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ABSTRACT 

On construction sites, communication is key to boosting teamwork and improving worker 

performance. It allows workers to coordinate their activities, share information, and respond to 

potential hazards quickly and efficiently. In current practice, workers on construction sites 

typically rely on verbal, hand signalling, and two-way radio communication systems. Verbal and 

hand signalling communication are used when the workers are in close proximity to one another, 

whereas two-way radio communication is used when the distance is long and verbal and hand 

signalling communication are not possible. However, construction sites today are increasingly 

busy, congested, and noisy, making traditional means of communication less effective. This, in 

turn, results in communication errors, which can lead to disastrous accidents on construction sites. 

Meanwhile, the introduction in recent years of technologies such as deep learning and sensor-

based approaches has resulted in a number of applications to improve safety, productivity, and 

surveillance. In this regard, the present research proposes a multimodal construction site 

communication classification system that uses innovative technologies to improve the reliability 

of communication on construction sites. In this research, communication between crane operator 

and signalman on the construction site is used as a case. The proposed framework offers a reliable, 

real-time communication classification system for use on construction sites as a supplementary 

means of communication in crane operations. Firstly, by developing computer vision-based 

integrated deep learning model with the capability to detect and classify dynamic hand signals in 

real-time, even in the presence of complex and varying weather conditions at the construction site. 

Secondly, by developing sensor-based smart construction glove that uses machine learning models 

to classify crane signalman dynamic hand signals in real-time. Additionally, to enhance speech 

communication, this research proposed a one-dimensional convolutional neural network model. 
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This model is designed to identify the crane signalman speech commands in real-time by providing 

crane operators with the necessary keywords to understand the signalman's instructions and 

support their decision-making process. Finally, the proposed framework implement the concept of 

redundancy by utilizing ensemble models. These models combine the decisions from computer 

vision-based deep learning; sensor based smart construction glove; and keyword identification 

model using weighted average and majority voting techniques, resulting in a single, reliable 

decision output. Overall, this research improve the reliability of site communication by classifying 

the hand signals and speech commands (both individually and in the aggregate using ensemble 

models), classifying to a high level of specificity the hand signals and speech commands used in 

the communication between crane operators and signalmen. 
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Chapter 1: INTRODUCTION 

1.1 Background 

Communication technologies play a significant role in establishing and maintaining quality 

working relationships in any industry. Means of communication have advanced over time. For 

instance, in the early 1800s, communication in the aviation industry, shipping industry, and postal 

services relied on Morse code and telegraph (OCN 2021), but with the rapid introduction of new 

technologies, the means of communication have changed dramatically in recent years. In the last 

50 years, communication technologies have advanced rapidly, from the development of satellite 

radios in the 1970s to virtual reality and artificial intelligence more recently. Some of the most 

popular technological advancements to enhance communication in each decade are shown in 

Figure 1-1. 

 

Figure 1-1. Timeline of key advancements in communication technologies in recent decades. 

Various industries have adopted advanced communication technologies in different ways over the 

years. In the business sector, for example, corporations have used email, video conferencing, 

instant messaging, and other digital tools to facilitate communication among staff and with clients 

(Armírola Garcés et al. 2020; Scolari. 2009). Telemedicine and other forms of remote 
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communication have been implemented in the healthcare sector to enhance patient care and access 

to medical knowledge (Matusitz and Breen. 2007; Zagan et al. 2017; Ratta et al. 2021). Streaming 

services and social media platforms have been used to disseminate material and engage viewers in 

the entertainment sector (Ahuja. 2021). GPS and other types of digital communication have been 

used in the transportation industry to improve logistics and fleet management (Vivaldini et al. 

2012; Hu et al. 2015). Overall, the introduction of communication technology has allowed various 

economic sectors to boost efficiency and production. 

1.2 Advancement of communication in the construction industry 

Historically the construction industry has exhibited a reticence to adopt advanced technologies due 

to the dynamic and unpredictable nature of construction work and the inconsistency of the results 

achieved when implementing advanced communication technologies in this environment (Hwang 

et al. 2022; Mansor 2010). Nevertheless, with these technologies become more well established, 

and with the high volume and quality of research on their implementation now available, these 

technologies are increasingly being adopted in the industry today (Hwang et al. 2022; Mansor 

2010). For example, the introduction of Building Information modelling (BIM) technology has 

provided the foundation for a digital transformation in the construction industry in recent years 

(Azhar 2011). BIM allows for stakeholders to collaborate in a common digital platform on the 

planning, design, and construction in order to speed the construction process, reduce ambiguities, 

and improve the overall efficiency of building construction (Azhar 2011). Another example is 

“remote monitoring” of the construction process. Remote monitoring allows supervisors to 

monitor construction processes in real time from anywhere so that they can be apprised of updates 

and issues and take remedial action as required (Soltanmohammadlou et al. 2019).  
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Project management software tools such as Microsoft Project allow for task, deadline, and progress 

monitoring, as well as communication and collaboration among team members. Internet of Things 

(IOT) devices, meanwhile, are used in the construction industry to monitor construction site 

conditions such as humidity, temperature, and air quality, as well as to track the position and 

movement of construction equipment and supplies (Teizer et al. 2017; Patel et al. 2016; Mishra et 

al. 2022).  

While many of these advancements have focused on the tools and methods used to complete 

construction tasks, worksite communication also plays a vital role, given its impact on worker 

safety, performance, and productivity (Kines et al. 2010; Neitzel et al. 2001). On construction sites, 

communication among workers can be categorized into short- and long-distance communication. 

When the distance between workers is short, face-to-face verbal communication is the most 

reliable means to convey the message, while hand signals are used when verbal communication is 

not possible, such as when the site is noisy (Hagan et al. 2015). For long-distance communication, 

meanwhile, two-way radio speech communication and hand signalling are the primary means of 

communication (Hagan et al. 2015). 

1.2.1 Hand signals 

Hand signals have been in use for millennia as a means of communication. In recent years, hand 

signalling has been used widely in many applications, such as for speech- and hearing-impaired 

people as a means of communication (Sriram and Nithiyanandham 2013), for traffic direction on 

roadways (Guo et al. 2017), and in aviation for safe flight operations (IATA 2020). On construction 

sites, workers use standard hand signals for long-distance communication, as well as for short-

distance communication in noisy areas where verbal communication would be impossible or 

severely hampered (Hagan et al. 2015). Hand signalling is also used extensively to send commands 



4 

 

to operators of heavy construction machinery (e.g., excavator, concrete truck, bulldozer) when the 

working area is not clearly visible to the operator. A trained signalman stands in a location from 

where the site is clearly visible and guides the operator using hand signals to ensure safe 

construction site operations. Examples of hand signals are shown in Figure 1-2. 

 

Figure 1-2. Examples of hand signals. 

In crane operations, hand signalling is used to facilitate communication with the crane operator 

(All-West Crane and Rigging 2019). The advantage of using hand signals is that they are simple 

and effective, and they can be used in noisy areas where verbal communication is not possible. 

The operator receives direction from the signalman clearly and immediately, which makes the 

communication process efficient and effective (CCOHS 2019). On the other hand, site congestion 

and obstacles in the line of sight between signalman and operator can make the process less 
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efficient and effective, since a second signalman is often needed to relay the signals from the 

primary signalman to the operator, reducing the efficiency and increasing the risk of an accident 

due to transmission errors between signalmen (Fang and Cho 2016). 

1.2.2 Two-way radio speech communication 

Two-way radio speech communication is another solution for communication on construction 

sites. This approach is used when neither face-to-face verbal communication nor hand signalling 

is possible. On the construction site, this approach is mostly used for communication between 

workers on the ground and heavy construction machinery operators, such as in crane operations, 

where a two-way radio speech communication system is typically used when it is difficult for the 

operator to see the signalman due to an obstacle in their line of sight (Stevenson 2019). This 

communication approach requires a dedicated radio channel for the communication between the 

operator and signalman that must be maintained at all times. If there is any problem in the 

channel/communication line, such as radio interference from another radio, loss of signal due to 

radio blackspots, or excessive noise on the construction site, the operator may be unable to hear 

the signalman’s voice clearly, in which case operations must be halted until the disruption to the 

line of communication is resolved (Maxim Crane Works 2019). These communication disruptions 

may also lead to misjudgments on the part of the operator, in turn resulting in safety and 

productivity issues. Furthermore, construction workers are often from different linguistic 

backgrounds and have different accents, meaning that it may be difficult for the listener to 

understand the speaker in some cases, leading to misjudgments in decision-making (Bust et al. 

2008). 

Given the inherent disadvantages of traditional means of communication such as verbal 

communication, hand signalling, and two-way radio speech communication, the construction 
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industry can benefit from recent developments in information technology. In particular, an 

intelligent and automated communication classification system can be introduced to improve 

communication between heavy construction machinery operators and workers on the ground and 

thereby enhance the safety and productivity of site operations. In this context, the present study 

develops a framework that provides an intelligent and advanced communication classification 

system to reduce the risk of miscommunication on construction sites. 

1.3 Problem Statement and Motivation 

One of the major concerns in the construction sector today is construction site safety. However, 

the inherent deficiencies of traditional means of communication on construction sites (i.e., hand 

signalling and two-way radio) mean that construction workers are still exposed to safety hazards, 

especially in heavy construction machinery operations. For example, in a recent case, a concrete 

truck struck an electrician who was replacing a traffic light due to a misread of a hand signal given 

by an officer (Reakes 2018). In another example, an accident occurred when a crew chief in an 

All-Terrain Vehicle (ATV) travelled into an active work area. Although he had been asked to clear 

the area by a foreman using a hand signal, the signal was not received by the crew chief. As a 

result, the ATV was struck by a bulldozer and the crew chief suffered an injury (ENFORM 2013). 

In crane operations in particular, communication is among the most significant challenges (Neitzel 

et al. 2001). With the emergence and continued evolution of modular construction in recent 

decades, heavy mobile cranes play an increasingly important role on construction sites, as cranes 

are required to load and assembly increasingly large, heavy, and complex modular components. 

This shift toward modular and offsite construction underscores the criticality of effective crane 

operations to project productivity and safety (Bernold et al. 1997, Ali et al. 2021). In practical 

terms, the rise in the fatality rate due to accidents involving cranes has meant that every activity 
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involving a crane on the construction site is now considered hazardous (King 2012). Indeed, a 

small error on the part of a crane operator or a rigging failure during a heavy lift can pose an 

enormous risk to both the operator and the workers in close proximity to the crane and load. 

According to statistics from the US Bureau of Labor Statistics (2017), from 2000 to 2017, the 

number of fatalities in crane-related accidents in the United States totalled 1,097 from all industry 

sectors, as shown in Figure 1-3. The construction industry was responsible for 632 (57%) of those 

fatalities. According to the U.S. Department of Labor as reported by Beavers et al. (2006), the 

construction industry had the third-highest fatality rate among the main economic sectors in 2001, 

with 13.3 fatalities per 100,000 construction workers. They estimated that about 84% of the 

fatalities in the construction sector were linked to crane operations on the site. Furthermore, 

according to OSHA’s Integrated Management Information System (IMIS) database as reported by 

Zhao (2011), during the period 2000 to 2009, the 571 accidents involving crane work accounted 

for 587 fatalities, of which 105 were crane operators, 375 were riggers, and 8 were signalmen 

(Zhao 2011). Moreover, according to King (2012), during the period from 2004 to 2010, 43% of 

crane accidents were due to operator failure in their responsibilities.  

OSHA has stated that improper communication is the leading cause of crane-related accidents, 

while studies by the Center for Construction Research and Training, similarly, has reported that 

improper communication is a contributing factor in over 40% of crane-related accidents (CPWR 

2019). The National Commission for the Certification of Crane Operators, moreover, has stated 

that miscommunication between crane operator and signal person is one of the leading causes of 

crane-related incidents and accidents (NCCCO 2019), while the International Association of 

Tower Crane Owners (IATCO) has argued that signal-related errors are among the top three causes 

of tower crane incidents worldwide. A recent investigation of the risk factors in crane-related near 
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misses and accidents revealed that operator and signalman error is the predominant risk factor, 

accounting for 34% of the incidents, while failure in communication accounted for 11% of the 212 

incidents investigated (Raviv and Shapira 2018). Indeed, the lack of proper communication 

between crane operators and signalmen can lead to disastrous accidents and is one of the major 

contributors to the high rate of fatalities in construction (Fang et al. 2018a; c). 

 

Figure 1-3. Number of fatalities in crane-related accidents each year in the United States. 

In current practice, communication between heavy construction machinery operators and 

workers/signalmen on construction sites is still reliant on hand signalling and two-way radio 

speech communication (Fang et al. 2016). As demonstrated by the statistics discussed above, these 

methods are not always reliable, and their inadequacy can be a factor in disastrous accidents. With 

the ongoing development of information technologies, autonomous and intelligent communication 

classification systems can be implemented to improve communication between workers/signalmen 

and heavy machinery operators in order to reduce the probability of communication errors and 

minimize the number of miscommunication-related accidents on construction sites. Further 
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investigation is as to how the reliability of site communication might be improved through the 

application of such technologies (e.g., computer vision using deep-learning algorithms, sensor-

based smart glove technology, speech recognition algorithms, and the concept of redundancy) is 

thus warranted. 

1.4 Research Objectives 

This research is built upon the following research hypothesis. 

“The development of real-time multimodal communication classification on construction sites 

improves the reliability of communication and the accuracy of the information exchanged” 

This research is rooted in the premise that the current practice of communication on construction 

sites (hand signalling and two-way radio) is unreliable, especially with respect to crane operations, 

contributing to the risk of disastrous incidents in modern construction. To address this gap, four-

research questions are considered in this study. 

1. How can we use computer vision-based deep-learning classification models to classify 

dynamic crane signalman hand signals on construction sites? 

2. To what extent might a sensor-based smart construction glove (SCG) implemented in 

conjunction with machine-learning models help to classify crane signalman hand 

signals on construction sites? 

3. How can we use deep leaning models to classify crane signalman speech commands 

on construction sites? 

4. How can we implement the concept of redundancy together with an ensemble model 

to combine the decisions from multiple models and achieve a single, more accurate and 

reliable decision output? 
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To answer the questions posed above, the following objectives are pursued in this research: 

1. Conduct a detailed scientometric analysis and critical review of the literature on the 

application of deep learning in construction. 

2. Develop a deep-learning classification framework for reducing communication errors in 

dynamic hand signalling for construction sites. 

3. Develop a sensor-based SCG that uses machine-learning models to enhance hand-

signalling communication on the construction site. 

4. Develop a keyword identification framework to facilitate speech communication on 

construction sites. 

5. Implement the concept of redundancy by developing ensemble models that improve the 

accuracy by combining the decision of multiple deep-learning models to classify crane 

signalman hand signals and speech commands on the construction site. 

1.5 Thesis organization 

This thesis is composed of seven chapters. Chapter 1 presents the background; problem statement, 

and motivation underlying this research and briefly introduces the current practice and recent 

advancements in communication on construction sites. This chapter also outlines the hypothesis, 

research questions, and objectives. 

Chapter 2 presents a comprehensive scientometric analysis and critical review of the literature on 

the application of deep learning in construction. The science mapping method is used to 

quantitatively and systematically analyze the related bibliographic records retrieved from the 

Scopus database, and co-word, co-author, and co-citation analyses are then performed. A critical 

review of the themes identified in the relevant publications is also performed. Finally, challenges 

and future directions of research on deep learning in construction are presented. This chapter lays 
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the foundation for how deep-learning models are to be used in construction sites and what 

challenges construction practitioners face with respect to the adoption of deep-learning methods 

in construction sites. 

Chapter 3 proposes a deep-learning classification framework to reduce communication errors in 

dynamic hand signalling in the construction industry, especially in crane operations. The 

framework uses two state-of-the-art deep-learning models (YOLOv4 and LSTM). Modifications 

are made in the YOLOv4 model by altering its activation function. The modified YOLOv4 and 

LSTM models are integrated to classify dynamic hand signalling in real time. 

Chapter 4 is composed of two main parts. The first part describes the development of the SCG. 

The sensors used in the glove include an accelerometer, gyroscope, magnetometer, and flex 

sensors. These sensors are responsible for providing data related to the orientation of the hand and 

bend in the fingers. In the second part, four machine-learning models—k-nearest neighbour 

(KNN), Support vector machine (SVM), Decision Tree (DT), and Convolutional neural network-

Long short-term memory (CNN-LSTM)—are selected and trained using the data collected by the 

SCG. The machine-learning models are further validated and tested using the collected dataset. 

Furthermore, a mobile application is developed, and the machine-learning models deemed to be 

most accurate in this particular application are deployed to recognize crane signalman hand signals 

in real time.  

Chapter 5 presents a keyword identification framework for speech communication on construction 

sites. In this framework, 1D CNN deep-learning model is used to identify the crane signalman 

speech commands used by the crane signalman to guide the crane operator. The results of the 

presented model suggest that the model could be used effectively for real-time implementation in 

construction sites. 
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The research presented in Chapter 6 adopts the concept of redundancy and develops ensemble 

models to improve the accuracy of communication classification in crane operations by combining 

the decisions of multiple deep-learning models on the construction site. In this framework, the 

decision outputs of previously developed deep-learning and machine-learning models are 

combined in an ensemble model that yields a single decision output. The weighted average and 

majority voting ensemble models are implemented and evaluated. Finally, the results and 

limitations of the various models are compared. 

Chapter 7 outlines the conclusions, research contributions, study limitations, and potential avenues 

of future research in this domain. 
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Chapter 2: SCIENTOMETRIC ANALYSIS AND CRITICAL REVIEW ON THE 

APPLICATION OF DEEP LEARNING IN THE CONSTRUCTION INDUSTRY1 

The construction industry is one of the most important economic sectors, contributing significantly 

towards the growth and development of the global economy. However, the industry has long been 

plagued by challenges such as communication issues, productivity issues, and safety concerns. 

There has been growing interest in the application of deep-learning techniques to address some of 

the challenges in the construction industry. This chapter presents a review and analysis of the 

literature on the application of deep learning in the construction industry. The main objective of 

the research described in this chapter is to define the body of knowledge, review and analyze the 

relevant literature, highlight some of the key research studies addressing various challenges in the 

construction sector, and further suggest some possible areas of improvement with respect to the 

application of deep learning in the construction industry. Initially, a scientometric analysis of the 

relevant literature is conducted using the Scopus database. The scientometric analysis 

encompasses both data acquisition and data analysis. In the data analysis phase, co-word, co-

author, co-citation, and clustering analysis are performed to analyze the development and structure 

of the relevant scientific literature and identify the dominant researchers and countries in this 

particular research area. Cluster analysis is also performed to identify the semantic themes 

contained in the textural data. Furthermore, this chapter presents a critical review of the identified 

theme and adoptability challenges, and proposes some potential avenues of future work regarding 

the adoption of deep learning to improve construction processes. It is also observed that the deep-

                                                 
 

 
1 A version of this chapter has been published in the Canadian Journal of Civil Engineering as follows: Mansoor, A., 

Liu, S., Ali, G.M., Bouferguene, A., and Al-Hussein, M. (2023). “Scientometric analysis and critical review on the 

application of deep learning in the construction industry.” Canadian Journal of Civil Engineering, 50(4), 253–269. 
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learning model has the potential to improve communication on the construction site, a prospect 

that has received relatively little attention within the research community to date. 

2.1 Introduction 

As the construction industry moves towards adopting advanced computer technologies to improve 

the efficiency of its operations, artificial intelligence is becoming increasingly popular among 

researchers who are developing innovative solutions for this industry. Deep learning is a subset of 

machine learning, (which, in turn, is a subset of artificial intelligence), that was proposed by Hinton 

and Salakhutdinov (2006). It has since been applied in various fields, especially in connection with 

computer vision, image processing, and video analysis. Deep-learning methods focus on learning 

feature hierarchies with features from higher levels of the hierarchy formed by the composition of 

lower-level features (Hazrati Fard and Hashemi 2019). The learning of features at different levels 

of abstraction permits a system to learn complex functions, and map the output from the input data 

directly (Najafabadi et al. 2015). The capability to learn powerful features from data will become 

increasingly important as the amount of data and range of applications of deep learning continue 

to grow (Lecun et al. 2013). 

The benefits associated with the application of deep learning have been reported extensively in the 

literature (Khan and Yairi 2018, Pan et al. 2021, Patel at al. 2021). For example, deep learning 

uses advanced algorithms to learn the features of objects and further detect, and classify objects of 

interest with high accuracy from images, and videos in real time. Moreover, deep learning provides 

vast opportunities for safety improvement and management, construction progress monitoring, 

building energy demand prediction, productivity monitoring of construction equipment, data 

sequencing, data extraction, and many more. 
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Due to these benefits, deep learning has attracted a substantial amount of attention in multiple 

industries, including the construction industry, and has captured the attention of construction 

engineering researchers. This has, in turn, led to a rise in research work and publications on the 

application of deep learning in construction in recent years. To grasp the current status of the body 

of knowledge and to decrease the risk of neglecting essential research questions and possible areas 

of improvement and laying the foundation of this research, a detailed review and analysis of this 

research area is needed. 

The contributions of the previous review papers in this area are substantive. However, they tend 

to focus on a particular deep-learning method or the implementation of deep learning to a specific 

construction-related problem. For example, Sherafat et al. (2020) presented a state-of-the-art 

review on automated methods for construction worker and equipment activity recognition. Wang 

and Hong (2020) discussed the use of reinforced learning for building control in a review paper in 

which the authors also presented opportunities for and challenges of using reinforced learning. 

Darko et al. (2020) contributed a review article on the implementation of artificial intelligence in 

the AEC industry that provides both a scientometric analysis to find the gaps and a look at future 

trends and research directions. Martinez et al. (2019) provided a detailed review of the use of 

computer vision applications in construction by performing a scientometric analysis to determine 

the current and future directions of the research. However, the review studies discussed above are 

mainly focused on quantitative analysis, and the applications are limited to a certain deep-learning 

method or certain construction problem. Considering these facts, the previous review studies do 

not provide a broad view of the state-of-the-art of research on the application of deep learning in 

construction. A study that offers a comprehensive objective review, as well as a broad analysis of 

the literature on deep learning in construction, is missing. This review study aims to fill the gap by 
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comprehensively surveying the intellectual core and the landscape of the literature on deep 

learning in construction. This study assists construction researchers in numerous ways by finding 

the scope and evaluating the quality of the literature. A scientometric analysis (e.g., Co-Word, Co-

Author, Co-Citation, Cluster analysis) was carried out to visualize the existing research by 

tracking, research keywords, influential journals, authors, and countries and explore the knowledge 

base of deep learning in construction research. Furthermore, a critical review of the identified 

clusters is also conducted. The fusion of critical review and scientometric analysis aids in the 

understanding of results, as well as helps to identify challenges in the application of deep learning 

in construction. In other terms, this review study helps by serving as an up-to-date reference point 

for expanding the knowledge of researchers in the construction domain. 

The balance of this chapter is organized as follows: The next section illustrates the research 

methodology (i.e., scientometric analysis, data acquisition, keyword search, and data processing), 

which is followed by describing the results and findings of the scientometric analysis. Next is the 

discussion of the critical review of the identified cluster of the literature, followed by 

demonstrating the challenges and future direction of the application of deep learning in 

construction. The final section concludes by summarizing the research contributions. 

2.2 Methodology 

This study was conducted in two phases. Phase 1 includes scientometric analysis while Phase 2 is 

the critical review. The overview of the research design is shown in Figure. 2-1. 

 



17 

 

 

Figure 2-1. Overview of research design. 

2.2.1 Scientometric analysis (Phase 1) 

The scientometric analysis was conducted in two stages, namely, data acquisition and analysis of 

literature.  

2.2.1.1 Data Acquisition (Stage 1) 

In Stage 1, data acquisition of available literature (using keyword search and database selection) 

is of utmost importance, because it helps to determine the research studies available in the 

literature. There are several databases available, such as Web of Science, PubMed, Google 

Scholar, Scopus, etc., that can be used for data collection. However, the literature for the present 

study was derived from the Scopus database, because, in comparison to other previously 

mentioned databases, it has a wider range of construction industry-related research articles and 

provides a broader scope for inter-disciplinary research topics (Mok et al. 2015, Mongeon and 

Paul-Hus 2016). 

2.2.1.1.1 Keyword search and data processing 

The publications related to deep learning in construction were retrieved from the Scopus database 

by using the regular expression (“deep learning" OR "YOLO*" OR "convolutional neural 
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network" OR "CNN" OR "recurrent convolutional neural network" OR "RCNN" OR “perceptron” 

OR “SSD” OR “*detector*” OR “*neural network*” OR "deep convolutional neural network" 

OR "image classification" OR "object classification" OR “*classification*” OR “*detection*” 

OR “*recognition*”) AND ("Construction industry" OR "Construction site" OR “construction 

project*” OR “*infrastructure*” OR "construction-site" OR "*construction *”). Note that the 

variations in the keywords are captured using Asterisk (*) character. For example, “construction*” 

for “construction operation”, “YOLO*” for “YOLOv3”, and other related keywords. The 

publications having the selected keywords in their titles, abstracts, or selected keyword sections, 

are retrieved by choosing title/abstract/ keywords in the Scopus database keyword search engine. 

The search period of 10 years starting from 2012 to 2021 is taken into consideration, which is 

suitable considering the growth history of deep-learning technology in the construction industry. 

After the keyword search, a total of 531 references were found to satisfy the keyword search 

criteria. The data were further processed by applying the following filters to the search results. 

 Only journal articles and conference papers were included. 

 Manual screening was done to collect relevant journal and conference papers. 

After applying all filters and manually screening the search results, the number of articles was 

reduced from 531 to 423. Of the 423 published papers, 298 were journal articles, and 125 were 

published in conference proceedings. 

2.2.1.2 Analysis (Stage 2) 

To process the data collected, scientometric analysis techniques were used to identify the 

systematized literature-related findings by linking concepts in the literature. Scientometrics was 

first defined by Mikołajczyk and Grochowski (2018) as “a quantitative study of the research on 

the development of science”. This technique measures the citation processes, impact of research, 
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and plots the existing knowledge and its development in the research area based on academic 

literature datasets (Siluo and Qingli 2017). The scientometric analysis facilitates the visualization 

and mapping of a knowledge domain that then helps researchers to analyze the intellectual 

landscape of a knowledge domain and find the research problems that may need to be solved, along 

with the techniques, the researchers have developed to solve similar research problems (Su and 

Lee 2010). There are several visualization and mapping tools available, such as “VOSviewer”, 

“Gephi”, “CiteSpace”, “Sci2”, and “HistCite” with each of the mentioned tools having its 

advantages (Chen 2017). In this research, VOSviewer was used for Co-Word analysis. VOSviewer 

is a suitable tool for visualizing large networks as it employs natural language processing 

algorithms and text-mining techniques (Eck and Waltman 2016). Therefore, VOSviewer was 

employed in the computing, visualizing, and analysis of data from journal articles, conference 

papers keywords in order to explore the research area. Visualization of the entire field of deep 

learning in construction allows the researcher to achieve a comprehensive perception of research 

trends and patterns in the field (Eck and Waltman 2010). CiteSpace was employed in the present 

study for Co-Citation, Co-Author and Cluster analysis due to its ability to provide visualizations 

that facilitate the analysis of scientific knowledge in the literature to identify the notion of the body 

of knowledge. These approaches have been well-known scientometric methods for discovering the 

hidden implications of a vast amount of information. CiteSpace is strong in mapping knowledge 

domains by systematically creating various accessible graphs (Kleinberg 2002, Chen 2016, Linton 

2016); therefore, it was employed for the generation and analysis of co-citation networks, co-

author networks and country co-occurrence, as well as for the generation of abstract clustering. 

The present study employs three scientometric techniques to analyze the selected publications. 

First, Co-Word analysis is performed, which includes keyword co-occurrence network. Second, 
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Co-Author analysis is performed, which includes co-authorship network and network of 

countries/regions. Finally, Co-Citation analysis is performed, which includes co-cited author, co-

cited document and co-citation cluster analysis.  

2.2.2 Results of scientometric analysis 

2.2.2.1 Overview 

In Stage 1 of the scientometric analysis, the keyword search strategy described in the previous 

section is employed to identify the number of publications (journal articles and conference papers) 

on the research topic under review for each year, as shown in Figure. 2-2. Deep learning in 

construction trended upward from 2018–2021 (i.e., 78% of the publications were published in the 

last 4 years) and is still gaining in popularity due to its easy adoption and the increasing availability 

of large datasets in construction, as shown in Figure. 2-2. 

 

Figure 2-2. Historical trend of published studies on deep learning in construction, 2012–2021. 

Table 2-1 summarizes the relevant academic journals and conference proceedings. The majority 

of academic publications on deep learning in construction were found in journals, such as 
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Automation in Construction, Journal of Construction Engineering and Management, and Journal 

of Computing in Civil Engineering. Among the mentioned journals, Automation in Construction 

represented the highest number of publications. Likewise, conference proceedings that make 

significant contributions to this topic include Proceedings of the International Symposium on 

Automation and Robotics in Construction (ISARC), American Society of Civil Engineers (ASCE) 

International Conference on Computing in Civil Engineering, and Proceedings of the Construction 

Research Congress (CRC). Journal articles accounted for 70% of the published papers reviewed 

for the present study, while the remaining 30% were papers published in conference proceedings. 

Table 2-1. 

List of top 10 academic journals and conference proceedings from 2012 to 2021 that published 

research related to deep learning in construction. 

Journal/Conference name Number of articles 

Journal of Automation in Construction  52 

Journal of Construction Engineering and Management 21 

Proceedings of ISARC 18 

Journal of Computing in Civil Engineering 17 

Proceedings of the American Society of Civil Engineers (ASCE) 

International Conference on Computing in Civil Engineering 

12 

Proceedings of the Construction Research Congress (CRC) 12 

Journal of Applied science Switzerland 8 

Journal of Expert Systems with Applications 8 

Sensors Journal Switzerland 7 

International Journal of Construction Management 7 
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2.2.2.2 Co-word analysis 

Co-word analysis was employed to analyze the structure and development of the scientific 

literature on deep learning in construction. In this study, keyword co-occurrence was used as the 

basic analysis unit. 

2.2.2.2.1 Keyword co-occurrence analysis 

Keywords provide a bullet-point summary of the main theme of the published research articles 

and highlight the range of researched areas within the boundaries of any domain (Kleinberg 2002, 

Eck and Waltman 2010, Chen 2016, Linton 2016, Daniels and Thistlethwaite 2017). Keyword co-

occurrence analysis was used to map and visualize the knowledge area at the interface between 

deep learning and construction, this having been conducted using VOSviewer. The keyword 

network visualization assists in illustrating the output results of the scientometric analysis of the 

relevant literature. VOSviewer tool uses a distance-based map to show the strength of the 

relationship between two knowledge areas (Perianes-Rodriguez et al. 2016). The shorter distance 

between two items indicates a stronger relationship and vice versa. The different colours separate 

different knowledge areas clustered with the help of the clustering technique in VOSviewer. The 

size of the label represents the number of publications containing keywords, i.e., the larger the 

label is, the higher the number of publications containing the keywords it represents (Oraee et al. 

2017). 

The keywords of 423 academic publications on deep learning in construction were fed into 

VOSviewer to generate the co-occurrence graph of the keywords. The minimum number of co-

occurrences was set to ten. Out of 3,848 keywords, 82 met the threshold level. The selection of the 

threshold was based on generating an optimal number of clusters. The network of co-occurring 
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keywords is shown in Figure. 2-3. The network comprises 82 nodes, 1,844 links, and a total link 

strength of 6,470. 

Each keyword retrieved from the literature is shown in Table 2-2. It can be seen from Table 2-2 

that “construction industry”, “neural networks”, and “deep learning” are the keywords that 

appeared most frequently in the literature, which indicates that these topics were more widely 

researched in this field. Table 2-2 also shows the total link strength and year with the most 

publications related to a particular keyword. A “link” refers to the number of connections of one 

keyword and other keywords, and total link strength shows the total strength of connections of a 

keyword with other keywords (Eck and Waltman 2016). For instance, the total link strength of 

“construction industry” is 1,291, indicating a strong relationship between the keyword 

“construction industry” and other keywords captured in the literature. The year with the most 

publications related to a particular keyword, on the other hand, is reflective of the keyword 

frequency in articles published by researchers in that time period. For example, the keywords 

“construction equipment” and “neural network” garnered more attention from researchers in 2017, 

whereas the keywords “deep learning”, and “object detection” were researched more frequently in 

the year 2020, meaning that deep learning has garnered more attention in recent years. It is also of 

note that earlier contributions tend to focus on specific deep-learning methods employed in the 

construction industry, while more recent contributions are more focused on the specific problems 

encountered in the construction industry. 
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Table 2-2. 

List of selected keyword and relevant network data. 

Keywords Occurrence Year with most 

publications 

related to 

keyword 

Links Total link 

strength 

Construction industry 230 2018 97 1291 

Neural networks 172 2017 93 929 

Deep learning 113 2020 84 620 

Construction site 93 2019 84 457 

Convolutional neural 

networks 

48 2020 74 347 

Artificial neural networks 62 2016 69 311 

Construction equipment 45 2017 72 298 

Machine learning 43 2019 76 285 

Computer vision 35 2019 65 277 

Object detection 41 2020 61 270 
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Figure 2-3. Network of co-occurring key words related to deep learning in the construction 

industry. 

2.2.2.3 Co-Author analysis 

In co-author analysis, a co-authorship network and network countries/regions were generated from 

the scientometric record containing authors from each article. The co-author analysis assists to 

identify the dominant researchers, and leading countries for deep learning in construction industry 

research. 

2.2.2.3.1 Co-authorship network 

Co-authorship network was used to represent the most productive authors based on the number of 

academic publications. On the bases of 423 academic publications on deep learning in 

construction, the top 10 authors with the most publications are given in Table 2-3. H. Li (Hong 

Kong), X. Luo (China), and S. Lee (United States) are the top three most productive authors. Figure 

2-4 shows the co-authorship network, in which the nodes represent authors and the link between 
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authors indicates co-authorship collaboration in the selected articles. The redundant links in the 

network are removed through pathfinder, a technique recommended by (Chen and Morris 2003). 

The generated co-authorship network contains 298 nodes and 268 links. The size of the nodes is 

directly proportional to the number of publications. 

 

Figure 2-4. Network of co-authorship for publication related to deep learning in construction. 

Figure 2-4 contains several close-loop orbits representing strong collaboration among the 

researchers in the orbit, such as the orbit of Y. Xu, B. Song, T. Wang, L. Pang, and Y. Xie. 

Furthermore, the co-authorship network identified a number of research communities, in which 

many authors worked with at least one or two most productive authors. For example, X. Luo and 
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H. Li were the two most productive authors of the research community that also included X. Yang, 

Y. Yu, H. Luo, etc., and V.R. Kamat was the most productive author of the research community 

that also included L. Xu, D. Kim, A. Goyal, etc. In a network, it should be noted, the betweenness 

centrality is defined as “the ratio of the shortest path between two nodes to the sum of all such 

shortest paths”(Linton 2016). The high betweenness centrality node connects a large group of 

nodes and can be identified by a red and green ring in CiteSpace. Such nodes can be of assistance 

to separate the clusters in the network and identify the revolutionary scientific publications (Girvan 

and Newman 2002, Chen 2006). In Figure 2-4, H. Li (centrality = 0.03), V.R. Kamat (centrality = 

0.03), X. Luo (centrality = 0.03) and S. Lee (centrality = 0.03) are nodes with red and green rings, 

and they connect different groups of authors. 

Table 2-3. 

List of most productive authors from 2012 to 2021 involved in research on deep learning in 

construction. 

Author Country/Region Number of publications 

H. Li  Hong Kong 14 

X. Luo  China 09 

S. Lee USA 08 

A. Hammad Canada 05 

V.R. Kamat USA 05 

C. Kim South Korea 04 

Y. Xu China 04 

Y. Bai USA 04 

Y. Guo China 03 
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M. Bilal UK 03 

 

2.2.2.3.2 Network of countries/regions 

Similarly, a network of countries/regions was generated to explore the distribution of research 

publications on the application of deep learning in construction. The network consists of 128 nodes 

and 235 links. As shown in Figure 2-5, China (77 articles), the United States (62 articles), South 

Korea (31 articles), India (30 articles), Hong Kong (17 articles), Australia (17 articles), the United 

Kingdom (15 articles), and Canada (14 articles) are the major contributors to the publication in 

this area of research. The number of publications corresponds to the advancement of the research 

in the country/region. In comparison to the co-authorship network shown previously, the network 

of countries/ regions is relatively efficient and shows more homogeneity. The high centrality nodes 

are highlighted with red darker outer rings in Figure 2-5. Countries /regions including, China, 

United States, Hong Kong, and France with the centrality of 0.55, 0.42, 0.18, and 0.10, 

respectively, have gained top position in the network and linked research activities among several 

countries/regions. 
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Figure 2-5. Network of countries/regions. 

2.2.2.4 Co-citation analysis 

According to Small (1973), co-citation can be defined as the “frequency with which two 

documents are cited together by other documents”. It measures the semantic similarity of the 

documents that use citation relationships. It is an efficient method for determining the similarity 

in the document. In this review article, the following co-citation analyses were performed: author 

co-citation, and document co-citation. 

2.2.2.4.1 Author co-citation network 

Author co-citation analysis was used to identify and visualize the intellectual structure of a given 

field of study by counting the frequency with which any work of an author is co-cited with another 

author in the references of citing documents. As Bayer et al. (1990) have noted, such an approach 

is helpful for analyzing the advancements of the research community within a given field of study. 

As can be seen, the author co-citation network given in Figure 2-6 consists of 1,959 links and 466 
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nodes. The links reflect the indirect collaborations on the basis of co-citation frequency between 

authors, while the size of the node represents the number of co-citations of each given researcher. 

Accordingly, from the co-citation network, the highly cited authors were identified, including S. 

Ren (frequency = 53, China), K. He (frequency = 52, China), J. Redmon (frequency = 52, United 

States), Q. Fang (frequency = 46, China), R. Girshick (frequency = 43, United States), and H. Kim 

(frequency = 41, South Korea). The most cited authors are from China and the US, which shows 

that this field of research is new and still growing and only gaining attention among researchers in 

more developed countries. 

 

Figure 2-6. Network of author co-citation for publication to deep learning in construction. 
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2.2.2.4.2 Document co-citation analysis 

In this chapter, document co-citation analysis was used to determine the core intellectual structures 

in the field of research, as well as to determine the authority and quantity of references cited by 

other publications. The generated document co-citation network represents the relationship 

between citations at an individual level. The document co-citation network given in Figure 2-7 has 

396 nodes and 1,157 links. The nodes in the network represent the publications, where the labels 

show the first author's name along with the publication year. The links in the network show the 

co-citation relationship among the corresponding publications. The top five most highly cited 

articles as given in Figure 2-7 are (Redmon et al. 2016), (Fang et al. 2018b), (Fang et al. 2018c), 

(Ding et al. 2018), and (Lecun et al. 2015), which are also summarized in Table 2-4. 

Table 2-4. 

List of most cited documents from 2012–2021. 

Article Total citations Year Centrality 

Redmon et al. (2016) 23 2016 0.12 

Fang et al. (2018b) 19 2018 0.09 

Fang et al. (2018c) 19 2018 0.07 

Ding et al. (2018) 17 2018 0.08 

Lecun et al. (2015) 14 2015 0.10 

Fang et al. (2018d) 14 2018 0.06 

Ren et al. (2017) 14 2017 0.04 

Redmon and Farhadi (2018) 12 2018 0.06 

Liu et al. (2016) 12 2016 0.01 
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Kingma and Ba (2015) 10 2014 0.01 

These articles have been widely recognized by researchers as adding significant value with respect 

to research on the application of deep learning in construction. For instance, Fang et al. (2018b) 

implemented a deep-learning method to detect and classify non-hardhat-use by the worker on the 

construction site to improve the supervision of construction workers in order to reduce the 

likelihood of accidents. The use of deep learning proved to be effective in detecting workers non-

hardhat-use and thereby enhance safety inspection and supervision on the construction site. Based 

on the centrality scores, Redmon et al. (2016) and Lecun et al. (2015), with centrality scores of 

0.12 and 0.10, respectively, have occupied the top two positions in terms of their significant 

influence on the body of knowledge on the application of deep learning in construction. 

 

Figure 2-7. Network of document co-citation. 
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2.2.2.4.3 Co-citation Cluster analysis 

Cluster analysis assists in identifying the hidden semantic themes in the textural data. The cluster 

analysis also determines the similar groups of the research data and labels them according to the 

focus of the cluster (Hossain et al. 2011). This will help to identify the trends in the research area 

based on the abstract and keywords of each of the documents cited. A total of 34 co-citation 

clusters were identified using the log-likelihood ratio (LLR) algorithm. The reason for using the 

LLR algorithm is its uniqueness, high quality of clusters, and wide coverage of the text data 

(Olawumi and Chan 2018). The most important identified clusters are shown in Figure 2-8. 

Table 2-5. 

Co-citation clusters of deep learning research for construction, 2012–2021. 

Cluster 

ID 

Size Silhouette Abstract 

cluster label 

Alternative 

cluster label 

Year with 

most 

publications 

Representative 

documents 

#0  64 0.787 Deep active 

learning 

approach 

construction 

machinery 

monitoring 

using deep 

learning 

2020 (Bang et al. 2019, 

Chen et al. 2020, 

Guo et al. 2020, 

Kim et al. 2020, 

Luo et al. 2020, 

Slaton et al. 2020, 

Xuehui et al. 2021, 

Zhou et al. 2021b, 

Lin et al. 2021, 

Sim et al. 2021, 
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Xiao and Kang 

2021a) 

#1  34 0.908 Database-

free vision-

based 

monitoring 

construction 

site activity 

and workers 

monitoring 

using deep 

learning 

2019 (Ding et al. 2018, 

Fang et al. 2018b, 

Luo et al. 2018, 

Mneymneh et al. 

2019, Kim et al. 

2020, Li et al. 

2020, Nath and 

Behzadan 2020, 

Neuhausen et al. 

2020, Chen and 

Demachi 2021, 

Son and Kim 

2021) 

#2 26 0.988 joint-level 

vision-based 

ergonomic 

assessment 

ergonomic 

assessment of 

construction 

workers using 

deep learning 

2019 (Ryu et al. 2019, 

Yu et al. 2019b, 

2019c, 2019a) 

#4 18 0.936 Learning 

construction 

Construction 

site text report 

monitoring 

2018 (Baker et al. 2020, 

Deng et al. 2020, 

Li et al. 2020, Chi 
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injury 

precursor 

using deep 

learning 

et al. 2013, Zhong 

et al. 2019) 

#6 14 0.982 Deep 

semantic 

segmentation 

Construction 

site resource 

monitoring 

using deep 

learning 

2020 (Zheng et al. 2020, 

Wang et al. 2021, 

Yang et al. 2021, 

Zhou et al. 2021a) 

#11 7 0.974 Industrial 

construction 

Deep learning 

for 

construction 

site safety 

monitoring 

2021 (Fan et al. 2020, 

Hou et al. 2020, 

Pereira et al. 2020, 

Chian et al. 2021, 

Li et al. 2021, 

Brilakis et al. 

2020) 

#13 6 0.979 Deep 

learning 

detection 

Speech data 

and 

productivity 

analysis in 

construction 

industry using 

deep learning 

2020 (Olanrewaju et al. 

2020, Hong et al. 

2020, Kamal et al. 

2020, Liu et al. 

2020, Scarpiniti et 

al. 2021) 

Table 2-5 shows the detailed information concerning the identified co-citation cluster, e.g., cluster 

size, abstract cluster label, year with most publications in the cluster, and the silhouette that reflects 
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the homogeneity in the cluster. A silhouette of 1, it should be noted, means that the cluster is highly 

reliable, while a silhouette of 0 means that the cluster is unreliable. The highest silhouette score 

was achieved by cluster #02 and the lowest was by #0, with scores of 0.988 and 0.787, respectively. 

The largest cluster of the analysis was #0 with 64 documents labelled as “deep active learning 

approach” and the smallest was #13 with only 6 documents in the cluster and labelled as “deep-

learning detection”, as shown in Table 2-5. 

 

Figure 2-8. Network of document co-citation with clusters. 

The timeline analysis of the cluster was also taken into consideration in the review, as shown in 

Figure 2-9. The timeline analysis identifies the time-period for the development of each cluster. 

The stretch of cluster #0 with the label “deep active learning approach” is from 2009 to 2021, 

cluster #1 with the label “Database-free vision-based monitoring” is from 1998 to 2021, cluster #2 

with the label “joint-level vision-based ergonomic assessment” is from 1993 to 2021, cluster #4, 

cluster #6, cluster #11, and cluster #13 with labels “learning construction injury precursor”, “deep 

semantic segmentation”, “industrial construction”, and “deep-learning detection” is from 1998 to 
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2017, 2010 to 2021, 2005 to 2019, and 2012 to 2017, respectively. The identified clusters were 

relabelled based on the collective theme of the papers present in the cluster as given in Table 2-5. 

 

Figure 2-9. Timeline view of clusters. 

2.2.3 Critical review of clusters (Phase2) 

The critical review of the clusters given in Table 2-5 was conducted to provide an in-depth analysis 

of the application of deep learning in construction. The cluster identified in the literature was 

analyzed on the bases of overall research theme and the number of publications relevant to the 

theme. The detailed information on the research themes is given as follows. 

2.2.3.1 Construction machinery monitoring using deep learning 

The common link among the articles in this cluster is the concept that uncertainties in the dataset 

can be automatically evaluated in order to select meaningful learning features and train the model 

in the sequential process, with these articles centering on the detection, recognition, and tracking 

of construction machinery (Chen et al. 2020, Guo et al. 2020, Luo et al. 2020, Xiao and Kang 

2021a, 2021b, Xuehui et al. 2021) and full pose estimation of construction equipment (Luo et al. 

2020) using deep-learning approaches such as CNN, 3D-CNN, Faster region-based CNN (Faster 
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R-CNN), CNN+ Long short-term memory (LSTM), convolutional (Conv)LSTM, Single-shot 

detector (SSD), and You Only Look Once (YOLO). It was noted that deep-learning approaches 

provide the best possible results in detection, recognition, tracking, and full pose estimation of 

construction machinery on the construction site. 

2.2.3.2 Construction site activity and worker monitoring using deep learning 

This cluster encompasses the studies that use existing deep-learning models, such as YOLO, CNN, 

R-CNN, CNN+LSTM, and Faster R-CNN, for the recognition of diverse construction site 

activities (Luo et al. 2018, Kim et al. 2020, Mansoor et al. 2022), detection of unsafe worker 

behaviour on the construction site (Ding et al. 2018), detection of workers wearing PPE (e.g., 

safety helmet, safety waist) (Fang et al. 2018b, Mneymneh et al. 2019, Li et al. 2020, Neuhausen 

et al. 2020), and performance evaluation of construction workers on site. Each of these deep-

learning models has been shown to achieve high accuracy and speed. 

2.2.3.3 Ergonomic assessment of construction workers using deep learning 

The representative article for this cluster was authored by Yu et al. (2019c), who proposed a tool 

for assessing the ergonomics of construction workers automatically based on construction videos 

of workers performing construction tasks. This research used a deep-learning model (i.e., CNN) 

to extract construction workers’ skeletal data for the purpose of full-body ergonomic assessment 

(Yu et al. 2019c). Other publications in this cluster have used methods such as k-nearest neighbours 

(KNN), Multilayer perceptron, decision tree, and Support Vector Machine (SVM), to assess 

physical fatigue (Yu et al. 2019b) and workload estimation (Ryu et al. 2019, Yu et al. 2019a), 

among other applications. 
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2.2.3.4 Construction site text report monitoring using deep learning 

The representative article for the cluster “construction site text report monitoring using deep 

learning” was authored by Baker et al. (2020). They used deep-learning models such as CNN, 

Gated Recurrent Unit (GRU), and Recurrent Neural Network (RNN) to automatically learn injury 

precursors from raw construction engineering reports by identifying textural patterns, asserting 

that such an approach can be used to understand, predict, and prevent injury occurrence in 

construction. Other applications for text monitoring in construction industry described in articles 

in this cluster include classifying construction safety accident reports automatically (Deng et al. 

2020), using fastText-based classification to classify text reports of court compensation cases 

involving construction accidents (Li et al. 2020), classifying short text containing building quality 

complaints (Zhong et al. 2019), and text classification to automate job hazard analysis (Chi et al. 

2013), to name a few. 

2.2.3.5 Construction site resource monitoring using deep learning 

The representative article for the “construction site resource monitoring using deep learning” 

cluster was authored by Wang et al. (2022). They proposed the use of deep learning in conjunction 

with semantic segmentation in order to visually understand the construction site—meaning to 

detect and classify/label construction site features such as machinery, material, and workers with 

the aid of a camera and deep-learning models—in order to improve safety on site. Deep semantic 

segmentation in deep learning, it should be noted, is a technique used to partition the image into 

semantically meaningful parts (Wang et al. 2022). This technique is being extensively used in 

robotics. Specific applications described in this cluster include structural crack detection and 

segmentation, construction site resource detection (Torok et al. 2014, Cha et al. 2017, Kang et al. 

2020, Bang et al. 2020), classification of rock fragments produced by tunnel boring machines 
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(TBMs) (Yang et al. 2021), as well as segmentation of TBM muck images to estimate the size and 

shape of rock chips (Zhou et al. 2021a) using tools such as DeepLabV3, ResNET-18, VGG-16, 

and AlexNet. 

2.2.3.6 Deep learning for construction site safety monitoring 

The representative article for the “deep learning for construction site safety monitoring” cluster 

was authored by Pereira et al. (2020), who proposed the use of ANN and simulation-based 

analytics to allocate and prioritize safety resources in industrial construction as a way of enhancing 

safety management systems. They noted that, for example, consideration of factors such as 

awareness training, worker age, and long-term worker retention can be helpful in mitigating safety 

risks in industrial construction (Pereira et al. 2020). Other articles in this cluster have discussed 

the use of deep-learning techniques for mitigating safety risks by detecting structural components 

in a building (Hou et al. 2020, Brilakis et al. 2020, Lu et al. 2019, Bangaru et al. 2021), for 

structural health monitoring (Cha et al. 2018, Kang et al. 2018, Zhang et al. 2020, Fang et al. 

2018a), for classification of waste materials (Davis et al. 2021), and for detecting missing 

barricades (Chian et al. 2021), with these studies employing deep-learning models such as YOLO, 

CNN, DCNN, and ANN. 

2.2.3.7 Speech data and productivity analysis in the construction industry using deep learning 

This cluster revolves around the use of models such as RNN, LSTM, CNN+LSTM, and SSD to 

classify speech data and productivity on construction sites. The applications described in the 

articles in this cluster include speech recognition technology for building quantity estimation 

(Olanrewaju et al. 2020), robotic griper function on verbal commands (Follini et al. 2018), on-site 

conversation analysis (Zhang et al. 2018, Scarpiniti et al. 2021), and real-time construction 
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machinery checking (Xiao and Kang 2019), real-time onsite keyword identification ( Mansoor et 

al. 2022), to name a few. 

To summarize the critical review, it was noted that, within the construction engineering domain, 

deep-learning algorithms have been used in a diverse range of applications, such as detection, 

activity recognition, tracking and pose estimation of construction machinery, analysis of worker 

behaviour (e.g., PPE compliance), ergonomic analysis, text data classification, on-site 

conversation analysis, classification of rock chips produced by TBMs, safety management in 

industrial construction, construction resource management, construction site surveillance, and 

many more. As these examples demonstrate, deep learning has proved to be feasible for use in 

addressing construction site issues of this nature. Nevertheless, deep learning has received 

relatively little attention in construction practice because its accuracy is hampered by the limited 

availability of construction site-related data. It was further noted that almost all deep-learning 

applications in construction have been limited to image-based classification, whereas dynamic 

video-based classification, text and speech data classification have been very rare in construction, 

again because of the limited data available.  

2.3 Challenges and Future directions 

Despite the promising result, several challenges were also observed from the collected studies. 

This section discusses the identified challenges and future direction of the application of deep 

learning in the construction sector. 

2.3.1 Challenges 

The challenges were identified based on analysis of the 423 papers collected from the Scopus 

database. These challenges are the limited attention from researchers and industrial practitioners 
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in the area, and limitations of the deep-learning models or other models used for the specific 

purpose. The identified challenges are discussed in the following sections. 

2.3.1.1 Data availability 

The first challenge is the lack of data in the construction industry. Deep learning is a data-driven 

field. To achieve high accuracy in detection and classification, a large volume of label data is 

required to train the deep-learning models (Khan and Yairi 2018). However, there are few 

construction engineering-related datasets available to the public, and obtaining construction-

related data can be a challenge. The data available to the public is domain-specific, where models 

are trained for a specific purpose and not necessarily transferrable to other applications. The 

researcher must therefore create their datasets and label the datapoints manually. This process is 

time-consuming, expensive, and tedious. 

To tackle the issue of data availability, the transfer learning technique was employed. In transfer 

learning, it should be noted, the models are pre-trained with extensive common object datasets 

such as ImageNet and MNIST. Examples of the pre-trained model are VGG 16, YOLO series, 

ResNet, etc. These models have pre-trained weights, where the model has already learned the way 

to extract the features of the data. Transfer learning technology can assist in decreasing the demand 

for data volume; however, the lack of data is still a major challenge with respect to applying deep-

learning technologies in the construction industry. 

2.3.1.2 Accuracy of deep-learning models 

The accuracy of the deep-learning model for safety-related and other critical construction site-

related tasks is not sufficient for practical applications. This is due to the dynamic nature of the 

construction site the model trained on the construction site related datasets are lacking in 

generalization. Most of the data are captured on a single construction site or under the same 
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environmental condition. On the other hand, every construction site is different. Researchers 

tackled the data generalization problem by introducing data augmentation techniques. Data 

augmentation techniques assist in better generalizing and upsizing the dataset (Shorten and 

Khoshgoftaar 2019). The common data augmentation methods include flipping, cropping, varying 

the brightness and contrast of images, applying noise and blur to the images, adding noise to the 

speech data, change pitch of speech data, etc. By applying these transformations, the generalization 

of deep-learning models can be improved. These transformations helped to improve the accuracy 

of the deep-learning model (Shorten and Khoshgoftaar 2019) but were not adequate for practical 

application. Therefore, more efforts should be made to improve the accuracy of the deep-learning 

models. 

2.3.1.3 Construction site Environment 

Another challenge is the complicated construction site environment. The construction sites are 

congested, noisy and dynamic, and this makes the performance use of deep-learning approaches 

less promising. Complex site conditions also significantly affect the quality of images and other 

data. To achieve high-quality image data on construction sites more cameras and drones may be 

required, which help to capture images from every possible environment and angle in the 

construction sites. 

2.3.1.4 Data privacy 

Deep-learning models required a massive amount of data to train model the data privacy is one of 

the major challenges faced when conducting research on deep learning. Meanwhile, any data used 

for research conducted in Canada is subject to the Personal Information Protection and Electronic 

Document Act (PIPEDA 2022) and the Copyright Act of Canada (CAC 2022). As such, care had 

to be taken with respect to data usage and publication rights to ensure compliance. 
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2.3.1.5 Computational cost 

The deep-learning models are complex and require high technology and powerful machines with 

GPU processors for fast processing (Sergeev and Del 2018). The deployment of powerful 

machines with the capability of fast processing on every construction site task is not possible. On 

the other hand, less powerful technological devices such as mobile devices and microcontrollers 

do not achieve the desired accuracy and speed for deep-learning models. Therefore, more studies 

should focus on finding approaches with high accuracy and speed on less computational power 

devices for the full adoption of deep learning in construction. 

2.3.2 Future directions 

2.3.2.1 Automated data collection and labelling 

There are many opportunities in the application of deep learning yet to be explored within the 

context of construction. As already discussed in the previous section, there are few constructions 

engineering-related public datasets available by which for the researcher to train deep-learning 

models. Hence, future work should focus on developing more construction engineering-related 

public datasets and finding alternate methods to train the model when the dataset is insufficient. 

One recommendation is to install additional cameras and microphones or use drones with 

capability to collect more images, video and speech data on the construction site. In this way, more 

datasets can be built, and data can be more generalized if they are captured from real construction 

sites. Generative Adversarial network (GAN) and data augmentation can also be used to increase 

the size and better generalize the dataset (Frid-Adar et al. 2018, Mansoor et al. 2022). GAN is 

being used by researchers to produce synthetic data in many applications, and it can produce more 

diverse and distinct datasets (Frid-Adar et al. 2018). The implementation of GAN might be a 

possible solution for the construction engineering-related dataset challenge in future. The labelling 
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of the dataset is mandatory for classification problems, and this task is typically performed 

manually by the researcher. This process is time-consuming and tedious, in the future automatic 

labelling of the construction site datasets should be developed because this can lower the amount 

of effort required developing high-performance deep-learning models. 

2.3.2.2 Dynamic scenario/Scene classification 

While deep-learning models have the potential to be leveraged to detect the dynamicity of the 

construction site, the potential of deep-learning models to detect and classify objects and dynamic 

construction site environments has yet to be fully explored. To detect and classify objects while 

moving, multiple deep-learning models need to be integrated to produce accurate results, for 

example, convolutional neural networks and recurrent neural networks are integrated to achieve 

spatial-temporal features from the moving objects. The integration of models using the spatial-

temporal feature facilitates predictive modelling based on historical data. The integration will 

assist to detect and classify objects in motion such models will also improve the performance of 

deep-learning algorithms. 

2.3.2.3 Deep learning for text and speech classification in construction industry 

Another area warranting the attention of construction researchers is the use of a deep-learning 

approach to classify text and speech in construction. There have been a few studies published in 

this area, including such applications as construction site text report monitoring for accidents and 

claims (Deng et al. 2020, Li et al. 2020b), text classification to automate job hazard analysis (Chi 

et al. 2013), speech recognition technology for building quantity estimation (Olanrewaju et al. 

2020), and on-site conversation analysis (Zhang et al. 2018, Scarpiniti et al. 2021). Deep-learning 

models are capable of classifying text and speech with high accuracy in a range of environmental 

conditions, and the use of deep learning in construction for text classification can enhance 
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understanding of construction reports and support timely analysis of complaints by automating the 

process. Speech classification in construction can also be useful for improving communication and 

keeping records of on-site meetings to avoid any misunderstanding in communication. Speech 

analysis, meanwhile, can be useful for analyzing construction equipment noise and monitoring the 

health of construction equipment. 

2.3.2.4 Optimization of deep learning for low computational power devices 

Future research can integrate deep learning with other technologies, such as virtual reality (VR), 

building information modelling (BIM), mobile devices, Google Glass, etc. Deep learning has 

traditionally required high computationally powerful machines, but in recent years models with a 

lower computational burden—e.g., MobileNet, Tensorflow Lite, etc.—have been proposed. These 

models perform satisfactorily and require less computational power. Using these models with other 

technologies can assist in decision-making on the construction site. With the help of 5G 

technology, it is easier than before to collaborate and optimize the model performance in real time. 

However, current lightweight deep-learning models with low computational power are not reliable 

for safety-critical task detection and classification due to the compromised accuracy and speed of 

models. Therefore, an optimized, highly accurate and fast deep-learning structure is still required 

in the future.  

2.4 Conclusion 

This study explores the current state-of-the-art research regarding the application of deep learning 

in construction. It was observed that the implementation of deep-learning methods has gained an 

increased amount of attention in recent years among researchers in the construction industry. The 

present study employs a science mapping approach to examine 423 journal articles and conference 

papers by conducting a scientometric analysis, which was followed by a critical review of the 
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identified themes. The reviewed literature emphasizes on issues that have been historically 

addressed by manual means, For example, inspection of construction sites, resources and 

construction equipment recognition, construction worker safety monitoring, text and speech data 

analysis. It was observed from research that work in this field is mostly done in isolation; this is 

particularly the case when considering the research themes and research studies of previous 

literatures. A conclusion that can be made is that collaboration and support among researchers in 

the future would be beneficial to increase the debates, dialogues and cross-pollination of ideas for 

the advancement of the research. Undoubtedly, an enriched understanding that certain practices, 

mainly the use of deep learning for communication, safety, productivity improvements, and 

advanced automation of construction processes, may convince the industry to support deeper and 

more advanced research in the domain, which may help in more funding and careful research 

planning efforts by policymakers and industry experts. Additionally, this study offers valuable 

information about research themes published on the topic of deep learning and its implementation 

in the construction industry through cluster analysis and critical review. Despite the contributions 

offered, the findings of the study are to be considered in light of certain limitations. As discussed, 

the findings are restricted by the initial selection of keywords and thus limit the coverage of the 

current literature. Second, data are retrieved from one single database (Scopus). In the future, a 

more exhaustive dataset can be obtained for scientometric analysis and critical review by 

combining data from various databases (e.g., Web of Science, Google Scholar, PubMed, and so 

on). 
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Chapter 3: A DEEP-LEARNING CLASSIFICATION FRAMEWORK FOR 

REDUCING COMMUNICATION ERRORS IN DYNAMIC HAND SIGNALLING FOR 

CRANE OPERATIONS2 

The previous chapter described a detailed scientometric analysis and critical review of the 

literature on the application of deep learning in the construction industry, in which it was observed 

that deep-learning models have been shown to be capable of improving productivity, construction 

site monitoring, safety analysis, and ergonomic assessments in construction. However, the use of 

deep-learning models for classification of communication (hand signalling and speech) on 

construction sites has received little attention. Some of the reasons for this are the lack of open-

access data, the dynamic nature of the construction work environment, and the questionable 

accuracy of deep-learning models when deployed in such applications.  

The use of hand signals is a common practice in construction sites, especially in crane operations, 

where a signalman on the ground communicates essential instructions to the crane operator. 

However, communication errors are prevalent due to factors such as distance, noise, and visibility 

issues, leading to accidents and project delays. To reduce these errors, there is a need to develop a 

reliable and efficient framework that can classify hand signals accurately in real time. 

In this chapter, a computer-vision-based deep-learning classification framework for reducing 

communication errors in dynamic hand signalling during crane operations is presented. The 

framework makes use of an integrated YOLOv4+LSTM model to classify 18 different dynamic 

hand signals based on their visual features. The framework can detect and classify hand signals in 

                                                 
 
2 A version of this chapter has been published in Journal of Construction Engineering and Management as follows: 

Mansoor, A., Liu, S., Ali, G. M., Bouferguene, A., and Al-Hussein, M. (2023). “A deep learning classification 

framework for reducing communication errors in dynamic hand signaling for crane operation.” Journal of 

Construction Engineering and Management, 149(2), 04022167. 
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real time with an accuracy of 93.5%, thereby improving the efficiency of communication and 

reducing errors during crane operations. 

3.1 Introduction 

The success of crane operations is highly dependent on the effectiveness of the communication 

between the crane operator and the signalman (Zavichi and Behzadan 2011). Hand signalling is 

the primary means of communication in crane operations. The crane operator operates the crane 

according to the signalman’s hand signals and speech commands, and this is especially critical in 

blind lifts when the crane operator is unable to see the site. It is often said that the signalman is the 

“eyes and ears” of the crane operator (Chen et al. 2011, Zekavat and Bernold 2014). However, 

these means of communication (hand signalling and speech commands) are not always reliable, 

and breakdowns in communication can result in accidents, as discussed in Chapter 1. There is thus 

a pressing need for supplemental forms of communication between crane operator and signalman. 

With recent technological developments, deep-learning algorithms with the ability to classify 

dynamic hand signals can provide an added layer of communication between signalman and crane 

operator, making it more efficient and more reliable. In such an application, the deep-learning 

algorithms receive live camera data, process the data, and output the classification labels. In this 

way, the construction industry can leverage modern technology in much the same manner as the 

manufacturing and automobile industries have. For example, road safety has been improved 

through the introduction of advanced driver assistance systems (ADASs), which provide real-time 

information about the surrounding environment of a travelling motor vehicle (Pickering et al. 

2007; Kukkala et al. 2018).  

The outcome of a preliminary feasibility study to classify crane signalman static hand signals using 

deep learning (see Appendix 1) showed that deep-learning models are capable of classifying static 
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crane signalman hand signals. However, crane signalman hand signals tend to be dynamic in 

nature, and thus further investigation is warranted. 

This chapter proposes an intelligent deep-learning model, trained with a dataset of dynamic crane 

signalman hand signals, to achieve a high level of accuracy in classifying dynamic crane signalman 

hand signals in training, validation, and test datasets, and to further validate the model for real-

time crane signalman hand signal classification. The framework is capable of classifying dynamic 

crane signalman hand signals in real time. The classified hand signals and corresponding labels 

can assist the crane operator in making sound decisions with confidence as well as allowing the 

signalman to send commands to the crane operator without the need to hold any other 

communication device. Given that the signalman must maintain direct eye contact with the load at 

all times for safety reasons, they cannot look at a handheld device (e.g., tablet) even for a few 

seconds. The benefit of using the deep learning-based intelligent framework is that it can facilitate 

communication between the crane operator and the signalman without the need for such devices. 

The balance of this chapter is organized as follows: The next section provides background 

knowledge pertaining to hand signal classification. This is followed by an overview of the 

proposed intelligent framework, including a description of the data collection and data 

preprocessing techniques. Next is a description of the respective architectures of the deep-learning 

models used in this study and the modifications made to them, followed by an account of the 

implementation and performance of the developed models in training, validation, and testing for 

real-time classification. The chapter closes with a discussion, summary of the conclusions drawn, 

and a description of possible avenues of future work in this area of research. 
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3.2 Related work on hand signal classification 

Deep learning-based hand gesture recognition is a hot topic in computer vision applications that 

plays a very important role in human–computer interaction (Su et al. 2020), with most studies in 

this area focusing on image data recognition due to the excellent performance of deep learning in 

such applications. Many deep learning-based methods have been developed to classify hand 

gestures. For example, Oyedotun and Khashman (2017) implemented a convolutional neural 

network (CNN) and stacked denoising autoencoder-based deep-learning model to recognize 24 

hand gestures from American Sign Language (ASL). The model achieved an accuracy of 92.83% 

for static ASL hand gestures. Huang et al. (2018) used a 3D CNN for video-based sign language 

recognition without temporal segmentation. Okan et al. (2019) used a lightweight CNN and deep 

convolutional neural network (DCNN) to classify the hand gestures from EgoGesture and NVIDIA 

dynamic datasets. The model was found to be capable of achieving 94.04% accuracy in real-time 

video streaming recognition. Molchanov et al. (2016) introduced the concept of using a recurrent 

three-dimensional CNN to detect and classify dynamic hand gestures from multi-model data. Their 

model was trained to predict class labels from in-progress gestures in unsegmented input streams, 

achieving an accuracy of 88.4%. Many other models have been developed and have been found to 

perform exceptionally well in recognizing hand gestures. 

Although the performance of recently developed methods for hand gesture recognition is 

promising, their actual implementation in the construction industry is not yet well established. This 

is due to the fact that the methods reported in the literature have typically been implemented in 

ideal conditions, i.e., in indoor environments where the signalmen are in static positions while 

signalling. On the contrary, construction sites are dynamic, complex, and often congested and 

disorderly. Moreover, the ambient conditions of the outdoor construction environment can also 
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have an impact on the accuracy of these hand signal interpretation methods. For the proposed 

intelligent framework, first the custom dataset of dynamic crane signalman hand signals are 

created. Then, the deep-learning models are developed and tested on the custom dataset. The 

developed model is validated in real-time classification and compared with the state-of-the-art 

deep-learning models. The performance of the models is evaluated based on the accuracy and 

inference time. The performance evaluation will help to analyze the application of deep-learning 

models as a supplement layer of communication in crane operations in different construction site 

environments. 

3.3 Proposed intelligent framework 

The overview of the proposed intelligent framework is shown in Figure 3-1. The framework uses 

You Only Look Once version 4 (YOLOv4) to extract spatial features (refers to features in static or 

object vector in a single frame) and the Long Short-Term Memory (LSTM) model to extract 

temporal features (refers to dynamic changes in features in object based on number of frames taken 

at different time) from the dataset, thereby improving the accuracy and inference time to facilitate 

real-time classification. The process underlying the framework includes dataset collection and 

preprocessing, model training with the dataset, and validation with real-time classification. The 

output of the framework is visible hand signals on screen with classified labels. These processes 

are discussed in detail in the following subsections. 
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Figure 3-1. Overview of proposed intelligent framework. 

3.3.1 Input data collection and preprocessing 

Since there is no accessible dataset available for crane signalman hand signals, the priority is to 

create a video dataset of hand signals. The hand signals to be included in the dataset are based on 

Occupational Safety and Health Administration (2021) crane hand signals, as shown in Figure 3-

2. 

To create the dataset, a HD 720p (where p stands for the progressive scan) Logitech camera is used 

as the recording device. A total of 85 videos from 23 different volunteers are captured with a 

maximum resolution of 720 × 720 pixels at 30 frames per second (FPS) containing all 18 hand 

signals. 
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Figure 3-2. Crane signalman hand signals. (Reprinted from OSHA 2021). 

As shown in Figure 3-3, the videos are captured from multiple angles (0° to 360°), and the camera 

is placed at varying distances (as near as 3 m and as distance as 20 m, and as low as 1.5 m and as 

high as 30 m), under different weather conditions, and with multiple backgrounds (static versus 

dynamic), as outlined in Table 3-1. 
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Table 3-1. 

Dataset collection in different scenarios. 

Scenario Camera position (varying distance) Background Weather (Winter) 

Indoor Right side of signalman Static - 

 Left side of signalman Static - 

 Front of signalman Static - 

 Back of signalman Static - 

 Helmet of signalman Static - 

Outdoor Right side of signalman Static and dynamic Sunny and cloudy 

 Left side of signalman Static and dynamic Sunny and cloudy 

 Front of signalman Static and dynamic Sunny and cloudy 

 Back of signalman Static and dynamic Sunny and cloudy 

 Helmet of signalman Static and dynamic Sunny and cloudy 

 

It is observed from the videos that the crane signalman takes approximately 3 s to complete a cycle 

of a hand signal in most cases. Based on this observation, short video clips with a maximum 

duration of 3s are extracted from the collected videos. These videos clips are then separated based 

on their classification labels into separate folders corresponding to the 18 different hand signals. 

Table 3-2 shows the total number of video clips extracted for each crane signalman hand signal. 

Further data augmentation techniques are applied to the extracted video clips, as described in the 

following subsection. 
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Figure 3-3. Camera placement for data collection and real-time crane signalman hand signal 

classification. 

Data augmentation is a method to increase the size of the collected dataset artificially, by applying 

random but realistic transformation to each frame in the video clip. This technique helps to 

diversify the frames in the video dataset. The implementation of data augmentation can improve 

the performance of the model (Hernandez-Garcia and Konig 2018), reduce the likelihood of 

overfitting, as well as better generalize the dataset for model training purposes (Mikołajczyk and 

Grochowski 2018). The data augmentation techniques used for this research includes gamma 

transformation, Gaussian blur and salt-and-pepper noise. These augmentation techniques are most 

widely used technique because they are closest to mimic out-of-focus camera blur, changing 

weather conditions, and dusty conditions on the construction site. The use of these augmentation 
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techniques proved the increase of accuracy of the deep-learning model. Detail analysis of 

augmentation technique used in this chapter along with their effect on accuracy of deep-learning 

model are given in Appendix 2. 

3.3.1.1 Gamma transformation 

Gamma transformation is a technique to control the intensity of light in a given frame. With gamma 

transformation, we can adjust the contrast and brightness of the original frame (Bull 2014). This 

technique can bring more originality to the dataset and help the model to perform better in any 

lighting condition. For the current dataset, the range of gamma values in which to adjust the 

brightness and contrast is set to between −7 and +7, where a setting of −7 will result in darker 

frames and +7 will result in lighter frames. This range is chosen to make the conditions more 

realistic and representative of weather conditions ranging from sunny/clear to cloudy/overcast. 

3.3.1.2 Gaussian blur 

Gaussian blur is used to blur the frames in the video dataset; it has been widely used for multiple 

purposes such as reducing the detail in the frame. This technique smooths out the randomness in a 

frame based on a chosen blur radius. Each pixel in the frame will adopt a new value based on the 

weighted average of its surrounding pixels (Misra and Wu 2019), where more weight is given to 

pixels in closer proximity. The amount of blur in the frame is measured in pixels (px), where a 

higher value of px means more blur and a lower value means less blur will appear in the frame. 

The camera blur happens in moving objects in real time. Therefore, this transformation is used in 

this research. To add blur to the dataset, a blur value of 2.75 px is chosen for the present work. 

Adding blur to the frames in the dataset ensures that the model will be trained for a scenario where 

the camera may lose focus, thereby allowing the model to achieve better accuracy. 
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3.3.1.3 Salt-and-pepper noise 

The “salt-and-pepper” noise data augmentation technique is used for frame degradation. In this 

technique, some pixels of the frame are kept very noisy. The effect is likened to sprinkling salt and 

pepper on the frame (Boncelet 2009), hence the name. The intensity of salt-and-pepper noise is 

measured in percentage, where 0% means there is no noise in the frame. For the current research, 

3% salt-and-pepper noise is applied. The value of 3% is chosen based on the observations and 

considering the complexity of the construction-site scenarios. This helps the model to be trained 

for unintentional and unwanted changes in the scenes. It also helps the model to correctly classify 

hand signals captured from low-quality cameras (low-resolution pixels). Some examples data 

augmentation techniques is shown in Figure 3-4. 

 

Figure 3-4. Example of data augmentation. 

The reason for using these augmentation techniques is to better generalize the training dataset and 

to mimic the construction site environment, which is typically subject to changing weather, dusty 

conditions, among other dynamic and unpredictable conditions. After applying these 

transformations, the dataset size is increased by 25%, as the data augmentation randomly choose 

each frame and apply transformation and store the frame as a different frame. Table 3-2 shows the 
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number of video clips for each hand signal included in the dataset with and without data 

augmentation. 

Table 3-2. 

Number of video clips (duration = 3s) with and without data augmentation. 

Standard hand signals Dataset sample size without 

augmentation (90 frames in 

each video clip) 

Dataset sample size with 

augmentation (90 frames in 

each video clip) 

Hoist 187 231 

Lower 180 220 

Use main hoist 173 223 

Use whipline 187 234 

Boom up 184 229 

Boom down 178 225 

Move slowly 170 218 

Swing 168 208 

Boom down and raise the 

load 

187 220 

Boom up and lower the load 190 235 

Stop 181 224 

Emergency stop 189 233 

Travel 177 229 

Dog everything 178 225 

Travel both tracks 167 216 

Travel one track 176 224 
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Telescope out 181 222 

Telescope in 187 238 

 

3.3.2 The main process of the intelligent framework 

The main process of the proposed intelligent framework consists of three parts, namely, data 

preprocessing, model training, and real-time classification as shown in Figure 3-1. The data 

preprocessing section includes data collection, annotation, and augmentation, which is discussed 

in detail in the previous section. In the model training part, YOLOv4 and LSTM deep-learning 

models are employed as the classification model that will be discussed in coming section. The 

classification model is trained and validated using the collected hand signal dataset and the 

performance of the model is evaluated. A satisfactory performance means the accuracy and speed 

of the classification model exceed the user-defined parameters. The model network and weights 

are saved and used for the real-time classification of hand signals. The output of the framework is 

divided into two parts, namely, real-time classification of dynamic hand signals and real-time 

visualization of hand signals, which will be discussed in the next section.  

3.4 Deep-learning algorithms 

3.4.1 YOLOv4 architecture 

YOLOv4 is a deep learning-based object detection and classification model capable of inspecting 

an image to find the subset of object class, enclose it within bounding boxes, and identify its class 

when trained (Bochkovskiy et al. 2020). YOLOv4 is the updated version of the YOLO algorithm 

series, which has been used in many applications in various fields, such as in the classification of 

safety helmets (Hu et al. 2019), construction vehicles (Hou et al. 2020), defects in sewer pipes 

(Yin et al. 2020), etc. The YOLOv4 model is selected for the present work based on its superior 
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accuracy and speed compared to other deep-learning models (Bochkovskiy et al. 2020). For 

example, when the YOLOv4 model is compared with the other versions of the YOLO series the 

YOLOv4 outperform the other version of the YOLO series (Nepal and Eslamiat 2022; Rahman et 

al. 2021; Bochkovskiy et al. 2020). The YOLOv4 model also showed significantly higher accuracy 

and speed compared to other famous detection and classification models such as Single-Shot 

Detector (SSD) and Faster R-CNN (Kim et al. 2020). The YOLOv4 model architecture consists 

of three parts—the backbone, neck, and head—as shown in Figure 3-5. 

 

Figure 3-5. Detail architecture of proposed YOLOv4 model. 

3.4.1.1 Backbone 

The backbone of the YOLOv4 architecture, used in the research is composed of a cross-stage 

partial connection CSPDarknet53, Bag of freebies, and bag of specials. CSPDarknet53, it should 

be noted, is a CNN featuring residual connections to ensure the depth of the network and to address 

the vanishing gradient problem. Moreover, CSPDarknet53 has the capability to learn spatial 

features from the crane signalman hand signal dataset. Based on pervious studies it has been noted 

that CSPDarknet53 performs better than other available models in object classification when using 

the Common Objects in Context (COCO) dataset, while the bag of freebies is employed to improve 



62 

 

the performance of the network without affecting inference time in classification problems 

(Bochkovskiy et al. 2020). Examples of freebies are data augmentation to increase the size of the 

dataset and minimize the risk of model overfitting, or editing the complete intersection over union 

(CIOU) loss, which predicts bounding box overlap with the ground truth bounding box and 

encourages the network to pull over the predicted box to the ground truth box (Zheng et al. 2019). 

The bag of specials is used to increase the inference time and performance of the network 

(Bochkovskiy et al. 2020). Bag of specials that are used in the proposed model are cross minibatch 

normalization to make the network capable of running on any GPU system (Bochkovskiy et al. 

2020); dropblock regularization is also employed for the study, which forces the network to learn 

features that it otherwise may not capture (Ghiasi et al. 2018); and the Mish activation function, 

which moves the network feature creation towards its optimal point (Misra 2019). These 

improvements effectively improved the detection and classification speed and accuracy on the 

COCO dataset (Bochkovskiy et al. 2020). The detailed working philosophy and architecture of 

YOLOv4 and be found in the article by (Bochkovskiy et al. 2020). 

3.4.1.2 Neck 

The neck of YOLOv4 model architecture used in this study is responsible for collecting the feature 

maps from crane signalman hand signal at different stages in the network, and it comprises a spatial 

pyramid pooling (SPP) block (Huang et al. 2020) and a path aggregation network (PANet) (Liu et 

al. 2018). The SPP block used in the study is responsible for separating out the most important 

feature maps generated by different filters in the backbone of the developed YOLOv4 architecture. 

This is achieved with the help of pooling, which is performed using kernel sizes of 5, 9, and 13 

and a stride of 1 while the padding is adjusted; in this manner, it can generate an output with the 

same shape as that of the input. The PANet used in the proposed YOLOv4 architecture serves to 
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concatenate the input and the vector from a previous layer to create a new vector. It thereby 

improves the propagation of layer information in the network from up to down and from down to 

up (Liu et al. 2018). 

3.4.1.3 Head/ Dense prediction 

The head of the YOLOv4 network architecture is responsible for performing the final dense 

prediction of crane signalman hand signal. It should be noted that the proposed YOLOv4 network 

features the same head as YOLOv3, as it is capable of multiscale object prediction. The prediction 

output is composed of a vector containing coordinates of the predicted bounding box (center, 

height, width) and the classified predicted label of crane signalman hand signals. The detailed 

architecture is given in Figure 3-5. 

3.4.2 Modification in YOLOv4 model architecture 

The activation function plays a key role in the performance of deep-learning models, especially 

when the dataset availability is limited (Ramachandran et al. 2017). It is used to determine the 

activation of neurons in the neural network model. As such, the selection of activation function 

plays a critical role in the performance of the model. The most widely used activation functions 

for training deep-learning models efficiently and improving the accuracy of predictions in the case 

of a limited custom dataset are selected for the proposed framework, which includes ReLU 

(Agarap 2018), Mish (Misra 2019), and Leaky-ReLU (Xu et al. 2020). In the proposed framework, 

the experiments are conducted by modifying the YOLOv4 backbone, in this case by changing the 

activation function and the performance of each proposed model is evaluated by using all the 

discussed activation functions one by one in the backbone of the YOLOv4 network architecture.  
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Figure 3-6. Graphical representation of activation functions: (a) Mish; (b) ReLU; and (c) Leaky-

ReLU. 

The Mish activation function Eq. (3.1) can improve the performance of the model; however, it 

requires a long training time and has a high computational cost. It has a range of [≈ −0.31, ∞], 

which means it is bounded below and unbounded above. This property is important to improve the 

performance of the model training. A graphical representation of this function is given in Figure 

3-6. 

f(𝑥) = 𝑥 tanh(ln(1 + 𝑒𝑥))                                                                (3.1) 

f(𝑥) = max(0, x)                                                                                   (3.2) 
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f(𝑥) = {
𝑥, 𝑓𝑜𝑟 𝑥 ≥ 0
𝛼𝑥, 𝑓𝑜𝑟 𝑥 < 0

                                                                  (3.3)   

The ReLU activation function Eq. (3.2), meanwhile, is an identity line where y = x for all positive 

lines and y = 0 for all negative values, as shown in Figure 3-6. Leaky-ReLU Eq. (3.3), finally, is 

one of the most widely used activation functions due to its good performance. This activation 

function has an alpha parameter that helps to keep the gradient away from zero all the time while 

the model is being trained. (A gradient of zero means that, for activations in that region, the weights 

are not being updated during back-propagation. This can create “dead” neurons that never become 

activated, thereby limiting the model and inhibiting further performance improvement.) It also 

solves the vanishing gradient problem and keeps updating the weights along the propagation 

process. The graphical representation of this function is given in Figure 3-6. 

3.4.3 LSTM architecture 

As discussed, that crane signalman uses dynamic hand signals while sending message to the crane 

operator. To accurately classify dynamic hand signals temporal features over time plays an 

important role. This study used LSTM to extract temporal features from dynamic crane signalman 

hand signals. The LSTM model, it should be noted, is a special type of RNN capable of learning 

information over a long period of time (Greff et al. 2016), and it can be employed to extract 

temporal information from video frames (Qasim and Pettirsch 2020). It converts the video frames 

into a sequence of feature vectors that accurately present the features from each video frame. 

Temporal feature extraction is an important tool for classifying objects in a dynamic image 

sequence, and temporal features are used to monitor dynamic changes in crane signalman hand 

signals. The LSTM architecture, meanwhile, is composed of hidden state, a memory cell, an input 
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gate, an output gate, and a “forget” gate, as shown in Figure 3-7, and described in greater detail 

below. 

 

Figure 3-7. Architecture of LSTM model. 

In the LSTM model, the hidden state is responsible to hold the previous information of the crane 

signalman data in the form of a vector from the YOLOv4 model for each video frame. In Figure 

3-7, Xt-1 represent the hidden state of the past timestamp and Xt is the hidden state of the current 

timestamp. The memory cell in the LSTM model is used to store the input data from YOLOv4 

model in the form of a vector for each video frame of the crane signalman hand signal dataset. 

This cell also deals with the flow of information and handling of input data. The input vector from 

YOLOv4 model enter through the input gate of the LSTM model. The input gate is responsible to 

decide whether to allow the input data in or to remove the present state of the input data with the 

aid of a hyperbolic tangent activation function that updates the cell state. The output gate used in 

the LSTM model is responsible for filtering and regulating the output of the function, while, 

finally, the forget gate is used to discard the stored information that is no longer required. In this 
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way, LSTM model helps to extract, store, and learn the temporal features in a given time period 

for the sequence of frames from the crane signalman hand signal dataset. 

3.5 The architecture of the integrated model 

Crane signalmen use dynamic hand signals to send commands to the crane operator. To achieve 

high accuracy in dynamic hand signal classification, both spatial and temporal features of the 

dataset are required. The framework uses the proposed modified YOLOv4 model and LSTM 

model to extract both spatial and temporal features from the crane signalman hand signal dataset 

and improve the framework’s accuracy. Here, the modified YOLOv4 is responsible for detecting 

and extracting the spatial features from crane signalman hand signal dataset, and LSTM is 

employed to use the temporal features and predict the final output. The integration of the improved 

YOLOv4 with LSTM (as shown in Figure 3-8) allows us to exploit the spatiotemporal features in 

the data and improve the accuracy of the model. 

 

Figure 3-8. Proposed YOLOv4+LSTM model architecture. 

The model receives the sequence of labelled frames from video clips as input. The labelled input 

frames are then fed into the modified YOLOv4 model, which processes the input frames to produce 

a spatial feature vector of each frame in sequence and coordinates of the predicted bounding box 

location, which is the detection box. The output information (spatial feature vector and the 

coordinates of the bounding box location) is then concatenated and, in turn, fed into the LSTM 

model. The LSTM model explores the information, learns the historical pattern based on the 
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sequence of frames, and, finally, generates the detection box coordinates, along with the classified 

label frame by frame, as a prediction output of the model. 

3.6 Case Study 

The proposed deep-learning algorithms are used to classify the dynamic crane signalman hand 

signals. The dataset of 4,054 video clips is used to train, validate, and test the classification 

accuracy of the deep-learning algorithm. The dataset contains 18 different hand signals labelled 

manually. The details concerning the data collection and preprocessing of the hand signal dataset 

as described below are provided in previous sections. 

3.6.1 Model Training 

Before the model can be used for real-time classification of crane signalman hand signals, it must 

be trained on the custom hand signal dataset. The dataset is split into training (70%), validation 

(15%), and test (15%) sets. The hyperparameters to train the model are determined by trial and 

error to achieve the best performance, which are given as follows, the spatial size of the frames, is 

reduced from 720 × 720 pixels/frame to 416 × 416 pixels/frame manually for the purpose of 

inputting them to the modified YOLOv4+LSTM model. The optimization algorithm employed in 

the model are Nesterov accelerated gradient, momentum, decay and dropout layers. A batch size 

of 64, momentum of 0.9, and decay of 0.0005 are used in the models, which are trained on 3,600 

epochs. The highest training and validation accuracy is achieved by YOLOv4(Leaky-

ReLU)+LSTM model with 96.9% and 96.02%, respectively. The lowest accuracy in model 

training and validation is achieved by YOLOv4 (Mish)+LSTM with 93.4% and 91.3%, 

respectively. The model accuracy is measured using Eq. (3.4). 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑟𝑎𝑛𝑒 𝑠𝑖𝑔𝑛𝑎𝑙𝑚𝑎𝑛 ℎ𝑎𝑛𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑎𝑛𝑒 𝑠𝑖𝑔𝑛𝑎𝑙𝑚𝑎𝑛 ℎ𝑎𝑛𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠
 

× 100        (3.4) 

In the case of training and validation loss, the YOLOv4(Leaky-ReLU)+LSTM models are found 

to perform better than the YOLOv4 (Mish)+LSTM and YOLOv4 (ReLU)+LSTM models, 

achieving values of 0.038 and 0.062 in training and validation losses, respectively, as given in 

Table 3-3. 

Table 3-3. 

Training and validation accuracy and loss. 

Models Training 

accuracy 

Validation 

accuracy 

Training loss Validation 

loss 

YOLOv4(Mish)+LSTM 93.4 91.30 0.143 0.226 

YOLOv4(ReLU)+LSTM 93.7 92.56 0.105 0.166 

YOLOv4(Leaky-ReLU)+LSTM 96.9 96.02 0.038 0.062 

 

The graphs given in Figure 3-9, meanwhile, show the training and validation accuracies and 

training and validation losses after each epoch. From Figure 3-9, it can be noted that the accuracy 

of the models is improving after each epoch and the value of loss is reducing accordingly to the 

minimum possible value. This Figure also illustrates the importance of the model training to the 

maximum number of epochs, results in improved accuracy of the model. The graphs in Figure 3-

9, also demonstrate the progression of the model whereby the model has learned to respond 

appropriately to a set of training patterns within a specified margin of error. The output of the 

model draws closer and closer to a specific value close to the minimum. The model loss is 
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measured using Eq. (3.5). The detail about the loss function is found in the article by (Zheng et al. 

2019). 

𝐿𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏,𝑏𝑔𝑡)

𝐶2
+ 𝛼𝑣                         (3.5) 

𝐼𝑜𝑈 =
|𝐵∩𝐵𝑔𝑡|

|𝐵∪𝐵𝑔𝑡|
                                                          (3.6) 

𝛼 =
𝑣

(1−𝐼𝑜𝑈)+𝑣 
                                                         (3.7) 

𝑣 =
4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑔𝑡

ℎ𝑔𝑡
− 𝑎𝑟𝑐𝑡𝑎𝑛

𝑤

ℎ
)
2

                         (3.8) 

“Here b and bgt represent the centroid of B and Bgt given in Eq. (3.6). c shows the diagonal length 

of the smallest bounded box covering prediction and ground truth bounding boxes. ρ (⋅) is the 

Euclidean distance, α is a positive trade-off parameter Eq. (3.7), ν computes the consistency of 

aspect ratio Eq. (3.8). Bgt = (xgt, ygt, wgt, hgt) is the centroid coordinate, width, and height of 

ground truth bounding box, and B = (x, y, w, h) is the centroid coordinate, width, and height of the 

prediction bounding box. wgt is the width of the ground truth bounding box, w is the width of the 

prediction bounding box. hgt is the height of the ground truth bounding box, h is the height of the 

prediction bounding box” (Zheng et al. 2019). 
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Figure 3-9. (a) Training accuracy; (b) validation accuracy; (c) validation loss; and (d) training 

loss of deep-learning models. 

3.6.2 Model Performance evaluation on the test dataset 

The performance of the model is further evaluated based on the confusion matrix, classification 

accuracy, and inference time obtained for the test dataset. A confusion matrix, it should be noted, 

is a table used to summarize the performance of a classification model. The rows in a confusion 

matrix represent the predicted class, while the columns represent the actual classes. The 

classification accuracy represents the percentage of samples correctly classified by the 

classification model. The inference time, meanwhile, refers to the time used by a pre-trained model 
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to make the prediction. The prediction time, finally, although it may differ with different computer 

hardware configurations, provides an idea of how fast the classification could be made. 

 

Figure 3-10. Confusion matrix of YOLOv4 (Mish)+LSTM on the test dataset. 

 

Figure 3-11. Confusion matrix of YOLOv4 (ReLU)+LSTM on the test dataset. 
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Figure 3-12. Confusion matrix of YOLOv4(Leaky-ReLU)+LSTM on the test dataset. 

Figure 3-10, represents the confusion matrix of the YOLOv4 (Mish)+LSTM model, where dog 

everything, stop, boom down, and emergency stop are the hand signals with respect to which the 

highest classification accuracy (97.8%, 96.4%, 94.5%, and 92.6%, respectively) is achieved, while 

move slowly and hoist are the signals with respect to which the lowest classification accuracy is 

achieved (83.8% and 85.3%, respectively). Figure 3-11, shows the confusion matrix of the 

YOLOv4 (ReLU)+LSTM model. From Figure 3-11, it can be seen that emergency stop, boom 

down, and stop are the hand signals with respect to which the highest classification accuracy 

(98.7%, 96.4%, and 96.1%, respectively) is achieved, while the lowest accuracy is achieved with 

respect to the travel both tracks and boom down and raise the load signals (87.7% and 88.1%, 

respectively). The confusion matrix of YOLOv4(Leaky-ReLU)+LSTM is represented in Figure 3-

12. From Figure 3-12, it can be seen that the highest accuracy is achieved with respect to the 

emergency stop and dog everything hand signals (an accuracy of 100% for both), while, on the low 

end, for the hand signals one track and travel both tracks, accuracies of just 88.8% and 89.7%, 

respectively, are achieved. Table 3-4 represents the overall classification accuracy achieved by 

each of the proposed models. The highest overall classification accuracy was achieved by 

YOLOv4(Leaky-ReLU)+LSTM with a classification accuracy of 94.8%. YOLOv4(Mish)+LSTM 
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model is found to be 89.75% accurate, which is 5.05% less than YOLOv4(Leaky-ReLU)+LSTM 

model. The classification accuracy achieved the YOLOv4(ReLU)+LSTM model is 92.6%, which 

is 2.85 more then YOLOv4(Mish)+LSTM model and 2.2% less than YOLOv4(Leaky-

ReLU)+LSTM model. In terms of processing speed/inference time, the YOLOv4(Mish)+LSTM 

model is found to have an inference time of 16 milliseconds (ms), while the 

YOLOv4(ReLU)+LSTM model and YOLOv4(Leaky-ReLU)+LSTM model have inference times 

of 17 ms and 20 ms, respectively. Inference time is then converted from ms to FPS for better 

understanding of inference time, as given in Table 3-4, and the deep-learning models are compared 

based on their overall classification accuracy and inference time. From Figure 3-12, it is noted that 

the YOLOv4(Leaky-ReLU)+LSTM model has the highest classification accuracy at 94.8%—

2.2% and 3.1% higher than the YOLOv4(ReLU)+LSTM and YOLOv4(Mish)+LSTM models, 

respectively. On the other hand, the YOLOv4(Mish)+LSTM model has the fastest inference time 

at 62.5 FPS, while the YOLOv4(ReLU)+LSTM model has an inference time of 58.8 FPS and the 

YOLOv4(Leaky-ReLU)+LSTM model has an inference time of just 50.1 FPS. The results 

achieved by the deep learning-based intelligent models are sufficient to justify their use for real-

time classification, given that, according to Potter et al. (2014), a human eye can process an object 

with an average inference time of 50–60 FPS, while an ordinary smart phone camera can receive 

and produce results with an average inference time of 30–60 FPS (Bae et al. 2017), and the results 

produced by the deep learning-based intelligent model are similar in terms of processing speed to 

the human eye perceiving unprocessed data from an ordinary camera. 
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Table 3-4. 

Overall classification accuracy and inference time of the models. 

Model Overall classification accuracy 

(%) 

Inference time (ms / 

FPS) 

YOLOv4(MISH)+LSTM 89.75 16 / 62.5 

YOLOv4(ReLU)+LSTM 92.60 17 / 58.8 

YOLOv4(Leaky-ReLU)+LSTM 94.80 20 / 50.1 

Faster R-CNN 86.8 62 / 16.1 

 

The results achieved by the proposed models are then compared with the state-of-the-art Faster 

Region-based Convolutional neural network (Faster R-CNN) model with respect to the dynamic 

crane signalman hand signal dataset. The state-of-the-art Faster R-CNN model is found to achieve 

an overall classification accuracy of 86.8%, which is 2.95%, 5.8%, and 8% less than the 

YOLOv4(Mish)+LSTM, YOLOv4(ReLU)+LSTM, and YOLOv4(Leaky-ReLU)+LSTM models, 

respectively. The inference time recorded by the state-of-the-art Faster R-CNN model, meanwhile, 

is 16.1 FPS, which is 46.4 FPS, 42.7 FPS, and 34 FPS less than those of the proposed 

YOLOv4(Mish)+LSTM, YOLOv4(ReLU)+LSTM, and YOLOv4(Leaky-ReLU)+LSTM models, 

respectively. As these findings demonstrate, the proposed models are found to outperform the 

state-of-the-art Faster R-CNN model in classification accuracy and speed with respect to the 

custom dynamic crane signalman hand signal dataset. 

3.6.3 Real-time implementation 

For real-time classification of crane signalman hand signals, the YOLOv4(Leaky ReLU)+LSTM 

model is selected due to this model having achieved the highest classification accuracy during 

training, validation, and testing. For the real-time classification, six volunteer participants are 
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instructed to perform hand signals in both indoor and outdoor scenarios. Camera is placed 

accordingly as shown in Figure 3-3, and all the construction site scenarios are captured. The 

complexity of the construction site background (static and dynamic construction site) and weather 

conditions (cloudy and sunny) as given in Table 3-1, are also taken into consideration. Table 3-5 

shows the results of the real-time crane signalman hand signal classification model. In the 

implementation, the highest accuracy is found to be have been achieved with respect to the dog 

everything, stop, and emergency stop hand signals, with classification accuracies of 98.5% 98.3%, 

and 97.2%, respectively. The overall classification accuracy achieved by the YOLOv4(Leaky-

ReLU)+LSTM models in real time is found to be 93.5%, while the inference time is 44 FPS. It is 

noted that, during real-time classification, the accuracy of the model is found to be lower at just 

93.5% (compared to 94.8% achieved during the training of the model). The reduction in accuracy 

when implementing the models in real time may be due to several factors, such as the subject being 

unable to perform the hand movements precisely (given that the participants performing the hand 

signalling tasks are not trained signalmen). Meanwhile, the inference time is also found to be lower 

at just 44 FPS to 50.1 FPS. This may be due to the hardware configuration, as the hardware used 

in the real-time classification has a different configuration than that used in training, validating, 

and testing the model. The model is trained, validated, and tested on a PC running the Windows 

10 operating system, Intel core i9 processor, and 2-GeForce RTX 3090 GPUs. For the real-time 

classification, the model is deployed on a laptop running a Windows 10 operating system, Intel 

corei7 processor, and GeForce RTX 3060 GPU. Some examples of real-time classification using 

the improved YOLOv4+LSTM model are shown in Figure 3-13. 
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Table 3-5. 

Classification performance of YOLOv4(Leaky-ReLU)+LSTM models in real time. 

Standard crane signalman hand 

signal classification labels 

Number 

of times 

hand 

signal is 

shown in 

the 

camera 

Number of 

times hand 

signal is 

correctly 

classified 

Number of 

times hand 

signal is 

incorrectly 

classified 

Number 

of times 

hand 

signal 

is 

missed 

Accuracy 

(%) 

Hoist 65 59 3 3 90.8 

Lower 62 57 3 2 91.9 

Use main hoist 66 60 4 2 90.9 

Use whipline 69 65 2 2 94.2 

Boom up 71 65 4 2 91.5 

Boom down 60 58 0 2 96.7 

Move slowly 58 54 1 3 93.1 

Swing 69 60 8 1 86.9 

Boom down and raise the load 62 59 3 0 95.2 

Boom up and lower the load 67 64 3 0 95.5 

Stop 59 58 1 0 98.3 

Emergency stop 71 69 0 2 97.2 

Travel 60 56 2 2 93.3 

Dog everything 65 64 1 0 98.5 

Travel both tracks 70 65 5 0 92.9 

Travel one track 68 63 3 2 92.6 

Telescope out 64 60 4 0 93.8 
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Telescope in 62 56 5 1 90.3 

 

3.7 Discussion 

The proposed deep-learning framework showed promising results in the classification of dynamic 

crane signalman hand signals at high speed in real time. In terms of notable contributions of this 

research, first, the state-of-the-art classifier, (YOLOv4 model), was modified by altering the 

activation function in the backbone of the network to improve the classification accuracy of the 

classifier with respect to the custom crane signalman hand signal dataset. Second, the modified 

classifier was integrated with the LSTM recurrent neural network, making the framework capable 

of classifying dynamic hand signals with high classification accuracy and improved processing 

speed. The proposed model was further validated for real-time classification, achieving high 

accuracy in crane signalman hand signal classification, which has not been addressed in previous 

studies. The aim of this research was to improve on-site communication between crane operators 

and crane signalman. It should be noted in this regard that the proposed framework is not a 

replacement for the current practice, but rather a supplement to the current practice that automates 

the hand signal classification process based on deep-learning techniques. The proposed framework 

presents in detail a dynamic object classifier, and, in this respect, the framework can serve as a 

guide for the development of similar systems. 
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Figure 3-13. Examples of real-time classification using improved YOLOv4+LSTM model. 

The justification for choosing YOLOv4 as the classifier in the proposed framework was its high 

classification accuracy and processing speed compared to similar deep-learning algorithms based 

on the experiments conduction by the developer of the YOLOv4 model (Bochkovskiy et al. 2020). 

The model proposed herein was trained on a Windows 10 platform with a high-speed GPU. In this 

research, videos were processed instead of images due to the dynamic nature of hand signals. 
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3.8 Conclusions and future work 

The framework proposed in this chapter employed YOLOv4(Mish)+LSTM, 

YOLOv4(ReLU)+LSTM, and YOLOv4(Leaky-ReLU)+LSTM models to classify crane 

signalman hand signals as the basis for improving communication between crane operator and 

signalman. The models were trained using video clips of 18 hand signals used by signalmen to 

communicate instructions to the crane operator. Data augmentation techniques were applied to 

better generalize the dataset and mitigate the risk of model overfitting. A total of 4,054 video clips 

of the 18 crane signalman hand signals were used to train the model to classify the dynamic hand 

signals. The YOLOv4(Mish)+LSTM achieved an overall classification accuracy of 89.75% and 

YOLOv4(ReLU)+LSTM achieved an overall classification accuracy of 92.6%, while the 

YOLOv4(Leaky-ReLU)+LSTM performed best in overall classification accuracy, achieving 

94.8% on the test dataset. In terms of inference time, the YOLOv4(Mish)+LSTM, 

YOLOv4(ReLU)+LSTM, and YOLOv4(Leaky-ReLU)+LSTM models achieved values of 62.5 

FPS, 58.8 FPS, and 50.1 FPS, respectively. The performance of the proposed models was then 

compared with that of the state-of-the-art Faster R-CNN model, with the proposed models being 

found to outperform the Faster R-CNN model in classification accuracy and inference time with 

respect to the custom dynamic crane signalman hand signal dataset. The YOLOv4(Leaky-

ReLU)+LSTM models are identified as the models best suited for real-time classification due to 

their high classification accuracy. YOLOv4(Leaky-ReLU)+LSTM achieved an overall 

classification accuracy of 93.5% with an inference time of 44 FPS. These results illustrate that the 

deep-learning models are capable of classifying dynamic hand signals in complex environments 

and under different weather conditions on construction sites. 
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In future research, more crane signalman hand signals and other construction site-related hand 

signals and construction signs will be added to the dataset to train the model to classify more 

classes of construction site-related hand signals and signs. The model will be further optimized to 

reduce the computation burden so that it can be implemented on micro-controllers and other 

mobile portable devices for on-site field classifications. Moreover, effective means of transmitting 

hand signal labels across long distances between crane operator and signalman in the construction 

site will be investigated. The models described in this chapter can improve communication on 

construction sites during crane operations and help to move the industry towards automation of 

crane operations. 
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Chapter 4: CRANE SIGNALMAN HAND SIGNAL CLASSIFICATION 

FRAMEWORK USING SENSOR-BASED SMART CONSTRUCTION GLOVE (SCG) 

AND MACHINE-LEARNING ALGORITHMS3 

In the previous chapter, a vision-based framework to classify 18 dynamic crane signalman hand 

signals using YOLOv4+LSTM model was proposed. The research presented in this chapter 

employs a different approach, developing a sensor-based smart construction glove (SCG) and 

proposed machine-learning models to classify 18 dynamic crane signalman hand signals with the 

aid of sensor data. The study begins with the development of the sensor-based custom SCG, which 

is used to collect sensor data for each crane signalman hand signal. The collected data is then used 

to train four machine-learning models: k-nearest neighbour (KNN), support vector machine 

(SVM), decision tree (DT), and convolutional neural network–long short-term memory (CNN-

LSTM). The models are validated and tested on unseen datasets. Furthermore, a mobile-based 

application is developed, and the top-performing models are deployed in real time to classify crane 

signalman hand signals. In real-time crane signalman hand signal classification, CNN-LSTM is 

found to outperform the other machine-learning models, achieving an accuracy of 93.87%. The 

proposed framework offers an accurate and efficient method of communicating with crane 

operators, thereby reducing the risk of accidents and improving overall construction site safety. 

4.1 Introduction 

In the construction industry, communication between workers is of paramount importance. The 

use of heavy machinery such as cranes can pose significant risks if the communication commands 

                                                 
 

 

 

 
3 A version of this chapter has been submitted to the Journal of Construction Engineering and Management.  
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are not conveyed correctly. Crane signalmen play a vital role in the safety of construction sites by 

communicating with crane operators using hand signals. However, traditional hand signals can be 

prone to misinterpretation, especially in noisy or visually obstructed environments (as discussed 

in Chapter 1). 

Sensor-based technologies have been used in various industries, such as manufacturing, 

transportation and the healthcare sector, to increase efficiency, productivity, and safety, and they 

have also been used in a variety of sectors to reduce the risk of accidents and injuries. These 

technologies allow devices to communicate with one another and with humans by detecting and 

responding to changes in their surroundings and by relaying data to other devices. They also assist 

in reducing human error and miscommunications (Oztemel and Gursev 2020; Ghobakhloo 2018; 

Guerrero-Ibáñez et al. 2018; Tewolde 2012; Qureshi and Abdullah 2013; Qamar et al. 2018; 

Minaie et al. 2013). In this context, this chapter proposes a sensor-based SCG equipped with 

various sensors to capture the signalman's hand signals and classify them in real time with the help 

of machine-learning models.  

A number of different algorithms for sensor-based hand signal classification and have been 

proposed and implemented in such applications as sign language classification for speech-impaired 

people (Gurbuz et al. 2020; Jani et al. 2018; Al Mamun et al. 2017; Sriram and Nithiyanandham 

2013), gaming (Tu et al. 2020), hand motion classification (Chuang et al. 2019; Dong et al. 2020; 

Kim et al. 2019) to promote human–computer interaction. These applications, which rely on such 

technologies as accelerometer and gyroscope sensors, IMU sensors, Electromyography (EMG) 

sensors, microelectromechanical system (MEMS) sensors, and flex sensors, have achieved 

excellent results in recognizing hand signals. Nevertheless, and in spite of its potential benefits in 

terms of improving on-site communication and safety, the use of sensor-based technologies in the 



84 

 

construction industry has been very limited (Awolusi et al. 2018). The present study thus has two 

main objectives. The first is the development of an SCG equipped with a 3-axis accelerometer, 3-

axis gyroscope, 3-axis magnetometer, and flex sensors. These sensors record the orientation of the 

hand and the magnitude of the bend in the fingers. The second objective is to train various different 

machine-learning models are on the data collected from the SCG and assess their performance for 

real-time crane signalman hand signal classification. An android-based mobile application is also 

developed that receives the decision from the SCG in text format and then audibly outputs it. 

This chapter is organized as follows: The next section discusses the related literature on wearable 

sensors in the construction industry and the use of sensors for hand signal classification. This is 

followed by an overview of the research framework, including the development of the SCG, data 

collection, and preprocessing. Next is a description of the four machine-learning models trained 

and evaluated using the collected dataset. Finally, the real-time performance of the proposed 

machine-learning models is evaluated. 

4.2 Related literature 

4.2.1 Sensors for hand signal classification 

Hand signalling can be a powerful means of communication in a number of different contexts. 

Hand signal classification is the process of recognizing the meaningful signals communicated 

using the hands. Many efforts have been made by researchers to classify hand signals using vision- 

and sensor-based hand signal classification techniques. Vision-based hand signal classification 

devices use deep learning and classification labelling to interpret the images and videos in which 

the hand signals are captured. However, the effectiveness of deep learning in such applications is 

subject to weather conditions and dynamic changes on the construction site, and high 
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computational power is required in order to train the deep-learning models (Mansoor et al. 2023; 

Bonato 2009). 

Sensors are a technology that can improve the accuracy of real-time hand signal classification 

(Awolusi et al. 2018). Sensors have been used for hand signal classification in a range of different 

applications. For instance, Rosero-Montalvo et al. (2018) presented an intelligent glove for 

classifying sign language as a way of automating communication for speech-impaired people. 

They proposed using a glove with five flex-sensors (one flex-sensor affixed to each finger) and a 

KNN classifier. Their intelligent glove achieved high accuracy in classifying hand gestures. Taneja 

and Sukhija (2020) also developed a sensor-based glove featuring flex-sensors, this one being used 

to facilitate simple communication commands between the speech-impaired and other people. 

Their glove was found to be capable of lowering the communication barrier between the speech-

impaired and other people. Pathak et al. (2016) developed a framework by fusing the data from 

flex-sensors, contact sensors, and accelerometer sensors to recognize 26 alphabets of American 

Sign Language. Gupta et al. (2016), meanwhile, developed a technique for continuous hand gesture 

recognition using an accelerometer and gyroscope sensor, while Zhang et al. (2011) developed a 

framework that used an accelerometer and EMG sensor to recognize Chinese sign language. Other 

applications of the sensor-based glove technology with specific hand signals have included robotic 

controls (Sathiyanarayanan et al. 2014), robotic arms (Raheja et al. 2010), health care (Kim et al. 

2019; O'Flynn et al. 2015) and augmented reality (Minh et al. 2019). 

4.2.2 Wearable Sensors in the construction industry 

Wearable technology is beginning to be developed, tested, and used for a range of applications in 

the construction industry. For example, Akhavian and Behzadan (2016) used accelerometer, 

gyroscope, and magnetometer sensors affixed to the arm of the construction worker to calculate 
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the durations of construction tasks. Their framework was validated by comparing the sensor data 

with real-world experiments, and the sensor data was found to be very close to reality. Jebelli et 

al. (2019) proposed a wearable biosensor technology to assess the stress level of construction 

workers. Sensors were used to collect physiological signals from the worker's body and, based on 

the collected signal data, the body stress level was measured. Their framework achieved an 

accuracy of 84.48% in predicting low and high stress levels. Nath et al. (2017) used smartphone 

sensors for ergonomic analysis of construction workers’ body postures. They found the data from 

the smartphone sensors to be very close to the measurements made by visual observation. Other 

applications of wearable technology in construction have included classification of worker 

activities on construction sites (Srikanth et al. 2021; Kanan et al. 2018; Jo et al. 2019); 

measurement of construction workers’ physiological indicators, such as heart rate (Hwang et al. 

2016) and breathing (Roelofs et al. 2011); environmental sensing to detect hazardous gases and 

chemical leaks (Lai et al. 2019); proximity detection and alerting system for construction site 

safety (Marks et al. 2013: Park et al. 2016); and detection of workers losing their balance (Ahn et 

al. 2019), to name a few.  

Although sensor-based technologies assist the construction industry in keeping Job sites safe and 

more productive, but the sensors are not being used to improve communication on the construction 

site. This chapter presents a framework to enhance communication on the construction site, 

especially between crane operators and signalmen using multiple sensor and machine-learning 

algorithms. The proposed framework can assist in classifying in real time 18 different hand signals 

used in communication between crane operator and signalman during crane operation. 
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4.3 Research framework 

The overview of the research framework is shown in Figure 4-1. As can be seen, the research 

consists of three steps: [1] develop a custom-built SCG for the purpose of data collection; [2] 

acquire the dataset using the developed SCG, preprocess the data, and remove any sensor noise; 

and [3] train four machine-learning models—k-nearest neighbour (KNN), support vector machine 

(SVM), decision tree (DT), and convolutional neural network / long short-term memory (CNN-

LSTM)— to classify the crane signalman hand signals with high accuracy in real time in order to 

enhance communication between crane operator and signalman. 

 

Figure 4-1. Overview of the research framework. 
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4.3.1 Custom build SCG 

A custom-built SCG to capture the crane signalman hand signals on the construction site is 

developed. The crane signalman hand signals are shown in Figure 3-2. The selection of the sensors 

to measure the orientation of the hand and bend in the finger based on the given hand signals is of 

utmost importance. To measure the orientation of the hand, a 3-axis accelerometer, 3-axis 

gyroscope, and 3-axis magnetometer are affixed to the SCG, while flex-sensors affixed to the SCG 

are used to measure the bend of the finger. An accelerometer sensor, it should be noted, measures 

the directional movement or linear acceleration of an object. A gyroscope sensor, meanwhile, is 

used to measure the lateral orientation or angular velocity of an object with respect to the Earth's 

gravity and how fast the object is spinning about an axis. A magnetometer sensor is used for 

measuring the Earth’s magnetic field intensity and other magnetic anomalies, and flex-sensors, 

finally, use a resistive carbon element to produce a resistance output correlated to the amount of 

bending in the fingers (Saggio 2012). These sensors are selected because they are lightweight, low-

cost, flexible, easy to install, have low power consumption, and are readily available. An Arduino 

microcontroller is also affixed to the SCG to assist in collecting, reading, processing, and 

interpreting the sensor’s data and providing meaningful output. 

The selected sensors are then placed on the glove, satisfying the following constraints. 

 The sensors must be placed such that they can detect the movements and orientation of the 

hand. 

 The sensors must be placed such that they do not restrict the worker's hand from performing 

other tasks. 

 The sensors must be placed such that they are not disturbed by external pressure on the 

hand while other tasks are being performed. 
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The regions of the hand identified for sensor placement based on these constraints, as well as the 

layout of the SCG, are shown in Figure 4-2. 

 

Figure 4-2. Layout of smart construction glove. 

4.3.1.1 Estimation of crane signalman hand orientation 

There are various methods for measuring the orientation of a rigid object in 3D space, with two of 

the most widely used being Euler angles and quaternions. Euler angles are among the most widely 

used methods for measuring the orientation of an object in a set of three consecutive rotations in a 

coordinate system. Although Euler angles are favoured for their ease of implementation, they do 

suffer from singularity and gimbal lock issues (Hemingway and Oliver 2018). A gimbal lock, it 

should be noted, is the condition of losing one degree of freedom in 3D space, and it occurs when 

the angle of pitch is near ±90°. When the pitch angle reaches nearly 90°, the roll and yaw make 

the sensor move in the same direction. A gimbal lock can occur in either of two possible forms in 

a sequence of rotation: (1) pitching and then yawing, and (2) rolling and then pitching. This 



90 

 

phenomenon can lead to inaccuracy or failure when estimating the orientation of the sensor using 

Euler angles (Hemingway and Oliver 2018). 

To overcome this problem, this research uses quaternions to measure the orientation based on the 

roll, pitch, and yaw angles of the hands, as this method overcomes the problems of singularity and 

gimbal lock. A quaternion is a four-element vector—one real and three complex elements—that 

can measure the rotation and direction of any object in a 3-axis coordinate system (Zhang. 1997). 

The orientation is represented as a unit vector quaternion as expressed in Eq. (4.1). 

q = (𝑞0,  𝑞1𝑥, 𝑞2𝑦, 𝑞3𝑧)
T      (4.1) 

where 𝑞1𝑥, 𝑞2𝑦, and 𝑞3𝑧 represent the vector about which the rotation is performed, while 𝑞0 

represents the scalar quantity defining the amount of rotation about the vector when 𝛼 is the angle 

made by the rotation and (𝑉𝑥, 𝑉𝑦, and 𝑉𝑧) are the unit vectors in the axis of rotation. The matrix is 

given in Eq. (4.2).  

(

𝑞𝑜
𝑞1
𝑞2
𝑞3

) = 

(

 
 
 

𝐶𝑜𝑠 ( 
𝛼

2
 )

𝑉𝑥 𝑆𝑖𝑛 ( 
𝛼

2
 )

𝑉𝑦 𝑆𝑖𝑛 ( 
𝛼

2
 )

𝑉𝑧 𝑆𝑖𝑛 ( 
𝛼

2
 ))

 
 
 

      (4.2) 

Detailed calculations of quaternions can be performed following the method described by Valenti 

et al. (2015). Furthermore, to achieve the roll pitch and yaw angles (φ, θ, andψ) in the z-y-x 

sequence, the quaternions are converted into Euler angles using Eq. (4.3). 

[

φ
θ
ψ 
]= [

𝑎𝑡𝑎𝑛2(2(𝑞0𝑞1 + 𝑞2𝑞3), 1 − 2(𝑞1
2 − 𝑞2

2))

asin2(2(𝑞0𝑞2 − 𝑞3𝑞1))

𝑎𝑡𝑎𝑛2(2(𝑞0𝑞3 + 𝑞1𝑞2), 1 − 2(𝑞2
2 + 𝑞3

2)

]                          (4.3) 
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Obtaining reliable and accurate output data from sensors is of critical importance. The raw data 

from the accelerometer sensor is noisy and unreliable when exposed to external vibration and 

sudden movements, and the 3-axis rotation of moving objects cannot be easily sensed (Chaudhury 

et al. 2014). To overcome the accelerometer problem, a gyroscope sensor is used. However, the 

gyroscope sensor is subject to drifting, whereby the angle measurement gradually changes and 

error increases as the sensing time increases (Nonnarit and Barreto 2016). To correct the drifting 

phenomenon, a magnetometer is used. The concept underlying the use of multiple types of sensors 

is to address the weaknesses of a given sensor by leveraging the strengths of other types of sensors. 

To overcome the issue of sensor noise, finally, complementary filters with quaternions are used, 

as described in the following section. 

4.3.1.2 Complementary Filter 

The use of complementary filters is an effective method of reducing sensor noise. Complementary 

filters require comparably little computational power, are easy to implement, and feature user-

friendly algorithms, making them a preferred choice for use in systems with low computational 

capabilities (McGinnis et al. 2014). In complementary filters, the accelerometer and gyroscope are 

the primary sensors, and the magnetometer is used as a corrective sensor. In the present study, the 

force acting on the SCG is measured by an accelerometer that provides reliable results on long-

term movements; on the other hand, though, the accelerometer is sensitive to slight short-term 

vibrations, and as such the data given by the accelerometer is not reliable in the short term. To 

address this, a low-pass filter is used to correct small, short-term vibrations. Meanwhile, a high-

pass filter is used to correct the gyroscope drifting problem (mentioned above) in the long term. 

Both the low- and high-pass filters are complementary filters, and integrating the data of the 

accelerometer and gyroscope using these complementary filters results in precise outputs. 
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In the present study, complementary filters are used as a sensor fusion technique that integrates 

the accelerometer and gyroscope data and reduces sudden vibration and drifting noise in the sensor 

data. The quaternions are used to mitigate the gimbal lock problem, and are further converted into 

Euler angles to compute the roll, pitch, and yaw angles as the basis for estimating the orientation 

of the crane signalman’s hands. The equations to compute roll, pitch, and yaw using a 

complementary filter are given in Eq. (4.4), Eq. (4.5), and Eq. (4.6). 

𝑟𝑜𝑙𝑙 = 𝑘𝑓 × (𝑟𝑜𝑙𝑙𝑝𝑟𝑒𝑣 + (𝑥𝑔𝑦𝑟 × ∆𝑡)) + (1 − 𝑘𝑓)  ×  𝑟𝑜𝑙𝑙𝑎𝑐𝑐                (4.4) 

𝑝𝑖𝑡𝑐ℎ = 𝑘𝑓 × (𝑝𝑖𝑡𝑐ℎ𝑝𝑟𝑒𝑣 + (𝑦𝑔𝑦𝑟 × ∆𝑡)) + (1 − 𝑘𝑓)  ×  𝑝𝑖𝑡𝑐ℎ𝑎𝑐𝑐       (4.5) 

𝑦𝑎𝑤 = 𝑘𝑓 × (𝑦𝑎𝑤𝑝𝑟𝑒𝑣 + (𝑧𝑔𝑦𝑟 × ∆𝑡)) + (1 − 𝑘𝑓)  ×  𝑦𝑎𝑤𝑚𝑎𝑔            (4.6) 

Here 𝑘𝑓 represents the filtering coefficient given in Eq. (4.7). 

𝑘𝑓 =
𝑡𝑐𝑜𝑛𝑠𝑡

𝑡𝑐𝑜𝑛𝑠𝑡+ ∆𝑡
                                                                                                          (4.7) 

where the value of 𝑘𝑓 lies between 0 and 1. The complementary filter is mainly dependent on the 

𝑘𝑓 value because of the time delay due to the gyroscope's high-pass filter and the accelerometer's 

low-pass filter. The 𝑘𝑓 value is used to overcome the time delay, and the filter performs better 

when the value of 𝑘𝑓 is close to 1 and more poorly when the value of 𝑘𝑓 is close to 0. The yaw 

angle is obtained using a magnetometer sensor, as an accelerometer sensor cannot be used to obtain 

the yaw angle because its vertical axis is parallel to Earth’s axis, while the yaw obtained from the 

gyroscope sensor is used in the complementary filter to correct the drifting problem. The detailed 

algorithm for the complementary filter is expressed as Algorithm 1 below. The process starts with 
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the input data from the accelerometer, gyroscope, and magnetometer sensors, implementation of 

quaternions, and fusing of the sensor data to achieve roll, pitch, and yaw angles as outputs. 

 

4.3.2 Data collection and preprocessing 

Due to the lack of an available sensor dataset for crane signalman hand signals, the developed SCG 

is used to collect the crane signalman hand signal dataset. The SCG is equipped with an IMU 

sensor that consists of a 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer, and flex-

sensors. Prior to data collection, the sensors are calibrated. To calibrate the accelerometer and 

gyroscope, the sensor is kept in a stationary position relative to the x-, y-, and z-axes for a few 

seconds. To calibrate the magnetometer, some random movements of the hand are made. The 

offsets observed from the accelerometer, gyroscope, and magnetometer during the calibration 
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process are removed automatically, as this allows the sensor to be fully calibrated. An example of 

sensor calibration is shown in Figure 4-3. 

 

Figure 4-3. Example of sensor calibration. 

The SCG yields 14 types of raw data: accelerometer data in the x-, y-, and z-axes (ax, ay, and az), 

gyroscope data in the x-, y-, and z-axes (gx, gy, and gz), magnetometer data in the x-, y-, and z-axes 

(mx, my, and mz), and flex-sensor data from the thumb, index, middle, ring, and little finger (fT, fI, 

fM, fR, and fL, respectively). Furthermore, the IMU sensor data is fused and filtered to achieve roll, 

pitch, and yaw angles as the basis for measuring the orientation, while the flex-sensor is used to 

measure the bend in the finger. A combination of IMU sensor data and flex-sensor data helps to 

determine the crane signalman hand signals. A total of 16 volunteers are engaged to participate in 

the process of data collection; two SCGs—one on each hand—are used. Each of the 18 different 

hand signals used by crane signalmen is clearly explained to the participants, and they are asked 

to perform them for approximately 9 min—30 s for each hand signal—with a sampling rate of 100 

Hz. The IMU and flex-sensor data collected from the participants is transmitted to a computer (via 

a Bluetooth module affixed to the SCG) in the form of an Excel file, as shown in Figure 4-4. 

Approximately 864,000 sample datapoints are collected—54,000 datapoints from each participant 
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and approximately 48,000 datapoints for each hand signal. Each datapoint consists of ax, ay, az, gx, 

gy, gz, mx, my, mz, fT, fI, fM, fR, fL, roll, pitch, and yaw angle data from both hands. The collected 

data is labelled manually according to the classification labels to prepare it for use in training, 

validating, and testing the feasibility and accuracy of the machine-learning models for classifying 

crane signalman hand signals. 

 

Figure 4-4. Example of data transmission via Bluetooth. 

4.3.3 Machine-learning models 

Machine learning is a subset of artificial intelligence that uses data and algorithms to mimic the 

way humans learn and to give accurate classification results. Machine learning is an important and 

growing field for data analysis and data classification. A machine-learning model needs to be 

trained on a dataset in order to enhance the accuracy of its predictions. In the present study, four 

different machine-learning models are used to analyze the data from the accelerometer, gyroscope, 

magnetometer, and flex-sensor affixed to a wearable SCG and then classify the crane signalman 

hand signals accordingly.  
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4.3.3.1 k-nearest neighbours (KNN) 

KNN is a machine-learning algorithm that is easy to implement and that has been shown to be 

capable of achieving high accuracy in sensor data classification. Because it does not go through a 

learning process, it is considered a direct classification method that only requires the whole dataset 

to be stored in the model (Kaghyan and Sarukhanyan 2012; Mandong and Munir 2018). The KNN 

model predicts the class of new datapoints based on the labelled datapoints already stored in the 

model. To be more specific, it calculates the Euclidean distance between the new datapoint and 

the labelled training datapoints and makes the prediction accordingly, assigning the new datapoint 

to a class based on the majority votes of its k-nearest neighbours. In the present study, the 

hyperparameter selected in the KNN model includes a k-value of 5, and Euclidean distance is used 

as a distance function to measure the distance between new and training datapoints in order to 

make the final prediction. To obtain the optimum value of k, multiple values of k ranging between 

1 to 20 are analyzed, with a k-value of 5 being found to achieve the highest accuracy. 

4.3.3.2 Support vector machine (SVM) 

SVM is another machine-learning classification algorithm that has strong generalization 

capabilities. SVM requires less training data and is computationally less expensive compared to 

other machine-learning models. For these reasons, it has been used in a number of sensor-based 

data classification applications, such as gait classification from sensor data (Begg et al. 2005) and 

human fall detection from sensor data (Shibuya et al. 2015), to name a few. The SVM algorithm 

finds a hyperplane, which separates the datapoints from different classes. The algorithm then finds 

the datapoint nearest to the line from different classes, this datapoint being known as the support 

vector. The algorithm then computes the distance between the support vector and the line. The 

goal of this procedure is to maximize the distance between the support vector and the line in order 
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to achieve the optimal hyperplane (i.e., the one that provides the greatest distance between different 

classes). In the present study, a penalty coefficient C of 3 is used, and the gamma (also known as 

the coefficient of kernel function) is set at −7. 

4.3.3.3 Decision Tree (DT) 

DT is a popular machine-learning algorithm that has been used in a wide range of sensor-based 

data analysis applications, such as human activity recognition (Fan et al. 2013) and diagnosis of 

coronary artery diseases (Ghiasi et al. 2020), to name a few. Some of its benefits are its low 

computational complexity, its ability to handle irrelevant feature data, and its insensitivity to 

missing data. A DT establishes the nodes based on available features in the overall dataset and 

further selects the split with the most homogenous feature sub-nodes, then repeats the process until 

the classification decision is displayed within the tree structure. The most important 

hyperparameter of the DT is to choose the maximum depth of the tree. For the present study, the 

depth of the tree is set to 17 based on multiple experiments. This hyperparameter is found to 

achieve the best decision output for the given dataset.  

4.3.3.4 Convolutional Neural Network – Long Short-Term Memory (CNN-LSTM) 

The CNN-LSTM model is a combination of two state-of-the-art deep-learning models. The 

function of the CNN component of the CNN-LSTM model is to extract features from the sensor 

data, while the LSTM component of the model is responsible for learning from the recurrent 

features to produce accurate outputs. In the present study, the sensor data is sampled using a fixed-

width sliding window of 2.56 s, an overlap of 50% is used, and a 1D CNN model using Keras with 

a TensorFlow backend is employed. The model is trained, validated, and tested on raw and 

preprocessed data collected using the SCG. The raw dataset consists of 28 attributes of sensor data 

that include data from both the right hand (ax, ay, az, gx, gy, gz mx, my, mz, fT, fI, fM, fR, fL) and left 
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hand (ax, ay, az, gx, gy, gz mx, my, mz, fT, fI, fM, fR, fL). The preprocessed dataset comprises 16 

attributes (i.e., the roll, pitch, yaw, fT, fI, fM, fR, and fL for both the right hand and the left hand). 

The architecture of the 1D CNN model consists of two 1D convolutional layers with 128 filters 

and a kernel size of 5, followed by two 1D max-pooling layers. Moreover, rectified linear unit 

(ReLU) is used as an activation function. ReLU, it should be noted—the most widely used 

activation function due to its high performance—is an identity line where y = x for all positive 

lines and y = 0 for all negative values (Agarap 2018). A flatten layer, finally, is added to achieve 

the flatten feature maps from the sensor data. The output of the flatten layer is fed to the LSTM 

layer, which is responsible for learning from the recurrent temporal features of the sensor data. 

The output of the LSTM layer is then fed to the softmax activation function responsible for the 

prediction of the final output with the classification score. The CNN-LSTM model is trained, 

validated, and tested on 864,000 samples. The other hyperparameters used for training the model 

are a learning rate of 0.005, a mini-batch size of 128, and a dropout of 0.2, and the model is trained 

in 100 epochs. 

4.3.4 Models performance evaluation 

Multiple experiments are conducted to evaluate the performance of the machine-learning models 

discussed in the previous sections. The matrices used to measure the performance of the model in 

the test dataset include precision, recall, F1-score, and accuracy. The respective mathematical 

equations for the evaluation matrices are given in Eq. (4.8), (4.9), (4.10), and (4.11), respectively. 

The definition of TP, FN, FP and TN are given in Table 4-1. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
                                                                                               (4.8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
                                                                                                     (4.9) 
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𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                   (4.10) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+ 𝐹𝑃
                                                                                (4.11) 

Table 4-1. 

Definition of TP, FN, FP, and TN. 

  Predicted 

Positive Negative 

Actual 

Positive True positive (TP) False negative (FN) 

Negative False positive (FP) True negative (TN) 

 

The proportion of the data used to train the model is kept at 70% to allow the model to learn 

important features from the sensor data, while the model is validated and tested on the remaining 

30% of the data (i.e., 15% each for validation and testing).  

 

Figure 4-5. Training and validation accuracies of machine-learning models. 
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The machine-learning models are trained, validated, and tested using both raw and preprocessed 

datasets. After training, the CNN-LSTM model is found to outperform the other models, achieving 

training and validation accuracies of 98.9% and 97.8%, respectively, on the preprocessed data and 

94.6% and 92.7%, respectively, on the raw dataset, as shown in Figure 4-5. The poorest performing 

model, SVM, is found to achieve training and validation accuracies of just 87.4% and 85.7%, 

respectively, on the raw dataset and 86.4% and 86.6%, respectively, on the preprocessed dataset. 

From the model’s training and validation results, it is also observed that the machine-learning 

models achieves higher accuracy with the preprocessed data than with the raw dataset. The reason 

for this is that, in the preprocessed dataset, the sensors are calibrated and sensor noise is removed 

by fusing the sensor data, whereas the raw data has not undergone any preprocessing.  

After training and validation, the models are further validated on the remaining 15% of the test 

dataset. For testing, only preprocessed data is used, since the models perform better on the 

preprocessed dataset than on the raw dataset. As noted above, the machine-learning models are 

evaluated based on precision, recall, F1-score, and accuracy. 

Table 4-2.  

Results of the machine-learning model on the test dataset. 

Evaluation matrices KNN SVM DT CNN-LSTM 

Precision (%) 68.7 54.9 59.1 84.3 

Recall (%) 68.4 55.6 61.8 83.9 

F1-score (%) 68.1 55.3 60.4 84.0 

Accuracy (%) 86.5 76.2 80.7 94.22 

Table 4-2 shows the precision, recall, F1-score and accuracy achieved by the model evaluated on 

the test dataset. Based on the results in Table 4-2, it can be seen that CNN-LSTM is found to 
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achieve a precision of 84.3%, a recall of 83.9%, an F1-score of 84%, and an average accuracy of 

94.22%, while the KNN model is found to achieve a precision, recall, F1-score, and accuracy of 

68.7%, 68.4%, 68.1%, and 86.5%, respectively. The results show that the CNN-LSTM and KNN 

models are found to outperform the SVM and DT model in precision, recall, F1-score, and 

accuracy on the test dataset. The confusion matrices achieved by the CNN-LSTM and KNN 

models on the test dataset are given in Figure 4-6 and Figure 4-7. 

 

Figure 4-6. Confusion matrix of KNN model. 

 

Figure 4-7. Confusion matrix of CNN-LSTM model. 

4.4 Mobile application for real-time crane signalman hand signal classification 

The two best-performing machine-learning models (i.e., CNN-LSTM and KNN) are further tested 

in real time by developing an Android-based text-to-speech mobile application using the MIT app 
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inventor platform. The mobile application connects the SCG’s Bluetooth module to the Android 

device (via Bluetooth). Once the connection is established, the mobile application receives the data 

from the SCG in text format as "labels of crane signalman hand signals". The Android-based 

mobile application also features a text-to-speech conversion function, which converts the resulting 

output text into speech that can be outputted by the Android device’s speaker. The interface of the 

mobile application is shown in Figure 4-8.  

 

Figure 4-8. Layout of developed mobile application. 

Trained CNN-LSTM and KNN models are deployed to evaluate their performance in real time 

using the developed Android application. Six participants are trained to perform the crane 

signalman hand signals wearing the developed SCG. Each of the participants performs the hand 

signals for about 2 min each, and the accuracy of each hand signal is calculated for each iteration. 

The equation used to calculate the accuracy of the models in real time is given in Eq. (3.4). 
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The CNN-LSTM model is found to achieve an overall accuracy of 93.87% in real time, while the 

KNN is found to achieve an accuracy of 85.37%, meaning that the CNN-LSTM model outperforms 

the KNN model in hand signal classification. Both the overall and individual hand signals 

classified by both models are given in Figure 4-9.  

 

Figure 4-9. Real-time performance of KNN and CNN-LSTM model. 

4.5 Conclusion 

Hand signalling is well established as the primary means of communication between crane 

signalman and crane operator on construction sites due to its proven effectiveness. However, hand 
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signals are often not captured and interpreted correctly due to the long distances between the crane 

signalman and operator or due to obstacles obstructing the sightline, and this can lead to errors and 

accidents. This chapter describes the development of a sensor-based SCG capable of classifying 

in real time 18 different crane signalman hand signals used on construction sites. It begins with a 

literature review of sensor-based hand signal classification technologies, as well as a discussion of 

the wearable sensing technologies in use within the construction industry. This is followed by a 

description of the selection of sensors for detecting the crane signalman's hand movements. The 

selected sensors are affixed to the SCG, then calibrated, and any noise in the sensor readings is 

removed using a complementary filter fusion algorithm. Data is collected for 18 different crane 

signalman hand signals using the developed SCG. Four machine-learning models (KNN, SVM, 

DT, and CNN-LSTM) are trained, validated, and tested using the sensor data collected from the 

SCG. The CNN-LSTM model is found to outperform the other investigated models on the test 

dataset, achieving a precision of 84.3%, a recall of 83.9%, an F1-score of 84%, and an average 

accuracy of 94.22%, while the KNN model is found to be the second-best performing model, 

achieving a precision, recall, F1-score, and accuracy of 68.7%, 68.4%, 68%, and 86.5%, 

respectively. Moreover, an Android-based mobile application is developed that receives the data 

from the glove via Bluetooth in text format and outputs it from the Android device’s speaker. The 

two best-performing machine-learning models (i.e., CNN-LSTM and KNN) are validated in real 

time with respect to their ability to classify 18 different crane signalman hand signals in real time, 

and the CNN-LSTM model is found to outperform the KNN model, achieving an overall accuracy 

of 93.87% (compared to 85.37% in the case of the KNN model). Given the high accuracy (i.e., 

93.87%) of the CNN-LSTM model it employs, the SCG can be considered a promising solution 

as an additional layer of communication to complement hand signalling and two-way radio 
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communication, thereby improving communication and reducing the likelihood of communication 

errors on the construction site. 
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Chapter 5: KEYWORD IDENTIFICATION FRAMEWORK TO FACILITATE THE 

SPEECH COMMUNICATION ON CONSTRUCTION SITES4 

Construction sites are inherently complex and dynamic environments, where efficient 

communication is vital for ensuring smooth operations and maintaining a safe working 

environment. However, the presence of high levels of noise, workers from multiple linguistic 

backgrounds, and visual obstructions can make it challenging to communicate effectively, 

especially when using traditional methods such as hand signalling and speech. 

In the research described in previous chapters, computer vision and sensor-based techniques were 

used to classify crane signalman hand signals. However, crane signalmen also use two-way radio 

speech communication when there is an obstruction in the line of sight between crane operator and 

signalman or when hand signalling is otherwise not possible. There are several challenges in two-

way radio speech communication (e.g., speaker accent, noise in the site, etc.), as discussed in detail 

in Chapter 1.  

To address these challenges, this chapter proposes a keyword identification framework for speech 

communication on construction sites, drawing upon the case of communication between crane 

signalman and crane operator. This study uses a 1D CNN model to classify 18 speech commands/ 

keywords used to guide the crane operator in crane operation. The model is trained, validated, and 

tested using crane signalman speech datasets. The model is further validated in real time to identify 

                                                 
 

 
4 A version of this chapter has been published, as follows: Mansoor, A., Liu, S., Ali, G. M., Bouferguene, A., Al-

Hussein, M., and Hassan, I. (2022). “Keyword identification framework for speech communication on construction 

sites.” Proceedings of the 2022 Modular and Offsite Construction Summit, Edmonton, AB, Canada, Jul. 27–29, pp. 

106–113. 
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the crane signalman speech commands/keywords from live speech, with the model achieving an 

accuracy of 95.3% in identifying crane signalman commands from live speech data. 

5.1 Introduction 

Effective communication is vital across all industries for establishing and maintaining a productive 

working environment. In current practice in construction, as discussed in Chapter 1, workers on 

construction sites typically rely on face-to-face verbal, hand signalling, and two-way radio speech 

communication systems (Mansoor et al. 2020). However, when there is a visual obstacle or a 

significant distance between workers, face-to-face verbal or hand signalling communication may 

not be reliable or even feasible. In such cases, two-way radio speech communication is the most 

common way of conveying the message (Stevenson, 2019). In two-way radio speech 

communication, radio units are used to send and receive audio data (Carbonell et al. 2020). On 

construction sites, this communication technique is primarily used to establish communication 

between ground workers and heavy machinery operators, such as in crane operations. In order for 

this communication method to work effectively, though, a dedicated radio channel must be 

allocated for the purpose of exchanging signals between the operator and signalman, and it must 

remain active at all times. 

However, construction sites can be noisy due to construction activities such as drilling and the 

operation of heavy equipment (Kwon et al. 2016), making it difficult for the listener to hear speech 

commands. Furthermore, construction workers typically represent a diverse range of different 

ethnic and linguistic backgrounds and have different accents, meaning that it may be difficult for 

the listener to understand the speaker in some cases, leading to misjudgments in decision-making, 

as well as safety and productivity issues (Bust et al. 2008, Mansoor et al. 2022). 
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There in an opportunity in this regard for the construction industry to benefit from recent 

developments in information technology. Intelligent and automated communication systems can 

significantly enhance the communication between heavy machinery operators and ground workers 

on construction sites, ultimately leading to improved safety and productivity. In this context, the 

present study develops a framework for identifying keywords in speech on construction sites. The 

developed framework provides an intelligent, advanced, and reliable communication system that 

can reduce the risk of miscommunication on construction sites. 

5.2 Related studies 

Speech is the primary means of communication among human beings; as such, speech recognition 

systems have received considerable interest among researchers in recent decades. However, due 

to reliability issues, the systems developed have not been widely implemented (Latif et al. 2021; 

Otter et al. 2020; Strehl et al. 2006). Nevertheless, the major advancements in machine learning 

and deep learning in recent years have led to accurate speech recognition with high reliability 

which has increased the practicability of speech recognition systems (Hinton et al. 2012; Meftah 

et al. 2018). Speech recognition systems are now being used for various applications, including 

(1) keyword identification/spotting (Lopez-Espejo et al. 2021; Michaely et al. 2017; Werchniak et 

al. 2021; Momeni et al. 2020); (2) automatic recognition of the content of words and phrases in 

order to direct computer tasks as an alternative to typing, facilitating human–machine interaction 

as a support for the disabled, supporting smart home functions, etc.; (3) emotion recognition, i.e., 

for recognizing the emotion of the speaker based on speech signals (Fragopanagos and Taylor, 

2005; Petrushin, 2000); (4) in intelligent health care systems to provide information on patient 

health status (Zhou et al. 2001); (5) to assist in deciphering the speech of people with various 

accents (Biadsy, 2011); (6) in estimating a speaker's age (Bocklet et al. 2008) and gender (Vogt 
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and André, 2006); and (7) for spoken language translation (Schultz and Waibel, 2001), spoken 

document retrieval (Chelba et al. 2008), and multilingual speech recognition (Kannan et al. 2019). 

In the area of construction, Zhang et al. (2018a) used a speech recognition framework to analyze 

onsite conversations. Their framework used a naïve Bayes classifier to translate speech captured 

on site into text scripts, and to further classify the text scripts into construction activities and 

operations. The framework achieved an overall accuracy of 90.9%. In another study, Zhang et al. 

(2018b) developed a supervised machine learning-based sound identification framework, using it 

to identify six different sounds common to construction sites (concrete-grinding, hammering, 

concrete-pouring, drilling, excavator operation, and dozer operation). The framework achieved a 

maximum accuracy of 94.3%. Speech recognition has also been used to retrieve BIM data from 

BIM software (Shin and Issa, 2021) and to identify heavy construction equipment operating at a 

construction site (Cheng et al. 2017). The use of speech recognition systems to identify keywords 

in speech communication on construction sites, however, has yet to be explored. In this research, 

therefore, a keyword identification framework to facilitate communication by identifying 

keywords related to crane operations in noisy construction sites is developed. The framework is 

also capable of identifying keywords in speech by workers with different accents. 

5.3 Research methods 

In this research, a crane signalman speech dataset is collected using an audio-recording device 

affixed to the crane signalman’s helmet. The speech dataset is preprocessed by adding 

representative construction noises, and data augmentation is implemented by altering the pitch and 

adding random noise to the speech. This helps to generalize the dataset and reduces the likelihood 

of model overfitting, per Lei et al. (2019). The waveform speech is then converted into Mel-

frequency cepstral coefficients (MFCCs) in order to extract unique features from the speech dataset 



110 

 

(Mahmood and Utka, 2021). MFCCs, it should be noted, are the most widely used feature 

extraction algorithm in the field of speech recognition. The purpose of using MFCCs is to reduce 

the complexity of the model and achieve higher accuracy (Mahmood and Utka, 2021). The 

extracted features obtained using MFCCs are then used to train the one-dimensional convolutional 

neural network (1D CNN) classifier to identify the keywords in the speech. The 1D CNN model 

is validated, tested, and deployed for real-time identification of keywords in speech as an output. 

An overview of the keyword identification framework is given in Figure 5-1. 

 

Figure 5-1. Overview of keyword identification framework. 

5.4 Implementation and case study 

The framework is implemented and tested using the crane signalman speech commands used to 

guide the crane operator in the crane operations on the construction site (see Figure 5-2). 
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Figure 5-2. Crane signalman speech command/keywords. 

5.4.1 Dataset collection and preprocessing 

With no existing dataset for crane signalman speech commands available, the speech command 

data is collected manually at a 16,000 Hz frequency using an audio-recording device affixed to the 

crane signalman’s helmet. The dataset collected contains 12 hours of crane signalman speech 

commands made by 45 volunteers (30 male, 15 female) representing 13 different ethno-linguistic 

backgrounds and having different accents. The dataset is resampled into 2-second duration speech 

files for each command, referred to as a “keyword”. Each sample is further normalized to adjust 

the range of speech, equalized to remove bumps from the speech, and compressed to modify the 

range of loudness of the speech. Furthermore, construction site-related noise, collected from the 

Mixkit (2022) and Zapsplat (2022) datasets, is added to the speech. The incorporation of 

construction site noises helps to generalize and reduce the likelihood of model overfitting. Data 

augmentation is then applied to artificially alter the pitch of the speech. 

5.4.2 Model development 

The set of 21,600 samples of 2-second audio commands representing a total of 12 hours of data is 

converted from waveform into MFCCs, which are capable of representing the amplitude spectrum 

of the sound wave in a compact vectorial form (De Pinto et al. 2020). In this technique, it should 

be noted, the audio file is divided into frames, usually using a fixed window size, in order to obtain 

statistically stationary waves and, in turn, frames. The frames having been obtained, discrete 

Fourier transform is applied, and only the logarithm of the amplitude spectrum is retained. The 

amplitude spectrum is normalized with a reduction of the Mel frequency scale. This operation is 
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executed for the purpose of identifying the frequencies (Logan, 2000). The interested reader may 

refer to Davis and Mermelstein (1980) and Huang et al. (2001), in which the MFCC calculations 

are thoroughly explained. To extract features from waveform audio, the main parameters used in 

MFCCs are the number of coefficients (referred to as the static features) that contain the 

information in a given audio frame, the fast Fourier transform length (which represents the number 

of samples in each window), the number of filters (which reflects the number of features extracted 

from the audio file), the frame stride, and the frame length. The values chosen for the developed 

framework are given in Table 5-1. These values are selected in a trial-and-error based on the 

performance of the model. Figure 5-3, shows examples of waveform audio and corresponding 

MFCCs. 

Table 5-1.  

Parameter of MFCCs. 

Parameters  

Number of coefficients 40 

Fast Fourier transform length 512 

Number of filters 40 

Frame stride 0.02 

Frame length 0.02 
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Figure 5-3. Waveform audio sample of keywords and corresponding MFCCs. 

The features extracted from the MFCCs are then fed into 1D CNN classifiers, which a classifier 

can operate on vectors of the features for each audio file provided as input. Here, the values 

represent the compact numerical form of the audio frames of 2-second duration. The compact 

numerical form of the audio frame is input to the 1D CNN, the architecture of which includes four 

convolutional layers that are responsible for extracting and learning features from the input data. 

Each convolutional layer is followed by an activation function to add non-linearity to the output 

neuron. For this work, the rectified linear unit (ReLU) activation function is used in the 

convolutional layers. The ReLU activation function, it should be noted, is an identity line for which 

y = x for all positive lines and y = 0 for all negative values. Each convolutional layer and activation 
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function is followed by a pooling or subsampling layer and dropout layer. The pooling layer helps 

the model to focus on the principal characteristics of each portion of speech data, making the potion 

of data them invariant by their position, while the dropout layer activates and deactivates the 

neurons with respect to their weights. (This technique helps to better generalize the predictive 

capabilities of the model.) The output from the dropout layer is then flattened to make it compatible 

with the subsequent layers. Finally, a SoftMax activation function is applied to one dense layer 

(i.e., fully connected layer) in order to estimate the probability distribution of each of the classes 

properly encoded in the model. 

5.5 Results 

The dataset is randomly split into training, validation, and test sets. The proportion of the training 

set is kept at 80% (17,280 samples) while the validation and test sets are kept at 10% (2,160 

samples) each. The reason for using more samples in the training set is to allow the 1D CNN model 

to learn more features from the dataset (as this will lead to a more accurate model for identifying 

keywords in the validation and test sets). The 1D CNN model is trained on 100 epochs while 

keeping the model-learning rate to 0.005 and the dropout rate to 0.25. The number of epochs, 

values of learning, and dropout rate are determined experimentally to boost the accuracy of the 

validation and testing. The model is found to achieve average accuracy of 97.3% and 96.1% and 

losses of 0.12 and 0.18 in the training and validation processes, respectively. Moreover, the model 

is found to achieve an accuracy of 93.8% in the test set. The accuracy and loss are measured using 

Equations 1 and 2. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑠𝑝𝑒𝑒𝑐ℎ

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑠𝑝𝑒𝑒𝑐ℎ
 × 100       (5.1) 
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𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠 =
−1

𝑁
 ×∑ ∑𝑍𝑥𝑦

𝑀

𝑦=1

𝑁

𝑥=1
 × log (𝑝𝑥𝑦)                      (5.2) 

where N is the number of samples and M is the number of classes; Zxy specifies whether or not 

sample x belongs to class y; and pxy represents the probability of sample x belonging to class y. The 

loss has no upper limit and falls within the range [0,∞], where a value of loss near 0 indicates high 

accuracy. 

The model is then deployed for real-time keyword identification from live speech captured using 

an audio-recording device affixed to the signalman’s helmet. Based on 650 iterations, the model 

is found to achieve an overall accuracy of 95.3% in real time. This result demonstrates that the 

developed model is capable of accurately identifying keywords in speech in the context of a 

construction site environment. As such, the model can be considered suitable for use as an 

additional layer of communication on noisy construction site. 

5.6 Conclusion 

In this chapter, a keyword identification framework is developed that is capable of identifying 18 

different crane signalman speech commands (i.e., “keywords”), in real time. First, a dataset of 12 

hours of crane signalman speech commands is collected using an audio-recording device affixed 

to the signalman’s helmet. Construction site noise is then added to generalize the dataset. Short 

audio clips of 2-second duration (i.e., the approximate duration of a keyword/command) are then 

separated from the dataset, and features are extracted from the audio dataset using MFCCs. The 

extracted features are used as an input to train the 1D CNN model, which is found to achieve 

training, validation, and testing accuracies of 97.3%, 96.1%, and 93.8%, respectively. The model 

is further validated in the real-time identification of keywords in live speech, achieving an accuracy 
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of 95.3%. In future work, more data will be added, and the model will be further optimized to 

improve its accuracy in performing real-time keyword identification. 
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Chapter 6: AN ENSEMBLE TECHNIQUE TO IMPROVE THE ACCURACY OF 

ONSITE COMMUNICATION CLASSIFICATION. A CASE OF COMMUNICATION 

BETWEEN THE CRANE OPERATOR AND CRANE SIGNALMAN. 

Crane operations are an essential aspect of many construction sites. However, they also pose a 

significant risk to worker safety if there is not effective communication between crane operator 

and signalman. In this regard, the previous chapters have described the use of various technologies 

to facilitate effective communication in crane operations by classifying hand signals and speech 

communication. 

In this chapter, an ensemble model approach is proposed to improve the accuracy of 

communication classification between crane signalmen and operators in crane operations. The 

ensemble model uses the models proposed in the previous chapters and combines their respective 

outputs to create a more robust and accurate classification system. The proposed ensemble model 

approach has several advantages over traditional methods, including higher accuracy, increased 

reliability, and enhanced flexibility. In this chapter, two ensemble techniques—weighted average 

and majority voting—are used to combine the classification decision outputs of the models 

described in the previous chapters and produce a single, more accurate classification decision 

output. The ensemble models are evaluated, and all ensemble models are found to outperform the 

individual models in terms of accuracy. Among the several ensemble models, the hard majority 

voting ensemble model is found to achieve the highest accuracy in crane signalman and operator 

communication classification (99.40%), suggesting that this model could be used on construction 

sites to add a supplement layer of communication in crane operations. 
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6.1 Introduction 

In current practice, the primary modes of communication among workers on construction sites are 

direct verbal communication, hand signalling, and two-way radio communication. However, the 

reliance on these communication methods is increasingly untenable, given the complex and 

congested nature of modern construction sites. In previous chapters, three different methods of 

classifying different data to facilitate communication on construction sites were proposed: 

YOLOv4+LSTM to classify dynamic crane signalman hand signals in real time using cameras, a 

sensor-based smart construction glove (SCG) to classify crane signalman hand signals in real time 

using sensor data, and a 1D CNN speech recognition model to identify the speech commands of 

crane signalman. These models are proposed to add more layers of communication to the current 

practice with classification capabilities that are achieved with the help of advanced technologies 

(as described in detail in previous chapters). These classification models have been found to 

achieve high accuracy in classifying dynamic crane signalman hand signals and speech data. 

However, to improve the performance of the framework, in this chapter the concept of 

redundancy—where the models developed as discussed in the previous chapters are integrated 

with the aid of ensemble models in which weighted average and majority voting are used as 

classification criteria for the final decision output—is proposed. 

Ensemble modelling, it should be noted, is a machine-learning approach that combines multiple 

models to provide a more accurate and robust prediction system. The idea behind this approach is 

that combining multiple models can produce better results than any single model operating alone. 

This is due to the fact that each model has various strengths and weaknesses, and combining them 

can reduce the adverse impact of the limitations of each of the constituent models making up the 

ensemble model. In ensemble modelling, similar or different datasets can be used to train multiple 
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models, and their output predictions are combined to produce a more accurate and stable decision 

output prediction. Majority voting is an ensemble technique that predicts the new datapoint based 

on the majority class label predicted by the individual models and produces a single classification 

decision. Majority voting is commonly used in classification problems to increase the robustness 

and accuracy of the model prediction. The objective of the research described in this chapter is to 

combine the decisions of multiple modalities (camera, sensor, and speech data) to enhance the 

performance and reliability of the classification system. 

The remainder of this chapter is organized as follows: the next section describes the relevant 

literature on the application of majority voting and weighted average ensemble models in various 

industries, including the construction industry. This section is followed by a description of the 

methodology. Next the different types of ensemble models used in this research are introduced and 

their implementation described, followed by a summary of the results of each ensemble model. 

The chapter then closes with a discussion and conclusion. 

6.2 Related work 

The use of majority voting in ensemble modelling has been thoroughly researched and published 

in several articles. These studies have demonstrated that the majority voting ensemble model can 

increase the accuracy and reliability of decision-making systems when compared to the individual 

models it comprises. For example, Attallah and Al-Mousa (2019) presented a majority vote 

ensemble approach for predicting the existence of heart disease in humans. They trained and 

evaluated four machine-learning models—Stochastic Gradient Descent (SGD), k-Nearest 

Neighbour (KNN), Random Forest (RF), and Logistic Regression classifier—then combined all 

four machine-learning models in an ensemble method in which the majority voting classification 

model is used. The ensemble model was found to outperform the individual models in terms of 
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accuracy. Mehanović et al. (2020), Raza (2019), and Kumari et al. (2021) also used majority voting 

ensemble models to improve the prediction of heart disease and diabetes mellitus, with each of 

these studies also achieving favourable results in terms of the accuracy of the developed ensemble 

model. Neloy et al. (2022) achieved a weighted average ensemble model by combining three 

machine-learning models—random forest, decision tree, and naïve bayes—to predict heart disease. 

Their weighted average ensemble model achieved 100% accuracy in training, and was found to 

outperform six different machine-learning models.  

Mukerjee et al. (2020), meanwhile, proposed an ensemble model (EnsemConvNet) that combines 

CNN-Net, Encoded-Net, and CNN-LSTM models to classify human activities such as running, 

walking, and cooking. They evaluated the developed model by comparing it with existing 

individual deep-learning models such as CNN-LSTM, with the results demonstrating the 

superiority of the EnsemConvNet model over the individual models it comprised. In a similar vein, 

Irvine et al. (2019) proposed a neural network ensemble approach to recognize human daily 

activities. The performance of the proposed model was evaluated using two non-parametric 

benchmark classifiers—KNN and Support Vector Machine (SVM), with the developed ensemble 

model being found to outperform the KNN and SVM models. The ensemble approach has also 

showed better accuracy than the individual models in applications ranging from facial recognition 

(Choi and Lee 2019; Renda et al. 2019), to emotion recognition (Wei et al. 2020) and sentiment 

analysis (Alrehili and Albalawi 2019). 

In the construction industry, Zhang et al. (2019) proposed an ensemble approach to classifying the 

causes of construction site accidents from construction site reports using text mining and natural 

language processing techniques. They compared the proposed ensemble model with individual 

models such as support vector machine (SVM), linear regression (LR), KNN, decision tree (DT), 
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Naïve Bayes (NB). The results indicated that the proposed ensemble model outperformed the 

individual model in the classification of construction site accidents. George et al. (2022) used 

ensemble and individual machine-learning models to predict the risks of the construction sites and 

noted that the ensemble model achieved superior accuracy. The ensemble models achieved higher 

accuracy in predicting concrete tensile strengths (Hu et al. 2022), predicting the compressive 

strength of fly ash concrete (Barkhordari et al. 2022), Estimating the Residual Value of Heavy 

Construction Equipment (Milošević et al. 2021), Prediction of Unit Price Bids of Resurfacing 

Highway Projects (Cao et al. 2018), to name a few. 

These studies demonstrated that the ensemble model outperformed the individual models in every 

application. Despite the potential benefits, though, the application of ensemble models to classify 

hand signals and speech communication in construction sites has yet to be extensively explored. 

Therefore, this chapter proposes a redundancy-based ensemble model to classify hand signals and 

speech communication in the construction industry. 
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6.3 Methodology 

The overview of the proposed framework is given in Figure 6-1. 

 

Figure 6-1. overview of the proposed ensemble framework. 

In this framework, initially data is recorded using three different techniques. Cameras placed in 

multiple positions and angles as shown in Figure 3-3 are used to capture the camera live video of 

the crane signalman's dynamic hand signals. A sensor-based SCG is used to capture the sensor 

data including the orientation of the crane signalman's hand and bend the fingers of the crane 

signalman. An audio-recording device affixed to the crane signalman’s helmet is used to record 

the speech command used by the crane signalman to guide the crane operator in the crane 

operations. 

Furthermore, pre-trained models including YOLOv4+LSTM model discussed in detail in Chapter 

3 is deployed to classify the dynamic crane signalman hand signals from camera live feeds. 

CNN+LSTM model discussion Chapter 4 is deployed to classify the dynamic crane signalman 

hand signals with the aid of sensor data from an SCG. 1D CNN model is deployed to classify the 

crane signalman speech commands to the crane operator captured by an audio-recording device 
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affixed to the crane signalman’s helmet. The classification results of each of the models discussed 

above are then integrated using an ensemble model to generate a single, more accurate and robust 

final output. 

6.4 Ensemble models 

In this framework, two types of ensemble models—weighted average and majority voting—are 

used. The algorithm underlying the ensemble model used in this framework is presented as 

Algorithm 2 below. 

 

6.4.1 Weighted average ensemble model 

The weighted average ensemble is a type of ensemble model that combines predictions from 

several models by assigning varying weights to each model's output prediction, where the weight 

signifies the importance or confidence of each model's prediction. The final output prediction is 

then calculated as a weighted average of the individual model predictions. This method can be 

used to enhance the performance of a single model by combining the strengths of multiple models 
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and mitigating the models’ respective weaknesses. The model weights are positive values ranging 

between 0 and 1, and the sum of the weights must be equal to 1. To find the optimum weights of 

each model, this framework uses model performance-based weights selection. In this technique, 

higher weights are assigned to the model that performed better. In this framework, the optimum 

weights of the individual models are 0.30, 0.33, and 0.37 for YOLOv4+LSTM, CNN+LSTM, and 

1D CNN, respectively. A higher weight assignment means that the given model is more reliable 

due to its higher accuracy in crane signalman hand signal and speech classification. Figure 6-2 

shows an overview of the developed weighted average ensemble model. 

 

Figure 6-2. Overview of the developed weighted average ensemble model. 
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6.4.2 Majority voting ensemble model 

Majority voting is an effective and simple technique used to combine the predictions of several 

models and provide a single accurate and robust output prediction. This technique functions in 

such a way that each model taking part in the ensemble makes a prediction for an input and the 

majority voting technique makes the final prediction by choosing the class that has received the 

most votes from the model. This technique capitalizes on the strengths of the various models 

making up the ensemble by combining their predictions to achieve a higher accuracy than any of 

the individual models it comprises. There are two main types of majority voting techniques—soft 

voting and hard voting. These are discussed in detail in the following subsections. 

6.4.2.1 Soft voting 

Soft voting is a type of majority voting technique in ensemble modelling that uses the prediction 

probabilities of each class in the model and calculates the average of the prediction probability 

score of each class in the model to achieve one final output decision. For example, suppose three 

models are used to make a prediction of a class of new input data based on soft majority voting 

techniques. Model-1 predicts the inputs as Class A = 60%, Class B = 20%, and Class C = 20%. 

Model-2 predicts the class of new inputs as Class A = 80%, Class B = 20% and Class C = 0%. 

Model C classifies the inputs as Class A = 20%, Class B = 50%, and Class C = 30%. In the above 

case, the average probabilities of Class A, B, and C are 53%, 30%, and 17%, respectively, and the 

final output will be Class A, since it has the highest probability. An overview of soft majority 

voting is provided in Figure 6-3. 
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Figure 6-3. Overview of soft majority voting. 

In the present research, soft voting is carried out in two scenarios. In the first scenario, it is assumed 

that the crane signalman is only using hand signals (i.e., the signalman is not using speech 

commands to guide the crane operator), and that the data is coming from vision- and sensor-based 

classification models. In the second scenario, it is assumed that the crane signalman is using hand 

signals and speech commands at the same time, and that data is coming from vision, sensor, and 

speech classification models. 
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6.4.2.2 Hard voting 

In the hard majority voting technique, the ensemble model makes a classification prediction based 

on the number of votes received by the individual label/class as the final decision output. In the 

hard majority voting technique, two or more similar or dissimilar models are used to generate 

individual decisions, and the output decisions of each of the individual models are then combined 

in an ensemble hard majority voting model that generates a single prediction output. An overview 

of hard majority voting is provided in Figure 6-4. 

 

Figure 6-4. Overview of hard majority voting. 



128 

 

In the ensemble hard majority voting technique, the number of votes received by each class 

predicted by the individual models is counted, and the class with the most votes is the output. In 

the present research, three different individual models are trained on three different types of 

datasets—i.e., the YOLOv4+LSTM model is trained on the video dataset, the CNN+LSTM model 

is trained on the sensor dataset, and the 1D CNN model is trained on the speech dataset—to classify 

the crane signalman hand signals and speech commands. Each model produces a decision output 

based on the given input data, and the hard majority voting technique is applied to count the 

number of votes of each class predicted by the individual models and produce the final output 

decision accordingly. It should be noted that, in this technique, the model is developed in such a 

way that the final output decision is of the class that receives the most votes. In the case that the 

decision outputs are different, meaning that each model produces a different output decision, the 

model will not produce any output decision.  

6.5 Results 

Three individual pre-trained models—YOLOv4+LSTM, CNN+LSTM, and 1D CNN, trained on 

video data, sensor data, and speech data, respectively—are deployed and combined in an ensemble 

to provide improved classification accuracy in classifying crane signalman hand signals and 

speech commands and generate a single decision output. The respective performance of three 

different ensemble models—weighted average ensemble, soft majority voting, and hard majority 

voting—is evaluated on a new test dataset of 18,270 datapoints to which the models have not yet 

been exposed. The evaluation metric used to evaluate the performance of the models is accuracy. 

The accuracy calculation is expressed in Eq. (3.4) (see Chapter 3). 
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6.5.1 Results of weighted average ensemble model 

The individual models used in the ensemble have different architectures and hyperparameters and 

different datasets to increase their diversity and improve the model performance. The predictions 

of the individual models are combined using a weighted average ensemble technique. Based on 

the assigned weights discussed above, the model is found to achieve an average overall accuracy 

of 99.05% on a held-out test set, outperforming each of the individual models and achieving state-

of-the-art performance on the dataset. Figure 6-5 shows the accuracy achieved for each hand signal 

using the weighted average ensemble model. 

 

Figure 6-5. Performance of weighted average ensemble model. 
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It can be seen from Figure 6-5 that the model is found to perform well for all classes, with an 

accuracy of over 98% for all classes with the exceptions of Boom up and lower the load and Travel 

one track, which are slightly lower (97.54% and 97.49%, respectively). Overall, the ensemble 

model is found to have achieved high accuracy and to have outperformed the individual models, 

demonstrating the effectiveness of combining multiple models to improve performance.  

6.5.2 Results of Soft Majority Voting ensemble model 

As discussed in Subsection 6.4.2.1, the soft majority voting is applied to two different scenarios. 

Figure 6-6 shows the performance achieved by the model when the sensor- and vision-based 

models are combined to classify crane signalman hand signals. In this ensemble model, the 

classification model for crane signalman speech commands is not combined with the sensor- and 

vision-based models. The model is found to achieve an overall classification accuracy of 94.8% in 

the test dataset, with Dog everything achieving the highest classification accuracy (98.22%) and 

Swing achieving the lowest accuracy (90.73%) in classifying hand signals. However, the ensemble 

model is found to outperform the individual models in classification accuracy. 
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Figure 6-6. Performance of Soft majority voting (2-medium) ensemble model. 

 

Figure 6-7. Performance of Soft majority voting (3-medium) ensemble model. 
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In the second soft majority voting ensemble model, all three models for classifying crane 

signalman hand signals and speech commands are combined and evaluated. This model is found 

to perform better than the soft majority voting ensemble model in which just two models are 

combined, achieving an overall classification accuracy of 97.92% on the test dataset. Figure 6-7 

shows the performance of the model. From Figure 6-7, it can be seen that some hand signal labels, 

such as Stop, Emergency stop, and Dog everything, are found to achieve 100% classification 

accuracy.  

6.5.3 Results of hard majority voting ensemble model 

The hard majority voting ensemble model is evaluated on the test dataset. In the hard majority 

voting ensemble model, the output decisions of the three proposed models—YOLOv4+LSTM, 

CNN+LSTM, and 1D CNN—are combined and, based on majority voting, the final decision is 

determined. The hard majority voting ensemble model is found to achieve an overall classification 

accuracy of 99.45%. Figure 6-8 shows the classification accuracy of each hand signal and speech 

command used by the crane signalman to guide the crane operator. From Figure 6-8, it can be seen 

that all the classes are found to achieve accuracies higher than 98%, with 8 classes of the 18 classes 

achieving 100% classification accuracy.  
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Figure 6-8. Performance of hard majority voting ensemble model. 

6.6 Discussion 

In this chapter, crane signalman hand signals and speech commands are classified using an 

ensemble of three individual pre-trained models, namely, YOLOv4+LSTM, CNN+LSTM, and 1D 

CNN, with each being trained on a different dataset (video, sensor, and speech, respectively). The 

performance of each of the three different ensemble techniques—namely, weighted average, soft 

majority voting, and hard majority voting—is evaluated on a separate test dataset of 18,270 

datapoints to assess the classification accuracy on the test dataset. Figure 6-9 demonstrates the 

classification accuracy achieved by each of the ensemble models considered. From Figure 6-9, it 

can be seen that the highest accuracy is achieved by the hard voting majority ensemble model with 

an average classification accuracy of 99.45%, while the model with the lowest classification 
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accuracy is the soft majority-voting model (2-medium—combining camera and sensor data only) 

with an average classification accuracy of 94.8%. Figure 6-10, meanwhile, compares the 

classification accuracy of each of the ensemble models with respect to each hand signal. 

 

Figure 6-9. Performance of proposed ensemble model on test dataset. 
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Figure 6-10. Comparison of the classification accuracy of the ensemble models with respect to 

each hand signal. 

Overall, the results of this study demonstrate the effectiveness of ensemble models in improving 

the performance of classification tasks. It is demonstrated that combining multiple models with 

different architectures, hyperparameters, and datasets can increase the diversity of the models and 

lead to improved performance. The study also highlights the importance of evaluating different 

ensemble techniques to identify the most effective approach for a given task.  

6.7 Conclusion 

In this chapter, three different ensemble models for the classification of crane signalman hand 

signals and speech commands are proposed. The proposed ensemble models are composed of three 

different deep-learning models: YOLOv4+LSTM to classify dynamic crane signalman hand 

signals using cameras, a sensor-based model to classify crane signalman hand signals using sensor 

data from an SCG, and a 1D CNN model to classify crane signalman speech commands. Each 
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model is trained on a different dataset, and their respective decisions are combined to produce a 

single classification decision. Each ensemble model is evaluated based on the average 

classification accuracy. The weighted average ensemble technique is found to achieve an average 

overall accuracy of 99.15% on the held-out test set. The performance of the soft majority voting 

ensemble model is also evaluated, based on two different scenarios. In the first scenario, in which 

crane signalman hand signals are classified using a combination of sensor- and vision-based 

models, the overall classification accuracy is found to be 94.8%. In the second scenario, in which 

all three models are combined to classify both hand signals and speech commands, the overall 

classification accuracy is found to be 97.9%. Finally, the performance of the hard majority voting 

ensemble model is evaluated the, with the model achieving an overall classification accuracy of 

99.45%. 
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Chapter 7: CONCLUSIONS 

7.1 Research Summary 

Effective communication between crane operator and signalman is essential for safety, 

coordination, productivity, quality, and cost management in construction projects involving crane 

operations. It is critical that communication is open and frequent, and that both have the 

information they need to perform their tasks safely and effectively. The current practice is to rely 

on hand signals to send commands to the crane operator in most situations, and to use two-way 

radio speech communication when hand signalling is not possible. However, these means of 

communication are not reliable in modern construction due to site congestion, visibility issues, 

background noise, language barriers, and other distractionsc. In this regard, recent technological 

developments can be leveraged to achieve more effective communication and improved safety and 

productivity in the construction sites. This research thus employs advanced technologies such as 

deep learning in a multimodal communication classification framework that can assist in 

improving communication, safety, and productivity on the construction site. 

As described in Chapter 2, a detailed scientometric and critical review of the literature on the 

application of deep learning in the construction industry is conducted. In the scientometric 

analysis, co-ward, co-author, co-citation and cluster analysis is performed. Co-word analysis is 

used to analyze and visualize the course of development of the body of knowledge, co-author 

analysis is used to identify the dominant countries and researchers working in this research area, 

co-citation analysis is used to detect similarity in the literature, and cluster analysis is applied to 

identify themes in the existing textural data. The purpose of the critical review, meanwhile, is to 

analyze the depth of the literature. Based on this review, it is observed that deep learning has been 

successfully deployed in the construction industry to monitor construction machinery, construction 
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site activities, and construction site reports, and to assess the worker ergonomics on construction 

sites. Deep learning has also been used for safety and productivity improvement on construction 

sites. However, multiple challenges, including lack of data availability, inaccuracy of the deep-

learning models, data privacy issues, computational cost, and the dynamic nature of the 

construction site environment, are also identified in the critical review. Moreover, it is observed 

that the use of deep-learning models for communication classification in construction sites has yet 

to be thoroughly explored, yet is a matter of pressing concern considering that communication 

errors are responsible for disastrous accidents in construction sites. Chapter 2 thus proposes the 

use of multiple deep-learning models for communication classification in construction sites, 

drawing upon the case of communication between crane operator and crane signalman. 

In Chapter 3, a deep learning-based classification framework to reduce communication errors in 

dynamic hand signalling for crane operations is proposed. The objective of this framework is to 

add a supplementary layer to the communication between crane operator and signalman with the 

aid of computer-vision-based deep learning hand signal classification models. It begins with the 

collection of dynamic crane signalman hand signal data, since there is no publicly available dataset 

of dynamic crane signalman hand signals. Then, two state-of-the-art models, YOLOv4 and LSTM, 

are deployed and modified to achieve the final classification decision. The YOLOv4 model is 

modified to collect spatial features from the dynamic crane signalman hand signal dataset, while 

the LSTM model is deployed to extract temporal features and to predict the final classification 

decision. The model is found to achieve high accuracy in classifying dynamic crane signalman 

hand signals in complex construction sites and under variable weather conditions in real time. 

Chapter 4 describes a framework for the development of a smart construction glove (SCG) 

furnished with sensors and deployed in conjunction with machine-learning algorithms to classify 
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crane signalman hand signals. In this framework, sensors affixed to the SCG are used to measure 

the orientation of the crane signalman’s hand during the execution of hand signals. A 

complementary filter fusion algorithm is used to remove sensor data noise, and the data collected 

from the SCG is transmitted to an Excel file with the aid of a Bluetooth module affixed to the SCG. 

The collected dataset is labelled manually according to the classification labels. Four machine-

learning models—KNN, SVM, DT, and CNN-LSTM—are then trained on the collected sensor 

datasets. Finally, a mobile application is developed, and the top-performing models are deployed 

in the developed app to classify dynamic crane signalman hand signals in real time. The models 

are found to achieve high accuracy in hand signal classification, and thus could be used as an 

additional layer of communication to reduce the likelihood of communication errors. 

The framework discussed in Chapters 3 and 4 uses vision- and sensor-based techniques to classify 

crane signalman hand signals, whereas Chapter 5 proposes a framework to identify speech 

commands used in the communication between crane signalman and crane operator in crane 

operations. This framework begins with speech data collection in waveform, and, for this purpose, 

an audio-recording device is affixed to the crane signalman’s helmet. The collected data is 

preprocessed by adding construction site noises and data augmentation. The waveform 

preprocessed data is then converted to MFCCs in order to extract features from the datasets, and a 

1D CNN model is developed and trained on the collected dataset. Finally, the 1D CNN model is 

deployed to identify keyword/crane signalman speech commands in real time. The findings 

suggest that the framework is capable of identifying crane signalman speech commands in real 

time, of aiding communication in noisy construction sites, and of helping to reduce linguistic 

barriers in understanding speech commands. 
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The aim of the research described in Chapter 6 is to combine the respective decisions of the models 

proposed in Chapters 3, 4, and 5 to produce a single classification decision output. This is achieved 

using a redundancy-based ensemble model. Two types of ensemble models—weighted average 

and majority voting—are considered. Both constituent models of the redundancy-based ensemble 

model are evaluated on a test dataset, with the ensemble model showing high accuracy in 

classifying communication between crane signalman and crane operator in crane operation and 

outperforming the individual models it comprises. 

7.2 Research Contributions 

This research proposes a multimodal hand signal and speech communication framework for the 

construction industry. In this research, the communication between crane signalman and crane 

operator in crane operations is used as a case study. The industrial and academic contributions of 

this research are summarized as follows. 

7.2.1 Industrial contributions 

1) A deep-learning model is proposed that integrates two state-of-the-art models (i.e., 

YOLOv4+LSTM) to classify dynamic crane signalman hand signals in real time. The 

model is capable of classifying dynamic crane signalman hand signals on complex 

construction sites and under variable weather conditions, and can be used on construction 

sites as an added layer of communication to reduce communication errors and improve 

safety and productivity.  

2) An SCG featuring multiple sensors is developed and deployed in conjunction with trained 

machine-learning models to classify the dynamic crane signalman hand signals in real time. 

The model is tested in real time using a mobile application developed for this research. The 

model is found to be capable of accurately classifying crane signalman hand signals in real 
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time. The SCG can be used as a supplementary layer of communication between crane 

operator and signalman in crane operations.  

3) A 1D CNN model is developed to identify keyword/crane signalman speech commands 

from speech communication data. The model is shown to have the ability to identify 

keywords used by crane signalman to guide the crane operator during crane operations, 

and to do even under noisy construction site conditions and irrespective of the speaker’s 

pitch or accent. As such, this model can assist in communication between crane operators 

and signalmen on construction sites. 

7.2.2 Academic contributions 

1) The scientometric analysis and critical review of applications of deep learning in 

construction serves as a valuable contribution for researchers by providing a thorough 

understanding of the current landscape of deep learning applications in construction. By 

identifying the existing applications, encountered challenges, and highlighting prevailing 

gaps in the field. This research study laid a foundation for the further development of deep-

learning models to facilitate hand signal and speech communication on construction sites. 

2) The proposed computer-vision-based deep learning model (i.e., YOLOv4+LSTM) enables 

real time crane signalman dynamic hand signals classification with high accuracy and 

speed in dynamic and complex construction sites and under variable weather conditions. 

The proposed model can assist the crane operator in decision making in crane operation. 

The findings also demonstrate the feasibility of using deep-learning models for 

classification on construction sites, even under complex and adverse conditions to improve 

construction site safety and enhance productivity. 
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3) The developed of sensor-based SCG enables the data collection of hand signal without 

interfering with the user’s activities, meaning that it can be widely used for recording 

different hand signal datasets on construction sites. Furthermore, the addition of machine-

learning models to the glove allows the SCG to classify the crane signalman hand signals 

in real time. The SCG can serve as an additional communication method to complement 

the current practice on construction sites. Moreover, this technology could be used in other 

applications ranging from other construction-related hand signal applications to hand 

signal classification of speech-impaired people 

4) The concept of redundancy is adopted in the development of an ensemble model for hand 

signal classification. As an improvement upon existing models, the developed ensemble 

model combines the decisions of individual models to produce a single decision output. 

The model is capable of producing more reliable and accurate classification decisions 

compared to the individual models it comprises. The model also allows for the comparison 

of the impact of different redundant scenarios on the reliability of communication. This 

framework constitutes a substantive addition to the body of knowledge, yielding decisions 

that are more reliable than those generated by individual models, and that can be used in 

range of industrial and academic applications in which reliability is a high priority. 

7.3 Limitations and Future Research 

There are opportunities for future work to improve upon the presented framework. Potential 

avenues of future work in this domain are summarized below: 

1) The present research is limited to the case of the classification of hand signal and speech 

communication between crane operator and signalman. The extension of this framework 

to the classification of other hand signals used for communication in construction, such as 
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in bulldozer operation, concrete truck operation, or wayfinding on construction sites, is 

highly recommended as an avenue of future study to better generalize the model. 

2) Future research could focus on improving the quantity and quality of data by adopting more 

advanced methods of data collection. For instance, in the present research, although the 

video data is collected from multiple positions and angles as shown in Figure 3-3, the crane 

signalman helmet could be equipped with a 360° camera for more comprehensive video 

data collection and classification. The use of a 360° camera would allow for a wider field 

of view and for even subtle motions of the crane signalman’s hand to be captured from any 

position/angle. This could enhance the accuracy and efficiency of data collection. 

3) A promising potential avenue of future research is the exploration of novel methods to train 

deep learning-based classification models more effectively. The current process of training 

the classification models involves a considerable amount of manual effort to label training 

datasets, as well as significant computing resources and time. There is potential to improve 

upon this by redesigning the training process. Furthermore, efforts should be made to 

optimize the model in order to reduce the computation burden, enabling implementation 

on microcontrollers and other portable devices for on-site field classification. These 

improvements could enhance the efficiency and accessibility of deep-learning-based crane 

signalman hand signal classification models in practical settings. 

4) Although the model presented herein has been tested for a maximum distance of 30 m, 

more effective means of transmitting hand signal labels over longer distances between 

crane operator and signalman should be investigated in future work. Further research is 

needed to explore alternative approaches to enable accurate communication over greater 

distances to improve safety and efficiency. 
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5) In this research, the ensemble model was only tested on a test dataset. Future research could 

explore the real-time application of the ensemble model to improve the performance of 

deep-learning classification models for the purpose of enhancing the reliability of 

communication between crane signalman and crane operator. Real-time implementation of 

the ensemble model would help to verify its efficacy and feasibility for practical use in 

construction sites. This could pave the way for more widespread adoption of such 

technologies in the construction industry, benefiting workers and construction enterprises 

alike. 
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APPENDIX 1: 

MOBILE CRANE SIGNALMAN STATIC HAND SIGNAL CLASSIFICATION 

FRAMEWORK USING DEEP CONVOLUTIONAL NEURAL NETWORK5 

Introduction 

The communication between the crane operator and the signalman relies on hand signals and two-

way radio communication systems. The crane industry has been using universal hand signals for 

decades to give direction to the crane operator for safe crane operation (Everett and Slocum 1993). 

Hand signals are the fastest and most reliable way to communicate a message when the crane 

operator has a direct line of sight with the signalman and the operator then operates the crane based 

on the direction given by the signalman. However, when the signalman is far away from the crane 

operator, the crane operator will not be able to clearly distinguish the signalman’s hand signals; 

while at other times the crane operator’s line of sight will be obstructed due to construction site 

congestion. These limitations make this method ineffective and unsafe (Everett and Slocum 1993; 

Shapira et al. 2008). To overcome the limitations, the crane industry has used two signalmen at 

the same time such that the second signalman copies the main signalman’s signals and transmits 

these to the operator; however, this process is less productive and cannot be 100% reliable due to 

the potential for the signalman to misinterpret the signals or miscommunicate them to the crane 

operator, which may lead to a disastrous accident(Fang and Cho 2016). Another means of 

communication in the crane industry is the use of a two-way radio communication system. 

                                                 
 

 
5 A version of this work has been published as follows: Mansoor, A., Liu, S., Ali, G. M., Bouferguene, A., Al-Hussein, 

M., and Soda (2022) “Mobile crane signalman static hand signals classification framework using deep convolution 

neural network.” Proceedings of the 34th European Modeling and Simulation Symposium, Rome, Italy, Sep. 19–21, 

2022, ISSN 2724-0029. 
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Typically, this two-way radio communication system is used on the site when the crane operator’s 

direct line of sight/vision is blocked by an obstacle or when the signalman is far away from the 

operator and he cannot see the signalman clearly; however, a two-way radio communication 

system needs to be maintained on a dedicated channel that is available at all times (Zekavat et al. 

2014). This system can be viewed as an alternative to the hand signalling system under certain 

circumstances and, potentially, as an extra layer of safety. A two-way radio communication system 

cannot be 100% reliable when the construction site is noisy, such as when there is drilling on site 

and the operator cannot hear the signalman clearly (Zavichi and Behzadan 2011; Mansoor et al. 

2020). Second, while communicating using two-way radios, one hand needs to be used to push the 

talk button to send the voice message while the other hand must be used for signalling, which may 

cause a miscommunication error and can be dangerous (Zekavat et al. 2014). Another drawback 

of the two-way radio system is when a problem occurs with the dedicated channel being used by 

the operator and signalman because the whole crane operation is halted until the problem is 

resolved, which causes delays, productivity losses, and safety risks (Zavichi and Behzadan 2011). 

To overcome the aforementioned limitations, information technology can provide another layer of 

safety by making the communication between signalman and crane operator more efficient and 

Figure 1. Camera-based vision system for tower and mobile cranes 
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more accurate by using deep convolutional neural network (DCNN). The objectives of the 

framework are to develop a DCNN model, to train the model with an image dataset of crane 

signalman hand signals, to achieve a high level of accuracy in classifying images of crane 

signalman hand signals in training, validation, and test datasets, and to further validate the model 

for real-time crane signalman hand signal classification. The proposed framework is capable of 

classifying the crane signalman hand signals in real time. The benefit of using this framework is 

that it assists communication between the crane operator and the signalman. 

The present study is organized as follows: Section 2 Introduces related work in context of 

improving the communication between crane operator and signalman. Section 3 describes the 

methodology and architecture of the proposed DCNN model. Sections 4 and 5 present the model 

optimization techniques and data preparations. Section 6 evaluates the Implementation and model 

performance and describe the model real-time classification results of the proposed model. Section 

7 contain the conclusion, limitations of the present study and related future work. 

Related work 

To improve safety and communication in the context of crane operation, researchers have done a 

significant amount of work. Camera-based vision systems have been developed that enable the 

operator to monitor the construction site while operating the crane. Researchers have also 

developed sensors to detect hazards and dangerous situations on the construction site. These 

technologies are quite beneficial in terms of improving safety and communication on construction 

sites, but due to the limitations of these technologies, they are not yet widely employed in the crane 

industry. These technologies are discussed below in detail. 

Camera-based systems 
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In crane industry, in particular, can benefit from improved communication and safety systems; 

therefore, researchers have developed camera-based systems as shown in Figure 1. (Shapira et al. 

2008) developed a video monitoring system that not only improves safety in the construction site 

but also increases productivity by 11 to 26%. The noted results were based on 2400 time complete 

delivery of payload from picking to dropping the load to their allotted locations. The system 

consists of a video camera mounted to the top of the tower crane to show a live video feed of the 

site that focuses on the signalman (Shapira et al. 2008). A monitor in the crane cabin allows the 

operator to see the live video of the signalman as well as the site. According to (Rosenfeld 1995), 

video cameras affixed to the cranes can be useful both in terms of efficiency and safety 

improvements as the live site vision enables the operator to make judgments on site without 

hesitation. 

The drawback of this technology is that the camera shows only 2-dimensional images without any 

perception of depth. The operator has difficulty accurately determining the distance of the load to 

the ground, which can lead to serious accidents on the site (Shapira et al. 2008). CRANIUM is 

another camera-based technology, developed by Everett (Everett and Slocum 1993), that has been 

found to improve both safety and cost-effectiveness because it eliminates the need for the second 

signalman (who is responsible for copying the hand signals of the first signalman at the lifting 

point and communicating these to the crane operator) (Everett and Slocum 1993). In this system, 

a camera is fixed to the top of the boom and a monitor is placed in the operator's cabin. From the 

monitor, the crane operator can see the loading area as well as the signalman (Everett and Slocum 

1993). Stoneridge-Orlaco and HoistCam are camera and monitor manufacturers providing camera-

based solutions for live video feed for tower, telescopic and crawler cranes to improve the 

communication, safety, and efficiency of crane operation on construction sites. The disadvantage 
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of these camera-based systems is that sometimes while the crane is in operation, a part of the crane, 

such as a hook or sling, moves in front of the camera which obstructs the operator’s view and the 

operator is unable to see the signalman or the target area. This drawback can slow down the 

operation and increase the safety risks for the workers on the site (Everett and Slocum 1993). 

Sensor-based systems 

Another means to accomplish improved safety and communication in the crane industry is the 

application of sensor-based systems. (Li et al. 2013) introduced RFIDs to track construction 

workers on site with the help of a GPS tracking system. This system is used to limit the movement 

of the workers because only authorized workers were allowed in the danger zone during any crane 

lift operation. By automatically detecting unauthorized workers, the system sends an alert to warn 

authorized management personnel. This system was approved by the management and staff on the 

site (Li et al. 2013). (Fang and Cho 2016) developed a sensor-based framework that was capable 

of providing real-time safety assistance for mobile crane lift operations on a construction site. The 

sensors were affixed to a 70-ton telescopic crane and were responsible for detecting nearby objects 

and warning the crane operator of any dangers. This framework was implemented on the site and 

the responses from the working crew were recorded. Most of the crew was satisfied with the 

developed framework and responded that the framework can be helpful during blind lifts by 

responding early before the crane comes into contact with any object (Fang and Cho 2016). To 

improve the two-way radio communication system between crane operator and signalman, 

(Zekavat et al. 2014) developed a camera-based vision system with a wireless microphone to 

monitor the blind lifts. In this system, a laptop was placed above the eye level of the operator in 

the crane operator cabin, where the operator have to look up the laptop to make decision while 

moving the load. This system improved the communication and visibility of the site during crane 
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operation (Zekavat et al. 2014). On the other hand, the limitations of sensor-based technologies 

are the accuracy of the system, and the measurement error and setup error of the system makes 

these systems less trustworthy because a small margin of error can cause serious accidents on the 

construction site (Everett and Slocum 1993). With respect to implementing RFIDs for the purpose 

of worker tracking, the workers responded that they have privacy concerns, in particular, that their 

productivity will be judged based on their movements; this system was noted to have accuracy 

issues as well (Li et al. 2013). 

Methodology and CNN architecture 

In recent years, rapid improvements in computation power have led to the development of deep-

learning algorithms for image classification, notably, convolutional neural networks (CNNs). A 

CNN extracts the features from the input image pixels and classifies the images with high accuracy 

and generalization capabilities. In the civil engineering domain, CNNs have been widely used for 

the classification and detection of equipment on construction sites, and construction workers 

wearing hardhat (Arabi et al. 2019; Gu et al. 2019; Hu et al. 2019; Wang et al. 2020; Wu et al. 

2019), of defects in sewer pipes (Yin et al. 2020), and of defects in concrete surfaces (Cha et al. 

2017), for example.  

Figure 2. Overview of the deep learning based framework 
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In the present study, a DCNN approach is developed to classify crane signalman static hand signals 

in real time. The developed DCNN is trained, validated, and tested using a dataset of 8,133 

augmented and non-augmented images that are collected by individuals from the research team. 

An overview of the developed deep learning-based framework is given in Figure 2. The crane 

signalman hand signals dataset containing all 18 hand signals necessary for crane operation serves 

as the original data source for the signalman hand signals. The crane signalman hand signals are 

based on the occupational health and safety (OHS) crane hand signals (Occupational Safety and 

Health Administration, 2009), as shown in Figure 3.  

In order to improve communication, the crane signalman hand signals must be classified in real 

time. To accomplish this, a deep learning approach is developed and is consists of two main parts. 

First data is collected and preprocessed and the second is the development of the DCNN model 

that is discussed in detail in Sections 3.1 and 3.2 

Data collection and preprocessing 

Since there is no accessible dataset available for crane signalman hand signals, the dataset needed 

for this work is collected by taking 6,507 images of individuals from the research team doing all 

18 crane signalman hand signals in all possible angles (0° to 360°), and positions (right, left, front, 

and back sides of signalman). The camera is set up at multiple distances (5 m to 20 m) to record 

the image dataset in different environments (sunny and cloudy). While creating the dataset, data 

balancing is taken into account, which means the portion of images in the dataset showing each 

one of the 18 hand signals should be 5.5% of the whole dataset. However, in the collected dataset, 

7.51% of images depict the emergency stop hand signal, which is the maximum portion, and the 

minimum portion of images, 3.64%, depict the travel hand signal as shown in Table 1. Therefore, 

the amount of data provided to train the model is sufficient for the model to learn the features from 
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all hand signals in the dataset. The number of samples collected for each hand signal can be seen 

in Table 1. 

All images have a resolution of 1280×720 pixels. The DCNN can be trained using images of any 

resolution; however, a higher resolution means more features will be extracted from images, which 

increases the computational complexity and the processing time. To reduce the processing time 

and computational load, all images are scaled down to a 280×280 pixel resolution for further 

processing. 

Table 1. Image samples collected for each hand signal 

Standard Hand signals Number of sample 

images 

Percentage (%) 

Hoist 486 7.47 

Lower 411 6.32 

Use main hoist 231 3.55 

Use whipline 333 5.12 

Boom up 477 7.33 

Boom down 453 6.96 

Move slowly 417 6.41 

Swing 243 3.73 

Boom down and raise the load 393 6.04 

Boom up and lower the load 459 7.05 

Stop 423 6.50 

Emergency stop 489 7.51 
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Travel 237 3.64 

Dog everything 285 4.38 

Travel both tracks 246 3.78 

Travel one track 288 4.43 

Telescope out 333 5.12 

Telescope in 303 4.66 

 

Figure 3. Crane signalman hand signals (Occupational Safety and Health Administration., 2009). 

Data augmentation 
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Data augmentation is mandatory to better generalize the dataset, and it will help to increase the 

number of images in the dataset, which decreases the chances of model overfitting. There are 

several techniques that can be used to increase the size of a dataset and generalize the dataset, such 

as the cropping, rotating or flipping of the images. In the present work, the intensity transformation 

technique is used, which is an adjustment of the contrast and brightness of the images to generalize 

the image dataset for different scenarios such as low and high lighting conditions. The data 

augmentation Increased the size of dataset by 25%. 

Convolutional neural network-based deep-learning model 

The architecture of the developed deep convolutional neural network  

CNNs are constructed by artificial neurons (i.e., mathematical functions that receive one or many 

inputs and sum them to produce an output) with weight, biases, and activation functions, which 

are responsible for transforming input images into a single output value. According to LeCun and 

Bengio (1995), CNNs use spatial decomposition of input images in multiple stages. Spatial 

decomposition is achieved through convolution and pooling layers. A DCNN is composed of four 

main features: convolution layer that is responsible to transform images through various filters to 

Figure 4. Architecture of the developed DCNN 
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extract the features from the input, activation that adds non-linearity to the output neurons, pooling 

or sub-sampling responsible for reducing dimensions of the feature map, and classification 

responsible for transferring output into a classification score. 

The DCNN model developed for the proposed approach consists of convolution layers, pooling 

layers, dense layers, and an output layer. The input image in the DCNN has three colour channels, 

red, green and blue (RGB), and it can be viewed as three 2-dimensional matrices arranged over 

each other having a pixel value in the range of 0 to 255 and is passed through convolution, pooling 

and dense layers to achieve an output vector. The architecture of the DCNN is shown in Figure 4. 

The weights in the network are adjusted and optimized through the process of backpropagation. 

The process of backpropagation is achieved through epochs/ iterations such that the CNN can 

correctly classify all images in the dataset. The architecture of the developed DCNN model 

consists of layers that are discussed in the following sections. 

Convolutional layers 

Convolution layers are considered the building blocks of CNNs. The convolution operation is 

responsible for extracting features from the input image. The input image is convolved into a 

number of kernels. Kernels are the matrices used to store the weights of convolution operations. 

 Developed DCNN model architecture has three convolution layers. In the first convolution layer, 

the images are of size 280×280×3 (width, height, colour channels) and each input image is 

convolved into 16 different kernels. Each kernel has a size of 3×3×3 (width, height, colour 

channels). After the first convolution, each output has a size of 280×280 and 16 channels, so the 

resulting output will become 280×280×16. The resulting output is passed through the activation 

function and then subsampled to size 140×140×16 using max-pooling layers. 
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Second convolution layer takes the output of the max-pooling layer of size 140×140×16, which is 

further convolved with 32 different kernels, each kernel with a size of 3×3×16. This will result in 

32 output channels of size 140×140. The resulting output is passed through the activation function 

and then subsampled to size 70×70×32 using max-pooling layers.  

Third and final convolution layer takes the output of max-pooling after the second convolution 

layer of size 70×70×32 and is then convolved with 64 different kernels, each kernel with the size 

of 3×3×32. This will result in 64 output channels of size 70×70. After adding biases to 64 channels, 

the resulting output is passed through the activation function and then subsampled to size 

35×35×64 using max-pooling layers. 

The variation in the number of kernels is used in the architecture to obtain the highest accuracy in 

the model. Finally, a DCNN architecture with 16, 32, and 64 kernels in the first, second, and third 

convolution layers, respectively, was found to achieve the highest accuracy on the validation 

dataset. 

The developed network used a stride value of 2 that helps the kernel to move two matrix pixels at 

a time. This parameter affects the dimensions of output and reduces the chances of model 

overfitting. In the model, padding is used to assist the kernel to move uniformly over the matrix 

and its edges to obtain all the desired information in the image. 

Activation function 

An activation function is used in the CNN to add non-linearity to the output neurons. Adding an 

activation function is essential, otherwise, the DCNN would compute linear combinations of linear 

functions and the model would not be able to learn complicated or non-linear functions (Nair and 

Hinton., 2010). 
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Activation function used in the developed DCNN is rectified linear unit (ReLU) and softmax. The 

ReLU activation function is an identity line where y = x for all positive lines and 0 for all negative 

values (Nair and Hinton, 2010). The mathematical equation for ReLU is given in Eq. (1). 

 

(1) 

For the activation of the output layer, the softmax activation function is used. The softmax function 

is generally used for multiclass classification. It squashes the output of each unit to be between 0 

and 1 and returns the probabilities of the input being in a particular class. Mathematically, it can 

be written as shown in Eq. (2). 

 

(2) 

where yi = correct label of image xi, and fyi = predicted score. 

Max-pooling layer 

Convolution layer along with the activation function is followed by the pooling or subsampling 

layer. The purpose of adding the pooling layer is to reduce the dimensions of the feature map and 

retain the important information (LeCun and Bengio, 1995). This layer also reduces computation 

and helps in reducing the overfitting of the model. In max-pooling, a kernel of size n × n is moved 

across the matrix and for each position; the maximum value is taken. 

In the developed DCNN, each convolution layer is followed by a max-pooling layer to reduce the 

dimension by a factor of 2. In the first convolution layer, max-pooling reduces the output channel 

from 280×280 to 140×140. In the second convolution layer, it further reduces the output channel 

from 140×140 to 70×70, and at the final convolution layer, the output channel is reduced from 

70×70 to 35×35. 
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Dense/fully connected layers 

Output of max-pooling layers is the input to the dense layer. In the dense layer, all input and output 

are connected to all the neurons in each layer, while neurons within a single layer share no 

connection. In a CNN, dense layers are used to create the final non-linear combination of features 

and to predict the output layer. In the present study, three dense layers with 1,024 neurons in each 

layer are used. These layers are selected based on the classification performance of the validation 

set. A different number of dense layers is used and the accuracy of each is recorded. While 

recording the accuracy, it was noted that three dense layers with 1,024 neurons in each layer 

increase the average classification accuracy by 3%. 

Output layer 

The final layer of the CNN architecture is the output layer, which is responsible for transferring 

the output into a classification score. The softmax function is used for the activation of the output 

layer. The softmax function takes as input the predicted class labels and outputs a probability score. 

The softmax function is expressed as Eq. (2). The probability scores of the outputs must have a 

sum of 1. The probability score indicates class prediction. The largest probability score for any 

hand signal is considered to belong to the correct class. 

Model optimization 

When the model achieves higher accuracy in the training dataset than the validation dataset, the 

model is considered to be overfitted. To prevent overfitting in the model, data augmentation is 

performed for the dataset (Chatfield et al. 2014), which includes brightness change, contrast 

change, image resizing, and image rescaling of images. Another method used to mitigate the 

overfitting in the model is dropout regularization. The dropout technique was proposed by 
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(Srivastava et al. 2014). This technique activates the neurons with a certain probability and is 

implemented during the training stage. As the network is trained, neurons get randomly deactivated 

with respect to their weights and it will lead to better generalization of predictive capabilities 

(Srivastava et al. 2014). In the developed DCNN, a drop rate of 0.2 is chosen. A drop rate of 0.2 

is selected based on multiple trails on the model, which gives higher accuracy during the validation 

and testing of the dataset. 

Preparation of training, validation and test datasets  

The dataset contains 8,133 augmented and non-augmented images with 18 different crane 

signalman hand signals. The images were collected with individuals from the research team. The 

dataset was randomly split into three different datasets: a training set, a validation set, and a test 

set. The training set includes 70% of the images, while the validation and test sets each include 

15%. The reason for choosing a larger sample size for the training set is to get more features from 

the training dataset, which leads to better accuracy in the validation and test datasets. 

Model performance evaluation 

The DCNN model is developed using Python with Keras and TensorFlow API, which is an open-

source computer software library for dataflow. The training set is converged into 160 epochs 

(iterations) which were completed in 8 hours on windows operating system with Intel corei7 

processor and GeForce RTX 3050ti graphics card. The number of epochs, 160, was chosen to 

achieve maximum accuracy in the validation dataset. As shown in Figure 5, the accuracies of the 

training and validation dataset increase when the number of epochs in the model is increased while 

the value of loss decreases with the increase of the number of epochs. 
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Figure 5. Training and validation accuracy and loss 

The average training and validation accuracies achieved by the developed model were 89.1% and 

84.6%, respectively, and the loss calculated for training and validation was 0.38 and 0.44, 

respectively. The model calculates the accuracy using Eq. (3) and the cross entropy loss using Eq. 

(4). 

 

(3) 

 

(4) 

where N is the number of samples and M is the number of classes; Zxy represents whether sample 

x belongs to class y or not and pxy shows the probability of sample x belonging to class y. The loss 

has no upper limit and it exists in the range [0,∞]. The value of loss nearer to 0 indicates higher 

accuracy and vice versa. 

Furthermore, a confusion matrix is used as a metric to evaluate the performance of the developed 

model on the test dataset. On the basis of the results obtained in the confusion matrix in the test 

dataset, the precision, recall, and F1 score are calculated using Equations 5, 6, and 7. 
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(5) 

 

(6) 

 

(7) 

where TP is the number of true positives (the detected hand signal belongs to the class that is 

shown); FN is the number of false negatives which represent that the detected hand signal is not 

of the same class as actually shown, and FP is the number of false positives that represent that the 

detected hand signal is of different class and shown hand signal is of a different class. The model 

achieved an average precision for all crane signalman hand signals of 81.5%, and the average value 

recorded for the recall was 81.8%.  

The other metric used to measure the performance of the model is the F1 score, which captures the 

properties of both precision and recall and combines them into a single unit. The reason for using 

the F1 score is that the model cannot be judged only on the basis of good results in either precision 

or recall. The F1 score for the developed model was recorded as 81.7%. Typically, the F1 score 

falls in a range from 0% to 100%, where 0% is poor performance and 100% is the best performance 

of the model. 

Real-time classification 

The model is further validated by deploying the developed model such that it is used to classify 

the crane signalman hand signals in real time using a live stream. The developed DCNN model is 

validated in real time using live stream by showing all the crane signalman hand signals a total of 

802 times. The model was capable of correctly recognizing the hand signals 706 times with an 

average accuracy of 87.9%. The deep-learning model was capable of correctly recognizing 42 
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hand signals out of 45 with an accuracy of 93.3%, 46 hand signals out of 48 with an accuracy of 

95.8%, and 51 hand signals out of 52 with an accuracy of 98.1% for the labels hoist, stop, and 

emergency stop, respectively. The correctly and incorrectly recognized hand signals along with 

the accuracy can be seen in Table 2. The accuracy is measured using Eq. (3).  

The proposed developed framework with deep-learning model can be implemented in cranes using 

a camera and a screen/ head-up display. The camera is used to record the live stream of the 

signalman hand signals, which are transmitted to the screen placed inside the crane operator cabin. 

The developed DCNN model shows the results (i.e., the classified labels of detected signalman 

hand signals) on the screen. The operator inside the cabin can see the signalman hand signals and 

their classified labels on the screen. This developed framework assists the crane operator to take 

the decision about the movement of load more confidently and efficiently. In this manner, the 

framework can be used as an improvement to the current state of practice for communication 

between crane operator and signalman and serve as another layer of communication and safety in 

crane industry. 
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Standard Hand 

signals 

Number of times 

crane signalman 

hand signal 

shown in camera 

Number of 

times crane 

signalman hand 

signal is 

correctly 

classified 

Number of 

times crane 

signalman 

hand signal is 

incorrectly 

classified 

Accuracy 

(%) 

Hoist 45 42 3 93.3 

Lower 42 39 5 88.1 

Use main hoist 49 39 10 79.6 

Use whipline 46 40 6 87.0 

Boom up 48 42 6 87.5 

Boom down 45 39 6 86.7 

Move slowly 48 44 4 91.4 

Swing 47 38 9 80.9 

Boom down and 

raise the load 

40 35 5 87.5 

Boom up and lower 

the load 

39 34 5 87.2 

Stop 48 46 2 95.8 

Emergency stop 52 51 1 98.1 

Travel 41 33 8 80.5 

Table 2. Accuracy of real-time crane signalman hand signal classification 
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Conclusions, limitations and future work 

This developed framework presented in this paper used a DCNN model to classify the crane 

signalman hand signals in real time, which will help to improve communication between crane 

operator and signalman. The DCNN model is trained using images of 18 hand signals that are used 

by the signalman to communicate instructions to the crane operator. The collected images are 

resized, rescaled, and the contrast and brightness of the images are adjusted to increase the number 

of images in the dataset, which leads to a better generalization of images in the dataset and 

decreases the chances of model overfitting. The 8,133 images of the 18 crane signalman hand 

signals are passed through the DCNN to train the model to recognize the hand signals correctly. 

The architecture of the proposed DCNN model consists of 3 convolution layers, 3 max-pooling 

layers, three dense layers, and an output layer. The developed model achieved an accuracy of 

89.1% and 84.6% in training and validation, respectively. The precision, recall and F1 score 

achieved by the model were 81.5%, 81.8%, and 81.7%, respectively, for the test set. The model is 

further validated for real-time hand signal classification, where accuracy of 87.9% is recorded. 

The F1 score was greater than 80% which means the model is performing well and the average 

accuracy of 87.9% in real-time crane signalman hand signal classification makes the model 

acceptable. However, during real-time classification, some misjudgments are made by the DCNN 

Dog everything 49 44 5 89.8 

Travel both tracks 36 31 5 86.1 

Travel one track 32 28 4 87.5 

Telescope out 48 42 6 87.5 

Telescope in 47 41 6 87.2 
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model while classifying the signalman hand signals, but the crane operator is not relying solely on 

the classification label because the screen/ head-up display inside the operator cabin is showing 

the signalman hand signals in real time along with the classification label. The crane operator can 

still take the correct action by looking at the signalman hand signal.  

In terms of future research, there is room for improvement. For example, a larger dataset of crane 

signalman hand signals images can be used to train the model, which would lead to an 

improvement in the performance of the developed DCNN model. Another technique is the use of 

transfer learning with a pre-trained model in place of using the current model, which can reduce 

the computational time and increase accuracy in terms of correctly classifying the crane signalman 

hand signals. Data fusion techniques can also be used to classify dynamic hand signals that will 

lead to an improved the accuracy of the deep-learning models. The development of such model is 

necessary in the crane industry as they help in the construction safety improvement and with well-

achieved high accuracy; they assist towards automation of the process and development of 

automated cranes. 
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APPENDIX 2: 

THE EFFECTIVENESS OF DATA AUGMENTATION IN CONSTRUCTION SITE-

RELATED IMAGE CLASSIFICATION6 

INTRODUCTION 

In recent times as the construction industry is moving from traditional construction operations to 

modular construction techniques, the construction sites are getting more overwhelmed with on-

site resources such as construction machinery, workers, etc., that make the construction operation 

less productive and unsafe for workers. The implementation of recent technological advancements 

can be useful to make the construction operation's working conditions more smooth, productive, 

and safe. 

The adoption of technological advancement in the construction industry is moving at a very slow 

pace compared to other industries such as automotive, healthcare, manufacturing industry, etc. 

However, researchers in the construction field have leveraged technological advancements such 

as deep-learning techniques, IOT, and Big Data to solve the construction site-related problems. 

Deep learning has been studied and implemented by researchers in the construction industry to 

assess construction worker's ergonomics (Yu et al. 2019), on-site construction machinery, and their 

activity detection (Xiao and Kang 2021a), detection and classification of multiple objects such as 

construction hardhat (Fang et al. 2018) and waste materials (Davis et al. 2021). 

                                                 
 

 
6 A version of this work has been accepted for publication as follows: Mansoor, A., Liu, S., Ali, G. M., Bouferguene, 

A., Al-Hussein, M. “Effectiveness of data augmentation in construction site-related image classification.” Accepted 

(Apr., 2022) for publication in Proceedings of the Canadian Society for Civil Engineering Annual Conference, 

Whistler, BC, Canada, May 25–28, 2022. 
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Meanwhile, the construction industry is facing multiple challenges in adopting the deep-learning 

techniques in day-to-day construction operations for example issues on data privacy, high cost of 

computational machines to process the data, requiring expert engineers with the knowledge of 

technology, etc. The most significant challenge is the lack of availability of construction site-

related image datasets. Where deep-learning models require significant amount of data for training 

purposes from multiple backgrounds, variable weather and lighting conditions, etc., to improve 

the accuracy of the deep-learning model. The case of implementing deep learning in construction 

sites has multiple challenges. First, the amount of open-source construction site related data is very 

limited in the industry; second, construction site is dynamic in nature where the workers, 

machinery and other background work conditions are changing every minute, and finally, the 

construction sites are congested which makes deep-learning model less effective to detect and 

classify objects. The weather and lighting conditions of the construction site also affect the 

accuracy of deep-learning models. 

To overcome the issue of small dataset and different lighting conditions, date augmentation can be 

used. Data augmentation is a technique that is used to apply realistic transformation to the dataset 

(Hernández-García and König 2018). This technique can assist to reduce the chances of model 

overfitting, solve data imbalance and data biasness issues (Mikołajczyk and Grochowski 2018; 

Shorten and Khoshgoftaar 2019). The data of mentation will also help to increase the size of the 

image dataset by duplicating the samples in the dataset. In this research, we will be using You 

Only Look Once (YOLOv4) state-of-the-art deep-learning model to classify construction site-

related images of construction equipment and construction site workers hand signals. The 

YOLOv4 deep-learning model is capable, when trained, of looking at an image and finding the 

subset of object class, enclosing it with the bounding boxes, and identifying its class (Bochkovskiy 
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et al. 2020). The reason for using the YOLOv4 model is its superior performance over other state-

of-the-art deep-learning models such as YOLOv3, Faster Recurrent-Convolutional neural network 

(Faster R-CNN), and Single Shot Detector (SSD) (Bochkovskiy et al. 2020). 

The present work is organized as follows: Section 2 describes the related work in the context of 

implementing data augmentation in image classification. Section 3 defines the methodology and 

image data selection. Section 4 and Section 5 introduce the different augmentation techniques used 

in research and the architecture of the state-of-the-art YOLOv4 model. Section 6 presents the 

experimental setup for the research. Section 6 and Section 7 contain the results and the conclusion 

of the study. 

RELATED WORK 

The implementation of data augmentation techniques is very important to improve the 

performance of deep-learning models. For example, Walawalkar et al. (2020) introduced an 

attentive CutMix data augmentation method to enhance the performance of deep learning image 

classification. The experiment was conducted on CIFAR10/100 image dataset, and they used 

various CNN architectures such as ResNet, DenseNet, and EfficientNet. The results indicated that 

the developed approach increased the classification accuracy by 1.5% compared to the traditional 

data augmentation technique and by 3.04% compared to baseline non-augmented techniques. 

Perez and Wang (2017) used traditional transformations such as zoom out, zoom in, and shaded, 

Generative Adversarial Networks (GANs) such as Cezanne and Enhance, and augmentation 

techniques on ImageNet and MNIST datasets. The smallNet CNN model is trained on the 

augmented and non-augmented datasets. The model trained on the augmented dataset showed a 

6% increase in performance from the non-augmented dataset. Mikołajczyk and Grochowski (2018) 

trained VGG 16 model on skin melanomas diagnosis, histopathological images and breast 
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magnetic resonance imaging (MRI) datasets. They used GAN augmentation techniques and shear, 

reflection, rotation, etc., augmentation techniques and observed that implementation of data 

augmentation techniques improved the performance of the VGG 16 model. Gu et al. (2019) used 

VGG-16 architecture with the custom CNN model on CIFAR-10 image datasets. Rotation, width 

and height shift, flip, etc., augmentations are used to train the model. The result showed a 2.1% 

improvement in the accuracy of the model when trained with the augmented dataset. Lei et al. 

(2019) implemented rotation, solarize, invert, shear, colour balance, etc., augmentation techniques 

on CIFAR-10, MNIST and Fashion-MNIST datasets. The ResNet and LeNet-5 models are trained 

on augmented, and non-augmented image datasets. It is noted that the model trained on the 

augmented image dataset showed better accuracy in the classification of the test dataset. 

The augmentation techniques and deep-learning models discussed above showed great results but 

the construction site has its challenges. For example, the low visibility due to dusty conditions in 

the construction site, congestion of construction sites, full of the obstacle, changes in outdoor 

lighting condition, dynamic nature and business of construction site make the construction site 

related image classification a challenging task. Therefore, we propose three different augmentation 

techniques (Gamma transformation, Gaussian blur, and salt-and-pepper noise) to mimic the 

construction site scenario changes and as well as to improve the classification performance of 

deep-learning models in construction site related images classification. 

METHODOLOGY 

We propose three different data augmentation techniques in which five different experiments are 

conducted. Initially, the YOLOv4 model is trained on the original image dataset without any 

augmentation techniques implemented. Second, we applied gamma transformation to the original 

image dataset where lighting conditions in the images are adjusted. Third, we applied Gaussian 
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blur to the original image dataset. Fourth, we tested the model by adding salt-and-pepper noise 

augmentation technique to the original image dataset; and finally, we combined all the above 

augmentation techniques to test the performance of the model. 

Dataset Selection 

For this work, we use Alberta Construction Image Dataset (ACID) image dataset (Xiao and Kang 

2021b) and the construction site worker's hand signal image dataset. ACID is a construction 

machine detection dataset developed at the University of Alberta (Xiao and Kang 2021b). ACID 

was developed as a source to assist the use and development of deep-learning applications in the 

construction automation field. The dataset contains images collected from construction sites all 

over the world (Xiao and Kang 2021b). The construction site worker's hand signals image dataset 

is collected manually in 720 × 720 pixels in indoor and outdoor environments. The dataset has 

static and dynamic backgrounds as well as sunny and cloudy weather conditions. For the original 

image dataset, we used 1,000 images of construction vehicles from the ACID dataset and 1,000 

images of construction site workers' hand signal image datasets. Further data augmentation 

techniques are applied to the original image dataset. 

DATA AUGMENTATION TECHNIQUES 

Data augmentation is a method to increase the size of the collected dataset. Using data 

augmentation techniques, the dataset can be diversified by applying a random but realistic 

transformation. The implementation of data augmentation can improve the performance of the 

deep-learning models (Hernandez-Garcia and Konig 2018), reduce the likelihood of model 

overfitting, as well as better, generalize the dataset for model training purposes (Mikołajczyk and 

Grochowski 2018). The following data augmentation techniques are used for the present work. 

Gamma Transformation 
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Gamma transformation is a technique to control the intensity of light in the images. With gamma 

transformation, we can adjust the contrast and brightness of the original image (Bull 2014). This 

technique can bring more originality to the dataset and help the model to perform better in any 

lighting condition. For the current dataset, the range of gamma values in which to adjust the 

brightness and contrast is set to between −35 and +35, where a set of −35 will result in darker 

images and +35 will result in lighter images. This range is chosen to make the conditions more 

realistic and representative of weather conditions ranging from sunny/clear to cloudy/overcast. 

Gaussian blur 

Gaussian blur is used to blur the images in the dataset; it has been widely used for multiple 

purposes such as reducing the detail in the images. This technique smooths out the randomness in 

an image based on a chosen blur radius. Each pixel in the frame will adopt a new value based on 

the weighted average of its surrounding pixels (Misra and Wu 2020), where more weight is given 

to pixels in closer proximity. The amount of blur in the frame is measured in pixels (px), where a 

higher value of px means more blur and a lower value means less blur will appear in the frame. To 

add blur to the dataset, a blur value between 1.15 to 3.25 px is chosen for the present work. Adding 

blur to the images in the dataset ensures that the model will be trained for a scenario where the 

camera may lose focus, thereby allowing the model to achieve better accuracy. 

Salt-and-pepper noise 

The “salt-and-pepper” noise data augmentation technique is used for image degradation. In this 

technique, some pixels of the frame are kept very noisy. The effect is likened to sprinkling salt and 

pepper on the frame (Boncelet 2009), hence the name. The intensity of salt-and-pepper noise is 

measured in percentage, where 0% means there is no noise in the frame. For the current work, 10% 

to 40% salt-and-pepper noise is applied. This helps the model to be trained for unintentional and 
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unwanted changes in the scenes. It also helps the model to correctly classify hand signals captured 

from low-quality cameras. 

The reason for using these augmentation techniques is to better generalize the training dataset and 

to mimic the construction site environment, which is typically subject to changing weather, dusty 

conditions, among other dynamic and unpredictable conditions. After applying these 

transformations, the data augmentation techniques randomly choose each image, apply the 

transformation, and store the image as a different image. The example of discussed augmentation 

is given in Figure 1. 

 

Figure 1: Example of different augmentation techniques. 

STATE-OF-THE-ART YOLOv4 MODEL ARCHITECTURE 
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YOLOv4 is a deep learning-based object detection and classification model capable of inspecting 

an image to find the subset of object class, enclosing it within bounding boxes, and identifying its 

class when trained (Bochkovskiy et al. 2020). YOLOv4 is the updated version of the YOLO 

algorithm series, which has been used in many applications in various fields, such as in the 

classification of safety helmets (Hu et al. 2019), construction vehicles (Hou et al. 2021), defects in 

sewer pipes (Yin et al. 2020), etc. The YOLOv4 model is selected for the present work based on 

its superior accuracy and speed compared to other deep-learning models, such as YOLOv3, Faster 

R-CNN, SSD, and RetinaNet (Bochkovskiy et al. 2020). The YOLOv4 model architecture consists 

of three parts—the backbone, neck, and head—as shown in Figure 2. 

 

Figure 2: Architecture of state-of-the-art YOLOv4 model (Bochkovskiy et al. 2020). 

The backbone of YOLOv4 is composed of cross-stage partial connection CSPDarknet53. 

CSPDarknet53 is a CNN with residual connections that are responsible for extracting features from 

the image dataset (Bochkovskiy et al. 2020). The neck of YOLOv4 architecture is composed of 

spatial pyramid pooling (SPP) block (Huang et al. 2020) and Path aggregation network (PANet) 

(Liu et al. 2018) is responsible to collect the feature maps from different stages in the network. 

The YOLOv4 network architecture used the same YOLOv3 head, aiming to predict objects in 

multiscale. The details about the architecture of YOLOv4 are given in (Bochkovskiy et al. 2020) 
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EXPERIMENTAL SETUP 

The YOLOv4 model has trained on both (ACID and Workers hand signals) the datasets. The 

images in the datasets are of varying resolutions. To feed the images in the YOLOv4 model the 

resolution of the images is scaled down to 416 × 416 pixels. The reason for scaling down the 

resolution of the images is to reduce the computational expense of the system. Initially, the model 

is trained on the original image datasets. In the original dataset, the images were used without any 

enhancement or augmentation to training the YOLOv4 model. After training the model the training 

accuracy of the model is recorded. Furthermore, the model is evaluated on the test dataset. The test 

dataset is the images that are not used while training the YOLOv4 model. Second, the model is 

trained on the images with gamma transformation. The detail about gamma transformation is 

discussed in Section 4.1. Here the original images and some images with gamma transformation 

are used to train the model. The accuracy of the model is evaluated based on training and test 

dataset. Third, the original dataset is used with Gaussian blur data augmentation. The detail about 

Gaussian blur is explained in Section 4.2. The YOLOv4 model is trained on the original images 

along with Gaussian blur images and the performance of the model is evaluated on training and 

test datasets. Further salt-and-pepper noise data augmentation technique is implemented to the 

original image dataset. The original images and some images with salt-and-pepper noise are used 

to train the YOLOv4 model. The accuracy of the model is recorded on the training and test dataset. 

Finally, all the augmented techniques are combined and implemented on original images. Here 

each augmented images have gamma transformation, Gaussian blur and salt-and-pepper noise. The 

model is trained on the combined augmented and original dataset. The model is evaluated on 

training and test dataset accuracies. Note that the same test dataset images are used to evaluate all 
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the models while the models are trained on different datasets. As well as the same architecture of 

the YOLOv4 state-of-the-art model is used in this work without any changes or improvement. 

RESULTS AND DISCUSSION 

A total of 5 experiments are conducted where the YOLOv4 model is trained on the non-augmented 

dataset, augmented with gamma transformation, augmented with Gaussian blur, augmented with 

salt-and-pepper noise and finally, the model is trained with combined augmented images. The 

model is trained on 6500 epochs/iteration. Based on the experimental results as shown in Figure 

3, the state-of-the-art YOLOv4 model achieved the best training accuracy of 92.4% on a non-

augmented dataset where the model achieved an accuracy of 86.8% in the test dataset. When 

random transformations, such as gamma transformation, are implemented on the original image 

dataset, a training accuracy of 90.7% is recorded, while, when the model is used to evaluate the 

test dataset, the model achieves an accuracy of 87.2%. When the YOLOv4 model is trained on, 

the images with Gaussian blur the model achieved an accuracy of 91.3% and 88.9% in training 

and test datasets. The YOLOv4 model is also trained on the images with salt-and-pepper noisy 

images; the model achieved a training accuracy of 91.8% and test accuracy of 87.9%. Furthermore, 

by combining all the augmentation techniques and the YOLOv4 model is trained on the augmented 

combined dataset, the model achieved an accuracy of 92.7% in training. When the model is 

deployed for the test dataset, the model achieved an accuracy of 90.8% in the test dataset. 

The results showed that the YOLOv4 model achieved the highest accuracy in the augmented 

combined dataset in training as well as in the test dataset. For this case, we will be evaluating the 

performance of the models on the test dataset. The test dataset used in this work contains the same 

images while the models are trained on different datasets. The augmented combined dataset trained 

model achieved an accuracy of 90.8% in the test dataset, which is 4% better than the model trained 
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with the non-augmented dataset. The combined augmented dataset trained model also performs 

better than the model trained on augmented with gamma transformation, Gaussian blur, and salt-

and-pepper noise by 3.6%, 1.9%, and 2.9%, respectively. It is also noted that all models trained 

with an augmented dataset perform better than the model trained on a non-augmented dataset when 

evaluated on the test dataset. 

These results clearly indicate that the data augmentation techniques implemented lead to an 

improvement in the classification results of the state-of-the-art YOLOv4 deep-learning model. 

Data augmentation is an effective technique to increase the size of the dataset, better generalize 

the dataset and help improve the classification accuracy of deep-learning models. It also seems 

that the augmentation techniques chosen in the study to train the model perform well to mimic the 

construction site changing scenarios. However, the implementation of data augmentation 

techniques to the image dataset is a time-consuming task. The applicability of data augmentation 

for video analysis of construction sites is under study for future work. 
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Figure 3: Comparison of YOLOv4 model accuracy between original and different augmented 

image datasets. 

CONCLUSIONS 

In this work, three different data augmentation techniques (gamma transformation, Gaussian blur, 

and salt-and-pepper noise) are used to evaluate the performance of the state-of-the-art YOLOv4 

model with augmented and non-augmented construction site image datasets (ACID and 

construction site worker's hand signals). A total of five experiments are conducted. Initially, the 

state-of-the-art YOLOv4 model is trained on the original image dataset without any augmentation 

and evaluated based on the accuracy of the training and test dataset. Second, data augmentation is 

applied to the dataset one by one using gamma transformation, Gaussian blur, and salt-and-pepper 

noise. Finally, all the data augmentation techniques are combined and the model is trained on a 

combined dataset and the performance of the model is evaluated. Based on the experiments 

conducted the highest test dataset accuracy is achieved by the state-of-the-art YOLOv4 model 
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when trained on the combined dataset with 90.8% which is 4% more than the model trained on the 

non-augmented dataset. In addition, the model performed better when trained on the augmented 

dataset from the model trained on the non-augmented dataset. The result is convincing that the 

data augmentation technique is an effective way to mimic the construction site scenario changes. 

Data augmentation also helps to better generalize the dataset as well as increase the size of the 

image dataset. The future work will include applying data augmentation techniques in videos and 

real-time classification in dynamic construction sites. 
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