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Abstract

There are several papers and monographs on change-point analysis and on
random censorship. However, there are only very few results when these two
different topics are connected. In this thesis we deal with the change-point
problem when a sequence of interested variables are not completely observed but
rather, are randomly right-censored. The change-point problem considered here
is indeed very important, especially in medical and reliability (quality control)
settings.

We propose a new procedure of testing whether a change-point occured in
randomly censored data. The procedure is based on an extension of Wilcoxon'’s
rank statistics. We investigate the asymptotic distribution of the test statistic
under the null hypothesis of no change and also under the alternative hypothesis
of one change. One appealing property of the resulting test is that the critical
values are easily obtained through the use of a computer.

Our discussion from Chapter 1 through Chapter 4 is based on the generaliza-
tion of the Wilcoxon's rank statistics which introduces a special anti-symmetric
score function. In Chapter 5 we generalize the U-statistics based test to the
general symmetric or anti-symmetric kernel case to investigate the asymptotics
under the alternative hypothesis of one change, and the distribution of the max-
imally selected U-statistic is found to be asymptotically normal.

In order to investigate and apply our test procedure, we did a series of simula-

tions on the power of the test as well as the performance of proposed change-point



estimators. Also, we demonstrate the usefulness of the procedure on two well-
known data sets, the Stanford heart transplant data and the Radiation Therapy
Oncology Group data. The conclusions from these applications are consistent

with some analysis using the Cox proportional hazards model.
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Chapter 1

Introduction

1.1 Review and Problems

Historically, change-point problems originated from quality control. There,
one typically observes the output of a production process, the quality of which
may be measured in terms of a certain characteristic. We are interested in
possible changes of the underlying stochastic mechanism. Such a situation can
usually be modeled by saying that we have a random process that generates
independent observations indexed by time and we wish to detect whether a
change could have occurred in the distribution that governs this random process
as time goes by.

There is already a rich literature dealing with change-point problems from
both parametric and nonparametric points of view. For a review of historical
perspectives of the classical change-point problems, we refer to Bhattacharya
(1994), Csérgd and Horvath (1988), Wolfe and Schechtman (1984), and also see
Csorgd and Horvath (1997) for an extensive reference list.

We note that, very little is known on the change-point problems under the
case of random censoring which is certainly very important and is worth investi-
gating. For example, Miiller and Wang (1994) presented a review of parametric

and nonparametric models and corresponding estimation procedures for change-



points in hazard functions where the data are possibly subject to random cen-
soring. In most of the published work to date the mathematical theories were
developed for a failure time variable which is observable. This is of course rarely
the case in reality. For example, in the case given in Matthews and Farewell
(1982), which was subsequently analyzed by Worsley (1988) and Achcar (1989),
data on 33 out of the 84 acute nonlymphoblastic leukemia patients were censored.
Of those, 24 were censored at 182 days, when the patients were randomized to
an experimental protocol. In another example in Matthews, Farewell and Pyke
(1985), 11 out of the 31 advanced non-Hodgkin’s lymphoma patients were still
alive at the last time of follow up and were thus censored. Matthews and Farewell
(1982) claimed that dropping the 24 censored observations at 182 days did not
affect significantly the outcome of the likelihood ratio test. Subsequently, most
work develops theory for the case of observable time variables and in applica-
tions, the censored observations are either discarded or the likelihood function
is modified for censored data. Since the results under censoring may differ from
those of the uncensored case such an approach is questionable, Loader (1991)
presented a discussion of the effect of random censorship.

We know that change-point problems are the generalization of problems of
comparing two or more samples. An interesting fact is that the two-sample (or
more) problems with censored data have been studied by many authors. For
a review see, for example, Gehan (1965a, 1965b), Mantel (1967), Efron (1967),
Nelson (1969), Breslow (1970), R. Peto and J. Peto (1972), Prentice (1978),
Prentice and Marek (1979), Fleming et al. (1980), Andersen et al. (1982),
Harrington and Fleming (1982), Leurgans (1983, 1984), Breslow et al. (1984),



Schumacher(1984), Wei (1984), Gill and Schumacher (1987).
In this thesis, we are about to combine these two types of problems getting

change-point analysis with randomly censored data.

1.2 Randomly Censored Data and Test

Let Ty,---,T, be a sequence of independent continuous random variables.

We want to test the no-change null hypothesis

Hy: Ty,-- -, T, have the same distribution function (d.f.) F

against the one-change alternative hypothesis

H,: there exists some A € (0,1) such that
P{T} <t} =---=P{Th <t} = FO(),
P{Tpa1 <t} =---=P{T, <t} = F@(t) for all £, and

P{T'[,-,A] < to} # P{T|[n,\]+1 < to} for some to.

We call this test the at-most-one-change (AMOC) change-point problem.

In survival analysis the data of interest typically are measurements on time
elapsing between the occurrence of two events. For example, T may be the time
until death a patient has spent in a follow-up study. The index of T' corresponds
to the chronological order in which one has entered the group. In such a situation,
it is of interest to know if after some time, possibly due to an improved medical

care, there has been a change in the survival distribution.



However, due to other causes of failure it may happen that the variables of
interest T; are not completely observable but right censored by random vari-
ables C;,;,1 < ¢ < n. In other words, instead of T},---,T,, one can observe
(X1,01),--- , (Xn, 6,) only, where

X,‘ = min(T;, C,)
{T,-, if T; < C;, we say, X; is uncensored, (1.1)

C;, if T; > C;, we say, X; is censored.

and

1 if X; is uncensored, (1.2)
0 if X; is censored. ]

5i=I(TiSCi)={
The variable ¢ indicates whether T" has been observed or not.

Random censoring arises in medical applications with animal studies or clin-
ical trials. In a clinical trial, patients may enter the study at different times;
then each is treated with one of several possible therapies. We want to observe
their lifetimes, but censoring occurs in one of the following forms:

1. Loss to follow-up. The patient may decide to move elsewhere; we never
see him again.

2. Drop out. The therapy may have such bad side effects that it is necessary
to discontinue the treatment or the patient may still be in contact (he hasn't
moved), but has refused to continue the treatment.

3. Termination of the study.

With random censoring we will make the following assumption:

Assumption 1.1. Cy,---,C, is a sequence of independent and identically dis-

tributed (i.i.d.) and continuous random variables with censoring distribution



function G. Furthermore, T; and C; are independent (1 < i < n).

Please note that )\, F, F(1), F) and G are unknown.
By the independence of T; and C;, Xji,---, X, have the same distribution

function H under Hy, where

H(z) = Py, {X; <z}
(1.3)
=1-(1- F(z))(1 - G(z)).
Under Hy, Xi,- -+ , X[na) have the same distribution function Y and Xjnyje1, - - -

X, have the same distribution function H®, where

HY(z) = Py, {X; < z}
(1.4)
=1-(1- FY(z))(1 - G(z))
and
H®(z) = Py, {X, < z}
(1.5)
=1- (1 - F®(z))(1 - G(z)).

Since any change in the distribution function F' results in a change in the dis-
tribution function H, one might argue that a method designed for detecting a
change from a sequence of completely observable data could be applied to the
X's as well to detect a change in the F's. This is true in principle. On the
other hand, such a procedure would necessarily not incorporate the information
contained in the &’s and therefore lead to an inefficient procedure.

Although the literature of the AMOC change-point problems is extensive, the
important case when {7}, - - - ,T,} are randomly censored has not received much
attention. We are aware of the work of Stute (1996) only, in which the author

investigated an estimator for the change-point in censored data. In this thesis

-



we will use different methods to set up some test statistics by utilizing the infor-
mation contained in both the X’s and the §’s. We will discuss the asymptotics
and the weighted asymptotics of the test statistics, and also the powers of the
tests under the null hypothesis in Chapter 2 and Chapter 3. We will discuss the
change-point estimators and the asymptotic distributions of the test statistics
under the alternative hypothesis in Chapter 4. Our discussion from Chapter 1
through Chapter 4 is based on a generalization of the Wilcoxon's rank statis-
tics which introduces a special anti-symmetric score function. In Chapter 5 we
will generalize these special U-statistics to general symmetric or anti-symmetric
kernel based U-statistics and discuss their asymptotics under the alternative

hypothesis of one change.



Chapter 2

Test Statistics and Asymptotics
under Hj

2.1 Wilcoxon-type Statistics

A generalization of Wilcoxon’s test for comparing two samples has been pro-
posed by Gehan (1965a) for use when the observations are subject to random
right censorship. Mantel (1967), as well as Gehan (1965b), has considered a
further generalization to the case of random two-sided censorship and simplified
the calculations. Both Gehan (1965a) and Mantel (1967) proposed their non-
parametric tests for comparing two samples under the additional assumption of
identical censoring distributions.

Let
Z,' = (Xi, 6,'), 1= 1, ML {8 (21)

where X; and §; are defined in (1.1) and (1.2), respectively. Note that Z,--- , Z,

is a sequence of two-dimensional independent random vectors.

We define the score function for comparing two observations Z; and Z; by

1’ If(X'>XJ'51=1) or (Xi:Xj,6i=016j=1)1
hZ,Zj) =3 -1, if (Xi<X;6i=1)or (X;=X;,6=1,4=0), (22
0, otherwise.



This score function was proposed by Gehan (1965a). His statistic for comparing

two samples {Zy,- - , Zing} and {Zjng41,- - , Zn} is

[nt] n
Upg=Y Y. hZ.,2Z;), 0<t<1l (2.3)
i=1 j={nt]+1

Following Mantel (1967) we can write

Ui=Y h(Z:,2;),i=1,--- ,n, (2.4)
j=1
and we have
(ne]
U[:,tlng,-, 0<t<1 (2.5)
as
h(Zi, ZJ) = —h(Zj, Zi), (26)

i.e. h is anti-symmetric and so

[nt] n [nt] n
S 3 Z,2)=). > h(Z,Z;), 0<t<],
i=1 j=1 i=1 j=[nt]+1
or
kE n k n
NN h(Zi,Z)=) Y, MZi,Z;), 1<k<n, (2.7)
i=1j=1 i=1 j=k+1

where h(Z;, Z;)’s cancel each other out in the sum of left hand side for 1 < 4,5 <
k.

Mantel’s approach simplified both the method of computation and the de-
termination of the permutation distribution of Up,, and its variance, as well as
the proof of asymptotic normality.

Note that (1.1) implies the convention in random right censorship that if an
uncensored observation X; and a censored observation X; are tied, we consider

the uncensored X; to occur just before the censored Xj, i.e. we break the tie by



considering X; < X;. On the other hand, since X, - - - , X, are independent con-
tinuous random variables, the probability of ties is equal to zero, so for simplicity
and convenience in calculations and exposition, we assume no ties without loss

of generality. Therefore the score function can be simplified as
h(Zi, ZJ) = I(X, > XJ',(SJ' = 1) _ I(X, < X,-,Ji = 1) (28)

We can think of the AMOC change-point problems as a series of two-sample
problems under censored data, the following discussion is based on statistics

(2.4), (2.5), and score function (2.8).

2.2 A Test Based on Exchangeable Variables

We say random variables &1, - - - , &, are exchangeable if each permutation of

the set has the same joint distribution. We have

Theorem 2.1. Under H,,

[nt] U.
2zl o, B(t),0<t<1, (2.9)
?:1 U12
and
[(n+1)t] U‘
sup Iz‘—=:—" 2, sup |B(t)], (2.10)
o<t<l 1 U,"’ o<t<i

where U; is defined in (2.4) and {B(t),0 <t < 1} is a Brownian bridge.

Proof. Note that the following proof is based on the Theorem 24.2 in Billingsley
(1968), which says, if &, - - -, &, are exchangeable and satisfy

n n
P, 2 P 4P
ZE: 0, ZE: — 1, lrg‘% IE:I — 0,

=1 =1
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then 0 ¢; 25 B(t). Define

i=1 G4

Ui

Yi=————, 1<i<n
?:l U?
By (2.4) and Assumption 1.1, Y3, - - - , Y, are exchangeable random variables

under Hy. As h(Z;, Z;) given by (2.8) is anti-symmetric and

n n n

i=1 i=lj=1
we have
3 Y =0.
i=1
Also,
f:yz — i U? =1
i=1 P ?=1Ui2{=1 P

On the other hand, define the empirical distribution function of X,,---, X,
by
1 n
Hot) = -3 I(X: < ¢), (2.11)

i=1

and the empirical subdistribution function of X,---, X, by

A=l 1x<t6=1) (2.12)

i=1

Then by (2.4) and (2.8)

Ui=Y I(X:>X;,6;, =1) - >_I(X: < Xj,6; =1)

j=1 =1
=Y I(X; < Xi,6; = 1) = Y_[1 - I(X; < X)]6;
j=1 j=1 (2.13)

= nHa(Xi—) — n[l — Ho(X:)]0:

= n{Ha(Xi~) - [1 — Ha(X:)16:}-
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Thus,
n3 ?__;Uz
= —g{H (Xi—) = [1 - Ha(XDI&:}
= _zm(x ) - —ZH (Xi=)[1 — Ha(X:)]6; + = Z[I—H (X:)]26;
= / H2(t—)dH,(t) — 2 / Ho(t—)(1 — Ha(t))dHn(t) + / (1= H,(t))2dH,(t).
(2.14)
Since

Ha(t) %% H(t) and H,(t) % H(t)

uniformly in ¢ as n — oo by the Glivenko-Cantelli theorem , where H(t) is
defined in (1.3) and H(t) is the subdistribution function of Xs, i.e.

—_— t

H(t) = Pu{Xi < t,6 =1} = [ (1-G(u))dF(u), (2.15)
it follows that as n — oo
- ;‘; U? &5 / H2(t)dH(t) - 2 / H)(1 - H)dH(t) + / (1 — H(2))2dH(2).
Integration by parts gives

2 / H)(1 - H@)dH(t) = B0 - HO)|® + / B2(t)dH(t)

= / T2 (t)dH(¢),
so the first two terms in the above limiting expression cancel. Thus

EU2 LEN / (1 - H(t)dH(t) > (2.16)

By (2.4) and (2.8)
max |U;| = max |Zh(Z,,Z)|

1<i<n 1<i<n

< max Zlh(Z:,Z )|

IA
3
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Thus, using (2.16), we get

max |Y;| = max |U;|
1<i<n n U21<t<n
i=1 i
n
?=I.Ui2
1
/n

=—=——)0(asn—}m).

=

i=1

Therefore the variables {Y;} satisfy the conditions of Theorem 24.2 in Billingsley

(1968) under H,, so

z:[nt] [ne]
Ze=tUe =Y ¥ -5B@r),0<t< 1.

Y 1—1 U2 i=1

Relation (2.10) then follows from (2.9) and the theorem in Donsker (1952) (also,

cf. Theorem 4.2.1 in Cs6rgé and Révész (1981)). i

We see that Theorem 2.1 gives the asymptotic distribution of the test statis-
tic under the null hypothesis of no change in distribution. The distribution
of supg,<; |B(t)| is the well-known Kolmogorov-Smirnov-distribution (cf. Kol-

mogorov (1933)), that is,

P{ sup |B(t)| > b} = 2‘2( 1) exp(—2426%),b > 0. (2.17)

=1

Thus we obtain a test statistic

((n-+1)¢] 77
l Zz_.l l | 21-1 (218)

Seb1 Jsm gz isker [—— '
n n n
0<£<1 i=1 U ‘_1

the approximated critical values of the test can be given by (2.17). Let ¢, denote

the (1 — a)-quantile of supg,; |B(t)|; the test is defined by

I(m IE5L UL ca). (2.19)
1<k<n n U2

1=1
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We reject Hy vs H; if the value of the test statistic exceeds the critical value c,
at significance level a.

By use of (2.17) one can compute ¢, and the P-values via computer. We list
the critical values of ¢, for some selected values of o in the following Table 2.1,
and we'll use Table 2.1 in the following simulation study. We do a simulation
study on the comparison of the approximated and simulated critical values, and

the power of the test in the next section. See Section 4.4 for further applications.

Table 2.1. Some selected critical values c,

a 0.175 0.15 0.125
Ca 1.104 1.138 1.177
o 0.1 0.075 0.05
Ca 1.224 1.281 1.358
a 0.025 0.01 0.0075
Ca 1.480 1.628 1.671
a 0.005 0.0025 0.001
Ca 1.731 1.828 1.949

Remark 2.1. If one is looking at the epidemic alternative hypothesis
Hj: there exist 7, 72,1 < 1y < 72 < n, such that

P{Ty<t}=---=P{Ty <t} = P{Tpu <t} =--- = P{T. < t} = FO(y),

P{T, 41 <t} =---=P{T, <t} = FA(¢) for all ¢, and
(2.20)

FM(ty) # F(t,) for some to,

we should use statistic

[(nt1)t2]
su i=[(n+1)t1]+1

O<t <ta<l \/Z?ﬂU'? ’
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By Theorem 2.1, we have under H

{(n+1)ta] [(n+1)ta] [(n+1)t1]
i=[(n+1)t1]+1 i=1 : i=1
su —F— =  Sup T

o<t1<lt)z<1 n,U? 0<ti<tz<1|,/ n, U? (2.21)

2y sup |B(t2) - B(t)l.
o<ty <ta<l
Thus one can use .
| > U

1 }Ea',x __'.=T’:__ (2.22)
Sk<i<n i=1 U?

as a test statistic. The approximated critical values can be given by

[=<]
P{ sup [B(t;) - B(t)| >b} =2 (4i*s* — 1) exp(-2%%), b > 0 (2.23)
<ty <tz<1 i=1
which is known as the limiting distribution of the Kuiper statistic (cf. Shorack
and Wellner (1986)). Let ¢/, denote the (1 — a)-quantile of sup,,, <4, <1 |B(t2) —

B(t;)|; the test is defined by

I( max —ee—— > c;). (2.24)
1<k<i<n ?=1 U;2

We reject Hy vs Hj if the value of test statistic exceeds the critical value ¢, at

significance level . We have ¢, = 2.00,1.75 and 1.62 for a = 0.01,0.05 and

0.10, respectively.

2.3 Simulation Study

To illustrate the proposed test, we would like to check the precision of the

approximation and the power of the test through the Monte Carlo simulation
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study. We performed N = 5000 simulations for each case. In each case to be

considered, we assumed that

F=exp(u), FY =exp(u), F® =exp(u), G =exp(u).

That is, the simulated variables of interest T; were exponentially distributed with
mean px under the null hypothesis of no change in distribution and exponentially
distributed with mean u; before change point A and mean yu, after change under
the alternative hypothesis of one change in distribution; the simulated censoring
variables C; were exponentially distributed with mean p.. Note that we obtained
the simulated data Z; = (X}, é;) by (1.1) and (1.2), and the score function values
h(Z;, Z;) by (2.2) in order to handle the tied values in case. We took u; = 1.0

and p. = 3.0 for all cases.

First, we did simulation to compare the simulated critical values with the
approximated critical values for the test statistic (2.18). We considered sample
sizes n = 50, 100, 200, 500 and means p = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, significance
levels a = 0.01, 0.05, 0.10. The results are reported in Table 2.2. It turned out
that the critical value obtained from the limiting distribution overestimates the
true one somehow, but is roughly close, thus we can use the approximated critical

values to the proposed test and to estimate the power of the test reasonably.

Next, we did simulation to investigate the power of test (2.19). We performed
simulation in two ways. One way was dealing with different sample sizes but
the same location of change-point, i.e. A = 0.5 so that pre- and after-change
samples are balanced in size. We considered n = 50, 100, 200, 500. The results

are reported in Table 2.3. Another way simulation was performed was dealing
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Table 2.2. Comparison of simulated and approzimated c.v. for statistic (2.18)

(a = 0.01)
SimCV  AppCV

(a = 0.05)
SimCV ~ AppCV

(¢ =0.10)
SimCV  AppCV

50 1.0
1.5
2.0
2.5
3.0
3.5

1.5570 1.6276
1.5398 1.6276
1.5159 1.6276
1.5044 1.6276
1.5112 1.6276
1.5306 1.6276

1.2963 1.3581
1.2801 1.3581
1.3001 1.3581
1.2826 1.3581
1.2892 1.3581
1.2724 1.3581

1.1399 1.2238
1.1476 1.2238
1.1506 1.2238
1.1403 1.2238
1.1359 1.2238
1.1480 1.2238

100 1.0
1.5
2.0
2.5
3.0
3.5

1.5746 1.6276
1.5656 1.6276
1.5789 1.6276
1.5650 1.6276
1.5624 1.6276
1.5471 1.6276

1.3151 1.3581
1.3095 1.3581
1.2949 1.3581
1.2878 1.3581
1.3136 1.3581
1.2839 1.3581

1.1648 1.2238
1.1641 1.2238
1.1696 1.2238
1.1742 1.2238
1.1652 1.2238
1.1835 1.2238

200 1.0
1.5
2.0
2.5
3.0
3.5

1.5675 1.6276
1.5928 1.6276
1.6067 1.6276
1.5456 1.6276
1.5893 1.6276
1.5768 1.6276

1.3208 1.3581
1.3045 1.3581
1.3168 1.3581
1.3185 1.3581
1.3193 1.3581
1.3183 1.3581

1.1781 1.2238
1.1927 1.2238
1.1810 1.2238
1.2031 1.2238
1.1713 1.2238
1.1783 1.2238

500 1.0
1.5
2.0
2.5
3.0
3.5

1.5764 1.6276
1.5999 1.6276
1.6286 1.6276
1.6072 1.6276
1.6623 1.6276
1.5978 1.6276

1.3459 1.3581
1.3368 1.3581
1.3420 1.3581
1.3542 1.3581
1.3317 1.3581
1.3449 1.3581

1.1907 1.2238
1.1925 1.2238
1.2011 1.2238
1.1964 1.2238
1.2068 1.2238
1.1963 1.2238

with different locations of change-points but with the same sample size. We

assumed n = 100, and considered A = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

the results are reported in Table 2.4. We considered means u, = 1.5, 2.0, 2.5,

3.0, 3.5 and a = 0.01, 0.05, 0.1 for each way.

From Table 2.3, we can see that the power increases as the distance of mean

|2 — 11| increases. When n > 100 and |u2 — 1| > 1.5, the power is pretty large.
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Table 2.3. Simulated power of test (2.19) for A = 0.5

(a=10.01) (a = 0.05) (a =0.10)
n M2 e | Simulated Power | Simulated Power | Simulated Power
50 10 15 3.0 0.0304 0.0982 0.1818
1.0 2.0 3.0 0.1052 0.2598 0.3768
1.0 25 3.0 0.2144 0.4384 0.5624
1.0 30 3.0 0.3188 0.5748 0.6934
1.0 35 3.0 0.4242 0.6800 0.7774
100 1.0 1.5 3.0 0.0854 0.2198 0.3170
1.0 2.0 3.0 0.3032 0.5372 0.6628
1.0 25 3.0 0.5592 0.7778 0.8638
1.0 3.0 3.0 0.7582 0.9050 0.9482
1.0 35 3.0 0.8714 0.9530 0.9758
200 1.0 15 3.0 0.2120 0.4296 0.5402
1.0 20 3.0 0.6996 0.8664 0.9236
1.0 25 3.0 0.9368 0.9784 0.9912
1.0 3.0 3.0 0.9870 0.9966 0.9990
1.0 35 3.0 0.9982 0.9996 1.0000
500 1.0 1.5 3.0 0.6502 0.8384 0.9076
1.0 2.0 3.0 0.9924 0.9990 0.9998
1.0 25 3.0 1.0000 1.0000 1.0000
1.0 3.0 3.0 1.0000 1.0000 1.0000
1.0 3.5 3.0 1.0000 1.0000 1.0000

From Table 2.4, we can see that the power almost always reaches the largest

value when the change occurs in the middle (A = 0.5), the power decreases when

the change goes toward the two tails (A = 0.1 or A = 0.9), and power decreases

very quickly and is small when the change occurs close to the two tails, so the

test is not sensitive on the tails. Of course, this is not too surprising since a

change occuring near the middle of a sequence of observations should be much

easier to detect than one occuring at the beginning or the end of the sequence.

In Chapter 3, we introduce weight functions that may remedy this situation

somewhat on the tails.
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Table 2.4. Simulated power of test (2.19) for n = 100

(a =0.01) (a =0.05) (a =0.10)
g1 p2 He A | Simulated Power | Simulated Power | Simulated Power
1.0 15 3.0 01 0.0106 0.0544 0.1018

0.2 0.0264 0.0948 0.1632
0.3 0.0540 0.1584 0.2396
04 0.0722 0.2014 0.3084
0.5 0.0692 0.2124 0.3220
0.6 0.0686 0.1902 0.2890
0.7 0.0412 0.1476 0.2296
0.8 0.0180 0.0840 0.1594
0.9 0.0102 0.0448 0.0986
1.0 20 3.0 0.1 0.0170 0.0798 0.1438
0.2 0.0780 0.2366 0.3588
0.3 0.1908 0.4158 0.5402
04 0.2710 0.5276 0.6370
0.5 0.3100 0.5326 0.6674
0.6 0.2678 0.4850 0.6112
0.7 0.1674 0.3780 0.5008
0.8 0.0620 0.1966 0.3228
0.9 0.0136 0.0704 0.1306
1.0 2.5 3.0 0.1 0.0260 0.1224 0.2114
0.2 0.1806 0.4154 0.5518
0.3 0.4044 0.6490 0.7616
0.4 0.5314 0.7584 0.8434
0.5 0.5592 0.7764 0.8618
0.6 0.4892 0.7334 0.8308
0.7 0.3430 0.5966 0.7284
0.8 0.1172 0.3340 0.4830
0.9 0.0194 0.0810 0.1550
1.0 3.0 3.0 0.1 0.0408 0.1540 0.2796
0.2 0.3066 0.5706 0.7042
0.3 0.5958 0.8108 0.8932
04 0.7332 0.8866 0.9338
0.5 0.7476 0.9074 0.9452
0.6 0.6896 0.8778 0.8778
0.7 0.5056 0.7498 0.8462
0.8 0.1910 0.4496 0.6128
0.9 0.0306 0.1048 0.1820
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Table 2.4. Simulated power of test (2.19) for n = 100 (Continued)

(e =0.01) (a = 0.05) (¢ =0.10)
U1 M2 pe A | Simulated Power | Simulated Power | Simulated Power
1.0 35 3.0 0.1 0.0588 0.2060 0.3448
0.2 0.4356 0.7014 0.8154
0.3 0.7372 0.9000 0.9514
0.4 0.8474 0.9502 0.9784
0.5 0.8684 0.9576 0.9800
0.6 0.8130 0.9390 0.9726
0.7 0.6418 0.8584 0.9138
0.8 0.2566 0.5616 0.7134
0.9 0.0296 0.1206 0.2190




Chapter 3

Weighted Asymptotics of
Test Statistics under H

3.1 Tests Based on U-Statistics

For a survey on U-statistics, we refer to Serfling (1980) and Lee (1990).

By (2.3) and (2.5), we have

k k n
r=SU=Y Y hZ,Z;), 1<k<n. (3.1)
i=1 i=1 j=k+1

That is, U has the form of U-statistic with an anti-symmetric kernel A.

Our next purpose is to consider different weighted versions of our test statis-
tics by investigating the asymptotic properties of the U-statistics based pro-
cesses (3.1). Note that our U-statistics with an anti-symmetric kernel h(Z;, Z;)
have two-dimensional arguments instead of one-dimensional arguments. How-
ever, we'll be able to see that we can reduce the problem to one-dimension.

Since the kernel function h(Z;, Z3) is anti-symmetric and |h(Z;, Z2)| < 1, it
follows that

Eh(Z1,Z,) =0

and

Eh2(Z11 Z2) S 1.

20
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Define
R(t) = ER(Z1,1) (3.2)

with t = (¢1,¢2), and
o? = ER*(Z,). (3.3)

The function defined in (3.2) is the projection of U-statistics.

Lemma 3.1. Under H,,

o? = / (1— H(t)2dH(t) > 0, (3.4)
and
1 2 a.s
= ; U? 25 o2, (3.5)

where H(t), H(t) and U; are defined in (1.3), (2.15) and (2.4), respectively.

Proof. Under Hy, by (2.8) we have
h(t) = Eh(Zy,1)
= E{h(Z1, 2:)|Z, =t}
= E{I(Xy > X2,62 =1)| X2 = t1, 82 = t,}

— E{I(X; < X2,6, =1)| Xy =t,,02 = t2}
=E{I(X; > t,0, =1)|6 =t} — EI(X; < t,,0, =1)
=P{Xy >t =1[0a =t} — P{X1 < t1,6, =1}
=P{X1>t;}(t, =1) — H(t;)

= (1 - Ht)I(t =1) - H(t),
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and - _
h(Zi) = h(Xh 5:')
= (1 - H(X:))I(6: = 1) — H(X) (3.6)
=(1-H(X))s — HX:), i=1,--- ,n.
Thus,
o? = ER*(Z,)

= E{(1 - H(X2))?6, — 2H(X,)(1 — H(X2))82 + H*(X2) } (3.7)
= / (1 — H(t))2dH(t) — 2 / Ht) (1 — H(t)dH(t) + / H2(t)dH(¢).

Integration by parts gives
2 / B - Hit)dH () = / T(t)dH (b).

Therefore

o2 = / (1 — H(t))2dH(t) > 0,

which gives (3.4). Thus (3.5) follows from (2.16) and (3.4). a

Lemma 3.1 provides a consistent estimator of o2.
We first strengthen the convergence in distribution result of Theorem 2.1 to

convergence in probability in sup-norm by making use of U-statistic Ug.

Theorem 3.1. Under Hy, we can define a sequence of Brownian bridges { Bn(%),

0 <t <1} such that

sl g,
sup | ==L _——% — B, ()| = 0p(1), 3.8
Sup 0 n(2)] = 0s(1) (3.8)

where U; is defined in (2.4).
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Proof. By (3.1) we can write U; as the sum of three U-statistics. Namely, we

have
Uz =UQ — (U +UP),
where
v = Y R(Z,Z),
1<i<j<k
UP = S K(Z,Z),
k+1<i<j<n
and

U = Y nZ,z).

1<i<j<n

By Theorem 2.1 of Janson and Wichura (1983), we have

ax [ - Ek:(k — 2i + 1)k(Z;)| = Op(n),

1<k<n s
=1

1<k<" i=k+1

and

U - z"j(n - 2i + 1)R(Z)| = Op(n).

=1

By (3.9)-(3.12), we have

max |U,, {nZh(Z)—kZh(Z }|

=1 =1

k _ no_ k
= max ax [Uz — {(n—k) Y R(Z:) — k(3 R(Z) - S R(Z:) }|

=1 =1 i=1

= Op (n) .
Thus,

1 ., 1 (&
max | 7=Ui - ﬁ{gh(z,-)— S RZ)}| = On(— f

t—l

IU i (n+k—-2i+ 1)7:(Z,-)| = Op(n),

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Since 02 > 0 by Lemma 3.1, (3.13) can be written as

1 1 [lndtd [(n +1)t] & }'
sup |[—==Up; Rk Z;) h Z;)
0<t£1 Y ad (U { ; ( g ( (3.14)
1
= OP(W)-
Note that E(Z,-),i =1,---,n are i.i.d. random variables and ¢ > 0, and

hence, by the Skorohod-Dudley version of Donsker’s theorem (the invariance
principle for partial sums) (cf. Theorem 2.1.2 of Csorgé and Révész (1981)), we

can define a sequence of Brownian bridges {B,(t), 0 <t < 1} such that

[(n+1)¢]
s 0\1/_{ (Z R(Z;) - [(n+1)t]Zh(Z }—Bn(t)' =o0p(1). (3.15)

Thus, by (3.14) 2nd (3.15),

- fv[(nmq — Ba(t)| = 0s(1)- (3.16)

o<:<1 I
On the other hand, by Lemma 3.1, we have

o a.s

S — N} (3.17)
V ;13_ Z?:l Ut2

Thus, by (2.5), (2.17), (3.16), and (3.17),
sierdy, 1

sup U
0<tel \/2’_1 T gv/nd e
= Sup |————o 1 e
o<1 m oV ln+)] (
3.18)
o
= sup |—=——=—1{{|B(t)| + 0-(1
o<te1 Iyn U2 I(I ()] + 0( ))
=0P(1)0p(1)
= 0p(1).

Therefore (3.8) follows from (3.16) and (3.18). o
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Theorem 3.1 obtains a stronger result than the one given by Theorem 2.1.

3.2 Weighted Approximations

Next, we use weight functions to construct tests and emphasize the possibility
of having a change in distribution on the tails.

We say that ¢(t) is a positive function on (0,1) if

Jaf_a(t) >0 (3.19)
for all 0 < € < 1. Define
_ 1 cg*(t)
Ioa(g,¢) —/; {11 exp ( H1—1) dt, ¢ > 0. (3.20)

We have

Theorem 3.2. Under Hy, we assume that q(t) is a positive function on (0, 1),
it increases in a neighbourhood of zero and decreases in a neighbourhood of one.
Then

(1) we can define a sequence of Brownian bridges {B,(t),0 < t < 1} such

that

sy,
?=1Ui2

if and only if Iy (q,c) < oo for all ¢ > 0, where U; is defined in (2.4) and

sup
o<t<1

-B,.(t)i/q(t) — s (1), (3.21)

Iy1(g,c) is defined in (3.20).
(i2)
| sl gy |
sup ==L :
o<t<1 \/2:}=1 U‘2

/a(t) = sup [B(t)/a(t) (3.22)
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if and only if Iy (q,c) < oo for some ¢ > 0, where U; is defined in (2.4),

{B(t),0 < t < 1} is a Brownian bridge, and Iy 1(q,c) is defined in (3.20).

Proof. For given ¢(t), by Theorem A.5.1 of Csorgé and Horvith (1997), we

have

lix?sglplB(t)l/q(t) =0 a.s. (3.23)
and

lixilstIB(t)I/q(t) =0 a.s. (3.24)

if and only if Iy 1(q,c) < oo for all ¢ > 0. We also have

lirilsglplB(t)Vq(t) <00 a.s. (3.25)
and
lirilstlB(t)[/q(t) < oo a.s. (3.26)

if and only if Iy 1(g,¢) < oo for some ¢ > 0.
First we prove part (i). Suppose that Iy;(g,c) < oo for all ¢ > 0. Then by

Lemma A.5.1 of Csorgé and Horvath (1997), for given ¢(t) we have
%q(t)/\/i =oco and limg(t)/vVI—t=oo. (3.27)

By Theorem 3.1 and (3.19), we have

s

Esst‘slll)-e n U? n( )l/q( )
1 SR 3.28
= " inf q(t) sup Z;%—U; - Bn(t)‘ ( )
55?511—5 Q( ) eSt<l—e¢ i=1 U;Z
= o0p(1)

forall0<e<i.



On the other hand, by Theorem 2.1.1 of Csérgd and Horvath (1¢

Theorem 3.1 with (3.23), (3.24) and (3.27), we get

sup an(t)l/Q(t) = 0p(1),

o<te

[(n+1)t]
sup ‘ 2::1 U

1Za Ul -
ootne \/z—:‘:(j? /a(t) = 0r(1),

sup |Ba(t)|/q(t) = 0p(1),

1-e<t<

and
sup =1

A
S P /) = or 1)

Thus (3.21) follows from (3.28)-(3.32).
We now assume that (3.21) holds. We have to show that Ia(q,c
alle > 0.

Since the distribution of By,(t) does not depend on n, we get, by (

siery,
== — B(t t) = 0p(1).
s, [ B - BO)/a0) = o)
Thus we have
sup |B(t)l/a(t) = 0s(1)
0<t<1/(n+1)
since
((n+1)e] 7.
sup Tio Ui 0,
o<t<l/(n+1) T U?
and
sup  |B(t)|/a(t) = 0e(1)
n/(n+1)<t<1

which is, in turn, because
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[(n+1)¢] U,
sup i U

n/(n+1)<t<1 :‘_1 U?

NN ;'_1 ,_1 v (3.37)

n n

\/_m ; 121 h(Z;, Z;)
=0.
By (3.34) and (3.36), we get (3.23) and (3.24). Thus, Ip:(g,c) < cofor all¢ > 0.
Therefore part (i) is proven.
Next, we prove part (ii). Suppose that Iy ;(g,c) < oo for some ¢ > 0. Then

(3.27) is still true by Lemma A.5.1 of Csorgé and Horvath (1997). Thus, by

(3.28), we have

Z[(nl'l-l)tl
sup ._'=__. - B, t ‘ £) = o.(1 338
1/(n+1)<t<n/(n+1) ‘/Z?=1 U? (1)|/q(t) = 0o (1) ( )

Hence, to prove that (3.22) holds, by (3.38), combined with (3.35) and (3.37),

we only need show that

sip |B®)l/a(t) = sup |B()I/a(2),

1/(n+1)<t<n/(n+1)
which, fortunately, follows from (3.25) and (3.26).
Now we show that I ;(g, ¢) < oo for some ¢ > 0 if (3.22) holds. Suppose that
(3.22) holds. Then
os<1:1<31 |B(t)]/q(t) < 0o a.s.

which is equivalent to (3.25) and (3.26). Thus we have I3 ;(g,c) < oo for some

¢ > 0. Therefore part (ii) is proven. ]
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3.3 Asymptotic Distributions of the Weighted
Test Statistics

First we need to strengthen our earlier results to give a rate of convergence

in the following lemma.
Lemma 3.2. Under Hy,

302 =0 = 0n(2), (3:39)

i=1
where U; and o? are defined in (2.4) and (3.3), respectively.
Proof. Under Hy, by (3.7) and Assumption 1.1, we have
o? = / H2(t)dH () - 2 / H@)(1 — H(t))dH (¢) + / (1 - H(t))*dH(¢)
= / H2(t-)dH(t) - 2 / H(t—)(1 - H(t))dH(t) + / (1 - H(¢))2dH(2),

where H(t) and H(t) are defined in (1.3) and (2.15), respectively. Thus, by

(2.14), we have

_ I[ [ B2 -)dHA(e) ~ [ A (e-)aH (1)
— o [ Fle-)(1 — Ba()dFEatt) — [ F(e-)(1 ~ HE)E)]

+ [ (1 — Hq(t))?dHa(t) - / (1— H(t)dH(t)] ’

(3.40)

By the weak convergence of the empirical distribution function to a Brownian

bridge (cf. Billingsley (1968)), we have

sup Ha(t) — E(t) = Op(72)
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and
sup 7 (t) ~ F(t)| = Or(—72).
Thus under Hy,
l / H2(t—)dHa(t) — / ffz(t—)dH(t)'
- | [ Bxteafrio - #0)
(3.41)
+ [(Fa(t=) + F-) [Fe-) - e )] C)
= Or(z2),
I / Ha(t=)(1 — Ha(t))dHa(t) - / Hit-)a - H(t))dﬁ(t)l
= ’ / [Ha(t—) - H(t-)|(1 — Ha(t))dHa(t)
+ [H-)( - Ha(e)d[Falt) - H®)] (3.42)

_ / H(t-)[Ha(t) - HO)| dif(t)’

- op(—\/l-—ﬁ),

[~ sora - [o- B@yaEE)

= l / (1 — Ha(t)*d[Ha(t) — H(t)]
(3.43)

- - ) - ) [H) - HOJaH)

1
= OP(\/—;{)-
Therefore (3.39) follows by (3.40)-(3.43). ]

The desirability of having weight function g in Theorem 3.2 is to make our

statistical test more sensitive on the tails. Note that since the variance of B(¢)
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is t(1 —t), a typical choice of q is \/ t(1 — t), the asymptotic standard deviation,
as a weight function. However, Ip;(1/t(1 — t),c) = oo for all ¢ > 0, so we cannot
apply Theorem 3.2 in the case of the natural weight function /t(1 —¢). This

case is studied in the next thorem.

Theorem 3.3. Under Hg,
U \/ =1 U

; / < t+ D( logn)} = exp(—e™*) (3.44)
=)

n n

l zt"l /V ?:1 U12

lim P{A(logn) max ° <t+ D(logn)} = exp(—2e™)

<k<n k—
JEa-E2
n n
for all t, where U; is defined in (2.4),

A(z) = \/2logz, (3.46)

izt P{A(1°g“> 22,

and

(3.45)

and

1 1
D(z) =2logz + 3 loglogz — 3 log . (3.47)

Proof. Under Hy we know that, by (3.6),
Eh(Z) = E((1 — H(X2)s - B(X)))
= [a- H(t))df{'(t) ~ [ B@)dH()
= (1—HE)H| / H@)d(1 - H{t)) — f H@t)dH(t) (3.48)
— / H(t)dH(t) — / H(t)dH(2)

=0,
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by (3.3),
E(lfz(z-))2 =1,i=1,---,n
o 3 - L] - * ]
and h(Z),---, h(Z,) are i.i.d. random variables.
Note that Zi,---,Z, are two-dimensional i.i.d. random vectors. Using
(3.10)-(3.12), and Theorem A.4.1 and Theorem 2.4.12 of Csérgé and Horvéth

(1997), we get

zf:l Ul —t
Jim P{A(logn) max <t+ D(logn)} = exp(—e~") (3.49)

1<k<n a\/k(n —k+1)n

and

lim P{A(logn) max |2 Ui <t+ D(logn)} = exp(—2e~%) (3.50)

1<k<n \/k(n —k+1)n
for all ¢. Thus,

|2 i—1 Uil
A logn) max : = Op(loglogn), 3.51
since
A(logn) = y/2loglogn
and

1
D(logn) = 2loglogn + %logloglogn -3 log .

On the other hand, by Lemma 3.2, we have

g

V nS Zl—l
IU ~Va? ,,3 Eg_l

Vas S Ui (3.52)
|‘3‘ i U2 -0 I

- \/;13. i=1 U2 (\[’? Zz:l U12 + 0')
= OP(\/—H)-

_1|
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Hence, by (3.51) and (3.52), we have

/ t=1 f=1 Ui

\/E(l_k;l) a\ﬁc(n—k+1)n

n n

| Z:-—l I
1<"<" a\/k(n —k+1)n

A(logn) max

1<k<n

o

\/—5 Zt-l

= A(logn) m

- 1\ (3.53)

= Op(loglog n)Op(\—/—ﬁ

= Op(l).
Therefore (3.44) and (3.45) follow from (3.49), (3.50), and (3.53). O

By Theorem 3.3, we obtain a weighted test statistic

o [ B U/ VT T

1<k<n k k_l
o=k 3

The approximated critical values can be given by (3.45). Let co(n) denote the

(3.54)

critical value of the test for sample size n at significance level a; the test is

defined by

n

Z!— i= U12
| =t — > ca(n)). (3.55)
fa-5
n n
Using (3.45) from Theorem 3.3, we get

—log(—log v/1 — a) + D(log n)
ca(n) = A(logn)

(e
1<k<n

(3.56)

We list several critical values of c,(n) for some selected values of sample size n
and « in Table 3.1. We'll use Table 3.1 in the following simulation study.
We do a simulation study to investigate the power on the tails of the weighted

statistic test (3.55) in the next section.



Table 3.1. Some selected critical values co(n)

o 0.01 0.05 0.10
n
50 4.6039 3.6171 3.1813
100 4.5701 3.6374 3.2256
200 4.5513 3.6588 3.2646
500 4.5389 3.6862 3.3096

3.4 Simulation Study
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To see if any improvement can be made on detecting change-points on the

tails for the proposed weighted test, we would like to compare the power of test

(2.19) and power of weighted test (3.55) through the Monte Carlo simulation

study.

We performed N = 5000 simulations with sample size n = 200 for each case.

In each case to be considered, we assumed that

FU) = exp(u,),

F(Z) = exp(#ﬁ))

G = exp(#c),

where y; = 1.0 and g, = 3.0. We considered ps = 2.5, 3.0, 3.5 and change-points

varied at A = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and significance levels a =

0.05, 0.10. The results are reported in Table 3.2. From Table 3.2, we can see

that the powers of weighted test (3.55) are larger than the corresponding powers

of test (2.19) on the two tails (A = 0.1 or A = 0.9). On the other hand, they

are smaller than the corresponding powers of test (2.19) in any other case. So,

the weighted statistical test (3.55) indeed improves only the situation when the

change-point occurs on the tails.
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Table 3.2. Comparison of powers of test (2.19) and weighted test (3.55)

(e = 0.05) (a =0.10)
M1 pHe A power power(weighted) power power(weighted)
1.0 2.5 0.1} 0.2636 0.3282 0.3996 0.4994
0.2 0.7926 0.6494 0.8698 0.7866
0.3 0.9414 0.7908 0.9736 0.8988
04| 0.9768 0.8354 0.9908 0.9240
0.5 0.9832 0.8562 0.9940 0.9414
0.6 | 0.9682 0.8136 0.9882 0.9138
0.7 0.9208 0.7228 0.9592 0.8486
0.8 0.6976 0.4932 0.8194 0.6842
09| 0.1846 0.1550 0.3052 0.3156
1.0 3.0 0.1 0.3860 0.5172 0.5492 0.6820
0.2 09236 0.8468 0.9612 0.9320
0.3 0.9920 0.9398 0.9966 0.9756
04| 0.9960 0.9630 1.0000 0.9872
05| 0.9974 0.9640 0.9986 0.9900
0.6 | 0.9946 0.9470 0.9984 0.9828
0.7 0.9800 0.8920 0.9902 0.9532
0.8 0.8476 0.7084 0.9224 0.8528
09| 0.2476 0.2616 0.3994 0.4562
1.0 3.5 0.1| 0.5080 0.6752 0.6762 0.8126
0.2 | 09712 0.9408 0.9868 0.9728
0.3 | 0.9976 0.9804 0.9992 0.9936
04| 0.9996 0.9920 1.0000 0.9982
0.5 1.0000 0.9942 0.9998 0.9992
0.6 0.9988 0.9840 1.0000 0.9968
0.7 | 0.9932 0.9616 0.9990 0.9894
0.8 | 0.9266 0.8414 0.9690 0.9288
0.9 0.3070 0.3594 0.4814 0.5898




Chapter 4
Asymptotics under H;

4.1 Introduction

The asymptotic distribution of test statistics under the alternative hypothesis
has not been considered so far. In this chapter, we consider the change-point
estimation and the asymptotic distribution of the test statistic under H;.

First we give some lemmas. Denote the true change-point under H; by
r=[nA, 0< A< (4.1)

We give a series of definitions. Define the subdistribution function of X, ---,

X: by
HY() = P{X; <t 6 =1}, (4.2)

the empirical distribution function of Xi,---,X; by

HO(®) = 1Y I(X: <), (43)

=1

the empirical subdistribution function of X;,---, X, by

HO(f) = %Z I(X: < t,6: = 1), (4.4)

i=1

the subdistribution function of X, ,,--- , X, by

H®() = P{X, <t,6, =1}, (4.5)

36
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the empirical distribution function of X, --- , X, by

1 n
HI ()= ——= 3 I(X:<), (4.6)
n—=7.n
and the empirical subdistribution function of X;4;,---, X, by
BD(0)=—— > I(X<t6=1) @)
T =Tyl

Let F,; denote the sigma-field generated by {Z1,---,Z;, Zr41, -, Zp},i =
1,---,7 and F,o denote the sigma-field generated by {Z, -+, Z,}. Define

i = B{ 3> h(Ze, Z)|Fagr)y i= 1,7, (48)
j=7+1
and o
arzxi = E{[ E h(Z;, Zj) - F‘m‘]zlfn,i—l}
J=:+1 2 (4.9)
= E{[ Z h(Z‘HZJ)] |fn,i—-1} - :urzu'! 1= 11 e, T,
j=7v+1

where h is given by (2.8).
We have

Lemma 4.1. Under H,,

Un1 = " = Unr

= Enl {1 - HOX;))6; - HO(X;)} (4.10)

= (n-n){ [ B2.-)aHO () - [0 - B2 0WEY @)},

and

07211 == ar2xr
(4.11)
= (n — 7)*[As(7) + A2(7) — 245(7)] — 42,
where

A(r) = [[BR, - )PdHO @),
4a(r) = [ - HE, (OPdHE @),

As(r) = [ HD. ()1 - B, (0)dEO (),
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and HY(t) is defined in (1.4), and 7 is given by (4.1).

Proof. Under H,, the variables Xi,---, X, are i.i.d. each with d.f. H() and
Xrt1,--+ , Xn are i.id. each with df H®. For i < 7, by the definitions of
h(Z:, Z;), HO, HO, and F,;, we have

{E{I(X.- > X;,0; = V)| Fagaa} — B{I(X: < X;,6; = 1)|.7-‘,,',--1}}
1

[V]a

I
-
+

i

P{X, > Xj,(sj = ]-Ifn.i—l} - P{Xx < ij 0 = llfn,i—l}}

1

+M°

J T
n

=Y {P{X,- > X;,8; = 1(X;, 87} — P{X: < X;,6; = II(X,-,&-)}}
j=t+1

= Xn: {1 = HOX;)(E = 1) — BN(X,)}

j=T+1

= 3 {1 - HOX)E - BOX;)},

j=r+1
which gives the first expression of p,; in (4.10). On the other hand, by the

definitions of H,(:’Q, and fI—,(ﬂ,,, we have

Z h(Zi': ZJ)
j=v+1
= Z I(X, > X,-,6,- = 1) - Z I(Xi < ij‘si = 1)
j=r+1 j=T+1 (4.12)

= (n - 1) HI(X:=) — (n - 7)[1 — H2(X,)]5;
= (n - ){H2(Xi-) - [L - H2 (X:)lé:}-
Thus,
i = B{ 3> h(Ze, Z3)|Fusor}

J=t+1
=(n— r){E{ﬁ,‘ﬁ,(X,-—)m,.-_l} -EB{1- H,‘f_),(x,-)]é,-m_.-_l}}
=(n- r){E{ﬁ.‘,zl,(x.-—)lfno} -B{(1- Hﬁ’i’,(xf)lailfno}}

= (v =) [ B (¢-)aBO @) - 11 - B2, (0)]aHO(0)},
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which gives the second expression of u,; in (4.10).

Now, by (4.12), we have

(> A(Z: Z)P

j=r+1

= (n— rP{E2.(X:-) - 1 - HE ()8}

= (n— T {[H2 (X:=)P+[1 - H2 (X6 —2H2 (X-)[1 - H2(X0)]6:}-

(4.13)
Thus,
B{[Y h(Zu Z)1Fain)
=(n- r)z{E{[’I-.T,?J,(X,-—)]2|f,,,,--1} + E{[1 - B2, (X)I6:| Fasio1}
~ 2B (A (X )l1 - B2 X6 nici}
=(n- T)z{ E{[H® (Xi~)P|Fu} + B{[1 - H(X)]?6:| Fro} (4.14)
—2B{H2(X:-)1 - H,‘,"’_’T(X;-)l&lfno}}
= (n—mP{ [IHL PO + [1 - 2, PdEO @)
-2 / Er(zz—)'r(t—)[l - Hf(12—)r(t)]dﬁ(l)(t)}
= (n — 7)*[A1(7) + A2(T) — 245(7)],
and therefore (4.11) follows from (4.9), (4.10), and (4.14). O
So, by Lemma 4.1, (4.8) and (4.9) can be written as
pi = B{ 3 h(Z,Z)\Fua), i=1,0 7, (4.15)
and .
% =E{[ 3 h(Z1,2;) — tm) | Fuo}
= (4.16)

= B{[ 3 Wz Z)] 1o}~ sty i= 1o 7

I=T+



40

respectively, which are independent of 4,1 <7< 7.

4.2 Change-point Estimators

Define

612 = ER(Zy, Zr41)
(4.17)
= P{XT > X,—+1,61—+1 = 1} - P{Xf < Xf+1,61- = 1}

We have

Lemma 4.2. Under Hy, for1<:i< T,

EU,' = E h(Zi, Z)
{,-;1 ) (4.18)
= Epp; = (Tl - 7‘)91,2,
and fortr+1<i<n,

EU; = E{ 21 h(Z;, Zj)} (4.19)
2 )

= —7.01,27

where U; is defined in (2.4), h,T, and p.; are given by (2.8),(4.1), and (4.10),

respectively.

Proof. Under H;, the variables X;,--- , X, are iid. and X,;4,---,X, are

i.i.d., so we have

E{> Iz, Z;)} =0 if1<i<T, (4.20)
£
and
B{ 3 hZ,2Z;)}=0 ifr+1<i<n (4.21)
j=r+l1

since h is anti-symmetric. Hence, by (2.4), (4.17), and (4.20), we have
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EU; = E{ i h(Z:, Z;)}

j=1

= E{ --_-2;.1 h(Z;, Zj)} (4.22)

= Y Eh(Z.,Zr41)

j=r+l1
=n—-71)bo i=1,--- T,

and then by (4.8),

E/—‘m‘ = E{E{ zn: h‘(Ziv Zj)lfn.i-—l}}
= (4.23)
=E{ 3 h(Z:.Z;)} =EU.

j=7+1

(4.22) and (4.23) give (4.18).
For 7+ 1< i < n, by (2.4), (4.17), and (4.21), we have
EU; = E{Y MZ:., Z;)}
j=1
= E{ S h(Z:, Z;)}
Jj=1

= —F{ 2_:1 h(Z;, Z:)}

= - EW(Z, Zrs1)

=1
= _T91,2 )

which gives (4.19). O
Remark 4.1. By Lemma 4.2, we note that, under H,, if 6, 2 > 0, then

EU; >0 forl<i<T,and EU; <0 forv+1<i<n.
If 6,2 <0, then

EU; <0 forl1<i<T7,and EU; >0 fort+1<i<n.
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Note that we have

k
EQ_U)=kE,) for 1<k <,

i=1

and

k T k
B(_U) = B(LU)+B( 3 U

=7Eh)+(k—-1)E(U,) for T+1<k <n.
Thus, by Lemma 4.2 we get

Corollary 4.1. Under H,,

012 = / HA()dHY(t) — / [1— HA@)dHY (2), (4.24)
E(zk:U,-) =k(n—7)012, k=1,---,T, (4.25)
and
k
E(ZU,-) =(n—-k)t02, k=7+1,--- n, (4.26)
i=1

where HV(t), HA(t), HY(t), and H?(t) are defined in (1.4), (1.5), (4.2), and
(4.5), respectively, and U;, T, and 6, are defined in (2.4), (4.1), and (4.17),

respectively.
Remark 4.2. By Corollary 4.1, we can see that, if #; 2 > 0, then

k
E(XU)>0,1<k<n,
t=1
and E(X5_, U;) increases before change point 7 (1 < k < 7) and decreases after
change point (r+1 < k < n). If ;5 <0, then

E(iUi)<0, 1<k<n,

=1
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and E(X%_, U;) decreases before change point 7 (1 < k < 7) and increases after

change point (r + 1 < k < n).
Thus we can get

Corollary 4.2. Under Hy,

T k
|E(§ U;)| = max IE’(; U:)| = 7(n — 7)[61.]. (4.27)

1<k<n

Remark 4.3. By Remark 4.2 and Corollary 4.2 we can see that, if §;, > 0,
then E(XF_, U;) is a hat-type function and change-point 7 is the maximizer of
E(S5,U:) 1 <k <n). If 65 <0, then E(TE, U)) is a U-type function and
change-point 7 is the minimizer of E(T%., U;) (1 < k < n). These properties

can be used to help detect the change point. See Example 4.1 in Section 4.3 for

details.

We define an estimator of the change-point 7 by

# = argmax| Z Uil, (4.28)

1<k<n ;—1

where U; is defined in (2.4), and

a.rgma.xIZUl mm{k |ZU|— rggnIZUl}

1<k<n 3 i=1

{ f_1 122, U] }
Ve
We define the weighted analogue of 7 by

7 = argmax IE:r—l 1/V 2_1 i

1dk<nJk(n —k+1)

"Inhl{ 5—1 max ;—1[I| }
B \/k(n —k+1) " 15m<n \/m(n m+ 1)

(4.29)
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We have

Theorem 4.1. Under H,,

(2) nlggo P{% <z}=z, 0Lzc<l (4.30)
(id) % 2, (4.31)
where 1 1s a random variable such that
1
P{n=0}=P{17=1}=5.

Proof. Both (4.30) and (4.31) follow directly from Theorem 2.4.14 of Csoérgé

and Horvath (1997). O

From Theorem 4.1(i), we see that under the null hypothesis of no change, the
estimator 7 is asymptotically uniformly distributed on the range {1,--- ,n}, and
views any of the integers between 1 and n as a possible time of change with the
same probability irrespective of the value of the test statistic. This corresponds
well to the interpretation of max | Y%, U;| as a uniform prior distribution of the
place of change and is considered a desirable property (cf. Henderson (1990)).
On the other hand, Theorem 4.1(ii) says that, the change-point estimator 7 will
be close to 0 or n for large n. This is a good property in the sense that Hy can
be interpreted as the case when the time of change is at the first or after the last
observation.

We also have

Theorem 4.2. Under H;, if 612 # 0, then

|7 — 7| = Op(1), (4.32)
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where 6, is defined in (4.17), T and 7 are defined in (4.1) and (4.28), respec-

tively.

Proof. For the sake of simplicity of exposition we do the proof for statistic

kU

<n n
- i=1 Ui

and the corresponding change-point estimator

kU

i=1

7 = argmax ————,
1<k<n ,/ iy Ui2

which are to be used for the one-sided alternative of 6, o > 0. The proof of the
more general statement for the two-sided alternative 6; » # 0 follows immediately,

here it will be omitted.

By the definition of 7, note that relation (4.32) is equivalent to

hmhmsupP{ max ZUz max iUi}

k—00 n—oo m<r— k r—-k<m<r+k i—1

(4.33)
+hm11msupP{ max ZU> max ZU}—O

k=0 n—ao0o +l=<m<n T—k<m<r+k

so we only need prove (4.33).

First, we show that the first term on the left side of (4.33) is zero. We have
P{ 155;1%35-1: z Ui 2 r—k<m<r+k z Ui }

= P{ 1<m<'r—k Z U 2 r—?{%(r Z U }

-k m
—P{1<m<r—kZU > ZU +‘r IE(%(T Z []'}
i=1 =r—k+1
T—k m
_P{3],1<J<1-—k ZU>EU+ max Z Ui}
im1 =1 T— k<m<-r k4l
T—k m
=P{3],1$J$T—k: ZU,--{-T-;E;(a%(Q Z Uiso}

i=j+1 =r—k+1
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-k m

=1-P{, mn 3> U+ max 5 U:>0)
r—k
= ; <
P{ ISer-k —-;l-l Ui+ r—x&arf<f §+1 U: < 0} (4.34)
T—k 1 m
=P min U;+ —= max U, <ol
{\/ic_ 1<m<r—k . %1 \/Zf—k<m<r Zk“ }
We note that {U; = 7, h(Zi, Z;), ¢ = 1,---,7} are identically distributed

random variables under H;, a.nd hence

-k

min Y U; 1<$él}-sz (4.35)

1<m<rt- k! —mal

IS

Let Hia(t) = AHW() + (1 — \)HO(2),

Hip(t) = AHO(@) + (1 = A H(2),
where HO), H® H® and H? are given by (1.4), (1.5), (4.2), and (4.5), re-
spectively.

We can write

Ui = zn: h(Z,', ZJ)

=1
= ZI(X, > X_,-,é',- = 1) — ZI(X; < Xj,(si = 1)
=1 j=1

= n{Ha(Xim) = [1 - Ha(X2))&:}

= n{H2(X:) — (1 — Hya(X:))d: + Op(%)}
1,

=Q; +n0P(%), i=1---,T,

where H, and H, are given by (2.11) and (2.12), respectively, and

Q: = n{Hia(X:) ~ [ — Hia(X:)16:}.
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Note that @, - - -, @ are independent and identically distributed with £Q; > 0

by Remark 4.1, and
DI =Var(Q:) = E(@Q}) - (EQ:)’
= n?{EHL(X:) + E[(1 — Hu(X:))*8] - 2B[Hi2(X:)(1 — Hiz(X:))5:]}
—n?{ [ Hat)dHO(@) - [[1 - He@WHEO @)}
= n?{ / H2(6)dHW (2) + / [1 - Hip(®)2dHW(2)
—2 [ Hu)l1 - Hu@dHY ()
- / Hia(()dHO (@) - [(1- Hip(1)dED (1)}
We have
i %; = i i mOp(—). (4.36)
Let {g(k)} be a sequence such that

g(k) <1 —k, g(k) = oo, &—)0 as k — oo. (4.37)

Denote

[z]” = — min(z,0),

so if £ > 0, then [z]” = 0. Thus, by (4.36) and (4.37), we have

1 ) = U
- [\/E 1<Er?éxgl(k) 21 ]
_ /g(k Qi—EQ m Qi
= 1<m<g(k) { ,_—g(k iz—; Dq + W(E(D ) + OP(\/—)) }]

(4.38)

As EQ; > 0 and the partial sum process

in EQ:
{\/g(k 2P, =) 2 W () e (m =19}
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where W(-) is a Wiener process, we get

- [% 1<m<g(k) —] =oe() (4.39)

when k is large enough by (4.38) and the continuity of the Wiener process at 0.

In addition, by the law of iterated logarithm and EQ; > 0, we have
— [_1_ min i ﬂ] -
\/E g(k)<m<r—k = D

Qt EQ! Qt -
= g(k)<m<1'—k {\/—-\/_ g q + \/_E( ) \/-OP(\/—)}]

= [y min_, {Z=(0n(}/EE™) 4 B(Z) + 0n( )]

= 0p(1)
(4.40)
when k is large enough. Thus, by (4.35), (4.39) and (4.40), we have
1 i "” U;
- [ﬁ 1<Inl;l<r-k F]
= U;
D _ el
- [\/E 1<m<'r- Z D ]
_ .7t . s g_ (4.41)
- [\/E in { 1<E<g(k) Z Dq g(k)<m<r—k Z D, }]
. 1 ) nU; - 1 . ™ U
= mln{ - [TE 1<m2g(k) g B:] i [\/E g(k)Smer—k 121 Dq] }
= Op(l).
On the other hand,
1 n o U;
\/]; -1-—Ii}1<m<1't -rz;c-i-l Fq
Ll ¢ G
\/Et=f—k 1¢ (4 42)
2 Lyl '
\/k—: =1 Dq
_ 1 & Q; 1
= \/E(E‘:Zl Dq + OP(_ﬁ))
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By the strong law of large numbers, as k£ — oo

1 k Qi a.s Q!
- =——=—=3E(=)>0
k g q (Dq)
Thus,
1 o U
\/E Tok<mgr t—r§:k+1 Dq (4 43)
. .
+ Op(—=)) = +00 as k — oo.
Putting (4.41) and (4.43) together, we get
vk m
U; 1 Ui
—_ —< =
l—lﬁlo hf,‘l,so‘.}p P{ N 1<m.<1'—k /Y Dq N/ r—II?<an)1(§f i=§ aDled ™ 0} 0

Therefore, by (4.34) and (4.44), we can get the first term on the left side of (4.33)

lim limsupP{ | max kZU,— > max ZU} =0. (4.45)
Sm<r—k (=

k=00 n—oo r—k<m<r+k

To show that the second term on the left side of (4.33) is zero, we note that

m n

2 U= 3 ()

=1 i=m+1

n
since ¥ U; = 0. If we consider the sequence from the opposite direction, let
i=1

’— .—
Z;=2py1-i, 1=1,---,n
and
I— -_
Li = T VUn+l-i Z—lr"' y .

Thus,
(Z]IJ.“ !Zflz) = (Zna"' 7Z1)1

(U{"" )Ur,;) = (—Uny°" 1_Ul)7
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m n-—-m

Su=3 U
i=1 =1
and
r=n+l-(r+1)=n—-71
is the change-point of the opposite direction sequence.
Let m' =n —m, so
Jim hmsupP{ max ZU > max ZU}

k=00 n—oo r+k<m<n T r—k<m<rt+k

n-—-m n-m

! '
hm hmsupP{ 1<n-—m<1"—k Zl Ui 2 f’—-k<§1—arezc<r’+k Zl U'} (446)

k=0 n—oo

15{010 h]r:;rlbsolo}p P{ 1<m’<-r' Z Ui 2 - T’—k<m’<~r’+k Z }

Thus, we can use the same method as above to prove that the second term on

the left side of (4.33) is zero; the proof is omitted. ]

Note that the relation (4.32) can be restated in terms of the change-point

parameter A and its estimator A = #/n as
A= =0p(>)
= uvp n )
which means the optimal rate of convergence for a point estimator of A is %

We do some simulation study to investigate the precision of the change-point

estimators to the true value in Section 4.4.

4.3 Asymptotic Distribution of the Test Statistic

Next we discuss the asymptotics of test statistic (2.18) based on T5 , U;.
First of all, let’s quote a useful result due to Dvoretzky (1972) in the following

Theorem (cf. Theorem 2.4.1 of Sen (1981)).
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Theorem (Dvoretzky, 1972). For a sequence {(Xnk, 0 < k < k,); n > 1} of

random variables (not necessarily independent), we set X,o =0,
Sn.k =Xn.0+"'+Xn.k fOTk= 1,"' )kn’

and let G, ;. be the sigma-field generated by Spx fork > 1 andn > 1 (where G, 4 is
the trivial sigma-field for everyn > 1). Assume that EX?; < o0, Vi>1,n > 1.

Let then
nk = B(XnklGnk-1) and o2, = B(X2|Gnk-1) — 12

for 1 <k <k,, n>1 and assume that k, — 00 as n — oo. Suppose that as

n — 0o,
kn p kn p
bnx — 0, Z 0,21‘,‘ — 1,
k=1 k=1
and the conditional Lindeberg condition holds, that is, for everye > 0,

kn
S E(X2 I(| Xagl > €)IGng-1) =0 as n—oo.
k=1

Then
Snk. —=+ N(0,1).

We'll use this Theorem for the proof of the following Lemma 4.3.

Lemma 4.3. Under H,,

\/Fla,,, (}Z: Ui — Tinr) — N(0,1), (4.47)

where U; is defined in (2.4), T, tnr, and o2, are given by (4.1), (4.10), and (4.11),

respectively.



52

Proof. Let
2+ h(Z:, Z;) — pnr
. = J—T y — .o
Eni = Trom ,t=1, T (4.48)
anizE(Enil-Fn,i—l)y 1= 11"' 1 Ty
and

b2; = Var(nil Fni-1)

= E{(fm’ - am’)zlfn,i—l}y t1=1,---,1
Now, under H;, by (4.8), and by (4.10) of Lemma 4.1, we have

E h(Zi, Z;) — vnr
ani = FE {J-r+1 Fn i—l}

\/Fam
= o (B 5 W20 2P} = o)
= ﬁ(ﬂm’ — Hnr)
=0, i=1---,7
and hence
> e =0 (4.49)
=

Also, by (4.9) and Lemma 4.1,

G B {[ Z, h(j-:j,) - #m]zlfn.i-l}

(] Z B(Zi, Z;) = tinr] |Faict}

1'0'2
J-T
_ 1
T To2 T
1
== 1= 11 T,
.
and so
,.
Zbﬁi =1. (4.50)



53

In addition, we note that &,1, - - - , €nr are conditionally i.i.d. given Z,,1, -, Zj,.

So for every € > 0, by Lemma 4.1 and (4.16),

i E{fvzn'l(lfnil > e)l]:n.i—-l}

=1

= 3 B (il > €)1 F}

TR R Eer
=ZE{ [J—f-{-l Vo ] I(l Z k(Z;, Z;) ”’"’I >E\/‘l_’0’nf)|.7:no}
i=1 nr j=t+1
= o —E{[ E W(Zr, Z;) = pine] I(| Z h(Z,,Zj)—uml > €V/T0nr )| Fuo}
_¢r+ '
=a, {[ Z W(Ze, Z3) — pnr] (] _z W(Zr, Z;) = e | > €V/T00nr ) | Fuo}

— 0, asn — oo.
(4.51)

Thus the conditions of Theorem (Dvoretzky, 1972) are satisfied by (4.49)-(4.51),

and the central limit theorem holds for 3°7_; &q;, that is,

ZT: Eni =+ N(0,1). (4.52)

i=1

Note that by (2.3), (2.5), and (4.48),

T
= j=7+l1
; Eﬂl g \/—a_n‘r

1
== Z[Zh(z:,z = tinr]

Onr i=1 :—r+1 (4.53)

= [Z Z h(Z:, Z;) = Titns|

\/?U"T i=1li=7+1

(ZU Tline )

To'm' i=1

T ( f: h(Zth)—unr)

Thus (4.47) follows from (4.52) and (4.53). a
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- A = [[HEO@)PaHD @),
A3 = [i1- HA@PHO (@),
A = [ D@1 - B @))aED (),
and

o2 =(n—71)}(A] + A) — 243 — 63,), (4.54)

where H()(¢), H@(¢), HV(t), and H?(¢t) are defined in (1.4), (1.5), (4.2), and
(4.5), respectively, and 7,6, are defined in (4.1) and (4.17), respectively. We

have

Corollary 4.3. Under H,,

\/‘l_]:O’-,— (i a - T;Un'r) l’ N(Ov 1)1 (455)

where U; is defined in (2.4), T, pnr, and o2 are given by (4.1), (4.10), and (4.54),

respectively.

Proof. By the weak convergence of the empirical distribution function to a

Brownian bridge, we know that

sup [H{2, () - HO(0)] = Or(—=)
and
sup [H2, (1) - EO(0)] = 0p( ).
Thus,
JEZ(-)PdHO @) L [[HO@PdED @),
ie.

Ay(r) 5 AL, (4.56)
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[u- B @PaEOE) £ [ - BO@PHO(e),

that is,
Ao(T) > 45, (4.57)

[EE - - B2, @WHEO @) £ [ B - BA@WEO ),

ie.

As(T) -5 A3, (4.58)
and _ _

[H2.t-)aHO @) - [11 - B2, (0]dHD )
L5 [HO@)HO@) - [[1- B (0)dEN ),

that is,

1

Py —— 012 (4.59)
n—rT

by (4.10) of Lemma 4.1 and (4.24) of Corollary 4.1.
Thus, by (4.11), (4.54), (4.56)-(4.59), we have

2

Onr P
Therefore (4.55) follows from Lemma 4.3 and (4.60). m|

Theorem 4.3. Under H,, if 612 # 0, then

\/n_lz\a (2:‘; Ui — Thnr) = N(0,1), (4.61)

where U;, 7,012, and 7 are defined in (2.4),(4.1), (4.17), and (4.28), respectively,

and ., and o? are given in (4.10) and (4.54), respectively.
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Proof. If 7 < 7, then, by (4.1),

1 T
\/;XO} (Z U; - Tﬂnr)

i=1
1 L 1 L
= E :[jx - nr} — § : Ui
vVnio,r (,-—1 s ) vnlior iS5 (4.62)

[nf\]

oo (B0 i) = o 2

i=7+1

Now, under Hj, by (2.4), (4.1), (4.54), (4.10) of Lemma 4.1, and Theorem 4.2,

1 T
- U;
e 3.
1 T
< U;
< Too ,-;1 Uil
1 . (4.63)
< -
< \/T'Ja,n(r 7)
_ n(r — )
Vnd(n — A)\JAD + A} — 243 - 62, g
= Op(l).
In addition,
lim 2N 1 (4.64)
n—oo n
Thus (4.61) follows from (4.62)-(4.64) and Corollary 4.3.
If 7 > T, we have
\/— Ao- (; Ui = Thar)
[ (4.65)
Ui — Titnr T Us.
\/—U" (xz—; ) Or z—zr-:l—l
Similarly, we can get
Uil = 0x(1 4.66
\/_Ur s—g-l P( ) ( )

Thus (4.61) follows immediately from (4.64)-(4.66) and Corollary 4.3. a
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By Theorem 4.3, we can also get

Corollary 4.4. Under Hy, if 6,2 > 0, then

n];\a',. ( l?l?ézé Ui - T#"”) =+ N(0,1), (4.67)
and if 6,2 < 0, then
1 . >
vnio, (trsl}clgn .2=:1 Us = Thnr) = N(0,1). (4.68)

Proof. By the definition of 7 in (4.28), we note that

k
- max 2 U; if 01'2 >0,

T 1<k<n {=1

> U=

— k
=t min > U; if62<0.

1<k<n j=}

(4.69)

Thus (4.67) and (4.68) follow immediately from (4.69) and Theorem 4.3. a

The consistency of the test based on (2.19) easily follows from Theorem 4.3.
It can also be used to approximate the power of the test for large sample size
and its proof shows that the two-sample and the change-point test statistics
have identical asymptotic distributions. A similar statement is true for tests of
change-point based on maximum likelihood, rank or sign statistics (cf. Gombay
(1994), Gombay and Horvath (1996), Gombay and Jin (1996)). This is important
for the asymptotic efficiency considerations, provided the measure of efficiency

is not based on contiguous alternatives.

4.4 Simulation Study and Applications
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In this section, we first do some simulation study on the change-point estima-
tors and then we apply our test based on (2.19) to some examples from clinical
trials and also discuss the change-point estimator 7 based on (4.28) to illustrate

the calculations.

4.4.1 Simulation study

To illustrate the proposed change-point estimators, we would like to check

the precision of the estimated mean of the change-point estimator to the true

Table 4.1. Comparison of true values and
estimating values of change-point (A = 0.5)

n u M2 Me | T=[nA]]| Simulated Mean of 7
50 10 1.5 3.0 25 24.78
1.0 20 3.0 25 24.77
1.0 25 3.0 25 24.57
1.0 3.0 3.0 25 24.74
1.0 35 3.0 25 24.55
100 1.0 15 3.0 50 49.80
1.0 20 3.0 50 49.78
1.0 25 3.0 50 49.53
1.0 3.0 3.0 50 49.50
1.0 35 3.0 50 49.55
200 1.0 15 3.0 100 100.32
1.0 20 3.0 100 99.37
1.0 25 3.0 100 99.57
1.0 3.0 3.0 100 99.54
1.0 3.5 3.0 100 99.39
500 10 1.5 3.0 250 248.99
1.0 20 3.0 250 249.80
1.0 2.5 3.0 250 249.33
1.0 3.0 3.0 250 249.04
1.0 35 3.0 250 249.45
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Table 4.2. Comparison of simulated values T and T with true values (n = 100)

P2 He A | 7={[n)\] | Simulated Mean of 7 | Simulated Mean of 7
1.0 15 3.0 03 30 41.59 39.87
0.4 40 45.04 43.27
0.5 50 49.43 46.84
0.6 60 54.46 50.19
0.7 70 57.35 52.05
1.0 2.0 3.0 0.3 30 37.08 34.84
0.4 40 43.27 41.44
0.5 50 49.52 47.82
0.6 60 55.88 53.75
0.7 70 61.26 60.12
1.0 25 3.0 03 30 35.54 32.21
0.4 40 42.27 40.48
0.5 50 49.57 48.39
0.6 60 57.01 56.31
0.7 70 63.56 63.46
1.0 3.0 3.0 03 30 33.97 30.79
0.4 40 41.56 39.77
0.5 50 49.59 48.54
0.6 60 57.24 57.33
0.7 70 64.42 65.45
1.0 35 3.0 0.3 30 33.42 30.55
0.4 40 41.13 39.51
0.5 50 49.40 48.53
0.6 60 57.62 58.06
0.7 70 64.94 66.71

value of change-point 7 = [n)] through the Monte Carlo simulation study. We

performed N = 5000 simulations for each case. In each case to be considered,

we assumed that

F(l) = exP(lJI),

F(Z) = exp(#Z):

G= &Xp([lc).

We considered means p; = 1.5, 2.0, 2.5, 3.0, 3.5. The particular feature of the

underlying sampling situation is that in each case we have A = 0.5 so that pre-
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and after-change samples are balanced in size. In this case, we considered sample
sizes n = 50, 100, 200, 500, the results are reported in Table 4.1. From Table
4.1, we can see that, the simulated mean of 7 fits the true value of T quite well.

The precision of the estimated mean of the change-point estimator 7 and
the estimated mean of the weighted change-point estimator T was compared for
sample size n = 100 and varying A’s, A = 0.3, 0.4, 0.5, 0.6, 0.7. The results are
reported in Table 4.2. From Table 4.2, we can see that, the estimation precision
increases as the distance of mean |u; — ;| increases or the true value of change-
point is close to middle, which is quite reasonable. Overall, the performance of
7 gets somewhat worse for unbalanced sample sizes. In such a situation slight

improvements have been obtained by considering the weighted version 7.

4.4.2 Applications

Example 4.1. Crowley and Hu (1977) gave survival times of 103 potential
heart transplant recipients from their date of acceptance into the Stanford heart
transplant program. The survival time is said to be uncensored or censored
depending on whether the date last seen is the date of death or the closing date
of the present study, April 1, 1974. (The survival time for two patients who
were deselected was censored by dates prior to the closing date on which they
were lost to follow-up.). The patients entered the study randomly between 1967
and 1974. See Crowley and Hu (1977), and Kalblfeisch and Prentice (1980) for
detailed descriptions.

We reproduce the data provided by Crowley and Hu (1977), and Kalblfeisch



Table 4.3. Stanford heart transplant data
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i 1 2 3 4 5 6 7 8 9
Xi 6 50 6 16 39 18 3 675 40
Tr; 0 0 0 1 1 0 0 1 0

1 10 11 12 13 14 15 16 17 18
Xi| 85 58 153 8 81 1386 1 308 36
Tr; 0 1 1 0 1 1 0 1 0

1 19 20 21 22 23 24 25 26 27
Xi| 43 37 28 1032 51 733 219 1799+ 1400+
Tr; 1 0 1 1 1 1 1 1 0

1 28 29 30 31 32 33 34 35 36
Xi | 263 72 35 852 16 7 1586+ 1571+ 12
Tr; 0 1 0 1 0 1 1 1 0

] 37 38 39 40 41 42 43 44 45
X; | 100 66 5 53 1407+ 1321+ 3 2 40
Tr; 1 1 1 1 1 1 0 0 0

1 46 47 48 49 50 o1 52 53 54
Xi| 45 995 72 9 1141+ 979 285 102 188
Tr; 1 1 1 0 1 1 1 0 1

i 95 56 57 58 59 60 61 62 63
Xi 3 61 941+ 149 342 915+ 427+ 68 2
Tr; 0 1 1 0 1 1 0 1 0

i 64 65 66 67 68 69 70 71 72
X;| 69 841+ 583 78 32 285 68 670+ 30
Tr; 1 1 1 1 1 1 1 1 1

1 73 74 75 76 77 78 79 80 81
X; | 620+ 596+ 90 17 2 545+ 21 515+ 96
Tr; 1 1 0 1 0 1 0 1 1

1 82 83 84 85 86 87 88 89 90
X; | 482+ 445+ 80 334 5 397+ 110 370+ 207
Tr; 1 1 1 1 1 1 1 1 1

1 91 92 93 94 95 96 97 98 99
X; | 186 340 340+ 265+ 165 16 180+ 131+ 109+
Tr; 1 0 1 1 1 1 1 1 1

t 100 101 102 103
Xi| 21 39+ 31+ 11+
Tr; 0 1 0 0

Sources: Crowley and Hu (1977), and Kalbfleisch and Prentice (1980).
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and Prentice (1980), and list sequentially in order of date of acceptance in Table
4.3, where 7 denotes the sequential order based on the date of patient acceptance.
X; denotes the ith patient’s survival time which was recorded in days starting
with the date of acceptance, the plus sign "+” indicates a censored observa-
tion. Tr; denotes the ith patient’s transplant status, 1 = transplanted, 0 = not
transplanted.

Let’s first analyse these data of size n = 103. Using the original definition
of score function h, which is given by (2.2), we calculate the values of U; (i =
1,---,103) by (2.4) and obtain the value of the test statistic

| L Ul

max -—m———
1<k<103 /5103 772
i=1"Yi

Our test based on (2.19) gives P-value 0.040, it indicates a change in the survival

= 1.398.

time distribution over the study period 1967-1974. We get the estimating value
of the change-point #=49. This concurs with Kalbfleisch and Prentice’s use of
time dependent covariates in the Cox proportional hazards model. To analyse
these data in a more detailed fashion, we made a scatterplot of {Zle U,k =
1,---,103} in Figure 4.1. It shows that all values of £%; U; (1 < k < 103) are
negative, the values of 35, U; have a decrease trend before =49 and have an
increase trend after ¥=49, which support the claims described in Corollary 4.2,
Remark 4.2, and Remark 4.3.

Next we only consider the data which were from those patients who received

a transplant. The data set size is 69. The value of the test statistic is

k
max | Zi:l Utl

1<k<69 /5769 172
1= 3

Our test based on (2.19) gives P-value 0.241, so the null hypothesis of no change

= 1.028.
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in survival time distribution is not rejected. This indicates the increase in sur-

vival time of the patients is not due to the change in transplant technique.
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Figure 4.1. Plot of Zle U,k=1,---,103 for the
Stanford heart transplant data.

Example 4.2. The Data Set II of Kalbfleisch and Prentice (1980) gave the data
for a part of a large clinical trial carried out by the Radiation Therapy Oncology
Group in the United States. 195 patients with squamous carcinoma entered the
study randomly between 1968 and 1972. See Kalbfleisch and Prentice (1980) for
a description. These data are reproduced and listed sequentially in order of the

patient entry date in Table 4.4.



Table 4.4. Radiation Therapy Oncology Group data
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] 1 2 3 4 ) 6 7 8
X 631 270 327 243 916 1823+ 637 235

i 9 10 11 12 13 14 15 16
Xi 255 184 1064 414 216 324 480 245

1 17 18 19 20 21 22 23 24
Xi: | 1565+ 560 376 911 279 144 1092 94

J 25 26 27 28 29 30 31 32
X; 177 1472+ 526 173 575 222 167 1565

i 33 34 35 36 37 38 39 40
Xi 134 256 404 1495+ 162 262 307 782

1 41 42 43 44 45 46 47 48
Xi 661 1609+ 546 1766+ 374 1489+ 1446+ 74

1 49 50 51 52 53 54 99 56
Xi 301 328 459 446 1644+ 494 279 915

i 57 58 59 60 61 62 63 64
X; 228 127 1574 561 370 805 192 273

1 65 66 67 68 69 70 71 72
Xi | 1377+ 407 929 548 1317+ 1317+ 517 1307+

1 73 74 75 76 7 78 79 80
Xi 230 763 172 1455+ 1234+ 544 800 1460+

i 81 82 83 84 85 86 87 88
Xi 785 714 338 432 1312+ 351 205 1219+

1 89 90 91 92 93 94 95 96
Xi 11 666 147 1060+ 477 1058+ 1312+ 696

i 97 98 99 100 101 102 103 104
Xi 112 308 15 130 296 293 545 1086+

{ 105 106 107 108 109 110 111 112
X; | 1250+ 147 726 310 599 998+ 1089+ 382

i 113 114 115 116 117 118 119 120
Xi 932+ 264 11 911+ 89 525 532+ 637

i 121 122 123 124 125 126 127 128
Xi 112 1095+ 170 943+ 191 928+ 918+ 825+

i 129 130 131 132 133 134 135 136
Xi 99 99 933+ 461 347 372 731+ 363

T 137 138 139 140 141 142 143 144
X; 238 593+ 219 465 446 553 274 723+
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Table 4.4. Radiation Therapy Oncology Group data (Continued)

145 146 147 148 149 150 151 152
532 154 369 541 107 854+ 822+ 775
153 154 155 156 157 158 159 160
336 513 914+ 757 794+ 105 733+ 600+
161 162 163 164 165 166 167 168
266 317 407 346 518 395 81 608
169 170 171 172 173 174 175 176
760+ 343 324 254 751+ 334 275 946+
177 178 179 180 181 182 183 184
112 182+ 209 208 174 651+ 672+ 291
185 186 187 188 189 190 191 192
498 276+ 90+ 213 38 128 445+ 159
193 194 195
219 173 413+

RS RS FORS PO VI (PR [P3

Source: Kalbfleisch and Prentice (1980).

NOTE: i denotes the sequential order based on the patient entry date. X;
denotes the ith patient’s survival time which was recorded in days from day of
diagnosis, the plus sign ”+" indicates a censored onservation.

The value of the test statistic is

k .
_|_2_i=1_[_]i = 0.779.

lgclgxlgs 195
-~ v Zi:l U;Z

Our test based on (2.19) gives P-value 0.578 which gives support to Hp.

Furthermore, we made a scatterplot of {35, U,k = 1,---,195} in Figure
4.2. The graph suggests a test based on (2.24) for the epidemic alternative Hj
which is described in (2.20), but the result is not significant as the P-value is
0.23. Hence, Kalbfleisch and Prentice’s use of the proportional hazards model
with time independent covariates is justified.

We should point out that, both the Stanford heart transplant data and the
Radiation Therapy Oncology Group data have been used many times in the liter-

ature; the conclusions from above applications are consistent with some analysis



using the Cox proportional hazards model.
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Figure 4.2. Plot of % U,k =1,---,195 for the
Radiation Therapy Oncology Group data.



Chapter 5

Further Discussion of
U-Statistics Based Processes

5.1 Introduction

We notice that all the previous discussion is based on the Wilcoxon-Gehan-
Mantel score function h given in (2.8). We also discussed the tests for change
based on U-statistics with h as a special anti-symmetric kernel both under the
null hypothesis of no change and under the alternative hypothesis of one change.

U-statistics are often used to test for change in the distribution of a sequence
of random variables. In this chapter, we generalize the U-statistic based test to

the general symmetric kernel case and the anti-symmetric kernel case separately.

We call = symmetric if

h(z,y) = h(y,z), (5.1)

and anti-symmetric if
h(z,y) = —h(y, z)- (5.2)
Now, let Xi,---, X, be a sequence of independent real-valued observations.

In this chapter, we would like to test the no-change null hypothesis
Ho : Xl, T, Xn lldF()
against the one-change alternative hypothesis

67
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H,: there exists some T € {1,2,---,n — 1} such that
Xy, -, X, idid. FU(),
Xes1y -+ Xn 1id. FO(), and
FM)(z) #£ F®(z) for some z,
where distribution functions F, F1), F) and change-point 7 are unknown. We
assume that

T = [n)] for some ), 0 <A < L. (5.3)

The U-statistic with kernel h(z,y) is

Zi=Y Y h(X,X;),1<k<n (5.4)
(=1 j=k+1

1=
We assume, that kernel h(z,y) is of bounded variation as a function of z or of y
with the other variable fixed at any value.

Also, we assume that

ER*(X1, Xa) < 00, ER}(Xao1,Xn) <00, and ER} (X, X,) <oco. (5.5)

Let
6, = Eh(X,, Xa), (5.6)
6, = Eh(Xn-1, Xn), (5.7)
and
612 = Eh(X1, Xn)- (5.8)
Define

ill(t) == Eh(Xl, t) - 01 (59)
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and
ho(t) = ER(Xn, t) — 62 (5.10)
Condition (5.5) implies that Eh2(X;) < oo and Eh2(X,) < co. In addition, we

assume that the kernel is non-degenerate, i.e.
ER}(X;)>0 and ER3(X,) >0, (5.11)
and consider the processes
Ui=2Zr—k(n—k)o, 1< k< n (5.12)
Our test will be based on (5.12). Let an estimator of the change-point 7 be
7 =min{k : Uy = ,pax, Un}- (5.13)

The limiting distribution based on maxX;<i<n Uy under Hy is known. We
refer to Csorgd and Horvath (1997) for the results and for a detailed list of
references, however, the asymptotic distribution of the test statistic under the
alternative hypothesis has seldom been considered so far. We discuss the limiting
distribution of test statistic maxi<g<n Ux under the alternative hypothesis H;
based on symmetric and anti-symmetric kernels separately.

Let F,; be the sigma-field generated by {Xi, -+, X, Xr41, -+, Xaht =
1,---,7, and F,q be the sigma-field generated by {X;41, -+ ,Xn}. Define

o= B{ 32 (X1, X))\ Fas) (5.14)
and
o = Var{ zn: h(Xl,Xj)lfn,o}. (5.15)

j=7+1
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Denote the empirical distribution function of X4, -+, X, by
FA(f) = —— ¥ I(X; <1, (5.16)
n—r1 %
j=7+1
We have n
un=E{ 3 h(X1,X;)|Fao}
j=r+1
= Z E{h(X1, X;)|Fao}
J=rel (5.17)
j=7+1
= Y h(X)+(n-1)6
j=7+1
and
> R(X)=m-7) [R@edFE(). (5.18)
j=r+1
Thus,
o = (n = 7)( [ B (F2() + 1), (5.19)

Further, we have

o2 = Var{ Xn: h(X1, Xj)l}_n.o}

= Var{(n ) [ h(X1,)dF2. ()| Fuo) (5.20)
= (n—7)*Var{ [ h(Xy,)dFZ, (£)| Fao}.

We get our first lemma:

Lemma 5.1. We assume that h is symmetric or anti-symmetric and that, under

H,, (5.5) and (5.11) hold. Then

1
IS

VTo

(Z-r - Tﬂn) —D_) N(Or 1)v (5'21)
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where T, Z, and p, are defined in (5.3), (5.4) and (5.14), respectively, and

o2 = 0*(n) = (n — 7)*{ / [ / h(s,)dFA ()] dFO(s) — 6%}, (5.22)

Proof. We are going to use Theorem 2.4.1 of Sen (1981) for the proof. Let

1 = .
bni = ﬁdn{jglh(x.-,x,-) —pnyi=1, T,

where o2 is defined in (5.15). By (5.17), we note that under H;, p, is a partial

sum of i.i.d. random variables. We have

E(Eul Faer) = ﬁ(E{jgh(X.-,X,—)xfnd_l} ~ n)
= Tl 5 (tn = pin)
=0,i=1,---,7
Thus,
_ET;E(fniLFn,i-l) =0. (5.23)

Further, we have

Var(EudFaimt) = —zVar([ 3 A(Xs X;) = o] | Frsr}

n j=r+1

1 n
= ;}ZVar{ J;l h(Xi, Xj)lfn,i—l}
1 2

— n

and so

XT: Var(£uil Fni-1) = 1. (5.24)

i=1
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On the other hand, since &,1,--- ,&nr are conditionally independent and iden-
tically distributed with mean = 0 and variance > 0 given F, g, the conditional

Lindeberg condition holds, that is, for every € > 0,

Zr: E{€%1(|tns| > €)|Fnir} — 0 (5.25)

i=1
as n — oo (hence 7 = [nA] = o0). Hence, by (5.23)-(5.25), we can apply

Theorem 2.4.1 of Sen (1981) and get that the central limit theorem holds for
STy £ns, that is

> 6w =2 N(0,1),

i=1

where
1

S =Y { (3 MK - )}

i=1 izt VT0n " j=rq1

1 {i > h( X, X5) = Tin }

TOn i=1 j=7+1

1
= W(Zr — THa)-
Thus we get
1
VTon
On the other hand, by (5.22), since

(Z, — Tia) =+ N(0,1). (5.26)

o?=(n— 7-)2Var{E[h(X1, Xn)IXI]}

(5.27)
= (n - )*Var{ / h(X1, )dFO(6)}
and Eh%(X;, X,) < oo, comparing (5.20) with (5.27) we get
0’2 P
-0% — 1. (5.28)
Thus (5.26) and (5.28) give (5.21). O

By Lemma 5.1 we have
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Theorem 5.1. We assume that h is symmetric or anti-symmetric and that,

under H,, (5.5) and (5.11) hold. Then
Zr —1(n —7)612
n3/2,/A(1 — A)2D? + X¥(1 — A) D3
where T, Z, and 0,2 are defined in (5.3), (5.4) and (5.8), respectively, and

2, N(0,1), (5.29)

D= / [ / h(s, )dFP (6)] dF M (s) - 6%, (5.30)
D2 = / [ / h(s, t)dF D (s)] ' dF O (t) - 6%, (5.31)
Proof. Let
Apn =2, —71(n—71)b12. (5.32)
We have
=3 > [h(X: X;) — 6]
i=1 j=r+1
={ Z znj [h(Xi, X;) — 1) — 7 znj [R1(X;) + (61 — 612)]}
i=1 j=71+1 j=7+1
+7 zn: [h1(XJ) -+ (91 - 912)]
j=t+1
= (An - Bn) + Bna
where
Ba=1 3 (u(X;)+ (61 — 812)) (5.33)

j=r+1
Note that by (5.32) and (5.33)

E(AnlFag) =3 3> {EIh(Xe, X;)| Faol = 12}

=1 j=71+1
- g ._f:l {{Fa(X;) + 61] — 12}
=T _i l[ﬁl(Xj) + (91 - 012)]

= Bﬂr
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that is
B, = E(Ap|Fno)- (5.34)

Now, by (5.17), (5.32) and (5.33),

Apn—Bpn=2Z,—1(n—7)012 — 7 i [R1(X;) + (61 — 612)]

j=r+1
LI 5.35
= Z-,- - T Z [hl(XJ) -+ 01] ( )
j=t+1
= Zr — Tln.
Thus, by Lemma 5.1, we have
An - Bn D
_— . 5.36
e N(0,1) (5.36)
By (5.22) and (5.30), since
o = (n —7)2D3, (5.37)
we get, by (5.36) and (5.37),
An - Bn D
N . 5.38
\/?(n—r)Dl_) .1 (5:38)

In addition, by (5.33), as By, is a partial sum of i.i.d. random variables, by the

central limit theorem, we have
B,—E(B,) »

m — N(0,1). (5.39)
Now, by (5.8), (5.32) and (5.34),
E(Bn) = E[E(Anlfn.o)]

= E(An)

>

1j

[BR(X;, X;) — 612] (5.40)

1

(012 - 012)

1

I
'M-‘

-
1
-

“

M i
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and, by (5.8), (5.9), (5.31) and (5.33),

Var(B,) = Var{T i [hi(X;) + (61 — 912)]}

=7’ '_z"jl Var{hi(X;)]

=72 (;: T)Var(hi(Xn)]

= 7%(n — 7)Var[E(h(X1, Xa)| Xa)]

= r2(n — r){ BIB(h(X1, Xa) | Xa)]? — [EIE(A(X1, Xa)1 Xa)]] '}
=72 = ){ [ [ [ hls, )FO ()] dF @ (e) — 63}

= 7%(n — 7)D2.

(5.41)
Thus, by (5.39)-(5.41), we get
T—\/—n_B___-"WJ; 2, N(0,1). (5.42)
On the other hand, by (5.34),
E[(An — Bn)Bal|Fnl
= E(AnBx|Fn0) = E(B}| Fnp)
= BoE(An|Fap) — B
=0,
and so
E{(An — Ba)Ba] =0, (5.43)

i.e. Ap — B, and B, are uncorrelated. Thus, using (5.38), (5.42) and (5.43),
combined with the Skorokhod representation theorem, the property of multivari-
ate normality and the Cramér-Wold device (cf. Billingsley (1968) and Serfling
(1980)), we can get that the joint distribution of A, — B, and B, is asymptoti-

cally bivariate normal with
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B, B,
7)Dy’ 7/n — 1D,

== (o 3

(An — Bn) + B,
\/'r(n —7)2D% + 12(n — 1) D}

( \/;(;‘l: ) =+ N(0, %), (5.44)

where

is the convariance matrix. Thus,

2, N(0,1),

Le.
An
\/'r(n —7)2D?% + 12(n — 1) D?
Therefore, (5.29) follows by (5.32) and (5.45), combined with 7 = [rA] and

2, N(0,1). (5.45)

lim [ﬁi\l = A
n—+oco n

a

In the following sections we’ll discuss the asymptotics of the test statistic
max;<k<n Ur under the alternative hypothesis of one change H; based on sym-

metric and anti-symmetric kernels separately.

5.2 Asymptotics for Symmetric Kernel
We have

Lemma 5.2. We assume that h is symmetric and that, under H,, (5.5) and

(5.11) hold, 612 > 6,, and for some e > 0,

/\(012 - 01) - t(02 - 81) >e, 0<t<1l— A (546)
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Then
|7 — 7] = Op(1), (5.47)

where 0,, 0, 6,2 and 7 are defined in (5.6), (5.7), (5.8) and (5.13), respectively.

Proof. We only need show that

IimlimsupP{ max Up,> max Upn } 0 (5.48)
k=00 n-oo 1<m<r—k r-k<m<r+k
and
hm IlmsupP{ max Un,> max Up } 0. (5.49)
k—00 n—aoo T+k<m<n r—k<m<r+k

For notational simplicity, let

hl(z: y) = h(l‘, y) - 01' (550)
Thus,
Ue=Y > h(X:X;) = k(n - K)oy
I (5.51)
= Z Z hl(XnX])
i=1 j=k+1
and
Ehl(Xl,Xn) =6,—6, >0. (552)

We prove (5.48) first. We have

P{ma.xU> max U}

1<m<r—k r—k<m<t+k

<Py max U,p,2>U;
1<m<r-k

=P{Bl,1$l§—r—k-U,>U}
=P{AL1<I<T—k Z Z hl(X,,X)>Z Z ha (X, X;) }

i=1 j=l+1 i=1 j=7+1
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=P{AL1<I<T—k: Z Z hi(Xi, X;) + Z hy (X, X;)] >

i=1 ]—H-l j=r+1

Z Z h1(Xi, X;) + Z > m(Xi, X5}
=1 j=71+1 i=l+1j=1+1
=P{AL1<I<T—k: Z Z mXaX) > Y S h(X, X5}
i=1 j=il+1 i=l+1 j=7+1
=1-P min [—Z hl(X,-,X,-) + Z Z hl(X,',XJ')] > 0}

1ISmr—k b 2] j=m+l i=m4l j=T+1

= P{ 151?%2—1: [— i - i h]_(X,',Xj) + i zn: hl(X,',Xj)] < 0}

i=1 j=m+l1 i=m+1lj=7+1
T

_%_ f:hl(x,,X)+% Er: fj h(X:, X;5)] <0},

i=m+l j=1 i=m+l j=7+1
(5.53)

where the last line was obtained by the symmetry of h,(z, y).

Denote the empirical distribution function of Xj, -, X, by

FO () = = ZI(X <t), m<T (5.54)

]—1

Thus,

- Z Zhl(X,,X

z_m+1 Jj=1

=-2 3> [ m(Xat)dF®)
" (5.55)
=-2 3 [m0dr

z_m+1

SV S [ X ndvam(ED @) - FOw)],

t=m+1

and

% i z"; h1(X;,X)-—% i; =) [ m(X0dF2. ). (5.56)
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Using the uniform approximation of an empirical process by a Brownian bridge
(Skorohod-Dudley version of Donsker’s theorem, cf. Theorem 4.2.1 of Csérgd

and Révész (1981)), we have
Vm(F@(t) — FO(8)) 2 B(FO(2)) +0s(1),

where {B(u),0 < u < 1} is a Brownian bridge. So by (5.55),

—-= Z Zhl(X,,X
:=m.+1_1—1
=__ > / hy(X:, t)d F“’(t)—— E / hi(X;, t)d B(F“’(t))+o (1)]-
:=m+1 i=m+1
Note that

E [ (X, )dF O (¢) = B{Elh (X1, Xa) X))
= Bhy(X1, X2)
= ER(X1, Xs) —
—0,i<T

and Eh?(X,, X2) < co. Thus by the law of iterated logarithm

- Z Z hi(X:, X;)

1—m+1 i=1

= Op(y/(r — m) loglog(r —m)) + Op (\/ (r —m) 1°gn log(r — m)) (5.57)
=0Op (\/("' — m)loglog(r — m)).
On the other hand, by (5.56),

= Z Z h1(X;, X;5)
:—m+1_7—-r+1
n_

@)
- .-m+1 / hy (X, £)dF P (t)
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=2 ; T iz% 1 / hi(X;, t)dF(t)

s Y27 _§+ [ pdvr=(F2.0) - FO0)]
-2-T ;l {([ AKX 0)FPE) - 013) + (602 - 6]}

M \/T::_T ‘__27:;1/ ha(Xi, [V =T(F2.(6) - FO(®)] .
-0 }21 ([ B(Xe )@ () - 00) + "= (7 — m)(612 - 1)

+ ‘/"n—‘? i}; 1 [ s tyd[va=r(F2.5) - FO(0))].

Again, using the uniform approximation of an empirical process by a Brownian

bridge, we have
V=7 (F2.(t) - FA(t)) £ BFO(1)) + 00(1),
where {B(u),0 < u < 1} is a Brownian bridge. Thus, by (5.58),

L3 $ nen

i=m+l j=r+1
- (1 - [_nrf\l) i=§1 (/h(X" t)dF® () - 912) +{1- Lr_:zi])(eu —61)(r —m)
Ji=T

n

+

Zr: /hl(Xi,t)d(B(F(z)(t))+0p(1)).

t=m+1

Note that
Ef / h(X:, t)dF@(t) - 612}

= E{E[h(X]_,Xn)IXI]} - 012
= Eh(XI, Xn) — b1z

=0,:<7.



81

Thus by the law of iterated logarithm

- Z E hl(-XnX)

:—m+1 j=7+1

— Op(\/(T _ m) loglog(‘r _ m)) + Op( (T - m) lognlog(‘f - m)) (559)

+ (1= A) (b2 — 61)(r —m)

= 0p(y/(r — m) loglog(r —m)) + (1 — A)(f12 — 61)(7 — m).
Thus, by (5.57) and (5.59),

-= Z Zhl(X,,X +— Z 2 ha(Xi, X;)

R i—m+1 j=1 N i—m+1 j=T+1

= Op( (1 — m) log log( — m)) + (1= A) {612 — 6;) (T —m) (5.60)

(1 — )(012 - 91)(T — )
=/(r - T— Op( '
\[ m) log log(T — m) ( \/(T — m) loglog(T — ))

Since1—-A>0,6;12 -6, >0,and m<7—k,ie. 7—m >k, we can say

(1= A)(012 — O1)(T—m) = +00 as k — +oo,

and, furthermore,

(1= A)(b12 — b1)(T —m)
\/ 7 — m) loglog(r — m)

Thus, by (5.60),

— +4+00 as k — 4oco.

—l Z Z hl(Xi,XJ-) + l Z Z hl(X,;,Xj) — 400 as k — +o0. (561)

T i=m+1 j=1 i=m+1 j=r+1
Therefore (5.48) follows by (5.53) and (5.61).

Next, we prove (5.49). Note that the relation (5.49) is not completely sym-
metrical to (5.48). We consider the opposite direction sequence of observations
Xn, -+, X1. Let

Xi=Xnp1-i, i=1,---,n,
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and

r'=Mn+1)-(r+1)=n-1T.

7' is the change-point of the opposite direction sequence. Thus, the alternative

hypothesis H; is equivalent to

H}: there exists some 7' € {1,2,---,n — 1} such that
X! X iid FO(),
X, X4 iid. FU(.), and

F@®(g) #£ FO)(z) for some z.

Also,
=3 ¥ (rXuX;)—61),T+k<m<n
i=1 j=m+1
is the same as
- _i z": (R(XL X)) —61),1<m' <7 —k,
i=1 j=m'/+1
and
Un=3 Y (M(XuX;)-61),7—k<m<7+k
i=1 j=m+1
is the same as
=3 Y (hXLX)-6), 7 —k<m' <7 +k
i=l j=m’+1

due to the symmetry of h. Note that the only difference between (5.48) and
(5.49) is that

Ehy(X!, X)) = ER(X!, X}) — 01 = ER(Xp, Xno1) =61 =6, — 0, (5.62)
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instead of zero. Thus, we have

P{ max U, > max Um}
r+k<m<n r—k<m<r+k
= P{ max U, > max U,’n,}
1<m'<7t -k r'—k<m’<r’+k
1 Ll n
<P{ min |[-= Zhl(X,’, X;) + hi(X!, X!)| < 0}.
lemisr—k [ t—m’+11 1 x—§+l J—;'{'-I ! ] }
(5.63)
Denote the empirical distribution function of X7,---, X, by
F@(¢) = ZI(X’ <t), m' <7, (5.64)
]‘—1
and the empirical distribution function of X, ,,---, X}, by
1 i ,
FO.@) = — Y I(X;<t). (5.65)

j=r'+1
Using the law of iterated logarithm and the uniform approximation of an empir-

ical process by a Brownian bridge, we get

-1 2 zhl(X', x!)

} r+1 / (X!, 8)dED (t)
_Z,:+1 [ m(xi,0dF@ )
_ym ‘_gﬂ [ (X palvm (FR (@) - FO®)]
= —_,_§+1 {(/hl( £)dFA(t) - (6 — 61)) + (62— 1)}

s [ m(xtta[Vm (F6) - FO)]

i=m'+1
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- z ([ (Xt YFD(E) = (02 - 61)

i=m +1
B _:-—;4»1 / a (Xl F(F’("%) (t) ~F® (t))] - %(02 - 91)(7" - ml)
= Op(f-r' ") log log (™" — m’) 4 Op< (r" — m') lognlog(a,-l — m’))

ml

- 71‘(92 —6;)(7' = m)

= OP(\/(T' — m') loglog(7' — m’)) - %(92 —6,)(7" —m)

(5.66)
since, by (5.62),
B( [ ha(X5,0)dF®(t) - (6: - 61))
= E{E[hi(X}, X3)|X!]} — (62 — 6)
= Ehy (X}, X3) — (6 — 61)
=0,i<7.

Also,
1 T n
55w

J£)dF L (t)

i=m'+1

T & / )
;z-:_; {(/h (X!, t)dF'M(t) — (612 —91)) + (612 "91)}

LT E [ h(X51)d[Va =T (F2.(t) - FO(@))]

n i=m’+1

> ([ mXi ) dFOE) - (612 - 6)

-L

:llﬂ

t=m +1

Z /hl(X’ t)d vn —T'(F(l) (t) — (1)(t))]+%(012_91)(7_l_ml)

i=m'+1
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m') loglog(7’ — m’))

=Op (\/(T' — m') loglog(1’' — m’)) +0rp (‘/(7, — n
+ A(f12 — O1) (7' — m)

=0p (\/('r' — m') loglog(7

- m’)) + /\(012 - 91)(T’ - m')
(5.67)

since
B( [ (X5, 0dFO () - (612~ 1)) =0, i< 7"

Thus, by (5.66) and (5.67), we have

-— E Zhl(X,,Xl)+— Z Z hI(Xl1X,
:—m’+1 j=1 N i=m'+1 j=r'+1

= 0p(1/(r' — m') loglog(r' — m"))+ [M(612 — 61) —%'(e2 - 6)](7' - m)
A6z~ 61) — =6, — 80)] (7 — )

= T —m T —m'){ O
\[( m') loglog( )( P(l) + \/(77—’ —m') loglog(r' — m')

Now, let
p
—

Sincel<m' <7 —k=n—(r+k)=n—([nA\] + k), we get

[n/\]+k<1—/\, and 7 —-m' >k

<t ="<1-
n

o
:IIH

Thus, by (5.46), we get

A(glz - 01) - Tn—(oz - 91) = /\(912 - 91) - t'(02 - 61) >e>0.

Hence,

[
[/\(912 - 01) - %(02 - 01)] (TI - m’) —++00 as k— +00,

)

(5.68)
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and also
[A612 — 81) — (6. — 00)] (7' — )
\/6" — m') loglog(r' — m’)
Thus, by (5.68),

— +00 as k — +oo.

1 il m’ 1 i n
= Y Y m(XLX)+= D D h(X, X)) > 400 as k— +oo.
M immi+1 j=1 M immitl j=ri+l

(5.69)
Therefore (5.49) follows by (5.63) and (5.69). O

Theorem 5.2. We assume that h is symmetric and that, under Hy, (5.5), (5.11)
and (5.46) hold, and also 612 > 6,. Then
max Uk - T(n - 1')(012 - 01)

1<k<n D
= » N(0,1), (5.70)
n3/2, /A(1 — A\)2D? + A2(1 — A) D2

where 6y, 612, Ux, D? and D3 are defined in (5.6), (5.8), (5.12), (5.30) and

(5.31), respectively.

Proof. We note that, by the definition of 7 given in (5.13) and the definition of
Uk given in (5.12)

lrg?xm U =U; = Z; — 7(n — 7)6;. (5.71)

Thus,
max Uy = 7(n — ) (612 = 61)
= Z: — #(n — 7)8; — 7(n — 7)(612 — 61) (5.72)
=[Z, —1(n—1)bp] + [r(n - T) — F(n — )L + (Z7 — Z;).
Let

D? = n®[A(1 — A)?D? + X*(1 — \)D3], D > 0. (5.73)



Thus,
D = 0(n®?).

We have

11;1?(}(" Up—1(n—1)(6012 — 61)

n3/2,/M(1 — A)2D? + X*(1 — \) D}

_Z - T(n — 7)6b12 + [r(n — 1) — F(n — 7)|64 . Z: — Z,..

D D D

Since
Z, —1(n—71)012

5 2, N(0,1)

by Theorem 5.1, in order to prove (5.70) we only need show that

[r(n — 1) — 7(n — 7)|6,

D = 0p(1),

and
Z: — 2,
D

= 0p(1).

Now,

[r(n — 1) —#(n — 7))61 = (r = F)(n — 7 —7)61 = Op(n)

by Lemma 5.2, and so (5.77) follows by (5.74) and (5.79).

On the other hand,

Zi—Z, =Y Y h(X:X5)-Y Y A(X:i X;)
=1 j=F+1 =1 j=7+1
(i) If ¥ < 7, we have

T T n

Y3 AXaX) -3 > A(X:X;)

i=1 j=7+1 =1 j=7r+1

S5 (F 4+ X KX - (54 3 ) 3 A X)

i=1 j=741 j=r+1 =1 i=t+1 j=71+1
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(5.74)

(5.75)

(5.76)

(5.77)

(5.78)

(5.79)

(5.80)
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#
=1 j=7+1 i=f+1j=7+1
T

T

=3 Zh(XnX > i h(X:, X;)

i=7+1j=1 i=f+1j=1+1

since h is symmetric. By (5.60) and Lemma 5.2, we get

i ih(xi,Xj)— i Xn: h(X;, X;)

i=f+1j=r+1

= n{OP( (r — 7)loglog(T — 1“')) — (1= A)(612 — O1)(T — 7~')}

Thus (5.78) follows by (5.74), (5.80)-(5.82).

> 3 M X,)- T 3 A(X X;)
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(5.81)

(5.82)

(ii) If # > 7, we consider the opposite direction sequence of the observations

which was used in the proof of Lemma 5.2. Let

) .
Xi=-Xn+1—‘ry 1'=11'°'7n

=n—-7 and F=n-7.

7 and 7' are the change-point and the change-point estimator of the opposite

direction sequence, respectively. Thus

and

Y 3 AX.X)-3 S (X X;)

=1 j=7+1 =1 j=7+1
}: Z h(X;, X]) — Z Z r(X}, X{)
J—f'+1 =1 j=r'+1li=1

Lol n

# n
=2 2 MXLX) -3 X h(X, X))

i=1 j=#+1 i=1 j=r/+1

(5.83)
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since h is symmetric. Similar to the proof in part (i), we can prove
+ n T n
Y Y MXLXD - Y (X, X)) =Os(n). (5.84)
i=1 j='+1 i=1 j=1'+1

Thus (5.78) follows by (5.74), (5.80), (5.83) and (5.84). Therefore, (5.70) follows
by (5.75)-(5.78). Q

Theorem 5.2 can give an approximation to the power of the test based on

maXi<k<n Uk for large n.

5.3 Asymptotics for Anti-symmetric Kernel

If h is anti-symmetric, then we get

8, = ER(X1, X») = 0, (5.85)
6, = Eh(X,-1,X,) =0, (5.86)
and .
Ue=Zi=3 > h(X:,X;)
. i=1 j=k+1 (587)
= ZZh(Xi,Xj), 1<k<n.
=1 j=1
Let
Vi=Y h(Xi, X;), i=1,---,7. (5.88)
j=1
Thus
k
Us=2Zx =Y Vi (5.89)

=1
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and
=mm{k Z = max Z,,,}
(5.90)
=min{k:§V,- _lglngnz:v}
We have

Lemma 5.3. We assume that h is anti-symmetric and that, under H,, (5.5),

(5.11) hold and 6,2 > 0. Then

|# — 7| = Op(1), (5.91)
where 0,2 and 7 are defined in (5.8) and (5.13), respectively.
Proof. As h is anti-symmetric, we only need show that

limlimsupP{ max ZV> max ZV}—O (5.92)

k—=00 nsoo <-r-k T—k<m<r+k

and

Jim hmsupP{ max Z

k—=o0 nooco T+k<m<n ‘r—k<m<-r+k z V} =0. (593)
We prove (5.92) first. Denote the empirical distribution function of X, - -,
X, by

H,(t) = ZI(X <t) (5.94)

1—1
and

H(t) = AFO(t) + (1 — A F@(2). (5.95)

Note that Vi, - - - , V; are identically distributed although not independent, using
the uniform approximation of an empirical process by a Brownian bridge again,

we may write
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Vi= )ZT h(X;, X;)

j=1

=n / h(X;, t)dHa(t)

= n [ W(X:, )H(E) + VA [ WX )d[VA(Ha(t) - H()] o
2 nQ; + v [ h(X:, M[B(H() +0p(1)}, i < 7,
where {B(x),0 < u < 1} is a Brownian bridge, and
Q: = / h(X:, t)dH(2)
=2 / h(X;, )dFO () + (1 — A) / h(X:, £)dF@ (t) 59

= AE[h(X:, X1)IXi] + (1 = A E[R(X:, Xa)|Xi]
= —AEI(X:') -(1- ’\)EZ(Xi)
since h is anti-symmetric.
Note that Q, - - - , Q- are independent and identically distributed, by (5.97),
EQ; = AEh(X3, X1) + (1 — A)Eh(X1, X,)

(5.98)
=(1-A)f2>0,i<T,

and

Var(Qi) = AVar{hy(X:)] + (1 - N)*Var([ha(X:)] + 2A(1 — ) Covlhy(X:), (X))
= MER}(X1) + (1 - N [ER3(X:) - 6%

+2A(1 = A)ERy(X1)ha(Xy), i < T
(5.99)

We have m m
P{ max Y V;> max ZV,}

1<m<r-k =1 — r—k<m<T+k =1
m m
< P{ max > V;> max V,}

1<m<r—-k ¢ r—k<m<7*
- = =1 =" =1
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—P{EIJ,1<J<T—k EV>ZV+ max_ Y V-}

T—k<m<r

s i=1 - i=t—k+1 (5100)
- P{ k 1<m<r— . ;n;—l Vi + i T_r,?(a"%{<r 1§+1‘/i < 0}
Now,
1 T—k m
k 1<m<r—k ;*_1 V - I\. 1<m<r Z; (5101)
Let {g(k)} be a sequence such that
: e g(k) ] N
g(k) <7 —k, g(k) = oo, - 0 as k— oc. (5.102)
Also, denote
[z]” = — min(z,0). (5.103)
Thus, by (5.96), (5.98) and 6;, > 0, we get
1
_[ % 1<glggl(k) Z V]
D _ 1 _ _
2 [, min, Z @+ 723 [ B OdBEHE) +or(W)}]
- 1 1
== i — EQ;) + m(EQ; + —=0p(1
7% 1< { fg(Q Qi) +m(EQ: + 720k M
g(k m 1 -
[ <min, V5 \/g(—kZ(Q )+ T((1 = 2 + Z=0p(1)}]
= Op(l),
(5.104)

which can be seen by the Wiener approximation to the partial sum process

(% () =t o)

and the continuity of the Wiener process at 0.
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Furthermore, by the law of iterated logarithm and ;3 > O,

1 . moo.-
B [n g(k)grlnlgr-k Z V‘]
= 1 .
- —[g(k)<m<r—k {\/— ‘_ZI(Q‘ EQ:) + \/E((l —A)bi2 + 77_1-0;»(1))}]
= [ min, _, {T(0n () EER) + (1= N2 + 0P )}
= 0p(1)
(5.105)

when k, and hence g(k), is large enough.

Thus, by (5.101), (5.104) and (5.105), we have

T—k

[ i, ¥ W]

k 1<m<'r——k immatl

. 1 . L P 1 . -
- o { B ['n k lsxﬂ?ég(k) Z{ Vi] " |:n k Q(k)grlrigr—k g Vi] }
On the other hand, by the law of large numbers, the law of iterated logarithm

and 4, > 0, we have

1 m
n\/- -r—k<m<-r Z

i=r—k+1

i

v

"ﬂ|

|lti

=1

Z V;
gQ, \/_ 3 [ AXe )ABEHE)) +0p(1)]
= VE(; S0+ \/_ > [ h(X OB ) + 0 (1)])

t=1 1—1
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= \/E[(l —A)b2 + %O?( logfgk)] +0p(1)

— 400 as k— +oo

(5.107)

since 612 > 0.
Therefore, putting together (5.100), (5.106) and (5.107), we can get (5.92).

In order to prove (5.93), we note that

Vi=0

s

=1

and

T V= 3 (-Vi)

i=1 t=m+1

If we consider the opposite direction sequence of observations and use the method
in the proof of Lemma 5.2, we'll find relation (5.93) is a symmetrical version of

(5.92), so its proof is the same, hence it will be omitted. m

Theorem 5.3. We assume that h is anti-symmetric and that, under Hy, (5.5),

(5.11) hold and 612 > 0. Then
max Uy — 7(n — 7)012
1sk<n 2, N(0,1), (5.108)
n3/2,/A(1 - \)2D? + X2(1 — A) D}

where 612, Ux, D? and D? are defined in (5.8), (5.12), (5.30) and (5.31), re-

spectively.

Proof. We note that, by (5.71) and (5.85),

1?1?25; U = Z=. (5.109)
Thus,
max Uy — 7(n — 7)012 = [Z, — T(n — 7)o12) + (25 — Z:). (5.110)

1<k<n
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Similar to the proof of Theorem 5.2, in order to prove (5.108), we only need show

that

Z: — 2,
=T = 0p(1), (5.111)

where D? is given by (5.73). Now, by (5.89),
Zi-Z, =S Vi-3 Vi (5.112)

If # > 7, by (5.96) and Lemma 5.3, we have

T T

SVi- YW
=1 t=1

=3V
i=r+1

F—7

D
2%
,-; (5.113)

25 {n@:+ VA [ h(X:, )dBH(®) + 0p(1)]}

F—T 1
=23 {Qi+ - / h(X:, t)d[BLH(2)) + 0p(1)]}
= Op(‘n).
Thus (5.111) follows by (5.74), (5.112), (5.113).

Similarly, we can prove (5.111) if 7 < 7. !

Theorem 5.3 can give an approximation to the power of the test based on

maX<k<n Ux for large n.
In Section 5.4, we do some simulation study to investigate the precision of the

change-point estimator to the true value, and also to investigate the precision of

the power approximation of the test.
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5.4 Simulation Study

To illustrate the proposed change-point estimator and the power approxima-
tion of the test, we would like to check the precision of the estimated mean of the
change-point estimator to the true value of change-point 7 = [r)], and also to
compare the simulated power with the approximated power of the test to check
the precision through the Monte Carlo simulation study.

For computational simplicity, we only consider the anti-symmetric kernel. In
this case, if ER2(X}, X2) < 0o and ER2(X;) > 0, by Theorem 2.4.10 of Csorgd

and Horvath (1997), we get, under the null hypothesis Hy of no change,

1 D

where {B(t),0 < t < 1} is a Brownian bridge, and

D? = ER3(Xy) = / [ / h(s,)dF D (s)] dFD(2). (5.115)

The test statistic is
1

—n3/2D3 1%1?'()51 (5116)
For simplicity, consider the one-sided test which is defined by
I(—l—— max U, > ¢ ) (5.117)
n3/2Dj 1<k<n laj: :

where ¢, is the (1 — a)-quantile of supg;; B(t) which can be given by (cf.

Shorack and Wellner (1986))

P{sup B(t) >z} = exp(—2z?), z > 0. (5.118)
0<t<1

So from (5.118) we get

cle =\ —Inva. (5.119)
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We list several critical values of ¢, for some selected values of o in Table 5.1.

We'll use Table 5.1 in the following simulation study.

Table 5.1. Some selected critical values c1q

a 0.175 0.15 0.125
Cla 0.9335 0.9739 1.0197
a 0.1 0.075 0.05
Cla 1.0730 1.1380 1.2239
a 0.025 0.01 0.0075
Cla 1.3581 1.5174 1.5641
o 0.005 0.0025 0.001
Cla 1.6276 1.7308 1.8585

Now, by Theorem 5.3, under H; we have

1
P{ oD, B Us > o)

=P{ ! max Uk>c1aD3}

W 1<k<n
_ P{ Zax Ug — 7(n — 1)012 § n3/2¢,, Dy — 7(n — 7)01 }
n3/2,/A(1 — N)2D? + X¥(1 - \)DZ ~ n3/2\/A(1 — A)2D} + A3(1 — A) D}

~1-®(R,).

(5.120)

(5.120) gives the power approximation of the one-sided test, where

Rn _ n3/2c10D3 - T(’n - T)G]_z
n3/2,/A(1 = A)2D? + A2(1 — \) D3

and & is the standard normal distribution function.

In our simulation study we took the anti-symmetric kernel

h(z,y) = sign(y — z). (5.121)

Thus, by (5.115), we have
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D = f / h(s, t)dF(l)(s)]zdF(l)(t)
= / /_t sign(t — s)dF®(s) + /tm sign(t — s)dF(l)(s)]zdF(l)(t)

= [, a0 - [T aro@] ' (5122)
= [[2F0(e) - 12dFO(t)
_ 1

51

which is true for any distribution functions F(!) and F®).

We performed the simulation study in two ways with N = 5000 repetitions.
One way is for the particular sampling situation, and in each case we have
A = 0.5 so that pre- and after-change samples are balanced in size. In this case
we considered the different sample sizes n = 50, 100, 200, 500. Another way is
for the unbalanced sample sizes, and in each case we took the same sample size
n = 100 with varying A’s.

First, we did simulation study on the precision of the change-point estimator
which is given by (5.13). For the generated data, we considered three cases:

Case 1. The generated data had uniform distribution with
FO ~U(©,1) and FP ~U(d,1+d), 0<d<1. (5.123)

The results are reported in Table 5.2 and Table 5.3.

Case 2. The generated data had exponential distribution with
F =exp(1) and F® =exp(m), m > 1. (5.124)

The results are reported in Table 5.4 and Table 5.5.
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Case 3. The generated data had normal distribution with
FU ~ N(0,1) and F® ~ N(g,1), p>0. (5.125)

The results are reported in Table 5.6 and Table 5.7.

From Tables 5.2-5.7 we can see that, the simulated mean of 7 pretty well
fits the true values of 7 for the balanced sample sizes. On the other hand,
the performance of 7 is still good when the change-point is close to the middle
and gets somewhat worse for the unbalanced sample sizes especially when the
change-point is close to the two tails. In such a situation, slight improvements
may be obtained by considering the weighted version as pointed out in Chapter
4.

Next, we did simulation study on the power approximation of the one-sided
test which is given by (5.120). For the generated data, we considered two cases:
Case 1. F) and F were uniform distribution functions which are given by

(5.123). Thus, by (5.8), we have
01z = / / h(s, £)dFO (s)dFA(t)
= / [/:_t sign(t — s)dFY(s) + /:‘m sign(t — s)dF(l)(s)]dF(z)(t)
=[] /_‘ dFi)(s) - [ % 4P (5)|dF ) (2)
= / RFM(E) — 1]dFO(2)
1+d
= /d [2FM)(¢) — 1]dt
=2d—-d?>0,

by (5.30), we have
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D} = [ [ [ h(s,)aF @ (©)] dFO(s) - 62,
= /[1 — 2F@)(5)2dF M (s) — 6%,
= [ -2ree)ras - o,
= (3 + 28 — =) — (2d - &)’
= ('g + -3 ) — (2d - @)
1 8

== — 2% + od8 — d*,
3 +3d

and by (5.31), we have
D?= / [ / h(s,t)dFO(s)] ' dF@(2) - 62,

= / [2FW(t) — 12dFP(t) — 6%,

= TR () — 112t - 62,

- (% +24d? — §d3) — (2d — &)?

= % —2d2+§d3 - d*
We took d = 0.15, 0.20, 0.25, 0.30, getting 6;, = 0.2775, 0.3600, 0.4375, 0.5100,
respectively for this simulation study. The results are reported in Table 5.8 and
Table 5.9.
Case 2. F) and F® were exponential distribution functions which are given
by (5.124). Thus, we have

b = [2FO() — 1FO(2)

+00
= /0 2(1 —e™*) — 1];];-e"/'"dt

m-—1

T m+l 0
D? = [[1 - 2F®(s)PdF O (s) - 6,
+oo
= /; [1-2(1—e*™)2%e*ds - 63,

4m 4m m—1,\2
m+2_m+1—(m+1) :
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and
D% = [[2F0(t) - 1PdF@(2) - 6%,

+00 1
= 21 — e7t) — 12 =e"t/™dt — 62
[TRa-et-1r—e ?
4 4 _ (m o 1)2
2m+1 m+1 m+1/ "
In order to get the same 6;, values as in Case 1, we took m = 1.768166 ,

2.125000, 2.555556, 3.081633 corresponding to 6,2 = 0.2775, 0.3600, 0.4375,
0.5100, respectively for this simulation study. The results are reported in Table
5.10 and Table 5.11.

From Tables 5.8-5.11 we can see that the approximations can be considered
as good at sample size n = 100 as at n = 500. Our approximation is pretty close
to the real power except for the situation that the change-point occurs on the
tails although it somewhat underestimates the real power. The results indicate
that the test statistic (5.116) is not sensitive for detecting change-point on the

tails.

5.5 Conclusion and Future Research

We should point out that the topic of thesis is new and the results developed
in this thesis confirm earlier findings and also give new insights. This thesis
contains very useful, easily understood tests for changes in censored data. Such
tests did not exist before and we have demonstrated their practical applications.
Also, the proofs are based on one of the most recent results in mathematical
statistics. Weak convergence of stochastic processes in weighted metrics as well

as weighted approximations of partial sums and empirical processes are used.
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Next, we list several problems which could be done in the future research.

The low power problems illustrated in the simulation study is also due to
the fact that the censoring proportion of the simulated data is too big. It would
also be helpful to see the effect of censoring on our procedures by comparing the
simulated powers (and sizes) under various degrees of censoring, e.g. 025reported
as well.

Note that the censoring data discussed are just right censoring data only,
we could consider doubly censored data, that is either right censored or left
censored. We point out that Gehan (1965b) generalized a two-sample Wilcoxon
test further from right censored samples to doubly censored samples.

The variables of interests (the ”lifetimes”) and censoring distributions are
assumed to be continuous in this thesis. We could extend our results to non-
continuous lifetime and censorng distributions.

We considered at-most-one-change change-point problem under the alter-
native, we could consider at-most-two-change or more change cases under the
alternative.

As we know that the proposed test for censored data are based on Gehan'’s
generalization of the Wilcoxon rank test. It is known that the Gehan’s approach
does not have optimal efficiency properties in the two-sample problem as it as-
signs a zero value to the score function h(.,.) defined in formula (2.2) when the
smaller one of a pair of observations is censored. A more efficient change-point
test, though technically more difficult to handle, could be derived by replacing
the score function in (2.2) by Efron’s (1967) version which assigns a positive

score with values strictly between zero and one to such a pair of observations.



Table 5.2. Comparison of true value T and
simulated 7 for uniform observations (A = 0.5)

n d | 7=[n\ | Simulated Mean of 7
50 0.2 25 24.88
0.3 25 24.99
0.4 25 24.99
0.5 25 24.95
0.6 25 24.99
100 0.2 50 50.03
0.3 50 49.88
0.4 50 49.98
0.5 50 50.01
0.6 50 49.97
200 0.2 100 99.81
0.3 100 100.14
0.4 100 100.10
0.5 100 99.98
0.6 100 99.97
500 0.2 250 250.03
0.3 250 249.98
0.4 250 250.05
0.5 250 250.00
0.6 250 250.02
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Table 5.3. Comparison of true value T and
simulated 7 for uniform observations (n = 100)

d X | 7=[n)A]| Simulated Mean of 7
0.2 0.3 30 36.24
0.4 40 42.58
0.5 50 49.73
0.6 60 57.65
0.7 70 63.55
0.3 0.3 30 33.80
04 40 41.55
0.5 50 50.03
0.6 60 58.41
0.7 70 66.12
04 0.3 30 32.47
0.4 40 40.96
0.5 50 50.02
0.6 60 58.94
0.7 70 67.47
0.5 0.3 30 31.79
0.4 40 40.66
0.5 50 49.97
0.6 60 59.27
0.7 70 68.06
0.6 0.3 30 31.34
04 40 40.49
0.5 50 49.97
0.6 60 59.52
0.7 70 68.65
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Table 5.4. Comparison of true value 7 and
simulated ¥ for exponential observations (A = 0.5)

n m | 7 =[n)] | Simulated Mean of 7
50 1.5 25 25.73
2.0 25 25.34
2.5 25 25.40
3.0 25 25.46
3.5 25 25.33
100 1.5 50 50.77
2.0 50 50.93
2.5 50 50.78
3.0 50 50.58
3.5 50 50.45
200 1.5 100 101.63
2.0 100 100.91
2.5 100 100.80
3.0 100 100.61
3.5 100 100.63
500 1.5 250 252.05
2.0 250 251.23
2.5 250 250.91
30| 250 250.69
3.5 250 250.64
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Table 5.5. Comparison of true value T and
simulated 7 for ezponential observations (n = 100)

m A | 7=[nl)] | Simulated Mean of 7
1.5 0.3 30 41.47
0.4 40 45.88
0.5 50 50.75
0.6 60 55.64
0.7 70 59.89
20 03 30 37.06
0.4 40 43.67
0.5 50 50.86
0.6 60 57.82
0.7 70 63.94
25 0.3 30 35.46
0.4 40 42.65
0.5 50 50.60
0.6 60 58.58
0.7 70 65.93
3.0 03 30 34.37
0.4 40 42.15
0.5 50 50.56
0.6 60 59.05
0.7 70 66.68
35 0.3 30 33.69
0.4 40 41.83
0.5 50 50.55
0.6 60 59.14
0.7 70 67.36
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Table 5.6. Comparison of true valve 7 and
stmulated 7 for normal observations (A = 0.5)

n g | 7=[nA] | Simulated Mean of 7
50 0.5 25 24.84
1.0 25 25.00
1.5 25 24.97
2.0 25 24.99
2.5 25 24.97
100 0.5 50 49.88
1.0 50 50.00
1.5 50 50.03
2.0 50 50.01
2.5 50 49.98
200 0.5 100 100.07
1.0 100 100.02
1.5 100 99.95
2.0 100 99.99
2.5 100 99.99
500 0.5 250 249.90
1.0 250 249.99
1.5 250 250.04
20| 250 249.97
2.5 250 250.02




Table 5.7. Comparison of true value T and
simulated 7 for normal observations (n = 100)

g A | 7=[nA] | Simulated Mean of T
05 03 30 38.61
0.4 40 43.69
0.5 50 50.18
0.6 60 56.28
0.7 70 61.64
1.0 0.3 30 33.57
0.4 40 41.49
0.5 50 49.96
0.6 60 58.37
0.7 70 66.48
1.5 0.3 30 31.94
0.4 40 40.73
0.5 50 50.01
0.6 60 59.28
0.7 70 68.01
20 03 30 31.33
0.4 40 40.48
0.5 50 49.95
0.6 60 59.52
0.7 70 68.70
25 03 30 31.00
0.4 40 40.35
0.5 50 50.00
0.6 60 59.63
0.7 70 69.00
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Table 5.8. Comparison of simulated and approzimated power
for uniform observations (A = 0.5)

n d 012 a | Simulated Power Approximated Power
50 0.15 0.2775 0.05 0.3728 0.2139
0.15 0.2775 0.10 0.5134 0.3180
0.20 0.3600 0.05 0.5806 0.3941
0.20 0.3600 0.10 0.7110 0.5258
0.25 0.4375 0.05 0.7558 0.6061
0.25 0.4375 0.10 0.8510 0.7325
0.30 0.5100 0.05 0.8794 0.7986
0.30 0.5100 0.10 0.9366 0.8869
100 0.15 0.2775 0.05 0.6698 0.4812
0.15 0.2775 0.10 0.7806 0.6074
0.20 0.3600 0.05 0.8780 0.7704
0.20 0.3600 0.10 0.9304 0.8585
0.25 0.4375 0.05 0.9668 0.9407
0.25 0.4375 0.10 0.9832 0.9721
0.30 0.5100 0.05 0.9940 0.9926
0.30 0.5100 0.10 0.9990 0.9975
200 0.15 0.2775 0.05 0.9234 0.8432
0.15 0.2775 0.10 0.9592 0.9078
0.20 0.3600 0.05 0.9918 0.9849
0.20 0.3600 0.10 0.9968 0.9938
0.25 0.4375 0.05 0.9998 0.9996
0.25 0.4375 0.10 0.9998 0.9999
0.30 0.5100 0.05 1.0000 1.0000
0.30 0.5100 0.10 1.0000 1.0000
500 0.15 0.2775 0.05 0.9994 0.9990
0.15 0.2775 0.10 0.9998 0.9997
0.20 0.3600 0.05 1.0000 1.0000
0.20 0.3600 0.10 1.0000 1.0000
0.25 0.4375 0.05 1.0000 1.0000
0.25 0.4375 0.10 1.0000 1.0000
0.30 0.5100 0.05 1.0000 1.0000
0.30 0.5100 0.10 1.0000 1.0000
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Table 5.9. Comparison of simulated and approzimated power
for uniform observations (n = 100)

d 6,2 A a | Simulated Power Approximated Power
0.15 0.2775 0.1 0.05 0.1252 0.0026
0.15 0.2775 0.1 0.10 0.2200 0.0118
0.15 0.2775 0.2 0.05 0.3314 0.1141
0.15 0.2775 0.2 0.10 0.4868 0.2103
0.15 0.2775 0.3 0.05 0.5356 0.3099
0.15 0.2775 0.3 0.10 0.6706 0.4415
0.15 0.2775 0.4 0.05 0.6338 0.4395
0.15 0.2775 0.4 0.10 0.7602 0.5692
0.15 0.2775 0.5 0.05 0.6616 0.4812
0.15 0.2775 0.5 0.10 0.7754 0.6074
0.15 0.2775 0.6 0.05 0.6302 0.4395
0.15 0.2775 0.6 0.10 0.7486 0.5692
0.15 0.2775 0.7 0.05 0.5334 0.3099
0.15 0.2775 0.7 0.10 0.6794 0.4415
0.15 0.2775 0.8 0.05 0.3212 0.1141
0.15 0.2775 0.8 0.10 0.4862 0.2103
0.15 0.2775 0.9 0.05 0.1264 0.0026
0.15 0.2775 09 0.10 0.2222 0.0118
0.20 0.3600 0.1 0.05 0.1728 0.0073
0.20 0.3600 0.1 0.10 0.2984 0.0297
0.20 0.3600 0.2 0.05 0.5162 0.2660
0.20 0.3600 0.2 0.10 0.6810 0.4176
0.20 0.3600 0.3 0.05 0.7666 0.5817
0.20 0.3600 0.3 0.10 0.8574 0.7157
0.20 0.3600 0.4 0.05 0.8476 0.7307
0.20 0.3600 0.4 0.10 0.9170 0.8302
0.20 0.3600 0.5 0.05 0.8750 0.7704
0.20 0.3600 0.5 0.10 0.9280 0.8585
0.20 0.3600 0.6 0.05 0.8446 0.7307
0.20 0.3600 0.6 0.10 0.9136 0.8302
0.20 0.3600 0.7 0.05 0.7618 0.5817
0.20 0.3600 0.7 0.10 0.8624 0.7157
0.20 0.3600 0.8 0.05 0.5094 0.2660
0.20 0.3600 0.8 0.10 0.6722 0.4176
0.20 0.3600 0.9 0.05 0.1734 0.0073
0.20 0.3600 0.9 0.10 0.3046 0.0297




Table 5.9. Comparison of simulated and approzimated power

for uniform observations (n = 100) (Continued)

d 612 A a | Simulated power Approximated power
0.25 0.4375 0.1 0.05 0.2386 0.0178
0.25 04375 0.1 0.10 0.4002 0.0647
0.25 0.4375 0.2 0.05 0.7118 0.4867
0.25 0.4375 0.2 0.10 0.8504 0.6575
0.25 04375 0.3 0.05 0.9140 0.8246
0.25 0.4375 0.3 0.10 0.9596 0.9060
0.25 0.4375 0.4 0.05 0.9632 0.9212
0.25 0.4375 04 0.10 0.9816 0.9618
0.25 0.4375 0.5 0.05 0.9712 0.9407
0.25 0.4375 0.5 0.10 0.9848 0.9721
0.25 0.4375 0.6 0.05 0.9610 0.9212
0.25 04375 0.6 0.10 0.9834 0.9618
0.25 0.4375 0.7 0.05 0.9130 0.8246
0.25 0.4375 0.7 0.10 0.9606 0.9060
0.25 0.4375 0.8 0.05 0.7160 0.4867
0.25 0.4375 0.8 0.10 0.8310 0.6575
0.25 0.4375 09 0.05 0.2302 0.0178
0.25 04375 09 0.10 0.3968 0.0647
0.30 0.5100 0.1 0.05 0.3184 0.0383
0.30 0.5100 0.1 0.10 0.4914 0.1255
0.30 0.5100 0.2 0.05 0.8648 0.7213
0.30 0.5100 0.2 0.10 0.9436 0.8541
0.30 0.5100 0.3 0.05 0.9750 0.9560
0.30 0.5100 0.3 0.10 0.9902 0.9827
0.30 0.5100 0.4 0.05 0.9944 0.9883
0.30 0.5100 0.4 0.10 0.9982 0.9959
0.30 0.5100 0.5 0.05 0.9966 0.9926
0.30 0.5100 0.5 0.10 0.9992 0.9975
0.30 0.5100 0.6 0.05 0.9948 0.9883
0.30 0.5100 0.6 0.10 0.9978 0.9959
0.30 0.5100 0.7 0.05 0.9776 0.9560
0.30 0.5100 0.7 0.10 0.9920 0.9827
0.30 0.5100 0.8 0.05 0.8658 0.7213
0.30 0.5100 0.8 0.10 0.9426 0.8541
0.30 0.5100 0.9 0.05 0.3044 0.0383
0.30 0.5100 0.9 0.10 0.5010 0.1255
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Table 5.10. Comparison of simulated and approzimated power
for exponential observations (A = 0.5)
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n m 612 a | Simulated Power Approximated Power
50 1.768166 0.2775 0.05 0.3902 0.2160
1.768166 0.2775 0.10 0.5300 0.3196
2.125000 0.3600 0.05 0.5672 0.3957
2.125000 0.3600 0.10 0.7070 0.5254
2.555556 0.4375 0.05 0.7498 0.6038
2.555556 0.4375 0.10 0.8378 0.7278
3.081633 0.5100 0.05 0.8744 0.7909
3.081633 0.5100 0.10 0.9360 0.8793
100 1.768166 0.2775 0.05 0.6636 0.4814
1.768166 0.2775 0.10 0.7728 0.6065
2.125000 0.3600 0.05 0.8754 0.7669
2.125000 0.3600 0.10 0.9292 0.8548
2.555556 0.4375 0.05 0.9702 0.9364
2.555556 0.4375 0.10 0.9846 0.9691
3.081633 0.5100 0.05 0.9932 0.9909
3.081633 0.5100 0.10 0.9976 0.9968
200 1.768166 0.2775 0.05 0.9180 0.8410
1.768166 0.2775 0.10 0.9624 0.9058
2.125000 0.3600 0.05 0.9928 0.9836
2.125000 0.3600 0.10 0.9968 0.9931
2.555556 0.4375 0.05 0.9996 0.9995
2.555556 0.4375 0.10 0.9998 0.9999
3.081633 0.5100 0.05 1.0000 1.0000
3.081633 0.5100 0.10 1.0000 1.0000
500 1.768166 0.2775 0.05 0.9994 0.9989
1.768166 0.2775 0.10 0.9998 0.9996
2.125000 0.3600 0.05 1.0000 1.0000
2.125000 0.3600 0.10 1.0000 1.0000
2.555556 0.4375 0.05 1.0000 1.0000
2.555556 0.4375 0.10 1.0000 1.0000
3.081633 0.5100 0.05 1.0000 1.0000
3.081633 0.5100 0.10 1.0000 1.0000




Table 5.11. Comparison of simulated end approzimated power
for exponential observations (n = 100)
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m 012 A a | Simulated Power Approximated Power
1.768166 0.2775 0.1 0.05 0.1148 0.0013
1.768166 0.2775 0.1 0.10 0.2138 0.0075
1.768166 0.2775 0.2 0.05 0.3274 0.1023
1.768166 0.2775 0.2 0.10 0.4874 0.1983
1.768166 0.2775 0.3 0.05 0.5394 0.3046
1.768166 0.2775 0.3 0.10 0.6636 0.4397
1.768166 0.2775 0.4 0.05 0.6288 0.4389
1.768166 0.2775 0.4 0.10 0.7454 0.5699
1.768166 0.2775 0.5 0.05 0.6730 0.4814
1.768166 0.2775 0.5 0.10 0.7818 0.6065
1.768166 0.2775 0.6 0.05 0.6210 0.4412
1.768166 0.2775 0.6 0.10 0.7526 0.5673
1.768166 0.2775 0.7 0.05 0.5132 0.3178
1.768166 0.2775 0.7 0.10 0.6462 0.4441
1.768166 0.2775 0.8 0.05 0.3470 0.1290
1.768166 0.2775 0.8 0.10 0.4806 0.2248
1.768166 0.2775 0.9 0.05 0.1228 0.0049
1.768166 0.2775 0.9 0.10 0.2334 0.0184
2.125000 0.3600 0.1 0.05 0.1674 0.0036
2.125000 0.3600 0.1 0.10 0.3046 0.0190
2.125000 0.3600 0.2 0.05 0.5296 0.2522
2.125000 0.3600 0.2 0.10 0.6886 0.4121
2.125000 0.3600 0.3 0.05 0.7638 0.5848
2.125000 0.3600 0.3 0.10 0.8634 0.7230
2.125000 0.3600 0.4 0.05 0.8542 0.7328
2.125000 0.3600 0.4 0.10 0.9216 0.8327
2.125000 0.3600 0.5 0.05 0.8768 0.7669
2.125000 0.3600 0.5 0.10 0.9312 0.8548
2.125000 0.3600 0.6 0.05 0.8406 0.7227
2.125000 0.3600 0.6 0.10 0.9112 0.8206
2.125000 0.3600 0.7 0.05 0.7528 0.5768
2.125000 0.3600 0.7 0.10 0.8416 0.7037
2.125000 0.3600 0.8 0.05 0.5102 0.2831
2.125000 0.3600 0.8 0.10 0.6752 0.4243
2.125000 0.3600 0.9 0.05 0.1778 0.0142
2.125000 0.3600 0.9 0.10 0.3034 0.0452




Table 5.11. Comparison of simulated and approzimated power
for exponential observations (n = 100) (Continued)
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m 612 A a | Simulated Power Approximated Power
2.555556 0.4375 0.1 0.05 0.2266 0.0089
2.555556 0.4375 0.1 0.10 0.3792 0.0436
2.555556 0.4375 0.2 0.05 0.7340 0.4856
2.555556 0.4375 0.2 0.10 0.8478 0.6699
2.555556 0.4375 0.3 0.05 0.9256 0.8351
2.555556 0.4375 0.3 0.10 0.9604 0.9154
2.555556 0.4375 0.4 0.05 0.9600 0.9230
2.555556 0.4375 04 0.10 0.9790 0.9631
2.555556 0.4375 0.5 0.05 0.9670 0.6364
2.555556 0.4375 0.5 0.10 0.9834 0.9691
2.555556 0.4375 0.6 0.05 0.9564 0.9098
2.555556 0.4375 0.6 0.10 0.9784 0.9534
2.555556 0.4375 0.7 0.05 0.8944 0.8050
2.555556 0.4375 0.7 0.10 0.9476 0.8874
2.555556 0.4375 0.8 0.05 0.7068 0.4881
2.555556 0.4375 0.8 0.10 0.8354 0.6420
2.555556 0.4375 0.9 0.05 0.2430 0.0331
2.555556 0.4375 09 0.10 0.4046 0.0924
3.081633 0.5100 0.1 0.05 0.3062 0.0204
3.081633 0.5100 0.1 0.10 0.4824 0.0925
3.081633 0.5100 0.2 0.05 0.8758 0.7403
3.081633 0.5100 0.2 0.10 0.9548 0.8765
3.081633 0.5100 0.3 0.05 0.9792 0.9632
3.081633 0.5100 0.3 0.10 0.9938 0.9867
3.081633 0.5100 0.4 0.05 0.9936 0.9887
3.081633 0.5100 0.4 0.10 0.9978 0.9961
3.081633 0.5100 0.5 0.05 0.9970 0.9909
3.081633 0.5100 0.5 0.10 0.9992 0.9968
3.081633 0.5100 0.6 0.05 0.9902 0.9828
3.081633 0.5106 0.6 0.10 0.9966 0.9933
3.081633 0.5100 0.7 0.05 0.9652 0.9383
3.081633 0.5100 0.7 0.10 0.9864 0.9718
3.081633 0.5100 0.8 0.05 0.8420 0.6962
3.081633 0.5100 0.8 0.10 0.9266 0.8218
3.081633 0.5100 09 0.05 0.3262 0.0663
3.081633 0.5100 0.9 0.10 0.5100 0.1648
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