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Abstract

Harvesting energy from radio frequency signals is a promising solution to en-

hance the energy efficiency of portable wireless devices and/or wireless sensors.

Toward this goal, in this thesis, wireless powered communication networks are

studied. Such a network consists of a hybrid access point or a power beacon

that transfers energy to the user. The user device then transmits data in

the uplink by using its harvested energy. Performances of wireless powered

communication networks are investigated in detail based on two practical sce-

narios: imperfect channel state information and nonlinear energy harvesting

models. First, average throughput and average bit/symbol error rate are de-

rived for imperfect channel state information case. Second, a new nonlinear

energy harvesting model and its asymptotic version are proposed. The lin-

ear and rational energy harvesting models are also described for comparative

purposes. The average throughput and average bit error rate of four energy

harvesting models are investigated.
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Chapter 1

Introduction

1.1 The Evolution of Wireless Communications

Commercial wireless communications systems have evolved through several

stages since the introduction of first generation (1G) in the 1980s. Each gener-

ation is a significant milestone in the development of wireless communications.

This evolution is briefly discussed below.

• First generation Wireless

The first generation mobile system was launched in 1979 in Japan by

Nippon Telephone and Telegraph Corporation (NTT). 1G cellular tele-

phone systems were based on frequency division multiple access (FDMA)

and analog frequency modulation (FM) technology [1]. There were sev-

eral drawbacks, such as poor voice quality, less security, limited to voice

transmission, and the limited number of users as well as cellular coverage.

• Second generation (2G) wireless

2G was first launched in Finland in 1991 based on the global systems for

mobile communication (GSM) standard. Unlike 1G, the 2G system used

digital mobile access technology such as time division multiple access

(TDMA) and code division multiple access (CDMA) [2]. Since the 2G

system used digital signals, the calls could be encrypted and the voice

quality was better than the 1G system. In addition, 2G provided text,

picture, and multiple media messages services.
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• Third generation (3G) Wireless

3G was commercially introduced in 2001. Two of the most widely used

3G standards are CDMA2000 (code division multiple access) and wide-

band code division multiple access (W-CDMA). CDMA2000 was based

on IS-95 and IS95B technologies. 3G provided more services than 2G,

such as mobile television, video conferencing, global positioning system

(GPS), and better quality.

• Fourth generation (4G) Wireless

4G system is an enhanced version of 3G. 4G has high speed (1 Gbps for

stationary environments), high quality of service and high bandwidth

efficiency (15 bits/s/Hz in the downlink and 6.75 bits/s/Hz) [1]. The two

significant 4G standards are long term evolution (LTE) and worldwide

interoperability for microwave access (WiMAX). 4G uses orthogonal fre-

quency division multiple access (OFDMA) and single carrier frequency

division multiple access (SC-FDMA).

• Fifth generation (5G) Wireless

5G is currently being researched, developed and deployed. The com-

plete deployment takes place between 2020 and 2030 [1], [3]. Compared

to the previous generations, 5G has greater bandwidth (3.3–4.2 GHz),

higher download data rate (up to 10 Gbit/s), lower latency (less than 1

milliseconds), and denser connectivity. Therefore, 5G provides more ser-

vices than 4G, such as automated driving, mobile industrial automation,

and smart cities in internet-of-things (IoT). 5G is the cornerstone of the

growth of wireless devices.

1.2 Increased Demand for Wireless Devices

Wireless networks and devices have been developed rapidly and have become

essential parts of daily life. For example, according to GSMA [4], the number

of unique mobile subscribers is predicted to increase 1.9 % from 5.2 billion

in 2019 to 5.8 billion in 2025. The use of smartphones increased from 65%
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Figure 1.1: Global mobile data traffic (EB per month) [6].

in 2019 to 80% in 2020. The worldwide mobile data usage will grow from

7.5 GB per subscriber per month in 2019 to 28 GB per subscriber per month

in 2025, which is almost fourfold. Around 5.2 billion cellular IoT connections

are expected by 2025. However, there were only 1.5 billion connections in 2019,

which will increase 23% [5]. In Figure 1.1, the increase trend of global mobile

data traffic in exabytes (EB) per month is given. It will reach to 164 EB per

month in 2025.

In order to address this growth, researchers have been developing several

technologies. These include the cognitive radio (CR) paradigm, which is based

various energy detection methods, which allows simultaneous spectrum access

for primary and secondary users in an interference tolerant basis, full duplex

radios, massive MIMO (multiple input multiple output), cooperative commu-

nications and others [7]–[11].

With such a large increasing demand for wireless devices and nodes, the

lifetime of those energy-constrained devices/nodes is an essential issue and has

attracted a lot of research interests [12]–[15]. Large batteries could possibly

be used by wireless devices and nodes, but the problems are increased weight,
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size, and cost [16]. Thus, the elimination or reduction of the use of batteries

makes sense. Thus, a solution is i.e, wireless energy harvesting (EH) [12]. EH

is a promising technique to improve the performance of energy-constrained

wireless networks.

1.3 Wireless Energy Harvesting

Energy can be harvested from different sources. These sources are generally

divided into four types: mechanical energy, thermoelectric energy, solar/light

energy, and electromagnetic energy. All of them can be converted into electric-

ity by different transducers [17]. Different energy sources may be influenced

due to location, climate, and time.

Compared to conventional battery-powered networks, EH wireless commu-

nications networks provide several benefits. First, conventional devices depend

on either batteries or cables to maintain the energy needed for communication.

In some harsh environments (toxic, hostile, or inaccessible places), it is incon-

venient to recharge and replace the batteries or connect devices with cables.

Thus, EH helps in prolonging and self-sustaining the lifetime of battery-less

or cable-free devices [12]. Second, unlike the energy from the power grid, the

harvested energy from solar/light and mechanical energy (wind energy) are

environmentally friendly. Although RF energy is not completely green, it is

ubiquitous and ambient forms of it can power wireless devices.

1.4 Energy Sources

These sources can be generally divided into four types: mechanical energy,

thermoelectric energy, solar/light energy and electromagnetic energy. These

can be converted into electricity by different transducers.

1.4.1 Mechanical Energy

To convert mechanical motion, vibration, pressure or stress to electricity, elec-

tromagnetic, electrostatic and piezoelectric methods are available [18]. In

the electromagnetic method, the relative motion between the magnet and the

4



metal coil can produce a current in the coil [19]. In the electrostatic method,

the mechanical motion or vibration changes the distance between two elec-

trodes of a capacitor to generate a current [18], while in the piezoelectric

method, the current is generated by the mechanical strain acting on a layer of

piezoelectric material.

1.4.2 Thermoelectric Energy

The thermoelectric effect is a direct conversion of the voltage generated by

temperature differential between two different conductors. For example, one

may harvest energy from the temperature gradient between human bodies

and environment, but the power is relatively low and range from 10 µW/cm2

to 1 mW/cm2 [20].

1.4.3 Solar/Light Energy

Solar energy is one of the most popular green energy sources. To exploit this

source, photons are converted into electricity through photovoltaic cells [21].

The energy can be harvested at a rate of 100 mW/cm2 in the daytime, but

the dependency of solar energy on the time and weather is a disadvantage.

For indoor scenarios, an alternative is indoor light, which is controllable in

contrast to solar energy.

1.4.4 Electromagnetic Energy

Wireless harvesting for electromagnetic energy is possible. Electromagnetic

energy can be divided into two categories: near field and far field [17]. For near

field, the applications are electromagnetic induction and magnetic resonance,

while for far field, the radio frequency (RF) can be harvested from base station

or WiFi routers.

These energy sources have different characteristics. For example, solar

energy is available only when it is sunny. Wind energy can only be used when

or where it is windy [17]. Hence, it is very important to choose the appropriate

energy source. For mobile applications, harvesting energy from ubiquitous RF

5



signals are more suitable [22].

1.5 Electromagnetic Transfer Techniques

These can be separated into two kinds: one is for near-field distances and the

other is for far-field applications [23].

Near-field techniques include inductive coupling and magnetic resonance

coupling. Inductive coupling occurs between two coils, which are tuned to

resonate at the same frequency. The electric power is transferred through the

magnetic field between the two coils and the coupling can be increased by

placing them together or winding them into coils on a common axis [24]. In

magnetic resonance coupling [25], electrical energy is transferred between the

transmitter and the receiver by magnetic fields. However, near-field energy

transfer has multiple drawbacks; namely, such as the distance of near-field is

constrained and the calibration of coils or resonators is hard. Therefore, near-

field energy transfer is not suitable for mobile and remote energy charging

[15].

On the contrary, far-field techniques can serve devices up to several kilome-

ters away [23]. RF signals are ubiquitous with a frequency range from 3 kHz

to 100 GHz [15], which can power a large number of devices. For example,

when the transmit power is 4 W, the receiver can harvest 5.5µW at distance

15 m. And when the transmit power is 1.78 W, the receiver at 25 m away can

harvest 2.3µW energy.

Wireless energy harvesting can be from ambient RF signals or dedicated

power transmitters. Urban areas are full of ambient RF sources such as WiFi

networks, cellular base stations, TV stations and others. Ambient RF signals

are thus free and abundantly available [26], [27]. However, in some places,

ambient energy levels are too weak to be harvested. In that case, dedicated

power transmitters can enable EH powered wireless devices [28].

Table 1.1 shows the experimental data of RF energy harvested from differ-

ent sources. It can be observed that source power and the distance between

the transmitter and the receiver greatly impact on the energy harvesting rate.
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Table 1.1: Experimental RF Energy Harvester data
Source Source

Power (W)
Frequency
(MHz)

Distance
(m)

EH Rate
(µW)

Isotropic RF
transmitter [29]

1.78 868 27 2

Isotropic RF
transmitter [29]

1.78 868 25 2.3

Isotropic RF
transmitter [30]

4 906 15 5.5

TX91501b
Powercaster[31]

3 915 6 9

TX91501b
Powercaster[31]

1 915 4 1

1.6 Wireless Energy Transmit Schemes

In RF-based wireless EH networks, transmitting schemes can be distinguished

into three protocols [28], and the prototypes are shown in Fig. 1.2:

• Wireless Power Transfer (WPT)

In the WPT scheme, the power transmitter only transmits power to

charge user nodes without any information exchange [32].

• Wireless Powered Communication Network (WPCN)

In a WPCN protocol, users can be charged by the energy transmitted

by an access point (AP) or a power station (PS) in the downlink (DL),

and users use the harvested energy to transmit information in the uplink

(UL). This protocol is called ”harvest-then-transmit” [33].

• Simultaneous Wireless Information and Power Transfer (SWIPT)

In the SWIPT protocol [34], the AP uses the same waveform to trans-

mit energy and information to users. Due to circuit constraints, several

structures are used in SWIPT implementations: time switching, power

splitting, and antenna switching.

This thesis will study the performances of WPCNs, i.e., the user harvests

energy in the DL and transmit information in the UL by using the harvested
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Figure 1.2: EH transmission schemes.

energy.

1.7 Motivation and Contributions

Channel state information (CSI) is estimated by at least two ways. First, the

receiver estimates the CSI and feeds it back to the transmitter. Second, the

transmitter can directly estimate CSI if the channel is reciprocal. But the first

method is the most common. In any case, for CSI estimation purposes, pilot

symbols are sent periodically [35]. However, many works assume perfect CSI

[36]–[38]. However, in practical networks, perfect CSI estimation is difficult

even if the channel is quasi-static and even when the interference is small

[39]. Channel estimation errors can lead to performance losses, which can

be quantified in terms of outage probability, ergodic capacity and diversity

gain. Therefore, assuming perfect CSI may predict overoptimistic results. The

performance of WPCNs with imperfect CSI has not been characterized widely

in the literature. In order to reduce this knowledge gap, this thesis investigates

several performance measures (the throughput and bit/symbol error rates) in

detail.

In most existing EH papers [33], [37], [40], [41], the linear energy harvester

model is assumed. This means that the output power of the energy harvester

increases linearly with the input RF signal power. However, in practical EH

wireless systems, energy harvesters are made up of nonlinear components in-

cluding diodes, resistors, capacitors [42]. The experimental data also shows
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that the output power is a nonlinear function of the input power [43], [44]; that

is, a saturation plateau exhibits with high input powers. Clearly, the linear

model cannot correctly represent this property. Therefore, a new nonlinear EH

model is proposed to provide better characterize the EH system performance.

In this thesis, the performance of two practical scenarios in WPCNs will

be evaluated. The contributions of this thesis are listed below:

• Channel estimation errors cause the performance loss. In order to eval-

uate the impact of channel estimation errors on the performance of a

WPCN, this thesis considers a multi-antenna transmitter and a single

antenna wireless device with imperfect CSI. The average throughput of

delay-limited and delay-tolerant transmission modes are derived for this

system. To gain more insight, the asymptotic throughput of both modes

are also derived.

• Bit error rate (BER) and symbol error rate (SER) measures the reliabil-

ity of data communication. In the thesis, the closed-form expressions of

average BER and SER are obtained for several modulations to study the

impact of imperfect CSI. Since the closed-form expressions are too com-

plicated to observe the relationships between BER/SER and parameters,

asymptotic expression for BER and SER are derived.

• The model of energy harvesters impact the level of energy harvested at

users, but linear EH model cannot characterize the true value of har-

vested power in the high transmit power region. In the thesis, a new

nonlinear EH model based on the error function is proposed. The param-

eters of this model can be determined by curve fitting. An asymptotic

version of the EH model is also given. A rational model and a linear

model are described for comparative purposes.

• To compare the four EH models, a WPCN with a multi-antenna power

station, a single-antenna wireless device, and a multi-antenna informa-

tion receiving station is considered. Average throughput and average

9



BER are derived for all the EH models. The large antenna regime at the

power station is also considered and asymptotic results are obtained.

1.8 Outline

The thesis is organized as follows.

In Chapter 2, some background materials necessary for the thesis are pre-

sented. The EH models and the concept of high SNR analysis are also de-

scribed.

In Chapter 3, the performance of a WPCN with imperfect CSI is studied.

The system contains a multi-antenna hybrid AP and a single-antenna user.

Average throughput, BER, and SER are evaluated in exact and asymptotic

form. Numerical results are presented to validate the correctness of analytical

expressions.

Chapter 4 studies a WPCN with nonlinear EH models. Average through-

put of delay-limited and delay-tolerant mod as well as BER are evaluated.

Finally, numerical results are presented for validating analytical results.

Chapter 5 concludes the thesis and shows the future directions.
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Chapter 2

Background

2.1 Small Scale Fading

Small-scale fading refers to the rapid change of signals’ amplitude, angle and

phase due to the multipath propagation in short time duration or short dis-

tance. Therefore, the signal at the receiver may undergo severe fading after

vector synthesis, which cannot be ignored. Small-scale fading can be charac-

terized by several mathematical models, two of which are shown below.

Rayleigh fading

Rayleigh fading model works best when the transmit signal may be reflected

and refracted by buildings or other obstacles during propagation. In this case,

line-of-sight (LOS) links are not dominant between the transmitter and the

receiver. Rayleigh fading model is especially suitable for urban environments.

According to this model, the magnitude of the signal received at the re-

ceiver follows the Rayleigh distribution, and the probability density function

(PDF) of the signal power follows the exponential distribution [45]

fγ (γ) =
1

γ
exp

(
−γ
γ

)
, 0 ≤ γ <∞, (2.1)

where γ is the average signal-to-noise ratio (SNR).

Nakagami-m fading

Nakagami-m fading is a general applicability model which can represent a

variety of fadings. When m = 1, Rayleigh fading is recovered, and when
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parameter m→∞ denotes no fading scenario. With Nakagami-m fading, the

PDF of the signal power is given as

fγ (γ) =

(
m

γ

)m
γm−1

Γ (m)
exp

(
−mγ

γ

)
, γ ≥ 0, (2.2)

where parameter m describes the level of fading and covers several fading

models.

2.2 Energy Harvesting Models

2.2.1 Linear Energy Harvesting Model

The linear energy harvesting (EH) model is the most commonly used one in

the literature [33], [34], [37], [40], [41], [46], [47]. In this model, the output

power of the energy harvester linearly increases as the input power increases

as

PL = µPi, (2.3)

where Pi is the input power and µ is the parameter. However, empirical

works [44], [48] demonstrate that practical energy harvesters have a saturation

plateau when the input power is large enough. Thus, linear model is not

accurate in the high input power regime.

2.2.2 Piece-wise Linear Model

This model is a simple nonlinear EH model which uses two linear functions

in low and high input power region, respectively [49]. The function of input-

output power is given as

PSW =

{
µPi, Pi < Pth,

P0, Pi ≥ Pth,
(2.4)

where Pth denotes the saturation threshold and P0 is the saturation power.

This model captures the saturation behavior, but may not fully match exper-

iment data.
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2.2.3 Rational Model

Rational EH model was first proposed in [50]. It consists of seven parameters,

which are determined by curve fitting with measured data. According to this

model, the input-output power can be written as a rational function

PR =
p2P

3
i + p1P

2
i + p0Pi

q3P 3
i + q2P 2

i + q1Pi + q0

, (2.5)

where p0, p1, p2, q0, q1, q2, and q3 are parameters. They are different for dif-

ferent harvesters. Although this nonlinear model captures the character of

experiment data, due to the presence of seven parameters, this model is not

analytically tractable. Due to this reason, a simpler rational model is given in

[51]. The output power to this model is

PRS =
aPi + b

Pi + c
− b

c
, (2.6)

where a, b,and c are constants obtained by standard curve fitting.

2.2.4 Sigmoid Model

Reference [42] proposed the sigmoid model and verified its accuracy with mea-

surement data. The relationship of input-output power is a sigmoid function

as

PS = Pmax
1− e−uPi

1 + e−u(Pi−v)
, (2.7)

where Pmax is the maximum harvested power, Pmax, u, and v are constant

related to the EH circuit. However, this model does not satisfy the sensitivity

property; namely, the EH output power drops to zero if the input RF power

is below a minimum input power level. To fix this problem, it is modified by

[52] as

PMS =

[
Pmax

exp(−uP0 + v)

(
1 + exp(−uP0 + v)

1 + exp(−uPi + v)
− 1

)]+

, (2.8)

where P0 is a constant.

2.3 High SNR Analysis

Typically, closed-form expressions for the analysis of fading channels are com-

plicated so the influence of different parameters on the system is implicit. A
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more insightful method is to develop asymptotic or high SNR analysis. For a

standard point-to-point communication link subject to small-scale fading, the

SNR at the receiver may be represented as γ = Xγ, where γ is the unfaded

SNR, a constant, and X is a random variable with PDF f(x). X accounts

for all the effects of small-scale fading [53]. Suppose the Taylor series of the

PDF f(x) near x = 0 to be f(x) = a0x
t + a1x

t+1 + . . .. It turns out that the

asymptotic performance depends on just the first term of the Taylor series and

the two parameters a0 > 0 and t ≥ 0 are critical. First developed in [53], the

insight is that as γ →∞, the asymptotic performance can be expressed as

Pe(γ) = (Gcγ)−Gd , (2.9)

where Gc and Gd, which are functions of a and t, are called coding gain and

diversity gain, respectively. These important, widely-used parameters enable

the design and optimization of wireless systems. For instance, from (2.9),

we observe that log [Pe(γ)] varies linearly with log [γ], which provides direct

insights in terms of diversity gain. From (2.9), we can readily see that [54]

Gd = lim
γ̄→∞

− logPe(γ̄)

log γ̄
.

Gd is related to the number of independently fading signal copies between the

transmitter and the receiver [55].

Coding gain Gc is measured by the shift of the curve in SNR relative to a

benchmark Pe curve of (γ−Gd), which is defined as [53]

Gc = lim
γ̄→∞

(
γGdPe

)− 1
Gd .

This limiting process can be used with any outage or error rate expression

to determine the diversity order.

Based on the seminal work in [53], several improvements have been found

[56]–[58]. Instead of the single term expansion, [56] considers f(β) = a0x
t +

a1x
t+1, which are the first two terms of the Taylor series, and approximate

this as an exponential function. This approach leads to a very highly accurate

asymptotic performance expressions, albeit more complicated than those de-

rived based on [53]. A Mellin transform based approach over the asymptotic

14



expansion of the PDF, given in (2.9), derives a uniform approximation [57]

that works for both low and high SNR regimes. Authors in [58] combined

dual exponential sum with the asymptotic model in (2.9).

2.4 Summary

In this chapter, we briefly introduced the fading channels models, several mod-

els of energy harvesters. High SNR analysis is also described, which will be

exploited in Chapter 2 for performance analysis.
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Chapter 3

Wireless Powered
Communication Networks with
Channel Estimation Errors

3.1 Introduction

3.1.1 Background and Motivation

Wireless energy harvesting communications may alleviate excess energy use

of wireless networks [15], [28], [59]. They exploit the principles of microwave

wireless energy transfer and may improve the energy efficiency of battery-

constrained wireless nodes. Energy harvesting (EH) is feasible from various

sources such as mechanical, solar, and radio-frequency (RF) energy sources.

However, solar irradiance is susceptible to weather conditions and time vary-

ing. Mechanical motion is hard to predict [60]. In contrast, RF sources not

only avoid those issues, but also are ubiquitous. For example, EH amounts

of 5.5 µW and 2.3 µW are feasible at distances 15 m and 25 m from an RF

source of 4 W and 1.78 W [61]. Applications of wireless-powered communica-

tion networks (WPCNs) include active radio-frequency identification (RFID),

real-time location system tags, wireless sensors, and data loggers [13]. More-

over, Powercast has developed commercial WPCNs [31]. They could simplify

the charging, servicing and maintenance of battery-needed devices [13], [36],

[37], [62].

A key WPCN protocol is called “harvest-then-transmit” [33], where users
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harvest energy from the RF signals broadcast by an access-point (AP) in

the downlink (DL) and then use the harvested energy to send information

to the AP in the uplink (UL). An alternative implementation is to deploy

multiple power beacons (PBs), which are dedicated RF power transmitters

for the purpose of enabling EH. These concepts have increased the interest in

WPCNs, and thus [28] has discussed three different EH modes. The first is

pure wireless power transfer (WPT), where an AP or a PB transmits power

only to a wireless EH receiver, without any information exchange. The second

mode is the WPCN, as described before. The third mode is simultaneous

wireless information and power transfer (SWIPT). In SWIPT, a hybrid AP

transmits energy and information using the same signal, from which the EH

receiver will harvest energy and extract information. This paper focuses on

the second mode, namely the WPCN, a prototype of which is shown in Fig.

3.1. This prototype consists of a multiple-antenna hybrid AP and a single-

antenna user. The AP can utilize its multiple antennas to focus energy in the

direction of the user; energy beamforming is thus common place to increase

both wireless power transfer efficiency and data transfer efficiency [28], [36],

[37].

3.1.2 Performance with Perfect CSI

Before proceeding to the main issue of imperfect CSI, we briefly review a

few works on WPCNs with perfect CSI [36], [37], [63]–[65]. The key paper,

which is the starting point of our work, is [37]. This work analyzes the average

throughput of the same WPCN (Fig. 1) for two transmission modes. It utilizes

maximum ratio transmission (MRT) energy beamforming to extend coverage

and to maximize the amount of harvested energy. This work also develops

asymptotic analyses in the high signal-to-noise ratio (SNR) regime. While

[63] derives the outage probability, ergodic capacity, achievable throughput

and bit error rate (BER) using Meijer G-function for the generalized κ − µ

fading channel. However, this study is limited to single-antenna AP and user.

The focus of this paper is to derive unified expressions, which can handle the

three classical fading models - namely Rayleigh, Rician and Nakagami-m. The
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interplay between EH and user cooperation in a WPCN is the focus of [36],

which optimizes the energy beamforming vector and time and power alloca-

tions. The time correlation between the DL and UL channels is investigated

in terms of the BER and achievable rate [64]. In [66], the energy efficiency is

maximized by jointly optimizing energy transfer time duration and transmit

power. The average throughput of a multiple-input multiple-output (MIMO)

WPCN has been studied in [65]. All these works assume the availability of

perfect CSI, which is the critical difference from our paper.

3.1.3 Performance with Imperfect CSI

CSI is an absolutely critical component of wireless links. On the other hand,

in practical systems, perfect CSI is not available and in fact imperfect CSI is

the norm [11], [34], [67], [68]. Typically, training (pilot) symbols are sent peri-

odically for CSI estimation purposes [35]. Alternatively, blind and semiblind

techniques have also been developed. The impact of CSI estimation errors

includes the loss of diversity and capacity gains. To understand this, we can

consider a simple wireless link with one transmit antenna and say N > 1 re-

ceive antennas with maximal ratio combining (MRC) reception. The antenna

separation is sufficient to ensure independent fading across them. Now if CSI

is perfect, the diversity order of this link is N . In contrast, for imperfect CSI,

the diversity order collapses to one [69], [70].

Although imperfect CSI for WPCNs is studied in several studies [71]–[80],

these works focus on specific application scenarios and associated optimiza-

tions. For example, in [71] the EH process is optimized by considering beam-

forming design, power allocation, antenna selection and time division based on

imperfect CSI. On the other hand, how secrecy performance and resource allo-

cation issues are affected by imperfect CSI has also been investigated [72], [73].

The focus of [74] is the capacity of an EH link Rician fading channels for two

cases: absence of CSI and partial CSI. Throughput optimization of a massive

MIMO WPCN with estimated CSI has also been investigated [75]. The impact

of CSI on wireless powered relaying (WPR) systems, a form of WPCNs, has

also been studied [76], [77]. The paper [76] investigates the impact of CSI and
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antenna correlation considering instantaneous or statistical CSI and derives

outage probability and ergodic capacity. The focus of [77] is the effect of the

non-linear EH process and imperfect CSI. Reference [78] analyzes an EH co-

operative communication link for two cases: (a) a single-antenna source with

perfect CSI and (b) a multiple-antenna source with imperfect CSI. The uplink

scheduling problem for an AP with imperfect CSI has been investigated [79].

The result is a discrete optimization solution of the best transmission sched-

ule. Secrecy throughput optimization of a WPCN with nonlinear EH has been

studied in [80]. It considers both perfect and imperfect CSI cases.

Although the aforementioned works consider imperfect CSI, their primary

perspective is not that of a comprehensive performance analysis (e.g., deriving

outage, capacity and error rates). Instead, they focus on several application

domains and optimization. Thus, an analysis of imperfect CSI on the per-

formance of WPCNs has been missing. Thus, this topic is the focus of the

present paper.

3.1.4 Problem Statement and Contributions

To the best of our knowledge, the performance degradation of the WPCN

(Fig.3.1) due to imperfect CSI has thus far not been characterized. This gap

in understanding is problematic because, as mentioned before, imperfect CSI

can lead to performance losses. To characterize the impact of this problem, we

investigate the throughput performances and bit/symbol error rates of several

modulations, as well as their high SNR performance of this WPCN with energy

beamforming and imperfect CSI. The throughput performance is analyzed for

both delay-limited and delay-tolerant modes. These modes correspond to the

length of the codewords transmitted by the user. In the delay-limited mode,

multiple codewords fit the duration of each transmission block, and thus the

AP decodes each codeword as it arrives. In this case, outage probability (OP),

the probability that the short-term information transfer rate falls below the

fixed transmission rate of the user, serves as a critical measure of the average

throughput.

On the other hand, in the delay-tolerant mode, the user can tolerate more
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delay and thus can use long codewords compared to the duration of the trans-

mission block. In this case, it is best for the AP to store multiple signal blocks

in a buffer and to decode them together. Consequently, the ergodic capacity

(EC), which is the long-term average of the instantaneous information transfer

rate, is the relevant measure of the system throughput.

The main contributions are summarized as follows:

1. In practical networks, perfect CSI is not available due to estimation

errors, feedback delays and other issues [71]. Thus, it is important to

include these effects in the analysis of performance. To this end, for a

WPCN with imperfect CSI, we derive the PDF and CDF (cumulative

distribution function) and moment generating function (MGF) of the

received SNR at the AP and the exact close-form throughput expressions

for both delay-limited and delay-tolerant modes.

2. BER and SER values quantify the reliability of the network. Thus, we

also derive exact close-form expressions for binary phase shift keying

(BPSK), binary differential phase shift keying (BDPSK), M-ary phase

shift keying (M-PSK), and M-ary quadrature amplitude modulation (M-

QAM).

3. As will be seen later, the PDF of the received SNR f(x) contains Bessel

functions, which lack a simple Taylor series expansion at x = 0. For this

reason, the classical asymptotic approach [53] appears intractable here.

Thus, we develop a two-step process, exploiting the fact that the received

SNR is the product of two random variables (RVs). So we take the

expectation over one RV first and simplify the result to yield asymptotic

results. By using this general idea, we derive novel, asymptotic (i.e.,

high-SNR) expressions of throughput, BERs, and SERs. For the delay-

tolerant mode, the asymptotic large antenna case and the throughput-

optimal EH time in the high SNR regime are also derived.

4. Finally, numerical results and simulations are presented to validate the

derived results and to investigate the interplay between the quality of
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Figure 3.1: System model.

CSI and the EH process. We thus find the large number of antennas

eliminates the effects of small-scale fading. We also find that the quality

of CSI measured by ρ has more impact on the system performance than

the other factors.

In a nutshell, this chapter generalizes the work of [37] to the imperfect CSI

case. As well, [37] does not consider the analysis of BER/SER, which is a

main part of this chapter.

Notation: For random variable X, fX(·) and FX(·) denote PDF and CDF.

Vector x ∼ CN (µ,Σ) denotes a circularly symmetric complex Gaussian vector

with mean µ and covariance matrix Σ. The special case is the circularly

symmetric complex Gaussian RV with mean µ and variance σ2 denoted by

x ∼ CN (µ, σ2). The gamma function Γ(a) is given in [81, Eq. (8.310.1)];

Kν(·) is the ν-th order modified Bessel function of the second kind [81, Eq.

(8.432)]; Gmn
pq

(
z | a1···ap

b1···bq

)
denotes the Meijer G-function [81, Eq. (9.301)];

ψ (·) is the Euler psi function [81, Eq. (8.36)]; xH denotes the transpose and

conjugate of x; Wλ,µ (·) is the Whittaker function, [81, Eq. (9.200)]; Ψ(a, b; z)

is the confluent hypergeometric function in [81, Eq. (9.211.4)].

3.2 System Model

We first describe the network model in Fig. 3.1, which consists of a single-

antenna user and a multiple-antenna hybrid AP. These two are half-duplex

nodes. The AP has N ≥ 1 antennas and uses MRC for signal reception.
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The user, without a battery, is powered via the harvest-then-transmit pro-

tocol [37]. Thus, the energy transfer channel, i.e., the AP-to-user channel,

is denoted as h = [h1, . . . , hk, . . . , hN ]T ∈ CN×1, and the data transfer chan-

nel, i.e., user-to-AP channel, is denoted as g = [g1, . . . .gk, . . . , gN ]T ∈ CN×1.

The channel coefficients hk, gk ∀k ∈ [1, N ] are independent and identically dis-

tributed (i.i.d.) circularly symmetric complex Gaussian random variables with

zero-mean and unit-variance, i.e., hk, gk ∼ CN (0, 1). Equivalently, the chan-

nel coefficient magnitudes |hk| and |gk| (k = 1, . . . , N) are distributed with the

Rayleigh PDF, i.e., f(x) = 2xe−x
2
, 0 ≤ x <∞.

Let channel estimates of the true channels h and g be denoted as ĥ and

ĝ, respectively. AP gets them via suitable pilot-assisted channel estimation

techniques. Thus, these estimate will have both noise and correlative compo-

nents. These are represented in the following model. For any true channel

x ∈ {h,g}, the channel estimate x̂ ∈ {ĥ, ĝ} is related as [34]

x̂ = ρx +
√

1− ρ2ñ, (3.1)

where 0 ≤ ρ ≤ 1 is the correlation coefficient between a true channel and its

estimate, and ñ ∈ CN×1 is an N -dimensional noise vector of i.i.d. CN (0, 1)

entries. The quality of CSI is indicated by the value of ρ.While ρ = 1 and ρ = 0

cases indicate perfect and worst-case (noisy) channel estimation scenarios. The

range 0 ≤ ρ < 1 will be the imperfect CSI case. The exact value of ρ in

practice is a function of pilot symbols and their power. For convenience, we

assume both UL and DL estimations are characterized by the same value of

ρ. It is worth mentioning that the model (3.1) also represents the case of

outdated CSI as well. In this case, the well-known Jake’s model suggests that

ρ = J0(2πfdτ), where J0(x) denotes the zeroth order Bessel function of first

kind and fd indicates the maximum Doppler frequency and τ is the time delay.

Thus, all these factors can be investigated in conjunction with the EH process,

a task that is left for future research.

Given these details of channel estimation, we next turn to specify the

amount of harvested energy at the AP. Without loss of generality, we assume

a unit transmission block (T = 1). Thus, for τ duration, where τ ∈ (0, 1), the
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AP transmits RF power at level P in the DL and the user harvests it. The user

then transmits data in the UL for (1 − τ) duration. This cycle repeats again

in the next block and so on. We assume that the AP processes the transmit

power symbols with a linear precoder to achieve energy beamforming. Energy

beamforming is the process of a highly directional transmission with high-gain

antennas to focus energy beams toward the user. It thus maximizes the har-

vested energy at the user. To achieve this, the transmit signals at different

antennas are carefully weighted (precoding) to achieve constructive superposi-

tion at the user. The precoding vector is computed by the AP, which requires

accurate CSI. In this work, we assume MRT energy beamforming, which is op-

timal for the single-cell case[28]. Thus, the AP transmit signal is
√
P f where

the precoding vector f is chosen subject to the constraint ||f || = 1. The AP

will utilize imperfect CSI to compute f = ĥ

|ĥ| . Thus, the user’s total harvested

energy is Eh = ητ |
√
P fHh|2 = ητP ||ĥ

Hh||2
ĥH ĥ

[71, Eq. (2)], where η is the energy

conversion efficiency. In practice, the maximum conversion efficiency depends

on the specific technologies; for example, it is about 48% with a Schottky diode

and around 56% with CMOS (complementary metal-oxide-semiconductor) de-

vices [82].

By using the harvested energy, the user transmits data signals to the AP

in the UL with power Ps that is given as

Ps =
Eh

1− τ =
τηP

1− τ
||ĥHh||2

ĥHĥ
. (3.2)

Note that if perfect CSI is available, then ĥ = h. The transmit power of the

user then becomes Ps = τηP
1−τ ||h||2, which is consistent with previous results

[37]. The received signal at the AP is yA =
√
Psgs+ n, where s is the energy-

normalized data symbol and n is the complex additive white Gaussian noise

(AWGN) term, n ∼ CN (0, 1). The AP uses MRC type reception to maximize

the received SNR; with MRC, the received signal is multiplied by ĝH . This

multiplication will affect both the signal term and noise term in yA. But the

ratio of the powers of these two terms gets scaled by ||ĝ
Hg||2
ĝH ĝ

. The SNR at the

23



AP can thus be derived as

γA =
τηP

1− τ
1

σ2

||ĥHh||2
ĥHĥ

||ĝHg||2
ĝH ĝ

= cγXY, (3.3)

where σ2 is the power of noise, γ = P
σ2 , c = τη

1−τ , X = ||ĥHh||2
ĥH ĥ

, and Y = ||ĝHg||2
ĝH ĝ

.

It is clear that both X and Y have the identical statistical distribution. These

ratios arise in the performance evaluation of MRC diversity reception with

imperfect CSI, and their distribution was derived in a classical paper [69].

3.3 Statistical Distribution Results

This section provides necessary statistical distributions for the use in subse-

quent derivations throughout the paper.

3.3.1 The Distribution of Received SNR, γA

Lemma 1. Since γA = cγXY , the PDF of γA is the product of a constant and

the RV Z = XY . Therefore, the PDF can be given by

fγA (z) =
N∑

n=1

N∑

m=1

2B (m,n)
(
z
cγ

)α(m,n)

cγ
Kn−m

(
2

√
z

cγ

)
, (3.4)

where N is the number of antennas at the AP, α(m,n) = n+m−2
2

, A(n) =
(
N−1
n−1

) (1−ρ2)N−n

Γ(n)
ρ2(n−1) and B (m,n) , A(n)A(m).

Proof. The PDF of X was derived in [69]

fX(x) =
N∑

n=1

A(n)xn−1e−x, 0 ≤ x <∞. (3.5)

As channels are i.i.d., the PDF of Y , fY (y), can also be given as (3.5).

Then the PDF of the product of two non-negative RVs X and Y , denoted

as Z = XY , can be derived as

fZ (z)
(a)
=

∫ ∞

0

1

ω
fX (ω) fY

( z
ω

)
dω

(b)
=

N∑

n=1

N∑

m=1

B (m,n)

z−(m−1)

∫ ∞

0

ωn−m−1e−ω−
z
ω dω

(c)
=

N∑

n=1

N∑

m=1

2B (m,n) z
n+m−2

2 Kn−m
(
2
√
z
)
,

(3.6)
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where (a) is the formula to find the PDF of the product of two RVs; (b) is

obtained by (3.5); (c) is due to [81, Eq. (3.471.9)].

Since γA = cγZ, the PDF of γA can be derived as (3.4). �

Corollary 1. The CDF of γA is given by

FγA(x) =
N∑

n=1

N∑

m=1

B (m,n)

(cγ)(α(m,n)+1)
xα(m,n)+1

·G
2,1
1,3

(
x

cγ

∣∣∣∣
−α(m,n)
n−m

2
,−n−m

2
,−α(m,n)− 1

)
.

(3.7)

Proof.

FγA(x)
(a)
=

N∑

n=1

N∑

m=1

2B (m,n)

cγ

·
∫ x

0

(
z

cγ

)α(m,n)

Kn−m

(
2

√
z

cγ

)
dz

(b)
=

N∑

n=1

N∑

m=1

B (m,n)

(cγ)(α(m,n)+1)
xα(m,n)+1

·G
2,1
1,3

(
x

cγ

∣∣∣∣
−α(m,n)
n−m

2
, m−n

2
,−α(m,n)− 1

)
,

(3.8)

where (a) follows from the definition of CDF; (b) is obtained by using the

equation which expresses Kv (·) in terms of Gm,n
p,q [·] in [37] and [81, Eq. (9.31.5)].

�

3.3.2 Moments-Generating Function

Lemma 2. The MGF of γA can be given by

MγA (t) =
N∑

n=1

N∑

m=1

B (m,n)

(
1

cγ

)α(m,n)+ 1
2

· Γ (n) Γ (m)e
1

2tcγ t−
1
2
−α(m,n)W− 1

2
−α(m,n),n−m

2

(
1

tcγ

)
.

(3.9)

Proof. The MGF is defined as MγA (t) = E [e−tγA ]. By substituting (3.4) in

25



this definition, we find

MγA (t) =

∫ ∞

0

e−tyfγA (y) dy

(a)
=

N∑

n=1

N∑

m=1

2B (m,n)

cγ

(
1

cγ

)α(m,n)

·
∫ ∞

0

e−tyyα(m,n)Kn−m

(
2

√
1

cγ
y

)
dy,

(3.10)

where (a) follows by using the PDF of γA; (10) is then obtained by applying

[81, Eq. (6.643.3)]. �

Corollary 2. Since the MGF in Lemma 2 is a complicated expression, the

effect of different parameters on the MGF is hard to see directly. To alleviate

this issue, we derive the asymptotic (e.g., γ →∞) MGF as

Masy
γA

(t) ≈
N∑

m=1

B(m, 1)

tcγ

[
m−1∑

k=1

Γ(k)

(
− 1

tcγ

)m−1−k

+ (−1)m−2 e
1
tcγ

(
1

tcγ

)m−1

Ei

(
− 1

tcγ

)]
,

(3.11)

where Ei (·) is the exponential integral function [81, Eq. (8.211.1)].

Proof. Let us revisit the definition of the MGF; MγA (t) = E [e−tγA ]. Since γA

is a product of X and Y, we first take the expectation of MGF over X. Thus,

the MGF conditional on Y , denoted as MγA|Y (t), is given by

MγA|Y (t) = E
[
e−tcγXY

]

=
N∑

n=1

A (n) Γ(n)

(1 + tcγY )n
.

(3.12)

This expression (13) is derived by taking the expectation over the PDF of X,

which is given by (6).

The next step is to take the expectation over Y, which yields

MγA(t) =
N∑

n=1

N∑

m=1

B (m,n)Γ(n)

∫ ∞

0

ym−1e−y

(1 + tcγy)n
dy. (3.13)

We next note that (3.13) has the series sum over n and m. If we expand

the series over different n values, when γ →∞, the integrals for which n ≥ 2
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can be negligible compared to the one for n = 1. For this reason, (3.13) can

be fairly accurately approximated as follows:

Masy
γA

(t) ≈
N∑

m=1

B(m, 1)

∫ ∞

0

ym−1e−y

1 + tcγy
dy,

(a)
=

N∑

m=1

B(m, 1)

tcγ

[
m−1∑

k=1

Γ(k)

(
− 1

tcγ

)m−1−k

+ (−1)m−2 e
1
tcγ

(
1

tcγ

)m−1

Ei

(
− 1

tcγ

)]
,

(3.14)

where (a) is derived by using [81, Eq. (3.353.5)]. �

While the asymptotic MGF of γA given in (3.14) is fairly simplified com-

pared to the exact one (3.9), even simper version is possible. There are two

cases: imperfect CSI and perfect CSI. These are given in the next corollary.

Corollary 3. The asymptotic result in (3.14) can be further simplified for the

case of imperfect CSI as

Masy
γA

(t) ≈
(
1− ρ2

)2(N−1) [ln (ctγ)− γEM ]

ctγ
, 0 ≤ ρ < 1, (3.15)

where γEM is the Euler-Mascheroni constant. If perfect CSI is available, then

the MGF is approximately

Masy
γA

(t) ≈ (tcγ)−N Ψ

(
N, 1;

1

tcγ

)
, ρ = 1, (3.16)

where Ψ(a, b; z) is known as Tricomi’s confluent hypergeometric function

or the confluent hypergeometric function of the second kind [81, Eq. (9.211.4)].

Proof. For the imperfect CSI case, when 0 ≤ ρ < 1, in (3.13), the dominant

part is the one with n = 1 and m = 1. Therefore, we can consider just that

term of (3.13) as

Masy
γA

(t) =
(
1− ρ2

)2(N−1)
∫ ∞

0

e−y

1 + xy
dy

(a)
=
(
1− ρ2

)2(N−1) e
1
xΓ
(
0, 1

x

)

x
,

(3.17)
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where x = ctγ and Γ (s, x) is upper incomplete gamma function [81, Eq. (8.350.2)].

Let U = 1
x
e

1
xΓ
(
0, 1

x

)
. By using the series expansion of U at x = ∞, we can

show that

U =
−γEM + ln (x)

x
+O

(
1

x2

)
.

When γ →∞, we have 1
x
→ 0. Therefore, U is approximated well by the first

term on the right. We thus find

Masy
γA

(t) =
(1− ρ2)

2(N−1)
[ln (ctγ)− γEM ]

(ctγ)
+O

(
1

γ̄2

)
. (3.18)

For the case of perfect CSI , where ρ = 1, the coefficient A(n) is zero for

all n, except for n = N . Therefore B (m,n) exists only when m = n = N . So

when ρ = 1, the MGF may be expressed as

Masy
γA

(t) =
1

Γ (N)

∫ ∞

0

yN−1e−y

(1 + tcγy)N
dy

(a)
= (tcγ)−N Ψ

(
N, 1;

1

tcγ

)
,

(3.19)

where (a) is obtained by [81, Eq. (9.211.4)]. �

Thus far, we have covered the basic distributional results. Next, we will

derive the SNR for the large antenna regime (N →∞).

3.3.3 SNR for the Large Antenna Case

The following corollary finds the deterministic limit of the SNR as the number

of antennas becomes extremely large. This result is essential for the through-

put analysis of the delay-tolerant mode.

Corollary 4. In this case, we consider the number of AP antenna increases

without limitation with a fixed γ. Then γA can be derived as

γA ≈
τη

1− τ γρ
4N2. (3.20)

It is observed from (3.20), the effect of small-scale fading has vanished when

the number of AP antenna is very large. This effect is known as channel hard-

ening due to the impact of large scale spatial diversity [83]. Note that γA also

increases with the increment of energy conversion efficiency η, γ, correlation

coefficient ρ and the number AP of antennas.
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Proof. The channel coefficients are i.i.d. circularly symmetric complex Gaus-

sian RVs with zero-mean and unit-variance, so ĥ ∼ CN (0, I).

ĥHh

N

(a)
=

1

N

(
ρh +

√
1− ρ2ñ

)H
h

(b)
=
ρhHh

N
+

√
1− ρ2ñHh

N
(c)≈ ρ,

(3.21)

where in step (a), we substitute the definition of ĥ (3.1) in ĥHh. Step (c)

follows from the law of large numbers, hHh
N

a.s.−−→ 1, as N →∞ [84, Eq. (7.14)],

[84, Eq. (7.15)]. Similarly, ĝHg
N

a.s.−−→ ρ, where
a.s.−−→ denotes the almost sure

convergence.

So we can obtain X = ||ĥHh||2
ĥH ĥ

a.s.−−→ ρ2N and Y = ||ĝHg||2
ĝH ĝ

a.s.−−→ ρ2N .

Therefore, γA
a.s.−−→ τη

1−τ γρ
4N2. �

3.4 Average Throughput Analysis

In this section, we evaluate the average throughput performance of the system

model (Section 4.3) We consider both delay-limited mode and delay-tolerant

mode. The performance metrics OP and EC are analyzed for these modes.

Moreover, we analyze the asymptotic performance at high SNR regime to gain

more insights.

3.4.1 Delay-Limited Transmission Mode

Exact Throughput Analysis

In this section, we consider the delay-limited case, where the AP decodes

the received signals one codeword at a time. Therefore, the throughput is

now measured by the OP, which is the probability that the instantaneous

channel capacity falls below the fixed rate R bits/s/Hz, where R is the fixed

transmission rate of the user. The OP is thus given by

Pout = Pr (log2 (1 + γA) < R) = FγA (γth) , (3.22)

where γth = 2R − 1 and FγA(y) is the CDF of γA given in (3.7). The user

transmits for an effective communication time fraction (1− τ) during the each
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harvest and transmit cycle. Therefore, the average throughput of the delay-

limited transmission mode in bits/s/Hz is

RDL = (1− Pout) (1− τ)R

=R∗
[

1−
N∑

n=1

N∑

m=1

B (m,n)

(cγ)(α(m,n)+1)
γth

α(m,n)+1

·G
2,1
1,3

(
γth

cγ

∣∣∣∣
−α(m,n)
n−m

2
, m−n

2
,−α(m,n)− 1

)]
,

(3.23)

where R∗ = (1− τ)R.

Although the throughput expression (3.23) is closed form, it consists of

the Meijer G-function, which does not directly reveal specific relationships

between the throughput and the parameters ρ, τ , and γ. That motivates the

asymptotic analysis.

Asymptotic Throughput Analysis

In order to gain a simpler result, we derive the asymptotic throughput.

Proposition 1. When γ → ∞, the asymptotic throughput in bits/s/Hz is

given by

RDL = R∗
[

1− 2
N∑

n=1

N∑

m=1

B (m,n) ∆
m+n

2 Kn−m
(

2
√

∆
)]

, (3.24)

where ∆ = γth(1−τ)
τηγ

. And ∆
m+n

2 Kn−m
(

2
√

∆
)

is a monotonically increasing

function with the increasing of ∆. Therefore, the throughput is improved by

increasing the SNR γ, energy conversion efficiency η, correlation coefficient ρ

or decreasing the threshold γth.

Proof. See Appendix A.1. �

However, the asymptotic throughput in Proposition 1 can be further sim-

plified. To this end, we consider two cases: namely imperfect CSI (0 ≤ ρ < 1)

and perfect CSI (ρ = 1).
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Proposition 2. The asymptotic throughput (3.24) can be further written as

RDL ≈





R∗
[
1−

(
1− ρ2

)2(N−1)
(

ln

(
cγ

γth

)
− 2γEM

)
γth
cγ

]
,

0 ≤ ρ < 1,

R∗
[

1− 1

Γ2 (N)

(
ln

(
cγ

γth

)
− 2γEM

)(
γth
cγ

)N]
,

ρ = 1.

(3.25)

From (3.25), we directly observe that the throughput may be increased by in-

creasing energy conversion efficiency η and SNR at the AP.

Proof. See Appendix A.3. �

Remark 1. When ρ = 0, namely, the user and the AP cannot obtain CSI.

The average throughput then is R∗
[
1−

(
ln
(
cγ
γth

)
− 2γEM

)
γth
cγ

]
. For the case

of perfect CSI, the average throughput will converge to the ceiling value R∗

when either the number of AP antennas or the AP transmit power increases

without limit. The effect of small-scale fading between the AP and the user

vanishes under this scenario. Furthermore, from Section 2.3, the diversity

order using OP can be obtained. For the case of imperfect CSI, the diversity

order is given as Gd = lim
γ̄→∞

− logPout
log γ̄

= 1. In contrast, for the case of perfect

CSI, the diversity order can be derived as Gd = lim
γ̄→∞

− logPout
log γ̄

= N .

Remark 2. Here we prove that the analytical results of [37] are special case

of ours. The paper [37] studies the same system model as ours but assumes

perfect CSI. Therefore, in our paper, when the correlation coefficient ρ = 1

(perfect CSI), B (m,n) = 0 for all m and n except for B (N,N) = 1
Γ(N)Γ(N)

.

Step (a) of (A.3) is reduced to

Pout =
1

Γ (N)

∫ ∞

0

[
1− e−∆

y

n−1∑

l=0

(
∆

y

)l
1

l!

]
ym−1e−ydy

= 1− 2
N−1∑

l=0

1

l!Γ (N)
∆

N+l
2 KN−l

(
2
√

∆
)
,

(3.26)

which is equivalent to [37, Eq. (4)].
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On the other hand, [65] investigates a MIMO WPCN system with perfect

CSI. The SNR in [65, Eq. (8)] is a product of two independent Chi-square vari-

ables. In contrast, in our paper, the SNR (3.3) is the product of two weighted

sums of Chi-square RVs if ρ 6= 1. But for ρ = 1, the SNR (3.3) is the product

of two Chi-square RVs. Thus, the results in [65] for the case of M = 1 are

equivalent to our results for ρ = 1.

The OP in [65, Eq. (12)] is given as

Fγ (γth) = 1− 2

min(N,M)∑

i=1

(N+M)i−2i2∑

j=|N−M |

j∑

k=0

ikd(i, j)

k!

(γth
D

)k

·
min(N,M)∑

l=1

(N+M)l−2l2∑

m=|N−M |

lkd(l,m)

m!

(
ilγth
D

)m−k+1
2

·Km−k+1

(
2

√
ilγth
D

)
,

(3.27)

where N is the number of the AP antenna and M is the number of the user

terminal antenna. d(i, j) = j!

ij+1[
∏M
i=1(M−1)!(N−i)!]

and D = ητσ2

(1−τ)PdT1
. Here, we

assume the distance between the AP and the user terminal dT1 = 1.

Let M = 1, then we have min(N,M) = 1, j = m = N−1, (N+M)i−2i2 =

(N + M)l − 2l2 = N − 1, d(i, j) = d(l,m) = d(1, N − 1) = 1. (3.27) then

reduces to

Fγ (γth) = 1− 2
N−1∑

k=0

1

k!Γ (N)

(γth
D

)N+k
2
KN−k

(
2

√
γth
D

)
. (3.28)

The OP (3.27), is identical to OP given in (3.7) in our paper, which is (3.26)

as well, when ρ = 1.

In our notation, ∆ = γth(1−τ)P
τησ2 , which is equivalent to ∆ = γth

D
. Therefore,

(3.28) is identical to (3.26).

3.4.2 Delay-Tolerant Transmission Mode

Exact Throughput Analysis

In this mode, as mentioned before, a large delay is tolerable for decoding the

stored signals together. Thus, the throughput is related to the ergodic capacity.
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However, the user transmits data for time fraction (1− τ) only in each cycle.

Therefore, the average throughput is the product of ergodic capacity and the

effective data transmit time. Thus, we find the throughput in bits/s/Hz as

RDT= (1− τ)

∫ ∞

0

log2 (1 + z) fγA (z) dz

(a)
= (1− τ)

N∑

n=1

N∑

m=1

2B (m,n)

cγ

·
∫ ∞

0

ln (1 + z)

ln 2

(
z

cγ

)α(m,n)

Kn−m

(
2

√
z

cγ

)
dz

(b)
= (1− τ)

N∑

n=1

N∑

m=1

B (m,n)

cγ ln 2

·G
4,1
2,4

(
1

cγ

∣∣∣∣
−1, 0
−1,−1, n−m

2
+ α(m,n), m−n

2
+ α(m,n)

)
,

(3.29)

where (a) follows by the use of PDF (3.4); to derive (b), we express

the term ln (1 + x) and xaKv (x) in Meijer G-function [85] and then use [81,

Eq. (7.811.1)].

Remark 3. In our paper, when channel estimation is perfect , i.e. ρ = 1,

α (M,N) = N − 1 and B (m,n) = 0 for all m and n except for B (N,N) =

1
Γ(N)Γ(N)

. EC is then written as

C =

(1− τ)PG
4,1
2,4

(
(1−τ)P
ητσ2

∣∣∣∣
−1, 0
−1,−1, N − 1, N − 1

)

Γ(N)Γ(N)ητσ2 ln 2
. (3.30)

(3.30) is thus equivalent to the EC in [37, Eq. (12)].

We next consider EC in [65, Eq. (15)], which is given as

C =
1

ln 2

min(N,M)∑

i=1

(N+M)i−2i2∑

j=|N−M |

d(i, j)

j!

min(N,M)∑

l=1

(N+M)l−2l2∑

m=|N−M |

d(l,m)

m!

(
il

D

)
G

4,1
2,4

(
il

D

∣∣∣∣
−1, 0
−1,−1, j,m

)
.

(3.31)

When M = 1, min(N,M) = 1, j = m = N − 1, (N + M)i − 2i2 =

(N +M)l−2l2 = N −1, d(i, j) = d(l,m) = d(1, N −1) = 1. Therefore, (3.31)
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is reduced to

C =

(1− τ)PG
4,1
2,4

(
(1−τ)P
ητσ2

∣∣∣∣
−1, 0
−1,−1, N − 1, N − 1

)

Γ(N)Γ(N)ητσ2 ln 2
. (3.32)

Obviously, (3.32) is equivalent to (3.30).

Asymptotic Throughput Analysis

Asymptotic throughput is derived for two regimes; namely γ →∞ and N →
∞ to gain insights.

Proposition 3. When γ →∞, the asymptotic throughput of the delay tolerant

transmission is given by

RDT =
1− τ
ln 2

[
ξ + ln ηγ − ln

1− τ
τ

]
, (3.33)

where ξ = 2
∑N

n=1A (n)Γ (n)ψ (n) and ψ(x) is the Euler psi function [81,

Eq. (8.360)].

Proof. Let RDT = (1− τ)C∗ where

C∗ =E [log2 (1 + γA)]

≈
[
log2

τη

1− τ γ + E [log2 (X)] + E [log2 (Y )]

]

=
1

ln 2

[
ξ + ln η + ln(γ)− ln

1− τ
τ

]
.

(3.34)

We can readily show that for RV Z, E [log(Z)] =
dE[Zt−1]

dt

∣∣∣∣
t=1

. Since both

X and Y have the same PDF, Z can be either X or Y . We thus find that

E [Zt−1] =
∑N

i=1
A(i)
ln 2

Γ (i+ t− 1)ψ (i+ t− 1). We differentiate this and eval-

uate at t = 1, which helps to compute the two E [log2(·)] terms in (3.34). �

Remark 4. From (3.33), for a given τ , the system throughput depends on the

logarithm of γ at high SNR. It can be observed that increasing the value of

EH time τ will let the value outside the square brackets decrease but the value

inside the square brackets rises. This means the EH time plays two conflicting

roles in (3.33), and thus we can find an optimal value for τ to maximize the

average throughput for delay-tolerant transmission mode.
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Proposition 4. The optimal EH time τ ∗ for delay-tolerant mode at high SNR

can be expressed as

τ ∗ ≈ 1

1 +W (ηγeξ−1)
, (3.35)

where W (x) is the Lambert W function [86].

Proof. First, we take the first-order derivative over τ of C in (3.33) and equate

it to zero as dC
dτ

= 0; We have ξ + ln ηγ − 1
τ

= ln 1−τ
τ

; Then it can be written

as ηγeξe−
1
τ = 1−τ

τ
. Second, after some algebraic manipulations we have 1−τ

τ
=

W
(
ηγeξ−1

)
. The final result is given by using W (·) as τ = 1

1+W(ηγeξ−1)
. W (x)

is a monotonically increasing function for x ≥ 0. From (3.35), we see that τ ∗

is inversely proportional to the parameters η, γ and ξ, where ξ is a function

that depends on the number of AP antenna. �

Proposition 5. When the number of antenna N grows without limit, the

delay-tolerant throughput can be expressed as

RDT = (1− τ)E [log2 (1 + γA)]

≈ (1− τ) log2

(
1 +

τη

1− τ γρ
4N2

)

≈ (1− τ)

[
log2

(
τη

1− τ ρ
4N2

)
+ log2 (γ)

]
.

(3.36)

Remark 5. This proposition follows from Corollary 4. The asymptotic through-

put displays a logarithmic relation to the SNR, energy conversion efficiency η,

the correlation coefficient and the number of AP antenna. For a given level of

throughput, as N → ∞, the transmit power requirements (i.e. represented by

γ̄) decrease. This is a beneficial trade off, resulting in less energy use. More-

over, the performance of energy and information transfer can be enhanced for

long-distance transmission by adding antennas at the AP.

Remark 6. For massive MIMO systems, power scaling is an essential feature,

which allows the deployment of large-scale antenna arrays to achieve the system

target performance via scaling down transmit power [87], [88]. The transmit

power can be scaled down as P = P̄
Nr for a fixed P̄ , and the average throughput

becomes RDT ≈ (1− τ) log2

(
τηρ4P̄

(1−τ)N2−r

)
. When r > 2, the throughput grows

without bound, which means the transmit power can be scaled down further.
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However, when r < 2, the throughput converges to zero, which indicates that

the transmit power has been reduced too much. When r = 2, the throughput

converges to a constant (1− τ) log2

(
τη

1−τ ρ
4P̄
)
.

3.5 Average Symbol Error Rate Analysis

We next derive the error rates of our system for BPSK, BDPSK, coherent

M-PSK and coherent square M-QAM. The average BER or average SER can

be evaluated directly by averaging the conditional bit error rate, PBER(·) or

the conditional symbol error rate, PSER(·) [89].

3.5.1 BPSK

Exact Analysis

BPSK is one of the most robust modulation schemes. Its conditional error

probability is given as PBER (γ) = λ erfc
(√

νγ
)
, where erfc (·) is the comple-

mentary error function [81, Eq. (8.250.1)] with λ = 1
2

and ν = 1. The average

BER of BPSK is given as

P̄BER=

∫ ∞

0

PBER (γ) fγA (γ) dγ

(a)
=

∫ ∞

0

λerfc (
√
νγ)

N∑

n=1

N∑

m=1

2B (m,n)

cγ

·
(
γ

cγ

)α(m,n)

Kn−m

(
2

√
γ

cγ

)
dγ

(b)
=

N∑

n=1

N∑

m=1

B (m,n)λ

cγ
√
πν

·G
2,2
2,3

(
1

νcγ

∣∣∣∣
0,−1

2
n−m

2
+ α(m,n), m−n

2
+ α(m,n),−1

)
,

(3.37)

where (a) is due to submitting (3.4) and PBER (γ) in the equation of P̄BER;

(b) is obtained by using the same integral as [89, eq. (8)] which expresses

erfc (·) in term of Gm,n
p,q [·] first, and then do the integral for Meijer G-function.
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Asymptotic Analysis

Since the closed-form expression (3.37) is complicated with the Meijer G-

function, the specific relationships between the parameters and the BER are

not clearly visible. However, asymptotic BER expressions are simpler.

Proposition 6. When γ̄ →∞, the asymptotic BER in this case is given as

P̄BER =
N∑

m=1

B (m, 1)

4cγ

[
(−1)m−2

(
1

cγ

)m−1

e
1
cγEi

(
− 1

cγ

)

+
m−1∑

k=1

Γ (k)

(
− 1

cγ

)m−k−1
]
.

(3.38)

Proof. See Appendix A.4. �

Remark 7. In (3.38), it is seen that P̄BER decreases when SNR γ increases.

Although the asymptotic BER is simpler than the closed-form expression (3.37),

it can be further simplified for two cases: imperfect CSI and perfect CSI.

Proposition 7. (3.38) is further simplified as

P̄BER ≈





(1− ρ2)
2(N−1)

4
(cγ)−1 [ln γ + ln (c)− γEM ] ,

0 ≤ ρ < 1,

Γ
(
N + 1

2

)

2N
√
πΓ (N) (tcγ)N

Ψ

(
N, 1;

1

cγ

)
, ρ = 1.

(3.39)

Proof. See Appendix A.5. �

3.5.2 BDPSK

Exact Analysis

For this modulation, the conditional error probability is given by PBER (γ) =

λe−νγ. In this case, the average of PBER (γ) is simply related to the MGF of

γ. So the average BER can be derived by the MGF technique [90], [91]. It is
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clear that the BER of BDPSK can be expressed as

P̄BER = λMγA (v)

=
N∑

n=1

N∑

m=1

B (m,n)λ

(
1

cγ

)α(m,n)+ 1
2

Γ (n) Γ (m)

· e 1
2νcγ ν−

1
2
−α(m,n)W− 1

2
−α(m,n),n−m

2

(
1

vcγ

)
.

(3.40)

For BDPSK, the parameter values are λ = 1
2

and ν = 1. Although this

result is exact, simpler yet accurate results are possible with the use of asymp-

totic MGF.

Asymptotic Analysis

To this end, we can use Corollary 2 to obtain the asymptotic performance of

BDPSK. Thus, the asymptotic BER (γ̄ →∞) is given by

P̄BER = λMasy
γA

(v)

=
N∑

m=1

B(m, 1)

vcγ

[
m−1∑

k=1

Γ(k)

(
− 1

vcγ

)m−1−k

+ (−1)m−2 e
1
vcγ

(
1

vcγ

)m−1

Ei

(
− 1

vcγ

)]
.

(3.41)

However, even further simplification is possible. By using Corollary 3, thus,

asymptotic P̄BER is obtained as follows;

P̄BER ≈





λ
(
1− ρ2

)2(N−1)
(cvγ)−1

· [ln γ + ln cv − γEM ] , 0 ≤ ρ < 1,

λ (vcγ)−N

Γ (N)
Ψ

(
N, 1;

1

vcγ

)
, ρ = 1.

(3.42)

3.5.3 For Coherent M-PSK

M-PSK modulation is widely used in advanced wireless networks such as LTE,

WiMAX and others. For a given symbol rate, the information rate of M-PSK

is significantly higher than that of BPSK. However, it needs more transmit

power to keep the same error rates as BPSK.
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Exact Analysis

The conditional SER for coherent M-PSK signals is given by [92]

PSER (γ) = a

∫ Λ

0

e−b(θ)γdθ,

where a = 1
π
, Λ = (M−1)π

M
, b (θ) = gPSK

sin2(θ)
and gPSK = sin2

(
π
M

)
. Since the SER

expression is an integral of the exponential function, the expected value of this

expression directly relates to the MGF.

Thus, the average SER, P̄SER, can be derived as

P̄SER = a

∫ Λ

0

MγA (b (θ)) dθ

=
N∑

n=1

N∑

m=1

aB (m,n)

(
1

cγ

)α(m,n)+ 1
2

Γ (n) Γ (m)

·
∫ Λ

0

e
1

2b(θ)cγ b (θ)−
1
2
−α(m,n)W− 1

2
−α(m,n),n−m

2

(
1

b (θ) cγ

)
dθ,

(3.43)

where P̄SER is obtained by Lemma 2. The finite integrals in (3.43) can be

evaluated by mathematical software packages.

Asymptotic Analysis

We see that (3.43) has the Whittaker function, a complicated function. Thus,

the relations between the parameters and the SER are not immediately evi-

dent. To alleviate this, similar to the BDPSK case, we derive the asymptotic

results via Corollary 3 (Section 3.3)

P̄SER = a

∫ Λ

0

Masy
γA

(b (θ)) dθ

=
N∑

m=1

∫ Λ

0

B(m, 1)

b (θ) cγ

[
m−1∑

k=1

Γ(k)

(
− 1

b (θ) cγ

)m−1−k

+ (−1)m−2 e
1

b(θ)cγ

(
1

b (θ) cγ

)m−1

Ei

(
− 1

b (θ) cγ

)]
dθ,

(3.44)

where, the finite integrals in (3.44) can be evaluated by software.

We can simplify it further for imperfect CSI case (0 ≤ ρ < 1) and perfect
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CSI case (ρ = 1), respectively as

P̄SER ≈ a

∫ Λ

0

(
1− ρ2

)2(N−1)
(cb (θ) γ)−1

· [ln γ + ln (cb (θ))− γEM ] dθ

(3.45)

and

P̄SER ≈ a

∫ Λ

0

λ (b(θ)cγ)−N

Γ (N)
Ψ

(
N, 1;

1

b (θ) cγ

)
dθ. (3.46)

3.5.4 M-QAM

M-QAM is widely used in digital communication networks. These include opti-

cal fiber networks, digital subscriber lines, IEEE 802.11, orthogonal frequency

division mulitplexing (OFDM) based networks and more. By increasing con-

stellation size M, it is possible achieve arbitrarily high spectral efficiencies.

Exact Analysis

The conditional SER for coherent square M-QAM signals is given by [93] [92]

PSER (γ) =
4q

π

∫ π
2

0

e−h(θ)γdθ − 4q2

π

∫ π
4

0

e−h(θ)γdθ, (3.47)

where q = 1− 1√
M

, h (θ) =
gQAM
sin2(θ)

and gQAM = 3
2(M−1)

. Then, SER of M-QAM

can be derived as follow

P̄SER =

∫ ∞

0

Pe (γ) fγA (γ) dγ

= I1 − I2,

(3.48)

where I1 and I2 can be written as

I1 =
4q

π

∫ π
2

0

MγA (h (θ)) dθ

=
4q

π

N∑

n=1

N∑

m=1

B (m,n)

(
1

cγ

)α(m,n)+ 1
2

Γ (n) Γ (m)

·
∫ π

2

0

e
1

2h(θ)cγ h (θ)−
1
2
−α(m,n)W− 1

2
−α(m,n),n−m

2

(
1

h (θ) cγ

)
dθ

(3.49)
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and

I2 =
4q2

π

∫ π
4

0

MγA (h (θ)) dθ

=
4q2

π

N∑

n=1

N∑

m=1

B (m,n)

(
1

cγ

)α(m,n)+ 1
2

Γ (n) Γ (m)

·
∫ π

4

0

e
1

2h(θ)cγ h (θ)−
1
2
−α(m,n)W− 1

2
−α(m,n),n−m

2

(
1

h (θ) cγ

)
dθ.

(3.50)

The finite integrals in (3.49) and (3.50) can be evaluated by software such as

MATLAB.

Asymptotic Analysis

We can also find an asymptotic expression for (3.48). Similar to the case of

BDPSK, we obtain the asymptotic result by using Corollary 2.

P̄SER ≈ P1 − P2, (3.51)

where

P1 =
4q

π

∫ π
2

0

Masy
γA

(h (θ)) dθ

=
N∑

m=1

4q

π

∫ π
2

0

B(m, 1)

h (θ) cγ

[
m−1∑

k=1

Γ(k)

(
− 1

h (θ) cγ

)m−1−k

+ (−1)m−2 e
1

h(θ)cγ

(
1

h (θ) cγ

)m−1

Ei

(
− 1

h (θ) cγ

)]
dθ

(3.52)

and

P2 =
4q2

π

∫ π
4

0

Masy
γA

(h (θ)) dθ

=
N∑

m=1

4q2

π

∫ π
4

0

B(m, 1)

h (θ) cγ

[
m−1∑

k=1

Γ(k)

(
− 1

h (θ) cγ

)m−1−k

+ (−1)m−2 e
1

h(θ)cγ

(
1

h (θ) cγ

)m−1

Ei

(
− 1

h (θ) cγ

)]
dθ,

(3.53)

where the finite integrals in (3.52) and (3.53) can be readily evaluated by

software such as MATLAB.

41



Using Corollary 3, for the imperfect case, when 0 ≤ ρ < 1 we can obtain

P1 ≈
4q

π

∫ π
2

0

(
1− ρ2

)2(N−1)
(ch (θ) γ)−1

· [ln γ + ln (ch (θ))− γEM ] dθ

(3.54)

and

P2 ≈
4q2

π

∫ π
4

0

(
1− ρ2

)2(N−1)
(ch (θ) γ)−1

· [ln γ + ln (ch (θ))− γEM ] dθ.

(3.55)

For the perfect CSI case, where ρ = 1, we have

P1 ≈
4q

π

∫ π
2

0

(h(θ)cγ)−N

Γ (N)
Ψ

(
N, 1;

1

h (θ) cγ

)
dθ (3.56)

and

P2 ≈
4q2

π

∫ π
4

0

(h(θ)cγ)−N

Γ(N)
Ψ

(
N, 1;

1

h (θ) cγ

)
dθ. (3.57)

Remark 8. For BDPSK, M-PSK and M-QAM, the exact expressions are

derived based on Lemma 2, and the asymptotic results are based on Corollary

2 and Corollary 3 (Section 3.3). For the imperfect CSI case, where 0 ≤ ρ < 1,

it can be seen from (3.39), (3.42), (3.45), (3.54) and (3.55) that when the value

of the product of cγ increases, the value of average BER/SER will converge

to zero, which means either the energy conversion efficiency at the user or

the AP transmit power rises, the BER/SER can be improved. For the perfect

CSI case (ρ = 1), P̄BER contains a confluent hypergeometric function and the

impact of the parameters is not as explicit as the imperfect CSI case.

3.6 Numerical and Simulation Results

This section provides Monte-Carlo simulations to validate analytical results

and to evaluate the impacts of the key parameters, which are given in Table I.

3.6.1 Delay-Limited Mode

Fig. 3.2 plots the delay-limited throughput versus the average SNR with dif-

ferent numbers of AP antennas and the correlation coefficient ρ. As expected,
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Table 3.1: Simulation Parameters

Notation Parameter Value

T Block duration 1
σ2 Noise variance 0 dBm
γ̄ unfaded SNR
ρ correlation

15 20 25 30 35 40 45

0.25

0.26

0.27

0.28

0.29

0.3

Figure 3.2: Delay-limited throughput mode versus average SNR γ for τ = 0.4,
η = 0.6 and R = 0.5 bits/s/Hz.
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Figure 3.3: Delay-limited throughput versus EH time τ for N = 3 and P =
10 dBm.

when the transmit power or the number of AP antennas is increased, the aver-

age throughput improves. The simple reason is that more harvested energy is

achieved as a result of higher energy beamforming gain and the AP transmit

power. The throughput is also influenced by the quality of the CSI (e.g. cor-

relation coefficient). When ρ ≈ 1, the system has perfect CSI without noisy

estimates. If ρ ≈ 0, the poor performance results in poor throughput. The

dotted lines represent the asymptotic throughput for γ →∞ in (3.25), which

improves when ρ and the AP transmit power increase. When γ is large, all the

curves converge to 0.3, which validates our analytical result that RDL = R∗ as

γ →∞.

Fig. 3.3 plots the simulated and exact outage probability versus EH time τ

with different correlation coefficients (ρ) and energy conversion efficiencies (η).

We can observe that the throughput improves with increasing ρ. The figure

also shows the relation between average throughput and energy conversion

efficiency. Obviously, higher η helps the user harvest more energy in the DL,

so the user has more energy for UL data transmission. The curves are concave

and they increase first and then decrease as the EH time increases. It is
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Figure 3.4: Delay-tolerant throughput versus EH time τ for P = 1 dBm and
N = 3.

observed that the peak for the ρ = 0.8 curve is at τ = 0.1, while the peaks

for curves ρ = 0.5 and ρ = 0.2 are at τ = 0.2. Thus, the optimal EH time is

sensitive to the quality of channel estimations.

3.6.2 Delay-Tolerant Mode

Fig. 3.4 plots the delay-tolerant throughput versus EH time τ for several

energy conversion efficiencies (η) and correlation coefficients (ρ). The figure

shows a peak for each curve. This optimal EH time, τ ∗, balances EH time,

τ , and data transmission time, (1− τ), perfectly. This coincides with our

analytical results (3.29) and (3.35). Note that ρ ≈ 1 is for perfect CSI and

ρ ≈ 0 is for totally noisy CSI. Thus, we can observe that larger ρ and η increase

the throughput. Finally, we note that the simulation points (e.g. markers)

lie exactly on the solid curves, which are the analytical results. Thus, this

confirms that the derived theoretical results match with the simulations. This

assures some confidence about the validity of the theoretical results.

Fig. 3.5 plots the delay-tolerant throughput versus the AP transmit power
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Figure 3.5: Delay-tolerant throughput versus γ for η = 0.9, τ = 0.6 and
ρ = 0.6.

with different numbers of AP antennas. Increasing both the transmit power

and the number of antennas builds up the ergodic capacity. As well, the simu-

lation result matches the analytical result in (3.29). Although the asymptotic

curves (3.33) and the analytical curves (3.29) diverge for small values of the

SNR (γ), they converge as γ increases. Hence, the asymptotic expression is

useful to correctly predict the characteristic of the delay-tolerant throughput

performance in high SNR region.

Fig. 3.6 plots the delay-tolerant throughput versus the number of AP an-

tennas, N . The solid lines and the circle markers represent the asymptotic

analysis and simulations, respectively. The slopes of curves are large when

N is small, but increasing N flattens out the curves. The asymptotic results

converge to the simulations when either the number of antennas increase or ρ

increase. When ρ ≈ 1, i.e., noise-free estimates, the simulation and asymptotic

results coincide even for small N. However, with noisy estimates, more anten-

nas are needed to obtain better performance. Finally, as before, increasing ρ

improves the throughput.
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Figure 3.6: Delay-tolerant throughput versus N for η = 0.9 and τ = 0.4.
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Figure 3.7: Average throughput versus the number of AP antennas for both
delay-limited delay-tolerant modes with different EH time τ , P = 10 dBm,
and ρ = 0.7.
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Figure 3.8: P̄BER versus τ for ρ = 0.8, η = 0.9, ν = 1 and λ = 0.5.

Fig. 3.7 shows average throughput of delay-limited and delay-tolerant

modes versus the number of AP antennas, N and different values of the EH

time τ . The throughput of the delay-tolerant mode increases with more AP

antennas, and the slope of the curves gradually decreases. On the other hand,

the throughput curves of the delay-limited mode first increases and then reach

a ceiling when N increases. This behaviour can be anticipated from (3.23)

because the average throughput of the delay-limited mode is bounded by R∗.

Moreover, it can be observed that the impact of τ for both throughput per-

formances is unclear.

3.6.3 BER

Fig. 3.8 plots the BERs of BPSK in (3.37) and BDPSK in (3.40) versus EH

time τ with different numbers of AP antennas. Solid lines represent the ana-

lytical results, while the markers (triangle and star) represent the simulation

points. Thus, we clearly see a tight fit between simulation and the analytical

results. BPSK has better performance than BDPSK for same parameters. It

is observed that the deployment of more AP antennas improves the BER of

both BPSK and BDPSK. Unlike the average throughput, where certain τ re-
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Figure 3.9: P̄BER of BDPSK versus γ for N = 4, ρ = 0.5, ν = 1 and λ = 0.5.

sults in the peak, the BER decreases when τ increases. We thus observe that

the minimum BER is obtained when τ = 0.9. This trend can be clearly seen

from the asymptotic results (3.39) and (3.42). Of course, such large values of

τ are not helpful in terms of throughput maximization.

Fig. 3.9 plots the average BER of BDPSK versus SNR for different EH

conversion efficiencies (η = 0.6, 0.8) and EH times (τ = 0.2, 0.4, 0.8). We see

that the asymptotic results (dashed lines) approach the exact (solid lines) and

simulation ones (markers) when SNR increases. As well, increasing SNR im-

proves the BER performance. The BER decreases when the EH conversion

efficiency or the EH time increases. It is observed that gaps between asymp-

totic and analysis depends on the EH time. τ . It also can be observed that

increasing EH time clearly improves the BER performance.

Fig. 3.10 plots analytical, simulated and asymptotic BERs of BPSK versus

SNR. The number of AP antennas (N) is assumed as either 2 or 4, and the

correlation coefficient (ρ) is 0.2, 0.4 or 0.8. Similar to the BDPSK case, increas-

ing SNR improves the BER performance. In addition, Fig. 3.10shows that

either adding more antennas at the AP or increasing the correlation coefficient
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Figure 3.10: P̄BER of BPSK versus γ for τ = 0.8, η = 0.5, ν = 1 and λ = 0.5.

can decrease BER. We can also see the analytical (solid lines) and asymptotic

(dashed lines) results diverge for (N = 4, ρ = 0.8), but when N decreases, the

gaps between analytical and asymptotic results are reduced quickly.

3.7 Summary

Although there has been a flurry of works on WPCNs, the impact of channel

estimation errors on their performance has received scant attention. Thus, this

chapter investigated this topic in detail. Specifically, we analyzed the distri-

butions of the received SNR, the average throughput of delay-tolerant, delay-

limit modes, and the BER/SER performances. Exact closed-form expressions

as well as the high-SNR asymptotic results were derived. The correctness and

effectiveness of these theoretical analysis were verified by Monte-Carlo simula-

tion results. Our results show that in the high SNR region, the performance of

one transmit and receive antenna coincides with that of multiple antennas at

the AP. Due to energy beamforming at the DL, when the AP transmit power

is large enough, the energy user harvests from one path is sufficient for the UL
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information transmission. Numerical results showed that optimal EH times

for delay-tolerant and delay-limit modes are different.

Our main findings from the derivations and the numerical results can be

summarized as follows:

1. Unsurprisingly, the throughput and BER/SER performances can be im-

proved by increasing the transmit power P , the number of antennas at

the AP, correlation coefficient and EH conversion efficiency.

2. The optimal EH time fraction τ which maximizes the EH and data trans-

mission rate can be derived for the delay-tolerant mode.

3. In the conventional analysis of non-EH wireless [53], [94], the asymptotic

performance (e.g. BER, SER and outage) can be expressed in terms of

diversity gain and coding gain (see (2.9)). But we have shown that this

breaks down in the case of EH links. Instead, most asymptotic expres-

sions tend to be of the form ln(γ̄)+c
γ̄d

where c and d are some constants.

4. When the number of AP antennas becomes very large, the effect of small-

scale fading vanishes. This is the well-known channel hardening effect in

the massive MIMO literature.
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Chapter 4

Performance Analysis for a
WPCN with a New Nonlinear
Energy Harvesting Model

4.1 Introduction

4.1.1 Background and Motivation

Internet of Things (IoT) has become a prevalent system to connect people, pro-

cesses, data, and things connect. Globally, IoT connections will grow 2.4-fold,

from 6.1 billion in 2018 to 14.7 billion by 2023 [95]. Mixed devices and con-

nections are enabling myriad IoT apps. Connected-home, video-surveillance,

connected appliances, and tracking apps will make up 48% of IoT connections

by 2023. Energy used by these devices is increasing. Charging or replacing

their batteries regularly adds additional cost and complexity of the networks.

A solution is harvesting energy from ambient radio frequency (RF) or other

energy sources[16], [96]. For example, access points (APs) may enable energy

harvesting (EH) in the downlink in [37], [97], and both desired and interfering

RF signals can be harvested for energy [98].

Thus, EH nodes use the harvest-then-transmit protocol [33] in wireless

powered communication networks (WPCNs). That is, a power station (PS) or

hybrid AP transfers energy to a wireless user in the downlink, who harvests

energy and transmits information in the uplink to the data receiver. Conse-

quently, the EH paradigm has been heavily researched [40], [46], [62], [74], [99].
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While many works focus on EH performance for various wireless applications,

the characteristics of the energy harvester are fundamental issues [100], [101].

These characteristics in fact determine the amount of harvested energy [51].

4.1.2 Energy Harvester Models

The linear EH model is the de facto standard for most works [33], [34], [37],

[40], [41], [46], [47]. This model assumes that the output power of the energy

harvester increases linearly with the input RF signal power. It thus suffers

from two limitations. First, empirical works [43], [44], [48], [102] demonstrate

that practical EH circuits display highly nonlinear characteristics, exhibiting

a saturation plateau with high input powers as EH circuits employ nonlinear

elements such as diodes and transistors [48], [103]. Thus, the unbounded in-

crease predicted by the linear model is empirically wrong [104], [105]. Second,

the output of the EH circuit drops to zero if the input RF is below a minimum

input power level, which is known as the sensitivity level of the circuit. For

example, it is −25 dBm at 1.3 GHz for an EH circuit of 130-nm CMOS (com-

plementary metal-oxide-semiconductor) [101] and −22 dBm at 915 MHz for a

180-nm CMOS [106]. Most energy harvesters have an activation level due to

the diode turn-on voltage, and if the received energy is below the level, the

input energy is too small to be harvested [17]. Clearly, the two key properties

of practical EH circuits are not correctly represented by the standard linear

EH model.

Thus, to model practical EH circuits more accurately, several nonlinear

models have been developed. Specifically, they include a piece-wise linear

function [49], a rational function [50], a polynomial function [107], a sigmoid

function [42], or an improved sigmoid function [52]. We briefly discuss their

applications next.

Although the model [49] captures the saturation effect of practical EH cir-

cuits, it assumes a linear response up to the saturation level. Thus, this model

may not fully match measured data. Nevertheless, this model offers a degree

of analytical tractability and has thus been employed for outage performance

analysis of relays [108], [109], secrecy analysis of relays [110], throughput anal-
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ysis of WPCNs [111], and resource allocation of a WPCN [104]. Since the

rational EH model [50] is not analytically tractable, it has been modified to

a simpler form [51]. Both the models correctly exhibit the saturation char-

acteristic. The polynomial model [107] is obtained by truncating the Taylor

expansion of the diode output and it has been used for signal optimization.

The sigmoid model [42] posits a logistic transfer function between the input

and output powers. It captures the saturation characteristic of practical cir-

cuits but assumes zero sensitivity. It has been used to study resource allocation

for non-orthogonal multiple access (NOMA) cognitive radio networks in [112],

[113], outage probability and throughput [114] and many more. The sigmoid

model has been modified in [52] to incorporate non-zero sensitivity levels. This

modified model has been applied for energy beamforming optimization [115].

The non-linear models of [42] and [52] have been studied in [116]. We hasten

to add that this overview is by no means complete.

4.1.3 Problem Statement and Contributions

The above review makes it clear that the non-linearity of practical EH cir-

cuits will clearly affect the performance and design of WPCNs and that the

mismatch between the linear EH model and measured data can lead to bad de-

sign choices. For example, performance analysis based upon the linear model

predicts overoptimistic results in terms of the common performance measures

such as outage, ergodic capacity, error rate and so on. Additionally, the use of

the linear EH model could be misleading for the uplink sum rate maximization

problems. For these reasons, we need more accurate EH models.

In this chapter, we first propose two new nonlinear EH models. The first

model has three parameters, which can be determined via a best-fit search of

measured data [30], [102], [103]. The second is a simplified version of the first.

We also develop a detailed performance analysis for a WPCN.

The main contributions are summarized as follows:

1. We suggest a new nonlinear EH model (NLEH), based on the error func-

tion. This model consists of three parameters, which can be estimated
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by simple best-fit search with measured data. We also develop a new

asymptotic model (AM). These two are then compared against the stan-

dard linear model (LM) and the rational model (RM) due to [51].

2. To further evaluate these four models, we investigate the throughput

of the WPCN (Fig. 4.3) and bit error rates (BER) of binary phase

shift keying (BPSK), binary differential phase shift keying (BDPSK)

modulations. In particular, we derive the throughput of delay limited or

tolerant modes.

3. We also consider the large antenna regime at the power station. In

this case, the received power at the wireless device tends to the normal

distribution. By exploiting this fact, we find the asymptotic throughput

and BER expressions for new the EH model. Asymptotic results of other

models can be derived similarly. The impact of transmit power control

is also analyzed.

Furthermore, we assess the impact of the transmit power of the power station,

the EH time, power amplifier efficiency at WD, the number of PS antennas

and the number of IRS antennas via numerical simulations. From numeri-

cal results, we show that NLEH, AM, and RM models accurately reach the

saturation state of practical EH circuits, but the LM model does not.

Notation: For random variable (RV) X, fX(·) and FX(·) denote the prob-

ability density function (PDF) and cumulative distribution function (CDF).

A circularly symmetric complex Gaussian vector with mean µ and correla-

tion matrix B is CN (µ,B). The gamma function Γ(a) is given in [81,

Eq. (8.310.1)]; Γ(a, x) is upper incomplete Gamma function given in [81,

Eq. (8.350.2)]; Ψ(a, b; z) is the confluent hypergeometric function given in [81,

Eq. (9.211.4)]; γ (n, x) is the lower incomplete gamma function [81, Eq. (8.350)];

Kν(·) is the ν-th order modified Bessel function of the second kind [81, Eq.

(8.432)]; Gmn
pq

(
z | a1···ap

b1···bq

)
denotes the Meijer G-function [81, Eq. (9.301)].
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4.2 EH models

4.2.1 New Energy Harvesting Model

Here, we suggest a nonlinear EH model that captures the saturation character

of practical circuits. The model posits that the harvested power at the output

of the EH circuit can be expressed as

Ph = Pmax

[
erf(a(Pr + b))− erf(ab)

1− erf(ab)

]
, q(Pr), (4.1)

where Pmax is the maximum harvested power level, and Pr is the re-

ceived RF power input, a > 0 and b > 0 are two parameters, and erf(x) =

2√
π

∫ x
0
e−t

2
dt is the well-known error function. For large x, erf(x) tends to one;

thus, in (4.1), as Pr → ∞, Ph → Pmax. The parameters a, b and Pmax can be

determined via a best-fit match with experimental data.

The model (4.1) is general enough for a wide variety of applications. How-

ever, perhaps the simplest way to compare it against others is to compute the

average of Ph. This depends on fading and other details of the EH link. In

this chapter, we consider a specific WPCN (Fig. 3), which consists of a PS

with N ≥ 1 antennas and a wireless device (WD), which harvests RF energy.

Suppose that the PS transmits at power level Pt. Let the large-scale path-loss

between PS and WD be Ω1 and the small-scale channel be h. Further de-

tails of these can be found in Section 4.3. The received RF signal power with

maximum ratio transmission (MRT) beamforming at the PS, i.e., w = h
||h||

[117], becomes Pr = PtΩ1||h||2GPS
G

WD
= P̄t||h||2 where GPS and G

WD
are the

antenna gains of PS and WD, and P̄t = PtΩ1GPS
G

WD
is the transmit power

corrected by the antenna gains and the path-loss. Thus, assuming the distance

remains fixed, the average harvested power by the WD under this EH model

is given by

E[Ph] =

∫ ∞

0

q(x)fPr(x)dx. (4.2)

However, we need to compare this model with others in order to achieve a

better assessment of the impact of EH models. Thus, we consider the following

three models.
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4.2.2 Asymptotic Model

To find a simpler model, we consider the region where the transmit power of

the PS grows extremely large: e.g. Pt →∞. Ignoring the effect of fading, we

can see that as Pt becomes extremely large, the RF input power at the EH

circuit also becomes very large: Pr →∞. The new nonlinear model (4.1) then

predicts the harvested power level will be Pmax. Based on this fact, we suggest

the following simple asymptotic model:

Pa = Pmax(1− e−κPr) , qas(Pr), (4.3)

where κ is a constant. This model is simpler than (4.1) and may be more

analytically tractable. Clearly, this model is very consistent with (4.1) in the

asymptotic region. But we can choose κ to make this model as accurate as

possible for the entire input power range. So there may be several ways to find

an optimal value of κ. A simple option is to make sure that both (4.1) and

(4.3) have the same gradient at the input zero (Pr = 0). Thus, by matching

the first derivatives of (4.1) and (4.3) at Pr = 0 point, we find

κ = 2
e−a

2b2a√
π (1− erf (ab))

.

To recap, once we have measured data, the parameters of both of these models,

(4.1) and (4.3), can be estimated readily.

As before, for comparative evaluations, we must compute the average of

Pa. We consider the same WPCN (Fig. 4.3). With the same details given

before, the average harvested power at the WD is given by

E[Pa] =

∫ ∞

0

qas(x)fPr(x)dx

=
Pmax

P̄N
t Γ (N)

∫ ∞

0

(1− e−κx)xN−1e
− x
P̄t dx

= Pmax

[
1− 1

(
1 + κP̄t

)N

]
.

(4.4)

4.2.3 Linear Model

For completeness and for comparative evaluation purposes, we also consider

the linear EH model, the most commonly used one in the literature. According
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to this model, the harvested power at the output of the EH circuit is given by

Pl = µPr , ql(Pr). (4.5)

This model has only one parameter, namely µ. It can be found by curve fitting

with the measured input-output data of practical EH circuits.

However, in this case, we must compare this model with our NLEH model

(4.1). To do so, we simply match the gradient of (4.1) at input zero with the

constant µ. Thus it is given by

µ = 2Pmax
e−a

2b2a√
π (1− erf (ab))

.

Once again, this constant is derived by matching the first derivatives of

(4.1) and (4.5) at Pr = 0 point.

As before, we would like to compute the average of Pl. We consider the

specific WPCN (Fig. 4.3). With the same details given before, the average

harvested power at the WD is given by

E[Pl] = µE[Pr]

=
µ

(
P̄t
)N

Γ (N)

∫ ∞

0

xNe
− x
P̄t dx

= µNP̄t.

(4.6)

Unsurprisingly, this models predicts a linear increase of the average har-

vested power with the transmit power. This however does not match with the

behaviour of practical EH circuits.

4.2.4 Rational Model

There have been several rational EH models. For example, [50] examines a

large number of energy harvesters and develops a ratio of two polynomials

as the EH input-output characteristics. But this model ends up with seven

parameters. Thus, a simplified rational EH model proposed in [51], which is

equivalent to the following:

Prat =
PmaxPr
Pr + β

, qrat(Pr). (4.7)
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Figure 4.1: Harvested power for the four EH models and the measurement
data [48, Fig. (17.d)].

This model has only two parameters, namely Pmax and β. They can be found

by curve fitting with measured data.

However, in this case, we want to compare this model with our NLEH

model (4.1). To do so, constant β is derived by matching the first derivatives

of (4.1) and (4.7) at Pr = 0 point. Thus, we find

β =

√
π (1− erf (ab))

2e−a2b2a
.

As before, we would like to compute the average of Prat. We consider the

specific WPCN (Fig. 4.3). With the same details given before, Under this

model, the average harvested power at the WD is given by

E[Prat] =

∫ ∞

0

qrat(x)fPr(x)dx

= PmaxP̄
−N
t NβNe

β
P̄t Γ

(
−N, β

P̄t

)
,

(4.8)

where Γ(a, x) is upper incomplete Gamma function given in [81, Eq. (8.350.2)]

and the integral is obtained from [81, Eq. (3.383.10)].

Fig. 4.1 illustrates that the proposed new NLEH (4.1) tightly matches

measurement data given in [48, Fig. (17.d)] for the load resistance 5.6 MΩ.
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Table 4.1: RMSE Comparison

Model NLEH [42] [49] AM RM LM

RMSE 0.70 0.88 1.72 0.80 1.82 38.8

The fitted parameters of the NLEH model are a = 0.0086, b = 11.8689µW

and Pmax = 10.219µW with a root mean square error (RMSE) of 0.6963. In

Table 4.1, we compared the RMSE values for several models. It is interesting

to note that both AM and RM models achieve fairly small RMSE deviations.

In contrast, the linear model is extremely poor in terms of matching with the

measured data, a fact clearly evidenced by the extremely large RMSE value.

Thus, we may expect that the use of the LM model will be overly optimistic

compared to the measured data based models.

On the other hand, the LM model may be improved by adding a saturation

effect. This gives rise to the so-called piece-wise linear model [49]. The RMSE

of this model for this data set is found to be 1.72. Thus, we see that our

proposed NLEH and AM models achieve better accuracy than the model of

[49].

Compared with the sigmoid model of [42], we see that our proposed error

function model is more accurate in terms of the RMSE. We have observed the

same situation with another data set in [103, Fig. (5)]. Based on this limited

comparison, using the measured data provided in [48, Fig. (17.d)], we can say

that the new NLEH model provides a better approximation to the measured

data than the sigmoid EH model. Of course, this situation may reverse for

other measured data.

Fig. 4.2 compares the four models, (4.1), (4.3), (4.7) and (4.5) in terms of

the average harvested power at the WD. We assume the EH circuit is part of

the WD in the communication system (Fig. 4.3). The PS has N = 3 antennas

and the WD has one. All the three nonlinear EH models show the saturation

plateau, which coincides with measured data in Fig. 4.3. Clearly, RM and AM

models approximate the NLEH model well for high input powers. However,

the LM is inaccurate in modelling of practical EH circuits as the transmit
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Figure 4.2: E[P ] of four EH models versus Pt (dBm). Parameters a = 0.0086,
b = 11.8689µW and Pmax = 10.219µW, N = 3, GPS = 11 dBi, GWD = 3 dBi,
and the distance between PS and WD is 4 m.

Figure 4.3: System model

power increases. Despite that, it can approximate the practical EH circuit for

low transmit powers (< −18 dBm). Overall, the use of the LM model yields

optimistic upper bounds on performance.

These four EH models will next be used for a system performance analysis.

To set the scene for that, we next describe the communication system model.

4.3 Communication System Model

We consider a multiple-antenna WPCN with downlink wireless power transfer

(WPT) and uplink wireless data transmission (WDT) (Fig. 4.3). We assume
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energy beamforming in the downlink. Energy beamforming is a technology

that the PS utilizes its multiple antennas to focus energy beams toward the

WD. It thus maximizes the harvested energy at the WD [37], [82], [114]. MRT

is thus assumed here for the transmit signals weighting at different PS an-

tennas, since MRT is optimal for the single-user case [82]. The beamforming

vector in the downlink WPT is w = h
||h|| . Besides, IRS uses maximum ratio

combining (MRC) reception of uplink signals with a combining weight vector

u = g
||g|| [37] where g is the uplink channel between the WD and the IRS.

Following [37], [118], we assume the availability of perfect channel state infor-

mation (CSI) at the WD and IRS. For a duration of one transmission block T ,

τT duration is used for downlink WPT, where τ ∈ (0, 1). The WD harvests

energy in τT and then transmits data in the uplink WDT for (1 − τ)T du-

ration. Without loss of generality, we assume a normalized unit transmission

block time (i.e., T = 1).

4.3.1 Channel Models

The small-scale mutipath fading part of the WPT channel is denoted as h ∈
CN×1, which is distributed as h ∼ CN (0, IN). Similarly, the WDT channel,

i.e., WD-IRS is denoted as g ∈ CM×1, which is distributed as g ∼ CN (0, IM).

Clearly, all the channel coefficients hk, gk ∀k ∈ [1, N ] are independent and

identically distributed (i.i.d.) CN (0, 1) RVs. Consider ||h||2 =
∑N

i=1 |hi|2 and

||g||2 =
∑M

j=1 |gj|2. Thus, both ||h||2 and ||g||2 are scaled central Chi-square

random variables distributed with 2N and 2M degrees of freedom. Thus, the

PDF of both of them are special cases as following

f (x) =
1

Γ (L)
xL−1e−x, 0 ≤ x <∞, (4.9)

where L = N or L = M . The moment generating function (MGF) for this

PDF is given by

M(t) = E[e−tX ] =
1

(1 + t)L
, <(t) > −1. (4.10)

Although this MGF is well known, we list it here because the essential role

it plays in our performance analysis. The role arises due to the fact that the
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received signal power at the WD contains a factor ||g||2, which is Gamma

distributed. Thus, this MGF will help the overall averaging process, which

can actually be done in two stages. The first stage can be the averaging over

the distribution of ||g||2, which requires the MGF in (4.10).

The PS-WD and WD-IRS distances are d1 and d2 respectively. The large-

scale pathlosses of the WPT and WDT channels are Ωk = d−sk (k = 1, 2) [119]

where s is the path loss factor and dk is the distance between the transmitter

and the receiver, usually measured in meters [48].

4.3.2 Signal-to-Noise Ratio

In the downlink WPT, P represents the power harvested at the WD via four

different EH models described in Section 4.2, i.e., P = Ph for NLEH, P = Pa

for AM, P = Pl for LM, and P = Prat for RM. And for all these models, the

input RF power is given by Pr = P̄t||h||2. The WD harvests energy for duration

τ. Thus, the amount of energy harvested by the WD is Eh = Pτ. The WD

transmits signals to the IRS for a duration of (1− τ). Suppose that the WD

uses a power amplifier with efficiency 0 < η < 1. Out of the harvested energy,

ηEh is used for data transmission in the WD-IRS link and the remainder is

consumed by the power amplifier [114]. Hence, during the data transfer phase,

the transmit power of the WD is PWD = ηEhGWD

(1−τ)
. The signal-to-noise ratio

(SNR) at the IRS can be written as

γ =
τηPΩ2GWD

G
IRS
||g||2

(1− τ)σ2
= cP ||g||2, (4.11)

where G
IRS

is the antenna gain of IRS and c =
τηΩ2GWD

G
IRS

(1−τ)σ2 .

In the next section, we analyze the average throughput of delay-limited

and delay-tolerant modes [37]. These modes are determined based upon the

length of the codewords transmitted by the user. If codeword is short , and

thus the receiver decodes each codeword without waiting to process several of

them together, we have the delay limited mode. Consequently, in this case,

outage probability (OP), the probability that the transfer rate below a given

threshold, is the relevant measure of the system throughput. In contrast, in

the delay-tolerant mode, the receiver may store multiple codewords and decode
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them in one shot. The throughput in this case is measured by the long-term

statistical average of the wireless channel capacity, i.e., ergodic capacity (EC).

4.4 Performance Analysis with Different EH

Models

Herein, we derive the average throughput of the delay-limited and delay-

tolerant transmission modes as well as the average BER of BPSK and BDPSK

modulations. We analyze based on the four EH models. We derive inte-

gral expression for these performance metrics, and we suggest a very efficient

and simple numerical evaluation method via the generalized Gauss-Laguerre

quadrature (Appendix B.1.)

4.4.1 New Energy Harvesting Model

Delay-Limited Transmission Mode

In this mode, the IRS decodes each codeword, without waiting for a set of

them. So in this case, short-term rise and fall of SNR mediates the suc-

cess of each decoding operation. Therefore, OP is appropriate measure for

the throughput of this mode. OP is the probability that the instantaneous

throughput, log2(1 + γA), falls below a fixed rate R bits/s/Hz. Since the WD

only transmits during the time fraction (1− τ) with a fixed transmit rate R,

the average throughput in bits/s/Hz can be expressed as

RDL = (1− Pout)R∗, (4.12)

where R∗ = (1− τ)R and Pout is the OP. In the following proposition, we

derive the delay-limited throughput.

Proposition 8. The average throughput of delay-limited mode of the WD-IRS

link with the NLEH model (4.1) is given by

RDL = R∗


1−

∫∞
0
γ

(
M,

γ
th

cq(P̄tx)

)
xN−1e−xdx

Γ (N) Γ (M)


 , (4.13)
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where γ
th

= 2R−1 is a predetermined threshold. In (4.13), γ (n, x) is the lower

incomplete gamma function [81, Eq. (8.350)] and Γ (a) is gamma function [81,

Eq. (8.310.1)].

Proof. The proof is given in Appendix B.3. �

Remark 9. The q(x) function in (4.13) is the nonlinear EH model given in

(4.1). Since q(x) contains an error function, and if we submit q(x) into (4.13),

the integral function is too complicated, so the closed-form expression does

not exit. However, (4.13) can be approximated by generalized Gauss-Laguerre

quadrature given in Appendix B.1. The impact of parameters is not clear in

(4.13), but it can be observed from Section 4.5.

Delay-Tolerant Transmission Mode

Delay-tolerant transmission mode is applied when the codeword length is large

compared to the block time, so the IRS should tolerant a delay for decoding

the stored signals together. Thus, the average throughput of this mode is the

product of ergodic capacity and the effective data transmit time, which can

be shown in bits/s/Hz as

RDT = (1− τ)Ce, (4.14)

where Ce is the ergodic capacity. In the following proposition, we derive the

delay-tolerant throughput.

Proposition 9. The delay-tolerant throughput of the WDT link with the non-

linear EH model (4.1) is given by

RDT =
(1− τ)

Γ (N) Γ (M)

∫ ∞

0

IM−1

(
1

cq
(
P̄tx
)
)

xN−1e−x
(
cq
(
P̄tx
))M dx, (4.15)

where In (a) is the function given in Lemma 3 in Appendix B.2.

Proof. See the Appendix B.4. �

Remark 10. The (4.15) can be evaluated by generalized Gauss-Laguerre quadra-

ture via mathematical software, such as MATLAB. According to (B.2), the
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number of summation terms n can be obtained by the following strategy. We

write Wi =
∑n

i=1 wif(xi), W1 = w1f(x1), and Wi = Wi−1 + wif(xi). When
wif(xi)
Wi

≤ 0.01, the series computation stops, and choose n = i.

Average BER of BPSK

BPSK is a simple digital modulation that uses two phases, say, 0 and π to

represent binary 0 and 1. Consequently, it can tolerate highest noise level or

distortion than other higher-order modulations. Thus, BPSK is robust against

thermal noise and other forms of noise as well as widely used in the standard

IEEE 802.15.4 which is used by ZigBee [120]. In the following, we derive its

BER as a simple integral.

Proposition 10. The BER expression of the WD-IRS link with the nonlinear

EH model (4.1) and BPSK modulation is given by

P̄BER =
1

Γ (N)

∫ ∞

0

xN−1e−x
[

1

2

(
1−

√
cq
(
P̄tx
)

1 + cq
(
P̄tx
)
)]M

·
M−1∑

k=0

(
M − 1 + k

k

)[
1

2

(
1 +

√
cq
(
P̄tx
)

1 + cq
(
P̄tx
)
)]k

dx.

(4.16)

Proof. See Appendix B.5. �

Remark 11. Computationally, the BER expression (4.16) can be easily evalu-

ated by the generalized Gauss-Laguerre quadrature rule given in Appendix B.1.

It is observed that the specific relationship between parameters and the BER

are not clearly visible. However, the relationship can be obtained through the

numerical and simulation figures in Section 4.5.

Average BER of BDPSK

In BDPSK modulation, the phase of the modulated signal is shifted relative

to the previous carrier’s phase. BDPSK is used by wireless LAN (local area

network) standard, IEEE 802.11b-1999 as the basic rate of 1 Mbit/s [121].

66



Proposition 11. The BER expression of the WDT link with the nonlinear

EH model (4.1) and BDPSK modulation is given by

P̄BER =
1

2Γ (N)

∫ ∞

0

xN−1e−x
[
1 + cq

(
P̄tx
)]M dx. (4.17)

Proof. The proof is given in Appendix B.6. �

Remark 12. The expressions of BPSK and BDPSK above are complicated

and cannot be derived closed form. But we can easily evaluate them via the

generalized Gauss–Laguerre quadrature described in Appendix B.1.

4.4.2 Asymptotic Model

In order to compare with the NLEH, we analyze the same performance metrics

in the previous subsection. The function qas(·) for the AM case is given in (4.3).

Delay-Limited Transmission Mode

According to Proposition 8, the delay-limited throughput of the WD-IRS link

with the nonlinear EH model (4.3) can be given by

RDL = R∗


1−

∫∞
0
γ

(
M,

γ
th

cqas(P̄tx)

)
xN−1e−xdx

Γ (N) Γ (M)


 . (4.18)

The relationships of the throughput and parameters like N and M are not

directly visible, but it can be observed in the Section 4.5.1.

Delay-Tolerant Transmission Mode

Using Proposition 9, the delay-tolerant throughput of the WDT link with the

nonlinear EH model (4.3) is derived as

RDT = (1− τ)E
[
log2

(
1 + cPa||g||2

)]

(a)
=

(1− τ)

Γ (N) Γ (M)

∫ ∞

0

IM−1

(
1

cqas
(
P̄tx
)
)

xN−1e−x
(
cqas

(
P̄tx
))M dx.

(4.19)

The In(a) is a function of integral and it can be calculated as the finite

summation in Lemma 3. Similar to Proposition 9, the integral can be evaluated

by generalized Gauss-Laguerre quadrature.
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Average BER of BPSK

The BER expression of the WD-IRS link with the nonlinear EH model (4.3)

and BPSK modulation can be given as

P̄BER =
1

Γ (N)

∫ ∞

0

xN−1e−x
[

1

2

(
1−

√
cqas

(
P̄tx
)

1 + cqas
(
P̄tx
)
)]M

·
M−1∑

k=0

(
M − 1 + k

k

)[
1

2

(
1 +

√
cqas

(
P̄tx
)

1 + cqas
(
P̄tx
)
)]k

dx.

(4.20)

This equation (4.20) can be obtained from Proposition 10 by replacing q(·)
with qas(·).

Average BER of BDPSK

The BER expression of the WDT link with the nonlinear EH model (4.3) and

BDPSK modulation can be given as

P̄BER =
1

2Γ (N)

∫ ∞

0

xN−1e−x
[
1 + cqas

(
P̄tx
)]M dx. (4.21)

This equation (4.21) is derived similar to Proposition 11. Thus, the proof is

omitted. In the next subsection, we will derive the performance of the mostly

used linear EH model.

4.4.3 Linear EH Model

Since this is the default one used for a variety of networks, several results are

already available. We list them here for completeness.
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Delay-Limited Transmission Mode

According to Proposition 8, the average throughput linear EH model (4.5) is

derived as follows.

RDL
(a)
= R∗


1−

∫∞
0
γ
(
M,

γ
th

cµP̄tx

)
xN−1e−xdx

Γ (N) Γ (M)




(b)
=R∗


1−

∫ ∞

0

(
1− e−

γth
cµP̄tx

∑M−1
m=0

(
γth

cµP̄tx

)m
1
m!

)
xN−1e−xdx

Γ(N)




(c)
=

2R∗

Γ (N)

M−1∑

m=0

(
γ

th

cµP̄t

)N+m
2 1

m!
KN−m

(
2

√
γ

th

cµP̄t

)
,

(4.22)

where (a) is from Proposition 8; (b) is because of [81, Eq. (8.352.6)]; (c)

is obtained from [81, Eq. (3.471)]. Kν(·) is the ν-th order modified Bessel

function of the second kind [81, Eq. (8.432)].The special case N = M has

been studied in [37, Eq. (5)]. The average throughput RDL depends on τ ,

N , M , γ
th

, Pt and µ. It does not offer explicit relationships of the above

parameters. However, we can find the impact of parameters in Section 4.5.

Delay-Tolerant Transmission Mode

The average throughput of delay-tolerant mode for the linear EH model (4.5)

can be derived as

RDT=

(1−τ)

cµP̄t
G

4,1
2,4

(
1

cµP̄t

∣∣∣∣
−1, 0
−1,−1,M − 1, N − 1

)

Γ (N) Γ (M) ln 2
, (4.23)

where Gmn
pq

(
z | a1···ap

b1···bq

)
denotes the Meijer G-function [81, Eq. (9.301)].and

The special case M = N of (4.23) has been derived in [37, Eq. (12)]. That

same derivation can be used to prove (4.23). Thus, the details are omitted

here. The average throughput RDT depends on parameters τ , N , M , Pt and

µ. However, insights can be derived from numerical evalution of (23).

69



Average BER of BPSK

The BER expression of the WD-IRS link with the linear EH model (4.5) and

BPSK modulation is given by

P̄BER =
1

Γ (N)

∫ ∞

0

xN−1e−x


1

2


1−

√
cµP̄tx

1 + cµP̄tx





M

·
M−1∑

k=0

(
M − 1 + k

k

)
1

2


1 +

√
cµP̄tx

1 + cµP̄tx





k

dx.

(4.24)

This is result is similar to Proposition 10. Thus, the proof is omitted.

This integral (4.24) can be very efficiently and simply calculated by the

generalized Gauss-Laguerre quadrature described in Appendix B.1.

Average BER of BDPSK

The BER expression of the WD-IRS link with the linear EH model (4.5) and

BDPSK modulation is given by

P̄BER
(a)
=

1

2Γ (N)

∫ ∞

0

xN−1e−x
[
1 + cµP̄tx

]M dx

(b)
=

1

2
(
cµP̄t

)N Ψ

(
N,N −M + 1;

1

cµP̄t

)
,

(4.25)

where (a) is obtained from Proposition 4; Step (b) is obtained from [81,

Eq. (9.211.4)] and Ψ(a, b; z) is the confluent hypergeometric function in [81,

Eq. (9.211.4)].

In the next subsection, we derive the performances for the rational EH

model.

4.4.4 Rational EH Model

Delay-Limited Transmission Mode

Similar to Proposition 8, the delay-limited throughput of the WDT link with

the rational EH model (4.7) can be given by

RDL = R∗


1−

∫∞
0
γ

(
M,

γ
th

cqrat(P̄tx)

)
xN−1e−xdx

Γ (N) Γ (M)


 . (4.26)
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Since (4.26) is not closed-form, the relationships between RDL and the

parameters, for example, γth, N , and M from (4.26) are not directly visible.

However, (4.26) is extremely easy to compute. Thus, insights can be obtained

– see Section 4.5.

Delay-Tolerant Transmission Mode

The throughput of the WD-IRS link in this case with nonlinear EH model

(4.7) can be given as

RDT = (1− τ)E
[
log2

(
1 + cPrat||g||2

)]

(a)
=

(1− τ)

Γ (N) Γ (M)

·
∫ ∞

0

IM−1

(
1

cqrat
(
P̄tx
)
)

xN−1e−x
(
cqrat

(
P̄tx
))M dx.

(4.27)

By replacing q(·) in Proposition 9 to qrat(·), we obtain (4.27). The inte-

gral in (4.27) can be readily calculated by using Lemma 3 and the Gaussian-

Laguerre quadrature (Appendix B.1.)

Average BER of BPSK

The BER of the WD-IRS link and the nonlinear EH model (4.7) and BPSK

modulation can be obtained by

P̄BER =
1

Γ (N)

∫ ∞

0

xN−1e−x
[

1

2

(
1−

√
cqrat

(
P̄tx
)

1 + cqrat
(
P̄tx
)
)]M

·
M−1∑

k=0

(
M − 1 + k

k

)[
1

2

(
1 +

√
cqrat

(
P̄tx
)

1 + cqrat
(
P̄tx
)
)]k

dx.

(4.28)

By replacing q(·) in Proposition 10 with qrat(·), we can obtain (4.28).

Average BER of BDPSK

Proposition 12. The BER of the WD-IRS link with the rational EH model

(4.7) and BDPSK modulation can be expressed as

P̄BER =

∑M
k=0

(
M
k

) (
MP̄t
β

)k (
β
A

)N+k
Γ (N + k)

2Γ (N)

·Ψ
(
N + k,N −M + k + 1;

β

A

)
.

(4.29)
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Proof. By using Proposition 11, we write the BER as Step (a) in the following:

P̄BER
(a)
=

1

2Γ (N)

∫ ∞

0

xN−1e−x
[
1 + cqrat

(
P̄tx
)]M dx

(b)
=

1

Γ (N)

∫ ∞

0

xN−1e−x
(

1 + c MP̄tx
MP̄tx+β

)M dx

(c)
=

1

2Γ (N)

∫ ∞

0

xN−1e−x
(
MP̄tx+ β

)M

[Ax+ β]M
dx

(d)
=

∑M
k=0

(
M
k

) (
MP̄t
β

)k (
β
A

)N+k
Γ (N + k)

Γ (N)

·Ψ
(
N + k,N −M + k + 1;

β

A

)
,

(4.30)

where A = (1 + c)MP̄t; Step (b) follows from the rational model in (4.7); Let

u = Ax
β

in (c), and with the help of [81, Eq. (9.211.4)], (d) is obtained after

some algebraic manipulations. �

Remark 13. Although (4.30) gives exact value of the average BER of BPSK,

it does not show the direct relationships between the parameters N , M , β, and

Pt because it contains a confluent hypergeometric function. However, by con-

sidering the large antenna case (N →∞), we can obtain simpler but accurate

performance expressions.

4.4.5 Large Antenna Case

Wireless systems with an especially high number of antennas, e.g., tens or

even hundreds of antennas, are called massive MIMO. Systems with as many

as 96 to 128 antennas have been demonstrated. MIMO network can multiply

the capacity of a wireless connection without requiring more spectrum. Thus,

large capacity improvements are possible. More antennas translate into more

possible signal paths, which improves and data rate and link reliability [122],

[123].

In the following, we consider the PS to be massive MIMO, e.g., N → ∞.
In this case, we will see a channel hardening effect.
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Let the WPT channel gain be X = ||h||2 and in this case, X
d−→ N (N,N).

Recall the received power at the WD is Pr = P̄t||h||2. Thus Pr
d−→ N

(
P̄tN, P̄

2
t N
)
.

In the previous section, we dealt with the problem of computing average

throughput and BER in the format E[Y ], where Y is a function of Pr, i.e.

Y = g (Pr). But evaluating E[Y ] is not direct. To avoid this issue, we can ex-

pand Y around the mean of Pr, which is θ = P̄tN. The quantity Y is expanded

as

Y = g(θ) + g′(θ)(Pr − θ) +
1

2
g′′(θ)(Pr − θ)2 + · · · (4.31)

By taking the expected value of both sides, we find

E[Y ] = g(θ) +
1

2
g′′(θ)E

[
(X − θ)2

]
+ · · · (4.32)

The right side can be approximated as

E[Y ] ≈ g(θ) + E, (4.33)

where the error term is given by

E =
1

2
g′′(θ)P̄ 2

t N. (4.34)

In general, it is difficult to estimate the magnitude of this error term. But

in order to get at least some sense of this error term, we can evaluate it for the

linear model in (4.25). In this case, we find g(x) = 1
(1+tx)M

where t = cµP̄t.

By evaluating, this term for (4.34), we find that

E ≈ M(M + 1)

tM P̄M
t NM+1

= O

(
1

NM+1

)
. (4.35)

Thus, this error term vanishes rapidly when the number of PS antennas is

large enough. Therefore, we expect (4.33) to be highly accurate in this case.

The asymptotic performance for large antenna case with the new EH model

(4.1) can be derived by following the approximated results obtained in (4.33)

as following propositions:

Proposition 13. When the number of PS antennas increases without bound,

i.e. N →∞, the asymptotic average throughput of delay-limited mode for the
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WD-IRS link with the NLEH (4.1) is given by

RDL = R∗
[

1− 1

Γ (M)
γ

(
M,

γ
th

cq
(
P̄tN

)
)]

. (4.36)

Compared to the exact result in (4.13), the asymptotic result (4.36) is closed-

form and simpler.

Proposition 14. When the PS antenna increases, N → ∞, the asymptotic

average throughput of delay-tolerant mode for the WD-IRS link with the NLEH

(4.1) is given by

RDT =
(1− τ)

Γ (M)
(
cq
(
P̄tN

))M IM−1

(
1

cq
(
P̄tN

)
)
. (4.37)

Proposition 15. When the energy harvesting at the WD is modeled according

to the NLEH model (4.1), the asymptotic average BER of BPSK over WD-IRS

link for large N is given by

P̄BER =

[
1

2

(
1−

√
cq
(
P̄tN

)

1 + cq
(
P̄tN

)
)]M

·
M−1∑

k=0

(
M − 1 + k

k

)[
1

2

(
1 +

√
cq
(
P̄tN

)

1 + cq
(
P̄tN

)
)]k

.

(4.38)

In the large antenna case, we can simply (4.38) as

P̄BER ≈
[

1

2

(
1−

√
cPmax

1 + cPmax

)]M

·
M−1∑

k=0

(
M − 1 + k

k

)[
1

2

(
1 +

√
cPmax

1 + cPmax

)]k (4.39)

where N →∞.

Proposition 16. When the WD utilizes NLEH (4.1) model to harvest energy,

the asymptotic average BER of BDPSK over WD-IRS link for large N is

obtained by using (4.17) as

P̄BER =
1

2
[
1 + cq

(
P̄tN

)]M . (4.40)
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(4.40) can be further simplified as

P̄BER =
1

2
∑M

k=0 (cPmax)k
. (4.41)

The asymptotic expressions for the AM, LM, and RM models are easily

derived similarly. We omit the details for brevity.

4.4.6 Impact of Transmit Power Control

In massive MIMO systems, power scaling laws describe how fast the trans-

mission power can decrease with the increasing of the number of antennas

while maintaining certain performance levels [124]. For example, [88] investi-

gates massive MIMO relay networks with imperfect channel state information,

co-channel interference. Overall, energy savings are possible. The following

proposition describes the achievable throughput of our system when transmit

power control is implemented.

Proposition 17. When the number of PS antennas increases without a bound

(N → ∞), for transmit power control Pt = P0

N
, the average throughput of the

delay-tolerant mode for the NLEH model is given as

RDT =
(1− τ)

Γ (M) (cz)M
IM−1

(
1

cz

)
, (4.42)

where z = Pmax

[
erf(a(P̄0+b))−erf(ab)

1−erf(ab)

]
and P̄0 = P0Ω1GPSGWD.

Proof. Recall that h ∼ CN (0, IN). When the number of PS antennas increases

without a bound, the law of large numbers suggests that hHh
N

a.s.−−→ 1, where
a.s.−−→ denotes almost sure convergence.

Recall γ =
τηPΩ2GWD

G
IRS
||g||2

(1−τ)σ2 . For the NLEH model, the harvested energy

at the WD is P = Pmax

[
erf(a(P̄t||h||2+b))−erf(ab)

1−erf(ab)

]
and SNR can be written as

γ = cPmax

[
erf(a(P̄t||h||2+b))−erf(ab)

1−erf(ab)

]
||g||2. Assume Pt = P0

N
, where P0 is a fixed

value and P̄t = P̄0

N
. When the number of PS antennas increases (N →∞), the

SNR is given as lim
N→∞

γ = cPmax

[
erf(a(P̄0+b))−erf(ab)

1−erf(ab)

]
||g||2 = cz||g||2. Therefor,
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Table 4.2: Simulation Parameters

Parameter Description Value

T Block duration 1
d1 PS-WD distance 4 m
d2 WD-IRS distance 10 m
s Path loss exponent 2.8
σ2 Noise variance −60 dBm
a Best fit [21] 0.0086
b Best fit [21] 11.8689µW
Pmax Maximum harvested power 10.219µW
G

PS
Antenna gain at PS 11 dBi

G
WD

Antenna gain at WD 3 dBi
G

IRS
Antenna gain at IRS 11 dBi

the throughput of the delay-tolerant mode is

RDT = E [log2 (1 + γ)]

= E
[
log2

(
1 + cz||g||2

)]

=
(1− τ)

Γ (M) (cz)M
IM−1

(
1

cz

)
.

(4.43)

�

Remark 14. Note that (4.42) is a constant limit independent of the number

of antennas. It shows that when the PS antennas N grows without a bound,

the transmit power can be scaled down proportionally to 1
N

to maintain the

same capacity.

4.5 Numerical Results

Herein, we provide extensive numerical results based on our analytical deriva-

tions and simulation results based upon Monte-Carlo simulations. The latter

helps us to validate the former. Table 4.2 provides the key parameters. The

NLEH model (4.1) parameters are obtained by standard curve fitting using

the data set [48, Fig. (17.d)]. The parameters of the other three models are

then computed based upon Section 4.2.
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Figure 4.4: Average throughput of delay-limited transmission mode versus Pt
for τ = 0.3 , R = 5 bits/s/Hz, N = 4, and η = 0.4. The markers represent
simulation points.

4.5.1 Throughput of the Delay-Limited Mode

Fig. 4.4 plots the average throughput of delay-limited mode versus the PS

transmit power (Pt) for different numbers of IRS antennas (M). Fig. 4.4.

yields several observations. First, the throughput for the four EH models

increases first and then converges to a plateau as Pt increases. This coincides

with the delay-limited throughput analytical results obtained in Section 4.4, for

example, (4.13), (4.18), (4.22) and (4.26). Second, among these models, The

LM model suggests the largest throughput, which indicates the overoptimistic

nature of LM. Finally, one sees that increases M can improve the delay-limited

throughput; for instance, with Pt = −14 dBm and NLEH model, average

throughput increases from 1.6 bits/s/Hz for M = 1 to 2.7 bits/s/Hz for M = 2.

The reason is that the IRS uses MRC to receive signals, more antennas can

improve the performance.

Fig. 4.5 shows the effect of transmit rate (R) on the average throughput

of delay-limited transmission mode for four different EH models. Obviously,

the values of average throughput rise first and then drop to 0. According to
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Figure 4.5: Average throughput of delay-limited transmission mode versus R
for Pt = −10 dBm, τ = 0.4 and η = 0.4, N = 2, and M = 2.

(4.12) and (B.10), the average throughput of delay-limited mode is given as

RDL = R (1− τ)
[
1− Pr

(
γ < 2R − 1

)]
. From this equation, we can obtain

that RDL → 0 when R → 0 or R → ∞, which matches the results shown in

Fig. 4.5. Besides, the upper bound on the average throughput is R (1− τ). In

order to achieve highest average throughput of delay-limited mode, we choose

the values of R as R = 5.5 bits/s/Hz for LM and NLEH mode, R = 5 bits/s/Hz

for AM and RM.

4.5.2 Throughput of the Delay-Tolerant Mode

Fig. 4.6 shows the average throughput of delay-tolerant mode versus the trans-

mit power (Pt) at the PS for EH time fraction τ = 0.6, number of PS antennas

N = 2, number of IRS antennas M = 2, and power amplifier efficiency at WD

η = 0.8 or η = 0.4. The throughput improves with increasing η since more

harvested energy is used for information transmitted in the WD-IRS link. The

average throughput is also improved by increasing the transmit power at the

PS. However, the trends of the increment are different for the linear EH model

and nonlinear EH models. Specifically, the throughput with nonlinear mod-
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Figure 4.6: Average throughput of the delay-tolerant mode versus Pt for τ =
0.6, N = 2, and M = 2. The markers represent simulation points.

els tends to be saturated to maximum values (3.8 bits/s/Hz for η = 0.8 and

3.3 bits/s/Hz for η = 0.4) when the transmit power of the PS is high enough.

However, the average throughput of the LM model grows monotonically as the

PS transmit power increases. Clearly, this model fails to match the saturation

property of practical EH circuits.

Fig. 4.7 plots the average throughput of delay-tolerant transmission mode

versus the number of PS antennas (N) for transmit power Pt = −15 dBm,

energy harvest time fraction τ = 0.7, and power amplifier efficiency at WD

η = 0.6. The number of IRS antennas (M) is either 2 or 4. It is seen that

the value of average throughput for M = 4 is larger than that M = 2 which

indicates adding more antennas at the IRS improves the throughput. We see

that the asymptotic results (dashed lines) quickly approach the exact (solid

lines) and simulation curves as the number of AP antennas increases. Besides,

increasing the number of PS antennas boosts the average throughput of delay-

tolerant mode when N ≤ 7 and for N > 7, the saturation status is shown in

nonlinear models whereas the curves of LM increasing without bound. Thus,

LM is not appropriate for modeling the practical EH system. Especially when
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Figure 4.7: Average throughput of delay-tolerant mode versus N for Pt =
−15 dBm, τ = 0.7 and η = 0.6. The markers represent simulation points.
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Figure 4.8: Average throughput of delay-tolerant mode versus τ for N = 2,
M = 3, and η = 0.6. The markers represent simulation points.
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Figure 4.9: P̄BER versus Pt for τ = 0.4, N = 2, τ = 0.3 and η = 0.6. The
markers represent simulation points.

the transmit power is large. Fig. 4.8 plots the average throughput of delay-

tolerant mode versus EH time fraction τ to demonstrate the impact of τ to

this mode. It can be seen that a throughput-optimal EH time exists for four

EH models. The optimal EH time for four EH models are around τ = 0.2,

which balances the downlink EH, and uplink information transfer, perfectly.

Moreover, average throughput can be improved by increasing the transmit

power at the PS.

4.5.3 BER Performance

In Fig. 4.9, the average BER of BDPSK versus transmit power (Pt) at the

PS is investigated. The BERs of nonlinear EH models, i.e., NLEH, AM and

RM models, first decrease and then flatten as the transmit power of the PS

increases. In contrast, the LM model suggests that the BER decreases ar-

bitrarily as Pt increases. These coincide with the characteristics of four EH

models shown in Fig. 4.9. Therefore, using the LM in WPCN system design

may result in misleading and wrong conclusions. However, nonlinear EH mod-

els show more practical performances. Moreover, Fig. 4.9 also shows adding
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Figure 4.10: P̄BER versus N for Pt = −18 dBm, M = 2, and η = 0.4. The
markers represent simulation points.

more antennas at the PS reduces BER of the system significantly.

Fig. 4.10 shows the BER of BDPSK versus the number of PS antennas (N)

for transmit power Pt = −18 dBm, power amplifier efficiency at WD η = 0.4,

and number of IRS antenna M = 2. Fig. 4.11 plots the BER of BPSK versus

N for Pt = −20 dBm, τ = 0.5, and M = 2. The red horizontal lines in both

figures are asymptotic results derived from (4.41) and (4.39), respectively. It

can be seen that red lines are lower bound for nonlinear EH models whereas LM

does not have lower bound. Increasing the number of PS transmit antennas

decreases the BER in both figures. Dashed lines are asymptotic results which

gradually tend to the exact values (solid lines) as N increases in both figures.

It is also observed that LM has smallest BER values of BDPSK and BPSK

but this only works for small transmit power region. In Fig. 4.10, BER of

BDPSK for τ = 0.5 outperforms the one for τ = 0.3 and in Fig. 4.11, we see

that BER is improved by increasing η.
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Figure 4.11: P̄BER versus N for Pt = −20 dBm, M = 2, and τ = 0.5. The
markers represent simulation points.

4.6 Summary

Many studies on wireless powered networks assume the linear EH model for

performance analysis and resource allocation. In contrast, we proposed a new

nonlinear EH model to incorporate the saturation region of practical EH cir-

cuits. It is based on the error function and has three parameters, which can

be determined by a best-fit search of an experiment data set. For comparative

evaluation purposes, we suggested an asymptotic model for the high transmit

power regime and also described the linear as well as rational EH models.

To evaluate these models, we studied the average throughput of delay-

limited and delay-tolerant transmission modes of the single-user network (Fig.

4.3) as well as average BER of BPSK and BDPSK. We also investigated the

impact of large number of antennas at the PS and the impact of power control.

Moreover, we investigated resource allocation for the WPCN to maximize the

rate fairness under the proposed EH models. The results were validated via

Monte-Carlo simulations and the four models were compared in Section 4.5.

Our main findings can be summarized as follows:
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1. The newly proposed NLEH and AM models reach the saturation state,

which coincides with the practical EH circuits character. The rational

EH is also moderately accurate. However, the standard linear model is

too optimistic in the high transmit power regime. Thus, the use of this

model for design and analysis purposes should be made with abundant

caution.

2. The throughput and BER performances can be improved by increasing

the number of antennas at the PS, the number of antennas at the IRS

and power amplifier efficiency at WD. However, for nonlinear EH models,

the performance saturation will happen for large transmit powers.
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Chapter 5

Conclusion

This thesis explored performances of wireless powered communication net-

works with energy harvesting. Two practical scenarios: imperfect channel

state information and nonlinear energy harvesting models were considered.

In Chapter 2, the models of small-scale fading were presented. As well,

existing energy harvesting models were described. The concept of high SNR

analysis was also explained.

Chapter 3 investigated the impact of channel estimation errors on a multi-

antenna hybrid AP and single-antenna user WPCN. We first analyzed the

exact and asymptotic expressions of average throughput for delay-tolerant

and delay-limit modes. Then, the closed-form and asymptotic expressions

of BER/SER were derived. The results showed that in the high SNR region,

the performance of one transmit and receive antenna coincided with that of

multiple antennas at the AP. Since in the downlink, when the transmit power

at the AP is large enough, the harvested energy at the user from one path is

sufficient for the uplink data transmission.

Chapter 4 proposed a new nonlinear EH model. This model has three

parameters, which can be determined by simple curve fitting with measured

data. This model captures the saturation behavior of practical circuits and

tightly matches with the measurement data. A simpler asymptotic version of

the new nonlinear EH model was also developed. For comparative evaluation

purposes, the linear and rational EH models were also described. We first

compared the character of four EH models and then evaluated their perfor-
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mances in a WPCN. We studied the average throughput of delay-limited mode

and delay-tolerant mode as well as the average BER. The impact of a large

number of antennas on the power station was also considered. The perfor-

mances of nonlinear EH models had saturation states in high transmit power

region. However, the linear model increased without bound as the transmit

power increased.

5.1 Future Research Directions

Although the effect of imperfect CSI on a WPCN has been the focus of Chapter

3, several interesting future directions suggest by themselves. Firstly, our work

may also be extended for non-orthogonal multiple access (NOMA) assisted

WPCNs. For example, the exact and asymptotic performances of imperfect

CSI can be evaluated in NOMA WPCNs. Secondly, we have assumed inde-

pendent fading across the multiple AP antennas. Although this assumption

roughly holds for the most practical operating conditions, correlated fading

can occur sometimes. So analytical tools for the correlated fading case are

important to be developed. Finally, our work can also be extended to MIMO

systems.

In Chapter 4, the study of performance analysis and resource allocation for

WPCNs with nonlinear/linear EH models points to several interesting future

directions. Firstly, the new nonlinear and asymptotic EH models can be used

to study simultaneous wireless information and power transfer systems [125].

Secondly, these new models may also be extended for EH applications of se-

cure cooperative communications networks, secrecy performance [62], resource

allocations, and full-duplex systems [7] as well. Thirdly, our system may be

studied over other channel models, i.e., Nakagami-m, Rician, and others.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Proposition 1

To develop this analysis, we must go back to the definition of γA. By using it

and revisiting (3.22), we can exactly express the delay-limited throughput as

Pout = Pr

(
XY <

(1− τ) γth
τηγ

)
. (A.1)

As mentioned before, to find the asymptotics of the outage, we need the

series expansion of the PDF of XY , similar to (2.9). We then have to consider

the behaviour of Kn(x) as x → 0. But the expansion of this function near

x = 0 has logarithmic terms and negative powers of x [81]. Due to this reason,

the classical approach is not viable. Alternatively, we use the two-step process,

which was earlier used to derived the asymptotic MGF. The first step is to

average over X while keeping Y constant. Since the PDF of X is a weight

sum (3.5), the outage for conditioned on Y , Pout |Y , may then be written as

Pout |Y =
N∑

n=1

A (n) Γ (n)

[
1− e−∆

y

n−1∑

l=0

(
∆

y

)l
1

l!

]
. (A.2)

The second step is to average the conditional outage over the PDF of Y
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when γ →∞. This can be done as follows:

Pout =

∫ ∞

0

Pout |Y fY (y) dy

(a)
=

N∑

n=1

N∑

m=1

B (m,n) Γ (n)

∫ ∞

0

[
1− e−∆

y

n−1∑

l=0

(
∆

y

)l
1

l!

]

︸ ︷︷ ︸
I

ym−1e−ydy

(b)
= 2

N∑

n=1

N∑

m=1

B (m,n) ∆
m+n

2 Kn−m
(

2
√

∆
)
,

(A.3)

where Step (a) is obtained by substituting the PDF of Y in (A.2); The proof

of Step (b) is obtained in the Appendix A.2.

Therefore, the average throughput can be written as (3.24).

A.2 Approximation for OP

Here, we derive the approximation expression of the term in Step (a) in (A.3).

Recall that ∆ = γth(1−τ)
τηγ

, so when γ →∞, ∆→ 0 and I can be approximated

as

I = 1− e−∆
y

n−1∑

l=0

(
∆

y

)l
1

l!

(a)
= e−

∆
y

[
e

∆
y −

n−1∑

l=0

(
∆

y

)l
1

l!

]

(b)
= e−

∆
y

∞∑

l=n

(
∆

y

)l
1

l!

(c)≈ e−
∆
y

(
∆

y

)n
1

n!
,

(A.4)

where, (a) follows readily; (b) is due to Taylor expansion e
∆
y =

∑∞
l=0

(
∆
y

)l
1
l!
;

When ∆ → 0, the terms for l ≥ n + 1 are much smaller than the l = n-th

term, so we can ignore all the terms for which l ≥ n+ 1. Therefore, we obtain

(c).
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The integral in Step (a) in (A.3) can be approximated as

∫ ∞

0

[
1− e−∆

y

n−1∑

l=0

(
∆

y

)l
1

l!

]
ym−1e−ydy

≈ ∆n 1

n!

∫ ∞

0

e−
∆
y
−yym−n−1dy

= ∆
m+n

2 Kn−m
(

2
√

∆
)
,

(A.5)

which is obtained by using [81, Eq. (3.471.9)]. By substituting this in (A.3),

we obtain the final result.

A.3 Proof of Proposition 2

For the imperfect CSI case, where 0 ≤ ρ < 1, when SNR is large, the first

term of (A.3) will be the dominant term, and thus the whole sum in (A.3) can

be approximated by it. For the term with m = 1 and n = 1, equation (b) in

(A.3) can be written as

Pout ≈ 2
(
1− ρ2

)2(N−1)
∆K0

(
2
√

∆
)

(a)
= 2

(
1− ρ2

)2(N−1)
∆

(
−1

2
ln ∆− γEM

)
+O

(
∆2
)
.

(b)
=
(
1− ρ2

)2(N−1)
(

ln

(
cγ

γth

)
− 2γEM

)
γth

cγ

(A.6)

To obtain (a), we note that near x = 0, the Bessel function can be expanded

as K0 (2
√
x) = −1

2
lnx− γEM + O (x) . We can use this expansion because as

γ →∞, ∆→ 0. (b) represents the equation in γ.
Therefore, the average throughput is expressed as

RDL = R∗
[
1−

(
1− ρ2

)2(N−1)
(
ln

(
cγ

γth

)
− 2γEM

)
γth

cγ

]
. (A.7)

For the perfect CSI case, when ρ = 1, B (m,n) exists only when m = N

and n = N , so (A.3) can be written as

Pout ≈
2

Γ2 (N)
∆NK0

(
2
√

∆
)

(a)
=

2

Γ2 (N)
∆N

(
−1

2
ln ∆− γEM

)
+O

(
∆N+1

)

(b)≈ 1

Γ2 (N)

(
ln

(
cγ

γth

)
− 2γEM

)(
γth

cγ

)N
.

(A.8)
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The proof of this is very similar to that of (A.6) and therefore the details are

omitted. Thus, the average throughput can be expressed as

RDL = R∗
[

1− 1

Γ2 (N)

(
ln

(
cγ

γth

)
− 2γEM

)(
γth

cγ

)N]
. (A.9)

A.4 Proof of Proposition 6

First, we show the BER by the Q function, and then take the expectation for

the BER to obtain the average BER. Therefore, the BER of BPSK can be

calculated as

P̄BER = E
[
Q
(√

2cγXY
)]
, (A.10)

where the Gaussian Q-function is given byQ (x) = 1√
2π

∫∞
x
e−t

2/2dt = 1
2
√
π
Γ
(

1
2
, x

2

2

)
.

Therefore, (A.10) can be rewritten as

P̄BER = E
[

1

2
√
π

Γ

(
1

2
, cγXY

)]
. (A.11)

Next, we use two steps to find the asymptotic BER.

In Step 1, we average (A.11) over X while keeping Y constant. Since the

PDF of X is a weighted sum of exponential terms (3.5), the BER conditional

on Y may be written as

P̄BER|Y =
N∑

n=1

A (n)

2
√
π

∫ ∞

0

Γ

(
1

2
, cγxy

)
xn−1e−xdx

(a)
=

N∑

n=1

A (n)

2n
√
π

√
cγyΓ

(
n+ 1

2

)

(1 + cγy)n+ 1
2

2F1

(
1, n+

1

2
;n+ 1;

1

1 + cγy

)

(b)≈
N∑

n=1

A (n)

2n
√
π

Γ
(
n+ 1

2

)

(1 + cγy)n

(c)≈ 1

4

1

1 + cγy
.

(A.12)

Step (a) is obtained by calculating the integral part of the conditional BER

given by Y and using [81, Eq. (6.455.1)]; 2F1 (a, b; c; z) is hypergeometric func-

tion [81, Eq. (9.10)] which can be written by the power series when |z| < 1.

2F1 (a, b; c; z) =
∑∞

k=0
(a)k(b)k

(c)k

zk

k!
, where if k = 0, (q)k = 1 and if k > 0,

101



(q)k = q (q + 1) · · · (q + k − 1). In step (b), since γ →∞, the parts for which

n ≥ 2 is small compared to those with n = 1, so the parts for n ≥ 0 can be

omitted. After some algebraic manipulations, we get (c).

Step 2: we average the conditional BER over Y . The BER of BPSK may

then be written as follows:

P̄BER =
N∑

m=1

B (m, 1)

4

∫ ∞

0

1

1 + cγy
ym−1e−ydy

=
N∑

m=1

B (m, 1)

4cγ

[
(−1)m−2

(
1

cγ

)m−1

e
1
cγEi

(
− 1

cγ

)

+
m−1∑

k=1

Γ (k)

(
− 1

cγ

)m−k−1
]
,

(A.13)

where the integral is obtained by [81, Eq. (3.353.5)].

A.5 Proof of Proposition 7

To this end, we can further simplify the asymptotic result in (A.13). When

the CSI is imperfect, 0 ≤ ρ < 1, the dominant part occurs when the number

of antennas equals to one. Thus, only keeping the dominant part, we find

P̄BER ≈
(1− ρ2)

2(N−1)

4

∫ ∞

0

e−y

1 + cγy
dy

≈ (1− ρ2)
2(N−1)

4
(cγ)−1 [ln cγ − γEM ] .

(A.14)

The derivation follows from Corollary 3.

When the CSI is estimated perfectly, ρ = 1, the value of B (m,n) is not

zero only when m = N and n = N , so (A.12) can be further simplified as

P̄BER|Y ≈
A (N)

2N
√
π

Γ
(
N + 1

2

)

(1 + cγy)N
. (A.15)

By averaging this over the PDF of Y, we get

P̄BER =
Γ
(
N + 1

2

)

2N
√
πΓ2 (N)

∫ ∞

0

yN−1e−y

(1 + cγy)N
dy

(a)
=

Γ
(
N + 1

2

)

2N
√
πΓ (N) (tcγ)N

Ψ

(
N, 1;

1

cγ

)
,

(A.16)

where (a) is obtained by applying [81, Eq. (9.211.4)].
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Appendix B

Proofs for Chapter 4

B.1 Generalized Gauss–Laguerre Quadrature

When analyzing the performance of the network (Fig. 4.3), we find that the

following integral must be computed often:

I =

∫ ∞

0

g(x)
xαe−x

Γ(α + 1)
dx. (B.1)

Unfortunately, since g(x) is a complicated function in most cases, a closed-

form solution to (B.1) is elusive. Fortunately, the evaluation of (B.1) is ex-

tremely simple with numerical quadrature. Since the details of this method are

not widely available, we briefly describe it herewith. It is based on the Gauss-

Laguerre quadrature. The main idea is to use function w(x) = xαe−x, 0 ≤
x < ∞, to generate a set of orthogonal polynomials. Then, g(x) in (B.1) is

expressed as the weighted sum of these polynomials. Note that if g(x) is a

finite polynomial, then this expansion will be exact and error free. However,

this is not the case in general. In any case, with this polynomial expansion,

we can compute (B.1) as

I =
n∑

i=1

wig(xi) + En, (B.2)

where En is an error term. The nodes {xk} are the roots of generalized La-

guerre polynomials and weights {wk} are selected such that En = 0 if g(x)

is a polynomial of degree ≤ n [126]. Of course, in our computations, g(x) is

not a polynomial, but it is a smooth function which can be approximated by

a polynomial with sufficiently high degree. This means En → 0 if we choose
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n large enough. Fortunately, the nodes xk and weights wk can be computed

easily. This is due to the fact that {xk} are the eigenvalues of the following,

symmetric tridiagonal Jacobi matrix [127]:

Jn =




u0
√
v1√

v1 u1
√
v2

√
v2

. . . . . .

. . . un−2
√
vn−1√

vn−1 un−1




(B.3)

where uk = 2k+α+1 and vk = k (k + α) , k = 0, . . . n−1. Thus, the eigenvalues

of this matrix and the formula (B.3) can be easily computed in any software

environment such as MATLAB with only a few lines. For instance, we give

the following MATLAB code:

function[x, w] = GaussLagurre(n, a)

% Generate nodes and weights for

% Gauss-Lagurre quadrature.

% w(x) = x ^a * e ^(-x)

u = (2 * (0 : n-1) + a + 1);

v= sqrt((1 : n - 1) .^2 + a * (1 : n-1));

[V, D] = eig(diag(u) + diag(v, 1)

+ diag(v, -1));

[x, i] = sort(diag(D));

Vtop = V(:, i)’;

w = Vtop(:, 1).^2;

B.2 Necessary Integral

The following integral (B.4) frequently arises in the problems of ergodic ca-

pacity analysis and others. This integral has been derived in [128, Eq. (78)] as

a summation of incomplete upper gamma function, which is more complicated

than (B.5). For this reason, we give a proof below.

Lemma 3. Let us consider

In(u) =

∫ ∞

0

e−uxxn log2(1 + x)dx, (B.4)
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where n ≥ 0 is a positive integer and u > 0. We can prove that

In(u) = log2(e)

[
euE1(u)

n∑

k=0

n!(−1)k

k!un−k+1
+

n∑

k=1

k∑

l=1

l−1∑

m=0

n!(−1)k+l

lm!(k − l)!un−k+1−m+l

]
,

(B.5)

where n! is the factorial and and E1(x) =
∫∞

1
e−xt
t
dt is the exponential integral

function.

Proof. We note that

In(u) = (−1)n
dnI0(u)

dun
(B.6)

for n = 0, 1, . . . .

It is easy to show that

I0(u) = log2(e)
eu

u

∫ ∞

1

e−ut

t
dt

︸ ︷︷ ︸
=E1(u)

. (B.7)

The n-th derivative of I0(u) can be derived as follows:

dnI0(u)

dun
(a)
= log2(e)

dn

dun

(
eu

u
E1(u)

)

(b)
= log2(e)

n∑

k=0

(
n

k

)
dn−k [u−1]

dun−k
dk [euE1(u)]

duk

(c)
= log2(e)

n∑

k=0

(
n

k

)
(−1)n−k(n− k)!

un−k+1

dk [euE1(u)]

duk

(d)
= log2(e)

n∑

k=0

n!(−1)n−k

k!un−k+1

dk [euE1(u)]

duk
.

(B.8)

The above steps are based upon the standard formula for the derivative of the

product of two functions.
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The k-th derivative of euE1(u) can be derived as follows:

dk [euE1(u)]

duk
(a)
=

dk

duk

(
eu
∫ ∞

1

e−ut

t
dt

)

(b)
=

dk

duk

(∫ ∞

1

e−u(t−1)

t
dt

)

(c)
= (−1)k

∫ ∞

1

(t− 1)ke−u(t−1)

t
dt

(d)
= (−1)k

∫ ∞

1

k∑

l=0

(
k

l

)
tl(−1)k−l

e−u(t−1)

t
dt

(e)
=

[
euE1(u) +

∫ ∞

1

k∑

l=1

(
k

l

)
tl(−1)l

e−u(t−1)

t
dt

]

(f)
=

[
euE1(u) +

∫ ∞

1

k∑

l=1

(
k

l

)
tl−1(−1)le−u(t−1)dt

]

(g)
=

[
euE1(u) +

∫ ∞

0

k∑

l=1

(
k

l

)
(t+ 1)l−1(−1)le−utdt

]

(h)
=

[
euE1(u) +

∫ ∞

0

(−1)l
k∑

l=1

l−1∑

m=0

(
k

l

)(
l − 1

m

)
tl−1−me−utdt

]

(i)
=

[
euE1(u) + (−1)l

k∑

l=1

l−1∑

m=0

(
k

l

)(
l − 1

m

)
(l −m− 1)!

ul−m

]
.

(B.9)

Since the above steps are self-explanatory, we omit the details. By substituting

(B.9) in (B.8) and after some manipulations, we obtain (B.5). �

B.3 Proof of Proposition 1

Since the received signal power at the IRS is random, it is possible that the

SNR may drop below the required threshold, resulting in an outage. Thus,

OP is defined as

Pout = Pr (γ < γ
th

) = Pr

(
||g||2 < γ

th

cPh

)
, (B.10)

where γ
th

= 2R − 1 is a predetermined threshold.

In order to evaluate (B.10), we first average over ||g||2 while keeping Ph
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constant:

Pout |Ph =

∫ γ
th
cPh

0

1

Γ (M)
yM−1e−ydy

(a)
=

1

Γ (M)
γ

(
M,

γ
th

cPh

)
,

(B.11)

where the above follows from the fact that ||g||2 is Gamma distributed and

the incomplete Gamma function is given by [81, Eq. (5.531.1)].

Second, since Ph is a function of ||h||2, we must average the conditional

outage (B.11) over the PDF of ||h||2. This can be done as follows

Pout =

∫ ∞

0

Pout |Ph f||h||2 (x) dx

=
1

Γ (N) Γ (M)

∫ ∞

0

γ

(
M,

γ
th

cq
(
P̄tx
)
)
xN−1e−xdx.

(B.12)

Finally, inserting (B.12) into (4.12), the average throughput of delay-limited

mode can be expressed as (4.13).

B.4 Proof of Proposition 2

Starting from the definition of the EC, we have

Ce = E
[
log2

(
1 + cPh||g||2

)]

(a)
= E

[
1

Γ (M)

∫ ∞

0

log2 (1 + cPhy) yM−1e−ydy

]

(b)
= E

[
1

Γ (M)
(cPh)

−M
∫ ∞

0

log2 (1 + x)xM−1e
− x
cPh dx

]

(c)
= E

[
(cPh)

−M

Γ (M)
IM−1

(
1

cPh

)]

(d)
=

1

Γ (N) Γ (M)

∫ ∞

0

IM−1

(
1

cq
(
P̄tx
)
)

xN−1e−x
(
cq
(
P̄tx
))M dx,

(B.13)

where Step (a) is obtained by substituting the PDF of ||g||2 into the definition

of ergodic capacity; Let x = cPhy we obtain Step (b); Step (c) follows the

Lemma 1; (d) is due to averaging (c) over ||h||2.
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B.5 Proof of Proposition 3

The average BER of BPSK for a communication link that has a single antenna

transmitter and multiple receive antennas with maximal ratio combining has

been studied in [45, Section(14.4)]. The received SNR in this system is given

by γ = c||g||2. This system is thus comparable to our WD-IRS link in Fig. 4,

if Ph is assumed to be constant. Using this analysis, we find

P̄BER = E
[
Q
(√

2cPh||g||2
)]

(a)
= E

[[
1

2
(1− η1)

]M M−1∑

k=0

(
M − 1 + k

k

)[
1

2
(1 + η1)

]k]
,

(B.14)

where η1 =

√
cq(P̄t||h||2)

1+cq(P̄t||h||2)
and the Gaussian Q-function is given by Q (x) =

1√
2π

∫∞
x
e−t

2/2dt = 1
2
√
π
Γ
(

1
2
, x

2

2

)
. Step (a) above is obtained by [45, Eq. (14.4.15)].

Averaging over ||h||2, we have (4.16).

B.6 Proof of Proposition 4

The conditional BER of BDPSK can be expressed as Pc(x) = 1
2
e−x. Thus, the

average BER is related to the MGF method [90]. Since by definition MGF

of X is the expected value of random variable etX , where for the problem at

hand X is the received SNR at the IRS, we first derive the MGF of it as

M (t) = E
[
e−cPh||g||

2t
]

(a)
= E

[
1

1 + ctq (Pt||h||2)

]M

(b)
=

1

Γ (N)

∫ ∞

0

xN−1e−x

[1 + ctq (Ptx)]M
dx,

(B.15)

where (a) is obtained by taking the expectation over the distribution of ||g||2,

which is Gamma distributed and thus follows from and then averaging over

||h||2, we can have (b).

Thus, the average BER of BDPSK can be obtained via (B.15), which results

in (4.17).
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