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After a- br1ef rev1ew of theor:es and observatxons of i

l Cote

lee cyclogenes1s,,an ana1y51s of the p;éferred redions for W'
lee. cyclone formation in Western Canada_zs presentﬂa : The'
quest1on 1s raised as to whether or notbdetalls in the
pattern of cyclogene51s locatrons'hav% a- phys1oa1 orrgln or
are statlst1ca1 fluctuations due to a smalé sample s1ze.

The bulk of the the51s 1nvolves the study of a 11near
h§drostat1c mode} of the" steady flow of stably stratlfled
air over three- d1men51onal mountains wlth ellxpt1cal horl-

zontal cross-sections. Analytlcal expre551ons for the iur—

face pressure perturbatlon are used to examlne the dlffer-}f:

ences between two- and three ~dimensional fléms. @The mailmum

V“&
\
[ ]

pressure perturbatlon due to a .hill with. 2 c1rcular cross-g

section is abbut 30% less than that for an 1nf1n1te1y long

Py

\.'

ridge perpendzcular to the mean flow. Fot-a'barrier three
to four times as wide across the wind a; along the mean
flow,,the assumption of two- dlmen51ona1 flow, in vert1cal
planes, leads to an extreme pressure petturbation differing
from the three-dimensional solution: ‘by only" about 10%, For
an e111pt1cal barrler w1th an axis parallel to the mean
flow, the maximum difference between the pressure fields
for\two" and three-dimensional flows occurs along that axis,
rather than in the region of the maximufn yelocity component
perpendicular to the nean flow. The horlzontal divergence:

and lateral streamline deflection assoc1ated w1th this vel-

ocity component are also considered. aFor.a,rﬁdge curved in
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a hor1zontaI plane, the 3ressure perﬁurbat1on was found to

- J

be enhanced on the convex 51de and?weakened on the concave
o 3T & o .
. =, @ . . 2

| srde. . ﬁ.“g I . )
5 Within~ the context of”the same 11near, hydrostat1c

model . the force e&erted by the air on the terraln surface

€,

Y

1s stud1ed ’The reactzon force, or drag, of a un1t length

ot thévbarrler on the flow is Calculated for a var1ety Qj

? 1nf1n1tely extended crosswind ridges and for isolated three-
dlmens1ona1 mountalns with ell1pt1cal hor1zontal Cross-

sect1ons. In add1tlon the drag per unit length is deter-~
mined for barr1er shapes‘wh1ch have been smoothed b} appli-
catlon of a: dlfferentlal operator or by . truncatxon of a
spectral series for the terrain helght Also, the total
force exerted on an elliptical mountain by the incoming
airstream is found as a function of the garrier eccentricity
‘and orientation. If the upstream flow is not parallel to a'

" -
. : .V
symmetry axis of tpe_terraln, there is a transverse force on

L]

the air which can be an appreciable fraction ~f the g@drag
force acting in the direction oprosite to the mean wing.
Finally, the application of the ];g%ar model to flow

over a realistic representatinn ~7 the "rrearapby in Western

Canada 1s considered.
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NOTATION

Beforeireferring to the list of symbols that is given
below, the reader may find it helpful to note the following'
gu1de11nes that vere employed in choosang the notat1on used
throughout the thesis. ‘

For some of the most frequently occurring variables, a
subscript, 2 or 2S, is used to’denote the special case of
two-dimenéion flow (in a vertical plane)vo§er an infinife
ridge, or over an isolafed'oarrier, respectively. Also, the
subscript, 3 or 3C, is used for the oases‘of-threew
dimensionélvflow over barfiers oith elliptical or circular
horizontal cross-soctions, respectively. The subscript, m,
-in most cases, is used to denote the magnitude’ofithe
e#treme value of a'variablé. Subscripts are also used to
denote differentia;ioné(see Chapter 3). To simplify the
list of symbols that foilows, a separate entfy is not
inciuded for each subscripted variation of a quantity.

Also, variableo which appear onldy in the intermediato stages
of a calculation are not included in the symbe) table. Fr»
several variables, appearing with a prime ( ), a corres
ponding dxmensaonl°== form is defined w1thouf the prime,

The most important dimensionless variables are defined in
Appendix B. Tn annther context, a prime denctes a quantity
referred o 3 barrier which has been rotated from a standard
positinn An overbar is used to denote variables describing
the mean flow. Angular brackets aroind a variab]e, V., as in

V>, are nged tn irAdicate that the guantity vefere pn a Fnen



v

in which the barrier shape has been modified by: curvature in

a{horizqnt&l-plane (Chapter 6) or by smoothing (Chapter 11).

SYMBOL . DEFINITION -
a - horizontal length scale, usually along the x axis
A - intense, mobile cyclone ‘type (Chapter 2)

- X~z cross-sectional area of a barrier (Chapter 4)

- amplitude of sinuscidal ridge displacements
(Chapter 6) Co

- amplitude of constant factor in sinusoidal
modulation of terrain height' (Chapter 9) -

Ai,,A; - type A cyclone with one or two periods of
_ intensification, respectively

A - Fourier transform (with respect to y) of barrier
cross-sectional area
b - horizontal length scale, usually along the y axis
\\\\é - local cyclone type of moderate intensity (Chapter 2)
BN - amplitude of sinusoidal modulation of terrain height
(Chapter 9) :
- factor appearing in expression for the total force
on an elliptical barrier (Chapters 10, 11)
B ~.2n elliptic integral, defined in (Q.1)
BF Byrd and Friedman (1971), a reference for elliptic
integrals :
© - speed of sound in the mean flow, defined by. (3.8)
C - weak, mobile gyclone type (Cﬁapter 2) -
, = factor appearing in expression for the total force
on an elliptical barrier (Chapters 10, 11)
C_ - an elliptic integral, defined in (Q.1) ’
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d - drég,per unit crosswind lemg%p of a barrier
D - weak, 1oéai cyclone type_(Chaﬁ;gr'Z)
- total drag on a barrier (Chapters 8, 10)
, | . ‘ P
e . - the number 2.718+ @in
E - complete elliptic integra] of thggggcond kind
) . > \ il \;:,1
f - Coriolis -parameter :
-> .
f° - force per unit crosswind length on avbarrier
F(a,B,v;2z) - hypergeometric function &
F° - the total force on a barrier Véu
g - acceleration due to.gravity
G - factor appearing in expressions for the total force

on a barrier, defined by (10.5)

GR - Gradshteyn and Ryzhik (1965), a mathematical

reference

h - barrier height (dimensionless forms appear in upper
case)

hb - amplitude factor in barrier height and vertical
scaling factor

h, - spectral expansion coefficients for the height field
(Chapter 11)

h - Fourier transform.of terrain height with respect to
x alone, defined by (3.22) or (3.26) (dimensionless
forms appear in upper case)

h - Fourier transform of terrain height with respe~t to
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x and y, defined by (3.17) (dimensionless forms

‘appear in upper case) :

Hermite polyﬁomia; . S ,

Struve function

»

scale height for the mean-flow density, defined in
(3.9) . e

a square root of -1

factor, defined by (F.3), appearing in the normal-,
ization for the horizontal divergence for flow
over an elliptical barrier : :

Bessel function

horizontal wave number component (corresponding to
the x coordinate in the physical domain)
snodulus of elliptic integral - ‘

cemplete elliptic integral of the first kind
Bessel function of imaginary argument

[ .
horizontal wave number component(corresponding to

the y coordinate in the pbysical domain)

horizontal length scale in the direction parallel
to the mean flow

vertical wave number, defined by (3.19) (ﬁi;p the

+ sign), or (3.24) e
. - . o A D
number of”ﬁ&ingshused in a-discrete E@urﬁerffrahsmu
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length

Bessel function of the second kind y
Brunt-vVaisala or buoyancy frequency

pressure perturbation (dimensionless form in»uﬁber
case) ‘ R

pfessure associated geostrophi&ally with the mean’
flow ’ ‘ .

total pressure (p +P) v LT ™~

gas constant for dry air (Chapters 1 and 3)
dimensionless radial elliptical polar coordinate,
defined by (B.1) '

normalized radius of curvature, defired by (6.13)

e

dimensionless measure comparing the drag per unit
length of a smoothed barrier to that expected from
a quadratic dependence on height

mean radius of the Eafth=6371 km

as Ry, except for total arag

as Ry, except for tota) transverse force
smoothing. operator defined hy (11.2) or (11.8)

integrals defined by (11.13) and (1'1.16), respe~

tivelf, arising in the ralrulation nf the force
en a gmoothed barrier
Y

time variable \
transverse force on a barrier.per unit crossving

L

- transverse component of the total force an a-barrier

)

XX
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‘terrain height (Eg. 11.21)

~

¢

temperature of’ tl‘ mean flow

X component of velocity perturbation

~

mean flow speed (mean wind vector is'along the
positive x direction, unless otherwise noted)

y component of velocity perturbation

terrain volume ' - . <

vertical (z) component of velocity perturbation

. 7.

horizontal Cartesian coordinate, increasing towards
the right in most figures U

normalized coordinate = x/a .

distance from the terrain‘peak‘to_the‘positioniof
the extreme pressure perturbation’ '

~

horizontal Cartesiaq coordinate, increasing towards
the top in most figures n

4]

normglized'cookainate‘= y/b

»

vertical Cartesian coordinate, increasing‘upwards

¢ i
. kS

‘parameter determining the overall horuzpntal scale

of a barrier (see Appendix C)

Rqssby_parémeper‘; af /3y (Chapter 1) :
parametér appearing in a spectral expangion of the

¥

i i

B . Y.ow
.I"

ratio of horizontal scaling lengths (=a/b)

ratio ogispecific ﬁeats'(=1}4)_

xxi
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gamma function

Dirac delta function (Chapter 3) o -
lateral displacement of a streamline (Chapter 7)
terrain-shape parameter appearing in the logarithmic
type of barrier, defined in (9.2) '

. ,

-

parameter taking the value 0 or 1 according to

: approximations made in Chapter 3

' . . . ‘
grid spacing for a discrete Fourier transform

parameter specifying the degree of sm&bthing.of lee
cyclogenesis freguency per unit area maps (Chapter 2)
eccentricity of an elliptical barrier, defined by
(4.5) .

separation of double ridges (Section 9.3)

vertical component of vorticity, defined 3t the end
of Chapter 3 ’

2
<

cyclogenesis frequency per unit area (Chapter 2)
vertical displacement of ‘a streamline
(Chapters 3,.7) .

unit step function (0 or 1 aécording to whether it=
arqument is negative or positive, respectively)
angular elliptical polar conrdinate, defined in
(B.1)

dimensinnless wave numher varjatle {-¥a)

longitude (Chapters 2 and 12) :
dimensionless wave number coordinate (~/bh)

» terrain shape parameter, dsfineﬂ in (4.1)

a parameter entering the probability density assumed
for the location of cyclonenesis events (Chapter ?2)
> terrain-ghape parameter defined in (g.2)

- |.‘(n7)7) (("hprdwv <)
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- the number 3.14159+

‘@

elliptic integral~ofithe third kind -, " .

radial elliptical pblér‘coordinate irf the wave
number domain, defined in-(B.2) -
density péx;urbation‘

density of mean flow, defined by (3.9)

value of p at z=0

" parameter controlling the degree of.smoothiﬁg by a

differential operator (Chapter 11) .

Voo

parameter contrdllihg_the degree of curvature‘of
parabolic terrain (Chapter’ 6)

2

latitude (Chapters 2 and. 12) —
angular elliptical polar cogrdinate in the wave
number .domain, defined in (B.2)

counterclockwise angle thnohgh which a barrier is
rotated relative to some standard orientation.

~ counterclockwise angle between the mean wind vector

and the x axis (east)

terrain-shape parameter appearing in the ércéot type
of barrier, defined in (9.2) :
A}

iquadraticvform in smoothing coefficients, defihed’by

(11.12)

o

angular frequency of sinusoidal modulation of

.ridgeline displacement ~{Chapter 6) or terrain height

(Chapter 9)

-

two-dimensiona) Laplacian operator (3%/3x2+32/3y?)
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CHAPTER 1

INTRODUCTION

1;1 Motivafio&.
o . .

» The orlglnal goal of my thesis research was to 1mprove
‘ou; understandlng of lee cyclogenes1s the formation of a
low—pressure-d@nter on the downwind side of a mountain
range, through the technique of numerical mode]liﬁg. How
ever, like an airstream approaching a mountajn of finite
length, the easiest path to take may be to skirt around the
edges of the obstac]e blocking one's way, T‘P work sum-
marized in this thesws fépresents,a rather large devintinsn
from the proposed course of action.

As a}fitSt sfep in my.§tudy of mowntaimairflow, an
exéminaéion was made of the statistice compiled by Chung
(1972) on the frequency of occurrence of cyclogenesis in the
lee of the Rocky Mountains-of Western Canada as a function
of qeégraphic location. As is discussed in Chapter 2, ther-
ar~ preferred vregi~ns for r‘yCL\O'm fermation whi~h arpenr ¢+
be closely relate? tn the upstream tapngraphy. One ia led
te considar which tarrnin faatur e Aare raspnnéihle for the
ghserveﬁ‘clusforiv\q of the cvelagrnesis lOf'.ainl'Q.. The mean
barrier height jg likely the mne: §mnor£ant factor, but the
lengths ~f the mountain range in the cfoéswfndfaﬁdistreém
wisé directions, overall arientarior f the ranéeh tervain

slope and curvature of the ridge in » herizontal pla~ ave

all geome'rical parametass 'hat - oald ha - onnider e
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Spatial varzat:ons in“the roughness of the?terra1n surface,-

-(and its thermal propertles,COUId also be reflected in the

preferred p051t1ons of new low- pressUre centers.

As part of a review of the extenszve lzterature on
mountain- alrflow calculatlons were performed to clarify
some results of Sm1th (1980), who used a steady, l1near
hydrostatic model to study mountain waves. Exact analytical
solutions wer@ dlscovered for the surface pressure and winds
for flow over a three- d1mens1onal e111pt1ca1 hlll Although
this . steady State theory seemed of l1ttle relevance to theL:
1nfr1nqlcally time-dependent Phenomenon of lee cyclogene51s,
it was decided that the analytical results themselves vere
suffxczently interesting to pursue further. Note, however, -
thar for any airflow over a barrier, the pressure f1eld can
be resplved into a time- 1ndependent part produced by a mean
flow interacting with the fixed mounta1n Plus a time- |
dependent reszduai (which may or may not be, small compared
te the time- 1ndependent term), Wlthout a more detailed
'”owledge, one might expect the average position of Jee
cyclone formatieon £ d;pend p'JﬂC]Dally on the time
ind~pendent part af the floy. The results obtained using
the Ahalytical mde) for flow over an 1deallzed barrler
are preeanted in Chapters 3 through 7. Toplcs Covered
1nc1ude the «urface pressure and wlnd flelds, and the

ssnciated qtreamline deflection and horlzontal dlvergence
The forcre exerted by the barrier on the alrstream is cal- -

“mleted in Chapter- g throngh 10, The subdr-t nf Chapter 11

ot



.is the changé in Eiis forcerwhen the barrier is artifici-
 §lly smoothed. 1In Cﬁapter 12, the model is applied, in

numerical form, to flow over é r%presentation of £he ter-
rain of the Canadian Rockies. A summary .and some.sﬁgges

tions for frture work appear in Chapter’  13. Some f +the

mathematical detaile are given in tha Appendiceas,

1.2 Previous studies of lee troughs and cyclones

4

Frllowing Chung et a1l  (1976), it seems rearonak'e tc

. v

define lee cyclrgenesic as the initial farmatinn ~f 53 Youw.

a

bresmvvo center in t}'\e lee f a mountain :ange. “hj ie
mere rect}icti'o definigion than commenly apreare in the
metenrclogical 'iter-tuyre, where the ’erm. ie nge N
intensification of = “yeclone after it bhas frmed
(Petterrean 198¢ 50). Sperranza (1975) makes the
further distir-vion f excluding the formating of wan'

tinnary 1w y @ecevre arean fromr the le~ Fielrannes!

categnry . He arcveg that such eysteme 3¢ nat 'ave -
Aevelarnd r'vf Yoo FAr o Ylat yan “nA, therefrv- Ve T

called rycle ~= The flew near the montain - a ke

agerstraorlir ap he Fre sure fiel? may nat he o g

indirator o the wii g Al engh TrerEnta e enneer
vvarwiv‘(‘]l‘oy will ne be nend here. 'V g roreed that )
'
rre AV ffemreon tyr- f Yo preecire arcas i the Jee
fre Y Ain ty vah ey e L b lrerd ignbhary Wwhiie h

W e ~ PE vemr ed v 4 e

ir



bgrrier), and ful1y deveioped mobile cyclonic sysfeﬁs
occupying the entife depth of the troposphere (Schalléft,
1962; Chung et al., 197é).

Smith (19793) outlines some concepfual mode;s for
explaining the format:on of lee cyclones, including~argu-
ments baqed on potemtial ;ortlcxty (dlscussed below), the
effects of fr:ctlon, flow transiénce, variation of the
Coriolis parameter with latitude, and low-level blocklng of"
the f]gw on the w1ndward side of the barrier. Other review
papers, which deal more d:rect]y w:th observed character-
istice of lee cvrlogene51s wlll he mentloned later.:

e of the simplest and most wjdely used rationales for
the observed tendericy of low pressure centers to develop in
the lee of major mountainTranges-is based on some form of
prtentia) vorticity eguation. Examples'include Hesp:and
Wagner (194R), Belin (1950), Kasahara (1966), and Hblton
(1972) . rey fr1ctlon]ess, adlabaflc flow this eqguation
expreseec the ronstancy of the ratio of an’aVerage vertical

renponent of akgsnlute verticity ~f an air column, 6, to the

pressire difference, Ar. btetueen two surfaces cf conetant

I )
@ - b

T e ab e Py et ARG 13240, - -
R?’ S I (1 0
>
Here ' 3r the yelatiym vArticity of the ajr énd f is the

Crnriolie parameter or planetary vorricity. To apply the

conserval ‘an f potential verticity, assymptionr areé made

Yook e v th o an gy ol wmn Pﬁaﬂ@éd as it poggee



ovér‘albarrierl Generally, it is proposed.that there is a
vertical shortening of the column immediately above the
mountain, causing a compensating horizontal divergence (to
qqnsg;ve;mass). Thé‘Coriolis force acts to deflect the-
diverging air (to thé'fight of its original path, in the
Northern Hemisphere), producing an anticyclonic circulation
or reduction in the (cyéionic) vorticity. In the lee,of the
barrier it is assumed th‘&'én air column will be stretched
vertically and the original vorticity%may be restored. On
the basis ~f surh arguments it has often been suggested that
a westerly flow will be diverted towards the southeast in

®

crossing a mountain range, Smith (5979a, 1879c), however,
ﬁas‘indicafed that bermahent anticyclonic deflection should
not be present in some simplified atmospheric models.
Specifically, in a Boussinesq mndel of stratified flow, the
mountain influence al&ft extends upstream, such that the
incident flow is stret~hed before it rearhes the barrier.
This causes a cyrlanic deflectson of the flow on the wind-
ward side of “the mountaih: “This lateral .motion is:not- shown

ip the discussion by Holton (1972), for example, but is a

o -~ -

common Feafure Af the real atmosphere (Stith, 1987) 1f the
"pstream effect is included, it &ompensat¢s for the anti

ey lenic turning cver the barvier en that the°f1Q§ returne

te ite aiqinal direction far Arwnatrean, Hewever. Smith
qoees o v ch u that a permanert Aeflerd inn in the lee e
chtained 3 o han cadnagng e de ]l s i n car b de sy b e d

composer s~ e



The way in which these ideas have been applied to the
effect of mounta1ns on the atmosphere depends on the horz-
zontal scale of the mot;on. F1rst consider a relat1vely

o
large scale (several thousand kllometres,_for example) such
that the variation of the Coriolis parameter with 1at1tude
has an apﬁ%ec1able effect on air trajectorles. Orographic
1nfluences on this scale have been revzewed by Kasahara
(1980) Although Sutcliffe (1951).has argued that the
thermal contrast between contlnents and Oceans is suff1c1ent
to explain the mean pos1t10ns of planetary-scale waves,
early theoretical studles by Charney and Eliassen (1949) and
Rnlin (1950) showed orogtaphlc effects to be 1mportant also.
More recent numerlcal experiments wlth general c1rculat10n4
models, such as those bv Manabe and Terpstra (1974) and

Kasahara et al. (1973), have confirmed that both thermal and

direct orographic forcing are needed to exp]aln observed

larqe scale features -of the atmosphere.. However »Dackansen"*“

w oo rews "

(1980) cautions that the relatlve contrxhutlons of the tuo_!
types of forcing are 'now. too'poor1y known for precise . .
qnantatatlve comparisons. to be made

Potential absolute vorticity arguments can he used to
justify large~scale mountain airflow as a gennrarann
rechanism for leng Ressby waves if it is aseumed that the
flow exreriences a net anticyclonic turning in passzng the
barrier. 1n wurh A qase.anueeter;y fiow anaéent on the
Rockies vould acqrire a component towards the south in the

lee. T+ - ngnr o ﬂhso]nte vorticity, the derreascing

.

A
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Coriolis parameter is countered by an increaéing relative
votticity of the flow. .This tends to deflect the'airstream
. back to'the north. %he b;oadvtrough over the eastern
portion of North America, at about 80°W‘10ngitudé,'that is a
prominent'feagure of the mean 500mb chart (for example, see
Kasahara, 1980, or Bolin, 1950) could be quaiitatively
explained in this way.’

I; is not clear how releQant this sort of argument may
be to lee cyclogenesis because the scale of the trougﬁ
generated by the variation of the Coriolis parameter with
latitude (the 'B effect’') is much larger than that of the
lov-pressure centers initiated in the lee of the Rockies.
Smith (1979a)Acommentslthat=thé 'restoring force for Rossby
wvaves is-notvjust'B, however, but the_gradieﬁt in the
background potential vorticity'. As a consequence, the

‘lmouhféiﬁfi%itiétéa'ﬁéQé-conld have a shorter wavelength than

 for a iniform flow situation. Also see Pedloski (1979, pp.
‘11-1.,'4,28)'._ S | |

Another-way in which potentiéi vofticity-conservatinn
argum;vts can bé uséér{n.an éttnmpt t~ nnderstand Rocky
Mointain lee ryclogenesis is by notirg *hat a large fractinov
nf the lre ryrlnres nre asgssnciated with a "'parent’ on the
windward ajde ~f the bharrier (Chung, 1972) As the prrent
low maves ~n te the west coast it may fill, giving up s"nome
Jowfigv;l vertitity, while the asscciated upper rrnnéh
rarries nn arreec the harrier. As the flow ie stretch~d in

the lew the ' u Ve A1 hicity ngap‘penrﬂ i the feym o f n



new low. This descrlpt1on 1s certalnly oversxmplzfzed and
“does not expla1n cases in which the. lee cyclone acqu1res a
. greater intensity than £Qe parent or in which the parent low
'.is absent. Also, Chung shows cases where more than one lee
cyclone is associated with a single. parent 21shka and
Smith (1980) show areal frequency statistics based on 28
years of. data for January cyclolysis - and cyclogene51s events'
in and. near North America. Their Fig. 2 shows a maximum of
tyclolysis Lrequency (counted in 2° 1at1tude by 2° longitude
areas) near the.Wash;ngton coast. The magnitude of this
extremum is comparable to the maxima of éyciogenesis fre-
Qquency seen in the Southern Alberta - Montanahend South-
eastern Colorado regions. However the total number of
CYClOlYSlS events off the coast appears to be less than half
of the number of cyclogene51s events in the western half of
the North American continent. (See Peyrefitte and~Astling,'
1981, for comments on the Zishka and Smith paper).
If:mechanisms wvere proposed that led to a net gyclonic
vorticity production in the passage of an air parcel over a
barrier, then it would be easier to understand why the
formation ©f low-pressure centers is associated with mofin-
tain ranges. Smith (1979a) lists blocking of the windward
flow at low levels and the action of surface friction as two
such processes. 1In discussing the model of Buzzi “and
Tibaldi (1977), which incorporated an Ekman layer parameter;
ization of fticfﬁon, Smith indicates tha; the antlcyclonlc

circvlation induced by the barr1er is opposed by the



frictional force, leading to an effeétive intreese'in the
cyclonic vorticity. Petterssen (1956 PP. 252F266)
‘discusses the role of friction as a source of/vort1c1ty in
Sunpface hlgh-pressure,;egions but neglects itqin the section
~ on the effect of mountains. The circulation, around admoun-
tain in qUasi-geestrophic fiow is similar to that aroLnd a
cold-tore anticyclone (Smith, 19796), so Petterssen's
comments'about the role of friction in vorticit&,export.from‘
the Antaretic are also relevant here. |
Synoptically;based studies of lee cyclogenesis have
concentrated on the Alps in Europe and the Rocky Mountains
in North America. NSperanza (1975) reviewed some of the
early work in the Alpine region. This was updated by
Tibaldi (1979, :1980) to include results of numerlcal
modelllng efforts to simulate cyclogene51s. A more complete
- 1scussion of one particular modelling attempt is given by
\7zibaldi et al. (1980). McGiniey (1982) presents a recent
J/t diagnostic study. Furthet fesuits.méy be forthcoming, based
on an;lysis of data from the Alpex Subprogram of the Global
Atmospheric Research Program.

A typica]qcase of Alpine lee cyclogenesis occurs in
conjunction with a,we11~developed»npper trough end associ-
ated sutface cold front approaching'thé'Alpé'ffdﬁ*the‘nofth4
‘west.' The 1nteractlon of thls system wxfh the;mountamps _ '
occurs 1n a two step process.. In the f1rst stage there ls an”‘

locallzed Jncr‘ase in low~level vort1c1ty in. the lee. .fﬁ”‘

d the second st ge, the contahu1ng advance o£~the upper trough-

[N - '4.-‘4 - [ e ES .o~ LR R e B e oa oo
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7”causes its assoc1ated posit:ve vort1c1ty advectxon and
‘wdzvetgence reg1ons to overtake the’ 1n1t1al orograph1c d1s;'f
,‘turbance. The surface lou then develops by barocllnac L
‘processes in'a manner szmllar to storms wh1ch are not
”dlrectly 1nfluenced hy. mountalns._ Fons (1979) 1llustrates o

'var1ous synoptlc situations _that can lead to cyclogenesis 1n

‘the Alp1ne reglon. For further details on lee development

~ vw‘

7'sequences the artlcles previously ment1oned should be f'ffli}

.'; CO”SUltEd ~. _ ~ : "‘- ' : L ‘ : ‘ R

T@e-initlaliiormation-ofaa.low'in”the'lee of the Alps :
and its reélation to blocking of the low-level cold. air. 35
partlally expla1ned by T1bald1 (1980). He presents a
didgnostic relation between the temperatufe, T, and the geo-
strophic relative vortici%yhisg:" : | | -
24

— = - % "va

1.2
9lnp ( )

Here p is the pressure, f is the Coriolis parameter and R is
the gas constant The Laplac1an on the right side of (1.2)
1ncludes only horizontal der1vat1ves taken at constant’. pres-
sure. Thls equation can be dgr1ved byvtaking the ¢url (at
constant pressure) of‘tnp tnermal wind relation given by |
Holton (1972 p. 49). Because there is a relative maximum

-

of temperature in the lee at low levels (caused by the.\.,kn
S N »

region and decreases w;th helght (1. 2) then amplles

R R .‘-aw. e “‘“r.\-‘ S o e on B N

: 1 0

L.j5deflectlon of ‘the cold a1r tq the szdes of the.convex £acem;;}

-*;that the Alps present to the 1ncxdent lew)?&V’T<0 1n thlS :fﬂ_.;

that thegeostrophzcvert1c1ty 1ncreases w1th pressure.‘ Thls"
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1s con51stent w1th the existence of a shallow 1ow pressure

~,,system 1n the lee. Note, however, that the argument- is only

)

'qualltatlve,because the flow can be hlghly’ageOStrophic;
For eiample,“Newton'(1956) found for an intense Cycloéenesis“
case in the lee of-the Rockies, that the vort1c1ty computed
from the actual surface w1nds was only about one- 51xth that
obta1ned geostrophlcally ‘

.:,“..Now consrder research on uorth American lee cyclo—
.dgene51s.l Palmén and Newton (1969) have summarlzed some: of
U Ehe early work (1nclud1hg Hess and Wagner, 1948 and others)
fon thls phenomenon by descrlblng a typlcal deVelopment o
sequence approprlate for a relat1vely intense lee cyclone
case. As with the Alpine case, this condeptual model has
&#vo phases. ‘First a 'parent' cyclone %p the Pacific
approaches the coast and beg1ns to f1ll as 1t is deflected
northward. Flow from ‘the southeast quadrant of this low

passés over the mountains, generatlng or strengthening a
shallow lee trough ‘McCIaJn (1960) attribdtes an important
role in forming this trough to compressional warming due to
adiabatic descent below 700mb. Newton (1956) has found
that ‘friction can also act to ihcrease the low-level circu-~
lation during the initial hours of lee cyclone development.
h Godson (1948) also brlefly discusses lee trough formation.
i_'Carlson (1961) has attempted to- descrlbe the thermal rldges

-e . .ng_,.

connected w1th these low pressure areas uslng an equlvalent~

.:barotropzc model the that "the area of relatlvely warm

1ey st n“u,,‘c'
AT SN

surface a1r is 1n1t1a11y closely tled to the topography, but

EY— - . e - -
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may SubSequently be broadened towards the east by advect1on.}

Even So, the uzdth of the trough 1s hundreds of k1lometres:

rather than ‘the thouSands that would be approprlate for . the

topographlcally 1nduced cont1nenta1 scale Rossby wave»men*.‘.

tloned earller.

In the second stage of: development an,area of upper-:*;&jf

. - . -
o o, .‘.- e o

level d;vergence ahead of ‘an advanc1ng upper cold low or
trough (orlg1nally assoc1ated wlth ‘the - patent low) crosses
~into the lee.. Because ‘the. low~leveI baroclinic zone (lee |
trough) is held qua51 stat:onary (Hage 1961) through 1ts

t1e ‘to the topography, it 1s overtaken by the upper system

‘ and furthe development can occur The overall process"ls

Tafhe:¢51mllar to the Alplne case except for the manner 1n’
which the 1n1t1al low- level c1rcu1at10n develops. | |
In many cases the ‘upper- level dlvergence can be
1dent1f1ed w1th a reglon of- pos:tave vort;city aGVeetlon
(for example 1f the air speed is muchfgreater ‘than the
speed of movement of the vort1c1ty pattern (Petterssen
1956, p.» 302)). 1n such an 1nstance lee-side development ‘as
just described ig a realization of the Petterssen hypothesis
(Petterssen et al., 1955 ang Petterssen 1955), whlch
relates the ofcnrrence of surface cyclogenesis in a
baroclinic zone to the approsch of a teglon of positive vor-
t1c1ty advect1on aloft. However Schallert (1962) and Chung

(h972) have - 1nd1cated that there is a class of relatlvely

weak short ~lived, _orographlc dlsturbances, comprising a
- q./",)..

. slgnxﬁlcane {ractron oj‘aIl‘lee-cyqlonesh.yhich“ﬁbrm-withoutjj:‘
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- a dlrect assocxataon w1tH an advancxng upper trough Ln .one -

g

of the few attempts at numerlcal modelllng of airflow over

the Rocky Mounta1ns (exceptlng operat1onal .weather, pre—~ o
- dlctlon) Egger (1974) concluded that in hlS 51mulat10n of a
lrelat1vely weak case of cyclogenesis in the lee of a highly
1deal1zed barrler -the vort1c1ty advectlon aloft played a
:”small~role;g-Also ndte that in a sample of lee cyclones‘
studied by Hovanec and Horn (1975), those with a lifetime
‘greater - than 72 hours d1splayed a stat15t1ca11y s1gh1f1canf
correlatlon w1th the wlnd‘speed at-300mb, whereas shorter-
11ved lows dld not. - Juncec (19871) advocated the study of
weak shallow cyeIones “in the lee of the Alps. Previous -
1nvest1qator< have tended to concentrate on the more intense
cases,

There are many other aspects of lee cyclogensis

research that have not .yet been mentloned ‘Some references

- o

'*;are listed- here for’ those who would like to pursue the .

subject further. Papers dealing ec1f1cally with the

"frquency~and poaitiens of Jccurénce of lee.cyclogenesis are
considered in Chapter 2. Faweett and Saylor’(1965) etndiea
the ,precipitation and severe weather asscciated with

Colorado cyﬂlogenesiq events. Hage (1961) and Chung (1977h) -
examlned struotural changes in upper cold lows as they pass
err a mounta1n barrier, -ChUng and Relnelt (1973) and
Vickers (1975) found about 80% of lee cyclogene51= events

are assoriated with difluent Upper flow patterns Charette

(1071) Hopkinson (1972) and Schram (1974) have done

Toe



‘ 'motlon : Because of the frequent assocmatgen of chznook

- . - . t Ce
@ L) Nt . t- . td ‘.)’ b
K2

diagnostic s&udxes of orographlqally 1nduced vertxcal

R

(foehn) cpndztzons w1th lee cyclogenesms (for’ example, see

'McCla1n 1960) much of the l:terature on ch1nook a1rflow may

be’ relevant to the study of lee troughs ané the 1n1tlal

,"~

.1.stages of lee eyclone formatign“- Examples 1nclude McClaln

(1952); Cook and Topil (1952), Br1nkmann and Ashwell (1968),‘
and Lester (1976). ' |

"fﬂé{ste;éy,‘iideér hydrostat1c airflows model which is
the ba51s for most of th1s thes1s includes the adlabatlc-
compre551on mechanlsm thought to be 1mportant for the. ma:n-;_l
tenance of a small- scale lee. trough. However because of |

the use of the‘Bou551nesq approxzmatlon and the neglect of

_the - Coriol1s force At can be ‘shown ‘tHat ‘the vert1ca1 :compo-,

nent of vort1c1ty is zero everywhere 1n the model (see

. Chapter 3) B Therefore, the model cannot be used to descrxbe‘

a lee cyclone as def1ned by Speranza (1975) s1nce he
requires the presence of cyclonic vortlclty.. It m1ght be
used, however to give a qualztatlve zndlcatlon of some

features of 3 standing lee trough. ' ' ’
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“ . =.. < . -+ "CHAPTER 2 - -

LEE CYCLOGENESIS FREQUENCY PER UNIl AREA

-
L
~

2.1 Counts of lee cyclogenesis events

! ﬁﬁﬁmefbﬁ§'pépets“héveﬂBééﬁ“ﬁﬁbfi§ﬁédug30396mb05itions or

~counts of low¥pressure cenfers er cyclogenesis events in‘a
given regionl. The results of Petterssen (1956) b;sed on
dally surfe;e analyses for the years 1899 through mid-1939,
are among the most comprehensive and widely quoted. He
found that there exist preferred locations for cyclone
| formatlon which he explained with reference to oroqraph1c
influences,‘among othérs." Pettersqen grouped h1s d%ta to
show areal ﬁen51ty of cyclogenecls frequency in tHe winter
and summer Seasons only Klein (1957) extended t%eSe
results by show1ng a month by month anal951s based on the
‘years 1909-L914 and 1924"1937.. In general terms, it was
fQUbdephat.the regions of'fb:maeibn"oﬁ bath highs and lows
are farfhesr north in Auqust and farthest south in Februarc
Cyclogenacis is found in the lee of barriers vwhile anti-
cyclegenesis is associated with the hiaher terrajn iteelf
Klein presents a detailed bibliography ~f earlier werk nn
the tracks of pressure centers and thair printes nf oriqiﬁ.
While ?etteresen end Klein analyzed data for the whole
Nerthern Hemispﬁere, recent work has concentrated on mnrre
Iimited reginns, and in many cases a much more limited time
period aleo. Radin~wié (106K) commted ryrlone fearmatinne

» pbr“ihw ~f W”ympc, Ch“PQ (1077a) her vt ndjed ly"‘wﬂvl

-



in the lee ’of the Andes, Chung et al. (1976);present

;result;.for East Asia and the lee side of the Canad1an Rocky
Mounta1ns. The latter area has“alsoc been con51de;ed,by
Vickers (y975).’ Reitan (1974) ;resented maps of cyclo-
genesis frequency per unit area for North Amefican cases for
five different mon{hs‘of the year. Schallert (1962) and
Hovanec 4nd Horn (1975) show the p051t10ns of format1on for
a number of 'Colorads’ lows (including those found in
several other states to the south and east of Cglorado). ‘In
a recent paper, Zishka and Smith (1980) clalm that there

has been a. 51gn1f1"ant decrease in the ﬁumber of cyc]ones

and anticyclcones in and near North Amerlca durlng the_f,”

28-year period (9nd1nq in . 1977) 1nc1uded in thelr .study.- 'It_"

has subqequently been pointed out, by Peyrefltte and Astlihg’
v(1981), that the data set ®sed by Zzshka and Smith is hot,a
homogeneous one. Apparently, durlng the firét'five yeags-of
the period studied, the surface pressure fields were ana-
lyzed at an interval of 3Imb, rather than the 4mb used Jatef
7iehka and Smith (1°8%) remain Crernvincf® that ‘his e
svfficjert t explain the trend in prhae number of pracaure
reteye that H\oy r.pphrf‘(’a.

Re-ides this unresolved problem, there are other ob-
ctacleg tn compar ing the different reryults on cycligenesis
frequency ard ite area) density. For example, the synoptie
Aanalyges on whirh Radinovic bhaged hie voqu‘lts were at n Bmh
rec lutine, Chyng 'se” ® &Smh for his Asian gtrdies but ~mh

[ ’ Yionaa ) Aoy 0§ 0 - g"}‘-:,n f; ',—‘]]ﬁr' ”FPR A td Yoo ey o Y
[}
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Another source of”diffarence arises from the temporal reso-
lution in the data sets. Petterssen and Kiéin had access to
only one map per day, whereas in many of the other stbdies
four maps were available. Chung (1972) reports that he
referred toumaps‘aﬁalyzed at 3 bour intervals on occasion.
A lack of temporal resolutiop would tend to smear oﬁt the
observed ma¥ima in cyclenenecis frequency per unit area
becauce of mrtin of the cyclones in the iptervals between
their formaf;on and the succeeding map time. Vickers (197R)
éuggested t"is as a possible explanation of differences
hetween hic resltg and those of Chuna (1972). 1t seems
likely that the different resrlintinng nured in the rressure
field analyree (4ﬁb fer Vickers and 2mbh for Chung) wonvld
élsb have centribkuted t~ the largey'graQial ccale rhnr~ o
ietse of the e Qpﬁo~ir regirne frond bty “ickere.

Twn o' hr wr rces of ATfficulty in the Aurnritatiye
Co pariean o4 a0 “yic e remgecrebh yreu'te are 'he gub ie-t
nf thi- chap'er e fiv t af tlegce e velgter! - th  aip.

~f 'he arear withic whiecrh the cycleogerrein fcu te Aare g

For ewample K1 fn "1GF7) count 7 crrloasneria event e
v gl o~ Tef e Py Tati'de i1 log an'! me 1 an
S G BRI S R N A o A A T T U S S NI B and SV . 4o
ves : n R RN A AN LA N ~o R B A .' treyp
t 3 c]s L ] P ! aom ] € 1 " the +vop [
v 11 (o to \ L v LI



area will not be‘qalculatea'in quite the same -manner as in

the studies héntibned,,it will be shown, at least for rela-
tively small sample.sizes, that the degree of'sﬁoothing has
an appreciable effect on the magnitude of the areal den51ty

\

of cyclogene51s freguency.
The second idea to be ex}lored in this chapter 1s
whether or not dlfferent types of low- pressure systems show
distinct preferred regions of formation. ' Ther® ‘has been a
tendency in prgvious ;tudies to ignore some types of lows.
For example, becauqe Klein (1957) was pr1mar11y 1nterested
in the tracks of mobile cyclones, lows judged. to be"d
"thermal’ were excluded from his'analyses. Sperénzq (1975)
and others have distinguisheéJbétween weak 10w—pre$suré}
rentere vhich tend to remain almost ‘fixed with respect to a
mountair barrier and more vigordus mobile cyclones.
Schaller: (1€62) identified four types of lee cyclone on the
basie ~f theiy mayximum intensity (weal, monderate, or
interese) and n bility with respect to the lee region of the
rnJrva‘~ Recks Maintaine (migratory or local). Mobile

“ycleree wie  acqsipea ‘moderate  or greater iﬂtengity weo

Aeeirsted ar typ- A This oronp ~asg furtrer suhdivideﬁ
Arte v pec AL A Ne, arrcrding to “hether there uas.a

. . . \

cirAle + v 1o g Tnt e

reifiration oy bwe voriéwds, ._respec“
gt
toe N fer tvpe A yelanee o 1d o t Pe rleéé@ﬁ‘y placed
B .
Y c:fhey the A, ny A, cateqrry "’yrﬁ R ('V(‘]OI]QS were
. . . e,
Arfinegd as thoqe o; moderatp itteéneity which remained loca)
! ‘Qws‘v" o "“V”“ N ~rvr ey to w,hi'"’\er they

ra
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were' migratory or local, respedtively. Schallert concen-

t;atédﬂhis efforts on the A and B type cyclones, finding a

~«qﬁusten&ng of the positions of type A, lows at the time of

nset of tgg ggrstiggrlod of 1ntens1f1catlon and 1n the

EIEV . ) <

9051t10ns of type B lows. He attributed thlS lqcarlzatlon
to orographlc inffhences. Chung (1972) in his analysis of
cyclones in the lee of the Canadlan Rockies also used the
cla551f1c§t10n scheme of Schallert. Chung included all lows
having a clqséd isobar -lasting at least 24 hours on consecu-
tive maps at 6 hour intervals assuming that the surface
pressﬁré was analyzed'at é 2mb resolution. Because he
included{ maps showing the positiens of formation for allltho
cyclore"types, it was possible t~ use Chung's datn tn

examine differences hetween the types. .

?.2 Smoothing contour maps of cyclogenesis frequency per

unit area

In this sectien, a method is precented for rorstructing
maps of ryrlogenesis frequency per vnit ares which differs

from the t'nAdjtional method of counting cyclogenecis evente

rnhoa grid The pro-edire ‘s then aprlicd to stud: +1.
gffpl t o f q")rjot-};;y\n e e he v 'iyeniemr e [ ~YVene g | B EEEE

area.

.
Ascume that a» ectimate “f the prsitionr of each cycln
e pai cvrnt Sy 2 iven prit tioe g ¥newn, 'he lnmation

o, [ . . [P v ) . '
V- . " ' v - Y LR ‘ l\ ey @ ,ﬁ{ Ve



1atitude-and k is longifude; Because of umceftainty‘in
determ1n1ng the locatlon of a lee cyclone, the new low may ‘
not have formed pretisely at ? /For the purpose of con-
structing a map of the cyc1ogenesis f;equemcy per'unit.a:ea,
if ié-convén1ent to assume that there is a f1n1te-pmob-v“"
ability that the cyclogenesis event actually occurred

within a circle of rad:us € about ri If n is the number of

cyclogeneszs events per un1t area per un1t time at the po1nt

‘,?, it is assumed to be representable in the form
{

n@® = o dFED | (2.1)
T :
vhére
| v+1 a2}V v o L -
) T ez [1 ‘E?J 8 (e=a) (2.2)

is a convenient, but otherwise arbitrarily chosen proba-
bility den51ty function used to describe the prec151on wlth
which an 1ﬂdlv1dual cyclogenesns event can be located

6(e d) = 1 if d<e and O otherwise. The patameter v was
introduced'co increase the fleiibility of the definitiom of
m. 1f v=~ then the cyclone position is known with infinite
precision. For decreasing v the d1stributlon becomes pro-
QYPGC1voly broader. For.the maps to be presented in the
following, »=? was used. Except for the normalizafion
factor, the form of n'.1s the same as the functlon plotted
in Fig. 10 ip Chapter 9. The normalization chosen in (2 .2)

ensyres that the integral of My over a circle of radius e is

unity, that g, cy~logenesis event i is 'counted' only once.

.'20 ,



Note that the functional form of n, is taken to be indepen-
dent of 1i.

This representation for n was chosen on the basis of

simplicity, not on detailed knowledgeuqf:the’yncertqintjegfp

of position,involved‘ In fact, the distribution of position

about ?i is probably not circularly 5ymmetric for points

-near the barrier because of the tendency for lows to form on

‘the lee side and to move southeastward thereafter. Further-
more, the precision with which a lee cyclone can be' identi-
fied and located-depends on the spat1al arrangement of
the observ1ng stations and the resolutlon at whlch the sur-
face pressure analysis is completed. An estimate of a
typical distance between observing stations in South-central
‘Alberta is 150 km to 200 km, but is substantially larger in
the northern half of the province. One might argue that €.
should be increased in reglons of low station density. The
definition of 5 by (2. 1) and (2. 2) should be regarded as an
artifice to smooth the scattered cyclogene51s locations so
that cluster1ng of the pPoints can be seen more clearly As
already stated, it is not a representatlon firmly based on
the nature of the uncertanties in identifying the positions
of lee cyeclones.

By expressing r-(¢,\) and ?1=(¢1’)1) in terms of
Cartesian comnonent: in a coordinate systemvestabiished at
‘he canter nf the Earth, for example, one can show that

+ >
|t~

il = Re (cos.(\—ki)cosldscoscbi + sin(bsinqsi) - (2.3)

- 3.
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where R _1s the rad1us of the Earth An alternat1ve would

be to use the dzstance from r to r1 along the curved surface

of the"’ Earth but this wouid result 1n a peglrgxble change»

. B 't—'.l
u.aa-..w"" & 9 oo 0. PRI N rC av,. L3y "
- .,. - N
o B ” ; .

- g.ﬁ “tot’the SMali 1nter po1nt dlstances 1nvolved here. G1ven

.(¢ PNy ) one can substltute (2. 3) 1nto (2.1) to obtain the
cyclogenes1s frequency per unlt area, ﬂ,_at an arbltrary

‘point, r. In .actual appllcatlon to the maps presented in

this chapter, n was calculated at points correspondlng to a~ = W

unlform grid on a polar stereograph1c prOJect1on map, true
at 60°N latitude. ‘The Surface IT Graphxcs Package (Sampson

1978 ) was used for all the‘flgures requ1r1ng contour1ng in
th1s the51s._

To test the effect of varying the. parameter £ (vh1ch
controls the dggree of sﬁbothlng of the g field), the;
preced1ng analysis was applied to the data of Chung (1972)
Chung's data 1ncludes 146 cyclones seen in a one- year perzod.
(1958) in the lee of the Rocky Mountains in Canada and
Montana 1nc1ud1ng representatlves of ill of Schallert s
types. P051t10ns of cycione 1n1t1at10n vere measured from
Chung's F1gs;’f2 and 13. Some d15crepanc1es were found in
the p051t10ns of several type A, cyc;ones between Chung's
Figs.. 12 and 14, amounting to 2° of latitude in the ‘worst
case. Comments to follow would not be changed had the
alternative positions been used.

In Fig. 1, the number of lee cyclones formed per unit

'areS per unit tlme, 7, is compared for e=200 km (Fig. 1a)

and e=300 km (Figq. 1b) both MWith p=2, the,contour interval
% - S
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:islﬁis in un:ts of 10 km-#" yr“ Pos:tlons of 1nd1v1dual
’ cyclones are marked w1th small c1rcles. Chung used a un1t
::.area of (1 5 Iat1tude)2 a2, 78x10' km2 S0 that. numerlcal
values obta1ned from Chung 5- Flg 11 should be d1v1ded by

¢ -

lu,ﬂg; 2 78 before comparlson Wlth Flg 1 here. Chung s results

- DR s> o @ @  ae o - - ° & ewoe o we ..o

-

are 51m1lar to those” presented ih" Fig. 1, although using’
e=150 km g1ves a closer match to his numerical values,’

Also, because of the unreallst1c c1rcular symmetry of the

: assumed probabll1ty dlstrlbut1on near the Contlnental
D1y1de the contours on the maps presented here extend too

- far to the west _near the barr1er.. v

Examznlng Flg.a1a, it is seen'that there are- separate

maxima in the lee of the Macken21e Mountalns dlrectly to the
vwest of Great Bear Lake, in Northeastern Br1t1sh Columbla, )
1n South central Alberta, in Southern Alberta and in o
Montana. .. Increa51ng the smooth1ng parameter €, to 300_km,

as in Fig. 1b, leaves only-the'Northeastern'B C. and
Southern Alberta max1ma well defined by the contours. The
magn1tude of the Southern Alberta maximum has been signifi-
cantly decreased by the 1ncrease in e but that'of the one in
Northeastern B. C. is more nearly ma1nta1ned This is an
indication of the relatively large’ length scale character—.
izing -the cyclogenesis: p051t1ons in B. C. and Northern
Alberta compared to the‘stronger cluster1ng seen 1n Southern
Alberta. To see the effect on n of chang1ng € in a more vd.
quantitatlvi manner refer to Table 1, which’ shows‘the valueS'A

v
v

\ ‘ .
//dﬂithe relative maxima in some of the regions.
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'ThblePva Relat:ve maxima of c?plogenesis frequency per un1t

‘area, q, in events per ‘year pe

gy

(100 km)?, as a furiction Qf

- » B
the smoothing parameter, €, by region.

e

Macken21e Northeastern- South central 'Sbuthefn""

(km) - _— B. C. Alberta [~ . Alberta
7100 4.2 3.2 7.1 8.0

150, _ 2.7 2.6 4.1 5.0

2000 1.8 . -+ 2,0 .- - 3.0 - - 3.8

300 1.0 1.5 | 1.8 2.4

The table 1llustrates that the magnitude of cyclo—

' gene51s frequency per unit area 1s strongly dependent on the

valie of e. This sensitivity is likely a reflection of the

small number of data points on which the calculation is

“*based, This leads to excessively high values of n for small

€. Except possibly in Northeastern B. C., the n values may
be too small for =300 km because this smoothing length is
comparable to the length scale characterizing the clustering:

in the data. As a‘compromiée, the value €=200 km was used

‘for the remainder of the plots in th1s chapter. Besides the

general decline of the maximum n valuves as e increases, note
from Table 1 that the Macken21e maximum is larqer than that

in Nbrtheastern-Bﬁ C. for €S150 km, but is smaller for e>200
km. Thus one Eannot‘make a one-to-one correspondence

between the ha¥%imum # values and the barrier heigbts. fonr



example, A s1gq1f1cantly larger data sample m1ght be useful
~in f1nd1ng relations between the pattern of preferred loca-

-tlons for cyclogenesis and terraln shape features.‘

2.3 Lee cycl oge ne51s fg_g_ency maps . fpr spec:\}yclasSes of

AN
lows

- LN . e . -

p -

The'maps-dilﬁhe-areaiddehsftypbftcyclogenes1s frequency
- in Fig. 1 include all the cyclones 1n Chung s (1972) sample.:
Some.results obtained by partltlonlng the cyclones according
.to Schallert s (1962)° types will nowrbe presented. All the

maps in this section were constructed u51ng v=2 and e=200 km

in (2.2). 1n Fig. 2, a comparison is made between the'

R - Ll

cyclogenesis frequency pPer unit area for the moblle cyclones ,

(types A and C) ang the 10cal lows (types B and D)
Fxg 2a, showzng the ’BQ mobile cases, is very 51mT}Q£;;nig
appearance to the map in Flg 1a. Each max1mum seen in

re

Flg 2a has a corresponding one in Fig. 1a, but w1th a

reduced magnltude (espec1ally the Southern Alberta maxlmum)

On the other hand, Fig. 2b, showing the 37 lows that
rema1ned in the lee of the barrler is qguite dlfferent in
appearance. The only regions with ga significant pumber of
lows of the local type-are the Northeastern B, C. ang
Southern Alberta areas. Note that the contour interval in
vF}g.‘Zb is half that of Fig. 2a. Based on the number of
cyclones that appear in the South-central and Southern
Alberta clusters jn}Fig, la (about 20 and 30 lows, respec-

tively. out of the sample of 146), one wonulg expect about 5
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lows in South central Alberta and 7 or 8 .in Southern Alberta~
'1n Flg éb; The actual counts in thls flgure are about 2
and 13, respectively.

The 1lee cyclones were c1a551f1ed in one add1t1onal way.
Although he did not expl1c1t1y deflne the terms, Chung
' (1972) makes a d1st1nctlon between lee cyclones that are’
(assoc1ated with a parent' low on the upstrgem side of the
barrier and’ those which seem to be independent developments.
On .his-Figs. 14 through 17, trajectorles are shown for the ‘
parent lows. Cases for whlch Chung dld not include an
upstream'trajectory were cla551f1ed as being-without a
parent cyclone. Examination of upper air charts for the
no-= parent cases showed that the development of some of these
lows occurred in association with travell1ng waves aloft.
Apparently, however, the influence of these mid—level dis-
turbances was not ~great enough to be detectable ,at the
surface on the upstream szde of the barrier. Of the 34
no~parent cases identified from Chung's data, 18 became
migratory (9 of type A, and 9 of type C), but no detailed
check was mAde to see if’this morion was tied to the
approach of an uypper-level wave. Of the mobile no-parent
rares that acrquired appreciable intensity (the a, casesf, 6
of these occurred north of 60°N, but, as yet, no particular

4

significance has been ttached to this.
The cyclogene51s<Z£eq~incy per unit area is shown in

Figs, 3a and 3h for the 112 with- parent cases and 34

without rarent ~ases, respectivn‘y. Again pote that the
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contour interval is not the same for the two'parte of the
figure. Even more‘cleerly than in Fig. 2; the main feature
that stands out as a result of the c13551f1cat10n of the
cyclones is the lack of a South -central Alberta maximum 1nh
the second half of the f1gure. Instead of the 4 or 5 lows
that might be expected in this region on the basis of the

,proport1on of no- parent lows to the rotal sample, no lows

Arpear.

p ,
Chung (1972) has expressed the op:nfbn that the maxlma

nf lee cyclogenesis frequency in the South- central and
Sovthern Alberta regions would probably merge given a iarger
data set. The results presented here, however, ;howing an
unusual 61sfr1burwon of the local and no-parent types of lee

‘: Yy

cycleones, suggeet thw; a closer 1%ok is warranted into the
t

queqrwnn of whether the separation into two maxima has a

L /
demonstrable physica]l badis. There are many factors which

might contribute to a spatial variation in cyclogenesis fre-
quency, including differences in surfece friction. upstream
terrain cshape, »nd thermal effests. The upstream b'arrier.'
rrefile e avarinead in Chapter 12 1t ne definite angwer tn
the aueetian ¢ vreidere !’ here comees out f that analysis.
With reqard t~ rhcrmgl ivf]ncncns, note that Sourbeaster"
h]be'ta i @i ifieantly warmer (M Kay, undated) and rem ng

. . /
enov free frv 2 yranter prevrervycs of the winter seasn t han

the ce' trx? re't of the prevines These factore woul

:

fa\vﬁ?'v e moin a‘rvenice nf veak thermal Jerwe in Sen

C s Lo ' - . v PR v Youn Y
! ¥ L \ AN ,‘)’W
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»

that if the separatidn of the fréquénty maxima is not an
artifact of the small;sampie cize then an'explanation may be
:reqUirgd for both the lérge number of-no—pa}ent and local.
lows in Sohthé}n Alberta and the unexpected'v law rumber in
the South-central region.

It is hored that future students will take up the tack
of rlarifying these issues. It is vrecomended that particn
lar attenti~n be paid to identifying tYe positionr of lee
ryclones as early as posei'le 3" their lifery le The ti
of day that = 16W‘§ressn10 area fivet appearr i a poten
tiallv yeef+) datum, especia'ly in the rases f weak lowe.
wvhrre sclar heatinc =r tidel influrneren cru'd be impeortant,

An ﬁ%jerf%vq Aafin't "Aan of “hether v net a Jee Néuelnpmppt

ie asgociated witt = rAarent lrow wauld be helpf: Tt mig'!
Fr've ne-recgna-1 tr ~largifc the leows a7 rdin~ to tbh  dee
of 8gger Tat joe b an o oavre FAar My “tean, Mer e "th !

rycle T T ‘ ' ' t vy e T

1



2.1 In t oduction ' I .

linear, h)ﬂrostat1c theory to the flow of strat1f1ed a1r

CHAPTER 3 - .

A STEADY, LINEAR HYDROSTATIC AIRFLOW*HODEL

. . . >

~ . . ) . ‘ ~
. . .

fbe researdh summarnzed 1n tﬁe remalhder of th1s thests
Was motivated by a recent paper by Smlth (1980) 'He applled
1
over a mounta1n hav:ng a c1rcu1ar horlzontal cross sectlon,
and aleo tn the flow near the end of a long r1dge lylng
acrqsc ?hc w:nd In hms discussion of the surface pressure
and w1nd fie]ds‘ szth ﬁTeSeﬁted analytlcal results fo: the
civenlar ('bell =haped ) barrxer but not for the: rldge. fin'
the preqewt study it 1s shown that closed- form analytlcal
so1nr:¢n= for rhe surface f1e1ds ‘can also be obta:n:é'for
moeuntaing wafh e]11pt:cal horxzonta] cross~sect10ns. This
allows syctematic pxplotatnon of some aspects - of the transi-
b en tetwvean’ the ful]y three- dnmenq1onal circular barrler
cage -'ﬂ(ib Fve-dimensional limit of an :nf:nltely extended

ri'ae, ae t1- croentricity af the ellaptlcal cross- section

fe Ay ied
T RAN e tg ex~1uding nAnlinesr andinon-hydrdératic

efferte, the f'ohref'ir‘a] mnde 1 lJSéd here is 'restri‘cted to

inxichR, Ay, "teady flow over a non*rotating surface, A

Frueeinesq type of aprrroximation is alsgo made. As a fina)

Simplification, the air far upstream of the barrjer is
acs mwed '~ hate wniferm velocity and temperature. Authors
PN ChHEorm Seoming f1ew cuch as thie in a

e

T
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11near model include Lyra (1943) and Queney (1947,1948) for
two“dlmen51onal barrlers, and Wurtele (1957) and Crapper
(1959) in three d1mens1ons. As appears to be t?e case in
much of the previous theory of mountain éirflow,\most'of’
the simpiifidations in the present work wefe introduced to
make bhe mathemat1cs tractable. Note, however, that Blumen
(1965), Klemp and Lilly (1975) and Blumen and McGregor,
(1976), for gxamp;e, have'shown that the{waye amplifude and
related wave drag are rather sensjitive f&ﬁctioﬁs of the ver-
tical profile of the upstream flow. One must bear this in
mind when considering the results of this tﬁesis,in whicrh
the vertical structure is very simple,

. There is an extensive lite;ature based on attempts to
remove Sne of more of the'restrictions implied by the above
assumptions. One can refer to articles by Queney et al.
(1960), sSmith (19793), and Klemp and Lilly (1980) for an
overview, but some references aré indicated in the fol-
lowing. Mult%léve] three;dimensional mndels, for non

hydrostatic, trapred waves, incorporating vertical varina

tions of upstresm wiigd speed 23 etatic etakhil ty hinoe

been studi - hy 6 yar (19.67), Crapper (1262)  anA
Mar'hineen (10RM) Rlumen and McGregor (1976) and Blumeo
and Dietza (1QR 1) incorpo;afpa bericental wind ghear in
their hydrrertstic mednle. Barrilan et a), (1Q79 1¢R0) ard
Smith and I.in {1087), have ~ongidered the effect of moia' '
in two Aivenciens)l wmodels. Th a rart ‘crlarly detz leA

Baray el om0 T Ty Dury RAREEE B L B AT T



;o 34

that the 1nc1u51on of moisture led to a significant reduc-
tion in the amplltude of mountain waves. The effect of the
Earth's Totation on mesoscale waves was treated by Queney
(1947,1948), Smith (1979b) and Som1esk1 (1981). 'Nonlinear
and time-dependent” processes were 1ncorporated into the
numerical simulations of two- dlmen51onal non-hydrostatic
flows by\Clark and Peltier (1977) and Peltier and Clark
(1979), while the hydrostatic case was treated by Klemp and
Lilly (1978). The effect of us{ng nonlinear lower boundary
conditionsg waslalso studied by Lilly and Klemp (1979),

Due to the neglect of the Earth's tetation, and of non-
linear and non—hydroetatic effects 'in the present hodel,
there are certain restrictions on the vertical scale of the
barrier, h, and the down;ind horizontal scaie, L, in
relation to the ineoming air speed, U, and the static
stability, (as measured by the Brunt-vVaisala frequency, N).
The rotation of the Earth 15 unlmportant when the Rossby
_number U/Lf >> 1, where f is the Cor1ol1s parameter, The
| linearity and hydrostatic assumptions are emﬁected to be
applicable when U/hN >> 1 and U/LN << 1, respectively. The
reader is referred to S;ith (1980) for a discussion of these
criteria. Substituting typical miq latitude, mig-
Fropospheric values of U= 10ms ', N = 0,01 s ', and
fr-0.0001 e ', gives h << 1 km << L << 100 km. These can
e regarded only as rrude estimates of the limitations on

the barrier dimensions. 1In prartice there may be a somewhat

Treater panqe of applicakility, depending on particular



35

circumstances. For ekamﬁlé, Quenef (1948) suggested;linear
theéry could be usgful forlfany typical mountain range as
high as 1 or 2 km, if its total width is not less‘than 10
km'. i |
| The'hydrOStatic approximatién is essential to the
>éeri6atioh of ‘the anélytical solutions to be presented, but,
there is also a phy51cal bas1s for an 1nterest in the hydro"
statlc scales of motion with NL/ﬁ = 10. An important
distinguishing feature of the hydrostatlc mounpéfn waves in
the 10-100 km region is their efficiency in transporting
energy and momentum vertically, as compared to waves of‘both
~smaller and»larger_horizontal scale - (Klemp and Lilly, 1980).
Non-hydrostatic effects are important for the production of‘
extended trains of short lee vaves and the transport of
energy downstream, but are unnetessary éomplicétions(when
examining other aspects of mountain airflow. Vergeiner
(1971) suggested that the severe downslope winds in the lee
of the Rocky Mountains in Colorado are nearly hydrostatic in
nature. Subseguent numerical simulations by Klemp and Lilly
(1975) support this conclusion. Recently, Smith (1981) has
arplied the hydrostatic, linear theor& to an analysis ~f th-
Yood Canal Bridge collapse in Washington State.

\ The equations of the model and integral expressions for
the surfare pressure and wingd fields are given later in this
chapter. Details of the particulaﬁ\ﬁy e ellipfiréi ter-
vain us~d are in Chapter 4. The analytical results for the

surface rrergure perturhatien due to this topnqgraphy are
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presented ingghapter 5: The devxation of theJiully three-

'dimen51onal flow solution from one 1n which the‘iir is

« . \

confined to move in vertical planes 1s also examinsd In
‘ 'Chapter 6, another effect of terrain shape on the pressure
f;eld is explored as ridges having curvature 1n a horizon-
tal plane are con51dered Chapt 7 is devoted to a discus-
sion of the transverse veloc1tx~perturbation and horizontal
divergenceé caused by air forced to move laterally, around ,
the ends of the barrier. e |
For the analytical work, extensive use hés'besn made of
the mathematicsl reference Gradshteyn and Ryzhik (1965),
" This islindicatea as GR in the following. A stan&ard refer-
ence for elliptic 1ntegrals is Byrd and Friedman (1971), |

:.thCh is abbreviated as BF,

3.2 Model equations and their solution ‘ ' ¢

Thé inviscid, dry, steady flow assumed in thlS study is
described by horizontal momentum, hydrostatic, continuity
and adiabatic equations linearized about an isothermal up-
Stream state having a constant speed, U, in the +x direc-
tion. 1If U', v . and v  are the X, y, and z_COmponenfs, ’
respectimely, of the velocity perturbation to the incbming
flow due to a mountain barrier, with p” and p’ as the .

corresponding deviations from the upstream density, », and

pressure, p, then the model equations are



pUu;+p;-0 . ; (3.1)
— . - - Q) . . . )
9U§+Py o., (3.2)

y A-. | .
K g~ +.p; =0 | | (3.3)
p{ug + vy +m} + 8 Ups + 6,0, vi=0 , (3.4)
§0p; +p, w -c2[Up. +p_w) =0 . | (3.5)

Theé symbols §,, 6,,.and 5,, which take the value 0 or 1
aécording to whether the cdrresponding terms in the equa—>
tions are neglected or retainéd, have been introduced to
facilitéte aﬁ examination of the effect of certain gpp:oxi-
mationsitéﬁéévmadé.later. The subscripts on the perturbéw

: tion-fiéidgwdenote differentiation, g is the acceleration
due té gr?vity.(assuméa constant), and'E is the speed of
sound 'in the undisturbed flow: Thé variables describing the
mean flow are related Sy fhe hydrostatic eguation, the ideal
gés‘law-and_the defihition of tle speed of sound: |

i

——

p,=-P8 (3.6)
P<PRT S (3.7)
?-YOR»? , (3.8)

wvhere T is the (constant) absolute temperature, Yo = 1.4 is
the ratio of specific heats and R = 287 J kg~ ' K ' is the
gas constant for dry air. If po is the density at z=0, then

combining (3.6) and (3.7) gives
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wvhere H, = RT/g is-the den51ty scale he1ght

The system of governing equatlons (3.1- 3. 5) is to be
solved subject to the constra1nt ‘that the a1r follows the
contours of the terra1n'at the lower boundary. For ease of
applylng this boundary condition, the vertical dlsplacement
n, of a streamline fron its upstream pos1t10n is 1ntroduced
and related to the vertical veloc1ty by a llnearlzed

Lagrangian derlvatlve Ps in Smith (1980)
. w’ -Rnﬂ-ﬁlk . . . (3.10)

At the terrain surface the vertical displacenent of a
streamline is equal to the. terrain height, h,&SO n(ﬁ%h)=h.
. However, in this study, a linearized version of this equa— 
tion is used: |

n(z=0) = b .

¢ ~ .
y ] - Qe

(3.1i)

Thls boundary cond;tlon is applied to a vave equat1on for n
\

!

_wh1ch wlll now be derlved

Ellmlnatlng v’ and p from the adlabatlc equatlon

(3.5), using (3.3) and (3 10), gives

. ‘8'. —. _',*
° 63 —.p‘+p;--pﬁ2n' , . (3.12)
c ) :

where —
8 P g .
1

ﬁz--—z[**er'[l--J? (3.13)
?, P . Yo Ho '

is the square of the Brunt-vaisala, or buoyancy, frequency.
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The g/c? term in N? was neglected by Smith (1980) ‘and by

Wurtele (1957), who, however, arbitrarily -sesteres it in his

‘final';esults. It'will be réfainéd here, éinﬁé:§/324= I/Yoﬁo

v d6es make a significant contribution té N2 in a c%?preSSf
ibie atmpsphere; In addition, Smith (1980) neglects the‘%
g/E’Aterms ih,(3.{;) (6,=0), although he ind§Céﬁgs that the

, correspondéngAterm in (3.5) is important for fast acoustic
waves (Smith, 1979 ). In mountain wéve tHEOry'it is also

. common toé make é'Boussinesq approximééion. This in&olves

the neglect of the cqmpressibiltyuferms‘in (3.4) (8,=8,=0)

and of'the.vertical3variagion of p in all

uatiQns.except
the definition of buoyancy frequency (3.13). To follow the

consequences of this approximation, wri

z ' :
- 8 ‘.
Fe7 e s AT (3.14)
[

in place of (3.9), where &, can‘take;the value 0 or 1.
Next, differentiate the codt$nuk§y equation (3.4) with
respect to x and express the other variables in terms of p’

-,us{ng (3.1-3.3),‘03;12)‘bnd (3.14), to give

8 +-64(1-62) 5 ‘
- —_— : . -8 - .
Pyxzz M F R_o ! (63 1) =2 ] Prxz (3.1%8)
6.8, (1~-8.) =
+ 3 4 2B - + N—[p‘ +p ] - 0
o T Xx g (xx

Operating with {8.g9/c2+3/32z} on (3.15) and substituting from

(3.12) and .(3.14) gives an equation for 73, to whirh she

boundary conditinon (3.11) can be applied: "

»
-
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&“‘1?‘ .
&[L& L o
oA o c2 ) 2 (3.16)

. Examlnlng (3.1ngfone flnds that retgnﬁnonQQf ,ﬁ

terms (6,=8,=6,=86,=1) ledds tg exactly the same, equ&n

n as obtained if one neglects the compre551b111ty terms 1n'

,'-the continuity equation (6,=5,=0) andythe pressure fluctua- -
%4

t1on “term in the adliabatic equation (86,=0), wvhile reta1n1ng ’
theidenszty stratification effects (6.=1) A 51m1lar rela-'
tionship between 1sothermal and 1ncompre551ble models has
been noted by Gossard and Hooke (1975,:p. 77). They comment
that ’the principal consequence of - .the assumptlon of 1ncom-'“u

press1b11ty 1s the absence of ‘the acoustic solutlons from

~ the wave equation', so that an incompressible model

i

&ontalns much of the physzcs of wave motion in the

.

(compress1ble) atmosphere'

‘For the remainder. of the the51s, attention is restrlc-

ted to the simplified model in whlch density stratifica-

':

tion angd compress1b111ty enter only through the buoyancy
freqUency, N. Specifically, 8,=6,=6,=6,=0 will be assumed . .
throughout. In Appendix A;'it is shown that retaining all
the terms in the governing eguations changes the pressure
field by less than 10% of the maximum perturbation, in most

circumstances,

Te solve (3.16) for the vertical displacement, we employ o

the Pourier transform method used by Queney (1948) in two
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dlmens1ons and by Wurtele (1957) and Smith (1980) in three.
U51ng the notatfbn of Smith, 1Qtroduce the Fou;zer trans-

-';'_'Oi_'form, h(k,l), of the terrain height, h(x,y):

R(k,1) = A—i?f jh(x,y) e ~10axtiy) ;o dy . (3.17
- / — D ¢ , N
"Representlng 7 in ghe rm ' AV
. i \/b- '
n(x,y,2) \\QL fh(k gy ety gy (3.18)

one finds that the boundary condition (3.11) and the wave
equation (3.16) are satisfied, provided the vertical wave

number, m, is determined as a function of k and ¢ by:

k2+2;i

I

‘The solution is thereby uniguely determined, except for

(3.19)

B
fl
4+

al =z

the sign in the éxpression for m. As discussed by Smith
(1979a), the + sign is the coffect choice here since thig
‘"corresponds to a propagation of wave energy upward from the
mountain by pach Fourier component.' This 'radiation rondj-
tion', as it is knewn, is apnropriafr for t*he present proh
lem beq?nse *here is no wave energy erurce at high levels
in the model atmosphere, and the simple vertical strue -
ture of the upstream flrw prevents reflertion nf upwardly
propnrgating waves. The srlution given Py cheoasing the i
sign s alsn the rne that would be obtained in the large
time limit of » time dependent generalization of the present
problem or cne in whi~h a emal) frivticenal farce §- iptr>

Ay o See Ty apre:r { ]QS'Q\ foor mer e Tat ettt oy thie "“;'\'
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ﬁp,Appéndix A, the adiaQatic'relation (3.12) is inte-
grated Qifﬁ'regpect to z, to give the pressure perturbation.

With 8,=5,=0 in (A.2), one finds

P (x,y,2) ~ 1 p N2 J J ﬁ%%*%% A HIymI) gy L (3.20)
-~ -0 o ’ g

o

where p, is the value of p(z) at z=0.
S

In calculations of. the pressure and wind perturbatiors,
values at the terrain surface, z=h(x,y), will be approx-
imated by the corresponding §alues at z=0, in a';anngr simi-
lar to the l;neariéation of the boundary condition (3.11).

Consequently, the surface pressure perturbation is given by

, g T2 h(k,2) _1(kctoy)
p(x,y) i ooN J J ok 2) © dy ds . (3.21)
T;-—@

The three-dimensional nature of the present problem
enters the expression for p’ through the dependence of the
terrain Fourier transform, ﬁ(k,!), and the veqtical wavé%
number , m(k,l);'%n the lateral wave number, 4. In the
special ca~e of a ridge, h(x), ihfinitely-extended in the y
directi~n, the wave motion is twn dimensir~nal jn the sense
that it is confined to x =z planes and the surface pressure
perturbaticn Aepends only on x. To #onfirm this; note that
the ter'=in heiyh+ Foanrjer tranafnorm simplifiege in thig raaec

to -
h(V.e) = h(k) &Co) ,

o~ -~

TR I b (x) o O ax
2y .

——

(3,.22)

S A A

‘e a Mirae Aelta function  which is ndn-zero only

P
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for 4£=0 (see Eyron and Fuller, 1969, p. 224, for example).
Substituting this expression into (3.21), the £ integration

can be done immediately to give the 'two-dimensional’ solu

tion -
l( - , - i —iz . (k ikx "
P (x,y) = p“(x) Py J Yoy e ) (3 221
.where, from (3.19) one hasg . '
m(k) = m(k 0) = {q_— sipn (k) . (2 >
U % :

Even if the terrain is fully three-dimensional, there
are cases in which the motion occurs nearly in vartical
planes, and rhe traneverse perturbation velncity, v , is
neqlidible. In such cases ;he ¢ dependence in m(k,£) can
also be neglected, <o that éhe vertionl wohve nnnbﬂr, m,

again simplifies to Fle form (3.280.  "he 0 (n o4 e

» .
Fertv - haticn hercemes

o aE I vGGy) L

. @ (1Y t

wl o "he -y o \ o (3 - . o,
3
Voo v %:_ J Vi v ) _-ikx A -

] " k- the Yoo intta yidge case; p' Stlll depeﬁﬁ.‘: etk h
anA y heraner ~f the hange in tevroin ryegg-rertion =it

For a'y 'ived "arera' pocition, y - an dnrt, heve a- ha
)

/
"

Ll R Y T TR R S Te ' hr Aare a foyr mn Finite v



(3.22-3.23) with (3 25-3.26)). The express;on (3 25)
be termed the 'two- d1mens:onal slice’ approximation to th

full three- d1mens1onal solution.

Having obtained the pressure perturbatijon, p’

\

» Ofre can
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derive various other Quantities. For example, integration

~
’

of (3.71) vith respect ta ¥, aséuming that all perturb%riong

~

varieh far upstream (x- - qives the v rrmponent nf the ve-

] :0‘ t\gw"v‘rr\ﬂv{/)n'

L]

P (x,y.

x.v.») - ‘-
P

(3.27)

CTrElerYy o fyom (3,2)¢5nd (3 20)  na findg “"at the trang-

' ™) v ]'P" r\pr”tvrhaf;f"v AL Ve q;VQY' "‘\
b4
SARE *—l-—jp (v v. M ay

p U y

-
> i -
- ®
E§' , N(k,2) 2 SO Ry tmit ey SoAg (3
—_ ] K I R T T A s
U g

- e

A ;rfo'aetipc @wpregeinn foar the surﬁacl e lﬂrbafinr

: y) = W( V,’-'") cor he elor ot P ' VA e e
. 4
9., . 3y “y
i"ﬁ‘;" "'nc the v oendy
! m(k.?)  mig, (
s 7 v

o7

oy

whiech fﬁ‘lﬂww from (3.19) Using (3,2") i (2.28), inter -
’ v

“PPrQitg fhe orTer of the foveqint fean an "Y1 5na the

[

I B R

Yy Y
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vix,y) = - = pe(yx) (3.31)
P U ’

where pé(x,y)'is the pressure pefturbation due to a terrain
field, hR(x,y), obtained from the origiral field, hix,y). by

reflection about the Jline X=y:

ho(r¥) = Ry (3.27)

Somr Aeductiors alrit the transveree pertyurbationr velnrity
v tzeed on (2 1) are presenrfied inp (_‘hapter 7..

"' the first equality i t2.78), togetter with

B ¢ fellows imredi=te? th -t the verti:al comps ¢
f Y tert rbhatien verticsi o fho L Ax-3u /0 is
. /
P} 7zero.  The hrri Vrrroanes RERR

t e (1



'* CHAPTER 4
ELLIPTICAL TERRAIN SHAPE

A variety of three-dimensional terrain forms have been
used in mountain airflow siudies, 1nc1ud1ng an infinite
plateau of f1n1te crosswlnd_extent .by Wurtele (1957) a
Gaussian hill Wlth he»ght h(x y) = hoexp( xz/a -y?/b?) by
Crapper (1962) and Marth1nsen (1980) and the c1rcular
hill with h(x,y) = hol[1+(x2+y2)/a2]-2/2 employed by Crapper
(1959) ang Smith (1980). Recently, Blumen and Dietze (1981),
have studied a class of barrier which includes con51derable
variatiap in planform from qua51-circularHto qﬁasi-elliptiﬂ
cal. The mountain shape used for much of the present work
ai]cwc A similar f]ex1b1Jzty, but has terrazn height
Contrire “hir" are exact ell:pses of arbltrary eccentr1c1ty -
Tre P05 S0 o hiree bhe terrain height field as

h o
‘.-,a_.o [ (4 - 1 )

_— (§)7 , ({) 2)}1

“(’('.‘" = -

t

whers h., - p, §rd » nre constant parameters. Note that
A ﬁorrespond? to the terrain of Crapper and of
Smith m%v'irﬂaﬂ?ab~ve, whwle_a-b,‘A~1/? vas studied by " Palm
(195€)  Clavk 3nd Gall (1982) vsed the elliptical case
(azh ', with e iy their nmerical experiments on airflow

‘e Rk Meuntsin, Wyeming. The special case brew, u=1 givesg
the twe i neiongl ridge inttodﬁced by Queney (1947, 104p)

A}

A S L AR Smith ('§76), and others.

ar
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When the analytical portion of this thesis was
A . . ’
initiated, a mountain shape different from (4.1) had been
chosen: |

T ho e "':_
h(XQY) = 3

e ey e

The separable form of (4.2) is a slight convenience, but,
in general, the derivation of solutions for the surface
pressure pergyrbation involves about the same amount of
algebraic manipulation as for (4.1). 1t should be noteé,
however, that use of (4.15 leadslto expregsionS'containing‘
elliptic integrals, whereas (4.2) doeS'not.ﬂlSée‘Appendix E
for analytical results pertaining to (4.2)."éecause (¢.1)
seemed a better repregentation of nafurally occufrihq ter-
rain andfincludes cases abpearing in previbus research, i°
vAas used more extensively fﬁan (4.2) in the current work

At times it “w3il) be convenient to use dimensionless
variables, scaled by the terrain amplitude, h., and the
parameters, a and b. ~antrelling the decay of tre barries
heighf in the x and y directicns, rerpe-tively. Define
dimensionless "artesian coordinz‘-~~ T v\ A "7'*Dt%r”‘
relery cemi i teg (P Q) by

R = (X?1y"y°

i

2 (%

" R cos® , V - % = R gfnn

Dimen ion'egs ferme fer the terrain beiht Feurier trang

Covme 0 1 ey ’“'“Q(ﬂ" B Y Varmal an (A4 Y)Y
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and analdgbus quantities in wave number space (4.9), are
summarized in Appendix B. Using (4.3) in (4;1).giVes a'norﬁ

malized terrain height:

4

« hOy) 1 o -

The terrain height contours are the ellipses R=constant.

The eccentricity, e, of these contours is given by

-

: g oo
(l—Yz) /2 'Y<1 ’
- (1“;‘2} 2 L y>1

!
vhere y=a/b is the ratio of the horizontal scaling lengﬁhs:
The parameter u appearing ;n1(4.4)-specifies the rate
at which the height declines yithfd@;ﬂaﬁce'far from the. '
barrier peak: It will bevte;mééffﬁ;'térrain exponent. -~
However, u is also related f&ithe extent to which the moun-
tain is broad or peakéa énd, therefore, could . be considered

*
as a measure of terrain steepness. For example, one finds

that the maximum terréih slqpe,‘aiohg the Y=0 axis, bccur;
at |[X[=(2u+1) ''? and its hagnitude goes as u~'’? for u>>1.
As u increases, the characteristic size of the barrier, as
measured by the half-width at maximum slope, also behaves as
" '"? and the hill becomes steeper and more sharply”peaked.
Although calculations are performed for general u where
convenient, some of the more complicated results are
obtained only for the particular values u=1/2, 1, 3/2: and

2. A vertical cross-section of terrain as a function of X

along V-0 for these four u values is shown in Fig. 4.
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Figure 4. Normalized terrain heigh', H='/(1+x2)",
vs, dimensionless position, X=x/a, alrn> ¥v-0 for +terrain
expanent u-1,2, 1, 3/2, and 2.
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Calculations of the x-z cross- sect1onal area of the
terra1n, A(y), and the mountaln volume, Y, show that the s

cases u=1/2 and u=1 have special 51gn1f1cance. ,The_

cross sectional area is defined by

A(y) = J h(x,y) dx = a ho I'(l_ X2 ‘ Yé)“ ;
+ X2 ¢
_L/2) Tuer2) - 2Ry c WYL (4.6)
T(u) : (1 + Yz)u-llz ‘ )

.Awhere ths second farm involving. gamma functions, can be
obta1ned from standard integral tables, such as GR (p. 295).'»
Note that the cross- section has 1nf1n1te area 1n the Casiﬁf
u=1/2, whereas it ‘is f1n1te for the larger values of u.
S1m11arly, one flnds that u=1 is the largest value of u
for' whlcgﬂlhe terrain volume Js not f1n1te. Specifisally, v
is glven by

L ‘}.__‘_ ‘21[ © ,
j ]h(x y) dxdy-habf J'R H(R) dR d6 . ' (4.7)
A4 0 0
where the dimensionless varlables (4.3) have been used in
the second expression. | The: integration is easily done to

obtain

w .
V=Fl—hoab ,{(p>l). . (4.8)

The;efpre, the terrain for the u=1/2 case has infinite
Cross-sectional area and volume, the u=1 case gives a finite

cross-section put infinite volume, whereas in the u=3/2 and
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u=2 cases both éuang}ties are finite.

.in the calculation of the surface pressure perturba-
tion, as given by (3.21), the Fourier tfansform of the
 he1ght field is required. Con51der the general case of
vterra1n with e111pt1cal he1ght contours, so that
h(x,y) = hoH(R), where H(R) 'is an arbltrary pos1t1ve
function of the rad1a1 e111pt1ca1 polar coordlnate.
Introducing the diménsionless wave number variables

o= €202y . o\
_ (4.9)
Kk = ka = ) cos¢ , A = Lb =p sind . ’
and traﬁsgérming (3.17) to the (ﬁ,e) coor%inates, oné finds
that the terrain Fourier trénsform is a function, Q(p),.oé
the wave numbét:magnitude,‘p, alone:

‘ 2n =
o h(k,2) - 1 » .
- 0 0 o ' -

-ipRcos(6-¢)

1 .
= o J R H(R) .JO(OR) .dR ,
0 .

(4.10)

where the 6 integration has been done (GR, p. 953), giving
rise to the Bessel function, J,. '

f Spécializing again to the particular height field given
by (4.4), the remaining integral in (4.10) can be evaluated

(GR, p. 686) to give

- 1 -1 K _,0) (4 11
H(p) = 5;'[%} —EFz;j—' y (w>1)y -17)

where K, . ,(p) is a Bessel function of imaginary argument.
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.In Table 2 of Appendlx D, expl1c1t expre551ons are gIVen‘for
H(p) for other terrain shapes. _
Flg. 5 shows the normal1zed Fourier transform, H(p) %

a function of p. for the cases u=1/2, 1, 3/2, and 2. Thé
flattening of the curves as u 1ncreases reflects the fact
that the terrain is more peaked for large. u, and_the low
\waye numbers become less 1mportant,: From the‘propertigs bf

Bessel functions (Abramowitz ahd-Stegun 1965, P- 375) one
can show that as p+0, H(p) becomes ‘infinite 1iké (2ap)-: for
u= 1/2 and like -(1lnp)/2x for u=1;f This 51ngular behav1our
is closely related to the result that the terraln volume, v,
is infinite for these cases. Comparlng (4. 7) and (4 10),
one sees tha%gy(o) =V/(4m%hoab). 1In a similar manner, the
terrain- hetht Fourier transform h(k '¥), involved in the
two- dlmen51onal sllce approxzmatlon, is related to the ter-
- rain cross-sectional area, A, by h‘p y)=A(y)/2w. This is

shown by comparing (3. 26) angd (4 6).
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. Figure 5. Normalized terrain height Fourier transform,
H(p), vs. dimensionless radial wave number, p, for terrain
exponent u=1/2, 1, 3/2, and 2. For u=1/2 and 1, H(0) is
infinite, :

“
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. R 42;,
ANALYTICAL SURFACE‘PRESSURE PER

5.1 Three—dimeﬁsional £low

-

. Analyt:cal results*for the surface pressure perturba- |
_tion, p°’ g1ven by (3. 21) are derived in this sect;on for
the terra1n shape (4.1). The dependence of the pressure
field on:the horizontal scallng lengths, a and b, of the
terrain; is discussed. The transition from two-dimensional
flow over an infinitely-extended ridge to the three-
¥ dimensional flow over a circular barrier is considered’,
Fer any elliptiealAterréiny h(x,y) = hoﬂ(RJ,'the
norm’lized Fourier transformb ﬁ(p) of the height field is a
funct1on only of the radial wave number coordlnate, p,
Qﬁflned in (4.9). Therefore, it is conven1ent to transform
the double integral (3.21) to polar coordinetes, (p,0).
Using the hydrostatic vertical wave number expression
(3.193} one obtains a dimehsienless surfa;e pressure pertur-.
bation, ?3(X,zj} given by ::'1 ‘h _fyj

20 w x

p (x,y) - | ipchs(¢-6) ~
P (X Y) » —— = i J f cos¢ e 1 [} H(p) do d¢ , (5.1)
p TN h 0 0 (cosz¢+y sin2¢) '

: where/f Rcosf, Y=Rsiné, and y=a/b. With p, = 1 kg m 3,
/
D1 s ', T

factor poU N h,

N =20 10ms-', and hy = 1 km, the normalization

100 Pa (= 1 mb).
There are tweo special barriers for which an exact

analyti~al result can be found for the ¢ integral, namely an:

'7,&54
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infinitely-extended ridge and a hilllof circular hérizontal.

cros;;section; In the ridge case, which corresponds tO'b*Qi,
in (4.1); the terrain height depends only on X; since
Y = y/b ; 0 for finite y. Also, y = a/b + 0 so that the ¢
integgal.to be‘evaluated is

2n

f sign(cos¢) e
0

ipXcosé 4, . (5.2)

Using some symmetry arguments the integral reduces to

w/2 o
49 J sin(pXcosd) db » Zui:HO(pX) . (5.3)
o .
where the last form is given in GR (p. 402) -and H, is a
Struve function. Therefore, the normalized pressure pertur:
bation, P3(X,Y), for the'tWOMdimenriona1 riAge rnee, which
vill be denoted by PQ(X§, is qiwen bhy

"~

Py(X) - - 2n j r B (nY) }}(p) A (—
" n
0

The cther special case to b considered is that in

which y=1 (a=b) “so that the hill ig circular in heri- 1)
L5
~rors gection The ¢ ‘nteqral her amen
2r
iR ol 0y
l"‘“"‘* ORIy (5, r

0

Making the chanrge of variable, ¢-?*f, an? ex mining the

pﬂvir\dicity properties of the inteaqrandg. v oo sl £ o
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GR (p. 402) that (5.5),reduces to

- w .
21 cos8 j cosf sin(pRcosf) dt = 2ni cosé J!{bR) , __-.\VJS.G)
0 L
where J, is a Bessel function. Denoting the norma11
pressure perturbation for the circular barrier case

PQC(X.Y), and using (5;6) in (5.1), gives

o
PBC(X’Y) = -21 cos# f p 'Jl(pR) ;i(p) dp . (5.75
0
Te make further progress we now restrict attention to
the particular terrain shape (4.1) hav1ng a norma11zed Fou-
rier transform, H(p), given by (4.11). Othgr barrier
rrofiles are treated in Appendix D. The;surface preséure
perfu;f:ation for the ipfinite riage, the 1':wo~dimenSiOnal'
slice approximaﬁion fov an alliptiéﬁl Sarrief‘ and the full
threr-dimensional f1lcw scluticon for the circular barr1er
TR can a1l be ohtai-4P in 3 straightforward manner.
"vb:r’rufipq (4 ") Snte e intagrsl (8 4) far the

Y iy e o aga Yiveea

s X7y (5.8)

r,)(Y\ - -ﬁ/—%’- 2) YOF (1 a0

rGam

'\’H-‘
UIU

nsing a result from GR (p. 781). where Fla,B;v:2) is a
byr=rgeometric function. Ae it stands, (5.8) ;g useful only
For X[-1. put transfer-ation formulae, such as’given in GR

{r ]ﬂd?)' 2)Y ) ~w - - -»}\Oﬂ;n evpressiﬁns ‘~'?)id for a]] ‘

LA evomp] o
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1

. 13 ., - .3, X2 ' (5.9)
F(l,u%z,z,'x )J i;iz F(l,l U,Z.TIEZ) ”

In the particulér:casés whére u is half of a positive
integer, the hypergeometric function can be reduced to a
combination of elementary functionss The resulting
expressions for u=1/2, 1, 3/2, and 2 are given in Tahle 4 ¢
Appenaix D, along with the posifiog_and magnitude of rhp
maximum pressure perturbation. Fig. g.shnws the pressure
perturbation as a functior of X for these same values of .
As indirated in Chapfer 4. as v increases the barrier bec mnr~
more sbarplf peaked and its width effectivaly decreases.
This is reflected in the recults for the pressure perturhs
tion. From Table 4 or Fig. € mne can see that. as u
increases, the extreme pressure perturbatinn increncen in
magnitude and shifts teward the harrier.

The ncrmalized surfare pressur- pnr@frhariﬂn for th-
twe dimensionsl slice flrv. Aenoted by P /X ¥), can be

7
“hrtaired fycr o the Ipfinit o1 i 'me anlrc fan - [IE I -

)
~t—
PIeN
4
[y
~
N

( !



Figure 6. Magnitude of the normalgzﬁd surface pressure
Fetturhsticn, |P,(X)|, for flow over an infinitely-extended

rife yithk the vertical cross-gection ~hown in Fig. 4,

i"'nlrgs rosition. ¥ewda, feor

(
"errain exponent
SYARE NI

06y bt e g 4

i CINC'NAR CASRF
—— 0

\..t
(y !0

Figure 7. A= ip Fig €, excert stowing the magritide
of the normali-egd s ' fac' preesvrr p ttrhrti n, [Ey (w V)|,
TV 0, for flew e o oot
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two—dimenSiOnai slice flew‘alond ¥=0 eﬁd'to the correspond!
ing infiﬁite tidge. An example of the full X-Y'variation of
P S(X,Y) will be diseussed later'in this settionf

Next cons1der .the circular barrier case. Substithtiqg
(4.11) into (5.7), using an integral tabulated in GR (p:
693),.gives the norﬁ;iﬁzed pressure perturbation

I'(u+1/2) 1(3/2) l

= - = 2:-R2
Pac(,Y) T) X F( »u+532;-RY)
F(u+1/2) .T(3/2) °x 33 RZ <
} TG (1+R2)3/2 Bz - wilig?) - (5.12)

Table’sﬁin Appendix D gives the functional ferm for
/P3 (X,Y) in the speciel cases'u=1”?' ', 3/2, and 2. Note
that the result for u=3/2 agrees with that'giwen by Smith:
(1980). The extreme value of the pressure perturbarwon is
found to lie along the Y-0 axis. This value and the X coor-
dfhate at which it occurs are also given in T&ble 5. Fig. 7
shows the full variation with X aleng Y=0, Comparing
Figs., 6 and 7, it is seen that tﬂe variation with the ter-
fain exponent, pu, is gualitati-ely similér in the infinite
ridg~ and circular hjill casges However, for a fixed.;alue~
of 4 the maximum value of the hydrostatie presryre rvert ha-
tinn is nearly 2ny lower for the circular hil) -5 » 1bvan for
the ridge c¢ase. 1Tn contrast, for non hydrostat i  wn g,
Crarper (1959) found that, under scme conditions, 'he -'§veay-
lar harvier can precduce waves of greater amplitude alorg v=-n

(AR

wroAn infinite 339 of $' eame yertical rreoeg-gect !
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Now return to (5.1) and consxder the solutzon in the
general elllpt1cal case, where the ratlo of the horizontal"
length scales, y, is not restr1cted'to 0 or 1. 1In th1s
case,.a closed-form result for the ¢ integration has not
been found, although symmetry arguments can be made to show
that the imaginary part ofLP .van1shes. If attent1on is
restricted to the terrain shape (4.1), then the p integra-

. . - 9 .
tion can be done first and the ¢ integration completed

.

afterwards. Expandlng the exponent1al in (5.1) and sub-
st1tut1ng for H(p) from (4. 11) allows the P 1ntegral to be

written as

§ - -) .
J sin(pRcos(¢-e)) pﬁ(p) dp‘- 1 J pu K _l(p) sin[pRcos(¢-6)) do
o ' =2¥T (u) H o
F(u+1/2) Rcos (¢- 6) (5.15)'

4 T(3/2) T(w) (14+R%c0s2 (4~ 9))u+ﬁ

where the last form is obtainéd-from GR (p. 749). From
(5..1) one *hen finds ‘.

2w
PLOY) s I (ut 4 %?~_ R { : cos (¢~ e) cos¢

(14R2c0n7 (=8))" "¢~ "s2¢+yzsin2¢)}i

(5.14)
The ¢ integratiﬁn can be done anaiytically in terms of
elliptic intearals if u is half a positive integer.
Explicit expressions for the cases u=1/2, 1, 3/2, and 2 are
rrecented in Appendix D.

As a tyrical example of the surface pressure field

ch'nined in *his model, some results for the u=2 case are \\\*
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shown in Fig. B. " In Fig. Ba, the upstream flow is perpen;
dicular to the major axis of the ellipse (y=1/2), whereas in
Fig. 8b it is parallel (y=2). In'both cases the pre7SUre
field is antlsymmetrlc about the k=0 axis with high pressure
on the upstream 51de of the barrler and low pressure down-
stream. However, the extreme pressure perturbatzon is about
’5 times larger when the longaxis of the ridge is perpen-
dicular to the incoming stream, than when it is parallel.
The extreme perturbations are found to lie kothe ¥=0 axis
A“@ﬂ';::L eases, with the maximum pressure gradient occurriﬁg
directly over'the barrier at X=Y=0. An analytical expres-
sion tor the maximum pressure gradient as a function of the
terrain exponent, eccentricity, and orientation is presented.
in Appendix F. From (F.6), one finds the maximum gradient
is over 2.8 times larger in the case of Fig. Ba than in
Fig. Bb: | . ”
From the results for the barriers of Figs. 8a and 8b,
one can easily derive the pressure field‘for a hill with an
intermediate orientation, such as.istshown in Fig. 8c. 1In
this example, the barrier of Fig. Ba has been rotated coun-
terclockwise by 45°. - To oBtain the pressure field, .
?Rof(X,Y), for a rotated barrier, one resolves the upstream
velocity into‘two perpendiCUlar.components (for example,
along the symmetry axes of the elliptical terraln) and sums
the pressure field corresponding to each, component. If ¢ is

the (counterclockwise) angle through whlch the barrier has

been rotated, %sn ' “

Kl
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Figure 8. Contours of normalized surface pressure per-
turbation, P;(X,Y), (right panels) and terrain height, :

H(X,Y)., (left panels) for terrain exponent w=2, and horizon- =

tal scale ratio y=1/2 (Figs. Ba and 8c) and y=2 (Fig. 8b).

Fig. B8c shows.a rotated barrier case with y=45°, The mean

wind, U, is from left to right. Axes are labelled by dimen-
sionless coordinates, (X,Y), but each figure shows the same -
physical area. The extreme perturbationg, and their o
positions, indicated by the small crosses, are P, = ,470,
.309 and .400, at %(X,¥) = (,636,0.), (.583,0.) and :
(.826,-.030), for Figs. Ba, Bb and 8c, respectively.
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PROT(XQY) = COB" Pa(X‘.Y ;Y) + 81n¢ P3(-Y ix ;?) ’ (5- 15)

. where P3(x=x/a,Y=y/b;y=a/b) is the normalized pressure field
for an 'unrotated’ barrier, with a and b measured‘aléng the
'x and y axes, respectively. Here |
..\' . ] . Y .
X” = x“/a = Xcosy + =siny
Y (5.16)

-

= y°/b ='77Xsin¢ + Ycosy

are normalized COordinates along the ﬁ':and_y' axes shown
in Fig. 8c. 1In this fiqure it is segn_that'there is some
tendency for the pressure pattern toA'fotate with the bar-
rier', bﬁt through a smaller angle. The pressure contours Y4

near the origin

+ for example,. are no longer aligned
with,an‘axis;* :friéfﬁ‘as in Figs. 8a and 8b. 1In-
Appendix F, an éxpression is‘derived for the'Qrithation of
thé?ze:o_pfessure perturbétibn contour at the ofigin for ahx--
arbitrary elliptical barrier,_h(x,y)»= hoH(Rf. Tﬁe result.
is independent of the function H, depending'only on the ori-
entation of the barrier and its eécentricity. For the case
of Fig. Bc, for example, it is calculéted from (E;?) that’
this contour makes an angle of 25.6° with respect to the Y
axis. |

Another feature to noté abéut the pressure perturbati§n
.fleld for the 45° rotated barrier is that the extreme values
do not occur exactly along the ¥Y=0 axis as in Flgs 8a and

'8b, but are displaced slightly into the second and'fpurth

quadrants. This displacement is more pronounced for



S

barriers with large eceentricity.

-

5.2 Two—diﬁeﬁsional’slice flow
: . ) ¢

To hlghl1ght the propertles of flow around a three-
'd1mensmonal barrler the surface pressure field for an
1solated elliptital mountaln is compared to the 'tVOr
dimensional sl1cev,flow introduced 1n-Chapter,3. In the
latter case the pressure is calculated as if the air moved
in vertical planes,over'a barrier of the Same %-z cross-
section but infinitely-extended in the Y direction. F1gs. é
ahd 10 show normalxzed fields of the terraln height, H

given by (4 4), surface pressure perturbatlon for three-
dlmensxonal flow 93; calculated from (5. 1), that for two-
dlmen51onal slice flow, PZS; from (5, 10) and their dlffer-
ence P3 PZ .. In F1g.»9, the rat1o of the character1st1c
dlstances a and b in the x and y dlrectlons, respectg;ely,
‘1s y-1/2 whereas 1n Flg. 10 the w1dth of the barrler has
been halved so ¥= 1/4. Results are presented here for u=3/2
only, but those obtalned for u=1/2, 1, and 2 are qualita- ‘
t1vely similar. The axes in the flgures are. scaled 80 that
the same dimensional dlstance is shown in the x and y dlrec—
t1ons but the labell1ng 1s in terms of the hormal1zed
coord1nates, X=x/a and Y=y/b All dlagrams are restrlcted/
to the quadrant XZO Y20, but no 1nformat1on is lost because

the pressure.i&elds/a:e—symmetric in Y and antxsymmetrzc in

X,
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Figure 9. Contours of n

for u=3/2"and y=1/2 (Figq 9a),.

sure perturbation, P4 {Fig. 9

or
t
b)
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malized Eefrain height, H,
hree-dimensional flow pres-
+ two-dimensional slice flow

pressure perturbation;, P,s (Fig. 9c), and the difference,
e values Of 'P;l, _pz'(ﬂgd P;’p.zs
are -%454, -.533 and -.100, and occur along ¥=0 at X = . 740,

P3-P;s (Fig. 9d). (The extrem

.79% "and 1.80, respectively.

b v
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Figure 10.

~ As 1n F:g 9, but w1th y=1/4.
values of ‘Py, P,s and P,-P% are -.498,

= 767 797 and 2.82, respect1ve1y

‘Extreme

-.533 and 054, at X ‘
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In Figs.-9~and 10 it is seen that the magnitude of the

'pressure perturbat1on in the three-dimensional flow 1s

1°generally less than would occur if the motion were treated

"the wind. As y increases, the pressure perturbation ‘

as two-d1men51onal. Tho difference, P3-Pés; 1; smaller in |
:Fig. 10, as one'vould:expect, since the barrier in that case .
is closer to being 'two-dimensional', having a Yarger length
to vidth ratlo. Also from these figures, nofe that tho max-'
1mum perturbat1on occurs closer to the r1dgel1ne for the
three dlmens1ona1 barrier, ¢compared to an 1nf1n1te r1dge of-
the same vertlcal cross-section. ' These featufes are also
shown in Figs. 11a and 11b, in yHioh the magnitudeo of the
extreme pressure pefturbation,fand its dimensionless posi-

¥ion, P, and X, respéctively, ate!plottod as a function of

'y for various values of the terrain exponent, u. - Recall

that f=0 corresponds to the two-dimensional flow oyer an
infinitely-extended érosswind~ridge, y=1 to & circular bar-

rier, and y>1 to a barrier with its long axis parallel. to

\

- decreases monotonically, with a lny/y behaviour for y>>1,

JThis result is der1ved in Appendlx I

As the terraln exponent M, increases and the barrler

beoomesjmore localized and sharply;pe

d, the maximum pfes-
sure peri'urbationv increases, but tendl a finite valoe Aas
u*;.’ The positioo of the,maQimum'pressure‘ﬁends to the'
constant value (2u)"’2 as vy increases. By way. of. compar1-

son, note that the maximum terraln slope bccurs at

'|x|=(2u+1)"’2 So, ‘for relat1vely broad barriers, such as
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'u=1, the pos1t1on Ef the greatest pressure perturbation is
somewhat farther from the barrier tbp than the p051t1on of
' maximum slope. For more peaked barr1ers, w1th u>>1, ‘the two
p051t;ons nearly coznc1de. ) |

Turnxng once agaln to Figs. 9 and 10, note that the
perturbatlon in the three- dlmen51onal case falls off more
rapldly w1th d1stance downstream of the barrier than if the
two-dimensional flow. For example, in Fig. 9, the -0.25
pressure contour for P3 intersects the ¥=0 axis-atAX=1.9,
whereas for Pog it extends .to X=2.7. 1In Appendix F, | »
asymptotlc expanszons of the pressure fields as X*w'are
derived. The leading terms in such expansions are found to

be“closely related to the barrier cross-sectional area, A,
and to the terrain volumeyvv,‘(introduced in Chapter 4) in
'the @nfinite ridge and isolated-hiil cases,'respectiveiy
| In the wu=3/2 case, where both A and V are finite, the two-
dlmen51onal flow pressure pertirbation falls off as X"

' whereas the three dlme§s1onal solution goes as X" ?, as X-»=,

X
If JA or V is infinite, as can occur for smaller urvalues,
the f1eIds .decay more slowly See Appendix F for details.
Because PES falls off slowly with X compared to P3, the max-
' imum difference between these fields is dlsplaced well down-
streams«elative to the position where stfor P3'has.its
extreme value.- For example,J1f u=3/2 and y=1{5, as in
Fig. 10, the maximum pressure pertu:batlon is about 0.5 and.
‘-occurs at |X|—O.8 aﬁ\wh1ch po1nt the terraln he1ght f1eld

‘ H=0.5,'whereas the maximum -value. of IP -P |=0.054 at B
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| /
|X|=2.82 with H=0.037. ,,
The manner in which the pressure fleld.changes with the
eccentricity of the elllptlcal terraln 'is now examlned in
' more detarl In Fig. 12a, the ma§n1tude of thevpressure
perturbation along the Y=0 axis is shown for 7;1 (oircular
barrier), 1/2,11/4, 1/8, and 0-(two-dimensional flowf;- The
cases presented are for the‘terrain'exponent u=1 and'z, The
'.shape of the pressure curve and its variationtwith y is
_qualitatively the same for each u. fig 12b shows the dif-
rerence P3 P2, between the pressure field near an isolated
CT\:ﬁree -dimensional barrier (y>0) and an infinite ridge (y=0)'
Note that the ordlnates of Flgs 12a and 12b are not plotted
to ‘the same scale.
In.Appendix‘H,.an expansion (H.11) is der%yed to-deter-

mine the nature of the limit as y-+0. 1It is found that the

three-dimensional pressure +perturbation, P3, can be. expressed
as the sum of the two- dlmen51ona1 dlice pressure field,

PZS, plus a correctlon

rm]éH.12 that vanishesyas y?1lny as

y+0. Some numerical ex
LI ".'.'I .
small y needs to be in practice for the "two-dimensional

les are now considered to see how .

slice solution to serve as a gooqAapproximation’to the
three-dimensiona} one. For y=1, vone finds from Fig. 12,
(recalling that P, (X 0)= P (X)) that the maxlmum of P3~P
amounts to 25- 35% of the max1mum of P3, with the exact -
percentage depending on 4. This relative differenCe drops

"ﬁm about 10% for a barr1et four times as long crossw1nd as

dqwnwlnd Cy= 1/4) and to about 5% for y=1/8. Ifione is
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s
2,

in;erested only‘in fhe extent to which PZS repfoduces the
maximum value”of P3, rather than where the max1mum occurs,
then y need not be as small in rorder to get an acceptable
approximation. For example, from a h1gher resolutlon ver-
sion of Fig.vil it was found that the maxlmum value of st
exceeds the maximum value of P by about 10% when y=1/3 and
by 5% for y=1/5. hese values are a&most 1ndependent of ;he
terrain exponent, u. | o

In summery} one can say that for the calcﬁlatién‘of‘the
surface pressure field, the flow across an 1solated hill can
be con51dered essentially two-dimensional if the crOSSwlnd
extent of the barrier 1s‘greater than about four tlmes its

wldth in the dlrectlon of the mean wind.



CHAPTER 6,

PRESSURE PERTURBATION FOR FLOW\OVEékQEffFD RIDGES

6.1 Introddction

« . "

‘In the preceding chapter, the pressure pertufbation
induced by flow over an elliptiéal ﬁoUntain was calculated
as a funcfion of fhe bétrier orientation and éccentricity.
In the present chapter, another geometrical variable is
introduced. ‘Here, the effect of curvature (i. é horizdntalu
plane) of an extended mouhfiin ridge on the pressure field
ie investigated.

Very few papers in the meteOroiogical literature ad-
dress the qQuestion of whether'pr not the large-scale curva-
ture of terrain features has a gystematic éffect on cyclone
development. On the scale 6f,1ee Qavés, if has been
repnr ted (Gerbier and Berengerf’1961)\fhat 'wave effects are
meye procoun ed’ for flow over a ridge wﬁich is.concsve.to
the wind ~nd leeg pronounced for the convex case. fn a
megoarale numeriral moﬂelf;ﬂg stvdy, Ballentine (1980) found
enhan~ed rrenipitaticn was predi-ted in regions where the
conetline vrecent~ a rencave are to the low-level flow.
Fettere en (198F) mertinng variations in wind speed attri-
Putakle te ehereline rorvntire effacts, Hrwever, these
coactal e'frrts arpear tn he a ronseqguence of the distri-
buticr of eurfe o heating rather than a dyndmical effect ofﬂ

terrain haype a. 'arger “cale, Carpenter (1945), on the

3 ) P ¢ ') ,Y’ . 1 '

ey w{y Ve pe BRI e;-:‘ yrer f‘rr\y?\ 19920 to .
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!
1938, suggested that low- pressure centerswfrosszng the west
coast of North Amet1ca in regions of conca;; shoreline tend
"to develop whereas those approach1ng convex coasts weaken.
Godev (1971) attempted to explain Carpenter s result, a d a.

+

similar observatlon in Europe, in terms of a parameter14
zation of boundary layer turbulence. Because Goa;v's
arguments do not seém'particuiaply conwvincing, the details
will not be presented here; To mentioﬁ just one difficulty,
he implicitly assumes that there exists a definite relation
between curvature of the vertical profile of the terrain and

its curvature in a horizontal plane. A more complete

djqamiéal model than considered by Godev was used by Tibaldi

et al. (1980) to study cyclogenesis‘iﬁ the lee of the Alps.

In their numerical model, a straighr barrier leads to a
weaker cyvclogenesis than a mountain which is convex to the
incident flow. They conclude that 'the arc shnpe of the
Alps is favrrable for cyrlogenesin, Eﬂ& ie not etrictly
necessary‘. ‘H5wever, it-weould be difficujt t jrustifr
application of this reslt ‘o the devel pment ~f lrw
prps's'u,re renterce in the Jer ~f cxtended harriere gurh ng ¢ s
Rockies. The present work will addreca the muye) mnrg
1imited qno:fi‘ﬂ'n nf what efferct ridae - v vature hac gn +)
magnitude of preseure perturhaticns in a etrady. linear,
hydrretatic mode). There ie carinirly r - m fny pe-n gt Ty
te dAnterimice ‘f‘bn r tent tn~ whi % T

' : R Voo

[ 1 SAMEA
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Given a barrier shape, HCx Y), curvature effects can be

introduced by translatzon of the barrier along the x ax1s?' "

by amounts specified by a function xo(v)‘ V@r;ables rcfer~
ring to fhe differentially trqnslated'(ﬂchrved')'barrier

will be denoted by angular brackets, so,

N <HX,Y)> = BE-X_(D),V) . S (6.1)

From the definition of the Fourier transforms in (B.3), one

can easily show that

<i(x;Y)> - o ixX, ﬁ(x;Y) L . : _(6;2) .
and 4
<) = g J WIS en e L )

Although some progress can be made in the case of an
isoleted barrier for which H contains a féc;or of exp(-v?),
results are~pre§enreé in this éhapter ohly for ggow over anv
infinite ridge. 1If an uncvrved‘ridgé.ls parallel to the Y
axis., then, H(k;Y) - H(k) is 1ndepenﬂenr of Y and can be
taken outside the integral in (6.3)- Two types of ciurved
Barriere will be diséussea, a parabelic case with X, - ry?
and a einusoidal case, X, = AcosQyY, vhere 7, A and Q are
parameter< controlling the dleée of curvature. For the

meet part, results will be limited to the Agnesi ridge

Frefile W 1 ex? . The parabolic case is considered

LA



6.2 Parabolically curved ridge

For the case of X, = 7Y?, the integral (6.3)
explicitly evaluated for an arbitrary infinite ridge. From

GR (p. 395) one obtains

. N A2 xw )
e B eifz;; -.4 sisn(xr)) ' (6.4) .
2 (rlnj}ls ' :

~

Sub§tituting (6.4) into (E.S) gives a complicated double
integfal for the pressure <P>, Further p}ogress was made,

" however,'in the special ‘wase of an Agneéi.bérrier, and along
Y=0 for antarbitrary one. |

In the Y=0 case, the A integration can be done (GR,

p 428) ih terms of Bessel functions, J; and N, :

<P(X._,Q)> = (6.5%)

. N | e
_sign(x)[llglJ JIK’k ﬂ(K)[JO(IErI)oqgwo(IEKl))ei( (x E)~wa/4)th

1

where s=sign(kr) and

1

Eh. E??T . (6.6)
For the singn{ r barrier, H=1//X. (6.5).car be explicitly
ovalﬁafé4 in terme of elementary fun-timne but the resylte
“il]l not be érpsented here . Inetead, consider the Angnee;
ridge case, H = 1/(1+%?), with Fourier traneform e
Hik) = exp’ |x|)/2 For this ridge profile. nn analytica!
exyrescisn for t'e rresnure vre feind only at the painog

tw v vy | B [N KR o LA N AR e e oy P IRD



' terms of hypergeometr1c functxons, whlchr in turn, ate foundr

S to reduce to ell1pt1c integrals (GR pp\1016 1019 7045).;

The result obtalned is, . » N 3
\ . x1/2 - 9 ' "u: o ' G

2((2+X2)~ oo
where o , S\;ﬂ o # % ﬁ
. N E - o

1 ' 1 - :

I T

h 4 2 (1+x2)k ’:‘f’-v '5 . ¢ y l~w' ( 6 8 )

” ‘ ! e 9. -

Although (6: 7) refers only to a s1ngle po1nt, it serg;s as a ;
useful check on answers obta1ned numerxcally by other means.ln

In another attempt to evaluate the pressure ﬁleld for 'ﬁ
the Agnesi barrier, the double 1ntegral obé%1ned by subst}- '
tuting (6.4) into +$B. 5) was transformed ﬁ?ﬁng thg elltpt:pal

polar coordxnates (B.2). Carrylng out the p¢1ntegrat1on :

e

R

(GR, p. 317), and introducing a new var1ab1e.?w, by
sinhw = y tan¢ , \ i’ ,' = '(6'9?

the pressure perturbation can be-exp:é%sed as. ﬁu o

[ . A 4

<P(X,Y)> = - 1 L j (fX,Y;0) + f(x,-Y;'w)}édm ", . (6.10)
AYITI 0 . . & . i | i
fg';;_ o
where ~ | ' e \%“\ .
3 X . '
sin( = arcéann - =~ signt ) - ‘ 2 o
£(X,Y;0) = 2 7 JEOR T (6.11)
| (1+n2)° . L, e .
and : " ' - : N )
. : : ¥
. 2 L &
"= (ﬂ,nhw4tyztx&+ X -2 . - (ea12),

/
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To Study the hehavxor of the pressure fxeld,as the

W

T =N
»_parameter, " (and hence the curvature of the ridge) 1s

var1ed the express;on (6 tﬂ) was’ evaluated numerxcally
”~

‘us1ng a 200 p01nt S1mpson s rule (see, for example, Gerald

1978 P 214& vith w5 as the upper 1ntegnat1on limit. Test'

runs’ v:th 1006\po1nts and; an upper 11m1t of * “10 gave results

a

differing only by one unit in the f1fth place after the

decrmal Flrst -consider ‘the pressure perturbat:on along the

¥Y=0 axis. Results to be shown heéere are based on (6 10)

‘although some ealculat1ons ‘were done us1ng (6 5) as well.

Both methods took about the same ?mount of computer t1me.
’ In F1g <P> is plotted as a funct1on of X for the
uncurvéd rldge r=0 (dashed c rve) and the parabol1cally

i curved cases, 11 =1/32 1/8 and 1/2 The spec1al poxnts

X=f, deflned by (6 6). for whlch <P> can be chetked. USlng

ke 4

'(6.7) are marked on the 1>0 curves.‘ Note that p551t1ve

‘values of T correspond to a- barrler which is convex to the

#

incoming flow. The concave case is obtained s1mp1y by
changlng the signs of P and X, On the lee (concave) side of
the barr1er (X>O) there is a monotonijc progre551on to per-
turbations of smaller magnitude as + 1néreases.

. On the upstream (convex) side of the rrdge, ‘the varla-
.

~tion with r/}% not s’ 51mple. For small values of T, the

; pressure is sllghtly larger than for a stralght barr1er

(r=0),’ w1th the extreme perturbatlon occurrrng closer to the

ridgeline. The maximum extreme value (about .567) is

attained for 7v? near 1/By with smaller maxima for larger

‘o
A
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*ﬁeluewaf T. For ‘the 1Y’ ~1/2 case, ‘the pressure perturba—
ﬂ .
' tion is notlceabiy fess théh for the stra1gpt ridge case if

P

X is less than about A, The magnltu%e of ‘the change in the ‘
'pressure £1e1d 1nduced by rzdgellne curvature ‘is greatest on

wthe céncave s1de of the barrxer. " ;f_ﬂ

.

;f"the r1dgé@1ne’1s gaven by x=x°(Y) then the radius

Y

‘;of curvature of the rldge, normallzed by the len@th scale,

) 3 o ( . ,./ 1
. ay. 15 deflned by ™~ T lax
2. N L [ an/z
) P .v@g}? .y 'JR ] 1+’Y gy
. ’ o aa s ¢ dzx : ’

. ' . (6.13)
v ‘

"

For ‘the particuiar case, Xo=ry?, the radius of curvature is
[1s 42er)2)3/ 2

(6.14

i
The'minjmum value of Rc ie Rmn=1/§2ry’) whicu occurs at Y=Q.
' Fdrtyzgreater than ebout-1/2, this minimum radius of curva-
ture is comparable to the streamwise horizontal scale of the
ridge. For such sharply curved rgdges, the cross-section
presentéd“to the incident flow is relatively small. Con-
sequently. the ridge affects the flow in a manner compar
able to a barrier extended along, rather than across, the
mean wind. This produees a8 general reduction in the maani -
tude of.the rresesure perturbation, as 7y’ ie increased

beyrnd 1/2. For example, for Ty'=1, the mayimurm pert rha

. tion is lege than N.B, the value fnr a atrpiqhy v i AAae



v.-\Although (6 10) is convenzent for calculat;ng <P> at a
given po1nt or small set~of po:nts, it 1s unnecessarzly
‘expensive for two d1mensxonai‘arrays of po1nts. Instead a
d1screte Fourier: transform method ‘(the 'Fast Pourier Trans—

- form') can be used to approx1mate the Eour1er 1ntegrals _
def1n1ng¢<P> for a latt1ce of points 1n thevx-Y plane.' The'
baszc procedure is out11ned 1n Appendzx J. In the cases to
be d15cussed the calculatxons were done on a mesh of 256 by -

256 points w1th a grid spaczng ‘of 0. 1 in both x and Y

(a

d1rect1ons.

To examine the accuracy of the calculat1on, the.
discrete Fourier transform result is comparea to that based -
~on a Simpson's rule evaluatlon of (6.10) in Flg 14, The
figure 1llustrates <P (X, Y)> vs. x along the cross- sect1ons‘Y-0 ’
and Y=3, for the case of Ty3=1/8. Along both l1nes, the
discrete Fourier transform integration underestlmates the
Simpson's rule result. The latter of the two is thought to
be the most accurate for the parameter Values chosen. The -
maximum difference between the values given by the two
methods is about 5% of the maxlmum perturbation.

F
H

In Fig. 15a, the full X-Y variation of <p> is shown for
thetfyirl/B case, based on the discrete Fourier transform
calculation on a 256 by 256 point gr1d . Fig. 15b illus- N
trates the ry? =1/4 case. The region shown in the figmres
corresponds to the innermost 61 by 61 p01nts, where conta~

»minatien due to d15cont1nu1t1es at the boundary of the

Tompatetional grid is minimized. The contour 1nterva1 for



Figure 14, Comparison of the pressure perturbation,
<P>, vs, dimensionless position, X, along the lines Y=0 and
¥=3, for flow over a parabolically curved Aghesi ridge, as
calculated by a F~¢t Fourier 'ra sf~rm method (f0lid cuvrrnae)
sy Rimreoane Polye dsbaqraticos o 12 Nn) (Aaghed curvew)
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' ﬂthe plots is 0.05, except for an extna contour levei of,

»

-0 375 to- del1neate the m1n1mum pressure more clearly in

S

F1g. 15a. The dashed curves xndxcate the r1dge11ne of -the
he1ght fielgd, x=-rY2 - If the barrier d1d not induce ;Qy
transverse velocxty, then the 1sobars ‘would be congruent to
the ridge in the he1ght fleld and the magn1tude of the |
‘extreme perturbation would be the. same (0. 5) on both sides
of the barrxer. However, from the f1gures, 1t is .seen that
the isobars show sllghtly leSSucurvatyre than the topo—
graphic contour~' Also," as ‘mentioned prev1ously, the effect
of curvature on the extreme perturbation is greatest on the
concave s1de of the r1dge. Flnally, note that a comparison
of the two‘flgures shows the,decrease in crosswind length
scale (fo;,example, compare the sizes of the O.S.isobaré?

with increasing 7, as has beef discussed.

/
© . ~ .//
6.3 Sinusoidally curved ridge ’ ‘
. IS ’// ’
. Thé second type of ridge that ves etni-3 jg =2 ejnn
sofdally curved one. with
Xo - AcesQy . (r 1:)
Emploving the expansion (GR, p. Q73)
[ 4
e"ﬂﬂvé - z T3 (» ein¢ . (6 1¢)
n
TR »
in (6.3), in the infinjte ridge case (ﬁ(usv)-ﬁ(v‘), the

it eyt i Ayear ¢ ran he per‘fﬂrmﬂﬁ using (0 11y 4. give the



e fﬁ' - R . ' a
‘/::ﬁ 2 ‘ -' n
‘ ﬂ~£erfafﬁfheight Foﬁrie£ trensfofmi.__,!
- s  ; . ‘~‘ ”.“ S .u:fw‘“j;ﬁfgii'.,” L
- <B(xy))> = H(x) . )_' ® J (-:A) S(nn—)c) e 1 P
T e m

’

~-

Substituting this teshlt-into’(b'SY the A antegration 1sﬁgﬂaQT?

-easily done. Assum1ng that the tema1n1ng 1nteg atxdh andﬁ.‘ges

¢.’.'._

summa;1on operat1o%s can be 1nterchanged thxs leaves theg

pressure perturbat1on 1n the form S ' .' :  5
' w : o ' BRI
e@m> - [, taw J a0 1" (eh) X g L ¥ (6.18)
n®—o (x2ﬂ2n202) n S | L
o _,s’

This is an interesting'form‘ in that per1od1c1ty in Y, that

one would expect on the basis of the he1ght f1eld

exp11c1t.. However no progress was uade w1th the 1ntegral

in (6. 185 except for the n=0 term. The 1nf1n1te summat1on EF;

can be e11m1nated in favour of an integral by u51ng (GR,,

P. 732) *
- = K (lxlt} cos(ynQt) dt . (6.19)
) (K2+72n292)8 n 0 [ . . e
Fxpressing the cosine in (6.19) as a sum of complex exponen-
+ials, one finds upon substltut1on into (6 18) that" the sum-
mation over n takes the form (6 16), with the result:
DX,V %J J x B(v) L lrbl) ei':x de dt , (6.20’)Q\\'
vhove
X X - X (Tayr) . 7 (6,21) %~



By substituting (6.3) into (B.5) -and cseryingiodﬁ'thé P\
'integration, one can hh;w thatwén expression of the form
(6.20) holds generally, not ]ust for xo given by (6.15). In
add1t10n, H(x) can be replaced by H(x Y) in (6.20).
| For certain terraln formg; the « integral in (6. 20) can’
be evaluated analyt1ca11y However. that would leave a
final i integratiion wh:ch would likely have to he done numer:
ically #as ;; the X,<7y? example. ;Ie view of this, it was
decided to abanden attempte to defermiqg “P(X,Y)> based ar
§.18) eﬁd (6.20), and to proceed to Use‘thethsfhfouri"'

Transform method employed in the pravsious section. The

‘,perioﬁicity ~f the,terrain height implied by (¥ . 18) ig an,

& o~
& Ay

added advantage to using the Foorier tranrf?}m agproachd asv‘
the heighﬁ field ;eeﬂ he enmple” only for fno'waveienorh in
fhé f»dire"tieh. The qri? ;érﬂ frr the e21-u'ation had 256
poin*n at a ;ra'i"q of © " dn ghe X Airer'ion and 64 point
at n spacing ~f 0.0625 i+ the ¥ @ir-ctinn  The regplt f )

the choice of prrameters A= % and Q-n 7 ‘which implien

w:vc"'ang'\\ of 4 uni'r $1 the ¥ Aive-ti n) e rlrtted §n

Fig. '6. "e in F'ig. %, ‘he '3Aget e of the teritajr in
g‘b-"wi\ ac A Ams he 3 (-;'7 - Ih riﬂqg LR TR ) F'O_ e :S
somrwhn! mer eha ¢ 1y 0w tlan the e amp'ce §n P E
Chie ran ehry from (& 1y, (6 13 that rhe mi ‘mumr
(prgitive) r»?iue of Toatvre 3o M o=0 (70 7Y Frrv + o
«<m
precent ¢ sa, R ~0 o i termeiate 1+ 4N vadig:r oF
cm
P -1 and ' 7 cirraspe Jinv S ' o
F
cm

ant 1 par e
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Yigure 16 s in Fig. 15, éxcept, fo' the sinusoidal
L. LI Wy 7 Ny et gy (6.‘), vith A-0.5 and Q=7/2,

el L
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5. On the convex side of the areas of strong curvature of
‘the rldge, the appearance of the 1sobars is qualltatlvely
s1m11ar to F1g 15, In the concave reg1ons, however, there
are more promlnent d1fferences between tﬁe parabol1c and
sinusoidal rldges, In the fornmer case, there is a closed
pressure contour in each concavity, but, in the latter.case
there is only a:Saadle point. For the example of Fig. 16,
the magnitude of the perturbation at this point is about
;42, a larger value than comparably ourved parebolic bar -~
riers. For example, the magnitude'of the extreme perturba-
tion on the convex qmde of the barr1er¢is only about .3 arAd
.25 for Yy?=1/2 and 1, reepeotlve]y Therefore, one muet
consider the pattern of curvature aleng a ridge, not just
the maximum curvature, in estimating the effect of horizon-
tal deformations of the ridge on the pressure'perturbation.

In the Fontewt of a simple model, this#stuﬂy of barrier
curvature effects hac showh that the perturbatirn je

sl1ightly enhanced on the convex side of a moderately curver

ridge segment. However, if the radius ~f ~ivrvature is so
small as to be r'nmparable to the leng'h 5 al ~f the terra’
rar=~1lel tn the vean flow, then rtherve -n ' n daryencge jr
tte mognitnde ¢! the extreme perrvrbar i, The effact f
ricae curvatnre vie found to be g're it v the conen - T
Al othe Yar-de | w' ) the atrength o : '

AR . I [ try & ';111 '



CHAPTER 7
TRANSVERSE PERTURBATION VELOCITY, STREAMLINE DEFLECTION AND
| HORIZONTAL DIVERGENCE

Anlimportant'difference between flow over)En iéolated;
three- d1menszonal hill and that over an extended ridge is
the existence of a non- zero transverse veloc1ty, v, 1n the
former case. Perhaps the most 1nterest1ng aSpect of the .
comparison of the two- and three-dimensional pressure per-
turbat1ons in Chapter 5 is that the maximum. d1fference
occurs. along the Y=0 ax1s, even though the transverse veloc§
ity is zerc there, for an unrotated barrier (y=0). Because-
of :the lateral symmetry of the bar%fer, the motion 6ccurs.in.
a vertical p}ane aloﬁg-Y=O even for the fu11Y three- : S
dimensional barrier. However, the guantity av'/ay-isvnot
zero for the three dimensional case, and so can be used as a
measure of the departure from two-dimensional flow (where
v /B§=O).. Another convenient parameter'to'stbdv is‘the

ey i2zantal divvvq~nre, D . which is defined as
R

. du 3y’
nH s ! ay . | (7.1)

A ﬁon 7ern value for 3v’/dy }hanges the vertical motion
field, relative to the twOwdimnnsionel~;ase, through the
centinnity equatien (3.4), and ultimately the pressure
field, through the adiabatic egquation (3.12f§: As will be
"oan'shprtly, Av /dx is ale~ Aifferent in the two~ and

"hree-dimeneinnnl flows.

89
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Each of - the terms, au /ax and ov /ay, and consequently,'
Dﬁ, attains 1ts maxxmum value directly over the barrler, at
R=0. This is 1nt1mately related to the fact, mentioned
prev1ously, that the pressure grad1ent is also a maximum -
there. Th1s fpllowsrfrom the relat1on between the veloclty
' and pressure fields g1ven in (3.27) .and (3.31) or in the
horlzontal m;mentum equat1ons (3.1) and (3.2).‘ For the
particular barrier 44.i){ anaiytical results for the veloc-
ity derivatives and dEvergehce could be obtained usiné the
explicit expresSions for the pressure'éerivediin Appendix D.
Houever, for the most part, iu the'present study it will be .
sufficient to examine the region near R=0 where calculation

is considerably simplified and tedious differentiations of
frhe.pressure field need not be doﬁe,
vaaluafion of au)/ax, ov’'/dy, an'd"DH at R=0, fdr an

arbitrary elliptical barrier is considered in Appendix F.:
The horizphtal divergence at R=0 is found to be independent
v-of‘the barrier orientation angle, v, .but the relative con-

tributions of du /3x and;avf/ay to the “ivergence vary with
both ¥ and the measure of eccentricity, y. Fig.'17 shows
thebd‘veroence and velocity derivatives for the unrotated
case, v=0, normalized by the diverge= e frr an infinite
ridge havina the same downwind scale, a, as » functisn of
vy-» b.  The ~tretching of the flow along the direction of
the inciden' wind, as measured‘by du’/3x, is seen to

decrease ng5 the crosswind extent, b, of the :barrier

A+ renemec Ithat is, as vy increases) At the same time, the
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. Figure 17. Horlzontal divergence, D,(y), and the ve-
locity derivatives, au’/dx and dv /a , at\ the terrain peak
(R=0), normalized by the value, DH(0¥

of divergence for .the infinite ridge case' (7-0), vs.vthe
horizontal length scale ratio, y=a/b. .
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INhy/a (see Eq. F. 11){
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éonttibutioh to divergence from thehftansQetse velocity,
v’ /8y, 1ncreases, unt1l for 2 circular ‘barrier (y=1) the
tretch1ng is equal along the x and y Qwes (3u”/2x =

ov’'/dy). For.a very narrow r1dge (7*@) the horlzontal

' f‘e ’:\: Y

aivérgénce‘becomes 1ndef1n1tely large. | R
As a further comparison of the dequtnce field in the
two- .and -three-dimensional flow situdtions, gxg 18 illus-
trates the horizontal divergence along_the.Y;U,axis for ‘
'thé‘circular,hill (y=1) and infinite ridée (1f0) cases with
‘terrain exponent wu=3/2. Thé:divergence is normallzed by the

=&

_factor Nho/a, which has the value 10‘ s-' for N"= 0.D1 s ',

hq = 1 km, ‘and a = 10 km. L | ' 511

~ To see the effect of the different distributions 6{
‘horizontal divergence on the vertical movement of an air
parcei crossipg the.barrief,"one can integrate the-con— 
tinuity equation (3.4) with respect to x (dropping the com-
pressibility terms). Then using (3.10) oﬁe obtains the rate
of changé of the streamline displacemeﬁt in the vertical:

x : {

nz(x,y) -/—% j DH(x”,y) dx” . (?.2)

Kl

Substituting for the horizontal divergence from (7.1) gives

u’ '
n = - = + 6 . 7.3
(2 oo

Here, following Smith (1980), the crosswind displacement, &,
of a surfacé‘streamlihe‘from its upstream position has been

introduced, being defined by
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X - )
Csxy) == [ vi(x%,y) dx” . S (71.4)

all—"

From (7.2), it is seen that hzis proportional to the area
under” a plot of horiiontal;divergepqe, such as giveﬁ id;v
Fig. 18. S |

Far downstream of the ‘barrier (x+e), thé x component of
the perturbation veloc1ty, u’, vanishes, so that (7.2) and

-

(7.3) reduce to

t‘;y(‘:x,"”-y) A j Dy(x7py) dx” . (7.5)

For the c1rcular barrler‘case, Smith (1980) obta{ned a
positive value for the integral (7.5) near y=0. He showed
this to be-ah indication that strﬁace air parcels traversing
the barr1er suffer a horizontal deflection wh1ch pers1sts -
_1nf1n1tely far downstream with‘a compensatlng.descent of
air from above, For two*dimgnsionai fiows howevet;~thete~is
no lateral deflection of streamlines or ‘Permanent sinkiné of
air f?r downstréam. As a consequence, the inteqral (7.5)
vanishes. Fig. 18 provides a visual indicatfon of the cén
cellation of divergence and convergence as an air parcel
passes the barrier ifh the twe Aimensional flow situation.

In the three-diTens/Lnal, case the incrgased divergence over
the mountain déhinates the weaker convergence away from the
peak so as to give a net positive result f0r1(7.5), as

. -

indicated above..
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Additional 1nformation about the transverse perturba-' v

tion velocity, v:' and the deflect1on, 6, can be obtained
frdﬁ results already presented~for the pressure ‘field by

us1ng the relation (3.31). Thls equat1on 1mp11es that for

Ilow over an unrotated elllptxcal barr1er, characterxzed by ,

a ratxo of hor1zontal length scales y-a/b the veloczty per-h

turbat1on is express1b1e d1rect1y in terms of the pressure
field for a barrier for which y has been replaced by 1/1&
For the symmetrzc ‘terrain cons1dered here, th1s is equiva-

lent to rotat1?H?the mountaln by 90° So for example.

F1g. 11, show1ng the pos1t10n and magnxtude of the maxlmum '
.pressure perturbatlon, also nges the correspondlngequant1f

ties for the normalized trensverse velocity, V'/_ho, if one

\

replaces vy with /v Slm11arly, the x-y plot of’ pressure
glvemlln Fig. Ba (y=1/2) can be 1nterpreted as a plot of

v /—ho (rotated 90°) for the barrler of Flg Bb (y=2).
For an elllptlcal bart1er, with axes along the x and y
directlons, the pressure field is posxtxve\o:vnegat1vew

. X . . L ’
according to whether x is negative or»posxtlve;-respec-

tively. The relation (3. 31) then 1mp11es that, for three-'

dimensional flow, the surface tran5verse yeloc1ty is
positive for y*O and negat1¢e for® y<0. Th1s is certainly
what one would expect on the upw1nd sxde of the barr1er but’
may not be 1ntu1t1ve1y obvious oh the.lee side. Since V"is
found to have the same s1gn in the ent1re half plane, y>0 .

the 1ntegra1 (7 4) for the lateral streaml:ne deflectlon, s

is a monoton1ca11y 1ncrea51ng functiop of X and the: max1mum

S

0



T es
deflectioﬁ'is attained at x=o, gﬁith (i980) stated an
'gquivalent result fOr'thé‘circular barrier‘c§5e with u=3/2,
"but the abébe argument shbﬁs‘tthAthe'ESSéntfalfha£Ureiof
‘the streamline deflection'is unchanged if 6né'geheraiizesvto'
elliptical mbﬁntginsmh§0ing ? siﬁglellow-p;§35ure Eégion in
the lee. o

Smith (1980) also presented a.formula for the §tr¢am_
line deflection f;f,dowﬁstream; &(k=w,Y), in téfms~o§ the
Fourier transfo:m;vi(l), of the x-z ctdés-seétionalvgrea,
A(y), of the;térrainza _f . | -

Z(z),- %;-] e 1ty A(&) dy t (7.6)

e
- - g

. \ -
§(xmem,y) = —1 J sign(2) §(2) ei%? de

| =]

L (7.7)

For the particular barrier (4.1), A(y) is given by (4.6) and

from GR (p. 426) one finds -

- abh. u-1 ‘ ' -
)]
A(R) "F“E% [ > ] | gu_l(lxl) ' A = Bk - (7.8)

Substituting this into (7.,7) gives
2Nah . 3
floeroy) v =D ¥ F(Lu:5-Y7) tuxl) (7.9)

& U

b}

The deflection is seen to be directly proportional to th?
downwind width of the barrier, a. The distance, b, éharac
Eerizingvfhn crosswind extent of the mountaih, enters the
expression oply through the coordinat; QLQ/gL In the limit
of a ioné crosswind ridge, b tends to infinitv. As a con-

© sequence. Y:+0 for any fipite y. which in turne implies that
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that S(xtw,y)*q. Thxs is the expected result as’ the two-

‘ d:mensxonal flow 11m1t is approached.

_ Note that the hypergeometr1c funct1on appearlng'1n m
(7. 9) 15 almost the same as that ngxng the. two-dfmens1onal
pressure perturbat1on, P, (x) 'so:that' expre551ons for & 1n
terms of elementary functzons for some’ spec1al values of o
EVP be- obta1ned f;om Table 4 in Appendlx D. Eor:example,
for u=3/2 the s1mpl;£1ed form is-

¢ L Z_-ﬁah

z b ) ! N .

This is consistent with the result gimen by:Smith\(1980) fbf
the circular barrier (aéb). T

| The Casg.in thch the {Errain expohent u=1/2 is
somewhat except1onal for then the derivation. of (7.9) baseﬂw

on Fourier transformation fails. This is because the bar-

“rier cross-sec;ional area, A(y), becomes infinite, as'indi-

catea in Chapterx4~(see\(4 6)). _However, dlrect 1ntegrat10n

of the transverse velocxty perturbatxon, as - 1n (7. 4),J1n the':
c1rcu1ar barrler case, shows that the formula (7. 9) actually
does apply for u=1/2 if a=b. The hypergeometric funct;on in

this case becomes

(1 1.3 o - arctan(y) o .
. Flgigeyd) - 2l ’ o e
so that (7.9) reduces to
2Nah. PR S S
S(F-m’y) - '-T-n* arctan(Y) ’ (N'li) <o T (7.12)

Note that-for~h=1/2( the_maximam aeglgction at x=e occurs as
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: yas,;eveh';hougﬁ3;he¢1gter;ifvelocity, v', tends to zers in
| ;his’iihitgF’Eﬁr,iétger values of #, the terrain height:
.‘fa;;s”off,gdgé quickly avaf'fromughe péak; §nd the lateral

deflection has a maximum at a finite value of Y.

L
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. CBAPTER 8 .
~ '
INTRODUCTION TO MOUNTAIN WAVE DRAG AND TRANSVERSE FORCE

8.1 Introduction

©

.’
B ,

Even in the absence of fr1ctzon, stably strat1f1ed a1r
flowzng over a barr1er can experlence a ‘net’ retardzng force,
or drag, due to momentum transferred to the surface by moun- A
faln waves.' Th1s drRg is assoc1ated with the® asymmetrxcal
surface pressure dlstr1butlon, dlscussed in Chapter 5,-with
high pressure on the upwind side of the barr1er and low'{
pressure in thé lee. As 1nd1cated 1n Chapter 3, the hydro-
static theory employed in thlS thes1s 15 1ntended to be e
applled to barrlers Wlth a horxzontal length scale, L, sUch'
that NL/ﬁ =~ 10. For typ1cal atmospherlc values of U and N ‘f
this criterion suggests a mountain half-wldth of the order
of 10 km, or somewhat greater. As it happens, hydrostatlc
vaves generated by flow Bver barrlers of th1s scale are
particularly eff;c1ent in transportlng;energy and momentum
vertically (51eSb and Lilly, 1980). 1In vied‘oi the special
physical role of hydrostaticfmountai,n waves, it was deC'ided
to study the relation between the force on the terrain sur-
face and some geometrical features of the terraln, u51ng the .
simple model considered in prev1ous chapters.‘.‘ .

For a linear, non- hydrostatlc flow over alser1es ‘of
infin§t;1y extended crosswind r1dges, each having a half-

width of 2 km, Sawyer (1959) calculated that the wave drag

ran bhe cofmparable to the frictlonal drag due to the

99
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jfbughness of the surface. -Blumen (1965) extended this sort
of calculatlon to three d1mens1ons, u51ng rxdges parallel or
perpendlcular to the mean wind, formed by superzmp051ng a
series of c1rcu1ar barriers of the type studied by Crapper
(1959). ™ By numerically comput ing theé drag for an airflow
with realistic vertical profiles of wind and stability over
a region of complex terrain in Wales, Bretherton (1969) was
able. to confi;m the order of magnitude of the wave momentum
flux suggested by the @arlier studies. . While it is impor-
tadt to understand the ~ffect on, the dfﬁq‘of a superpositinn
of ‘{ndividual mountains (whiéh>giveﬂ a realistically hhmp;a'
Sarrier3, there is still much to be learned’ uqlng the
simpler terra1n forms agd flow of the precent study.

In the following, the drag on a linear, hydfogfatic

flow over a varie'y ~f elliptica) mountains is determined ar

a functi~n cf the bar'icr s*gepness, eccentricity. an eri

entatiocn Tt is alss » ~un "hat the force exerted by =
meuntain ~n the giv ran bave 5 gignif’r»nﬁ rnmpbnent rerpern
Aiec v layr £t the ins vt (leyw for some harrier prientatianc.
The basgir fevwnlaf frr the force romponentes are presented
the nevt e tinn. Tn an sattempt to rlarify the dep-nden: e

of the 7vaqg nn the vyertiems) prefile of the barriov' calon

latione for two- Yimenginrnal 1 w cver jnf! nitely ewvten' !

rrosg"]ind vidgag e v ogen oA in ""‘r"f"‘” 9. Tecinted
three dimeneinnal hi ! are treated ‘n Crrtinn Q.4 anA
('hapfﬂ' 10, whieh (3 1 - 5¢v Ve draq rer it e mery 303
Teoia) LR PP T Core ri ']y
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3

In@reased understandzng of the momentum flux associated

with mountain waves' vwas a goal of the ALPEX (Alpine
Experlment) Subprogram of the Global Atmospher1c Research

Program of the Lorld Meteorologlcel Organ;zat:on (Kuettner

eterized form, in large scale nimerical weather predzct1on

models,)1s also of current 1nterest (Klemp and Lilly, 1980)
Since terrain necessarzly appears in numer1ca1 models in an
idealized, usually smoothed, form, the effect of terra1n
smoothing on wave dreg és also considered in‘the present .

werk, in Chapter 11,

® 7 Basic expressions for wave drag and transverse force

»

[y

In this section, basic integral formulae are presented

. for the drag and relatrd guantities for unsheared, linear,

Lvﬂinstaric flow.

Let 7 (D ,T ) be the hbrizonral force exerted by'en
ajrstream ~n a mountain, due to the pressure perturbation
associated with mountain wavee. D is termed the wave drag .

hacanse D >0 1mp]1e= a force on the afr in the darectLon%

and O'Neill, 1981). The inclusion of such fluxes, in param-

m.'

-

oppogite '~ the inceming unifeorm airflow. T g’ thz force
romrpeonent traneverge tn the mean flrw Neglecting small
gquadraticr terme §'1vr)"ving the teryr~i- alope,

4

-’
The 03 3y b Ady), F i defined by

&
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f ‘ I?(y) dyb-J Jp(x,y)Vhdxdy 3 _' - -'f('B.I.ﬂ'

whgre Z'z(d ) is - the force per un1t crossw1nd length.
US1ng (3. 21) and (3 19) (thh the + s1gn) to determine

1.the.pressure field, one has

P o-y 1o UN I J J—-g—'-—% Ph 1Y) gy e dx ay L, (B.2)

: ) 2402)* : '
. -M-ﬂ-wﬂ—-ﬂ -

where h(k,#) is the Fourier transform of the terrain height,

defined by (3,17). - Integration by parts, with respect to x

.and y, in the integrals fbf'Df and»T'L respectively,

assuming the terrain height vanishes as |[x|»~ and |y|-+=, one

obtains

o= (07°,77) = 4n? Eﬁ'ﬁ [h(x, z)l dk de ,  (8.3)

_i (V2492 )

vhere §=(k,()

In a similar manner, one c¢an shrw that the *force per~

A,

e

unit crosswind length is given by .

! —_— . c T T §0y

T oA e Y~ 2 TN kR b, 1 3 Y akde. (Rl g
2 9’5 Ay

» g Mg(k4&~\

where h=h(V:y) is tVe Fouri~r 'ransforn of hix,y) with
respect tn~ l)( alone, FafindA ky (10 f'ﬁ\)’ sl o Aenemtan the

compl Ay canynagnte
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As in Chapter 5, the three-d1mensxond1 flov results can
be compared to. those that would be obtaxned 1f the flow were '
. confined to vertlcal planes patallel to the mean w1nd In”
the latter case, the pressure perturbat1on 1n (8 1) is
replaced with the 'two d1mens1onal slxce' form g1ven in

(3. 25) A%ter some man1pulat1on, the result1nghexpress1on

for the total force on the barr1er 15'

*. .
¥2s .(Dzs’Tzs)Af

_h_“

f h (]k]h* L stgn(l) 33 ) dk dy, (B.5)

and the force per unit crosswind length is
| e o SR .
- s - - ~ - h* L
fZS e (dZSftZS) - 21rp°U N J_h (Jx|n*, 1 sign(k) -:—3— ) dk . 7 (8.6)

-0

’ . v o
< «v B -y



CHAPTER 9 -

DRAG PER UNIT CROSSWIND LENGTH

9.1 Drag per unit croséwind leng;h for infinitely-extended
ridges ’ | N
. P |
The relation between the shape of a barrier and the

resistance it presents to the’air is a cbmplicated one.
Before discuséing aspects of this relgfion which depénd oﬁ
three-dimensional flow, first consider the two-dimensional
floy over a uniform ridge which extends to infinity along
the y axis, perpendicular to the mean wind: In this case,
from (8.5), it is seen that the total drag.dn the air is
infinite and the transverse force éomponent is zero, since
, ﬁ(k;yf becomes independént of y. However, the drag per unit‘

crosswing length,.dé=dks(y=0), is non-zero and finite.

»'Scéiﬁnéfthe:térfain height by h, and the x coordinate by a

(see Appendix B), a non-dimensional measure of 4, is
A P L2 |
d, = d3/(p UN hZY = 2 | |g] 'IH(.;)I de .(9.1)
where H(¢5=%(*:y-0)}(aho) and wvka, Primary determinants of
the wa'e 'rag Are the wing speed. 11, stability, N, and t»-
square ~f the terrain amplitude. h%Z Sin-rrporated in the
rvmalization factor, pol) N hZ.

Note that tlhe wave dfag per unit crosswind length is.
independent ~f the parameter, a, the lenath rcale along the

dipe~r i pEyatle) t~ the ingident flay cver o infinitely

104
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long ;idgé. This 1mp11es that the value of d is’ the same
for a barr1er a(x) and Tor one related to it by chang1ng the-
. horxzontal scale through a d1menszon1ess factor, a, to give - 3
H(X/a). See Append1x c for the effeét of thls scale t:ans-‘
formation on other varlables. The 1nvar1ang§ of~dz w1th;-
fespect to a complicates the discussion of the relatxon
Setween drag and terrain shape. At first.tbought one mlght
éuppose that the maximum terrain slope,would'be‘avrelevant
parameter  in the de;ermination of dz' .However;'it is'not}
at least in the most;straighthrward interprétation. For
example, if the paramétef, a, ;s ihcreéséd,ithé magnitude of
the terrain slope decreaées ?Qe;ywhere; As a'consgqUence;
| the pressure fielé falls off more gradually Qith distance
from the ridge. The result is that the net force on the
barrier is unchanged. Hence, it is terrain shape effects
which are more subtle than the maximum height gradieﬁt'thgt
determine the wave drag. |

In order'to investigate other geometrical factors
%ffecting the arag( the pressure perturbation and drag per
unit length were calculated for a wiée variety of terrain
shapes. Three barrier types were considered: a single
symmetrical ridge for which the height décreases mono-
tonically away from the crest; a ridge on which a s1nu501dal
rouqhness has been cuper1$posed and, finally, a combinatlon
of two single ridges displaced from one another by an
arbitrary separatnon The main analyt1calhrgsults are

N - ‘..‘-'r P ‘ .
&, e i,

derived in AppenX¥ices L, M, and N,



106,

@ P
The slngle ridge cases w111 be’ dlscussed flrst.-

Barr1ers vere conszdered thh dzmenszoﬂiess tertazn he1ght

H(x)-h(x)/ho, normal1zed in each case to g1ve a max:mum ;w:...ﬂ.[

" value of . H=1 at X=0. The specific examples used are:

r-a o, .
Cand™ s a?o= 2p41
—y2 '
e X ;a2 =2
=3 ax®Yeax? caza [ 1 Lyl ‘
Hed ax®%a-x2 ;o [2\,_1"”‘21 . (9.2)
' 8 2 . . . 6 :
. ln%—r . “ 62 ‘ . -
- 1n{(§%) - ((1+62)241282) 2 - (1+62)
’ 2 4+ cos? L ,
‘ i—'arccot[x—szgggg—ﬂJ‘ ; 02 = (cos?2uw + 3) % + cos2w

where x?=X?/a2, Here q, 4, v, §, and w are d1mens1onless
real parameters which determine various characteristics of
the vertical cross- sectlon of the terraln. Although a can
be an arbitrary number (see Pppendix C), the particular
values of a given-in (9.2) are those for which the extreme
terrain slopes occur at X2%=1, 6 is a-step functlon, which
is 0 or 1 according to whether its argument is hegative or
positive, respectively., Limited results were also obtained
for several other terrain forms, as indicated in Appendix K.

The terrain shapes were chosen primarily because they

give rise to analyrncally tractable integrals for the drag

However, they turn out to be closely telated For example,

A I

replacing a? by ‘a’u in’ the u-type terraln ahd tak;ﬁg the

; llmlt uoes lea‘

Similarly, vam .

o - BN . - - -~ - - L A T Y
) - . - o e - .
0 7 . C e e - - . -

ives aa,exgonent4a1~form if,uﬁ{isychgsen as .

~1t0 the. exponent1al (Gau551an) form.,‘i,q;::EL“



a 11néar funct1on of o The logar;thm:c and arccot rzdges g

both tend to a"W1tch of ﬁgnes; profile u=1)7in. eppro-?7559ff"

;.przate 11M1tsi namelyr 6*1 and w»O. A rectangular barrzer,

UJ'H=0(1-x’/a’) 15 obtalned for both the u-o and 0*1/2 cases.,"

- can. be wrltten as f;f*ﬁiki~

f_lf the parameters are allowed to take on 1mag1nary values,
7V£urther connectzons between these terra1n shapes are seen.

,'For example, replac1ng @ by ia and v by -u, “the v-type ter- .

e .

- S X< + e : ¢
, 4dod lﬁ[ ‘J i

T

" one sees that, for 1mag1nary values of w, the arccot terra1n:

shape is equ1valent to the logarlthmzc one. These relations
betweéen the var1ous barrier cross sections provxde useful
checks on the analytical results. |

A

In Fig; 19, the terrain height is plotted as a functlon

 of the dimensionless coordinate, X, for the M, v, and expo-

- :»

nential type -barriers. The exambles shown have values of
1/2 and 3/2 for both u and ». . To'provide'a basis for
cohparlhg the barriers, the paremeter a, which deterﬁines
the overall horizontal scale ‘yas been chosen, as in (9. 2)
to make the extremes of the terrain’'slope occur at X?=1, As

suggested by prev1ous dlscu551on the‘ch01ae of ., has nQ

;.p B . . R

? effect on the drag per. un1t length ‘a "Values of dz ér'

o -

;ndxeated beszae tach-curve, 1ncre§51ng from 2/1= 637 for ﬁsf":

Py

1ng to u*&’and »sm) ahd contgnuing to 1ncrease to Jnfinlty

S ! A . o -~ .

- s e we s B rlG s ~ew 3 oo QI—«‘

*raxn goes over xnte the uhtyée.j Notlng that the erccoe»form ;5'

.f‘j.\correwpnd- SO
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) ' <A,

;as"p”aéefeases‘to'o! The analytzcal results in Appendxx

(v-o in Table 8) show that tbe drag per umt lengt‘h for the o -'

u- type terraln is Just the reciprocal of that for the

': With’ the value of a flxed in’ the manner descr;bed the

“?steepness of the terraln. However[ note that whzle the =3:g¢y%’u

.‘: .._.)

R te .
e _',,.,,.M.... -

v=1/2 and v=0 r1dges both have 1nf1nfte slope at. x=-1 the

.'wave drag- per unlt length‘1s 1nfinite only 1n the latter :1_1?

case. - Slmllarly, examlnation of the pte55ure f1eld for

°

these cases (Appendlx D) shOWS that, xn spzte of sharp cor-.

ners at x==1 the max1mum pressure perturbatlon for the ,f

v=1/2. case-' v'anit whlle thaf for v-o 15 not. It 1s not

t

onI~//he relatlve stee

ess of the barr1er, hut also 1ts f‘

‘smoothness that - determ1nes the drag 4 The u type and

Gaussian he1ght f1elds are . 1nf1n1tely dxfferentxable, glv1ng

5 '”- -

- Eourzer transforms,,HTx), whxch decrease exponent1ally fast

i.var1atxon 1n d2 is seen to be closely related to the maxlmumlkff

for large wave number, K. The resulting drag 1svrelative1y '

small, On the other hand the v-type terrazn is’ not 80

]

smooth, haV1ng a zero- order discontinuity in the »=0 cpse;
and having at most a finite number of continuous derivatives
for larger ». Consequently, the corresponding H(k)
decreases only.algebraically for large «, leading to rela*
tively large values of‘drag per unit lgngth , ' , ;
F1g. 20 rllustrates a similar famlly of curves, L

composed of the 1ogar1thm1c and arccot forms 1ntrbduced

earlxer The spec1f1c parameters for this example are 6=10,

‘-,ai‘r\n.\:&‘“>~-wv4~4, S EPUN . . . . . ~
: . . LT

P A
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: *43”and 1 in the logarrthmlc casa'and w-D 45°' 75"and 90'

for the 1nverse trxgonometr1c case (wzth 6.1 and u,Q corre-f“"'“

PSR S ate

?i; sponding- to the curve marked ezﬁll; As rﬁ ng. 19 the scale
parameter, a, 1s g1ven by (9 2) 50 that the extreme terraxn
'slopes occur at x=-1 for each cunve. W1th this constra:nﬁ
on a, the drag 1ncreases with increasing terra;n steepness,

A

'as in the examples of F1g 19 Barrlers w1th the logar1th*

m1c he1ght prof11e have relat1vely small drag.for all. values ﬂﬁg-

;cr 6.\ Howeve:, thetrlgonometrlcform g1ves large drag per_'
unit length‘as w490°. thle the lzmlts v*O and w*90° both
lead to the»samewbarrier, H=9(1-x’), hav1ng 1nf1nite drag,
the arccot proflle is. contlnuously d1fferent1able for all

w#90°, whereas the »- type terrain is not. Therefore, a d;s-

cont1nu1ty 1n the helght f1eld or.its derlvatlves 1s not a oo e

- . ~

necessary qondltlon for a hlgh drag barr1er.

. Conversely, there are barr1ers w1th a sharp CGrner that

¥

-~‘haye'a relatlvely low drag _ One example'1s a rxdge wath a
‘trlangular cross-section: H=(1-|X|/u)6(1-|x|/q) ‘In';J"'_
Appendix K, -the drag per un1t length for- thls type of ridge o
is shown to be 4 =(4/r)ln2= 8825. In Fig. 21, the"
triangular height proflle 1s_plotted as a function of X for ‘
a=1/2 and a=2. Several other barriers haV1ng the same value
of drag per unit length ‘are also shown, correspondlng to
,Hasech(x/a) with a=1/ln(1+/2) the u=1,981 case 1n (9 2)
" and the w=45° ridges having a?=y/3 and 1//3 These examples}v-'
111ustrate that an exper1enced eye or a keen grasp of Fou-

rier transforms would be.requ1red‘toujudge the magnztude-of

S
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the waye drag from a visual 1ns§ectxon of the vert1ca1

. ppofile of the terraln hexght ' : :

In F1g 22 the drag per unit length is summatlzed for~

j“the various single- ridge cases by pPott1ng 1t versus the
vcorrespondlng maxlmum normalzzed pressure perturbation, P
for flow over the ridge. Th:s form of presentat1on was
‘chosen because, like d P2m 15 1ndependent of the scale
parameter, a. Fof details on the pressure field .
calculations refer to Appendix D.i Simple closed-fogy
expressions for tﬁe maximum pressure_and drag exist';or'the

logarithmic and arccot barriers SO a contlnuous curve- of d

. o,
. R

versus Péﬁ‘is shown for these cases. However,-for the u-.
and v- type terra1n, such expressions for the max:mum pres—
sure are not. available ' Therefore, only a’ fev representa--'
tlve:values are plotted ‘A strong pos1t1ve correlatlon 1s*
eeen between the drag .per un1t length- and the maximum pres-'

sﬁre perturbatlons' In fact, 3 the formula

',”7“'\_‘~',x
.z,
277 )y ¥

is used to summarize the results for P2m<1( then |A| s less
than 0.1 for all the single-ridge cases studied. One sﬁculd
vee eaution in applying this formula for P2m$1'or to other
barrier ;%apes. For example, in the limit w=90°, as the
arccot terrain approaches the rectangular form, Heg(1- -X?),
the ratin of g to Fom tends to 2, rather than the value of
"/2 that would be obtained from (9 4). Also, for barriers

hich Ao not have a simple monotonic decrease of height away

4

o

\‘

. ' I (904)
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\
from the r1dge11ne, the relation ‘between d and sz can be -

far from l1near. The double rldges considered in Sect1on

9. 3 illustrate-this po1nt

9.2 Drggﬁper unxt crossw1nd lengt for sznusoxdalgy

—r

modulated»& g

Because of the « factor in the integrand in the

expression (9.1) for @,, the contribution to the drag from

27
the low wave number (or spatial frequency) components of the
height field is suppressed. 1It is primarily the.hfiﬁ fre-
quency components that lead"to-large drag valued. "To some
extent this jidea was 111ustrated by the relat1vely slow
decay of H(wx) with intreasing.x far- the v-type terrain asv
compared to the u-type. To demonsérate this in-élmore
explicit manner, barrier shapes were.cqnsidéfed having a’
single smooth ridge upon which'a sinusoidal variation, of.
frequency Q, was superimposed. The specific.examples‘
=fn”ﬂ'ﬁ are the Agneei case (u=1), H = (A+BcosQX)/(1*X’),
1A ;ho Gaverian case, H = (A+BcosNX) PXD("Xf). The analyt-
i~ rerulte ~re Aerived in Appendix, T

Tn Fige 22a and 22b, the dr2g per unit length is plot-

ted agairst rhe epatial frequen-y, N, for the Agnési'and

r_ T
’

Ganeeinn chapes, respectively. The numerical &tlues are

“h

baced on (1 .3) and (L.5). The barriers roﬂs:de}ed all ‘have

“ n

vk helght at'Xfp (A+B=1) but the amplitude of the c051ne

-

Yerm varl&s from R-Mh‘rﬂ £ in mf-rnments' £ 0.1, D_ixect
(?

o
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C
attention to the left hend portlon of the f;gures. ‘For Q<1,
| the relat1vely low- frequency modulat1on has a wavelength

vhich ‘is large in compar1son to the length scale of the

sxngle rxdge (BsO) so the osczllat1ons are quxckly dampeg

» - v e g

avay from the barr:er peak Referring to the flguze, one
sees that for the Gaussian ridge, d, is almost 1ndependent
-of . Q for low frequencies, whereas in the Agnesi chse the-
draq 1ncreases w1th  and  B. Expandzng (L.3) and (L.5) forL'
'|Q|<<1 (GR, p. 931, fog the letter equagipn); §3ves,\for the

Agnesi case: .
&é - 7 (14822) +o([a|® ., : (9.5)
and for the Gaussian case:

-1 + B(3B-1)

d, e o(ad) . (9.6)

The vanishing of - the low- order terms in ' Q in (9.6) ‘accounts

for the dszerence in the low- frequency behav1our of the .two.

cases. This can be understood from a more phy51cal p01nt of.'

view by looking at the barrier shapes themselves - 1f
|@X|<<1 and A+B=1, then one can write the Gaussian terrain

height as

(Aﬁhcosﬂi) e;x2 = e.(1 +.B§02)X2 ‘ (9.7)'

- as can be“shown by expanding the Q- dependent terms on both
sides. TRerefore, for sufficiently small Q, the effect of
the cosine modulatlon on\Fhe Gaussian hall is merely to
change its scale while egeznnng the same_bas1c shape. is



A
\

ment:oned prev1ously, such a change does not affect d

Conszderxng the Agnesz case in a similar manner, for |nx|<<1>

and A+B=1, one can write ' , l S

@ - - .. -

L+ e+ . ABtosfX | o . 1 . TS ‘-.n~w~(§:
BN + X7 (1+x1’) (144,m2xr | | ’

(o o X- BN

Here, the sinusoidal term is seen to lead to.a more‘sharply
peaked barrier. "However, since this is not caused by a
simple chande of horizontal séale; there is a strohger‘
dependence of d, on than in the Gaussian case.

As Q increases, there is a transition region where the
_interactienvof the sinusoidal and simple ridge contribufions
is more complicated. This wiil not be discussed here. How-
ever, for 9 larger than about 5, things appear to be sim-

- pler, with the curves in"Fig. 23 showing a lineér relation

between d and 2 and a strong dependence on the amplitude of

the cos1ne term, B. This can also be seen by considering"
(L.3) and (L.5) in the range Q>>1, One finds the drag per

unit length for the Agnesi ridge becomes

n
d, =2 (Azflnlnf) , (9.9)
and that f-r the exponential one is
2 b )
4, =AY + (n/8)7|a|R” (9.10)

1 the horizonta) =rale of the simple ridge is large enough
te contain several wavelengths of the cosine modulation,
then these formulae imply that the drag contributions from

the single ridge (A? terms) and the oscillation-(B? terms)

)!
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add independently‘to-give.the total"d

2* Therefore, 1f 0>>1 ifg
- and'A_is,fixed' the COSlne term always leads to 1ncreased "

drag However if: ‘the - terraxn is normalzzed,to un1t he1ght,ﬁa;.

Neoe.
-».a.nﬂ\-.oow"“"'¢“ . oL . e v a
a"-!ue:a LR DA L PRI S BRI ot

&% in° th€ examples of F1g 23 .80 | that A+Bs1 then for y

0 "‘ "
- - .m. - K

suff1c1ently small B there is a range of Q such that dz is
less than it would be for the unmodulated r1dge (B-O)
'Nevertheless,'for any~non -zero value o? B, the cos1ne term e
will dom1nate for suif}c1ently high freguency\
Th1s 1mportance of the high- frequency components of the -
terrain- he1ght spectrum in determlning the drag per un1t
“length 1s ‘the most 51gnlf1cant result of the preced1ng
'analysls. One should remain aware, however, that non-
budrostatic ‘and nonlinear tUrhulentﬂprocesses{ that are not
included inm the-presentfmgdel become more: 1mportant as the
spatial“scale decreases. Blocklng of the flow upstream of
“mountain ranges, stagnation of air in. valleys, and boundary
layer separation in the lee of_steep.barr1ers are all pro-"
cesses which would tend to screen the upper flow from - some
of the high- frequency content: of the terrain- helght spec—'
trum In applylng l1near theory to real atmOSpheric cases,'
it might be necessary to mimic the effect of such. processes
by altering the terrain shape used-in the model. The lee—»
wvave model of Vergelner (1971) is an example in whlch the
low-level flow is artificially blocked. Also, Pearse et. al.
(19871) suggest the change in the effective terrazn shape
associated with boundary layer separatlon as an explanat1on
of some features of the velocity amp11f1catlon in the flow'

&

o
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9.3 . Drgg;per unit crossy1nd length for dbuble rzdg
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The third type of 1nf1n1tely-extended barf1€r fbr whach
the drag per unit length has been calculated is the super-

.vip051tlon of two 1dent1ca1 rzdges, wh1ch have been dlsplaced

- - N - -

symmetr1cally from the orlg1n, 1n opp051te glrectldns, by an..

amount e} 1f "h(X) “is ‘the tefrain-he1ght of a single’ ridge,

LB s e ~ s,

‘then the~dbubre Pidge «is- deflned by. . . . o

o o . Bom PO,

~ w oav a

T N e e

'*_Vuf(i)i’-t{(x;f‘e) Ao MCEE

.
P
> -

«The drag per un&t bength dﬁ, is evaluated fer a variety of

,x@ L o

2

51ngle r1dge shapes, h(X) in Append1x M.. The. sﬁec1f1c

forms considered are the =1 (Agne51) casé: h=17(1+X%), the
o

trzangulﬁ? Case: h (1—|X|)9(1—|X|7 and’ the logar1thm1c and

arccot cases’ glven 1n (9¥2).* The pressure fleld'can“be cal’f

.

culated from "‘fm e

vhere p(X) is the pressure perturbation'fer-the sjngle o
ridge, h(X). For these siﬁdle ridge cases the pressure
field consists of one-windward high and one lee low, with
these extrema each being ddsp}aced from the origin by a u
distance, xm (see Appendix D). The presau:e perturbatiqn

for.a double ridge is more cbmpiicated, but, the extreme

perturbation, Pz" can be determined by solving dP/dX=0 (a
- 2m ‘ :

P(X) = p(xte) + p(X-€) . (9.12) ¢

-,

[



;fcubxc equat;on xn x’).

In Fxg 24a, the drag per un1t length 1s plotted as a i;'“

'“VQf‘functaon of. the max:mum_presSure perturbat1on for double

<

-

a

'
he o e &

~e

r1dges of. the logar1thm1c form ulth 6=10 (dashed curve) andfff¢

"the arccot form for a seléction’ of w values" (ihcludxng”060

..J,.

-~
- .o

* the Agnesi -case}.. ~Fig. 2%4b. ‘s~51m413frrbU£a,on ‘ah ﬁxpﬁnded e

scale, shows results for -the w-45° and tr1angu1ar barr1er
cases. The curves are - parameter1zed ‘in terms of the ratio
of the rddge<dzsplacement t6. the~pos1t1on of the extreme -
pressure perturbat1on for a s1ngle rzdge,‘e/x -vmﬁ;p :

R SN

For e-O at the upper rlght of each curve, the two

‘hlgh "The corresponding drag per un1t length is four tlmes'
that of a 51ngle ridge whlle the pressure perturbatlon 1s

tw1ce as large. If the r1dge§ are separated (e>0) then'di‘

and P2 decreaee rapldly For e/x =1 che 11ne of m1n1mum

' low pressure assoczated w1th the upstream rrdge overlaps

with the l1ne of max imum, hxgh pressure assoc1ated w1th the

'downstream rxdge. For the arccot barrzers; if the'h"

parameter,'w, 15¢near 90°, th:s cancellatlon of the -pressure

.fneld in the ne1ghbourhood of x-o leads to a sharp minimum

in the drag near e/X =1, (Note the posatlon of the diamongd,
marklng e/x =1, near the minimum of the curve for .w larger

than about .75° 4n Flgr 24a) ; Houever, for w values near 0,

‘b

or in the logarlthmlc case, the cancellatzon of the pressure

fzeld between the(superlmposed rldges is less complete

N -
becaﬂ@bwfhe pressure fzeld for a 51ngle ridge has a less

PR

' sxngle rldges overlap completely,églv1ng a barrler thce as
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Figure 24. Drag per unit length, &, versus the maxi-
mum pressure perturbation, P,m, for double .ridge terrain
- shapes. of the logarithmic (dashed curve) and arccot (solid”
" curves) types (Fig, 24a), -and the w=45° and triangular types
- (Fig. 24b). Symbols mark the ratio of the ridge displace-
ment to the position of the extreme pressure perturbation
for a‘ single’ ridge, *¢/Xn..



'pronounced maxzmum near an . Theretore, the m:nzmum in d

¢

is less sharp and occurs at. lerger values of ¢/x A

-“”51m1lar behavxor is seen in F:g 24b. Although the two 'ig

ucases shown there have the same maxlmum pressure.and drag-

=

per unit length values when e-O or =, the tr1angu1ar case e

shows a fa:rly sharp- mlnlmum 1ﬁ d' at e/x =.92 whereas thej

w=45 barrner glves a broader mznlmum w1th the extreme value?~i

M hd
S o -

at e/x -V3=1 73 These,d1£ferences are con51stent with the .

fact that the pressure field for a 51ngle rldge in the w=45°

¥l case falls off as —(/B/ﬂ) (X /x) as xew, vhereas. that for -~ .

the tr1angu1ar r1dge goes as‘-(/Z/ﬂ) (x /X), with. the numer-
ical coeff1c1ent only half as large. Thls implies that the
reg1on of 51gn1f1cant pressure perturbat1on in the trzangu-
lar case is smaller leadlng to a° more effectzve cancella—
tion when two rldges are s%ﬁfrlmposed ‘with e/x =1

As e/x = (left side of each curve in Fig. "24), the o

1nterference between the rldges disappears. The maxamum_f

‘pressure reduces to that for a szngle ridge, but the total

 drag per unit length is d0uble the 51ngle rldge value,

because of 1ndependent contrlbutlons from the two ridges.

Fzg 25 shows the drag per unit length, exp11c1tly as a
function of e/x for some of the arccot types ot barrler.
From this dlagram one can see many of the features ment1oned
1n d1scu551ng the other flgures. There is 2 sharp decrease
in drag as ¢ increases from 0, associated wlth a rapld

decrease in the he1ght of the double ridge. There is a

‘minimum of d 1n.the_reglon Ofre/xm'1 due to cancellation of
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Figure 25. Normalized drag per unit crosswind length,
-d,, for the superposition of two arccot ridges, as a func-.
tion of the . ratio of the ridge displacement to the position
o; the extreme pressure perturbation for a single ridge,
€/Xm. ' i
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'the pressure perturbatzon between the barrlers.< analLy,
: there 1s a recovery to drag values thce that of a s;ngle-~-_;

' rldge as ew>, - The curves become rather flat at the rxght

edge of F:g 25, w1th ‘the d value at e/x =4 d;fferxng from

-

",the va@lue obtained at 1nf1n1;;;j§parat1on by only 5. 2% for

w=0 and less than 1%_for w=g

9.4 Drag per unit crosswind length for 1solated three-

dxmensxonal barr1ers h _ : N

For flow over the 1nf1n1tely-extended barr1ers treated
in precedlng sectlons, the drag per un1t length is unxform,
belng independent of the y- coordlnate Now consider thefmore
compl1cated case of three-dlmenszonal flow 0ver'an'ellipti-
cal hill with a non-zero rat1o, yza/b of horizontal. length
scales, a and b, along and perpend1cular to the upstream
flow, respect1vely.4 A o

‘ Ahalyt1cal treatment of the integral (8.4) for the drag'
per unit length in the three dlmen51onal case, in general
proves to be much more d;fflcult than for the correspohdlng‘
‘two~dimensiona1 flow. However, the v-type elliptical ter-
rain, H(R)=(1-R%/a?) 8(1-R*/a®), with R*=X*+Y? (X=i/a,
Y=y/b), is tractable for arbitrary T if v is half an odéf

integer. _The results for. v-1/2 and 3/2 are derlved in

Appendix K, with the expli zt formulae given by (K. 11) and’

(K.14) in the e=1 case. For. one can use the trans-

formations in Appehdix C. For the u-type terrain with
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e

“Hs ( 1+R’/a’) ; progress was made 1n the uw1/2 and 3/2 cases,
but only for y=1 (a c1rcular h1ll) The normalxzed.drag pe:
unit’ length for the C1tcu1ar case, dae, is calculated in’. o
Appendxx K, with the result glven by (K 5). In-Flg 26

- (solid curves), dscils plotted as a funct1on of Y for the

u-3/2 and v=1/2 cases (putt1ng y=1 in (K 11)) The hérizon-

tal scale parameter, a, has been chosen as /f and 1, for the

' u-3/2 and v=1/2 cases, respectlvely, which Jmplxes that the

| maxzmum terra1n slope occurs at R=1 With a fzxed in thls

manner, the drag per unit length 15 non-zefo for the v=1/2
hlll only for |Y|<1, with a maxlmum at v=0, The u=3/2 hill

glves ‘a much smaller value for d at'Y=0, but falls off

: more gradually awvay from thevpeak.

For comparison‘ th€'normalized drag-per unit lehgth,

'd dZS/BOU N ho, that would result from flow in vertlcal

planes, has been calculated from (8.6) (see Table 8 1s
Appendlx*xfland included in Fig. 26 (dashed lines). The
relatively_larger pressure field along Y=0 under the two- -
dimensional flow assumption leads to large values of d S( )
compared to d, c(¥) at ¥=0. Specifically, 23(0)/d3c(0)=
for u=3/2 and 1.27 for v=1/2. For the hemispherical bar-
rier, v=1/2,.the value of dzs‘exceeds that of dzc for all v
for which the drag per unit length is non-zerp. On the
other hand. for the broader u=3/2 barriet, d,.(¥)~Y"* for
large Y (see Table 8), whereas d3 (y)-v °* (from (K 5)), so
d3c exceeds dzs for ruff1c1§ntlv lavrge ¥ (¥>2.1), -Howsver,

2s will be discussed in Chapter 1N, tha tntal Arag for theee

oo
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ellxpt1ca1 barriers, found by 1ntegrat1ng the drag per unit
length over Y, is always larger under the assumpt1on of flow

in vert1cal planes than it is for the three- d1mens1ona1 flow

“'-solutlon.

In Fig. 27, the'maximum drag per unit length, which
‘.6ccurs”at Y=O,'is shown as a function of the'ellipticai
shape parameter, v, for rheiferrain cross-sections v»=1/2 and
3/2,‘u=1/2 and“3/2 and the Gaussian case (u-vna) For the
v caSes the results were obtained using (K.11) and (K.14).
A closed form resulf (K.8) was found for the Gaussian hjll.
whereas in the u'c€se§; a trun-ated infinite series was
-used, given by (K.3)..'In all cases, dq is seen to decrease
smodbthly as the crosswind length scale decreases reiarive te ’*
the terrain width ra-2)lel to the mean wind (that js, as 3 |
increases).

In Fig. 27, » diamond marks the position on each curve
at which the drao per uni+ length for two-dimensiona) £ .

over ad infinite 'i-“ge, 67—63(7=O) exceeds that fer the

three-dimengional f'~w by 10% of d,{y). The corresp~nding
valre of ' v rarvrge~ freom abput ? 7 in the ve1/2 rase to 4 °
for u-172. Therefore, as far aes calcula! ‘cns of draa rer

unit length are conrerned. srp oximating an iernlated 'hree
dimengianal Farrier (y>0) with an infinitely ext~nded rifge
~f the ®arr - -t ~ezjon (y=0) jis rea~onakle ac long ae th

hil)l te @0 - i1 acroge the menn i ? g0 gl
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CHAPTER 10

TO"I‘AL".:!;‘.Q:REZE ON THE. BARRIER

" Integrating the force perlunit crosswind length, ?',‘
'with,respect,to y, as in (8.1), one obtains the total force,
'F>, exertéd by the-air on the-baf;iér. Eéeh if the integral
for the force per{uﬁit length proves difficult to évalﬁate,‘
it is often the case that one can fiﬁd-fhe té@al force
'dgrectiy from CB.%).‘ Somé‘resul;s concérning the depéndenée
of'?' on the shape and orientation of the barrier will now
be presented. \ |

Let h(x,y;w) be the height field for gibarrier rotated
‘coqnterclockwise thfbugh an angle, Vv, f;om the bafrier with
height h(x,y)=h(x,y;y=0) (see (0.1)). One can show that the

Fourier transform of h, for the rotated case, is given by

N

Rk, 2;0) = h(k™, 2" y=0) (10, 1)

where

k™ =k + fsiny
cosy (10, )

0" = —~ksiny + tcony

Substituting from (10,1) intn (B.2), changing the integra-
tion variables tn k and £°, and noting that k*+ 2=k >/
gne finds that the components of F oare simple quadrati~
forms in cosvy and siny. For example. in the r~ase where
hix,y) is an elliptical terrain form having a symhéfry axis

perpendicular tc the mean flow, after =ome simplificatinn.

one phtaine the nnrmaYise? total feoor oo ot he Mo ey

3n
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f3 - @1y - /e TN K2 b) s - (90.3)

with components

re

-G .(Bcos’z.wCsinzw) . g v
> o ' (10.4) .
'.l'3 = G (B-C)sinycosy * . : '

Here
cv-’16w2fpv_? _[H(p)] o , ' (10.5)
.0 S - '

where.ﬁ(p) is the normalized Fourier trensformfof the heﬁght'
‘fdeid, defined in‘k8.4). BﬁBo(y) end C=C§(1), which are
eilipﬁical iﬁtegrals defined in Appendix Q, are functions of
the rat1o of the hornzontal length scales, y=a/b. i

As was the case for the drag per unit length, the total
force, F', is seen to be proportional to the mean flow |
Speed, ﬁ,'fhe stability, N, and the'square-of the harrief
amplitude“ Hoﬁever an addzt:onal geometr1cal factor, b,
the unrotated terraln crosswind length scale, also appears.
If the horizontal scale of a hill is changed, so as to
present a greater cross—sectionwto fhe wind, the force on
the barrier increasesg in proport1on

The quantlty G 1ncorporates the influence of the verti-
cal cross-section of the barrier, that is, the spacing of
the elliptical terrain height contours, on the drag and
lateral force on the air. G has been calcuiated in.

Appendix N for a variety of terrain forms with' the results

summarized in Table 9. For the partlcular mountain shape,
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-h(x,y)=hb/(1+R2/a’)u, one;fihds, using (C;G), that.

o4 rear DQUL/2) (LGe1/2))? | &)
¢ - 4 e/ LS [ D) o o oo

If a=1, G is a monotonical;y decrgésing function of u, 
havihg thé‘yalue‘z for the relatively broad:barrier .with
u§1/2 and decreasing to ;bqﬁtZO.Q for the more sharply
peakea case of u=2, 7Thus; the drag could vary'by a:factor
%; two or moré, depending on how quickly the terrain‘height
falls off from its hilltop yal&e. 1f a=(2u+1)%. as in
_ Fig. 19, the drag still decreases with increasing u, but at
a sloﬁer rate. Recall that the drag per'unit length for the
ridge H(x);(1+xz)-y.$howgd'the opposite trend with u. As u
.increéses and tpe barrier becomes steeper,; th§ maximum pres-
sure perturbation becomes greater, tending to increase the
draé. However, the crosswind profile of tHe barrier also - |
becomes more sharply"peaked. The reduced cross-section that
the hill preéents to the incoming. flow tends to reduce the
dfgé. It is”this second effect that dominates the value of
G in the pfeseﬁt example, so that the net result is a
decrease in the total force oh the barrier as u increases.
An interesting property of elliptiral barriérs is that
the dependence of D5 and T3 on the orientation and eccen-
tricity of the heighr contours separates coﬁpletel; from the
dependence, through G, 6n the vertical cross-section. The
former effects enter through the terms involving B(y), C(y))
and y. The fnnctibnal‘form of £he dependencé on y and V¥ is

exactly the =ame as in the evaluation of the pressure



.gradxent maxxmum thg; occurs over the barrzer (see ‘.%‘ *g ::
Append1x F). One finds | ' : |
?— - -h ab- -— Vp ' N _ S o ‘;(10*7")‘;&'1
. ’ R"O : o J
-where I, giQen bgf
I=4 I p? ﬁép? dpv/}); E - (10.8)

0 | N ._
like G, is an integral independent of y and V. Thus, .the

dzrectlon of the ffet force on -an elllptlcal barrier 1s
determlned by the pressure gradlent at the mountaln top

The d1men51onless drag and lateral force,fnormal1zed by
G, are plotted as funct1ons of y=a/b for varzous barraer
orientation angles, v, in Figs. 28a and'zab,:;espectzvely;
:SinCe F' is proport1onal to b, the graphs can be régarded as
Tlshow;ng the varlatlon of the\force on the barrier as a is
‘varied, holdlng b fixed. " The maxxmum normallzed drag is
obtained for a long ridge, thh its axis perpendzcular to
the 1ncom1ng flow (7-0 v=0). A circular. barrzer, corre—\
sponding to 7-1 g1ves~a drag which is,lower«than this:maxiQ
mum by a factér m/4. As should obviously be'the case;gthe‘
d?ag is independent of y for a circulér barrier. However,
for an extended barrier, with y<1, thé orientatioﬂ of the-
rldge, relative to the 1ncom1ng flow, has a con51derable o
effect on the drag, as is seen by compar1ng the W-D and
¥=90° curves in F1g 28a. As was 1nd1cated by Blumen
(1965), the drag is much less if the long axis of a ridge is

| aligned with the mean flow than if it is perpendicular to

-
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Figure 28. (a) and (b): Drag and _transverse force
components, D, and T,, respectively, for three-dimensional
flow, normalized by the factor, G (defined by (10.5)), as a
function of the scaling ratio, y, for various barrier orien-
tation angles, V. 3 '

(c) and (4): As in (a) and (b), except
showing force components, D,s and T, , for two-dimensional
slice flow. o i '

\



the-stream., This is confzrmed by tne present regylts. From‘

f(10 4)[ it is found that the ratio of the drag in the paral-
lel (y=90° ), to that in the perpend1cular case (w=0)
equal to Co/Bo. Thzs is a. functxon of k alone, being
T 1ndependent;of the vertxcal cross-sectzon of the terra1n.,r §
: Evaluatlng Bp and Co from their expre551ons 1n terms of -
‘ elllptlc 1ntegréls g1ven in (Q 3), one f1nds the drag rat:o}
Co/Bo, to be about 0. 35 for y=1/2 and 0 12 ior 1-1/4- \Thus,“f“
a 90° change in wind d1rect1on can result in a change'in t'
drag of more than a factor of eight fo; an, ell1pt1cal ber—
rier four t1mes as long as w1de.‘zkf¥ Sl B h:d .\r
Next,.refer to Fig. 28D, which shows the force exerted
on the mountain,vin"e.direction normal to_the-meannflow. \“
For the y=0 and‘w=90° cases; or‘for Erbitrary ¥ in g’e‘cir‘ﬁn
. cular case (y=1) ‘the incoming floh is'paraliel to en axis
of symmetry of the mounta1n, glv1ng a pressure fxeld whlch
is symmetrlc about the x ax1s. * Thus,. thene is no net force
component on the barr1er in the leteral d1rect1on (13-0)
However, for an 1ntermedlate orlentatxon‘of an’ extended bar-

rier‘(0<w<90°: v<1) this symmetry is lost, leadzng to a

non?zero value for T For any fixed value of 'y, the maxi-

3
mum transverse force occurs for a barrier inclined at a 4¢5°

angle to the mean flow. Compar1ng Figs. 28Ba and 28b, 1t is’

-

'seen that the transverse force is an appreciable fract1on of
the drag force, except when the mountain is alnlos_tiircula‘r'
(0.8<y<1, say), or has its ¥ong axis nearly perpendicular to

Al

the incoming flow (y<10°, say). For an extended ridge with
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'5itsllong‘axf§fnosihg'ihtO'the‘ineidenE flow (¥>45°), Ty can
_.iexceed D fot SUffICICntlY 8“11 7, Thls 15 seen more v

-

‘clearly 1n Flg’ 29, whlch shcws 1sop1eths of“the ratxo,"”"
T /D 1n a (1,W) plane. FOr r1dges move:than ‘about three
times wider across ‘the wind than along it, the lateral forie;t

- can be Iarger than the drag. Even for a barrler w1th a hor-

" .

' 1zonta1 cross- sect1on as’ round as y=. 5 T /D exGeeds .5 for

a 11m1ted range of or:entatlon angle.

A

The surface drag and lateral force correspondlng to the
3

three a1menszonal flow pressure perturbatlon are. now com-

" -+,
‘pared to the £orce, F.., that would arisé if the motlon‘

2s’
’ were.conﬁzned to the x-z plane, as if the barrier vere

Ainfinitely long, with a uniform vertical crosefeeotion A

-.'generai expressxon for Fzs has already @l gl.ven in (8. 5)
"For an elllptlcal barr1er,'w1th scale’ lengths, a and b,

| _along ‘the ; and y axes, respectlvely, whlch has been rotated
‘counterclockw1se by an angle v, 1t 1s shown in Appendlx

»“ethat the. components of the normallzeéiiiﬁce, . |

g (DZS' 2s)=?zs/v(p’°u N’o _b) are

DZS =G (coszw+yzsin2w)%

L S

(10.9)
T. =G (l-vyz)cos‘psimp

2 —— _
S (co82w+yzsin2 “

vhere y=a/b, and G is given by (10.5). The dimehsion3}
factor, poU N h? b, and the dependence on the vertical

cross-section of’the barrier, implicit in G, are exactly the

same .as in theﬁcalculation'based on the three-dimensional
- B ‘ “ | s, S )

. .
I3

£
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Figure 29. Ratio of the tr

component as a function of
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138+
fldw‘pfeSShte pertutbaiion.
: Pigs. 28c and 284 1llustrate the dependence of Dzs.and N
.';Tzs (normalnzed by the factor GJ respectxvelyf on 7 and-vy.
iCareful comparzson of Figs. 28a and 28c shows. that the two-
d1mehsxonal slice fiow approx1matxon overestimates the drag
.}for all values of y,«except the‘case of.an infinitely-
‘eyfehded barrier,vperbendicular to'the wind (y=0, ¥=0). Fo#’
_a.circulaf'barrier, the assumption of flow over the barrier
in Qerticél.plahes} leads to a calculated drag which is too
high by a factor'of.4/u;' The maximum of thé normalized
~abgolute difference, (DZSFD3)/G is 0.25, wﬁichioccurs for a
long ridge, rotated 60° from the perpendicular to the air-.
stream (1=0;k¢s60‘),~vFor Vv in the range from_35° td’§0°,
one finds (bZS-D3)/G'to be onﬁ% a weak fﬁnctio; 6f‘the
eccentricity of the eliiﬁtieal terrain,<with.0.2 being a
"vtybicél value., .
u'“One'can:ask how small the fafio of the barfier cCross-
wind to downw1nd length scales has to be for the two-
d1mens:onal\sl1ce flow solutlon to approach the three-
dimensional one to a glven preplslon. For the unrotated

barrier case (y=0), for example, one finds that D,_  exceeds

28
Dy by 10% for y=0.44 and by 5% for y=0.27.  These y values

are iarger than the corresponding ones related to estimation
of the maximum pressure perturbation discussed in Chapter 5
F(ym1/3.and 1/5 for the 10% ané 5% precisions, respectively).

Thus, the total drag is somewhat less sensitive to the flow

around theé barrier than is the maximum pressure
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perturbatxon.

Next, concernzng the farce actxng perpendlcular ;o the
;ean flow, compcr1son of F1gs. 23b and 286 shows. that, lzke ?-A
- the drag, it is larger under the two-dxmenszonal sl1ce flow
assumptlon. Other than~correctly pred:ct:ng zero-lateral
férce i;Jthe V= jand w-90° cases, and in the c1rcu1at h111
case (y=0), the two dimensional slice flow apprpxxmat;on,
,,Tzs 1s not partxcularly useful ‘for quantxtat1ve estxmateé of'

Tﬁ?' . : - e |
In this chapter it has beeén shown that the orlentatxoﬁ
and eccentr1c1ty of an elllptical mountain have a large
effect on the force exerted by the barrler on the “air, in

assoc1at1on with linear, hydrostatic mountain waves 'in a

model atmosphere having a simple vertical structure.
e P

-
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.+ -CHAPTER 11

EFFECT OF SMOOTHING ON SURFACE DRAG AND TRANSVERSE FORCE

11.1 Introduction to terrain smoothing

The mountain barrlers represented 1n numer1ca1 models

"4

of atmospheric flow are necessarily smoothed versions of the

real terrain. This idealization may be introduced because

of llmltatlons on comput1ng resources, to control a numer-

°

ical 1nstab111ty, or to ensure that the motion satlsf1es

£

&
constraints part;cular to the model, sUch 8s being qQuasi-

geostrophic or hydrostatic. Although there has been some

‘recognition of the need to maintain the effect of adeqguate

mountajn steepness in numerical models (for.examplé, Egger,

. ~ 5 ‘
"1972: Tibaldi et al., 1980; Fawcetk, 1969; and Bettge, -

1983), there has been relatively little quantitative expler:

i

ation of how smoothing affects the predicted flow fields.
In view of this, the present section is devoted'to illus
trating the effect of terrain smoothing ~n e rface rresgan

Aand mountain wave drag in the cantext of the li-ear by

static mod=) ured in this prarer. Twe Aiffcyan  an 1]
cperations » T de eV Vi forantiat oo e 1y

trineation

''" 7 Differential swoothing

Firmr fIrrcece that the swoottirg -1 e ceqpr

rrrty o e . R A N A N R
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unsmoothed terrain height field, h(x,y) to yield

.

-

A .<h(x.y}> = § h(x,y) - ' ’ ' 011:1”'

For -example, one might choose a smoother based on the
Laplacian, with s=1+&v’, or S=1#aV', where La|<<1 is a -
parameter controll1ng the degree of smooth1ng The latter
'*form was used by Hosklns (1980) in prepar1ng a terrain f1e1g
for poss1ble_1nput to numerical models of atmospheric
motion,

An exampie of the effect 6f the S=1+0V? Qperaiorwon'thg
beight field is shown in Fig 30, for the ursmoothed barrier

H=(1+R?)7V | with “33/2> Figs. .30a and 30c show contours of A

s

the unsmoothed- terraln for the y=1/2 and y=2 cases, respec—
tively, while FlgS. 30b and 304 show the correspondiqg
height fxelds smoothed with the parameter o=.06a?, where a
is the leng€ﬁm§cale of the terrain aiBng the x axis. The
effect of the sm@othnng operator on the height fzeld is to
redice the maximum height of the barrier, for example, from
0 to D. ?@5 in the cage ~f F'g. 30b. Far from the peak thea
rorrann% ‘&hanged relatively little, The value of ;7 is
four tihbeA1arger in Fig. 3Nd than in Fig. 30b because of &
doub1iﬁ'q-;;\f the length, a. While having been son_\ewhalt eir+
culari:oﬂ near the origin, the terrain contours in Fig. 30b

maintain a quasi-elliptiral shape under the smoothing

~peration: The larger o parameter of Fig. 304 1eéds_fo7'

e

cronsiderable distortion of the basic mountain shape. 1In the

Porv v ny ceTe Ve m,-;"n "\m'.'iﬂ‘" ha? ""h@h &plit i'\f"‘ tvoe pﬁﬂ“r{
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Figure 30. Contours of terrain height H~(14R?)"",
u=3/2, and smoothed height <H>=(1+0%?)H, with o=.06a?, ‘or
horizontal length-scale ratio y=1/2 (Figs. 30a and 30h) an”

wit’

vy=2 (Figs. 30c .and 304). Figs. 30~ an?d 30r are the

unsmecthed cases ar” ' Fias. 30b and 30 a'e the sm ctted
ones. N Fig. .30 thr rorcmetar oAl t fuise ar Ve oge e
in Fio 3Mm -
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with height 0.655, with the value at the origin being only
0.1. S . S
The Fourier transforms, <h(k l)> and h(k l) of . the

smoothed and unsmoothed he1ghts are defined by 1ntegrals of

the form given ‘in (3 17L Assum1ng*tha; S is represented ;n‘

the general forma. ! : ' D

M N ' [
se e o C(11,2)
=0 n=0 "7 3x™ ay" - R

and that the relevant-derivatives exist, then

_\[<ﬁ(k’,1)>' - S(k,2) h(k,2) , (11.3)
wvhere N é
M- N ’ ‘ s
©S(k,0) = Il o @"un® . (11.4)
m=0 n=0 ot

Thls 5s shown by 1ntegratxon by parts in the 1ntegra1

def1ﬂ1ng <h>. ' ) ' i
Substituting (11.3) into (3.20) for the ﬁregsﬁfe per-

turbation, assuming operations of differeqtiation and

integraticn can be interchanged, one obtains the pressure.

field for the smoothed terrain as

[N

<p‘,ve(xry’z)> - S~‘ﬁ‘(x,y,2) | ’ (11-5)

Due to the linearity of the model, the pressure perturbation
corresponding to the smoothed bavrierfis obtaineéd simply by
applying the same operator, S, to the.hDSmoptheé preséure

fim13 as vwae applied to the terrain height.
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The force, <F>-(<D> <T>) that the air exerts on the
smoothed mounta1n, can be found by replacing h(k,4) by
<h(k, l)> in 8;3).. As'in Chapter.10 'One can coﬁsidérfbhe
effect on é;f force of chang1ng the orlentatzon of the bar- o
rier relat1ve to the 1né€m1ng wind. If the barr1er 1s “
'rotated from its initial position by a counterclocszse

‘angle, ¥, and subsequently smoothed, then the Fourier trans-

form of the resulting height field is given by’
<i(k,1§w)> - §(k,z) ﬁ(k',z';w-oj_ . (11.6)

where k' and £  are defined in (10.2).- On the other hand,
if the terrain i's rotated after smoothing,fﬁhbﬁ its Fourier

transform is
<h(k,2)>(¥) = S(k",27) ;(k',!‘inb) . (11.7)

If the smoothing operator, S, is isotropic, that is; dépends
only on the Laplacian, V?, then S wil} depend only on the
éombination k2+£2=k ?+¢°2_ This relation implies that
'§(k,1)=§(k ,4"). Comparison of (11.6) and (11.7) then shows
that the resulting height field is independent of«the order
of the smoothing and rotation operations. The remainder of
the discussion Qill be restricted to euch racag. frr which S
can he written as

’ N

n

Se ] e @™ (11.8)
n=0 .

As a further restriction, consider elliptical terrain,

'h(x,y)-haH(P). having noermalized Fovrier tranefrvm, a(p).
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‘given by (B.4). Transforming to elliptical polar coordin-
ates, defined by (B.2), one finds frgﬁf(11.4) that

11.9)

<

v v N R N ’ 2A2 n - . "' L

0, §ki2) = T - :&.'2"] 9 * . (
: Co =0 e o .
where |

First considér the effect of smootﬁing an infinitely-
extended crosswind*ridge, H(X), with the éperator (11;8).
}he Laplacian effectively redﬁces‘to 32/3%? for this case
ahdvy*O in (11.10). Thé Fourier transform of the height .
field beéomes h(k,£) = h(k) 8(1),.wher§@6 is a Di:aq‘délta
function. Substituting f:om’(i1.3)wiﬁt0j(9.1), one f&gds“

N . v

that the drag per unit lgngth‘éhé'tb the smoothed terrain is

<dp=d, [ ow s, ( (11.11)

vhere
AL N . )
w =[—2-] Y oo ; 0.=0 if m>N , (11.12)
n a m n-m m
m=0 - e N .
and
- 2 '
s_ = 2n J |x2n+l| lH(x)]|. de . . (11.13)
n d2

Here d, and H(x) are the normalized dragkand Fourier'trans;
form of the unsmoothed terrain. Note, from (9.1), that
so=1. The higher order s, terms are evaluatédﬁfor fhe‘u, v
and exponential type ridges, defined in (9.2),'§n

Appendix P, with the results summarized in Table 10.
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In the more general case of ‘an isolated three-
‘dimensiopal hill, the components of the force (normalized as
in (10.3)) acting on the smoothed barrier with orientation

angle, v, are found to be

<Dy> = G (Bcos2y+Csin2y)  , .
(11.14)
<T3> = G (B-C)sinycosy .
,'Here
2N
.BénzownSan ’ .
N (11.15)
c= 1 w S C
n=0
The fac;ors,'sn, defined by
7 1672 - 2 .
sn-l%—Jpz”’f [n«(p)] dp (11.16)

where G is defined by (10.5), incorporate the effect of the
. ‘ )

vertical cross-section of the barrier, while Bﬁan(y) and

Cn=Cn(y), defined in Appendix Q, give the dependence on the

eccentricity of the horizontal cross-section of the moun

tain. The weighting factors, w are defined inm (11.12).

.
The expréssions (11.14) reduce to those for the unsmoothed
case, given by (10.4), when o,+1 and o =0 for n>0.
Comparing (11.14) and (10.4), it is seen that the étrnrture
of the dependerice on the barrier orientation angle, ¥, is
the €ame in the smoothed and.unsmoothed cases.

To illustrate the preceding formulae, some numerical

examples of the force on a smoothed barrier have been
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calculated for the case of the smoothing opefatéf,lsiffavl,
applied to several of the terrain fotms defined_inV(S;z)

(with X? replaced by R® to give three-diméhsibﬁal_barriers).

The specific cases cdnsideted are u=5/2 with a?=6, the ex§¢?

- nentxal case with «a -2, and v-5/2 with «a -4 The relevant. .-

integrals (11 16) are evaluated in Append1x , with the
results shown in Table 11. In Fig. 31, the ratié, Ry
defined by a

2

3 H | : v
(o) = {___J , (11.17)
RD D <H> R=0 . | ‘ o

3 .
is plotted as a function of <H(o)>(R=0),. the smddthed térf
rain helght at R=0, for each bf'the'thfee terrain'shipEQQE :
Here, <D3>-<D (0)> is’ the drag force component for the |

- smoothed barrler‘and D3=<D3(o=0)> is the correspond1ng drgg'

for the unsmoothed éase. Fig. 31a shows an ellipiical'bar~,'“'

rier case, y=1/2, whlle Flg 31b is the circular case, y=1.
The r1ght hand edge of gach f1gure corresponds to the |
unsmoothed hill, o=0 Proceedlng to the left, the value of
o increases along eachﬂcurve, with a corresponding decrgase
in the terrain height. |

An explicit relation between <H>(R=0) and o is givenl
below. By exprgssing.the hnsmoothed height field, H, in
terms of ifs Fourier transform, it turns out to be possible
to calculate derivatives of H at Réo‘withouﬁ explicitly |
doin§ the differentiation. 'For'example, if S=1+aV’,’as in

the case under study, one finds
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where
i J = 2% J p3 H(p) dp . o e (1T¢19)'
I . . 0 : . . ..»’

J=4u/a?, 4/a’, and 4;/0 for the u, exponentlal, and »-
cases, respectively (GR, p. 684) _<H>(R=0) was chosen
instead of o for the abscissa in Fig., 31 beoause it 1s'a
" readily comprehen51b1e measure of the degree of smoothxng.;.

If the smoothing simply reduced the barr:er hezght,; »
cwlthout chang1ng its shape, then R would be equal to 1 P
(1ndependent of o). This corresponds to the thin b0r1zonta1
lnne 1n F1g ;1 In Pig. 31a, it is seen that for ah amount -
of smooth1ng wh1co\reduces the inital he1ght by less than -
25%, the v-5/2 terrain shape produces a drag force whzch 1s
less than would be expected from the ‘height change alone..s“,
The exponential and u=5/2- ‘cases. both show drag values which
are larger than predzcted from the square of the height at
the origio, with the u case shbwing the-greater effect.. For
heavy smoothing, such that <H>(R=0) is only .5, the yslue'of
Ry ranges from 1.81 for the exponentisi cose toi2.63 for
v=5/2, The gariatioo of the.dcag'forcelcith the degtoé_bfi ‘;g'
smoofhing is qualitatively similar for the y=1 example shown ;
in Fig. 31b. ' S ' v

The large values of R, seen in the cases’of‘relativelyc

large smoothing are associated with correspondingly great

changes in the shape of the original mountain. As an
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iexample, contours of the smoothed terra:n fzeld for the A
v=5/2, 1*1/2 case, w1th <H>(R-0)-.5 (obta1ned v1th a-.32az)r
'hare shown in Figq. 32 The unsmoothed barrler is;of unit
f-hexght at the’ or1g1n .and decreases away from the peak
| reachlng zero along the dashed ell1pt1cal contour,” R-2 The
"smoothlng has produced a ridge at about R=1.6 and a concen-
| tratxonpof topograph1c contours between the ridge and the
-Rszfellipsei The resulting barrier, with a relatively flat
'tl;top and steep. sldes, has a 1q£§;? drag in relat1on to. its
vhelght than the or191na1 te<ia1n (compare the ~progression to
larger w values in Fig. 20) iﬁ”
For suff1c1ently sTall smoothlng parameters, the B
smoothed terraln helght decreases monotonlcally from the
‘peak.‘ The q values for which this cond1t1on obtains in
'Piges 31 are those to the right of the circle'on each curve.
: The left port1on of each curve corresponds. to a smoothlng
'parameter 1arge enough to apprec1ably distort the terra1n
-shape, by 1ntroduc1ng secondary maxima on the shoulders of
‘the unsmoothed barrlertf No circle appears on the v=5/2, y=1
curve (Fig. 31b) because the corresponding dividing point is
‘off—scale, to the left, at <H>(R=0)=7/15.

Calculations'were also performed for rotated barriers
w1th V=45°, and v= 1/2 . A plot of R versus <H>(R=0) (not
”shown) was found to be very similar to the w=0 case -in
lF1g. 3la. The corresponding ratio for the transverse force

on the barrier is defined by "y
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Figure 32.' Terrain height contours (interval 0.1) for
a smoothed elliptical barrier <H>=(1+gV2?)H, with H(R) .
defined by replacing X by R in (8.2), with »=5/2 and y=1/2,
The smoothing parameter, o=,32a%?, is chosen so that .~ -~ .

<H>(X=Y¥=0)=0.5, <H> is zero outside the dashed contour,
R=2, ‘ S
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. . '<T'3> B . S ' . .
a '(o)'-l—f—-f—-a I 1 21
RI Ty (B, (11.20)

| Ry i's shown as a function of <H>(R=0) in Fig. 33. The
*_cufves.fétny-afe rgthe:'similhr to those previously dis-
cussed for Rb,u;lthough R, is less than.RD over almost the

entire range shown.

11.3‘£Smbothing bxgspecfral.truncation

»,;In geteﬁf years, many mathematical'modeis‘pf meteor-
ological phenomena have been fbrmulaged in terﬁs.of expah-:\'
sions i:?a complete set of basis funééibns. However, to
limit thé amount +0of calculation these séties;arg.truncated o
‘ a£ a finite number of terms. This truncation can be inter-
preted as'a type of émoothing because iﬁ is usual to discard'

téfms from the high, rather than the low frequency end of
the spectrum. °‘As an example of the smpothing effect of
spectral truncatfénl the normalized drag. per uait length,
dz’ defingdvby (?,1), is calculated in the fol¥owing fqr
two-dimensional row over an-infinitely-extended crosswvind
ridge. _l . "
Suppose that H=H(X) is the unsmoothed terrain shape.

For the sake of this example, let the smoothed terrain, <H>,

be an approximatiocn to H of the form

[N o

-x2/282
<> - o X°/28

N ‘
I bEX/B) (11.21)
n=0 :

where h are constant coefficients multiplying Hermite
n .
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7 8 9 10
.(H)R

2
6

=0
Figure 33. Normalized total transverse ¥force, Ry,

defined by (11.20), for a barrier with smoothed terrain

height <H>=(1+0V?)H, as a function of <H>(R=0). Unsmoothed

shapes, H(R), are defined by replacing X by R in (9.2), with

vy=1/2, but rotated by 45°. For sufficiently large o (points

to the left of the circle on each curve) the maximum terrain

height does not occur at R=0, due to changes in the-mogaﬁain,.

shape. .
[ .
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pol&ﬂbﬁ%;l%, H,. :The parameter, B, has been intrOduced'td
inctgase the flexibili;yfpfythg expansion. To determine h,,
the';btal squared'diffe:enée{ E?, between H and <H> is:

-miniﬁizgd, by requiring as=/ahn-o, where

M -

L 2 o
| 52?4_.II[H-<H>) dx . | (11.22)

L d

Usifng the orthogonality property of Hermite polynemials (GR,

-

p. 837), one finds

h

:“{3 : ' C _y2/9a?
o B T0D %n T(+l) J ) B /e X I ax L (12

_See Appendix.P for evaiuation of (11.23) for specific ter-
rain<shape$, H(X). Given hn,the approximate hgiéht'field
(11.21) can be efficiently summed for a specific X using

. recursion relatiOnélfor Hermite polynomials (GR. p. 1033).

_To evaluate the pressure field or drag per unit length
for the smoothed terrair, its Fourier transform, <§(;)>,-ie
regquired. Using GR (p. R3R): =na finde fram (11.21) and

(R.3', thar

- se—K282/2 N i
L T Z h § B (wpd {1y, =~

10y 2% ae0 " "
The pressure field conld then be eyaluated hy suberituting
(17.24) into the‘}¥st integral in (R.®) (at v-")_ Howe =
, _
as the emphasis in this semction is ~» '} dr~g per unit
length, exampler vere ' ' caleo '~ -7 ! e v e e

turbat ian ?,,
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¥

© substituting (11.24) into (9.1), ‘one obtains tpefdrag' f

_per unit length due to the smoothed terfgin:i

N N o ‘ .
<d,> = mgo L hn.hn . > I (1%;?5}
where .
a - "(-1)“‘1“. k| B () B () e &
mo oL " B
4 " -~
(0 ; mtn odd o
] _min-l r(m¥l)  T(atl) | o
4 1-(m-n)Z. T@/241) T(n/2+) ° m,‘ n bf)th even ,
, 4 P(mt+l) IMo+l) .

Ry : w, n bothodd . k
A )T g ——-m;TJ P[L;] (11.26)

°

an' ¥Yere initially

Numerical values for the integrals, @
found vsing rechrSioh relations for Hermite po&ynéhials.' .
The explicit expressions appearing‘in (11.265“U§rg obfaincd
subsegvently by inspéction, andvéan be verified'sy_l !
induction in combinatibn with the recursion formulae. The

summ~t - (11.2F) can be interpreted as a product of the

form

<d2> - l\Td h . o (11,27) .

where, hT=(h°,h\..:.hn) is a vector of céefficientS‘describ-
ing the height field, h is the corresponding column vgctor'
and d is a pocitive-definite symmetric matrix with elements,
dmﬁ Note trat d is characteristic of the choice of basis
functions in the spectral expansion (11.21) of the height

field. but i« independent of the partirular terrain shape.
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,Therefo:e, even 1f one exam:nes several dztferent barrzers, :

the d_ values néed be calculated only once. For the

: symmetr1ca1 terra1n :orme conszaered in th1s paper, it is
fonly ‘the case of m and n both eveg that has noﬂ*zero " .
‘coeff1c1ents 1n the drag sum~411 25)

"Two examples were chosen to illustrate the mathematical
“résults of this sect}on. %he first of thes? is the‘Agnesi
casé (u=1 in (9.2), but with‘a’k1)- -(1+x'5-‘. In Fig. 34,
H (dashed curve, N-w) is plotted as a function of X, along
with the-appro§1mataon, <H>, provzded by (11.21), with B=1}
for truncations N=2 and 4;~;The.expansaon coefficients, h_,
appéariﬁg in (11.21) are giver by (P.7) and (P£8). Because

the unsmoothed terrain is already reiatively smooth, the
spectral expansion gives a reasonably'good approkigation to

H, even f6r N as.low as 4. The effect on the drag per unit
. . 6\‘ . '

length of truncating the series at different values of N is

séen in Fig. 35. The .ratio, ﬁd(NY, Aefined by

2
<dp> [H] (11.28)
X=0

Ry = 7 o

. w2 .

is plotted as = function of the smoothed height at the

origin, <H>(X=0). ere a =ﬂ/4 and H(xw0)=1 are the values

corresponding to tho unsmoothed terraln The deflnltlon

(11.28) is analogous to (11.17) for the total drag used in
), A . . . g

the discussion of differential smoothing, with the trunca-

tion limit, N, replacing the parameter, o. From the points

at the upper right in Fig. 35, it is seen that including

only one or two terms (N=0 or 2) in the spertral expanginn

\



Figure 34. Terrain height, H=1/(1+x’) versus X (dashed
curve labelled N==) and a truncated spectral series approx-
imation to H, <H>, for truncation limits N=2 and 4 (solxd
.curves), wlth B=1 in (11, 21) . .
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- Figure 35. Normalized drag per unit crosswind length,
Re, defined by (11.28), for a barrier represented by a trun-
cated spectral series.. Examgles shown are for the Agnesi
barrier with height H=1/(1+X?) and the sinusoidally mod-
ulated case with H=(1-B+BcosQX) exp(-X?). Points correspond
to successive even values of the series truncation limit, N
(indicated in small type). Line segments joining the points
are for visualization purposes only. The dashed curve gives -
the result for the barrier <H>=(1+0V2?)(1/(1+X?) o
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leads to R values wh1ch are s1gn1f1cant1y greater than 1
(1.27 and 1. 28 reibect1vely).. Includzng the N-4 term in
the series leads to a large change 1n Rd' 80O - that the drag
per unit length for the smoothed terra1n 1s less than 10%
larger than the value expected from the reduced hexght at
the orzgln. Studyzng numer:cal results for <d > 1t uas
found that it steadlly decreases to the value for unsmoothed
terrain. as N increases. However, osc1llatzon in the value
'of <H>(x;0)dcauses Rd to approach 1 along a zzgzag path in |
Fig. 35. e
For.COmparison,'the drag per unit length'for terrain
smoothed w1th the operator, 1+oVv?, was calculated for the
Agne51 barrier, using the formula (11 11) The result 1S'f’*
plotted &s ‘the dashed curve, labelled o, 1n F1g 35,
Although both the spectral truncatlon and dszerentlal R
smoothlng operatlons lead to‘Rd,values»greater.than_l;for.
this'térrain shaEZ; the degree to which'the'drag per unltﬁ;.
length is near the value erpected from the heightlat the'
origin differs in the ‘two caaes; In- spzte of the fact that
the differential 5mooth1ng operation can lead to larger
changes.in the height of the barrier, - 1t/apparently pre- /-
serves the shape of the mountaln more prec1se1y than the

[ 4

spectral truncation. Thls leads to smaller L
' [ 3

former case, for a ngen value of <H>(x=0)

values in the

A second example chosen for study is the 51nuso1dally :
'_modulated Gaussian terrain, H=(A+Bcosnx)exp( X’), with

B=1/VZ in (11.21). The expans1on‘coeff1clents for this case



in Fig. 23b. From the latter flgure, one can see that R
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‘are given in (P,10). The\Rd and <H>{(X=0) Values5for several

caseshof this type are_shovn in Fig. 35. "If only the N=0

term is included in the series for fH?,vthen <d2?-h5’ and

"<H>(x=0)=ho so Ry reduces’ to 1/d,.  Thus, the position of

the N=0 end of each curve in Fig.. 35 can be determined from
the drag per un1t'length for the unsmoothed terrain-plottedr
d-
for the N=0 truncat1on should be near ’ Eé: small values of
Q. However, for larger than_about 2,<Rd can differ
appreciably from unitv, eithér-on the high or low side;h
depending on the particUIar-combinatioh;of frequency,'n, and .

amplitude; B, For sufficiently larée-Q, Rd<1 for all

non-zero:B,e_utﬁ

B -
_,: .1 .

series‘for <H>, For example, 1nclud1ng the N=2 term changes
the drag and helght by a relat1vely large amount for- the'
B=.4, Q=4 case, but by progre551vely smaller amounts as Q

increases. For the $=8 curves in F1g. 35,.the N—2-coptr1bu-

tioh-to'Rd and <H>(X=0) is negligible. This is the case for

both B=.4 and B=.1, even though R' and’ <H>(x=0) themselves
are much dlfferent for the the two B wvalues. Because of the

comparat;ve smoothness of the terrain in the low Q cases,

~ .the. 1nclu51on of just a few terms in the spectral series.

- leads to rap;d convergence of thk drag value to the un- n \7

smoothed result More terms must be added to represent the
terraln accurately as’ the, frequency of the s1nu501dal varla-

t1on increases. As an example, the terra;n}helght, H, with
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';A- 6, Bs 4 and 0-8 is plotted as a’ functzon of x 1n F1g. 36
(dashed curve), along v1th <H> for N=10" and N-20 For x<1
the N=20 curve follows the var1at1on~1n H reasonably well _
_although the extrema for larger x have greater magq}tude for g
le the <H> case. Thzs may account for the fact that Rh” tor
.1:the N-ZO truncat1on. By compar;son, the hexght f1eld for
the N=10 ser1es,iollows the peaks and valleys of the
unsmoothed terra1n very poorly, leadzng to Rd<.8 for th1s |
case, as is seen from the bottom curve in Flg. 35

In thzs study,of the- effects of terra1n smooth1ng on
‘the drag assocmated with mountaln waves, two" rather d1ffer-':‘w
' ent smoothlng processes have been cons;dered -In both the ,_:e
d1fferent1al operator and spectral truncatzon approaches,nr
the max1mum terrazn hezght 1s reduced by the smoothxng, f
leading’ to a. reductlon in drag. .Thezmaln poznt togpeimadeftp
however, is that.the smoothxng'not~onlyachanges‘thefharrier;-r5
height, but also changes 1ts shape. As a consequence, the o
. drag on a flow over the smoothed mounta;n can be elther |
larger or smaller than one would pred1ct from a quadratlc
dependence on he1ght For the Laplac;an smooth1ng examples'T
'the drag and transverse forces were predom;nantly 1arger
than expected Howevep in the seraes expans:on case, the
‘drag per unit length was seen to differ from a helght-;
squared dependence by as much as 20% in enther d1rection.'5;"
The speclfxc numerzcal results for. the effect of. smoothzng

on the drag are rather sen51t1ve funct1ons of the 1n1t1al

terraxn shape and the type of smoothxng operat1on.'

l.
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'H.é(A.BcosﬁX)"e_’x’ 1 |
. . ‘A:'.G ' . ;"h
B=.4 |

Q-8

S
.

/ .

Figure 36. Terrain height, H=(A+BcosQX) edp(-X2), with .
Asfbj B=.4 and Q=8 (dashed curve labelled N==) and a .trun--
cated spectral series approximation to H, <H>, for trufica~ ., .. ..
;?ion 1§mits N=10 and 20 (solid-curves), with B=1/¢/Z in - - _.

11.21). o . B . . L .
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| CHAPTER 12
APPLICATION OF THE LINEAR MODEL TO REALIST IC TERRAIN.

e

12.1v_ﬁode1 Iimitations_:w

“In thxs chapter, the llnear model 1ntroduced 1n

Chapter 3 is appl:ed to the flow of a1r over a repreSenta“
tion of the Rocky Mounta1ns in Western Canada. Th1s calcu—i
'lat1on vas undertaken to determ1ne ;f topographxc factors o
can be used to exp1a1n the double max1mum in the pattern of: .
.lee cyclone formatlon in Southern Alberta that was d1scussedfh
“1n Chapter 2. However, the relat:onshlp betwee; the fxne
*detalls of the terra1n shape and of the cyclogene81s loca-f-
txon(maps is not- suff1c1ent1y def1n1te to perm1t motre than
_speculat1on about the origin of the frequencx max1mum. Th;s .
result is not surpr151ng in view of the s1mp1e nature of the~
model and the 11m1ted sample of cyclogene51s events.. |
: The linearity constralnt and jhe neglect of the
‘h?Corlol1s fprce are two shortcomlngs of the model whlch
requlre that the results presented 1n thzs chapter be '.,hﬁfc
regarded with caution. As d1scussed by smith (1980, 1982)
the Froude number based on. mountaxn hEIth F-U/hN, can be
‘used as an. 1ndlcator of ;he extent to whlch llnear theory 1s’f
”va11d Nonl1near effects are expected to- become gmportant
' for F less than about 1. For the Roc:y ﬁounta1n case, w1th
h in the 2-3 km range, the flow will be in the nonlxnear
reglme for typzcal values of w;nd speed and stab111ty. How-':

" ever, for 51tuatlons 1n whrch the mountaxn wave amplxtude is"

. P
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'ysmall-enough-that'streamlines‘do notfbecome vertical in the

v?jflee (that 15. the wave does not 'break ) Smith (1982)

ifcomments that 'the qualztatzve nature of the flow is not ' |
'_greatly changed by nonl1near effects ' Whether or not wave
'breakzng occurs depends on the vert1cal structure of the :
wind and temperature.‘ For example, 1f ?he w1nd speed
_decreases w1th helght an upwardly propagatlng wave m1ght
‘overturn as 1t encounters a reg1on of lower Froude number.
Such a case is presented by Durran and Klemp (1983)

The Rossby number, Rer/Lf-'based on a streamwise'hori-
zontal scale,',, 1s the appropr:ate d1mens1onless ratio for

dlscu551nq the role of the COthlls parameter, f, in moun-

tain a1rflow. Rotat1onal effects could ‘be 1mportant for Ro

f, less than about 1. Takzng L=100 km as a typ1cal length

‘scale for an 1nd1v1dua1 mountaln range in Western Canada, -
‘Ro=1 for U=10 ms-'. For cases of relat1vely strong cross-
Abarrler flow,_wlth U>>10 m s-', the air has less time to be
'accelerated by the Coriolis force, so the. influence of'. the
Earth’ rotatlon is reduced By studylng an ‘expansion of
the equat1ons of mot1on_;n terms,off1/Ro,gSmith (1982)
showed that\thevpressure(perturbation is affected by rota-
tion at second order in 1/Rof wherea‘he horizontal'w;nd
fields requ1re first-order correétlons. The main effect of
" a non- zero Cor1olls parameter on the w1nd perturbatlon 1s an
-f1ncrease 1n the air speed on the hlgh 1at1tude 51de of the
barrler and a:; decrease on the low latltude 51de.. Par1sh

(1982) has studxed the role of tho Cor1ol1s force 1n the

3
\
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”4development of a low-level Jet parallel to ‘a lﬁng rxdge,:on
jthe w1ndward s1de.l Because of 1t5~quadrat1c dependence on
’1/Ro, the pressure perturb ion fleld 1s relatzvely . .
unaffected by rotat1on, co:izred to the hor1zonta1 w1nd ST
components,Alf Ro >> 1, Thls condltxon on Ro 1s not satxs—t

_f1ed for the case of. flow over the Rocky Mountalns 1n

o Western Canada, unless U>>10 m S" In sp1te of th1s some

‘results of the - appllcat1on of a l1near model excludlng
rotation will be presented if only to prov1de a bas1s for T‘
compar1son wlth more approprlate models.s 4 B |
Even if the effect of rotat1on is neglected in the
calculat1on of the perturbat1on f1elds, it can be. 1ncor—‘ih B
porated into U the  mean flow. Supp051ng that a ‘mean - flow f' 
of speed U is geostrophlcally ‘balanced, 1t_1s related tofazehr

mean pressure f1eld P, by -

¢ Fr-B0f (eosh - xetad) +E], ?"‘f’(’i;:.,z.‘---ir;),

'where Po is an arbltrar{ constant and w is the angle meas-‘v
ured counterclockwise from the +x ax1s (due east) to the
direction of the wind. vector. Fig. 37 shows the totai-pres--
sure field, -P » found by addnng the pressure perturbatlon of B
Fig. B8a (multaplzed,by the d1men51ona1 factor, poU N ho) to :J
Athe mean pressure g1ven by (12 1) | Values of the hor1zonta1
‘length scales used for th1s flgure are a=25 km and b-50 km.-hp
‘The other parameters ‘were chosen as U=10 m s“ honl km,~j{;ff
'p°=1 kg m", f=, 0001 s‘1 N= 01 s~ ', w=0 and Po-O . The j;fg'
contour 1ntef5a1 is. 0.1 mb The dashed curve is the terrazn



I -50 0 50
o X(km) -

- F¥gure 37. Coﬁtour ‘plot of the totél pressure, Py,
defrned by adding the mean éressure defined by (12.1) to the
dimensional. form of .the u=2 perturbation’from F1g g Mean
flow parameters are. U=10 m 8", po=1.0 kg m?, N=0:01 s-
¥=0, and P°=0 Also, £=0.0001 s-' and ho=1 km. The contour

“interval is 0.1 mb. The dashed curve is the 500 m terraln
A.he;ght cpntour \\ :

@??
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rlsurface at the 500 ‘m level Because the total pressure 1s
_d1rect1y proportlonal to Po and U the fxgﬁre would be un-i_
'changed if po or U were varzed ‘except for the 1abell1ng of
.the oontours.v Note that phys:cal coord;nates have been used
in Flg 37 rather than the d1mens1onless ones used in F1g. 8(
If one were to look for the pressure sxgnature of a o
.hydrostatlc nghntaln wave us1ng real data, one wbuld expect
to f1nd a pattern s1m1lar to Fig. 37. Smlth (1981, 1982)
‘N has reported several cases of thlS type, 1nclud1ng flow over .
- the Olymplc Mountalns in Washington state, and over 1slands h
<?\\\§UCh as New Zealand and Iceland Although surface pressure
'is one of the best resolved meteorolog1cal flelds, a f;ner _ :

. network . of observzng stat1ons would be very helpful in the

present context

-

12.2 Realistic Terrain |

‘ .

i Now consider . the appllcatxon of the linear model (w1th

i

no Corlolls force) td lodqover a representatfon of the

.

vtopographg:in WeSterni_. ada. Through the Canadlan Meteor-e |
olo&icai Cenfre, terraxn he1ght data on magnetzc tape was .
obtained for the ent1re Northern Hem1sphere. The. data -7 ':
or}glnated at the European Centre for Medzum-Range Weather

», -Forecasting, The terraxn he1ghts were nom1na11y glven to

| the nearest 100 ft as averages over 10 latltude by ao

h, 'longxtude quadrangles (approxzmately 19 km by 11 km at

55 N) Hovever, a frequency analysls of the reported
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-heightsrshowed an excessive number of certain valuee, sug-
gesti;gfthat the}heights had been rounded to the nearest 500
or 1000 ft inibpme regione of hlgher terrain. This is_nel
unreasonable in view of the large variation in surfaee
elevation that can ocepr in a 200 km? region.

To illustrate the cqmplex'structure of the barrier
presented to the prevailing winds in Western_ﬁorth America,
cross-sections of the terrain height are shown in Fig. 38.
The vertical scale on each portlgp Sf the figure extends
from sea level to 3000 m. The divisions in the horizontal
direction correspond to 100 km intervals, meas¥ed along
great circle arcs on a sphete of radius 6371 km at sea-
level. The arcs ehosen are inclined at 3; angle of 55° east
of north at the midpoints of the sections. The latitude and
long1tude of the mldp01nts of each section are marked on ;;e
correspond1ng diagrams. The proflles are rougbly perpendic-
~ular to ‘the main ridge of fhe Rocky Mountains. They extend
approximately from the Continental Divide to'the west coast
of North America and about an equal dlstance on the east
51de of the Divide. For reference, the ‘cCross- sect1ons are
indicated on Pig. 39." In Fié. 38, the_norqhernmost‘crdés~
" section appears in.(a) with a sgutbward progressidﬁ throﬁgh
to (17. The most southerly terrain profile sﬁows the
greatest degree or symmetry. In the other cross-sections,
“there is evmarkedldifrerence between the western ane eastern

sides of the Continental Divide. The western’ (left) s1de of

. g
thebarrier’lzfjhther chaotlc,'wlth numerous ‘ranges, and
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Figure 39. Map showing positions of the cross-sections
in Fig. 38 and the areas for which the pressure perturbation
was calculated. (large boxes, approximately.centered about
the.-marked circles) and displayed (small boxes) in- Lt

the terrain height-was
N and

In these calculnrtions,
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, _1.‘0' .-
shows large changes in" appearance between cross-sections

Separated by only 0.5° latitude. 1In contrast, the eastern

(right) side of the barrieris much smoother. This is
' ooy
AR

3

especially true of panels (h) through (1), which  show cross-
sect{an passing through the southern half of Alberta. For
these sections, the average terrain height drops from a
maximm of 2500-3000 m to abeut 1000 m, in a distance of
about 100 km, and then falls off much more gradually to the
east. For the mruntains of Northeastern B.C., shown in ()
throuab (e), the average height is only 1500-2000 m anAd
there is a lass unifeorm decrease with eacrward Aisplacement
that for the Southern Alberta cases.

To calculate the pressure perturﬁafion, r resulting
from flovw over thisg ﬁerrai6; a Frst Fourier Transform methne
was used tc evaluate the Fourier transform ~f the height
field (B.?) and the firet integra! in (R.B). The numeriral
procednre is outlined in Apperdix 7, Tn the mrdel uged, the

motrion Se aggumed to or ur o a rlan~ evrface yath v tha- &

sphe'a Therefr o, r~ne miagt war the terrain baiaght §fielA
to a rlane. The meth d naed to pcr mrlich " hie wae 'ikely
WY e - mr\‘\'/'ntoﬂ L& DLEN neceecary AN v yew ~f the manty l1imi!

aticne cf the modr 1, &~ the frull Aevye'loprert af the -
tirng 2311 not be pr.es‘e,,ntt‘d here Ty _('U’ff]‘r‘pgs tc rrrtea 1}
the {re Yowipn “rans‘rrmér D WA mz e 5«¢““;=,” o
S e Rarl g "1 f e at lariy LA oy .

) )

v e
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x =R arcpin(cos¢§iﬁ(A-A°)) , g . ﬁé
v - (12.2)
y = Re arcsin(sigétos¢°—co§331n¢6co§(A;Ao)) .

\

Here R _=6371 km is‘the mean radiu; of the Egrth. The péra-x
meters ¢, and A, specify thg létituée'and longitude of the
'Srfgén x=y=0. For ¢ near ¢, and.i'néar Ao, x and y given by-
(12.2) are similar to coordinafes defined by projection from
the center of the Earth on to a tangent plane. One reason
for choosing the coordinates (12. 2) instead of the tangent-
plane coordlnates, is that distance measured along the x or
yfaXis is equal fo distance aJongwrhe curved surface of the
Earth. ’

ThefFést Fourier Transform procedure requifes that.fhé
height field be sampled on a uniform grid of points in the
(x;y) plane. Given a point (x,y), the corresponding lati~
tude and longitude can be found from (12;2) and, gpbsequent#
ly, the averane trrrain height. A matrix of 256 by 256 b\\7
heigh' valyee wasg generm'éd in this way, with a fésolutioh
of 10 km in % and in y. Twe eceparate regions were consid-
ered, one centered arprovrimately at (¢o=51,5°N, Ao=117°%wW) .
which will be termed the Southern Alberta case, and the
~ther at (¢,-56.5"N, 2.~123"W), the Northeastern B.C. case.
The prrseuvre field vas then calculated for each area. with
valve~ given at the rame 266 by 256 pointe. However, to
aveid rnnfamlnatlon from edge effects and the per1od1c1ty
implicit in the discrete Four1er transform method (cee

"erendix J), results are presented far anly a small interior

-
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portion of the grid. 1In Fig. 389, the_Yegions covered.ng
256 x 256 grids are shown on a polar Etereographit map;*/ttue
at 60°N. The areas for which the Southern Alberta and
Northeastern B.C. results will be dlsplayed are also out-

lined.

Tk

At the start of this pro;ect ‘to limit computer storage

requ1rements, the terrain he1ghts were extracted from the

+

magnetgc tape for a limited sector, extending from 40°N to

"65°N and 100°W to 145°W. However, when the calculations

were extended from an init%plly Planned grid of 128 x 128
ooints to the 256 x 256 points ultimately used, the new grid
extended beyOnd the boundary of the sector just descr1bed
For convenlence, the terrain height at these external points
was set equal to zero. Howvever, it is expected that using
the actual terrain heights for these points would have
little effﬁgt on the pr;§sure perturbation in the display
windows in tue interior of the grid.

Firét consider the results for the SOUtheru Alberta
region. In Fig. 40a;,topogréphic contours are plotted at an
inrervallof 250 m.g;:he darfest level of shading highlights
reaions where the n height is greater tﬁan 2250 m. With
in the jnnermQst dashed contours, the terrain height evceesds
2500 m.  In Fig, 40b, the corresponding rressure field i~

shayn for a mean wind at an angle, ¥=35° north (counter

~lockwise) of east. The rontou: interval ig 0.25 mh ("7 v

\J
4

asaming thet U=10 m s N=."t & " ard ro~1 0 ‘gm
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DU . _ - | ]
.=1.0 mb, w1th thé small dashed contours denoting a pressure
”of less than -1. 25 mb The shadzng 1nd1cates the reglon in
which ‘the pressure gerturbat1on is negative, except for ther‘

areas wzth hor1zq@tal llnes. These denote pos1t1ve pertur—-fVJ

bations. greater than 0.50 mb -Thas pressure f1eld was con4

N ]

-\structed from an appropr1ate i1near superposxtlon of the

flelds due to the vesterly and soutbé;;y flows shown 1n‘
'Flgs. 41a and 41b, respect1ve1y .Th1s superp051t10n 1s'

51m11ar in ‘principle to (5. 15) except that here ‘the w1nd

-

vector is rotated rather ‘than the barr1er. S1m;lar1y,

Fig. 42b 111ustrates the case of a flow directed-35° south

(c10ckwise)'of east (¥=-35°). The height fleld has -been
repeated 1n Fig. 42a,,for conven;ence. Compar1ng the preSw»'

\

sure flelds shown in these flgures, it is seen that the area

Q

qof s1gn1ftcant pressure perturbataon Is much greater on “the -

Vg

lee side ofhthe barrier if the flow“xs dlrected?nearly per-'

v .

pend1cular to the mountazn range as in Flg 40b Because
of interference ‘between the pressure f1eld; due to the many
;dnd1v1dual‘r1dges on the British Columbia side of the
Continental Divide; the pre;sure perturbarion.field is
generally d1sbrgan1zed and weak in the lower léft portions
of the flgurec .The most exten51ve areas of p051t1ve pres- /
sure perturbatlon occur for westerly (Fig. 41a) and north-
westerly (Fig, 425) £low. o
Compar1son*of the heaght and presgsure maps showe that
the minima in the preSSHYé typiéa]ly occur 50 to 100 km
dnwnetream rf the Jajof topoqraphic features. Thig je

Y.
)
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~coincident with the length scale over which the moudtainsA
show a large slope in the cross sectlons of F1q 38 (panels
A(h) through (1)) ' The magnxtude of the extreme pressure in
‘:the 1ee is not un1form alorng the length of the ridge. The
dlstrlbutxon of negatlve pressure perturbation is s1m11ar te
the pattern of' terrain~induced descending mot1on descrlbed
by. Charette (1971, p. 58). For all of the wind diredtions
shown here, there is a s?all reg1on ofrelat1vely veak per-
~turbation near)51 N -and v15 W, whach is assoc1ated w1th the
Bow River Valley. Althouéh this gap in the mountains is
directly upstream (in the\w=35° case) of the break between
the two maxima in ‘the areal den51ty of cyclogene51s fre—
Quency seen in Fig. 1, it would be unwise, at this point, to
suggest any causal link betwéen the' two. )

Next consider the Northeastera B.C. region. Tppograph?
ic contours are shown in Fig. 43a. The display window
chosen for this case is slightly smaller than for the South-
ern Alberta case, but the faqures areé plotted using. the same
map scale to facilitate comparison. As can be seen by
looking at the intersection of 55°N and 120°W, there is a
regi~n of overlap hetween Figs. 43a and 40a. Considering
that rhe grid ~f points upon which the contouring is based
has a slightly different prientation in the two figures, the .
“~rresprndence between the two contour maps is reasonable.

As al¥eady seen in the cross-section plots (Fig. 38),

the mountairs ara swgnlfzcantly lower in the Northeastern

R ranges than 3 anthern A]berta Nevertheless, the
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steepneéss of the lee slope is comparable along at least some

cross sections (for example, see F1g 38b). Th1s is re-

flected in the pressure perturbat1on field for the w-35°

case, shown in F1g 43b. Although the-area of451gn1f1cant .
‘perturbatlon 1s smaller than 1n the Southern Alberta cases,

the magnitude of the extreme perturbatlon is about the same.,

$ ) )
ose correspondence between the pos1taon of the

minimu e pressure field,jn Fig. 43b, and a maximum of
lee cyclogenesis frequency.per unit area in Fig. 1.

In Figs. 44a and 44b, the pressure pertofbations are
shown for westerly (y=0) and southerly £1°Y.(w'9°°)' res-
pectively. The most significant pressure'perturbatiOns are
seen with a wind from the west or southwest, with a rela-’f
tively weak pertnrbation being produced'by a southerly flow.

To cdhclude this section, a brief comparison will be
made between the total pressure field.(perturbation plus
mean) and a lee trough analyzed from real weather data. In
Fig. 45, a mean pressure field corresponding to a géostroﬁh-
ic wind of 16 m s ' has been added to the perturbation field
of Fig. 40b. Contours are sBown at mb intervals. A
constant Coriolis paraneter of value f=1.15xH0" s~ ' was
used. Fig. 45a corresponds to;the choice N=.01 s-' for the
buoyancy fregquency. In Fig. 45b, N=.02 s° ', so that the
amplitnde ~f the presshre petturbation is twice as large.
One of the problems in trying to apply a model with such a
simple vertiral structure is choosing a!ge;ue for N.

H- N1 g-' = mnrr rapresentative of the real atmosphere than
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.02 58 '. Hnowever, putting a realintje temperature ip the
model, such as T=260°K, leadn t»'ﬁ value of N. Faleralateq
from (3.13), of 019 g ',

For compariéhn, Fig. 46 shave a weatber map with ruy

fare ienhare (g0lid curves, latelled in millibare) an? ecan
.- /"'

tevrs -~ f genpeotential héigtt al £0C mb (dashed ~ur es, 1=
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Figure 46. Su-face i<obarr (so0lid curves, in wb) and
50" mb cecy~t n’‘al heig't cont 1's {d ~he? curves, in trns
of gem) at 'Y 7 1C en 7 Frlroa v 1YRA ¥ind barbe shaw "0
rt .ind BEREC AN : A T ey
' v o



CHAPTER 13

SUMMARY AND POSSIBILITIES FOR FUTURE STUDY

~13.1  Summary - T2
. ’ L
The research that is summarized in this thesis con-
.

sistea primarily of three compone'ts: a review of theory an-
observations of lee cyclogenesis: applicarion of a simple
modél to the determination of the surface pressure perturba
tibﬁ dné to an isclated thraewdimpnsionél barrier: and, the
calrilsation of the net force exerted noth terrain e Mo e
by the air i the «ame linear moRel. S me ~f the main
rngnfts from thege three a}eac will nov be summarized.

In the re-iew of lee crycleogenesis, given in Chapter 2,
the discussion centered on ﬁnﬁsarvargﬂn of potential vrrti-
city. Typicél seqirencrs of lee cyrlone formati-n were rnn
sidere for *Mpine and Rocky Mountain reginns, In bhoth
rases, a 'wo step prrrecs méy bé invalved, with the Qevel-

*
opment A’ an area cf enhanced low-leve) vorticity in the Jee
»hich jig esuheeqguently ~vertaken by an advan-ina uypper
*rougﬁ, T Tharte: %, a stddy wre ade ~f 'he Tatg corpile?
hy Chong (1077) = the feymation - love i the lee rf the

Recky Mountainre 'n Weatern "~ ada Tt “spe (anA that rhe

areal d-najty nf ryclergenscie frequency is a g-neitive £

tion f the area avcr which rys'one cennte nre nvaraged, Al
least fr 'y m )l 3y le cize nheidereqd Attentinmn —aen
F e LA IR o o twe mavima of r~yclogenecie 1o
OCcnes - y g

“utherp hndf o f 7-""v?§\, Of
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[

these maxima, the northern one showed .8 deficiency, and the.
southern one an excess, of lee cyclones that were class1-v
fled as hav1ng relatzvely short trajectories._ A similar
pattern was noted for lee lows that were not asgociated with
upstream pareﬁt.éyclones.

In-Chapters73 4, 5, énd’? lineer hydrostatlc theory
was applled to the a1rflow over a,class Qf three dlmensxonal
elliptical mountains, with an emphasis on departures from-
two-dimensional flow, Because ~f the unsheared, isothermal
structure of the upstream flow, ana]yticel‘solutions for
sPveral surface fields of interest. could be obtained. The
résults have been discussed mainly én terms of the depend-
ence of these fields on three geometkic parameﬁers; 1)- the
ratio of two horizontal terrain length scales, yea/b; 2) the
terrain height exponent, u, which is related to the maiimum
harvier slepe and its behavior avay from the peak; and 3)
the %arrler oriertation angle, .

To ind;;ate the rele of the parameter y;'some of the
charartericstice of flow over thvee~dimension§; barriers
(y~0) were cempared te thage of flow in vertical planes,
&'er irfinively Teng ridges havipg ths same cresg-section
(y=0).  The eurfare pressrre rerturbation in a three-
Ffimengiecnal race w4§h‘y~1, hre an exrreme value wvhich ig
tyrically about 0% less than rﬁe tko—dimensiohalvone, abﬁ
fecvrg closer'to the barrier reak. Also, for algiven
a»rprngf’ . 'he pert vbkation falls off more rapidly with

"t e from fhe Yrrof an Ser)sted barriar than from an



extended ridge. The maximum pressure perturbation in the
case of flow in vertical planes is found to be within 10X of
that for the full three-dimensional flow solution, if the

v

crosswind width of the terrain is more than abogt”ﬁhree\
times the length of the barrier in the directibn parall;l éo
the mean yind (f<1/35. f@r y<1/5, the relative difference
between the maximum surface preségre perturbation in the
two- and three-dimensional flows is reduced to less than 5%.
For an unrotated barrier (y=0), the greatest difference in
curface pressure between the two- and three-dimensional
cases occurs on the symmetry axis parailel to the mean wind,
rather than off to the sides where the air’i; deflected
laterally by a three-dimensional barrier. )
‘ +he variation of the maximum pressure witﬂ y is quali-
ta:ively similar for diffe;eht values of the terrain e*po—
nent, u. However, as u increases, implying a2 barrier with a
sharper peak, the maximum pressure perturbation increases
and shifts rloser to the terrain t-p Far frem the barrief,
the asymprrtic decay of the pressure field is frnd to be
rlceely relate’ tc *he tarrain volume, vhirh in turn, is »
fun ‘ti~n of o Frr an i*malated barriesr with finjite veolime
’.

the prr-ecure fi-18 Talle ~ff ag X Howe ey, for suffic

Tently emall the v~lime ja& infinite and rhe reccur ¢
‘J, N p

o

Aeraye mAre gy-;a\‘n] Ty
The fina)l ger~metrical parameter invelved in the solu-
TN

tien ‘s the argle, ¥, defininm thr orientation rf the »11in

oml ey ier trh raepec b 8 U yr bl e s ey The
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pressure perturbation is greatest vhen the long axIS of the
barrier is perpendlcular to the mean flow. For a ridge with
u=2 and y=1,/2, the- max imum perturbatlon 1s about 1.5 times
larger when the long axls is across the wind (w-O) than
when it is along the wind (y=90°). The maxlmum ‘'gradient of
‘pressure is a more sensitive funct1on of w, w1th the V=0
result being about 2 8 times that £or ¥v=90°, in the y=1/2
case. On the other hand, the maximum horizontal dlvergence
is independent of the barrier orlentatxon.' ‘
In general, the surface fields considered in this paper
‘have a rather complicated functional dependence on the para-
eters u, y and ¥. However, the calculations in Appendix F
show that, at R=0, the pressure gradlent horizontal dlver—
gence, and other quanﬁBtles, take a 51mpler form, in wh1ch
the dependence on u f;ctors out from that on the parameters
-y and V. As a consequence, for example, the ratio of the
maxlmum horizontal divergence for flow over a circular hill
to that over an infinitely-extended ridge (both with the
same horizontal scale, a), has the value n ‘2, independent of
the shape of the vertical cross—section of the barriers
fi.e., independent of u). |
Another geometrical feature of the terrain was studied

in Chapter 6, where tne pressure perturbation was calculateq
for flow over infinitely-extended crosszjnd ridgesfthat vere
curved in a horizontal plane.  Parabnalic and sinusoidal

types of curvature were considered. The perturbation wvas

frund t~ bhe enhanced an the ronvex eide of the ridge ang

\.
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‘reduced in magnitude on the coﬁtave sigéﬁ?reiafiVe to a
st;aight ridge; The absolute change in p:gssure, due to the
effect of curvature, vas greatest in the copcave redions.

| The force exerted on a mountain by the eix streaming
over it was studied in Chapters 8 through 12, agaln using a
'simple 11near model The drag per un1t lengﬁg vas calcu-
lated for: the two d1mens1onal flow over a var1e€; of uniform
crosswind r:dges, Symmetrical s1ngle ridges, a super—
poSition of two separate ridgai'and sinusoidallybméduleted
barriers were all considered{ The presence of sharpano;ﬁers
‘or steep slopes tends to increase the drag per unit lendgh,
dz, although discussion .of such effects'is complicated byfe
the invariance of dz)with respect to a change of herizon—
fal ecale,in the direction parailel to the incoming flow.
The'discussion of the sinusoidally modulated terrain in
Section 9.2 emphasized that it is the high spatial frequency
‘eomponents of the terrain height spectrum that contribute to
the drag force. The Grag per unit crosswind length for flow
ocver a barrier constructed from the juxtaposition of two
identical ridges was found to Be smeller than the value
expected from the maximum pressure perturkation, for some
values of thevridge'separation distance. This result is
associated with the cancellation of the lee low of the
upwind ridge vith the windward high of the downwind ridge.
These examp]es'serve to illustrate the complexity of pre-
dicting warr draq from mount=in shape, even in this simple

mede 1 .
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‘The dfag per unit crosswind length is-independeht)of_y
for the ridge case discussed above. The calculations are

more difficult for three-dimensional flow'over isolated

hills, but some results have been presented in Chapter 9.

The drag values for three- d1men510nal barriers d1ffer from_

the two-dimensional flow results along the Y=0raxis\by 10%

if the crosswind dimension of the'mountain is from about 2
, . _ | N _

to 4 times the length scale parallel to the mean wind, de-

pending on the shape of the vertical profile.of the barrier.
The total force exerted by the air on the terrain

proved to be relatively easy to calculate fot barriers with

an eifgptical horizontal cross-section of atbitfarf eccen-

tricity and orientation. For an elongated barrier the force

. varies considerably as the orientation of the mountain is

£

changed relgtive to the .incident wind. For example, a hill
with a major tq.minor?axis ratio of 4 experiences a’forCe
which-ie.oéet 8 times larger if the long axis_of the barrier
is acroés/ compared to along, the mean flow. 1If the up-
stream flow is not paralle]) to an axis of symmetry of the

barrier, it experiences a transverse force which can be an
abpteoiable fraction of, or even exceed, the dtag force cghw
poneht., Conditions are particularly favourable for a large
transverse force (relative to the drag force) if’ the barrzer
is h1ghig eccentr1e with the long ax1s 1nc11ned tQ the mean

t'~.,v' el

flow by less. than 45°

Jn Qhaptea k& the effect of emooth1nq a te?rain”shapé

22 TR S wrwvr*w¢.um i

AT

was determined, elther ‘by applylng a d1fferential operator
<l foionrs] L~ R M P CO ety wh

o e Gekgage s e et e P
P o ;
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or by‘fquncatiﬁg a speqtral}series. The drag and drag per
unit crosswind length vere found to differ from values
Getermined from a scaling basea on the square of the maximum
terrain height. This result is due to the fact that the °
terrain shaﬁe is not preserved as the height is reduced
ﬁhrﬁugh the gmoothing proc?dgré. The extent of the depar-
tﬁre from a quadratic. height depenéence'variqs with the
‘initial barrier shape and which smoothing op  ationji§‘per-
formed.

It should béfhoted tﬁé;lthe wave drag is'a function of

many other factors of equal or potentially greater import-

ance than the geometrical factors considered here. For

example, the sensitivity of the wave structure to vertical
shear in the mean wind and stability has been studied by

. : - »
Klemp and Lilly (1975). Peltie: and Clark (1979) emphaSizeq
the importance of the time eyolution of the flow and of non-
‘linear processes (for suffiéiently steep barriers). The
surface drag fgr a nonlinear flow exceeds the linear theory
result by a factor of three or more in some of their calcu-
lations. As shown by Jusem and Barcilon (1981fl introduc-
tion of terrnin asymmetry also tends tc increase the drag,
partiruiarly in a nonlinear medel (Lilly and Klemp, 1979),
On the other hard, Rarcilon et al. (1970) find that the
inclusinn of mristure reduced the drag by 4% in a typira)
case |

All of'fheqstgdies mentioned here refer;toutwb-

3

.dimensional mrdels. Tn three dimensional flove, the extra
™ - i

)
i
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degree of freedom introduces fiew complicatjbns;(in addition
to ‘the role of bartier orientation and shape, discussed in
this ﬁgper). "For barriers of sl1ghtly larger scale than

those ‘to wh1ch the present theory is appllcable, Smlth

"(1979b) has studled the reduct:on in drag that occurs if. one -

1ntrodUces a Cor1olls force. As another example, Blumen and:

McGregor (1976) f1nd a 30% 1ncrease in drag is possible when
lateral shear of the horizontal w1nd is inclpded in the
upstream flow, Furt%er work is required’to uncover how
these varied facti's interact when several of them are
allowed to act 51multaneously, especxally in three-
dimensional models.

Finally, in-Chapter 12, some consideration was givenvto
the application of a linear model to air flow over arreal-
istic representation of the Rocky Mountalns. In the model

the miniinum pressure in the lee’ trough occurs 50 100 km

'downstream of the major topograph1c rldge. A typ1ca1

]

surface—pressure analysis based on synoptlc data, however,

rlaced the lee troug% significantly further downwind,

perhaps 200-300 km from the mountain peaks. .

13.2 -Poséjpilities for future study

.

In this section, some poss:ble dlrectlons for future

research on" lee cyclogenesna and re]ated aspects of mountaln

airflow wzll be outl1ned
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In the course of ﬁhe discussien of lee cyclogenesis in
'Chapter 1, it was noted that Speranza (1975) made a dlStlnC‘nJ
tion between lee 51de low- pressure areas in- general and
those low-pressure regions w1th.cyclon1c vortlcxty., Clar-
‘ification of these differences might leed to jnsigﬁt'iﬁto
the initial stages of lee cyclone development. As previous-
ly noted in Chapter 3, the simple model used in the current
work cannot describe the formatien of regions of enhanced |
vorticity. Therefore, further exploration is neededfof-the
ways in which vorticity can be generated by mountain induced.
circulations. This requirement was also seen in:the dis-
cussion.of potential vorticity conservation in Chaptef 1.

To what extent is&a lee cyclogenesis event the formation of
a new weather system? Is it simply.fhe regeneration of éy-
clonic vorticity that was present on the windward side of
the barr1er7 Smith (1979a, p. 165) suggested that trajec-
tory ana1y51s could be used to determxne whether 'the lee
cyclone is composed of the same fluid particles a& the
parent cyclene', Cyclolysis en the windward side of a bar
rierv ie aw{‘wadeduarely dorumenreé process, hut is a part of
the overnl) inrwiacrien of a2 lrw pressure "ents? with a
mauntain range. '

Tt is suggested that in future studies of the formatio;
of lee cyclores that the eurface predsure field be analyzed
at contour {ntorvalc f 1o greater than ? mb, #nd at as fine
@ tempcral resoluticn as pessible. Thie would ~1low one t~

inveet igate the presibhle interncrion - f Ainvrnal)l meountain
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circulations or tides (Longley, 1968, 1969; Hamilton, 1986)
‘with other processes affecting’the pressure distribution in
the lee.. Hourly surface pressure data are ava11ab1e, but
to restrlct the amount of data to be handled to manageable_
proportions, 1t nght be necessary to 11m1t study to a small
region, such as the southern half of Alberta. By collect1ng
additional data on cyclogenes;s in this area,iwith partic- -
ular attention to classifying the lows according to the cri-
teria‘used by Schallert (1962) and.Chung (1972), it might be
bossible to clarify whether er not the double maximum in |
cyclogenesis freqguency seen in_Chung”s‘data is.due to his
limited sample size. It COUld also be useful to note the
degree of assotiation between a lee cyclone and features in
the upstream flow, such as the presence or absence of an
advancing trough, or a parent surface low. Numerical
modelling could afse'be used to test for the existence of
preferred regions of cyclone formation. If the model were
sufficiently simple to allow it 5one could execute many ﬁ,
integrations under slightly different 1n1t1al cond1t10ns to
rompile statistias on regions- of cyclogenesls. |

One of the major limitations of the modei used in‘the
present work, ig its steady-state nature. Time- dependent
models of mountain waves have been used in past research,
but, often net for the study of t1me dependent phenomena
For example, Dunran and Klemp (1983) ipitialize thelr model
by gradually increasing the mean w;nd speed, up to some con-

stant value, and then cnnfunno the 1nteqrat10n wlth this
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constaht.upst;géﬁ forcing. No attempt is'made to study the
wgve,réspshse.ﬁndef conditions of variable upstream flow.
Other :ecen£ paéers, which aeﬁl explicitly with time- ]
dependent Ehenomena ihq;lmay be of relevance to lee cyclo-
_géneéis, include the'vork of Bannon (1983) on the inter-
aéiion»of a front ﬁitﬂ'a topographic barrier, and the bafo~
cliﬁic inStabil&ty studies of Farrell (1982) and Grotjahn
(1980).. Although the introducéion of the time variable
increases the complexity of the hafhematical development
considerahly. it opene interecting prerihilitierg for futor-
,research. §

ATthﬁOg% tﬁe many Jimitations ~f the medel used in thin
thesis preclude detajled compariéén wi?h real atmoséherir
flows, it is hoped that the analytiral rngu‘fs that havp
been presented will sévve to provide veeful checks onvmnre

‘realistic models. The main emphasie has been on the diff-
erences betueen flew nver infinitely-extended ridges angd
that ~ver isolated hills. As techre'cagicral deel pments
allow mare ertencive calev'ati no o : rerfy nAd ineresre
‘U~an,e+wn5;~ wf bbb by e . S b

£ e}
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JUSTIFICATION OF TKE NEGLECT OF CERTAIN EFFECTS OF THE

- VERT}C&L VAR!ATION OF DENSTTY

In thlS appendlx an analyt1ca1 solutlon is found for

- the pressure perturbatlon due to an 1nf1n1tely extended
r1dge, retalnlng all the terms in  the governlﬁg equatxons
'(3 1 3 5) Thms-exact solition is then used to determine
whether certain terms, 1nvolv1ng compre551b111ty and,the
"vertical variation of éen51ty, can be ﬁeélected in a type

-of Bou551nesq approxlmatlon.

First, express ‘the pressure perturbation, p’, in terms

nf the vertical displacement, 7, by multlplyingv(3.12) by
exp(-8,92z/c?) and inteqgrate with respect to z to give

- =2 * o2

‘63gz/c 'ﬁ? J 3gz/ .

p(z ) n(x y»2 ) dz” o, (a.1)

4

p (x,y,z) = e

assuming

z-véa

: o2 T R
1im [ .63gejc. . J .o.
e P = .

Substi*dtiqL for the de"sify, p, from (3~l4), ohe can then

. g . R .
An the inteqration over =» to give .-

3 ﬁ(k,l) ei(kx+£y+mz)
po(x’y'i) = —p -}-q'z J J ) 6 ) d¥. d¢ » (A.z)
_ [.1 m(k,2) + Bg_ - le ] :
N - : w2 3 ) )

‘where the Brunt-Vaisala frequency, .N, is given by (3.,13),
and the height field Fourier transform, g(k,I), is deﬁined'

by (2.17). The vertical wave number, m(k,£), determined by

207



| : hav1ng the*same 519“ as’k, of the equat1on - T

- 3

e e o208
A ., . . . .. P
. ke P T

',Z.,

subst1tut1ng (3. 18) &ntb (3. 16), is. the root vith_teelfpartf'

R v - Y bl e
s(1+s)s N T o
_A______}_u, [
m* + t [ H oY ( 3)'&~ T
o' ). ' ) ’ . . . . “ . " ¢
s (85-8,8 g) - g2) .
S 2
+§—‘*[ 5 + (66—61) ] o,[l_*'i'_f) . (A 3)
' O;- - o - ot r«r«w‘ e ~:~~" 'Tv ’ R “
where ' ” "_' S T
. N . . _ .
. mo -.mo(k) = — Bign(k) . (A_4)

u

If the terreigﬁie a ridge of uni{qrmwcfoss-sect30n) |
‘infinitefy-ektendedfin ghe c;osswindadireEtion,~tﬁen E(k,l)
samplifiqe‘to (3.22).e As a consequence, thefintegra;iOn-f
over £ in (A.2) can be done immediately. -§}f£1n§‘2;6 thehj.,e~,

gives .the surface pressure perturbation: -
g | P P .

: ( ) _ = = . ¢ ]::(k) ii dk o .. . )
P7(x) =~ <p N f. . . 8 U ALB) L
T «'ff- .f*'7-[ 1 m(k,0) + E;favT;ﬁ;;Ji'u SRR B

'%oleimplify thié }eShit 1ntroduce the pressure perturba--

“tion, pé(x) thar would be obtalned ‘with the appxoxrmataonﬁf T

81'“57'_"5""6.“0:

PI(x) =~ N J h(k) fkx :
o o RO dk . _(A.G)
o
Defining a Froude number, - ' S
L - U - ‘ - : -
¢ Fo : A ‘ . o e P '(A'O’Z)
— - HN .

writing g/c?="1/y.H,, and using the féct that m2 is indepen‘
'dent bf~k~ one finds that the pressure ﬁ%rtutbatlon (A 3)

~an be expressed as
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c"poﬁ2 %’—(2 (A.B)

| Y
. [ 1 - (a2+B)F2 ] P~ (x)
Pr(x) = %) e o,
. ' 1 ~ sfg’ I

where

1 i : 3
e=3 [ 61{7‘ - 1} +8,(5,-1) +T] .

o o]

The exact pressure perturbation, p’, is seen to be
obtainéd from the simplified version, ps, by an amplitude

\correctlon 1nvolv1ng the Froude _humber. and by a. dynamlc

P Lo - -

' pressure correctlon 1nvolv1ng the barrIer be:ght. The
compre551b111ty and stratification effects are seen to enrpr
. the. dlmensaonless coeff4c1ents, a and B, in 2 complicated -
,wayw  Retaining all“tbe terms in the criginal equatidhs; s6
that 6‘=82=63=8.%1, éivés.a~3~0,2. For typical.atmospheric
valﬁes*of“ﬁéfo m s Y, Hoe§ kﬁ,vévg;e ms'?, and Yo=i.4,

giQing N=0.02 s ' (from (2.13)), nne finde Fo=0.06 s~ that

the guadratiec terms in F. can be neglected, in'roeducing a

trelative error ~f much less than 1¥%. DNv pping thece teyrr -
and normalizing by the factor . U N h.  whera W, fo 1h
maximum meunthrin height, gives
p (x) P, (x) h(x)
e v vt P e e — e 1] — ¥ ( r 1)
PORTER SIS " T SRS h
p, N l.ﬁ " N R h P

Aralytirasl reaulte ahao thot the marvjroon cqloe of e § 4,
L]
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‘term on the right is typically abeut 1/2 and occurs- on the

slopﬁ of'the‘barrier where h/h, ~.1>2 With Fo = 0.06, as
above, the dynam1c pressure correct1on to the max1mum velue
of peo améﬁpts to only 1-2%. However, d1rectly,over the bar- .
rier peak,'where h/hs=1, with a stronger wind epeed and
weaker stability, the correction term could be as large as

£ 10% of the maximum pressure perturbatlon. It is 1nterest-
ing to n~te that the ﬁeight”dependent correction to the
rressure does not affect the wave drag for two-dimensjonal
flow over any barrier havingzthe.same-height at x=o ané X = —~eo
(see Eq. 8.1). The draq 1: changed only hy. the weak

ampli tude rorrerfnon to po, involving F2.

As a result of this analys1s it 1s seer® that the

approximation, po(x), given by (A 6), for the pressure per-

.turbation due. to an :nfwn:tely extended rldge, is accurate

o

t6 within a few percent for typ1ca1 flow cond1tJons., Thas*-
form for the pressure field arises directly from the %:rern“
Ing equaticne of the model f one’neqlefti the rompressibil-~
ity terms in the con'i%\iry eqration (5.-6‘?Q), the acongtir
Fressure term i the ngiarrrir ejurtion (¥,-0), and the va:
Fienl varinticoc f Adev-tay (R ) T¥cept in fhe Fueyancy
fraynency E‘

A eimilar aralyeic ig roegible far flow over ‘enl~ted
three Aimereianpa) harriere, hut the correctionrs tn the pres
cfur- field jovrlyinag thae vertical vyarjatioan of “engity Am
net take the Fin';"‘]o frrm given by (p_ R)Y, Tt vwi')l be aegumed

TR T PR f,”;l_... ;"""79':"": " 'h:,', "IP r",,‘._.'ﬂ“,.- y oot L
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‘determined from (3.20) and’ (3.19) provides an adequate

description if the Froude number (A.7) is not too large.

-



APPERDIX B

DIMENS1ONLESS VARIABLES AND INTEGRAL FORMULAE

5

Invthis appe;dix, definitions of dimensionless
variables are summariied for the.coordin;tes in the spéce
and wave number domains, the height }ield and its Fourier
t;ansforms, the preséure:}iela and the wave drad-per unit
crosswind lenéth of barrier. Expressions for someé of these‘
variables are given for the special cases of flow 6ver
infinitely-extended crpéSwind ridges and for flow oVef bar-
riers with elliptical horizontal cross-sections. If'a;,y)
are Cartesian coordinates in the physical domain, ﬁimgnsion-
less Cartesian coordinates, (X:}); and elliptical bqlar ¢64

“rAdinates, (P,P), are defined in (4.3) as

lﬁ

R = (¥23v2)
(B.1)

v iIX

- P cos? , V=2 =R gina
bh

Tf the corres' »nding wa e nimber roordinates are (k,2), the

"'v""ivWﬂ' STl e e {0 Y)Y an (e #4) . and are Qefined

(p 7
P T T} N PR

Tf Wiy y) de the terrain heisht field, havipg ourier

) v_.j;;g:a
tyanefarm h with respect tc ». =f in (Y. 2€6), and h with

<

reepett to x.ang y,sas in (3. "hew *he non~-dimensional

: L]
e o » 1‘- i
f mn are dpf ine 3 by - -~

PR

\

Y



>*  . B(X,Y) = h(X,}')/ho y o - ' ) ‘ 3
. up: Y) —Eti— 2—1 Js(x v) e X gx .,

&

o Fs . "i(kX‘PAY)’ S .

b

H(x A) = hab —fr H(X Y) e dXdY .
LW T e

© 7213

(B.3)

For convenience, denote'H(x Y=0) by H(x) a normal1zed form

'of (3.22). In the special case of flow over ell1pt1ca1 ter-

rain, H=H(R), from (4.10), one has
H(x, R - (o) = —1-f R H(R) J_(pR) dR .
0

For the remaining guantities to be discussed,

(B.4)

a prime

denotes the physical variable and particular cases of dimen-

sionless var1ables are indicated by appropriate subscr1prq.

If V is an arbitrary variable, then V denotes the special

case of three-dimensional flow over an elliptical bharrier,

Vjc is used for circular barriers,.st(Y) for two-

'

dimensional slice flow (see Chapter 2) over an isolated

three-dimensiona) barrier, and V?*vzq(v~ﬂ) frr tyo-

“

Aimensional flev over an infini'e ridoe.

-~

. -
F'yom (:_l) a')ﬂ (3.25)' r‘\r IR IR IR R A | F"‘RF”'"
r Al r\mvf;r'vlgr Thoen a' oo
e o3 (P¥Y)
T = p /({‘ nmy h)-v-jj JK ..... - W, vy,
o © (r?1y "‘q\‘

(... _ipRcos(¢-8)
Py ! f e Y

((‘l'r‘"{ v’)ﬂ{"'z'#)

~

N
Wi ,

{n
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As shown in Chagter's, (B.5) simplifies in the circular case

to give
- '_?3C(xﬂY) = -2y %-—J P 31(°R?AH(°) dp .- 1 (B.6)
PR T ot ,, LT 9.‘ . J'- ".4 . . L A R S =
Also, from (5.4) | -
pz(x) = ~27 J_p,ﬂo(pX) H(p) dp . (B.7)
0 ,. R X . : A,

“

where H, is a Struve function.
The drag per unit Qrosswind length‘of the barrier is
denoted by 4. From'Chapter 8 (Eqs} 8.4 and 8.6), the dimen-

sionless variables are ':

s T 2 A . .
” — T 3 2 K e i ’ . v ) !
d~d°/(p UN h?) = 2n J J : H(x,)) H(x:¥) dedx , |, L.
n (o] ‘(K2+y2>‘2);5 . ‘ :
. ‘ , ‘ ' 5 (B.8)

- 2
dyg(¥) ~ 2r J le] |HGe;Y)| dx

-0

To obtain the form, d,, for elliptical terrain, substitute
H(k,\)=H(p) in the'expresSion for d and use elliptical polar
coordinates (B.2). - ' ‘. o
For the normalized total force, §5=(D3,T3), in fhe‘
elliptical barrier case, the reader is reférred to (10.3)
and-(10.4). The two-dimensional slice flow solution, being

less straightfnrward to derive, is considered in Appendix O.



HOR]ZONTAL SCALE TRANSFORMATION

.. Given a."barrier,~H=H{%,Y), one ¢an increase “the -hori=.. s

APPENDIX C

zontal scale to form a new barrler, Hy, which has the same

shape.

1mpl1c1t in the expre551ons Appendlx B,

here :

ﬁ(K;A’
a

H(X,Y)

XY
.= BGD

i(:{y)a

a(y)a

D

.P(X,YSG

- ddg)'; d

a

- .Z.
a H(:u.a)

craz

=alD

= a? Hxa,ha) 5 HG)

- a? ﬁ(pa)

Although the effects of such a transformat1on are

they are summarized

(c.1)

(c.2)

(c.3)

(c.4)

(c.s)

(C.6)

Quantities such as the drag per unit length at Y=0"and the

maximum pressure perturbation are unchanged by the scale.

transformation.
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APPENDIX D

nAr;v‘r'lc'Ar; RESULTS ;r‘.o.n._'.s;x.xc_r-.-g:.:n.t_n_c;zs:.-m.tm;.rp-r.‘regmzns_ R

.o D - e . L . -
. a i e w0 ...a-r-.-oo ® > ..(--4’-: .,c'\ LR K .o Lo Tge &R T
N . PR N R T S e e ti et WY s e _0_°¢v‘.a.o',__'?_8"."'_"

ao ’1 ’Terraanhe{gﬁ ?k rxer transforns

Analytical results are presented;in thls'section for
;Qhe terrain- helght Fourler transform and‘preSsure perturba—ﬂf-
tion for single r1dges and ell1pt1cal hills.

In Table 2, the_normal1zed terra;n-helght Fourier
transform for two4§imedsional‘sli¢e flew; ﬁ(x;Y)f'defined in.
Appendix B, gs'giyenﬁgor,aavariety of;terragﬁ*tbsmsqlhin'

. each case, a reference.is made to the page.in Glehere the H
integral’, ar avslosely'related form, can be fbuhd.' An
exception is the barrier witg a triangﬁlar proflle,‘for
which case 1ntegrat1on by parts glvesxthe result w1thout_ ;‘
resortlng to tables. For the last two entrles in the table,
only the ¥=0 solutiqn was.fdﬁnd. In Table 3,,ﬁ(p),-the Fou-
rier transform appearing in the three-dimensional.flow
problem, is glven" Speciaﬁ%functions appearing in the
results are Bessg%.functlons, Ju,rBessel functioﬁs of

- imaginary argument, Ku' Struve functions, Hn,vand t?e
complete elliptic integrals, K and E. Properties of these

‘functions are summarized in GR.-

216
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Table 2., Normalxzed .terrain- hexght Fourier- transform,

‘definitions..

H(R) SRR *’ﬁ(ésf)*~ ; 4‘? » ‘Refereénce

h y e — ‘ R -

(1+R2) we e 1“5‘;1 . fiJkl {]*7%K” [le(l+x3 %} éRf.f,’959'

‘ : r(&) (r:.,(“) 2 +,Y2)15 ; u | A

| | e_th e B r(%) ;%2 é--.gz‘/.,_‘ v o ,pi.gkeo
- S L SV ST 7 N .

(1-r?)” 9(1-R?) 5‘;’*(},3 [2 (};’fzﬁ)% [lrl(l-Y2)”]e(1-Y2) GR, P 953

olElain

,,e_TK' (62+Y2)’;i -

s In(8%)"

‘.,~'_c.H(uc,Y) nforeellz.ptncal terra.m,, HB)LT See “Appe‘hdix B for . vie 5.,

T as

‘,l": o i e__lrlﬂcosz-

2 2

sin(ensin)/(2ue) ., 1R, p. 411
where n2c0’525=Y2+cos2w and n2sin2f=gin2w a ,.
e_"'R ‘—]1"—? [lYI (lﬂz)%] ; ?(—1-}_—.(*2—)' at Y=0 GR, p. 482,
n(1+n2) ' . p. 477
. . e 9
K_(R) &~ [Y] () ; GR, p. 736
2 (1+x2)% o
: 2(x ' )
(1-R) 6(1-R) 2 sin ]2] at Y=0 ;“te‘grate
y parts
™
:sech (R) L sech[—’-’—x-] at Y=0 GR,.p. 503

-



L

K, (p) - 8K (8p).

o : - « A —
' o ' Lo - 218
| Table 3 Normal1zed terra1n he1ght Fourlet transform,{;'
H(p) for ellxpt1cal terra1n, H(R) See Appendix B for '
ﬂefln-at.a.,onsw ce e e o L
R T ,":_:,',' :’ “':0"_"' T ITL ot e T
N _ St e,
-
H(R) ' ﬁ(p) Reference
. , . ‘ Ll'-l o , . . -
(1+R2) —L 'k 1) GR, p. 686 [
e w2 ) MR : |
e R 4—111 e /4 GR, p. 480
PR R B i (VL o . Era
o |ar?)” p(1-R2) S {%] Jp41 ) | e Resind T
T ' o _ L |in GR; p. 740

Q

ey

~GR, p. 768

o p 1n(8%)
iarccot[&—?:—%iz—m-] i m.KL‘(. 1oy _1 ~tuy o -loy | Usé (9.3)
— drwp |© T1Pe ) T e Ky Goe GR, p." 768"
e —1 73 GR, p. 712

2n (14p2)
KR Zn (149 6k, P 672
(1-R) 8(1-R) * Iy (‘nﬂo(") Iy (")H @) . 1. GR, p. 666"
Zp -
: ) v



. .‘D. 2. ,Pressure fields R

Results are now presented for the normal1zed surface

_'pressure perturbat1on for flow over var1ous barrlers,\based

. o

on the 1ntegrals in Appendlx B and the Fourler transforms 1n;

’ L= TN

.{Eﬁples 2 and 3. For some‘of the terra1n forms, the absolute'~

value of the extreme perturbatlon, P or P gis given for

’-Zm« ‘v3€m

'therflcw over an 1nf1n1te1y extended rldge or a c1rcu1ar’

barr1er respect1vely. The distance from the terra1n peak

ot ™

PR
e

to the p051t10n of the extreme pressure 1s denoted by Xm.

D.2.1 Pressure for a u-type barrier: H= (1+r2) 7"

The pressure‘fieid, Pé, for flow over an infinitely-

ﬂ‘extended ridge has been derived in‘Chapter 5, with thei

result given in (5.8). 'Special cases are—shonn in Table 4.

The corresponding two- d1men51onal sllce flow solutlon P,

wcan be obtained from P2 u51ng (5.10).

The circular hill case, P3C has also. been treited in
Chapter 5, with the resnlt (5.12). Sinplified_expressions
forjspecific values of.u are given in Table 5.

Now cdnsider the evaluation of the integral (5.14) for
the normaliied surface pressure;‘Pé,.for'the terrain expo-
nent u=1/2, 1, 3/2, and 2. Maklng the change of varlable

t=-ctne, and introducing the notatlon o B

'a-‘lm , | (D.1)
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‘Table 4. Normalized surface presSure perturbatlon,

P-(x) - and. the absolute values of the extteme perturbat1on,
=|P (X )|, and 1ts p051t10n, Xﬁ, for flow over an 1nf1n—5-

1te rldge with helght H(X) = (1+x ) ¥ as a functxon of the o

exponevnt’ T ;._i R . . ) : ) - ..; ) ‘ e e e - e
R '
i
w | o P (X x - . |. r
. . 2‘( ) X ’
: , 1 (x+(1+X2)l/2) . ,
Mz W 2172 1.509 - oy 0422y
™ - : | | B
1 o E | 1looo” 0.500 . |
: I+X: ‘ 3 _ -
: 2 [ x (x+(1+x2)1/2) - o
| X(3+X2) : o
2 | —L—772(1+x o 0.681 . 0.550
_ T(@+l/2) X 3 X2
’“ r'(3/2) T(u) 14X FQL,1-u; 2 FTax2)
!



‘t1on,'

: ‘;[ -
able 5.
(x

|p 0],

and its position, x

. Normalized:- Surface pressure perturbat1on,’

(x Y), and the absolute values of the extreme perturba-

' for'three—

, d1mens1ona1 flow over a c1rcular h111 with height

H(R) = (1+R ) W as a functlon of the exponent where
L ~R2=x2+Y20 - @ “ "“" o ) N . )
’
1/2 - X 75 = 1 73 1.272 0.300
(1+R2) 1+ (1+R?)
B _ -
1 - AEE 0.875 0.360
- R2(1+4R2?)
: v
X .. "
3/2 - 0.707 0.385 -
2 *
2 - ZE+R 1;}/3; 0.609 0.399
2R2(1+R2) :
r...,_... e o e — — P, [ ——
I (u+1/2) T(3/2) X 33 R?
v ORI, 1 Jind Shvedl AN Sl Sl ) F( .2_ = N R )
TG (1+R2)3/2 ? x4

* ) .
-, K.= K(k) and E = E(k) are complete elliptic integrals of the

Low

First and sé;nnd kinds, respectively, where the modulus, ¥ = R/(1+R?)k.
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2,02+ 2 2 e fi; tT‘-
8 - (l+§+;§‘)‘« . (‘iigz)_ » s : (’D.Z)
. 2 (;%2).”(-:%1')"_'.‘ T by
(5.14) becomes
B R 4 .
) .v . . ‘ P o . _k .‘. .
vy o TQu+1/2) 1 J t (Re-v) (42 5.
BT TTAD IO Gy |y (emme®
For-u>1/2 this Ean be written-as ' $
by = o Tm1/2): 3 1 j a2y
73 4T(3/2) Téu) 93X (1+x2)“;§ A ((t—a)2+82)u4%
(D.5)

" For u>1/2 the form (D.5) is somewhat simpler to'integrateﬂ
bué for u=1/2, (D.4) must be used.
First considet the evaluation of (D.4) for the u=j/2

case. Introducing

qi‘ =a t if ’ ) (D.G)
so that
’ (t-0)2482 = (t—q+) (t";]_) , (D.7)i
and vusing T(1/2)=x"’? in (D.4) gives
‘ 1. t (Xt-Y)
P_(X,Y = - . :
3 ( ) uggi 1|’ (l+x2) ~.£ \A (t-l{,) (t"‘q_,) de (D . 8 )

To put the integral into a fofm4£ound in standard tables,

eliminate the odd powers of ‘t by separating into partial



S 2
)

fractions and mult1ply1ng top and bottom by t+g. or t+g. as

\*/As approprlafh\ The result is

.dt 1 ’
| s | X8 + ta( i xa,v [remme] | -
, u=ls . o 0
) (D.9)

where Im denotes 'the imaginary part of'. From Byrd and
Friedman (1971, 61-64, denoted as BF in the following) one

finds

( K(k) s y<)

L
A 2 » Y , (D.10)

KO -
Y A

wvhere K(k) is a complete elliptic integral of the first kind

with modulus k=e(y), being equal to the eccentricity of the

v . :
elliptical barrier as defined by (4.5). 1Mlen,

{

E%fi (na741,%) v :oyed
N 7:3‘5?3 " %ET}F?: (Imlad0d oz amt o
n v
1 [.1 1 o ] ~
—_ 4 ] N A TA . o |
vy | A !

where N(¢7 k) is the complete ellipticr integra’ of thé,;“7
kind, with parameter ¢t . and medul-~ k  ir the mkapdAne 0
*Prminoinqy (see PF).

The Jirrraru e rn the ellip'ic i terral of gbm

e

l-"v\,’{ I~ SRT TR N Yo ooy ot ),0 Chey - LI TP [ Y . vl { PP |
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second kinds. Unfortunately, some reference materials,

including.BF, contain omissions and typographical errors in- -

the case where t2? is a complex number, as it is for the

~

ihtegrals encountered above.® See Lang and_S;eyﬁns:(WBGO)“>’

and Sutherland (1965)‘fbf‘c15rificétion of the major prob- .

lems in ﬁ{eVious literature. For the purpose of numerical

evaluat i.on, n(z’,k),'with chplex £2, can be expfessed as .a
linear combination of two feai.complete’éliiptic integrals
of the tﬁgrd kind, each.of‘wﬁiqh can: be evaluétedqin terms
of incomplete elliptircr integrals of the first and secoﬁd
Findeg.

Substituting (D.10) and (D.11) into (D,9) gives the

preseure field for the y<1 cpee as

Pl

e 2 ) |
1 4t
p3(x,v)| T i W Hqﬁ[*(qfﬂﬂ() - Yq+(H—K)] , (D.12)

where ﬂ‘=U(qi*1,k) and K = K(k)., The exp;ession for P_ when
Yy~ ! bas already beeh given in Tahle 5, and that for y>1 is
found from (DL10) and (D.11), as in the y<1 case.

NesF e 'Laf when ~=0, whin" orr~uyrs along the X and Y axes
(eee BEq. D.1), the param~ter, t?, becomes real and the cal-
culation ~f the pressure fielAd hecomes considerably simpler
Thue, quantities ;uch ae the mawimum pvesshre perturbatior . /
whirh occu' aleng the V-0 axi=, ran he calrulated withoutr
~valrating elliptic intagrale wi'h complex parameters.

? L
e¥ -a the i tegrals arising for the us3/2 cace arn~

S lome iaer s agjAfiad (a0 2 theeopg will ha
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’

treated next. From (D.5) .and (D.7)j one has

v

% P&, 9 [ 1+%7 J A (t—q, ) (t-q) ar ] ) (D.13)

1_11?
3 =
U""z’ -

O

&Separating into partial fractions and using (D, '0) ang

(D.11) as before, gives

¢ . :
_2_.3_ . 1 241, 1)) P—
"a‘x me(q+ﬂ(q+ ’ ) [ |
9 1
PL(X. VY AR G- S Al B (P11
? I‘n-; ne ( (1+R2);i
2 3 1 .[1 1 .
S B T |=1 (= * l'k}] A
ry 3X [ (1+R2)% a, ;? ]

4

The procesc ~f taking the imaginary part and differentiati -

‘n (D.14) is rather lengthy so will not be pres=-ted her-

Next consifer 'he p 1 rage. for which (D.¥ teroman

~ i ) % )
l)(‘.' V) ] a; ’ — '_]:7"'- j _r._..._(g?:l'_l.)__-...._'_ ' (1 1
! “”(.,)l‘ rf e ‘03“)15
An trtegrat ‘e foan ig tabulats ke U BRI BT
thye ' D I
! o_ | v R(k), , \
f‘x .
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.2 . \ '
V= e ,
c+ +'c_ ’ 1 i ) ) , '
c ’ k. ,
T R
k-v (c C_) : T y. | | '. (D.17)“
, - ( 2+(s¢y>2)li : I
:”- T “ )‘ v - v
: 2 .L' . . : . K
’ ] ' v : . L

Caryying out theﬂdifféréntiatibn in (D.16) br'iﬂtegréxiﬁg

(D.4) directly gives - K - e
v 1+x2 : \ -
P, (X, Y)‘ ((]+R Y ( SB TC) . (D 18) 3
. w ‘ '
where SR ‘ R N S -
. \ :
_ : : o . .
= -2 ! 12 - > 13
B ~ 2"57'K . oK ﬁK = k2=1-% , |
S e Xa-Yo " 'I" ﬁ- Xt+-Yo . ‘ ’ o ' ' (D. 19)
K% . A ¥
A %7 ----- oo . - o
) ) R _ J .
\L,\.\‘ »
Here. K=K(k) and E=E(k) are complete elllptlc 1ntegraLs*of .

the first and =ﬁ%6*é klnds, respectlvely, w1th k as 1n

(n.17).

°

The #énal ~ase to be conq1dered in this section is u=2.

By means of the change of variable w=(at- a) ]/ (1-at), vhere_o
and 1 are given in (D.19) ahd « in (D.1), thefinteérandé 6?*
(P.4) and (D 7) bernome evenvfunctions ofvthe integration

variable, . fhen,}éfter séparation into partial fractions,
one can use integrals t;%ulated }p BF (pp. 51"g4), as in the

\

19 aprd } rhmes The regnlt obtaired is
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o L3 v (14X )
‘Pa(X,Y)| - === —— ( sC-k“2tB ).
3 X 2 k< (1#R<4 .
. pm2 X 127 kS (19RE) ‘ ' (D.20)
o5
- 38TC+3tSB
2k (14R2) (14X D)2 |
(C-B) iy g :
+ T (s+t) (kK“4T+8)+2(1-y4) (oT+S) ||

where

ERESE . ,"%1722"' N (D.21)
and ££e other symbéls are defined in (D.17) and (D.19).

" Regarding numerical evaluation using the preceding
formulae, the u-1/2 and 3/2 cases ;équired aSout 40% more
Eompu}er time than for u=t and 2 because complex elliptic
integrals,of the third kind, appearing in the former cases,
are less straightforward to calculate than the integrals of

the first and second kinds.

P

D.? 2 Preesureé for a Gaussian barrier: H o= n
Th- two-dimensional slice flow solutjorn i-
*
X -R?
vy SN IS WERE EEES
" r(3/2) 11
~y2
) e
A X A
TR/ (p,27)

where the fir=t f~orm involves a degenerate hypergeometric
function (GR, pp. 480, 1063). The second form expresres the
result in terms of Dawson's integral, F, which allows ona *to

re tabulated reenlite tn ekhtain the evtremr calpes nf T

~
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"
U

(Abramowitz and Stegun, 1965, p. 298): é2m=;s1os at X_=.924.

_,The.tesult for the circular case, in terms of modified
Bessel functions, follows diﬁectlyvftomj(B.G) using GR
(p. .717) = | S :
N . - . M )
' - 3 RZy .~ (R%y] -R?/2 ‘
P3C(X,Y) = - rfi) X IOLE_)f;I(Z }] e . (D.23)

D.2.3 Pressure for a v-type barrier: H = (l—Rz')v 8 (1-R2)

P,g and P, can Se expressed in terms of'hypgrgepmétric
functions using GR p.'747 and p. 692, respectively. The
expressions for general v and simplified ;e;ults for v;0,=
/2, 1 and 3/2 are given i; Tables 6 and 7. Onélcén solve
“for pressure in the elliptical terrain case in terms of

elliptic integrals-if » is half an odd integer. ‘Performing

the.p integration in (B.S)‘using"GR (p. 747), gives

2n Y ) , .
P - R [ (KD UL cost 4y . (D.24)
' K (ros2¢+y2s1in2)
wherea
F = Xcos¢ + Ysind . - (D.25)

¢

1f R<! then 6(1-¢(?)=1 and the integral (D.24) can be
expressed in terms of complete elliptic integrals. For

example, in the v=1/2 casge

14

P3(X,Y) ] f X'Bo(y) ; R<l

L

(D.26)

vhere B, i= Aefined in Appendix Q. Note that the isobars



Table 6.
(x~Y),

tion, 92m=tpzs(xm,0)|

Normalized surtface pfessunc perturbation, .

and the absolute values of the extreme pgrturba—'

and .its position,. xm, for two-

dlmen51onal slice flow over an ell1pt1cal barrier w1th

he1ght "H(R) = (1- -r?)V6(1- R’) where R?=%2+Y?, Define
A*=1-Y%,. Also, (x Y)=0 for |Y|21
v Py (X,Y) ; l]s1 - - _ X Py
_2 arctanh X ; Rl
" A
0 1 ®
-2 arctanh A ; R2l
1r X
1 .- X ; Rgl
2 : 1 1
-X + (R2-1) sign(X) ; R2l
2 2 X
- = A+ (Q-R )arctanh(3} | ; Rsl
] . .834 .764
-2 , A .
: ;—[Ax + (1mgz)arctanh(i)] ; Ral
. 2
- A% [%—— 52J ; ReJ
3 A
3 3A2 \2 ~1/7 L7107 .707
; x3[5§7 14 (1-;ﬁ) : R21
o T{vHl) S 2v-1 X2
v | 2v+1
T(v#l) = AT " . A2
=T mTer I SRS O

——— O
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Table 7. Norméflzed suriace pressure perturbat1on,
,(X,Y) ‘and the absolute values of -the ex%reme perturbaf"
;txon, Pacn =|P (x _0)|"and 1ts posrt1on, X ,'for three-
d1mpn51onal flow over a c1rcu1at hill with he1ght

H(R) = (1-R2).8(1—R2) 'where R’=x=+Y2

Xy
v X,Y i .
&1 xﬁ P3Cm
-
- %— X (K-E) ; R<l
0 1 o
2 X * :
"7 R (K-E) ; R21 )
. -7 X Rl |
] 1 .785

- -‘3‘;% [(1-R2)K + (2R2-1)E) 3 R<l | N
. , | S 799 | -.571
- %—% [(2R2.-'1')E + 2(1—112)1() ; R21 |

‘ : A
: - 3’2' X (4-3R?) ; Rsl ‘
3 ' | .
2 ’ , oy 667 | .524
_3X 3R2-2 1 ‘
- 16 [(4 3R?)arcs1nf—) + =5 (1 - iZJ ]m . Ral
_ T(3/2) T(v+l) coin2y :
. T(v+1/2) X F(3/2,1/2—\),2,.R ) ; Rl
\Y .
. 1 X

T Z(w1) R —3'F(1/2 3/2 V+2,—29 ; Rxl

K=K(k) and E=E(k) are complete elliptic integrals with modulus k,

where k=R .for R<l and k-l/R for R21.
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vfor the v=1/%‘case are stra1ght‘11nes parallel to- the
.Y axls, w1th1n”the elllptxcal regxon R<1. At R=1 thevpres—
'sure is contxnuous but. the pressure gradient is not. .There—
fore, the isobars kink at R= 1. For R>1 the pressure fleid
involves ihcdmplete eiliptic inregrals,-because é(1—£’) ;s

zero for part of the rég@onhdf integration.

. o 824R2
o : o 1n “1+rZ
D.2.4 . Pressure for a logarithmic barrier: H = -
. _ : An(8%)
From GR (p. 489) one obtains
P, (X,Y) = _in;%g)_ [arcran[———)-tl—g] - arctan[—-x—g” . (D.27)
(62+412) (1+Y2) o

Unlike~the,§ﬁ§teding cases, an explicit formula for the
extreme pressure perturbatlon ex1sts for the 1nf1n1tely-

" extended logarithmic rldge.' The result is

[N

sz = IT%EZT [areztan[i'—g} - arc‘tan(G;’)J. at ‘Xm = 6;i . ) (D.28)

The extrema of the pressure“field bccur'arfthe half-height
(55

points, H=1/2, and inflection po{nts’occur at X2?=§ +1),

where ﬁ=1/4. \
Proceeding as with the v-type terrarn'(see Section

D.2.3) evaluation of  the A,integral (GR, p. 731) in (B.5)

leaves a ¢ integral that'een be expressed in terms of ellip-

tic integrals. In the circular barrier case one finds from

this approach (GR, p. 905),'or from (B}G)'directly (GR,

p. 693), that | | |
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e S

P30 &0 = Tage?y )[Y n(vc) *_1‘}*1‘-’) . (p.29)

_ where_76=6/(62+R’)¥, yl=1/(1+R’) an§v86(y) is defined .in

Appendix Q. - TR
2 .
2
. " arccot (———————Rsﬁgzzw} E
D.2.5 Pressure for an arccot barrier: H=

2w

P3 involves elliptic integrals with cohplex modulus .and

& . ~ - S
will not be discussed here. ,P,_ can be evaluated from GR

. - 25 ,
(p. 491) : - o o
PZS(X,Y) = -'-2; a.rCténh[—#;_—nzs') Ty S | ‘. (D.30)
where
n? cos2f = Xz + équwr ’ B
o (D.31)
2 sinZE = gin2w '
As w1th the logarxthmzc case (gae*Secﬁion D 2. 4) theu
extﬂgme perturbatlons 6ccur at H=1/2. ‘One f1nds -
: K i o ~
S arctanh(sinw) | at X =1 . : ,('D'IBZ)

.
Inflection points of the preSSpre field are at X*=1+2cosw, -

where H=1/4.

D.2.6 Pressure.ﬁog;a sihgdlaf barrier: H = Ko(R) "

£ B ., ' . -
Although thﬁs'c;ze involves a barrierfof'infinite

.

he1ght at R=0, a formal solution. for the pressure f1eld can’

be found for the infinitely- extended ridge and c1rcular
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barrier cases. From GR:kpﬁ.419);

ry : 3ot Tremg o

:;2_-‘(lx)_-1'2..-[b0-|x|'- ,lxl) sign®) . 7 (D.33)

Péé(X,Y)_was not found. From (B.6), using.a differentiated
'ermeof\en expressioﬁ in GR (p. .678), one.obtainsﬁ

_ ’ - . : _ | ;o ,

. Py (XY) =53 {; (R) - ‘1(3)} : ‘ (D.34)

')

For propertles of ‘Struve functions of 1maglnary argument

Ln, see’, for example, Abramowitz and Stegun (1965, p. 498).

D.2.7 Pressure for miscellaneous infinite ridge ‘cases

. _ Y R . .
For H= (1—|x|) 6(1-|X|) the pressure ﬁﬂgkurbation‘is
(GR, p. 433), ;. | 8 ”

1+x]

. S U A ‘
PZ‘X) =-= {x lnlfz BiTx (D.‘35)

The pressure is'finite everywhere, but sz/dX is sihguiar at
X*=0 and 1. The extreme p‘fturbation_is P2mﬁ(2/n)1n(i¥/5)

2m
as for the w=n/4 case of the arccot barrier (see Section’

=~,561, at Xm=1//§=.707. Note that P_  is exactly the same

D.2.5).
For H=exp(-|X|), the pressure perturbation can be

i

expressed in terms of the exponenjial integral function (GR,
pp. 406, 925).

For H=sech(X), it is Euler's ¥ function that arises.



R ,gw .~ APPENDIX E ,
P - .
. uu\w'ncm m-:suurs FOR A SEPARABLE TERRAIN FORM

s L

E.1 Threefdxmenixgati pressure fxpld

sure perturbatlon and i%t&l drag assoc1ated~§§thkﬁl

[ “‘ » & )
Eountaln with normalized height IR .t
B- l ’ Wt A
- BrTamhaah . o (E.1)
- , e | o
X and Y are ‘defined by (B.1). ' - S

; o
The Fouriet transform of H, deflned by (B 3) 1§ found

’from‘GR (p. 406) to be

-

H(K ) -Ze -« I -lll Z‘Efz)'

Because the topographic contours are not ellipses, there is.
no particular advantage to using coordinates defined by

(B.2). I%stead, define the,variabiés (r,t) by

~

‘ v (E.3)

A = psing = Tsinf. "

Use (E.3) in (B.S), replacing'ﬁ(p) with ﬁ(k,l). . The fvlnté-

gration is easily carried out to leave

P(X,Y) = - (J(X,Y) + J(X,-Y)) -

Nll—'

a—x-[I(X,Y) + I(X, -Y)] , (E.4%)

where

234
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,.;- TI’/Z . N - et '
COI(R VY = ____YcosE+sing (E.5)
. uI(X,?) : I (ycos€+sinE) < + (chos£+Ysin557‘dE' ’
¢ 0 } -

a1

_ o B ) |
CIEY) = -55% - (E.6)

After considerable algebraic manipulation; (introdgcihg the

intégrqtion variqble tén(E/2) and using the method of

) . ' . “
partial fractions, for example) the following results were

~

obtained:
I(X,Y) = 1 g (Lcos(a+w) + Asin(u+w)) ' (E.7)
(14X2) .
and
J(X,Y) = E—Yi%EI;—TY [ystin(2a+3bﬁ§§ y2Acos (2a+3w) R (E.8)
' ' -+ Ssin(2a+2w-n) -~ Ysin(23+2w)] ; ?
where-

. : 1+72)
n* o , a = arctanX |, B = arctanY |, S = Erovs .

T cos2w = y2 + S2cos2n , TzsinZwi- SzéiﬁZn y

P+ ~ Scosn % Téqsw . Qi = Sginn * Tsinw ,

1 + 1 anl —= = ——t
T. = Ef'ln{(y+P_)2“+ QE s ¢+ AT T arct { q ] arctan 5 ]

L

To verify (E.8) in all irs detail would require
considerable study. However, it 5s not ton difficult to
show that it leads to the correct result for the pressure
field in the limit b=e (y+0 and ¥+0, in which ~age the pres

sure reduces to Pz for the u=~! case in Tabla 4 of
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Appendix D) As another check a calculat1oh was done for
the 7-1 case of (E 8). The magnxtude of the ;xtreme p;es-
sure perturbat1on was found to be PSCma 365 occurring at a
dzstance, x & 849, from the mountaln fop These values are
_reasonable, in 11ght of the results obtalned for the c1rcu—v

Iar hill with u=1 (see Table 5 in Append1x D).

E.2  Total drag

P

To find the total drag, D (normal1zed as in Eq 10.3),
for three- dlmen51onal flow over the barrier (E.1), spbstir
tute (E.2) into (8.3). Changing the integration variables:
to (7,¢), as in (E.3), the r integration is found to be .
elementary, once again. The reSu&tingiexpression for D is

n/2
72 cos?E

) . ‘

Y o

D= 4,:,J (ycost+sint)d 9 o (3390)‘
o 0 : . ?

Introdueing tano=1/y allows the denomlnator in the 1ntegrand
to be written as cos?(t~0)/sin’0. Finally, changing the
integration variable to f-¢ and using GR (pp. 136, 137)
aives the result

2

2
D~ -——‘7'7 Y=l
8(1+Y) (]4Y2)

+ 1 + 4y2 - 3y3

n[fliiltxzﬁ)(1+(l+vz)&}]

> (E.11)

For example, if y=1, then Dx=1.001. The corresponding value

foy fhe p=1 cirerular hill case, calculated'from (10.4) and
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oy
L% .
Sl s

L ¥}

(10.6), is w’/32& 969. Zehnder and Bannon (1983) have cal-
culated the total drag for non- hydrostatlc flow over the
barrler (E.1) in the presence of a constant Corlolls param-
‘:eter, f. In the hydrostatic limit, with st, numerical
values taken from:one‘of their diagrams agree with the ana-

lytical result (E.11).

s
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'APPENDIX F

A

)

a PERTURBATION FIELDS NEAR R=0

‘An approximation for the surface pressure perturbation

¢

directly over the barrier, near R’=Xf+Y’=O, can be obtained

by expanding the complex exponential in (5.1) as

oiORC05(¢"e) » 1 + ipRcos(¢"e) + O(Rz) ‘. (F' 1)

Substituting this expansion into (5.1), the integation over
k]
¢ can be done, with the terms involving even powers of R
A

vanishing *n Teave

LN
v
-~

PLXLY) -~ X B I + oY) . : (F.2)

where Po-B,(y) is an elliptic integral defined by (Q.1) or

(0.3), n~nn o

. ~

oy <8

-

T - 4| e? W) de e (FL3)
. -

The pressure field is seen teo depend on a fartor, Bo(y),
whirh je j%ﬁug?fiﬁn Aanlylof the eccentricity of the ellipti:
. I'-‘r h
=1 terrgin (that is, on j*s hariz ntal cross sertion', angd
2

a fartor, 1., hizh depends dnly on the eparing of the ellip

tica) tergadn height conteuyrs (+that is, on the “ertical

cross-section ~f the terrain). Far" rhe ba rie: (4.1), for
v ring (7 11) ) e ahtaine fosm O (e ("".'
p LT 1) (r )
T iy A} 1
i ’n
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The pressure perturbat1on due to a barrier rotated

ﬁﬁrough an angle, W, as 1ntroduced in Chapter 8, is found

»

from (5.15) and (5. 16) “to be

Ppor®: D) = = I (X(B cosiiC sin2y) + -:—(BO—C") siny cosy) + O(RY),
. | (F.5)
where Co=Co(y) is defined in (Q 1). o

4

From (F.5), one can derive various other quantities:bf
interest. Fer the barriers qtﬁdied in this paper, for
example, *he maximum pressure gradient occurs at R=0. The
magnitnde f t)i- maxiW"M.‘norma1izcﬂ Py the dimensional

factor 00 1 “, is

’

oP 3P b3 . %
%%, [[ BJ +72[ 3) } - T {R2ene?y+C25in2y) " (F )
2 ay ° 0
v N R ()
If x i= rhe cruvnterclrckwise anagle that the Prop ¥V "
iseh - Febé? with the y avis at 'he (o fain o a0 oy
‘ Rkt frem (BB
{B ~C ) tany
. [*] ]
f ey —r— ——— (, v
R 4T tan |
Lad o
Tf the terrair "~ v infinitely ewrande? 139 (- 0V  Ape
findAe x=v, srn 'Yat t e igckare nre prallel tn the yridae

For g finite baryien i o 3te gt AarAd “riev'abrq N (J+0) e
Y'\'ata" a q‘j_—,v!gy toarn (\/—'" 7)' f'{"ﬂ‘ (F‘.') ne 'P-Oain'.? Y
so the ig 'are nre aligqned p rr~ndjicnlar to tha io-aming

wing, Fyyt some intermedist e “viptatien (0-d v 2) of an
.
A

isolated jA & (0<cy -1 e ' t}r -alaticn of the isobar

the rid>, - © " cho I N S PP P A
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- rotageiléss phén the barrier if its orientation is changed
relative to the upstream flow. For a given barrier shape,
y=constant, the rotation, x, of the isobars, is maximiied

for the barrier orientation angle y=y_, where

~ »

. tanZw - ] . - : (F. 8()
7 'm C - , , o
. . [o] o . '
If Xy is this maximum vaiue of x, then one finds

B Xg = Wy - w2 . ' o (F.9)

- . } . .
‘For a barrier with 0<y<1, one finds B, > C,, so, (F.8)
implies that Wm>ﬂ/4:j This means that, in the orientation
- _ Co B
giving the maximum rotation'of the i'sobars, the long axis of

- -

1

thé barrier is cibser to'being alighea with the mean wind
than is the short axis.

'From‘ihe pressure field at R=0 oné can also éalc&laté
the velocity derivatives, 3y’ /3x and av’ /9y, and theVBori-
7zontal divprgenﬂe,'DH. As mehtidned’in Chaptar'5, thése
qwant‘ri;% have extrema At R~0. Using (3,27), (3.31) and

lrlv" " e m‘r?-;ns

ﬁh ‘n W‘
du” o 2 ‘ 2 '
—— o —— T o ; .
e p (Boros w+Cosin )
v’ ?EP T (B sin2y+C cos?y) (F 1b)
v 8 o 0 ’ [ . )

. . Nh ‘

p -~ QU LR . _0© )y .
H X 2y a ! (BO+C0?

Figq 17 rhn s the variation of du’/3x, év'/ay and DH as a

fonotien of y fer Y0, For a barrier rotaté&‘by 45°
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(v=7/4), one finds au'/ax-av'/ay;“ihdependent of y.
Substituting for B, and C, in (F.10).£rom their

. L . . , %
definjtions in (Q.3), gives . > -

I E(k) ; vy<l
(F.11)

<}
NERNED

CIEMK) oyl ,

Since y=a/b, (F.11) implies that the horizontal divergence

at R=0 is inversely préportional to the minor axis lenqth;of"J“

the elliptical terrain and isviﬁdependent'of i;sﬂériénéa-

- tion, V. As with éhe pressuré gtadient,-the'cbﬁtribution,‘v
I, depeﬁding_on the vertical cross-section of the téfrain,
factors out from the dependence on the shape:éf the horizon-

tal cross-section.



APPENDIX G
PRESSURE PERTURBATION FAR FROM THE nzgnnxzn-

In this append1x the rate of decay of the pressure per-
turbation far from the barrler‘w1ll be’ determlned . Argu-~
‘ments are made to suggest a close relat10nsh1p between the
asymptotzc behav1our of the pressure field and the cross-‘:
'sectlonal area and volume of the terrain, in two- and three-
dlmen51onal flow 51tuat1ons, respectively..

For flow over an infinitely- extended crossw1nd rldge,
‘h=ﬁ(x), the normallzed pressure-perturbatlon, PZ(X), is

determined from (3.23) and (3.24) to be

o r

. @ s »

= %f} Jfﬁiéhzk) §(k) e i . (G 1)

o . ‘o - .© .
Integrating by partstﬁwice, assuming the heid@Z—;ourier
transform, h(k), and i?s derivatives vanish as |k|=+=, one

-

has

1 d (., 3= 1kx 1
P () = - ah X Jﬁ(sign(k)) h(k) e dk + olzz) - (G..Z)
This integral can be evaluated by noting that ’ )
-g—k-(sign(k)) = 285(k) , . (G.3)"

where 6(k) is a Dirac delta function. (See any standard

book on mathematical physics, such as Mathews and Walker

(1970)). Substituting (G.3) into (G.2) gives

2472
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__2n(0) , (1
.PZ(X) ah X + O(F)L:_,; (G.4)

From (3.22) the Fourier transform at zero wave number is
seen to be related tovthe X~z cross-sebtional area, A, of

o

the ridge, by h(0)=A/27, so
A 1 ' i
-PZ(X) - - —_—waho X + 0(x7) . : (G.S)

For the particular terrainhh-ho/(1+xz)u, thé fbr@&;a (G.5)
can be verified airectly from the solutionv(S;B)‘;ﬁth the
transformation (5.9), using the properties of the hypergeo-
‘metric function. It is found to hold for all values of u
for which the area, A, given by (4.6) with ¥=0, is finite.

However,_fqr us1/2, A is infinite and the pressure field

falls off more slowly. Specifically, one finds

2 1n|X| .
- = =

. X ' * ’-
P,(X) - (G.6)
* _ tan(mwy) Lu o<k :
xzu o H

Proceedihg similarly, but with even less mathematical
rigor,‘the‘behaviour of the pressure at large distances from
an isolated three-dimensional barrier will now be found.

For convenience, the present discussion will be limited to
the, Y~0 casé, in the limit as i*m.‘ The normalized pressure

field €1ong V=0, from (3.19) and (3.20) is

v ooy - RG00) 1 3 J I . TCTY DIRE L. TS B (c.7)
’ SRR e

~—~ .
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~»
B3

1f ﬂ(k,l) vanishes sﬁffiéiently_fast*ps 1k|»=;-thén"
‘integration by parts in (G.7) gives |

p3(x,‘0)--};—§—-[-i J %[““‘2 ]“"‘ anaz] : (G.8)
| 24 z) e
For the smooth terrain f1elds under con51derat10n in thls
paper, the: Four1er transform, h(k £), has no s1ngu1ar1t1es
away frOm the Gtigin, so(that'the major contribution.to_the
‘integral (Q,B)'is expected to come f#om the region about |
k=4£=0. Appfdximating‘ﬁ(k,l).by h(0,0) and perforying the
integrations over k and <« (GR-pp. 2?6; 405); lead; tp Fheﬁﬁﬂ;

result » g

?
A

e .V - sign(X) 1 :
P3(x,0) =~ %vaZh —%2 -+ O(‘x?) s . é(G 9)
. o] : i .

vhere V=éw’ﬁ(0,0) i the terrain volume (see Eq. 4.7). Tbé
expression (G.9) is foundeblﬁive'the correét result for the
terrain h=h5/(l4R’)u, whenevar the volume, as g1ven by ‘
(4.8), is finite. This-. 15 the case for u>1 - For us1, the
volume is infinite and the pressure falls off more §1owiy
than X-?. This can be illustrated by examining analyticél
sdlutions for the pressure field. For a circular barrier,

Al

 for example, from (5.12) one obtains

4

_Tu+l/2) T(A-y) _ X
Ty r(3/2-u) p2u+l

Py (X, 1) -~ 4 L (G.10)

3 O<p<l ,

\
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Expansions for the elliptical terrain cases with u=1/2,.
'1, 3/2, and 2 were deveigped from the'analytical'solutions

presented is Appendix,D,fusing prbberties-oflelliptié inte-

o

.grals, with the results:

f S --iw%z 4+%,+ o{?-] :  ; u=1/2 ’
. . % R ﬁ—on(:_’;“;l') + O[)]('n ] H ‘u‘-l
_%mm-féu ~ T S (LR
L orE ) |
R s KR

g
where x-y|X| and L=1n(4x). The expansion coefficients
« el , "

depend on .the barrier eccentricity through the parameters

- 2

2K woo Zepio2gy L
S = T » T "(E Y K) ’ ) Yil 4
s X _ 3
' s = 2K , T = EI(E-K) soy21l o,
Yy L -

and Q=y?*-1/2. "

| -ﬁotg.that the pressure far ffom the barfier, along Y=0,
decay; as X-' for both the flowvover an isolated three- |
dimensiqnal barrier (y#0) with u=1/2,'aqd for the two?
dimensional flo§ over an infinitely-extended crosswind ridge
‘with u=1, This indicates that the rate at which the pres-
sure pe;turbation decreases downstream of the mounfain_peak
is not solely determined by whether the flow is two¥ or

three-dimensional.



APPENDIX H
LIMIT OF AN INFINITELY-EXTENDED CROSSWIND RIDGE

In this appendix, an apprpgimation,.P3A, to the pres-
"sure field for a fhree—dimensioﬁalvflow, P3, is dg;iQQd to.
show h6w the two-dimensional slice field, P:S; is épproéched_

as the mountain barrier becomes infinitely—extended in the
crosswind direction. This is the limit y=+0.
The startlng p01nt for the calculation to be outlined

here is the integral (5.1)Afor P A binomial expansion of

3,‘,.‘
. the y-depéndent factor in ‘the integrand, as

-

: _ Zeanls » ' -

fails to give a useful result,becauée the tan?¢ factor
becomes infinitelyflarge at ¢=n/2 and 3n/2. Thé.approéch
~used instead is to expand the compl* exponent1al in the

numerator of the integrand as

eipRcos(¢»—e) - eip(Xcos¢+Ysin¢) .

. - Z Z (19Xcos¢)q (ipYsing)®
T ! . (H.2)

q=0 r=0

The ¢ integration can then be carried out and the §eries
resumﬁed. Although this method is very cumbersome, it will
be shown to give reaﬁonable results;'

Substituting (H.2) into (5.1),'thé ¢ integral to be

evaluated, denoted here by S for brevity, takes the form
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' w o
Sl e, ip (Xcos¢+Ysing). ,
s = 5(p) -‘JJ;¢9s’f9 ————— 44 : (H.3)
. O‘; (cos% + stin%) ‘ o ‘
FTEE SR e o g r
- cosé ) (ipXcosd)d: (10¥sing)” d
Jofono2 2 . 2. q!  xr Y
0 (cos ¢ + y“sin ¢) q=0 r=0
From symmetry considerations, the integral reduces to :
S=4ipX § J (-p2X)" (-p2y2)" . | -
50 620 e @y Betr o ME s (H:4)

where D defined by (Q.7), can be evéluated‘in terms of
elliptic iﬁtegréls. . However, for the<présent pﬁrposesq the‘f;
~exact form of Dﬁn is not rgqui:ed,'buq'onlyNthé terms up.to
second order in?&. These can be determined by making use of
the fdllowinq.éxpansions for the complete elliptic inte-
grals, K and E. (GR, pp. 905, 906): |
K= A*+:k(A~_1§Y“2 + 0y |,
E=1+%(2A-1)y2 + 0(AY*) -5
where A=1n(4/y). Substituting (H.5) into recursion rela-

tions for D similar to (Q.9) and those given in Byrd and

mn '’

Friedman (1871, pp. 191-193), an explicit result can be
obtained to second order in y:

D (y) = L@ T(n¥s) [1 (2n+1) »

(H.6)

I S 71 by .
P =T [3 B Zrzlm) *OWyD) , m20

where the summation in Dln is taken to be zero for n=0.
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Perhaps an” easier der:vatxon could be foun ased on. the,
theory of Bypergeometrxc funct1ons, u51ng Q. 8)._ 4 '
Subst1tut1ng from (H 6) into (H.3) and summzng port;ons:}

of the re5u1t1ng series g1ves L

: T | B .2 2,0 n
$k) = foX {E—i—nﬂ*‘ 2(3*2A)°°SDY + 2y? Z [((2u§;) 21 211-4».1];
. r= ‘

(R

B

n! T'(m+3/2) r(m+n+3/2)

From (5.3), S(p)'.-= Z&iﬁo(px), when Yqy=0. This\result is

7

consistent with (H.7) bécause.

| _ o : |
| o) 0FL @ [~gzx2J .
H_(pX) = [%X-] ) 4 . (H.8)
n - m=0 T'(m+3/2) T(m+n+3/2) T

N
(GR p. 982).
In terms of S, the pressure perturbation (5.1) is given
by ‘ |
. e o | . '
P3'(X.Y) = i j P S(p)~ H(p) dp .- S o IY(H.Q)
"In the specific case h(k,y)=h¢/(1+R’)u, substituting ﬁ(p)

from (4.11), some of the remaining integrations can behddhe,

-~

using results from GR .(pp. 684, 747, 749). Neglecfing terms

of order Ay" leaves an'approximatibn‘to P3, given by"
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raMyn X 1 + G(
Py, (X,Y) TG/2) TO) (q4y2yM¥e e

\\. , +6_(1J+-§T)- [ 2Y2G(v) - 2G(w) (H.10)

+ e o] o Jo2 0]

00
. : : - XZ ’ Y2
wherg ! - vV = - W ‘s w 1—+§'2' ’.A
and G(2) ='F(].u+%f%;l) -1

Note that(fhe terms in (H.10) thaf are independent of y give
the two-dimensiénal slice solution, st(X,Y), defined by
(5.10) and (5.8). ' N

The.leading order éorrection to P,o in (H.10) arisés

“from the term in_ A and is seen to he proportional to

(1-90v2
__i(.l_%%yz Iny . (H.11)
- (1+¥3)

Since the correction term is linear in X, the S;proximarihn
4 ‘ .

will fail for =ufficiéntly large X. .This is illustrated in

.

Fig. 47, which shows the height field far a barrier with
u=3/2 and y=1/4 in the regioﬁ'x?o, ¥>0, along with the cor-

ri . L]
responding three-dimensional flow pressure‘field, P the

3 ’

approximation, P given by (H.10), and the two-dimensional

3a’
slice approximation,.PZS. Also shown are the.differences,
P3"P

IA and P2~P29, in Figs. 47e and 47f, respertively. Fram
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Figure 47. Contours of normalized terrain height, H,
for u=3/2 and y=1/4 (Fig. 47a), three-dimensional flow pres-
sure perturbation, P, (Fig. 47b), {ts approximation, Pj ,
given by Eg. H.10 (Fig. 47c), the two-dimensional slice flow
approximation, P, (Fig. 47d), and the differences, P,-P @
(Fig.,47e) and P;-P,s (Fig. 47f). '

-
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~ g
¢

Figs. 47b, 47c and 474, it is seen that there is a gualita-

tive:similarity-betwéenjthé Py, Py, and Pys fields near the'

Y=0 axis. However, the concentration‘of lines in the lower °
righﬁ corner of Fig. 47e shows that the_appfoximate solu-~
tioq,vaiong Y=0, rapidly loses accurac; as X increasgs. At
X=0.8, for Exémple, the magnitude of the relative :;;or,
I(P3~P3A)/P3| is only 1%, whereas for X=2,0 the error is
9.4%. At these pos;tions‘the values of |(P3-P28)/P3| are
7.1% and 18.4%, respeegiyely. Therefore,.934 providés a
better aescripfion of thé pressure field fhan does Pas in
the fegion of the maximum perturbation and for'some,diétanrp
downstream. . Compare the 1owg; left poftions o{ Figs._47e
and 45f.
»

In the cases u=1/2, 1, 3/2, and 2., the hypergeometrir~

function and its integral appearing in /H,10) h=ve heen

svalnated, ar in Table 4 ~f Apperdiv Nt~ aive vha results

. 2 ' (14R2-x2Y?)
\/v,v\ [ L) ;ZTWS7 Y 7

' sz Ir1ﬂ2A)(' ‘A Ywr e v) '
Xy 'Y’ Z’ e

. X L, Y2y2 ) (a+v%)  y4y?
(lwq1 ? 2(1+Y4) ) (1+R) ViV
c 17 N=2¢2) (3 0T ] .

? L{VYrvr o
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R 3 I S PR €. X
H S L
| o2 (0 ‘ .
+ (_]_:‘:Y{'Z‘)‘J[(l‘ﬂ.) (1-372) + Y(212é3)a_r-ctanY] -
Y2(1-3¢2) 1-y%2RH)L |
+ . 2(4Y9) ;-u=3/2

i x {1 , _¥y2 ](1+Y2)(3+§Y2+R2)
- - "=z 7n - <
2(1+4¢2)%/2 2D aaen T
o 3y2(1-4¥2){, 2x2
/ MR YeTST)) [3 Ty _
2y2(2y2-9 |
Lmzrl] v
TN
/ b
/. / (H.12)
vhere | ——-—l"“r arc»t:anh.{ X ] . ‘ )
(11R7y % (13R2) |
Aee vy - o ‘ ln[iﬁ-—] ’ |
" L14r2)

pv(wscva)v/; ar‘d /\le‘la V)



APPENDIX 'I '

LiKIT OF AN INFINITELYLEXTgﬂDﬁD RIDGE PARALLEL TO THE WIND

'In thié dppendix thé'pressure;field iS»examined in the
limit as vy~ This correéponas to an infinitely-long ridge
allgned/w1£h the direction Qf the mean wind. As discussed
in Chapter 7, this al;o gives information about the trans-
befse yelocity in the y=0 limit (an-infinite érosswind
ridge). . |

The method used,is the same as in Appendix H, with the
pressure field being determ1ned from (H.9) and (H.4), excepf
that an approx1mat10n for D (y) valld for y»e= 1; developed,

rather than for y-0. However, there is a close connection

between these two limits because of the relation

h

= = = o
D_ (Y) v Dnm(Y) . (1.M)

ER

which follows easily from (Q.7). Using (I.1) in (H.4) gives

v

, . ™ L L 2y23\D 2v 2,10 \
S0 = 4ic¥ Z (-p x 3 (?p Y') D (}9 _ (1.2)
Y 0 neg (2mFL)! (2n)! o m+]ty
F~' 0#0. the factors D m+l( 1) are given by (A5.7).
D, . ('/y) can also he obtained from (1" ) with (W.5),
neing the 1dent iy
i
L L L n
NCELNC RN (x,
wherae bno(‘/Y)=K(k),,with k=1 1 One finds

2573
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e = i+ J, e S8 ol

.

where Kéln(47); Subst1tut1ng (H.6) and (I 4) into (I 2) and

L]

simplifying some of the terms, g1ves

4ipX sinpx T ((p2x2)" B
S(e) = L [ Get L 2r+1] ) (1.5)
m=0 =0
' . = [__szz]m[’:'pzyz"]n N
+ %-'Z ¥ T4 ) [ +:0LFA
m=0 n=1 m! n P(m+n+3/2) P(n+l/2)

B ' . i
For the particular tetfain h(x,y)=hg/(1+R?*) , the inte-
b, grals to be evaluated, after pﬁtting (1.5) into (H.9), are

very similar to those considered in Appendix H. ' The

resulting surface pressure perfutbation for y>>1 is ]
T(u+l/2) X - . .
P (X,Y) = - - — (A -1+ G(v7) o (1.6)
3 r(3/2) T(n) Y(sz)u*%[ ‘ |
: vl ow’” e
1 G . A
([ [Jra o)
. 0.0
where . :
. y2 . _ X2
VT T T e e s TR -
ahd
' 1.3
G(A) = F(1,u+zi5i2) -1

Since the term in A dominates the pressure for sufficiently
large Y, one éan obtain some information about the pressure
f%eld without evaluating the hypergeometric function.. For
ex#mple, retaining only the A term, one finds that the

. ) b, .
extreme pressure perturbation occur$ at a distance
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'Xia(Zu)“"’ from the terrain peak. See Fig. 11.
- Evaluation of (1.6) in the specific cases u-1/2,‘/,
3/2, and 2, gives: :
2 x |- nX A | ‘
( -;Y_ITX'Z [A _gr_c;_g__ farctanhg ] + 0[%3-) 3 u=l{2 R
(i) oo
~———375 | A-1m8B-1-2 1| +0 ; u=l ,
Y (1ex2)372 . Y3 /

el e (@ 1
P3(X,Y) o D [2A+ X arctanX -1-z » r

- C(3+c2)arctanhc ] + O[%} ; u=3/2 ,

e e of
T 77 | 3(A-1ng-1)+x2-6z2+2¢% | + o|dyl; =2
L 2yex2)°/? - Y : ‘J
(1.7)
' ' s .
vhere 3'-_-.%:%;)__ , .
' | (1+R2)S
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» .

FAST FOURIER TRANSFORM CALCULATION Ol TKE PRESSURE FIELD,

Follow1ng Smith (1980) the Fast Four1er Transform .
method can be used to calculate the 1ntegrals for the ter-
ra1n he1ght Fourier transform and pressure. appearlng zn |
(B.3) and (B.5). B _4

First consider evaluation of ﬁ(x-Y) : The helght fzeld
H(X,Y), is sampled at M evenly spaced p01nts x " along a

line of constant Y:
xr._'(_r-n/z)vax poT=l, 2, w0 M, '(J.»1) o
_where Ax is the constant'sampling intervalvh For greatest

efflcxency, M- is chosen to be an 1nteger power of 2 The‘

integral for H is approxlmated at the poznts

kg = (s - M/2) Ak ; =1, 2, ... M . B (:’J}Z)
where ‘ o
Ak = 2", - : - i (J -35)-
by 0

H(k, 1) - & Z H(Z_,Y) e”‘r"s P osml, 2, LM L (3.4) -
_'vr-l , o S
In'actual'calculation usﬁngtthe Fast Fourier Transforhh;ror
cedure, the height field 1s assumed to be deflned on the. -
1nterval from X=0 to (M- 1)AX /father than x=(1-n/2)Ax to
MAX/2 as -in (J. ),' The expression (J.4) can be cast_into i?“
//}the requ1red form by 1ntroduc1ng the new summat1on var1ab1e,

t=r+M/2 for rSM/Z 1 and t=r-M/2 for rZM/Z One obtains
. . - , , ,

256
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'Mi

n(x SY) = 3—- I B e ltARKs . oal, 2, ... M, g
ST e=0 '
_ where |

B, ={ B (a
| B(X 00 Y) 5 t=M/2+41, M/242, ... M-1 . '

Performing similar operations in the wave number domain,

‘making use - of (J.3), leads to the expression

.5)

.6)

RS = -2mitu/M . '
By=3r 1 B e Pope0, 1, .. M-l (3.7)
. t=0 : T
where .
i Hf wh/2s ¥ 7 u=0, 1, ... M/2 -, |
H = - : s ' Lt v :
u - 3 - ' . ’ (J.8)
- H(KS 3 ou=M/2+1, M/242, ... M-1 .
The form (J.7) is suitabie for direct application of com-
puter packages for Fast Fourier Transforms.
A consistent abpfokimation for the invérse.tran%fofm,
which regenerates the height field, then takes the ‘form
H(X ,Y) = Ak Z H(K ;v) e¥rks ;or=1, 2, ... M .- "'(qu)
s=1 ’
Similarly, the two-dimensional,slicé presshre field,xst,
. .defined in (B.5), is estimated to be
.M . ix " .
P (X ,Y) =1 Ak Z sign(x ) H(K Y) e I8 . rel, 2, ... M.,
28Y'r -
g=]1
10)

4

Man1pulat1ons such as those leadlng to (J 7) are used in

calculatlng the pressure field as well.
y
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' Note that the pressure f1e1d ig essent:ally that due to“rt’

a per1od1c train of hzlls found by 1nf1n1te1y extendlng the

he1ght values, sampled at the poznts (J 1) in the pos1t1ve

iand negative x d1rectzons. Th1s per1od1c1ty is. seen in the
urepresentat1on of the ‘height f1e1d (J 9) In the calcu—

11at1on of’ the pressure by the d1screte Fourxer transform

technlque, one must ensure that the per1od1cally repeatxng

lhzlls are wzdely separated. If they-are not, then the wind-

ward high assoc1ated with one rldge will part;ally cancel
wzth the lee szde low of the next upstream rzdge._ To show

thls effect, a test was done for the Agnes1 terrazn shape,.'

'H 1/(1+x2), 7 Wlth the total number of poznts fxxed at M=128,

the pressure, Pz(X)’st(x Y=0), was., calculated from (J 10)

,.u51ng Ax=1/32 1/16, 1/8, 1/4 1/Zn and 1.N In~Flg. 4B‘~P2
. is plotted as a function of X, for the var1ous Ax values and"ﬁ

_for the exact result, P =-X/(1+X’) A Fast' Four1er Trans-r

2

. form program from IMSL, Inc. was used in the’ evaluatxon.

The Four1er transform “*}hod provxdes estlmates of P2 only -

at ‘the dlscrete points, but for clar1ty, a smooth curve hasu
been drawn through the points ‘for the AX<1/4 cases._ Values
for Ax 1/2 are 1nd1cated w1th c1rcles, whlle the dzamonds
correspond to AX=1, ' |

For the AX=1/32 case, the terrain helght is very well

resolved but, the separat1on between success1ve r1dges 1n 1’3_"

.the 1nf1n1te success1on 1s only 4 Uhlts. There 1s a s1gn1£-

AN

1cant 1nterference between the rldges WhICh reduces the

amplztude of the pressure perturbatlon. As Ax 1s 1ncreased ﬂ
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up ‘to Ax-1/2 the approx1matzon to the exact pressure £1e1d
's'becemes progress1ve1y better because the 1nterference- X
fﬁbetween the r1dges decreases. However, £or AX=1, the ten}
tra;n—hezght f:eld 1s sampled so coarsely that the accuracy
of the pressure field determ1natlon beg1ns to suffer.;tL
AApproprlate cholces of M ‘and AX- represent ‘a comprom1se
between resofv;ng the he1ght f1eld and m1n1m;zzng the effectvp

]
of’ per1od1c1;y 1mp11c1t im the Fast Four1er Transform

* method.

The dlscrete Fourier transform approach -can be extended
.to the evaluatlon of the multlple 1ntegrals that 3r1se in
the three d1mens1ona1 flow problem For ‘example, to" cal—

'culate the Fourier. transform of the terra1n he1ght Hk, A,

defined in (B.3), the double 1ntegra1 can be written as
: o T ' -

-
Q‘

&) = S J Besw) ™My .0 (3011

'An approx1mat1on to thlS 1ntegral can*be determlned at a
' dlscrete number of polnts in exactly the same manner ‘as - out-f

11ned in th1s appendlx for H(x Y)

,zs,o-'”



~ APPENDIX K

DRAérPEéhUNlT CROSSWIND LENGTH
-The drag pet unit crosswlndblength hdZS,for two-
dlmensional slice flow over varlous elllptlcal barrlers, is
presented in Table 8. Most of the resultS'gfn be«obtalned
by substltutlng H(x Y) from Table 2 into (B.8Y and us1ng the
_.appgopr1ate tabulated integral from GR. The case-of ‘
.'Hsekp(-R) is'slightly more involved. Chang1ng the 1ntegra-
tion varlable in (B.8) to z*lY[(1+x )% and us1ng rel%t1ons
between Ko. ‘K, and their derivatives (GR, p. 970) one
finds that theglntegrand can be manlpulated into the ﬁorh of
an_exact derivatlve. Thelinbegration)is-then:eaailyvper—.
formed to g1ve the result in the tab{e. For the ﬁésSell
1{”funct1on barr1er, Ko(R) the change ef variable
.-z=2|Y|(.1+:cz.)!'i allows GR (p. 925) to-be used to give the
express1on for d, in‘terms,of the exponential integral
functlon,.El For the final two entries in the tablej the
dra; éer unit length was évaluated only at Y=0.

Analytical progress in f1nd1ng the drag per unlt
length d for three- d1mens1onal flow ‘over elliptical ter-
ra1n was much mere'limited lFigat cdns ’ the terra1n,f {
,H=(1+R’7-u1 Substltute for H(x~Y) and H(x k) H(p) in (B.8)
from Tables 2 and 3 respect1vely, and use elllptlcal polar |
coordlnates (p ¢) deflned in (B. 2) The p 1ntegral can be

,7evaluated in’ the spec1al case of Y=0 (GR ps 693) to give

f . 261 ~<jr
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e

Table 8. 'Normalii;d drag per unit'crosswinawiengthﬂ

d_ (y), for two-@imenéiénal»slice flow over an elliptical

28 , .
barrier with height H(R). .
‘ H(R) sz(Y) :Refgtehce
4 - » 2 : 7
1+R2 —“! ! T {r (u'“i) } .1 : ; . ’
( . ) ' . T (U) T (u+l) (1+Y2) 21 ‘ .GR" P 693
_R2 w2 . . y
e e 2t elementary |
a-82)" e1-r?2) | TOLIOMD) (4 y2)® (5 y2)

] GR) P 693 T

{r(vtq)}
( ' ‘ 1
62+R2] 2,2 2y% SO
R e 00 U GR, p. 328
1@ @) 4 (8247 (+v2)) -
| w‘ -;;1 Y2.+ cos2w ]‘
. - 57 1o+l + .
- [R%+cos2uw 4w .[2[ 4, ou2 b o
‘PICCOC[T;I;Z;_4 . ].{Y1+2Y cos2utl} Jj GR, p. 491
N 2w N 1 ) . . _ Sin2w g
= 2 ln{ébs‘E} 3 wher®e 5?n25 iz;;;;f;v
" -R 2."2 S 2 S
e - & [{Kllxl} {KolY[} ] ~| see text
K, (R) - w Ei(=2|Y]) see text.
. . 4 1a2 LI N | 1
(1-R) 6(1-R) 222 " at Y=0. B
. sech(R) 4 i“z at Y=0. GR, p. 353
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4 (ye0) = LQutD) T(utl/2) J cos?¢ P(3/2,041/2; 2u+3/2;8i02) d’
HEO TT@D T T coterat2e® (1)

(Here, a'transﬁormatidn;fo:mula.for hypergeometric functions
‘has also been used.(GR, p. 1043)). 1In séecial,caseé, the
hYpergeometri;.fﬁncfion“can be expressed in terms of elemeqf
tary fupctions}- Fof exaﬁple,mﬁﬁen u=i/§, the relevant

relation is (GR, p. 1045 and‘p. 1041)

p(3/2 1;5/2;5in2%¢) = sigz¢ {&rCt::2£Sin¢) l] . 7- K.2)

A closed-form result for d;(Y=0) was not qptained, even in
the-u=1/2'case. However, expanding the hypergebmetric

series in san ¢ and 1nterchang1ng the order of summatlon and

1ntegrat10n, one finds '

-~

T(2u41) Z T I(@t3/2) T(ntut1/2) | »{Y)}
TG/ TG T(n2u+3/2) n! '

. . Ty s

where'Dln.éfe elliptic integrals defined by (Q.7). As a

. check on ;his expressién, consider the y=0 case. - Ue}ng

Qlé(yé0)=1/(ZQf1)¢ from.(Q.8), one finds that the summation
in (K;3) feduces to a hypergeometric function with unit.
argument vaaluatlng this series (GR, p. 1042), iQ'can be
ver1f1ed that the result expect;é from Table 8 is recovered

For Y#O the drag per unit length was: obtaxnedufgr the

u= type terraln only in the c1rcu1ar h111 cases with u= 1/2
and 3/2 Rather than using (B,B), the easiest way to

.proceed appeefs to be to calculeteid3C directlﬁ.from the



‘Substituting forvPBC from Table 5 in Appendix D, (K.4) can

Q\ 16 (1412)%/2

the integration ovqf:p

e 0
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pressﬁre field:

d3C(Y)---I (& gpEax L (K.4)

e
»

be evaluated using standard methods for algebraic ihtég}ands

if u is half an add positive integer. The specific results N

©

obtained are:

\\ : . v 2
, 2|1 + Yarctany - = 1+2Y

’ (1+Y2) ‘ -
3 u-3/2 .

] ; y=1/2 .‘

3c(Y) -

These expressions have been checked by integrating with
respett‘to Y to give the total drag, D3C=Gw/4, where G is

defined by (10.5). G,vglﬁés from Table 9 in Appendix N are-

!

found to be consistent with (K.5).

-

Next, consider the exponential terrain shape,

*

- « ¢ '
H=exp(-R?). Only the drag per.unit length at ¥Y=0 was found.

Substituting4from Tablegdll amd 3 into (B.8) and performing
B : v’ !

, p. 495), one finds

i/ o ~1r/2 o _ | i-’.

d, (¥=0) = 2" cos?¢ . " (K.6).

0 (l+cosz¢) 3/2 (cosz¢+yzsin2¢)l/2

[

Making the substitution cos?®¢=cos?t/(1+sin®f) gives

n/2 2
d3(Y-0) - J cos g

(c082€+27231n2£)8

(K.7) .

~
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the final result is obtained:
G a0 < B9 o
v v o ’ _ ' ~ (K.8)

The térrain shépe for which the most analytical

progress was made is H=(1-R?)V9(1-R?). Substituting from

Tables 2 and 3 into (B.B) gives y

® x/2

: 3/2-v J () J_,, (pAcosé)

| d3 - ZAv+ke(A2) J J (cos¢) cosistiné) vzl iv.gv+k . d0ds

00 (cos?¢+y2sin?e) o .
(K.9)

) )
- lhere‘ . ' .
o L 2v3/2 2 .
. 2 {r(v+1)}3 ~

Af=1-v2og oz O (K.10)

& s . " . :
In the v=1/2 c§se,-after evaluating the p integral using GR

(p. 729), the ¢ integral reduces to an elliptic type'

considered in Appendix Q. The explicit result is
T dy(Y) = 5 (1-Y2) e(1-Y2) By(y) (K.11)

The drég per unit length corresponding to the v=3/2

barrier was also evaluated, although some manipulation was
~»>

required to bring (K.9) into a form allowing the ﬁse;of -

- ‘ . .7 . .
tabulate¥ integrals. The p integral for this case 1is

' . . J 605(93),Jé42;j; J,(pAcosé) . \ (K. 129

0 P - - ’

~ where A#Ygin¢ a:SJk is as in (K.10). I can be found by =

writing

-
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| | 8 v
I=1(80) +° J 8 dg . - (K-,’1".3)
I1(B=0) is given by GR (p. 692) and az/ap can be determ1ned
from GR (p. 695) by noting that cos(pB) can be expressed in
terms of J 15(pﬁ) * Since ax/aﬁ turns out to be a simple

linear function of B,vthe integral in (K. 13) 1s easzly

evaluated. The resu1t1ng drag per un1t length 1s
= 2T 1 v2y ac1_v2 —3y2 -~' Y2\, %
dy(¥) = 33 (1-¥2) e (1-¥2) {2(1 3Y )Dlo (1 n%)p, ) - (KR.14)

where D10 and DVO are ell1pt1c 1ntegrals defined in (Q. 10).
For the case of general », an expression analogous to
the u-type terrain result {K.3) can be derxved (GR, pp.: 692
1039) for the ¥Y=0 limit, However, th1s was not employed in
‘calculat1ons. i : N
The final terrain shape for 'which the drag per unxt
length was evaluated is H=ex5} R). It turns out that:tbe-
valwe of d, at ¥=0 is exactly the same as that for u=1/2,

given in (K 3).



APPENDIX L

ANALYTICAL RESULTS FOR SINUSOIDALLY MODULATED RIDGES

1f H(x) is the normalized Fourier transform for the
terrain 1"(%X), then the Fourier transform for. the sinu-

= i731ly medulated ridge, H(X;A,B,R) = (A+BcosX) H(X) is

H(v:A.R.0) = A ‘ﬁ(nc) +§ {ﬁ(x—ﬂ) + ﬁ(m)) . (L.1)

Ihis result f~1llows directly from'the definition of H(x)
(”ﬁ(u;v*ﬁ) in (B.3)) uvron writing cosQX in terms oé expo-
nentiale Although H(x) e gi en in Table 2 in Appendix D for
a ariety -7 terrain ehapres ~nly the Agnesi case,
Hel (' Y and the Ganggin: rage H=exp! ¥ ), are treated
her - |

Por the Agnesi brrrier, putting u=1 in Table 2 gi§es
Ny g [«1Y. 2 (P, p Q&™) “fpe substitution inte

t ‘v TPLS) e rafghtfarvsr ) ot dapgthy ~alonder oy

ey LEERR N B 2 PR
. X i ool sin|QXy
‘ o " C winfelx (1..2)
] ORI KT A TR . ' <, “an aler he e allJat@’E :n term~
| et v ! Pavrg ti o the preek ra times
' ca . . \ N I T KT S tn 1y

[ . oy o ) ,'3)
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) : - &, ~ '
For the Gaussian ridge, substitution of H(x) from '

Table 2 into (L.1) gives

~ AR -02/4 K0
H(c;A,B,Q) ~ ERT™) [A +Re . coshfi—)] Fesl o (1..84)

The rressvre field was not evaluated for this case, but,
frov (O 1) rhe Araqg per 2nit lenath yae ¢$ornd o ba (GR, r.

36"}
. TR >
a_ - (Aine "V wErR(2rcre Mo 4 4(2)B) (r &)

whers A=|"}, VB an? & i the grrer Tonmatjo-r (10 ¢ 010) . 1

ohta i x "N e SRR TR el o e



"APPENDIX M ’

” " . o
ANALYTICAL RESULTS FOR DOUBLE RIDGES

\ N

In this appghdix, the drag per unit length, d2 , 18
calculated for a barrier, H(X), formed from the juxtaposi-
\, L] N . .
tion of\twe identical ridges, which have been displaced from

: "o : 9
the origin in opposite directions by an amount e. From

(B.3), the terrain height, defined by (9.11), has Fourier

-~

rransfovm, H(x), given by
ﬁ(r) ~ 2 cOSBKE E(K) . | (Mo1)

wvhere h(k) is the Fourier transform for a single, qndis-
placed ridge, h(X). 'Substituting (M.1) into_(9.1),ausing'
Fourjer transferms from Table 2 in Appendix D, gives d,.
When interpreting the results for dz, it is convenient to
compare the magnitude of ¢ to X _, the horizdntal diﬁfﬁﬁce
fron the ridae top tc the pcsiti~ of the maximum pressure

rer vrharian for a single ridge '!‘hqrafo‘re, values of X

moc viven dn tve f-1lewirg, along with those for 5.
Th- fi-sr ~f f~ur v 'Age shapes ronsidered is the Agnesi
ha vy he o A " v hiieh rna- o One finAes fram
1 \ y ot
7 1-¢2 ] 2
R R Y - (v 2
T2 [ (T+¢737 )
Heve, ag in the f-11rwing case, the '~lation ‘

720 e’ luwed-mmcl2re) 1, har bkeepn ysed. The minimum valne nf

Y.ode Tm, 16> 174 which o oare at ewy 31,732,

260
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\

- For the logarithmic barrier, defined in (9#d
* Table 2, GR (p. 493) gives

e 1+s) J (1+a} } ]

dz-

| ‘/

=8!5 and the m1n1mum of 4, occurs Ft e =(6’+45+1)/2.;

For the arccot barrier (see Table 2 or (9 2)) u51ng GR

hpa - 4 ives

> S [Ll—ez) + 49JC032“]
7oz 1 (M.8)

(ez+coq}w) cos™y

A Y

X,=1 and the minimum drag per unit length occurs at

e?=1+2cos?w.

The final terrain shape conszdered in thig section, is
|

the trlangular barrler h = (1-]x}) G(I—IXI). Substitutihg’

for the Fourier rransform from Table 2, into (M31) and (9.1)

gives

| 64 [ cos?(we’ ©
. - dy = e J'~——:§5§;'sinbﬁﬂ A (M,5)

~ 0
Integration {;*parts, te reduce the powe' of ¥ in the denom-

inator, follrwed hy reference v M M 4R gR3) lemnde to

the result

i

4
A, - f’a(]t?e’-)ln* C6eIn] ] 4 (I4e)?In |14 ] 1 e)7In|1-¢|
{ra )
("7#,)211\"!7:, - (]—2:\7”"" 7;'}

Yoy 1 ~ ) ana ' ' :""’:"a"@ﬂ thrmt tyY o "!"i"‘l,"" LY N3 -.”

1 . P
(1n(82)) &2 (e21) (e24462) J T

»
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about 1.223, occurring at e, 648 the max;mum ﬁressure fo:'ﬁ

‘a single triangular ridge occqrs at X/-1//"~ 707

'v

\
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" APPENDIX N
. - TOTAL DRAG o .

The integral G, defined by (10.5), appears as é factor
1n the td%al Yorce on an elllptlcal barrler in three-‘

d1men51onal (10.4) a\d in two dlmen51ona1 sllce (10.9) flow.

L3 b

"G has been evaluated for: varfUUS terraln shapes, wlth the

results summarized 1n‘Table 9. Since G 15 equal-to the

v,

total drag for the two d1men31onal sllce flow over an

-

unrotated . barrler (see Appendxx 0), 1t can. be calculated by

o

integrating the drag per unit length in Table 8, d2 (Y),

qith respect to Y. For many of the examples, this approach

A

‘proved easier than ué&ngithe expre551on (10»5) Except for

\ P

the logarlthmlc and arccot barriers, - the integrals for G

appear directly in GR. A der;vatlon for thése tho cases

will now be glven L

Y

First con51der ‘the logarlthmzc terrain.~ Subgtituting

in (10.5) for H(p) from.Table 3, ~ne has

_._1..6__1‘_.._.._ ( )
N e o
< (‘11(62\)7 . ‘ ‘

where

P
P (i

- N 2 ] .
Ji L. f (R, () - 66, (80)) dp . (v.2)
A ' 0 Iz -

'The 1ntegral L, can be evaluated in a mamner simjils: +n

that employed for (K , veing the identity .

5 |
T(8) =R(8~1) + ] QE Y I Co

3 1

272
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Table 9. Normalxzed total drag, Dzs

:dzmen51onal sllce flow o'!r an elllptlcalwbgrr1er*v1th

A -4/ .

y .'

= gG,w for twd" o,

height H(R). ) ! é‘%»
» A
: ]
, Ty .
" i 5
- 5 T
] ’ :}r;,‘. T - ‘ .
HR) - G o ‘ - Referenge,
i v --c_a x L .
+R2)"H T (%) r(z;f-ls) {T Cu ) . |
: - l";:{ -
_R2 .". ;5 &v # 4 .
€ 2] Gk, p. 337.,
‘1 _p24yV _n2 r(s) F(2v+1l) T(v) I'(v+1) : , ﬁ 284
(1-r%) 9(1 R<) T (2v+3/2) o 2 & IGR, p. 29{47
oo | {r(vy)} S ,
x‘ E :u .’ . . ;;;p o
» __-.-l.élr_jv [E(k) - %(14.5)] ; k-(l-&z)!", <1 *
{1n(62)} ¢ ‘
n 8§24R2 ' .2 - 4
1+R? O S see text
~ 1n(8%) B S v
——1—6“—1[55(1() - —(1+5)} : k-u-g%)”‘, 851
{1n(82)} ,
—
¢ (R24cos2y . - ] ‘ =
'a“r_ico 8in2w " — [% cosw ~ 2E(k) + K(k)] 7 kwginw see text
2w w ’ .
e-R % GR, p. 295
K_(R) z ‘ GR, p. 294

IV

R -

)
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Note,,from {N. 24 thanﬁL(6-1)-0i ﬁy express1ng 3K (sp)/aa

1nu¢erms<of K, anﬁ Ko (GR pP. 97@) aL/aa can be ur1tten as

W° N ]
, .

s - _y v , QP‘,
ol a ':‘%' 26 J"K‘(p) - 61‘1(60)) K, (~6p) 4 . o (NSRS

A e

el

Ipvograls of “thiE’ fonm are tabulated in GR (p 693) giving

B
-

% ' ;

S %- = ;(GF(3/2'~,11')2,;2;'1-62).- 1) -
| - [2‘3'5(“1’2_"1/5‘1/1;52’);;' 3 (N.5)
Usiﬁg»(N.s) in (N.B)‘theﬁ giveg
| L(c) - %2- (2F(1/2,--1"/2-;};1-52) - '1'.- §2) . (N.6)

: Exprgssiﬁg the hypergeometric fﬁnct}on in terms of a com-
plete elliptic ihteg}al (GR, pﬁ. 905,]1043) leads to the
expression shown in Table 9. An alternate dgrivafion, based
on integration by parts in an intearal of d 5e with gespect

to Y, was used to cherk rhe result.
ie

This la r type of derivarion vas us~d t- AT e ke
vesnlt feor the avcent warrier . Fron Takle £
- .
2
n 1{ Vu,A:oﬁ?n] v o=y
E] - e =8 I -
G = J e (¥) @Y o’ l 1“‘" '
pe 0
where

A~ v w2y

‘”'quainV my rapts giver
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[ Y2 . Y24co0820) . 0 . . B
R
‘ - 0

‘ .
- . -

f(n.9r

The two terms in (N. 9) are separateiy infinite. Hoﬁevef,

subtractnng 1 and 1ntegrat1ng by parts in the first tetm,e

and add1ng 1 to the second term, e11m1nates the s1ngular-

ities : ' : !
-~ é‘!% - - \
iy |
2 , 2Y .
c-ﬁzjgi%%&[l‘-?f—,] aa . S (N.10)

0
The term in (N.10) ‘involying 1/4% can be evaluated by con-

tour integration'or partial fraction methods. This gives

- -
G = ﬁy”[%,cosw + cos2uw J Y %Y{%J‘HY + s?nZZQ J %i-dY] ’ (ﬁ. 11)

0 " 0

where the integral involving 1/A"in'(N.10) has been split

ints two more terms. Finally, integration by pafts in the

firet intearal in (N.11) reduces if to a form found in GR

(p. 26Q) S*mp14ficatioﬁ then gives the result shown in

Table 9. )

The result has been checked by a different integratioﬁ
procedure, started by using ¢, defined in Table 8, as the 3’
integration variable. Straiéhtforiard manipulation tben
gives G in terms of an elliptic integral of the third kind
with complex parameter. However, considerable algebra is
raqu?reﬁ tn simplify the answer to the form given in

Toables Q

p
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" FORCE ON THE BARRIE

In this appendix, t

‘the normalized force, (I

barrier in two-dimensior

h(x,y:¥), for a barrier

wise through an angle ¢
is

h(x,y;d

where x  and y  are defi

| barrier, h depends only

is a functi~n of

R 2 = v 7737 1+ v 7/%? o (A

wher e

N - (pnq’dvl
as is shown hy regroupirs
cupresecaed HETHEN AN B i"‘rﬂﬁ

hie v ) = h(

This equation can be use
rier trangform, hiksysy!

thatr fFoay v he tnmpatared ¢

=

b(bev i



APPENDIX 0O R
BARRIER IN TWO-DIMENSIONAL SLICE FLOW

dix, the expreééibn (10.9) is derived for

25’ 125"
ensional slice flow. The height field,

ce, (D,.,T,.), on a rotated elliptical

frier which has'béen rétated counterclock-

gle ¥ from the barrier h(x,y)=h(x,y;y=0)
Y

o

h(x,y;W) = h(x,v}") ’ 1 (O 1)

e defined in (5.16). For an élliptical

only on P?=x?/a?+y?/b?, so that hi(x ,y’)
L . 5 2
P fen v TPV rnnysink) /a? Qa /R, (0.2)

(an°w.,7”4n7¢)8 oy~ oalh o, (o 3)

roupina the rtermg in (0.2). The relations
imply that

) = h(xb T yDeompainy L L) . (0.4)

be used to derive a formula for the Fou-

keyed), ~f rhe rotated terrain in terms of

Ated crea, The Apfinitirn of ;’V!Y!W) ie

AV
Y %— Wiw yid) e v dv (0. =)

276
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Substxtutzng for h(x,y: W) ftom (0. 1) and (0. 4), and changzni/’
the integration variable to ‘the first argument of h on the

right side of (0.4), one obtains

. 1 - "1% (t - 1’ z)coavsin#l)
. hikyse) = 2«A J h(t.z) e dt_
1—;(1-72)cos¢sin¢ , ,53 o .  7
-3t ;,(.ls iem0) . (0.6)

: _ %u .
ng (0.6) in (B.6), dividing by the appropriate dimen-

u
sional factor from (B.8), and noting‘éhat h is real for
unrotated elliptical terrain,'ong obtains thg nbrmalized
components of the force per unit length for‘;hé rotated bar-
rier:

—

(z;i») - 2S(§;w-0> .-

_ﬁ; (Y P) = (1-y? )coswsin¢ d ( Sv=0) . (0.7)

AN

Integrating this expression with respect to ¥, making a’

rhange of variable to Y/A, gives the total force components:
Dyg(¥) = A Dpg(¥=0)
b ) (008)

- (1—y?)cosysiny PYS
Tzs(w) =3 DZS(* o)

To complete the deérivation of (10.9), it remains to be

shown that D,o(¥=0)=G, the integral defined by (10.5).

CAaneiler
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s P .
.. . . ; . r
. . - ® s - o 4
: A S S . -
Dy (#=0) = 2¢ | [-|e| |BGD)| vde ¥ (0.9)
. ‘ ,‘ -J.\ —-J. N L.)‘_ . \"j
S h : S
\\ | ..5% [ I k| B, Y) HX- ) ei‘(x “X) 4x dx-de dY .
]
. ‘ ‘D gD —00 80 ' e\
. K 3 ~. .
. Using the identity ; ,
B(X",Y) = J H(X,Y7) 6(Y-Y°) dY° , (0.10)
where : -,(/ . . © ; ,
§(Y-Y") = E':rl-r- J eix(Y -Y) dx’ (0.11)

e d

is a representation of the Dirac delta function (Byron and _

Fuller, 1969, pp. 224 and 248), (0.9) becomes ;yl

=0) = ” ’ o  (0.12
D, ¢ (¥=0) | | . | o | ( )

' 4 (KXRY )L (KXAY) ron
Z%? J....J l| H(X,Y) HEX*,Y7) e (= )-1 (X dXdy dX~dY~ dwkd.

. gD ) Q

»

“For elliptical terrain, using the relation (GR, pp. 213 and

402)
27
J J(AcosEdReinE) dE = 2n Jn((A?‘mhlﬁ) (0.13)

0
after introduring pnlar rerrdinates, (0.1) and (0.2), nne

finds that \ .

~

pA ~
D, (¥~0) = J eong] A4 { J J p? R P 1 (oR) 7 (¢P7Y AP 4P dp .
b [¢] i

0
0 0 0 (o 1)

Fvaluating the ¢ integral in (0.14) to give a3 fartor of 4

and using (B.4) for the R and R integrals gives the fingl



. resuit: e o
, S -,
e . i 2 :
Dys (#=0) = 162 f b2 {Hw) =G ..

[ S

(0.18)
U ¥

- Substit#ting (0.15) into (0.8) verifies (109) :4  )



‘ APPENDIX: P - :

4

INTEGRALS ARISING FROM TERRAIN SMOOTRING

¥* ' Differential smoothing

In this apperndix, inteqrals arising in the calculatinr
of the draq per unit' l-rath fry smoothed Yrrricre gre
evaluated

R

1f a differential em~ thing operater ie applied ro an

infinitely =wtended ridae, ths intsarals to be evaluated are

s, (n=0,1,. .Y, Refined hy (11.13) Pe~ulte are surmarized

for sevral terrain asharee in Iakhle 10, nging terrain hpigh'

n-

. ‘g . :

Fouwjer trsnaferms, frov Tahle 7 and the aprrepriate refer-

ence to NF Timil=rly. 7T v1a 11 ghows '"a regyulte for the

ii\f'eqva‘:, [ ) Al nﬂ'b\ (1 '(\' w'»;v~'\ ;\r\t-p_a' i(\ exprgs'in
n ¥ '

eions for the total £ pre v~ sro-th 3 Jarlinted hill.,

Calues f: & and T, £y oo 0 n ove £ A roprenjently |
n 1
veir Yhe relaticne T{z Y=zl () arrrwd g + ' rb e, =T =
Bl
Ylos b [ 4 Yoy o] "5 [E AN B e { [ v - . I L [T
n! P St v Cd

210



- Table 10. Terrain smoothing iniegrals,j

28

s (n=0,1,2,...), defined by (11.13), for several terrain

shares. H(F¥).

1

/T
HX) e Reference
4 ] N —d ...;_ - ] - “-““—2_"-—.’(2 ).. ---I:.( . -.;;;_).-_..9_ .
X u I'(2uy+n u+n 1
3 . (n - -
[ ’ ?] [;2-] Tinel) T (2y+20+1) [ I'(u-f‘k) ] GR, p \693
2,7 n :
e " & {%,} T(n+1) GR, p. 337
B ] v e ] e
X 7 . A v=2n T
[l :7] Qo w [;7] 7("\"']) r(?.\)«n-ﬂs [r(\’_nw)] < GR. p- 692
Table 11. Terfain smoothing integrals,
S, (n=0,1,2,...), Aefined by (11.16), for several terrain
chrpes, nin) Qc;w Takhle 10 for vefgfencgs. . »
ot e v = e e - jr:“.- -~—.—:o-- - — — — R
H(R) Q
n
...T = ] - R E -
|, _Rr2) " 4 )" r(a+3/2) _T(2u+l)  T(2utnts) [r(wrﬂ))
~7 . 17377y T(2pt2041) T(2v-%) (- T(uilo
R/ 2 )" r(a3/2)
o 1(3/2)
‘ e e S
R?) ooy [ } *(a+3/2). T(2v=2m) _L(2v+3/2) r<v+*i>4];
L CR 2T TV Y Ty T(v-n+3/2) (T(v-nd)
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\ .

P.2 Truncated spectral series

In the section on terrain éﬁopthing‘By'spectral trunca-
tion, the exp#h;i?n coefficients,_hgw iﬁ théf;éries for the
terrain height are given by (11.23). Here, hn
(n=0,1,2,...), are evaluated for the terrain shapes
H=1/(1+X?) and H=(A+BcosQX) exp( X7).

| Because H is an even function of X for these examples,

the coefficienre with odd index aré zero: 1 0

Yomil T
(m=0,1,2,...). To determine 'he even coefficients, subst’
tute a power serier =xranci~n for the Hermite polynomjial-

(GR, p. 1033) int~ (11 73 nfrer simplifiration one

ARtaine

: 1
} - 2 E; ,-A 3 ..._.._.A_.-‘L.(.EE?.)_.._..__
e DA BZ)  T{23+1) T(n-{+1) (v 1)

(-4)™ 8 T @) 470

vhere B is the parameter appearing in the eyponactial in the

eerdipg (11 210 -ngd AJ is defiped by

/\‘(g\ - vj(ﬂ - A e UR !
0
Nnw ~~ngider H-1/(1 %) F~1 thig rage (D 2 rin *n
evaluatsd ‘n rrms nf 3 Teqe ern e hyprriyeometric fu ot -
(rv_p' r. LAY AR A V1r nrey ' . s 1 e + [ S ¢

coor ' Chn
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A ey = e .éj -x2
Aj+l(c) —AJ(C) + ]x e dx , »
) 0 . . ‘
- - A (z) .+ DD | ' (p.:
93(5) + s s | (p.3)

vhere the last integral follows from GR (p. 337). This

recursion relation céﬁ*bg used to generate Aj.for j>o0,
starting vith (GR, pp. 941-942)
et (1 - 8(c™) -
IWORE Xt ¢ y . (P.4)
where ¢ is the error functidn. A recursion relation for h2m
can also bhe Aeveloped by iterating the ferrmula
Hn+1(z) - 2z Rn(z) - 2n Hnnlcziﬁ\' (P.5)
(v ~m hh (p, 103?), to oiv.’f
okt OO + (4nd10+4/82)H  (x) + 4(n+1) (n+2)H_(x)
H ,,X) = o — RS Dt (P.6)
4 (x*+1/82)
wvhere v-¥ B, “igtitutinn of this relation intn (11;23)
g§ yme
T b VY Vg N, + (Rerd 10’*"/‘/37)“ 'h -~ Zk (p 7)
el T g : - /s
h ) 2m 'Ba/aml"(nﬂ-?.)
P ‘y 4) . one fipae
1 4 k ) 1
Mo TR T ol (00D} s ke | .
1 ';\ L B A ’ (pP.8)
LN - 1 + - . + e —
- A ( ;y) ho p’?k

' . ‘ . .
With the strrting values provided by (F B), the recursion
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formula (P 7) can be: used to f1nd higher- order coefficients.
‘ Next consider the mod1f1ed Gaussian case,

H=(A+BcosQX) exp(-X2?). Although Aj in (P.2) can be

‘evaluated explicitly in this case (GR, pp. 337,496), it

turns out thgt this is unnecessary beéauéé‘hzm can be

obtained difettly from (11.23) using GR (pp. B837,840). The

result is

92 (1 nz)
o dq-l m A B ( ll, -5 aan .
K [ 4 ) T (m+1) -+ r(em+1) © Hz,,,[z—(;a)—,;] . (P.9)

where nz(ﬁ’+&Y%.V In the special case of B=1/y2, (P.9)

simplifies to

- B -22)® -a2/8 >, 10
Pom ™ A Son ¥ T D) [E‘] e , (p.10)

where 60n~l or 0 according to whether m-0 or mr0, resper--

")

tively. K
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APPENDIX Q
ELLIPTIC INTEGRALS

Expressions are given in1phis gppendix_fqr;cettain
integrals which have-appearéd répeatedly ih‘this stuay'of}
airflow ovef ellipticai mountains. These quantities are
expresﬁible in terms of compiéfe elliptic integrals, K and
E, of the first and second kindé, respeétively.

¢

Define Bn'and C. (n=0,1,2,...) by

x/2 W
- 2 1
B(y) = | cos2 8™y = v (). .
0 , (Q.1)
: /2 . ol
20-1 2041 _ (1 :
c () = v? J sinZ¢ AT do RN |
0 "
where
A= (coszwzsinzﬂl"_' . : (Q.2)

Integrals of the preceding forms are tabulated in GR -

(pf. 158-167) for some small values of n. For example, for

vt with K=K(k) and E=E(k), where k’=1\-'y2
0 4

E—y2K
2 (k-
Co(Y) - L%—E‘L b4

and _ “

»

(Q.3)
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‘ ‘ -y K*(k2+l)E ,
PR TR O (Q.4)
2 (2Re@e-DER.

4
The results for y>1 can be obta1ned by replac1ng y by .1/y in
(Q.3) and using the relations between ? and Cn given in
(Q.1). ' %:.

_These formulae are not suitable forwnﬁmerical evalua-
tion if y is near 1. However, expreésions for B, and C, in
terms of hypergeometric functions resolv: this diffiéulty.
Making the change ofjvariable, t=sin?¢, in (Q;J)land
comparing to an integral representation of the H&@eréeomet—

. - p :

ric function in GR (p. 1040), one obtains

| .1 e
B (v) =3 F§1/2 n,1/2;2;1%) , |
c, o *'% v2 F(1/2-0.3/2:2:1-y?) .

Putting y=1 in (Q.5) gives Bn(1)=Cn(1)=w/4, while at y=0 one ..,

finds (GR, p. 1042) Bn(0)=F(3/2)r(n+15/F(n+3/2) and Cn(O)FO. i
In deitidn to‘peing useful near y=1, the hypergeomet

ric'function representation 6f B and € allevs recursion

relations to be =asily Aeveloped. From GR (p. 1N44) one

obtains

2(n+(n—1)y2)Bn_l - y2(2n-3)Bn_2

Bn v 2n+] B

- 2 e w2(9n (Q.6)
. - 2(n 1+ny )Cn,-l Y% (2n 3)Cn—2
n 2n+l

Given the n=0 and ! results from (Q.3) and (Q.4), ~rne~ can
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determine. the 1ntegrals for n22 ftom (Q.6).

Another type of 1ntegre1 that has appeared in this

.

thesis is defined by : ‘ Y

20, . 2n T
j cos ¢ sin” ¢
Y) = J Iy a4 , ' (Q 7)

0 ’ . oy
., j" o \ R
) v - f

©

(

where A is given in (Q.2). Making the change of variable,

f

t=sin’¢, gives (GR, p. 1940'or p. 386)

‘ I (mHg): T (nHy) . . 1ov2 . '
DY) = 2 T( %) F(k,n+k,m+n+l,lly ) . | (Q.8)

A special case of interest for the current work is m=1

From GR (pp. 1044-1045) one can derive
2(2n—1—(n-1)12)D -~ (2n-3)D,

bo. n-1 1 n-2 ({:.9)
1n (2n+1> a5 .

o

This formula applles for- nzz However, because of the 1-y2
factor in the ﬁenomznator in (Q.9), this recur51on relat1on
is ‘not as useful as (Q.6) for numerzcal evaluatlon.

Some low order Dm integrals are given by
n :

-

Bo-By -
B,~v2B,

D 1Y%

720 sz I

k3

.

To express these results in terms of complete eleptlc 3ﬁﬁf;v”49
it
_1ntegrals one '€an use - (Q 3) and-(Q.&) & ® s o
" A O O < R iy W”f" ’s””"f? VR AL P
, . ” ® LR——
T i W e n Sy s g R P o | N ’ | , T o .: -
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