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Abstract

Aggregating performance measures considerably reduces the complexity of a perfor-

mance evaluation system. This dissertation analyzes the nature and characteristics

of the aggregation of performance measures in institutional settings of multiple tasks

and multiple periods.

In multi-task settings, the number of tasks restricts the feasibility of a statisti-

cally sufficient aggregation and the nature of an economically sufficient aggregation.

Statistical sufficiency of aggregation can be achieved only by multi-dimensional ag-

gregate measures, whose minimum dimensionality is given by the number of tasks. If

the number of aggregate measures is less than the number of tasks, an economically

sufficient aggregation incurs loss of information even if there is no loss of informa-

tion through the likelihood ratio. The results support the use of multi-dimensional

aggregate measures to preserve the information content of performance measures in

multi-task agencies.

In a multi-period setting, the inter-temporal correlations among performance

measures restrict the feasibility of a statistically sufficient aggregation and the na-

ture of an economically sufficient aggregation. When performance measures are

inter-temporally correlated, there is no statistically sufficient aggregation and an

economically sufficient aggregation of the basic measures depends on the effort level

to induce. The optimal aggregation is characterized by the agent’s characteristics

and the economic situation of the agency as well as the statistical properties of

performance measures.

In a long-term contract with multiple tasks, the inter-temporal covariance risk

has a monotonic impact on the endogenous allocation of effort through the op-

timal relative incentive rate. The inter-temporal covariance risk, as well as the

within-period risk premium, prevents the first best allocation of effort from being

endogenously achieved even if the first best allocation is feasible.
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Chapter 1

Introduction



This dissertation analyzes the aggregation of performance measures in settings

with multiple periods and multiple tasks. Each period, an accounting system gen-

erates performance measures to measure and report the managers’ activities for the

period. The performance measures give imperfect information on the managers’ un-

observable activities for the period. In practice, multiple performance measures are

often used on an activity such that those performance measures are complementary

in providing information on the unobservable activity. Also, performance measures

are often inter-temporally correlated such that some information on the future pe-

riod performance measures is available from the realized performance measures.

Aggregation of performance measures is an integral part of accounting. Most

accounting performance measures are aggregated to generate performance measures

at a higher level. For example, segment earnings are aggregated into firm earnings,

and branch production quality measures are aggregated to generate the firm-wide

production quality measure.

By aggregating performance measures, it is possible to considerably reduce the

complexity of a performance evaluation system. A management accountant may

construct aggregated performance measures out of numerous basic performance

measures. In designing a performance evaluation system for managers of a firm, a

management accountant is endowed with the discretion to decide how to aggregate

performance measures. This dissertation raises two questions on the aggregation of

performance measures :

1. Is it possible to construct aggregated performance measures such that no

information on the unobservable activity is lost in the aggregation process?

2. Is it possible to construct aggregated performance measures, which are effi-

cient and optimal for every manager in all firms? Or should a performance evaluation

system be individually designed for each manager such that different managers are

evaluated on different performance measures?

This dissertation employs institutional settings of multiple periods and multiple

tasks in answering the above questions. In a single-period setting with a single-

task, Amershi, Banker, and Datar (1990) show that a “universal”aggregate measure,
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which is good enough to substitute for the basic measures for inducing all effort levels

from every manager in all firms, is rarely feasible because a statistical condition ( “all

a or no a”condition1 ) is not generally satisfied. In settings of multiple periods and

multiple tasks, this dissertation also finds a “universal”aggregate measure generally

infeasible, but the reasons for the infeasibility are qualitatively different from that

of Amershi, Banker, and Datar (1990).

In the chapter on multiple tasks, this dissertation shows that it is not only a

statistical condition ( “all a or no a”condition ) but also the number of aggregated

performance measures and the number of tasks that together decide the feasibility

of a “universal”aggregate measure. In a multi-task setting, the number of tasks

restricts the feasibility of a statistically sufficient aggregation, which is characterized

by no loss of information, and the nature of an economically sufficient aggregation,

which is characterized by no economic loss to the principal. Statistical sufficiency of

aggregation can be achieved only by multi-dimensional aggregate measures, whose

minimum dimensionality is given by the number of tasks. If the number of aggregate

measures is less than the number of tasks, there is no aggregation with no loss of

information. Also, if the number of aggregate measures is less than the number of

tasks, a performance evaluation system should be “tailored”for each manager such

that different managers are evaluated on different performance measures.

In the chapter on multiple periods, this dissertation shows that it is not only

a statistical condition ( “all a or no a”condition ) but also the existence of the

inter-temporal correlations among performance measures that prevents a “univer-

sal”aggregate measure. In a multi-period setting, the inter-temporal correlations

among performance measures restrict the feasibility of a statistically sufficient ag-

gregation and the nature of an economically sufficient aggregation. As long as

performance measures are inter-temporally correlated, there is no aggregation with

no loss of information in the aggregation process and an optimal aggregate mea-

sure depends on the characteristics of a manager and the economic situation of a
1 The “all a or no a”condition was discussed in Holmstrom (1979) and Amershi, Banker, and

Datar (1990), and implies no loss of information through the likelihood ratio. The technical detail
is presented with Definition 8.
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firm. Thus, in a multi-period setting, a performance evaluation system should be

“tailored”for each manager such that different managers are evaluated on different

performance measures.

Finally, in the chapter on relative incentive rates, this dissertation shows that the

inter-temporal covariance risk of performance measures, as well as the within-period

risk premium, prevents the first best allocation of effort from being achieved even

if the first best allocation is feasible. In the presence of inter-temporal correlations

among performance measures, the first best allocation of effort is not optimal to

the principal. The endogenous allocation of effort is examined through the optimal

relative incentive rate. As the analysis is extended to a multi-period and multi-task

setting, the optimal relative incentive rate is no longer explained by the relative

“signal-to-noise”ratio of performance measures. In particular, the compensation

risk regarding the inter-temporal covariance of performance measures affects the

relative incentive rate such that a performance measure with bigger inter-temporal

covariance risk is assigned a weaker relative incentive rate.
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Chapter 2

Multiple Tasks



2.1 Introduction

Aggregating performance measures can considerably reduce the complexity of per-

formance measurement and evaluation systems. However, if a significant loss of

information is incurred in an aggregation process, the aggregation of performance

measures might not be desirable.

Since proposed by Kaplan and Norton (1992, 1993), the balanced scorecard has

been widely practiced in businesses. Although there have been many studies and a

rich literature on the balanced scorecard, they are largely silent on the aggregation

side of the balanced scorecard as addressed in Datar, Kulp, and Lambert (2001).

This study shows in a multi-task setting that aggregating performance measures

into a single aggregate measure generally incurs loss of information and that the use

of multiple aggregate measures is necessary to preserve the information content of

performance measures.

When a management accountant designs a performance evaluation system for

providing incentive compensation to managers, the management accountant may

aggregate the basic performance measures into a smaller number of aggregate per-

formance measures. In designing the performance evaluation system, an important

question is whether the aggregate performance measures can carry all the informa-

tion from the basic performance measures without losing any information in the

aggregation process. Another question is whether the aggregate performance mea-

sures can be commonly used for all managers or should be individually “tailored”for

each manager such that different managers are evaluated on different performance

measures.

These questions are more clearly answered in a multi-task setting, in which the

information content of performance measures is richer than that in a single-task

setting. Typically, managers undertake multiple tasks. For example, a manager

may work as a cost-center and also be responsible for quality control. Motivating

managers for multiple tasks is qualitatively different from a single-task setting as

the allocation of effort among tasks is considered (Holmstrom and Milgrom 1991;
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Feltham and Xie 1994; Datar, Kulp, and Lambert 2001). This study shows that

the number of aggregate performance measures and the number of tasks are to-

gether critical in answering the questions raised above. If the number of aggregate

performance measures is no less than the number of tasks, it is possible to have a

universal evaluation system, in which the aggregate performance measures do not

lose any information in the aggregation process and also the same aggregate perfor-

mance measures are used for all managers, for inducing all effort levels, and even

for all firms.

Otherwise, if the number of aggregate performance measures is less than the

number of tasks, then it is no longer possible to have a universal evaluation sys-

tem. In this case, aggregate performance measures incur loss of information in the

aggregation process, and the optimality of a certain set of aggregate performance

measures is limited to a specific manager, for inducing a specific level of effort, and

in a specific firm. Different aggregate performance measures should be used for

different managers in different settings.

In answering the aforementioned questions, this study employs a principal-agent

model and examines the following questions. In multi-task settings, this study asks

whether it is possible to construct a one-dimensional aggregate measure, that is

good enough to substitute for the basic measures in all agencies. If not, this study

questions the minimum dimensionality of multiple aggregate measures, which are

good enough to substitute for the basic measures in all agencies. For an aggrega-

tion to be “universally”good for all agencies, the aggregation should incur no loss of

information regardless of the characteristics of the agency ( utility functions of the

participants ) and regardless of the economic condition of the agency ( the agent’s

effort to induce ). Such an aggregation is statistically sufficient and the aggregate

measures are sufficient statistics, which are determined only by the statistical prop-

erties of performance measures.

The next question in multi-task settings is on the nature of aggregate measures,

which are good enough to substitute, with no economic loss to the principal, for

the basic measures in the contract for inducing a single effort level. Such an ag-

7



gregation is economically sufficient and the aggregate measures can depend on the

characteristics of the agency ( utility functions of the participants ) and the eco-

nomic condition of the agency ( the agent’s effort to induce ). The final question

in multi-task settings is whether an economically sufficient aggregation necessarily

incurs loss of information.

This study introduces a hierarchy of sufficiency concepts of aggregation of perfor-

mance measures, and examines the feasibility and the nature of sufficient aggregation

of performance measures in multi-task settings. This study extends the analysis on

the sufficient aggregation of Amershi, Banker, and Datar (1990) not only to multi-

task settings but also for the implementation of arbitrary effort levels as opposed to

only the optimal effort level.

For statistical sufficiency of aggregation, this study shows that in general, no

one-dimensional sufficient statistic exists when the analysis is extended to a multi-

task setting. In addition, this study also shows that in general, no one-dimensional

sufficient implementation statistic, which requires statistical sufficiency for a single

effort level instead of all effort levels, exists in a multi-task setting. Instead, statisti-

cal sufficiency of aggregation can be achieved only by multi-dimensional ( aggregate )

measures. This study shows in a multi-task setting that the minimum dimensional-

ity of statistically sufficient aggregate measures is the number of tasks. In general,

the number of aggregate measures should be no less than the number of tasks in or-

der to preserve the information content of performance measures in the aggregation

process.

For economic sufficiency of aggregation, this study analyzes the efficient aggrega-

tion of performance measures, that is the aggregation in the minimum cost contract

for inducing an exogenously fixed arbitrary effort level. This study shows in a multi-

task setting that if the number of aggregate measures is less than the number of

tasks, an economically sufficient aggregation incurs loss of information and conveys

strictly less information than the basic measures. This result implies that if the

dimension of aggregation is smaller than that of the effort level to induce, an eco-

nomically sufficient aggregation depends on the characteristics of the agency and
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takes varying forms for each manager and each firm.

This study contributes to the literature by first discussing the sufficient aggrega-

tion of performance measures in multi-task settings. The informativeness condition

in Holmstrom (1979) proposes that additional performance measures are informative

on the agent’s unobservable effort unless the existing measure is a sufficient statis-

tic. The result of Holmstrom (1979) implies that the concept of sufficient statistics

characterizes the optimal aggregation of performance measures. On the other hand,

Amershi, Banker, and Datar (1990) show that sufficient statistics do not generally

characterize the optimal aggregation of performance measures, but the optimal ag-

gregation is generally economically sufficient and agency-specific. The study shows

that because a statistical condition ( “all a or no a”condition ) is generally not satis-

fied, the optimal aggregate measures are agency-specific and not sufficient statistics.

The analyses in Holmstrom (1979) and Amershi, Banker, and Datar (1990) are re-

stricted to a single-task and single-period setting. Recently, Christensen, Şabac,

and Tian (2010) analyze the efficient contract in multi-task agencies and discuss

the role of the likelihood ratio and the variance of the likelihood ratio in ranking

performance measures.

In a multi-task setting, this study shows that the concept of sufficient statistics

is too restrictive to characterize the optimal aggregation of performance measures.

Although the restrictiveness of the concept of sufficient statistics found in this study

is similar to that of Amershi, Banker, and Datar (1990) in a single-task setting, the

reason for the restrictiveness in a multi-task setting is qualitatively different from

that of a single-task setting. This study shows that it is not only a statistical

condition ( “all a or no a”condition ) but also a multi-task setting that causes the

optimal aggregate measures to be agency-specific and not sufficient statistics. In a

multi-task setting, the number of tasks, in addition to a statistical condition ( “all

a or no a”condition ), is a constraining factor that causes the optimal aggregation

to be agency-specific. In particular, this study shows that, even when the “all a or

no a”condition is satisfied, the optimal aggregation of performance measures is not

statistically sufficient if the number of aggregate measures is less than the number
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of tasks.

Taking the two-stage optimization approach of Grossman and Hart (1983), this

study analyzes the efficient aggregation as opposed to the optimal aggregation of

performance measures. The optimal aggregation is regarded as a special case of the

efficient aggregation. Most previous studies, including Banker and Datar (1989) and

Amershi, Banker, and Datar (1990), focus on the optimal aggregation, that is the

aggregation in equilibrium to induce the endogenously determined optimal effort

level. This study also contributes to the literature by extending the analysis of

aggregation from the optimal aggregation to the efficient aggregation to induce an

exogenously fixed effort level, which is not necessarily optimal.

The rest of this study is organized as follows : Section 2 discusses the suffi-

ciency concepts for aggregation of performance measures. Section 3 analyzes the

sufficient statistic in multi-task settings. Section 4 analyzes the sufficient implemen-

tation statistic in multi-task settings. Section 5 analyzes the economically sufficient

aggregation in multi-task settings. Section 6 concludes the study.

2.2 Sufficiency concepts for aggregation of performance

measures

Before reviewing the sufficiency concepts for aggregation, it may be helpful to look

at an agency, in which a risk neutral principal induces productive effort from a risk

averse agent by offering a contract. The general setting in this study, unless specified

otherwise, involves multiple tasks :

~a = (a1, a2, · · · , ap) ∈ Rp (2.1)

and multiple performance measures :

~y = (y1, y2, · · · , yq) ∈ Rq. (2.2)
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Assume that there are at least as many performance measures (y1, y2, · · · , yq) as the

number of tasks (a1, a2, · · · , ap) : p ≤ q.

Following the two-stage optimization approach of Grossman and Hart (1983),

this study analyzes the efficient contract, which is to induce an exogenously fixed

arbitrary effort level at the minimum cost. The optimal contract, which is to induce

the endogenously determined optimal effort level, is regarded as a special case of

the efficient contract. Assume that the agent’s utility function has an additively

separable action cost :

Ua (C( ~y ), ~a ) = U (C ( y1, y2, · · · , yq ) )− v ( a1, a2, · · · , ap ) , (2.3)

where C (·) denotes the contract, U (·) is the agent’s utility of consumption function,

and v (·) is the agent’s cost of action. The agent’s expected utility is as follows :

E [Ua (C( ~y ), ~a ) ] =
∫
· · ·
∫
U (C ( y1, y2, · · · , yq ) ) d (~y |~a) dy1 · · · dyq

− v ( a1, a2, · · · , ap ) ,
(2.4)

where

d (~y |~a) = d ( y1, y2, · · · , yq | a1, a2, · · · , ap ) (2.5)

is the joint density function of the basic measures ( y1, y2, · · · , yq ). Without loss of

generality, the participation constraint is :

E [Ua (C( ~y ), ~a ) ] ≥ 0 , (2.6)

and the incentive compatibility constraint, taking the first order approach, is :

∇aE [Ua (C( ~y ), ~a ) ]

=
∫
···
∫
U (C ( y1, y2, · · · , yq ) )∇ad (~y |~a) dy1 · · · dyq −∇av ( a1, a2, · · · , ap )

= 0 ,
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(2.7)

where∇a denotes the gradient vector of partial derivatives (∂/∂a1, ∂/∂a2, · · · , ∂/∂ap).1

The efficient contract for inducing an exogenously fixed effort level ( a1, a2, · · · , ap )

is obtained by minimizing the expected compensation :

E [C ( y1, y2, · · · , yq ) ] =
∫
· · ·
∫
C ( y1, y2, · · · , yq ) d (~y |~a) dy1 · · · dyq , (2.8)

subject to the participation constraint (2.6) and the incentive compatibility con-

straint (2.7) .

max
C, λ, ~µ

L = −E [C ( y1, y2, · · · , yq ) ]+λE [Ua (C( ~y ), ~a ) ]+~µ·∇aE [Ua (C( ~y ), ~a ) ] ,

(2.9)

where λ is a Kuhn-Tucker multiplier and ~µ = (µ1, µ2, · · · , µp ) is a vector of La-

grange multipliers. The first order condition with respect to the contract

C ( y1, y2, · · · , yq ) is :

∂ L
∂ C

= −
∫
···
∫
d (~y |~a) dy1 · · · dyq

+λ
∫
···
∫
U ′ (C ( y1, y2, · · · , yq ) ) d (~y |~a) dy1 · · · dyq

+~µ ·
∫
···
∫
U ′ (C ( y1, y2, · · · , yq ) )∇ad (~y |~a) dy1 · · · dyq = 0 .

(2.10)

Therefore, the efficient contract C ( y1, y2, · · · , yq ) in inducing an exogenously fixed

effort level ( a1, a2, · · · , ap ) is characterized by :

1
U ′ (C ( y1, y2, · · · , yq ) )

= λ+ ~µ · L (~y |~a) , (2.11)

where

L (~y |~a) =
∇ad (~y |~a)
d (~y |~a)

(2.12)

1 The first order approach is justified if local incentive compatibility implies global incentive
compatibility, which is not always the case (Christensen and Feltham 2005, Page 66 ).
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is the likelihood ratio of the joint density function d (~y |~a) (2.5). From (2.11), it is

apparent that the likelihood ratio L (~y |~a) (2.12) represents the statistical properties

of the basic performance measures ~y = ( y1, y2, · · · , yq ) for incentive contracting

purposes.

The efficient contract C (~y) in (2.11) depends on the characteristics of the agency

participants ( the agent’s utility function U (·) ) and the economic condition of the

agency ( the effort level to induce ~a = ( a1, a2, · · · , ap ) ). The denominator of

the left hand side of (2.11) depends on the agent’s utility function U (·) and the

numerator results from the risk neutrality of the principal. The right hand side of

(2.11) depends on the effort level to induce ~a, which in turn depends on the economic

condition of the agency, through the likelihood ratio L (~y |~a) and the vector of

Lagrange multipliers ~µ. The vector of Lagrange multipliers ~µ in (2.11) is endogenous

and generally cannot be explicitly solved out. As the left hand side of (2.11) depends

on the agent’s utility function U (·), the vector of Lagrange multipliers ~µ generally

depends on the agent’s utility function U (·) as well as the effort level to induce ~a.

2.2.1 Hierarchy of sufficiency concepts for aggregation

The literature has discussed several sufficiency concepts for aggregation of perfor-

mance measures : statistical sufficiency for all effort levels ( [1] ), statistical suffi-

ciency for a single effort level ( [2] ), economic sufficiency for an arbitrary effort level

( [3] ), and economic sufficiency for the optimal effort level ( [4] ). The four sufficiency

concepts for aggregation of performance measures are in the order of diminishing

requirement ( [1] ⇒ [2] ⇒ [3] ⇒ [4] ). Amershi, Banker, and Datar (1990) discuss

statistical sufficiency for all effort levels ( [1] ) and economic sufficiency for the opti-

mal effort level ( [4] ) in the basic setting of a single-task and single-period agency,

but statistical sufficiency for a single effort level ( [2] ) and economic sufficiency for an

arbitrary effort level ( [3] ) are not discussed in Amershi, Banker, and Datar (1990).

Statistical sufficiency for a single effort level ( [2] ) and economic sufficiency for

an arbitrary effort level ( [3] ) involve an exogenously fixed ( single ) effort level to

induce. As Şabac (2009) discusses, the dual roles, imposed on performance measures,
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of the optimal decision making ( the optimal effort level to induce ) and the efficient

use of information ( the sufficient aggregation of performance measures ) become

more difficult to disentangle, as institutionally richer settings such as multi-task

settings are employed. Using an exogenously fixed ( single ) effort level ( [2] and [3] )

makes it possible to separate the dual roles of performance measures and helps one

to concentrate on the efficient use of information. Moreover, using an exogenously

fixed ( single ) effort level ( [2] and [3] ) is relevant to the analysis in decentralized

agencies. For example, when the headquarters decide the production level of a

division and the division figures out the optimal way of attaining the production

level, an exogenously fixed effort level is relevant to the decision problem of the

division.

While the problem of inducing the agent’s effort generally depends on the agent’s

utility function Ua(·) and the agent’s effort level to induce ~a, the first question on

the aggregation of performance measures is whether it is possible to construct an

aggregate measure with no loss of information regardless of the characteristics of the

agency participants ( the agent’s utility function Ua(·) ) and the economic condition

of the agency ( the effort level to induce ~a = ( a1, a2, · · · , ap ) ). The concept of

statistical sufficiency represents no loss of information in the aggregation process for

all utility functions Ua(·) and for all effort levels to induce ~a. In fact, the concept

of statistical sufficiency is not restricted to agencies and a statistically sufficient

aggregation incurs no loss of information for all kinds of decision problems, including

agencies.

An analogy of the principal inferring the agent’s unobservable effort level to

a statistician inferring the unknown parameter values ( in this case the effort ~a )

is helpful. If a set of aggregate measures exists that contains all the information

from the basic measures, the statistician can work with a simpler set of signals

and incur no loss of information in drawing inferences concerning the unknown

parameters. Such a set of aggregate measures is statistically sufficient for the ba-

sic measures with respect to the parameters. Provided with a set of statistically

sufficient aggregate measures, which is by nature “utility-independent”and “effort-
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independent,”the principal incurs no loss of information on the agent’s unobservable

effort level in the aggregation process.

Statistical sufficiency for all effort levels ( [1] ) is defined in terms of aggregate

measures being sufficient statistics for the basic measures ~y = ( y1, y2, · · · , yq ) with

respect to the agent’s unobservable effort ~a = ( a1, a2, · · · , ap ) ∈ Rp. Amershi and

Hughes (1989) discuss the role of a one-dimensional sufficient statistic for inducing

the agent’s effort. In this study, the concept of statistical sufficiency is not limited to

a one-dimensional aggregate measure but extended to multi-dimensional aggregate

measures.

Definition 1 ( Statistical sufficiency for all effort levels [1] )

An aggregation is statistically sufficient for all effort levels if, and only if, there

are non-trivial jointly sufficient statistics
−−−→
T (~y) of the basic measures

~y = ( y1, y2, · · · , yq ) :

−−−→
T (~y) = (T1 (~y) , T2 (~y) , · · · , Tj (~y) ) , j ≤ q . (2.13)

For j = 1, T (~y) is a one-dimensional sufficient statistic of the basic measures.

When an aggregation is statistically sufficient for all effort levels, the aggregate

measures are determined only by the statistical properties of the basic measures.

That is, the same aggregation
−−−→
T (~y) = (T1 (~y) , T2 (~y) , · · · , Tj (~y) ) is good enough

to substitute for the basic measures ~y = ( y1, y2, · · · , yq ) for all utility functions

Ua(·) and for all effort levels to induce ~a. The existence of sufficient statistics
−−−→
T (~y)

is shown by the factorization criterion ( DeGroot 1986, Page 364 ; 1970, Page 156 ).

Definition 2 ( Sufficient statistic ; factorization criterion )

The statistics
−−−→
T (~y) = (T1 (~y) , T2 (~y) , · · · , Tj (~y) ) are jointly sufficient for the

basic measures ~y = ( y1, y2, · · · , yq ) if, and only if, the joint density function d (~y |~a)

(2.5) is factorized for all effort levels ~a = ( a1, a2, · · · , ap ) ∈ Rp :

d (~y |~a) = u ( y1, y2, · · · , yq ) v (T1 (~y) , T2 (~y) , · · · , Tj (~y) ; a1, a2, · · · , ap ) , (2.14)
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where u (·) and v (·) are non-negative functions. The function v (·) depends on the

basic measures ( y1, y2, · · · , yq ) only through
−−−→
T (~y) = (T1 (~y) , T2 (~y) , · · · , Tj (~y) ).

In particular, a one-dimensional statistic T (~y) is sufficient for the basic measures

~y = ( y1, y2, · · · , yq ) if, and only if, the factorization criterion (2.14) is satisfied

with T (~y) for all effort levels ~a = (a1, a2, · · · , ap) ∈ Rp such that the function v (·)

depends on the basic measures ( y1, y2, · · · , yq ) only through T (~y).

The basic measures ( y1, y2, · · · , yq ) are trivial jointly sufficient statistics as the

basic measures themselves trivially satisfy the factorization criterion (2.14). The

discussion in the sequel excludes the trivial jointly sufficient statistics since they do

not help in reducing the complexity of an information system.

A statistically sufficient aggregation is characterized by no loss of information

in the aggregation process for all utility functions Ua(·) and for all effort levels to

induce ~a, and actually for all kinds of decision problems. The aggregate measures

(T1 (~y) , T2 (~y) , · · · , Tj (~y) ) are jointly sufficient statistics for the basic measures

( y1, y2, · · · , yq ) with respect to the agent’s unobservable effort ( a1, a2, · · · , ap ) if

observing the aggregate measures without observing the basic measures is as useful

as observing the basic measures in estimating all levels of the agent’s effort. All the

information relevant to estimating the agent’s unobservable effort ( a1, a2, · · · , ap ) is

preserved and passed onto the sufficient statistics (T1 (~y) , T2 (~y) , · · · , Tj (~y) ) from

the basic measures ( y1, y2, · · · , yq ).

While preserving all the relevant information, sufficient statistics enable an in-

formation system to work with a simpler set of measures than the basic measures.

As the value of sufficient statistics comes from simplicity, the simplest sufficient

statistics are of interest. The minimal sufficient statistics are the simplest set of

jointly sufficient statistics and defined as follows ( DeGroot 1986, Page 368 ).

Definition 3 (Minimal statistical sufficiency )

A set of sufficient statistics is minimal if it can be represented as a function of

any other sufficient statistics.

Obviously, when a one-dimensional sufficient statistic exists, the minimal sufficient
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statistic is one-dimensional.

Although statistical sufficiency of aggregation is clearly defined in terms of suf-

ficient statistics, the requirement is excessively strong for the effort-inducement

purpose in an agency context. Gjesdal (1981) shows that the incentive ( agency )

objective and the decision-making objective do not give rise to identical rankings of

information systems. For the purpose of controlling the agent’s effort, the required

information may be different from that for decision-making purposes.

Whereas sufficient statistics incur no loss of information for all kinds of decision

problems as well as for all kinds of the agent’s utility functions Ua(·) and all effort

levels to induce ~a, the problem of aggregating performance measures often arises in

an agency setting. In addition, the principal may aim at inducing a certain level of

effort rather than all effort levels from the agent.

Thus, it is natural to ask whether it is possible to construct an aggregate measure

with no loss of information in inducing a single effort level, rather than all effort

levels, in an agency context. In particular, the question is whether a set of aggregate

measures, which contains all the information from the basic measures regardless of

the characteristics of the agency participants ( the agent’s utility function Ua(·) ),

exists when the agent’s induced effort is fixed at a single level. Such a set of aggregate

measures is statistically sufficient for a single effort level as opposed to all effort

levels. With a set of “utility-independent”aggregate measures, the principal incurs

no loss of information in the aggregation process for inducing a single effort level.

Statistical sufficiency for a single effort level ( [2] ) is attained by a set of aggregate

measures, which is statistically sufficient for a single effort level.

Definition 4 ( Statistical sufficiency for a single effort level [2] )

For inducing a single effort level ~a = ( a1, a2, · · · , ap ) ∈ Rp, an aggregation is

statistically sufficient if there is a set of jointly sufficient implementation statistics
−−−−−→
ψ (~y; ~a) of the basic measures ~y = ( y1, y2, · · · , yq ) :

−−−−−→
ψ (~y; ~a) = (ψ1 (~y; ~a) , ψ2 (~y; ~a) , · · · , ψj (~y; ~a) ) , j ≤ q . (2.15)
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For j = 1, ψ (~y; ~a) is a one-dimensional sufficient implementation statistic of the

basic measures for inducing a single effort level.

Following Christensen and Feltham ( 2005, Page 101 ), jointly sufficient implementa-

tion statistics are defined in terms of the likelihood ratio L (~y |~a) (2.12) as follows :

Definition 5 ( Sufficient implementation statistic )

For inducing a single effort level ~a = ( a1, a2, · · · , ap ) ∈ Rp, the statistics
−−−−−→
ψ (~y; ~a) = (ψ1 (~y; ~a) , ψ2 (~y; ~a) , · · · , ψj (~y; ~a) ) are jointly sufficient implementation

statistics if for all ψ ∈ Ψ ⊂ Rj it holds that

L(~y ′|~a) = L(~y ′′|~a), ∀ (~y ′, ~y ′′) ∈ ~Y (ψ) ≡ {~y ∈ ~Y |
−−−−−→
ψ (~y; ~a) = ψ} . (2.16)

Definition 5 is satisfied if, and only if, the likelihood ratio L (~y |~a) can be written

as a function q (·), which depends on the basic measures ~y = ( y1, y2, · · · , yq ) only

through a set of jointly sufficient implementation statistics
−−−−−→
ψ (~y; ~a) = (ψ1 (~y; ~a) , ψ2 (~y; ~a) , · · · , ψj (~y; ~a) ) :

L (~y |~a) =
∇ad (~y |~a)
d (~y |~a)

= q (ψ1 (~y; ~a) , ψ2 (~y; ~a) , · · · , ψj (~y; ~a) ) . (2.17)

In particular, for inducing a single effort level ~a = ( a1, a2, · · · , ap ) ∈ Rp, if condition

(2.17) is satisfied with a one-dimensional statistic
−−−−−→
ψ (~y; ~a) = ψ (~y; ~a), then ψ (~y; ~a)

is a one-dimensional sufficient implementation statistic.

The key qualification for a set of jointly sufficient implementation statistics is

that it should generate the same likelihood ratio as the basic measures in inducing

a single fixed effort level; the likelihood ratio can be written as a function of a set

of jointly sufficient implementation statistics
−−−−−→
ψ (~y; ~a) as in (2.17). A set of sufficient

implementation statistics can induce a single effort level across agencies regardless

of the agent’s utility function Ua(·). In the characterization of the efficient contract

(2.11), the vector of Lagrange multipliers ~µ generally depends on the agent’s utility

function U (·). When the likelihood ratio L (~y |~a) is represented as a function of

a set of jointly sufficient implementation statistics
−−−−−→
ψ (~y; ~a) as in (2.17), the set of
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jointly sufficient implementation statistics
−−−−−→
ψ (~y; ~a) substitutes for the basic measures

~y regardless of the agent’s utility function U (·) in (2.11).

Statistical sufficiency of aggregation for all effort levels implies statistical suf-

ficiency for a single effort level ( [1] ⇒ [2] ), but the converse is not true. A set

of jointly sufficient statistics
−−−→
T (~y) = (T1 (~y) , T2 (~y) , · · · , Tj (~y) ) is always a set of

jointly sufficient implementation statistics.

Proposition 1 ( [1] ⇒ [2] )

If an aggregation of performance measures is statistically sufficient for all effort

levels, then the aggregation is statistically sufficient for any single fixed effort level.

If there is no loss of information from the aggregation process in inducing all effort

levels, then there is no loss of information in inducing any single effort level.

While statistical sufficiency of aggregation requires no loss of information in the

aggregation process, economic sufficiency of aggregation requires no economic loss

to the principal although there can be some loss of information in the aggregation

process. Now, the question on the aggregation of performance measures is whether

it is possible to construct an aggregate measure in inducing a single effort level with

no economic loss to the principal as opposed to no loss of information. Such an

aggregate measure is economically sufficient and can depend both on the charac-

teristics of the agency participants ( the agent’s utility function Ua(·) ) and on the

economic condition of the agency ( the effort level to induce ~a ). Economic suffi-

ciency of aggregation ( [3] and [4] ) is attained by a set of aggregate measures, which

is economically sufficient for a single effort level.

Definition 6 ( Economic sufficiency for an arbitrary effort level [3] )

An aggregation of performance measures is economically sufficient for a single

effort level if there exist a set of aggregate measures :

−−−−−−−−−−→
ζ (~y ; Ua(·),~a) =

(
ζ1 (~y ; Ua(·),~a) , ζ2 (~y ; Ua(·),~a) , · · · , ζj (~y ; Ua(·),~a)

)
(2.18)

and a function l (·) such that the set of aggregate measures
−−−−−−−−−−→
ζ (~y ; Ua(·),~a) can be
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substituted for the basic measures ~y = ( y1, y2, · · · , yq ) in the efficient contract to

induce a single effort level ( a1, a2, · · · , ap ) ∈ Rp :

C ( ~y ) = l
(−−−−−−−−−−→
ζ (~y ; Ua(·),~a)

)
, (2.19)

where the function l (·) depends on the basic measures ~y = ( y1, y2, · · · , yq ) only

through the aggregate measures
−−−−−−−−−−→
ζ (~y ; Ua(·),~a).

A set of economically sufficient aggregate measures
−−−−−−−−−−→
ζ (~y ; Ua(·),~a) can depend on the

agent’s utility function Ua(·) and the effort level to induce ~a. In the characterization

of the efficient contract (2.11), the term ~µ · L (~y |~a) depends on the agent’s utility

function U (·) as well as the effort level to induce ~a because the vector of Lagrange

multipliers ~µ generally depends on the agent’s utility function U (·) and the effort

level to induce ~a.

For inducing a single effort level, the principal is as well off with a set of eco-

nomically sufficient aggregate measures
−−−−−−−−−−→
ζ (~y ; Ua(·),~a) as with the basic measures

~y = ( y1, y2, · · · , yq ). When an aggregation is economically sufficient, the aggregate

measure of the basic measures can vary depending on the agent’s utility function

Ua(·) in inducing a single effort level. That is, some aggregation
−−−−−−−−−−→
ζ (~y ; Ua(·),~a)

may be good enough to substitute for the basic measures ~y = ( y1, y2, · · · , yq ) in

the efficient contract for inducing a single effort level ~a = ( a1, a2, · · · , ap ) ∈ Rp,

but the aggregation can depend on the agent’s utility function Ua(·), which is an

agency-specific factor.

Whereas statistically sufficient aggregate measures ( sufficient statistics
−−−→
T (~y) and

sufficient implementation statistics
−−−−−→
ψ (~y; ~a) ) are independent of the agent’s utility

function Ua(·) and thus agency-independent, relaxing the requirement of no infor-

mation loss may allow economically sufficient aggregate measures
−−−−−−−−−−→
ζ (~y ; Ua(·),~a) to

depend on the agent’s utility function Ua(·). As the agent’s utility function Ua(·) is

agency-specific, an economically sufficient aggregation is, by nature, specific to an

agency as opposed to the agency-independence of a statistically sufficient aggrega-

tion.
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Statistical sufficiency of aggregation for a single effort level implies economic

sufficiency of aggregation for the single effort level ( [2] ⇒ [3] ), but the converse is

not true.

Proposition 2 ( [2] ⇒ [3] )

Assume that the agent’s utility function has a separable action cost. For inducing

an exogenously fixed single effort level, if an aggregation of performance measures is

statistically sufficient, then the aggregation is economically sufficient.

Proposition 2 shows that if the agent’s utility function has a separable action cost

( additively or multiplicatively ), a set of jointly sufficient implementation statis-

tics
−−−−−→
ψ (~y; ~a) = (ψ1 (~y; ~a) , ψ2 (~y; ~a) , · · · , ψj (~y; ~a) ) for a single effort level ~a =

( a1, a2, · · · , ap ) ∈ Rp is always economically sufficient for the single effort level.

If there is no loss of information from an aggregation process in inducing a single

effort level, then the principal can, with no economic loss, replace the basic measures

with the aggregate measures in an efficient contract for inducing the single effort

level.

Finally, the aggregation of performance measures
−−−−−−−−−−−→
ζ
(
~y ; Ua(·),~a†

)
in inducing

the second-best effort level ~a† =
(
a†1, a

†
2, · · · , a

†
p

)
∈ Rp is a special case of the

economically sufficient aggregation
−−−−−−−−−−→
ζ (~y ; Ua(·),~a) in inducing an arbitrary effort

level ~a = ( a1, a2, · · · , ap ) ∈ Rp.

Definition 7 ( Economic sufficiency for the optimal effort level [4] )

For inducing the endogenously determined optimal effort level

~a† =
(
a†1, a

†
2, · · · , a

†
p

)
∈ Rp, an aggregation of performance measures is economically

sufficient if there exist a set of aggregate measures :

−−−−−−−−−−−→
ζ
(
~y ; Ua(·),~a†

)
=
(
ζ1

(
~y ; Ua(·),~a†

)
, ζ2

(
~y ; Ua(·),~a†

)
, · · · , ζj

(
~y ; Ua(·),~a†

) )
(2.20)

and a function l† (·) such that the set of aggregate measures
−−−−−−−−−−−→
ζ
(
~y ; Ua(·),~a†

)
can be
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substituted for the basic measures ~y = ( y1, y2, · · · , yq ) in the optimal contract C† :

C† ( ~y ) = l†
(−−−−−−−−−−−→
ζ
(
~y ; Ua(·),~a†

))
, (2.21)

where the function l† (·) depends on the basic measures ~y = ( y1, y2, · · · , yq ) only

through the aggregate measures
−−−−−−−−−−−→
ζ
(
~y ; Ua(·),~a†

)
.

As the optimal contract C† ( ~y ), which implements the second-best effort level ~a†, is

a special case of the efficient contract C ( ~y ), an economically sufficient aggregation
−−−−−−−−−−→
ζ (~y ; Ua(·),~a) for an arbitrary single effort level always implies an economically

sufficient aggregation
−−−−−−−−−−−→
ζ
(
~y ; Ua(·),~a†

)
for the optimal effort level ( [3] ⇒ [4] ). As

the optimal effort level to induce ~a† depends on the economic condition of the

agency and the agent’s utility function Ua(·), an economically sufficient aggregation
−−−−−−−−−−−→
ζ
(
~y ; Ua(·),~a†

)
for the optimal effort level is agency-specific.

2.2.2 Joint distributions of performance measures

This section introduces the joint distributions of performance measures for the anal-

ysis in the sequel. If the sufficient aggregation is linear in the basic measures, not

only the analysis is more tractable but also the relative incentive rate on the basic

measures is defined. Banker and Datar (1989) use a family of joint distributions,

under which the economically sufficient aggregation for the optimal effort level ( [4] )

is linear in the basic measures. This study introduces a subfamily of joint distri-

butions used in Banker and Datar (1989) and Amershi, Banker, and Datar (1990),

under which every sufficient aggregation ( [1], [2], [3], [4] ) is linear in the basic mea-

sures.

With q-dimensional basic measures ~yq = ( y1, y2, · · · , yq ) ∈ Rq and p-dimensional

tasks ~ap = ( a1, a2, · · · , ap ) ∈ Rp ( p ≤ q ), the exponential family of joint density

functions ( DeGroot 1970, Page 161 ) can be written as follows :

ρ(~yq; ~ap) = exp
[ k∑

i=1

gi(~ap)hi(~yq) + α(~ap) + β(~yq)
]
, (2.22)
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where gi(·), hi(·), α(·), and β(·) are functions. If the likelihood ratio (2.12) is linear

in the basic measures ~yq = ( y1, y2, · · · , yq ), the analysis becomes more tractable.

If hi(~yq) = yi for each i in (2.22), then the likelihood ratio becomes linear in the

basic measures. With k = q and hi(~yq) = yi, (2.22) can be written as follows :

ρ(~yq; ~ap) = exp
[ q∑

i=1

gi(~ap) yi + α(~ap) + β(~yq)
]
, (2.23)

and the likelihood ratio is linear in the basic measures ~yq = ( y1, y2, · · · , yq ) when

the joint distribution of the basic measures belongs to the family (2.23).

A special case of the family (2.23), with two performance measures y and z and

a single task a ∈ R, is used in Banker and Datar (1989) and Amershi, Banker, and

Datar (1990) :

φ(y, z; a) = exp [ p(a) y + q(a) z − r(a) + s(y) + t(z − γ y) ] , (2.24)

where p(·), q(·), r(·), s(·), and t(·) are arbitrary functions and γ is a scalar param-

eter. The family of joint density functions φ(y, z; a) (2.24) includes many common

distributions such as (truncated) normal, exponential, gamma, chi-square, and in-

verse Gaussian. Banker and Datar (1989) show that when the joint distribution

of the basic measures y and z belongs to the family (2.24), the economically suffi-

cient aggregation for the optimal effort level ( [4] ) can be restricted, without loss of

generality, to the linear aggregation of the basic measures y and z.

To characterize minimal sufficient statistics, the analysis may be restricted to a

subfamily ϕ(~yq; ~ap) of ρ(~yq; ~ap) (2.23) :

ϕ(~yq; ~ap) = exp

[
q∑

i=1

gi(~ap) yi + α(~ap) + β(~yq)

]
, (2.25)

in which the effort-dependent coefficient gi(~ap) is linear in the tasks
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~ap = ( a1, a2, · · · , ap ) such that :



g1(~ap)

g2(~ap)

g3(~ap)
...

gq(~ap)


= Ωqp~ap =



ω11 ω12 · · · ω1p

ω21 ω22 · · · ω2p

ω31 ω32 · · · ω3p

...
... · · ·

...

ωq1 ωq2 · · · ωqp





a1

a2

...

ap


. (2.26)

The analysis in later sections will show that when the joint distribution of the

basic measures belongs to the subfamily ϕ(~yq; ~ap) (2.25), every sufficient aggregation

( [1], [2], [3], [4] ) is linear in the basic measures.

The joint normal density function f (~yq; ~ap) belongs to the subfamily ϕ(~yq; ~ap)

(2.25),2 if the agent’s action affects the expected value but not the variance-covariance

of the basic measures such that :

~yq = Mqp~ap + ~εq , (2.29)

where Mqp is the sensitivity matrix of the basic measures ( y1, y2, · · · , yq ) with

respect to the effort ( a1, a2, · · · , ap ), and ~εq is the vector of error terms. If necessary

for a more explicit analysis, the following joint normal density function with two

basic measures y and z for two tasks (a1, a2) can be employed :

f(y, z; ~a) =
1

2π
√

1− ρ2
εδ σ1 σ2

exp

[
− 1

2(1− ρ2
εδ)

Ξ
]
, (2.30)

2 The joint normal density function is as follows :

f ( y1, y2, · · · , yq; a1, a2, · · · , ap ) =
1

(2 π)
q
2

√
det(Σqq)

exp

[
−1

2
~xT

q Σ−1
qq ~xq

]
, (2.27)

where ~xq = ~yq − Mqp ~ap, Σqq is the variance-covariance matrix of the basic measures
( y1, y2, · · · , yq ), the superscript T denotes the transpose of the vector, and det(·) denotes the
determinant of a matrix. As the input value of the exponential function in (2.27) is decomposed as
follows :

~xT
q Σ−1

qq ~xq = ~yT
q Σ−1

qq ~yq + (Mqp ~ap)T Σ−1
qq (Mqp ~ap)− 2 ~yT

q

(
Σ−1

qq Mqp

)
~ap , (2.28)

the term ~yT
q

(
Σ−1

qq Mqp

)
~ap in (2.28) satisfies the linearity condition (2.26).
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where Ξ = (y− ~m ·~a)2/ σ2
1− 2 ρεδ (y− ~m ·~a) (z−~k ·~a)/ (σ1 σ2)+ (z−~k ·~a)2/ σ2

2. The

basic measures y and z are given by the agent’s two-dimensional effort ~a = (a1, a2)

together with the sensitivity vectors ~m = (m1,m2) and ~k = (k1, k2) as follows :

y = m1 a1 +m2 a2 + ε , (2.31)

z = k1 a1 + k2 a2 + δ , (2.32)

where ε ∼ N(0, σ2
1), δ ∼ N(0, σ2

2), and Cov(y, z) = ρεδ σ1 σ2.

2.3 Sufficient statistics in multi-task settings

Using a richer institutional setting of a multi-task agency puts more restrictions on

the aggregation of performance measures than in a single-task case. Whereas Amer-

shi, Banker, and Datar (1990) show in a single-task setting that it is possible to con-

struct a one-dimensional “utility-independent”and “effort-independent”aggregate

measure, the analysis of this section shows in a multi-task setting that a one-

dimensional “utility-independent”and “effort-independent”aggregation of

performance measures is infeasible in general. Instead, this section shows that statis-

tical sufficiency of aggregation can be achieved only by multiple aggregate measures,

whose minimum dimensionality is given by the number of tasks. In general, the di-

mension of statistically sufficient aggregate measures should be no less than the

number of tasks.

The analysis begins with a setting of two performance measures ( y, z ) and

two tasks ~a = ( a1, a2 ) ∈ R2. With Definition 1 and Definition 2, one-dimensional

statistical sufficiency for all effort levels in a two-task setting would be achieved by a

one-dimensional sufficient statistic T (y, z) if, and only if, the joint density function

d (y, z; a1, a2) can be factorized for all effort levels (a1, a2) ∈ R2 :

d (y, z; a1, a2) = g (y, z) h (T (y, z) ; a1, a2) , (2.33)

where g (·) and h (·) are non-negative functions. If the joint distribution of the basic
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measures y and z is restricted to the family of joint density functions (2.24) :

φ(y, z; a1, a2) = exp [ p(a1, a2) y + q(a1, a2) z − r(a1, a2) + s(y) + t(z − γ y) ] ,

(2.34)

then the feasibility of the factorization (2.33) depends on whether the aggregate

measure p(a1, a2) y + q(a1, a2) z is factorized to be a function of a one-dimensional

sufficient statistic T (y, z) for all effort levels (a1, a2) ∈ R2 :

p(a1, a2) y + q(a1, a2) z = h (T (y, z) ; a1, a2) , (2.35)

where h (·) is a non-negative function. For (2.35) to hold, the effort-dependent coef-

ficients p(a1, a2) and q(a1, a2) should be factored so that the function h (·) depends

on y and z only through a one-dimensional statistic T (y, z), which is independent

of the effort level (a1, a2) ∈ R2. Generally, (2.35) does not hold for the family of

joint density functions (2.34). This simple example shows that in general, a one-

dimensional sufficient statistic does not exist for multi-task agencies.

To see why a one-dimensional sufficient statistic does not exist in a multi-task

setting, consider a particular case, in which the joint distribution of the basic mea-

sures y and z belongs to the subfamily ϕ(y, z; a1, a2) in (2.25) such that the effort-

dependent coefficients p(a1, a2) and q(a1, a2) are linear in the effort levels a1 and

a2 :

ϕ(y, z; a1, a2) = exp

 p(a1, a2) y + q(a1, a2) z

−r(a1, a2) + s(y) + t(z − γ y)

 , (2.36)

p(a1, a2) = c1 a1 + c2 a2 , (2.37)

q(a1, a2) = d1 a1 + d2 a2 , (2.38)

where c1, c2, d1, d2 are arbitrary constants. The subfamily ϕ(y, z; a1, a2) (2.36) of
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joint density functions can be factorized :

ϕ(y, z; a1, a2) =exp [ s(y) + t(z − γ y) ]

× exp [ a1 T1 (y, z) + a2 T2 (y, z) ] exp [−r(a1, a2) ] ,
(2.39)

which satisfies the factorization criterion ( Definition 2 ) with the following two-

dimensional jointly sufficient statistics :

T1 (y, z) = c1 y + d1 z , (2.40)

T2 (y, z) = c2 y + d2 z . (2.41)

Even if the joint distribution of performance measures y and z is restricted to the

subfamily ϕ(y, z; a1, a2) (2.36), a one-dimensional sufficient statistic is generally

infeasible in a two-task setting. With the effort-dependent coefficients p(a1, a2) and

q(a1, a2) linear in the effort levels a1 and a2 as in (2.37) and (2.38), the following

shows that condition (2.35) for the existence of a one-dimensional sufficient statistic

T (y, z) is not generally satisfied :

p(a1, a2) y + q(a1, a2) z = a1 T1 (y, z) + a2 T2 (y, z) , (2.42)

where T1 (y, z) and T2 (y, z) are as in (2.40) and (2.41).

The subsequent analysis demonstrates that a one-dimensional sufficient statistic

T (y, z) is feasible only in a single-task setting or single-performance-measure setting,

but generally a one-dimensional sufficient statistic T (y, z) is infeasible in a multi-

task and multi-performance-measure setting. A special case for the existence of a

one-dimensional sufficient statistic T (y, z) is when the implementable action space

is restricted to a one-dimensional linear subspace. For example, consider an agency,

in which the agent is a firm producing two kinds of space-science items for the

government. The two items have an identical cost structure and there is no other

market for those items. For a technical reason, the government demands the two

items in a certain relative proportion, say w1 ∈ R. Then, the induced efforts of
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the firm for producing the two items will be proportional according to the optimal

relative proportion :

a1

a2
= w1, w1 ∈ R . (2.43)

In this case, the principal needs to estimate only one parameter and the agency is

effectively a single-task setting. Under condition (2.43), a one-dimensional sufficient

statistic is well defined from (2.42) :

T (y, z) = w1 T1 (y, z) + T2 (y, z) . (2.44)

Now, assume that the implementable action space is R2, and thus each element of

two-dimensional tasks ( a1, a2 ) is a parameter to estimate. Because a statistically

sufficient aggregation requires every aggregate measure to be independent of all

parameters to estimate and also because the two-dimensional sufficient statistics

T1 (y, z) (2.40) and T2 (y, z) (2.41) are both linear in the basic measures y and z,

(2.42) can be factored with a one-dimensional sufficient statistic if, and only if,

an element of the two-dimensional sufficient statistics is a multiple of the other :

without loss of generality,

T1 (y, z) = w2 T2 (y, z) , w2 ∈ R , (2.45)

which implies c1 = w2 c2 and d1 = w2 d2. Then, the effort-dependent coefficients

p(a1, a2) and q(a1, a2) are proportional regardless of the effort level (a1, a2) ∈ R2 :

p(a1, a2)
q(a1, a2)

=
c2
d2
∈ R. (2.46)

Under condition (2.46), the factorization requirement (2.35) for the existence of a

one-dimensional sufficient statistic is always satisfied with T (y, z) = ( c2 / d2 ) y+z,

and the agency effectively has a single performance measure T (y, z) = ( c2 / d2 ) y+z

with respect to the agent’s effort ~a = (a1, a2) ∈ R2 in the joint density function
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ϕ(y, z; a1, a2) (2.39). Therefore, when the joint distribution of performance mea-

sures is restricted to the family ϕ(y, z; a1, a2) (2.39), a one-dimensional sufficient

statistic is generally infeasible in a setting of multiple tasks and multiple perfor-

mance measures.

In order to prove the impossibility of a one-dimensional sufficient statistic, the

joint distribution of the basic measures y and z is further restricted to the joint

normal density function f(y, z; ~a) (2.30) with two tasks ~a = (a1, a2). By the fac-

torization criterion ( Definition 2 ), the following two-dimensional jointly sufficient

statistics are obtained from the joint normal density function f(y, z; ~a) (2.30) :

T1(y, z) =
(m1 − φ1 k1)

σ2
1

y +
(k1 − φ2m1)

σ2
2

z , (2.47)

T2(y, z) =
(m2 − φ1 k2)

σ2
1

y +
(k2 − φ2m2)

σ2
2

z , (2.48)

where φ1 = ρεδ σ1 σ2 / σ
2
2 and φ2 = ρεδ σ1 σ2 / σ

2
1 . Then, the question is whether the

jointly sufficient statistics (T1(y, z), T2(y, z)) ( (2.47) and (2.48) ) are minimal such

that no one-dimensional sufficient statistic exists. The following lemma shows that

the jointly sufficient statistics (2.47) and (2.48) are minimal if the two performance

measures y and z are not perfectly aligned.

Lemma 1

Assume that the basic measures y and z follow the joint normal density function

f(y, z; ~a) (2.30) with two tasks ~a = (a1, a2) ∈ R2, and that the basic measures y and

z are not perfectly aligned. Then, the jointly sufficient statistics T1(y, z) (2.47) and

T2(y, z) (2.48) are minimal.

Given Lemma 1, the following proposition shows that a one-dimensional sufficient

statistic is infeasible in a two-task setting, unless the two performance measures y

and z are perfectly aligned.3

3 It is assumed in Proposition 3 that the basic measures y and z are not perfectly aligned. What
if they are? In that case, a one-dimensional sufficient statistic exists because the linear dependence
of the basic measures y and z ( ~m = w~k, w ∈ R ) is equivalent to the special case in (2.46), which is
effectively in a single-performance-measure setting. The informativeness condition of an additional
performance measure in Feltham and Xie (1994) is a special case with ~k = 0. A one-dimensional
sufficient statistic T (y, z) = (m / σ2

1) y + (−φ2 m / σ2
2) z, φ2 = ρεδ σ1 σ2 / σ2

1 is well defined unless

29



Proposition 3 (No one-dimensional sufficient statistic in a two-task setting )

With the same assumptions in Lemma 1, a one-dimensional sufficient statistic

of the basic measures y and z is infeasible.

Proposition 3 shows that in general, it is infeasible to achieve statistical sufficiency

for all effort levels ( [1] ) with a one-dimensional aggregate measure if the agent’s

effort is on two tasks. Amershi, Banker, and Datar (1990) show in a single-task

setting that when the joint distribution of the basic measures belongs to the fam-

ily φ(y, z; a) (2.24), a one-dimensional statistically sufficient aggregation can be

achieved. Proposition 3 shows that the result of Amershi, Banker, and Datar (1990)

does not generally hold in a multi-task setting.

Now, the question is on the minimum number of aggregate measures necessary

to achieve statistical sufficiency for all effort levels ( [1] ). The following proposition

answers this question, and generalizes the result of Proposition 3 not only to a

general setting of q-dimensional basic measures (y1, y2, · · · , yq) and p-dimensional

tasks ~a = (a1, a2, · · · , ap) from a two-performance-measure and two-task setting, but

also to the subfamily ϕ(~yq; ~ap) (2.25) of joint distributions from the joint normal

distribution f(y, z; ~a) (2.30) of the basic measures. While Proposition 3 provides

a special case that proves the impossibility of a one-dimensional sufficient statistic

in a multi-task setting, the following proposition provides the general minimum

requirement for jointly sufficient statistics in a multi-task setting.

In a general setting of q-dimensional basic measures (y1, y2, · · · , yq) and

p-dimensional tasks ~a = (a1, a2, · · · , ap), the principal’s statistical problem is to es-

timate each of the p-dimensional tasks ~a = (a1, a2, · · · , ap). The constant matrix

Ωqp in (2.26) is assumed to be full-rank ( rank (Ωqp) = p, p ≤ q ) such that all

the columns of the constant matrix Ωqp are linearly independent.4 The following

lemma shows that when the basic measures follow a joint distribution of the sub-

ρεδ = 0 and the relative weight on the basic measures y and z is −σ2 / (ρεδ σ1) as in Feltham and
Xie (1994).

4 If the constant matrix Ωqp is not full-rank, then the principal estimates less than p-dimensional
parameters ~a = (a1, a2, · · · , ap). The concept of statistical sufficiency does not require an agency,
and thus the only imposition on the estimation of the p-dimensional tasks ~a = (a1, a2, · · · , ap)
regarding the subfamily ϕ(~yq; ~ap) (2.25) is the maximum likelihood. The first order condition from
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family ϕ(~yq; ~ap) (2.25), there exists a set of p-dimensional jointly sufficient statistics
−−−→
T (~yq) = (T1 (~yq) , T2 (~yq) , · · · , Tp (~yq) ), which characterizes the likelihood ratio of

the subfamily ϕ(~yq; ~ap).

Lemma 2

Assume that q-dimensional basic measures ( y1, y2, · · · , yq ) follow a joint dis-

tribution of the subfamily ϕ(~yq; ~ap) (2.25), the agent’s effort is on p-dimensional

tasks ( a1, a2, · · · , ap ), the principal estimates each of the p-dimensional tasks ~a =

(a1, a2, · · · , ap), and the constant matrix Ωqp in (2.26) is full-rank ( rank (Ωqp) = p,

p ≤ q ). Then, there exists a set of p-dimensional jointly sufficient statistics
−−−→
T (~yq) =

(T1 (~yq) , T2 (~yq) , · · · , Tp (~yq) ) given by :

T1 (~yq) = ω11 y1 + ω21 y2 + · · ·+ ωq1 yq ,

T2 (~yq) = ω12 y1 + ω22 y2 + · · ·+ ωq2 yq ,

· · · · · · · · ·

Tp (~yq) = ω1p y1 + ω2p y2 + · · ·+ ωqp yq .

(2.53)

(2.25) is as follows :

∇aϕ(~yq; ~ap) = ΩT
qp ~yq +∇aα(~ap) = 0 , (2.49)

where the superscript T denotes the transpose of the matrix. The first order condition (2.49) is a
system of the following p equations :

Col T
1 ~yq + α1(~ap) = 0 ,

Col T
2 ~yq + α2(~ap) = 0 ,
· · · · · · · · ·

Col T
p−1 ~yq + αp−1(~ap) = 0 ,

Col T
p ~yq + αp(~ap) = 0 ,

(2.50)

where Coli denotes the column i of the constant matrix Ωqp in (2.26) and αi(·) denotes the partial
derivative ∂α/∂ai. Now suppose, without loss of generality, that the column p of Ωqp is a linear
combination of the other columns 1, 2, · · · , (p− 1) :

Colp = κ1 Col1 + κ2 Col2 + · · ·+ κp−1 Colp−1 , (2.51)

where κ1, κ2, · · · , κp−1 are constants and not all of them are zero. Substituting (2.51) into the last
equation in (2.50), multiplying respectively the rest (p − 1) equations with −κ1,−κ2, · · · ,−κp−1,
and summing up all the p equations result in :

αp(~ap) = κ1 α1(~ap) + κ2 α2(~ap) + · · ·+ κp−1 αp−1(~ap) . (2.52)

By (2.51) and (2.52), the last equation in (2.50) turns out to be a linear combination of the rest
(p− 1) equations with coefficients κ1, κ2, · · · , κp−1. Thus, the last equation in (2.50) is redundant,
and the first order condition (2.49) has p unknowns ( a1, a2, · · · , ap ) and p−1 equations. Therefore,
the maximum likelihood estimator

(
a∗1, a∗2, · · · , a∗p

)
lies in a proper subspace of Rp and the principal

does not need to estimate all the p-dimensional tasks ~a = (a1, a2, · · · , ap).
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Furthermore, the likelihood ratio of the subfamily ϕ(~yq; ~ap) (2.25) is given by :

L(~yq; ~ap)p×1 =
∇aϕ(~yq; ~ap)
ϕ(~yq; ~ap)

=



T1 (~yq)

T2 (~yq)
...

Tp (~yq)


+∇aα(~ap) , (2.54)

where the p-dimensional jointly sufficient statistics (T1 (~yq) , T2 (~yq) , · · · , Tp (~yq) )

are as in (2.53).

With the result of Lemma 2, the following proposition shows that when the joint

distribution of the basic measures belongs to the subfamily ϕ(~yq; ~ap) (2.25), the

dimension of minimal sufficient statistics is the number of tasks. The intuition for

the following proposition is that the dimension of minimal sufficient statistics equals

the number of “independent”tasks that have to be estimated and controlled.

Proposition 4 (Dimension of minimal sufficient statistics )

With the same assumptions as in Lemma 2, the p-dimensional jointly sufficient

statistics
−−−→
T (~yq) = (T1 (~yq) , T2 (~yq) , · · · , Tp (~yq) ) (2.53) are minimal.

Proposition 4 shows that statistical sufficiency for all effort levels ( [1] ) in aggre-

gating q-dimensional basic measures ( y1, y2, · · · , yq ) with respect to the agent’s

p-dimensional effort ( a1, a2, · · · , ap ) can be achieved by no less than p ( the num-

ber of tasks ) aggregate measures. Multiple aggregate measures, at least as many

as the number of tasks estimated and controlled by the principal, are necessary to

avoid any loss of information in the aggregation process. The result of Proposition

4 confirms and generalizes the result of Proposition 3 that it is impossible to aggre-

gate the basic measures with no loss of information into a one-dimensional aggregate

measure when the agent’s effort is on multiple tasks. Proposition 4 implies that as

the number of tasks increases, a higher number of aggregate measures are necessary

to preserve the information content of the basic measures in the aggregation process.
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2.4 Sufficient implementation statistics in multi-task set-

tings

Whereas sufficient statistics require statistical sufficiency for all effort levels, suffi-

cient implementation statistics require statistical sufficiency only for a single ( fixed )

effort level. The key qualification for a set of sufficient implementation statistics is

that it should result in the same likelihood ratio as the basic measures in inducing

a single effort level.

While sufficient statistics incur no loss of information under all kinds of decision-

making contexts ( including agency settings ), sufficient implementation statistics

require no loss of information under an agency setting, particularly when an effort

level to induce is exogenously specified. Thus, under an agency setting, sufficient

implementation statistics are better benchmark of lack of information loss than

sufficient statistics.

This section shows that, when the joint distribution of the basic measures be-

longs to the subfamily ϕ(~yq; ~ap) (2.25), sufficient implementation statistics of the

basic measures are equivalent to sufficient statistics ( [1] = [2] ) as the “all a or

no a”condition is satisfied. That is, if the joint distribution of the basic measures

belongs to the subfamily ϕ(~yq; ~ap) (2.25), sufficient implementation statistics are

independent of the effort level to induce ~a as well as the agent’s utility function

Ua(·). Thus, it follows from the results in the previous section that when the joint

distribution of the basic measures belongs to the subfamily ϕ(~yq; ~ap) (2.25), the di-

mension of minimal sufficient implementation statistics is also given by the number

of tasks.

For showing the dimension of minimal sufficient implementation statistics, it is

useful to discuss the “all a or no a”condition as a sufficient condition for the existence

of sufficient implementation statistics. In a single-task setting, Amershi, Banker,

and Datar (1990) show that if the “all a or no a”condition is satisfied, economic

sufficiency for the optimal effort level implies statistical sufficiency for all effort

levels ( [4] ⇒ [1] ) such that the four sufficiency concepts of aggregation are equivalent
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( [1] = [2] = [3] = [4] ). Whereas the definition of Amershi, Banker, and Datar (1990,

Page 129) requires a one-dimensional sufficient statistic, the following definition

generalizes the definition of Amershi, Banker, and Datar (1990) and considers multi-

dimensional jointly sufficient statistics :

Definition 8 ( “All a or no a”condition )

The “all a or no a”condition is satisfied if the likelihood ratio L (~y |~a) (2.12)

can be represented as a function of the same jointly sufficient statistics
−−−→
T (~y) =

(T1 (~y) , T2 (~y) , · · · , Tj (~y) ) of the basic measures for all effort levels such that the

likelihood ratio L (~y |~a) depends on the basic measures only through the jointly suf-

ficient statistics :

L (~y |~a) =
∇ad (~y |~a)
d (~y |~a)

= q′ (T1 (~y) , T2 (~y) , · · · , Tj (~y) ) , (2.55)

where q′(·) is a function.

The “all a or no a”condition implies that the likelihood ratio incurs no loss of

information in inducing all effort levels since sufficient statistics do not lose any

information of the basic measures in the aggregation process.

The “all a or no a”condition (2.55) satisfies, for all effort levels, condition (2.17)

for jointly sufficient implementation statistics. When the likelihood ratio L (~y |~a) is a

function of the same jointly sufficient statistics
−−−→
T (~y) = (T1 (~y) , T2 (~y) , · · · , Tj (~y) )

for all effort levels ~a ∈ Rp, the jointly sufficient statistics
−−−→
T (~y) are sufficient imple-

mentation statistics
−−−−−→
ψ (~y; ~a) for inducing any single effort level ~a ∈ Rp because the

jointly sufficient statistics
−−−→
T (~y) generate the same likelihood ratio L (~y |~a) as the

basic measures ~y = ( y1, y2, · · · , yq ) ( condition (2.17) ) for any single effort level

~a ∈ Rp. Thus, if the “all a or no a”condition (Definition 8 ) is satisfied, then the

same set of sufficient implementation statistics, which is a set of jointly sufficient

statistics
−−−→
T (~y), exists for all effort levels ~a ∈ Rp, and the same sufficient implemen-

tation statistics are independent of the effort level to induce ~a as well as the agent’s

utility function Ua(·).
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If the joint distribution of the basic measures belongs to the subfamily ϕ(~yq; ~ap)

(2.25), the “all a or no a”condition ( Definition 8 ) is satisfied. In (2.54) of Lemma

2, the likelihood ratio L(~yq; ~ap)p×1 is a function of the same p-dimensional jointly

sufficient statistics (T1 (~yq) , T2 (~yq) , · · · , Tp (~yq) ) for all effort levels

~a = (a1, a2, · · · , ap) ∈ Rp. Given the results of Lemma 2 and Proposition 4, the

following proposition has been proved.

Proposition 5 (Dimension of minimal sufficient implementation statistics )

With the assumptions in Lemma 2, the dimension of minimal sufficient im-

plementation statistics is the number of tasks. In particular, statistical sufficiency

for a single effort level ( [2] ) in aggregating the basic measures ( y1, y2, · · · , yq )

with respect to the agent’s p-dimensional effort ( a1, a2, · · · , ap ) is achieved by the

p-dimensional jointly sufficient statistics
−−−→
T (~yq) = (T1 (~yq) , T2 (~yq) , · · · , Tp (~yq) )

(2.53), which are independent of the effort level to induce ~ap as well as the agent’s

utility function Ua(·).

From Proposition 5, it follows that, when the joint distribution of the basic mea-

sures belongs to the subfamily ϕ(~yq; ~ap) (2.25), there is no statistically sufficient

aggregation of the basic measures with the dimensionality less than the number of

tasks, even for inducing a single effort level.

2.5 Economic sufficiency : Efficient aggregation in multi-

task settings

This section extends the discussion on the aggregation of performance measures

in Amershi, Banker, and Datar (1990) not only to a multi-task setting but also to

arbitrary effort levels. This section shows that if the number of aggregate measures

is less than the number of tasks, the efficient aggregation depends on the effort level

to induce ~a ∈ Rp and incurs loss of information even if the “all a or no a”condition

( Definition 8 ) is satisfied. On the other hand, the efficient aggregation in a single-

task setting is characterized by sufficient statistics if the “all a or no a”condition
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is satisfied. As the previous section shows, when the joint distribution of the basic

measures belongs to the subfamily ϕ(~yq; ~ap) (2.25), the “all a or no a”condition

( Definition 8 ) is satisfied such that the sufficient implementation statistics do not

depend on the effort level to induce ~a as well as the agent’s utility function Ua(·).

Thus, the dependence of an efficient aggregation on the effort level to induce ~a

indicates the lack of statistical sufficiency and loss of information in the aggregation

process.

In the characterization of the efficient contract (2.11), an economically sufficient

aggregation generally depends on the effort level to induce ~a and the agent’s utility

function U(·) through the term ~µ ·L (~y |~a). For explicitly observing an economically

sufficient aggregation, the vector of Lagrange multipliers ~µ should be solved out.

There are at least two ways of solving the vector of Lagrange multipliers ~µ. One

way is to employ a square-root utility function of the agent and the other way is to

use a LEN (Linear contract, Exponential utility of the agent, Normally distributed

performance measure ) model. However, both ways fix a type of utility function

of the agent, and the dependence of an economically sufficient aggregation on the

agent’s utility function U(·) cannot be observed.

In this section, it is assumed that the agent has a square-root utility function

with an additively-separable action cost :

Ua (C( ~y ), ~a ) = 2
√
C ( y1, y2, · · · , yq )− v ( a1, a2, · · · , ap ) . (2.56)

The subsequent discussion on the efficient aggregation of performance measures

follows from Christensen, Şabac, and Tian (2010). In a multi-task setting, an eco-

nomically sufficient aggregation for a single effort level is characterized not only by

the likelihood ratio, but also by the variance-covariance matrix of the likelihood

ratio and the agent’s marginal action cost. The following proposition shows an eco-

nomically sufficient aggregation for a single effort level when the joint distribution

of the basic measures belongs to the subfamily ϕ(~yq; ~ap) (2.25).

Proposition 6 ( Economic sufficiency for an arbitrary effort level [3] (Definition
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6 ) with a square-root utility function )

Together with the assumptions in Lemma 2, assume that the agent has a square-

root utility function with an additively-separable action cost as in (2.56). For in-

ducing a single effort level ~a = (a1, a2, · · · , ap) ∈ Rp, the economically sufficient

aggregation of the basic measures ~y = ( y1, y2, · · · , yq ) is characterized by :

[ ΣL (~y) ]−1∇av ( a1, a2, · · · , ap ) ·



T1 (~yq)

T2 (~yq)
...

Tp (~yq)


, (2.57)

where ΣL (~y) denotes the variance-covariance matrix of the likelihood ratio L (~y |~a)

and the p-dimensional jointly sufficient statistics (T1 (~yq) , T2 (~yq) , · · · , Tp (~yq) ) are

given by (2.53).

When the joint distribution of the basic measures belongs to the subfamily ϕ(~yq; ~ap)

(2.25), the “all a or no a”condition (Definition 8 ) is satisfied such that sufficient im-

plementation statistics are equivalent to sufficient statistics ( [1] = [2] ). Proposition

6 shows how the number of aggregate measures restricts sufficiency of aggregation

of performance measures in a multi-task setting. In an efficient contract, the princi-

pal can substitute multi-dimensional aggregate measures
−−−−−−−−−−→
ζ (~y ; Ua(·),~a) for the basic

measures ( Definition 6 ). If multiple p ( the number of tasks ) aggregate measures

(T1 (~yq) , T2 (~yq) , · · · , Tp (~yq) ) are used, then the aggregate measures are both sta-

tistically sufficient and economically sufficient. If less than p ( the number of tasks )

aggregate measures are used, then there is an economically sufficient aggregation

but not a statistically sufficient aggregation.

If the principal designs the performance evaluation system such that the number

of aggregate measures for the contract is greater than or equal to the number of tasks

( p ), then the p-dimensional jointly sufficient statistics (T1 (~yq) , T2 (~yq) , · · · , Tp (~yq) )

can be used in their entirety for the efficient contract and the information content

from the basic measures is preserved. Thus, if the number of aggregate measures
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is no less than the number of tasks, the statistically sufficient aggregate measures

(T1 (~yq) , T2 (~yq) , · · · , Tp (~yq) ) can be used for inducing any single effort level with

no loss of information.

On the other hand, if the principal designs the performance evaluation system

such that the number of aggregate measures for the contract is less than the number

of tasks ( p ), then the p-dimensional jointly sufficient statistics

(T1 (~yq) , T2 (~yq) , · · · , Tp (~yq) ) cannot be used any more in their entirety for the effi-

cient contract and the aggregation lacks statistical sufficiency and incurs loss of infor-

mation. In this case, the economically sufficient aggregate measures in (2.57) will de-

pend on the effort level to induce ~a because the term [ΣL (~y) ]−1∇av ( a1, a2, · · · , ap )

involves in the aggregation in an inseparable way. Thus, if the number of aggregate

measures is less than the number of tasks, the economically sufficient aggregation

is not statistically sufficient and fails to preserve the information content from the

basic measures ( y1, y2, · · · , yq ). The following corollary stems from Proposition 6.

Corollary 1

With the assumptions in Proposition 6, for inducing a single effort level ~a ∈ Rp,

an economically sufficient aggregation of the basic measures ~y = ( y1, y2, · · · , yq )

( [3] ) can be statistically sufficient ( [2] ) only if the number of aggregate measures is

no less than the number of tasks. Otherwise, if the number of aggregate measures is

less than the number of tasks, then an economically sufficient aggregation necessarily

incurs loss of information.

Corollary 1 shows that although the “all a or no a”condition ( Definition 8 ) is sat-

isfied, an economically sufficient aggregation is not statistically sufficient and incurs

loss of information in a multi-task setting if the performance evaluation system is

designed such that the number of aggregate measures is less than the number of

tasks. The result of Corollary 1 is a multi-task phenomenon and cannot be found in

a single-task setting. Corollary 1 introduces the number of tasks as a constraining

factor, in addition to the “all a or no a”condition, that hinders aggregate perfor-

mance measures from being sufficient statistics.
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On the other hand, as Amershi, Banker, and Datar (1990) show, the “all a or

no a”condition is the only constraining factor, that hinders aggregate performance

measures from being sufficient statistics, in a single-task setting. If the agent’s

effort is on a single task ( p = 1 ) in (2.57), the economically sufficient aggregation

for a single effort level a ∈ R is determined only by a one-dimensional sufficient

statistic T (~yq). It suffices for the proof of the following corollary to observe that

the variance of the likelihood ratio ΣL (~y) and the agent’s marginal action cost

∇av ( a1, a2, · · · , ap ) are scalars in (2.57) of Proposition 6 with a single task.

Corollary 2

With the assumptions in Proposition 6, assume a single task ( p = 1 ). Then, for

inducing a single effort level a ∈ R, the economically sufficient aggregation ( [3] ) of

the basic measures ~y = ( y1, y2, · · · , yq ) is always statistically sufficient ( [2] ).

Corollary 2 is a particular case of the result in Amershi, Banker, and Datar (1990).

Corollary 2 shows that if the “all a or no a”condition ( Definition 8 ) is satisfied in

a single-task setting, an economically sufficient aggregation also attains statistical

sufficiency and incurs no loss of information in inducing any single effort level, as

Amershi, Banker, and Datar (1990) show for the optimal effort level.

Now, the joint distribution of the basic measures is restricted to the joint normal

density function f(y, z; ~a) (2.30) with two performance measures ( y, z ) and two

tasks ~a = (a1, a2) ∈ R2. In addition, the agent’s action cost is assumed to be

quadratic v(~a) = 1
2 (~a · ~a ) = 1

2

(
a2

1 + a2
2

)
such that :

∇av(~a) = ~a . (2.58)

The following corollary explicitly shows that the economically sufficient aggregation

(2.57) depends on the effort level to induce ~a when the number of aggregate measures

is less than the number of tasks.

Corollary 3 ( Economic sufficiency for an arbitrary effort level [3] : Normal dis-

tribution )
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Assume that the agent has a square-root utility function with an additively-

separable action cost as in (2.56), the basic measures y and z follow the joint normal

density function f(y, z; ~a) (2.30) with two tasks ~a = (a1, a2) ∈ R2, and the agent’s

marginal action cost is given by (2.58). Then, for inducing a single effort level

~a = (a1, a2) ∈ R2, the economically sufficient aggregation (2.57) is characterized by

the relative weight on the basic measures y and z :

β1

β2
=

a2 k1 − a1 k2

a1m2 − a2m1
. (2.59)

The result (2.59) in Corollary 3 explicitly shows that when the number of aggregate

measures is restricted to be less than the number of tasks, the economically sufficient

aggregation incurs loss of information, which is indicated by the dependence of the

aggregation on the effort level ~a = (a1, a2). Note that if the implementable action

space is restricted to a one-dimensional linear subspace a1/a2 = w2 ∈ R ( effectively

single-task ), the economically sufficient aggregation (2.59) becomes independent of

the effort level to induce ~a = (a1, a2) ∈ R2. Although the joint normal density

function f(y, z; ~a) (2.30) satisfies the “all a or no a”condition ( Definition 8 ), the

multi-task setting causes an economically sufficient aggregation to fail in attaining

statistical sufficiency and incur loss of information if the number of aggregate mea-

sures is less than the number of tasks. Because there is no sufficient statistic of

dimension less than the number of tasks ( p ) when the joint distribution of the basic

measures belongs to the subfamily ϕ(~yq; ~ap) (2.25) ( Proposition 4 ), any aggrega-

tion ( including any economically sufficient aggregation ) of dimension less than the

number of tasks ( p ) will fail to be a sufficient statistic.

2.6 Conclusion

In an extended multi-task setting, the first question is whether there is a one-

dimensional “universal”aggregation, which is “utility-independent”( regardless of

the characteristics of the agency participants ) and “effort-independent”( regardless
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of the economic condition of the agency ), with no loss of information in the ag-

gregation process. If the same one-dimensional aggregate measure is good enough

to substitute for the basic measures in all firms for every manager, then the com-

plexity involved in motivating and evaluating managers’ activities could be reduced

considerably. This study shows in multi-task settings that such a one-dimensional

“universal”aggregation does not exist. Whereas Amershi, Banker, and Datar (1990)

show the feasibility and the condition for the existence of a one-dimensional statis-

tically sufficient aggregation in a single-task setting, a one-dimensional statistically

sufficient aggregation is infeasible, even for a single effort level, in a multi-task set-

ting.

This study shows that statistical sufficiency can be achieved only by multiple

aggregate measures in a multi-task setting. In particular, the minimum dimension

required for a statistically sufficient aggregation is given by the number of tasks.

To avoid any loss of information in an aggregation process, the basic measures

should be aggregated into at least as many aggregate measures as the number of

tasks. This result implies that relying on a single aggregate measure in a multi-task

agency necessarily incurs loss of information, and the more information loss can be

incurred as the number of tasks increases.

Another question in an extended multi-task setting is on the nature of aggrega-

tion of performance measures. While it is infeasible to construct a one-dimensional

aggregate measure with no loss of information in a multi-task setting, it is still pos-

sible to construct a one-dimensional aggregate measure with no economic loss to the

principal. However, in contrast with the result of Amershi, Banker, and Datar (1990)

in a single-task setting, a one-dimensional economically sufficient aggregate measure

in a multi-task setting necessarily incurs loss of information. In general, when the

number of aggregate measures is less than the number of tasks, any aggregation

( including any economically sufficient aggregation ) incurs loss of information. This

result implies that when the number of aggregate measures is less than the number

of tasks, an efficient performance evaluation system is “utility-dependent.” With a

smaller number of aggregate measures than tasks, a performance evaluation system
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should be “tailored”and individually designed for each manager and each firm.

In a multi-task setting, generally the optimal aggregate measures are not suffi-

cient statistics. Although this result is similar to the result of Amershi, Banker, and

Datar (1990) in a single-task setting, the reason in a multi-task setting is qualita-

tively different from that of a single-task setting. Whereas Amershi, Banker, and

Datar (1990) show in a single-task setting that in general, the optimal aggregate

measures are agency-specific and not sufficient statistics because a statistical con-

dition ( “all a or no a”condition ) is generally not satisfied, this study shows that it

is not only a statistical condition ( “all a or no a”condition ) but also a multi-task

setting that causes the optimal aggregate measures to be agency-specific and not to

be sufficient statistics. Particularly, even if the “all a or no a”condition is satisfied,

the optimal aggregate measures are not sufficient statistics if the performance eval-

uation system is designed such that the number of aggregate measures is less than

the number of tasks. As the analysis moves toward an institutionally richer multi-

task setting, the optimal aggregate measures are even less represented by sufficient

statistics.

2.7 Appendix

2.7.1 Proof of Proposition 1

By Definition 1, if an aggregation of performance measures is statistically sufficient

for all effort levels ( [1] ), a set of jointly sufficient statistics
−−−→
T (~y) = (T1 (~y) , T2 (~y) , · · · , Tj (~y) ) exists for the basic measures

~y = ( y1, y2, · · · , yq ). By Definition 2, the joint density function of the basic mea-

sures is factorized as in (2.14) for all effort levels ~a = ( a1, a2, · · · , ap ) ∈ Rp. It

follows that the likelihood ratio is a function of a set of jointly sufficient statistics
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−−−→
T (~y) = (T1 (~y) , T2 (~y) , · · · , Tj (~y) ) for all effort levels ~a = ( a1, a2, · · · , ap ) ∈ Rp :

L (~y |~a) =
∇ad (~y |~a)
d (~y |~a)

=
∇av (T1 (~y) , T2 (~y) , · · · , Tj (~y) ; a1, a2, · · · , ap )
v (T1 (~y) , T2 (~y) , · · · , Tj (~y) ; a1, a2, · · · , ap )

= q (T1 (~y) , T2 (~y) , · · · , Tj (~y) ; a1, a2, · · · , ap ) ,

(2.60)

which satisfies condition (2.17) for any single fixed effort level.

2.7.2 Proof of Proposition 2

If the agent’s utility function has an additively separable action cost as in (2.3),

then (2.11) and (2.12) characterize the efficient contract C ( y1, y2, · · · , yq ). The

Kuhn-Tucker multiplier λ is a constant and thus the aggregation of performance

measures in the efficient contract is determined by the second term ~µ · L (~y |~a)

in (2.11). By condition (2.17) for sufficient implementation statistics
−−−−−→
ψ (~y; ~a) =

(ψ1 (~y; ~a) , ψ2 (~y; ~a) , · · · , ψj (~y; ~a) ), the characterization of the efficient contract

(2.11) is equivalent to the following :

1
U ′ (C ( y1, y2, · · · , yq ) )

= λ+~µ · q (ψ1 (~y; ~a) , ψ2 (~y; ~a) , · · · , ψj (~y; ~a) ) . (2.61)

The efficient contract is given by :

C ( ~y ) = U ′ −1

[
1

λ+ ~µ · q (ψ1 (~y; ~a) , ψ2 (~y; ~a) , · · · , ψj (~y; ~a) )

]
, (2.62)

and Definition 6 of economic sufficiency of aggregation for a single effort level is

satisfied by (2.62) with the jointly sufficient implementation statistics

(ψ1 (~y; ~a) , ψ2 (~y; ~a) , · · · , ψj (~y; ~a) ).

For the agent’s utility function with a multiplicatively separable action cost :

Ua (C( ~y ), ~a ) = k(~a)U (C ( y1, y2, · · · , yq ) ) , k(~a) > 0 , (2.63)

it can be shown that following the same procedures, that were applied to the util-
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ity function (2.3) with an additively separable action cost, results in the efficient

contract C ( y1, y2, · · · , yq ) characterized by :

1
U ′ (C ( y1, y2, · · · , yq ) )

= λ k(~a) + ~µ · ∇ak(~a) + k(a) ~µ · L (~y |~a) , (2.64)

which is equivalent to the following by condition (2.17) for sufficient implementation

statistics
−−−−−→
ψ (~y; ~a) = (ψ1 (~y; ~a) , ψ2 (~y; ~a) , · · · , ψj (~y; ~a) ) :

1
U ′ (C ( y1, y2, · · · , yq ) )

=λ k(~a) + ~µ · ∇ak(~a)

+ k(a) ~µ · q (ψ1 (~y; ~a) , ψ2 (~y; ~a) , · · · , ψj (~y; ~a) ) .

(2.65)

The efficient contract is given by :

C ( ~y ) = U ′ −1

[
1

λ k(~a) + ~µ · ∇ak(~a) + k(a) ~µ · q (ψ1 (~y; ~a) , ψ2 (~y; ~a) , · · · , ψj (~y; ~a) )

]
,

(2.66)

and Definition 6 of economic sufficiency of aggregation for a single effort level is

satisfied by (2.66) with the jointly sufficient implementation statistics

(ψ1 (~y; ~a) , ψ2 (~y; ~a) , · · · , ψj (~y; ~a) ).

2.7.3 Proof of Lemma 1

A one-to-one relation between the jointly sufficient statistics T1(y, z) (2.47) and

T2(y, z) (2.48) and the maximum likelihood estimators (a∗1, a
∗
2) for the agent’s effort

~a = (a1, a2) ∈ R2 is established. From the one-to-one relation, minimal sufficiency

of the maximum likelihood estimators (a∗1, a
∗
2) follows, and then minimal sufficiency

of the jointly sufficient statistics T1(y, z) (2.47) and T2(y, z) (2.48) is derived. In the

proof, the following two points are exploited :

1. If a set of maximum likelihood estimators are jointly sufficient statistics, then

the maximum likelihood estimators are minimal jointly sufficient statistics (DeGroot

1986, Page 368),
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2. A one-to-one function of a set of jointly sufficient statistic is also sufficient.

The maximum likelihood estimators (a∗1, a
∗
2) for the agent’s effort ~a = (a1, a2)

are obtained by solving the following maximization problem :

max
a1, a2

f(y, z; ~a) , (2.67)

where f(y, z; ~a) is the joint normal density function (2.30) with ~a = (a1, a2). For

notational convenience, the following covariance-adjusted sensitivities, which are

assumed to be non-negative, are used :

M1 = m1 − φ1 k1, K1 = k1 − φ2m1,

M2 = m2 − φ1 k2, K2 = k2 − φ2m2,

where φ1 = ρεδ σ1 σ2 / σ
2
2, φ2 = ρεδ σ1 σ2 / σ

2
1.

The second order conditions are satisfied as the covariance-adjusted sensitivities are

non-negative : M1 ≥ 0, K1 ≥ 0, M2 ≥ 0, K2 ≥ 0. From the first order conditions,

the maximum likelihood estimators (a∗1, a
∗
2) for the agent’s effort ~a = (a1, a2) are

given as follows :

 a∗1

a∗2

 = A−1

 T1(y, z)

T2(y, z)

 , (2.68)

where T1(y, z) and T2(y, z) are as in (2.47) and (2.48), and A is a 2 by 2 matrix :

A2×2 =

 M1
σ2
1
m1 + K1

σ2
2
k1

M1
σ2
1
m2 + K1

σ2
2
k2

M2
σ2
1
m1 + K2

σ2
2
k1

M2
σ2
1
m2 + K2

σ2
2
k2

 , (2.69)

whose determinant is (m1k2 −m2k1)2 (1− ρ2
εδ) / (σ2

1 σ
2
2).

If the two performance measures y and z are not perfectly aligned

(m1k2 −m2k1 6= 0 ), the maximum likelihood estimators (a∗1, a
∗
2) are one-to-one to

the jointly sufficient statistics (T1(y, z), T2(y, z)). Thus, the maximum likelihood

estimators (a∗1, a
∗
2) are sufficient by Point 2. As the maximum likelihood estimators

are now sufficient, the maximum likelihood estimators (a∗1, a
∗
2) are minimal jointly

45



sufficient statistics by Point 1.

As there is a one-to-one relation (2.68) between the jointly sufficient statistics

T1(y, z) (2.47) and T2(y, z) (2.48) and the maximum likelihood estimators (a∗1, a
∗
2),

there exist two ( linear ) functions α (·) and α−1 (·) such that :

( a∗1, a
∗
2 ) = α (T1(y, z), T2(y, z) ) , (2.70)

(T1(y, z), T2(y, z) ) = α−1 ( a∗1, a
∗
2 ) . (2.71)

As the maximum likelihood estimators (a∗1, a
∗
2) are minimal jointly sufficient statis-

tics, the function α (·) in (2.70) is consistent with Definition 3. Because the max-

imum likelihood estimators (a∗1, a
∗
2) can be represented as a function of any other

sufficient statistics, the jointly sufficient statistics T1(y, z) (2.47) and T2(y, z) (2.48)

can also be represented as a function of any other sufficient statistics by the func-

tion α−1 (·) in (2.71). Therefore, the jointly sufficient statistics T1(y, z) (2.47) and

T2(y, z) (2.48) are minimal by Definition 3.

2.7.4 Proof of Proposition 3

The proof is by contradiction. Suppose that there exists a one-dimensional sufficient

statistic τ (y, z). Because the joint normal density function f(y, z; ~a) (2.30) belongs

to the subfamily ϕ(~yq; ~ap) (2.25), in which sufficient statistics are linear in the basic

measures ( see Lemma 2 ), the one-dimensional sufficient statistic can be restricted,

without loss of generality, to the class linear in the basic measures y and z :

τ (y, z) = r1 y + r2 z , (2.72)

where r1 and r2 are non-zero constants. Given that the jointly sufficient statistics

T1(y, z) (2.47) and T2(y, z) (2.48) are minimal ( Lemma 1 ), the jointly sufficient

statistics T1(y, z) (2.47) and T2(y, z) (2.48) must be, by Definition 3, represented as

a function of the one-dimensional sufficient statistic τ (y, z) (2.72). That is, there
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exist functions l1(·) and l2(·) such that :

T1(y, z) = l1 ( r1 y + r2 z ) , (2.73)

T2(y, z) = l2 ( r1 y + r2 z ) . (2.74)

As the jointly sufficient statistics T1(y, z) (2.47) and T2(y, z) (2.48) and the one-

dimensional sufficient statistic τ (y, z) (2.72) are all linear in the basic measures

y and z, (2.73) and (2.74) can be, without loss of generality, rewritten for some

non-zero constants c1 and c2 as follows :

(m1 − φ1 k1)
σ2

1

y +
(k1 − φ2m1)

σ2
2

z = c1 ( r1 y + r2 z ) , c1 ∈ R , (2.75)

(m2 − φ1 k2)
σ2

1

y +
(k2 − φ2m2)

σ2
2

z = c2 ( r1 y + r2 z ) , c2 ∈ R , (2.76)

where φ1 = ρεδ σ1 σ2 / σ
2
2 and φ2 = ρεδ σ1 σ2 / σ

2
1 . It follows from (2.75) and (2.76) :

m1 − φ1 k1

m2 − φ1 k2
=
k1 − φ2m1

k2 − φ2m2
, (2.77)

which leads to a contradiction :

(m1 k2 −m2 k1)
(
1− ρ2

εδ

)
= 0 . (2.78)

Therefore, no one-dimensional sufficient statistic exists if the basic measures y and

z are not perfectly aligned (m1k2 −m2k1) 6= 0.

2.7.5 Proof of Lemma 2

The joint density function of the subfamily ϕ(~yq; ~ap) (2.25) can be rewritten with

(2.53) as follows :

ϕ(~yq; ~ap) = exp

[
p∑

i=1

Ti (~yq) ai + α(~ap) + β(~yq)

]
, (2.79)
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which satisfies the factorization criterion ( Definition 2 ) with the p-dimensional

jointly sufficient statistics
−−−→
T (~yq) = (T1 (~yq) , T2 (~yq) , · · · , Tp (~yq) ). By the defini-

tion in (2.12), the likelihood ratio (2.54) follows from (2.79).

2.7.6 Proof of Proposition 4

The proof is by contradiction. The constant matrix Ωqp in (2.26) is full-rank

( rank (Ωqp) = p ) by assumption. Suppose that a set of (p− 1)-dimensional jointly

sufficient statistics exists. By the factorization criterion ( Definition 2 ), the density

function ϕ(~yq; ~ap) (2.79) should be represented as a function of a set of (p− 1)-

dimensional jointly sufficient statistics. Because the principal estimates each of the

p-dimensional tasks ~a = (a1, a2, · · · , ap) and a sufficient statistic Ti (~yq) should be

independent of all parameters to estimate, the density function ϕ(~yq; ~ap) (2.79)

can be represented as a function of a set of (p− 1)-dimensional jointly sufficient

statistics if, and only if, an element of the p-dimensional jointly sufficient statis-

tics
−−−→
T (~yq) = (T1 (~yq) , T2 (~yq) , · · · , Tp (~yq) ) (2.53) is a function of the other (p− 1)

elements : as an example without loss of generality,

Tp (~yq) = γ
(
T1 (~yq) , T2 (~yq) , · · · , Tp−1 (~yq)

)
, (2.80)

where γ(·) is a function. As the p-dimensional jointly sufficient statistics
−−−→
T (~yq)

(2.53) are all linear in the basic measures ( y1, y2, · · · , yq ), (2.80) is equivalent to an

element being a linear combination of the other (p− 1) elements of the p-dimensional

sufficient statistics :

Tp (~yq) = r1 T1 (~yq) + r2 T2 (~yq) + · · ·+ rp−1 Tp−1 (~yq) , (2.81)
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with some constants r1, r2, · · · , rp−1 ∈ R such that not all r1, r2, · · · , rp−1 = 0.

That is :



ω1p

ω2p

...

ωqp


= r1



ω11

ω21

...

ωq1


+ r2



ω12

ω22

...

ωq2


+ · · ·+ rp−1



ω1(p−1)

ω2(p−1)

...

ωq(p−1)


. (2.82)

However, this is a contradiction to the assumption that all columns of the constant

matrix Ωqp in (2.26) are linearly independent. Thus, no (p− 1)-dimensional jointly

sufficient statistics exist when the agent’s effort is on p-dimensional tasks. Similarly,

it can be shown that no jointly sufficient statistics with dimensionality 1, 2, · · · , (p−

2) exist.

2.7.7 Proof of Proposition 6

The proof follows Proposition 3 in Christensen, Şabac, and Tian (2010). With a

square-root utility function (2.56) ( that is, U (C ( y1, y2, · · · , yq ) )

= 2
√
C ( y1, y2, · · · , yq ) ), the characterization of the efficient contract (2.11) is

equivalent to :

√
C ( y1, y2, · · · , yq ) = λ+ ~µ · L (~y |~a) . (2.83)

Substituting (2.83) into the incentive compatibility constraint (2.7) with

∫
· · ·
∫
∇ad (~y |~a) dy1 · · · dyq = 0 (2.84)

results in :

∫
· · ·
∫

2 ~µ · L (~y |~a)∇ad (~y |~a) dy1 · · · dyq −∇av ( a1, a2, · · · , ap ) = 0 . (2.85)

49



Using the definition L (~y |~a) = ∇ad (~y |~a) / d (~y |~a) and E[L (~y |~a)] = 0, and rear-

ranging the term ~µ · L (~y |~a)L (~y |~a) = L (~y |~a)L (~y |~a)T ~µ, (2.85) becomes :

2 ΣL (~y) ~µ−∇av ( a1, a2, · · · , ap ) = 0 , (2.86)

where the variance-covariance matrix of the likelihood ratio is denoted by ΣL (~y) :

ΣL (~y) = V ar (L (~y |~a) ) = E
[
(L (~y |~a)− E[L (~y |~a)] ) (L (~y |~a)− E[L (~y |~a)] )T

]
.

(2.87)

The vector of Lagrange multipliers ~µ = (µ1, µ2, · · · , µp ) is explicitly calculated

from (2.86) :

~µ =
1
2

[ΣL (~y) ]−1∇av ( a1, a2, · · · , ap ) . (2.88)

From (2.83) and (2.88), the efficient aggregation of the basic measures ( y1, y2, · · · , yq )

is characterized by :

[ ΣL (~y) ]−1∇av ( a1, a2, · · · , ap ) · L (~y |~a) . (2.89)

Finally, by applying (2.54) to (2.89), the efficient aggregation of the basic measures

( y1, y2, · · · , yq ) is characterized by (2.57).

2.7.8 Proof of Corollary 3

The two-dimensional jointly sufficient statistics T1(y, z) and T2(y, z) from the joint

normal density function f(y, z; ~a) (2.30) are as in (2.47) and (2.48). The likelihood

ratio L(y, z ; ~a) of the joint normal density function f(y, z; ~a) (2.30) is as follows :

L(y, z ; ~a)2×1 =
∇af(y, z; ~a)
f(y, z; ~a)

=
1

(1− ρ2
εδ)

 M1
σ2
1

(y − ~m · ~a) + K1
σ2
2
(z − ~k · ~a)

M2
σ2
1

(y − ~m · ~a) + K2
σ2
2
(z − ~k · ~a)

 ,
(2.90)
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where M1 = m1 − φ1 k1, M2 = m2 − φ1 k2, K1 = k1 − φ2m1, K2 = k2 − φ2m2,

and φ1 = ρεδ σ1 σ2 / σ
2
2, φ2 = ρεδ σ1 σ2 / σ

2
1. The variance-covariance matrix of the

likelihood ratio L(y, z ; ~a) (2.90) is explicitly obtained as follows :

ΣL(y, z)2×2 =
1

(1− ρ2
εδ)

2

 A11 A12

A21 A22

 , (2.91)

where A11 = (M1)2 / σ2
1 + (K1)2 / σ2

2 + 2 ρεδ σ1 σ2

(
M1/σ2

1

) (
K1/σ2

2

)
,

A22 = (M2)2 / σ2
1 + (K2)2 / σ2

2 + 2 ρεδ σ1 σ2

(
M2/σ2

1

) (
K2/σ2

2

)
,

A12 = A21 = (M1M2) / σ2
1+(K1K2) / σ2

2+ρεδ σ1 σ2 (M1K2+M2K1) / (σ2
1 σ

2
2) .

It turns out that the variance-covariance matrix ΣL(y, z) (2.91) is invertible unless

the basic measures y and z are perfectly aligned (m1k2 −m2k1) 6= 0. Substituting

the jointly sufficient statistics T1(y, z) and T2(y, z) ( (2.47) and (2.48) ), the agent’s

marginal action cost ∇av(~a) (2.58), and the variance-covariance matrix ΣL(y, z)

(2.91) into (2.57) of Proposition 6 results in the efficient linear aggregation, which

is characterized by the following relative weight on the basic measures y and z :

[ΣL(y, z)]−1~a · (M1,M2) / σ2
1

[ΣL(y, z)]−1~a · (K1,K2) / σ2
2

=
a2 k1 − a1 k2

a1m2 − a2m1
. (2.92)
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Chapter 3

Multiple Periods



3.1 Introduction

Inter-temporally correlated performance measures, such as earnings, share prices,

and items in balanced-scorecards, are ubiquitous in business. Although inter-

temporally correlated performance measures are widely used for performance evalu-

ation purposes, no previous research has dealt with the aggregation of performance

measures and relative incentive rate in a multi-period setting.

When performance measures are inter-temporally correlated, information on fu-

ture performance measures can be extracted from the observation on realized per-

formance measures. Thus, the sufficient aggregation of performance measures is

affected by the inter-temporal correlations among performance measures, and the

sufficient aggregation of the basic measures in a multi-period setting is qualitatively

different from that of a single-period setting. This study examines the nature and

characteristics of sufficient aggregations of inter-temporally correlated performance

measures.

In designing a performance evaluation system for providing incentive compensa-

tion to managers, a management accountant may aggregate the basic performance

measures to a smaller number of aggregate performance measures. If the man-

agement accountant is in a multi-period setting, in which performance measures are

inter-temporally correlated, what would be the nature and characteristics of feasible

sufficient aggregations of performance measures?

A question in a multi-period setting is whether the aggregate performance mea-

sures can carry all the information from the basic performance measures without

losing any information in the aggregation process. In a multi-period setting, this

study asks whether it is possible to construct a statistically sufficient aggregate mea-

sure, that is determined only by the statistical properties of performance measures

and good enough to substitute for the basic measures in all agencies. A statistically

sufficient aggregation is characterized by sufficient statistics of the basic measures

and incurs no loss of information regardless of the characteristics of the agent and

the economic situation of the agency. This study shows that in a multi-period set-
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ting, there is no statistically sufficient aggregation of performance measures even

if the “all a or no a”condition is satisfied such that there is no loss of information

through the likelihood ratio.

Another question in a multi-period setting is whether the aggregate performance

measures can be commonly used for all managers or should be individually “tai-

lored”for each manager such that different managers are evaluated on different per-

formance measures. This study explicitly shows that in a multi-period setting, the

optimal aggregation of performance measures depends on the agent’s characteris-

tics and the economic situation of the agency as well as the statistical properties

of performance measures. In a multi-period setting, an efficient aggregation, which

incurs no economic loss to the principal and substitutes for the basic measures in the

minimum cost contract for inducing a single effort level, depends on the effort level

to induce even if there is no information loss through the likelihood ratio. Because

the effort level in turn depends on the agent’s risk aversion and the first best effort

level, the optimal aggregation depends on the characteristics of the agent and the

economic situation of the agency.

If performance measures are inter-temporally correlated, it is no longer possible

to have a universal evaluation system and the aggregate performance measure incurs

loss of information in the aggregation process. The optimality of a certain aggregate

performance measure is limited to a specific manger in a specific firm. In a multi-

period setting, different aggregate performance measures should be used for different

managers in different firms.

In a multi-period setting, this study analyzes the feasibility of a statistically suf-

ficient aggregation and the characteristics of an economically sufficient aggregation.

For tractability, this study employs a LEN model ( Linear contract, Exponential util-

ity of the agent, Normal distribution of performance measure ) and the aggregation

of performance measures is restricted to linear aggregation.

This study shows that there is no statistically sufficient aggregation of perfor-

mance measures in a multi-period setting. Even when it is possible to construct a

“myopic”aggregate measure of the basic measures which is equivalent to a sufficient
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statistic in a single-period setting, the “myopic”aggregate measure is not optimal or

efficient in a multi-period setting.

A “myopic”aggregate measure fails to consider the “inter-temporal”effect re-

sulting from the inter-temporal correlations of performance measures. The inter-

temporal correlations among performance measures reduce the conditional variances

and affect the future period incentive rates, which are ex-post efficient. As the fu-

ture period incentive rates come into the principal’s problem through the compensa-

tion risk regarding the inter-temporal covariances among performance measures, the

inter-temporal effect should be expected and considered in equilibrium. The inter-

temporal effect is rendered by the conditional density function of the future period

performance measures, which is not considered in a “myopic”aggregation. As long

as performance measures are inter-temporally correlated, a “myopic”aggregation is

not optimal or efficient in a multi-period setting.

For economic sufficiency of aggregation, this study shows that in a multi-period

setting, an efficient aggregation, which is to induce an exogenously fixed effort level,

depends on the effort level to induce even if the “all a or no a”condition is satisfied

such that there is no loss of information through the likelihood ratio. In particular,

the relative weight on the basic measures in the efficient aggregation depends on the

effort level in a multi-period setting, even when it is independent of the effort level

in a single-period setting. This study also shows that in a multi-period setting, the

optimal aggregation, which is to induce the endogenously determined effort level and

is a special case of the efficient aggregation, depends on the agent’s characteristics

and the economic situation of the agency, which are respectively represented by the

agent’s risk aversion and the first best effort level.

By employing the two-stage optimization approach of Grossman and Hart (1983),

this study analyzes how the agent’s characteristics and the economic situation of

the agency affect the optimal aggregation. In a multi-period setting, an efficient

aggregation depends on the effort level and the statistical properties of performance

measures, but not on the agent’s characteristics and the economic situation of the

agency. It is the optimal effort level that brings the agent’s characteristics and the
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economic situation of the agency into the optimal aggregation.

This study contributes to the literature by first discussing the aggregation of

performance measures in a multi-period agency. Holmstrom (1979) proposes the in-

formativeness condition such that additional performance measures are informative

on the agent’s unobservable effort unless the existing measure is a sufficient statis-

tic, and the result implies that the optimal aggregation of performance measures

is characterized by sufficient statistics. On the other hand, Amershi, Banker, and

Datar (1990) show that the optimal aggregation of performance measures is not gen-

erally characterized by sufficient statistics, but the optimal aggregation is generally

economically sufficient and agency-specific because a statistical condition ( “all a or

no a”condition ) is generally not satisfied. Christensen, Şabac, and Tian (2010) ana-

lyze the efficient contract in multi-task agencies and discuss the role of the likelihood

ratio and the variance of the likelihood ratio in ranking performance measures. All

of these studies are restricted to a single-period setting.

In this study, a two-period contract with renegotiation is analyzed, not only be-

cause renegotiation is an important institutional feature but also because, stripping

away wealth effects and income smoothing, a long-term contract on a single-task

with full commitment is equivalent to a single-period contract on multiple tasks,

which was analyzed in the previous chapter. Provided with full commitment, a

two-period contract on a single-task is equivalent to a single-period contract on two

tasks, and the principal can use both periods measures in controlling both peri-

ods effort. On the other hand, when a two-period contract is renegotiated, the

principal is no longer able to use the second period measures in controlling the first

period effort. With renegotiation, the “global”aggregation of both periods measures

with respect to both periods effort is inadequate. Thus, this study analyzes only the

“period-by-period”aggregation of performance measures with respect to each period

effort.

The analysis of sufficient aggregation of performance measures in a multi-period

setting stems from the literature on the long-term contract with renegotiation. With

the renegotiation-proof contract, Christensen, Feltham, and Şabac (2003, 2005) in-
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troduce the inter-temporal covariance risk and the insurance motive of the principal.

Şabac (2007, 2008) studies the effect of risk externality and effort externality on the

incentive dynamics in an N -period setting. Recently, Şabac (2009) analyzes the suf-

ficiency condition and the conditional controllability in multi-period agencies. For

tractability, all of these studies on the long-term contract with renegotiation employ

a LEN model.

In a multi-period setting, this study shows that the concept of sufficient statistics

is too restrictive to characterize the optimal aggregation of performance measures.

The resulting restrictiveness of the concept of sufficient statistics is similar to that of

Amershi, Banker, and Datar (1990) in a single-period setting. However, the reason

for the restrictiveness in a multi-period setting is qualitatively different from that of

a single-period setting. While Amershi, Banker, and Datar (1990) show in a single-

period setting that in general, the optimal aggregate measures are agency-specific

and not sufficient statistics because a statistical condition ( “all a or no a”condition )

is generally not satisfied, this study shows that it is not only a statistical condition

( “all a or no a”condition ) but also the existence of inter-temporal correlations

among performance measures that causes the optimal aggregation in a multi-period

setting to be agency-specific and not to be sufficient statistics. Particularly, this

study shows that even if the “all a or no a”condition is satisfied, the optimal aggre-

gation of performance measures is not statistically sufficient if performance measures

are inter-temporally correlated.

The rest of this study is organized as follows : Section 2 discusses the modeling

features. Section 3 analyzes the sufficient aggregation of performance measures in

a single-period setting. Section 4 analyzes the sufficient aggregation of performance

measures in a multi-period setting. Section 5 confirms the result by taking the

likelihood ratio approach of Şabac (2009). Section 6 concludes the study.
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3.2 Modeling features

For an economically sufficient aggregation of performance measures, this study em-

ploys a LEN model in a two-period setting with two performance measures on a

single-task. The two-period contract is characterized as a renegotiation-proof con-

tract.

3.2.1 LEN model

A risk neutral principal owns a production technology, which requires a single effort

(a1, a2) in each of two periods t = 1, 2 from a risk and effort averse agent. The

economic outcome from the agency is not contractible and the principal and the

agent write a contract, which is linear on a sequence of two contractible performance

measures (yt, zt), t = 1, 2.

The principal receives an economic benefit from the agent’s effort B(a1, a2) =

b1 a1+b2 a2 and his utility is represented by UP = B(a1, a2)−C(y1, z1, y2, z2), where

C(y1, z1, y2, z2) is the compensation from the contract. The agent has a multiplica-

tively separable exponential utility Ua = −exp
[
− r
{
C(y1, z1, y2, z2)−K(a1, a2)

}]
,

where r is the agent’s absolute risk aversion, and K(a1, a2) is the agent’s personal

action cost K(a1, a2) = 1
2

(
a2

1 + a2
2

)
. The agent has a single consumption date and

no time value of money is assumed for simplicity. Thus, only the total amount

of compensation matters to the agent. A similar result in a multiple consumption

date setting could be obtained if the agent is allowed access to unlimited borrow-

ing and lending opportunity with the same interest rate as the principal’s (Dutta

and Reichelstein 1999). As the contract proceeds, performance measures (yt, zt) are

realized and the agent’s compensation accrues ( savings account ) such that future

performance does not affect already accrued results.

The performance measures yt and zt are joint normally distributed with normally
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distributed residual terms :

yt = mt at + εt (3.1)

zt = kt at + δt, t = 1, 2 , (3.2)

Each performance measure yt and zt has sensitivity mt and kt to the agent’s effort

at, t = 1, 2. The performance measures yt and zt are also affected by uncontrollable

random factors εt and δt which are zero-mean normally distributed. It is assumed

that the residual terms εt and δt are correlated. Both time-series and cross-sectional

correlations among performance measures are allowed, without restriction on the

correlation structure. For simplicity, no long-term action is assumed. The agent’s

effort at affects only the current period performance measures (yt, zt) and not the

future period performance measures.

Since the performance measures yt and zt are normally distributed, the agent’s

certainty equivalent at the start of each period t = 1, 2 is represented by the expected

compensation minus the risk premium and action cost :

ACEt−1 = Et−1

[
C(y1, z1, y2, z2)

]
− 1

2
r V art−1

[
C(y1, z1, y2, z2)

]
−K(a1, a2) , (3.3)

where the expectation Et−1 [ · ] and variance V art−1 [ · ] are conditional on the real-

ized performance measures y1 and z1 for the second period ( t = 2 ), and uncondi-

tional for the first period ( t = 1 ).

To make sure that the agent participates in the contract, the principal should

guarantee a reservation certainty equivalent, which is alternatively available to the

agent in the labor market. Since the amount of a reservation certainty equivalent

is independent of the analysis, a zero reservation certainty equivalent is assumed

without loss of generality.
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3.2.2 Renegotiation-proof contract

- timev
t = 0

CI1 a1 y1, z1

v
t = 1

CR2 a2 y2, z2

v
t = 2

Resolved

( Figure 1 )

Renegotiation is an important institutional feature since it is not feasible to pre-

vent the contract parties from mutually beneficial ex-post efficient renegotiation. A

renegotiation-proof contract is a contract such that once it is agreed upon at the

initial point, there is no contract at any later renegotiation point which is weakly

preferred to the initial contract by both parties and strictly preferred by at least one

party. That is, no ex-post Pareto improvement is made by a renegotiation offer. It

is assumed that both the principal and the agent are committed to the employment

relation for the full duration of the contract, but the principal can change the terms

of contract if the agent agrees.

In the sequel, the superscript I is used for the initial contract at the renegotiation

date ( t = 1, see Figure 1 ) and R is used for renegotiation offers. At the start of the

first period, t = 0, the principal offers to the agent an initial contract CI1, which is

denoted by a sequence of incentive rates :

CI1 =
{
α0,
(
β1

1 , β
2
1

)
,
(
β1

2 , β
2
2

) }
, (3.4)

where α0 is a fixed payment, and the superscript to the incentive rate β indicates

the performance measure such that 1 is for y and 2 is for z while the subscript to

the incentive rate β indicates the period. The initial contract CI1 is the contract in

effect unless replaced by a renegotiation offer. The agent either accepts or rejects it.

Once the agent accepts the initial contract offer, the agent provides the first period

effort a1. Before the end of the first period, the principal and the agent observe two

contractible performance measures y1 and z1.
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At t = 1, the principal makes a take-it-or-leave-it renegotiation offer CR2 :

CR2 =
{
α1,
(
β1

2 , β
2
2

) }
, (3.5)

where the fixed payment α1 is a function of the realized performance measures

y1 and z1. If the renegotiation offer is rejected, CI2 is the contract in effect for

the second period. If accepted, CR2 becomes the contract in effect. The agent

provides the second period effort a2 and the principal and the agent observe two

contractible performance measures y2 and z2 before the end of the second period. At

the terminal date, t = 2, the agent receives the compensation based on the realized

values of performance measures and the contract is resolved.

In general, when no restriction is imposed on the contract form, there is no loss

of generality in restricting the analysis to renegotiation-proof contracts. As Chris-

tensen, Feltham, and Şabac (2003, 2005) and Şabac (2007, 2008) have proved the

renegotiation-proofness principle for the LEN model, the analysis of a linear opti-

mal contract can be, without loss of generality, restricted to the linear renegotiation-

proof contract :

C(y1, z1, y2, z2) = α0 + β1
1 y1 + β2

1 z1 + β1
2 y2 + β2

2 z2 . (3.6)

At the decision point of the first period incentive rates β1
1 and β2

1 , the second period

incentive rates β1
2 and β2

2 are restricted to be ex-post efficient and rationally expected

by the principal and the agent due to the renegotiation-proofness requirement.

The contracting and renegotiation can be summarized by the principal’s prob-

lems at the start of each period t = 1, 2 as follows :

max
β1

t ,β2
t

Et−1

[
B(a1, a2)−CRt

]
, (E

[
B(a1, a2)−CI1

]
for the first period ) (3.7)

subject to the renegotiation-proofness constraint

(
β1

2 , β
2
2

)
are optimal at the start of the second period , (3.8)
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the incentive compatibility constraint

at ∈ arg max ACEt−1(CRt) , ( a1 ∈ arg max ACE(CI1) for the first period ) (3.9)

and the participation constraint

ACEt−1(CRt) ≥ ACEt−1(CIt) . (ACE(CI1) ≥ 0 for the first period ) (3.10)

3.2.3 Joint distributions of performance measures and likelihood

ratios

Whereas Amershi, Banker, and Datar (1990) work with optimal contracts in a single-

period setting, this study employs a LEN model in a two-period setting and the

aggregation of performance measures is restricted to linear aggregation. Generally, a

LEN contract can be expressed as a linear function of likelihood ratios (Christensen,

Şabac, and Tian 2010; Şabac 2009).

For the analysis in the sequel, this section introduces the joint normal distribu-

tions of performance measures and the likelihood ratios. At the start of the first

period, the basic measures (y1, z1, y2, z2) given by (3.1) and (3.2) follow the joint

normal density function :

f(y1, z1, y2, z2; a1, a2) =
1

(2π)2
√
det(Σ)

exp

[
−1

2
~xT Σ−1~x

]
, (3.11)

where ~x = (y1 −m1 a1, z1 − k1 a1, y2 −m2 a2, z2 − k2 a2), Σ is the variance-covariance

matrix of the basic measures (y1, z1, y2, z2), and det(·) denotes the determinant of

matrix. The likelihood ratio L1 of the joint density function f(y1, z1, y2, z2; a1, a2)
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(3.11) with respect to the first period effort a1 is defined as follows1 :

L1 =
∂ f(y1, z1, y2, z2; a1, a2)

∂ a1
/ f(y1, z1, y2, z2; a1, a2) . (3.13)

From the joint density function f(y1, z1, y2, z2; a1, a2) (3.11), the marginal dis-

tribution of the first period measures y1 and z1 is given by the marginal density

function f1(y1, z1; a1) of y1 and z1 ( see the single period joint density function

(2.30) ) :

f1(y1, z1; a1) =
∫∫

f(y1, z1, y2, z2; a1, a2) dy2 dz2

=
1

2π
√

1− ρ2
εδ σ1 σ2

exp

[
− 1

2(1− ρ2
εδ)

Ξ1

]
,

(3.14)

where

Ξ1 = (y1 −m1 a1)
2 / σ2

1−2 ρεδ (y1 −m1 a1) (z1 − k1 a1) / (σ1 σ2)+(z1 − k1 a1)
2 / σ2

2,

V ar(y1) = σ2
1, V ar(z1) = σ2

2, and Cov(y1, z1) = ρεδ σ1 σ2.

The likelihood ratio L1 with respect to the first period effort a1 is defined and

explicitly presented from the marginal density function f1(y1, z1; a1) (3.14) :

L1 =
∂ f1(y1, z1; a1)

∂ a1
/ f1(y1, z1; a1)

= (1− ρ2
εδ)
[
(m1 − φ11 k1)
V ar(y1)

(y1 −m1 a1) +
(k1 − φ21m1)
V ar(z1)

(z1 − k1 a1)
]
,

(3.15)

where φ11 = Cov(y1, z1) / V ar(z1) and φ21 = Cov(y1, z1) / V ar(y1). The likelihood

ratio L1 (3.15) satisfies the “all a or no a”condition ( Definition 8 ) in the original

form of Amershi, Banker, and Datar (1990). The likelihood ratio L1 (3.15) can be

expressed as a function of the same sufficient statistic T1(y1, z1) of the basic measures
1 With ~x as in (3.11), the likelihood ratio L1 is explicitly given as follows :

L1 = ~x ·
(
m1 Row1(Σ

−1) + k1 Row2(Σ
−1)

)
= ( y1, z1, y2, z2 ) ·

(
m1 Row1(Σ

−1) + k1 Row2(Σ
−1)

)
− ( m1 a1, k1 a1, m2 a2, k2 a2 ) ·

(
m1 Row1(Σ

−1) + k1 Row2(Σ
−1)

)
,

(3.12)

where Row1(Σ
−1) and Row2(Σ

−1) refer to the first and second rows in the inverse matrix of the
variance-covariance matrix, Σ−1. From (3.12), note that the likelihood ratio L1 satisfies the “all a
or no a”condition (Definition 8 ).
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y1 and z1 for all effort levels a1 ∈ R such that the function depends on the basic

measures only through the same sufficient statistic :

L1 = q1 (T1(y1, z1) ) for all a1 ∈ R, (3.16)

where

T1(y1, z1) =
(m1 − φ11 k1)
V ar(y1)

y1 +
(k1 − φ21m1)
V ar(z1)

z1 , (3.17)

φ11 = Cov(y1, z1) / V ar(z1), φ21 = Cov(y1, z1) / V ar(y1), and q1(·) is a function.

The joint distribution of the second period measures y2 and z2, conditional on

the first period realized measures y1 and z1, is characterized by the conditional

density function :

f2(y2, z2| y1, z1, a2) =
f(y1, z1, y2, z2; a1, a2)

f1(y1, z1; a1)
, (3.18)

where f1(y1, z1; a1) is as in (3.14) and f(y1, z1, y2, z2; a1, a2) is as in (3.11). The

likelihood ratio L2 of the conditional density f2(y2, z2| y1, z1, a2) (3.18) with respect

to the second period effort a2 can be calculated from the joint density function

f(y1, z1, y2, z2; a1, a2) (3.11) because ∂ f1(y1, z1; a1) / ∂ a2 = 0 :

L2 =
∂ f2(y2, z2| y1, z1, a2)

∂ a2
/ f2(y2, z2| y1, z1, a2)

=
∂ f(y1, z1, y2, z2; a1, a2)

∂ a2
/ f(y1, z1, y2, z2; a1, a2)

= −1
2
∂
(
~xT Σ−1~x

)
∂ a2

= −1
2
∂ ~x

∂ a2

∂
(
~xT Σ−1~x

)
∂ ~x

= (0, 0, m2, k2) Σ−1 ~x ,

(3.19)

where the chain rule is applied in the second last step. If the inverse matrix Σ−1 of

the variance-covariance matrix of performance measures (y1, z1, y2, z2) is explicitly
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written :

Σ−1 =



s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44


, (3.20)

then the likelihood ratio L2 (3.19) is equivalent to :

L2 = m2

[
s31 (y1 −m1 a1) + s32 (z1 − k1 a1) + s33 (y2 −m2 a2) + s34 (z2 − k2 a2)

]
+ k2

[
s41 (y1 −m1 a1) + s42 (z1 − k1 a1) + s43 (y2 −m2 a2) + s44 (z2 − k2 a2)

]
.

(3.21)

The likelihood ratio L2 (3.21) also satisfies the “all a or no a”condition ( Definition 8 )

in the original form of Amershi, Banker, and Datar (1990). The likelihood ratio L2

(3.21) can be expressed as a function of the same sufficient statistic T12(y1, z1, y2, z2)

of the basic measures (y1, z1, y2, z2) for all effort levels (a1, a2) ∈ R2 such that the

function depends on the basic measures only through the same sufficient statistic :

L2 = q12 (T12(y1, z1, y2, z2) ) for all (a1, a2) ∈ R2, (3.22)

where

T12(y1, z1, y2, z2) = (m2 s31 + k2 s41 ) y1 + (m2 s32 + k2 s42 ) z1

+ (m2 s33 + k2 s43 ) y2 + (m2 s34 + k2 s44 ) z2 ,
(3.23)

and q12(·) is a function. The two likelihood ratios L1 (3.15) and L2 (3.21), defined

and explicitly presented above, are later used when the likelihood ratio approach of

Şabac (2009) is applied.
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3.3 Sufficient aggregation in a single-period setting with

a single-task

Amershi, Banker, and Datar (1990) show in a single-period setting with a single-

task that when the “all a or no a”condition is satisfied, it is possible to construct a

“utility-independent” and “effort-independent” aggregate measure, which is deter-

mined only by the statistical properties of performance measures. The analysis of

this section is in accordance with Amershi, Banker, and Datar (1990). In a single-

period and single-task setting in which the “all a or no a”condition is satisfied, a

statistically sufficient aggregation of performance measures for all effort levels ( [1],

Definition 1 ) exists. The same one-dimensional sufficient statistic is good enough

to substitute for the basic measures in inducing all effort levels for every manager

in all firms.

3.3.1 Signal-to-noise ratio

The aggregation of performance measures in a single-period setting with a single-

task is determined by the relative “signal-to-noise”ratio of performance measures.

Banker and Datar (1989) discuss the optimal aggregation and relative incentive rate

when the joint distribution of performance measures y and z belongs to the family

φ(y, z; a) (2.24) given in the previous chapter. Their study shows that the optimal

relative incentive rate is equivalent to the relative signal-to-noise ratio of perfor-

mance measures :

(µ1a − φ1 µ2a ) / V ar(y)
(µ2a − φ2 µ1a ) / V ar(z)

, (3.24)

where µ1a = ∂ E[ y ] / ∂ a, µ2a = ∂ E[ z ] / ∂ a,

and φ1 = Cov(y, z)/ V ar(z), φ2 = Cov(y, z)/ V ar(y).

In a single-period setting, the joint normal distribution of performance measures

y and z is equivalent to the marginal density function of y1 and z1 (3.14). With the

variance and covariance terms in the joint normal density function (3.14) and the
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constant sensitivity of performance measures µ1a = m and µ2a = k from (3.1) and

(3.2), the relative signal-to-noise ratio (3.24) of performance measures is equivalent

to :

(m− φ1 k ) / σ2
1

( k − φ2m ) / σ2
2

, (3.25)

where φ1 = ρεδ σ1 σ2 / σ
2
2 and φ2 = ρεδ σ1 σ2 / σ

2
1.

The marginal density function of y1 and z1 (3.14) belongs to the family φ(y, z; a)

(2.24) and also satisfies the “all a or no a”condition ( see (3.16) ). In a single-period

setting with a single-task, Amershi, Banker, and Datar (1990) show that if the “all

a or no a”condition is satisfied, economic sufficiency of aggregation for the optimal

effort level ( [4], Definition 7 ) implies statistical sufficiency of aggregation for all

effort levels ( [1], Definition 1 ) ( [4] ⇒ [1] ) such that the four sufficiency concepts

of aggregation are equivalent ( [1] = [2] = [3] = [4] ). This study examines the

feasibility and relations of the four sufficiency concepts of aggregation in a multi-

period setting. This study will show that as the analysis is extended to a multi-

period setting, even if the “all a or no a”condition is satisfied, economic sufficiency

of aggregation for the optimal effort level does not imply statistical sufficiency of

aggregation for all effort levels ( [4] ; [1] ), and the only available sufficiency of

aggregation is economic sufficiency ( [3], [4] ), which depends on the agent’s effort

level to induce.

3.3.2 Statistical sufficiency of aggregation of performance measures

In a single-period setting, it is possible to construct a statistically sufficient aggregate

measure for all effort levels a ∈ R because there exists a one-dimensional sufficient

statistic for the basic measures y and z with respect to the agent’s effort. The

existence of a one-dimensional sufficient statistic is directly shown by the factoriza-

tion criterion (Definition 2 ). Suppressing the first period subscripts of performance

measures, effort, and sensitivity, the joint density function (3.14) is factored out for
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all effort levels a ∈ R :

f1(y, z; a) = g (y, z) h (T (y, z) ; a) , (3.26)

where g (·) and h (·) are some non-negative functions. T (y, z) is a one-dimensional

sufficient statistic with respect to the agent’s effort a ∈ R as follows :

T (y, z) =
(m− φ1 k)

σ2
1

y +
(k − φ2m)

σ2
2

z , (3.27)

where φ1 = ρεδ σ1 σ2/ σ
2
2 and φ2 = ρεδ σ1 σ2/ σ

2
1. It is crucial that the function

h (T (y, z) ; a) depends on the basic measures y and z only through the sufficient

statistic T (y, z). Note that the relative weight on the basic measures y and z in the

one-dimensional sufficient statistic T (y, z) (3.27) is equal to the relative signal-to-

noise ratio (3.25). Therefore, the aggregation of performance measures in a single-

period setting with a single-task is determined by the relative signal-to-noise ratio

of performance measures, as the “all a or no a”condition is satisfied.

The one-dimensional sufficient statistic T (y, z) (3.27) is independent of the

agent’s effort level a ∈ R. The one-dimensional sufficient statistic T (y, z) can substi-

tute for the basic measures y and z, without loss of information in the aggregation

process, in inducing all effort levels for every manager in all agencies. The relative

weight on the basic measures y and z in the aggregation is characterized only by the

statistical properties of performance measures ( signal-to-noise ratio ), regardless of

the agent’s characteristics and the economic situation of the agency. Furthemore,

the one-dimensional sufficient statistic T (y, z) can substitute for the basic measures

y and z in inducing an arbitrary effort level ( off the equilibrium path ) as well as

the optimal effort level ( on the equilibrium path ).
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3.4 Sufficient aggregation in a multi-period setting with

a single-task

Periodic performance evaluations are widely practiced, and thus period-specific ag-

gregate performance measures are required and generated. In this section, “period-

by-period” aggregation of performance measures is analyzed. With renegotiation

and inter-temporally correlated performance measures in a two-period setting, the

agency problem in the first period is in a multi-period setting while the agency prob-

lem in the second period is effectively in a single-period setting. Thus, the main

analysis in this section will be on the aggregation of the first period measures y1

and z1.

Little is known about the aggregation of performance measures in a multi-period

setting. Amershi, Banker, and Datar (1990) conclude in a single-period setting with

a single-task that it is the “all a or no a”condition that determines the feasibil-

ity of a “utility-independent”and “effort-independent”aggregation of performance

measures.

Moving toward a richer institutional setting of multi-period puts more restric-

tions on the aggregation of performance measures. In contrast with the conclusion

of Amershi, Banker, and Datar (1990), the following analysis shows that efficient

aggregations and optimal aggregations in a two-period setting are not statistically

sufficient even if the “all a or no a”condition is satisfied. Even when it is feasible to

construct a “myopic”aggregate measure, which does not consider the inter-temporal

correlations of performance measures and is analogous to a one-dimensional sufficient

statistic of the basic measures, the principal does not use the “myopic”aggregate

measure because it is not optimal or efficient in a multi-period setting.

There is no statistically sufficient “period-by-period”aggregation of performance

measures in a multi-period setting. The efficient aggregation of the first period

measures y1 and z1 depends on the sequence of efforts (a1, a2), while the optimal

aggregation of the first period measures y1 and z1 depends on the agent’s character-

istics and the economic situation of the agency as well as the statistical properties
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of performance measures.

3.4.1 Full commitment benchmark

If a two-period contract is characterized with full commitment precluding renegoti-

ation, the full commitment contract on two periods with a single-task is equivalent

to a contract in a single-period setting with two tasks, which was analyzed in the

previous chapter. In this case, a one-dimensional sufficient statistic is not available,

but only two-dimensional jointly sufficient statistics are available. By the factor-

ization criterion ( Definition 2 ), the two-dimensional jointly sufficient statistics of

the basic measures (y1, z1, y2, z2) with respect to the sequence of efforts (a1, a2) can

be obtained from the joint density function f(y1, z1, y2, z2; a1, a2) (3.11). The joint

density function f(y1, z1, y2, z2; a1, a2) (3.11) is factorized out for all effort levels of

a1 and a2 :

f(y1, z1, y2, z2; a1, a2) = g (y1, z1, y2, z2) h (T1 (y1, z1, y2, z2) , T2 (y1, z1, y2, z2) ; a1, a2) ,

(3.28)

where g (·) and h (·) are some non-negative functions, and the two-dimensional

jointly sufficient statistics T1(y1, z1, y2, z2) and T2(y1, z1, y2, z2) are given by :

T1(y1, z1, y2, z2) = ( y1, z1, y2, z2 ) ·
(
m1Col1(Σ−1) + k1Col2(Σ−1)

)
, (3.29)

T2(y1, z1, y2, z2) = ( y1, z1, y2, z2 ) ·
(
m2Col3(Σ−1) + k2Col4(Σ−1)

)
, (3.30)

where Coli(Σ−1) refers to ith column in the inverse matrix Σ−1 of the variance-

covariance matrix of the basic measures (y1, z1, y2, z2).

With full commitment, a one-dimensional efficient aggregation of the basic mea-

sures for inducing a single effort level also follows the results in the previous chap-

ter. When the two-period linear contract C(y1, z1, y2, z2) (3.6) is used with full

commitment, the basic measures (y1, z1, y2, z2) are linearly aggregated into a one-

dimensional aggregate measure with the incentive rates (β1
1 , β

2
1 , β

1
2 , β

2
2) as relative
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weights. As shown in the previous chapter, because the number of aggregate mea-

sures ( a single-dimension aggregate measure ) is less than the number of tasks

( effectively two-tasks in a single-period ), an efficient aggregation with full com-

mitment for inducing an exogenously fixed sequence of efforts (a1, a2) cannot be

statistically sufficient and depends on the sequence of efforts to induce (a1, a2). The

incentive compatibility constraints are as follows :

a1 = β1
1 m1 + β2

1 k1 , (3.31)

a2 = β1
2 m2 + β2

2 k2 . (3.32)

The incentive rates on the basic measures (y1, z1, y2, z2) in the efficient aggregation

are given by :



β1
1

β2
1

β1
2

β2
2


=

1
r

Σ−1



µ1m1

µ1 k1

µ2m2

µ2 k2


, (3.33)

where Σ is the variance-covariance matrix of (y1, z1, y2, z2) and µ1 and µ2 are the

Lagrange multipliers to the incentive compatibility constraints (3.31) and (3.32).

Substituting the incentive rates from (3.33) in the incentive compatibility constraints

(3.31) and (3.32) and solving for the Lagrange multipliers µ1 and µ2 show that the

Lagrange multipliers µ1 and µ2 depends on the sequence of efforts to induce :

µ1 = h1(a1, a2) , (3.34)

µ2 = h2(a1, a2) , (3.35)

where h1(·) and h2(·) are some functions. Thus, the incentive rates (β1
1 , β

2
1 , β

1
2 , β

2
2)

in (3.33) depend on the sequence of efforts to induce (a1, a2) and the efficient ag-

gregation into a single aggregate measure is effort-dependent.

In the two-period contract C(y1, z1, y2, z2) (3.6) with full commitment, the prin-
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cipal can use the performance measures (y1, z1, y2, z2) in both periods to control

effort (a1, a2). This can be seen in that each incentive rate (β1
1 , β

2
1 , β

1
2 , β

2
2) on the

basic measures (y1, z1, y2, z2) in (3.33) is affected by the sensitivities (m1, k1,m2, k2)

and the variance-covariance matrix Σ of the performance measures (y1, z1, y2, z2).

Thus, effort (a1, a2) in (3.31) and (3.32) are controlled by the performance measures

(y1, z1, y2, z2) in both periods.

When the two-period contract C(y1, z1, y2, z2) (3.6) is characterized with full

commitment, both the “global”aggregation and the “period-by-period”aggregation

of performance measures are available. The “global”aggregation of performance

measures is to aggregate all of both periods basic measures (y1, z1, y2, z2) with re-

spect to both periods effort (a1, a2). The two-dimensional jointly sufficient statistics

T1(y1, z1, y2, z2) (3.29) and T2(y1, z1, y2, z2) (3.30) are “global”aggregate measures.

On the other hand, the “period-by-period”aggregation is to aggregate the basic

measures of each period. In the “period-by-period”aggregation, the first period ag-

gregation is to aggregate the first period basic measures y1 and z1 with respect to

the first period effort a1 and the second period aggregation is to aggregate the sec-

ond period basic measures y2 and z2 with respect to the second period effort a2.

The “period-by-period”aggregate measures are period-specific and time-dependent.

3.4.2 “Myopic”statistically sufficient aggregation

As discussed in the previous section, a two-period contract with full commitment

on a single-task each period is equivalent to a single-period setting with two tasks.

Because multi-task settings in a single-period were analyzed in the previous chapter,

the subsequent analysis focuses on a two-period contract with renegotiation.

The key difference between the full commitment and renegotiation cases lies in

the controllability of the first period effort a1. With full commitment, the principal

can use both periods performance measures (y1, z1, y2, z2) to control the agent’s

first period effort a1, as shown in the previous section. With renegotiation, the

principal cannot use the second period measures y2 and z2 to control the first period

effort a1. At the renegotiation point, t = 1, the first period effort a1 is sunk and
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the second period performance measures y2 and z2 have not been reported. Any

risky incentive compensation related to the sunk effort a1 will not be offered at the

renegotiation point, t = 1, because such an incentive is ex-post inefficient. Thus,

with renegotiation, the second period measures y2 and z2 are no longer controlling

tools of the first period effort a1. As a result, when the two-period contract is

renegotiated, the “global”aggregation of both periods basic measures (y1, z1, y2, z2)

with respect to both periods effort (a1, a2) is inadequate. With renegotiation, only

the “period-by-period”aggregation of performance measures is adequate.

In the sequel, the “period-by-period”aggregation of the first period measures y1

and z1 with respect to the first period effort a1 will be analyzed. With renegotiation,

the first period effort a1 is sunk in the second period, and the realized values of the

first period measures y1 and z1 are also available in the second period. Because

of ex-post efficiency imposed by renegotiation, the agency problem in the second

period is effectively in a single-period setting and the agency problem in the first

period is of interest.

In the first period, the principal rationally expects the second period induced

effort. For an exogenously given sequence of efforts (a1, a2), the second period

effort level a2 is fixed.2 For the sequence of optimal efforts (a†1, a
†
2), the principal

can rationally expect the second period induced effort a†2 due to the renegotiation-

proofness condition. With the rational expectation on the second period induced

effort, the principal induces the first period effort. Then, the principal uses the

information obtained from the first period realized performance measures for solving

the second period agency problem.

In this process, the first period measures y1 and z1 affect the expected compen-

sation in two ways. The first way is a “direct”effect as the first period measures

y1 and z1 are used in the contract C(y1, z1, y2, z2) (3.6). In the first period, given
2 With a single performance measure in the second period, there would be no room for renegotia-

tion, at t = 1, on the second period incentive rate. With a single performance measure, the binding
incentive compatibility constraint together with a fixed effort level would result in a fixed incentive
rate. On the other hand, with the two performance measures y2 and z2 in the second period,
an effective renegotiation takes place, at t = 1, on the second period incentive rates. Even with
the binding incentive compatibility constraint and a fixed effort level, “under-determination”gives
many alternative combinations of incentive rates on y2 and z2 to induce a fixed effort level.
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the rational expectation on the second period induced effort, the principal induces

the first period effort with the incentive rates on the first period measures y1 and

z1 as if the agency were in a single-period setting. Note that the expected values of

the first period measures y1 and z1 are affected only by the first period effort ( (3.1)

and (3.2) ). Thus, the direct effect is rendered by the marginal joint distribution

f1(y1, z1; a1) (3.14) of the first period measures y1 and z1, in which only the first

period effort is relevant.

The other way is an “inter-temporal”effect as the first period measures y1 and

z1 give information on the second period measures y2 and z2 through the inter-

temporal correlations. The inter-temporal effect results from the inter-temporal

correlations of performance measures in multi-period agencies. The inter-temporal

correlations of performance measures reduce the conditional variances of the second

period measures y2 and z2 and affect the second period incentive rates (β1
2 , β

2
2), which

are ex-post efficient. Because the second period incentive rates (β1
2 , β

2
2) and the first

period incentive rates (β1
1 , β

2
1) together – through the inter-temporal covariance risk

β1
1 ICR1 + β2

1 ICR2 below explained ( also see (3.67) ) – affect the risk premium

necessary for inducing effort from the risk averse agent, the expected compensation is

affected by the first period measures y1 and z1. The inter-temporal effect is rendered

by the joint distribution f2(y2, z2| y1, z1, a2) (3.18) of the second period measures y2

and z2, conditional on the first period measures y1 and z1.

The direct effect and the inter-temporal effect adjust each other in an insepara-

ble way and fine-tune the compensation. The incentive rates (β1
1 , β

2
1) on the first

period measures y1 and z1 are constituents of the inter-temporal covariance risk

and affect the inter-temporal effect. In turn, the inter-temporal effect is expected

in the first period and properly adjusts the direct effect. The renegotiation-proof

contract reflects both the direct effect and the inter-temporal effect from the first

period measures y1 and z1.

The inter-temporal effect comes into the principal’s first period problem by the

inter-temporal covariance risk factors ( ICR ) :
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Definition 9 ( Inter-temporal covariance risk factors )

ICR1 and ICR2 characterize the inter-temporal covariance risk with respect to

the performance measures y1 and z1, respectively :

ICR1 = r Cov
(
y1, β

1
2 y2 + β2

2 z2
)
, (3.36)

ICR2 = r Cov
(
z1, β

2
2 z2 + β1

2 y2

)
. (3.37)

As a multi-period agency problem, the first period agency problem is featured with

the inter-temporal covariance risk (β1
1 ICR1+β2

1 ICR2 ) of the first period measures

y1 and z1 with respect to the second period measures y2 and z2. The inter-temporal

covariance risk results from the risk externality (Şabac 2008) when there exist co-

variances among current period and future period performance measures. The risk

externality arises because the principal cannot commit to future incentive rates and

“cooperate with himself”in determining incentive rates at different points in time.

When positive ( negative ) covariance exists between current period and future pe-

riod performance measures, it imposes too much ( too little ) compensation risk to

the agent and the principal lowers ( raises ) current period incentive rates in order

to reduce ( increase ) the current period induced effort. As the inter-temporal co-

variance risk results from the existence of inter-temporal correlations among perfor-

mance measures, the inter-temporal covariance risk should be considered in inducing

an exogenously fixed sequence of efforts (a1, a2) as well as the sequence of optimal

efforts (a†1, a
†
2).

As the agency problem in the first period is a multi-period agency problem with

the inter-temporal effect that is characterized by the inter-temporal covariance risk

factors ( ICR1 and ICR2 ), an aggregation of the first period measures y1 and z1

will be “myopic”if only the direct effect is taken into account without the inter-

temporal effect. In fact, it is only the first period effort a1 ( as in (3.1) and (3.2) )

that affects the distribution of the first period basic measures y1 and z1. Thus, using

only the marginal joint distribution f1(y1, z1; a1) (3.14), it is possible to construct a
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one-dimensional “myopic”aggregate measure of the first period measures y1 and z1,

that is equivalent to a one-dimensional sufficient statistic in a single-period setting

( see T (y, z) (3.27) ). By the factorization criterion ( Definition 2 ) the following one-

dimensional “myopic”aggregate measure of the first period period measures y1 and

z1 is derived from the joint density function f1(y1, z1; a1) (3.14) :

T m(y1, z1) =
(m1 − φ11 k1)
V ar(y1)

y1 +
(k1 − φ21m1)
V ar(z1)

z1 , (3.38)

where φ11 = Cov(y1, z1) / V ar(z1) and φ21 = Cov(y1, z1) / V ar(y1).

However, the following analysis will show that in a multi-period setting, neither

an efficient aggregation nor the optimal aggregation of the first period measures y1

and z1 is characterized by the one-dimensional “myopic”statistic T m(y1, z1) (3.38).

In a multi-period setting with the inter-temporal effect, the principal does not use

the one-dimensional “myopic”statistic T m(y1, z1) of the first period measures y1 and

z1. As long as the inter-temporal covariance risk ( represented by ICR1 and ICR2 )

exists, there is no statistically sufficient aggregation.

3.4.3 Economically sufficient aggregation : Efficient aggregation

The two-stage optimization approach of Grossman and Hart (1983) allows one to

explicitly observe how the first period basic measures y1 and z1 are aggregated for

inducing an exogenously fixed effort level in a multi-period setting. In the first

stage, a sequence of arbitrary efforts (a1, a2), which is not necessarily the sequence

of optimal efforts (a†1, a
†
2), is fixed and then the principal’s problem is to solve for

the minimum cost contract. The following proposition completes the first stage of

optimization.

Proposition 7 ( Incentive rates in the minimum cost contract )

In a two-period and single-task setting, the first period and second period ( t =

1, 2 ) incentive rates in the minimum cost contract for inducing an exogenously fixed
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sequence of efforts (a1, a2) are as follows :

β1
t =

(
µtmt − ICR1

)
V art−1(zt)−

(
µt kt − ICR2

)
Covt−1(yt, zt)

r
[
V art−1(yt)V art−1(zt)− {Covt−1(yt, zt)}2

] , (3.39)

β2
t =

(
µt kt − ICR2

)
V art−1(yt)−

(
µtmt − ICR1

)
Covt−1(yt, zt)

r
[
V art−1(yt)V art−1(zt)− {Covt−1(yt, zt)}2

] , (3.40)

where

µt =
at r

(
1− φ1t φ2t

)
+ ICR1

[
Mt / V art−1(yt)

]
+ ICR2

[
Kt / V art−1(zt)

]
mt

[
Mt / V art−1(yt)

]
+ kt

[
Kt / V art−1(zt)

] ,

(3.41)

Mt = mt − φ1t kt, Kt = kt − φ2tmt,

φ1t = Covt−1(yt, zt) / V art−1(zt), φ2t = Covt−1(yt, zt) / V art−1(yt) .

ICR1 and ICR2 are as in (3.36) and (3.37). For the second period, it is sufficient

to set no inter-temporal covariance risk ICR1 = ICR2 = 0. The variance V art−1 [ · ]

and covariance Covt−1 [ · ] are conditional on the realized performance measures y1

and z1 for the second period ( t=2 ), and unconditional for the first period ( t=1 ).

As the aggregation of performance measures is restricted to linear aggregation in

this study, the relative incentive rate on the basic measures characterizes the aggre-

gation of performance measures. Banker and Datar (1989) and Datar, Kulp, and

Lambert (2001) analyze the relative incentive rate, but their studies are restricted to

a single-period setting. From Proposition 7, it follows that the efficient aggregation

for the first period in the minimum cost contract for inducing an exogenously fixed

sequence of efforts (a1, a2) is characterized by the following relative weight on the

first period basic measures y1 and z1 :

β1
1

β2
1

=

[ (
µ1m1 − ICR1

)
− φ11

(
µ1 k1 − ICR2

) ]
/ V ar(y1)[ (

µ1 k1 − ICR2
)
− φ21

(
µ1m1 − ICR1

) ]
/ V ar(z1)

. (3.42)
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Because the second period agency problem is a single-period problem, it is an ex-

pected result that the efficient aggregation of the second period basic measures y2

and z2 is characterized by the following one-dimensional sufficient statistic T (y2, z2)

with the posterior beliefs :

T (y2, z2) =
(m2 − φ12 k2)
V ar1(y2)

y2 +
(k2 − φ22m2)
V ar1(z2)

z2 , (3.43)

where φ12 = Cov1(y2, z2) / V ar1(z2) and φ22 = Cov1(y2, z2) / V ar1(y2).

Although the efficient aggregation of the second period measures y2 and z2 is

independent of the second period effort level a2, the second period incentive rates

β1
2 and β2

2 ( (3.39) and (3.40) ) depend on the second period effort level a2 through

the optimal Lagrange multiplier µ2 (3.41) on the incentive compatibility constraint.

Thus, the inter-temporal covariance risk factors ICR1 and ICR2 ( (3.36) and (3.37) )

in the first period depend on the second period effort level a2 through the second

period incentive rates β1
2 and β2

2 .

The relative weight (3.42) on the first period measures y1 and z1 explicitly shows

that an efficient aggregation in a multi-period setting depends on the sequence of

efforts (a1, a2). The relative weight (3.42) depends on the first period effort level a1

through the Lagrange multiplier µ1 (3.41) and on the second period effort level a2

through the inter-temporal covariance risk factors ICR1 and ICR2.

Note that without the inter-temporal covariance risk ICR1 = ICR2 = 0, the

efficient aggregation (3.42) is equivalent to the one-dimensional “myopic”statistic

β1
1 y1 + β2

1 z1 = T m(y1, z1) (3.38), which is independent of the sequence of efforts

(a1, a2). Thus, it is evident that the existence of inter-temporal covariance risk

( represented by ICR1 and ICR2 ) causes an efficient aggregation in a multi-period

setting to depend on the sequence of efforts (a1, a2).

3.4.4 Economically sufficient aggregation : Optimal aggregation

The optimal incentive rates are necessary to complete the second stage of optimiza-

tion. The following proposition gives the first period optimal incentive rates on
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the basic measures y1 and z1 for inducing the sequence of endogenously determined

optimal efforts (a†1, a
†
2).

Proposition 8 ( Incentive rates in the optimal contract )

In a two-period setting with a single-task, the optimal incentive rates β1†
1 and

β2†
1 on the first period basic measures y1 and z1 are as follows :

β1†
1 =

(
b1m1 − ICR1

){
k2

1 + r V ar(z1)
}
−
(
b1 k1 − ICR2

){
m1 k1 + r Cov(y1, z1)

}
D1

,

(3.44)

β2†
1 =

(
b1 k1 − ICR2

){
m2

1 + r V ar(y1)
}
−
(
b1m1 − ICR1

){
m1 k1 + r Cov(y1, z1)

}
D1

,

(3.45)

where

D1 = m2
1 r V ar(z1) + k2

1 r V ar(y1)

− 2m1 k1 r Cov(y1, z1) + r2
[
V ar(y1)V ar(z1)− {Cov(y1, z1)}2

]
.

(3.46)

From Proposition 8, it follows that the optimal aggregation in the first period is char-

acterized by the following relative incentive rate on the first period basic measures

y1 and z1 :

β1†
1

β2†
1

=

[(
b1m1 − ICR1

)
− φ11

(
b1 k1 − ICR2

)]
/
(
m2

1 + r V ar(y1)
)

[(
b1 k1 − ICR2

)
− φ21

(
b1m1 − ICR1

)]
/
(
k2

1 + r V ar(z1)
) , (3.47)

where φ11 =
(
m1 k1 + r Cov(y1, z1)

)
/
(
k2

1 + r V ar(z1)
)

,

φ21 =
(
m1 k1 + r Cov(y1, z1)

)
/
(
m2

1 + r V ar(y1)
)

.

In the case of independent periods, ICR1 = ICR2 = 0, the optimal aggrega-

tion (3.47) is equivalent to the one-dimensional “myopic”statistic T m(y1, z1) (3.38).

However, as long as the performance measures are inter-temporally correlated and

79



the inter-temporal covariance risk ( represented by ICR1 and ICR2 ) exists, the op-

timal aggregation (3.47) is not equivalent to the one-dimensional “myopic”statistic

T m(y1, z1) (3.38) and the principal does not use the one-dimensional “myopic”

statistic T m(y1, z1) (3.38). Thus, statistical sufficiency is not the point to the opti-

mal aggregation in a multi-period setting.

In (3.47), the optimal aggregation in a multi-period setting depends on the

agent’s characteristics and the economic situation of the agency, which are respec-

tively represented by the agent’s risk aversion r and the sequence of the first best

effort levels (b1, b2). The first best effort level of the second period b2 affects the opti-

mal aggregation (3.47) through the inter-temporal covariance risk factors ICR1 and

ICR2. Note that the incentive rates β1
1 and β2

1 ( (3.39) and (3.40) ) in the minimum

cost contract are independent of the agent’s risk aversion r, and thus the efficient

aggregation (3.42) is independent of not only the sequence of the first best effort

levels (b1, b2) but also the agent’s risk aversion r. Since the optimal aggregation is

to induce the endogenously determined optimal effort level, it is the optimal effort

level (a†1, a
†
2) that brings the agent’s characteristics and the economic situation of

the agency into the optimal aggregation (3.47).

In the second stage of optimization, it is verified that as the sequence of optimal

efforts (a†1, a
†
2) is substituted, the efficient aggregation (3.42) is equivalent to the

optimal aggregation (3.47). The sequence of optimal efforts (a†1, a
†
2) is given by

the sequence of optimal incentive rates
{

(β1†
1 , β

2†
1 ), (β1†

2 , β
2†
2 )
}

. The first period

optimal effort level a†1 can be derived using the incentive compatibility constraint

( from (3.80) ) :

a†1 = β1†
1 m1 + β2†

1 k1 , (3.48)

where the first period optimal incentive rates β1†
1 and β2†

1 are given by (3.44) and

(3.45). It is observed in (3.41) and (3.42) that the first period optimal incentive

rates β1†
1 and β2†

1 affect the efficient aggregation (3.42) through the optimal effort

level a†1, and the second period optimal incentive rates β1†
2 and β2†

2 affect the efficient
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aggregation through the inter-temporal covariance risk factors ICR1 and ICR2. It

can be shown that substituting the optimal effort level a†1 (3.48) into (3.41) and

then into (3.42) results in the optimal aggregation (3.47).

The optimal aggregation (3.47) is a special case of the efficient aggregation (3.42).

Thus, the optimal aggregation (3.47) depends on the sequence of optimal effort

levels (a†1, a
†
2). In a two-period setting with a single-task, the two relevant joint

distributions of performance measures f1(y1, z1; a1) (3.14) and f2(y2, z2| y1, z1, a2)

(3.18) satisfy the “all a or no a”condition (Definition 8 ). Therefore, as the analysis

is extended to a multi-period setting, the “all a or no a”condition no longer implies

that an economically sufficient aggregation for the optimal effort level is also a

statistically sufficient aggregation for all effort levels ( [4] ; [1] ).

3.5 Likelihood ratio approach : Efficient aggregation

In this section, the results obtained in the previous section are confirmed by tak-

ing the likelihood ratio approach of Şabac (2009). While using the LEN model,

he characterizes the renegotiation-proof contract with the statistical properties and

likelihood ratios of performance measures. Using the results in Lemma 2 and Lemma

3 of Şabac (2009) and applying the setting of two-performance-measures and single-

task, the two-period renegotiation-proof contract C(y1, z1, y2, z2), that is the mini-

mum cost contract for inducing an exogenously fixed sequence of efforts (a1, a2), is

presented as follows :

C(y1, z1, y2, z2) = C1(y1, z1) + ΣL−1
2 a2 L2 , (3.49)

where ΣL2 denotes the variance of the likelihood ratio L2 (3.21). The first part

C1(y1, z1) in (3.49) depends only on the first period measures y1 and z1 and is given

as follows :

C1(y1, z1) =ACE0 +
1
2
a2

1 +
1
2
a2

2 +
1
2
rΣL−1

1

(
a1 − ΣL12 ΣL−1

2 a2

)2
+

1
2
rΣL−1

2 a2
2 + ΣL−1

1

(
a1 − ΣL12 ΣL−1

2 a2

)
L1 ,

(3.50)
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where ACE0 denotes the agent’s certainty equivalent at the start of the first pe-

riod, ΣL1 denotes the variance of the likelihood ratio L1 (3.15), and ΣL12 denotes

the covariance Cov(L1, L2) in which the likelihood L1 is as in (3.13). Whereas the

likelihood ratio L1 (3.15) depends only on the first period measures y1 and z1, the

likelihood ratio L2 (3.21) depends on both the first and the second period mea-

sures (y1, z1, y2, z2). In particular, the coefficient of y1 is (m2 s31 + k2 s41 ) and the

coefficient of z1 is (m2 s32 + k2 s42 ) in the likelihood ratio L2 (3.21).

The following proposition verifies the results from Proposition 7 in the previous

section.

Proposition 9 ( Likelihood ratio approach : Efficient aggregation in a two-period

setting with a single-task )

In a two-period setting with a single-task, the economically sufficient aggregation

( [3], Definition 6 ) of the first period basic measures y1 and z1 for inducing an exoge-

nously fixed sequence of efforts (a1, a2) depends on the sequence of efforts (a1, a2).

In particular, the efficient aggregation of the first period basic measures y1 and z1 is

characterized as follows :

ΣL−1
1

(
a1 − ΣL12 ΣL−1

2 a2

)
L1 + ΣL−1

2 a2 L2 . (3.51)

If the performance measures are inter-temporally independent, the efficient aggrega-

tion (3.51) is also statistically sufficient for all effort levels ( [1], Definition 1 ) and

characterized by the one-dimensional “myopic”statistic T m(y1, z1) (3.38).

Using the likelihood ratios, Proposition 9 restates the results from Proposition 7

by showing that in a multi-period setting, an efficient aggregation of performance

measures depends on the sequence of efforts (a1, a2) and that an efficient aggregate

measure is equivalent to the one-dimensional “myopic”statistic T m(y1, z1) (3.38) if

the performance measures are inter-temporally independent. Thus, Proposition 9

confirms that it is the existence of inter-temporal correlations and inter-temporal

covariance risk ( represented by ICR1 and ICR2 ) of performance measures that
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causes an efficient aggregation in a multi-period setting to depend on the sequence

of efforts (a1, a2).

3.6 Conclusion

The aggregation of performance measures can help to reduce the complexity of an

agency problem. More often than not, an agency problem takes place in a multi-

period setting, in which performance measures are inter-temporally correlated. This

study examines the nature and characteristics of the aggregation of performance

measures in an extended multi-period setting.

In a multi-period setting, the first question is whether there is a universal aggre-

gation, that is determined only by the statistical properties of performance measures

with no loss of information in the aggregation process. If the same aggregation is

good enough to substitute for the basic measures for every manager in all firms,

then the complexity involved in motivating and evaluating managers’ activity could

be reduced considerably.

The results obtained in this study suggest that such a universal aggregation

is unlikely to exist. In a multi-period setting, even when a “myopic”aggregate

measure, which is equivalent to a one-dimensional sufficient statistic in a single-

period setting, is available, the “myopic”aggregate measure is neither optimal nor

efficient in inducing the agent’s effort. The economically sufficient aggregate measure

does not attain statistical sufficiency by depending on the agent’s effort level to

induce even if the likelihood ratios satisfy the “all a or no a”condition. Thus,

statistical sufficiency is not the point to the aggregation of performance measures in a

multi-period setting. This result is consistent with the results of Şabac (2009), where

he shows that renegotiation may call for another qualitatively different sufficiency

concept other than statistical sufficiency by introducing a “renegotiation”sufficient

statistic, which neither implies nor is implied by a sufficient statistic.

The next question in a multi-period setting is whether a performance evalua-

tion system can be commonly applied to all managers or should be “tailored”and
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individually designed for each manager and each firm such that different managers

are evaluated on different performance measures. The results in this study suggest

that in a multi-period setting, an optimal performance evaluation system should be

“tailored”for each manager in each firm. This study shows that in a multi-period

setting, an efficient aggregation of performance measures depends on the effort level

to induce. Also, this study explicitly shows that in a multi-period setting, the op-

timal aggregation of performance measures depends on the agent’s characteristics

and the economic situation of the agency as well as the statistical properties of

performance measures.

In a multi-period setting, the optimal aggregate measures are not sufficient statis-

tics. This result is similar to the result of Amershi, Banker, and Datar (1990) in

a single-period setting, but the reason in a multi-period setting is qualitatively dif-

ferent from that of a single-period setting. In a multi-period setting, it is not only

a statistical condition ( “all a or no a”condition ) but also the existence of inter-

temporal correlations of performance measures and inter-temporal covariance risk

in compensation that causes the optimal aggregate measures to be agency-specific

and not to be sufficient statistics. In particular, the optimal aggregate measure is

not a sufficient statistic of the basic measures in a multi-period setting even if the

“all a or no a”condition is satisfied. Sufficient statistics do not represent the optimal

aggregation of performance measure as the analysis moves toward an institutionally

richer setting of multi-period.

3.7 Appendix

3.7.1 Proof of Proposition 7

This proof is composed of two parts. The first part employs the compensation C as

the decision variable and shows that the Kuhn-Tucker multiplier λi, t = 1, 2 equals

1 in both periods. The second part explicitly solves for the minimum cost contract

by employing the first period incentive rates β1
1 and β2

1 as the decision variables in

order to handle the inter-temporal covariance risk.
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The following shows that the first period Kuhn-Tucker multiplier λ1 equals 1

with the joint normal density function f1(y1, z1; a1) (3.14). The same procedure

can show that the second period Kuhn-Tucker multiplier λ2 also equals 1 with the

conditional joint normal density function f2(y2, z2| y1, z1, a2) (3.18).

The renegotiation-proof contract C(y1, z1, y2, z2) (3.6) can be split into two

parts :

C(y1, z1, y2, z2) = C1(y1, z1) + Z2(y2, z2) , (3.52)

where C1(y1, z1) = α0 + β1
1 y1 + β2

1 z1 depends on the first period measures y1 and

z1, and Z2(y2, z2) = β1
2 y2 +β2

2 z2 depends on the second period measures y2 and z2.

The expected value of the contract C(y1, z1, y2, z2) (3.6) is as follows :

E
[
C(y1, z1, y2, z2); a1, a2

]
= E

[
C1(y1, z1); a1

]
+ E

[
Z2(y2, z2)

]
=
∫∫

C1(y1, z1) f1(y1, z1; a1) dy1 dz1 + E
[
Z2(y2, z2)

]
.

(3.53)

Due to the renegotiation-proofness condition, E
[
Z2(y2, z2)

]
is taken effectively as

fixed in the first period.

Given the normality of compensation, the agent’s certainty equivalent at the

start of the first period is :

ACE(a1) = E
[
C(y1, z1, y2, z2); a1, a2

]
− 1

2

(
a2

1 + a2
2

)
− 1

2
r V ar

[
C(y1, z1, y2, z2)

]
=
∫∫

C1(y1, z1) f1(y1, z1; a1) dy1 dz1 + E
[
Z2(y2, z2)

]
− 1

2

(
a2

1 + a2
2

)
− 1

2
r

∫∫∫∫ {
C(y1, z1, y2, z2)− E

[
C(y1, z1, y2, z2); a1, a2

]}2

f(y1, z1, y2, z2; a1, a2) dy1 dz1 dy2 dz2 ,

(3.54)

where f(y1, z1, y2, z2; a1, a2) is the joint density function (3.11). With (3.52) and

(3.53), the derivative of the agent’s certainty equivalent ACE(a1) with respect to
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the contract C1(y1, z1) equals 1 :

∂ ACE(a1)
∂ C1(y1, z1)

=
∫∫

f1(y1, z1; a1) dy1 dz1 = 1 . (3.55)

The incentive compatibility constraint for the first period is :

(IC)
∫∫

C1(y1, z1)
∂ f1(y1, z1; a1)

∂ a1
dy1 dz1 − a1 = 0 . (3.56)

A zero reservation certainty equivalent is set without loss of generality, and the

participation constraint for the first period is :

(PC) ACE(a1) ≥ 0 . (3.57)

The first period problem of solving for the minimum cost contract for a fixed se-

quence of efforts (a1, a2) is written as the following maximization problem :

max
C1(y1,z1), λ1, µ1

L =− E
[
C(y1, z1, y2, z2); a1, a2

]
+ λ1ACE(a1)

+ µ1

(∫∫
C1(y1, z1)

∂ f1(y1, z1; a1)
∂ a1

dy1 dz1 − a1

)
,

(3.58)

where λ1 is a Kuhn-Tucker multiplier and µ1 is a Lagrange multiplier. The first

order conditions are as follows :

∂ L
∂ C1(y1, z1)

= −
∫∫

f1(y1, z1; a1) dy1 dz1 + λ1

∫∫
f1(y1, z1; a1) dy1 dz1

+ µ1

∫∫
∂ f1(y1, z1; a1)

∂ a1
dy1 dz1

= 0 ,

(3.59)

∂ L
∂ λ1

= ACE(a1) ≥ 0, λ1 ≥ 0, λ1ACE(a1) = 0 , (3.60)

∂ L
∂ µ1

=
∫∫

C1(y1, z1)
∂ f1(y1, z1; a1)

∂ a1
dy1 dz1 − a1 = 0 . (3.61)
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Because
∫∫ ∂ f1(y1,z1; a1)

∂ a1
dy1 dz1 = 0, the Kuhn-Tucker multiplier λ1 equals 1 from

(3.59) :

λ1 = 1 . (3.62)

Thus, the participation constraint (3.57) is binding by the Kuhn-Tucker condition

(3.60).

Now, the first period incentive rates β1
1 and β2

1 are used as decision variables

in solving for the minimum cost contract. The optimization follows backward in-

duction. However, the proof skips the second period problem and advances to the

first period, because it is sufficient for the second period to set no inter-temporal

covariance risk ICR1 = ICR2 = 0 and to use the variance V ar1 [ · ] and covariance

Cov1 [ · ], which are conditional on the realized first period measures y1 and z1.

Taking expectation to (3.6) and using (3.1) and (3.2), the first period incentive

compatibility constraint can be written as :

(IC ′) β1
1 m1 + β2

1 k1 − a1 = 0 . (3.63)

The principal’s problem at the start of the first period can be represented by the

following maximization problem :

max
α0,β1

1 ,β2
1 ,λ1,µ1

L = −E
[
C(y1, z1, y2, z2); a1, a2

]
+λ1ACE(a1)+µ1

(
β1

1 m1+β2
1 k1−a1

)
,

(3.64)

which is reduced to maximizing the following because λ1 = 1 :

−1
2

(
a2

1 + a2
2

)
− 1

2
r V ar

[
C(y1, z1, y2, z2)

]
+ µ1

(
β1

1 m1 + β2
1 k1 − a1

)
. (3.65)

The agent’s action cost is dropped from (3.65) because the sequence of efforts (a1, a2)

is fixed. As the fixed payment α0 can be set to satisfy the binding participation

constraint (3.57), the decision of the fixed payment α0 can be omitted. Also, the risk
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premium can be reduced to the relevant portion 1
2 r V ar

′
[
C(y1, z1, y2, z2)

]
regarding

the decision variables β1
1 and β2

1 . Then, the principal’s problem is equivalent to :

max
β1
1 , β2

1 , µ1

L′ = −1
2
r V ar′

[
C(y1, z1, y2, z2)

]
+ µ1

(
β1

1 m1 + β2
1 k1 − a1

)
, (3.66)

in which by Definition 9 ( (3.36) and (3.37) ) :

1
2
r V ar′

[
C(y1, z1, y2, z2)

]
=

1
2
r
[ (
β1

1

)2
V ar(y1) +

(
β2

1

)2
V ar(z1) + 2β1

1 β
2
1 Cov(y1, z1)

]
+ β1

1 ICR1 + β2
1 ICR2 .

(3.67)

The first order conditions are as follows :

∂ L′

∂ β1
1

= −r
[
β1

1 V ar(y1) + β2
1 Cov(y1, z1)

]
− ICR1 + µ1m1 = 0 , (3.68)

∂ L′

∂ β2
1

= −r
[
β2

1 V ar(z1) + β1
1 Cov(y1, z1)

]
− ICR2 + µ1 k1 = 0 , (3.69)

∂ L′

∂ µ1
= β1

1 m1 + β2
1 k1 − a1 = 0 . (3.70)

Solving (3.68) and (3.69) for β1
1 and β2

1 gives :

β1
1 =

(
µ1m1 − ICR1

)
V ar(z1)−

(
µ1 k1 − ICR2

)
Cov(y1, z1)

r
[
V ar(y1)V ar(z1)− {Cov(y1, z1)}2

] , (3.71)

β2
1 =

(
µ1 k1 − ICR2

)
V ar(y1)−

(
µ1m1 − ICR1

)
Cov(y1, z1)

r
[
V ar(y1)V ar(z1)− {Cov(y1, z1)}2

] . (3.72)

Finally, substituting (3.71) and (3.72) into the incentive compatibility constraint

(3.70) yields :

µ1 =
a1 r

(
1− φ11 φ21

)
+ ICR1

[
M1 / V ar(y1)

]
+ ICR2

[
K1 / V ar(z1)

]
m1

[
M1 / V ar(y1)

]
+ k1

[
K1 / V ar(z1)

] , (3.73)

where M1 = m1 − φ11 k1, K1 = k1 − φ21m1,
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φ11 = Cov(y1, z1) / V ar(z1), φ21 = Cov(y1, z1) / V ar(y1).

3.7.2 Proof of Proposition 8

This proof is by backward induction. The optimal incentive rates β1†
2 and β2†

2 on

the second period basic measures y2 and z2 are obtained by solving the principal’s

problem at the start of the second period. The principal maximizes his expected

utility with the decision variables β1
2 and β2

2 :

max
β1
2 , β2

2

Up
2 = b2 a2 − E

[
C| a2

]
. (3.74)

The agent’s rational action choice is :

a2 = β1
2 m2 + β2

2 k2 . (3.75)

Using the binding participation and incentive compatibility constraints, the second

period optimal incentive rates β1†
2 and β2†

2 are as follows :

β1†
2 = b2 r

m2 V ar1(z2)− k2Cov1(y2, z2)
D2

, (3.76)

β2†
2 = b2 r

k2 V ar1(y2)−m2Cov1(y2, z2)
D2

, (3.77)

where

D2 = m2
2 r V ar1(z2) + k2

2 r V ar1(y2)

− 2m2 k2 r Cov1(y2, z2) + r2
[
V ar1(y2)V ar1(z2)− {Cov1(y2, z2)}2

]
.

(3.78)

Given the second period optimal incentive rates β1†
2 and β2†

2 , backward induction

allows one to calculate the first period optimal incentive rates β1†
1 and β2†

1 . At the

start of the first period, the principal maximizes his expected utility with the decision

variables β1
1 and β2

1 :

max
β1
1 , β2

1

Up
1 = b1 a1 + b2 a2 − E

[
C| a1, a2

]
, (3.79)
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in which the second period benefit b2 a2 can be dropped because the second period

optimal incentive rates β1†
2 and β2†

2 and effort level a†2 are taken effectively as fixed in

the first period due to the renegotiation-proofness requirement. The agent’s rational

action choice in the first period is :

a1 = β1
1 m1 + β2

1 k1 . (3.80)

With the binding participation and incentive compatibility constraints, the princi-

pal’s expected utility maximization is solved by :

max
β1
1 , β2

1

b1

(
β1

1 m1 + β2
1 k1

)
− 1

2

(
β1

1 m1 + β2
1 k1

)2
− 1

2
r V ar

[
C| a1, a2

]
. (3.81)

In addition, the risk premium 1
2 r V ar

[
C| a1, a2

]
is reduced to a relevant risk pre-

mium 1
2 r V ar

′[C| a1, a2

]
due to the renegotiation-proofness requirement :

1
2
r V ar′

[
C| a1, a2

]
=

1
2
r
[ (
β1

1

)2
V ar(y1) +

(
β2

1

)2
V ar(z1) + 2β1

1 β
2
1 Cov(y1, z1)

]
+ β1

1 ICR1 + β2
1 ICR2 ,

(3.82)

where ICR1 and ICR2 are as in (3.36) and (3.37). Solving the maximization

problem gives the first period optimal incentive rates β1†
1 and β2†

1 :

β1†
1 =

(
b1m1 − ICR1

){
k2

1 + r V ar(z1)
}
−
(
b1 k1 − ICR2

){
m1 k1 + r Cov(y1, z1)

}
D1

,

(3.83)

β2†
1 =

(
b1 k1 − ICR2

){
m2

1 + r V ar(y1)
}
−
(
b1m1 − ICR1

){
m1 k1 + r Cov(y1, z1)

}
D1

,

(3.84)
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where

D1 = m2
1 r V ar(z1) + k2

1 r V ar(y1)

− 2m1 k1 r Cov(y1, z1) + r2
[
V ar(y1)V ar(z1)− {Cov(y1, z1)}2

]
.

(3.85)

3.7.3 Proof of Proposition 9

Given the renegotiation-proof contract C(y1, z1, y2, z2) (3.49) and the first part

C1(y1, z1) (3.50), the aggregate measure of the first period basic measures y1 and

z1 in (3.51) is economically sufficient for a single effort level by Definition 6. When

the performance measures are inter-temporally independent :

Cov(y1, y2) = Cov(y1, z2) = Cov(z1, z2) = Cov(z1, y2) = 0 , (3.86)

both y1 and z1 vanish in the likelihood ratio L2 (3.21) :

(m2 s31 + k2 s41 ) = 0 , (3.87)

(m2 s32 + k2 s42 ) = 0 . (3.88)

Thus, if the performance measures are inter-temporally independent, the efficient

aggregation of the first period measures y1 and z1 in (3.51) depends only on the

likelihood ratio L1 (3.15). In this case, the efficient aggregation of the first pe-

riod measures y1 and z1 in (3.51) is also statistically sufficient for all effort levels

as the likelihood ratio L1 (3.15) is characterized by the one-dimensional sufficient

statistic T1(y1, z1) (3.17), that is equivalent to the one-dimensional “myopic”statistic

T m(y1, z1) (3.38).
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Chapter 4

Relative Incentive Rate



4.1 Introduction

The previous two chapters analyze the sufficient aggregation of performance mea-

sures either in a multi-task setting or in a multi-period setting. In reality, the aggre-

gation of performance measures and the design of a performance evaluation system,

more often than not, take place in a multi-period setting with multiple tasks. This

study examines what would be the relative incentive rate of performance measures

in an institutionally richer setting of multi-period and multi-task.

This study shows that the inter-temporal covariance risk of performance mea-

sures is a factor determining the endogenous allocation of effort. This study ana-

lyzes the aggregation of performance measures in a general N -period setting with

two tasks, and explicitly presents the relative incentive rate on the basic measures.

The endogenous allocation of effort across multiple tasks is examined through the

relative incentive rate.

The modeling setting is endogenous throughout the analysis. In particular, the

endogenous allocation of effort is preserved. For tractability, this study employs a

LEN model ( Linear contract, Exponential utility of the agent, Normal distribution

of performance measure ) and the aggregation of performance measures is restricted

to linear aggregation.

This study contributes to the literature by first analyzing the endogenous allo-

cation of effort in a multi-period setting. In addition, this study first provides the

explicit relative incentive rate in a multi-period and multi-task setting. Banker and

Datar (1989) and Amershi, Banker, and Datar (1990) discuss the nature and charac-

teristics of optimal aggregation of performance measures. In particular, Banker and

Datar (1989) show that the optimal relative incentive rate in a single-period setting

with a single-task is determined only by the signal-to-noise ratio of performance

measures.

Using a LEN model, Holmstrom and Milgrom (1991) introduce the allocation

of effort across multiple tasks. The allocation of effort in their study depends on

whether multiple tasks are complements or substitutes to each other in terms of the
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agent’s personal action cost. Using a LEN model in a single-period setting with

multiple tasks, Datar, Kulp, and Lambert (2001) analyze the trade-off between the

congruity of performance measures and the risk premium by demonstrating that

an endogenously determined optimal allocation of effort may not be the first best

allocation even if the first best allocation is feasible. Datar, Kulp, and Lambert

(2001) show that as the endogenous allocation of effort comes into the principal’s

problem, the optimal relative incentive rate is no longer equivalent to the signal-to-

noise ratio of performance measures.

The results of Banker and Datar (1989) and Datar, Kulp, and Lambert (2001)

are restricted to a single-period setting. This study not only encompasses the results

of Banker and Datar (1989) and Datar, Kulp, and Lambert (2001), but also shows

how the inter-temporal covariance risk of performance measures, in addition to the

within-period risk premium, interacts with the congruity of performance measures

in determining the optimal endogenous allocation of effort. The rest of this study is

organized as follows : Section 2 explains the modeling features. Section 3 analyzes

the optimal relative incentive rate. Section 4 concludes the study.

4.2 Modeling features

This study employs a LEN model in an N -period setting with two tasks. An N -

period contract is characterized with renegotiation. Because a long-term contract

with full commitment is equivalent to a single-period contract on multiple tasks

which was analyzed in a previous chapter, a renegotiation-proof contract is used in

this study.

This study is different from the previous chapters in that this study mainly an-

alyzes the economically sufficient aggregation for inducing the optimal effort level,

rather than the statistically sufficient aggregation and the economically sufficient

aggregation for an arbitrary effort level. Thus, the analysis focuses on the equilib-

rium path.
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t = 0

CI1 a11, a21 y1, z1

v
t = 1

CR2 a12, a22 y2, z2

v
t = 2

CR3

v
t = N

Resolved

( Figure 2 )

In each of N periods t = 1, 2, · · · , N , the performance measures yt and zt are joint

normally distributed with normally distributed residual terms :

yt = ~mt · ~at + εt (4.1)

zt = ~kt · ~at + δt, t = 1, · · · , N . (4.2)

Each performance measure yt and zt has sensitivity ~mt = (m1t,m2t) and ~kt =

(k1t, k2t) to the agent’s effort ~at = (a1t, a2t), where the first subscript indicates the

task and the second subscript indicates the period. Since the performance measures

yt and zt are normally distributed, the agent’s certainty equivalent is represented

by the expected compensation minus the risk premium and action cost :

ACEt−1 = Et−1

[
C(~y, ~z)

]
− 1

2
r V art−1

[
C(~y, ~z)

]
−K(~a) , (4.3)

where the following notations for conditional expectation and variance are used :

Et−1

[
·
]

= E
[
· | y1, z1, · · · , yt−1, zt−1

]
(4.4)

V art−1

[
·
]

= V ar
[
· | y1, z1, · · · , yt−1, zt−1

]
. (4.5)

A contract offer at t − 1 ( the start of period t, see Figure 2 ) is denoted by a

sequence of incentive rates :

Ct =
{
αt−1,

(
β1

t , β
2
t

)
, · · · ,

(
β1

N , β
2
N

)}
, (4.6)

where the fixed payment αt−1 is a function of the history of realized performance

measures αt−1 = h (y1, z1, · · · , yt−1, zt−1) (α0 some constant ), and the superscript

to the incentive rate β indicates the performance measure such that 1 is for y and 2
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is for z while the subscript to the incentive rate β indicates the period. The initial

contract C1 =
{
α0,
(
β1

1 , β
2
1

)
, · · · ,

(
β1

N , β
2
N

)}
is the contract in effect unless replaced

by a subsequent renegotiation offer. In the sequel, the superscript I is used for the

initial contract at the renegotiation time and R is used for renegotiation offers.

At the start of the first period, t = 0, the principal offers to the agent an initial

contract CI1. The agent either accepts or rejects it. Once the agent accepts the

initial contract offer, the agent provides the period 1 effort ~a1 = (a11, a21). Before

the end of period 1, the principal and the agent observe two contractible performance

measures y1 and z1. At t = 1, the principal makes a take-it-or-leave-it renegotiation

offer CR2. If the renegotiation offer is rejected, CI2 is the contract in effect for period

2. If accepted, CR2 becomes the contract in effect. The agent provides the period

2 effort ~a2 = (a12, a22) and the principal and the agent observe two contractible

performance measures y2 and z2 before the end of period 2. At the start of each

period t = 3, · · · , N , the same renegotiation procedure occurs with a renegotiation

offer CRt. At the terminal date, t = N , the agent receives the compensation based

on the realized values of performance measures and the contract is resolved.

Due to the renegotiation-proofness principle for the LEN model (Şabac 2007),

the analysis of linear optimal contract can, without loss of generality, be restricted

to a linear renegotiation-proof contract :

C = α+
N∑

t=1

β1
t yt +

N∑
t=1

β2
t zt . (4.7)

At the decision point of the period t incentive rates β1
t and β2

t , the incentive rates

in the remaining contract periods β1
t+i and β2

t+i, i = 1, · · · , N − t are restricted to

be ex-post efficient and rationally expected by the principal and the agent due to

the renegotiation-proofness requirement.

The contracting and renegotiation can be summarized by the principal’s problem

at the start of period t as follows :

max
β1

t ,β2
t

Et−1

[
B(~a)− CRt

]
,
(
E
[
B(~a)− CI1

]
for the first period

)
(4.8)
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subject to the renegotiation-proofness constraint

{(
β1

t+1, β
2
t+1

)
, · · · ,

(
β1

N , β
2
N

)}
are optimal at the start of periods t+1, · · · , N , (4.9)

the incentive compatibility constraint

~at, · · · ,~aN ∈ arg max ACEt−1

(
CRt

)
, (4.10)

and the participation constraint

ACEt−1

(
CRt

)
≥ ACEt−1

(
CIt
)
.
(
ACE

(
CI1

)
≥ 0 for the first period

)
(4.11)

4.3 Optimal relative incentive rate

This section provides the optimal relative incentive rate in a multi-period and multi-

task setting. The results in this section not only encompass what have been found in

Banker and Datar (1989) and Datar, Kulp, and Lambert (2001), but also explicitly

show the role of inter-temporal covariance risk in determining the optimal relative

incentive rate. The endogenous allocation of effort is examined through the optimal

relative incentive rate on the basic measures.

In a single-period setting, Datar, Kulp, and Lambert (2001) show that there is

a trade-off between maximizing the congruity of performance measures and min-

imizing the risk premium. The optimal relative incentive rate is affected by the

within-period risk premium as well as the congruity of performance measures. In

the optimal relative incentive rate, a performance measure with a bigger variance

is assigned a less weight because the performance measure causes a bigger within-

period risk premium. Thus, as long as a risk premium exists, the first best allocation

of effort is not endogenously achieved even if it is feasible.

In a multi-period setting, this section shows that it is not only the within-period

risk premium but also the inter-temporal covariance risk of performance measures

that trades off with the congruity of performance measures. The optimal relative
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incentive rate is affected by the inter-temporal covariance risk of performance mea-

sures as well as the within-period risk premium and the congruity of performance

measures. In the optimal relative incentive rate, a performance measure with a big-

ger inter-temporal covariance risk is assigned a less weight because the performance

measure causes a bigger risk premium. As a result, the first best allocation of ef-

fort is not endogenously achieved, even if it is feasible, in a multi-period setting in

which inter-temporal correlations and inter-temporal covariance risk of performance

measures exist.

4.3.1 Optimal relative incentive rate

In maximizing the expected utility (4.8), the principal wants to minimize the ex-

pected compensation, which leads to minimizing the sum of the risk premium and

action cost as the agent certainty equivalent (4.3) is constant by the binding par-

ticipation constraint. When a residual term of a performance measure, say εt, is

correlated with its future residual term εt+i or the other performance measure’s fu-

ture residual term δt+i, the future incentive rates come into the principal’s problem

through the inter-temporal covariance risk terms :

N−t∑
i=1

β1
t β

1
t+iCovt−1

(
yt, yt+i

)
+

N−t∑
i=1

β1
t β

2
t+iCovt−1

(
yt, zt+i

)
and (4.12)

N−t∑
i=1

β2
t β

2
t+iCovt−1

(
zt, zt+i

)
+

N−t∑
i=1

β2
t β

1
t+iCovt−1

(
zt, yt+i

)
. (4.13)

In a multi-period setting, the principal develops an incentive to minimize the inter-

temporal covariance risk regarding the incentive rates in the yet-to-come periods. In

analyzing this problem, the inter-temporal covariance risk factors ( ICR ) are defined

as follows.

Definition 10 (N-period : Inter-temporal covariance risk factors )

ICR1
t and ICR2

t characterize the inter-temporal covariance risk of the perfor-
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mance measures yt and zt, respectively :

ICR1
t = r Covt−1

(
yt,

N−t∑
i=1

(
β1

t+i yt+i + β2
t+i zt+i

))
, (4.14)

ICR2
t = r Covt−1

(
zt,

N−t∑
i=1

(
β2

t+i zt+i + β1
t+i yt+i

))
. (4.15)

Using the inter-temporal covariance risk factors ICR1
t (4.14) and ICR2

t (4.15), the

following proposition presents the optimal incentive rates on the two performance

measures yt and zt in an N -period contract with the agent’s effort on two tasks.

Proposition 10 (Optimal incentive rates )

The period t optimal incentive rates β1
t and β2

t are as follows :

β1
t =

[
~bt · ~mt − ICR1

t

]{
~kt · ~kt + r V art−1

(
zt

)}
−

[
~bt · ~kt − ICR2

t

]{
~mt · ~kt + r Covt−1

(
yt, zt

)}
Dt

,

(4.16)

β2
t =

[
~bt · ~kt − ICR2

t

]{
~mt · ~mt + r V art−1

(
yt

)}
−

[
~bt · ~mt − ICR1

t

]{
~mt · ~kt + r Covt−1

(
yt, zt

)}
Dt

,

(4.17)

where

Dt =
(
m1tk2t −m2tk1t

)2
+
(
~mt · ~mt

)
r V art−1

(
zt
)

+
(
~kt · ~kt

)
r V art−1

(
yt

)
− 2
(
~mt · ~kt

)
r Covt−1

(
yt, zt

)
+ r2

[
V art−1

(
yt

)
V art−1

(
zt
)
−
{
Covt−1

(
yt, zt

)}2
]
> 0 .

(4.18)

The optimal incentive rates for the last period are obtained by substituting ICR1
N =

ICR2
N = 0.
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From Proposition 10, it follows that the optimal relative incentive rate on the two

performance measures yt and zt is :

β1
t

β2
t

=

{[
~bt · ~mt − ICR1

t

]
− φ1t

[
~bt · ~kt − ICR2

t

]}
/
{
~mt · ~mt + r V art−1

(
yt

)}
{[
~bt · ~kt − ICR2

t

]
− φ2t

[
~bt · ~mt − ICR1

t

]}
/
{
~kt · ~kt + r V art−1

(
zt
)} ,

(4.19)

where φ1t =
{
~mt · ~kt + r Covt−1

(
yt, zt

)}
/
{
~kt · ~kt + r V art−1

(
zt
)}

and φ2t =
{
~mt · ~kt + r Covt−1

(
yt, zt

)}
/
{
~mt · ~mt + r V art−1

(
yt

)}
.

In the previous chapter ( see (3.25) ), it was shown in a single-period setting with a

single-task that the relative signal-to-noise ratio of performance measures (Banker

and Datar 1989) with the LEN model is :

(
m− φ1 k

)
/ V ar(y)(

k − φ2m
)
/ V ar(z)

, (4.20)

where φ1 = Cov(y, z) / V ar(z) and φ2 = Cov(y, z) / V ar(y). With a single-task in

each period ~mt = mt, ~kt = kt, ~bt = bt, and independent periods ICR1
t = ICR2

t = 0

( effectively a single-period setting ), the optimal relative incentive rate (4.19) in

each period is :

β1
t

β2
t

=

(
mt − φ1t kt

)
/ V art−1(yt)(

kt − φ2tmt

)
/ V art−1(zt)

, (4.21)

where φ1t = Covt−1(yt, zt)/ V art−1(zt) and φ2t = Covt−1(yt, zt)/ V art−1(yt). The

relative incentive rate (4.21) is equivalent to the relative signal-to-noise ratio (4.20)

with the posterior beliefs. Thus, a multi-period agency problem with independent

periods ICR1
t = ICR2

t = 0 and a single-task is equivalent to a repeated single-period

agency problem with a single-task, and the optimal relative incentive rate in such a

setting is explained by the relative signal-to-noise ratio (4.21) in each period.
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In addition to the relative signal-to-noise ratio, the optimal relative incentive

rate (4.19) reflects the risk externality from inter-temporally correlated performance

measures and the endogenous allocation of effort across multiple tasks. The following

sections discuss the risk externality and the endogenous allocation of effort.

4.3.2 Risk externality

The last period optimal relative incentive rate β1
N/β

2
N does not contain the inter-

temporal covariance risk factors ICR1
N and ICR2

N , because there is no further con-

tract period after N and thus no inter-temporal covariance risk regarding the last

period incentive rates β1
N and β2

N :

β1
N

β2
N

=

{(
~bN · ~mN

)
− φ1N

(
~bN · ~kN

)}
/
{
~mN · ~mN + r V arN−1

(
yN

)}{(
~bN · ~kN

)
− φ2N

(
~bN · ~mN

)}
/
{
~kN · ~kN + r V arN−1

(
zN
)} , (4.22)

where φ1N =
{
~mN · ~kN + r CovN−1

(
yN , zN

)}
/
{
~kN · ~kN + r V arN−1

(
zN
)}

and φ2N =
{
~mN · ~kN + r CovN−1

(
yN , zN

)}
/
{
~mN · ~mN + r V arN−1

(
yN

)}
.

The principal’s problem at t = N − 1 is a single-period problem with myopic incen-

tives in the sense that the last period incentive rates β1
N and β2

N are designed only

to induce the optimal effort ~aN in the last period.

On the other hand, all the incentive rates before the last period consist of two

components : the myopic incentive and the risk externality adjustment. In the

optimal incentive rates (4.16) and (4.17), the myopic incentive is the component

which is based on the principal’s benefit ~bt from the current period effort ~at, the

sensitivity of the current period measures ~mt and ~kt, and the posterior variances

of the current period measures V art−1

(
yt

)
, V art−1

(
zt
)
, Covt−1

(
yt, zt

)
. That is, the

myopic incentive is the component analogous to the last period optimal incentive

rate, respectively :

[(
~bt · ~mt

){
~kt · ~kt + r V art−1

(
zt

)}
−
(
~bt · ~kt

){
~mt · ~kt + r Covt−1

(
yt, zt

)}]
/Dt , (4.23)
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[(
~bt · ~kt

){
~mt · ~mt + r V art−1

(
yt

)}
−
(
~bt · ~mt

){
~mt · ~kt + r Covt−1

(
yt, zt

)}]
/Dt . (4.24)

In the optimal incentive rates (4.16) and (4.17), the risk externality adjustment is

the component which is characterized by the inter-temporal covariance risk factors

ICR1
t and ICR2

t . The risk externality adjustment in the optimal incentive rates

(4.16) and (4.17) is given as follows, respectively :

[
−ICR1

t

{
~kt · ~kt + r V art−1

(
zt

)}
+ ICR2

t

{
~mt · ~kt + r Covt−1

(
yt, zt

)}]
/Dt , (4.25)[

−ICR2
t

{
~mt · ~mt + r V art−1

(
yt

)}
+ ICR1

t

{
~mt · ~kt + r Covt−1

(
yt, zt

)}]
/Dt . (4.26)

The risk externality (Şabac 2008) results from the principal’s lack of commitment to

future incentive rates. The principal cannot “cooperate with himself”in determining

incentive rates at different points in time. The risk externality arises when positive

( negative ) covariance between current and future performance measures imposes

too much ( too little ) compensation risk to the agent so that the principal lowers

( raises ) current incentive rates in order to reduce ( increase ) the current period

induced effort.

In studies with a single-period setting such as Banker and Datar (1989) and

Datar, Kulp, and Lambert (2001), the optimal incentive rate consists only of the

myopic incentive, because there is no inter-temporal consideration. As the analysis

is extended to a multi-period setting, the risk externality adjustment becomes a fac-

tor of the optimal incentive rate, because the principal takes into account the impact

of incentive rates on the inter-temporal covariance risk as well as effort inducement.

Thus, when performance measures are inter-temporally correlated, the optimal rel-

ative incentive rate is also affected by the inter-temporal covariance of performance

measures. With the optimal relative incentive rate (4.19), the subsequent section

will show that as long as the inter-temporal covariance of performance measures

exists in a multi-period setting, the first best allocation of effort is not endogenously

achieved, even if it is feasible.

The risk externality adjustment (4.25) and (4.26) can be explained by two spe-
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cial cases : the pure-insurance and the window-dressing (Christensen, Feltham, and

Şabac 2005). The pure-insurance is a special case when the principal induces null

current period effort ~at = 0 because the current period performance measures yt

and zt ( but not the performance measures for future periods t+ 1, · · · , N ) have no

sensitivity to the agent’s effort ~mt = ~kt = 0. The incentive rates β1
t and β2

t are used

purely to minimize the risk premium. If ~mt = ~kt = 0 is substituted in the optimal

incentive rates (4.16) and (4.17), then the pure-insurance adjustment is obtained :

[
− ICR1

t r V art−1

(
zt
)

+ ICR2
t r Covt−1

(
yt, zt

)]
/Dt , (4.27)[

− ICR2
t r V art−1

(
yt

)
+ ICR1

t r Covt−1

(
yt, zt

)]
/Dt , (4.28)

which are respectively included in the risk externality adjustments (4.25) and (4.26).

The window-dressing is a special case when the agent’s effort generates no eco-

nomic benefit ~bt = 0 ( only in the current period and not in the future periods

t+ 1, · · · , N ) but the current period performance measures yt and zt have non-zero

sensitivity to effort ~mt 6= 0 or ~kt 6= 0. In this case, non-zero window-dressing effort is

induced ~at 6= 0 and the principal should compensate for it. If ~bt = 0 is substituted in

the optimal incentive rates (4.16) and (4.17), the risk externality adjustments (4.25)

and (4.26) are obtained. Therefore, the risk externality adjustment is equivalent to

the optimal incentive rate in the case that no productive effort is induced from the

agent, but the principal cannot avoid paying for the agent’s window-dressing effort

in equilibrium.

The principal respectively includes the risk externality adjustment (4.25) and

(4.26) in the optimal incentive rates (4.16) and (4.17) because the myopic incentive

(4.23) and (4.24) is too strong or too weak in the presence of covariance among

the current and future performance measures. Suppose yt has positive covariances

with future performance measures : Covt−1

(
yt, yt+i

)
> 0, Covt−1

(
yt, zt+i

)
> 0,

and ICR1
t > 0 in (4.14). Then setting the incentive rate β1

t as the myopic incen-

tive (4.23) is too expensive because a stronger incentive rate β1
t results in a bigger

inter-temporal covariance risk in (4.12). Therefore, the principal reduces β1
t by
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−ICR1
t

{
~kt ·~kt +r V art−1

(
zt
)}
/Dt in (4.25) because yt is relatively expensive in in-

ducing effort ~at due to the positive inter-temporal covariance risk. At the same time,

the principal raises β2
t by ICR1

t

{
~mt ·~kt + r Covt−1

(
yt, zt

)}
/Dt in (4.26) because zt

is relatively inexpensive in inducing effort ~at.

Now suppose that yt has negative covariances with future performance measures :

Covt−1

(
yt, yt+i

)
< 0, Covt−1

(
yt, zt+i

)
< 0, and ICR1

t < 0 in (4.14). Then the

myopic incentive (4.23) is too weak for β1
t because a stronger incentive rate β1

t

results in a smaller inter-temporal covariance risk in (4.12). Thus, the principal

raises β1
t by −ICR1

t

{
~kt · ~kt + r V art−1

(
zt
)}
/Dt in (4.25) because yt is relatively

inexpensive in inducing effort ~at due to the negative inter-temporal covariance risk.

The principal reduces β2
t by ICR1

t

{
~mt ·~kt + r Covt−1

(
yt, zt

)}
/Dt in (4.26) because

zt is relatively expensive in inducing effort ~at. The impact of the risk externality from

the inter-temporal covariances Covt−1

(
zt, zt+i

)
and Covt−1

(
zt, yt+i

)
on the optimal

incentive rates is symmetric.

4.3.3 Endogenous effort allocation

In a single-period setting with multiple tasks, Datar, Kulp, and Lambert ( 2001,

Page 82 ) show that the principal’s utility maximization problem is equivalent to

minimizing the sum of the incongruity of performance measures and the risk pre-

mium ( also see the proof of Proposition 10 of this study ). As a benchmark in

discussing the endogenous allocation of effort, below presented is a case with a risk

neutral agent, in which both the within-period risk premium and the inter-temporal

covariance risk are null.

If the agent is risk neutral r = 0, then the principal’s problem is reduced to

minimizing the incongruity of performance measures, which is geometrically ex-

plained by the squared distance from the first best effort and the induced effort

||~bt − ~at||2. That is, the principal uses the incentive rates in inducing a second best

effort ~at = β1
t ~mt+β2

t
~kt as close as possible to the first best effort~bt without concerns

for the risk premium. When the agent is risk neutral r = 0, the optimal relative
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incentive rate (4.19) is equivalent to the following, which actually achieves perfect

congruity ~bt = ~at :

(
~bt · ~mt

)(
~kt · ~kt

)
−
(
~bt · ~kt

)(
~mt · ~kt

)
(
~bt · ~kt

)(
~mt · ~mt

)
−
(
~bt · ~mt

)(
~mt · ~kt

) =

(
b1t k2t − b2t k1t

)(
m1t k2t −m2t k1t

)
(
b2tm1t − b1tm2t

)(
m1t k2t −m2t k1t

) .
(4.29)

The endogenous allocation of effort among multiple tasks, which is reflected in

the optimal relative incentive rate (4.19) through the numerator and denominator

of (4.29), geometrically minimizes the angle between the induced effort ~at and the

first best effort ~bt in the case of no risk premium. With a fixed first best effort

~bt, the squared distance ||~bt − ~at||2 is determined by the length (intensity) of the

induced effort ||~at|| and the angle (allocation) between the induced effort ~at and the

first best effort ~bt. Since the length (intensity) of the induced effort is costless due to

the agent’s risk neutrality r = 0, the principal’s only problem is to decide the angle

(allocation) between the induced effort ~at and the first best effort ~bt in minimizing

the squared distance ||~bt − ~at||2. The optimal (minimal) angle is solved by the the

numerator and denominator of (4.29).

When the two performance measures yt and zt are perfectly aligned
(
m1t k2t −

m2t k1t

)
= 0 ( effectively a single-performance-measure setting ) or in a single-task

setting ~mt = mt, ~kt = kt, and ~bt = bt, both the numerator and denominator of

(4.29) vanish in the optimal relative incentive rate (4.19). In a single-performance-

measure setting such as Feltham and Xie (1994), the induced effort in equilibrium is

constrained to a one-dimensional linear subspace and the principal cannot affect the

allocation of effort. In a single-task setting such as Banker and Datar (1989), there

is no effort allocation problem and thus the allocation of effort is not relevant to the

principal. Therefore, either in a single-performance-measure setting or in a single-

task setting, the allocation of effort is not a relevant problem to the principal. In

accordance, the optimal relative incentive rate (4.19) does not contain the numerator

and denominator of (4.29) in a single-performance-measure setting or a single-task
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setting.

In a general setting with a risk averse agent, the endogenous allocation of effort

can be discussed in terms of the geometric analysis in Demski, Fellingham, and

Lin (2007). Their study presents the induced effort ~a as a projection of the first

best effort ~b on the implementable action space M(~a) = Span
(
~m,~k

)
, which is the

span of the performance sensitivities to effort. The presence of a risk premium in

the agency problem makes the projection non-orthogonal, and the non-orthogonal

projection ~a = ProjM(~a)
~b is viewed as first being orthogonally projected on the

implementable action space P̂ rojM(~a)
~b and then adjusted in the implementable

action space. The orthogonal projection of the first best effort on the implementable

action space P̂ rojM(~a)
~b represents what would be induced without concerns for the

risk premium r = 0.

It has been shown by (4.29) that if there is no concern for the risk premium r =

0, the two-task and two-performance-measure setting makes it possible to achieve

perfect congruity ~bt = ~at. Thus, the first best effort resides in the implementable

action space ~bt ∈ M(~at) in this study. If the number of tasks exceeds the number

of performance measures, perfect congruity is not achievable even without concerns

for the risk premium r = 0 because the first best effort does not reside in the

implementable action space ~bt /∈M(~at).

In general, the presence of a risk premium in the agency problem prevents the

first best effort from being induced even if the first best effort resides in the im-

plementable action space ~bt ∈ M(~at). In a single-period setting, Datar, Kulp, and

Lambert (2001) show that the principal may not achieve perfect congruity in order to

reduce the within-period risk premium even if perfect congruity is feasible. To apply

the single-period setting with multiple tasks of Datar, Kulp, and Lambert (2001),

assume the current period measure zt ( but not yt and not the performance measures

for future periods t+ 1, · · · , N ) has no variance V ar
(
zt
)

= 0. Then, it follows that

both the cross-sectional covariance and the inter-temporal covariance risk factor of

zt vanish Covt−1

(
yt, zt

)
= ICR2

t = 0. In addition, assume that the current period

measure yt is inter-temporally independent with the future period measures such
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that the inter-temporal covariance risk factor of yt vanishes ICR1
t = 0. In this case,

the optimal relative incentive rate (4.19) is equivalent to the following :

(
~bt · ~mt

)(
~kt · ~kt

)
−
(
~bt · ~kt

)(
~mt · ~kt

)
(
~bt · ~kt

)[
~mt · ~mt + r V art−1

(
yt

) ]
−
(
~bt · ~mt

)(
~mt · ~kt

) . (4.30)

The relative incentive rate (4.30) reflects an endogenous allocation of effort which is

not the first best. In accordance with the result of Datar, Kulp, and Lambert (2001),

the within-period risk premium r V art−1

(
yt

)
in the denominator causes the relative

incentive rate (4.30) to deviate from the case of perfect congruity in (4.29).

Now, while keeping the assumptions in the previous case V ar
(
zt
)

= Covt−1

(
yt, zt

)
= ICR2

t = 0, assume the existence of an inter-temporal covariance risk from yt,

ICR1
t 6= 0, for analyzing the allocation of effort in a multi-period setting. Note that

the within-period risk premium from yt, r V art−1

(
yt

)
6= 0, is minimal in the sense

that without the variance of yt, V art−1

(
yt

)
= 0, the inter-temporal covariance risk

from yt also vanishes, ICR1
t = 0, and there is no risk premium in the principal’s

problem. With the inter-temporal covariance risk of yt, which is represented by

ICR1
t , the optimal relative incentive rate (4.19) is now equivalent to the following :

[
~bt · ~mt − ICR1

t

](
~kt · ~kt

)
−
(
~bt · ~kt

)(
~mt · ~kt

)
(
~bt · ~kt

)[
~mt · ~mt + r V art−1

(
yt

) ]
−
[
~bt · ~mt − ICR1

t

](
~mt · ~kt

) . (4.31)

The relative incentive rate (4.31) reflects the endogenous allocation of effort when

there exist the inter-temporal covariance risk as well as the within-period risk pre-

mium from yt. The inter-temporal covariance risk factor ICR1
t in both the numerator

and the denominator, as well as the within-period risk premium r V art−1

(
yt

)
in the

denominator, causes the relative incentive rate (4.31) to deviate from the case of

perfect congruity (4.29).

The inter-temporal covariance risk can be regarded as an “expense”for using a

performance measure in inducing effort from the risk averse agent in a multi-period
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setting. While there is only one “expense”( the within-period risk premium ) in

a single-period setting, a multi-period setting incurs an additional “expense”( the

inter-temporal covariance risk ) for using performance measures to maximize the con-

gruity. In a multi-period setting, the existence of the “expenses”( the inter-temporal

covariance risk and the within-period risk premium ) adjusts the maximization of

congruity and results in the endogenous allocation of effort in (4.31).

As a result, in the presence of the inter-temporal covariance risk, the endogenous

allocation of effort is not the first best even if it is feasible. As long as the inter-

temporal covariance risk of performance measures exists in a multi-period setting,

the endogenously determined optimal allocation of effort is not the first best allo-

cation. In a multi-period setting, the congruity of performance measures trades off

with the inter-temporal covariance risk as well as the within-period risk premium.

4.3.4 Effective signal-to-noise ratio

When the analysis is extended from a single-period and single-task setting to a

single-period setting with multiple tasks, the endogenous allocation of effort becomes

relevant to the principal. In accordance, the numerator and the denominator of

(4.29) come into the optimal incentive rates, and the resulting optimal relative

incentive rate is equivalent to (4.22). When the optimal relative incentive rate

(4.22) in a single-period setting with multiple tasks is compared with the relative

signal-to-noise ratio (4.21) in a single-period and single-task setting, it is observed

that the terms
(
~bt · ~mt

)
and

(
~bt · ~kt

)
play the role of “effective sensitivity” and

the terms
{
~mt · ~mt + r V art−1

(
yt

)}
and

{
~kt · ~kt + r V art−1

(
zt
)}

play the role of

“effective noise” of the performance measures yt and zt, respectively.

When the analysis is extended further to a multi-period setting with multiple

tasks, the inter-temporal covariance risk of performance measures becomes relevant

to the principal. In accordance, the inter-temporal covariance risk factors ICR1
t

(4.14) and ICR2
t (4.15) come into the optimal incentive rates, and the resulting

relative incentive rate is (4.19). From the optimal relative incentive rate (4.19) in
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a multi-period setting with multiple tasks, it is observed that the terms
[
~bt · ~mt −

ICR1
t

]
and

[
~bt · ~kt − ICR2

t

]
play the role of “effective sensitivity”and the terms{

~mt · ~mt + r V art−1

(
yt

)}
and

{
~kt · ~kt + r V art−1

(
zt
)}

play the role of “effective

noise”of the performance measures yt and zt, respectively.

The effective noise is obviously positive. How about the effective sensitivity?

The effective sensitivity is also positive as long as the two performance measures

yt and zt have a non-negative cross-sectional correlation such that yt and zt are

competing alternatives to the principal in inducing the agent’s effort. In particular,

from the optimal incentive rates (4.16) and (4.17), it can be shown that the following

identities hold on the equilibrium path :

[
~bt·~mt−ICR1

t

]
≡ β1

t

{
~mt·~mt+r V art−1

(
yt

)}
+β2

t

{
~mt·~kt+r Covt−1

(
yt, zt

)}
, (4.32)

[
~bt ·~kt−ICR2

t

]
≡ β2

t

{
~kt ·~kt+r V art−1

(
zt
)}

+β1
t

{
~mt ·~kt+r Covt−1

(
yt, zt

)}
, (4.33)

where no inter-temporal covariance risk exists in the last period, ICR1
N = ICR2

N =

0.

If the two performance measures yt and zt have a non-negative cross-sectional

correlation, it is clear from (4.19) that the optimal relative incentive rate β1
t / β

2
t on

the two performance measures yt and zt is strictly decreasing in the inter-temporal

covariance risk factor of yt ( ICR1
t ) and strictly increasing in the inter-temporal

covariance risk factor of zt ( ICR2
t ). Therefore, a performance measure with bigger

inter-temporal covariance risk has a smaller effective sensitivity and thus is assigned

a weaker relative incentive rate.

Now, with the positive effective sensitivities
[
~bt · ~mt−ICR1

t

]
and

[
~bt ·~kt−ICR2

t

]
,

the relative incentive rates discussed in the previous section ( (4.29), (4.30), (4.31) )

decrease monotonically : (4.29) > (4.30) > (4.31). The existence of the within-

period risk premium from yt causes the relative incentive rate (4.30) to be less than

(4.29). The existence of the inter-temporal covariance risk from yt causes the relative

incentive rate (4.31) to be further reduced from (4.30).
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When the two performance measures yt and zt have a non-negative cross-sectional

correlation, the effective sensitivities are positive. Thus, the inter-temporal covari-

ance risk of a performance measure has a monotonic impact on the endogenous

allocation of effort through the relative incentive rate. Given the binding incen-

tive compatibility constraints ( (4.46) and (4.47) ), the induced allocation of effort

a1t / a2t is monotonically affected by the relative incentive rate β1
t / β

2
t with the di-

rection depending on the sensitivities of the performance measures yt and zt. It can

be shown that the sign of the derivative :

d ( a1t / a2t )
d
(
β1

t / β
2
t

) (4.34)

is decided by the term :

(m1t k2t −m2t k1t ) . (4.35)

As the relative incentive rate is monotonically affected by the inter-temporal covari-

ance risk of a performance measure, the resulting impact on the induced allocation of

effort is also monotonic, with the direction depending on the sensitivities of perfor-

mance measures. Therefore, in a multi-period setting, the inter-temporal covariance

risk of a performance measure has a monotonic impact on the endogenous allocation

of effort through the relative incentive rate.

4.4 Conclusion

In a multi-period setting with multiple tasks, the design of a performance evaluation

system should take into consideration managers’ allocation of effort across multiple

tasks while minimizing the imposed compensation risk to managers. This study an-

alyzes the endogenous allocation of effort with the explicit optimal relative incentive

rate in a multi-period and multi-task setting.

The endogenous allocation of effort is examined through the optimal relative

incentive rate on the basic measures. In a multi-period setting, the inter-temporal
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covariance risk of performance measures becomes a part of an agency problem and

thus relevant to the principal. In particular, the inter-temporal covariance risk weak-

ens the effective sensitivity of a performance measure, and a performance measure

with bigger inter-temporal covariance risk is assigned a weaker relative incentive

rate. In a multi-period and multi-task setting, the optimal relative incentive rate is

no longer explained only by the relative signal-to-noise ratio of performance mea-

sures, but also by the inter-temporal covariance risk and the allocation of effort.

This study shows that in determining the optimal endogenous allocation of effort,

the congruity of performance measures trades off not only with the within-period risk

premium but also with the inter-temporal covariance risk of performance measures.

In a multi-period setting, the existence of the inter-temporal covariance risk of

performance measures adjusts the maximization of congruity and results in the

endogenous allocation of effort. As a result, in a multi-period setting, the endogenous

allocation of effort is not the first best allocation even if it is feasible.

4.5 Appendix

4.5.1 Proof of Proposition 10

The proof is by backward induction. The optimal incentive rates β1
N and β2

N in

the last period are obtained by solving the principal’s problem at t = N − 1. The

principal maximizes his expected utility with the decision variables β1
N and β2

N :

max
β1

N , β2
N

Up
N =

(
~bN · ~aN

)
− EN−1

[
C|~aN

]
. (4.36)

For the last period the agent’s rational action choice is as follows :

a1N = β1
N m1N + β2

N k1N , (4.37)

a2N = β1
N m2N + β2

N k2N . (4.38)

111



Given the binding participation and incentive compatibility constraints, the princi-

pal’s expected utility maximization (4.36) becomes :

max
β1

N , β2
N

(
b1N , b2N

)
·
(
β1

N m1N + β2
N k1N , β

1
N m2N + β2

N k2N

)
−1

2

[(
β1

N m1N + β2
N k1N

)2
+
(
β1

N m2N + β2
N k2N

)2
]
− 1

2 r V arN−1

[
C|~aN

]
,

(4.39)

which is equivalent to an agency loss minimization problem :

min
β1

N , β2
N

LN =
1
2

[(
β1

N m1N + β2
N k1N − b1N

)2

+
(
β1

N m2N + β2
N k2N − b2N

)2
]

+
1
2
r

[(
β1

N

)2

V arN−1

(
yN

)
+
(
β2

N

)2

V arN−1

(
zN

)
+ 2β1

N β2
N CovN−1

(
yN , zN

) ]
.

(4.40)

Minimizing LN gives the last period optimal incentive rates β1
N and β2

N :

β1
N =

(
~bN · ~mN

){
~kN · ~kN + r V arN−1

(
zN

)}
−

(
~bN · ~kN

){
~mN · ~kN + r CovN−1

(
yN , zN

)}
DN

,

(4.41)

β2
N =

(
~bN · ~kN

){
~mN · ~mN + r V arN−1

(
yN

)}
−

(
~bN · ~mN

){
~mN · ~kN + r CovN−1

(
yN , zN

)}
DN

,

(4.42)

where

DN =
(
m1N k2N −m2N k1N

)2

+
(
~mN · ~mN

)
r V arN−1

(
zN

)
+
(
~kN · ~kN

)
r V arN−1

(
yN

)
− 2
(
~mN · ~kN

)
r CovN−1

(
yN , zN

)
+ r2

[
V arN−1

(
yN

)
V arN−1

(
zN

)
−
{
CovN−1

(
yN , zN

)}2
]
.

(4.43)

112



DN is positive since

DN ≥
(
m1N k2N −m2N k1N

)2
+ r2

(
1− ρ2

εδ

)
V arN−1(yN )V arN−1(zN )

+r
(
m1N

√
V arN−1(zN )− k1N

√
V arN−1(yN )

)2

+r
(
m2N

√
V arN−1(zN )− k2N

√
V arN−1(yN )

)2

where ρεδ is the correlation between yN and zN .

(4.44)

Given the last period optimal incentive rates
(
β1

N , β
2
N

)
, backward induction al-

lows one to calculate the optimal incentive rates of all periods before the last period(
β1

N−1, β
2
N−1

)
, · · · ,

(
β1

t , β
2
t

)
, · · · ,

(
β1

1 , β
2
1

)
. The optimal period t (1 ≤ t ≤ N − 1) in-

centive rates β1
t and β2

t are calculated by solving the principal’s problem at t − 1.

The principal maximizes his expected utility with the decision variables β1
t and β2

t :

max
β1

t , β2
t

Up
t =

N∑
i=t

(
~bi · ~ai

)
− Et−1

[
C|~at, · · · ,~aN

]
. (4.45)

The agent’s rational action choice for period t is as follows :

a1t = β1
t m1t + β2

t k1t , (4.46)

a2t = β1
t m2t + β2

t k2t . (4.47)

With the binding participation and incentive compatibility constraints, the princi-

pal’s expected utility maximization (4.45) is :

max
β1

t , β2
t

N∑
i=t


(
b1i, b2i

)
·
(
β1

i m1i + β2
i k1i, β

1
i m2i + β2

i k2i

)
− 1

2

[(
β1

i m1i + β2
i k1i

)2

+
(
β1

i m2i + β2
i k2i

)2
]
− 1

2
r V art−1

[
C|~at, · · · ,~aN

]
.

(4.48)

As the optimal incentive rates for the period t + 1, · · · , N are taken as effectively

fixed at t− 1 due to the renegotiation-proofness requirement, (4.48) is reduced to :

max
β1

t , β2
t

(
b1t, b2t

)
·
(
β1

t m1t + β2
t k1t, β

1
t m2t + β2

t k2t

)
−1

2

[(
β1

t m1t + β2
t k1t

)2
+
(
β1

t m2t + β2
t k2t

)2
]
− 1

2 r V art−1

[
C|~at, · · · ,~aN

]
.
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(4.49)

In addition, the risk premium 1
2 r V art−1

[
C|~at, · · · ,~aN

]
is reduced to a relevant risk

premium 1
2 r V ar

′
t−1

[
C|~at, · · · ,~aN

]
due to the renegotiation-proofness requirement :

V art−1

[
C|~at, · · · ,~aN

]
= V art−1

(
N∑
i=t

β1
i yi +

N∑
i=t

β2
i zi

)
(4.50)

∼ V ar
′
t−1

[
C|~at, · · · ,~aN

]
=
(
β1

t

)2
V art−1(yt) +

(
β2

t

)2
V art−1(zt) + 2β1

t β
2
t Covt−1(yt, zt)

+
∑N

i=t+1 2β1
t β

1
i Covt−1(yt, yi) +

∑N
i=t+1 2β1

t β
2
i Covt−1(yt, zi)

+
∑N

i=t+1 2β2
t β

2
i Covt−1(zt, zi) +

∑N
i=t+1 2β2

t β
1
i Covt−1(zt, yi) .

(4.51)

V ar
′
t−1

[
C|~at, · · · ,~aN

]
is substituted for V art−1

[
C|~at, · · · ,~aN

]
in (4.49) and the

principal’s expected utility maximization at t − 1 is equivalent to an agency loss

minimization :

min
β1

t , β2
t

Lt =
1
2

[(
β1

t m1t + β2
t k1t − b1t

)2
+
(
β1

t m2t + β2
t k2t − b2t

)2
]

+
1
2
r V ar

′
t−1

[
C|~at, · · · ,~aN

]
.

(4.52)

Finally, minimizing Lt gives the period t optimal incentive rates β1
t and β2

t :

β1
t =

[
~bt · ~mt − ICR1

t

]{
~kt · ~kt + r V art−1

(
zt

)}
−

[
~bt · ~kt − ICR2

t

]{
~mt · ~kt + r Covt−1

(
yt, zt

)}
Dt

,

(4.53)

β2
t =

[
~bt · ~kt − ICR2

t

]{
~mt · ~mt + r V art−1

(
yt

)}
−

[
~bt · ~mt − ICR1

t

]{
~mt · ~kt + r Covt−1

(
yt, zt

)}
Dt

,

(4.54)

where

Dt =
(
m1t k2t −m2t k1t

)2

+
(
~mt · ~mt

)
r V art−1

(
zt

)
+
(
~kt · ~kt

)
r V art−1

(
yt

)
− 2

(
~mt · ~kt

)
r Covt−1

(
yt, zt

)
+ r2

[
V art−1

(
yt

)
V art−1

(
zt

)
−
{
Covt−1

(
yt, zt

)}2
]
.
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(4.55)

It can be shown that Dt is positive as in (4.44).
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Şabac, F. (2009). Ranking performance measures when contracts are renegotiated.

Working Paper, University of Alberta.

Datar, S. M., S. C. Kulp, and R. A. Lambert (2001, June). Balancing performance

measures. Journal of Accounting Research 39 (1), 75–92.

DeGroot, M. H. (1970). Optimal Statistical Decisions. McGraw-Hill, Inc.

DeGroot, M. H. (1986). Probability and Statistics (Second ed.). Addison-Wesley

Publishing Company, Inc.

Demski, J. S., J. C. Fellingham, and H. H. Lin (2007). Efficient evaluation. Work-

ing Paper .

Dutta, S. and S. Reichelstein (1999). Asset valuation and performance measure-

ment in a dynamic agency setting. Review of Accounting Studies 4, 235–258.

Feltham, G. A. and J. Xie (1994, July). Performance measure congruity and di-

versity in multi-task principal/agent relations. The Accounting Review 69 (3),

429–453.

Gjesdal, F. (1981, Spring). Accounting for stewardship. Journal of Accounting

Research 19 (1), 208–231.

Grossman, S. J. and O. D. Hart (1983, January). An analysis of the principal-

agent problem. Econometrica 51 (1), 7–45.

Holmstrom, B. (1979, Spring). Moral hazard and observability. Bell Journal of

Economics 10 (1), 74–91.

Holmstrom, B. and P. Milgrom (1991). Multitask principal-agent analyses: Incen-

tive contracts, asset ownership, and job design. Journal of Law, Economics,

& Organization 7 (Special Issue), 24–52.

Kaplan, R. S. and D. P. Norton (1992, January-February). The balanced scorecard

- measures that drive performance. Harvard Business Review 70 (1), 71–79.



Kaplan, R. S. and D. P. Norton (1993, September-October). Putting the balanced

scorecard to work. Harvard Business Review 71 (5), 134–147.


	Dissertation_TitlePage.pdf
	Yoo_Junwook_Spring 2011_Without_TitlePage.pdf

