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Abstract

Several Artificial Intelligence (AI) techniques such as machine learning, evolutionary comput-

ing, and Artificial Life (A-life) have been increasingly used to generate emergence of novel

behaviours in multi-agent simulations (e.g., commercial games). However, automatically

detecting emergent behaviours and recognizing which ones are indeed novel/anomalous still

poses a challenging problem. The solution for such a problem may potentially help lead

to improvements in quality assurance control (e.g., detection of bugs) and security (e.g.,

detection of suspicious behaviour in surveillance footage). Some of previously published

attempts to detect anomalous behaviour in simulations relied on machine learning techniques.

For example, the use of supervised learning models to detect anomalous behaviours requires

labelled data not always available at the training time due to the rarity of anomalous be-

haviours. On another hand, the use of unsupervised learning models usually relies on specific

types of behaviour patterns or on having access to internal simulation states. Our approach

presented in this thesis uses only unlabelled sequences of readily available visualization

frames from simulated multi-agent environments to train a deep variational autoencoder

(i.e., a deep artificial neural network). After being trained, the autoencoder can detect

anomalous behaviours by comparing its reconstruction error against a threshold. We tested

our approach in a predator/prey A-life environment where it proved viable, being even

robust to a certain amount of pollution (i.e., the inclusion of anomalous data) in the training

data. As a case study, we also applied our approach to a video game where the results are

yet inconclusive.
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Chapter 1

Introduction

Artificial Intelligence (AI) is increasingly present in our lives in the form of smartphone

assistants, self-driving cars, non-playable characters (NPC) in video games, and other types

of technology. Consequently, emergent interactions between AI agents (i.e., AI capable of

taking actions) and humans can significantly affect our lives and help us address various

societal challenges. Machine Learning, Reinforcement Learning, and bio-inspired computing

— such as Genetic Algorithms (GA), Genetic Programming, and Artificial Life (A-life) —

are powerful frameworks to study novel behaviours emerging from interactions among AI

agents (Sweetser, 2008). Machine Learning and Reinforcement Learning allow AI agents

to learn a task during their life time through the optimization of target functions via

inference over datasets or via the maximization of expected pleasure/pain reward signals,

respectively, which leads to emergent behaviours learned through experience. On the other

hand, GA and A-life mimic the natural (i.e., Darwinian) evolution process with natural

selection via a explicit definition of a fitness function or via the artificial simulation of

natural/biological agents in real life, respectively, leading to emergent behaviour through

evolution of a population of agents.

Previous work already showed how these AI techniques can be used to mimic real-life

emergence of AI behaviours in multi-agent simulations. For example, Chen et al. (2007)

proposed a simulation framework by modelling the relationship between simple and complex
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Figure 1.1: The first Creatures game (Creature Labs, 1996).

events as a rule-based graph. They evaluated their approach in a predator/prey simulation

to detect and study how collective and social behaviours emerge. Ryan et al. (2015) created

a multi-agent framework, Talk of the Town, to study emergence of communication, which

led to agents capable of misremembering information and lying to each other. Bulitko et al.

(2017) showed how A-life predator/prey environments can be used to procedurally generate

ambience NPCs (e.g., rabbits in a video game environment) with interesting behaviours to

the player.

In video games, emergent NPC behaviour can increase immersion by allowing players

to interact with NPCs changing the course of their evolution. For example, the game

Creatures (Creature Labs, 1996) implement populations of A-life agents, called norns, each

one of them with specific biochemistry and neural network brain (Figure 1.1). Players can
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Figure 1.2: Darwin’s Demons (Polymorphic Games, 2017) use GA to evolve NPCs according
to the player strategy and settings.

interact with norms, nursing and breeding them, which leads to several types of evolved

behaviours according to the player’s actions. This idea proved to be quite successful, leading

to the development of other games from the same series: Creatures 2 (Creature Labs,

1998) and Creatures 3 (Creature Labs, 1999). Although the norn’s evolution was heavily

controlled by the players, some interesting behaviours emerged. One such behaviour caused

a controversy in the game community when some players created norns with alcoholic

behaviour by breeding the creatures with a predisposition in their genes (Creatures Wikia,

2004).

Another example of emergent behaviour can be seen in the commercial game Darwin’s

Demons (Polymorphic Games, 2017), which uses GA to evolve behaviours of enemy NPCs

according to each player strategy (Figure 1.2). In this game, the player controls a spaceship

with the goal of shooting and destroying NPCs capable of moving on the screen. Previous

work (Soule et al., 2017) demonstrated that not only NPC behaviours can emerge accordingly

to each playstyle, but also that the adaptive behaviours of NPC increase the difficulty
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and replay value of video games. Furthermore, they also noticed that by following a

specific strategy that targets more hostile NPCs (e.g., shooting enemies with a non-basic

weapon, shooting enemies in the centre of the screen), players can promote the emergence

of domesticated NPCs (Soule et al., 2017) that stay in the top corners of the screen. This

phenomenon can be game-breaking from a design perspective since non-threatening enemies

in a game impose no challenge for the player. As the developers said in an interview (Ronson,

2016):

“Some very clever players — I mean these are like super, ultra gamers, and

they knew it was an evolutionary game — set out to domesticate the aliens.

They shot all of the nasty ones first and then they let the dumb ones that didn’t

fire very much and just stayed up at the top and didn’t do anything live for a

really long time. And, after several generations, they had [the equivalent of]

space cows.”

If the automatic detection of emergent domesticated NPC was possible, then this type

of behaviour could be tracked and possibly prevented more easily.

Project Hastur (Polymorphic Games, 2019) – another commercial game from the creators

of Darwin’s Demons – also uses GA to evolve NPCs. In this tower-defence game, players must

place auto-shooting turrets to defend their towers from spider-like NPCs (Figure 1.3). In this

human-versus-AI type of game, the placement of turrets may directly impact the emergence

of NPC behaviour, such as NPCs capable of swimming rivers to attack the towers from an

unprotected angle. These NPC capable of adapting to playstyles may lead to interesting

behaviours (e.g., swimmers) or potential exploit (e.g., domesticated enemies). Effectively

detecting emergent behaviours may help to improve quality assurance by preventing potential

game exploits and also improve the game experience by replicating interesting behaviours in

later games.

The idea of using evolution as a procedural content generation for NPC behaviour was

already explored in previous work (Bulitko et al., 2017; Soares et al., 2018; Soares and
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Figure 1.3: A commercial video game: Project Hastur (Polymorphic Games, 2019).

Bulitko, 2019). Their predator/prey A-life environment evolved two types of behaviours:

prey that actively seeks food and was scared of predators (Figure 1.4, right) and prey that

avoided food (Figure 1.4, left). Although the first type of behaviour consistently emerged

in every simulation run, the second type appeared only in some runs, which was so rare

(i.e., infrequent) that it can be considered an outlier (i.e., anomalous) behaviour relative to

other behaviours. Although these prey had a distaste for food, they surprisingly survived.

This phenomenon happened because this prey type enjoyed following other prey around

and forcefully ate any food found along the way. Since the researchers first thought that

this behaviour was a bug, they had to perform a time-expensive manual code inspection to

understand the nature of such an anomalous behaviour. An automatic detection tool could

help researchers to discover other interesting behaviours present in such simulations more

quickly.

Ackley and Littman (1991) not only used A-life to simulate/model a predator/prey

environment, but also genetically evolved the value function used by each Reinforcement



1 Introduction 6

Figure 1.4: Two behaviours emergent in an A-life predator/prey simulation: prey that
actively seek for food (right), and prey that has a distaste for food (left).

Leaning agent in their environment. The experiments led to the discovery of emergent novel

behaviours such as prey that enjoyed hitting their heads against walls, or prey with an

affinity towards predators. Their manual behaviour detection and analysis led to re-discovery

of important evolutionary mechanisms (e.g., gene shielding).

Detecting the emergence of such unexpected/surprising behaviour may be not only useful

to increase gameplay value but also for quality assurance in video games. While human

observers identified these behaviours, it may not always be simple to do so. Detecting

emergent behaviours may be challenging due to the intrinsic unpredictability of random

algorithms/components often associated with emergent computing. Manual detection can

also be prohibitively time-consuming. Even when viable, such manual detection may be

prone to human error. In this thesis, we consider any emergent behaviour to be novel when

it deviates from the usual behaviours; thus, we assume that novel emergent behaviours

are anomalies in the simulation. For this reason, we use anomalous, novel, and abnormal

behaviours as interchangeable terms henceforth.
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Our thesis proposes the automatic detection of emergent/novel behaviours in multi-agent

environments, such as A-life environments and video games. In these simulations, every AI

agent is capable of perceiving its surroundings through sensory input and taking actions that

might modify the environment’s internal states. The environment is every component of the

simulation external to the agents, such as natural resources (e.g., grass, water) or obstacles

(e.g., walls, rocks). These environments run in discrete time steps (i.e., frames), during which

agents interact among themselves, the environment and with a possible human-controlled

avatar. We use unlabeled visualization frames taken from two different environments: a

predator/prey A-life environment (Figure 1.4) and a commercial game (Figure 1.3). Such

data can be collected automatically without any human effort as the behaviour labels are

not required. We train a specific type of artificial neural network known as deep variational

autoencoder and tune a threshold parameter to detect unusual/anomalous data. Finally,

we evaluate our approach empirically in two different settings: an A-life predator/prey

environment and a commercial video game.

1.1 Contributions

In this thesis, we made the following contributions:

• We developed a deep convolutional variational autoencoder to detect emergent novel

population behaviour in screen-capture streams taken from a predator/prey A-life

simulation. Our approach only requires normal data during its training while still

being able to detect abnormal behaviours reliably.

• We performed an investigation on how the mixture of normal and abnormal unlabeled

data samples may impact the detection performance. We also showed that the

autoencoder’s performance degrades gracefully as the amount of mislabeled data

increases.
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• We conducted a case study of how well our approach performs when applied to a

video game with genetically evolved NPCs. There, our approach was used to detect

anomalous behaviours rarely seen during playtime.

1.2 Thesis organization

We first formulate the problem of detecting anomalous emergent population behaviour in

Chapter 2. The constraints on a problem solution are also specified in that chapter. Chapter 3

gives a literature review with the current methods used to detect anomalous behaviours.

We consider methods used in video analysis as well as games and A-life simulations. Our

proposed methodology is described in Chapter 4. It contains the mathematical definition of

an autoencoder and the application of such a model to anomaly detection. This methodology

is then evaluated in two different settings: a predator/prey A-life simulation (Chapter 5)

and a commercial game (Chapter 6). Chapter 7 propose future work to follow from this

research and Chapter 8 presents the conclusions that can be drawn from our experiments.

Further algorithms and experimental details are found in Appendices A, B, and C.
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Chapter 2

Problem Formulation

This chapter formulates the problem being addressed. First, we state a general framework

for the simulations containing emergent behaviours to be detected. After that, we define the

concept of collective or population-level behaviour, which are the targets of our approach. We

then state the problem of detecting anomalous collective behaviour in simulated multi-agent

environments. Finally, we state the properties expected from the possible solutions for the

problem being addressed. A diagram summarizing the problem formulation is found in

Figure 2.1.

2.1 Simulation Framework

According to Drogoul and Ferber (1994), a “simulation consists of artificially reproducing

natural phenomena”. We expand this definition to match the problem being addressed so

that simulations may also artificially implement fictitious scenarios and worlds (e.g., video

games). Both types must be composed of artificially (i.e., AI) or human-controlled agents

and an environment. Each agent is a component of the simulation that has an internal

state and an input sensor to perceive the external environment. The agent is capable of

taking actions that may affect the simulation. The environment is every component of the

simulation external to the agents.
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Figure 2.1: The problem of detecting anomalous collective behaviours in multi-agent simula-
tions. The simulation produce states St, while a sequence of τ + 1 states are used to generate
features f (St−τ , . . . , St). The latter is used as an input to the anomaly detector Dφ.

A simulation may contain one or more populations of agents. For example, a population

of predators may be defined as the set of all agents that hunt and eat other agents (i.e.,

prey). In a simulation, agents may interact with the environment and with each other at

discrete time steps, or simulation frames, t = 1, 2, 3, . . . . For each t ∈ N, the simulation has

a state defined as:

Definition 2.1.1. The simulation state St is all information needed to continue the simula-

tion forward (i.e., for any time step higher than t).

Definition 2.1.2. S = {(St−τ , . . . , St) | t ∈ N, τ ∈ N} is the set of all possible finite se-

quences of simulation states.
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2.2 Detecting Anomalous Collective Behaviour

We consider detection of emergent anomalous/novel collective behaviours, defined as:

Definition 2.2.1. Given a collective behaviour ψ, Bψ : S → {true, false} is the collective, or

population-level, behaviour predicate that takes a sequence of system states (St−τ , ..., St) ∈ S

and outputs true if the behaviour ψ is observed in the sequence, and false otherwise.

For example, consider the clumping behaviour in which prey tends to cluster together to

increase their individual chances of survival. Thus, Bclumping (St−τ , . . . , St) = true means

that the simulation state sequence (St−τ , . . . , St) has the clumping behaviour.

Let us now assume a human is observing a sequence of frames (St−τ , . . . , St). We aim to

detect emergent behaviours ψ surprising (i.e., unexpected, rarely seen in multiple simulation

runs) to this observer. For example, the space cows described in Chapter 1 was a behaviour

unexpected by the developers of Darwins Demons; thus, it was a surprising behaviour to

them. This definition of surprising and non-surprising behaviour is dependent on the observer.

Consider two behaviours ψ1 and ψ2. An observer that has only seen behaviour ψ1 during n

simulation runs may assume that this is the normal behaviour for this particular simulation.

However, if the same person observes ψ2 in a particular sequence of states (St−τ , . . . , St) in

the run n + 1, they might be surprised by the new behaviour. A second observer, however,

may have seen ψ2 more often in the same simulation might not be surprised by it. Then,

we may assume that a behaviour ψ with less probability of being observed in any arbitrary

sequence (St−τ , . . . , St) is the one with more chances of being considered surprising to any

arbitrary observer. Hence, the more anomalous (i.e., less frequent) a behaviour ψ is, the

more chances it has of surprising an arbitrary observer.

Definition 2.2.2. A : S → {true, false} is the anomaly predicate. A sequence of simulation

states (St−τ , ..., St) ∈ S is anomalous if A (St−τ , ..., St) = true. The sequence is normal if

A (St−τ , ..., St) = false.
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Since a sequence of simulations frames is anomalous when it contains at least one

anomalous behaviours from anomalous behavious {ψa
1 , . . . , ψa

m} then A (St−τ , . . . , St) =

∨iBψa
i
. We measure A’s performance via detection accuracy:

Definition 2.2.3. Given a dataset of simulation state sequences (St−τ , . . . , St) ∈ S, the

detection accuracy is the number of correctly classified state sequences divided by the dataset

size.

If the anomaly detector A is represented in a parameterized framework (e.g., a deep neural

network) then the problem of detecting emergent anomalous behaviours becomes the task of

finding a parameter vector φ that parameterize the function Dφ such that Dφ (St−τ , . . . , St) =

A (St−τ , . . . , St) , ∀ (St−τ , . . . , St) ∈ S. We must then find φ that maximizes the mean

detection accuracy of Dφ.

2.3 Constraints on a Solution

First, our anomaly/abnormality detector will take features of state sequences as its input. So

instead of A (St−τ , . . . , St) we will be considering A (f (St−τ , . . . , St)), where f : S → R
k is a

feature function. We constrain the anomaly detection problem by requiring f to be readily

available. For example, f can be an existing game or simulation visualization. Secondly,

anomalous behaviours may be unknown when searching for parameters φ, so a solution

approach should not require labelled data for both normal and anomalous data. Finally, the

candidate solution should be robust to some inclusion of anomalous behaviours mislabelled

as normal behaviours. The detection accuracy should then gracefully degrade when the

percentage of anomalous behaviours mislabelled as normal increases.
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Chapter 3

Related Work

First, we will review the general application of anomalous population behaviour techniques

for several types of environments in Section 3.1. After that, we will discuss some more

specific approaches applied to video games in Section 3.2. Some material in this chapter is

adapted from our published paper (Soares and Bulitko, 2019).

3.1 Detection of Anomalous Population Behaviours

Population behaviour detection is commonly applied in crowded scenes recorded by surveil-

lance cameras. A social-force model was used to detect anomalous behaviour in publicly

available videos composed of escape events (Mehran et al., 2009). Although this approach

was capable of detecting population-level anomalies, it relies on specific types of particle

motion generated by the optical flow (i.e., pixel motion) in surveillance image frames. Doing

so limits the application of the technique, since some anomalies may be independent of the

force and velocity field of these particles (e.g., purely morphological anomalies).

Cascades of Dynamic Bayesian Networks (CasDBNs) were used to detect anomalous

behaviours in crowded scenes and also to discriminate among different types of anomalies (Loy

et al., 2011). CasDBNs are composed of hidden Markov model layers responsible for modelling

the behaviours into atomic actions and its components, which is performed accordingly
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to spacial and morphological features. However, this approach has two limitations when

applied to our problem. First, the model does not take readily available images as input;

instead, it takes a semantic decomposition of complex behaviours according to their spatial-

temporal visual context. This decomposition requires an initial conversion of frames into

blobs composed of object centroids, width and height of bounding boxes, occupancy, the ratio

of the dimension, the mean optical flow of the bounding box, and scaled optical flow. Second,

the detection depends on a pre-fixed threshold, which is computed via cross-validation on a

dataset composed of normal data and real anomalies. If anomalous data is not available,

the threshold may not be computed optimally.

Chen et al. (2007) proposed a rule-based framework for the detection and analysis of

emergent behaviour in simulations. They modelled an agent-based simulation as a graph

in which nodes are events and edges are relationships between simple and complex events.

For example, in their predator/prey simulation composed of lions and antelopes, each event

can be defined by a set of rules. The emergent behaviours can then be explaining by

the cause-effect relation between events in the simulation. For example, the behaviour of

starvation of lions is related to the rule of lions eating antelopes and lions over-hunting.

Their approach, however, does not solve our problem since it does not take readily available

features of simulation states. Furthermore, the modelling of the event graph may not be

trivial, since emergent behaviour may depend on partially observable or even wholly hidden

rules, such as prey with a genetic affinity to predators (Ackley and Littman, 1991).

More recent work used autoencoders to perform population behaviour anomaly detec-

tion (Ribeiro et al., 2018). However, their anomalies involved substantially morphologically

different agents (e.g., bicycles in anomalous images versus pedestrians in normal images).

Such a distinction between anomalous and normal data may not generally be the case for

emergent population behaviours. Previous work (Soares et al., 2018) already showed that

agents in an A-life setting might have the same shape among themselves and yet present

anomalous population behaviour. Indeed, as shown in Figure 3.1, although all agents have

the same shape (triangles), their population behaviour differs.
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Figure 3.1: Simulation frames taken from an predator/prey A-life environment used in
previous work (Soares et al., 2018). Each image presents a distinct classes of emergent
population behaviour in the populations.

3.2 Anomaly Detection in Video Games

Player behaviour detection is of interest in on-line games where game modifications, the

use of automated players (i.e., bots), and other same anomalous behaviours are considered

cheating. For instance, machine learning was used (Ahmad et al., 2009) to detect gold

farmers in EverQuest II (Daybreak Game Company, 2004). In Massive Multiplayer Online

Games (MMOGs), gold farmers are players that dedicate most of their playing time acquiring

in-game currency to exchange for real-world currency. The behaviour of gold farmer can

then be considered anomalous to the game, since it is unusual and not expected by the

developers. Ahmad’s approach takes as input logs from the game (e.g., transactions logs,

activity form experience logs) and other game-specific data such as character race (e.g.,

human, elf) and character sex. Their approach consists of using labelled data to create a

deductive logit model and an inductive machine learning model. The anomalous labels were

given only to the data corresponding to banned players (i.e., players removed from the game

after being caught gold farming). Their approach, however, had difficulties detecting gold
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farmers, which may have been caused by the specialization of gold farmers into specialized

roles distinct from each other. Furthermore, they concluded that the precision rate of their

detection might only represent a minimum baseline, since not all gold farmer were necessarily

banned, thus leading to potentially mislabelled training data.

Our own work on detecting anomalous population behaviour in a commercial game (Soares

et al., 2018) used supervised learning. Doing so required (i) defining anomalous behaviour a

priori, (ii) being able to capture large amounts of such rare behaviours for inclusion into

the training set, (iii) labelling each datum in the training set as normal/anomalous. These

requirements do not fit our desiderata in Section 2.3.
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Chapter 4

Proposed Approach

Given the lack of labelled anomalous training data, we propose to use autoencoders (AE)

(Protopapadakis et al., 2017; Ribeiro et al., 2018). Specifically, we train a variational

autoencoder (VAE) (Kingma and Welling, 2013) to detect anomalous behaviours. A diagram

of our approach is in Figure 4.11 with algorithmic details listed below. Some material of

this chapter was adapted from our previous publications (Bulitko et al., 2017; Soares et al.,

2018; Soares and Bulitko, 2019).

4.1 Autoencoders (AE)

Notationally, x ∈ R
k represents an input datum (e.g., an RGB image). AE is a neural

network composed of an encoder and a decoder as illustrated in Figure 4.1. We adapt the

definitions of AE from previous work (Goodfellow et al., 2016). The encoder is a function

h = g(x) that converts the input x into a feature vector (i.e., code) with dimension m � k.

The decoder, x′ = u(g(x)), is responsible for reconstructing the original input given the

extracted feature vector h. Working together, the encoder and decoder create a reversible

compression of x with a code that should provide useful structural information about the

training data. They can be machine-learned with the loss function defined as the mean

element-wise squared error:
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Figure 4.1: An autoencoder.

L (
x, x′) =

k∑
i=1

(xk − x′
k)2

k
(4.1)

where xk and x′
k are the k-th element of the input x and reconstruction x′ respectively.

Given images as inputs, each xk is a pixel and the loss can also be called mean pixel-wise

squared error. Equation 4.1 requires no target labels when training the autoencoder, which

satisfies one of the constraints in Chapter 2. Furthermore, the mean pixel-wise square

error is a target loss function that suites image inputs, which are readily available features

f (St−τ , . . . , St), satisfying another constraint on the problem.

4.1.1 Stochastic Autoencoders

We can also define an autoencoder as a stochastic machine learning model. According

to Goodfellow et al. (2016):

“Modern autoencoders have generalized the idea of an encoder and a de-

coder beyond deterministic functions to stochastic mappings pencoder(h | x) and

pdecoder(x | h).”

Hence, we can understand AE as a statistical model that maximizes the likelihood of

the correct reconstruction given an input and its code: pautoencoder(x′|x). This model can

be trained by reducing the reconstruction error between original and reconstructed input,

L (x, x′).
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Figure 4.2: A normal image (left) used to generate a surrogate anomaly (right) via a random
permutation of its pixels.

4.1.2 Anomaly Detection with AE

As the autoencoder learns to reconstruct training data by passing a high-dimensional image

through a lower-dimensional code, it is likely to learn visual patterns in its input images. If

such patterns in visualization of normal behaviours (which the training data mostly consists

of) are different from patterns specific to visualization of anomalous behaviours (which are

mostly absent in the training data), then one may assume that the reconstruction error

L(x, x′) will be higher for images of anomalous behaviour.

Thus, we can turn the AE into an anomaly detector by comparing its reconstruction error

against a threshold θ as follows: the input image x is classified as normal if L(x, x′) ≤ θ

and anomalous if L(x, x′) > θ.

The threshold θ has to be tuned to maximize the AE accuracy as a behaviour detector.

The tuning process is complicated by the fact that labelled anomalous data is unavailable

(Section 2.3). Thus we tune θ against automatically synthesized images of a surrogate

anomaly. To create such a surrogate-anomaly set, we take a separate set of normal images

and perturb each image by shuffling its pixels according to a random permutation (Figure 4.2).



4 20

Decoder
Encoder Decoder

Reconstruction
error

Anomaly

Normal

yes

no

Figure 4.3: The flow of information in anomaly detection via a variational autoencoder.

We then use the two new image sets to select the threshold θ for an already trained

AE according to the interquatile range (IQR). The candidate values of θ run the set

θi = Q3 + i
2 IQR, i ∈ {0, 1, . . . , 20}. Here IQR = Q3 − Q1, Q1 is the 25th percentile and Q3

is the 75th percentile (Zhao et al., 2013) of the AE’s reconstruction errors on its training

set, computed after its training. We choose the θi which maximizes the AE’s accuracy in

classifying the surrogate anomalies. A scheme for our proposed approach is in Figure 4.3. As

explained in detail in Section 4.3, our AE receives as input the feature f (St−τ , . . . , St), thus

our method uses L(f (St−τ , . . . , St) , x′), where x′ is the reconstruction of f (St−τ , . . . , St).

4.1.3 Learning a Useful Compression

If the code vector has the same or higher dimension as the input, the encoder may not

compress the data at all, giving h = x. The dimension of a code layer affects autoencoder’s

capacity to represent the complexity of x (i.e., the amount of information in x). Excessive

capacity yields trivial and thus useless compression. To learn a non-trivial compression one

can encourage sparsity of the AE (Goodfellow et al., 2016). By forcing the code h to be

closer to a zero vector (i.e., penalizing large code values), the network is forced to learn

more compact codes. This sparsity can be achieved by enforcing a penalization term on h

such as the Laplace prior (Goodfellow et al., 2016). Usually, regularization is applied to the

weights of an artificial neural network; however, to promote sparsity in the autoencoder we

penalize the activation of the encoder’s last layer (i.e., code h) instead of its weights so the

code itself becomes closer to a zero vector.
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Figure 4.4: Images with different complexity. More information is necessary to reconstruct
a cluster of points (right) than a single point (left).

Another way of helping the code to represent useful information is to use denoising

autoencoders (Goodfellow et al., 2016; Vincent et al., 2008). These AEs are trained to

reconstruct the original input by receiving a noisy version of it: xnoisy = x + ε, where ε

is a noise drawn from a Gaussian distribution. Since this AE is now trained to minimize

L (x, u(g(xnoisy))), where g(xnoisy) is the denoising encoder and u(g(xnoisy)) is the denoising

decoder, the code must provide enough structural information to recover the input from

corruption.

4.1.4 A drawback of an Autoencoder

Although both methods in Section 4.1.2 can help an autoencoder learn useful structural

patterns from the training data, it can still have a detection accuracy sensitive to the

level of complexity present in the input. Since the reconstruction error only measures the

difference between input and reconstruction, an AE with enough capacity to reconstruct

complex inputs is also likely to reconstruct simpler images even if it was not trained on them

specifically. For example, if an AE that can reconstruct clusters of points (Figure 4.4, right)
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Figure 4.5: Twenty points distributed randomly (left), in clusters (center), and in a single
line (right).

is also probably able to reconstruct a single point (Figure 4.4, left). Similarly, Figure 4.5

presents a distribution of 20 points randomly placed (Figure 4.5, left), organized in clusters

(Figure 4.5, center), and in a line (Figure 4.5, right). Randomly placed points have a higher

complexity compared to clusters or lines, thus requiring a higher code capacity. So an AE

trained on randomly placed points as normal data will have a similarly low reconstruction

error on clusters or lines, thereby labelling them as normal too.

An AE trained to reconstruct complex input and also able to reconstruct simpler images

works well when anomalous images are more complex than normal images. However, if the

opposite holds, the AE trained on normal images may also be able to reconstruct anomalous

images making it a poor anomaly detector. For example, the AE trained on randomly placed

points may learn to encode the coordinate of each point; thus having approximately the

same reconstruction error for any pattern of points. In our A-life simulation studied in

previous work (Soares et al., 2018; Soares and Bulitko, 2019), the anomalous behaviours

tended to have agents grouped in clusters and swarm patterns (Figure 4.6, right). Then

anomalous images were probably less complex than normal images (Figure 4.6, left), which

would make such an AE a poor anomaly detector.
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Figure 4.6: An image with normal behaviour (left) with agents (triangles) more scattered
than an image with anomalous behaviour (right).

4.2 Variational Autoencoders

One solution to decoupling image complexity and image normality1 is to use variational

autoencoders (VAE) showed in Figure 4.7. The VAE maps an input to a distribution of codes

instead of a single code. Then an actual code is sampled from the distribution and decoded

into an output (i.e., reconstructed) image. Instead of compressing x into a code vector, a

VAE compresses x into two vectors: μ(x) ∈ R
m and σ(x) ∈ R

m with m � k. The code

z(x) ∈ R
m is then drawn from a normal distribution with mean μ(x) and variance ε · σ(x),

where ε is a scalar random variable drawn from N (0, 1). The decoder then reconstructs x

using the code z(x) as input.

By moving from AE’s single code deterministically computed to VAE’s code stochastically

sampled from a distribution, we decouple input normality from input complexity. To better

understand this claim, let us first assume that the input x given to the autoencoder

corresponds to features extracted from a sequence of simulation states (St−τ , . . . , St). A
1By normality we mean the input not being anomalous.
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simulation used to generate emergent behaviour usually encompasses one or more stochastic

processes (e.g., mutation, cross-over, random initialization) that influence the probability of

a particular state sequence (St−τ , . . . , St) and thus a particular x. We also assume that such

stochastic processes are parameterized by an unknown hidden latent variable z and by an

unknown parameter vector ξ. Each value of x has a corresponding z value that influenced

the stochastic process that generated x.

VAEs are designed in such a way that, for each x in the training set, the encoder infers

the corresponding value for the latent variable z = z(x). We assume that z(x) has a normal

probability distribution N (0, I), where 0 is the zero vector mean and I is the identity matrix.

The decoder reconstructs the original input back from the inferred value of z(x). A VAE

parameterized by a parameter vector φ and trained only on normal images has an encoder

qφ(z = z(x)|x) which gives an approximation to the true conditional probability pξ(z|x). If

the conditional distributions qφ(z(x) = z|x, A(x) = true) and qφ(z(x) = z|x, A(x) = false)

are distinct and if the VAE has learned only to infer the right values of z(x) for normal data

(i.e., A(x) = false) then the VAE’s anomaly detection should indeed occur independently

from the complexity differences between anomalous and normal data. Indeed, by training

our VAE only on normal data, it can learn to compute the right values for the mean μ(x)

and variance σ(x) such that qφ(z(x) = z|x, A(x) = false) is a good approximation for

pξ(z|x, A(x) = false) for normal data. However, since the VAE never sees anomalies during

training, it may compute the wrong value of mean and variance for anomalous data, which

leads to a distribution qφ(z(x) = z|x, A(x) = true) that might completely differ from the

true distribution pξ(z|x, A(x) = true).

4.2.1 VAE as a Stochastic Model

We use the variatonal calculus adapted from the previous work (Kingma and Welling, 2013) to

describe how a proper VAE can be designed. First, given a dataset {x(i) ∈ R
k}, i = 1, . . . , N ,

we assume that each x was generated through a stochastic process (e.g., genetic evolution)

parameterized by a correspondent unknown latent variable z(i). Consider that each random
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Figure 4.7: A variational autoencoder.

variable z has a prior distribution pξ (z). Since x is generated by this stochastic process, x is

also a random variable with distribution pξ (x) = pξ (x|z) · pξ (z). The true prior pξ (z) and

likelihood pξ (x|z) are a family of probabilities parameterized by ξ, which is also unknown. We

assume that it is intractable to compute the posterior density pξ (z|x) = pξ(x|z)·pξ(z)
pξ(x) (Kingma

and Welling, 2013), but it can be approximated by the probabilistic encoder qφ (z|x)

parameterized by φ. Hence, a VAE has its code z(x) computed through the probabilistic

encoder qφ(z(x)|x), which is used by the probabilistic decoder qφ (x|z(x)) to reconstruct x.

Thus, a VAE parameterized by φ is designed in such a way that the encoder qφ(z(x)|x) and

the decoder qφ(x|z(x)) are approximations for pξ(z|x) and pξ(x|z), respectively. The VAE

must then be trained in order to find the set of parameters φ that maximizes the likelihood

qφ (x|z(x)), which is an approximation for the true likelihood pξ (x|z).

4.2.2 Training a VAE

We want to make sure that the encoder qφ(z(x)|x) is learning the correct approximation to

the conditional probability pξ(z|x). Let us first consider the Kullback-Leibler Divergence

(KL-divergence) (Kullback and Leibler, 1951), DKL. This function measures divergence
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Decoder

Figure 4.8: Training variational autoencoder.

between two probability distributions P (x) and Q(x):

DKL (P || Q) =
∫ ∞

−∞
p(x) log p(x)

q(x)dx = Ex∼P [log P (x) − log Q(x)] (4.2)

We want to find φ that minimizes DKL (qφ(z(x)|x) || pξ(z|x)):

DKL (qφ(z(x)|x) || pξ(z|x)) = Ez∼qφ
[log qφ(z(x)|x) − log pξ(z|x)] (4.3)

By applying Bayes rules to pξ(z|x):

DKL (qφ(z(x)|x) || pξ(z|x)) =

Ez∼qφ
[log qφ(z(x)|x) − log pξ(x|z) − log pξ(z)] + log pξ(x) (4.4)
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Minimizing DKL (qφ(z(x)|x) || pξ(z|x)) is equivalent to maximizing −DKL (qφ(z(x)|x) || pξ(z|x)).

Hence, we want select φ to maximize:

− DKL (qφ(z(x)|x) || pξ(z|x)) =

− Ez∼qφ
[log qφ(z(x)|x) − log pξ(x|z) − log pξ(z)] − log pξ(x) (4.5)

By rearranging the expectation and adding log pξ(x) on both sides of the equation we have:

log pξ(x) − DKL (qφ(z(x)|x) || pξ(z|x)) = Ez∼qφ
[log pξ(x|z)]

− Ez∼qφ
[log qφ(z(x)|x) − log pξ(z)] (4.6)

Following from the definition of KL-divergence:

log pξ(x) − DKL (qφ(z(x)|x) || pξ(z|x)) = Ez∼qφ
[log pξ(x|z)]

− DKL (qφ(z(x)|x) || pξ(z)) . (4.7)

The distribution pξ(x|z) is approximated by the decoder qφ(x|z(x)) which gives us:

log pξ(x) − DKL (qφ(z(x)|x) || pξ(z|x)) = Ez∼qφ
[log qφ(x|z(x))]

− DKL (qφ(z(x)|x) || pξ(z)) (4.8)

where the term qφ(x|z(x)) is computed by the decoder and qφ(z(x)|x) is computed by

the encoder as N (μ(x), σ(x)). The expectation Ez∼qφ
[log qφ(x|z(x))] can be maximized

through the minimization of the reconstruction loss L(x′, x). Since we assumed that the

prior pξ(z) is the normal distribution N (0, I), we can maximize Equation 4.8 by training

our VAE to minimize the loss function:

L(x′, x) + DKL (N (μ(x), σ(x)) || N (0, I)) (4.9)
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where:

DKL (N (μ, σ) || N (0, I)) = 1
2

m∑
i=1

(
σi + μ2

i − log (σi) − 1
)

. (4.10)

By using KL-divergence on μ(x) and σ(x), which are used to draw z(x), the VAE’s

code becomes sparse (Asperti, 2018). The sparsity of the stochastic code helps solving the

problem discussed in Section 4.1.2. Additionally, we also add the L1 regularization term

given by λ · ∑
w∈φ |w| to obtain weight sparsity, which helps prevent overfitting (Goodfellow

et al., 2016). The full training loss is then given by the expression:

L(x, x′) + DKL (N (μ(x), σ(x) || N (0, I)) + λ ·
∑
w∈φ

|w| (4.11)

where φ is the set of parameters in the network (weights and bias) and λ ∈ R is a scaler for

the regularization term.

4.2.3 Anomaly Detection with VAE

Similar to Section 4.1.4, we want a VAE (Figure 4.7) with a larger reconstruction error

for anomalies. That would allow its use as an anomaly detector by simply measuring the

reconstruction error L(x, x′). Here we assume that the stochastic process that generates

a normal behaviour is different from the one that led to emergent anomalous behaviours

(e.g., different play styles in a video game with evolving NPCs). Figure 4.9 summarizes the

detector Dφ created with a VAE. The topology of our VAE is explained in Section 5.1.3 and

details about the implementation are in Appendix B.

4.3 Frame Averaging

Our approach does not require access to internal simulation states (St−τ , . . . , St) ∈ S. As

stated in Section 2.3, the input for our approach is given instead by the feature f (St−τ , . . . , St)

extracted from the simulation states. In our approach, every I(St) ∈ R
k is an image (i.e.,

pixel matrix) obtained through screen capture (e.g., screen-shots from simulations/video
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Figure 4.9: The flow of information in anomaly detection via a variational autoencoder.

games, video frames from surveillance cameras). An image I(St) collected in a time step t is

the visualization of the environment state St. The input features f (St−τ , . . . , St) used in

our approach is a weighted average of images:

f(St−τ , ..., St) =
τ∑

i=0
γi · I(St−i) (4.12)

where 0 < γ < 1 is a decay coefficient. Figure 4.10 shows a sample gray scale image

representing I(St) (left) and the corresponding f (St−τ , . . . , St) (right) for τ = 4. Upon

performing this step, the anomaly detection must classify f (St−τ , . . . , St) as normal or

anomalous.

4.4 Summary

For each simulation state St we collect its visualization It. We then add time information

to our input by computing the frame average x = f (St−τ , . . . , St). A VAE is then trained

only on normal image frames x to minimize the training loss (4.11). After training, an

additional set composed of normal and surrogate anomaly (i.e., pixel-shuffled) images are

used to choose a threshold θ that maximizes the detection accuracy. The trained VAE, in
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Figure 4.10: A image representing the environment state I(St) on time step t (left) and
its frame averaging f (St−τ , . . . , St) considering the past τ = 4 frames (right). Gray dots
represent agents within the environment.

. . .

. . .

Frame
averaging

VAE

Surrogate
anomalies

Anomalous

Normal

Yes

No

Figure 4.11: Our proposed approach takes unlabelled image visualization from simulated
multi-agent environments and used than to train a VAE. We also tune a threshold by
selecting the model with best accuracy when detecting surrogate anomalies. We perform
frame averaging in the images to add temporal information.

conjunction with the chosen θ, forms the anomaly detector used in the empirical evaluation

in Chapter 5 and 6.
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4.5 The hypothesis

The hypothesis we are investigating empirically is whether using a VAE trained on unlabelled

data is a viable approach to detecting novel/anomalous behaviours not seen (or not labelled

as such) during training.
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Chapter 5

Empirical Evaluation and Results

Performance of our approach was evaluated by computing the detection accuracy in a preda-

tor/prey A-life environment which allows emergence of novel behaviours through genetic evo-

lution (Section 5.1). We compared our VAE against supervised learning: GoogLeNet (Szegedy

et al., 2015). Two experiments were performed: one in which the training data contained

only normal images (Section 5.1.5), and another in which the training data had a mixture of

normal and anomalous images (Section 5.1.6). Some material in this chapter was adapted

from previously published work (Bulitko et al., 2017; Soares et al., 2018; Soares and Bulitko,

2019).



5 Empirical Evaluation and Results 33

Algorithm 1: Predator/prey A-life environment
input : Grid world Ck×k; time steps T ; initial population sizes nR

init, nW
init; initial

grass per cell ng
init; grass growth ginit

grow; max ages amax; reproduction age
arepr; reproduction energy erepr; min energy emin; max grass gmax; growth
multiplier gmult

grow; mutation rate δrate
output: Set I of image frames

1 Gk×k ← initial grass matrix with ng
init

2 R ← initial population with nR
init rabbits

3 W ← initial population with nW
init wolves

4 I ← ∅; t ← 0; ggrow ← ginit
grow

5 while t ≤ T ∧ R �= ∅ ∧ W �= ∅ do
6 for ∀A ∈ R ∪ W do
7 N ← set of cells within A sight radius
8 U(A, n) ← ultility of cell n in respect to agent A, ∀n ∈ N
9 move A torwards argmax(U(a, n))

10 if A ∈ R then
11 A eats grass in cell of A;
12 else
13 A eats random rabbit in cell of A;
14 end
15 a ← A’s age +1
16 e ← A’s energy
17 age of A ← a
18 if a > amax ∨ e < emin then
19 if A ∈ R then
20 R ← R \ {A}
21 else
22 W ← W \ {A}
23 end
24 end
25 if a > arepr ∧ e > erepr then
26 O ← mutated A according to δrate
27 energy of O ← e/2
28 energy of A ← e/2
29 if A ∈ R then
30 R ← R ∪ {O}
31 else
32 W ← W ∪ {O}
33 end
34 end
35 end
36 ggrow ← ggrow ∗ gmult

grow

37 G[x, y] ← max
(
G[x, y] + ggrow, gmax

)
, ∀(x, y) ∈ Gk×k

38 I ← I ∪ {screenshot at time t}
39 t ← t + 1
40 end
41 return I
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Figure 5.1: Our predator-prey A-life environment. The grass is shown via shades of green.
Orange, purple and blue circles represent grass-liking rabbits, grass-disliking rabbit and
wolves respectively. In the left image the majority of the rabbit population are grass-liking
rabbits (i.e., the normal behaviour). In the right image the majority is comprised of the
grass-disliking rabbits (i.e., an anomalous behaviour).

5.1 A-life Simulation

The A-life environment is a two-dimensional grid that supports a simple predator-prey

evolution. The prey agents (“rabbits”) eat a re-growing resource (“grass”). The predator

agents (“wolves”) eat rabbits. An agent’s behaviour policy is determined by a set of weights

encoded in its genes. On each time step, an agent computes the utility of each grid cell

within its sight radius. The utility is a sum of cell contents (e.g., the amount of grass or

the number of wolves in the cell) weighted by the agent’s genetic weights (e.g., its affinity

to grass). Agents that have a positive affinity to another component of the environment

(i.e., rabbits, wolves, and grass) are said to like it; those with negative affinity, dislike it.

The agent then moves towards the cell with the highest utility. Agents spend energy by

taking actions or by simply existing in the simulation and replenish it by eating. They die

when their energy drops below a minimum. A sufficiently old agent with enough energy

will produce an offspring that inherits the parent’s genes perturbed with random noise
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(mutation). A high-level pseudocode is listed as Algorithm 41. All control parameters are

found in Appendix A.

On a typical evolution run rabbits evolve to like grass and dislike wolves while wolves

evolve to like rabbits. Anything substantially different is considered an anomaly. For

instance, the leader-follower anomaly is an emergence of a large number of long-living yet

grass-disliking rabbits (Soares et al., 2018). It can happen when two types of rabbits evolve:

those who dislike grass but like other rabbits and those who like grass. Since a rabbit

automatically eats grass in its current grid cell, grass-disliking rabbits can survive by liking

and thus following grass-liking rabbits to grass-rich areas of the environment. While a small

number of such follower rabbits are found on many evolutions runs (Figure 5.1, left), an

emergence of follower rabbits in a large proportion happens rarely (i.e., less than 2% of the

images have at least twice as many followers than leaders) and thus constitutes an anomaly

(Figure 5.1, right).

5.1.1 Input Data

To satisfy the requirements in Section 2, our behaviour detector takes a stream of visualization

frames produced by the A-life environment implemented in Netlogo (Wilensky, 1999).

Although our A-life environment allows humans to visualize the rabbits’ genes (purple and

orange, Figure 5.1), we removed such genetic information and visualized all agents as grey

dots only (red, green and blue colours all set to 141
255). To make the input sparser, we also

removed the grass visualization (Figure 5.2, left). Then to capture temporal patterns, we

applied a moving average with an exponential decay to the frames (Figure 5.2, right) as

explained in Section 4.3. A similar automated process can be applied to a screen-capture

stream from a commercial video game.

5.1.2 Behaviour Classes

We use the A-life environment described in Section 5.1 with the image-generation process

described in Section 5.1.1. The empirical evaluation will focus on detection of emergent
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Figure 5.2: A single visualization frame from our predator-prey A-life environment with the
resource and agent gene visualizations removed (left). A weighted moving average of the
frame and its four predecessors captures movements of the agents (right).

anomalous behaviours in the rabbit population. We define three population-level behaviours

in our A-life as follows. Leaders (BL) behaviour occurs in a state of the simulation with at

least twice as many leader rabbits as there are follower rabbits, which is the most common

state and is considered normal behaviour. Followers (BF) is a state of the simulation in

which there are at least twice as many followers as there are leaders. This phenomenon

happens much less frequently and thus constitutes an anomaly. Finally, random (BR) is

another type of anomaly where at least half of the rabbits in the environment have random

behaviour policies.1 Figure 5.3 shows representative images from the three behaviours.

Using A-life parameters from our prior work (Soares et al., 2018), detailed in Appendix A,

we conducted 600 evolutions runs. On each run labelled each collected image into BL, BF,

and BR behaviours and stored only such images, discarding all other images.2 Since we had

access to the agent’s genes in this case, we labelled images in which at least twice as many
1For our experiments, we needed two different types of anomalous behaviours, yet only one anomaly had

been observed to date in the A-life environment. So we created the second anomaly artificially by injecting
hand-built random-moving rabbits into the A-life environment.

2The greyscale time-averaged images were natively recorded at 420 × 420 pixels and then down-sampled
to 224 × 224 pixels to fit the input dimension of our baseline classifier (GoogLeNet).
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Figure 5.3: Top images are A-life visualization frames. They are converted to input images
for the autoencoder and shown in the bottom. The three columns show representatives of
classes BL, BF, and BR correspondingly.

rabbits had positive affinity torwards grass as BL. Images with twice as many rabbits with

negative affinity towards grass were labelled as BF. Images with at least 50% of the rabbit

population containing random-moving rabbits – determined by a specific gene for random

movement – were labelled as BR. This process led to 1078946 images for the BL class, 7941

for the BF class, and 20095 images correspondent to neither BL nor BF. Table 5.1 shows

the frequency of behaviours in the collected dataset, averaged over 600 runs.3 After that, we

balanced the dataset such that each class had the same number of images; thus, we obtained

the sets BL,pure and BF,pure, each one with 7941 images. These datasets are considered pure

since each class has only samples that were correctly labelled (i.e., the BL,pure has only BL

images, and BF,pure has only BF images).4 In the beginning of the simulation, agents have
3The mean frequencies do not add up to 100% due to the variance of class distribution between runs.

However, frequencies add up to 100% on each independent simulation run.
4We balanced the dataset for a better evaluation of the model. By performing this step, the test set will

have approximately an equal share of images for each class, so that the classification accuracy is not inflated
due to unbalanced data.
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Table 5.1: Mean frequencies of behaviours in our A-life environment.

Bψ Frequency (%)

BF 1.4 ± 9.7
BL 56.3 ± 48.5

¬BF ∧ ¬BL 2.3 ± 10.5

Table 5.2: Number of runs used on each data split.

Split Dataset Number of runs

complete dataset (BL,pure, BF,pure) (600, 600)
complete dataset BR,pure 2000

train
(
Btrain

L,pure, Btrain
F,pure

)
(254, 254)

train Btrain
L,pure 254

validation
(
Bval

L,pure, Bval
F,pr

)
(84, 84)

validation Bval
L,pure 84

θ selection
(
Bθ

L,pure, Bθ
S,pr

)
(112, 112)

test
(
Btest

L,pure, Btest
F,pure

)
(150, 150)

test
(
Btest

L,pure, Btest
L,pure

)
(150, 500)

random affinities and thus move randomly. This situation can create a disconnect between

image labels (BL, BF, BR) which are based on rabbits’ genes and the image content which

depicts rabbits’ actual behaviour.

In order to create independent data sets for training, testing, and validation, the original

dataset was split at the level of evolution runs. The superscript train, val, θ, and test

designate the corresponding use of the data split for training, validation, threshold selection,

and testing, respectively. For example, Bθ
S,pure correspond to the pure dataset composed of

surrogate anomalies used for threshold selection. The split was performed in such a way

that approximately 25% of the runs were used for testing (Btest
L,pure and Btest

F,pure), 14% were

used for validation (Bval
L,pure and Bval

F,pure), and 43% of the runs were used for training (Btrain
L,pure

and Btrain
F,pure). The others 18% of the runs containing BL behaviours were used to create

surrogate anomalies BS,pure. This split (Bθ
L,pure, Bθ

S,pure) was used to compute the threshold

θ for our VAE. Table 5.2 shows the number of runs per split.
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Finally, we ran 2000 additional evolutions where, with probability η = 50%, we replaced

each rabbit in the starting population as well as each rabbit born during the evolution with

a randomly moving rabbit5. This modification is in Algorithm 45. These 1020 runs yielded

21505 BR images from which 7491 where selected to form the set BR,pure. These images

were used only for testing according to the split in Table 5.2.6

5.1.3 VAE Implementation

Our VAE implementation used convolutional, fully connected, batch-normalization, max-

pooling and transposed convolutional layers (Figure 5.4). It was coded and trained in

TensorFlow (Abadi et al., 2015). Intuitively, we mainly used convolutional and transposed

convolution layers to capture behaviour space-invariant patterns present in the image (e.g.,

clusters), to help with classification of population-level behaviour as discussed in previous

work (Soares et al., 2018). Finally, the max-pooling layer was added to help with the

dimensionality reduction: the code should be small enough to represent only normal patterns

while conveying information about the underlying data distribution. All layers have rectified

linear units (ReLu) activation which adds non-linearity to the topology. While we hand-

tunned the architecture to the data at hand, we suspect that a similar architecture would

work for other environments. Furthermore, the dimensions of μ(x), σ(x), and z(x) were

chosen as 500 through empirical process. We tested a different topology in a dataset collected

from the same A-life simulation, but performing independent evolution runs from the one

used in the experiments reported in this thesis. We selected the topology with higher

detection accuracy in that independent dataset. Future work will investigate generating

a VAE architecture automatically, such as via neuroevolution (Stanley and Miikkulainen,

2002). Details of the implementation are in Appendix B.
5Note that η is the probability of hatching a rabbit with hand-scripted random movement. For any

η ∈ [0, 100], BR is defined as having at least half of the rabbit population in time t with such rabbits.
6We had to perform 1020 runs instead of only 600 to obtained the Btest

R,pr dataset because the random
movement of the led to a faster extinction time (i.e., fewer images per run).
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5.1.4 Multiple Trials and Majority Class Accuracy

For every experiment, we run 10 independent trials. On each trial, a new neural network

was randomly initialized, trained, and tested. Although the dataset split follows Table 5.2,

each split was performed per trial by randomly selecting evolution runs. We then averaged

accuracy of the networks over the trials.

Additionally, since the data splits were performed at the level of evolution runs, the test

set could have a different number of images for each class. Therefore, for better analysis of

the network’s performance, we also compute the majority class accuracy (MCA):

Definition 5.1.1. Majority Class Accuracy is the best possible accuracy given by a classifier

that always outputs the same class. It corresponds to the frequency of samples belonging to

the majority class.

5.1.5 Experiment 1: Pure Training Data

In this experiment, we assumed that a training data set consists entirely of images depicting

the normal behaviour (i.e., the class BL). Our VAE was initialized with weights and biases

drawn from N (0, 0.1). It was then trained on the image set Btrain
L,pure. The learning rate

followed a stepwise cooling schedule with an initial value of 0.0001 and the decay of 0.8

on each epoch. We also used λ = 0.0001 as the parameter for the L1 regularization. The

training had three stopping criteria: (i) a maximum of 100 epochs, (ii) the UP test (Prechelt,

1998) with strip of k = 5 epochs and s = 3 consecutive strips, (iii) the absolute difference

between the validation error of two consecutive batches is not higher than 0.0001 in a

total of 5 batches. The validation error was computed on the data set Bval
L,pure. Adam

optimizer (Kingma and Ba, 2014) with the batch size of 50 images was used. Once the

training was completed, we selected the threshold θ using
(
Bθ

L,pure, Bθ
S,pure

)
. This threshold

was then used to detect anomalies in the test set. After that we evaluated the VAE on(
Btest

L,pure, Btest
F,pure

)
and on

(
Btest

L,pure, Btest
R,pure

)
. The resulting test accuracy is presented in

Table 5.3 and discussed below.
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To put the test accuracy of our VAE in a context, we also trained GoogLeNet (Szegedy

et al., 2015) to classify
(
Btest

L,pure, Btest
F,pure

)
and

(
Btest

L,pure, Btest
R,pure

)
. GoogLeNet requires both

classes to be present and labelled in the training data. Thus, while our VAE was trained only

on Btrain
L,pure, GoogLeNet was trained on

(
Btrain

L,pure, Btrain
F,pure

)
. We used a version of GoogLeNet

included in the Machine Learning toolbox with MATLAB R2018a. This network was trained

with Adam optimizer from the MATLAB toolbox using the same learning schedule as we used

for the VAE and the batch size of 50 images. The training stopped either when 100 epochs

where reached or when the validation error computed every 20 batches on
(
Bval

L,pure, Bval
F,pure

)

did not improve over the previously smallest validation error three times in a row.

Additionally, since GoogLeNet included with MATLAB had 1000 neurons in its output

layer, and we have only two classes, we replaced the output layer with a new layer of two

neurons. To compensate for the lack of ImageNet-based pre-training for the weights leading

to the new layer, we increased the layer’s learning rate ten folds.7

7A version of GoogLeNet initialized with random weights on all layers yielded similar results.
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Algorithm 2: Predator/prey A-life environment with injection
input : Grid world Ck×k; time steps T ; initial population sizes nR

init, nW
init; initial

grass per cell ng
init; grass growth ginit

grow; max ages amax; reproduction age
arepr; reproduction energy erepr; min energy emin; max grass gmax; growth
multiplier gmult

grow; mutation rate δrate; probability η
output: Set I of image frames

1 Gk×k ← initial grass matrix with ng
init

2 R ← initial population with nR
init rabbits (random with probability η)

3 W ← initial population with nW
init wolves

4 I ← ∅; t ← 0; ggrow ← ginit
grow

5 while t ≤ T ∧ R �= ∅ ∧ W �= ∅ do
6 for ∀A ∈ R ∪ W do
7 N ← set of cells within A sight radius
8 U(A, n) ← ultility of cell n in respect to agent A, ∀n ∈ N
9 if A ∈ R ∧ A is random then

10 move A randomly
11 else
12 move A torwards argmax(U(a, n))
13 end
14 if A ∈ R then
15 A eats grass in cell of A;
16 else
17 A eats random rabbit in position of A;
18 end
19 a ← A’s age +1
20 e ← A’s energy
21 age of A ← a
22 if a > amax ∨ e < emin then
23 if A ∈ R then
24 R ← R \ {A}
25 else
26 W ← W \ {A}
27 end
28 end
29 if a > arepr ∧ e > erepr then
30 O ← mutated A according to δrate
31 energy of O ← e/2
32 energy of A ← e/2
33 if A ∈ R then
34 R ← R ∪ {O}; with probability η makes O random
35 else
36 W ← W ∪ {O}
37 end
38 end
39 end
40 ggrow ← ggrow ∗ gmult

grow

41 G[x, y] ← max
(
G[x, y] + ggrow, gmax

)
, ∀(x, y) ∈ Gk×k

42 I ← I ∪ {screenshot at time t}
43 t ← t + 1
44 end
45 return I
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Table 5.3: Accuracy of behaviour classifiers on pure data. BR was collected with η = 50%.
The top half of the table has the results for the detection of BF anomaly, while the bottom
half has the results for the detection of BR anomaly.

Train set θ-select set Validation set Classifier
(
Btest

L,pure, Btest
F,pure

)
(
Btrain

L,pure, Btrain
F,pure

) (
Bval

L,pure, Bval
F,pure

)
GoogLeNet 95.4 ± 3.7%

Btrain
L,pure

(
Bθ

L,pure, Bθ
S,pure

)
Bval

L,pure VAE 77.4 ± 5.1%

MCA 58.2 ± 8.1%

Train set θ-select set Validation set Classifier
(
Btest

L,pure, Btest
R,pure

)
(
Btrain

L,pure, Btrain
F,pure

) (
Bval

L,pure, Bval
F,pure

)
GoogLeNet 66.4 ± 9.0%

Btrain
L,pure

(
Bθ

L,pure, Bθ
S,pure

)
Bval

L,pure VAE 89.8 ± 3.1%

MCA 53.2 ± 1.8%

Results. The means and the standard deviations of test accuracy are listed in Table 5.3.

They were measured over ten trials. Each trial differed in the initialization of the VAE’s

weights and biases, GoogLeNet weights for the last layer, and the randomization of the

training process using Adam optimizer. Additionally, the dataset was randomly split into

training, validation, threshold selection, and test on each trial.

Our VAE never had access to anomalous data during training; however, GoogLeNet had

access to the BF anomaly during training, but it did not had access to the BR anomaly

during training. When labelled anomalies BF were present in the training set, GoogLeNet

outperformed our VAE (95.4% vs 77.4%); however, when no labelled anomalies BR were

present in the training set, GoogleNet was outperformed by our VAE (66.4% vs 88.9%). Our

VAE had access only to normal data during training, yet it still obtained a good detection

accuracy for both BF (77.4%) and BR (88.9%).

Although our VAE outperformed GoogLeNet when detecting random anomaly BR with

η = 50%, this was not the case for every η. When η = 40%, GoogLeNet surprisingly achieved

a mean accuracy of 84.1% when detecting BR even though no samples from this class was
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Figure 5.5: VAE’s and GoogLeNet detection accuracy variation according to the probability
η of injecting random agents. The error bars show standard deviation.

provided during training time. We suspect that the probability η of injecting rabbits may

affect the evolution in different ways. For some values of η, the features learned when

training GoogLeNet on the (BL, BF) may be sufficient to also distinguish BL from BR. To

better understand how the detection accuracy is affected by the probability η of injecting

random moving agents in the environment, we built the plot in Figure 5.5. Starting with

η = 40% GoogLeNet is outperformed by the VAE. We can see that both models are affected

by similarities between normal and anomalous patterns. GoogLeNet’s performance for small

η might be explained by the random rabbit’s lack of adaptation. Since random rabbits are

not evolved, they tend to die faster. Hence, for η < 40%, the number of random moving

agents born in each time step may not be enough to compensate for their mortality rate,

leading to a lower impact of their population in the evolution as a whole. Thus, for small η,

BR images may be similar enough to BF that GoogLeNet achieved accuracy above 90%.
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Figure 5.6: Effects of pollution degree ρ on VAE test accuracy.

5.1.6 Experiment 2: Polluted Training Data

In the previous experiment, we trained the VAE purely on normal behaviours of A-life agents

(i.e., class BL). Having such a pure training set is not always feasible as, during a typical

evolution run, a small number of images representing anomalous behaviours may be recorded

in the training set. In this section, we study the degradation of VAE test accuracy when

it is trained on polluted image sets. We vary the degree of pollution by injecting different

numbers of anomalous BF images into the training data set.

We formed polluted sets by combining classes BF and BL images in proportion p and

1 − p where p ∈ {0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75}. Thus the new image set Btrain
L,polluted was a

mixture of Btrain
L,pr and Btrain

F,pure, Bval
L,polluted was a mixture of Bval

L,pure and Bval
F,pure and Bθ

L,pollutes

was a mixture of Bθ
L,pure and Bθ

F,pure. After that Bθ
S,polluted was created by permuting image

pixels in Bθ
L,polluted.
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We then trained the VAE on Btrain
L,polluted with Bval

L,polluted used for validation. The threshold

θ was computed on
(
Bθ

L,polluted, Bθ
S,polluted

)
. Finally, the VAE was tested on

(
Btest

L,pure, Btest
F,pure

)

and
(
Btest

L,pure, Btest
R,pure

)
.

Results. Figure 5.6 shows VAE’s mean test accuracy as a function of p. For instance, with

1% of anomalous images mixed in with the normal images, the VAE test accuracy is 68.9%

for the BF anomaly, compared to 77.4 for the pure case.
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Chapter 6

Anomalous Behaviour Detection in

a Video Game

In this chapter, we present experiments performed with the commercial game Project

Hastur (Polymorphic Games, 2019). In this tower-defence game, procedurally generated

NPCs gradually evolve according to the players’ strategy and playstyle. We applied our

VAE to the detection of emergent anomalous behaviours. Figure 6.1 shows a screen capture

of the game, where the genetically evolved enemies (i.e., Proteans) can be seen up close.

More details about how the data were collected can be found in Appendix C. Parts of this

chapter were adapted from our previous work (Soares et al., 2018).

6.1 Project Hastur

Project Hastur is a strategy game in which the players can position different types of turrets

to defend the main base tower from waves of enemy NPCs (i.e., Protean Swarms). The

gameplay is divided into generations until the Proteans destroy all the player’s towers or a

target number of generations is reached. At the beginning of every generation, the player

has some time of safety (i.e., no enemies are spawned), after which a new generation/wave

of Proteans is spawned. The player has a certain amount of biomatter (i.e., in-game money)
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Figure 6.1: Screen capture taken from Project Hastur.

that can be used to buy new turrets or towers, upgrade turrets, and restore any damage done

to turrets or towers. Biomatter is obtained by killing Proteans and surviving a generation.

The enemies can attack the towers, turrets, and the civilian. Upon attacking and killing

the later, Proteans can reproduce, generating children depending on their size (i.e., smaller

enemies have more children than larger enemies). Figure 6.2 illustrates Project Hastur’s

gameplay.

Each Protean has a genome that determines it individual traits (e.g., sight range,

resistances, speed, attack rate and damage,), morphology (e.g., body size, limb size, shape,

colour), special abilities (jumping and swimming), and behaviour (attack preferences).

Although some of these characteristics (i.e., phenotypes) are observable by the player, the

genome itself is not. After each generation, new Proteans are generated through genetic

evolution following two fitness functions. Half of the new population is created as offspring

from parents selected according to the damage taken from turrets. The other half of the

new population is selected from parents according to the parent’s proximity to the tower:
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Figure 6.2: Project Hastur: the main and base towers are the white/gray structures
surrounded by turrets (purple, blue and red). Proteans are the spider-like NPCs, while
civilians are the human-like NPCs.

Proteans that survive long enough to get near to a tower have a higher chance to reproduce.

Additionally, Proteans can reproduce by consuming another type of NPC: civilians. Upon

this attack and consumption, Proteans can generate one or more offspring according to their

size (i.e., smaller ones generate more offspring than big ones). This reproduction leads to a

secondary evolution path in which Proteans may adapt to attack civilians.

Finally, the game can be played on two modes: campaign or experiment. In the first

mode, the game is played in different maps, while the player must survive a target number of

generations. The experiment mode is the one we used to collect the data for our experiments.

This game mode provides a controlled environment in which we can manually set parameters

of the gameplay (e.g., number of generations, upgrades) and from the evolution (e.g.,

mutation rate, cross-rate).
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Figure 6.3: A original image frame taken from Project Hastur (left) and the corresponding
features as seen by our VAE (right).

6.2 Collecting Data

Following the fitness functions mentioned above, the enemy population may evolve several

types of behaviours depending on the player’s playstyle. To reduce variance between game

runs, we fixed the playstyle while playing in the experiment mode whose hyperparameters

for the genetic algorithm were also fixed. Details of the playstyle and the hyperparameters

can be found in Appendix C.1. In order to collect data, we used an external screen capture

program to collect images from the game at every second. These colour images were then

converted to grayscale. After that the features f (St−τ , . . . , St) were created by frame

averaging (Section 4.3) and then resized from 1920 × 1080 to 224 × 224 pixels to use the

same VAE topology as in our A-life experiments. Figure 6.3 shows an original screen capture

(left) and the resulting image as seen by the VAE (right).

A total of 20 runs were performed, each one played from generation 0 to 20, which

gave a total of 45125 images. Since manually labelling the images was time-consuming

(Section 6.3), we reduced the dataset to approximately 13.3%, randomly labelling 300 images

from each run. Therefore, the final dataset had in total of 6000 images. More details about

the parameters used in the experiment mode can be found in Appendix C.2. Due to time

constraints and lack of human resources, we only had a single person to play the game and
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Table 6.1: Frequencies for each observed behaviour Bψ in the Project Hastur data.

Target class Bψ Frequency (%)

BN ¬Bbiped ∧ ¬Bswim ∧ ¬Bjump 84.2 ± 8.5%
BB Bbiped 7.9 ± 7.8%
BS,J Bswim ∨ Bjump 7.9 ± 4.4%

label the data. This limitation led to only 20 game runs worthy of data which took about

40 hours to collect. The process of labelling the 6000 selected images took about 500 hours,

giving the estimation of 3761 hours for the complete dataset (i.e., 45125 images). Future

work may crowd-source the task to collect more data and to reduce the error in the labelling

processing (i.e., use voting to decide on the labels).

6.3 Labeling the Data

• BB = Bbiped if a Protean capable of walking on two limbs was observed;

• BS,J = Bswim ∨ Bjump if a Protean capable of jumping the rivers or swimming was

observed;

• BN = ¬Bbiped ∧ ¬Bswim ∧ ¬Bjump if none of the previous behaviours was observed

In order to evaluate how our model performs on Project Hastur data, we had to label the

test images as normal or anomalous manually. Our normal data was composed of samples

from BN, while our two types of anomalies are given by BB and BS,J. As shown by Table 6.1,

BB and BS,J are rare, thus are considered anomalous. Figure 6.4, 6.5, and 6.6 show images

from the BN, BB, and BS,J respectively; Figure 6.7 show the correspondent f (St−τ , . . . , St)

as seem by our VAE.

The dataset was then balanced by randomly selecting images such that all classes have

the same number of samples. Due to the rarity of BB and BS,J, each dataset ended up with

only 477 images after balancing. Finally, for each trial, a new split of runs into training

(Btrain
N and Btrain

B ), validation (Bval
N and Bval

B ), threshold θ selection (Bθ
N), and test (Btest

N ,
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Figure 6.4: Normal BL image (i.e., no bipedal Proteans nor NPCs capable of swimming or
jumping).

Btest
B , and Btest

S,J ) was made similarly to Section 5.1.2. Additionally, the set Bθ
N was used

to create the surrogate anomalies for the set Bθ
S. The number of game runs used in each

set is shown by Table 6.2. Since our VAE does not require a balanced dataset for learning,

we trained two VAEs: VAEu trained on an unbalanced dataset but tested on a balanced

dataset, and VAEb trained and tested on a balanced dataset.

6.4 Training VAE

A total of 20 game runs were performed, from which nine independent game runs were

used during training, three used for threshold selection, three used for validation (i.e., early

stop), and five for testing. We performed 10 independent trials (i.e., training and testing an

individual VAE) using the same hyperparameters as in Section 5.1.5. Our VAE was trained

on Btrain
N and evaluate with

(
Btest

N , Btest
B

)
and

(
Btest

N , Btest
S,J

)
. We used Bval

N to compute the

validation required in one of the stopping criteria (Section 5.1.5). Finally we automatically
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Figure 6.5: Image from class BB (i.e., bipedal Proteans). Red circle marks the presence of
bipedal agents.

tuned the VAE’s threshold on
(
Bθ

N, Bθ
S

)
. We also tested GoogLeNet on

(
Btest

N , Btest
B

)
and(

Btest
N , Btest

S,J

)
. For both test sets, GoogLeNet was trained with the same hyperparameters as

in the experiments in Section 5.1.5 using
(
Btrain

N , Btrain
B

)
as the training set and

(
Bval

N , Bval
B

)

as the validation set.

6.4.1 Results and Discussion

Table 6.3 shows the mean accuracy for our VAEs and for GoogLeNet. GoogLeNet had a

slightly higher mean than the VAEs for both cases,
(
Btest

N , Btest
B

)
and

(
Btest

N , Btest
S,J

)
. Both

VAEs and GoogLeNet obtained accuracy similar to MCA: 60.4% when detecting BB and

54.8% when detecting BS,J. This result means that both GoogLeNet and VAEs failed to

distinguish between normal and anomalous data. We believe that the image complexity

contributed to the failure. Figures 6.8, 6.9, and 6.10 show representatives of the BN, BB,

and BS,J, respectively. Although the agents and behaviours were clearly visible in the colour

images used in the labelling process, they can be barely seen in the downsampled grayscale
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Figure 6.6: Image from class BS,J (i.e., Proteans capable of jumping or swimming). Red
circle marks the presence of an agent jumping.

images. For this reason, even a human observer has difficulties distinguishing between

the classes. We believe that the data preprocessing (downsampling and exponential decay

averaging) discards too much information.

Figure 6.11 gives an insight into the VAE’s performance. We gave an image from our

A-life environment (Figure 6.11, left) to the VAEu trained on BN data. The reconstructed

image resembled an image from Project Hastur (Figure 6.11, centre) suggesting that the

VAE mostly memorized information about the background map and the main tower. Thus

the VAE might be discarding Proteans as noise in the image, which would make it nearly

impossible to recognize behaviours patterns of the Proteans.
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Figure 6.7: Features f (St−τ , . . . , St) for classes BL, BB, and BS,J respectively.

Table 6.2: Number of game runs used in each data split.

Split Balance Dataset Number of runs

complete dataset (BN, BB, BB,J) (20, 20, 20)
train balanced

(
Btrain

N , Btrain
B

)
(9, 9)

train balanced Btrain
N 9

train unbalanced Btrain
N+ 9

validation balanced
(
Bval

N , Bval
B

)
(3, 3)

validation balanced Bval
N 3

validation unbalanced Bval
N+ 3

θ selection balanced
(
Bθ

N, Bθ
S

)
(3, 3)

θ selection unbalanced
(
Bθ

N+, Bθ
S+

)
(3, 3)

test balanced
(
Btest

N , Btest
B

)
(5, 5)

test balanced
(
Btest

N , Btest
S,J

)
(5, 5)

Table 6.3: Accuracy of behaviour classifiers on Project Hastur data.

Training set θ-selection set Validation set Classifier (Btest
N , Btest

B )
(
Btest

N , Btest
S,J

)

(Btrain
N , Btrain

B )
(
Bval

N , Bval
B

)
GoogLeNet 60.0 ± 9.1% 66.7 ± 5.8%

Btrain
N

(
Bθ

N, Bθ
S
)

Bval
N VAEb 52.7 ± 10.4% 54.1 ± 6.7%

Btrain
N+

(
Bθ

N+, Bθ
S+

)
Bval

N+ VAEu 53.9 ± 11.7% 53.2 ± 6.7

MCA 60.4 ± 6.6% 54.8 ± 5.5
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Figure 6.8: The top row shows an image from BN correctly by the VAEu. The bottom row
shows a BN incorrectly classified by the VAEu. The left column shows the original images,
the center column has the images reconstructed by our VAEu, and the right column has the
residual image between original and reconstruction.
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Figure 6.9: The top row shows an image from BB correctly by the VAEu. The bottom row
shows a BB incorrectly classified by the VAEu. The left column shows the original images,
the center column has the images reconstructed by our VAEu, and the right column has the
residual image between original and reconstruction.
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Figure 6.10: The top row shows an image from BS,J correctly by the VAEu. The bottom
row shows a BS,J incorrectly classified by the VAEu. The left column shows the original
images, the center column has the images reconstructed by our VAEu, and the right column
has the residual image between original and reconstruction.

Figure 6.11: A frame average image from our A-life simulation (left), the correspondent
reconstruction given by a VAEu trained on Project Hastur data (middle), and the residual
image between them (right).
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Chapter 7

Future Work

In this chapter, we present a summary of the shortcomings in our work and the future

research directions to solve them. We also discuss methods to collect and label data, human

error associated with it, and possible solutions.

7.1 Future Research Directions

Although our VAE was capable of achieving an accuracy above 80% when detecting some

anomalies (e.g., BR for η ≥ 40%) in A-life environments, it failed to rise above MCA in

Project Hastur. The unsatisfactory accuracy might be due to a combination of factors:

human mistakes in the labelling processing, low-resolution images, and sub-optimal network

topology. The use of NEAT (Stanley and Miikkulainen, 2002) may help improve the network’s

topology for higher resolution images. Data from Project Hastur or any commercial game

also tends to have information irrelevant to the detection of behaviours such as the Heads

Up Display and a fixed background/map. The use of NEAT may also help to find topologies

capable of dealing with this extra information.

Additionally, the data for Project Hastur was collected and labelled manually. Unlike

our A-life environment, when the BF and BR were algorithmically detected, the behaviours

of Project Hastur were inferred through human observation. Although our model does not
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Figure 7.1: Project Hastur’s default camera angle.

require labels during training, the evaluation may suffer from errors in target labels. The

process was also time-consuming; we estimated about 3761 hours to label all the collected

images. Future work may crowd-source this task.

The VAEs topology tuned for our two-dimensional A-life environment may not have

enough capacity to detect behaviours in a three-dimensional game environment (Project

Hastur) with several camera angles. We fixed the camera angle between all game runs by

using Project Hastur’s default camera angle (Figure 7.1), which makes it harder to visualize

distant agents. Further work will consider using neuroevolution to search for a new topology

better suited to complex environments. Also in future work, a stack of simulation frames

may be given as input instead of frame averaging we used.

Finally, we used images as inputs for our detector since they are readily available features

in the simulations used in this thesis. However, this may not always be the case. For example,

some multi-agent simulation may not have a visualization for the agents and environments;

instead, the readily available features may assume other forms such as audio or electrical
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signals, mathematical functions, and others. As long as we can represent the features as

a vector x ∈ R
k, then the VAE can still be used for anomaly detection, as proposed in

this chapter. It is important to note, however, that the topology presented in Section 5.1.3

expects an input with a fixed size of 224 × 224. Hence, an input with a different dimension

from ours will lead to a number of parameters (i.e., weights and biases) different from our

VAE. For future work, we may explore the use of neuroevolution to optimize a VAE topology

for the problem in hand independently of the input size. We also believe that the approach

here proposed might be applied to different anomaly detection tasks (i.e., equipment failures,

intrusion detection); however, in this thesis we focused only on the detection of anomalous

emergent collective behaviours in multi-agent simulations. Future work may explore new

input data and tasks/environments.
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Chapter 8

Conclusion

In this thesis, we proposed the use of a deep variational autoencoder (VAE) to detect

emergent anomalous behaviours in populations AI of agents. We also presented a specific

VAE topology and evaluated it empirically in two different settings: a predator/prey A-

life environment and a commercial video game. Our approach does not require labelled

data during training, being also robust to a mixture of normal and anomalous training

data. When evaluated in our A-life environment, the autoencoder displayed good accuracy.

This performance may be further improved through the use of neuroevolution to tune

the parameters of our model. The results for the commercial game, Project Hastur, were

inconclusive as both the autoencoder and GoogLeNet failed to detect anomalous behaviours.

We believe that the challenge of the task is due to the image preprocessing which discarded

too much information.
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Appendix A

A-life Environment: Details

This appendix presents in details the control parameters used in our predator/prey A-life

simulation.

A.1 A-life Environment: Parameters

Each agent in our A-life environment has an age, energy, cognition cost, and seven genes:

• rsight ∈ N is the sight radius used to determine the number of cells observable by each

agent;

• αgrass ∈ R is the affinity to grass;

• αrabbit ∈ R is the affinity to rabbits;

• αwolf ∈ R is affinity to wolves;

• ααgrass ∈ R is the affinity towards others agents affinity to grass;

• ααrabbit ∈ R is the affinity towards others agents affinity to rabbit;

• ααwolf ∈ R is the affinity towards others agents affinity to wolf.

Rabbits with αgrass > 0 are said to like grass (i.e., leaders). Grass-disliking rabbits (i.e.,

followers) have αgrass < 0. Additionally, the simulation is controlled by the hyperameters:
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• T ∈ N is the maximum number of discrete time steps;

• eW
gain, eR

gain are the wolf’s and rabbit’s food gain, respectively;

• eW
repr, eR

repr are the minimum energy required to enable reproduction of wolves and

rabbits, respectively;

• aW
repr, aR

repr are the minimum age required to enable reproduction of wolves and rabbits;

• mW
speed, mR

speed are the speed of wolves and rabbits, respectively;

• nW
init, nR

init are the initial number of wolves and rabbits, respectively;

• nW
max, nR

max are the maximum size for the population of wolves and rabbits, respectively;

• aW
max, aR

max are the maximum age allowed for wolves and rabbits, respectively;

• eW
min, eR

min are the minimum energy necessary for survival (wolves and rabbits, respec-

tively);

• eW
max, eR

max are the wolf’s and rabbit’s maximum energy, respectively;

• eW
move, eR

move are the energy cost necessary for the movement of wolves and rabbits,

respectively;

• eW
cog, eR

cog are the initial cognitive energy cost for wolves and rabbits, respectively;

• eW
tick, eR

tick are the wolves’ and rabbit’s energy cost to keep existing in the system,

respectively;

• eW
init; eR

init are the initial energy of wolves and rabbits respectively;

• emult
cog is the cognitive energy cost multiplier;

• nG
init is the initial minimum amount of grass per cell;

• ginit
grow is the initial grass growth amount per cell;
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• gmult
grow is the grass growth multiplier;

• gmax is the maximum grass amount per cell;

• δrate is the mutation rate;

• rinit
sight is the initial maximum sight radius;

• k is the dimensions of grid world;

Table A.1 shows the actual values for these parameters used in our experiments.

Table A.1: Parameters for our A-life environemnt.

Parameter Value Parameter Value Parameter Value

T 10000 nR
max 100 eR

tick 1
eW

gain 44 aW
max 1000000 emult

cog 0.0001
eR

gain 83 aR
max 1000000 nG

init 166
eW

repr 100 eW
min 5 ginit

grow 0.934
eR

repr 94 eR
min 5 eW

init 52.5
aW

repr 63 eW
max 100 eR

init 52.5
aR

repr 25 eR
max 100 gmult

grow 0.99957
mW

speed 2.7 eW
move 0.001 gmax 332

mR
speed 2.2 eR

move 0.001 δrate 1.3103
nW

init 24 eW
cog 0.01 rinit

sight 19
nR

init 21 eR
cog 0.01 k 50

nW
max 100 eW

tick 1
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Appendix B

VAE Implementation

This appendix contain relevant Python code used to train our VAE. The code can be seen

in Listing B.1, B.2, B.3, B.4, and B.5.

1 """"

2 Variation Autoencoder model used for anomaly detection in A-life

3

4 NOTE: This is an abstract class that serves as base for a VAE topology ,

it

5 should not be instantiated by itself . This is done in order to

facilitate the

6 creation of new topoogies

7

8 Created by: Everton Schumackers Soares on June 07, 2019

9 Based on: https :// arxiv.org/pdf /1606.05908. pdf

10

11

---------------------------------------------------------------------------

12

13 EXAMPLE : A new class should inherite this one as follows

14

15 class Autoencoder ( AbstractVAE ):

16 def __init__ (self , metainfo ):
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17 super( Autoencoder , self). __init__ ( metainfo )

18 self. __createInitNetwork__ ( metainfo . code_layer_size )

19 return

20

21 def __createEncoder__ (self , x, builder ):

22 x = slim. batch_norm (x, activation_fn =None)

23 builder . addConvLayer (name=’ encoder_1 ’, num_filters =30,

kernel_size =[11 , 11])

24 return builder . buildFullyConvNet (debug=True)

25

26 def __createDecoder__ (self , x, builder ):

27 builder . addDeconvLayer (name=’ decoder_1 ’, num_filters =1,

kernel_size =[11 , 11])

28 return builder . buildFullyConvNet (x, start_on =’ decoder_8 ’,

debug=True)

29

30

----------------------------------------------------------------------------

31 """

32

33 import tensorflow as tf

34 import numpy as np

35 import tensorflow . contrib . distributions as tds

36 import logging

37 import dill

38 import os

39

40 from abc import ABC , abstractmethod

41 from build_network_utils import FullyConnectedNetBuilder as FNNBuilder

42 from build_network_utils import ConvNetworkBuilder as CNNBuilder

43

44 class AbstractVAE (ABC):

45 # ====================
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46 # Public Properties

47 # ====================

48

49 input_layer = None # placeholder tensor for input

50 input_width = None

51 input_height = None

52 input_channels = None # number of channels for the input

53 reguralizer_scaler = 0.0001 # scaler for L1 regularization

54 encoder = None # encoder layer

55 decoder = None # decoder layer

56 code = None

57 loss_layer = None # autoencoder ’s loss layer

58 train_operation = None

59 mu = 0

60 std = 0.1

61 z_mean_layer = None

62 z_stdev_layer = None

63 KL_weight = 1 # weight for the KL divergence term in the loss function

64 threshold = None # threshol for anomaly detection

65

66 # ==============

67 # Constructor

68 # ==============

69

70 def __init__ (self , metainfo ):

71 self. input_width = metainfo . target_width

72 self. input_height = metainfo . target_height

73 self. input_channels = metainfo . target_channels

74 self. KL_weight = 1

75

76 self. input_layer = tf. placeholder (tf.float32 ,

77 [None , metainfo . target_height , metainfo . target_width , metainfo .

target_channels ],

78 name=’input_layer ’)
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79 return

80

81 # =================

82 # Private Methods

83 # =================

84

85 def __createEncoder__ (self , x, builder ):

86 """

87 Abstract method to be defined by the child model

88

89 This functions must declare the topology of the VAE ’s encoder

90

91 Args:

92 x := input tensor ( tensor given as output by the shared

decoder layers )

93 builder := build_network_utils used to builde the encoder

94 """

95 pass

96

97 def __createDecoder__ (self , x, builder ):

98 """

99 Abstract method to be defined by the child model

100

101 This functions must declare the topology of the VAE ’s decoder

102

103 Args:

104 x := input tensor ( tensor given as output by the shared

decoder layers )

105 builder := build_network_utils used to builde the decoder

106 """

107 pass

108

109 def __createCodeLayer__ (self , x, size_z ):

110 """
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111 Create code layer responsible for the variational portion of the

112 autoencoder .

113

114 Args:

115 X := input tensor ( tensor given as output by the shared

decoder layers )

116 size_z := (int) dimension of the latent variable z

117 """

118

119 input_shape = tf.shape(x)

120 builder = FNNBuilder (mu=self.mu , std=self.std)

121

122 logging .info(’Code layer size: {}\n’. format ( size_z ))

123

124 # Code layer that parametrize P(z | X), represented by mu(x) and

sigma(X)

125 self. z_mean_layer = builder . buildFullyConnectedLayers (

126 name=’z_mean ’,

127 x=x,

128 sizes =[ size_z ],

129 activations ={0: ’relu ’},

130 )

131

132 self. z_stdev_layer = builder . buildFullyConnectedLayers (

133 name=’z_stdev ’,

134 x=x,

135 sizes =[ size_z ],

136 activations ={0: ’relu ’},

137 )

138

139 # Samples a latent variable z from a normal distribution

parametrized

140 # by mu(X) and sigma(X) using reparametrization

141 input_shape = tf.shape(x)
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142 batch_size = input_shape [0]

143 z_sample = self. sampleOperation (batch_size , size_z )

144

145 code = builder . buildFullyConnectedLayers (

146 name=’code ’,

147 x=z_sample ,

148 sizes =[ size_z , int(np.prod(x. get_shape () [1:]))],

149 activations ={0: ’relu ’, 1:’relu ’},

150 input_is_conv =False

151 )

152 return code

153

154 def __createInitNetwork__ (self , size_z ):

155 builder = CNNBuilder (self. input_layer )

156

157 # Creates layers

158 self. encoder = self. __createEncoder__ (self. input_layer , builder )

159 self.code = self. __createCodeLayer__ (self.encoder , size_z )

160 code = tf. reshape (self.code , tf.shape(self. encoder ))

161 self. decoder = self. __createDecoder__ (code , builder )

162

163 # Creates Loss

164 self. loss_layer = tf. reduce_mean (tf. squared_difference (self.decoder ,

self. input_layer ),

165 name=’autoencoder_loss_layer ’)

166 self. loss_layer = tf.cast(self.loss_layer , tf. float64 )

167

168 # Creates prediction layer

169 self. prediction_layer = tf.cast(self.decoder , tf.uint8 , name=’

prediction_layer ’)

170 return

171

172 # =================

173 # Public Methods
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174 # =================

175

176 def regularizer (self):

177 l1 = sum(tf. reduce_sum (tf. square (var)) for var in tf.

trainable_variables () if ’_W’ in var.name)

178 return self. reguralizer_scaler * tf.cast(l1 , tf. float64 )

179

180 def KLLoss (self):

181 # Creates normal distribution varaible

182 normal_dist = tds. Normal (loc =0., scale =1.)

183

184 # Creates N(mu(X), sigma(X))

185 z_dist = tds. Normal (loc=self. z_mean_layer , scale=self. z_stdev_layer )

186

187 kl = tds. kl_divergence (z_dist , normal_dist )

188 kl_cast = tf.cast(

189 tf. reduce_mean (kl),

190 dtype = tf.float64 ,

191 )

192 return kl_cast

193

194 def sampleOperation (self , batch_size , n):

195 """ Samples a latent variable z through reparametrization : it

samples

196 a noise variable z from the normal distribution N(0, I) and compute

197 z = mu(X) + sigma(X)* epsilon

198

199 Args:

200 batch_size := size of minibatch

201 n := dimension of latent variable z

202 """

203 shape = tf.stack ([ batch_size , n])

204

205 epsilon = tf. random_normal (shape , 0, 1, dtype=tf. float32 )
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206 epsilon = tf. stop_gradient ( epsilon )

207 z = self. z_mean_layer + (self. z_stdev_layer * epsilon )

208 return z

209

210 def createTrainOperation (self , intial_learn_rate ):

211 self. learning_rate = tf. placeholder (tf.float32 , shape =[])

212 if self. train_operation is None:

213 train_loss = tf. reduce_mean (self. loss_layer + self. KL_weight *

self. KLLoss () + self. regularizer ())

214

215 optimizer = tf.train. AdamOptimizer (self. learning_rate )

216 scope = tf. get_collection (tf. GraphKeys . TRAINABLE_VARIABLES )

217 grads_and_vars = optimizer . compute_gradients (train_loss , scope)

218 self. train_operation = optimizer . apply_gradients ( grads_and_vars )

219 return

220

221 def optimize (self , x, _, learn_rate ):

222 sess = tf. get_default_session ()

223 feed_dict = {

224 self. input_layer : x,

225 self. learning_rate : learn_rate

226 }

227 return sess.run(self. train_operation , feed_dict = feed_dict )

228

229 def perform (self , x, _):

230 sess = tf. get_default_session ()

231 feed_dict = {

232 self. input_layer : x,

233 }

234 return (sess.run(self.loss_layer , feed_dict = feed_dict ), None)

235

236 def computeErrors (self , x, _):

237 sess = tf. get_default_session ()

238 feed_dict = {
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239 self. input_layer : x,

240 }

241 return sess.run(self.loss_layer , feed_dict = feed_dict )

242

243 def predict (self , x):

244 sess = tf. get_default_session ()

245 feed_dict = {self. input_layer : x}

246 return sess.run(self. prediction_layer , feed_dict )

247

248 def increase_KL_weight (self):

249 self. KL_weight = min (1.0 , self. KL_weight +0.0001)

250

251 def save(self , path):

252 """

253 Save model information into a file with name model_info . pickle .

254 The information consist of a dictionary with the target

atributes .

255 The basice autoencoder only saves the anomaly detection

threshold , but

256 a dictionary is still saved , since child models can save more

info.

257

258 Args:

259 path: path for the target folder where mode_info . pickle will

be saved

260 """

261

262 model_info = {’threshold ’: self. threshold }

263 filename = os.path.join(path , ’model_info . pickle ’)

264

265 with open(filename , ’wb’) as model_file :

266 dill.dump(model_info , model_file , -1)

267 logging .info(’Model info saved to: %s\n’ % filename )

268
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269 def load(self , path):

270 """

271 Load model information from a file with name model_info . pickle .

272 The information consist of a dictionary with the target

atributes .

273 The basice autoencoder only loads the anomaly detection

threshold , but

274 a dictionary is laoded saved , since child models can save more

info.

275

276 Args:

277 path: path for the target folder from where mode_info . pickle

will

278 be loaded

279 """

280

281 filename = os.path.join(path , ’model_info . pickle ’)

282

283 with open(filename , ’rb’) as model_file :

284 model_info = dill.load(model_file , -1)

285

286 self. threshold = model_info .get(’threshold ’, None)

287 logging .info(’Model info loaded from: %s\n’ % filename )

Listing B.1: Abstract VAE class

1 """

2 This class has the basic deep learning functions necessary to train ,

evaluate ,

3 save , load , and measure results in tensorflow independent of the type of

Model

4 being used. As long as it follows the right interface illustrated in

5 abstract_variational_autoencoder .py

6

7 Created by Everton Schumacker Soares
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8 Updated on 07 June , 2019 by Everton Schumacker Soares

9 """

10

11 import tensorflow as tf

12 import numpy as np

13 import datetime

14 import time

15 import os.path

16 import matplotlib . pyplot as plt

17 import anomalyDetection as ad

18 import scipy.misc

19 import logging

20 import dill

21

22 from sklearn .utils import shuffle

23 from dataset_utils import make_pipeline_for_tfrecord as make_pipeline

24 from PerformanceMeasure import PerformanceMeasure

25

26 # Class containing all operations for deep learning in TensorFlow

27 class DlOperations :

28 metainfo = None

29 verboseFreq = None

30 verbose = None

31 config = None

32 session = None

33 saver = None

34

35 def __init__ (self , metainfo , verbose =True , verboseFreq =100):

36 self. metainfo = metainfo

37 self. verbose = verbose

38 self. verboseFreq = verboseFreq

39

40 if metainfo . use_gpu :

41 config = tf. ConfigProto ()
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42 config . gpu_options . allow_growth = True

43 self. config = config

44 else:

45 config = tf. ConfigProto ( device_count = {’GPU ’: 0})

46 self. config = config

47

48 # Resets current existin g graph

49 def reset(self):

50 tf. reset_default_graph ()

51 return

52

53 def saveModel (self , path , model):

54 filename = os.path.join(path , ’model .ckpt ’)

55

56 if not os.path. exists (os.path. dirname ( filename )):

57 os. makedirs (os.path. dirname ( filename ))

58

59 if self.saver is None:

60 self.saver = tf.train.Saver ()

61

62 self.saver.save(self.session , filename )

63 model.save(path)

64

65 def loadModel (self , path , model):

66 filename = os.path.join(path , ’model .ckpt ’)

67

68 if self.saver is None:

69 self.saver = tf.train.Saver ()

70

71 self.saver. restore (self.session , filename )

72 model.load(path) # Load trained model into the object model

73

74 # Need to be called before training or using the model

75 def startSession (self):
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76 if not self. session is None:

77 self. closeSession ()

78

79 sess = tf. InteractiveSession ( config =self. config )

80 self. session = sess

81 return sess

82

83 def closeSession (self):

84 self. session .close ()

85 self. session = None

86 return

87

88 # Creates the pipeline when using tfrecords

89 def getBatchIteratorWithTfRecords (self , batchSize , epochs ,

tfrecord_filenames , shuffle ):

90 filenames , iterator = make_pipeline (batchSize , epochs , shuffle )

91 self. session .run( iterator . initializer , feed_dict ={ filenames :

tfrecord_filenames })

92 x_batch , y_batch = iterator . get_next ()

93 return x_batch , y_batch

94

95 # Helper function to compute number of samples in the dataset

96 def computeNumSamplesInTfRecord (self , tfrecord_filenames , shuffle =False)

:

97 x_batch , _ = self. getBatchIteratorWithTfRecords (1, 1,

tfrecord_filenames , shuffle = shuffle )

98 num_samples = 0

99

100 while True:

101 try:

102 self. session .run( x_batch )

103 num_samples += 1

104 except tf. errors . OutOfRangeError :

105 break
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106 return num_samples

107

108 def trainNetworkWithTfRecordsOpt (self , model , num_tr_samples =None ,

num_val_samples =None):

109 """ Train network using tfrecords as inputs . The training is stoped

once

110 the validation error platos or when the max number of epochs is

reached .

111 A stepwise cooling schedule of the learning rate can be applied

by setting

112 the scaler 0 < alpha < 1.

113

114 NOTE: In this case self. epochs should be a large value , just to

115 prevent the training to run indefinetly , self. batchSize should

be

116 the largest values supported by the GPU , and self. learningRate

117 should be initialy high.

118

119 Argments :

120 model := class containing tf computation graph to be train

121 num_tr_samples := number of samples in the train set. If

None ,

122 the number is computed ; otherwise , fixed value is used

123 num_val_samples := number of samples in the validation set.

If

124 None , the number is computed ; otherwise , fixed value is

used

125 """

126

127 # Initialize variables

128 metainfo = self. metainfo

129 self.saver = tf.train.Saver ()

130 start_time = time.time ()

131 total_time = 0
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132 model. createTrainOperation ( metainfo . learn_rate )

133 curr_epoch = 1

134 global_step = 0

135 samples_in_epoch = 0

136 UP = np.array ([ False] * metainfo . s_size ) # UP stop criteria

137 val_losses = np.zeros( metainfo . s_size * metainfo . k_size ) #

validation over s strips of size k

138 delta_val_losses = np.array ([np.Inf] * metainfo . k_size )

139 learn_rate = metainfo . learn_rate

140

141 # KL cost anealling starts with weight 0 for the KL diverge loss

term

142 if metainfo . KL_anelling :

143 model. KL_weight = 0

144

145 # Compute size of train set

146 if num_tr_samples is None:

147 num_tr_samples = self. computeNumSamplesInTfRecord ( metainfo .

train_files )

148

149 # Compute size of validation set

150 if num_val_samples is None:

151 num_val_samples = self. computeNumSamplesInTfRecord ( metainfo .

val_files )

152

153 # Creates batch iterator for train set

154 x_train_batch , y_train_batch = self. getBatchIteratorWithTfRecords (

155 metainfo .batch_size , metainfo .epochs , metainfo . train_files ,

shuffle =True)

156

157 # Creates batch iterator for validation set

158 x_val_batch , y_val_batch = self. getBatchIteratorWithTfRecords (

159 1, metainfo .epochs , metainfo .val_files , shuffle =True)

160
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161 # Initialize tf computational graph

162 self. session .run(tf. global_variables_initializer ())

163

164 # Continue while the validation loss didn ’t go up for s strips , nor

the

165 # validation platos ( difference between epochs is always less than

epsilon )

166 while (not all(UP)) and (not all( delta_val_losses < metainfo . epsilon

)):

167 try:

168 # Get next batch

169 x_train , y_train = self. session .run ([ x_train_batch ,

y_train_batch ])

170

171 # Optimize model with current batch

172 model. optimize (x_train , y_train , learn_rate )

173

174 # Time passed so far since the beggining

175 total_time = time.time () - start_time

176

177 if self. verbose and global_step % self. verboseFreq == 0:

178 loss , acc = model. perform (x_train , y_train )

179

180 if samples_in_epoch < num_tr_samples :

181 samples_in_epoch += len( x_train )

182 else:

183 # Cool learn rate

184 if curr_epoch % metainfo . lr_freq == 0:

185 learn_rate = learn_rate * metainfo . lr_decay

186

187 # compute validation error for previous epoch

188 loss , _ = self. computeMeanValidationPerform (

189 model ,

190 x_val_batch ,
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191 y_val_batch ,

192 num_val_samples ,

193 1

194 )

195

196 # Compute UP criteria for early stop

197 val_losses [: -1] = val_losses [1:]

198 val_losses [-1] = loss

199 delta_val_losses = np.abs(np. subtract ( val_losses [-

metainfo . k_size :], val_losses [- metainfo .k_size -1: -1]))

200

201 for j in range (0, metainfo . s_size ):

202 UP[j] = val_losses [(j+1)* metainfo . k_size - 1] >

val_losses [(j+1)* metainfo . k_size - metainfo . k_size ]

203

204 # new epoch

205 samples_in_epoch = 0

206 curr_epoch += 1

207

208 global_step += 1

209

210 if metainfo . KL_anelling :

211 model. increase_KL_weight ()

212 except tf. errors . OutOfRangeError :

213 break

214 return

215

216 def computeMeanValidationPerform (self , model , x_batch , y_batch ,

num_samples , batch_size ):

217 """ Computes the mean performance (loss and accuracy ) on the

validation set

218

219 Arguments :

220 model := class containing the tf computational graph
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221 x_batch := batch iterator for the samples in validation

222 y_batch := batch iterator for the labels in validation

223 num_samples := size of validation set

224 batch_size := batch size for the validation set

225 """

226 total_loss = 0

227 total_acc = 0

228

229 for i in range (0, num_samples , batch_size ):

230 x_val , y_val = self. session .run ([ x_batch , y_batch ])

231 loss , acc = model. perform (x_val , y_val)

232 total_loss = total_loss + ( batch_size * loss)

233

234 if acc is not None:

235 total_acc = total_acc + ( batch_size * acc)

236

237 mean_loss = total_loss / num_samples

238

239 mean_acc = None

240 if total_acc is not None:

241 mean_acc = total_acc / num_samples

242

243 return (mean_loss , mean_acc )

244

245 # Run trained model and returnes the accuracy , and majority class

accuracy

246 def evaluateNetworkWithTfRecord (self , model , tfrecord_filenames , shuffle

=True):

247 total_rights = 0

248 num_samples = 0

249 count_classes = {}

250

251 x_batch , y_batch = self. getBatchIteratorWithTfRecords (1, 1,

tfrecord_filenames , shuffle )
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252

253 while True:

254 try:

255 x_test , y_test = self. session .run ([ x_batch , y_batch ])

256 _, right = model. perform (x_test , y_test )

257 total_rights += right

258 num_samples += 1

259 key = y_test [0]

260 count_classes [key] = count_classes .get(key , 0) + 1

261 except tf. errors . OutOfRangeError :

262 break

263

264 mc = np.max(np.array ([x for x in count_classes . values ()]))

265 return total_rights / num_samples , mc/ num_samples

266

267 # computes reconstruction errors

268 def computeErrors (self , model , tfrecord_filenames , shuffle =False ,

log_file =None):

269 errors_for_labels = {}

270 index = 0

271

272 x_batch , y_batch = self. getBatchIteratorWithTfRecords (1, 1,

tfrecord_filenames , shuffle )

273

274 log = None

275 if log_file is not None:

276 log = open(log_file , ’w’)

277

278 while True:

279 try:

280 x, y = self. session .run ([ x_batch , y_batch ])

281 error = model. computeErrors (x, y)

282 errors_for_labels [y[0]] = errors_for_labels .get(y[0], [])

283 errors_for_labels [y[0]]. append (error)
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284

285 if log is not None:

286 log.write(’image_ {}_{}: MSE = {}\n’. format (y[0], index ,

error))

287 index += 1

288 except tf. errors . OutOfRangeError :

289 break

290

291 if log is not None:

292 log.close ()

293 return errors_for_labels

294

295 def drawImage (self , I, filename , w, h, gray):

296 if I.shape [2] == 1:

297 I = np. resize (I, (h, w))

298 scipy.misc. imsave (filename , I)

299 return

300

301 # Save the autoencoder ’s reconstructed images

302 def reconstrucImages (self , model , tfrecord_filenames , folder , gray=False

, shuffle =False):

303 x_batch , y_batch = self. getBatchIteratorWithTfRecords (1, 1,

tfrecord_filenames , shuffle )

304 index = 0

305

306 if not os.path. exists ( folder ):

307 os. makedirs ( folder )

308

309 while True:

310 try:

311 x, y = self. session .run ([ x_batch , y_batch ])

312 image = model. predict (x)

313

314 if model. threshold is None:



B VAE Implementation 90

315 filename = ’{}/ image_ {}_{}. png ’. format (folder , y[0],

index)

316 else:

317 loss = model. computeErrors (x, y)

318 is_anom = ad. isAnomally (loss , model. threshold )

319 filename = ’{}/ image_ {}_{} _anom_ {}. png ’. format (folder , y

[0], index , is_anom )

320 self. drawImage (image [0], filename , self. metainfo .

target_width , self. metainfo . target_height , gray)

321 index += 1

322 except tf. errors . OutOfRangeError :

323 break

324

325 def tfrecordToImages (self , tfrecord_filenames , folder , gray=False ,

shuffle =False):

326 x_batch , y_batch = self. getBatchIteratorWithTfRecords (1, 1,

tfrecord_filenames , shuffle )

327 index = 0

328

329 if not os.path. exists ( folder ):

330 os. makedirs ( folder )

331

332 while True:

333 try:

334 x, y = self. session .run ([ x_batch , y_batch ])

335 filename = ’{}/ image_ {}_{}. png ’. format (folder , y[0], index)

336 self. drawImage (x[0], filename , self. metainfo . target_width ,

self. metainfo . target_height , gray)

337 index += 1

338 except tf. errors . OutOfRangeError :

339 break

Listing B.2: Deep Learning Operations

1 def thesholdIQR (points , scaler =1.5):
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2 """

3 Computes the threshold for outilers given the known data points using

the

4 interquartile rule

5

6 points : series of known and normal points

7 returns : lower_threshold such that anything bellow it is an anomally ,

8 upper_threshold such that anything above it is an anomaly

9 """

10

11 if scaler is None:

12 return 0, 0

13

14 Q1 = np. percentile (points , 25) # computes 25% percentile

15 Q3 = np. percentile (points , 75) # computes 75% percentile

16 IQR = Q3 - Q1 # interquartile rule

17 lower_threshold = Q1 - scaler *IQR

18 upper_threshold = Q3 + scaler *IQR

19 return lower_threshold , upper_threshold

20

Listing B.3: Interquartile rule

1 def compute_thresshold (operations , model , max_scaler =10):

2 """ Compute best threshold given the reconstruction error ( anomaly

scores )

3

4 Note: We are not considering the outiliers with abnormally low values ,

because

5 this implies a smaller reconstruction error for the anomalies , which

contradicts

6 our assumption for the autoencoders

7 """

8

9 metainfo = operations . metainfo
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10 best_thd = 0

11 best_measure = PerformanceMeasure ()

12 best_rank = -1

13

14 train_anom_score = operations . computeErrors (model , metainfo . train_files )

15 val_anom_score = operations . computeErrors (model , metainfo . val_files )

16

17 for scaler in np. arange (0, max_scaler +1, 0.5):

18 _, upper_threshold = ad. thesholdIQR ( train_anom_score .get(ad.Label.

NORMAL .value , []) , scaler = scaler )

19

20 measure = performDetectionWithThreshold ( val_anom_score .get(ad.Label.

NORMAL .value , []) ,

21 val_anom_score .get(ad.Label. SYNTHETIC_ANOMALY .value , []) ,

upper_threshold )

22

23 if measure . accuracy > best_measure . accuracy :

24 best_measure = measure

25 best_thd = upper_threshold

26 return best_thd , best_measure

Listing B.4: Compute Threshold

1 """"

2 Variation Autoencoder model used for anomaly detection in A-life in the

paper

3 publishe on IEEE COG 2019. This is the refactored

variational_autoencoder2 .py

4

5 Created by: Everton Schumackers Soares

6 Based on: https :// arxiv.org/pdf /1606.05908. pdf

7 """

8

9 import tensorflow as tf

10 import numpy as np
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11 import tensorflow . contrib .slim as slim

12 import tensorflow . contrib . distributions as tds

13

14 from build_network_utils import FullyConnectedNetBuilder as FNNBuilder

15 from build_network_utils import ConvNetworkBuilder as CNNBuilder

16 from abstract_variational_autoencoder import AbstractVAE

17

18 class Autoencoder ( AbstractVAE ):

19 # ==============

20 # Constructor

21 # ==============

22

23 def __init__ (self , metainfo ):

24 super ( Autoencoder , self). __init__ ( metainfo )

25 self. __createInitNetwork__ ( metainfo . code_layer_size )

26 return

27

28

29 # =================

30 # Private Methods

31 # =================

32

33 def __createEncoder__ (self , x, builder ):

34 """

35 Overload abstract method from AbstractVAE

36

37 This function declares the topology of the VAE ’s encoder

38

39 Args:

40 x := input tensor ( tensor given as output by the shared

decoder layers )

41 builder := build_network_utils used to builde the encoder

42 """

43
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44 x = slim. batch_norm (x, activation_fn =None)

45 builder . addConvLayer (name=’encoder_1 ’, num_filters =30, kernel_size

=[11 , 11])

46 builder . addConvLayer (name=’encoder_2 ’, num_filters =20, kernel_size

=[7, 7])

47 builder . addMaxPoolLayer (ksize =[3, 3], strides =(2, 2))

48 builder . addConvLayer (name=’encoder_3 ’, num_filters =15, kernel_size

=[5, 5])

49 builder . addConvLayer (name=’encoder_4 ’, num_filters =15, kernel_size

=[3 , 3], padd=’VALID ’)

50 builder . addConvLayer (name=’encoder_5 ’, num_filters =15, kernel_size

=[3 , 3], padd=’VALID ’)

51 builder . addConvLayer (name=’encoder_6 ’, num_filters =15, kernel_size

=[2 , 2], padd=’VALID ’)

52 builder . addConvLayer (name=’encoder_7 ’, num_filters =10, kernel_size

=[2 , 2], padd=’VALID ’)

53 builder . addConvLayer (name=’encoder_8 ’, num_filters =10, kernel_size

=[2, 2])

54 builder . addMaxPoolLayer (ksize =[3, 3], strides =(2, 2))

55 return builder . buildFullyConvNet (debug=True)

56

57 def __createDecoder__ (self , x, builder ):

58 """

59 Overload abstract method from AbstractVAE

60

61 This function declares the topology of the VAE ’s encoder

62

63 Args:

64 x := input tensor ( tensor given as output by the shared

decoder layers )

65 builder := build_network_utils used to builde the encoder

66 """

67
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68 builder . addDeconvLayer (name=’decoder_8 ’, num_filters =10, kernel_size

=[3 , 3], padd=’VALID ’, strides =[2 ,2])

69 builder . addDeconvLayer (name=’decoder_7 ’, num_filters =15, kernel_size

=[2 , 2], padd=’VALID ’)

70 builder . addDeconvLayer (name=’decoder_6 ’, num_filters =15, kernel_size

=[2 , 2], padd=’VALID ’)

71 builder . addDeconvLayer (name=’decoder_5 ’, num_filters =15, kernel_size

=[3, 3], strides =[2, 2], padd=’VALID ’)

72 builder . addDeconvLayer (name=’decoder_4 ’, num_filters =20, kernel_size

=[3 , 3], padd=’VALID ’)

73 builder . addDeconvLayer (name=’decoder_3 ’, num_filters =20, kernel_size

=[4 , 4], padd=’VALID ’)

74 builder . addDeconvLayer (name=’decoder_2 ’, num_filters =30, kernel_size

=[7, 7])

75 builder . addDeconvLayer (name=’decoder_1 ’, num_filters =1, kernel_size

=[11 , 11])

76 return builder . buildFullyConvNet (x, start_on =’decoder_8 ’, debug=True

)

Listing B.5: VAE topology
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Appendix C

Project Hastur: Details

This appendix details the playstyle (Appendix C.1) and parameters (Appendix C.2) used

when collecting data from Project Hastur.

C.1 Playstyle

Project Hastur’s enemy population (i.e., Proteans) may evolve several types of behaviours

depending on the player’s playstyle. To reduce variance we attempt to fix our playstyle as

follows:

1. towers can only be purchased and placed in the map during the safety period (i.e.,

first seconds of every generation when no Protean spawns);

2. during the rest of the generation, the player can only upgrade or restore the existing

towers;

3. each upgraded and non-upgraded tower must be placed around the same position on

every run.

Our playstyle also follows additional rules for placing the energy matter converters, since

they determine which regions of the map can be used to place new turrets and converters.

They can only be placed in specific regions following the order:
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1. the game starts on generation 0 with the main tower only (Figure C.1);

2. at the beginning generation 0 until end of generation 1, an energy matter converter

must be placed on top of the main base (Figure C.2);

3. from generation 2 to 4, a new energy matter converter must be placed to the left of

the main base (Figure C.3);

4. from generation 5 to 10, an energy matter converter is placed in the top-center of the

screen to protect the civilians’ base (Figure C.4);

5. from generation 11 to 16, a new energy matter converter should be placed to protect

the bridge (Figure C.5);

6. around generation 17 to 20, the last energy matter converter should be placed to

protect the other civilians’ base in the top-left of the screen (Figure C.6);

Additionally, at the begging of each generation, the player can also place turrets in the

allowed spaces. As already mentioned, the player can upgrade or heal turrets at any time as

long as they have enough biomatter.

C.2 Experiment Mode

The data used in our experiments was collected using Project Hastur’s experiment mode

(Figure C.7). The parameters used in this mode are listed bellow. The description of the

parameters was transcribed from the game interface (Polymorphic Games, 2019):

• Map is the map of the experiment;

• Passive Upgrages : Kinectic are the upgrades for Kinectic turrets;

• Passive Upgrages : Fire are the upgrades for Fire turrets;

• Passive Upgrages : Ice are the upgrades for Ice turrets;
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Figure C.1: Project Hastur: beginning of experiment mode, before the player place any
turret or tower.

Figure C.2: Project Hastur: turret and tower configuration on Generation 0.
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Figure C.3: Project Hastur: turret and tower configuration on Generation 2.

Figure C.4: Project Hastur: turret and tower configuration on Generation 6.
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Figure C.5: Project Hastur: turret and tower configuration on Generation 11.

Figure C.6: Project Hastur: turret and tower configuration on Generation 17.
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• Passive Upgrages : Mortar are the upgrades for Mortar turrets;

• Passive Upgrages : Airstrike are the upgrades for Airstrike;

• Passive Upgrages : Robot are the upgrades for Robot;

• Use Subpopulations is “When subpopulations are used, Proteans only reproduce

with Proteans from the same burrow. Otherwise, any Protean in the population can

reproduce with any other Protean. Either way, both fitness functions can be used.”;

• Use Tower Fitness is “Creatures are selected based on how much damage they did to

towers. If you use two fitness functions, half of the population will be selected using

each. If you use subpopulations,half of each burrow will be selected using each. If

there are no fitness functions, there will be no selection and parents will be chosen at

random.”;

• Use Base Fitness is “Creatures are selected based on getting close to the base and

damaging it. If you use two fitness functions, half of the population will be selected

using each. If you use subpopulations,half of each burrow will be selected using each.

If there are no fitness functions, there will be no selection and parents will be chosen

at random.”;

• Population Size is “The number of Proteans spawned per generation.”;

• Tournament Size is “The size of the selection tournament, calculated as a proportion

of the population size.”;

• Mutation Size is “The standard deviation on the Gaussian curve mutations are pulled

from.”;

• Mutation Rate is “Percentage change that any given gene will be mutated.”;

• Starting Genetic Range is “The range the genes on first generation of creatures fall in.

This is symmetrical. If you set a value of 10, te range will be −10 to 10. Will not be

used if load genomes is turned on”;
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• Environmental Noise - Swimming is “Noise added to the genetic value for swimming. A

higher value means that creatures are more likely yo develop swimming more quickly.”;

• Environmental Noise - Jumping is “Noise added to the genetic value for jumping. A

higher value means that creatures are more likely yo develop jumping more quickly.”;

• Invincible is “Turrets and EMCs are invulnerable. Proteans can attack them, but they

will never die.”;

• Reset Experiment at a Generation is “Immediately restarts when a certain generation

is reached. Best used with invincibility turned on.”;

• Generation to Reset At is “Only available if "Reset Experiment at a Generation" is

checked. The experiment will restart at generation 0 when the specific generation is

reached.”;

• Restart on Loss is “Instead of bringing up the game over menu when you lose, the

game will immediatly start over on generation 0 with a new population.”;

• Use People is “Specifies whether the people on the map should be turned off.”;

• Starting Biomatter is “Specifies the amount of biomatter you should have at the start

of the game.”;

• Load Genome is “Load a saved population. The initial population in you experiment

will be made of creatures chosen randomly from the saved population and mutated.

Refresh the list if you externally change the available genomes through the "Manage

Genomes" button.”;

• Load Turret Configuration is “Loads a saved turret configuration. Clicking "Create

Turret Configuration" bellow will take precedence and the selected turret configuration

will not be loaded. Refresh the list if you externally change the available configurations

through the "Manage Turret Configurations" button.”;
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• Manage Genomes is “Open the folder on your computer where genomes are kept to

allow you to rename and delete them.”;

• Manage Turret Configurations is “Open the folder on your computer where configura-

tions are kept to allow you to rename and delete them.”;

• Create Turret Configuration is “Loads the map without any creatures to allow you to

place turrets. Press the "Save Configuration" button and the map will load with your

saved turrets and the experiment will begin.”.

The actual values used in our experiments are in Table C.1.

Figure C.7: Parameters for Project Hastur experiment mode.
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Table C.1: Values for the parameters on Project Hastur experiment mode.

Parameter Value

Map “Crater Mountain”
Passive Upgrages : Kinectic 0 (basic turret)

Passive Upgrages : Fire 0 (basic turret)
Passive Upgrages : Ice 0 (basic turret)

Passive Upgrages : Mortar 0 (basic turret)
Passive Upgrages : Airstrike 0 (basic turret)
Passive Upgrages : Robot 0 (basic turret)

Use Subpopulations true
Use Tower Fitness true
Use Base Fitness true
Population Size 100

Tournament Size 0.2
Mutation Size 0.6
Mutation Rate 0.4

Starting Genetic Range 0.1
Environmental Noise - Swimming 0.3
Environmental Noise - Jumping 0.3

Invincible false
Reset Experiment at a Generation true

Generation to Reset At 20
Restart on Loss true

Use People true
Starting Biomatter 1000

Load Genomes None
Load Turret Configuration None

Manage Genomes not clicked
Manage Turret Configurations not clicked
Create Turret Configuration not clicked


