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Personalized learning models can cut student
dropout rates, boost student success, improve
the integration of online and on-site students,

better support teachers in mixed-teaching

modalities, enhance accessibility, and more.

BY MARCO FURINI, OMBRETTA GAGGI, SILVIA MIRRI,
MANUELA MONTANGERO, ELVIRA PELLE, FRANCESCO POGGI,
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Digital Twins
and Artificial
Intelligence

as Pillars of Personalized
L earning Models

MODERN EDUCATIONAL SYSTEMS have not really evolved
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“A digital twin is a digital replica of a
physical entity, and it is created by
combining pieces of data from various

sources.”
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STUDENT

Academic background
Study habits

Subject preferences
Cognitive characteristics
Learning behaviors

Digital educational material
consumption

DIGITAL TWIN

Digital student records
Online learning activities
Digital learning behaviors
Data from digital assessments
Learner knowledge space

Interactions with learning
materials



On the Road to Adaptive Learning Systems

Concepts, knowledge
components, or knowledge

units (Essa, 2016)

“Adaptive” Variables
Cognitive learning styles
Preferences and interests
Learning progression
Demographic variables

(Triantafillou et al., 2007)

Difficulty Strengths/weaknesses
Time/frequency Actionable insights
Cognitive/metacognitive skills What is next?
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Recommender systems

"... personalized information agents that provide
recommendations: suggestions for items likely to be
of use to a user” (Burke, 2007)
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Recommender
Systems

Content-based
Methods

Collaborative
Filtering (CF)

Hybrid
Methods

—

Neighborhood-
Based CF

Model-Based
CF




Recommender
Systems

Content-based Collaborative Hybrid
Methods Filtering (CF) Methods
Neighborhood- Model-Based
Based CF CF

User-Based CF

ltem-Based CF
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User-Based Collaborative Filtering
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User-Item Interaction
Matrix
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User-Based Collaborative Filtering
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Perform k-nearest neighbors (KNN) to select the best neighbors of the target user
(alternatively, use a similarity threshold)

Predict an unknown rating for the target user based on the best neighbors identified
in Step 2.
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tem-Based Collaborative Filtering

Apply the KNN algorithm and
find the most similar item(s)
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Cold Start Problem
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Model-Based Collaborative Filtering
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User-ltem
Interaction Matrix

An underlying generative
model that explains the
user-item interactions.




n users

Matrix Factorization via SVD or NNMF:
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A

User-ltem
Interaction Matrix (R)

Y
m items

n users

(X)

m items (Y)
)

Reconstructed
Interaction Matrix (R)

—

K latent
dimensions

\
K latent
dimensions

ah

Reconstruction
Error Matrix




m items (Y)
|

K latent dimensions
+

additional item features

n users
\

(X)

Reconstructed
Interaction Matrix (R)

\ J
|

K latent dimensions
+

additional examinee features




Hybrid Recommender Systems
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Adaptive Testing via Recommender Systems (RS)

Less information |:|:|:- More information Lower probability |:|:|:- Higher probability
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Abstract

An important design feature in the implementation of both computerized adaptive testing and
multistage adaptive testing is the use of an appropriate method for item selection. The item
selection method is expected to select the most optimal items depending on the examinees’ ability
level while considering other design features (e.g., item exposure and item bank utilization). This
study introduced collaborative filtering (CF) as a new method for item selection in the on-the-fly
assembled multistage adaptive testing framework. The user-based CF (UBCF) and item-based CF
(IBCF) methods were compared to the maximum Fisher information method based on the
accuracy of ability estimation, item exposure rates, and item bank utilization under different test
conditions (e.g., item bank size, test length, and the sparseness of training data). The simulation
results indicated that the UBCF method outperformed the traditional item selection methods
regarding measurement accuracy. Also, the IBCF method showed the most superior performance
in terms of item bank utilization. Limitations of the current study and the directions for future
research are discussed.

Keywords
collaborative filtering, multistage adaptive testing, item selection, measurement accuracy

Item Selection for On-the-Fly
Multi-Stage Adaptive Testing

Stage 1: A pre-assembled module

Stages 2 & 3: On-the-fly assembled modules
via user-based and item-based collaborative
filtering

No additional item or user feature used

Item selection using the recommenderlab
package in R

https://doi.org/10.1177/01466216221124089
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Iter;\izBeank Method
UBCF

300 items IBCF
MEFI
UBCF

600 items IBCF

MFI

30-item design

Bias RMSE Reliability
-0.019  0.362 0.970
-0.007  0.428 0.962
-0.016  0.369 0.969
0.044  0.464 0.957
-0.010 = 0.341 0.973
-0.012  0.365 0.970

Proportion of
unused items

57%
38%
59%
75%

66%

76%

60-item design

Bias RMSE Reliability
-0.013 0.277 0.981
0.002 0.341 0.974
-0.013  0.279 0.981
0.015 0.335 0.975
-0.010  0.256 0.984
-0.011 0.270 0.982

Proportion of
unused items

31%
27%
32%
57%
51%

59%



Personalized Scheduling
2021 for Adaptive Tests

Jan Feb Mar

12 1234586 12345686
3456789 789111213 7 8 91011213
10 111213141516 141516 17 181920 14 15 16 17 18 19 20
17 18 1920 212223 212223242526 27 21222324252627
24 252627282930 28 28 29§D 3
3

What is the optimal test schedule for each
student based on their learning progress?

Apr May Jun
528 1 123 4°¢E
46 678910 2345678 6 7 8 910112
1121314151617 9 101112131415 13141516 17 18 19
18 19 20 21222324 16 17 18 19202122 20 212223242526
25 26 27 28 29 30 23242526272829 27282930
30 31

Progress monitoring with Renaissance’s Star Reading
and Star Math adaptive tests for K-12

Jul Aug Sep

3248 1253 86 6 7 2
4567891 89101121314 56 7 8 910 11
1121314151617 151617 18192021 121314 15 16 17 18
18 19 20 21222324 22232425262728 19 20 21 22 232425
2526 2728293031 293031

Grade 2 (n = 668,324) and Grade 4 (n = 727,147)

26 27 28 29 30

oct it e 2 to 18 test administrations per student

1 2 1234 65 6
345617809 7 8 91011213 56 7 8 910
2 1516 141516 17 18 19 20 1213141516 1

(Bulut, Shin, & Cormier, 2022: Shin & Bulut, 2022;
Bulut, Cormier, & Shin, 2020)

1920 212223 2122232425 2627 192021227
2 330 282930

26 27 28 29
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User-Based Collaborative Filtering with Dijkstra's Shortest Path First Algorithm
« Maximize the positive and absolute score change between test administrations
* Minimize the number of test administrations

we o

- Find similar students (with max score change + fewest test administrations)
- Select the most similar students based on Euclidean distance and recommend their schedule




Standard Practice = Schedules Determined by Teachers RS = Recommender System

T e e

Evaluation Criteria

Standard Standard

Practice Practice
Average number of tests administered 542 —— 3,51 537 — 3.84
Average score change between tests 832 —— 12.25 349 —> 4.63
Range of tests required (1,18) —— (1,5) (1,17) — (1,6)

Non-recommendable cases - 0.05% 0.10%



Concluding Remarks

« Recommender systems can help us take a more holistic approach to
designing adaptive learning systems.
e Shifting the focus from “examinees” to “learners”

+Lesspsychometrics-&-more-Al; an amalgamation of psychometrics and Al

 Using the auxiliary information about learners as “adaptive variables”

« Enhanced adaptivity and precision (especially when there is no prior information on
learners)

* Prioritizing the text-taker experience (TTX) in decision-making (Duolingo, 2021)

* Driving innovation in the cycle of domain, assessment, and feedback


https://blog.duolingo.com/what-if-tests-were-delightful/

Future Directions

« Recommender systems can involve real-time process data (e.g., response
time) to consider test-taking engagement in adaptive testing.

* Recommender systems can be used with other psychometric models such
as Bayesian Knowledge Tracing to measure mastery of content domain.

« Recommender systems utilizing deep learning algorithms can model both
responses and sequential action data in adaptive learning environments.

« Chen et al. (2019)'s Behavior Sequence Transformer Model
e Wu et al. (2017)'s Recurrent Recommender Networks
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Thank You!

For questions/comments:

bulut@ualberta.ca
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