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Abstract

In this study, we seek to provide a framework for the design of practical systems for

belief change. We do this through the following steps:

Competence: The work of Alchourrén, Gérdenfors and Makinson provides a compre-
hensive and widely accepted competence theory for the process of belief change.

We identify the following major drawbacks in this theory:

e It provides an inadequate account of the process of retracting a belief.
Thus, the addition of a belief is duly recorded in the belief state of an
agent, but the retraction of a belief is never recorded. This can unduly

restrict the space of candidate outcomes of a belief change operation.

e The theory provides no prescription on how beliefs must change when the
belief input is not fully credible. Any approach to handling uncertain, or
less credible, belief inputs should involve a generalization of techniques
applied when the belief inputs are fully credible, instead of requiring a

totally distinct set of techniques.

o It is generally agreed that the principle of informational economy should
guide any strategy for belief change. This requires that beliefs should be
discarded as little as possible while effecting belief change. The compe-
tence theory of Alchourrén, Girdenfors and Makinson seeks to satisfy this
requirement, but with limited success. As a consequernce of the belief rep-
resentation scheme and an unduly narrow deﬁjnition of what constitutes

success for a belief change operation, beliefs may be unduly discarded by



operators defined within this frameweork,

e 'I'he theory does not specify belief change beyond a single step. Several
authors have sought to address this question, but their solutions suffer

from the previous three problems,

We develop a theory that accounts for each of the problems mentioned above,
and argue that it provides an adequate set of benchmark tests, as well as a

suitable starting point for implemented belief change systems.

Performance: We present the design of two belief change systems which use a variant
of default logic as the belief representation language. The design of the first sys-
tem preceded the devclopment of the our competence theory and provided the
motivation for this theory, by identifying several of the lacunae in the existing
definition of competence. The second system was developed using our com-
petence theory as the starting point. These two designs serve to demonstrate
that practically implementable systems that satisfy the requirements identified
in our competence theory are indeed possible. The use of a default logic variant
has several other practical benefits as well, such as the ability to incorporate

lazy evaluation strategies in computing belief change.

Implementation: Belief changé"is a computationally hard problem , inciuding our for-
mulation of the probler}l in the two systems mentioned above. Nevertheless,
practical constraints often require tractable solutions, or procedures that ex-
hibit resource-bounded rationality . We present a toolkit of two approaches t§
address such concerns. First, we define a mapping from the problem of default
inference to partial constraint satisfaction problems . The mapping enables us
to apply techniques from the area of partial constraint satisfaction to improve
the efficiency of procedures for computing default extensions, and hence for
computing belief change. Next, we present a set of strategies for computing
meaningful partiél results in resource-bounded situations, by defining anytime

procedures for default inference. While much remains to be done in this area, we



believe these strategies can provide the basis for ficlded applications of prablem

solvers with a significant belief change component.,
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Chlfapter 1
Introduction

Consider the following scenarios:

e A module in a large software system is modified to reflect changing system
requirements. Typically, the change is not restricted to the module directly
affected, but must propagate throughout the entire system. Changes often vio-
late global consistency requirements and the whole system must undergo some
variety of modification to restore consistency. Typically, too, several alternative
sets of modifications may Be used to achieve the same end result of restoring

system consistency.

e A database is updated with new data. The new data together with the ex-
isting contents of the database might violate the integrity constraints that the
database must satisfy. To restore the database to a state where the integi'ity
constraints axi satisvd, some of the existing data may have to be deleted, or
the new data may bie rejected. Often, several alternative deletions fnay be used

to restore database consistency.

® A robotic agent operating in @ dynamic environment is presented with a stream
of information from its seunsors. New information may often contradict the
agents prior beliefs. Rational agents usually require a consistent set of beliefs

to reason with, or act on. Since the new beliefs introduce inconsistency into

1



the agents set of beliefs, the agent must perform some variety of adjustment to

restore consistency.

A common thread runs through each of these scenarios. A body of information,
which must at all times satisfy a set of consistency requirements, is updated with
new information. The new information causes the consistency requirements to be
violated. To restore consistency, adjustments need to be made. In making these
adjustments, several options exist and a choice has to be made from amongst these
alternatives.

- We shall refer to this as the problem of belief change. The term derives from studies
in the areas of intelligent systems, philosophy and cognitive science on models of
rational change of beliefs by intelligent agents. In this dissertation, we shall study the
problem of belief change using a formulation which is commonly used in each of these
areas of inquiry. Under this formulation, beliefs are represented in a formal language,
typically the language of formal logic. The applicable consistency requirement is that
of logical consistency. Consider an agent which believes that a is true and ¢ — b
is true. We do not coinmit to any detailed structure of the agent’s beliel state at
this point but merely require that the beliefs be represented in a logical language
and that the agent hold a logically consistent set of beliefs. Let the agent now learn
that —b is true. Adding this new belief to the current set of beliefs would introduce
inconsistency into the belief set, since « and a — b together entail b. At this level
of analysis, one can identify three possible changesv that can be made to maintain a
consistent set of beliefs. First, belief in @ may be discarded. This would generate a
consistent set of beliefs consisting of a — b and —b. Second, belief in ¢ — b may be
discarded, generating a consistent set of beliefs consisting of @ and —-b as an outcome.
Third, the new belief may be rejected, resulting in the original consistent set of beliefs

being retained. A belief change operation consists of the following three steps:

1. Generating candidate consistent sets of beliefs, given a prior belief state and

the belief input.



9. Sclecting one of these candidate sets of beliefs to reason with, or act on.
3. Generating a new belief state.

It may appear that that the last two steps are identical, and this has been the approach
taken in several existing frameworks, but we shall show in later chapters that this
neced not be the case.

The process of belief change is ubiquitous in information processing. In addition
to the situations described earlier in this section, belief change forms a fundamental
component of problem solving in domains as diverse as induction, combining knowl-

edge bases, reasoning about action and planning, to name but a few.

1.1 Practical belief change

Much of the existing work on formally characterizing the process of belief change has
involved‘frameworks which require unrealistic assumptions, such as the requirement
for identifying maximal subsets of infinitely large, deductively closed sets of sentences
that satisfy certain constraints [1], [L9], the requirement that it should be possible to
prioritize every belief held by an agent with respect to every other [1], [19], [39], or
the potentially myopic focus on formalizing belief change as a single-step process, as
opposed to a process that is repeated over time [1], [19], [40]. As well, these frame-
works are unable to adequately account for contractions (in the sense that the effects
of a contraction step do not persist beyond a single step) and cannot handle belief
inputs which are uncertain, or less than fully credible. Finally, the currently popular
definition of competence in this area, as embodied in the rationality postulates pro-
posed by Al-hourrén, Gardenfors and Makinson [1], [19], fails to provide an adequate
specification of the ideal case, and thus has limited use both as a starting point for
designing new systems and as a benchmark test for existing systems.

In this dissertation, we seek to provide a framework for the désign of practical

systems for belief change. We do this through the following steps:



Competence: The work of Alchourrén, Girdenfors and Makinson [1], [19], provides a
comprehensive and widely accepted competence theory for the process of belief

change. We identify the following major drawbacks in this theory:

o It provides an inadequate account of the process of retracting a belief.
Thus, the addition of a belief is duly rccorded in the belicf state of an
agent, but the retraction of a belief is never recorded. This can unduly

restrict the space of candidate outcomes of a belief change operation.

e The theory provides no prescription on how beliefs must change when the
belief input is not fully credible. Any approach to handling uncertain, or
less credible, belief inputs should involve a generalization of techniques

applied when the belief inputs are fully credible, instead of requiring a

totally distinct set of techniques.

e It is generaily agreed that the principle of informational economy should
guide any strategy for belief change. This requires that beliefs should be
discarded as little as possible while effecting belief change. The compe-
tence theory of Alchourrén, Gardenfors and Makinson seeks to satisfy this
requirement, but with limited success. As u consequence of the helief rep-
resentation scheme and an unduly narrow definition of what constitutes
success for a belief change operation, beliefs may be unduly discarded by
operators defined within this framework.

e The theory does not specify belief change beyond a single step. Several

authors, such as [38], [37] and [10] have sought to address this question,

but their solutions suffer from the previous three problems.

We develop a theory that accounts for each of the problems mentioned above,
and argue that it provides an adequate set of benchmark tests, as well as 'a

suitable starting point for implemented belief change systems.

Performance: We present the design of two belief change systems which use a vari- -

ant of default logic [14] as the belief representation language. The design of



the first system preceded the development of the our competence theory and
provided the motivation for this theory, by identifying several of the lacunae
in the existing definition of competence. The second system was developed us-
ing our competence theory as the starting point. These two designs serve to
demonstrate that practically implementable systems that satisfy the require-
ments identified in our competence theory are indeed possible. The use of a
default logic variant has several other practical benefits as well, such as the

ability to incorporate lazy evaluation strategies in computing belief change.

Implementation: Belief change is a computationally hard problem [40], including our
formulation of the problem in the two systems mentioned above. Nevertheless,
practical constraints often require tractable solutions, or procedures that exhibit
resource-bounded rationality [48]. We present a toolkit of two approaches to
address such concerns. First, we define a mapping from the problem of default
inference to partial constraint satisfaction problems [18]. The mapping erables
us to apply techniques from the area of partial constraint satisfaction to improve
the efficiency of procedures for computing default extensions, and hence for
computing belief change; Next, we present a set of strategies for computing
meaningful partial results in resource-bounded situations, by defining anytime
procedures for default inference. While much remains to be done in this area, we
believe these strategies can provide the basis for fielded applications of problem

solvers with a significant belief change component.

1.2 Outline of presentation

Chapter 2 surveys some of the existing frameworks for belief change. Chapter 3
presents a new competence theory for belief ckhange. Chapter 4 describes two belief
chz;.nge systems based on a variant of default logic. Chapter 5 describes implementa-
tion strategies for belief change systems. Chapter 6 summarizes the contributions of

this study and outlines possibbilities for future work.‘



Chapter 2

Formal Approaches to Belief
Change

2.1 The AGM Framework

The systematic study of the dynamics of belief change undertaken by Alchourrén,
Gardenfors and Makinson [1], [21], [34], [19] is perhaps the most influential body of
work in this area; we shall refer to their formalization as the AGM framework. The

AGM framework consists of the following components:

1. A scheme for representing the belief state (or epistemic state) of an agent.

2. A specification of the kinds of beliefs that are expressible, i.e., the epistemic

attitudes of an agent.

3. A specification of the kinds of inputs that may drive belief change, i.e., the

epistemic inputs, and hence a repertoire of possible belief change operations.

4. A set of rationality conditions that constrain the space of allowable belief change

operators.

5. A set of constructions of belief change operators that satisfy these rationality

conditions.



In the AGM framework, the epistemic state of an agent is represented by a deductively
closed propositional theory, sometimes referred to as a knowledge set. Given an agent
with an epistemic state denoted by K, three possible epistemic attitudes are possible

with respect to a beliefl z:
1. z is accepled. In this case, K |= z.
2. x is rejected. In this case, K = —z.
3. z is undetermined. In this case, neither K }= z nor K = —z.
Two kinds of epistemic inputs are permitted:
1. Addition, where a new belief is incorporated into the existing set of beliefs.
2. Abrogation, where a belief is given up from the ex‘isting set of beliefs.
This leads to a repertoire of three belief change operations:

1. Ezpansion: A new belief z is added to the current knowledge set K, with the
guarantee that I U {z} is satisfiable. The outcome is denoted by K7, where,

necessarily, K} | z.

9. Contraction: A belief = is given up from the current knowledge set K. This
operation maps the knowledge set K, where, potentially, K |= x, to an outcome,

denoted by K, where, necessarily, K7 |~ .

3. Revision: A new belief z is added to the current knowledge set K, where,
- potentially, K U {:z:} is not satisfiable. The outcome is denoted by K, where,

x?

necessarily, K = .

Expansion involves the straightforward set-theoretic addition of the new belief to the
existing knowledge set, and is guaranteed to have a unique outcome. Thus K} =
Cn(K U z). Both contraction and revision are non-trivial, and may potentially have
multiple candidate outcomes. The operations of contraction and revision can be

defined in terms of each other, as shown by the Levi identity [32] below:



I\'r;‘ = ( _”“)+

The Harper identity [28] (K3 = I{*, N K) similarly defines contraction interms of
revision.

The AGM framework pl}esents a set of rationality posl;ula;tcs. for cach of the three
operations which constrain the space of possible outcomes of these operations. Since
expansion is trivial and is guaranteed to have a unique outcome, we shall not present

|
the rationality postulates for expansion here. With contraction and revision, the
focus is on enforcing minimal change. This sterns from the so-called principle of
informational economy which requires that as few beliefs be (llS( arded as possible
during a belief change operation. In addition, these postulates 1equn e that beliefls be
repres¢=nted in the same form before and after a belief change step, that belief change

steps succeed, that they be 1ndepend(=nt of the syntactic form of beliefs, and that the

process be reversible.

We begin with the postulates for contraction.
(1-) For any sentence:A and any knowledge set K, K is a,‘breli.ef set.
(2-) K3 CK.
(5-) f A¢ K, then K3 = K.
(1) T i A, then A ¢ K7
(5-) A€ K, then K C (K3)3-
(6-) If k= A < B, then K = K5.
(1) KiN K5 C Kinp-

(8-) If Ad K7.p, the‘n Kip € K7. ;
Postula.te (1-) requ:res that beliefs be lepresented in the same form b(*forc and aftex
behef c.hange step. (2 —) requires that no new belxefs be held as a result of a

cont1 action. (3—) requlres that if the b-ehef to be contracted is not hcld then no



change should be made. (4—) requires that every contraction operation succeed,
unless the belief being contracted is a logical truth. (5—) is the principle of recovery,
which requires that if a belief held in a given belief state is retracted and then added
back to the beliel state, the outcome contains the initial belief state, i.e., the initial
beliel state is recovered. (6—) is the principle of irrelevance of syntax, which requires
that the outcome of a contraction operation be independent of the syntactic form of
the beliefs being contracted. (7—) requires that the retraction of a conjunction of
beliefs should not retire any beliefs that are’common to the retraction of the same
belief set with each individual conjunct. (8—) requires that, when retracting the
conjunct of two beliefs A and B forces us to give up A, then in retracting A, we do
not give up any more than in retracting the conjunction of A and B.

The postulates for revision are as follows.
(1*) For any sentence A and any knowledge set K, K} is a knowledge set.
(2*) A€ Kj}.
(3*) K3y C K}.
(4*%) If ~A ¢ K, then KiC Ky
| (5%) K3 =1 iff = —-A.
(6*) If = A & B, then K} = Kg.
(7%) Kinp S (K2)E
(8*) If =B ¢ K3, then (K3)5 € Kinp-

As before, (1*) requires that belief states be represented in the same form b‘efore and
after a revision operation, while (2*) requires that t“}}ie revision operation succeed.
(3*) requires that the revision of a knowle.dge set wit>h a belief be contained in the
expansxon of the knowledge set with the same belief. In the case that the belief

" is inconsistent with the knowledge set, this is trivially true since the expansion is



a contradiction. In the case that the new beliel is cousistent with the knowledge
set, (4*) requires that the expansion be contained in the revision, which, given (3%)
implies that the revision equal the expansion. (5%) requires that the revision ol a
knowledge set wilh a new belief be a contradiction if and ouly il the new belief is
a contradiction. As with contractions, (6*) is the principle of irrelevance of syutax,
which requires that the outcome of a revision be independent of the syntactic form
of the epistemic inputs. (7*) and (8*) are generalizations of (3*) and (4%) to the
case of iterated revisions. Thus (7*) requires that the minimal change required to
incorporate both A and B in K should be contained in the expansion with B ol the
revision of K with A. In the case that B is consistent with the revision of K with
A, (8*) requires that the expansion be contained in the revision, which together with
(7*), implies that the revision of K with A A B be equal to the expansion with B of
the revision of K with A.

In the AGM framework, constructions for revision operators are defined via the
Levi identity, i.e., as contractions followed by expansions. A revision operator defined
using a contraction operato: via the Levi identity satisfies {1*) through (8«) if the
contraction operator satisfies (1—) through (8—). We shall focus on presenting the
AGM constructions for contraction operators. Contraction of a belief = begins with
the removal of that belief from the current belief state. Let the removal of x from A,

denoted by A | z, be defined as:
Alz={BCA|BW¥az,VC:BCCCA=Ckz}

In general, the removal operation may generate multiple candidate belief states, on
which a further operation must be performed to generate one unique resultant belief
state. The AGM framework defines a toolkit of four approaches to this operation. The
first, called partial meet contraction, involves the application of a selection function.
Let S be a selection function that selects a nonempty subset of K | z (provided
K | z is nonempty, ) otherwise). Essentially, S picks those subsets in K 1 z that are
epistemologically most entrenched. The partial meet contraction operator —, uses this

function to generate the final outcome in the following manner: K7 =S (K | —z)

10



(the contraction step fails if @ is logically valid). Let M(K) stand for the family of
all the sets K | @, where @ is any proposition in K that is not logically valid. Let <

he a relation defined on M(K). Let:
S(K la)y={K'€K|a|K"< K forall K" € K | z}

Any partial mect, contraction operator for which the selection function S is defined in
this manner, and for which the relation < is transitive, satisfies all the AGM postulates
for contraction [19]. The second approach involves taking the intersection of all
the candidate outcomes generated by the removal operation; this is called full meet
conlraction. A revision operator based on full meet contraction discards all beliefs but
the consequences of the new belief; this approach is therefore unintuitive. The third
approach, mazichoice contraction, uses a different variety of selection function to pick
exactly one of the candidate outcomes. This approach has undesirable consequences
as well. A revision operator based on maxichoice contraction results in knowledge‘
sets which are complete, i.e., for any belief y, the knowledge set necessarily commits
to either ¥ or -y. The fourth apprdach involves using a specially constrained class
of total orderings (called epistemic entrenchment), defined on the entire language, to
decide which beliefs to retain and which to discard. Let # <y y, where <y is the
epistemic entrenchment relation associated with the belief set K, denote that = is at

most as entrenched as y. The relation <x must satisfy the following conditions:
(EE1) If £ <k y and y =k z, then z < z.
(EE2) If x |=y then z <k y.
(FE3) For any z and y, c Sk Ay ory Xk TNY.
(EE4) When K # K,z & K iff g y for all y.
(FE5) fy X z for all y, then = z.

(EE1) requires that the <k relation be transitive. (EE2)is motivated by the criterion

for informational economy. If x logically entails y, then giving up z discards less



information than giving up ¥ (since retracting y requires vetracting @ as well, while
2 can be retracted without retracting all of its logical consequences). 'To understand
ghe motivation for (EE3), notice that (EE2) requires that @ Ay =y @ and Ay =i w.
Since the minimal retraction of Ay rcquires the retraction of cithera or gy a Ay must
be at least as entrenched as either @ or y. Since the entrenchiment ordering applics
to the entire language, (FE4) assigns all elements of the language not in A minimal
status in the ordering. (EE5) requires logical tautologics to be maximal elements in

the ordering.

The epistemic entrenchment relation uniquely determines a contraction operation

via the following definition:
y € K7 iff y € K and either z < z V yor |= .

Once again, the corresponding revision operator may be obtained via the Levi identity.

Revision and contraction operators defined in this manner satisfly all of the relevant

rationality postulates.

2.2 Belief bases

Nebel [39] discusses contraction operators on belief bases , which are finite sets of sen-
tences instead of infinite deductively closed belief sets. The motivations for defining
belief change on belief bases is twofold. First, operators defined on belief bases are
computationally viable (they do not have to operate on infinite sets). Second, belief
change operations on belief bases permit reason maintenance, while those on belief

sets do not. The base contraction operator ~ defined as:

(Voepie)C) A (BY —z) if ez

B otherwise

B~z =

satisfies most, but not all, of the AGM postulates. Note that the term (BV~z) ensures
that the original belief base re-appears whenever = becomes true. The corresponding

revision operator can be defined, as before, via the Levi identity.
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2.3 Other approaches

Frameworks for beliel change are often distinguished on the basis of whether they
adopt the foundalional versus coherenlist epistemology. The foundational approach
requires that only facts having adequate justifications be accorded the status of be-
licfs. 'T'hus, every helief must self-evident or have a non-circular, (inite sequence of
justifications grounded in a set of self-evident beliefs. The coherentist approach re-
¢utires that minimal change be made to the original set of beliefs. The justification of
an individual belief amongst a coherent set of beliels is not is not its provability with
respect to a set of self-evident axioms, but on the extent to which it coheres with
all other beliefs. The AGM framework subscribes to the coherentist epistemology.
Early work on belief change, some of it predating the AGM framework, focussed on
the foundational approach, s exemplified in Doyle’s TMS [15], de Kleer’s ATMS [11]
and the beliel change system of Martins and Shapiro [35]. A number of approaches
based on the foundational theory were developed concurrently with the AGM frame-
work. These include the work of Dalal [9], Borgida (3], Winslett [52], Satoh [47],
Weber [50], Fagin et al [16]. |

More recently, several studies have focussed on connections between nonmonotonic
reasoning and belief change. Earliest among these is Rao and Foo’s axiomatization
of foundational and coherentist belief change using the language of auto-epistemic
logic [45]. Brewka describes how belief change system can be built on a variant of
the THEORIST system [6]. Similar results were later presented by Nebel [40] and
Gardenfors [20]. We have previously established connections between the process
of contraction and the computation of extensions in PJ-default logic [23]. Boutilier

establishes a similar connection in [4].

l
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Chapter 3

A competence theory for belief

change

3.1 Introduction

As with any problem with multiple competing solution techniques, beliel change ve-
quires a good definition of competence, i.e., a specification of what it means to revise
beliefs correctly. A competence theory must embody the consensus view of whal
constitutes ideal belief change. Like most computationally difficult problems, an ide-
alization is not necessarily practical or implementable. Nonetheless, a formally well-
specified best-case scenario serves as a yardstick, or a theoretical upper-limit, against
which the competing solution hechniques may be compared. Such a benchmark can
also serve as a starting point for the development of new solution techniques, by mak-
ing transparent the precise nature of the trade-offs made in effecting the transition
from the idealization to the implementation.

In the state-of-the-art in belief change research, the definitions of rationality found
in the AGM framework serve as a generally agreed upon specification of competence.
We believe that these rationality postulates represent a useful first step, but are

inadequate. The specific drawbacks are as follows:

e It is generally agreed that the principle of informational economy should guide
14



any strategy for belief change. This requires that beliefs should be discarded as
little as possible while effecting belief change. The AGM rationality postulates
seck to satisfy this requirement, but with limited success. We shall show that,
as a consequence of the belief representation scheme and an unduly narrow
definition of what constitutes success for a belief change operation, beliefs may

be unduly discarded by operators defined in the AGM framework.

s The AGM framework provides an inadequate account of the process of retracting
a belief. Thus, the addition of a belief is duly reccrded in the belief state of an
agent, but the retraction of a belief is never recorded. We shall show that this

can unduly restrict the space of candidate outcomes of a belief change operation.
o The AGM framework does not specify belief ckange beyond a single step.

o The AGM framework provides no prescription on htsw beliefs must change when
the belief input is not fully credible. We believe that any approach to handling

uncertain, or less credible, belief inputs should involve a generalization of tech-
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- niques applied when the belief inputs are fully credible, instead of requiring a -

totally distinct set of techniques.

In attempting to address these drawbacks, we shall progressively generalize the AGM

approach through the following four steps. The first three involve augmenting the

belief representation scheme. The final step involves modifying the notion of success

for a belief change operation.

In augmenting the belief representation scheme, we shall distinguish between the

notions of the belief state and commitmeni state of an agent.

Belief state: The AGM framework views a belief state as denoting the set of beliefs
currently-’:held by an agent. We view a belief state as a representation of the

beliefs that may potentially be held by an agent. Fundamentally, this shift

is identical to the shift from classical logic to a nonmonotonic formalism for -

representing a knowledge base. This view admits the possibility that there



might be several candidate beliefs that an agent is aware of, but only some that
it actually commits to. A parallel observation in a nonmonotonic logic such as
default logic [46] is the existence of multiple defaults in a knowledge base in the

general case, only some of which become applicable at any given time.

Commitment state: Although a belief state may be viewed as a collection of all beliefs
that an agent may potentially hold at any given time, an agent must reason
with, or act upon, a single consistent set of beliefs. We shall refer to such a
set as the commitment state of an agent. A given belief state ina.y, in general,
support several commitment states. Driven by the context, an agent must
commit to a single element of the set of commitment states supported by its
belief state, at any given point in time. We may draw a parallel between the
commitment state of an agent and extensions in a nonmonotonic formalism
such as default logic. Every extension is a valid commitment state supported
by a belief state represented as a default theory, for a credulous reasoner. For a
sceptical reasoner, a default theory supports only one commitment state, given

by the intersection of all the extensions of the default theory.

Another crucial distinction is between the operations of revision and contraction.
Recall that the AGM framework distinguishes betwéen three possible epistemic at-
titudes to a belief z: z is accepted, z is undetermined and z is rejected. thilef a
revision operation causes a belief to be accepted or rejected, a contraction causes a

belief to become undetermined. In the rest of this work, we shall treat revisions and
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contractions to be independent, symmetric operations at par with each other. It may

be argued that contraction is only an intermediate step in a revision process via the
Levi identity and has no status as an independent operation. To counter this claim,

we shall point out that in most realistic scenarios, the beliefs of an agent répresent

an incomplete picture of the world (i.e. the agent is unable to commit to the truth or.

falsity of every sentence in the language). It makes sense, then, to talk of an operation

that enforces the undetermined status of a belief. Clearly this cannot be achieved .

through a revision operation. An independent contraction operator must therefore



be considered.

The steps we go through are as follows:

e A first step towards generalizing the belief representation scheme in the AGM
framework is to identify a belief state with a set of theories as opposed to a
single theory. Each theory represents a potential commitment state for an agent.
We retain the AGM notion of success, so that every theory in the belief state
obtained after a belief change operation satisfies the belief input (every theory
contains the new belief after revision and every theory discards the retracted
belief after contraction). This permits us to retain all beliefs that do not directly
coﬁtradict the belief input. However, some beliefs are nevertheless irretrievably
discarded. Contractions are not recorded in a belief state, and no prescription

is given on how to handle uncertain or less credible beliefs inputs.

e The second generalization of the belief representation scheme introduces the
notion of disbeliefs. Informally, a disbelief represents the dual of a belief. Thus,
just as a belief may be viewed as a record of a revision transaction, a disbelief
may be viewed as a record of a contraction transaction. The new scheme views
a belief state as a set of theories representing beliefs that may potentially be
held, together with one other theory representing the current set of disbeliefs.
The disbelief theory contains the negations of the beliefs that may not be held.
By requiring every theory in the set of theories representing the beliefs to be
consistent with the disbelief theory, we can guarantee that the current set of
disbeliefs do not appear in any consistent set of beliefs. Any element of the set
of belief theories, together with the theory representing disbeliefs constitutes
a candidate commitment state for an agent. The AGM notion of success is
retained. As with the previous representation scheme, we are able to retain all
beliefs that do not directly contradict the belief input. As before, some beliefs
must nevertheless be discarded as a consequence of retaining the AGM notion of
success. Contractions can be recorded in the theory representing the disbeliefs.

However, when a contraction operation contradicts an earlier contraction (such



as contract a followed by contract —a) we are forced to discard the memory of
one of these contractions, since we are committed to maintaining exactly one
consistent theory denoting the current disbeliefs. As before, we are unable to

account for uncertain or less credible belief inputs.

The third generalization of the representation scheme involves viewing a belief
state as a collection of theories denoting beliefs together with a collection of
theories denoting disbeliefs. A pair consisting of a belief theory and a disbelicf
theory represents a candidate commitment state for the agent. Informally, when
an agent is given a set of potential beliefs and a set of potential disbeliefs, it
may take two complementary approaches to arriving at a maximal commitment
state. In the first approach, it selects a maximal consistent subset of the set
of beliefs, and subsequently identifies a maximal subset of the set of ‘disbeliefs
that is consistent with the belief set already selected. In the second approach,
which is the dual of the first approach, it selects a maximal consistent subset
of the set of disbeliefs and subsequently identifies a maximal subset of the
set of beliefs which is consistent with the disbelief set already selected. This
scheme permits us to minimize the discarding of disbeliefs, since contradictory
contraction operations can be recorded in distinct disbelief theories. However,
since the AGM notion of success is retained, beliefs as well as disbeliefs that
directly contradict the current belief input must be discarded. No support is

provided for uncertain or less credible belief inputs.

The final step involves taking the representation scheme in the previous step
and relaxing the AGM constraint for success. Under the redefined notion of
success, a revision operation succeeds if there is at least one belief theory in the
resulting belief state which contains the new belief. Similarly, a contraction op-
eration succeeds if this is reflected in at least one disbelief theory in the resulting
belief state. This provides us with a framework in which no belief or disbelicf

needs to be discarded. In effect, we obtain an idealization of the principle of



informational economy. We set up a set of conditions that uniquely define belief
change operations in this framework and argue that they provide a more appro-
priate definition of competence than the AGM postulates, specially for belief
change systems based on nonmonotonic logivs where one is not constrained to
define mappings between single classical theories. We specify operators which
satisfy these conditions. We establish formally our intuitive observation that
the new framework strictly subsumes the AGM fran:ework. Finally, we point
out how uncertain or less credible belief inputs can be handled within the same

integrated framewor’

3.2 A critique of AGM rationality

The AGM framework defines a representation scheme for the belief state of an agent,
a repertoire of epistemic inputs that drive belief change operations, a repertoire of
belief change operations, a set of rationality requirements for these operations and a
set of operators for each of these operations. We shall argue in this section that while
the AGM framework represents an important step towards a uniform and principled
treatment of the dynamics of belief states, it has several shortcomings as well. We
will show that most of these shortcomings are a consequence of inadequacies in the
AGM representation scheme for an agent’s belief state, the AGM formulation of belief

| change operations and the AGM constructions of operators for these operations.

In the rest of this section we shall refer to AGM knowledge sets interchangeably
as belief states, pending our new definition of a representation of a belief state.

Our critique of the AGM framework consists of five major arguments.

(A) Non-compliance with the informational economy requirement.

The guiding theme in the AGM rationality postulates is ensuring minimal change
while mapping one belief state to another in response to an epistemic input. Yet
AGM-rational belief change operators cause beliefs to be irretrievably discarded. Con-

sider the following scenario. At belief state K, we discover that z is true in the world
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and accordingly revise our beliefs to obtain the new belief state K3 We are then
told that the previous revision step was incorrect - that there was, in fact, insuflicient,
evidence to conclude that @ was true in the world. We must therefore retract our
belief in z to obtain a new belief state (I2);. Ideally, our misadventure into believing
« should cause no-lasting damage, i.e., we should get back at least thosc beliefs that

we started off with. Formally, we may state this requirement as follows:

S C(52)z

where S is some as yet unspecified representation of a belief state. In later sections,
we shall explore a space of possible representations in order to eventually satisly this
requirement. This requirement is not satisfied in the AGM framework. The following

example shows that there exist AGM-rational operators * and — which violate this

requirement.

Example 1 Consider a propositional language with the alphabet given by the sin-
gleton set {a}. Let K = Cn(—a). There is exactly one way in which K can be
revised with the rew belief a using an AGM-rational revision operator *, yielding

the outcome K* = Cn(a). Subsequent retraction of a from this belief state yields

(K2)7 = Cn(T). Clearly, K € (K2)7. O

In this example, the problem with the operator * irretrievably discarding the belief
—a stems from the AGM framework requiring that a belief state be represented as a
single consistent theory and forcing the resulting belief state to reflect the changes
required by the belief input. Any operator which has to accommodate a new belief
that contradicts existing beliefs and maintain consistency at the same time, must
necessarily discard some beliefs.

Consider another aspect of the problem of discarding belicfs. At belicf state K,
we revise with the belief £ and subsequently discover that we were wrong ;erd that,

in fact, -z is true in the world. Once again, we may argue that there should be no

lasting damage, i.e.
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where is some appropriate representation of a belief state. The following example
shows that even this requirement is not satisfied in the AGM framework. The problem
in this example stems from the inability of the AGM framework to retain all of the

candidate outcomes of a belief change operation.

Example 2 Let {a,b} be the alphabet of our language. Let the initial belief state

be:
K0 = Cn({a,b})
First, we revise X0 with —b.

K0 | b= {01,02} where
01 = Cn({—aV b,-bV a})
02 = Cn({a})

We shall use an AGM-rational partial meet contraction operator where a transitively

relational selection function S returns O1.
S(K0}b) =01
Then:

K0j = 01
K1 = KO0, = (K07 )¥, = Cn(O1 U {-b}) = Cn({~-a,~b})

We now revise K1 with b.

K1 ] =b={01,02'} where
01" = Cn({—a})
02 = Cn({~bV a,—aV b})

Once again, an AGM-rational partial meet contraction operator exists with a transi-

‘tively relational selection function S’ which returns O1".



-

S | b)) = OV
Then: |

K17, = OV

K2 = K1} = (K12,); = Cn({—a,b})
Clearly:

KO0 & (K0%,);

In the next section, we shall show that a more general belief representation scheme

allows us to retain beliefs that would otherwise be discarded.
(B) Lack of an explicit representation for contracted beliefs.
The limited expressive power of the belief representation scheme in the AGM

framework can result in crucial inputs to the belief change function being ignored.

Consider the following example.

Example 3 Let {b, f} be the alphabet of our language. Let the initial belief state
be:

K0 =Cn({b— f})
After contracting f using an AGM-rational operator —, we get the following outcome:
K1 = K07 =Cn({d— f})

Since f is not a consequence of the beliefs in K0, no change is made to KO0. Revising

K1 with b results in the belief state:
K2 =K1} = Cn({b,b— f})

Thus, the agent starts believing f again, although the only new information (the
belief b) obtained since being told to retract the belief f does not in itself require that
f be believed again. A more detailed analysis reveals that when K1 is revised with

b, three different entities need to be considered:
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A: b — [ and its consequences are believed.

B: f is retracted.

C: b is believed.
Prioritizing these entities informally using a relation >, where z > y denotes that
z has higher priority over y, a variety of outcomes are possible. Note that the *
operator we use here is an idealized revision operator, not to be confused with an

AGM revision operator. We list some of the possibilities below.
e If{ C > A> Bthen K1} = Cn({b,b— f}).
e If A> C > B then K1} = Cn({b,b— f}).

If C > B > A then K1} = Cn({b}).

If B> C > A then K1} = Cn({b}).
o If B> A > C then K1} = Cn({b— f}).
e If A> B > C then K1f = Cn({b— f}).

We do not list all the possibilities here, but clearly the three distinct entities and their
relative prioritization need to be considered in generating an outcome. For instance,
let b denote that Tweety is a bird and f denote that Tweety flies. Then, starting with
a belief in an instance of the rule “birds fly”, after retracting the belief that Tweety
flies and then being told that Tweety ic a bird, it seems reasonable to remove the
"birds fly” rule from the status of 2 first-class belief, given new information regarding
Tweety’s flying ability and the fact that Tweety is a bird, giving a final belief state
Cn(b). This corresponds to the case where C > B> A. O

In the AGM framework, the effects of a revision are explicitly recorded and re-
tained until brought into question by subsequently acquired beliefs. Contractions,
however, are not explicitly recorded. Thus, while the belief state obtained as a result
of a contraction operation is constrained not to contain the contracted belief, subse-

quent belief states have no memory of this contraction operation. Clearly, an explicit

representation of contracted beliefs is necessary in the belief representation scheme.
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(C) The problem of spurious belicfs

The lack of explicit representations of contractions in the AGM [ramework man-
ifests itself in other forms of pathological behaviour as well. One ol these is the
appearance of unwarranted beliefs in a belief state; we shall refer to this as the prob-

lem of spurious beliefs. Consider the following example.

Example 4 We shall use an AGM-rational system. Let {a,b,¢} be the alphabet of

our language. The initial belief state is given by:
K0 = Cn({a,b})
First, we shall contract b from KO.

K0} b= {Cn({a,—cVb}),Cn({a,cVb}),Cn({—aVhb, —1(‘:V b}),Cn({—aV
b,cV b})}

Let the outcome of applying a transitively relational selection function S be:
S(K0 | b) = Cn({a,—cV b})

Then:
K1 = K0, = Cn(a,—cV b)

If we now revise K1 with ¢ (which is actually a trivial case of expansion), the outcome

is:
K2 = K1? = Cn({a,b,c})

This is clearly unintuitive. We start by believing in a and b and their consequences.
Subsequently, we find reason to disbelieve b. Finally, we find that we have reason to
believe ¢. In itself, this does not provide sufficient grounds to start believing in b. Yet,

we end up in a belief state containing the spurious belief .0

It may be argued that this is a consequence of the requirement that a belicf state

be a deductively closed theory in the AGM framework (we accept the belief —cV b in
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K0 in the previous example since it is a consequence of b). Relaxing the requirement
for logical omniscience leads to systems that rely on belief bases for representing
a beliel state (such as Nebel’s system [40]), but this has undesirable consequences,
such as making belief changes syntax-dependent. We will show later that an explicit
representation for disbeliefs can solve this problem too, without giving up logical
omniscience.

(D) Absence of an account for iterated belief change.

Recall that the AGM framework provides a toolkit of four approaches to defining
a contraction operator, and hence, via the Levi identity, a revision operator. All
but one of these involve the use of some form of ordering to select one or more of
the candidate outcomes in order to produce a final result. The exception is full
meet revision/contraction, but revision in this style has the undesirable outcome of
discarding all previous beliefs and retaining only the consequences of the new belief.
Both part: .1 meet and maxichoice revision/contraction involve the use of a selection
function. In both cases, the definition of the selection function is parameterized by
the current belief state K. In other words, a selection function S applicable in the
current belief state & will not be applicable in a revised belief state K'. The AGM
belief change operators provide no prescription of what the new selection function S’
applicable in belief state K’ should be. Similarly, the epistemic entrenchment relation
is defined relative to the current belief state K and the AGM belief change operators
do not tell us how to obtain a new epistemic entrenchment relation for a revised belief
state. The AGM operators only provide a specification of a belief change operation
over a single step. Clearly, they provide an inadequate account of iterated belief
change. This shortcoming of the AGM framework is a well-acknowledged one [49]
[27] [38]. Suggested solutions include functions that map an epistemic entrenchment
relation and an epistemic input to a new epistemic entrenchment relation [37].

(E) The problem of requiring success.

Fundamental to the AGM framework is the fequireznent that every belief change

operation succeed. Thus, the revision postulate (2*) requires that the new belief be
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included in the revised belief state. Similarly, the contraction postulate (f-) requires
that the contracted belief state not include the retracted belief, as long as the retracted
belief is not a logical truth. However, it is possible fo conceive of situations where
the failure of a belief change operation might be warranted. This would be the case,
for instance, if the credibility of the cpistemic input werc lower than that of existing
beliefs. If we are told by an observer that an apple was spotied flying away from a tree
instead of falling towards the ground, it is unlikely that we would discard our belief
in Newton’s laws of gravity. Let us formulate this situation as a revision operation.
Starting with a belief state in which Newton’s laws are accepted, and presented with
an epistemic input consisting of the apple’s observed behaviour (which contradicts
currently accepted beliefs regarding the laws of gravity), we should ideally obtlain a
belief state in which we retain our belief in the laws of gravity, given the apparently
dubious nature of the epistemic input. The revision operation should therefore fail.
While remaining sceptical of this epistemic input, we would nonetheless incorporate
the new belief in some way in our belief state (without accepting it) so that if we
were to find out later that a gale-force storm was in ﬁrogress at that time, we would
actually accept the observer’s account of the apple flying away. Clearly there are
cases of belief change where the epistemic input is not accepted in the resulting beliel
state, but which causes some re-adjustment in the belief state nonetheless. Given the
AGM framework definition of revision and contraction as operations which necessarily
succeed, one option would be to expand the repertoire of belief change operations to
include cases in which epistemic inputs of low credibility are accommodated. The
problem with this option is that a single additional revision and contraction operator
would not suffice. Epistemic inputs at different levels of credibility would have to be
handled in different ways. We would thus need as many new operators as there would
be levels of credibility. Another option is to generalize the AGM definition of revision

and contraction. This is the approach we shall take in the next section.



3.3 A modified framework

In the previous section, we observed how inadequacies in the AGM beliel representa-
tion scheme, in the AGM formulation of revisions and contraction and in the AGM
revision and contraction operators limited the applicability of the AGM framework in
most practical settings. We shall address the first two of these issucs in this section by
presenting a new system for representing an agent’s belief state, and by reformulating
the notion of revision and contraction. We shall explore a space of three possible

approaches, which we shall refer to as:
e The sets of theories approach.
e The constrained sets of theories approach.

e The sets of constrained theories approach.

Sets of theories

Recall our earlier criticism of the AGM rationality postulates for not representing
an idealization of minimal belief change. This problem partly stems from the AGM-
rational operators selecting some of the candidate outcomes of a belief change opera-
tion and discarding others, as illustrated in Example 2. This suggests a generalization
of the AGM representation of a belief state along the following lines. As before, we
shall view belief change as a mapping from a belief state and an epistemic input to
another belief state. However, we shall view a belief state as a collection of deduc-
tively closed theories instead of a single deductively closed theory. Thus a belief state
S will be defined as S = {Kj, Ka,...} where each K; is an AGM knowledge set.
Each K represents the commitment state of an agent in belief state S. We shall dub
this the sets of theories approach. We shall also generalize the definitions of revision
and contraction to reflect this shift in representation. Let R and C be revision and

contraction operators under our new definition.
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R
Revision: Revision of a belief state § with a belief @ results in o belief state S such

that for every K; € SE, » € K.

Conlraction: Contraction of a belief @ from a beliel state S results in boliel state

S€ such that for every K; € S5, = ¢ K.
We may define the operator € in terms of the AGM removal operator | When [
SO = {K'|K'e (K La),K eS8}

In case =, S¢ = S.

The revision operator is defined, as in the AGM framework, via the Levi identity.
SR = {Cn(K U {z}) | K € S5}

Note that most accounts of how an agent acts requires that an agent commit
to a single consistent set of beliefs. However, it is also well-recognized that real-life
agents reason using multiple contexts. In other words, an agent may hold several,
potentially mutually inconsistent, sets of beliefs. In the sets of theories approach,
an agent retains multiple, potentially mutually inconsistent contexts. To be able to
act, the agent must be able to select one such belief set, as its commitment state.
This is a theory preference problem. We do not need to commit to any single theory
preference strategy here since the process of belief change is independent of how
theory preference is performed. We might view the AGM approach to beliel change

as involving two separate tasks:

e Belief maintenance: This involves generating candidate outcomes that achieve
the requited change and retain as many beliefs as possible. We may view the |

operator as performing this task.

o Theory preference: Selecting one of the candidate outcomes, or some combina-
tion of therh, as the final outcome. The application of the selection function in

the different ways mentioned earlier achieves this.



The sets of theories approach, as well the others we shall discuss subsequently, make
these two tasks orthogonal. The operators R and C perform belief maintenance, and
the outcome of beliel change becomes independent of the theory preference step. This
allows the theory preference strategy to be context-dependent, with no constraints
being imposed by the belief maintenance process. Belief change is reduced to belief
maintenance.

Following the AGM postulates for contraction and revision, we can establish some
properties of the C' and R operators. To do so, we need to establish some properties of
the removal operator. Some of the lemmas that follow involving the removal operator
have been stated and proved in [19] and elsewhere, but we shall go through the

exercise of establishing these results for expository purposes.
Lemma 1 For every K' € (K | z), K' C K.
Proof: Follows from the definition of |.

Lemma 2 If z € K, then for every X' € (K | ), and for every y, either zVy € K’
orz V -y € K’, but not both.

Proof: Since z € K, clearly both zVy € K and zV—y € K. Assume the converse,
i.e., for every K' € ()X | z),zVy ¢ K’ and zV -y ¢ K’. Then both K'u{zVy}l =z
and K’ U {z V -y} = z. In other words, K’ U {y} |= z and K" U {~y} & z. Then
K' = z, which is a contradiction. If both z Vy € K’ and z V —y € K’, then too
Kz O '

Lemma 3 Ifz € K, then for every K' € (K | #), K C Cn(K'U {z}).

Proof: Assume the converse, i.e., there exists K’ € (K | z) such that K €
Cn(K'U {z}). Then there must exist some y such that y € K — Cn(K'U{z}). Since
y € K, yV -z € K. Since there exists no z where z [ = such that z A (y vV —z) E =,
yV -z € K'. Then y € Cn(K’U {z}), which is a contradiction. O

Lemma4 I[fl=x &y, then (K | z)= (K | y).
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Proof: Let K’ € (K | z). By Lemma 1, K’ € K. By decfinition, for any
ze K—K', K'U{z} = 2. Then K'U{z} = y. Hence K’ € (K | y), by definition.0

Lemmabs [19] Ifz,ye K, (K lzAy)= (K| a)U(K |y).
Proof: We shall refer to [19] for the proof.

Lemma 6 Ify € K and there evists some K’ € (K | ) such thaty & K’, then
-yVze€ K.

Proof: By definition, if y € K and y ¢ K, then K'U {y} |= x. This means that
K'E=-yVe.O

Lemma 7 If K' C K and x € K’, ther there exists some K" € (K | x) such lhat
K' CK".

Proof: Follows from the definition of |.
Lemma 8 Ify € K and for all K' € (K | z), y € K', theny = =z.

Proof: If y j~ z, then, by definition, there must exist some L such that {ylulLe
(K | z).0O

Lemma 9 If K ¥z, then (K [ 2Vy) = (K 1y).

Proof: Let K’ € (K | y). Since z ¢ K and since K’ is the largest subset of K
which does not contain y, by definition, K’ € (K | ¢ V y). The reverse direction can

be similarly shown.O

Theorem 1 For the C operator defined as above:

1. For every K € SC, there exists K' € S such that K C K'.
2. Ifforsome K€ S,z ¢ K, then K € Se.

3. If b~ z, then for every K € S,z ¢ K.
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4. If z € K, for some K € S, then there exists some K' e 89 such that K C
Cn(K'U {2}).
5. If Fz &y, then 58 = Sg".
6. Forany K € S and K' € S§, there exists some K" € SCny such that KNK' C
K",

7. If, for some K € S5,,, = € K, then there ezists some K' € 5S¢ such that

K CK'.

Proof:

1. If }& z, then, by definition, for every K € SC, there exists some K’ € S such
that X € (K | z). Then, by Lemma 1, K C K'. If = z, S¢ = S, hence the
result trivially holds.

2. If £ z, then, by definition, for every K’ such that K' e (K | z) where K € S,
K' €SS Incasez g K, K € (K | z). Thus K € SC. If = z, the S = S,
hence the result trivially holds.

3. If }& z, then, by definition, for every K € S¢, K € (K' | z) for some K'.
Clearly z ¢ K.

4. Let K' € (K | z).- If £ z, K' € SC by definition. By Lemma 3, K C©
Cn(K'U {z}). If = z, then S¢ = 5, hence the result trivially holds.

5. If j£ z, let K* € SS. Then there exists some K € S such that K’ € (K | =z).
Then K’ € (X | y) by Lemma 4. Thus K’ € S{. The reverse direction can be

similarly shown. In case = z, S = S¢ = S, hence the result rivially holds.

6. If = z, then S, = S5. Then K' € S¢,y hence the result holds trivially.
Similarly, if = y, then SS,, = S. Then K € Sg,,, hence the result holds
trivially. If b = and }& y, then let K € (K" | z) where K" € S. Two cases

are possible:
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e 2 Ay &€ K" Then (K" |  Ay) = {K"}. Then K" € S Ay Since
K C K" by Lemma 1, the result holds.
e z Ay € K™ Then, by Lemma5, K € (K" |  Ay) and hence K € Sgy,.

Thus if we set K" = K, the result holds for any choice of K' € .."ff.

If |= «, then SG,, = SJ. If K € SC, then there exists some K" € S such
that K € (K" | y). Since S¢ = 5, K" € S¢. By Lemma 1, K € K". If
= y, then SfAy = SC. Then the result is trivially proved by setting K =K.
Consider when £ z and [~ y. By definition, there exists some K" € S such
that K € (K" |  Ay). By Lemma 1 X C K". Since z ¢ K, there exists some

K' € (K" | z) such that K C K’ by Lemma 7. By definition, K’ € SC. Hence
proved.O

Theorem 2 For the operator R defined as above:

1. For every K € S, z € K.

2. For every K € SE, there exists some K' € S such that K C Cn(-K’ U {z}).

3. If forsome K €S, ~z ¢ K, theﬁ Cn(K U {z}) € SE. |

4. IfKeSE KL iff -z

5. If =z <y, then S = SE.

6. For every K € SE,,, there ezists K' € SE such that K C Cn(K'U {y}).

7. If there exists K € SE such that ~y ¢ K, then there exists K' € Sk, such that
Cn(KuU{y}) C K.

Proof:

1. By definition, for every K € SE, K = Cn(K'U{z}) for some K’. Hence z € K.

2.

By definition, for every K € SE, K = Cn(K" U {z}) for some K" € (K' | —z)

where K’ € S. By Lemma 1, K” C K’, hence Cn(K"” U {z}) C Cn(K'U {z}),
hence K C Cn(K'U {z}). |
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3. If for some K € S, ~z & K, then (K | -z) = {K}. Then K € Sfx’ by
definition. Then Cn(K U {z}) € S%, by definition.

4. — If K € S% and K [=1, then let K = Cn(K'U {z}) where K' € S¢. By
definition, every K' € SC is satisfiable. Then for K |=.1, it must be true
that | —x.

— If |= ~z, then for every K € SI, z € K by (1), hence K |=.L.

5. Let KX € S2. Then, by definition, there exists some K’ € S such that K =
Cn(K" U {z}) where K" € (K’ | —~z). By Lemma 1, K" € (K' | —y). Then,
by definition, Cn(K" U {y}) € SF, hence Cn(K" U {z}) € S}, hence K € SR,

The reverse direction can be similarly shown.

6. Let I € SE. Then, by definition, there exists K” € S such that K = Cn(K"U
{z Ay}) where K" € (K" | —z V —y). Clearly K" [~ —z. Hence there exists
some K™ ¢ (K' | —z) such that K" C K"'. Then, if K’ = Cn(K"' U {z}),
K' € SE. Clearly, Cn(K" U{z Ay}) C Cn(Cn(K" U {z})U {y}).

7. Let K € S and ~y ¢ K. The there must exist some K" € S such that K" €
(K" | -z) and K = Cn(K" U {z}). Clearly, -~z ¢ K. Then, by Lemma 7
and given that —y € K", there exists some K" € (K | -z V —y) such that
K" C K". Then Cn(K""U{z}U{y}) € SE,. Let Cn(K""U{z}U{y}) = K".
Then Cn(Cn(K" U {z})U {y}) C K’. Thus Cn(K U {y}) C K"

This reformulation addresses the problem identified in Example 2 as shown below.
Example 5 Let the initial belief state be:

S0 = {K,} where
K, = Cn({a, b})

First, we revise S0 with —b.

S1 = S0B, = {Cn(O1U{-b}),Cn(020{-b})} = {Cn({~a, ~b}),Cn({a,—b}} =
{K{, K}
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where O1 and O2 are as defined in Example 2.

Next, we revise S1 with b.

K, | ~b={01,02'}
K, | =b={Cn({a}),Cn({-aV b,aV b})} = {03, 04'}

where 01’ and O2' are as defined in Example 2. Then:

52 = S1R = {Cn(0O1' U {b}),Cn(02' U {b}),Cn(03" U {b}),Cn(O4" U
{01} = {K7, K7, K3, K{

It turns out that K¥ = K} and K} = Kj. Therefore:
§2 = {Ky, K3} = {Cn({~a,b}),Cn({a,b})}
It is easy to see that

50 C (S05,)f

In general we can show the following result.

Theorem 3 If there exists K € § such that x € K, then there exists K" € (S1 )R
such that K C K.

Proof: Let X € S such that z € K. For the result to hold, there must exist
some K’, K" and K" such that K’ € (K | z), K" € (Cn(K'U ~z) | -z) and
K" = Cn(K"Uz) with K C K". Let z be some sentence such that C'n(z) = K. There
must exist some K" such that X C K. To prove this, assume the converse. Thus

there exists no K" such that K™ |= z. Then there exists no K" € (Cn(K'U~z) | —x)

such that -~z V z € K”. Two cases are possible:

1. =zVz € Cn(K'U{-z}). Then, by Lemma 8, this is possible only if ~zVz = .
Then z = —z. But we know z = z.
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2V z & Cn(K'U {~z}) for any K' € (K | z). Since K |= 2, ~zV z € K.
~z V z £ x. Then by Lemma 8 there must exist some K' e (K | @) where

-2V z € I, which contradicts our assumption.

Thus there must exist some K’ such that KX C K'.0O

We can clearly minimize the discarding of beliefs by retaining all outcomes using
the scts of theories approach, but this is an inadequate solution. Trivially, the problem
identified in Example 1 remains. There are unique outcomes at every step in this case,
yct; beliefs are discarded.

As well, the problems arising from the lack of an explicit representation of con-

tractions remain, as shown below.

Example 6 Let us reformulate Example 3 in the sets of theories approach. The

initial belief state is given by:

S0 = {I‘&'l} where
Ky =Cn({b— f})

Contracting f from 50, we get:
51 =50% = {K:1}
Revising 51 with b, we get:
$2= 517 = {Cn({b,b— ]}

Clearly, retaining all outcomes in a belief state does not translate, even implicitly, to

a memory of past contractions.O

The problem of spurious beliefs similarly remains.

Constrained sets of theories

Example 6 suggests an augmentation of the sets of theories approach to include an

explicit representation of contractions. In this new approach, which we shall dub the
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constrained secits of theories approach, a belicf state is a pair (T, ). T is a set of
deductively closed theorics and corresponds to a belief state in the sets of theories
approach. D is a single deductively closed theory and corresponds to the current set
of disbeliefs. We require that for every K € T, K U D P=1. Informally, a disbeliel
corresponds to a contracted belief, so that D is the theory that the agent is currently
constrained to disbelieve. Thus, if an agent is currently constrained to disbelieve w,
then -z € D. K; together with D constitutes a candidate commitment state for cach
K; € T. Thus a commitment state denotes the set of beliefs an agent commits to
accept, together with a set of beliefs the agent commits to not accept, at any given

point in time.

Let C’ and R’ be contraction and revision operators, respectively, in the con-
b b

strained sets of theories approach.

Revision: Revision of a belief state S = (T, D) with a belief x results in a belief state

SR = (T®, DE') such that for every K € TF, z € K.

Contraction: Contraction of a belief z from a belief state § = (T, D) results in a

belief state SC' = (T, DS') such that -~z € DS,

In the case of contraction, notice that since every K € T " is required to be consistent,
with DS, it follows that = & K for every K € TS,
We may define the operators C’ and R’ in terms of the AGM removal operator

| and a selection function f similar to the selection function used with the AGM

maxichoice contraction operator.

The contraction operator C’ is defined as follows. If i z:
5S¢ = (19, DS") where
D = Cn(f(D | z) U {~=})
T¢ = {K'| K'e (K | -D¢"),K € T}

. . . . Jou o of
In case = z, the contraction operation fails, i.e., 5S¢ = 5. Here, =DE" stands for the

negation of the conjunction of the elements of DE".



To understand the motivations for the definition of the operator C' given above,
we need Lo consider the semantics of iterated contractions. In general, a successful
contraction operation takes an agent from a beliel state where the belief being con-
tracted may be possihly held to a belief state where the belief is necessarily not held.
In the case of systems where an agent may accept multiple belief sets in a given belief
state, such as in the sets of theories approach and in the current approach, a successful
contraction operation ensures that none of the beliefs sets in the resulting belief state
contain the contracted belief. Contractions may contradict each other. For instance,
the contraction of = contradicts a prior contraction of -z, since it impossible to en-
force disbelief in both z and -z (this equivalent to contracting the tautology = V —z).
Therefore, the first step in a contraction operation with operator C' is to obtain a
new disbelief theory which contains -z (by enforcing consistency with this theory,
we can ensure that no theory in the resulting belief state contains =), where z is the
belief being contracted. This is achieved by revising the theory D with —z, using an
operator similar to revision in the AGM framework. First, z is retracted from D us-
ing maxichoice contraction, then the outcome is expanded with —z. We could define
a similar operator in which z is contracted from D using partial meet contraction,
which would avoid the well-recognized problem of obtaining complete theories as a
consequence of revision using maxichoice contraction. However, the purpose of defin-
ing the operators in this section is purely expository; we wish demonstrate deficiencies
in the constrained sets of theories approach to belief representation and motivate the
need for an aungmented representation. The deficiencies we identify are independent
of how the disbelief theory is revised anci“:are a consequence of the requirement that
there be a unique disbelief theory (as well as the success requirement, which we shall
address later). Nevertheless, we need to define operators in order to demonstrate the
dyhamics of belief change using this belief representation scheme. We therefore use
the siinpler maxichoice contraction operation as the basis for revising the disbelief
theory. After the disbelief theory has been revised, maximal subsets of the current

belief sets that are consistent with the new disbelief theory are identified, and these
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constitute the new set of belief sets.
Another aspect of iterated contractions that requires special mention is the gen-
eration of new disbeliefs in the absence of explicit contraction operations thal require

their addition, as shown in the following example.

Example 7 Let the alphabet of our language be {a,b}. Let the initial beliel state
be given by:

S0 = (T'0, DO) where:
D0 = Cn({aV —b})
T0 = {Cn({b})}

After contracting a from S0, we obtain:

S1 = (T1,D1) = (T¢,DS") where:
D1 = Cn({aV —b} U {—a})
T1 = {Cn({—aV b})}

Notice that the belief b is lost as a consequence of contracting , given a prior con-
traction of —a A b (which shows up as the disbelief theory D0). This might a.ppéar
anomalous, since the contracted beliefs do not in themselves require that b be re-
moved. Notice, however, that contracting —a A b translates to a requirement that the
beliefs —a and b not be held simultaneously. When a is subsequently contracted, this
eliminates the possibility of enforcing disbelief in —a (once again, this would translate
" to requiring disbelief in the tautology a vV —a). Hence, the earlier requirement that
—a and b be not held simultaneously now translates to a requirement that b be not

held. Hence b is not contained in any theory in T'1.0

Following the AGM postulates, we can establish the following properties of the C*

~operator.
Theorem 4 For any operator C' defined as above:

1. For every K € TS', there exists some K' € T such that K C K'.



2. If l£ x, then for every K € TTC', z & K.
3. Ifl=a « y, then 5¢' =S¢,

4. If x € K, for some K € T, then there exists some K' e TS such that K C
Cn(K'U {z}).

Proof:

1. If = z, the S¢' = S, and the result holds trivially. If }& z, then, by definition,
for every K& € TS, there exists some K’ € T such that K € (K’ 1 ~DS". By
Lemma 1, £ C K'.

2. If I~ z, by definition, for every K € TS, K ¥ -Dg'. Since DS = -z, then
K b z.

3. If |= z, then |= y and vice versa. In either case, S¢' = 8§ = S. If [£ z or
by, by Lemmad4 D | z = & | y. Since f is a function, Dfl = Dg’". Hence

Cl __r‘C'
TS =TS

4. If |= z, then ¢ = S, hence the result trivially holds. Otherwise, let K’ €
(K | =DS'), where S = (T,D), K € T such that z € K. By definition,
DS = Cn(f(D | z))U{~z Ay}, wherey = Cn(f(D | z)U{-z})— (Cn(f(D |
z))UCn({~z})) (taking y to stand for the conjunction of its elements). We can
rewrite DS’ as Cn(f(D | x))A-zAy (taking each set of the form Cn(X) to stand
for the conjunction of its elements). Then -DE" = =Cn(f(D | z))V~(~z Ay).
Since f(D | z) € D and K [~ —D by definition, K b =f(D | z). Then, by
Lemma9, (K | ~DS") = (K | ~(zAy)) = (K | (zV-y)). Sincez € K,zV-y €
K. Then by Lemma 3, for every K’ € (K | (zV ~y)), K C Cn(K'U{zV —y}).

Cn(K'U {zV —y}) € Cn(K'U {z}), hence proved.

0

Notice that the reformulated versions of postulates (3—), (7—) and (8—) are not

satisfied. We shall provide counter-examples for each of these cases. The following
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example shows that it is in general not true that if for some § = (7, D), K €l and

x € K, then I € TS, hence a property similar to postulate (3—) cannot be proved.

Example 8 Let the alphabet of our language be {z,y}. Let the initial beliel state
be given by:

S0 = (T0, D0) where

D0 = Cn({z=Vy})

T0 = {Crn({-y})}

After contracting z from S0, we obtain:

S1 = (T1,D1) = (T0%',D0S") where
D0S" = Cn({~z,zVy})
TS = {Cn({-y V 2}),Cn({~y V z})}

Notice that although Cn({-y}) ¥ =, Cn({~y}) € T<'.0

The behaviour illustrated above stems from new disbeliefs being introduced as

consequence of a sequence of contractions

The example below establishes the following two observations:

e It is not true, in general, that for any K € TS and K' € Tyc', there exists some
K" € Tg:y such that K N K’ € K" (hence a property similar to postulate (7—)

cannot be proved).

e It is not true, in general, that if for some K € Tgy, z ¢ K, then there exists

some K’ € TS such that K € K’ (hence a property similar to postulate (8—)

cannot be proved).

Example 9 Let the alphabet of our language be {a,b}. Let the initial belief state
be given by:

S0 = (T'0, D0) where:

D0 = Cn({a,b})

T0 = {Cn({a,b})}



ol the outcome of contracting e from S0 be given by:

$1 = (T1,D1) = (10", DOG") where:
D1 = Cn(f(D0 | a)U {=a}) = Cn({b,—aV b} U {-a}) = Cn({b, ~a})
71 = {Cn({-aV b,=bV a}),Cn({b})}

Let the outcome of contracting b from SO be given by:

52 = (T2, D2) = (T0§', DOF") where:
D2 = Cn(f(D0 | b)U {~b}) = Cn({a} U {—b}) = ¢ 2{{a,—b})
72 = {Cn({—a V b,~bV a}),Cn({a})}

Let the outcome of contracting a A b from S0 be given by:

53 = (T3, D3) = (1'0%,,, DOS,,) where:
D3 = Cn(f(D0 | anb)U{-aV-bd}) = Cn({-aVb,~bVa}U{—aV-d}) =
Cn({~a,-b})

- T3 ={Cn({=aVb,-bVa})}

Notice that Cn({b}) € T1, Cn({a}) € T2, (bV a) € T1NT?2, yet thereis no K € T3
such that K = bV a. This demonstrates the first of the two assertions.
Consider a different outcome of the contraction of @ from S0, corresponding to a

different selection function f1.

S4 = (T4, D4) = (T0§', DOY") where:
D4 = Cn(f1(DO0 | a)U{-a}) = Cn({-aVb,~bVa}u{-a}) = Cn({—a, ~b})
T4 = {Cn({~aV b,—bV a})} '

As well, consider a different outcome of the contraction of aAb from S0, corresponding

to this distinct selection function f1.

S5 = (T'5, D5) = (T0S,,, D0S,,) where:
D5 = Cn(f1(D0 | anb)U{—=aVv-b}) = Cn({b}u{—aV-b}) = Cn({b, ~a})
T5 = {Cn({-aV b,~bV a}),Cn({b})}



Notice that Cn({b}) € T5, a & Cn({b}), yet there is no K € 7' such that Cn({d) ¢
K.0

Operator €' does not satisfy the reformulated versions of postulates (7T—) and
(8—) on account of the fact that the selection function, used in revising the disbeliel
theory to accommodate the negation of the belief being contracted, is not constrained
to select maximal clements of the power set of I independent of the beliet heing
contracted (as is the case in maxichoice operators that ave [ully AGM-rational {19]).
We speculate that if such a constraint were imposed, the reformulated versions of
postulates (7—) and (8—) would be satisfied. We shall not undertake the exercise
of formally establishing this since our intent in defining this contraction operator is
purely expository. We shall show later that the constrained sets of theories approach

has deficiencies that are independent of how revision and contraction operators are

defined in this system.

The revision operator R’ is defined as follows:

SE = (TF, DF') where
DE = Cn(f(D | ~z)U{z})
TR = {Cn(K') | K' € §(((K U {z}) | ~DF),z), K € T}

where
§T,2)={K|KeT, Kk}

Thus § is function which takes a set of theories and a sentence and returns the sbul)sct
of theories which contains the sentence.

The first step in a revision operation is to suitably modify the disbelief theory
so that it contains the new belief and thus blocks belief in its negation. The secend
step takes each element of the set of belief theories, identifies maximal subsets of the

theory union the new belief that are consistent with the new dishelief theory and

contain the new belief.

Theorem 5 The operator R' defined above satisfies the following propertics:



. Forevery K e TH, z € K.

I

. For every K € TR, there exists some ' € T such that I{ C Cn(K'U {z}).

Lo

LK eTH, KELif =z

4. IflEz &y, then CIANES Sf'.
Proof:
1. Follows from the definition of R'.

2. Let K" € §(((K'U {z}) | ~DF),z). Clearly, K" C (K'U {z}). Let K =
Cn(K"). K C Cn(K'U{z}) and K € TX'. Hence proved.

3. z € K for every K € TF. Hence proved.

The operator R’ does not satisfy the reformulated versions of postulates (4x%), (7*)
and (8%).
With an explicit representation of disbeliefs/contractions, we can avoid the prob-

lem identified in Example 4.

Example 10 We shall reformulate Example 4 in the constrained sets of theories

approach. The initial belief state is given by:

S0 = (T0, D0) where
T0 = {K;} with K; = Cn({a,b})
DO = {}

First, we contract b from S0.

S1 = 808" = (T0§",D0§") = (T1, D1) where

DOF" = Cn({~b})

T0S" = {Cn({a,-cV b}),Cn({a,cV b}),Cn({—aV b,—cVb}),Cn({-aV
b,cV b})}

Next, we revise 51 with c.
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52 = S1F = (T1F, D1F') = (T2, D2) where

D1R = Cn({-bA c})

T1F = {Cn({a,c}),Cn({—aV b,c})}

Notice that for no K € S2 is it true that K |= b. The disbelief in b persists after

revision ¢ since belief in ¢ is not sufficient evidence to warrant renewed belief in 6. O

The explicit representation of disbeliefs/contractions in the constrained scts of the-
ories approach represents an improvement over sets of theories approach. However,

some problems persist, as the following examples show.

Example 11 We shall reformulate Example 3 in the constrained sets ol theories

framework. The initial belief state is given by:

S0 = (70, D0) where
D0 = Cn()

T0 = {Cn({-bV f})}

Contracting f from S0, we get:

S1 = S0¢" = (T0%',D09") = (T'1, D1) where
DO = Cn({~f})
70§ = {Cn({-bV 1}

Revising S1 with b, we get:

52 = S1F = (T1F, D1¥) = (T2, D2) where
D1ff = Cn({~f A b})
T1f¥ = {Cn({b})}

Notice that one of the candidate outcomes Cn({b}) € T1{' corresponds to the or-
dering C > B > A or the ordering B > C > A in Example 3. Once again, the
other possibilitieé are not considered, since the contraction and revision operations
succeed. We shall see later that an augmented belief representation system with op-

erators which relax the success requirement permits us to consider all of the possible
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outcomes mentioned in Example 3. In this case though, the outcome Cn({b, f}) does

not, appear since the disbelief in f is explicitly recorded and retained. Box

The following example demonstrates another instance of how potential outcomes are

climinated from consideration on account of the success requirement.
Example 12 Let {b} be the alphabet of our language. Let the initial belief state be:

S0 = (70, D0) where
D0 = Cn()
T0 = {Cn{{b})}
After contracting b from S0, we obtain:
51 = 508" = (rog’, Do") = (T'1, D1) where
DOg" = Cn({-b})
70§ = {Cn()}

Analyzing the problem along the lines of Example 3, we notice that when b is con-
tracted from S0, two different entities need to be considered.
e A: b and its consequences are believed.

e B: b is retracted.

Depending on how these entities are prioritized, two outcomes are possible:

o If A > B then the outcome is Cn({b}).

o If B > A then the outcome is Cn().

The constrained sets of theories approach generates only the first outcome, since the
contraction operation is defined to always succeed. Consequently, beliefs may be

irretrievably discarded, such as the belief b in this example.

The primary drawback of the belief representation scheme in the constrained sets
of theories approach is the requirement that there be a single disbelief theory. This

results in some disbeliefs, i.e., the memory of some previous contractions, being irre-

trievably discarded.
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Example 13 Let {b} be the alphabet of our language. Let the initial belief state be:

S0 = (70, DO) where
D0 = Cn()
T0 = {Cn()}

First, we retract b from S0.

S1 = 808" = (T0¢', D0§") = (T'1, D1) where
DO’ = Cn({-b})
Tof" = {Cn()}

Next, we retract —b from S1.

52 = $1%;, = (T'1%,, D1%,) = (T2, D2) where
-lb = Cn({b})
1%, = {Cn()}

Notice that the memory of the contraction of bis lost since we have no way of recording
mutually inconsistent disbeliefs given our commitment in this framework to a single

consistent theory as the representation of the current set of disbeliefs.0

Sets of constrained theories

Example 13 suggests that we augment our representation of a belief state to permit
multiple sets of disbeliefs in the same way that the earlier two approaches permit
multiple sets of beliefs. We shall augment the constrained sets of theories approach
accordingly to obtain a framework which we shall call the sets of conslrained theories
approach.

As before we view belief revision as a process that takes a belief state and a belief
input and produces a new belief state as a result. We view a belief state as a collection
of commitment states. Formally, a commitment state is a pair (B, D) (where B is a

belief theory and D is a disbelief theory) such that the following conditions should
hold:
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o 3 =Cn(B).
« D =Cn(D).
e BUD J-L.
Given a belief state S, we may refer to its universe of beliefs, 3 (S), where:
Y +(S) = {b| there exists (B, D) € S s.t. B |= b}
The universe of disbeliefs, 3_(S), of a belief state S is defined as:
7" _(S) = {b| there exists (B,D) € S s.t. D |= b}

Thus $,(S) contains all beliefs that may be held in some commitment state in S.
Similarly, 3_(S) contains all disbeliefs that may be held in some commitment state
in S.

Belief inputs may be of two kinds:

o Revision: Revising a belief state S with a belief z results in a belief state S’

such that there exists a belief set (B, D) € S’ where B |= z.

e Contraction: Contractiug a belief z from a belief state S results in a belief state

S’ such that there exists a belief set (B, D) € S’ where D = —z.

Notice that neither revision nor contraction is guaranteed to succeed in the above
definitions. Revision merely requires that the new belief state contain at least one
belief set with a belief theory B that contains the new belief. Similarly, contraction
requires that the new belief state contain at least one belief set with a disbelief theory
D containing the negation of the contracted belief. We shall refer to these as the weak
success requirements for revision and contraction. The intuition is that the belief sets
in the new belief state which represent non-successful revisions (contractions) coerre-
spond to outcomes with belief inputs that are not fully credible. In general, a belief
state may contain multiple belief sets representing non-successful outcomes. Each

such belief set intuitively represents one way in which a belief input with less than



full credibility is ranked relative to the other beliefs/disbelicfs. A more compelling
reason for relaxing the success requirement is the ability to retain all beliefs and
disbeliefs at all times, as we shall sce later. We belicve that a competence theory
for belief change with informational economy as its guiding theme must necessarily
achieve this property of full preservation.

In this section, we have made two significant changes to the constrained sects of
theories approach. First, we have augmented the belief representation scheme Lo
permit multiple disbelief theories. Second, we have relaxed the success requircment.
We shall establish in the next two sections that this approach satisfies most of our
requirements for a good definition of competence. It may be asked, however, if both
changes were necessary and if only one wouldn’t suffice. Clearly the shift in represen-
tation is required to permit us to maintain contradictory disbeliefs. The need to relax
the success requirement is not so obvious. For ease of exposition, we shall address

this question later, after operators in the current approach have been defined.

3.4 Full preservation

We may now formalize the notion of a fully preserving belief change operation to
represent the idealized case of change operations that do not discard any beliefs or
disbeliefs. This may then be used as the yardstick to measure the extent to which a

belief change operator achieves minimal change.

Fully preserving revisions: Let a revision operation map a beliel state
S to a new belief state §’, where x is the new belief. If z =1, then S = .5°.

Otherwise, the revision is fully preserving iff the following conditions hold:
Revision-1: $,(S) € X +(5).

Revision-2: For every z € ¥,(S5") — +(S), there exists some y € ¥4(5)
st. z ANy E =.

Revision-3: 3_(S) =3 _(5).



Revision-4: x € Y. (5).
Revision-5: For every (Bi, D;) € S', if there exists B where B; C B C©
$4+(57), then at least one of the following must hold:
e /3 is not satisfiable.
e I); is such that for all D where D; ¢ D C ¥_(S5"), D is not
satisfiable and B A D; =L

Revision-6 YFor every (B, D;) € &', if there exists D where D; C D C
S _(5"), then at least one of the following must hold:

e D is not satisfiable.

e B; is such that for all B where B; C B C >, (5'), B is not
satisfiable and D A B; [=.1.

Notice that revision with an inconsistent belief fails, unlike the AGM framework,
where the revision would produce an inconsistent belief state.

Revision-1 requires that the universe of beliefs of the revised belief state contain
the universe of beliefs of the previous Lelief state. In other words, no beliefs may be
discarded as a result of revision. Revision-2 requires that any new beliefs introduced
as a result of revision must be restricted to the consequences of the new belief taken
together with all prior beliefs. This guarantees that no spurious beliefs are introduced
as a result of revision. Revision-3 requires that the universe of disbeliefs remain
unchanged as a result of revision. Thus, the revision operation is constrained to not
introduce any disbeliefs. Revision-4 requires that the new belief be a part of the new
universe of beliefs. This guarantees weak success. Revision-5 requires that for every
belief set in the revised belief state, the belief theory B; must either be a maximal
consistent subset of the new universe of beliefs or must be a maximal subset of the
new universe of beliefs which is consistent with some choice of a maximal consistent
subset of the new universe of disbeliefs. Revision-6 requires that for every belief set
in the revised belief state, the disbelief theory D; must be either a maximal consistent

subset of the new universe of disbeliefs or a maximal subset of the new universe of
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disbeliefs that is consistent with some choice of a maximal consistent subset ol the
new universe of beliefs.

Conditions Revision-1 through Revision-4 specify the revised belief state. In effect,,
they require that the the revised belief state consist of a universe of beliefs which
contains the previous universe of beliefs, the new belicf, and all of their consequences,
and a universe of disbeliefs which is identical to the universe of disbeliefs of the prior
belief state. Together, Revision-5 and Revision-6 specify whal constitutes a valid
commitment state. Establishing an exact symmetry between beliefs and disbeliefs,
an agent, given a universe of beliefs and a universe of disbeliefs, may choose to
commit to a maximal consistent subset of the potentially inconsistént universe of
beliefs, or a maximal subset of the potentially inconsistent universe of disbeliefs.
Concomitant with the choice of a maximal consistent subset of the universe of beliefs
is a maximal subset of the univeise of disbeliefs that is consistent with this choice.
Similarly, concomitant with the choice of a maximal consistent subset of the universe
of disbeliefs is a maximal subset of the universe of beliefs that is consistent with this
choice. Every distinct pair (B, D) of this form constitutes a valid state of commitment
for the agent.

Notice that every belief state obtained as a result of applying a revision operator
which satisfies all of the full preservation conditions constitutes a valid belief state
under the sets of constrained theories representation.

Observation: If S is a belief state obtained as a resull of applying a revision

operator which satisfies Revision-1 through Revision-6, then for every (B, D) € S:

e B = Cn(B).
o D =Cn(D).
o BADIWL.

Notice also that condition Revision-4 causes the weak success requirement defined

earlier to be satisfied as well.
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Observation: If S is a belief state obtained as a result of revision with a, applying

a revision operalor which salisfies Revision-1 through Revision-6, then there exists
some (B,D) € S such that B |= g.

A similar sct of conditions can be formulated for the contraction operation.

Fully preserving contractions: Let a contraction operation map a be-
lief state S to a new belief state S/, where z is the belief being contracted.
If |= 2, then S = S’. Otherwise, the contraction is fully preserving iff the

following conditions hold:

Contraction-1: 3_(S) C 2_(S5')-

Contraction-2: TFor every z € S_(£ - X _(S5), there exists some y €
Y _(S) st. "z Ay = 2.

Contraction-3: ¥4(S) = 24+(5').

Contraction-4: ~z € 3,_(S").

Contraction-5: For every (Cn(B;),Cn(D;)) € S’, there exists B; C 37,(5")

such that if there exists B where B; C B C Y (S5’), then at least

one of the following must hold:
e B is not satisﬁable.‘
e D; is such that for all D where D; c DCY_(S5), D is not
satisfiable and B A D; |=.1.

Contraction-6: For every (Cn(B;),Cn(D;)) € S, there exists D; C >°_(S5")
such that if there exists D where D; C D C Y _(S’), then at least
one of the following must hold:

e D is not satisfiable.

e B; is such that for all B where B; C B € ¥ .(S5’), B is not
satisfiable and D A B; =L.

Notice' that the contraction operation fails if the belief being contracted is a logical

truth, as is the case with the AGM framework.



Contraction-1 requires that the universe of disbeliefs of the contracted belief state
include the universe of disbeliefs of the prior belief state. In other words, no disbeliefs
may be discarded as a result of contraction. Contraction-2 requires that any new
disbeliefs introduced as a result of contraction be restricted to the consequences of the
new disbelief taken together with all prior disbeliefs. This guarantees that no spurious
disbeliefs are introduced as a result of contraction. Contraction-3 requires that the
universe of beliefs remain unchanged as a result of contraction. ‘I'hus, the contraction
operation is constrained to not introduce any new beliefs. Contraction-4 requires
that the new disbelief be contained in the new universe of disbeliefl. This guarantees
weak success. As with revision, Contraction-1 through Contraction-4 specify the
contracted belief state. Together, they require that the contracted beliel state consist
of a universe of beliefs which is identical to the prior universe of beliefs and a universe
of disbeliefs which consists of all prior disbeliefs, the new disbelief, together with all
of their consequences. Contraction-5 and Contraction-6 are identical to Revision-5
and Revision-6 and serve to specify a valid state of commitment for an agent in the
contracted belief state.

As with revision, a belief state obtained as a result of applying a contraction
operator which satisfies all of the full preserx)a.tion requirements constitutes a valid
belief state under the sets of constrained theories representation.

Observation: If a belief state S is obtained as a result of applying a conlraction

operator which satisfies Contraction-1 through Contraction-6, then for every (B, D) €
S:

e B =Cn(B).
o D =Cn(D).
e BADEL.

Notice that the weak success requirement for contraction is satisfied as a conse-

quence of condition Contraction-4.
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Observation: If a belicf state S is obtained as a resull of contracting z, applying
a contraction operator which satisfies Contraction-1 through Contraction-6, then there
exists (B, D) € S such that D |= -z, and hence B = a.

The principle of irrelevance of syntaz follows from the full preservation properties,
since we work with deductively closed theories as opposed to belief bases, and since
we take the new belief or disbelief to be a single sentence.

Observation: If a revision operator r satisfies Revision-1 through Revision-G,
then S, = 57 if |F & < y.

Observation: If a contraction operator c satisfies Contraction-1 through Contraction-

6, then S5 =5; if e v « y.

3.5 Minimal change operators

It is possible to define operators which satisfy the requirement for full preservation.
In this section we shall define two operators, the minimal revision operator and the
minimal contraction operator, and formally establish their compliance to the full

preservation property.

Definition 1 (Minimal revision operator) Let SMR represent the minimal revi-
sion of a belief state S with a belief z. If z =L, then SMR = S. Otherwise, SM? is
defined as:

MR __ oMR-Beli M R—D:isbeli
S:r — Sx elief U S:r isbelief

where:

SM=Beties — {(Cn(B),Cn(D)) | B € (T4(S)U{=}) L1, D € $_(8) s.t.
BAD [£L and there exists no D' s.t. (D C D' ST _(S))A(BAD' 1)}

and
SMR-Diskelief — {(Cn(B),Cn(D)}| D € =_.(S) 1L,B C (Z.(S)U {z})

s.t. BA D L and there exists no B' s.t. (B C B’ C (. (S)U{z})) A
(BA D 1)}
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The operator M R identifies maximal commitments states through two steps. First,
it identifies maximal belief commitment states via the operator M R — Belief, MR —
Belief identifies commitment states where the beliel theory is a maximal consistent
subset of the prior universe of beliels, union the new belief. The corresponding disbe-
lief theory is a maximal subsct of the prior universe of disbeliefs which is consistent
with the belief theory already selected. Sccond, the M R operator identifies mawimal
disbelief commitment states via the operator M R — Disbelicf. MR — Disbelicf iden-
tifies commitment states where the disbelief theory is a maximal consistent subset of
the prior universe of disbeliefs, The corresponding beliel theory is a maximal sub-

set of the prior universe of beliefs union the new belief which is consistent with the

disbelief theory already selected.

Definition 2 (Minimal contraction operator) Let SMC represent the minimal
contraction of a belief x from a belief state S. If |= x, then SMC = G. Otherwise,

SMC s defined as:

MC _ GMC-Belief || GMC—Disbelief
Sy¢ =5] USy
where:

SMC~Belief — {(Cn(B),Cn(D)) | B € £,(5) |1,D € (X_(S)U {~=)
s.t. BA D [£L and there exists no D' s.t. (D C D' C (Z_(S)U {~z})A
(BAD"[EL)}

and

SMO-Disielief — {(Cn(B),Cn(D)) | D € (E_(S)U{z}) LL, B C T4(S)
s.t. BAD b L and there exists no B' s.t. (B C B' C L (S))A(BAD" =L
)}

The MC operator is the dual of the MR operator. First, it identifics maximal
belief commitment states using the MC — Belief operator. MC — Belic[ identifies

commitm~nt states where the belief theory is a maximal consistent subset of the prior



universe of heliefs, The corresponding disbeliel theory is a maximal subset of the prio
universe of disbeliefs union the new disbelief which is consistent with the beliel theory
alrcady selected. Second, the MC operator identifies maximal disbelief commitment
states via the MC — Disbelief operator. MC — Disbelief identifies commitment
states where the disbelief theory is a maximal consistent subset of the prior universe
of disbeliefs union the new disbelief. The corresponding beliefl theoty is a maximal
subset of the prior universe of beliefs which is consistent with the disbelief theory
already selected.

The following results establish that the MR and MC operators comply with the
full preservation requirements. They also establish that MR and MC' are canonical
members of their respective classes. In other words, if any revision (contraction)
operator satisfies the full preservation requirements, then it is equivalent to MR

(MC).

Theorem 6 The minimal revision operator satisfies the full preservation properties

Revision-1 through Revision-6.

Proof: Consider the revision of a belief state S with = to obtain a belief state S’.

Revision-1: Let us assume the converse, i.e., 3°,(S) € ¥,.(5"). Then there exists
some y such that y € 3, (S) and y € 5,.(S’). From the definition of SMR~=Belief
the only way y € 3°,(S) and y ¢ B; for some (B;, D;) € SME-Belie/ js if y =1
by Lemma 8. But if y € 3,(S5), then these must exist some (B}, D;) € S such
that y € Cn(B!). We know by definition that every B is satisfiable, hence this

is a contradiction.

Revision-2: Let us assume the converse, i.e., there exists some z € 3, (5') — 3.(5)
for which there exists no y € ¥,.(5) s.t. z Ay |= 2. By definition of SMR—Belief
every z € Cn(B) for some B C 3, (S) U {z}, hence this is a contradiction.

Revision-3: We shall consider two cases:
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e Assume there exists some y € Y_(8) such that y ¢ ¥_(5) ¥rom the
definition of SME-Disbelie/ and Lemma‘S, we know thix is posaible only it
y =L, But for y € To(8), ¥ € Dy fur some (Bi, ) = & By delinition,
every D is satisfinble, hence this is a contradiction,

e Assume there cxists some y € 3_(8') such that y € F.(5). Then there
exists some (Bi,D;) € S’ such that y € D;i. Then there exists some
D! € Y>_(8) such that D; = Cn(D}). Clearly, y € Cn(D}) — Di. This is
possible only if there exists no (B{', D¥) € § such that Cn(D;) € D{. By
definition, this is possible only if D} =1, which is contradiction since we

know that D; is satisfiable.

Revision-4: Since x b1, there must exist B C (24(S) U {«}) | L such that w € B.

Hence there exists (Cn(B),Cn(D)) € S’ such that @ € Cn(B). Hence 2 €
224(57)-

Revision-5: If (B;,D;) € GMR-Belief ' then for every B such that B; C B C ¥.(5'),
B is unsatisfiable. If (B;, D;) € SMR-Distelief then D; is such that for any
D where D; ¢ D; € 3°_(S'), D is unsatisfiable and for every B such that
B;c BCY,(S), BAD;=Ll. Hence proved.

Revision-6: If (B;,D;) € SMR-Distelief '{hen for every D such that D; C D C Y _(5),
D is unsatisfiable. If (B;, D;) € SME-Belief then B; is such that for every B
such that B; ¢ B; € ¥.,(S"), B is unsatisfiable and for every D such that
D; c DCY_(S"), BiAND =1. Hence proved.

Theorem 7 If any revision operator F satisfies the full preservation properiies Revision-

1 through Revision-6, then for any belief state S and any belief =, SE = SM,

Proof: Since both F and MR satisfy Revision-3, _(SF) = ©_(S¥™). Since
both F and MR satisfy Revision-1 and Revision-2, ¥, (ST) = 5, (SM7). In the rest
of this proof we shall consistently use > _(SMAY in place of ¥°_(SF) and SL(sMhy

in place of $°,(SF). We shall consider two cases:
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e Assume that there exists some (C'n(B), Cn(D)) € SI such that (Cn(B),Cn(D)) ¢
SMI Gince I satisfies Revision-/, B satisfics at least one of the following con-

ditions:

1. For any B’ such that B ¢ B’ C ¥, (SMR), B’ is unsatisfiable. Since F

satisfies Revision-5, D must satisfy at least one of the following conditions:

— If Lhere exists some D’ such that D ¢ D' C ¥_(SM®), D’ is unsatisfi-
able. This implies BAD' [=1. Then, by definition, (Cn(B),Cn(D)) €
GMR—Belief

— If there exists some D’ such that D ¢ D' C ¥_(SM%), BAD' [=Ll.
Then, by definition, (Cn(B), Cn(D)) € SMA-Belief,

9. D is such that for any D' where D C D' € 3°_(5"), D’ is unsatisfiable and

for any B’ such that B C B’ C $4(S), B'A D [=L. Then, by-definition
(Cn(B),Cn(D)) € SMR-Disbelief

e Assume there exists some (Cn(B),Cn(D)) € SME such that (C’n(B), Cn(D)) &
SF_ We can show that this not possible by following an identical line of reasoning

as above, substituting F' and M R.

O

Theorem 8 The minimal contraction operator satisfies the full preservation proper-

ties Contraction-1 through Contraction-6.

Proof: Given the exact duality of beliefs and disbeliefs, the proof follows the

same steps as that for Theorem 6 with beliefs and disbeliefs appropriately reversed.0

Theorem 9 If any contraction operator F' satisfies the full preservation properties
Contraction-1 through Contraction-6, then for any belief state S and any belief z,

F _ goMC
SF = §MC,

Proof: Once again, the proof follows the same steps as that for Theorem 7, with

beliefs and disbeliefs appropriately reversed. O
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Example 14 Let us reformulate Example 1 in the new framework. The initial belief

state is given by:
50 = {(Cn({-a}),Cn())}

After revising S0 with a, we obtain:

S1 = SOME = {(Cn({~a}),Cn()),(Cn({a}), Cn())}
Contracting a from S1, we obtain:
52 = 1M = {(Cn({~a}),Cn({=a})),(Cn({a}), Cn())}

Notice that there exists a belief set (B, D) € (SOMRYMC such that Cn({—a}) € B.O

Example 15 Let us reformulate Example 2. The initial belief state is given by:
S0 = {(Cn({a,b}),Cn())}
After revising S0 with —b, we obtain:
S1 = SOME = {(Cn({a, b}), Cn()), (Cn({a,=b}), Cn()),(Cn({—a,~b}), Cn())}
Further revising S1 with b, we obtain:
$2 = S1MR = {(Cn({—a, b}),Cn()), (Cn({a,b}),Cn()),(Cn({a,=b}), Cn()), (Cn({—a,~b}

Notice that S2 contains a commitment state with the original belief theory Cn({a,b}).

Example 16 Let us reformulate Example 3. Let the initial belief state be given by:

50 = {(Cn({b— f}),Cn())}

After contracting f from S0, we obtain:

S1 = S0YC = {(Cn({b— f}),Cn({~/}))}

Revising S1 with b, we obtain:



52 = SIMR = {(Cn({b, b~ j1),Cn(~fV})),(Cn({b,b— f}),Cn(=SV
b)),
(Cn({b}), Cn({=F N (Ca({b— £1), Cn({=F1))}

Notice that all of the outcomes (corresponding to the different ways in which the
belief in b, belief in & — f and disbelief f are ordered) are now considered by any

theory preference procedure that the agent may employ.O

Example 17 Let us reformulate Example 4. Let the initial belief state be given by:

50 = {(Cn({a,b}),Cn())}

After contracting b from S0, we obtain:

S1 = SoMC = {(Cn({a,b}),Cn({-bV c,~bV a})), (Cn({a,b}),Cn({-bV
c,—bV —a}l)),

(Cn({a, b}), Cn({~bV —¢,=bV a})),(Cn({a,b}), Cn({-bV —¢,=bV -a})),
(Cn({a,bV c}), Cn({~b})),(Cn({a,bV —c}),Cn({—b}))}

Revising S1 with ¢, we obtain:

52 = SIMR = {(Cn({a, b, c}), Cn({—bVe, ~bVa})), (Cn({a,b,c}), Crn({—bV
c,mbV —a}l)),

(Cn({a,d,c}), Crn({=bV =c,=b V a})),(Cr({a,h,c}), Cn{{=bV —c,~b Vv
—a})),

(Cn({a,c}), Cn({—b}))}

If disbelief in b is to be maintained after revision with ¢, then (Cn({a, c¢}), Cn({-b})) €

52 would be the appropriate outcome. O

- Example 18 Let us reformulate Example 12. Let the initial belief state be given by:

50 = {(Cn({b}),Cn())}

After contracting & from S0, we obtain:

59
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S1 = S0}° = {(Cn({b}), Cn()), (Cn(), Cn({-b}))}

Notice that the commitment state (Cn({b}),Cn()) € S1 corresponds to the preferred
outcome if A > B. Similarly, the commitment state (Cn(),Cn({-b})) € S1 would
be the preferred outcome if B > A. O

Example 19 Let us reformulate Example 13. Let the initial belief state be given by:

S50 = {(Cn(),Cn())}

After contracting b from S0, we obtain:
S1 = S0}’ = {(Cn(), Cn({-b}))}

Further contracting —b from S1, we obtain:

§2 = S146 = {(Cn(), Cn({~b})), (Cr(), Cn({b}))}

Notice that of the two commitment states in S2, one maintains disbeliefl in b while
the other maintains disbelief in —b. We would select one or the other depending on

how the two contraction operations are prioritized. O

3.6 Should success be weakened 7

In this section, we shi!i address step three of our four-step argument in motivating
the sets of constrained theories framowork. We shall consider the situation where
the AGM notion of. success is retained with the sets of constrained thcories belief
representation scheme. We shall demonstrate that several of the problems we have
identified would persist in this approach, and that, in addition ot the augmentation of
the belief representation scheme, our weakening of the success requirement is essential.

" We shall first define new versions of the MR and MC operators which satisfy
the AGM success requirement for revision and contraction. This can be donc in a
straightforward manner by "filtering out”, from the belief state returned by the MK

operator, those commitment states in which the belief theory does not contain the
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new belief in the case of revision. In the case of contraction, we “filter out” from the

belief state returned by the MC operator those commitment states where the disbeliel
theory does not contain the new disbelief. We define the following two functions to

perform this “filtering”:

6.(S,2) = {(B,D) | (B,D) € S,z € B}
6c(5,z) = {(B, D) | (B, D) € S,—z € D}

We can now define the counterparts of MR and MC, MR’ and MC’, which satisfy

the AGM-style success requirement as follows:

SMR' — § (SMR 1)

51" = 6,(51°, @)

We shall now reformulate each of the examples of the previous section using M R' and

MC' in place of MR and MC), respectively.

Example 20 Let us reformulate Example 1 in the new framework. The initial belief

state is given by:

50 = {(Cn({-a}),Cn())}

After revising S0 with a, we obtain:

51 = S0}'* = {(Cn({e}),Cn())}
Contracting a from S1, we obtain:

52 = §1}/¢" = {(Cn(), Cn({~a}))}

Notice that there exists no belief set (B, D) € (SOMR)MS" sych that Cn({-a}) C B.

Both the beliefs a and —a are irretrievably lost.O

Example 21 Let us reformulate Example 2. The initial belief state is given by:

50 = {(Cn({a,b}),Cn())}



G.

o

After revising S0 with —b, we obtain:

S1 = SOMF = {(Cn({a,=b}), Cn()), (Cn({=a,~b}),Cn())}
Further revising S1 with b, we obtain:

52 = S1PF = {(Cn({-a,b}),Cn()), (Cn({a, b}), Cn())}

Notice that S2 contains a commitment state with the original beliel theory Cn({a, b}).

In this case, weakening the success requirement does not provide any additional ad-

vantage. O

Example 22 Let us reformulate Example 3. Let the initial belief state be given by:
50 = {(Cn({d — f}),Cnr())}
After contracting f from S0, we obtain:

S1 = S0¥¢" = {(Cn({b— f}),Cn({-~F})}

Revising S1 with b, we obtain:

S2 = S1MF = {(Cn({b,b — [}),Cn(~fVb})),(Cn({b,b— [}),Cn(=SV
_'b))’
(Cn({8}), Cn({=Ff}))}

Recall that we would like to be offered a choice of three candidate outcomes: Cn({b}), Cn({b,b—
f}) and Cn({b— f}). In this case, the last outcome, namely Cn({b— [}), is elim-

inated, on account of enforcing the success of the final revision operation. O

Example 23 Let us reformulate Example 4. Let the initial belief state be given by:
50 = {(Cn({a,b}),Cn())}

After contracting b from S0, we obtain:

51 = S0M%" = {(Cn({a,bV c}),Cn({~b})), (Cn({a, bV —c}), Cn({~b})))}



Revising S1 with ¢, we oblain:

52 = SIM = {(Cn({a,b, c}), Cn({-bVc, ~bVa})), (Cn({a, b, c}), Cn({-bV
¢, bV —al)),
(Cn({a,b,c}),Cn({=bV =c,—bV a})),(Cn({a,d,c}), Cn({-bV —¢,mb V

—a})),
(Cn({a,c}), Cn({-b}))}

Notice that we have fewer commitment states to chose from when we apply the MC'
operator, than when we apply the MC operator. However, the final outcome is the
same in both cases since revision with ¢ succeeds in every commitment state (there

are no beliefs in the universe of beliefs which contradict ¢). O

Example 24 Let us reformulate Example 12. Let the initial belief state be given by:

S0 = {(Cn({b}),Cn())}

After contracting b from S0, we obtain:
S1 = S0)'¢" = {(Cn(), Cn({-b}))}

Notice that the commitment state (Cn({b}),Cn()) ¢ S1 unlike the case with the
MC operator. Enforcing the AGM success requirement translates into a recency-
based heuristic for ranking belief inputs. Thus, necessarily, the only outcome we get

is the one corresponding to B > A. O

Frxample 25 Let us reformulate Example 13. Let the initial belief state be given by:
S0 = {(Cn(),Cn())}

After cont;acting b from‘ .5"0, we obtain:
S1 = 50¢" = {(Cn(), Cn({-b}))}

Further contracting —b from S1, we obtain:

§2 = S18¢" = {(Cn(), Cn({b}))}
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Any memory of the contraction of b is crased as a resull of cnforcing the success of

the contraction of —b. O

The previous examples demonstrate that the sets of constrained theories represen-
tation scheme alone is not sufficient to obtain an idcalized system which satisfics the
principle of informational economy. It is also necessary to weaken the AGM success
requirement, s has been done in the case of the MR and M(' operators. Another
compelling reason for wanting to weaken the AGM success requirement is to provide

support for uncertain or less-credible belief inputs. We shall address this question in

a later section.

3.7 Connections with the AGM framework

In this section, we shall show that any system based on operators which satisly the
full preservation condition is a generalization of an AGM-rational system, in the sense
that, starting with the same belief state, the set of outcomes generated by an opcrator
such as MR or MC is a superset of the set of outcomes generated by an AGM-rational
revision or contraction operator. Since the success requirement is weakened, fully
preserving revision or contraction operators do not satisfy even reformulated versions
.of the AGM postulates. However, the informational economy requirement, which is
the guiding theme of the AGM postulates, is satisfied in a stronger sense, as has been
demonstrated in the previous sections. As well, we have seen that the principle of

irrelevance of syntax is satisfied.

We shall require the following two results from {19] for proving our results. We

shall restate them below in slightly simplified terms.

Theorem 10 ([19]) If a contraction operator satisfies postulates (1—) through (8-)
and the ezpansion operator is defined as K} = Cn(K U {z}), then the corresponding

revision operator defined via the Levi identity satisfies postulates (1+) through (8+).

Recall that a maxichoice contraction operator is defined such that K7 = S(K | z) in

case { z (K7 = K otherwise). An orderly maxichoice operator is one which selects
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a I{7 such that there is a partial order < on the power set of K such that K' < K7

for all z and all K’ € (K | z).

Theorem 11 ([19]) An orderly mazichoice contraction operator satisfies (1%) through

(8+).

Theorem 12 For a belief state S = {(B, D)}, and for any belicf z such that @ =L,
there exists some (B', ') € S5 such that B' = BE2 where F1 is an operator that
satisfies the full preservation requirements for revision and F'2 is an operator that

satisfies the AGM postulates for revision.

Proof: We know from Theorem 6 that F'1 is equivalent to the operator M R,
hence we can consider MR interchangeably with F'1. Consider SMR-Belie]  Here,
¥ +(S) = B. Taking the converse of Lemma 8, since x f~L, there exists some B” €
(B U {z}) |1 such that z € B". By definition, B" — {2z} € (B | —z). Consider
a partial ordering < defined on the power set of B such that B” < B" — {z}, for
all z and for all B ¢ (B | —z). Let BZ, = B” — {z}. Then, by Theorem 11, the
contraction operétor satisfies postulates (1—) through (8—). Then By = (BZ)+ =
cn((B" — {z}) U {z}) = Cn(B"), where * is a revision operator which satisfies
revision postulates (1x) through (8+). We know from the definition of SMR-Belief

that (B, D') € SMR, where B' = Cn(B"), given an appropriate choice of D'.0

Theorem 13 For a belief state S = {(B, D)}, and for any belief =, there exists
some (B',D') € SF such that B' = BF?, where F1 is an operator that satisfies the
full preservation requirements for contraction and F2 is an operator that satisfies the

AGM postulates for contraction.

Proof: We know from Theorem 8 that F1 is equivalent to the operator MC,
hence we can consider MC interchangeably with F1. If |= z, then SMC = §. By
definition, for an orderly maxichoice contraction operator —, By = B. Hence proved,

by Theorem 11.
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Consider the case when & 2. In computing GMO=-Disbelicf 57 _(8) = D. Taking the
converse of Lemma 8, since =z KL, there exists some D” € (D U {-}) | L such that
—z € D". Consider some b” € (B | z). Since B" C B, BAD L, (D"~ {~«}) & D
and B" {& z, B" A D" [, Since £.(S) = B, B" € £.4(5). By delinition, there
exists no B" such that B” ¢ B" C ¥,(S) and B” AD" 1. Let B' = Cn(B"),
D' = Cn(D"). Clearly, (B, D') € SMC  Consider a partial ordering < defined on the
power set of B such that B” < B”, for all & and for all B" e (B | ). let B = B".

Then by Theorem 11, the contraction operator — satisfies contraction postulates (1—)

through (8—). O

3.8 Discussion

This work has been motivated by several lacunae in the definition of competence for
belief change provided by the AGM framework.

First, the rationality postulates for belief change are motivated by the requirement
for informational economy, or minimal change, yet operators which satisfy these pos-
tulates discard beliefs, often irretrievably. This behaviour is caused, first, by a focus
on mapping a single theory to a single other theory, and second, by the requirement,
that a belief change operation must necessarily succeed. We show that by gener-
alizing the notion of belief change to a mapping between sets of theories, and by
introducing a weaker notion of success, we can achieve a system where no beliefs are
ever discarded. Since informational economy is the guiding theme in any definition
of competence for belief change, and since this definition of competence must specify
the ideal case, our framework qualifies as a competence theory for beliel change in
the general case, while the AGM framework does not. The AGM framework provides
an adequate definition of competence only in the specific case when belief change is
viewed as a mapping between single theories. However, a single classical theory is
rarely an adequate representation for an agent’s belief state, in the same way that

classical logic is rarely an adequate representation language for a knowledge base.



In the case of a knowledge base, incomplete knowledge about the world, as well the
defeasible nature of the inferences required, requires that some form of nonmonotonic
logic be used as a representation language. Similarly, an agent typically needs to
maintain multiple, mutually inconsistent sets of beliefs and selects one of these as the
current commitment state depending on the reasoning context. We have provided a
deﬁnii,ion of competence when belief states have this richer structure.

Second, the AGM framework provides an inadequate account of contractions be-
yond a single step. Thus, while a revision is explicitly recorded in a belief state, an
agent effectively loses all memory of a contraction {from the very next step. We have
shown how this can remove some candidate outcomes from consideration. Motivated
by this observation, we have introduced an explicit representation of contractions, or
disbeliefs in a belief state. In effect, we have introduced an exact symmetry between
beliefs and disbeliefs. Thus, while the informational economy requirement seeks to
minimize discarding memories of past revisions (or beliefs), we have interpreted it
more generally to minimize discarding of memories of past contractions (or disbe-
liefs). The informational economy principle is motivated by the observation that it is
expensive to acquire and maintain beliefs [19]. Arguably, it is as expensive to acquire
and maintain evidence for an assertion (a belief); as it is to acquire and maintain ev-
idence against an assertion (a disbelief). Therefore, we maintain multiple, mutually
inconsistent sets of disbeliefs, in the same way that we maintain multiple, mﬁtually
inconsistent sets of beliefs in a belief state.

Third, the AGM framework provides no prescription for iterated belief change.

Intrinsic to operators in the AGM framework is a choice function which selects among
| miultiple candidate outcomes of a belief change operation. The problem stems from
the lack of a specification of what the new choice function should be after a belief
change operation. We solve this problem by obviating the need for choice. Every
candidate outcome is retained in our framework, hence belief change in the iterated
case is well-defined.

Fourth, the AGM framework provides no specification of how uncertain, or less
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credible, belief inputs arc to be handled. By weakening the AGM notion of success,
wio 42m able to handle uncertain belief inputs within the sane general framework,
without having to define a new set of operators for this purpose. We shall discuss
‘this in more detail later in this section.

In our model, a belicf state is viewed as a collection of commitment states, where
each commitment state is a pair consisting of a theory denoting the current beliefs
and a theory denoting the current disbeliefs. Revision is simply the addition of a new
belief to a belief state. Nothing is discarded. Thus, if beliel in ~@, or disbelicl in @, is
part of some commitment state in the belief state, neither is discarded as a result of
revision with z. Contraction, similarly, involves the addition of a disbelief to a belief
state. Notice that this is distinct from removing a belief, which does not happen.
With both revision and contraction, the process by which the structure of the new
belief state is elaborated is identical. First, the maximal belief commitment states are
identified by taking maximal consistent subsets of the set of all beliefs in the new beliefl
state and for each such belief theory, identifying the maximal subset of new set of
disbeliefs that is consistent with it. Second, the maximal disbelief commitment states
are identified by taking maximal consistent subsets of the the set of all disbeliefs in
the new belief state, and for each such disbelief theory, identifying maximal subsets
of the new set of beliefs that are consistent with it. An interesting possibility we
have not considered here are commitment states where both the belief theory and
the disbelief theory are non-maximal, yet the commitment state is maximal in the
sense that no further belief or disbelief can be consistently added to it. However,
this new set of possible commitment states would not make a difference to the overall
dynamics of a belief state, since the class of commitment states we currently consider
account for all possible beliefs and disbeliefs.

In the following subsections, we shall discuss some features of our framework in

greater detail.
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Irrelevance of choice

We have scen how choice functions play a crucial role in belicef change operators in
the AGM framework. It could be argued that this is unintuitive, since the new belief
state should be a function of the prior beliefs and the belief input, and should be
independent of any preference criteria encoded into the belief change operator. If
preference criteria such as the epistemic entrenchment ordering constitute part of the
helief state, then they should be ultimately representable as beliefs, and should be
treated as such (the formulation by Nayak et al of both belief state and belief input
(38] as entrenchment orderings achieves this to some extent). We shall refer to this as
the principle of irrelevance of choice. Our framework satisfies this requirement, since
there is no need to select from amongst the candidate outcomes.

The irrelevance of choice is beneficial from a practical viewpoint as well. First, it
permits the use of context-dependent theory preference criteria. A major concern in
most studies of iterated belief change, such as the work of Nayak et al [37] and Dar-
wiche and Pearl [10], has been to make the new choice function, obtained as a result
of belief change, as faithful as possible to the previous one. In the AGM framework,
as well as in the approach taken in [37] and [10], one would get unintuitive results
if context-dependent preference criteria were to be used. In other words, it would
be unintuitive to use a given entrenchment ordering at one belief change step, and a
totally unrelated entrenchment ordering at the next step. This is not the case in our
framework, since theory preference is orthogonal to belief maintenance. Thus, the
criteria used for theory preference does not influence the outcome of a belief change
step, and can be made context-dependent. The second practical benefit of the irrele-
vance of choice involves the use of lazy-evaluation algorithms. In the AGM framework
and in systems based on this approach, all candidate outcomes must be generated in
order to apply the choice function, or, alternatively, extensive computation involving
entrenchment comparisons must be performed. In our framework, the computation
involved in effecting belisf change is minimal. A new belief is added during revision,

and a new disbelief is added during contraction. Lazy evaluation techniques can be



implemented in systems based on our framework, since the actual computation of
commitment states can be undertaken only when requived (i.e., when the agent needs

to reason wiilt, or act on its beliefs).

Ranking belief inputs

In a recent study, Darwiche and Pearl [10] have presented a set of four postulates
for iterated belief change. These postulates are motivated by the need to preserve
conditional beliefs, in addition to unconditional ones. Conditional beliefs are delined
via the Ramsey test [44] in the following way. Let A | B stand for the assertion
A conditionally implies B”. The conditional belief A | B is accepted in a theory K
if and only if the minimal change of K needed to accept A also results in 3 being
accepted. In other words, A | B is accepted in K il B is contained in K3. Their

postulates are as follows:

(DP1) If =y, then (K)z = K.
(DP2) If z |= —y, then (K}); = K.
(DP3) 1f K} |= =z, then y € (K});-
(DP4) If K} = -z, then y & (K});.

Condition (DP1) states that if two revisions occur in sequence, with the more recent
belief logically entailing the earlier one, then the first revision is redundant. We
speculate that our model satisfies a reformulated version of this condition, although
we shall not prove a formal result here. Condition (DP2) states that if two consccutive
revisions contradict each other, then the more recent one prevails. This requirement
is not always reasonable, in situations where belief inputs have varying degrees of
credibility. For instance, the more recent belief input may have a lower level of
credibility than the earlier one, in which case the reverse condition should hold.
(DP3) requires that a belief y should be retained after a more recent revision if the

more recent belief, together with the current set of beliefs, entails y. (DP/) states
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that if a belief y is not contradicted as a result of revising the current set of beliefs
with z, then it will not be contradicted as result of revising the current set of beliefs
with y followed by z. We speculate that our approach will satisfy (DP3) and (DP{),
suitably reformulated.

Thus, condition (DP2) is where our approach deviates significantly from the Dar-
wiche and Pearl approach to iterated helief change. The difference stems from dif-
ferent notions of success. (DP2) is essentially a generalization of the AGM success
requirement to the iterated case. In effect (DP2) translates to a recency based order-
ing of belief inputs with more recent inputs always taking precedence over earlier ones.
We differ from the approach taken by Nayak et al [37], in which a prior entrenchment
ordering together with a belief input is used to generate a new entrenchment ordering,
for the same reasons. Nayak et al adopt a similar recency based heuristic for ranking
belief inputs, whereas we argue that recency need not be the only criterion on which
belief inputs are ranked.
~ Qur approach imposes no constraints on the rankings of belief inputs. These
rankings can thus be based on the credibility of belief inputs, and can be context-
dependent. In any case, such rankings are only used for theory preference and do
not influence the outcome of a belief change opera,tiori in any manner. For instance,
in Example 16, we get three distinct belief theories Cn({b}), Cn({d — f}) and
Cn({b,b — f}). We may select one of these based on the way we prioritize belief in

b — f and its consequences, disbelief in f and belief in b.

Implementations

Like the AGM framework, there ar - considerable impediments to directly implement-
ing our model. However, the pui, 7=« of this model is to provide a definition of
competence which would serve as a starting point for the design of implementable

belief change systems. We shall present the design of two such systems in the next

chapter.
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Chapter 4

Performance Models

In the previous chapter, we have presented an definition of competence for belief
change under the minimal change requirement. The function of a comp‘etence theory,
as we have discussed earlier, is twofold. First, it must define the best-case scenario
and thus provide a yardstick by which to evaluate actual systems for belief change.
Second, it must serve as a starting point for designing performance models for belief
change. In this chapter, we shall demonstrate applications of our competence theory
for both kinds of tasks. In the process we shall present two practically implementable
systems for belief change, kased on PJ-default logic.

The first system, which we shall call System BR1, preceded the development of the
competence theory presented in the previous chapter. Several of the motivations for
the competence theory first emerged while defining Systém BR1. Roughly, the belief
representation scheme follows the constrained sets of theories approach, with finite
sets of sentences being used in place of deductively closed theories. However, unlike
the constrained sets of theories approach, System BRI does not follow the AGM
notion of success. We evaluate System BRI using the AGM rationality postulates.
Attempting to do this reveals a major drawback with the AGM postulates. As a
result of limitations in the AGM belief fepresehtation scheme, as well as the AGM
notion of success, a comparison with System BRI is possible only in the case when

the behaviour of Systemn BRI is tightly constrained. We then evaluate System BIl/
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using the yardstick of the full preservation requirements. The exercise turns out to be
a useful one. bmce the full preservation requirements define the ideal case, evaluation
of compliance w1th these requirements reveals the precise nature of the trade-offs
made in the design of System BRI.

The seconid system, which we shall call System BR2, followed the development of
the competence theory and was motivated by the need to demonstrate a practically
implementable system based on the sets of constrained theories approach. The only
trade-off made was in using representations based on finite sets of sentences instead
of deductively cloéed theories. Predictably, the only full preservation requirements
not satisfied by System BRZ are those that insist on the use of deductively closed
theories. Even so, it is possible to identify weaker versions of these conditions which
reflect the shift to representations based on finite sets of sentences which are satisfied
by System BR2.

The benefits of using the language of PJ-default logic in these two systems are
twofold. First, it permits a lazy evaluation approach to computing belief change, in
a sense that will be made clear later in this chapter. Second, a large corpus of results
from research on PJ-default logic and similar formalisms can be applied in developing
‘and implementing these systems. In the next chapter, we shall present some practical
strategies for efficiently implementing systems based on PJ-default logic.

A preliminary version of part of the material on System BR1 has appeared earlier

in [24] and [25].

4.1 PJ-Default Logic

PJ-default logic is a variant of default logic in which default rules are restricted to be
prerequisite- free and semi-normal (i.e., a PJ-default rule is of the form -g such that
B k= 7). PJ-default logic improves over Reiter’s default logic [46] by avoiding cases
where Reiter’s logic is too weak, preventing the derivation of "reasonable” conclusions

(such as in the disjunctive default problem) as well as cases where Reiter’s logic is too
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strong, permitting the derivation of unwanted conclusions (for a detailed discussion
of these issues, see [14]). This approach has other useful properties as well, such
as semi-monotonicity, the guaranteed existence of extensions, weak orthogonality of

extensions and a constructive definition for extensions. PlJ-default extensions are

defined as follows:

Definition 3 [14] Let (W,D) be a prerequisite-free semi-normal defaull theory. De-
fine!

Eo = (Ej,, E1,) = (Cn(W),Cn(W))

Eina = (Esiy> Bry) = (Cn(E5 U {B A7}), Cn(Er U{B)))

where

i>0,
:!ﬁé\ﬂz e D’

—~(BA7) & Ey;.

Then E is a PJ-extension for (W,D) iff
E = (Bj, Er) = (U0 Bsi,UZo Bx.)-

In the rest of the paper, whenever we refer to an extension, we shall refer to the [Er
part of a PJ-extension.

Ghose and Goebel [23] have earlier defined a belief change framework in which
a belief state is represented as a potentially inconsistent set of sentences, together
with a partial order on these sentences. An operator is defined that identifies éon-
sistent subsets of this set of sentences, that respect the partial order as well as some
set of disbelief constraints. A translation from PJ-default theories to this framework
is defined such that the process of identifying PJ-default extensions is shown to be
equivalent to the process of identifying consistent subsets of sentences using the oper-
ator mentioned abdve, with a partial order which assigns higher priority to sentences
obtained from W (given a PJ-default theory (W, D)) than sentences obtained from D

and with the set of disbelief constraints consisting of the conjunction of the negations

of the justifications of each PJ-default rule.
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4.2 BRI1: Definition

System BRI was originally motivated by the following observations:

o A belief state is best represented as a collection of theories. Given that minimal
change is a guiding principle in belief revision, it could be argued that instead
of selecting some outcomes of the belief change and discarding the others (thus
losing potentially useful beliefs), all outcomes should be retained, provided that
there exists a compact and elegant way of representing these multiple possi-
ble outcores. Such representation languages exist; nonmonotonic formalisms
are immediate candidates for compactly representing the possibly inconsistent
and incomplete picture of the world that each belief state corresponds to. The
observation that real-life agents typically have incomplete (and sometimes in-
consistent) knowledge about the world is independent justification for choosing

such an approach.

o In order that previous contractions are taken into consideration in determining
the outcome of a belief change step in the same way as previous revision steps,
it is desirable to maintain a record of both revisions as well as contractions.
We achieve this by maintaining a set of belief constraints (these may be of
two kinds: constrainis specifying beliefs that must necessarily be held, and
constraints specifying beliefs that must necessarily not be held) which may be
viewed as the integrity constraints of a belief system; every theory constituting

a belief state must respect them.

e Beliefs originally held to be true can become tentative as a result of belief change
if they are contradicted or brought into question (the intuition is that a belief
becomes questionable if it is not in every possible outcome of the belief change
step) by the new evidence. In syntactically-oriented nonmonotonic formalisms,

this can be viewed as a process of demotion from a fact to a default.
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The belief representation scheme in System BR/! is similar to the scheme in the
constrained sets of theories approach described in the previous chapter. Thus, a belief
state consists of a set of theories denoting belicfs, together with a theory denoting the

set of disbeliefs. In addition, a belief state consists of the following three elements:
o A set of necessary belief constraints.
e A set of necessary disbelief constraints.
e A constraint prioritization relation.

Let {Ki,..., K,} be the set of belief theories in a given belief state. The necessary
belief set BChelicos, for a given belief state, is a set of sentences such that, for every a: €
BChetier and for all K; in that state, K; = . The necessary disbelief set BCyispetics, for
a given belief state, is a set of sentences such that, for every =z € BClyisbeiics and for all
K; in that state, K; & z. Notice that BCuyispeties contains the negations of beliefs tha
may not be held. A tentative belief is a belief that is an element of some, but not all
K; in that belief state. We define the belief constiraint set BC = BChetics U BClispeticy-
Updating the belief constraint set requires identifying maximal parts of a constraint
that is consistent with some others. We shall not present a formal notion of a part,

of constraint here, but the following example should make our intuitions clear.

Example 26 Consider retracting both a and b in a single step from a belief state.
This corresponds to ensuring that the formula e V b is not believed in this state. We
shall therefore add a necessary disbelief constraint —a A =b. Let the next belief change
step be a revision with a, which corresponds to adding a necessary belief constraint,
a. Clearly, it is impossible to enforce disbelief in both « and b, and belief in a at the
same time. The two constraints cannot be satisfied at the same time. One option
is to delete the disbelief constraint —a A —b since it contradicts the newly acquired
constraint. However, if we do so, we shall allowing the belief b to be held. All that
we have been told since both a and b were retracted is that « is to be belicved again,

It makes better sense to retain the requirement for disbelief in b. Thus, we should



retain the maximal part of the disbelief constraint ~a A —b that is consistent with the

new belief constraint a, i.e., the disbelief constraint —b. O

A sci-theoretic representation of each constraint such that each conjunct in a
constraint is clearly identifiable as a set element would enable us to identify maximal
subsets that are consistent with other constraints. Representing belief constraints
in clausal form satisfies these requirements. To be able to distinguish between the
clements of BChalicy and BCaispelies, We adopt a syntactic convention such that every
disbelief constraint ¢ is written as —¢. Thus, constraints requiring necessary belief in
o and @ — b will be written as {{a}} and {{—a,b}} respectively, while a constraint
requiring disbelief in ((c V d) A ) will be written as —{{-c,—e},{~d,—e}}. Belief
change will be viewed as the process of adding a new belief constraint (in the case
of revision, a necessary belief constraint, and in the case of contraction, a necessary
disbelief constraint).

We require that the belief constraint set be totally ordered; we shall refer to this
1oial order < as the constraint prioritization (we shall write z; < z; if constraint z;
has a liigher priority than constraint z;). This is similar to the orderings used in
a variety of belief change frameworks, including the AGM epistemic entrenchment
ordering, but there are significant differences. Whereas epistemic entrenchment re-
quires that all beliefs be prioritized, we require that only the current set of belief
constraints be prioritized. We shall see later that the size of the belief constraint set
can typically be expected to be much smaller than the size of the theories constituting
a belief state. As well, the size of the belief constraint set does not grow with time
and may shrink as belief constraints are discarded (as a result, for example, of newer
constraints contradicting them). This also represents a more principled approach to
prioritizing beliefs, since it does not suffer from the contradictions in belief priori-

tization in the AGM framework pointed out earlier. Notice also, that unlike AGM
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epistemic entrenchment, this ordering does not uniquely determine which subset of

the possible outcomes is finally selected. It only determines what the new set of be-

lief constraints should be. To draw a database analogy, the constraint prieritization
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ranks only the current integrity constraints, whereas epistemic entrenchment requires
that every assertion in the database be ranked. Several obvious heuristics suggest
themselves as candidate constraint prioritization policies in the absence of any other
information on the relative reliability of the belief constraints. In the case of revision
(in the sense of Katsuno and Mendelzon [29], i.e., for belicl change in static worlds),
a constraint prioritization base on the recency of the beliel inputs appears to be ap-
propriate. In the case of update [29](i.e., beliel change in dynamic worlds), onc might
choose to accord the highest priority to physical laws at all times, since these are
never questioned or discarded.

System BRI uses a PJ-default theory, together with a constraint prioritization
relation to represent a belief state. The process of belief change involves two steps.
First, the belief constraint set is updated. Based on the updated belief censtraint set,

the PJ-default theory representing the previous belief state is modified.

Definition 4 A belief constraint Q (where Q = ¢ if Q requires necessary belicf in ¢
and Q = —~¢ if Q requires necessary disbelief in ¢) is said to be compatible with a
set of belief constraints BC (we write @ U BC is compatible) if and only if for all
z; € BChelies and all ~y; € BCuaisbetics, & N (A; z:) A (A; ~y;5) is salisfiable.

We must be able to identify subsets of an individual belief constraint (viewing each
constraint as a set of clauses) that are compatible with a set of belief constraints.

The operator T that identifies such subsets is defined below.

Definition 5 Let bc be a belief constraint and BC be a set of belief constraints. Then
beT BC = {x Cbc| (zU BC is compatible)A

(Vz' such that  C ' C be , ' U BC is incompatible}
Updating the set of belief constraints involves starting with the constraint of highest
priority and working downwards, adding as many constraints (or parts of constraints)
of lower priority as can be compatibly added. In the definition below, we assume
that BC,uq is the old set of constraints, Q is the new constraint being added in the

~current belief change step and BCinter = BCoa U 1. We assume that the constraint,
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prioritization relation < is updated to reflect the ranking of 2 relative to the other
constraints. As well, every be; belongs to BCinter and be; < bex k< j (ie.
constraints of a higher priority have a smaller subscript).

BChew = {Y € BCiner | ¥ =Uis1 Y,
Vi > 1(((Y; = {bci}) A (be; U (UiZ} Y5) is compatible))

V((Y; = N(be: T (U} Y5 U ©)) A (be; U (Ui Y5) is incompatible))
It is not necessary to define the new constraint prioritization relation. This can

be generated dynamically, driven by the context. The only requirement is that a
constraint prioritization relation exist at every belief change step.

In the definition above, notice that in the process of collecting constraints from
highest to lowest pribrity, if a constraint turns out to be incompatible with the set
of higher priority constraints collected so far, we identify maximal subsets of the
constraint (given the representation of a constraint as a set of clauses) that are com-
patible with the collected constraints, and add the intersection of these subsets to the

sct, of collected constraints. The following examples clarify this.

Example 27 Let BCyq = {{{-na,b}},’{{—‘b}}} and let < be such that {{—-b}} <
{{-a,b}}. Let Q@ = {{a}}. Thus BCinter = {{{~a,b}},{{~b}},{{a}}} and the
updated prioritization relation < is such that {{-8}} < {{~a,b}} < {{a}}. Then

BChew = {{{a}}’{{—"a’b}}} -

Example 28 Let the initial belief state have a single constraint requiring disbelief
in @V b Thus BC.y = {—{{—a},{-b}}} and the relation < is empty. Let 2 =
{{a}} to be added at the highest priority level. BCiner = {{{a}}, —{{—a}, {-0b}}}
- and the updated < relation is such that —{{—-a},{-b}} < {{a}}. Then BCre =
{—={{-b}}, {{e}}} and the resulting < relation is such that —{{-b}} < {{a}}. Thus,
while a constraint requiring disbelief in both a and b is not compatible with a necessary

belief constraint in a, a subset which requires disbelief in b only is compatible.O

Using PJ-default logic as the belief representation language enables us to represent

belief constraints in a PJ-default theory. The set of facts W of a PJ-default theory
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corresponds to the beliefs that the agent is constrained to necessarily hold, since W
will be contained in every consistent belief set corresponding to that beliel state (i.c.,
every PJ-extension). Since every PJ-default rule is of the form 3@7’,\—1, -y corresponds
to the theory that the agent is constrained to necessarily disbelieve. The process ol
demoting a belief that has been contradicted, or made questionable (meaning that
it is no longer in every possible outcome of that belicf change step), as a result of a
belief change step to the status of a tentative belief involves removing a formula {rom
W and adding a new PJ-default rule containing this formula as its consequent to D.
Discredited beliefs are thus never totally discarded in our framework in anticipation
of future situations in which these beliefs could be consistently held again. Belief
change in our framework thus involves mapping one PJ-default theory to another.

The possible consistent belief sets that may be held in a given belief state corresponds

to the extensions of the PJ-default theory representing that belief state. The process

is graphically illustrated in Figure 1.

Extension 17wy \ Extension 1w, T

-7

Extension 2.2 lngfault Theory 1

P=J
Default Theory 2

———- Extension 27

® e T
° g L
bt /" + new belie °

Extension n 4 v Extension “'I"l/
4 -

Figure 4.1: Belief State Transformation

In the rest of this chapter, we shall refer to the £ component of a PJ-extension

(Er, Es) as an eatension.
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Phe new PJ-default theory (W’,D’) is obtained from the previous beliefl state

(W, D) and the new beliel constraint set BChew as follows:

W' = BCpedicfnew

D = {; & N (A BgDisbclicfncw) | 6 (W' = W' 1y

P Pi A BC isbelie N AN h
{ Bi A (A Diste fnew) | p .¢ €D )
Bi B
where W” = W in case the operation is contraction and W" = W U {2} where

z is the new necessary belief constraint in case the operation is revision. Here
A BCpisbetiefnew stands for the conjunction of all the elements of BCDisbetiefpew: L hus,
if BChiabetiefnew = {—{{70}}> —{{—a}}}, then A BCbisteticsnew = -b A ~a.

Notice that the justification for every default rule in PJ-default theories represent-
. ing belief states in our framework is identical and corresponds to the set of necessary

disbelief constraints. We define the notion of uniform default theories as follows:

Definition 6 A semi-normal default theory (W, D) is said to be uniform if for any
two default rules 9—“—%’-\3—‘, gz__ﬁﬁzjﬁ‘b_ € D,v; =; (if| D |=1, then the theory is trivially

uniform).

Clearly, every PJ-default theory representing a belief state in our framework is uni-
form.

We require that the dummy default rule I be an element of D for every (W, D)
representing a belief state. This is to enable us to record necessary disbelief constraints

even if there are no tentative beliefs.

Example 29 Let the initial belief state be given by the uniform PJ-default theory
(W, D) where W = {a,a — b,c,c — d} and D = {&£}. Notice that there are |
no necessary disbelief constraints at this point. Assume that the elements of W
were obtained in a single belief change step. Thus, there is a single necessary belief
constraint and BChreties, = 1{{a}, {—a, b}, {c}, {—c,d}}}.

Let us now retract the belief b.



e Belief Constraints Update Let {{a}, {—a,b},{c},{—e,d}} < —{{-b}}.

BCheicfrew = {{{c}{—¢, d}}}
BCpisteticfuen = {{—{0}}}

e Default Theory Update

!

W' = {c,c—d}
' ta Al i(a—= b AT TAT, n
D = { T (ash T }, where T' = —b

Notice that, as a result of the contraction, a and (a — b) become tenlalive belicfs.
Notice also that there are two possible belief sets that may be consistently held
in the final belief state (corresponding to the two extensions of (W', D")) given by
Cn({c,c — d,a}) and Cn({c,c — d,a — b}) and that the beliefl b is not held in cither
of these. The new constraint prioritization is {{c},{—¢,d}} < —{{—b}}.0

By representing each belief state as a uniform PJ-default theory, we have factored
cub the question of which theory (extension) to choose as the currently operative
set of beliefs from the process of belief change. The user, or agent, could thus em-
ploy a variety of techniques to actually pick the currently operative sct of becliefs.
If priorities on beliefs are used to select the currently operative set of beliefs (as in
AGM epistemic entrenchment), then our framework would permit dynamic prioriti-
zation of beliefs. In other words, different orderings could be used at different times
to select theories without causing inconsistencies or unreasonable outcomes from the
belief change process. The more crucial priority relation, however, is the one that
determines the nature of the new belief state. In our case, this is the constraint pri-
oritization relation. Unlike the AGM epistemic entrenchment relation and Nebel’s
epistemic relevance ordering (which, like our constraint prioritization relation, de-
termine the nature of the new belief state),we proi'ide a clear prescription of how
the relation evolves over iterated belief change steps and how the new evidence is

integrated into this relation. An additional advantage with our framework is that
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we permit, in addition to the traditional operations of expansion, revision and con-
traction, the “undoing” of a contraction step; it simply involves the removal of the

relevant necessary disbeliel constraint.

4.3 BRI1: Relation to the AGM framework

Our formalization cannot be cvaluated using the AGM postulates directly, for the
following two reasons. First, the AGM postulates consider transitions belween belief
states represented as a single deductively closed propositional theory. Our operator
maps between belief states

represented as collections of theories (the multiple possible extensions of the PJ-
default theories). Second, since the AGM postulates consider belief change as a single
step process, it is difficult to evaluate “rationality” over iterated belief change steps.
It is possible, however, to articulate a reformulated version of these postulates, and
show that our framework satisfies them under certain conditions. We shall formalize

these conditions [irst.

Definition 7 Let « belief change operation result in the introduction of a new con-
straint & in a belief state with a constraint set denoted by BC. Lety € BC' be such
that y is incompatible with x and there is no z € BC such that y < 2 and z 1s

incompatible with x. The belief change operation is imperative iff y < .

Thus, an imperative belief change operation introduces a constraint that has a higher
priority than the existing constraint of the highest priority that is incompatible with
it. Since our framework is general enough to permit any prioritization of the be-
lief constraints, it is ‘possible for a belief change operation to fail (in the case that
there exists a belief constraint, with higher priority than the newly introduced con-
straint, which is incompatible with the newly introduced constraint. If a belief change
operation is imperative, the operation is guaranteed to succeed. Since every belief
change step in the AGM framework must succeed, our framework satisfies the AGM

postilates only in the case of imperative belief change operations.
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The second condition involves the prevention of beliefs that were previously sup-
pressed by the existence of a disbeliel constraint from reappearing in a beliel state

when this disbelief constraint is discavded.

Example 30 Consider a belicf state given by W = {} and D = {‘”‘"/\ﬂf\(n»oh)‘ ;'rmm'(...&.m }.

=

There is a single, empty, beliel set corresponding to Crn(T), which is the only exten-
sion :~ ‘W, D). Let the belicl constraint set in this beliel state consist of a single
disbeiief constraint —{{a},{~a,b}}. Let the belicl b be retracted trom this helief
state. We shall get a new belief constraint set given by a single disbe - constraint
—{{=b}}. The new beliel state will be given by W' = {} and 1)’ = {imnAnk iTanky
This default theory has one extension, Cn(=a). Thus we get a belief state with a
belief set containing —a as result of contracting b from a belicl state containing a
single, empty, belief set. This clearly violates the AGM contraction postulate which
requires that the contracted belief set should be a subset of the original belief set, yet
the behaviour is perfectly rational. The tentative beliel —a reappears in a belief set
as a consequence of the removal of the disbelief constraint that caused this tentative

belief to be suppressed.O

Clearly, only operations which do not display such behaviour can be related to
the AGM framework.

Definition 8 Let a belief change operation iniroduce a belief constrainl z in a belicf
state (W, D) with a belief constraint set BC. The operation is stable iff there caists
no disbelief constraint y € BC .s.t y < = and there exists —ﬂf?—" & D where y U is
incompatible.

Before we state and prove the results relating our framework to the AGM postulates,
we shall establish a connection between THEORIST system developed by Poole,
Goebel and Aleliunas [42] and uniform PJ-default theories that simplifies the proofs.
The THEORIST framework envisages a knowledge base comprising of a set of closed
formulas that are necessarily true, called facts, and a set of possibly open formulas that

a.e tentatively true, calied hypotheses. Default reasoning in this framework involves



identifying mazimal scenarios (or extensions), where a scenario consists of the set of
facts together with some subset of the set of ground instances of the hypotheses which
is consistent with the set of facts. The framework can be augmented with constrainis,
which are closed formulas such that every THEORIST scenario is required to be

consistent with the set of constraints. Following [42], we can present the following

definition of a maximal scenario.

Definition 9 For a THEORIST system (F, H,C) where ' is the sct of facts, I is
the set of hypotheses and C is the set of constraints, such that cvery clement of I°. 11

38 & is a ground formula, a maximal scenario is a set F'U h such that h C Il and

F U RUC is satisfiable.

We shall present a translation which is simpler than the one presented in [14] because
we are dealing with uniform PJ-default theories rather than genecral ones. In the
following, S(F, H, C) refers to the set of maximal scenarios of the THEORIS'T systecin
(F,H,C). As well, E(A) refers to the set of extensions of the defauit theory A.

Definition 10 Let (F(w,.p), Hw,p), C(w,p)) denote the THEORIST-translation of the
uniform PJ-default theory (W, D). Then:

Fowpy =W
Haw,py = {8 %~ € D}
Cw.py = {v|%}* e D}

Theorem 14 Let (Fw,p), How,p), Ciw,p)) denote the THEORIST-translalion of the
uniform PJ-default theory (W, D). Then S(F(W'D), H(W,D), C(W,D)) = E((W, D))

Proof: The proof follows directly from the equivalence of the definitions of THI:-
ORIST maximal scenario computation and PJ-default extension computation, given
that Ej, = Caw,p) at every step in the computation of extensions for a uniform P.J-
default theory (W, D). O

Thus. the facts F' correspond to the neceésary belief constraints. The constraints

C correspond to the necessary disbelief constraints in our system. The hypothesis
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/I correspond to the tentative beliefs. The process of belief change can thus be

cquivalently defined as computing the new set of belief constraints, replacing ' and

C accordingly and demoting beliefs from F' to M{ if necessary.

We shall interpret postulate (1-), as one of way of articulating the following prin-

ciple of calegorical matching stated by Gardenfors and Rott in [22] which requires

that Lhe representation of a belief state after a belief change has taken place should

be of the same format as the representation of the belief state before the change.

For postulates (2-) through (8-), we reformulate every condition on knowledge sets

to apply to every extension of the PJ-default theory representing a belief state. For

postulates (7-) and (8-) we can actually prove a stronger condition in the case that

the antecedent in (8-) is satisfied. If the antecedent is not satisfied, there appears to

be no obvious way to reformulate postulate (7-).

Theorem 15 For imperative and stable operations, the contraztion operator — sat-

isfies:

1.

M

g

b

The principle of categorical matching.

Ve' € E((W, D)3), there exists some e where e € E((W, D)) s.t. ¢’ Cee.
IfVe: (e € E((W, D)) D (¢ } A), then E(W,D)3) = E(W, D)).

If £ A, then Ye: (e € E(W,D)3) D (e = A).

IfVe' : (e € E((W,D))) D {e' = A) then for every ¢’ € E((W, D)), there exists
some e where e € E((W,D)3)%) s.te' Ce.

If = A o B then E((W, D)3) = E((W, D)3).

IfVe: (e € E(W,D)35)) D (e ¥ A) then E(W, D)3zp) = E((W, D)y).

Proof: We shall prove these results using the THEORIST-translations (F, H, C)
of (W, D).

1.

Obvious.



2. To prove:Ve' € S((F,H,C)3), there exists some ¢ where ¢ € S({I, I, ) s.t.

e Ce.

Let (F,H,C)7 = (F',H',C’). Assume the confrary. Thus, there must exist
some e; € S{{F’', H',C")) s.t. there exists no ¢ € S((F, H,C)) where e € .
Let ex = Cn{F"Uh') where b’ C H'. Two cases arc possible:

(a) F = F'. In this case, H = H'. Qur assumption holds ifl ¢, U C is
unsatisfiable. By stability, this is impossibie. Thus, our assumption docs
not hold.

by FCF. Thus HCH . Lety=H ~-H=F—-I" I h' € H, them ey is
included in some e € S((F, H,C)), since F” is included in F, /" is included
in H, Cn(F'UR’) is satisfiable (by virtue of being a scenario of (I, H',C"))
and Cn(F'UR') is consistent with C, as a consequence of consistency with
C' and stability. If &' € H, then y” C y, where y” = I/ — H. Thus,
Cn(F'UR) = Cn(F'Uy"U %") where h” € H. Then e, is included in
some e € S((F, H,C)) since F'Uy" is included in I, k" is included in /1,
Cn(F'Uy" UR") is satisfiable (by virtue of being a scenario of (', H',C")),
and Cn(F'Uy" Uh") is consistent with C' as a consequence of consistency

with C’ and stability.
3. To prove: If Ve : (e € S((F,H,C))) D (e l A), then S((F,H,C)3) =
S(F, H,C)).

Let (F,H,C)3 = (F',H’,C"). Clearly F & A, Thus, ' = I, H = H". Then,
by stability, since all elements of S((F, H,(')) are consistent with C, they will

be consistent with C’ too.

4. To prove: If j A, then Ve : (e € S((F, H,C)3) D {e I A).

C k= —-A. Hence proved.

N

N

T
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6.

. To prove: IfVe' : (¢! € S((F, H,C))) D (¢' = A) then for every e’ € S{(F, H,C)),

there exists some ¢ where e € S(((F, H,C))5) sv & Ce.
Let ((F,H,C)3)5 = (F',H',C"). Let ¢z = Cnu(F U L), where h € H be some
arbitrarily chosen element of S((#, H,C)). Since I C H', h C H'. Two cases

arc possible:

(a) ' = A. Then F' € F. Lety = F—~ F'. Cleatly y € H’. Thus,
Cn(FUL) = Cn(F'UyUhR). Cr(F'UyUH#R) is satisfiable by virtue of
being a scenario of (F, H,C). Clearly Cn(F’UwUh) includes F'. As well,
yUA C H'. Since e, is consistent with C, Cn{F'Uy Uh) is consistent with
C”, by stability. Thus e, must be included in some e € S((F', H',C")).

(b) F = A. Then F ¢ F'. Clearly ¥ — F = A. Since Cn(F U k) = A,
Cn(FURk) = Cn(FUAUR) = Ca{F'U k). Clearly Cn(F U AU k)
includes F7. As well, o G H'. Cn(F U AU h) is satisfiable by virtue of
being a scenario of (F, H,C). Since e, is consistent with C, Cn(FUAUR)
is consistent with C’, by stability. Thus, e, must be included in some

(4 E ,S"‘((FI’ Hli Cli’l\a

To prove: If = A « B then S((F,H,C)3) = S((F,H,C)g)-

Trivially true.

To prove: If Ve : {e € S((F,H,C)a.g)) D (e = A)then S((F,H,C)z.p) =
S((F, H.2)7)-

Let (F,H,C)7 = (F',H',C") and (F,H,C) a5 = (F",H",C*). By stability,
and by the precondiiion, it is easy to ses that every element of S((F’, H',C"))
is consistent with C” and every element of S({F”,H",C")) is consistent with
C'. The precondition implies that F” [ A. Since #” C F and F" [E A,
F" C F'. Assume that F" C F'. Then there must exist soms z € F' such that
F"U{z} = A A B. But this is impossible since F"U {z} C F'. Hence F" = F".
Thus H’' = H”. Hence proved.

8

s}



Over a single step, and starting with a deductively closcd theory, our framework
is identical ot the AGM framework in the sense that the outcomes gencrated by our

framework are identical to the choices available to the AGM selection funclion.

Theorem 16 For a uniform PJ-default theery (W, D), E((W,D)3) = K | A if
W = K where K is a belief set, D = {—}}, the contraction operalion ts itmperative

and the initial constraint prioritization relation is emply.

Proof: The proof follows directly from the definitions of the removal operation
1, the constraint update operation and imperative belief change operations.0

Thus, if we were to start with a deductively closed theory as the sct of facts, and
an empty set of defaults, then the set of extensicns of the default theory obtained after
contracting a belief A, would correspond precisely to the set of possible outcomes that
the selection function in partial meet contraction. Whereas partial meet contraction
requires that a choice is actually made, we do not require any choices, but retain all

the multiple possible outcomes compactly represented as a PJ-default theory.

4.4 BRI1: Other Related Work

The following theorem shows how our approach relates to Nebel’s base contraction

operator [39)].

Theorem 17 Let (W, D) be a uniform PJ-default theory with W = B, where B is
a finite belief base, and D = {}. Then Cn(B =~ A) = Cn((V E(W,D)3)) A (B V
—A)) if the contraction operation is imperative and the initial constraint priorilizalion

relation is empty.

Proof: The proof follows directly from the definitions of the operation =~, the
constraint update operation and imperative belief change operations.
As with our framework, a belief that becomes suppressed as a result of a contrac-

tion operation can be recovered in Nebel’s framework when the belief state is revised

S
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witl; the contracted belief. However, our framework permits an explicit operation to
undo a contraction, which can also result in beliefs being recovered. Such anoperation
is not possible in Nebel’s framework.

With their commitment to producing a unique outcome for the belief change
operation, both the AGM and Nebel frameworks render too many potentially useful
beliefs unusable (notice that they are not actually discarded, but can %e recovered
later under certain circumstances); in the AGM framework, this is a consequence
of taking the intersection of the selected outcomes, while in Nebel’s case, this is
a consequence of taking the disjunction of every possible outcome. Our framework
retains every possible outcome at all times, and thus does not suffer from this problem.

Brewka [6] shows how belief revision can be viewed as a simple process of adding
new information to theories represented in his preferred subtheories framework, which
s a generalization of the THEORIST framework [42]. Brewka’s framework of pre-
ferred subtheories differs from THEORIST in two significant ways. First, facts are
done away with, making every formula in the knowledge base poteatially refutable.
Second, one is allowed to define a partial order on the formulas in the knowledge
base. A preferred subiheory, Brewki’s analogue of a THEORIST maximal scenario,
is a consistent subset of the knowledge base constructed by starting with formulas
with the high'est priority (as defined by the partial order) and progressively adding as
many formulas of lower priority levels as can be consistently added. As with THEO-
RIST, a knowledge base can have several preferred subtheories. Brewiis shows in [6]
that a knowledge base of this kind can be revised by simply adding the new formula
and augmenting the partial order to incorporate any ordering relationships that might
exist between this formula and the existing elements of the knowledge base. Also, if
this framework is augmented to include THEORIST-style constraints, and a partial
order is defined on the set containing both the formulas representing hypotheses and
formulas representing constraints, then contraction is shown to be a simple case of
adding a constraint to the knowledge base and augmenting the partial order. The

improvements achieved by Brewka’s belief change framewsark over earlier ones are



twofold. First, the belief change operator is simple and totally incrementai. Secound,
earlier information is not throvwn away, but is retained in an elegant fashion. Nebel
[40] establishes a restricted form of equivalence between nonmonotaiiic inference and
belief change along similar lines.

In the case that the new belief (either a new hypotheses, as in revision, or a new
constraint, as in contraction) always has a higher priority, under the partial ordering,
than all existing beliefs, Brewka’s framework turns out to be very similar to ours. As

the following example shows, his framework avoids the problem of spurious belicls in

most cases.

Example 31 Let the initial knowledge base consist of the set {a,a — b} of hypothe-
ses with no ordering relationship being defined on the hypotheses. In order to contract,
b from this knowledge base, we add the constraint —b, written as < —b > to the knowl-
edge base, together with the ordering relations < =b >> ¢ and < =6 >2 a — b. We
get two maximal scenarios , one containing a and the other containing « — b. Further
revision of the knowledge base with a results in the addition of this hypotheses at
a higher priority level than all existing elements (hypotheses or constraints) of the

knowledge base. There is only one maximal scenario at this point, consisting of « and

its logical consequences. O

The similarity of Brewka’s framework to ours is not surprising, given that we
use, like Brewka, nonmonotonic theories which can generate possibly many different.
consistent sets of beliefs, to represent a belief state. Like Brewka, our approach is
incremental, and information is never thrown away. Our choice of nonmonotonic
formalism is very similar too, given the results in [14] relating PJ-default logic to
THEORIST with constraints. However, since Brewka does not explicitly account

for the maintenance of belief constraints, his formalization may provide unintuitive

results as the following example shows.

Example 32 Consider an initial knowledge base containing only one hypotheses and

no constraints {a}. Let us now contract a V b fromthis knowledge base. This entails

91
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the addition of the constraint < —(a V b) > to the knowledge base, and augmenting
the partial order such that the new constraint has higher priority than all existing
clements of the knowledge base. If one were to revise the knowledge base with b,
there would be one maximal scenario containing both a and b. Notice, however, that
the new evidence obtained since retracting a V b from the knowledge base does not
warrant renewed belief in a. The prollem arises because the presence of b at a higher

priority level disables the constraint < —(a Vv 4) >.0

We improve upon Brewka’s work by explicitly accounting for the maintenance of
belief constraints. Necessary disbelief constraints are treated as a set of formulas to
be explicitly disbelieved. We update this set at every belief change step, by retaining
as many constraints, or parts of constraints, as are compatible with more recent
constraints. Thus in the previous example, we would update this theory to account
for revision with b by removing b from the set of necessary disbelief constraints. but
leaving a intact. The problems with Brewka’s framework stems from the fact that
it uses syntactic units (the constraints) which are enabled or disabled as whole units
and not in terms of the individual components. In fact, his system would behave like
ours only if the only constraints permitted are atomic constraints.

Whereas Brewka’s system uses a recency-based heuristic to order belief con-
straints, our framework is more general by permitting arbitrary constraint priori-
tizations. We difter further from Brewka in that we factor out the use of priorities on
beliefs entirely from the belief change process. Whereas Brewka’s framework would
only generate those maximal scenarios which respect the existing orderings on the be-
liefs, our framework would generate all maximal scenarios which satisfy the relevant
belief constraints. Our framework would coincide with Brewka’s, in this respect, if
the constraint prioritization was based on recency. ,

Nayak et al[37], Boutilier [5] and Williams [51] address the question of generating
a new selection function as result of a belief change step. However, they all use a
recency-based heuristic for ranking revisions. More importantly, they do not address

the problem of non-persistence of the effects of contractions.
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4.5 BRI1: Properties

In this section, we shall examine the extent to which System BR/ satisties the full
preservation properties. We shall also test the system using the benchmark problems
from the previous chapter.

Let us first examine compliance with the principle of irrelevance of syntax. We
have seen in the previous section that the BRI system is independent of the syntactic
form of the belief input. Thus, separately contracting two syntactically distinct but
semantically equivalent sentences from the same PJ-default thcory results in two
equivalent PJ-default theories (in the sense that they have the same set of extensions).
It is easy to see that the same holds for revision. In the AGM framework, as well
as in the approaches described in the previous chapter, syntacticémlly distinct but
semantically equivalent representations of belief states are impossible since we always
work with deductively closed theories. In System BRI, we manipulate finite sets of
sentences, in a manner similar to Nebel’s belief bases [40]. Syntactically distinct but
semantically equivalent representations of belief states are thus possible. Hence, it
is important to consider whether the outcome of a belief change step is contingent
on the syntactic form of a belief state. It turns out that if we contract the same
belief from two syntactically distinct but semantically equivalent PJ-default theories
(in the sense that they have the same set of extensicns), we get distinct outcomes.

The following example illustrates this.

Example 33 Consider the following two PJ-default theories:

(Wo, Do) = ({a,a — b}, {F})
(W5, Dg) = ({a, b}, {})
(Wo, Do) and (W{, D}) are semantically equivalent. Both have exactly one extension,.
given by Cn({a,b}). ,
Let us contract b from (W, Do). The initial belief constraint set is {{{a}, {—a,b}}}.
Since the belief constraint set consists of a single necessary belief constraint, the con-

straint prioritization relation is empty. The resulting belief state is given by:



(Wl7])l) = ({}’ {m/;—‘b7 3('1—'6)/\—|b, :T_[/'\b})

a-+b

Notice that (W, D;) has two extensions, given by Cn({a}) and Cn({a — b}).

Let us now contract b from (WY, D}). The initial belief constraint set is {{{a}, {0}}}.
Once again, since the belief constraint set consists of a single necessary belief con-
straint, the constraint prioritization relation is empty. The resulting belief state is

given by:
(Wi, DY) = ({a}, {#57%, F572})

(W!, D}) has a single extension, given by Cn({a}).
Thus, after contracting the same belief from two semantically equivalent repre-

sentations of a belief state, we obtain two semantically distinct belief states. O

We shall now consider the extent to which System BRI complies with the full
preservation requirements. Here, the universe of beliefs, Y, (S), consists of the union
of the extensions of the PJ-default theory that denotes S. The universe of disbeliefs,
> _(S), consists of the theory obtained by taking the conjunction of the elements of
the set of disbelief constraints. Let us consider revision first. Revision-I requires that
every belief that appears in some extension of the prior default theory appear in some
extension of the revised default theory. This does not always hold in System BRI, as

shown in the following example.
Example 34 Let the initial belief state be given by:
So = (Wo, Do) = ({a}, {})

(W4, Do) has a single extension, given by Cn({a}). Let us revise with —a. The new

constraint prioritization relation is given by:

{{e}} < {{~a}}

The resulting belief state is given by:

51 = (Wi, D) = ({—«}, {%7 71':})
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(W1, Dy) has a single extension given by Cn({—a}). Clearly, a € ¥4 (S0) but « ¢
4+(5).0

Revision-2 is violated because beliefs previously suppressed by the existeuce of a
disbelief constraint may reappear on account of this disbelief constraint being dis-

carded, as shown in the following example.

Example 35 Let the initial belief state be given by:

So = (Wo, Dy) = ({}, {:(a&?;\)—‘av ’T’%""})

(Wo, Do) has a single extension given by Cn(T). Let us revise Sp with a. Lel the

new constraint prioritization relation be given by:

—{{=a}} < {{a}}
The resulting belief state is given by:

Sy = (Wh,Dy) = ({a}, {82, 5}

(anb)? ¥

(W1, D;) has a single extension given by Cn({a,b}). b & ¥,(So), but b € 3-,.(51),

even though b is not a consequence of the new belief a together with any element of

2 4(50).0

Example 35 also illustrates a case where Revision-3is violated. 3°_(So) = Cn({—a}),
while 3°_(51) = Cn(T). In general, disbelief constraints may be discarded when con-
flicting belief constraints of higher priority are added, hence Revision-3 does not hold. .

Revision-4 does not hold in cases where the new necessary belief constraint is

assigned a lower priority than an existing conflicting belief constraint.

Example 36 Let us reverse the constrain prioritization in Example 34.

{{-a}} < {{a}}

In this case, the resulting belief state is given by:



Sy = (Wi, Dy) = ({a}, {52, 5))

(W), Dy) has a single extension given by Cn({a}). Clearly, the new beliel —a is not

contained in y2,.(57).0

To consider compliance with Revision-§ and Revision-6, let us view each beliel
state given by (W, D) as a set of pairs (e,d) where e € E((W, D)) and d is the theory

obtained by taking the conjunction of the elements of BCyispeticf-
Theorem 18 System BRI salisfies Revision-5 and Revision-6.

Proof:

o Revision-5: Consider the THOERIST-translation of (W, D). d = Cn(C(w,p)) =
5°-(S). Then by definition of a maximal scenario, any superset is either unsat-

isfiable, or is not consistent with d. Hence proved.
e Revision-6: Since d = Y__(5), the result holds.O

Consider, now, the full preservation conditions for contraction. It is easy to see

why Contraction-i is violated. If the new disbelief constraint conflicts with a prior

disbelief constraint, and the new constraint has higher priority, then the prior disbelief |

constraint is discarded. Hence, disbelief constraints are not preserved in general.

The introduction of a disbelief constraint can result in beliefs which appeared in
some extension of the prior belief state being suppressed, as illustrated in Example 28,
or in beliefs which were earlier suppressed appearing in some extension in the new
belief state, as illustrated in Example 39. In either case, the new universe of beliefs
is not identical to the prior universe of beliefs, hence Contraction-3 is not satisfied Ain
general.

As with revision, a contraction operation is not guaranteed to succeed. If a prior
constraint, which conflicts with the new disbelief constraint, has a higher priority,

then the new disbelief constraint is discarded. Hence Contraction-/ is not satisfied in

general.
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Theorem 19 System BRI satisfics Contraction-2, Contraction-5 and Contraction-o,
Proof:

e Contraction-2: We know that BClueier © BCuisbetics U {a} where anis the new
disbelief constraint. Since the universe of disisoliefs for any beliel stale is given
by the conjunction of the clements of the set of disbelicf constraints, the result

follows.
o Contraction-5: The proof is identical to that for Revision-8.
e Contraction-6: The proof is identical to that for Renision-6.00

We shall now analyze the behaviour of the system using the benchmark problems

we set up in the previous chapter.

Example 37 Let us reformulate Example 1 from the previous chapter in System

BR1. The initial belief state is given by:
So = (Wy, Dg) = ({—a}, {'12’})

Let us revise Sy with a. Let the new constraint prioritization relation be giveun by:
{{—a}} < {{a}}

This prioritization corresponds to assigning a higher priority to the more recent belief

input. The resulting belief state is given by:

S1 = (Wi, D) = ({a}, {Z2, %))

—~a? T

We now contract a from S;. Let the new constraint prioritization relation assign,

once again, a higher priority to the more recent belief input, as follows:
{{a}} =< —{{~a}}

The resulting belief state is given by:

S = (Wa, D) = ({}, {8422, matne :The})

-a ? T



Notice that (Wa, D) has a single extension given by Cn({—a}). Thus, the original
beliefs reappear after revising with @ and then undoing the revision (i.e. contracting

a).0

‘Example 38 Let us reformulate Example 2 from the previous chapter in System

BR1. Note that we shall be taking belief base representations of the theories in
Example 2. The syntactic form of the representation will therefore influence the
outcorne. Nevertheless, the example is useful in demonstrating the behaviour of the
system.

Let the initial belief state be given by:
SO = (Wba DO) = ({a, b}7 {%})

Let the corresponding belief constraint set be given by {{{a}},{{b}}}. Thus a and b
constitute two distinct belief constraints.

We shall use a recency-based constraint prioritization throughout this example,
i.e., the moré recent input is assigned higher priority. Let us revise So with —b. The

new constraint prioritization is given by:

{{a}} < {{8}} < {{-b}}
The résulting belief state is given by:
$1 = (W, 1) = ({a, b}, {2, )
We now revise S; with . The new constraint prioritization relation is given by:

{{a}} < {{~8}} =

The resulting belief state is given by:

52 = ("VZs D2) = ({a’1 b}a b 2 :T})

ST

Notice that the original beliefs a and b are contained in the sole extension of (W2, D»)
given by Cn({a, b}). If the belief states had been represented in semantically equiva-

lent but syntactically distinct forms, the outcome would hawve been different. Thus, if



the imtlal "“1 was {a A b instead of {a, b s We would not have I'(‘,CO\’Gl‘Cd the original
g

beliefs after revising with —b followed by revising with 4.0

"Example 38 We shall go back to Example 3 in the previous chapter motivating the
need to record contraction operations in the same way as revision operations. Let the

initial belief state be given by :

The relation <; is empty.
(W1, D1) = ({b — f}.{F})
BCy = {{{-b, f}}}

The belief state obtained by contracting f and assigning the highest priority to the
disbelief constraint in f is given by:

The relation <, is such that {{=b, f}} <2 —{{—~f}}
(W2, D) = ({b — £}, {ZT54})

BC: = {{{=b, f}},—{{~F}}}

The belief state obtained by further revising with b and assigning this belief constraint -

the highest priority is given by:

T-he relation <3 is such that {{—b, f}} < —{{~f}} < {{b}}

(Ws, Ds) = ({6}, {55257, 52

BCs = {{{~b, f}}, —{{~/}}, {{6}}}

(W3, D3) has a single extension given by Cn({b}). Notice that the contraction of f

persists since f is in no extension of (W3, D3).
If <3 were such that {{b}} <3 {{-b, f}} <z —{{—f}}, then the resulting belicf
state would be:

(W3, D) = ({6 — f}, {2534, 7571

In this case the default theory would have a single extension Cn({b — [}.

If <5 were such that —{{-f}} <3 {{b}} <3 {{—b,S}}, then the resulting belicf
state would be:
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(Wy,D5) = ({b,b— [}, {F})

The default theory would have a single extension Cn({b,b — f}).
Thus the three distinct candidate outcomes discussed in Example 3 are generated

by taking different constraint prioritization relations. O

Example 40 We shall reformulate Example 4 from the previous chapter in System

BR 1. Let the initial belief state be:
So = (WO: DO) = ({CL, b}a {_'i‘t})

Let the initial belief constraint set be {{{a}},{{6}}}. Thus a and b constitute two
distinct necessary belief constraints.

We first contract b from Sp. Let the new constraint prioritization relation be:
{{a}} < {{86}} < —{{-0}}
The resulting belief state is given by:
Sy = (Wi, D1) = ({a}, {257, 57))
We now revise S; with ¢. Let the new constraint prioritization be:
{{6}} < —{{-b}} < {{c}}
The resulting belief state is given by:
S2 = (We, Do) = ({a,}, {#52, T4=2))

{Ws, D) has a single extension Cn({a, c}). The contracted belief b does not reappear.
In this case, tl. "= is a consequence of the representation of beliefs as finite sets of

sentences rather than the explicit representation of the disbelief constraint for .03

Example 41 We reformulate Example 13 in System BR1. The initial belief state is
empty:

So = (Wa, Do) = ({},{Z£})
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After contracting b from Sp, we obtain the following belief state:

S1 = (WlaDl) = ({}a{l/%;b})

We now contract —b from 5;. If the new constraint prioritization relation is —{{—0}} <

—{{b}}, then the resulting belief state is given by:
Sy = (W2, Ds) = ({}, {5%})

If, on the other hand, the new constraint prioritization relation is —{{b}} < - {{=b}},

then the resulting belief state is given by:

Sy = (W3, Dp) = ({1, {TF°})

Thus, in either case, one of the disbelief constraints is irretrievably lost. O

The previous example shows that System BRI suffers from the fundamental flaw
in the constrained sets of theories belief representation scheme: multiple, mutually
inconsistent sets of disbeliefs cannot be represented. However, unlike the operators
defined in the constrained sets of theories approach, System BRI does not follow
the strict AGM notion of success (note that it does not satisfy the weak success
requirement either). Hence, it minimizes the discarding of beliefs, as seen in the
reformulations of Examples 1 and 2. The ability to explicitly represent disbeliefs,
as well as the ability to arbitrarily rank the belief constraints results in all candidate
outcomes being considered in the reformulation of Example 3. System BlI also

enjoys the benefits of representing beliefs as finite sets of sentences, as illustrated in

‘the reformulation of Example 4.

4.3 BR2: Definition

System BR2 was developed as a first step towards a finitely representable, imple-
mentable system that satisfied the full preservation requirements of the previous

chapter. System BR2 improves over System BRI by permitting multiple, mutually
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inconsistent sets of beliefs to be represented. This obviates the need for using a con-
straint prioritization relation in mapping from one belief state to another, although
such a relation may still be used in the orthogonal task of theory preference in a given
belief state.

System BR2 corresponds to the sets of constrained theories approach described
in the previous chapter, differing only in the fact that each belief or disbelief theory
is represented as a finite set of sentences as opposed to a deductively closed theory.
Recall that in the sets of constrained theories approach, a belief state is represented
by a set of commitment states. A commitment state is given by a pair (B, D) where
B is a theory denoting the current set of beliefs while D is a theory denoting the

current set of disbeliefs. Commitment states may be of two kinds:

e Maximal belief commitment states, where the belief theory is a maximal con-
sistent subset of the universe of beliefs and the disbelief theory is a maximal

subset of the universe of disbeliefs which is consistent with the belief theory.

e Maximal disbelief cominitmerit states, where the disbelief theory is a maximal
consistent subset of the universe of disbeliefs and the belief theory is a maximal

subset of the universe of beliefs which is consistent with the disbelief theory.

In System BR2, a belief state is represented by a pair of PJ-default theories ((W, Ds), (W4, Dy)).
The theory (W, D;) represents the set of maximal belief commitment states. The
theory (Wy, Dy) represents the set of maxiral disbelief commitment states. Both
(Ws, Dy) and (Wy, Dg) are W-free, i.e., the set of facts is necessa,fily empty. Let B(A)

denote the set of consequents of all default rules in the set of default rules given by

A. Thus:
B(A) = {z| =2 e A}

when A is a set of PJ-default rules. Let a(A) denote the set consisting of the semi-

normal part of the justifications of all default rules in the set of default rules given

by A. Thus:
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a(A) = {y | =¥ € A}

when A is a set of PJ-default rules. Every PJ-extension (£, E7) of (W4, 1) denotes
a maximal belief commitment state. E1 denotes the disbelief theory. £, denotes the
belief theory in an indirect way. We know that for every E;, there exists a unique
y € a(Dy) such that y € E;. The theory Cn({y}) represents the corresponding belief
theory. Ej does not represent a belief theory directly since, for every default rule =24
fired in obtaining the PJ-extension containing E;, both x and y. Our intuition is that
every distinct y represents a maximal belief theory, while every distinct @ represents
a candidate disbelief. Every PJ-extension (Ej, ET) of (I/Vd,Dd) denotes a maximal
disbelief commitment state. Here the roles of £; and Er are reversed. F; denotes the
belief theory, while Er denotes the disbelief theory, once again, in an indirect way.
For every distinct Ey, there exists a unique y € a(Dg) such that y € E;. The theory
Cn({y}) represents the disbelief theory. Thus, the consequents of the default rules
in D, denote potential beliefs, while the conseQuents of default rules in Dy denote
potential disbeliefs.

The PJ-default theories (W, Dy) and (Wy, Dg) will not, in general, be uniform,
unlike the default theories used in System BR1. We shall see that each distinct semi-
normal component of a justification of a default rule in D, represents a maximal
disbelief theory, while e;'fxch distinct semi-normal component of a justification of de-
fault rule in D, represents a maximal belief theory. We may partition a sct of defanlt
rules into sets having an identical semi-normal component of the justification. We
shall refer to this as the justification-partitioning (or j-partitioning). Formally, the

j-partitioning of a set of PJ-default rules A is given by:

PA={P1,...,P-,,,}

_ i B oA
where each P; = {=7 | =3 ¢ A}
We may now define the operations of revision and contraction as follows:

Revision: Let ((W{, D}), (W], D})) be the belief state obtained as a result of revising
the belief state ((Ws, Ds), (Wa, Da)) with z. Let Pp, = {Pi,..., P} be the
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j-partitioning of Dy. Then:

Wwi={}

D!, = |J; P! where

Pl =P u {2} Wy = {}

Dj = {#22 | y € B(De), z € (B(Dy) 1L)}

Conlraction: Let (W{, D}), (W}, D})) be the belief state obtained as a resuit of con-
tracting z from the belief state (W, D), (Wa, Dg)). Let Pp, = {P1,..., Pn}
be the j-partitioning of Dy. Then:

w; = {}
D} = |J; P! where
P =P U {=2ZB) Wi = {}
y = {2 |y € B(Da), z € (B(Dy) 1 1)}

In both revision and contraction, the set of facts in the resulting PJ-default theories
are set to empty, since every PJ-default theory used in the representation of a belief
state must necessarily be W-free. Revision begins with identifying the PJ-default
theory (W}, D)) representing the set of maximal disbelief commitment states. W} is
set to empty. A new default rule is added to each partition P; in the j-partitioning
of Dy with a(F;) forming the semi-normal part of the justification of the default and
the new belief forming the normal part of the justification and the consequent. In
other words, for every distirgt maximal consistent set of disbeliefs (the a(P;) for each
distinct P,-),; a new default rule is created with the new belief as the consequent to
obtain D). Next, the default theory (W{, D;) representiﬁg the set of maximal belief
commitment states is identified. W/ is set to empty. For every distinct element of
(B(DY) 1L1) (i.e., for every maximal consistent set of beliefs), and for every default
consequent in Dy (i.e., for every distinct disbelief) a new default rule is created, to
obtain D). Contraction is the exact dual of revision. First, the new default theory
(Wy, Dy) representing the set of maximal belief commitment states is identified. A

new default rule is added to each partition P; in the j-partitioning of D, with a(F;)
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forming the semi-normal part of the justification of the default and the negation
of the belief being contracted forming the normal part of the justification and ‘Lhc
consequent. In other words, for every distinct maximal consistent sct of beliefs (the
a(F;) for each distinct P;), a new defaull rule is created with the negation of the belicf
being contracted as the consequent to obtain Dj. Next, the default theory (Wg, D

representing the set of maximal belief commitment states is identified. Wj is sct to
empty. For every distinct element of (8(D;) 1) (i.e., for every maximal consisteut
set of disbeliefs), and for every default consequent in Dy (i.e., for every distinct belief)
a new default rule is created, to obtain Dj.

No belief or disbelief is discarded in System BR2, hence no choice function, such
as the one that uses the constraint prioritization relation in System BRI, is required.
Belief change in System BR2 involves only belief maintenance. Theory preference,
i.e., the selection of a commitment state is a totally orthogonal task. All of the
benefits of the irrelevance of choice, discussed in the previous chapter, accrue.

The computationally hard cofnponent of a belief change operation is the iden-
tification of maximal consistent subsets of a finite set of sentences. Thus, revision
requires the computation of maximal consistent subsets of the new set of beliefs, while
contraction requires the computation of maximai consistent subsets of the set of dis-
beliefs. We shall see in the next chapter that some straightforward, and practically
viable special cases exist where this problem becomes tractable.

The system supports lazy evaluation. Part of the computation involved in identily-
ing maximal commitment states from the representationf a belief state is performed
during a belief change step (this corresponds to the computation of the maximal
consistent subsets of the set of beliefs, or disbeliefs). The rest of the comiautation
is deferred, and performed only when an agent needs to reason with, or act on, its
beliefs. Actual commitment states, i.e., PJ-default extensions, need to be computed
only when theory preference is required. As a consequence of representing the maxi-
mal belief, and maximal disbelief, commitment states in two distinct default theories,

some of the computation may be deferred even at this stage. For instance, if an agent

o
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chooses Lo commit only to a maximal belief commitment state, then the PJ-extensions
of only the theory (W, D,) from the pair of default theories (W5, Dy), (Wa, Dy)) need

to be computed.

4.7 BR2: Properties

In this section, we shall examine the behaviour of System BR2 using the benchmark
problems from the previous chapter. We shall formally establish the extent to which

the system complies with the full preservation requirements.

Example 42 Let us reformulate Example 1 from the previous chapter in System

BR2. The initial belief state is given by:

S0 = ((WO0y, DO0,), (W0q4, DOd)) where

wo, = {}
Do, = (:5522)
wWoy = {}

DO, = {2227}

Notice that (W04, D0,) has a single PJ-extension (Cn({—a}), Cn()). This corresponds
to a commitment state where the belief theory is given by Cn({—a}) and the disbelief
theory is given by Cn(). (W0g, D04) has a single PJ-extension (Cn(),Cn({—a})).
This corresponds to an identical commitment state where the belief theory is given
by Cn({—a}) and the disbelief theory is given by Cn().

After revising SO with a, we obtain:

S1 = (W1, D1), (W14, D1;)) where

Wi, = {}
DO, = {T7, Tpe)
Woq = {}
DOd —_ :-ﬁaAT’ a_AI}

Contracting a from S1 we obtain:
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S2 = (W2, D2), (W24, D24)) where
W2, = {}

D2, = {Tame, iThe :mafne imeney
W24 = {}

Dzd —_ {:—u:/;ﬂa, :a./(\l—-a.}

(W24, D2;) has two PJ-extensions: (Cn({=a}),Cn({—a}) and (Cn({a}),Cn()). This
corresponds to two commitment states. The first has Cn({—a}) as the beliel theory
and Cn({-a}) as the disbelief theory. The second has Cn({a}) as the belicl theory
and Cn() as the disbelief theory. (W24, D24) has a single PJ-extension given by
(Cn({—a}),Cn({—a}) where the belief theory is given by Cn({-a}) and the disbelief
theory is given by Cn({—a}) as well. This commitment state is identical to the first
commitment state generated by (W2, D2;). Notice that the two commitment states
in S2 are identical to the commitment states we obtain when we run this example
using the sets of constrained theories approach. Note also that the initial beliel —a is

contained in one of the belief theories in §2.0

Example 43 Let us reformulate Example 2 from the previcus chapter in System

BR2. The initial belief state is given by:

S0 = ((W0,, D0,), (W0q, D0g)) where

Wo, = {}

DOb — {:T/}lg/\b}
Woq = {}

DO, = {227, 447}

(W0,, D0y) has a single PJ-extension (Cn({a, b}), Cn(}). This corresponds to a com-
. mitment state with a belief theory Cn({a, b}) and a disbelief theory Cn(). (W04, D0,)
has a single PJ-extension (Cn({a, b}),Cn({a,b}). This corresponds to a commitment,

state with a belief theory given by Cn({a,b}) and a disbelief theory given by C'n().
After revising S0 with —b, we obtain:
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S1 = ((W1,, D1,),(W14, D1y)) where

Wi = ()
D1, = {=T/\Ta/\z-, :TA;;._/\-,b}
Wie = {}
D1, = :a;\T’ :b/b\T’ :_,i,(:-r

Further revising S1 with b, we obtain:

52 = (W2, D2), (W24, D23)) where

W2, = {}
D2b —_ {:T/¥Ab_’ :TA_T_A—-b}
W2, = {}
Dzd — :a:l\T’ :b/[:T) :ﬁi/b\T

(W2, D2;) has two PJ-extensions: (Cn({a,b}),Cn()) and (Cn({a,~b}),Cn()). The
first corresponds to a commitment state with a belief theory Cn({a,b}) and a dis-
belief theory Cn(). The second corresponds to a commitment state with a belief
theory Cn({a,—b}) and a disbelief theory Cn(). (W24, D2;) has two PJ-extensions:
(Cn({a,b}),Cn({a,b})) and (Cn({a,—bd}), Cn({a,~b})). The first corresponds to a
commitment state with a belief theory Cn({a,b}) and a disbelief theory Cn(). The
second corresponds to a commitment state with a belief theory Cn({a,—b}) and a
disbelief theory Cn().

Notice that the original beliefs ¢ and b appear in a belief theory in the final
belief state.- Notice also that the commitment states we obtain with System BR2
are not identical to the those we obtain when we run the same example with the
sets of constrained theories approach. The latter generates a superset of the set of
commitment states we obtain here, as a consequence of working with deductively

closed theories instead of finite sets of sentences. O

Example 44 Let us reformulate Example 3 from the previous chapter in System

BR2. The initial belief state is given by:
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S0 = ((W0s, D0,), (W04, D04)) where

W0, = {}
DOb — {:TA(-?—of!}
Woq = {}
DOy = {{=DAT l’(:_{f')\T}

(W0, D0;) has single PJ-extension: (Cn({b — f}),Cn()). This cerresponds to a
commitment state with a belief theory Cn({b — f}) and a disbeliel theory Cn().
(W04, D04) has a single PJ-extension: (Cn({b — f}),Cn({b — [})). This too
corresponds to a commitment state with a belief theory Cn({6 — f}) and a disbelief

theory Cn().

After contracting f from S0 we obtain:

S1 = ((W1,, D1,),(W1la, D1y)) where

Wi, = {}
D1, = {TAG=)) min=1)y
Wils = {}
. ‘b—v_f) =-f
‘Dld - { (b—s;‘\) }

Revising S1 with b, we obtain:

52 = (W2, D2;),(W2q, D24)) where
w2, = {}
D2b = {:TA(b_F’f)/\b’ :—'fA(b——»_f)/\b}

-

W2s = {}
— [Hb=FINSf bA-
D2q = {551, 2530

(W24, D2y) has a single PJ-extension: (Cn({b — f,b}),Cn()). This corresponds
to a commitment state with a belief theory Cn({b — f,b}) and a disbelief theory
Cn(). (W24, D2;) has two PJ-extensions: (Cn({b — f,-f}),Cn({b — [})) and
(Cn({b,—f}),Cn({b})). The first corresponds to a commitment state with a belief
theory Cn({b — f}) and disbelief theory Cn({—f}). The second corresponds to a
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commitment state with a belief theory Cn({d}) and a disbelief theory Cn({—f}).
Notice that each of the three candidate outcetnes discussed in Example 3 appears as

distinct belief theories in the final belief state. O

Example 45 Let us reformulate Example 13 in System BR2. The initial belief state

is given by:

= ((W0,, D0), (W04, D0g)) where

wo, = {}
DOb = {"TI}
Wo0q = {}
D0y = {F)

The initial belief state is thus empty.

After contracting b from S0, we obtain:

Sl = ((Wlb,le),(Wld,Dld)) where

W1, = {}
Dl = (5,2
Wi = {}

D1, = {:TQ_‘b}
- Further contracting —-b from S1, we obtain:

52 = ((W2s, D2),(W2a, D24)) where

W2, = {}
D2, = {if, 24T, 201}
W2, = {}

D2d — {:T/\—-b l/_}g}

(ItV2b,D2;,) has two PJ-extensions: (Cn({-b}), C’n({ﬂb})) and (C’n({b}) Cn({b}))
The ﬁrst ‘corresponds to a comrmtment state with a belief theory Cn() and a disbe- v

lief theory Cn({-b}). The second corresponds to a commitment state with a belief
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theory Cn() and a disbeliel theory Cn({b}). (W24, D24) has two PJ-extensions:

(Cn({-b}),Cn()) and (Cn({b}), Cn()). The first corresponds to a commitment state
with a belief theory Cn() and a disbelief theory Cn({—0}). The second corresponds to
a commitment state with a belief theory Cn() and a disbeliel theory Cn({b}). Note
that, unlike System BRI, the conflicting disbeliefs in b and = appoz\.r in distinet,
disbelief theories in the final belief state. This stems from the facility in System BR2

to retain conflicting disbeliefs, which is not possible in System BR/. O

Since no belief or disbelief is discarded in System BRZ, the following observations
can be made.
Observation: Revision in System BR2 satisfies Revision-1 through Revision-4.

Observation: Contraction in System BR2 satisfies Contraction-1 through Contraction-

Since System BR2 operates on finite sets of sentences as opposed to deductively
closed theories, Revision-5 and Revision-G, as well as Contraction-5 and Conlraclion-6
are not satisfied. However, a weaker version of these conditions can be satisfied. The
weakening involves taking a syntactic version of the universe of belief and disbheliefs.
We shall refer to these syntax-based variants as the potential belief base and the
potential disbelief base. The potential belief ba.ée o4+(S) of a belief state S consists of

all explicitly represented candidate beliefs in S and is defined as follows:
o+((Ws, Dy), (Wy, Da))) = {z | Z2¢ € D4}

Note that in the definition above, it is sufficient to refer to Dy since every candidate
belief will appear as the consequent of some default rulein Dy. The potential disbelief

base o_(S) of a belief state S consists of all explicitly represented disbeliefs in S and

is defined as follows:
0'—(((va7 Db)a(Wd, Dd))) = {IB I ‘%ﬂ < Db}

It is sufficient to refer to D, in the definition above since every candidate disbelief

will appear as a consequent of some default rule in Ds.
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Observation: Revision in System BR2 salisfies Revision-5 and Revision-G with
the polential belief base and potential disbelief base substituted in place of the universe
of beliefs and universe of disbeliefs respectively.
Observation: Coniraction in System BR2 satisfies Contraction-5 and Contraction-
G with the polential belief base and potential disbelief base substituted in place of the

universe of beliefs and universe of disbeliefs respectively.

4.8 BR2: Related Work

System BRI improves on related approaches such as [6], [5], [37], [53] since none
of these retain muitiple sets of disbelief, and since mest de not explicitly represent
disbeliefs at all. In other respects, the observations made while comparing System
BR1 with these systems apply, since System BR2 is a generalization of System BRI.

A few comments on the status of these systems with respect to the foundational
versus coherentist taxonomy are in order. The line dividing these two epistemologies
is thin, and it is often difficult to make a definitive classification of a given approach.
S’uch is the case with Systems BRI and BFE2. Both systems essentially take finite
representations of beliefs as sets of sentences instead of deductively closed theories.
This provides a foundational flavour, since the explicitly represented beliefs serve as
the self-evident beliefs, while all derived beliefs rely on these for justification. On
the other hand, the focus of these two systems is on maintaining coherence in the
corpus of explicitly represented beliefs in a belief state, which provides « foundational
flavour. In fact, the focus on maintaining justifications is minimal - it is limited to

represented belief justifying derived ones.



Chapter 5
Implementation Strategies

Essential to the development of practical systems for belief change are strategies for
efficient implementation. In the preceding chapters, we have presented a competence
theory which provides a specification of belief change in the ideal case under the min-
imal change requirement. The competence theory accounts for practically motivated
concerns, such as the need for defining belief change operators in the iterated case as
well as the need to account for belief inputs which are uncertain or have low credi-
bility. Providing, as it does, a specification of thé ideal case, the competence theory
is not computationally viable. We have presented the design of two systems, based
on this comprtence theory, which are computationally viable. Both systems use the
language of PJ-default logic to represent a belief state. We have identified some prac-
tical benefits of using such a belief representation language, such as the facility of
using lazy evaluation approaches. Nevertheless, computing extensions of PJ-default
theories is intractable in the general case. In this chapter, we shall outline strategies
for efficiently implementing systems based on PJ-default logic, specially in situations
where exponential time solutions are impractical. We shall present two classes of
strategies. First, we shall define translations that permit the use of techniques from
the area of partial constraint satisfaction in computing default extensions. Second,
we shall define anytime procedures for computing partial extensions such that the

quality of these partial extensions improve with time. The first sct of techniques are

113
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useful both for the belief maintenance task, i.e., in obtaining a representation of the
new belief state after a belief change step, as well as for the theory preference task,
i.e., in identifying the applicable commitment staie. Notice that in both Systems
BR1 and BR2, the belief maintenance task involves computing maximal consistent
subsets of sets of sentences, which reduces to the problem of computing default ex-
tensions. As well, the theory preference task necessarily requires that commitment
states, i.e., default exténsions, be computed. The second set of techniques is useful
only for the theory preference task, since partial solutions can affect the correctness
of subsequent belief change steps in the case of the belief maintenance task.” Both
classes of techni.ques presented in this chapter are independently useful in a variety
of information processing applications.

Default reasoning and the constraint satisfaction problem (CSP) formalization
have independently emerged as major problem solving paradigms in Al and related
areas. Very little has been done, however, to relate these two seemingly unrelated
areas of inquiry. Recently, researchers have begun looking at situations, within the
CSP paradigm, in which the problem is over-constrained (and thus admits no com-
plete solution) or where resource-bounds do not permit the identification of complete
solutions. Such problems are often termed as partial constraint satisfaction (PCSP)
problems. Our first step in this chapter will be to identify common structure between
the constraint satisfaction problem and the problem of default inference by reformu-
lating propositional default inference as a problem of partial constraint satisfaction.

Establishing such a connection is useful in several ways:

e A large corpus of results from the PCSP area can be directly applied for de-

signing efficient algorithms for default inference.
e Tractable cases for PCSP suggest tractable classes of default theories

e Most PCSP techniques are suitable for resource-bounded computation and can .

form the basis for algorithms for resource-bounded default inference

Since default inference is inherently computationally hard [30] and practical appli-
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cations, especially time-bounded ones, may require that some notion of approximate
inference be used. Any approximation algorithm must provide uscful partial results
and the trade-offs involved must be clearly identified. Approximate default inference
has received scant attention in the literature (the notable exception being the work
of Cadoli and Schaerf [8] in which they improve on the complexity of reasoning with
Reiter’s default logic by using consequence relations that are sound and incomplete
in one case and complcie but unsound in the other).

Real-time algorithms are usually designed to satisfy a variety of application-
specific requirements: some are required to provide partial, but useful results when-
ever they are stopped while others have the additional requirement that their partial
results improve with time. Anytime algorithms are a useful conceptualization of
processes that may be prematurely terminated whenever necessary to return useful
partial answers, with the quality of the answers improving in a well-defined manner

with time. Dean and Boddy [12] define an anytime algorithm to be one which:

e Lends itself to preemptive scheduling techniques.
¢ Can be terminated at any time and will give some meaningful answer.

e Returns answers that improve in some well-behaved manner as a function of

time.

In the rest of this chapter, we shall informally refer to the process of an anytime
algorithm progressively computing solutions of measurably improving quality as the
anytime progression.

Here, we shall develop a repertoire of meaningful partial solutions for default
inference problems and use these as the basis for specifying general classes of anytime
default We shall then exploit the connection between PCS problems and default
inference to identify a large space of possible algorithms for default inference that may
be based on partial constraint satisfaction techniques, which are inherently anytime
in nature. In effect, these algorithms will permit us to compute partial commitment

states with a well-specified measure of the distance of the partial commitment state
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from the exact commitment state, together with the guarantee that this distance
will get monotonically shorter as more time is spent identifying a commitment state.
Notice that this set of techniques is useful only in tiie theory preference component
of belief change. Using partial computation in the belief maintenance component can
affect the correctness of subsequent belief state representations.

In the rest of this chapter, we shall refer to the Er compcnent of a PJ-extension
as an ezlension. |
Part of the material on {".> connection between PCS problems and default infer-

ence has appeared in [26].

5.1 Partial Constraint Satisfaction

Partial constraint satisfaction techniques [18] (or PCS techniques) were developed
for handling overconstrained constraint satisfaction problems. In other words, when
a constraint satisfaction problem admits no solution that satisfies all the specified
constraints, a partial constraint satisfaction technique will enable us to identify the
"best” partial solution, where the notion of ”best” can be defined using a variety of
metrics. For example, one notion of the "best” partial solution could be the solution
that satisfies the maximal number of constraints. Partial constraint satisfaction with
this metric is often termed as mazimal constraint satisfaction. AGiven the ‘difﬁculty of
obtaining a priori guarantees on the existence of solutions that satisfy all constraints,
it is clear that PCS techniques have a broader applicability than classical CSP tech-
niques. PCS btechniques are also suitable for solving problems in resource-bounded
situations, such as when the time available for computing a solution is bounded. PCS
techniques can help us identify solutions that are ”"good enough” or ”close enough”
to the complete solution in the available time.

Formally, a partial constraint satisfaction problem specification consists of a finite
set of variables X = {Xj,...,X,}, each associated with a domain of discrete values,

D,,...,D,, and a set of constraints C = {C},...,Cn}. Each constraint is a relation
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defined on some subset of the set of variables. Formally, a constfaint C; consists
of the constraint-subset S; = {Xi,...,Xi;,}, where §; € X, denoting the subsct
of the variables on which C; is defined and the relation rel; defined on S§; such that
rel; C© Dy x...x Dy . We shall define a solution of a maximal constraint satisfaction
problem ( or a mazimal selution) to be an assignment of legal values (i.c. values from
the respective domains) to ¢ach X; € X such that the set of satisfied constraints
C’ C C is such that there exists no £ where C’' C C” C C which is also satisfied by
an assignment of legal values to all variables.

In this paper, we shall consider a variant of the standard PCSP formulation, which
we shall refer to as prioritized-PCSP. In addition to the standard PCSP specification
described above, a prioritized-PCSP specification contains a partial order = defined
on the set C of constraints. We say that a constraint c is preferred to a constraint ¢’
iff ¢ > . If for some ¢ € C there exists no ¢’ € C such that ¢’ > ¢, then c is referred
to as an essential constraint. All elements of C which are not essential constraints
are referred to as peiential constraints. Every solution to a prioritized-PCS problem
must satisfy all essential constraints, although potential constraints may be violated.
A solution s to a prioritized-PCSP is said to be preferred over another solution s’ iff
there exists a constraint c satisfied by s and a constraint ¢’ satisfied by s’ such that
c is preferred to ¢’ and there exists no ¢” satisfied by s’ and ¢” satisfied by s such
that ¢” is preferred to ¢”’. A solution s is said to be dominant iff there exists no other

solution s’ such that s’ is preferred over s.

5.2 Mapping default theories to PCS problems

In this section, we shall summarize our previous work [26] on translations from THIS-
ORIST systems and PJ-default theories to prioritized-PCSP specifications. We shall
then present results relating dominant maximal solutions of these translations to the
corresponding THEORIST or PJ-default extensions. The simplest case is the trans-
lation of a THEORIST system. |
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Definition 11 [26] Let PCSPru,c) denote the translation of a THEORIST system

(F, H,C) to a prioritized-PCSP specification. PCSPruc) is a 4-tuple < X(ru.cy, D(Fu.0), C(FH,
where X(ru.c) s the set of variables, D(pu,c) is the set of domains for each of the
variables, C(r,i,c) is the set of constraints and >(r,H,c) s the partial order defined on
C(ru.c)-

o Xirucy= Herbrand-Base(FFU HU C).

o Dirucy = {D1,...,Dn} where each D; = {T'rue, False}.

e Cirucy)={0=z) |z e FUu{QUz) |z € H}U{Q(z) |z € C},

where Q(z), for some propositional sentence x is a relation on the propositional

letters in = such that each tuple in the relation represents a truth assignment to

these propositional letters which satisfies x.
e Vei,c2 € Ciruc), a1 = c2 iff:
1., =Q(z) s.t. £ €F, c2=0(y) s.t. y€ H, OR

2. c,=0z)s.t. z€C,c2=Qy) s.t. y € H.

The translation involves treating each propositional letter in the Herbrand base of
the THEORIST system as a variable for the prioritized-PCSP. Each constraint Q(z)
can be viewed as the relation corresponding to the satisfying truth assignments in the
truth-table for the pfopositional sentence z. The partial order assigns a higher priority
to constraints obtained from elements of F and C over those obtained from elements
of H. Thus the former constitute the essential constraints, while the latter correspond
to the potential constraints. Every solution will satisfy constraints obtained from F

and C , but not every constraint obtained from H.

Theorem 20 [26] Let c, denote the subset of C(r n,c) that is satisfied by a dominant
mazimal solution of PCSPnc). Let he, ={z |z € H,Q(z) € ¢;}. Then FUh,, is
a mazimal scenario for the THEORIST system (F, H,C).

Proof outline: Assume there exists some h., such that F'U k., is not a maximal

scenario. Since h., C H, two cases are possible:
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1. There exists some h where k., < h such that F' U &k is a maximal scenario.

Consider some z € h — h.,. Since c, is satisfied by a maximal solution and
since = U h,, is satisfiable, it must be true that 2 € c,. This contradicts our

assumption.

2. FUh,, =1. This is impossible since the constraints corresponding to h., are

satisfied in the dominant maximal solutioui.
A similar translation can be defined for PJ-default theories.

Definition 12 [26] Let PCSPuw,py denote the translation of a PJ-defaull theory
(W, D) toa prioritized-PCSP specification. PCSPuy,py is a 4-tuple < X@wv,p), Dav,py, Cav.oy, =,
where X(w,py is the set of variables, Dw,p) ts the set of domains for cach of the vari-

ables, C(w,p) is the set of constraints and =(w,p) s a partial order defined on Cw,py.
o X(w,py =Herbrand-Base(W U {a | 222 € D} U { | @08 e DY).
o Dwpy= {Ds,...,D,} where each D; = {True, False}.
o Cowpy = {Qz) |z € WU {Q(aAB)|2Lf e D},
where Q(z) is as defined in Definition 2.

o Yey,c0 € C(pV,D), C1 = (W,D) C2 iff g = Q(:B) s.k. T € W and c; = Q(a A [j) s.l.
whB e p,

Theorem 21 [26] Lei c, denote the subset of C(w,py that is salisfied by « dominant
mazimal solution of PCSPuw,py. Let h,, = {a | —9‘;’\2 € D,QaxANPB) € c;}. Then
Th(W U h.,) is an extension for the PJ-default theory (W, D).

Proof: Follows from Theorem 14 and Theorem 20.

The prioritized-PCSP formulation permits us to extend these results for systems
with default priorities such as Brewka's preferred subtheories approach [7]. Let a
prioritized THEORIST system (F, H,C,>) be a THEORIST system (F, [{,C') with a
partial order > defined on H such that for h, A’ € H, h is said to be preferred over A

if h > h'. A scenario S is preferred over another scenario 5’ if S contains a hypothesis
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that is preferred over some hypothesis contained in S’ and S’ does not contain any
hypothesis that is preferred over some hypothesis contained in S. A dominant scenario
is one for which there exists no other scenario that is preferred over it. Consider a
prioritized-PCSP translation of this system such that the ordering > (r.m,c) is extended
such that a constraint obtained from A is preferred over a constraint obtained from
h' if h is preferred over h'. We do not present the full translation here for brevity,
but it is easy to see that the following result holds.

Observation: Let ¢, denote the subset of C(r,i,0,>) that is satisfied by a dominant
maximal solution of PCSPruc,>). Let he, = {z | z € H,Q(z) € ¢;}. Then F'U ke,
is a dominant maximal scenario for the THEORIST system (F, H, C).

Given these translations, the basic branch-and-bound algorithm for maximal con-
straint satisfaction presented by Freuder and Wallace in [18] can be applied for
computing default extensions with a few minor modifications. The Freuder-Wallace
branch-and-bound algorithm involves a backtrack search through the space of possi-
ble solutions. Three working parameters are maintained: the current best solution
(i.e. the variable instantiation that violates the least number of constraints), the
current sufficient bound (if a solution violating this or a fewer number of constraints
in obtained, it is considered to be good enough and search stops) and the current
necessary bound (this gives the number of constraints violated by the current best
solution - if a branch of the search tree turns out to violate a higher number of con-
straints, then it is eliminated from consideration). An a priori»va,lue for the sufficient
bound may be known (for example, if it is known that no solution violating less than
2 constraints is possible, the sufficient bound can be set to 2); otherwise, the sufficient
bound is initially set to 0. An a priori value for the necessary bound may also be
known (for instance, we may not be willing to settle for a solution violating more than
n constraints); otherwise its value is initially set to infinity. Unlike backtrack search
for standard CSP, the Freuder-Wallace branch-and-bound algorithm does not treat
a constraint violation as a failure of a search path; instead, it continues expanding a

search path until the necessary bound is violated and returns the current best solu-
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tion at the end of search. The modification that we require involves redefining the
notion of acceptable constraint violations based on the partial order defined on the
set of constraints. Whereas the Freuder—Wallace algorithm permits violation of any
constraint, our modification permits the violation of only the potential constraints. A
violation 6f an essential constraint results in the failure of the current search path, as
in standard CSP, whereas the violation of a potential constraint is tolerated as long
as the necessary bound is not exceeded. Default extensions are obtained by flagging

each satisfied potential constraint while computing a maximal solution.

Example 46 Consider a PJ-default theory (W, D) where:
o W = {a}

e D= {di,d;} whered; = ‘E”\T"c and dg = L"cl'l

The corresponding translation PCSPyy,p) is as follows:

o Xwp) ={a,b,c}.
e D, = {T,F} for every x € X(w,p;-
o Cw,p) = {c1,c2,c3} where:
— ¢ is a relation defined on {a} and consists of a single tuple {T}.
— ¢, is a relation defined on {b,c} and consists of a single tuple {T, F'}.

— ¢3 is a relation defined on {b,c} and consists of a single tuple {F,T}.

® ¢ > ¢ and ¢y > c3.

(W, D) has two eztensions Th(a,b) and Th(a,c). PCSPw,p) has two dominant mazi-
mal solutions: {a =T,b=T,c=F} and {a =T,b= F,c=T}. In the first solution,
constraint ¢; corresponding to default d, is satisfied while c; corresponding to dy s

not. In the second solution, the reverse is true. Thus it is easy to see why Theorem

3 holds.
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Freuder and Wallace [18] have identified a maximal constraint satisfaction algo-
rithm that is linear in the number of variables and quadratic in the maximum domain
size for PCSP’s with tree-structured constraint graphs, extending a previous similar
result for tree-structured CSP’s. Thus for default theories (either PJ-default theories
or THEORIST systems) whose prioritized-PCSP translations have tree-structured
constraint graphs, an extension can be identified in time linear in the number of
propositioninl jetters in the Herbrand base of the theory, since the demain size is

constant for every variable and equals 2.

Theorem 22 [26] A default eztension can be computed in O(n) time, for default
theories (either PJ-default theories or THEORIST systems) with priovitized-PCSP .
translations whose constraint graphs are tree-structured, where n is the cardinality of

the Herbrand base of the default theory.

Proof: The proof follows directly from the observation that the Freuder and
Wallace algorithm computes a default extension in the czse the constraint graph

corresponds to the PCSP translation of a default theory.O

5.3 A Framework for Anytime Default Inferénce

5.3.1 Partial Solutions

The essence of an anytime algorit;hm is to exploit some measure of progress towards
a goal, in order to estimate the quality of a current solution at any time during the
computation. Within the framework of nonmonotonic reasoning, there are several
possible formulations of problem and solution. For example, Lin and Goebel [33]
propose six different methods of using hypothetical reasozing to produce six different
kinds of prediction, and show transformations to circumscription based on MILO
resolution [43]. They distinguish, for example, between a weak prediction that is
~a consequence of only one extension of a default theory, versus a formula that is a

consequence of all extensions of that same default theory.
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Similarly, we here propose a simpler but useful set of nowmonotonic reasoning
solutions, which provide us with a range of problem-solving behaviours over which
anytime algorithms can be defined. We shall consider solutions to default inference

problems in the following sense.

Definition 13 A solution for a default inference problem, given a default theory

(W, D), is an answer to any of the following queries:

e Coherence: Compute an estension of (W, D).

e Set-membership: Determine if a given formula is an element of any extension

of (W, D).

o Set-entailment: Determine if a given formula is an element of all extensions of

(W, D).

Note that set-membership is a kind of reckless version of the more conservative
set-entailment. All three notions of solution distinguish different potential problem-
solving behaviours. One could use coherence as the speciﬁéation for the computation
of belief states (cf. [23] [25]). As with Lin and Goebel [33], set-membership and
set-entailment can be used as the basis for many different kinds of problem solving,
including diagnosis and prediction. |

In the context of propositional default inference, thére are at least two immedia}t‘ely
obvious ways of defining partial solutions: those which consider only a subset of the
set of propositional letters used in the given default theory, and those which look
at a subset of the default theory itself. We shall call these a-partial solutions and
B-partial solutions respectively. A partial solution may potentially fail to take into
consideration the entire set of facts W in a default theory (’W, D). Informally, we shall
call a partial solution W-preserving only if it takes into account all the constraints
imposed by W in a default theory (W, D). We shall be primarily interested in W-
preserving solutions, but shall point out situations where useful classes of solutions

can be W-preserving only in a limited sense.
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To formalize a-partial solutions, we need to define a precise notion of what it
means to restrict a default theory based on a set of propositional letters. In the
following, P stands for the set of propositional letters in the language £. A((W, D))
refers to the set of propositional letters appearing in the default theory (W, D). Dp
stands for the set of possible default theories (W, D) such that A((W, D)) & P. We
shall assume that every element of W as well the justifications and consequents of

every default rule in D is written in conjunctive normal form.

Definition 14 A restriction of a default theory is a function R: Dp x2F — Dp such
that M(R((W, D), S)) € S where (W, D) € Dp and S € 27, where R can take one of

the two following forms:

e If R is a strong restriction, then for every disjunction ¢ s.t. ¢ € W or ¢ € 3
where :Yﬁ- € D or ¢ € v where -g eD,ifo=anVarV...Va, and if there
exists any «; s.t. o; € S, if a; is a positive literal or —o; € S, if o; is a negative

literal, then ¢ is replaced by T in R((W, D), S).

o If R is a weak restriction, then for every disjunction ¢ s.t. ¢ € W or ¢ €
where %e D or ¢ € v where ,—YB— €D, ifp=a1VarV...Va, and for every «;
s.t. o; € S, if a; is a positive literal or —o; € S, if a; is a negative literal, ¢ is

replaced by a; Vaz V...ci—1 V aip V...V ay in R((W, D), S).

Weak and strong restrictions reflect two distinct intuitions on what it means to
consider a part of a theory that relates to a subset of the set of propositional letters
appearing in a theory. Strong restrictions reflect the intuition that if a propositional
letter, whose truth status we are indifferent to, appears in a disjunction, then the
disjunction evaluates to true by virtue of our indifference sanctioning the assumption
that the propositional letter (or its negation, if it appears in the disjunction in negated
form) evaluates to true. Weak restrictions reflect the intuition that if a propositional
letter appears in a disjunction (in positive or negated form), then we are interested
in the portion of the disjunctioﬁ that does not involve this propositional letter. It

appears that there are no first principles argument for preferring one form of restric-
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tion over the other. An actual choice will probably be driven by application-specific

considerations.

Definition 15 An a-partial solution with respect to a set S C P for a default in-
ference problem given a default theory (W, D) is a solution for a default inference

problem given a default theory R((W, D), S).

An a-partial solution is thus a solution which considers only those portions of the
default theory which involve some subset of the set of propositional letters which ap-
pear in the original default theory. An a-partial default inference procedure, when pre-
maturely terminated, would return an a-partial solution with respect to the subsct of
the propositional letters it has been able to consider this far. Such a procedure would
return better solutions if it is stoppéd later, since it would be able to consider a larger
subset of the set of propositional letters. A priority relation defined on A((W, D))
could define the anytime progression, with higher priority propositional letters being
considered before lower priority ones. a-partial procedures are W-preserving in a

weak sense, since they only consider W restricted to the set of propositional letters

of interest.

Definition 16 A B-partial solution to a default inference problem, given a default
theory (W, D) is a solution for a default inference problem given a default theory

(W', D" where either W C W or D' € D or both.

Thus, a B-partial solution is one which looks at some subset of the default theory,
while considering the entire set of propositional letters. Usually, only W-preserving
solutions are of interest, so only subsets of I are considered. A f-partial default
inference procedure, when prematurely terminated, would return a solution which
respects some subset of D. Such a procedure would return better solutions if it is
stoppedlater, since it would be able to consider a larger subset of the set of the set of
defaults. A priority relation defined on (W, D) could define the anytime progression,

with higher priority defaults being considered before lower priority ones.

H
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A third variety of partial solution is conceivable: those which consider a subset
of the set of propositional letters as well as a subset of the set of defaults. We shall

refer to these as af3-partial solutions.

Definition 17 An af-partial solution with respect to a set S C P and a set of
defaults D' C D for a defauit inference problem given a default theory (W, D) is a
solution for a default inference problem given a default theory R((W, D'), S).

5.3.2 Anytime procedures

In this section, we present a set of generalized procedures that return o and G-partial
solutions to coherence, set-membership and set-entailment queries. These procedures
lay the foundations on which actual strategy for partial solution computation should
be based. The formal properties of these procedures, stated at the end of this section,
explicate the precise nature of rationality guarantees that each of the two classes of
partial solutions provide. The performance of these procedures can be optimized in
a variety of general as well as implementé.tiomspeciﬁc ways. However, we do not go
into such details here, since our purpose is merely to present the general nature of
partial solution computation strategies.

We assume that a procedure called COMPUTE-EXTENSION exists, which takes
a default theory and a sequence of default rules and returns exactly one extension,
obtained by attempting to fire each default rule in the sequence provided. The idea
is simply to refer to some machinery for generating extensions, with a guarantee that
all extensions will be eventually generated (this is achieved by providing different
sequences of default rules in the input). A varigty of techniques for doing this have
been described in the literature on default reasening, and we shall therefore not
describe this procedure in any further detail. The input sequence of propositional
letters in the ALPHA class of algorithms determines the order in which these letters
are considered. The input sequence of default rules in the BETA class of algorithms
similarly determines the order in which progressively larger subsets of default rules

are considered. Notice that the procedures defined in this section do not require
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any commitment to weak or strong restriction functions for default theories. That

decision can be guided by application-specific considerations.

Algorithm 1 ALPHA-COHERENCE
Input: A default theory (W,D), a logical variable INTERRUPT and a sequence
< l,la,..., 1. > containing every element of A((W, D)).

Output: A set of formulas EXTENSION and a set of propositional letlers S C
AM((W, D)).

S={h};2=1
do while NOT(INTERRUPT) and S C A((W, D))
S=8SuU{n};i=:+1.
EXTENSION=COMPUTE-EXTENSION(R((W, D), 5),< dy,da, ... ,dm >)

where < dy,da, . ..,dm >) is any arbitrary permutation of the elements of D
return < EXTENSION, S >

stop

Algorithm 2 ALPHA-SET-MEMBERSHIP
Input: A default theory (W,D), a logical variable INTERRUPT, a formula F and a
sequence < ly,lz,...,l, > containing every element of A((W, D)).

Output: A logical variable IN-EXTENSION and a set of propositional letlers S5 C
A((W, D)).

S={h};i=1
do while NOT(INTERRUPT) and S C A((W, D))
S=8SU{lip}si=1+1 .
for every permutation < dy,dz,...,dm >) of the elements of D
EXTENSION=COMPUTE-EXTENSION(R((W, D), S), < dy,da,...,dn >)
if (~FYUEXTENSION is unsatisfiable then |

return < IN — EXTENSION=TRUE,S >
stop
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return < IN — EXTENSION=FALSE,S >
stop

Algorithm 3 ALPHA-SET-ENTAILMENT Input: A default theory (W,D), a log-
ical variable INTERRUPT, a formula F and a sequence < l3,l5,...,{, > containing
every element of A({W, D)).

Output: A logical variable IN-ALL-EXTENSIONS and a set of propositional letters
S C A((W, D)).

S={L};i=1
do while NOT(INTERRUPT) and S C AM(W, D))
S=SU{lifa}i=7+1
IN-ALL-EXTENSIONS=TRUFE
for every permutation < dy,da,...,dn >) of the elements of D
EXTENSION=COMPUTE-EXTENSION(R((W, D), S), < di,da,...,dn >)
if {~F}UEXTENSION is satisfiable then
IN-ALL-EXTENSIONS=FALSE
return < IN — ALL — EXTENSIONS,S >
stop

Algorithm 4 BETA-COHERENCE
Input: A default theory (W,D), a logical variable INTERRUPT and a sequence

< dy,ds,...,d, > containing every element of D.

Output: A set of formulas EXTENSION and a set of default rules S C D.

S={d};i=1

do while NOT(INTERRUPT) and S C D
S=SU{diq1};i=1+1.
EXTENSION=COMPUTE-EXTENSION((W, S), < di1,dz2,...,dn >)

where < di, dg, ...ydm >) is any arbitrary permutation of the elements of S
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return < EXTENSION,S >
stop

Algorithm 5 BETA-SET-MEMBERSHIP
Input: A default theory (W,D), a logical variable INTERRUPT, a formula I and a
sequence < dy,dz,...,d, > containing every element of D.

Output: A logical variable IN-EXTENSION and a set of default rules S C A((W, D)).

S={d1};i=1
do while NOT(INTERRUPT) and S C D
S=85U{din};i=i+1
for every permutation < dy,d2,...,d, >) of the elements of S
EXTENSION=COMPUTE-EXTENSION(R((W, D), S),< d1,dz,...,dm >)
if {-F}UEXTENSION is unsatisfiable then

return < IN — EXTENSION=TRUE,S >
stop

return < IN — EXTENSION=FALSE,S >
stop

Algorithm 6 BETA-SET-ENTAILMENT
Input: A default theory (W,D), a logical variable INTERRUPT, a formula F and a
sequence < di1,d,,...,d, > containing every element of D.

Output: A logical variable IN-ALL-EXTENSIONS and a set of default rules S C D.

S={d};i=1
do while NOT(INTERRUPT) and S C D
S=SU{dip1}i=:1+1
IN-ALL-EXTENSIONS=TRUE
for every permutation < dy,ds,...,dn >) of the elements of S
EXTENSION=COMPUTE-EXTENSION((W, D), < d,d2, ... ,dmn >)
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if {-F}YUEXTENSION is satisfiable then
IN-ALL-EXTENSIONS=FALSE
return < IN — ALL — EXTENSICNS,S >
stop

We can state some fairly obvious properties of the above algorithms. We shall use
thé term arbitrary termination to denote the setting of the input variable INTER-
RUPT to TRUE at any point between start and completion of an anytime algorithm.
E(W, D) stands for the set of extensions of the default theory (W, D).

Observation:

1. Let < EXTENSION,S > be the output for some arbitrary termination of
the algorithm ALPHA-COHERENCE, given a default theory (W,D) and a

sequence < I,ls,...,I, > composed of every element of A((W,D)). Then
EXTENSION € E(R((W, D), S)).

2. Let < IN—-EXTENSION,S > be the output for some arbitrary termination
of the algorithm ALPHA-SET-MEMBERSHIP, given a default theory (W, D),

a formula F and a sequence < lj,ls,...,l, > composed of every element of

A(W, D)). Then e : (e € E(R((W, D), S))) A (e = F).

3. Let < IN—ALL—-EXTENSIONS, S > be the output for some arbitrary ter-
mination of the algorithm ALPHA-SET-ENTAILMENT, given a default theory

(W, D), a formula F and a sequence < l,l5,...,l, > composed of every element

of A((W, D)). Then Ve : (e € E(R((W, D), 5))) implies e = F.

4. Let < EXTENSION , S > be the output for some arbitrary termination of the
algorithm BETA-COHERENCE, given a default theory (W, D) and a sequence

< dy,ds,...,d, > composed of every element of D. Then EXTENSION €
E(W,S).

5 Let < IN—EXTENSION,S > be the output for some arbitrary termination
of the algorithm BETA-SET-MEMBERSHIP, given a default theory (W, D), a
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formula F and a sequence < d;,dz,...,d, > composed of every element of D.

Then Je: (e € E(W,5) A (e = F).

6. Let < IN — ALL — EXTENSIONS,S > be the output for some arbitrary
termination of the algorithm BETA-SET-ENTAILMENT, given a default the-
ory (W, D), a formula F and a sequence < d;,ds,...,d, > composed of every
element of D. Then Ve : (e € E(W,S) implies e |= F.

5.4 Anytime strategies based on PCS techniques

In this section, we shall attempt to delineate the space of possible anytime procedures

for default inference that may be based on PCS techniques. Two observations are of

interest here:

e PCS techniques based on breadth-first backtrack search correspond directly to
procedures for computing o-partial solutions. Progressively larger subsets of
the set of variables (and herce, via our translation, of the set of propositional
letters) are considered in progressively deeper breadth-first passes through the
search tree. Arbitrary termination of such procedures will return solutions
which are correct with respect to the set of variables (and hence, propositional

letters) considered up to the most recent complete breadth-first pass through

the search tree upto a certain depth.

e PCS techniques based on heuristic repair techniques, in the sense of [36], cor-
respond directly to procedures for computing B-partial solutions. An initial
assignment of values to variables (which must be consistent with essential con-
straints for W-preserving solutions) is repaired by progressively considering

larger subsets of the set of potential constraints (and hence, progressively larger

subsets of the default rules).

This does not preclude the possibility of using heuristic repair techniques for a-

partial solutions or using breadth-first backtrack search for B-partial solutions. The
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- correspondence would not be as direct, however.

For brevity, we shall present only an instance of the first class of algorithms in
detail.

In the following, we define an algorithm for returning a-partial solutions to de-
fault inference problems. We define a single procedure for answering the three dif-
ferent kinds of queries by providing as input a variable QUERY which can take on
any value from {COHERENCE, MEMBERSHIP, ENTAILMENT}. The algorithm
calls a procedure PCS-BFS (for partial constraint satisfaction breadth first search).
INTERRUPT operates as a global variable that the procedure PCS-BFS refers to.
We assume that the variable SearchFrontier contains a set of pairs, where the first
clement of the pair is a partial solution (i.e., a set of variable assignments) and the
second element is a set of constraints that this partial solution violates. We also
assume that a procedure PCSP-Translate exists for translating a default theory into
a PCSP specification. We assume that the priority relation on the constraints so gen-
erated, < partitions the set of constraints into two classes: Cw, the set of constraints
obtained from the elements of W and Cp, the set of constraints obtained from the
elements of D. MazConsiraints is the set of subsets of Cp that correspond to a max-
imal solution at any point. As before, the input variable sequence can be used to
regresent a priority relation on the set of propositional letters in the default theory.
The variable QC (for query constraint) contains the translation of the formula —F

into a constraint in the same sense as described earlier.

Algorithm 7 ALPHA-PCS

Input: A default theory (W, D), a formula F, a logical variable INTERRUPT, a vari-

able QUERY, a sequence < v1,V2,...,0, > containing every element of A((W, D)).
Output: A 4-tuple < EXTENSION, MEMBER, ENTAILED, VARIABLES >. EX-
TENSION contains some element of E(W,D) in case QUERY=COHERENCE and

NIL otherwise. MEMBER=TRUE in case QUERY=MEMBERSHIP and Je : (e €
E(W,D)) A (e = F). Otherwise, MEMBER=FALSE. ENTAILED=TRUFE in case
QUERY=ENTAILMENT andVe:e € E(W,D2) — e |= F. Otherwise, ENTAILED=FALSE.
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VARIABLES contains the set of propositional letters considered in computing the cur-

rent solution.

PCSP=PCS-Translate((W,D))

QC=PCSP-Translate(({-F},{}))

PCS-BFS({< {},{} >}, {},< v1,v2,...,vn >, {}, QUERY, PCSP)
stop

procedure PCS-BFS(SearchFrontier, MazConstraints, VariablesRemaining, VariablesDone,
QUERY, PCSP, QC)
If VariablesRemaining is the empty sequence then
return < MaxConstraints, FALSE,FALSE,VariablesDone >
stop
else
for NewAssignment=v, = TRUE,v; = FALSE, where v, is the first element of the
VariablesRemaining sequence
for each < Soln,ViolatedConstraints >€ SearchFrontier
If INTERRUPT then
return < MazConstraints, FALSE, FALSE,VariablesDone >
stop
else
NewSoln= Soln U NewAssignment
If NewSoln violates no element of Cw then
ViolatedConstraints=subset of Cp that NewSoln violates
NewSearchFrontier=NewSearchFrontier U < NewSoln, ViolatedConstraints >
" MazimalSolns= NewSearchFrontier —{< S,V >|3 < §',V’' >& NewScarchlFronticr s.L.
V'c Vi
MazConstraints={c | ¢ C Tp, there ezists some s € MazimalSolns s.t. s satisfies ¢ and
there is no ¢’ s.t. ¢ C ¢ C Cp s.t. s satisfies ¢’}

If QUERY=MEMBERSHIP and there ezists
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< Soln, ViolatedConstraints >€ MazimalSolns s.t. Soln violutes QC then
return < MazConstraints, TRUE, FALSE, VariublesDone U{v;} >
stop
elseif QUERY=ENTAILMENT and for each
< Soln,ViolatedConstraints >€ MazimalSolns, Soln violates QC then
return < MazConstraints, FALSE, TRUEFE, VariablesDone U{v:} >
stop ‘

else

PCS-BFS(NewSearchFrontier, MazConstraints, < vs,vs,...,vn >, VariablesDone U{v:},
QUERY, PCSP, QC)
stop

Notice that the algorithm above implicitly realizes a weak restriction function for |

default theories.

Observation: Let < MaxConstraints, MEMBER, ENTAILED, VariablesDone

> be the output for some arbitrary termination of algorithm ALPHA-PCS, given a
default theory (W, D).

¢ E(R((W,D),5)) = {Cr(W UJ) |d is the subset of D corresponding to some

element ¢ € MaxConstraints}.

o If QUERY=MEMBERSHIP, then MEMBER=TRUE iff 3e € E(R((W, D), S))
s.t. e = F where F' is the query formula.

e [f QUERY=ENTAILMENT, then ENTAILED=TRUE iff Ve : (e € E(R((W, D), S))) —
(0 &F), where F is the query formula.



Chapter 6

Conclusion

6.1 Contributions

In this dissertation, we seek to provide a framework for the design of practical systems

for belief change. We do this through the following steps:

Competence: The work of Alchourrén, Gardenfors and Makinson {1], [19], provides a
comprehensive and widely accepted competence theory for the process of belief

change. We identify the following major drawbacks in this theory:

e It provides an inadequate account of the process of retracting a belief.
Thus, the addition of a belief is duly recorded in the belief state of an
agent, but the retraction of a belief is never recorded. This can unduly

restrict the space of candidate outcomes of a belief change operation.

e The theory provides no prescription on how beliefs must change when the
belief input is not fully credible. Any approach to handling uncertain, or
less credible, belief inputs should involve a generalization of techniques
applied when the belief inputs are fully credible, instead of requiring a

totally distimct set of techniques.

o It is generally agreed that the principle of informational economy should

guide any strategy for belief change. This requires that beliefs should be
135
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discarded as little as possible while effecting belief change. The compe-
tence theory of Alchourrén, Gardenfors and Makinson seeks to satisfy this
requirement, but with limited success. As a consequence of the belief rep-
resentation scheme and an unduly narrow definition of what constitutes
success for a belief change operation, beliefs may be unduly discarded by

operators defined within this framework.

e The theory does not specify belief change beyond a single step. Several
authors, such as [38], [37] and citeDarwiche94 have sought to address this

question, but their solutions suffer from the previous three problems.

We develop a theory that accounts for each of the problems mentioned above,
and argue that it provides ap adequate set of benchmark tests, as well as a

suitable starting point for implemented belief change systems.

Performance: We present the design of two belief change systems which use a vari-
ant of default logic [14] as the belief representation language. The design of
the first system preceded the development of the our competence theory and
provided the motivation for this theory, by identifying several of the lacunae
in thé existing definition of competence. The second system was developed us-
ing our competence theory as the starting point. These two designs serve to
demonstrate that practically implementable systems that satisfy the require-
ments identified in our competence theory are indeed possible. The use of a
default logic variant has several other pra.ctiycal benefits as well, such as the

ability to incorporate lazy evaluation strategies in computing belief change.

Implementation: Belief change is a computationally hard problem [40], including our
formulation of the problem in the two systems mentioned above. Nevertheless,
practical constraints often require tractable solutions, or procedures that exhibit
resource-bounded rationality [48]. We present a toolkit of two approaches to
address such concerns. First, We deﬁné a mapping from the problem of default

inference to partial constraint satisfaction problems [18]. The mapping enables
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us to apply techniques from the area of partial constraint satisfaction to improve
the efficiency of procedures for computing default extensions, and hence for
computing belief change. Next, we present a set of strategies for computing
meaningful partial results in resource-bounded situations, by defining anytime
procedures for default inference. While much remains to be done in this area, we
believe these strategies can provide the basis for fielded applications of problem

solvers with a significant belief change component.

6.2 Future Work

6.2.1 Reasoning about Static vs. Dynamic Worlds

Revision vs. Update

The close relationship between the problem of belief revision and the problem of
reasoning about action is a well-recognized one [17], [52], [29], [13]. Both problems
involve the question of how to update a set of beliefs (in the case of reasdning about,
action, these beliefs denote our knowledge about the state of the world), in order
to accommodate the effects of some change. The following example is a toy problem
vs}hich shows how the machinery of belief revision can be used to reason about changes
in the world as a result of some action.

Example: Let the initial state of the world, to an agent whose knowledge is
limited to the weather system in a city, be one in which it is not snowing. Let the
agent’s knowledge-base of the physical laws that govern this weather system consist of
a rule that indicates that if it is snowing, it must be cold. The initial belief state of the
agent is thus given by the theory (W, D) where W = {snowing — cold, ~snowing}
and D = {i}. To identify the new state of the world after it starts snowing, we add
the belief snowing to this belief state. The new belief state is given by the theory
(W', D') where W' = {snowing, snowing — cold} and D' = {w} The new

—~snowing

PJ-default theory has exactly one extension which correctly indicates that it must be
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cold now. O

Unlike this example, however, the techniques of belief revision are not always
directly applicable to reasoning about dynamic worlds. Katsuno and Mendelzon [29]
identify two distinct kinds of belief change: revision and update (in the rest of this
report, we shall italicize the two terms whenever we use them in the sense of Katsuno
and Mendelzon). Revision is used to denote the operation o1  odifying a belief state
in the light of new information about a static world, whereas update denotes the
operation of modifying a belief state to incorporate new information indicating that
the world has changed as a result of some action. They explain this distinction ‘:sing
a model-theoretic argument. In revising a knowledge-base ¢ with a new sentence gy,
revision methods that satisfy the AGM postulates select from the models of u, those
that are “closest” to models of ¢, where closeness is defined by an ordering relation
amongst models that satisfies certain conditions. The selected models determine the
revised theory. In updating a knowledge-base ¢ with a new sentence u, for each model
M of ¢, the set of models of p that are closest to M are selected. The resultant
knowledge-base is determined by the union of the selected models. Another way
to view this distinction is to treat rewvision as the problem of changing our body of
knowledge of the world at time point ¢, given new information about the state of the
world at time point ¢, and update as the problem of deciding which facts about the
world at time point ¢ continue to be true at time point ¢ + 1, given new information
about the world at ¢ 4+ 1. In this context, the issue of persistence of beliefs appears
to be closely related to the notion of persistence in theories of action. The following
variation of the previous example shows how our framework defined earlier in this
report is not directly applicable in cases of update.

Example: Let the initial state of the world be denoted, as before, by (Wy, Do)
where Wy = {snowing — cold, ~snowing} and Dy = {&}. Let us now update the
belief state with the belief that it is not cold. The new belief state is given by (W1, D1)
where W, = {snowing — cold, ~snowing,—~cold} and D, = {:I.I} Now, let us update

this belief state with the belief that it is snowing. As a consequence of prioritizing the
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belief constraints in the temporal order in which they are added, the resultant beliel

state (Wa, D3) is given by W, = {~cold, snowing} and D, = { iowing—vcold ;manowing

snowing—cold ) —snowing J°*

Notice that the resultant belief state contains the unintuitive belief that it is still not,

cold, inspite of the fact that it is now snowing. The unintuitive result is a consequence
of our assigning to the rule snowing — cold the status of a defeasible beiief, inspite
of it being a physical law tliat is never violated. O

It turns out that prioritizing belief constraints in the temporal order of their arrival
is suitable only in cases of revision. A belief constraint set consisting of three belief
constraints prioritized as @ — b < —b < a in the temporal order of their arrival will
produce reasonable results only if we have a guarantee that the world has remained
static over these three belief change steps. We are first told that a — b is true,
then told to disbelieve b and finally told to believe a. Given that the world has not.
changed, it appears reasonable to have more faith in the more recent evidence and
disbelieve a — b.

It must be recognized that in real life it is often difficult to distinguish between
revisions and updates. Given a new piece of information, it might be difficult to
decide whether this information is a consequence of a changed world or whether this
is merely new information about the same world. However, given that the two cases

must be treated in entirely different ways, the distinction should be utilized wherever

it can be identified.

Updating Belief States in Dynamic Worlds

The previous example suggests a different constraint prioritization protocol that might
provide more intuitive results in the case of updates. The new approach involves
assigning a special status to those belief constraints which denote physical laws or
inviolate facts about the world, in a manner simiiar to the status accorded to dalabase
integrity constraints in database updates. Assuming this corpus of' physical laws and
inviolate facts fo be mutually consistent, we shall reserve the highest, priority class

for this set of belief constraints. Other belief constraints are prioritized as before,
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in the temporal order of their arrival. A similar technique, involving assigning the
highest epistemic entrenchment in the AGM framework to physical laws, has been
used by Foo and Rao [17] in a planning framework that uses AGM belief change
operators. The following example shows how this new prioritization protocol avoids
the unintuitive results of the previous example.

Example: We assign to snowing — cold the status of a physical law. At the
third belief change step in the previous example, the belief constraints will now be
prioritized as follows: —snowing < —cold < snowing < snowing — cold. The final

belief state (Wa, D;) will thus be given by W, = {snowing — cold, snowing} and

D, = {:ﬁcald 3STLOWING
2 = 1'=cold ? —snowing

}. The PJ-default theory has a single extension which correctly
indicates that it is snowing and that it is cold. O

The important lesson here is that the belief constraint prioritization is a crucial
parameter that may need to be altered to make a belief change framework suitable for
different classes of applications. More generally, the role of evidence is an important
factor that varies across classes of applications for a belief change framework.

However, a new constraint prioritization protocol turns out to be insufficient for
obtaining a belief change framework that meets all the needs of the update operation.
We shall motivate the discussion with an example based on [29] which shows how a
syntax-based approach similar to the framework defined in this report fails to pro-
vide intuitive results in some situations while fully rational update operators (in the
sense of a set of rationality postulates for update defined by Katsuno and Mendelzon
[29]) do provide intuitive results. We briefly summarize the Katsuno and Mendelzon
postulates for update below. In the following, the result of updating a knowledge-base

¢ with the sentence p is denoted by ¢ ¢ pu.
(U1) ¢ o p implies p.
(U2) If ¢ implies g, then ¢ o pu is equivalent to 4.
(U3) If both ¢ and u are satisfiable, then ¢ o p is also satisfiable.

(U4) If ¢y = ¢2 and py = p2 then ¢y 0 py = ¢2 o pa.
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(U5) (¢ o u) A implies ¢ o (i A ).

(U6) If ¢ o i1y implies p, and ¢ o g, implies gy, then ¢ oy = ¢ o .
(UT) If ¢ is complete, then (¢ o p3) A (6 0 o) implies ¢ o (uy V 22)-
(U8) (41 V2) o= (dropn)V (d20p).

Postulates (U1)-(U5) are equivalent to a subset of the AGM postulates for revision
reformulated by Katsuno and Mendelzon in a model-theoretic framework. Of special
interest is postulate (U8), the so-called “disjunction rule” which requires that each
possible model of the current state of the world ¢ should be separately updated with
the new sentence p to obtain ¢ o p. This is required even if y is consistent with ¢,
unlike revision, which maps to the new belief state ¢ A p.

For the example below, we shall use Winslett’s [52] Possible Models Approach
(or PMA) operator, which has been shown to be a rational update operator in the
sense of the postulates presented above. In updating belief state ¢ with i, the PMA
operator selects, for each model I of ¢, those models of p which are “closest” to /.

The union of all such models is taken to denote ¢ o p. Formally:
Mod(¢ o p) = Urenmods) Incorporate(Mod(p), I)

where Mod(%)) denotes the set of models of ¥ and Incorporate(Mod(p), 1) stands for
the set of models of p that are “closest” to I. Closeness between two models I and
J is measured by the set D:ff(I,J) of propositional letters that have different truth
values in I and J. A model J; is closer to I than a model J, (written J; </ J2) iff
DiffI,21) € Diff(I,J2). Incorporate(Mod(p), I) consists of the minimal elements
of Mod(u) with respect to <.

Example: Let our propositional language consist of only two letters: & and m.
Let b denote that the book is on the floor, and let m denote that the magazine is on-
the floor. The initial state of the world (in this case, a room we cannot sce), about
which the only information available is that either the book or the magazine is on the

floor but not both, is given by ¢ = (bA =-m) V (-b A m). We now order a robot to
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enter the room and place the book on the floor; in other words, p = b. Assume that
we have a guarantee that moving the book will bave 1o effect on the position of the
magazine.

In System BRI, the initial belief state is given by the theory (W, D) where W =
{(6 A-m)V (-bAm)} and D = {{}. Since p is consistent with the contents of
W, the updated belief state (W’, D') is given by W’ = {((b A -m) V (=b A m)) A b}
and D' = {i£}. The conjunction of the contents of W’ is equivalent to the sentence
b A ~m. In others words, we conclude, in the updated belief state that the book is
on the floor and the magazine is not. While the conclusion that the book is on the
floor is reasonable, the conclusion that the magazine is not is unwarranted. Such
an outcome commits us to the view that the previous state of the world was one in
which the book was on the floor while the magazine was not (since the only thing that
could possibly be affected by the robot’s action is the position of the book). There is
nothing in the evidence, however, that indicates that this should have been the case.
In fact, the only thing that can be reasonably concluded about the new state of the
world, given the available information, is that the book is on the floor. The outcome
of the PMA operator is precisely this. ¢ has two models, {b, ~m} and {-b,m}. The
model of p closest to the first model is {6, ~m} while the model of p that is closest to
the second model is {b,m}. The outcome is given by the union of these two models,
so that gop =05. O

Obviously, update operations require very different treatment in the context of
Systems BRI and BR2. We provide below a preliminary proposal of a method to

address this problem.

e Given an initial knowledge-base describing the state of the world, represented

as a propositional theory, we compute its equivalent in disjunctive normal form

(DNF).

e The initial belief state is denoted by the theory (W, D) where W is empty and
D consists of each disjunct of the DNF theory represented as a normal default

(recall that a normal default is a rule of the formn %’ Thus, the DNF theory
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aV BV v gets mapped to the set of PJ-default rules D = {i,% 2}

e To update such a PJ-default theory with a new belief p, we define an operator
called UPDATE-WORLD which maps a set of PJ-default rules to another set
of PJ-default rules.

a’Ap

For each PJ-default rule of the form “—;‘E (where « is the “normal” part of
the default rule and denotes a tentative belief in our framework, while T’ is
the “semi-nromal” part of the default rule and contains the necessary disbelief
constraints in our framework), the UPDATE-WORLD operator identifies the
maximal subsets of the set of conjuncts that constitute @ (we assume that o isin
conjunctive normal form) that are consistent with g, and for each such subset
creates a new PJ-default rule of the form %\‘—‘:—F Thus if (W', D') = (W, D)oy,

then W’ = W and D' =UPDATE-WORLD(D, p).
The intuition here is that representing the current state of the world in DNF is a syn-
tactic approximation of identifying the different possible views of the current world.
To allow for the fact that different views of the world can be mutually inconsistent,
we represent each of the disjuncts of the DNF as default rules in our representation
of belief states as PJ-default theories. Each extension of the PJ-default theory thus
represents a consistent picture of the world. In accordance with Katsuno and Mendel-
zon’s [29] disjunction rule, we update each possible view of the world sepa.ratcly,‘ by
altering each default rule using the UPDATE-WORLD operator. Reuvision, in con-
trast, would require that we add the new belief to W. The following example shows
how this approach might address the problem encountered in the previous example.
Example: The initial state of 4be world ¢ = (bA —-m)V(—=bAm), is represented as
the theory (W, D), where W = {} and D = {((:,'\\:::)), ((::::n"))} It has two extensions:

{6 A =m} and {-bAm}. (W,D') = (W,D)obisgiven by W = {} and D’ =

{((:2:%1, ((:,’\\:;")1} This has two extensions: {b A -m} and {b A m}, which correspond

precisely to the two models obtained as a result of applyifig the PMA operator. The
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only thing that a sceptical reasoner will be able to conclude about the new state of
the world is that b is true, which is exactly what intuition dictates. O

In the same way that update is defined to be a dynamic worlds counterpart of
revision, Katsunn and Mendelzon define erasure to be the dynamic worlds counterpart
of AGM contraction. They define the erasure of p from ¢ to entail the addition of
models to the set of models of ¢. For each model I of ¢, those models in which u is
not true that are closest to I are added. This definitiou of erasure, however, appears
to be unintuitive, as the following example shows.

Example: As before, ¢ = (bA =m) V (=b A m) from which we shall erase b. The
modei M; = {—=b,m} of ¢ needs no further change since b is not true in it. Model
M, = {b,~m} makes b true, so we identify M3 = {—b,~m} as the model which does
not make b true and which is closest to M,. According to Katsuno and Mendelzon’s
definition of erasure, we take the union of M;, M, and M3 to denote the new state
of the world. This is equivalent to the formula (b A =m) V —b. Such a result runs
counter to intuition since it indicates that b is true in one possible view of the new
state of the world. A more reasonable result is obtained if the union of only M; and
M3 is taken. This is equivalent t» the formula —b which corresponds precisely to the
intuition that after being told ¢hat the book is no longer on the floor, all that we can
reascnably conclude about the world is just that. O

We therefore argue that the erasure operator is better formalized as follows. The
erasure of u from ¢ (written ¢ e i) is given by the union of those models which do
not make g true which are closest to I, for each I that is a model of ¢. In terms of
our framework, the steps would be exactly the same as those for update, except that

in place of UPDATE-WORLD, the operator ERASE-WORLD, defined below, would

be used.

ERASE-WORLD(D, p) = {2424l | o/ ¢ (o | p), @2L ¢ D}

oa’'Ampu
It is easy to see that in the previous example, with our framework, the new belief
state would be PJ-default theory with {wo extensions: {—b Am} and {—b, ~-m]}.

The applicability of a syntax-based frameworks such as Systems BRI and BR2
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to problems of update appears to be a promising direction of research. A variety of
issues need to be addressed. The dynamics of repeated belief change operations using
the UPDATE-WORLD and ERASE-WORLD operators needs to be examined. The
rationality of these operators with respect to the update postulates listed above, as
well as with respect to a similar set of postulates for erasure, needs to be investigated.
A comprehensive framework for iterated belief change that offers the full repertoire
of update, revision, erasure and contraction operators needs to be developed. Such an
integrated framework can provide interesting insights; whereas updates treat physical
laws to be inviolate, they can be doubted as result of revisions (this would correspond
to a paradigm shift in science). Such studies should also shed light on the relationship
between syntax-based and model-theoretic approaches to belief change. This research

can be viewed as a first step toward making a theory of belief change applicable as

theory of actions and change.

6.2.2 The Problem of Combining Knowledge Bases

The problem of combining knowledge-bases is a non-trivial one and has wide-ranging
applications. The problem can arise when several experts contribute to the devel-
opment of a knowledge-base system. A reasonable assumption is that the body of
knowledge of each individual expert will be consistent, but no such guarantee exists
for the sum total of all their inputs. The problem of combining knowledge-bases is
thus the problem of handling the inconsistencies that may arise when several differ-
ent, internally consistent knowledge-bases are joined together. Such questions are
becoming increasingly relevant with the current trend towards very large knowledge
bases [31], and towards reusable and shareable knowledge-bases [41]. The issues ad-
dressed in this problem domain are essentially the same as those addressed in belief
revision. Combining two knowledge-bases can be viewed as revising one knowledge-
base with another, although in some frameworks (such as ours), this could entail the
unintended assignment of a higher priority to the second knowledge-base over the

first. It is clear, however, that theories of belief change can provide a good basis for
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chc}oping principled methods of combining knowledge-bases.

The study by Baral, Kraus, Minker and Subrahmaniam in [2] represents a first step
in addressing this problem. They present four combination functions and attempt
to identify situations where each function might be appropriate. We present the
definitions of the functions Comb;, Combs and Combs below (Comb; is ommitted
since it is shown to be equivalent to Comb;). Each individual knowledge-base is
represented as a first-order theory, and each combination function involves a different
approach to identifying maximal subsets of the union of these theories.

C'omblv is defined as follows:
Comb ({Ty,...,Tn}, IC)= MAXCONS(T1 U...UT,,IC)

Comb,({T1,...,Tn}, IC) denotes the combination of the theories T1,...,T, respect-
ing a set of integrity constraints. MAXCONS(P,IC) denotes the set of maximal
consistent subsets of P with priority to IC; in other words, MAXCONS(P,IC)
contains every @ C P such that Q U IC is consistent and for every @’ such that
Q C Q' C P, Q'UIC is inconsistent. Comb; postpones the checking consistency with
IC until after the maximal consistent subsets of the union of the thecries have been

identified, as the following definition shows:

Combs({Tx,...,To},IC) = {X | X € MAXCONS(T, U...UT,) and
X UIC is consistent }

In the definition above, M AXCON S(P) stands for the restriction of MAXCONS(P,IC)
to the case where IC = (. Both Comb; and Combz use maximality with respect to
set inclusion to identify maximal consistent subsets, and provide reasonable results
under two slightly different intuitions of what the combination process should involve.
Comb,, however, uses a somewhat suspect notion of maximality with respect to set

cardinality, as the definition below shows:

Comby({T1,...,Ty},IC) = maximal elements w.r.t. set cardinality of

Combi({T1,...,Tn},IC)
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Default theories appear to be a reasonable framework for representing the outcome
of combining mutually inconsistent knowledge-bases, specially given that their prop-
erties are well-understood and given that well-defined procedures exist for computing
extensions. For instance, the function Comb;, could be reformulated as a mapping
from a set of theories to a PJ-default theory (W, D) such that W = IC and D cousists
of the elements of the theories represented. as normal default rules (i.e., every a € T;

is represented as ). Alternatively, one could trade-off “compile-time” efliciency for
P o p Yy

“run-time” efficiency by setting:

W =MAXCONS({Ti,...,To},IC)
D ={=C | o ¢ (E~W),E € MAXCONS({T,...,Ta},1C)}

Thus, while computing (W, D) will involve more effort, skeptical reasoning with the
combined theory will involve no effort at all since W will contain all the relevant
knowledge.

A need exists for a study generalizing these results for the case combining non-
monotonic theories. We believe that our framework provides a good starting point for
such studies. Even more interesting possibilities exist when one considers the prob-
lem of combining knowledge-bases represented, like belief states in our framework,

as 4-tuples of the form < necessarbeeliefs, necessary-disbeliefs, tentative-beliefs,

constraint-prioritization >.
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