN Inception v2 is better than YOLO v2 in

accuracy and consistency, but its speed is unusable.

• Due to the time limit and resources available for this thesis, the quality

of training is sub-optimal. The current training results work well enough

for the purpose of this thesis, which was to select an object detection

system for vison-based UAV tracking. However better performance can

be expected if more images were used to train the object detection APIs.

• Parrot ARDrone’s onboard camera can only stream videos at a resolution

of 640 * 360. The video quality is not good enough for precise camera

calibration and object Detection.

• The checkerboard used for calibration is not ideal. The dimensions of

the blocks are not exactly 3 cm x 3 cm. Also, printing a checkerboard

on a piece of a paper and attach it to a cardboard causes distortion on

the presentation of the checkerboard to the camera.

5.3 Future Work

The following work could be performed in order to obtain a better UAV de-

tection system:

• The computational power of the lab computer only allows TensorFlow-

based APIs to be trained starting from pre-trained model weights. A

fully customized training could be conducted if more powerful GPUs or

a cloud computing service were used.

92

• Due to the complex background and movement, it is inevitable for the

object detection system to periodically lose the target. To compensate

these “blank frames”, a tracker such as the Real-time Recurrent Re-

gression Networks (Re3) could be used [80]. One of the merits of this

tracker is that it offers the ability to lock in a target at the first frame of

detection. This could potentially eliminate false target tracking by the

system.

• A Kalman Filter could be used to reduce the computational power re-

quired. Bounding box locations in the next few frames can be predicted

by a Kalman Filter so that object detection systems can have lower

running speed.

• Mobile version of processing chips could be potentially used for object

detection assuming the detection system was efficient enough and com-

patible with the drone’s operating system. This would greatly improve

the mobility of the UAV object tracking system.

• Using a lager sized checkerboard with better quality, i.e. printed on a

plain hard surface, can also improve the calibration result.

• A distance sensor or a camera with higher resolution can be used to

replace the onboard camera in order to improve the distance estimation

on the depth direction.

93

Bibliography

[1] Richard Szeliski. Computer Vision: Algorithms and Applications.

Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010.

[2] Paul Viola and Michael Jones. Rapid object detection using a boosted

cascade of simple features. In Computer Vision and Pattern Recogni-

tion, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society

Conference on, volume 1, pages I–I. IEEE, 2001.

[3] Lichao Chen, Sudhir Singh, Thomas Kailath, and Vwani Roychowdhury.

Brain-inspired automated visual object discovery and detection. Proceed-

ings of the National Academy of Sciences, 116(1):96–105, 2019.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-

fication with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105, 2012.

[5] Pablo Martinez Rodriguez. Vision-based algorithms for uav mimicking

control system. Master of science, University of Alberta, 2017.

[6] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 6517–6525, July 2017.

[7] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:

Towards real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages 91–99, 2015.

94

[8] Jeff Hale. Deep learning framework power scores 2018.

https://towardsdatascience.com/deep-learning-framework-power-scores-

2018-23607ddf297a, 2018 (accessed February 20, 2019).

[9] Arthur L Samuel. Some studies in machine learning using the game of

checkers. IBM Journal of research and development, 3(3):210–229, 1959.

[10] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York,

NY, USA, 1 edition, 1997.

[11] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,

Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go

with deep neural networks and tree search. nature, 529(7587):484, 2016.

[12] Jürgen Schmidhuber. Deep learning in neural networks: An overview.

Neural networks, 61:85–117, 2015.

[13] Rina Dechter. Learning while searching in constraint-satisfaction-

problems. In Proceedings of the Fifth AAAI National Conference on Ar-

tificial Intelligence, AAAI’86, pages 178–183. AAAI Press, 1986.

[14] Li Deng, Dong Yu, et al. Deep learning: methods and applications. Foun-

dations and Trends® in Signal Processing, 7(3–4):197–387, 2014.

[15] Michael Irwin Jordan. Learning in graphical models, volume 89. Springer

Science & Business Media, 1998.

[16] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learn-

ing algorithm for deep belief nets. Neural computation, 18(7):1527–1554,

2006.

[17] Jungang Xu, Hui Li, and Shilong Zhou. An overview of deep generative

models. IETE Technical Review, 32(2):131–139, 2015.

[18] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative

classifiers: A comparison of logistic regression and naive bayes. In Ad-

95

vances in Neural Information Processing Systems, pages 841–848. MIT

Press, 2002.

[19] Roland Memisevic. An introduction to structured discriminative learn-

ing. Technical report, Technical report, University of Toronto, Toronto,

Canada, 2006.

[20] Koby Crammer and Yoram Singer. On the algorithmic implementation

of multiclass kernel-based vector machines. Journal of machine learning

research, 2(Dec):265–292, 2001.

[21] Li Deng. Three classes of deep learning architectures and their applica-

tions: a tutorial survey. APSIPA transactions on signal and information

processing, 2012.

[22] TensorFlow. Tensorflow detection model zoo. https://github.com/

tensorflow/models/blob/master/research/object_detection/

g3doc/detection_model_zoo.md, 2018 (accessed December 12, 2018).

[23] Joseph Redmon. Darknet: Open source neural networks in c. http:

//pjreddie.com/darknet/, 2013–2016.

[24] K. He, G. Gkioxari, P. Dollr, and R. Girshick. Mask r-cnn. In 2017 IEEE

International Conference on Computer Vision (ICCV), pages 2980–2988,

Oct 2017.

[25] Nvidia. NVIDIA TESLA P100 GPU ACCELERACTOR, 2016.

[26] Ryan Martin. Gigabyte Aorus GTX 1080 Ti Xtreme Edition 11GB Re-

view, 2017.

[27] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, et al. Tensorflow: a system for large-scale machine learn-

ing. In OSDI, volume 16, pages 265–283, 2016.

96

[28] TensorFlow. Tensorflow guide. https://www.tensorflow.org/guide/,

2018 (accessed October 29, 2018).

[29] Farooq Azam. Biologically inspired modular neural networks. PhD thesis,

Virginia Tech, 2000.

[30] Kumar Shridhar. A Beginners Guide to Deep Learning, 2017.

[31] Andreas Zell. Simulation neuronaler netze, volume 1. Addison-Wesley

Bonn, 1994.

[32] Standford University. Cs231n: Convolutional neural networks for visual

recognition, 2018 (accesed on December 12, 2018).

[33] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition. Proceedings

of the IEEE, 86(11):2278–2324, 1998.

[34] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pool-

ing operations in convolutional architectures for object recognition. In

Proceedings of the 20th International Conference on Artificial Neural

Networks: Part III, ICANN’10, pages 92–101, Berlin, Heidelberg, 2010.

Springer-Verlag.

[35] Md Atiqur Rahman and Yang Wang. Optimizing intersection-over-union

in deep neural networks for image segmentation. In International sympo-

sium on visual computing, pages 234–244. Springer, 2016.

[36] Mu Zhu. Recall, precision and average precision. Department of Statistics

and Actuarial Science, University of Waterloo, Waterloo, 2:30, 2004.

[37] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. In-

troduction to Information Retrieval. Cambridge University Press, New

York, NY, USA, 2008.

[38] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich

feature hierarchies for accurate object detection and semantic segmen-

97

tation. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 580–587, 2014.

[39] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 1440–1448, 2015.

[40] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look

once: Unified, real-time object detection. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 779–788, June

2016.

[41] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott

Reed, Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox

detector. Proceedings of the European Conference on Computer Vision

(ECCV) (2016), 2016. To appear.

[42] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Wei-

jun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mo-

bilenets: Efficient convolutional neural networks for mobile vision appli-

cations. CoRR, abs/1704.04861, 2017.

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew

Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1–9, 2015.

[44] Min Lin, Qiang Chen, and Shuicheng Yan. Network In Network. arXiv

e-prints, page arXiv:1312.4400, December 2013.

[45] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking

the inception architecture for computer vision. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826,

June 2016.

98

[46] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and reso-

lution of kinect depth data for indoor mapping applications. Sensors,

12(2):1437–1454, 2012.

[47] Joel Johnson. Parrot AR Drone 2.0 Review: Your Own Private Predator,

2012.

[48] OpenCV Organization. Camera calibration and 3d reconstruc-

tion. https://docs.opencv.org/2.4/modules/calib3d/doc/camera_

calibration_and_3d_reconstruction.html, 2019 (accessed February

25, 2019).

[49] D. C. Brown. Decentering Distortion of Lenses. Photometric Engineering,

32(3):444–462, 1966.

[50] docs.ros.org. sensor msgs/camerainfo message. http://docs.ros.org/

api/sensor_msgs/html/msg/CameraInfo.html, 2019 (accessed Febru-

ary 25, 2019).

[51] IEC BIPM, ILAC IFCC, IUPAC ISO, and OIML IUPAP. Evaluation

of measurement dataan introduction to the guide to the expression of

uncertainty in measurement and related documents. joint committee for

guides in metrology, jcgm 104: 2009 (2009).

[52] George W Brown. Standard deviation, standard error:

Which’standard’should we use? American Journal of Diseases of

Children, 136(10):937–941, 1982.

[53] Yale University. Confidence intervals. http://www.stat.yale.edu/

Courses/1997-98/101/confint.htm, 2019 (accessed February 12, 2019).

[54] A.J. Hughes and D.E. Grawoig. Statistics, a foundation for analysis.

Business and Economics Series. Addison-Wesley Pub. Co., 1971.

[55] Consumer Dummies. How to use the z-table. https://www.dummies.

com/education/math/statistics/how-to-use-the-z-table/, 2019

(accessed March 19, 2019).

99

[56] Deborah J Rumsey. U Can: statistics for dummies. John Wiley & Sons,

2015.

[57] Richard G Brereton. The t-distribution and its relationship to the normal

distribution. Journal of Chemometrics, 29(9):481–483, 2015.

[58] David Pollard. Statistics 101106 lecture 7. http://www.stat.yale.

edu/~pollard/Courses/100.fall98/pollard/lecture7.pdf, 1998 (ac-

cessed March 19, 2019).

[59] easycalculation.com. T table. https://www.easycalculation.com/

statistics/t-distribution-critical-value-table.php, 2019 (ac-

cessed March 19, 2019).

[60] Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Jour-

nal of the American statistical association, 44(247):335–341, 1949.

[61] Vicon. Vantage cutting edge, flagship camera with intlligent feedback

and resolution. https://www.vicon.com/products/camera-systems/

vantage, 2018 (accessed December 12, 2018).

[62] Vicon. Vicon vero - offering the best resolution, speed and price

on the market. https://www.vicon.com/products/camera-systems/

vero, 2018 (accessed December 12, 2018).

[63] Vicon. Vicon vero family. https://www.vicon.com/products/

camera-systems/vero, 2018 (accessed December 12, 2018).

[64] Intel. Intel core i9 processors. https://www.intel.ca/content/www/ca/

en/products/processors/core/i9-processors.html, 2019 (accessed

February 25, 2019).

[65] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,

John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient

primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

100

[66] Nvidia. The power of geforce gtx 1060. https://www.nvidia.com/

en-us/geforce/products/10series/geforce-gtx-1060/, 2019 (ac-

cessed February 25, 2019).

[67] Parrot. Parrot ARDrone 2.0 User Guide, 2012.

[68] Jason M.O’Kane. A Gentle Introduction to ROS. CreateSpace Indepen-

dent Publishing Platform, 2013.

[69] ROS.org. Ros kinetic installation instructions. http://wiki.ros.org/

kinetic/Installation, 2019 (accessed February 25, 2019).

[70] Nvidia. Cuda zone. https://developer.nvidia.com/cuda-zone, 2018

(accessed October 29, 2018).

[71] Vicon. Tracker fast, precise object tracking: even from a single camera.

https://www.vicon.com/products/software/tracker, 2018 (accessed

October 29, 2018).

[72] Kari Pulli, Anatoly Baksheev, Kirill Kornyakov, and Victor Eruhimov.

Real-time computer vision with opencv. Communications of the ACM,

55(6):61–69, 2012.

[73] Mathworks. Train a cascade object detector. https://www.mathworks.

com/help/vision/ug/train-a-cascade-object-detector.html, 2019

(accessed February 25, 2019).

[74] Ammar Sameer Anaz and Diyaa Mehadi Faris. Comparison between open

cv and matlab performance in real time applications. AL Rafdain Engi-

neering Journal, 23(4):183–190, 2015.

[75] Nabil Mikati. Dependence of lead time on batch size studied by a sys-

tem dynamics model. International Journal of Production Research,

48(18):5523–5532, 2010.

[76] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,

Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco:

101

Common objects in context. In European conference on computer vision,

pages 740–755. Springer, 2014.

[77] Nvidia. Nvidia jetson systems. https://www.nvidia.com/en-us/

autonomous-machines/embedded-systems-dev-kits-modules/, 2019

(accessed February 25, 2019).

[78] T. Chai and R. R. Draxler. Root mean square error (rmse) or mean

absolute error (mae)?- arguments against avoiding rmse in the literature.

Geoscientific Model Development, 7(3):1247–1250, 2014.

[79] Hae-Young Kim. Statistical notes for clinical researchers: assessing nor-

mal distribution (2) using skewness and kurtosis. Restorative dentistry &

endodontics, 38(1):52–54, 2013.

[80] D. Gordon, A. Farhadi, and D. Fox. Re3: Re al-time recurrent regres-

sion networks for visual tracking of generic objects. IEEE Robotics and

Automation Letters, 3(2):788–795, April 2018.

102

Appendices

103

Appendix A

Code Developed

A.1 ROS Wrapper for TensorFlow

In this section, a ROS wrapper developed for TensorFlow is presented. This

code is written in Python and enables TensorFlow object detection API to run

in ROS environment.

#!/usr/bin/env python

-*- coding: UTF-8 -*-

import rospy

...

class ObjectDetection():

def __init__(self):

rospy.init_node(’object_detection’)

rospy.on_shutdown(self.shutdown)

...

self._sub = rospy.Subscriber(...)

self._pub = rospy.Publisher(...)

...

def callback(...):

...

def shutdown(self):

rospy.loginfo("Stopping object detection...")

rospy.sleep(1)

if __name__ == ’__main__’:

try:

104

ObjectDetection()

rospy.spin()

except rospy.ROSInterruptException:

rospy.loginfo("ROS object detection has started."

↪→)

A.2 Bounding Box Information Retrieval for

TensorFlow

This section includes the Python code for object detection API to retrieve

bounding boxes and their corresponding time stamp, score and class. Bound-

ing boxes are used for 3D location estimation, time stamp is used to calculate

the running speed, score is store to verify the bounding box qualifies the thresh-

old of 0.5 and class is always ardrone in this thesis as there is only one target

to detection.

import copy

import csv

import time

...

#Get Video Path

global_path = ’...’

paths = [’...’]

video_names = [’...’]

...

#Collect Data

output_boxes = []

output_scores = []

output_classes = []

t_to_array = []

temp_t = time.clock()

t_to_array = np.append(t_to_array,temp_t)

t_to_array = np.append(t_to_array,fps)

for i,box in enumerate(np.squeeze(boxes)):

if(np.squeeze(scores)[i] > 0.5): #threshhold for

↪→ box displayed default at 0.5

temp_box = copy.deepcopy(np.squeeze(boxes)[i])

temp_score = copy.deepcopy(np.squeeze(scores)[

↪→ i])

105

temp_class = copy.deepcopy(np.squeeze(classes)

↪→ [i])

#temp_t = time.clock()

output_boxes = np.append(output_boxes,temp_box

↪→)

output_scores = np.append(output_scores,

↪→ temp_score)

output_classes = np.append(output_classes,

↪→ temp_class)

#Record Data

location_path = "/home/bingshen/Desktop/Data/"+

↪→ sub_name+"_time.csv"

olocation = open(location_path,"ab")

wlocation = csv.writer(olocation, delimiter=",")

wlocation.writerow(t_to_array)

olocation.close()

location_path = "/home/bingshen/Desktop/Data/"+

↪→ sub_name+"_boxlocation.csv"

olocation = open(location_path,"ab")

wlocation = csv.writer(olocation, delimiter=",")

wlocation.writerow(output_boxes)

olocation.close()

score_path = "/home/bingshen/Desktop/Data/"+sub_name+

↪→ "_boxscore.csv"

oscore = open(score_path,"ab")

wscore = csv.writer(oscore, delimiter=",")

wscore.writerow(output_scores)

oscore.close()

class_path = "/home/bingshen/Desktop/Data/"+sub_name+

↪→ "_boxclass.csv"

oclass = open(class_path,"ab")

wclass = csv.writer(oclass, delimiter=",")

wclass.writerow(output_classes)

oclass.close()

...

106

A.3 3D Location Estimation from Bounding

Box

In this section, Matlab code for estimation of 3D relative position of a target

drone and a tracking drone from bounding box information is presented. In

this code, root mean square error between the estimation and ground-truth

are calculated and visualized.

clear;

clc;

%measured coeffcients

Drone_height = 12.59;

Drone_width = 50.65;

f_xk = 568.0748474282261;

f_yk = 568.7139402113011;

c_xk = 330.5770829093369;

c_yk = 193.6023640202218;

f_xp = 449.2703857421875;

f_yp = 534.8646850585938;

c_xp = 344.3868504957354;

c_yp = 194.3035218322311;

frame_height = 360;

frame_width = 640;

test_trail = 0;

bg = 0;

cc = 0;

tc = 0;

basead = ’C:\Users\Miller\Desktop\Data\’;

framework = {’TensorFlow’;’Darknet’};

[mf,nf] = size(framework);

TFapi = {’SSD_MobileNet’;’SSD_Inception’;’Faster_RCNN_Inception’

↪→ };

[mtf,ntf] = size(TFapi);

DKapi = {’YOLO’;’Tiny_YOLO’};

[mDK,nDK] = size(DKapi);

background = {’With_White_Curtain’;’Without_White_Curtain’};

[mbackground,nbackground] = size(background);

107

traincc = {’train_unrect’;’train_rect’};

[mtraincc,ntraincc] = size(traincc);

videocc = {’unrect’;’rect’};

[mvideo,nvideo] = size(videocc);

test = {’test_1_pure_translation_take_1’;’

↪→ test_1_pure_translation_take_2’;’

↪→ test_2_back_and_forth_take_1’;’

↪→ test_2_back_and_forth_take_2’;’

↪→ test_3_rotation_take_1_realistic_180’;’

↪→ test_3_rotation_take_2_exteme_with_360’;’

↪→ test_4_random_flight_take_1’;’test_4_random_flight_take_2’

↪→ };

[mtest,ntest] = size(test);

count_xls = 0;

for f = 1:mf

if (strcmp(framework(f,:),’TensorFlow’))

for tf = 1:mtf

for tt = 1:mtest

for bk = 1:mbackground

for vc = 1:mvideo

vicon_path = string(strcat(basead,’

↪→ Vicon_Data\’,background(bk,:),’\’,

↪→ test(tt,:),’\vicon_data.txt’));

vicon = csvread(vicon_path);

%initiate variables

height = 0;

width = 0;

depth_from_height = 0;

depth_from_width = 0;

depth_Z = 0;

Xmid = 0;

Ymid = 0;

side_X = 0;

height_Y = 0;

detect_path = string(strcat(basead,

↪→ framework(f,:),’\’,TFapi(tf,:),’\’,

↪→ background(bk,:),’\’,test(tt,:),’_’,

↪→ videocc(vc,:),’_’,’boxlocation.csv’)

↪→);

result_name = string(strcat(framework(f,:)

↪→ ,’_’,TFapi(tf,:),’_’,background(bk

↪→ ,:),’_’,test(tt,:),’_’,videocc(vc,:)

↪→));

108

detect = csvread(detect_path);

detect(isinf(detect))=0;

[m,n] = size(detect);

if (strcmp(videocc(vc,:),’unrect’))

for i = 1:m %extract data

if detect(i,1) == 0 && detect(i,2)

↪→ == 0 && detect(i,3) == 0 &&

↪→ detect(i,4) == 0

side_X(i) = 0;

depth_Z(i) = 0;

height_Y(i) = 0;

else

height(i) = frame_height*(

↪→ detect(i,3) - detect(i,1)

↪→);

width(i) = frame_width*(detect(

↪→ i,4) - detect(i,2));

depth_from_height(i) =

↪→ Drone_height * f_yk /

↪→ height(i);

depth_from_width(i) =

↪→ Drone_width * f_xk /

↪→ width(i);

depth_Z(i) = (depth_from_height

↪→ (i) + depth_from_width(i)

↪→) / 2;

Xmid(i) = frame_width*(detect(i

↪→ ,4) + detect(i,2))/2;

Ymid(i) = frame_height*(detect(

↪→ i,3) + detect(i,1))/2;

side_X(i) = -(Xmid(i) - c_xk) *

↪→ depth_Z(i) / f_xk;

height_Y(i) = -(Ymid(i) - c_yk)

↪→ * depth_Z(i) / f_yk;

end

end

else

for i = 1:m %extract data

if detect(i,1) == 0 && detect(i,2)

↪→ == 0 && detect(i,3) == 0 &&

↪→ detect(i,4) == 0

side_X(i) = 0;

depth_Z(i) = 0;

height_Y(i) = 0;

109

else

height(i) = frame_height*(

↪→ detect(i,3) - detect(i,1)

↪→);

width(i) = frame_width*(detect(

↪→ i,4) - detect(i,2));

depth_from_height(i) =

↪→ Drone_height * f_yp /

↪→ height(i);

depth_from_width(i) =

↪→ Drone_width * f_xp /

↪→ width(i);

depth_Z(i) = (depth_from_height

↪→ (i) + depth_from_width(i)

↪→) / 2;

Xmid(i) = frame_width*(detect(i

↪→ ,4) + detect(i,2))/2;

Ymid(i) = frame_height*(detect(

↪→ i,3) + detect(i,1))/2;

side_X(i) = -(Xmid(i) - c_xp) *

↪→ depth_Z(i) / f_xp;

height_Y(i) = -(Ymid(i) - c_yp)

↪→ * depth_Z(i) / f_yp;

end

end

end

T = [side_X; depth_Z; height_Y];

xx=0;%initialize matrix

dx=0;

dxx=0;

vx=0;

fx=0;

Dx = [dx,dxx,fx];%intialize vector in x

↪→ axis, side

Vx = [xx,vx];

count_x = 1;

for i = 1:m %extract data

dx(i) = T(1,i);

dy(i) = T(3,i);

dz(i) = T(2,i) * -1;

if dx(i) == 0 && dy(i) == 0 && dz(i) ==

110

↪→ 0

count_x = count_x;

else

xx(count_x) = i * 1/30;

vx(count_x) = vicon(i,1)*100;

dxx(count_x) = dx(i);

fx(count_x) = dxx(count_x) - vx(

↪→ count_x);

count_x = count_x + 1;

end

end

Side = figure;set(Side, ’Visible’, ’off’);

↪→ %plot and save

plot(xx,dxx,’-r’,xx,vx,’-b’);

xlabel(’Time (s)’), ylabel(’Relative

↪→ Position in X direction (cm)’);

legend(’Detection Data’,’Vicon Data’,’

↪→ location’,’best’);

saveas(Side,strcat(result_name,’Side_X’),’

↪→ jpg’);

xy=0;%initalize vector in y axis, height

dy=0;

dyy=0;

vy=0;

fy=0;

Dz = [xy,dy,dyy,fy];%intialize vector

Vz = [xy,vy];

count_y = 1;

for i = 1:m %extract data

dx(i) = T(1,i);

dy(i) = T(3,i);

dz(i) = T(2,i) * -1;

if dx(i) == 0 && dy(i) == 0 && dz(i) ==

↪→ 0

count_y = count_y;

else

xy(count_y) = i * 1 / 30;

vy(count_y) = vicon(i,3)*100;

dyy(count_y) = dy(i);

fy(count_y) = dyy(count_y) - vy(

↪→ count_y);

111

count_y = count_y + 1;

end

end

Height = figure;set(Height, ’Visible’, ’

↪→ off’);%plot and save

plot(xy,dyy,’-r’,xy,vy,’-b’);

xlabel(’Time (s)’), ylabel(’Relative

↪→ Position in Y direction (cm)’);

legend(’Detection Data’,’Vicon Data’,’

↪→ location’,’best’);

saveas(Height,strcat(result_name,’Height_Y

↪→ ’),’jpg’);

xz=0;%initalize vector in z axis, depth

dz=0;

dzz=[];

vz=0;

fz=0;

Dz = [xz,dz,dzz,fz];%intialize vector

Vz = [xz,vz];

count_z = 1;

for i = 1:m %extract data

dx(i) = T(1,i);

dy(i) = T(3,i);

dz(i) = T(2,i) * -1;

if dx(i) == 0 && dy(i) == 0 && dz(i) ==

↪→ 0

count_z = count_z;

else

xz(count_z) = i * 1 / 30;

vz(count_z) = vicon(i,2)*100 +

↪→ 44.37;

dzz(count_z) = dz(i);

fz(count_z) = dzz(count_z) - vz(

↪→ count_z);

count_z = count_z + 1;

end

end

Depth = figure;set(Depth, ’Visible’, ’off’

↪→);%plot and save

plot(xz,dzz,’-r’,xz,vz,’-b’);

112

xlabel(’Time (s)’), ylabel(’Relative

↪→ Position in Z Direction (cm)’);

legend(’Detection Data’,’Vicon Data’,’

↪→ location’,’best’);

saveas(Depth,strcat(result_name,’Depth_Z’)

↪→ ,’jpg’);

Difference = figure;set(Difference, ’

↪→ Visible’, ’off’);%plot and save

plot(xy,fx,’-r’,xy,fy,’-b’,xy,fz,’-g’);

xlabel(’Time (s)’), ylabel(’Difference (cm

↪→)’);

legend(’Difference in Side x’,’Difference

↪→ in Height y’,’Difference in Depth z’

↪→ ,’location’,’best’);

saveas(Difference,strcat(result_name,’

↪→ Difference’),’jpg’);

fx_mean = rms(fx);

fy_mean = rms(fy);

fz_mean = rms(fz);

ave_mean = (fx_mean+fy_mean+fz_mean)/3;

count_xls = count_xls + 1;

xlscell = strcat(’A’,num2str(count_xls));

T_excel = [strcat(framework(f,:),’_’,TFapi

↪→ (tf,:),’_’,test(tt,:),’_’,background

↪→ (bk,:),’_’,videocc(vc,:),’

↪→ _train_unrect’),fx_mean,fy_mean,

↪→ fz_mean, ave_mean];

xlswrite(’TensorFlow.xlsx’,T_excel,string(

↪→ TFapi(tf,:)),xlscell)

end

end

end

end

elseif (strcmp(framework(f,:),’Darknet’))

for dk = 1:mDK

for tt = 1:mtest

for bk = 1:mbackground

for tr = 1:mtraincc

for vc = 1:mvideo

if (strcmp(strcat(DKapi(dk,:),’\’,

↪→ traincc(tr,:)),’Tiny_YOLO\

↪→ train_unrect’))

113

continue

else

vicon_path = string(strcat(basead,’

↪→ Vicon_Data\’,background(bk,:)

↪→ ,’\’,test(tt,:),’\vicon_data.

↪→ txt’));

vicon = csvread(vicon_path);

detect_path = string(strcat(basead,

↪→ framework(f,:),’\’,DKapi(dk

↪→ ,:),’\’,traincc(tr,:),’\’,

↪→ background(bk,:),’\’,’bbox’,’

↪→ \’,test(tt,:),’_’,videocc(vc

↪→ ,:),’.csv’));

result_name = string(strcat(

↪→ framework(f,:),’_’,DKapi(dk

↪→ ,:),’_’,traincc(tr,:),’_’,

↪→ background(bk,:),’_’,test(tt

↪→ ,:),’_’,videocc(vc,:)));

detect = csvread(detect_path);

end

%initiate variables

height = 0;

width = 0;

depth_from_height = 0;

depth_from_width = 0;

depth_Z = 0;

Xmid = 0;

Ymid = 0;

side_X = 0;

height_Y = 0;

detect(isinf(detect))=0;

[m,n] = size(detect);

if (strcmp(videocc(vc,:),’unrect’))

for i = 1:m %extract data

if detect(i,1) == 0 && detect(i

↪→ ,2) == 0 && detect(i,3)

↪→ == 0 && detect(i,4) == 0

side_X(i) = 0;

depth_Z(i) = 0;

height_Y(i) = 0;

else

height(i) = detect(i,4) -

114

↪→ detect(i,2);

width(i) = detect(i,3) -

↪→ detect(i,1);

depth_from_height(i) =

↪→ Drone_height * f_yk /

↪→ height(i);

depth_from_width(i) =

↪→ Drone_width * f_xk /

↪→ width(i);

depth_Z(i) = (

↪→ depth_from_height(i) +

↪→ depth_from_width(i))

↪→ / 2;

Xmid(i) = (detect(i,3) +

↪→ detect(i,1))/2;

Ymid(i) = (detect(i,4) +

↪→ detect(i,2))/2;

side_X(i) = -(Xmid(i) - c_xk

↪→) * depth_Z(i) / f_xk;

height_Y(i) = -(Ymid(i) -

↪→ c_yk) * depth_Z(i) /

↪→ f_yk;

end

end

else

for i = 1:m %extract data

if detect(i,1) == 0 && detect(i

↪→ ,2) == 0 && detect(i,3)

↪→ == 0 && detect(i,4) == 0

side_X(i) = 0;

depth_Z(i) = 0;

height_Y(i) = 0;

else

height(i) = detect(i,4) -

↪→ detect(i,2);

width(i) = detect(i,3) -

↪→ detect(i,1);

depth_from_height(i) =

↪→ Drone_height * f_yp /

↪→ height(i);

depth_from_width(i) =

↪→ Drone_width * f_xp /

↪→ width(i);

depth_Z(i) = (

↪→ depth_from_height(i) +

115

↪→ depth_from_width(i))

↪→ / 2;

Xmid(i) = (detect(i,3) +

↪→ detect(i,1))/2;

Ymid(i) = (detect(i,4) +

↪→ detect(i,2))/2;

side_X(i) = -(Xmid(i) - c_xp

↪→) * depth_Z(i) / f_xp;

height_Y(i) = -(Ymid(i) -

↪→ c_yp) * depth_Z(i) /

↪→ f_yp;

end

end

end

T = [side_X; depth_Z; height_Y];

xx=0;%initialize matrix

dx=0;

dxx=0;

vx=0;

fx=0;

Dx = [dx,dxx,fx];%intialize vector in

↪→ x axis, side

Vx = [xx,vx];

count_x = 1;

for i = 1:m %extract data

dx(i) = T(1,i);

dy(i) = T(3,i);

dz(i) = T(2,i) * -1;

if dx(i) == 0 && dy(i) == 0 && dz(i

↪→) == 0

count_x = count_x;

else

xx(count_x) = i * 1/30;

vx(count_x) = vicon(i,1)*100;

dxx(count_x) = dx(i);

fx(count_x) = dxx(count_x) - vx

↪→ (count_x);

count_x = count_x + 1;

end

end

116

Side = figure;set(Side, ’Visible’, ’off

↪→ ’);%plot and save

plot(xx,dxx,’-r’,xx,vx,’-b’);

xlabel(’Time (s)’), ylabel(’Relative

↪→ Position in X direction (cm)’);

legend(’Detection Data’,’Vicon Data’,’

↪→ location’,’best’);

saveas(Side,strcat(result_name,’Side_X’

↪→),’jpg’);

xy=0;%initalize vector in y axis,

↪→ height

dy=0;

dyy=0;

vy=0;

fy=0;

Dz = [xy,dy,dyy,fy];%intialize vector

Vz = [xy,vy];

count_y = 1;

for i = 1:m %extract data

dx(i) = T(1,i);

dy(i) = T(3,i);

dz(i) = T(2,i) * -1;

if dx(i) == 0 && dy(i) == 0 && dz(i

↪→) == 0

count_y = count_y;

else

xy(count_y) = i * 1 / 30;

vy(count_y) = vicon(i,3)*100;

dyy(count_y) = dy(i);

fy(count_y) = dyy(count_y) - vy

↪→ (count_y);

count_y = count_y + 1;

end

end

Height = figure;set(Height, ’Visible’,

↪→ ’off’);%plot and save

plot(xy,dyy,’-r’,xy,vy,’-b’);

xlabel(’Time (s)’), ylabel(’Relative

↪→ Position in Y direction (cm)’);

legend(’Detection Data’,’Vicon Data’,’

↪→ location’,’best’);

117

saveas(Height,strcat(result_name,’

↪→ Height_Y’),’jpg’);

xz=0;%initalize vector in z axis,

↪→ depth

dz=0;

dzz=[];

vz=0;

fz=0;

Dz = [xz,dz,dzz,fz];%intialize vector

Vz = [xz,vz];

count_z = 1;

for i = 1:m %extract data

dx(i) = T(1,i);

dy(i) = T(3,i);

dz(i) = T(2,i) * -1;

if dx(i) == 0 && dy(i) == 0 && dz(i

↪→) == 0

count_z = count_z;

else

xz(count_z) = i * 1 / 30;

vz(count_z) = vicon(i,2)*100 +

↪→ 44.37;

dzz(count_z) = dz(i);

fz(count_z) = dzz(count_z) - vz

↪→ (count_z);

count_z = count_z + 1;

end

end

Depth = figure;set(Depth, ’Visible’, ’

↪→ off’);%plot and save

plot(xz,dzz,’-r’,xz,vz,’-b’);

xlabel(’Time (s)’), ylabel(’Relative

↪→ Position in Z Direction (cm)’);

legend(’Detection Data’,’Vicon Data’,’

↪→ location’,’best’);

saveas(Depth,strcat(result_name,’

↪→ Depth_Z’),’jpg’);

Difference = figure;set(Difference, ’

↪→ Visible’, ’off’);%plot and save

plot(xy,fx,’-r’,xy,fy,’-b’,xy,fz,’-g’);

118

xlabel(’Time (s)’), ylabel(’Difference

↪→ (cm)’);

legend(’Difference in Side x’,’

↪→ Difference in Height y’,’

↪→ Difference in Depth z’,’location

↪→ ’,’best’);

saveas(Difference,strcat(result_name,’

↪→ Difference’),’jpg’);

fx_mean = rms(fx);

fy_mean = rms(fy);

fz_mean = rms(fz);

ave_mean = (fx_mean+fy_mean+fz_mean)/3;

count_xls = count_xls + 1;

xlscell = strcat(’A’,num2str(count_xls)

↪→);

T_excel = [strcat(framework(f,:),’_’,

↪→ DKapi(dk,:),’_’,test(tt,:),’_’,

↪→ background(bk,:),’_’,videocc(vc

↪→ ,:),’_’,traincc(tr,:)),fx_mean,

↪→ fy_mean,fz_mean, ave_mean];

xlswrite(’Darknet.xlsx’,T_excel,string(

↪→ DKapi(dk,:)),xlscell)

end

end

end

end

end

end

end

disp(’finish!’)

A.4 Training Data Extraction of Darknet

In section, Python code for extracting training data of Darknet is presented.

Unlike TensorFlow, Darknet does not provide a tool to monitor training pro-

cess. The code is developed to get useful information logged from training

terminal.

coding=utf-8

119

old = open(’log_without_title.txt’)

new = open(’extracted_log__yolov2.txt’, ’w’)

for line in old:

if ’Loaded’ in line:

continue

if ’Region’ in line:

continue

if ’seconds’ in line:

new.write(line)

old.close()

new.close()

A.5 Monte Carlo Method for Uncertainty Anal-

ysis

In this section, Matlab code for uncertainty analysis for distance estimation

using Monte Carlo method is presented.

clear;

clc;

m_Drone_height = 12.59;

std_h = 0.01;

Drone_height = normrnd(m_Drone_height,std_h,[1000,1]);

m_Drone_width = 50.65;

std_w = 0.01;

Drone_width = normrnd(m_Drone_width,std_w,[1000,1]);

m_fxk = 551.9830968;

std_fxk = 12.52216056;

f_xk = normrnd(m_fxk,std_fxk,[1000,1]);

m_fyk = 552.1858034;

std_fyk = 12.53326553;

f_yk = normrnd(m_fyk,std_fyk,[1000,1]);

m_cxk = 321.609551;

std_cxk = 9.17093802;

c_xk = normrnd(m_cxk,std_cxk,[1000,1]);

m_cyk = 183.4030846;

std_cyk = 5.93460473;

c_yk = normrnd(m_cyk,std_cyk,[1000,1]);

120

m_fxp = 437.9295603;

std_fxp = 12.58862952;

f_xp = normrnd(m_fxp,std_fxp,[1000,1]);

m_fyp = 516.3283819;

std_fyp = 12.50180664;

f_yp = normrnd(m_fyp,std_fyp,[1000,1]);

m_cxp = 323.3832733;

std_cxp = 12.57457631;

c_xp = normrnd(m_cxp,std_cxp,[1000,1]);

m_cyp = 183.7519438;

std_cyp = 6.73694362;

c_yp = normrnd(m_cyp,std_cyp,[1000,1]);

frame_width = 640;

frame_height = 360;

x_min = 359;

x_max = 490;

y_min = 99;

y_max = 127;

%unrectified simulation

for i = 1:1000

height(i) = abs(y_min - y_max);

width(i) = abs(x_min - x_max);

depth_from_height(i) = Drone_height(i,1) * f_yk(i,1) /

↪→ height(i);

depth_from_width(i) = Drone_width(i,1) * f_xk(i,1) / width(i

↪→);

depth_Zk(i) = (depth_from_height(i) + depth_from_width(i)) /

↪→ 2;

Xmid(i) = (x_min + x_max)/2;

Ymid(i) = (y_min + y_max)/2;

side_Xk(i) = -(Xmid(i) - c_xk(i,1)) * depth_Zk(i) / f_xk(i

↪→ ,1);

height_Yk(i) = -(Ymid(i) - c_yk(i,1)) * depth_Zk(i) / f_yk(i

↪→ ,1);

end

T_k = [side_Xk; depth_Zk; height_Yk];

T_kt = transpose(T_k);

xlswrite(’monte carlo camera.xlsx’,T_kt)

%rectified simulation

121

for i = 1: 1000

height(i) = abs(y_min - y_max);

width(i) = abs(x_min - x_max);

depth_from_height(i) = Drone_height(i,1) * f_yp(i,1) /

↪→ height(i);

depth_from_width(i) = Drone_width(i,1) * f_xp(i,1) / width(i

↪→);

depth_Zp(i) = (depth_from_height(i) + depth_from_width(i)) /

↪→ 2;

Xmid(i) = (x_min + x_max)/2;

Ymid(i) = (y_min + y_max)/2;

side_Xp(i) = -(Xmid(i) - c_xp(i,1)) * depth_Zp(i) / f_xp(i

↪→ ,1);

height_Yp(i) = -(Ymid(i) - c_yp(i,1)) * depth_Zp(i) / f_yp(i

↪→ ,1);

end

T_p = [side_Xp; depth_Zp; height_Yp];

T_pt = transpose(T_p);

xlswrite(’monte carlo projection.xlsx’,T_pt)

disp(’finish!’)

122

Appendix B

Supplementary Data

B.1 Loss Curves of Training for Object Detec-

tion Systems

Figure B.1: SSD Inception v2 Total Loss

123

Figure B.2: SSD Inception v2 Total Loss after Filtering

Figure B.3: Faster RCNN Inception v2 Total Loss

Figure B.4: Faster RCNN Inception v2 Total Loss after Filtering

124

Figure B.5: Tiny YOLO Total Loss

Figure B.6: Zoomed and Smoothed Tiny YOLO Total Loss

B.2 Detection Results

In this section, detailed experimental results from object detection systems of

different flight patterns are listed. The abbreviation of different experiment

setups are listed below.

125

Table B.1: Test Configuration and Abbreviation

Test Configuration Abbreviation
With White Curtain WWC
Without White Curtain OWC
Video Rectified VR
Video Unrectified VU
Training with Rectified Images TR
Training with Unrectified Images TU

B.2.1 Differences between Distance Estimations and Vi-
con Data

In this Section, histograms of differences probability distribution between dis-

tance estimations using the equations derived in Section 2.5 and Vicon data

are illustrated below.

Figure B.7: SSD MobileNet v1 Pure Translation in Side and Height Direc-
tion Test 1 With White Curtain with Video Unrectified/ Training Unrectified
Difference Probability Distribution Histogram

126

Figure B.8: SSD MobileNet v1 Pure Translation in Side and Height Direc-
tion Test 1 With White Curtain with Video Rectified/ Training Unrectified
Difference Probability Distribution Histogram

Figure B.9: SSD MobileNet v1 Pure Translation in Side and Height Direction
Test 1 With Complex Background with Video Rectified/ Training Unrectified
Difference Probability Distribution Histogram

127

Figure B.10: SSD MobileNet v1 Pure Translation in Side and Height Direc-
tion Test 2 With White Curtain with Video Unrectified/ Training Unrectified
Difference Probability Distribution Histogram

Figure B.11: SSD MobileNet v1 Pure Translation in Side and Height Direc-
tion Test 2 With White Curtain with Video Rectified/ Training Unrectified
Difference Probability Distribution Histogram

128

Figure B.12: SSD MobileNet v1 Pure Translation in Side and Height Direction
Test 2 With Complex Background with Video Unrectified/ Training Unrecti-
fied Difference Probability Distribution Histogram

Figure B.13: SSD MobileNet v1 Pure Translation in Side and Height Direction
Test 2 With Complex Background with Video Rectified/ Training Unrectified
Difference Probability Distribution Histogram

129

Figure B.14: SSD MobileNet v1 Pure Translation in Depth Direction Test 1
With White Curtain with Video Unrectified/ Training Unrectified Difference
Probability Distribution Histogram

Figure B.15: SSD MobileNet v1 Pure Translation in Depth Direction Test
1 With White Curtain with Video Rectified/ Training Unrectified Difference
Probability Distribution Histogram

130

Figure B.16: SSD MobileNet v1 Pure Translation in Depth Direction Test
1 With Complex Background with Video Unrectified/ Training Unrectified
Difference Probability Distribution Histogram

Figure B.17: SSD MobileNet v1 Pure Translation in Depth Direction Test 1
With Complex Background with Video Rectified/ Training Unrectified Differ-
ence Probability Distribution Histogram

131

Figure B.18: SSD MobileNet v1 Pure Translation in Depth Direction Test 2
With White Curtain with Video Unrectified/ Training Unrectified Difference
Probability Distribution Histogram

Figure B.19: SSD MobileNet v1 Pure Translation in Depth Direction Test
2 With White Curtain with Video Rectified/ Training Unrectified Difference
Probability Distribution Histogram

132

Figure B.20: SSD MobileNet v1 Pure Translation in Depth Direction Test
2 With Complex Background with Video Unrectified/ Training Unrectified
Difference Probability Distribution Histogram

Figure B.21: SSD MobileNet v1 Pure Translation in Depth Direction Test 2
With Complex Background with Video Rectified/ Training Unrectified Differ-
ence Probability Distribution Histogram

133

Figure B.22: SSD MobileNet v1 Pure Rotation Test 1 With White Curtain
with Video Unrectified/ Training Unrectified Difference Probability Distribu-
tion Histogram

Figure B.23: SSD MobileNet v1 Pure Rotation Test 1 With White Curtain
with Video Rectified/ Training Unrectified Difference Probability Distribution
Histogram

134

Figure B.24: SSD MobileNet v1 Pure Rotation Test 1 With Complex Back-
ground with Video Unrectified/ Training Unrectified Difference Probability
Distribution Histogram

Figure B.25: SSD MobileNet v1 Pure Rotation Test 1 With Complex Back-
ground with Video Rectified/ Training Unrectified Difference Probability Dis-
tribution Histogram

135

Figure B.26: SSD MobileNet v1 Pure Rotation Test 2 With White Curtain
with Video Unrectified/ Training Unrectified Difference Probability Distribu-
tion Histogram

Figure B.27: SSD MobileNet v1 Pure Rotation Test 2 With White Curtain
with Video Rectified/ Training Unrectified Difference Probability Distribution
Histogram

136

Figure B.28: SSD MobileNet v1 Pure Rotation Test 2 With Complex Back-
ground with Video Unrectified/ Training Unrectified Difference Probability
Distribution Histogram

Figure B.29: SSD MobileNet v1 Pure Rotation Test 2 With Complex Back-
ground with Video Rectified/ Training Unrectified Difference Probability Dis-
tribution Histogram

137

Figure B.30: SSD MobileNet v1 Random Flight Pattern Test 1 With White
Curtain with Video Unrectified/ Training Unrectified Difference Probability
Distribution Histogram

Figure B.31: SSD MobileNet v1 Random Flight Pattern Test 1 With White
Curtain with Video Rectified/ Training Unrectified Difference Probability Dis-
tribution Histogram

138

Figure B.32: SSD MobileNet v1 Random Flight Pattern Test 1 With Complex
Background with Video Unrectified/ Training Unrectified Difference Probabil-
ity Distribution Histogram

Figure B.33: SSD MobileNet v1 Random Flight Pattern Test 1 With Complex
Background with Video Rectified/ Training Unrectified Difference Probability
Distribution Histogram

139

Figure B.34: SSD MobileNet v1 Random Flight Pattern Test 2 With White
Curtain with Video Unrectified/ Training Unrectified Difference Probability
Distribution Histogram

Figure B.35: SSD MobileNet v1 Random Flight Pattern Test 2 With White
Curtain with Video Rectified/ Training Unrectified Difference Probability Dis-
tribution Histogram

140

Figure B.36: SSD MobileNet v1 Random Flight Pattern Test 2 With Complex
Background with Video Unrectified/ Training Unrectified Difference Probabil-
ity Distribution Histogram

Figure B.37: SSD Inception v2 Pure Translation in Side and Height Direc-
tion Test 1 With White Curtain with Video Unrectified/ Training Unrectified
Difference Probability Distribution Histogram

141

Figure B.38: SSD Inception v2 Pure Translation in Side and Height Direc-
tion Test 1 With White Curtain with Video Rectified/ Training Unrectified
Difference Probability Distribution Histogram

Figure B.39: SSD Inception v2 Pure Translation in Side and Height Direction
Test 1 With Complex Background with Video Unrectified/ Training Unrecti-
fied Difference Probability Distribution Histogram

142

Figure B.40: SSD Inception v2 Pure Translation in Side and Height Direction
Test 1 With Complex Background with Video Rectified/ Training Unrectified
Difference Probability Distribution Histogram

Figure B.41: SSD Inception v2 Pure Translation in Side and Height Direc-
tion Test 2 With White Curtain with Video Unrectified/ Training Unrectified
Difference Probability Distribution Histogram

143

Figure B.42: SSD Inception v2 Pure Translation in Side and Height Direc-
tion Test 2 With White Curtain with Video Rectified/ Training Unrectified
Difference Probability Distribution Histogram

Figure B.43: SSD Inception v2 Pure Translation in Side and Height Direction
Test 2 With Complex Background with Video Unrectified/ Training Unrecti-
fied Difference Probability Distribution Histogram

144

Figure B.44: SSD Inception v2 Pure Translation in Side and Height Direction
Test 2 With Complex Background with Video Rectified/ Training Unrectified
Difference Probability Distribution Histogram

Figure B.45: SSD Inception v2 Pure Translation in Depth Direction Test 1
With White Curtain with Video Unrectified/ Training Unrectified Difference
Probability Distribution Histogram

145

Figure B.46: SSD Inception v2 Pure Translation in Depth Direction Test 1
With White Curtain with Video Rectified/ Training Unrectified Difference
Probability Distribution Histogram

Figure B.47: SSD Inception v2 Pure Translation in Depth Direction Test
1 With Complex Background with Video Unrectified/ Training Unrectified
Difference Probability Distribution Histogram

146

Figure B.48: SSD Inception v2 Pure Translation in Depth Direction Test 1
With Complex Background with Video Rectified/ Training Unrectified Differ-
ence Probability Distribution Histogram

Figure B.49: SSD Inception v2 Pure Translation in Depth Direction Test 2
With White Curtain with Video Unrectified/ Training Unrectified Difference
Probability Distribution Histogram

147

Figure B.50: SSD Inception v2 Pure Translation in Depth Direction Test 2
With White Curtain with Video Rectified/ Training Unrectified Difference
Probability Distribution Histogram

Figure B.51: SSD Inception v2 Pure Translation in Depth Direction Test
2 With Complex Background with Video Unrectified/ Training Unrectified
Difference Probability Distribution Histogram

148

Figure B.52: SSD Inception v2 Pure Translation in Depth Direction Test 2
With Complex Background with Video Rectified/ Training Unrectified Differ-
ence Probability Distribution Histogram

Figure B.53: SSD Inception v2 Pure Rotation Test 1 With White Curtain with
Video Unrectified/ Training Unrectified Difference Probability Distribution
Histogram

149

Figure B.54: SSD Inception v2 Pure Rotation Test 1 With White Curtain
with Video Rectified/ Training Unrectified Difference Probability Distribution
Histogram

Figure B.55: SSD Inception v2 Pure Rotation Test 1 With Complex Back-
ground with Video Unrectified/ Training Unrectified Difference Probability
Distribution Histogram

150

Figure B.56: SSD Inception v2 Pure Rotation Test 1 With Complex Back-
ground with Video Rectified/ Training Unrectified Difference Probability Dis-
tribution Histogram

Figure B.57: SSD Inception v2 Pure Rotation Test 2 With White Curtain with
Video Unrectified/ Training Unrectified Difference Probability Distribution
Histogram

151

Figure B.58: SSD Inception v2 Pure Rotation Test 2 With White Curtain
with Video Rectified/ Training Unrectified Difference Probability Distribution
Histogram

Figure B.59: SSD Inception v2 Pure Rotation Test 2 With Complex Back-
ground with Video Unrectified/ Training Unrectified Difference Probability
Distribution Histogram

152

Figure B.60: SSD Inception v2 Pure Rotation Test 2 With Complex Back-
ground with Video Rectified/ Training Unrectified Difference Probability Dis-
tribution Histogram

Figure B.61: SSD Inception v2 Random Flight Pattern Test 1 With White
Curtain with Video Unrectified/ Training Unrectified Difference Probability
Distribution Histogram

153

Figure B.62: SSD Inception v2 Random Flight Pattern Test 1 With White
Curtain with Video Rectified/ Training Unrectified Difference Probability Dis-
tribution Histogram

Figure B.63: SSD Inception v2 Random Flight Pattern Test 1 With Complex
Background with Video Unrectified/ Training Unrectified Difference Probabil-
ity Distribution Histogram

154

Figure B.64: SSD Inception v2 Random Flight Pattern Test 1 With Complex
Background with Video Rectified/ Training Unrectified Difference Probability
Distribution Histogram

Figure B.65: SSD Inception v2 Random Flight Pattern Test 2 With White
Curtain with Video Unrectified/ Training Unrectified Difference Probability
Distribution Histogram

155

Figure B.66: SSD Inception v2 Random Flight Pattern Test 2 With White
Curtain with Video Rectified/ Training Unrectified Difference Probability Dis-
tribution Histogram

Figure B.67: SSD Inception v2 Random Flight Pattern Test 2 With Complex
Background with Video Unrectified/ Training Unrectified Difference Probabil-
ity Distribution Histogram

156

Figure B.68: SSD Inception v2 Random Flight Pattern Test 2 With Complex
Background with Video Rectified/ Training Unrectified Difference Probability
Distribution Histogram

Figure B.69: Faster RCNN Inception v2 Pure Translation in Side and Height
Direction Test 1 With White Curtain with Video Unrectified/ Training Un-
rectified Difference Probability Distribution Histogram

157

Figure B.70: Faster RCNN Inception v2 Pure Translation in Side and Height
Direction Test 1 With White Curtain with Video Rectified/ Training Unrec-
tified Difference Probability Distribution Histogram

Figure B.71: Faster RCNN Inception v2 Pure Translation in Side and Height
Direction Test 1 With Complex Background with Video Unrectified/ Training
Unrectified Difference Probability Distribution Histogram

158

Figure B.72: Faster RCNN Inception v2 Pure Translation in Side and Height
Direction Test 1 With Complex Background with Video Rectified/ Training
Unrectified Difference Probability Distribution Histogram

Figure B.73: Faster RCNN Inception v2 Pure Translation in Side and Height
Direction Test 2 With White Curtain with Video Unrectified/ Training Un-
rectified Difference Probability Distribution Histogram

159

Figure B.74: Faster RCNN Inception v2 Pure Translation in Side and Height
Direction Test 2 With White Curtain with Video Rectified/ Training Unrec-
tified Difference Probability Distribution Histogram

Figure B.75: Faster RCNN Inception v2 Pure Translation in Side and Height
Direction Test 2 With Complex Background with Video Unrectified/ Training
Unrectified Difference Probability Distribution Histogram

160

Figure B.76: Faster RCNN Inception v2 Pure Translation in Side and Height
Direction Test 2 With Complex Background with Video Rectified/ Training
Unrectified Difference Probability Distribution Histogram

Figure B.77: Faster RCNN Inception v2 Pure Translation in Depth Direc-
tion Test 1 With White Curtain with Video Unrectified/ Training Unrectified
Difference Probability Distribution Histogram

161

Figure B.78: Faster RCNN Inception v2 Pure Translation in Depth Direc-
tion Test 1 With White Curtain with Video Rectified/ Training Unrectified
Difference Probability Distribution Histogram

Figure B.79: Faster RCNN Inception v2 Pure Translation in Depth Direction
Test 1 With Complex Background with Video Unrectified/ Training Unrecti-
fied Difference Probability Distribution Histogram

162

Figure B.80: Faster RCNN Inception v2 Pure Translation in Depth Direction
Test 1 With Complex Background with Video Rectified/ Training Unrectified
Difference Probability Distribution Histogram

Figure B.81: Faster RCNN Inception v2 Pure Translation in Depth Direc-
tion Test 2 With White Curtain with Video Unrectified/ Training Unrectified
Difference Probability Distribution Histogram

163

Figure B.82: Faster RCNN Inception v2 Pure Translation in Depth Direc-
tion Test 2 With White Curtain with Video Rectified/ Training Unrectified
Difference Probability Distribution Histogram

Figure B.83: Faster RCNN Inception v2 Pure Translation in Depth Direction
Test 2 With Complex Background with Video Unrectified/ Training Unrecti-
fied Difference Probability Distribution Histogram

164

Figure B.84: Faster RCNN Inception v2 Pure Translation in Depth Direction
Test 2 With Complex Background with Video Rectified/ Training Unrectified
Difference Probability Distribution Histogram

Figure B.85: Faster RCNN Inception v2 Pure Rotation Test 1 With White
Curtain with Video Unrectified/ Training Unrectified Difference Probability
Distribution Histogram

165

Figure B.86: Faster RCNN Inception v2 Pure Rotation Test 1 With White
Curtain with Video Rectified/ Training Unrectified Difference Probability Dis-
tribution Histogram

Figure B.87: Faster RCNN Inception v2 Pure Rotation Test 1 With Complex
Background with Video Unrectified/ Training Unrectified Difference Probabil-
ity Distribution Histogram

166

Figure B.88: Faster RCNN Inception v2 Pure Rotation Test 1 With Complex
Background with Video Rectified/ Training Unrectified Difference Probability
Distribution Histogram

Figure B.89: Faster RCNN Inception v2 Pure Rotation Test 2 With White
Curtain with Video Unrectified/ Training Unrectified Difference Probability
Distribution Histogram

167

Figure B.90: Faster RCNN Inception v2 Pure Rotation Test 2 With White
Curtain with Video Rectified/ Training Unrectified Difference Probability Dis-
tribution Histogram

Figure B.91: Faster RCNN Inception v2 Pure Rotation Test 2 With Complex
Background with Video Unrectified/ Training Unrectified Difference Probabil-
ity Distribution Histogram

168

Figure B.92: Faster RCNN Inception v2 Pure Rotation Test 2 With Complex
Background with Video Rectified/ Training Unrectified Difference Probability
Distribution Histogram

Figure B.93: Faster RCNN Inception v2 Random Flight Pattern Test 1 With
White Curtain with Video Unrectified/ Training Unrectified Difference Prob-
ability Distribution Histogram

169

Figure B.94: Faster RCNN Inception v2 Random Flight Pattern Test 1 With
White Curtain with Video Rectified/ Training Unrectified Difference Proba-
bility Distribution Histogram

Figure B.95: Faster RCNN Inception v2 Random Flight Pattern Test 1 With
Complex Background with Video Unrectified/ Training Unrectified Difference
Probability Distribution Histogram

170

Figure B.96: Faster RCNN Inception v2 Random Flight Pattern Test 1 With
Complex Background with Video Rectified/ Training Unrectified Difference
Probability Distribution Histogram

Figure B.97: Faster RCNN Inception v2 Random Flight Pattern Test 2 With
White Curtain with Video Unrectified/ Training Unrectified Difference Prob-
ability Distribution Histogram

171

Figure B.98: Faster RCNN Inception v2 Random Flight Pattern Test 2 With
White Curtain with Video Rectified/ Training Unrectified Difference Proba-
bility Distribution Histogram

Figure B.99: Faster RCNN Inception v2 Random Flight Pattern Test 2 With
Complex Background with Video Unrectified/ Training Unrectified Difference
Probability Distribution Histogram

172

Figure B.100: Faster RCNN Inception v2 Random Flight Pattern Test 2 With
Complex Background with Video Rectified/ Training Unrectified Difference
Probability Distribution Histogram

Figure B.101: YOLO v2 Pure Translation in Side and Height Direction Test 1
With White Curtain with Video Unrectified/ Training Unrectified Difference
Probability Distribution Histogram

173

Figure B.102: YOLO v2 Pure Translation in Side and Height Direction Test
1 With White Curtain with Video Rectified/ Training Unrectified Difference
Probability Distribution Histogram

Figure B.103: YOLO v2 Pure Translation in Side and Height Direction Test
1 With White Curtain with Video Unrectified/ Training Rectified Difference
Probability Distribution Histogram

174

Figure B.104: YOLO v2 Pure Translation in Side and Height Direction Test
1 With White Curtain with Video Rectified/ Training Rectified Difference
Probability Distribution Histogram

Figure B.105: YOLO v2 Pure Translation in Side and Height Direction Test
1 With Complex Background with Video Unrectified/ Training Unrectified
Difference Probability Distribution Histogram

175

Figure B.106: YOLO v2 Pure Translation in Side and Height Direction Test
1 With Complex Background with Video Rectified/ Training Unrectified Dif-
ference Probability Distribution Histogram

Figure B.107: YOLO v2 Pure Translation in Side and Height Direction Test
1 With Complex Background with Video Unrectified/ Training Rectified Dif-
ference Probability Distribution Histogram

176

Figure B.108: YOLO v2 Pure Translation in Side and Height Direction Test 1
With Complex Background with Video Rectified/ Training Rectified Difference
Probability Distribution Histogram

Figure B.109: YOLO v2 Pure Translation in Side and Height Direction Test 2
With White Curtain with Video Unrectified/ Training Unrectified Difference
Probability Distribution Histogram

177

Figure B.110: YOLO v2 Pure Translation in Side and Height Direction Test
2 With White Curtain with Video Rectified/ Training Unrectified Difference
Probability Distribution Histogram

Figure B.111: YOLO v2 Pure Translation in Side and Height Direction Test
2 With White Curtain with Video Unrectified/ Training Rectified Difference
Probability Distribution Histogram

178

Figure B.112: YOLO v2 Pure Translation in Side and Height Direction Test
2 With White Curtain with Video Rectified/ Training Rectified Difference
Probability Distribution Histogram

Figure B.113: YOLO v2 Pure Translation in Side and Height Direction Test
2 With Complex Background with Video Unrectified/ Training Unrectified
Difference Probability Distribution Histogram

179

Figure B.114: YOLO v2 Pure Translation in Side and Height Direction Test
2 With Complex Background with Video Rectified/ Training Unrectified Dif-
ference Probability Distribution Histogram

Figure B.115: YOLO v2 Pure Translation in Side and Height Direction Test
2 With Complex Background with Video Unrectified/ Training Rectified Dif-
ference Probability Distribution Histogram

180

Figure B.116: YOLO v2 Pure Translation in Side and Height Direction Test 2
With Complex Background with Video Rectified/ Training Rectified Difference
Probability Distribution Histogram

Figure B.117: YOLO v2 Pure Translation in Depth Direction Test 1 With
White Curtain with Video Unrectified/ Training Unrectified Difference Prob-
ability Distribution Histogram

181

Figure B.118: YOLO v2 Pure Translation in Depth Direction Test 1 With
White Curtain with Video Rectified/ Training Unrectified Difference Proba-
bility Distribution Histogram

Figure B.119: YOLO v2 Pure Translation in Depth Direction Test 1 With
White Curtain with Video Unrectified/ Training Rectified Difference Proba-
bility Distribution Histogram

182

Figure B.120: YOLO v2 Pure Translation in Depth Direction Test 1 With
White Curtain with Video Rectified/ Training Rectified Difference Probability
Distribution Histogram

Figure B.121: YOLO v2 Pure Translation in Depth Direction Test 1 With
Complex Background with Video Unrectified/ Training Unrectified Difference
Probability Distribution Histogram

183

Figure B.122: YOLO v2 Pure Translation in Depth Direction Test 1 With
Complex Background with Video Rectified/ Training Unrectified Difference
Probability Distribution Histogram

Figure B.123: YOLO v2 Pure Translation in Depth Direction Test 1 With
Complex Background with Video Unrectified/ Training Rectified Difference
Probability Distribution Histogram

184

Figure B.124: YOLO v2 Pure Translation in Depth Direction Test 1 With
Complex Background with Video Rectified/ Training Rectified Difference
Probability Distribution Histogram

Figure B.125: YOLO v2 Pure Translation in Depth Direction Test 2 With
White Curtain with Video Unrectified/ Training Unrectified Difference Prob-
ability Distribution Histogram

185

Figure B.126: YOLO v2 Pure Translation in Depth Direction Test 2 With
White Curtain with Video Rectified/ Training Unrectified Difference Proba-
bility Distribution Histogram

Figure B.127: YOLO v2 Pure Translation in Depth Direction Test 2 With
White Curtain with Video Unrectified/ Training Rectified Difference Proba-
bility Distribution Histogram

186

Figure B.128: YOLO v2 Pure Translation in Depth Direction Test 2 With
White Curtain with Video Rectified/ Training Rectified Difference Probability
Distribution Histogram

Figure B.129: YOLO v2 Pure Translation in Depth Direction Test 2 With
Complex Background with Video Unrectified/ Training Unrectified Difference
Probability Distribution Histogram

187

Figure B.130: YOLO v2 Pure Translation in Depth Direction Test 2 With
Complex Background with Video Rectified/ Training Unrectified Difference
Probability Distribution Histogram

Figure B.131: YOLO v2 Pure Translation in Depth Direction Test 2 With
Complex Background with Video Unrectified/ Training Rectified Difference
Probability Distribution Histogram

188

Figure B.132: YOLO v2 Pure Translation in Depth Direction Test 2 With
Complex Background with Video Rectified/ Training Rectified Difference
Probability Distribution Histogram

Figure B.133: YOLO v2 Pure Rotation With Test 1 White Curtain with
Video Unrectified/ Training Unrectified Difference Probability Distribution
Histogram

189

Figure B.134: YOLO v2 Pure Rotation With Test 1 White Curtain with Video
Rectified/ Training Unrectified Difference Probability Distribution Histogram

Figure B.135: YOLO v2 Pure Rotation With Test 1 White Curtain with Video
Unrectified/ Training Rectified Difference Probability Distribution Histogram

190

Figure B.136: YOLO v2 Pure Rotation With Test 1 White Curtain with Video
Rectified/ Training Rectified Difference Probability Distribution Histogram

Figure B.137: YOLO v2 Pure Rotation With Test 1 Complex Background with
Video Unrectified/ Training Unrectified Difference Probability Distribution
Histogram

191

Figure B.138: YOLO v2 Pure Rotation With Test 1 Complex Background
with Video Rectified/ Training Unrectified Difference Probability Distribution
Histogram

Figure B.139: YOLO v2 Pure Rotation With Test 1 Complex Background
with Video Unrectified/ Training Rectified Difference Probability Distribution
Histogram

192

Figure B.140: YOLO v2 Pure Rotation With Test 1 Complex Background
with Video Rectified/ Training Rectified Difference Probability Distribution
Histogram

Figure B.141: YOLO v2 Pure Rotation With Test 2 White Curtain with
Video Unrectified/ Training Unrectified Difference Probability Distribution
Histogram

193

Figure B.142: YOLO v2 Pure Rotation With Test 2 White Curtain with Video
Rectified/ Training Unrectified Difference Probability Distribution Histogram

Figure B.143: YOLO v2 Pure Rotation With Test 2 White Curtain with Video
Unrectified/ Training Rectified Difference Probability Distribution Histogram

194

Figure B.144: YOLO v2 Pure Rotation With Test 2 White Curtain with Video
Rectified/ Training Rectified Difference Probability Distribution Histogram

Figure B.145: YOLO v2 Pure Rotation With Test 2 Complex Background with
Video Unrectified/ Training Unrectified Difference Probability Distribution
Histogram

195

Figure B.146: YOLO v2 Pure Rotation With Test 2 Complex Background
with Video Rectified/ Training Unrectified Difference Probability Distribution
Histogram

Figure B.147: YOLO v2 Pure Rotation With Test 2 Complex Background
with Video Unrectified/ Training Rectified Difference Probability Distribution
Histogram

196

Figure B.148: YOLO v2 Pure Rotation With Test 2 Complex Background
with Video Rectified/ Training Rectified Difference Probability Distribution
Histogram

Figure B.149: YOLO v2 Random Flight Pattern Test 1 With White Curtain
with Video Unrectified/ Training Unrectified Difference Probability Distribu-
tion Histogram

197

Figure B.150: YOLO v2 Random Flight Pattern Test 1 With White Curtain
with Video Rectified/ Training Unrectified Difference Probability Distribution
Histogram

Figure B.151: YOLO v2 Random Flight Pattern Test 1 With White Curtain
with Video Unrectified/ Training Rectified Difference Probability Distribution
Histogram

198

Figure B.152: YOLO v2 Random Flight Pattern Test 1 With White Curtain
with Video Rectified/ Training Rectified Difference Probability Distribution
Histogram

Figure B.153: YOLO v2 Random Flight Pattern Test 1 With Complex Back-
ground with Video Unrectified/ Training Unrectified Difference Probability
Distribution Histogram

199

Figure B.154: YOLO v2 Random Flight Pattern Test 1 With Complex Back-
ground with Video Rectified/ Training Unrectified Difference Probability Dis-
tribution Histogram

Figure B.155: YOLO v2 Random Flight Pattern Test 1 With Complex Back-
ground with Video Unrectified/ Training Rectified Difference Probability Dis-
tribution Histogram

200

Figure B.156: YOLO v2 Random Flight Pattern Test 1 With Complex Back-
ground with Video Rectified/ Training Rectified Difference Probability Distri-
bution Histogram

Figure B.157: YOLO v2 Random Flight Pattern Test 2 With White Curtain
with Video Unrectified/ Training Unrectified Difference Probability Distribu-
tion Histogram

201

Figure B.158: YOLO v2 Random Flight Pattern Test 2 With White Curtain
with Video Rectified/ Training Unrectified Difference Probability Distribution
Histogram

Figure B.159: YOLO v2 Random Flight Pattern Test 2 With White Curtain
with Video Unrectified/ Training Rectified Difference Probability Distribution
Histogram

202

Figure B.160: YOLO v2 Random Flight Pattern Test 2 With White Curtain
with Video Rectified/ Training Rectified Difference Probability Distribution
Histogram

Figure B.161: YOLO v2 Random Flight Pattern Test 2 With Complex Back-
ground with Video Unrectified/ Training Unrectified Difference Probability
Distribution Histogram

203

Figure B.162: YOLO v2 Random Flight Pattern Test 2 With Complex Back-
ground with Video Rectified/ Training Unrectified Difference Probability Dis-
tribution Histogram

Figure B.163: YOLO v2 Random Flight Pattern Test 2 With Complex Back-
ground with Video Unrectified/ Training Rectified Difference Probability Dis-
tribution Histogram

204

Figure B.164: YOLO v2 Random Flight Pattern Test 2 With Complex Back-
ground with Video Rectified/ Training Rectified Difference Probability Distri-
bution Histogram

Figure B.165: Tiny YOLO Pure Translation in Side and Height Direction Test
1 With White Curtain with Video Unrectified/ Training Rectified Difference
Probability Distribution Histogram

205

Figure B.166: Tiny YOLO Pure Translation in Side and Height Direction Test
1 With White Curtain with Video Rectified/ Training Rectified Difference
Probability Distribution Histogram

Figure B.167: Tiny YOLO Pure Translation in Side and Height Direction
Test 1 With Complex Background with Video Unrectified/ Training Rectified
Difference Probability Distribution Histogram

206

Figure B.168: Tiny YOLO Pure Translation in Side and Height Direction
Test 1 With Complex Background with Video Rectified/ Training Rectified
Difference Probability Distribution Histogram

Figure B.169: Tiny YOLO Pure Translation in Side and Height Direction Test
2 With White Curtain with Video Unrectified/ Training Rectified Difference
Probability Distribution Histogram

207

Figure B.170: Tiny YOLO Pure Translation in Side and Height Direction Test
2 With White Curtain with Video Rectified/ Training Rectified Difference
Probability Distribution Histogram

Figure B.171: Tiny YOLO Pure Translation in Side and Height Direction
Test 2 With Complex Background with Video Unrectified/ Training Rectified
Difference Probability Distribution Histogram

208

Figure B.172: Tiny YOLO Pure Translation in Side and Height Direction
Test 2 With Complex Background with Video Rectified/ Training Rectified
Difference Probability Distribution Histogram

Figure B.173: Tiny YOLO Pure Translation in Depth Direction Test 1 With
White Curtain with Video Unrectified/ Training Rectified Difference Proba-
bility Distribution Histogram

209

Figure B.174: Tiny YOLO Pure Translation in Depth Direction Test 1 With
White Curtain with Video Rectified/ Training Rectified Difference Probability
Distribution Histogram

Figure B.175: Tiny YOLO Pure Translation in Depth Direction Test 1 With
Complex Background with Video Unrectified/ Training Rectified Difference
Probability Distribution Histogram

210

Figure B.176: Tiny YOLO Pure Translation in Depth Direction Test 1 With
Complex Background with Video Rectified/ Training Rectified Difference
Probability Distribution Histogram

Figure B.177: Tiny YOLO Pure Translation in Depth Direction Test 2 With
White Curtain with Video Unrectified/ Training Rectified Difference Proba-
bility Distribution Histogram

211

Figure B.178: Tiny YOLO Pure Translation in Depth Direction Test 2 With
White Curtain with Video Rectified/ Training Rectified Difference Probability
Distribution Histogram

Figure B.179: Tiny YOLO Pure Translation in Depth Direction Test 2 With
Complex Background with Video Unrectified/ Training Rectified Difference
Probability Distribution Histogram

212

Figure B.180: Tiny YOLO Pure Translation in Depth Direction Test 2 With
Complex Background with Video Rectified/ Training Rectified Difference
Probability Distribution Histogram

Figure B.181: Tiny YOLO Pure Rotation Test 1 With White Curtain with
Video Unrectified/ Training Rectified Difference Probability Distribution His-
togram

213

Figure B.182: Tiny YOLO Pure Rotation Test 1 With White Curtain with
Video Rectified/ Training Rectified Difference Probability Distribution His-
togram

Figure B.183: Tiny YOLO Pure Rotation Test 1 With Complex Background
with Video Unrectified/ Training Rectified Difference Probability Distribution
Histogram

214

Figure B.184: Tiny YOLO Pure Rotation Test 1 With Complex Background
with Video Rectified/ Training Rectified Difference Probability Distribution
Histogram

Figure B.185: Tiny YOLO Pure Rotation Test 2 With White Curtain with
Video Unrectified/ Training Rectified Difference Probability Distribution His-
togram

215

Figure B.186: Tiny YOLO Pure Rotation Test 2 With White Curtain with
Video Rectified/ Training Rectified Difference Probability Distribution His-
togram

Figure B.187: Tiny YOLO Pure Rotation Test 2 With Complex Background
with Video Unrectified/ Training Rectified Difference Probability Distribution
Histogram

216

Figure B.188: Tiny YOLO Pure Rotation Test 2 With Complex Background
with Video Rectified/ Training Rectified Difference Probability Distribution
Histogram

Figure B.189: Tiny YOLO Random Flight Pattern Test 1 With White Curtain
with Video Unrectified/ Training Rectified Difference Probability Distribution
Histogram

217

Figure B.190: Tiny YOLO Random Flight Pattern Test 1 With White Curtain
with Video Rectified/ Training Rectified Difference Probability Distribution
Histogram

Figure B.191: Tiny YOLO Random Flight Pattern Test 1 With Complex
Background with Video Unrectified/ Training Rectified Difference Probability
Distribution Histogram

218

Figure B.192: Tiny YOLO Random Flight Pattern Test 1 With Complex
Background with Video Rectified/ Training Rectified Difference Probability
Distribution Histogram

Figure B.193: Tiny YOLO Random Flight Pattern Test 2 With White Curtain
with Video Unrectified/ Training Rectified Difference Probability Distribution
Histogram

219

Figure B.194: Tiny YOLO Random Flight Pattern Test 2 With White Curtain
with Video Rectified/ Training Rectified Difference Probability Distribution
Histogram

Figure B.195: Tiny YOLO Random Flight Pattern Test 2 With Complex
Background with Video Unrectified/ Training Rectified Difference Probability
Distribution Histogram

220

Figure B.196: Tiny YOLO Random Flight Pattern Test 2 With Complex
Background with Video Rectified/ Training Rectified Difference Probability
Distribution Histogram

B.2.2 Root Mean Square Error

B.2.2.1 SSD MobileNet v1 Root Mean Square Error

Table B.2: Accuracy of SSD MobileNet v1, Pure Translation in Side and
Height

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 10.94 10.45 39.52 20.30
WWC/VR/TU/1 13.30 10.89 46.90 23.70
OWC/VU/TU/1 8.24 14.85 18.39 13.83
OWC/VR/TU/1 5.37 21.07 46.63 24.35
WWC/VU/TU/2 13.21 9.22 34.90 19.11
WWC/VR/TU/2 14.89 11.19 53.10 26.39
OWC/VU/TU/2 15.13 17.02 19.38 17.18
OWC/VR/TU/2 14.14 18.87 34.67 22.56

221

Table B.3: Accuracy of SSD MobileNet v1, Pure Translation in Depth

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 14.07 6.51 30.80 17.13
WWC/VR/TU/1 15.60 6.01 40.25 20.62
OWC/VU/TU/1 9.97 14.99 19.34 14.76
OWC/VR/TU/1 11.05 16.79 35.95 21.26
WWC/VU/TU/2 11.65 7.20 30.08 16.31
WWC/VR/TU/2 12.88 8.91 45.23 22.34
OWC/VU/TU/2 5.32 17.37 26.07 16.25
OWC/VR/TU/2 7.06 16.00 25.08 16.05

Table B.4: Accuracy of SSD MobileNet v1, Pure Rotation

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 12.65 6.87 31.34 16.95
WWC/VR/TU/1 12.92 7.32 35.12 18.45
OWC/VU/TU/1 12.56 13.51 11.07 12.38
OWC/VR/TU/1 14.87 16.88 33.65 21.80
WWC/VU/TU/2 20.11 7.17 31.52 19.60
WWC/VR/TU/2 20.32 7.76 35.17 21.09
OWC/VU/TU/2 16.67 16.41 19.38 17.49
OWC/VR/TU/2 17.73 19.15 36.43 24.44

222

Table B.5: Accuracy of SSD MobileNet v1, Complex Flight

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 12.60 4.71 26.73 14.68
WWC/VR/TU/1 12.86 7.49 34.34 18.23
OWC/VU/TU/1 12.48 15.89 17.34 15.24
OWC/VR/TU/1 12.90 23.52 61.87 32.76
WWC/VU/TU/2 16.78 6.63 31.10 18.17
WWC/VR/TU/2 17.11 7.56 35.52 20.06
OWC/VU/TU/2 14.76 17.13 20.49 17.46
OWC/VR/TU/2 Nothing

Detected
Nothing
Detected

Nothing
Detected

Nothing
Detected

B.2.2.2 SSD Inception v2 Root Mean Square Error

Table B.6: Accuracy of SSD Inception v2, Pure Translation in Side and Height

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 10.30 7.33 21.46 13.03
WWC/VR/TU/1 12.03 9.04 37.59 19.55
OWC/VU/TU/1 9.53 13.69 10.63 11.28
OWC/VR/TU/1 8.31 16.59 23.03 15.98
WWC/VU/TU/2 12.55 8.66 25.68 15.63
WWC/VR/TU/2 13.59 10.00 46.45 23.34
OWC/VU/TU/2 11.71 15.71 6.53 11.32
OWC/VR/TU/2 11.17 17.41 26.57 18.38

223

Table B.7: Accuracy of SSD Inception v2, Pure Translation in Depth

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 13.72 4.14 22.46 13.44
WWC/VR/TU/1 14.93 5.17 37.83 19.31
OWC/VU/TU/1 9.19 11.28 12.59 11.02
OWC/VR/TU/1 10.32 13.07 11.67 11.69
WWC/VU/TU/2 11.33 5.43 19.58 12.11
WWC/VR/TU/2 12.62 7.04 35.84 18.50
OWC/VU/TU/2 5.81 14.91 21.72 14.15
OWC/VR/TU/2 7.51 14.82 24.02 15.45

Table B.8: Accuracy of SSD Inception v2, Pure Rotation

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 12.82 5.31 18.94 12.36
WWC/VR/TU/1 12.68 5.71 23.12 13.84
OWC/VU/TU/1 12.12 10.89 23.00 15.34
OWC/VR/TU/1 10.18 16.43 34.57 20.39
WWC/VU/TU/2 20.16 5.12 21.63 15.64
WWC/VR/TU/2 21.05 6.79 24.78 17.54
OWC/VU/TU/2 15.28 13.03 15.90 14.74
OWC/VR/TU/2 17.43 14.97 23.35 18.59

Table B.9: Accuracy of SSD Inception v2, Complex Flight

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 11.91 4.82 20.91 12.55
WWC/VR/TU/1 11.07 7.81 33.05 17.31
OWC/VU/TU/1 12.18 16.82 21.89 16.96
OWC/VR/TU/1 7.37 13.39 61.47 27.41
WWC/VU/TU/2 15.66 5.43 22.45 14.51
WWC/VR/TU/2 16.21 7.57 31.31 18.37
OWC/VU/TU/2 14.18 21.52 39.09 24.93
OWC/VR/TU/2 18.94 39.58 51.20 36.57

224

B.2.2.3 Faster RCNN Inception v2 Root Mean Square Error

Table B.10: Accuracy of Faster RCNN Inception v2, Pure Translation in Side
and Height

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 10.88 7.67 19.35 12.63
WWC/VR/TU/1 11.63 8.06 27.70 15.79
OWC/VU/TU/1 14.75 8.70 34.37 19.27
OWC/VR/TU/1 73.60 9.77 58.49 47.28
WWC/VU/TU/2 11.78 7.85 20.57 13.40
WWC/VR/TU/2 12.38 8.82 31.20 17.47
OWC/VU/TU/2 18.87 9.58 30.44 19.63
OWC/VR/TU/2 101.88 11.96 82.81 65.55

Table B.11: Accuracy of Faster RCNN Inception v2, Pure Translation in Depth

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 12.65 5.05 16.11 11.27
WWC/VR/TU/1 13.73 5.46 25.71 14.97
OWC/VU/TU/1 9.24 6.67 19.89 11.93
OWC/VR/TU/1 50.90 7.96 46.75 35.20
WWC/VU/TU/2 10.57 5.79 18.35 11.57
WWC/VR/TU/2 11.05 6.87 28.64 15.52
OWC/VU/TU/2 13.42 7.75 31.50 17.56
OWC/VR/TU/2 39.74 8.71 43.29 30.58

225

Table B.12: Accuracy of Faster RCNN Inception v2, Pure Rotation

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 11.75 5.30 14.10 10.39
WWC/VR/TU/1 11.88 6.19 20.36 12.81
OWC/VU/TU/1 18.33 6.72 31.74 18.93
OWC/VR/TU/1 32.85 7.95 37.72 26.17
WWC/VU/TU/2 18.87 4.53 24.15 15.85
WWC/VR/TU/2 19.24 5.24 22.54 15.67
OWC/VU/TU/2 19.46 7.29 35.94 20.90
OWC/VR/TU/2 36.60 8.71 54.76 33.36

Table B.13: Accuracy of Faster RCNN Inception v2, Complex Flight

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 11.90 6.09 15.50 11.17
WWC/VR/TU/1 11.82 6.78 21.55 13.39
OWC/VU/TU/1 16.05 7.92 34.09 19.36
OWC/VR/TU/1 42.27 9.70 52.96 34.98
WWC/VU/TU/2 15.62 5.78 21.19 14.20
WWC/VR/TU/2 16.28 5.84 22.82 14.98
OWC/VU/TU/2 19.30 7.58 34.41 20.43
OWC/VR/TU/2 54.87 9.18 55.45 39.83

226

B.2.2.4 YOLO v2 Root Mean Square Error

Table B.14: Accuracy of YOLO v2, Pure Translation in Side and Height

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 11.77 6.22 18.05 12.01
WWC/VR/TU/1 12.57 7.98 31.07 17.21
WWC/VU/TR/1 11.10 5.91 15.89 10.97
WWC/VR/TR/1 11.32 6.95 19.50 12.59
OWC/VU/TU/1 14.64 10.82 41.40 22.29
OWC/VR/TU/1 12.41 14.11 55.10 27.21
OWC/VU/TR/1 38.72 11.28 39.28 29.76
OWC/VR/TR/1 47.87 20.12 37.09 35.02
WWC/VU/TU/2 12.97 6.73 20.64 13.45
WWC/VR/TU/2 13.80 8.32 35.52 19.21
WWC/VU/TR/2 12.49 5.99 17.06 11.85
WWC/VR/TR/2 12.35 7.18 22.14 13.89
OWC/VU/TU/2 15.39 11.95 38.98 22.11
OWC/VR/TU/2 15.48 15.49 59.16 30.05
OWC/VU/TR/2 21.76 10.40 39.69 23.95
OWC/VR/TR/2 47.57 19.53 37.96 35.02

227

Table B.15: Accuracy of YOLO v2, Pure Translation in Depth

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 14.04 4.03 16.80 11.62
WWC/VR/TU/1 15.34 4.80 30.49 16.87
WWC/VU/TR/1 12.94 4.31 16.23 11.16
WWC/VR/TR/1 13.13 4.64 17.97 11.91
OWC/VU/TU/1 10.04 8.88 28.55 15.82
OWC/VR/TU/1 11.34 8.70 36.61 18.88
OWC/VU/TR/1 25.53 12.77 35.61 24.64
OWC/VR/TR/1 34.59 20.02 32.18 28.93
WWC/VU/TU/2 10.85 4.53 17.71 11.03
WWC/VR/TU/2 11.14 6.38 30.88 16.14
WWC/VU/TR/2 11.04 5.43 15.38 10.62
WWC/VR/TR/2 10.96 5.26 19.81 12.01
OWC/VU/TU/2 20.30 11.52 46.78 26.20
OWC/VR/TU/2 23.71 14.52 70.63 36.29
OWC/VU/TR/2 27.82 12.86 49.89 30.19
OWC/VR/TR/2 44.87 28.08 50.01 40.99

228

Table B.16: Accuracy of YOLO v2, Pure Rotation

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 12.09 4.63 16.36 11.03
WWC/VR/TU/1 12.23 5.65 26.58 14.82
WWC/VU/TR/1 12.15 3.98 12.21 9.45
WWC/VR/TR/1 12.14 4.83 15.16 10.71
OWC/VU/TU/1 20.62 10.00 46.75 25.79
OWC/VR/TU/1 22.99 12.16 46.84 27.33
OWC/VU/TR/1 25.99 8.05 29.86 21.30
OWC/VR/TR/1 35.08 11.90 31.43 26.14
WWC/VU/TU/2 19.05 3.98 21.39 14.81
WWC/VR/TU/2 19.45 4.93 22.36 15.58
WWC/VU/TR/2 19.35 3.89 21.97 15.07
WWC/VR/TR/2 19.62 4.57 18.66 14.28
OWC/VU/TU/2 21.07 8.70 27.81 19.19
OWC/VR/TU/2 21.97 9.38 36.38 22.58
OWC/VU/TR/2 26.74 8.79 42.23 25.92
OWC/VR/TR/2 33.96 11.69 44.17 29.94

229

Table B.17: Accuracy of YOLO v2, Complex Flight

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 12.50 4.30 12.32 9.71
WWC/VR/TU/1 12.49 5.33 18.61 12.15
WWC/VU/TR/1 12.48 4.87 13.98 10.44
WWC/VR/TR/1 12.31 6.21 16.72 11.75
OWC/VU/TU/1 14.15 10.16 45.17 23.16
OWC/VR/TU/1 13.25 5.08 40.64 19.66
OWC/VU/TR/1 27.45 12.30 36.66 25.47
OWC/VR/TR/1 47.36 27.32 40.45 38.38
WWC/VU/TU/2 17.08 3.54 17.68 12.77
WWC/VR/TU/2 18.11 4.30 23.68 15.36
WWC/VU/TR/2 16.21 4.06 15.89 12.06
WWC/VR/TR/2 16.62 4.64 13.20 11.49
OWC/VU/TU/2 17.62 3.96 59.59 27.06
OWC/VR/TU/2 18.31 5.32 65.50 29.71
OWC/VU/TR/2 27.82 11.82 46.67 28.77
OWC/VR/TR/2 41.82 32.65 48.90 41.12

230

B.2.2.5 Tiny YOLO Root Mean Square Error

Table B.18: Accuracy of Tiny YOLO, Pure Translation in Side and Height

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VR/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VU/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VR/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VU/TR/1 14.28 5.94 43.23 21.15
WWC/VR/TR/1 12.84 6.07 35.40 18.11
OWC/VU/TR/1 11.01 8.52 34.67 18.06
OWC/VR/TR/1 13.88 9.89 43.76 22.51
WWC/VU/TU/2 Nothing

Detected
Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VR/TU/2 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VU/TU/2 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VR/TU/2 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VU/TR/2 14.80 5.13 38.74 19.56
WWC/VR/TR/2 13.51 5.21 28.98 15.90
OWC/VU/TR/2 14.67 8.82 36.38 19.96
OWC/VR/TR/2 16.04 10.40 44.53 23.66

231

Table B.19: Accuracy of Tiny YOLO, Pure Translation in Depth

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VR/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VU/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VR/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VU/TR/1 13.49 3.77 24.46 13.91
WWC/VR/TR/1 12.75 3.84 21.43 12.67
OWC/VU/TR/1 10.73 8.55 42.21 20.50
OWC/VR/TR/1 12.28 9.36 49.26 23.63
WWC/VU/TU/2 Nothing

Detected
Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VR/TU/2 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VU/TU/2 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VR/TU/2 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VU/TR/2 11.84 3.93 25.84 13.87
WWC/VR/TR/2 10.85 3.67 19.12 11.21
OWC/VU/TR/2 16.48 13.35 60.34 30.06
OWC/VR/TR/2 17.81 15.10 70.05 34.32

232

Table B.20: Accuracy of Tiny YOLO, Pure Rotation

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VR/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VU/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VR/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VU/TR/1 13.39 3.78 28.18 15.12
WWC/VR/TR/1 13.42 4.27 26.88 14.86
OWC/VU/TR/1 19.51 8.16 34.27 20.65
OWC/VR/TR/1 22.27 9.54 37.65 23.15
WWC/VU/TU/2 Nothing

Detected
Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VR/TU/2 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VU/TU/2 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VR/TU/2 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VU/TR/2 19.99 3.33 32.07 18.46
WWC/VR/TR/2 20.89 3.89 26.00 16.93
OWC/VU/TR/2 17.43 7.61 46.32 23.79
OWC/VR/TR/2 19.21 8.87 40.38 22.82

233

Table B.21: Accuracy of Tiny YOLO, Complex Flight

Test Configura-
tion/Trial

RMS
Error in
Side x
(cm)

RMS
Error in
Height y
(cm)

RMS
Error in
Depth z
(cm)

Average
RMS
Error
(cm)

WWC/VU/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VR/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VU/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VR/TU/1 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VU/TR/1 13.50 3.61 23.96 13.69
WWC/VR/TR/1 12.53 3.66 16.13 10.78
OWC/VU/TR/1 13.63 8.61 34.15 18.80
OWC/VR/TR/1 16.20 11.12 47.37 24.90
WWC/VU/TU/2 Nothing

Detected
Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VR/TU/2 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VU/TU/2 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

OWC/VR/TU/2 Nothing
Detected

Nothing
Detected

Nothing
Detected

Nothing
Detected

WWC/VU/TR/2 16.51 3.49 30.15 16.72
WWC/VR/TR/2 16.94 3.19 22.51 14.21
OWC/VU/TR/2 16.75 8.53 43.44 22.91
OWC/VR/TR/2 18.64 9.71 53.25 27.20

234

B.2.3 Mean Average Precision

B.2.3.1 SSD MobileNet v1 mAP

Table B.22: Consistency of SSD MobileNet v1, Pure Translation in Side and
Height

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0.8442
WWC/VR/TU/1 0.8888
OWC/VU/TU/1 0.8226
OWC/VR/TU/1 0.9488
WWC/VU/TU/2 0.9096
WWC/VR/TU/2 0.9329
OWC/VU/TU/2 0.0444
OWC/VR/TU/2 0.0688

Table B.23: Consistency of SSD MobileNet v1, Pure Translation in Depth

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0.9277
WWC/VR/TU/1 0.7954
OWC/VU/TU/1 0.6229
OWC/VR/TU/1 0.7078
WWC/VU/TU/2 0.9572
WWC/VR/TU/2 0.9449
OWC/VU/TU/2 0.6230
OWC/VR/TU/2 0.0265

Table B.24: Consistency of SSD MobileNet v1, Pure Rotation

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0.9130
WWC/VR/TU/1 0.9409
OWC/VU/TU/1 0.9353
OWC/VR/TU/1 0.7953
WWC/VU/TU/2 0.8445
WWC/VR/TU/2 0.8827
OWC/VU/TU/2 0.5000
OWC/VR/TU/2 0.5150

235

Table B.25: Consistency of SSD MobileNet v1, Complex Flight

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0.7921
WWC/VR/TU/1 0.9205
OWC/VU/TU/1 0.8088
OWC/VR/TU/1 0.9732
WWC/VU/TU/2 0.8507
WWC/VR/TU/2 0.8295
OWC/VU/TU/2 0.0278
OWC/VR/TU/2 0

B.2.3.2 SSD Inception v2 mAP

Table B.26: Consistency of SSD Inception v2, Pure Translation in Side and
Height

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0.8045
WWC/VR/TU/1 0.7671
OWC/VU/TU/1 0.7259
OWC/VR/TU/1 0.7098
WWC/VU/TU/2 0.8045
WWC/VR/TU/2 0.8046
OWC/VU/TU/2 0.6027
OWC/VR/TU/2 0.6453

Table B.27: Consistency of SSD Inception v2, Pure Translation in Depth

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0.6485
WWC/VR/TU/1 0.5247
OWC/VU/TU/1 0.5726
OWC/VR/TU/1 0.9440
WWC/VU/TU/2 0.8541
WWC/VR/TU/2 0.8227
OWC/VU/TU/2 0.4941
OWC/VR/TU/2 0.0264

236

Table B.28: Consistency of SSD Inception v2, Pure Rotation

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0.8477
WWC/VR/TU/1 0.8252
OWC/VU/TU/1 0.8160
OWC/VR/TU/1 0.7948
WWC/VU/TU/2 0.7467
WWC/VR/TU/2 0.6309
OWC/VU/TU/2 0.4715
OWC/VR/TU/2 0.5034

Table B.29: Consistency of SSD Inception v2, Complex Flight

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0.9040
WWC/VR/TU/1 0.7949
OWC/VU/TU/1 0.9137
OWC/VR/TU/1 0.1496
WWC/VU/TU/2 0.7358
WWC/VR/TU/2 0.5800
OWC/VU/TU/2 0.0294
OWC/VR/TU/2 0.1269

B.2.3.3 Faster RCNN Inception v2 mAP

Table B.30: Consistency of Faster RCNN Inception v2 , Pure Translation in
Side and Height

Test Configuration/Trial Average Precision
WWC/VU/TU/1 1.0000
WWC/VR/TU/1 1.0000
OWC/VU/TU/1 0.9555
OWC/VR/TU/1 0.9800
WWC/VU/TU/2 1.0000
WWC/VR/TU/2 1.0000
OWC/VU/TU/2 0.7797
OWC/VR/TU/2 0.8741

237

Table B.31: Consistency of Faster RCNN Inception v2 , Pure Translation in
Depth

Test Configuration/Trial Average Precision
WWC/VU/TU/1 1.0000
WWC/VR/TU/1 1.0000
OWC/VU/TU/1 0.9739
OWC/VR/TU/1 0.9866
WWC/VU/TU/2 1.0000
WWC/VR/TU/2 1.0000
OWC/VU/TU/2 0.9827
OWC/VR/TU/2 0.9775

Table B.32: Consistency of Faster RCNN Inception v2 , Pure Rotation

Test Configuration/Trial Average Precision
WWC/VU/TU/1 1.0000
WWC/VR/TU/1 1.0000
OWC/VU/TU/1 0.9810
OWC/VR/TU/1 0.9890
WWC/VU/TU/2 1.0000
WWC/VR/TU/2 1.0000
OWC/VU/TU/2 0.9840
OWC/VR/TU/2 0.9710

Table B.33: Consistency of Faster RCNN Inception v2 , Complex Flight

Test Configuration/Trial Average Precision
WWC/VU/TU/1 1.0000
WWC/VR/TU/1 1.0000
OWC/VU/TU/1 0.9520
OWC/VR/TU/1 0.9691
WWC/VU/TU/2 1.0000
WWC/VR/TU/2 1.0000
OWC/VU/TU/2 0.9255
OWC/VR/TU/2 0.9440

238

B.2.3.4 YOLO v2 mAP

Table B.34: Consistency of YOLO v2, Pure Translation in Side and Height

Test Configuration/Trial Average Precision
WWC/VU/TU/1 1.0000
WWC/VR/TU/1 0.9987
OWC/VU/TU/1 0.5151
OWC/VR/TU/1 0.4585
WWC/VU/TR/1 1.0000
WWC/VR/TR/1 1.0000
OWC/VU/TR/1 0.8512
OWC/VR/TR/1 0.9525
WWC/VU/TU/2 1.0000
WWC/VR/TU/2 0.9998
OWC/VU/TU/2 0.6190
OWC/VR/TU/2 0.5632
WWC/VU/TR/2 1.0000
WWC/VR/TR/2 1.0000
OWC/VU/TR/2 0.8283
OWC/VR/TR/2 0.9727

Table B.35: Consistency of YOLO v2, Pure Translation in Depth

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0.9945
WWC/VR/TU/1 0.9685
OWC/VU/TU/1 0.6578
OWC/VR/TU/1 0.5714
WWC/VU/TR/1 1.0000
WWC/VR/TR/1 1.0000
OWC/VU/TR/1 0.8036
OWC/VR/TR/1 0.9738
WWC/VU/TU/2 0.9925
WWC/VR/TU/2 0.9755
OWC/VU/TU/2 0.4207
OWC/VR/TU/2 0.2210
WWC/VU/TR/2 1.0000
WWC/VR/TR/2 1.0000
OWC/VU/TR/2 0.6906
OWC/VR/TR/2 0.9132

239

Table B.36: Consistency of YOLO v2, Pure Rotation

Test Configuration/Trial Average Precision
WWC/VU/TU/1 1.0000
WWC/VR/TU/1 1.0000
OWC/VU/TU/1 0.4610
OWC/VR/TU/1 0.3554
WWC/VU/TR/1 1.0000
WWC/VR/TR/1 1.0000
OWC/VU/TR/1 0.8396
OWC/VR/TR/1 0.9726
WWC/VU/TU/2 1.0000
WWC/VR/TU/2 0.9937
OWC/VU/TU/2 0.6445
OWC/VR/TU/2 0.5268
WWC/VU/TR/2 1.0000
WWC/VR/TR/2 1.0000
OWC/VU/TR/2 0.8779
OWC/VR/TR/2 0.9924

Table B.37: Consistency of YOLO v2, Complex Flight

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0.9992
WWC/VR/TU/1 0.9987
OWC/VU/TU/1 0.4643
OWC/VR/TU/1 0.2002
WWC/VU/TR/1 1.0000
WWC/VR/TR/1 1.0000
OWC/VU/TR/1 0.6967
OWC/VR/TR/1 0.9302
WWC/VU/TU/2 0.9653
WWC/VR/TU/2 0.9022
OWC/VU/TU/2 0.3164
OWC/VR/TU/2 0.2145
WWC/VU/TR/2 1.0000
WWC/VR/TR/2 1.0000
OWC/VU/TR/2 0.7445
OWC/VR/TR/2 0.9302

240

B.2.3.5 Tiny YOLO mAP

Table B.38: Consistency of Tiny YOLO, Pure Translation in Side and Height

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0
WWC/VR/TU/1 0
OWC/VU/TU/1 0
OWC/VR/TU/1 0
WWC/VU/TR/1 0.7731
WWC/VR/TR/1 0.5559
OWC/VU/TR/1 0.7192
OWC/VR/TR/1 0.7097
WWC/VU/TU/2 0
WWC/VR/TU/2 0
OWC/VU/TU/2 0
OWC/VR/TU/2 0
WWC/VU/TR/2 0.7669
WWC/VR/TR/2 0.3773
OWC/VU/TR/2 0.9058
OWC/VR/TR/2 0.8952

Table B.39: Consistency of Tiny YOLO, Pure Translation in Depth

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0
WWC/VR/TU/1 0
OWC/VU/TU/1 0
OWC/VR/TU/1 0
WWC/VU/TR/1 0.7680
WWC/VR/TR/1 0.3933
OWC/VU/TR/1 0.8501
OWC/VR/TR/1 0.8603
WWC/VU/TU/2 0
WWC/VR/TU/2 0
OWC/VU/TU/2 0
OWC/VR/TU/2 0
WWC/VU/TR/2 0.8012
WWC/VR/TR/2 0.4419
OWC/VU/TR/2 0.8267
OWC/VR/TR/2 0.8162

241

Table B.40: Consistency of Tiny YOLO, Pure Rotation

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0
WWC/VR/TU/1 0
OWC/VU/TU/1 0
OWC/VR/TU/1 0
WWC/VU/TR/1 0.9222
WWC/VR/TR/1 0.7626
OWC/VU/TR/1 0.8860
OWC/VR/TR/1 0.8270
WWC/VU/TU/2 0
WWC/VR/TU/2 0
OWC/VU/TU/2 0
OWC/VR/TU/2 0
WWC/VU/TR/2 0.8953
WWC/VR/TR/2 0.6536
OWC/VU/TR/2 0.9486
OWC/VR/TR/2 0.9436

Table B.41: Consistency of Tiny YOLO, Complex Flight

Test Configuration/Trial Average Precision
WWC/VU/TU/1 0
WWC/VR/TU/1 0
OWC/VU/TU/1 0
OWC/VR/TU/1 0
WWC/VU/TR/1 0.9227
WWC/VR/TR/1 0.7034
OWC/VU/TR/1 0.7183
OWC/VR/TR/1 0.7274
WWC/VU/TU/2 0
WWC/VR/TU/2 0
OWC/VU/TU/2 0
OWC/VR/TU/2 0
WWC/VU/TR/2 0.6576
WWC/VR/TR/2 0.5121
OWC/VU/TR/2 0.8783
OWC/VR/TR/2 0.7855

242

B.3 Camera Calibration Files

In this Section, 11 trials of camera calibrations are conducted and the calibra-

tion files are listed below.

image_width: 640

image_height: 360

camera_name: ardrone_front

camera_matrix:

rows: 3

cols: 3

data: [565.6125151546354, 0, 317.3316782430719, 0,

↪→ 564.8481170587216, 184.2906650074466, 0, 0, 1]

distortion_model: plumb_bob

distortion_coefficients:

rows: 1

cols: 5

data: [-0.5926584270957175, 0.3603663705471096,

↪→ -0.001293012518993791, 0.008236529105444059, 0]

rectification_matrix:

rows: 3

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:

rows: 3

cols: 4

data: [447.2406005859375, 0, 326.1898806961472, 0, 0,

↪→ 528.8070068359375, 184.6186261898401, 0, 0, 0, 1, 0]

image_width: 640

image_height: 360

camera_name: ardrone_front

camera_matrix:

rows: 3

cols: 3

data: [527.859194549529, 0, 323.8411857372338, 0,

↪→ 528.4889458520696, 189.529178855309, 0, 0, 1]

distortion_model: plumb_bob

distortion_coefficients:

rows: 1

cols: 5

data: [-0.5452685319365548, 0.3169366695208474,

↪→ 0.002525160632601806, 0.0002668957084609045, 0]

rectification_matrix:

rows: 3

243

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:

rows: 3

cols: 4

data: [416.145263671875, 0, 325.4994652538298, 0, 0,

↪→ 492.4153747558594, 191.5844334897729, 0, 0, 0, 1, 0]

image_width: 640

image_height: 360

camera_name: ardrone_front

camera_matrix:

rows: 3

cols: 3

data: [533.4164868159106, 0, 320.6058446431378, 0,

↪→ 533.3226937158951, 183.7123271397635, 0, 0, 1]

distortion_model: plumb_bob

distortion_coefficients:

rows: 1

cols: 5

data: [-0.5504663011264753, 0.3004454342326453,

↪→ -0.0004465554446928154, -0.001662564721472756, 0]

rectification_matrix:

rows: 3

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:

rows: 3

cols: 4

data: [415.9227294921875, 0, 318.6531988442439, 0, 0,

↪→ 497.6212463378906, 184.1703457528929, 0, 0, 0, 1, 0]

image_width: 640

image_height: 360

camera_name: ardrone_front

camera_matrix:

rows: 3

cols: 3

data: [559.0388159999543, 0, 309.4420691600483, 0,

↪→ 561.0016581328583, 179.1097742137247, 0, 0, 1]

distortion_model: plumb_bob

distortion_coefficients:

rows: 1

cols: 5

244

data: [-0.5680798050660655, 0.3816376063256253,

↪→ 0.004027969342063515, 0.003458879115659362, 0]

rectification_matrix:

rows: 3

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:

rows: 3

cols: 4

data: [454.368408203125, 0, 309.9864112689684, 0, 0,

↪→ 526.6734619140625, 179.8893351986335, 0, 0, 0, 1, 0]

image_width: 640

image_height: 360

camera_name: ardrone_front

camera_matrix:

rows: 3

cols: 3

data: [556.022707285772, 0, 330.0925071971059, 0,

↪→ 554.8050302889992, 184.6446954326166, 0, 0, 1]

distortion_model: plumb_bob

distortion_coefficients:

rows: 1

cols: 5

data: [-0.5567127982042523, 0.3318254627238606,

↪→ 0.002253735786806615, -0.001817605270684056, 0]

rectification_matrix:

rows: 3

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:

rows: 3

cols: 4

data: [445.7396240234375, 0, 331.7946918618909, 0, 0,

↪→ 520.239501953125, 185.7993614255683, 0, 0, 0, 1, 0]

image_width: 640

image_height: 360

camera_name: ardrone_front

camera_matrix:

rows: 3

cols: 3

data: [554.3974113785129, 0, 304.2240641633496, 0,

↪→ 556.2971778990975, 170.839601003777, 0, 0, 1]

distortion_model: plumb_bob

245

distortion_coefficients:

rows: 1

cols: 5

data: [-0.6584872683956912, 0.4991870727128286,

↪→ 0.001310314818277521, -0.0006481000399672231, 0]

rectification_matrix:

rows: 3

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:

rows: 3

cols: 4

data: [440.9514465332031, 0, 301.4554650789833, 0, 0,

↪→ 515.1989135742188, 169.649437021013, 0, 0, 0, 1, 0]

image_width: 640

image_height: 360

camera_name: ardrone_front

camera_matrix:

rows: 3

cols: 3

data: [553.6658049122539, 0, 326.3733014243585, 0,

↪→ 552.6879159861015, 179.0311456556649, 0, 0, 1]

distortion_model: plumb_bob

distortion_coefficients:

rows: 1

cols: 5

data: [-0.5543740018546095, 0.3114736151678509,

↪→ 0.0009804161252434315, -0.002206482637588245, 0]

rectification_matrix:

rows: 3

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:

rows: 3

cols: 4

data: [439.7734985351562, 0, 326.3617064027385, 0, 0,

↪→ 518.2238159179688, 179.1186808660113, 0, 0, 0, 1, 0]

image_width: 640

image_height: 360

camera_name: ardrone_front

camera_matrix:

rows: 3

cols: 3

246

data: [550.2045894558636, 0, 327.396624085826, 0,

↪→ 551.5090498256899, 183.267719797952, 0, 0, 1]

distortion_model: plumb_bob

distortion_coefficients:

rows: 1

cols: 5

data: [-0.5608616551983711, 0.3542765088398399,

↪→ -0.000819696270168569, 0.003755492662011094, 0]

rectification_matrix:

rows: 3

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:

rows: 3

cols: 4

data: [441.7192077636719, 0, 334.0961309924387, 0, 0,

↪→ 516.7183227539062, 183.5381596549014, 0, 0, 0, 1, 0]

image_width: 640

image_height: 360

camera_name: ardrone_front

camera_matrix:

rows: 3

cols: 3

data: [552.8298230303856, 0, 333.5446031149884, 0,

↪→ 552.8470541636079, 186.6372832667655, 0, 0, 1]

distortion_model: plumb_bob

distortion_coefficients:

rows: 1

cols: 5

data: [-0.5519367747616147, 0.3248271119450988,

↪→ -0.001951074094604523, -0.004173892436812423, 0]

rectification_matrix:

rows: 3

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:

rows: 3

cols: 4

data: [443.1218872070312, 0, 333.7817476913369, 0, 0,

↪→ 518.5982055664062, 187.1101233664667, 0, 0, 0, 1, 0]

image_width: 640

image_height: 360

camera_name: ardrone_front

247

camera_matrix:

rows: 3

cols: 3

data: [563.0418985537083, 0, 311.9145325150032, 0,

↪→ 562.4914915941853, 178.7635884646983, 0, 0, 1]

distortion_model: plumb_bob

distortion_coefficients:

rows: 1

cols: 5

data: [-0.654118619133408, 0.438262486045934,

↪→ -0.008352828143861415, -0.002656636159456569, 0]

rectification_matrix:

rows: 3

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:

rows: 3

cols: 4

data: [436.4547729492188, 0, 306.0777826667618, 0, 0,

↪→ 521.868896484375, 176.6082298605397, 0, 0, 0, 1, 0]

image_width: 640

image_height: 360

camera_name: ardrone_front

camera_matrix:

rows: 3

cols: 3

data: [539.633067245398, 0, 323.9711190650898, 0,

↪→ 539.2165660769166, 187.4086724558219, 0, 0, 1]

distortion_model: plumb_bob

distortion_coefficients:

rows: 1

cols: 5

data: [-0.5354407767265371, 0.2801137753188095,

↪→ 0.0006743725518513881, -0.002628061711864213, 0]

rectification_matrix:

rows: 3

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:

rows: 3

cols: 4

data: [424.4468994140625, 0, 322.315947960371, 0, 0,

↪→ 504.7111511230469, 188.633070810738, 0, 0, 0, 1, 0]

248

