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Abstract

With accelerating technological advancements, functional data analysis is of

ever-growing importance in statistics, engineering, and medicine as the collec-

tion, storage, and analysis of data becomes ingrained in every aspect of modern

life beyond any one field of study. From continuous biometric measurements

to environmental monitoring to medical imaging, data collected across time,

space, and mathematical manifolds in general are increasingly common. The

advent of “big data” ensures that the rate, volume, and complexity of collected

data will only continue to grow. Despite its richness, the high dimensional-

ity of functional data is inherently challenging to incorporate into statistical

models in both theory and practice.

This thesis is primarily concerned with incorporating multiple scalar-valued

functional covariates, each with a high-dimensional domain but observed in a

discrete, uniform grid, into functional quantile regression models for a scalar

response. This type of functional data is ubiquitous in science and medicine

as imaging data observed across spatiotemporal dimensions in a tensor for-

mat. The existing accommodation of functional and tensor-valued covariates

in generalized linear models does not extend immediately to the quantile set-

ting, although such a development would be useful in practice. Indeed, quantile

models are well-known to be more efficient and robust for non-Gaussian, heavy-

tailed error distributions or when outliers are present—typically the case with

real-world data. Throughout this work, we emphasize direct regularization of

tensor effects for more generalizable models and interpretable signal recovery
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for imaging data.

The Tucker tensor decomposition is the main tool used in this thesis: we as-

sume a low-dimensional representation of a tensor with a particular polyadic

structure to reduce the dimension of the parameter space and make model

estimation feasible. We obtain this decomposition in a supervised manner,

relying on partial quantile covariance between tensor covariates and the scalar

response, similar to partial least squares in traditional linear regression. We

estimate decomposition parameters and fit the proposed q-dimensional tensor

quantile regression (qD-TQR) model by minimizing quantile loss. To address

the non-convexity and non-differentiability of the loss in Tucker tensor decom-

position parameters, we use a block relaxation technique and a continuously

differentiable smoothing approximation of the quantile loss. After propos-

ing a new algorithm and gradient-based implementation for models with one

functional covariate, we extend our approach to multiple functional covariates

and discuss simplifications exploiting the Tucker decomposition’s nonsingular

transformation indeterminacy. We consider convex penalty functions that, un-

like previous approaches, directly regularize the estimated tensor effect through

the assumed structure rather than only its decomposition parameters.

We establish theoretical properties for the proposed model, including global,

local, and approximation convergence for the proposed algorithm and, us-

ing empirical process theory, asymptotic statistical results regarding estimator

consistency and normality.

Finally, we demonstrate the performance of our model in simulated and

real-world settings. Through a simulation study proposed in previous works

that attempt to recover image signals of various geometric shape, we highlight

the superiority of quantile-based methods for heavy-tailed error distributions.

We examine the effect of tensor decomposition rank, quantile level, signal-

to-noise ratio, and sample size on model estimates, further improving signal

iii



recovery by using a LASSO-type penalty. Second, we apply our methods to a

real-world neuroimaging dataset from the Alzheimer’s Disease Neuroimaging

Initiative. Our model relates clinical covariates and and four functional co-

variates obtained from magnetic resonance imaging scans to mini-mental state

examination score, a screening tool for Alzheimer’s disease. After LASSO regu-

larization leaves more be desired in estimate interpretability, we explore fused

LASSO penalization to enforce estimate smoothness in a post-hoc analysis.

Results show improvement that would not be possible with previous work

through direct penalization of decomposition parameters.

The major work in this thesis fills the need for an extension of existing

functional quantile methods to tensor and high-dimensional functional data.

Our results furthermore address the practical issue of multiple functional

covariates—typically ignored in other work—and demonstrate the utility of

direct regularization in tensor effect interpretability for imaging data.
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Chapter 1

Introduction

We first provide a general overview of and introduction to relevant topics and

existing results. Our intention is to give sufficient context for the specific

research presented in this thesis, but also to more cleanly separate our work

from more recent results. An overview of this thesis and its contributions is

provided at the end of this chapter in Subsection 1.4.

1.1 Functional Data Analysis

Functional data analysis (FDA) is concerned with data generated from curves,

manifolds, and other structures that can be cast as functions of one or more

variables [65]. This includes, among myriad examples, the growth patterns

of children as a function of age [38]; annual precipitation or temperature pat-

terns as a function of day [31] (Figure 1.1); and medical imaging scans as a

function of spatial position and, potentially, another temporal variable [29].

In the functional data setting, as first called by Ramsay [64], observations are

functions or “curves” that, in theory, could be evaluated anywhere on the func-

tion’s domain [26], [69]. This is fundamentally different from more traditional

settings where observations are scalar. Despite its differences, FDA shares

the same goals as other data analytic approaches [65]. FDA aims to represent

data and highlight salient characteristics; separate true, underlying signal from

noise to identify sources of variation; and model variation in a functional [53],

[94] or scalar [67] response using functional or scalar explanatory variables.

These goals highlight the exploratory, confirmatory, and predictive objectives
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Figure 1.1: An example of functional data: average daily temperature in 35
Canadian cities over one year, coloured according to the province grouping
specified in the legend. Data is available in the fda package [66] for R [63]

of FDA, respectively.

Functional data present unique analytic and computational challenges due

to the intrinsically high dimensionality of functional space. While the setting

with pure functional observations has been studied since the beginnings of FDA

[28], it is most common in theory and practice to deal with observations at cer-

tain (fixed or random) points of a domain. Whether dense, sparse, or neither,

these observations need not be evaluated at the same points across observa-

tions: this variability in the sampling design presents additional theoretical

challenges and can impact the convergence rates of statistical estimators [32],

[84]. While FDA is well-suited to address variation—generally referred to as

measurement error whether stochastic or due to actual measurement error—

other difficulties appear in “next generation” functional data [75], [84] when

strong covariance structures exists within functional observations, as with spa-

tial correlation in images, or when functional variables are correlated. This

2



problem is particularly relevant in the area of imaging genetics, which aims

to combine highly correlated neuroimaging and genetic data into statistical

models [58].

FDA has received much attention in the Statistical literature. This focus

has certainly not waned in recent years with the ever-growing attention to

“big data” and technological advances proliferating complex data structures

to every field of application from chemometrics [27] to climate science [31]

to neuroimaging [2]. In particular, functional regression models, including

linear [11], [57], non-linear [56], and non-parametric models [24], are arguably

the most popular tools in FDA and have progressed substantially since their

initial development. Common approaches to FDA include kernel smoothing,

local regression, and splines [8], [20], [33], [83], also drawing from theory in

functional analysis and stochastic processes.

Functional regression models can be characterised by the role of functional

data in the model—whether as a predictor, response, or both. The simplest

of these is perhaps the traditional functional linear regression model with a

scalar response and a single scalar functional predictor [67], given by

E[Y |xxx, z] = α + xxx>βββ +

∫
D

γ(t)z(t)dt.

In this model, Y ∈ R is a scalar response, xxx,βββ ∈ Rp are scalar observation and

effect vectors, and z, γ : D → R represent the functional response and effect.

The form of even this simple model immediately suggests inherent theoretical

and computational challenges.

First, the functional effect γ most generally lies in infinite-dimensional func-

tional space and cannot be estimated in practice without further restrictions.

One immediate solution is to project γ into a finite-dimensional functional sub-

space satisfying desired smoothness conditions [42], but this raises the question

of an appropriate functional basis. This choice of basis has been thoroughly

investigated: existing literature has many examples of functional regression

using general functional bases (e.g., B-splines [9] and wavelets [95]), functional

principal components (FPC) bases [16], [28], and even functional partial least

squares bases [68]—an analogue to partial least squares in traditional linear
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regression [34], [89]. For a more thorough review of the functional linear model

and recent developments, see the surveys by Morris [54] and Wang [84].

As a second notable point, the domain of integration D in the model above

is usually taken to be the unit interval [0, 1] ⊆ R (after proper scaling of the

inputs of z), although we can also consider D in higher-dimensional spaces,

typically D = [0, 1]q ⊆ Rq. The former suggests a functional response observed

as a vector such as (for example) growth over time or fractional anisotropy (a

neuroimaging measure) along the brain’s corpus callosum fiber tract as a func-

tion of arc length (1-dimensional spatial location) [91]. A domain in Rq sug-

gests a functional response observed as a tensor (which we take in the usual

sense to mean a q-dimensional array and generalization of a matrix). This

suggests a fundamental relationship between functional and tensor regression

models. As the generalization from the q = 1 to q > 1 case is not immedi-

ate, less work has been conducted in this area at present. However, major

results by Zhou et al. [97] and Li et al. [49] establish generalized linear models

(GLMs) incorporating tensor covariates, later adding the capacity for tensor

effect regularization [96]. These works take advantage of low-dimensional ten-

sor approximations such as the CP or Tucker decompositions [46] to reduce

the generally high dimension of the tensor effect and make model estimation

feasible. Earlier work obtained tensor decompositions in an unsupervised man-

ner [3], [15], [37], while Zhou et al. and Li et al. take a supervised approach.

In terms of regularization, these authors consider typical penalties such as

elastic net (which includes LASSO [78] and L2 losses) [98], SCAD [21], and

MCP [93] applied to individual parameter blocks of the tensor decomposition

(namely, elements of the factor matrix for CP decompositions and elements

of the core tensor for Tucker decompositions). Most recently, Zhou et al. [96]

implemented spectral regularization in the tensor GLM for matrix predictors

(q = 2) based on the nuclear norm, which penalizes the sum of the singular

values of the estimated tensor (matrix) effect.
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1.2 Functional Quantile Regression

Linear quantile regression was first proposed in the seminal work of Koenker

and Bassett [45] as an alternative to traditional least-squares regression robust

to outlier contamination and misspecification of the (typically non-Gaussian)

error distribution. Rather than modelling a conditional mean response, quan-

tile regression considers the conditional level-τ quantile

Qτ (Y |xxx) , inf{πτ |FY (πτ ) ≥ τ}

for a fixed τ ∈ (0, 1) through the linear model

Qτ (Y |xxx) = α + xxx>βββ.

Estimates for model parameters are defined through M -estimation via

α̂, β̂ββ , arg min
α,βββ

n∑
i=1

ρτ (yi − α− xxx>βββ),

where ρτ (u) , u
(
τ − I(u < 0)

)
is the quantile loss function (also called the

check function).

It is a well-established result that these quantile regression estimators,

relative to least-squares estimators, are more efficient and robust when the

error distribution is non-Gaussian and/or heavy-tailed or when outliers are

present. Furthermore, quantile regression is capable of dealing with error

heteroscedasticity and can give greater insight into the distribution of the

response: this is particularly true of composite quantile regression [99], which

simultaneously models multiple conditional quantiles τ1, . . . , τK , assuming that

βββ remains constant over these quantile levels.

Quantile regression has since been extended to the 1-variable functional

data setting through recent developments by Kato [43] and Yu et al [91].

Kato implemented FPC bases while also noting the tractability of Fourier

and wavelet bases. B-splines [10] and other general bases along with FPC

bases [50], [77] have been investigated by numerous authors. Based on the

work of Dodge and Whittaker [18] on partial bases in the non-functional quan-

tile setting, Yu et al. proposed a functional partial quantile (FPQ) basis for
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Figure 1.2: Illustration of a dataset (in R2) where projections onto the first
principal component (the longer of the two dotted lines) are uncorrelated with
the response Y (with values indicated by the colour scale on the right). In
truth, response values are assigned according to the scalar projection of each
point onto the second principal component (the shorter of the two dotted
lines)—perpendicular to the first.

vector-valued functional covariates that, like other partial bases, is obtained

in a supervised manner and is thus more data-driven than FPC methods by

virtue of its incorporation of response information. That is, while an FPQ

basis is optimally predictive of the response conditional quantile (in the sense

of partial quantile covariance, defined below), the FPC basis, which only rep-

resents orthogonal directions of maximal variation in the functional predictor

z, will generally not have this property. In the most extreme case, projections

of the functional response onto the FPC basis will be useless as predictors in

the functional quantile model. This scenario is illustrated (for vectors rather

than functions for interpretability) in Figure 1.2.

Yu et al.’s FPQ basis is defined through the notion of partial quantile

covariance, first proposed by Dodge and Whittaker [18] for the traditional

quantile regression model. In particular, the partial quantile covariance be-

tween random variables Y and Z after (optionally) accounting for a random
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vector XXX is

Covτ (Y, Z|XXX) , arg
γ

inf
α,βββ,γ

Eρτ (Y − α−XXX>βββ − γZ).

Intuitively, partial quantile covariance measures the contribution of Z to the

level-τ quantile of Y after accounting for XXX.

Yu et al. propose using an FPQ basis Φ = {φ1, . . . , φK} in the model with

a single functional covariate for some pre-specified basis size K by solving the

optimization problem

arg max
Φ

Covτ

(
Y,

K∑
k=1

∫ 1

0

z(t)φk(t)dt|XXX
)
, (1.1)

although the authors do not estimate the φk, but instead obtain evaluations

of these basis elements on discrete, uniform grid.

Following Kato [43] and others [50], [77], Yu et al. empirically select an op-

timal basis size K using a goodness-of-fit criteria such as BIC or cross-validated

test quantile loss. The authors’ major contribution includes an algorithm for

solving the optimization problem 1.1. Their approach employs block relax-

ation [47] to permit sequential updates of the estimated FPQ basis, similar to

Li et al. and Zhou et al. [49], [97], as well as a smooth approximation of the

non-differentiable quantile loss ρτ [12], [55].

Yu’s doctoral thesis [90] begins generalizing this approach to q-dimensional

functional data z : [0, 1]q → R. Applying the same techniques as above and

the previous results of [49], [97], Yu proposes partial quantile regression for

the multidimensional functional linear model. To our knowledge, no other

approaches to FPQ basis estimation exist in the literature. Relationships to

the work in this thesis are discussed in Subsection 1.4, where we discuss the

necessity of our investigations in formalizing the qD-FLQR model and theory

for publication and future development.

With the proliferation of “big data” came rising interest in methods for

sparse regression, variable selection, and estimate regularizarion in high-dimensional

settings. As discussed in the previous subsection, this has typically involved

penalties such as LASSO, SCAD, and MCP. These are well-studied in the
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GLM setting, including with functional predictors [21], [78], [93], [96]. In

the traditional quantile model, interior point approaches are well-established

and widely implemented in existing software packages [44]. In light of the

non-differentiability of the quantile loss, Pietrosanu et al. [62] most recently

provided three reformulations of the (composite) quantile regression problems,

both with and without adaptive LASSO regularization, enabling the applica-

tion of different computational algorithms. These include alternating direction

method of multipliers, majorize-minimization, and coordinate descent. The

amount of improvement over interior point methods in estimation accuracy

and/or runtime depends on context (e.g., p > n, p� n, n� p, etc.).

To our knowledge, no work has been done to implement the above penalties

in the functional quantile setting. Furthermore, excepting the nuclear norm

noted in Subsection 1.1 for matrix predictors, no work exists on methods for

penalizing tensor effect estimates (as opposed to individual components of a

corresponding low-dimensional representation) in either the quantile or GLM

setting. Despite this, noise in estimated effects is a common problem, par-

ticularly in imaging data analysis, suggesting a need to penalize functional

effect estimates and obtain less-noisy effects that are visually easier to inter-

pret. Unlike individual tensor decomposition parameters, the tensor effect is

typically of primary interest to applied researchers. In neuroimaging, for ex-

ample, tensor effects can identify regions of the brain that are associated with

the development or severity of a disease or other outcomes of clinical inter-

est. Consequently, directly regularizing tensor effect estimates rather than just

their low-dimensional representation may yield more interpretable results.

1.3 Neuroimaging Applications

The analysis of neuroimaging data is crucial to an understanding of human

brain function and development [30] as well as neurological disorders such as

substance abuse [70], anxiety [25], schizophrenia [81], Alzheimer’s disease [88],

attention deficit hyperactivity disorder [14], autism [4], and other neurodegen-

erative conditions. Statistical methods for analyzing complex modes of data

8



generated by modern medical imaging technologies further the development of

preventative, diagnostic, and treatment procedures for these conditions.

Modern neuroimaging permits the examination of brain function and struc-

ture through computed tomography, magnetic resonance imaging (MRI), func-

tional magnetic resonance imaging (fMRI) [29], [40], diffusion tensor imaging

(DTI) [2], electroencephalography, positron emission tomography, and many

other data modes [61]. For example, fMRI and DTI use blood oxygen lev-

els and the diffusivity of water molecules in fibre tracts, respectively, to map

brain activity and region activation. These measures can be used to assess and

compare brain connectivity as well as the functional integration of numerous

brain regions in different populations such as neuodegenerative cases and con-

trols. Some well-known studies that make use of neuroimaging data include

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [88], the ADHD-200

Sample Initiative Project [7], and the NIH Human Connectome project [19].

MRI (including fMRI and DTI) modalities have demonstrated a wide range

of applications. By describing three-dimensional molecular properties such as

diffusion—a random transport phenomenon across cellular membranes—as a

function of spatial location [2], these methods are able to detect changes in

membrane microstructure. For example, Basser et al. [6] modelled the diffu-

sivity of water travelling in the brain’s fibre tracts along orthogonal coordinate

axes x, y, and z using a multivariate normal distribution. The covariance ma-

trix DDD in this model, called the diffusion tensor, describes three-dimensional

diffusion covariance along these axes. Diffusion is called isotropic if the eigen-

values of DDD are roughly equal. Anisotropy, differences in these eigenvalues,

can be caused by local changes in brain tissue structure due to normal (e.g.,

aging) or abnormal (e.g., injury and disease) neurophysiological changes.

Continuing the previous interpretable example, while DTI data is extremely

rich, with a 3 × 3 diffusion tensor DDD at every voxel, visualizing or interpret-

ing this data is a challenging task [2]. It is typical to summarize DDD at each

voxel using a scalar map, resulting in a 3-dimensional tensor summary of all

voxels. The trace Tr(DDD) of DDD (equal to the sum of the eigenvalues λ1, λ2, λ3 of

DDD) or the mean diffusivity (MD) (simply the average eigenvalue λ̄ = 1
3
Tr(DDD))
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are commonly used. Many measures of anisotropy exist, although fractional

anisotropy (FA), given by

FA ,

√∑3
i=1(λi − λ̄)2∑3

i=1 λ
2
i

,

is popular. These measures have been used previously to study ischemic stroke,

demyelination, inflammation, edema, neoplasia, and other conditions. Differ-

ent summary measures or combinations of eigenvalues (such as the minimum,

maximum, or other linear combinations) speak to different pathologies [2].

Similar problems are present for other neuroimaging data modes. T1-

weighted MRI measurements are most commonly used to assess atrophy in

different parts of the brain [23]. Structural properties including volume [41]

and surface-based measures such as radial distance [76], local area differences,

and tensor-based morphemetry (TBM) [17] convey morphometric information

on brain structures of interest such as the hippocampus and are known to be in-

dicative of atrophy in these structures. Multivariate TBM (mTBM) [48], [85],

a generalization of TBM, examines spatial deformation in multiple directions

along a surface and has shown greater statistical power and improved signal

detection than other measures. This is especially true when combined with

complementary measures such as radial distance, which examines deformation

in the surface normal direction [85], [86].

In general, statistical methods to automatically analyze neuroimaging data

depend on tensor-valued summary measures extracted from raw data and neu-

rological reconstructions. The previous discussions illustrate how one measure

is not sufficient to summarize relevant information in neuroimaging data [1],

[52], [74], [87]. Different measures are sensitive to different pathologies, while

one measure can suggest multiple pathologies and might yield the same value

for different eigenvalue configurations. In this light, statistical methods that

efficiently accommodate multiple tensor covariates are necessary to take full

advantage of the richness of neuroimaging data, but are not well-developed in

the literature.
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1.4 Thesis Overview and Contributions

This thesis proceeds with further theoretical background material regarding

tensors, tensor operations, and tensor decompositions in Chapter 2. Chapter

3 follows with our formulation of the q-dimensional functional linear quantile

regression (qD-FLQR) model (with one tensor covariate) and discusses, in Sec-

tion 3.2, details pertaining to a gradient-based implementation with supervised

tensor decomposition, including an algorithm for model estimation. Section

3.3 extends the qD-FLQR model to multiple tensor covariates, not necessar-

ily of the same size, and a penalty term to regularize tensor covariate effect

estimates. We examine algorithm convergence and estimator asymptotics in

Chapter 4. A simulation study and analysis using a real-world neuroimaging

dataset are carried out in Chapter 5. Finally, we summarize and discuss our

results and future work in Chapter 6.

The major work in this thesis extends existing results accommodating ten-

sor covariates in functional GLMs [49], [97] to the functional quantile setting

to create a tensor quantile model. The approach using tensor decompositions

and theoretical justification is similar to that for GLMs, as pointed out by

Yu in his doctoral thesis on partial functional bases and supervised decom-

positions for functional data analysis in quantile regression [90]. However, we

found that more attention was required to establish theoretical properties of

the algorithm and asymptotics of model estimators. These results do not fol-

low from the tensor GLM due to the non-strict convexity of the quantile loss;

the inapplicability of standard arguments on quantile regression estimators

established by Koenker et al. [45] due to the differentiability of our smoothing

approximation; and the equivalency of minimizing quantile loss and maximiz-

ing the log-likelihood of independent and identically distributed asymmetric

Laplace observations with unknown location parameter, which does not form

an exponential family and thus does not fall under the GLM umbrella. These

differences necessitate separate treatment of the qD-FLQR model, which we

address in adequate detail here.

We are also the first to implement a smoothing approximation of the quan-

11



tile loss in our tensor quantile model algorithm to examine the performance

of the proposed estimators. Previous work only implements (unsmoothed)

quantile loss and applies existing software packages [44]. We accommodate

multiple tensor covariates (a non-trivial extension wholly ignored in existing

literature) as well as convex, differentiable penalties (or convex penalties that

can be appropriately smoothed such as LASSO). Unlike previous work, we fo-

cus on estimate interpretability and directly regularize tensor effect estimates

through the proposed tensor decomposition rather than just decomposition

parameter blocks. We demonstrate the utility and, in real-world settings, ne-

cessity, of these additions through a simulation study and a novel application

to an ADNI neuroimaging dataset. In general, our work further suggests direc-

tions for future improvement, including improving the proposed algorithm in

its approach to block relaxation, the smoothing parameter update rules to be

approximation-specific, and the optimization method in order to accommodate

non-convex penalties.
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Chapter 2

Tensors and the Tucker
Decomposition

The following chapter provides background information on tensors, their prop-

erties as generalizations of matrices, and low-dimensional representations nec-

essary for the qD-FLQR model later on. Section 2.1 introduces basic tensor

operations while Section 2.2 discusses two tensor decompositions, that is, low-

dimensional representations of a tensor, that will be of primary interest when

discussing the qD-FLQR. The definitions and results in this chapter are con-

sistent with the detailed work of Kolda and Bader [46], but we highlight the

necessary components here in order for clarity.

Throughout this thesis, we treat a tensor as a q-dimensional array of real

numbers (for some known q) with entries indexed by q-tuples (i1, . . . , iq), where

ij = 1, . . . , Ij. For such a tensor AAA, we write AAA ∈ RI1×···×Iq , with (i1, . . . , iq)-th

element denoted by AAAi1...i2 or ai1,...,iq . We say that AAA is q-dimensional with

size (I1, . . . , Iq) and d-th mode Id. As with matrices, which we view simply

as 2-dimensional tensors, we define addition and subtraction element-wise on

tensors of the same size in the usual way. Section 2.1 defines some useful

product and matricization operations on tensors.

As a brief remark on notation, we use bold upper- and lower-case type to

denote tensors and vectors, respectively. Furthermore, for a matrix AAA ∈ Rm×n,

we use aaai ∈ Rn for i = 1, . . . , n to denote the i-th column vector of AAA. These

standard conventions hold throughout the rest of this thesis.
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2.1 Tensor Operations

The operations presented in this section will be useful when manipulating

tensor data later on. We set out notation here to avoid confusion with different

conventions across the literature.

Let AAA ∈ Rm×n and BBB ∈ Rp×q. Define the Kronecker product of AAA and BBB as

AAA⊗BBB ,

a11BBB . . . a1nBBB
...

. . .
...

am1BBB . . . amnBBB

 = [aaa1 ⊗BBB . . .aaan ⊗BBB] ∈ Rmp×nq,

where the second equality follows by definition of ⊗ in the first.

While the above operations preserve the dimension of their operands, we

now introduce a tensor-valued outer product ◦ between tensors that does not.

With AAA ∈ RI1×···×Iq and BBB ∈ RJ1×···×Jq′ , define

AAA ◦BBB ∈ RI1×···×Iq×J1×···×Jq′

with (i1, . . . , iq, j1, . . . , jq′)-th element ai1,...,iqbj1,...,jq′ . It is clear that this oper-

ation is associative but not commutative. In this thesis, we are only interested

in the case where AAA and BBB are vectors. It follows from the above definition

that, with aaad ∈ Rpd for d = 1, . . . , q,

aaa1 ◦ · · · ◦ aaaq ∈ Rp1×···×pq

with (i1, . . . , iq)-th element
∏q

d=1(aaad)id .

Tensors are inherently difficult to deal with due to their generally high

dimensionality. The following operations rearrange the elements of a tensor to

create a vector or matrix, to which we can apply standard operations.

To reshape a tensor into a vector, we define the tensor vectorization oper-

ator

vec : RI1×···×Iq → R
∏q
d=1 Id

(for given q) so that, for AAA ∈ RI1×···×Iq , vecAAA has elements

(vecAAA)1+
∑q
d=1(id−1)

∏
d′<d Id′

, AAAi1,...,iq ,
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for id = 1, . . . , Id. This operation is well-defined, invertible, and generalizes

the usual vec operation for matrices that “stacks” the column of the input

matrix.

Vectorization induces an intuitive inner product 〈·, ·〉 between tensors of

the same size. For AAA,BBB ∈ RI1×···×Iq , define

〈AAA,BBB〉 , 〈vecAAA, vecBBB〉 = (vecAAA)>vecBBB ∈ R.

When both arguments are matrices, the tensor inner product has a useful

duality property that we will use later on.

Lemma 1 (Duality, Lemma 1, Li et al. [49]). For conformable matrices AAA ∈

Rm×p, BBB ∈ Rn×p, and CCC ∈ Rm×n,

〈AAABBB>,CCC〉 = 〈AAA,CCCBBB〉.

Proof. The proof follows directly, with

〈AAABBB>,CCC〉 =
∑
i,j

(AAABBB>)ijCCC ij =
∑
i,j,k

AAAi,kBBBj,kCCC i,j =
∑
i,k

AAAi,k(CCCBBB)i,k = 〈AAA,CCCBBB〉.

We can similarly define an operation to reshape a tensor into a matrix

through the mode-d matricization operator

·[[d]] : RI1×···×Iq → RId×
∏
d′ 6=d Id′ .

For AAA ∈ RI1×···×Iq , AAA[[d]] has elements

(AAA[[d]])id, 1+
∑
d′ 6=d(id′−1)

∏
d′′<d′,d′′ 6=d Id′′

, AAAi1...,iq .

Intuitively, this matricization operation creates a matrix AAA[[d]] in which any

given column contains the Id entries of AAA with some fixed indices id′ for d′ 6= d,

arranged in some fixed order. The arrangement of rows or columns in AAA[[d]] is

arbitrary, provided that this ordering remains consistent (and compatible with

other reshaping operations such as vec). Figure 2.1 gives a concrete example

of tensor matricization.
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AAA =


1 4 7 10

2 5 8 11
3 6 9 12

 ,
13 16 19 22

14 17 20 23
15 18 21 24


AAA[[1]] =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24



AAA[[2]] =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24


AAA[[3]] =

[
1 4 7 10 2 5 8 11 3 6 9 12
13 16 19 22 14 17 20 23 15 18 21 24

]

Figure 2.1: An example demonstrating tensor reshaping operations. (Top) A
tensor AAA ∈ R3×4×2 with example element AAA3,2,1 = 6. The vectorization vecAAA
of AAA is (1, 2, . . . , 24)>. (Middle and bottom) The mode-1, mode-2, and mode-3
matricizations of AAA.

The high dimensionality of tensors makes it cumbersome to define a tensor

multiplication analogous to the standard matrix multiplication. By holding

all but one index constant, however, we can obtain a 1-dimensional fibre of

a tensor to which the usual matrix-vector multiplication applies. This is the

motivation behind the mode-d product of a tensor by a matrix,

×d : RI1×···×Iq × RJ×Id → RI1×···×Id−1×J×Id+1×···×Iq .

For AAA ∈ RI1×···×Iq and UUU ∈ RJ×Id , define

(AAA×d UUU)i1,...,id−1,j,id+1,...,iq ,
Id∑
id=1

AAAi1,...,iqUUU j,id .

The above is suggestive of matrix multiplication: indeed, it is clear that

(AAA×d UUU)[[d]] = UUUAAA[[d]]

since any fixed column of BBB[[d]] has elements with constant indices id′ for all

d′ 6= d in AAA, as in the above summation.
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It is easy to see that mode-d products for different modes commute. That

is, for d 6= d′,

(AAA×d UUU)×d′ VVV = (AAA×d′ VVV )×d UUU. (2.1)

Indeed,

(
(AAA×d UUU)×d′ VVV

)
i1,...,id′−1,j,id′+1,...,iq

=
∑
id′

(AAA×d UUU)i1,...,iqVVV j,id′

=
∑
id′

∑
jd

AAAi1,...,id−1,jd,id+1,...,iqUUU id,jdVVV j,id′

=
∑
jd

(AAA×d′ VVV )i1,...,id−1,jd,id+1,...,id′−1,j,id′+1,in
UUU id,jd

=
(
(AAA×d′ VVV )×d UUU

)
i1,...,id′−1,j,id′+1,...,iq

.

A different property holds when d = d′, namely,

(AAA×d UUU)×d VVV = AAA×d (V UV UV U). (2.2)

Again, this is clear from direct computation, since

(
AAA×d (V UV UV U)

)
i1,...,id−1,j,id+1,...,iq

=
∑
in

AAAi1,...,iq(V UV UV U)j,id

=
∑
id

AAAi1,...,iq
∑
k

VVV j,kUUUk,id

=
∑
k

(AAA×d UUU)i1,...,id−1,k,id+1,...,iqVVV j,k

=
(
(AAA×d UUU)×d VVV

)
i1,...,id−1,j,id+1,...,iq

.

2.2 Tensor Decompositions

2.2.1 CP and Tucker Decompositions

Tensor decompositions allow for a low-dimensional representation of a large

q-dimensional tensor by assuming some sort of underlying structure—typically

that the tensor can be written as some finite linear combination of the outer

product of q vectors. In a regression setting, decomposing tensor effects (either

exactly or approximately) allows tensor observations to be practically included

as model covariates.
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In this section, we explore two well-known tensor decompositions, namely,

the CP and Tucker decompositions. The former was used by Zhou et al. [97]

and Li et al. [49] to develop the CP and Tucker tensor GLMs, respectively.

We focus on properties of the Tucker decomposition throughout this thesis as

it is a flexible generalization of the CP decomposition.

The CP decomposition was first proposed by Hitchcock [35] as the polyadic

form of a tensor. Historically, this decomposition has been introduced mul-

tiple times into the literature, also under the names parallel factors decom-

position (PARAFAC) and canonical decomposition (CANDECOMP), hence

the name CP (CANDECOMP/PARAFAC). A CP decomposition of a tensor

AAA ∈ RI1×···×Iq takes the form

AAA ,
R∑
r=1

aaa(1)
r ◦ · · · ◦ aaa(q)

r

for some R and aaa
(d)
r ∈ RId . Where desireable, unit norms can be enforced on

the aaa
(d)
r and the the CP decomposition becomes

AAA =
R∑
r=1

λraaa
(1)
r ◦ · · · ◦ aaa(q)

r .

We say that AAA has a rank-R0 CP decomposition if an exact CP decomposition

is possible for R = R0 but not for any R < R0. For a full overview of tensor

rank (including other types of tensor rank) and correponding theorems, see

Kolda and Bader [46].

The Tucker decomposition was initially proposed for 3-dimensional tensors

by Tucker [80] as three-mode factor analysis and later extended to general

dimensions as N-mode principal components analysis or higher-order singular

value decomposition (HOSVD). An (exact or approximate) Tucker decompo-

sition of AAA ∈ RI1×···×Iq has form

AAA ,
R1∑
r1=1

· · ·
Rq∑
rq=1

λr1,...,rqaaa
(1)
r1
◦ · · · ◦ aaa(q)

rq

for some (Tucker) decomposition ranks R1, . . . , Rq typically much smaller than

I1, . . . , Iq, and aaa
(d)
rd ∈ RId . The tensor ΛΛΛ , (λr1,...,rq)r1,...,rq ∈ RR1×···×Rq is called
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the core tensor, while the matrix AAA(d) , [aaa
(d)
1 |. . . |aaa

(d)
Rd

] ∈ RId×Rd is called the d-

th factor matrix, defined for d = 1, . . . , q. Following this notation, we hereafter

abbreviate the Tucker tensor decomposition as

[[ΛΛΛ |AAA(1), . . . ,AAA(q)]] ,
R1∑
r1=1

· · ·
Rq∑
rq=1

λr1,...,rqaaa
(1)
r1
◦ · · · ◦ aaa(q)

rq .

It is easy to see that the CP decomposition is a special case of the Tucker

decomposition, namely, when R1 = · · · = Rq = R and the core tensor is super-

diagonal (i.e., λr1,...,rq = 0 whenever r1, . . . , rq are not all equal). The Tucker

decomposition is thus a more flexible, albeit more complex, low-dimensional

representation of a tensor relative to the CP decomposition. This difference

in dimension is clearer when (naively) comparing the number of elements in

each decomposition. From the original tensor AAA ∈ RI1×···×Iq with
∏q

d=1 Iq en-

tries, a CP decomposition has R
∑q

d=1 Id entries while a Tucker decomposition

has
∏q

d=1 Rd +
∑q

d=1 RdId. Better would be to compare the number of ef-

fective parameters in these decompositions. We address this when discussing

decomposition uniqueness in the following subsection.

Despite differences in (effective) number of parameters, both decomposi-

tions enforce a structure on the original tensor that, as we will see, can be

exploited for dimension reduction when fitting a regression model. On the

other hand, the Tucker decomposition is flexible, both by permitting greater

interaction among factor matrices and by allowing different ranks R1, . . . , Rq in

each dimension. The latter property allows for more (or less) model complex-

ity where (not) needed and can result in a more parsimonious model with even

fewer parameters than the CP decomposition, which requires equal rank along

each dimension. As a result, the Tucker decomposition might be preferred in

practical application (such as neuroimaging), where sample size (number of

patients) is typically limited.

2.2.2 Tucker Decomposition Properties

This subsection explores a number of technical properties regarding the Tucker

decomposition that will become useful later on.
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First, we establish a compact notation for the Tucker decomposition using

the mode-d product convenient for computation, namely,

[[ΛΛΛ |AAA(1), . . . ,AAA(q)]] = ΛΛΛ×1 AAA
(1) ×2 · · · ×q AAA(q). (2.3)

This follows by straightforward computation since

(ΛΛΛ×1 AAA
(1)×2 · · · ×q AAA(q))i1,...,iq

=
(
(ΛΛΛ×1 AAA

(1) ×2 · · · ×q−1 AAA
(q−1))×q AAA(q)

)
i1,...,iq

=

Rq∑
rq=1

(ΛΛΛ×1 AAA
(1) ×2 · · · ×q−1 AAA

(q−1))i1,...,iq−1,rq(AAA
(q))iq ,rq

=

Rq∑
rq=1

( Rq−1∑
rq−1=1

(ΛΛΛ×1 AAA
(1) ×2 · · · ×q−2 AAA

(q−2))i1,...,rq−1,rq(AAA
(q−1))iq−1,rq−1

)
(AAA(q))iq ,rq

. . . =

Rq∑
rq=1

· · ·
R1∑
r1=1

ΛΛΛr1,...,rq

q∏
d=1

(AAA(d))id,rd

=

Rq∑
rq=1

· · ·
R1∑
r1=1

λr1,...,rq(aaa
(1)
r1
◦ · · · ◦ aaa(q)

rq )i1,...,iq

=
( R1∑
r1=1

· · ·
Rq∑
rq=1

λr1,...,rqaaa
(1)
r1
◦ · · · ◦ aaa(q)

rq

)
i1,...,iq

= [[ΓΓΓ |AAA(1), . . . ,AAA(q)]]i1,...,iq .

Second, we establish some facts regarding the mode-d matricization of a

Tucker decomposition that will be critical to model estimation procedures later

on.

Lemma 2 (Tucker mode-d matricization). Suppose that a tensor AAA ∈ RI1×···×Iq

has Tucker decomposition [[ΛΛΛ |AAA(1), . . . ,AAA(q)]]. Then

AAA[[d]] = AAA(d)ΛΛΛ[[d]](AAA
(q) ⊗ · · · ⊗AAA(d+1) ⊗AAA(d−1) ⊗ · · · ⊗AAA(1))>.

Proof. It is sufficient to show that, for every i1, . . . , iq,

[[ΛΛΛ |AAA(1), . . . ,AAA(q)]]i1,...,iq =
(
AAA(d)ΛΛΛ[[d]](AAA

(q) ⊗ · · · ⊗AAA(d+1)⊗AAA(d−1) ⊗ · · · ⊗AAA(1))>
)
id,i′

,

where

i′ = 1 +
∑
d′ 6=d

(id′ − 1)
∏
d′′<d′

d′′ 6=d

pd′′ .
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For notational convenience, define

AAA(q)⊗−d. . .⊗AAA(1) , AAA(q) ⊗ · · · ⊗AAA(d+1) ⊗AAA(d−1) ⊗ · · · ⊗AAA(1)

On the left-hand side, by definition of the Tucker decomposition,

[[ΛΛΛ |AAA(1), . . . ,AAA(q)]]i1,...,iq =

R1∑
r1=1

· · ·
Rq∑
rq=1

λr1,...,rq

q∏
j=1

(aaa(j)
rj

)ij . (2.4)

On the right-hand side, denoting BBBd , (AAA(q)⊗−d. . .⊗AAA(1))>, we have that(
AAA(d)ΛΛΛ[[d]](AAA

(q)⊗−d. . .⊗AAA(1))>
)
id,i′

= (AAA(d)ΛΛΛ[[d]]BBBd)id,i′

=

Rd∑
jd=1

(aaa
(d)
jd

)id(ΛΛΛ[[d]]BBBd)jd,i′

=

Rd∑
jd=1

(aaa
(d)
jd

)id

Jd
′∑

j′=1

(ΛΛΛ[[d]])jd,j′(BBBd)j′,i′ , (2.5)

where Jd
′ =

∏q
j=1,j 6=dRj. For a fixed j′, we can find unique values of j1,−d. . .,jq

such that

j′ = 1 +

q∑
d′=1
d′ 6=d

(jd′ − 1)
∏
d′′<d′

d′ 6=d

Rd′′

so that (ΛΛΛ[[d]])jd,j′ = λj1,...,jq . From the same j′, appealing to the definition of

the Kronecker product, we have that

(BBBd)j′,i′ = (AAA(q)⊗−d. . .⊗AAA(1))i′,j′ =

q∏
d′=1
d′ 6=d

(AAA(d′))id′ ,jd′ =

q∏
d′=1
d′ 6=d

(aaa
(d′)
jd′

)id′ .

With this result, noting that the sum over j′ in Equation 2.5 involves all

elements of ΛΛΛ with fixed d-th index jd, Equation 2.5 can be rewritten as

Rd∑
jd=1

(aaa
(d)
jd

)id

R1,−d... ,Rq∑
j1,−d... ,jq

λj1,...,jq

q∏
d′=1
d′ 6=d

(aaa
(d′)
jd′

)id′ =

R1∑
j1=1

· · ·
Rq∑
jq=1

λj1,...,jq

q∏
d′=1

(aaa
(d′)
jd′

)id′ ,

which equals the left-hand side by Equation 2.4, thus completing the proof.

Using the above lemma, a similar result for the vectorization of a Tucker

decomposition follows. We rely on the trivial fact that the vectorization of

the mode-1 matricization of a tensor AAA is equal the vectorization of AAA, that is,

vecAAA[[1]] = vecAAA.
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Lemma 3 (Tucker vectorization). Suppose that a tensor AAA ∈ RI1×···×Iq has

Tucker decomposition [[ΛΛΛ |AAA(1), . . . ,AAA(q)]]. Then

vecAAA = (AAA(q) ⊗ · · · ⊗AAA(1))vecΛΛΛ.

Proof. The proof follows easily with the results of Lemma 2 and the well-

known relationship between vectorization and the Kronecker product that, for

conformable matrices XXX,YYY ,ZZZ, vec (XY ZXY ZXY Z) = (ZZZ> ⊗XXX)vecYYY . We have that

vecAAA = vecAAA[[1]] = vec
(
AAA(1)ΛΛΛ[[1]](AAA

(q) ⊗ · · · ⊗AAA(2))>
)

= (AAA(q) ⊗ · · · ⊗AAA(1))vecΛΛΛ[[1]]

= (AAA(q) ⊗ · · · ⊗AAA(1))vecΛΛΛ,

completing the proof.

2.2.3 Tucker Decomposition Uniqueness

A natural question regarding any tensor decomposition is whether such a rep-

resentation is unique. This is not the case for either the CP or Tucker de-

compositions. For the latter, we have already shown in Equation 2.3 that the

Tucker decomposition can be written as successive mode-d tensor products

applied to the core tensor. Using the properties established in Equations 2.1

and 2.2, it follows immediately that, for any nonsingular matrix OOOd ∈ RRd×Rd ,

[[ΛΛΛ×dOOO−1
d |AAA

(1), . . . ,AAA(d)OOOd, . . . ,AAA
(q)]] = (ΛΛΛOOO−1

d )×1 AAA
(1) · · · ×d (AAA(d)OOOd) · · · ×q AAA(q)

= ΛΛΛ×1 AAA
(1) · · · ×d (AAA(d)OOOdOOO

−1
d ) · · · ×q AAA(q)

= [[ΛΛΛ |AAA(1), . . . ,AAA(q)]].

The above example illustrates the more general nonsingular transformation

indeterminacy for the Tucker decomposition,

[[ΛΛΛ |AAA(1), . . . ,AAA(q)]] = [[ΛΛΛ×1 OOO
−1
1 · · · ×q OOO−1

q |AAA(1)OOO1, . . . , . . . ,AAA
(q)OOOq]],

whereOOOd is as defined above for d = 1, . . . , q. In particular, this indeterminacy

includes (non-zero) scaling and permutations of factor matrix columns.
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One (of infinitely many) ways to resolve this non-uniqueness is to impose a

restriction on the Tucker decomposition requiring, for d = 1, . . . , q, the (Rd)
2

entries in the first Rd rows of AAA(d) to be equal to one, ensuring that OOOd is

uniquely determined. As a result, the number of effective parameters in the

Tucker decomposition is

peff
q ,

q∏
d=1

Rd +

q∑
d=1

RdId −
q∑

d=1

(Rd)
2. (2.6)

For a similar examination of the CP decomposition, see Kolda and Bader [46].

The choice of restriction (to determine the OOOd matrices) is arbitrary, al-

though certain restrictions may be more or less appropriate depending on

context and will affect log-likelihood gradients and Hessian matrices. We use

the above set of restrictions where necessary in later chapters and define the

resulting restricted parameter space as

Gq , {(ΓΓΓ,AAA(1), . . . ,AAA(q)) | (aaa(d)
r )i = 1 for i ≤ Rd, d = 1, . . . , q}. (2.7)

Topological equivalence of Gq and Rp
eff
q is clear.

Throughout this thesis, we say that two (or more) Tucker decompositions

[[ΛΛΛ |AAA(1), . . . ,AAA(q)]] and [[ΠΠΠ |BBB(1), . . . ,BBB(q)]] are factor equivalent if there exists

nonsingular OOOd ∈ RRd×Rd such that AAA(d) = BBB(d)OOOd for d = 1, . . . , q. This

property will be useful in simplifying the qD-FLQR model later in certain

circumstances.
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Chapter 3

q-Dimensional Functional
Partial Linear Quantile
Regression

In this chapter, we formulate the basic q-dimensional functional linear quantile

regression (qD-FLQR) model. We specifically consider the setting where the

functional covariate is observed over a uniform grid of points in [0, 1]q and we

translate the qD-FLQR model into a q-dimensional tensor quantile regression

(qD-TQR) model. In Section 3.2, we discuss an implementation of the model

and propose an algorithm for estimating model parameters. In particular, we

use a supervised Tucker decomposition to obtain a “partial” decomposition of

tensor effects. Lastly, Section 3.3 extends the qD-FLQR model to include mul-

tiple functional covariates not necessarily of the same size and, furthermore,

the capacity for tensor effect regularization.

3.1 qD-FLQR Model Formulation

We first consider the qD-FLQR model with a single functional covariate. For

a fixed quantile level τ ∈ (0, 1), we model the τ -th conditional quantile of a

scalar response Y given scalar covariates xxx ∈ Rp and q-dimensional functional

covariate z : [0, 1]q → R as

Qτ (Y |xxx, z) = ατ +xxx>βββτ +

∫ 1

0

· · ·
∫ 1

0

z(t1, . . . , tq)γτ (t1, . . . , tq)dtq . . . dt1. (3.1)
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From here on, we suppress the subscript τ for convenience and assume τ fixed

and known.

In many applications such as neuroimaging, functional covariate observa-

tions are made automatically using technology at regularly-spaced points (in

time or space). With this setting in mind, we assume that functional data z is

observed over a uniform grid in [0, 1]q. Formally, we only observe z(ti1 , . . . , tiq)

for id = 1 . . . , Id and d = 1, . . . , q. As a result, we can store observations from

a single realization of z in a q-dimensional tensor ZZZ ∈ RI1×···×Iq with entries

ZZZi1,...,iq = z(ti1 , . . . , tiq). We can similarly create a tensor holding evaluations

of the functional effect γ as ΓΓΓ ∈ RI1×···×Iq with entries ΓΓΓi1,...,iq = γ(ti1 , . . . , tiq).

Restructuring the data as a tensor in this way suggests the qD-TQR model

Qτ (Y |xxx,ZZZ) = α + 〈xxx,βββ〉+ 〈ZZZ,ΓΓΓ〉. (3.2)

The last term in this model can be viewed as an approximation to the integral

in the qD-FLQR model of Equation 3.1. However, Equation 3.2 ignores any

scaling factors, here (
∏q

d=1 Id)
−1. This is reasonable for computational reasons

and due to our assumption of working over a uniform grid. As a general

note, this approach does not impose any (e.g., smoothness) restrictions on

the functional effect γ, which our present approach does not aim to estimate.

Previous work by Yu et al. [91], for comparison, is similar in that it also does

not estimate functional effects (or the partial basis elements φk) and instead

only works with a matrix of evaluations of the φk on a discrete grid. In contrast,

our work here will impose penalties able to enforce the smoothness of ΓΓΓ (that

may subsequently be viewed as a smoothness restriction on γ), while Yu et al.

does not consider any such penalty.

Equation 3.2 seems to suggest a typical linear quantile regression model.

However, the large number of parameters in the functional portion of the

model is
∏q

d=1 Id, yielding a computationally difficult and unacceptably high-

dimensional regression problem. In addition, the vectorization operation in

〈ZZZ,ΓΓΓ〉 = (vecZZZ)>vecΓΓΓ ignores any structure assumed by a tensor decomposi-

tion and any patterns of spatiotemporal correlation in ZZZ and ΓΓΓ and by treating

each element as an independent variable. As such, this first approach to to es-
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timation comes at the cost of high computational complexity, reduced power

and efficiency, and ignorance of spatial correlation structures that are typi-

cally present in imaging data. (In addressing the last of these, regularization

is crucial and will be discussed later.)

To address this difficulty in model estimation, we use a structured, low-

dimensional representation of ΓΓΓ. Assume that ΓΓΓ has Tucker decomposition

ΓΓΓ = [[ΛΛΛ |ΓΓΓ(1), . . . ,ΓΓΓ(q)]]

for some fixed R1, . . . , Rq, with the r-th column of ΓΓΓ(d) denoted by γγγ
(d)
r . The

qD-TQR model in Equation 3.2 becomes

Qτ (Y |xxx,ZZZ) = α + 〈xxx,βββ〉+ 〈ZZZ, [[ΛΛΛ |ΓΓΓ(1), . . . ,ΓΓΓ(q)]]〉.

To obtain this decomposition, we use a supervised approach that incorporates

information from the response Y . This is unlike FPC or two-stage approaches

that first estimate and fix the factor matrices ΓΓΓ(d) using only the observed ZZZ

and subsequently only estimate the core tensor ΛΛΛ as model parameters [3],

[15]. Specifically, the supervised Tucker decomposition is chosen to maximize

partial quantile covariance with the response,

arg max
ΛΛΛ,ΓΓΓ(1)...,ΓΓΓ(q)

Covτ
(
Y, 〈ZZZ, [[ΛΛΛ |ΓΓΓ(1), . . . ,ΓΓΓ(q)]]〉 |XXX

)
. (3.3)

Intuitively, the (approximate) Tucker decomposition of ΓΓΓ is chosen to be max-

imally predictive of the level-τ quantile of the response Y . In the following

section, we address the practical implementation of this supervised approach

to fitting the qD-TQR model.

3.2 Implementation and Estimation

In the (size n) sample setting, we wish to solve the optimization problem

arg min
α,βββ,ΛΛΛ,ΓΓΓ(1),...,ΓΓΓ(q)

1

n

n∑
i=1

ρτ
(
yi − α− xxx>i βββ − 〈ZZZi, [[ΛΛΛ |ΓΓΓ(1), . . . ,ΓΓΓ(q)]]〉

)
. (3.4)

Two major complications present themselves. We denote the objective func-

tion in Equation 3.4 by l(α,βββ,ΓΓΓ(1), . . . ,ΓΓΓ(q),ΛΛΛ).
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The objective function l is clearly not convex in all of α,βββ,ΛΛΛ,ΓΓΓ(1), . . . ,ΓΓΓ(q).

Furthermore, the quantile loss ρτ is not differentiable. The latter precludes

many common optimization algorithms such as gradient descent. As discussed

in Yu et al. [91], it is difficult to establish statistical properties of estimators in

this setting. Noting that the objective function above is convex in each indi-

vidual block of parameters (α,βββ), (ΛΛΛ), (ΓΓΓ(1)), . . . , (ΓΓΓ(q)), however, we can apply

block relaxation [47] to break down the problem and can use a continuously

differentiable approximation of ρτ [12], [55].

3.2.1 Smoothing the Quantile Loss

The quantile loss function ρτ , shown in Figure 3.1, is not differentiable at

zero, preventing the use of common optimization techniques such as gradient

descent or Newton’s method. Indeed, ρ′τ is piecewise constant. One approach

taken in the literature to circumvent this is to replace ρτ with a convex, con-

tinuously differentiable approximation ρτν , where ν is some nuisance param-

eter controlling the smoothness of the approximation. This approach allows

gradient-based methods that have the advantage of being computationally in-

expensive and readily extended to include (smooth) penalization terms.

For median regression (i.e., when τ = 0.5), the Huber function [39],

Hν(u) ,

{
u2

2ν
, |u| ≤ ν

|u| − ν/2, |u| > ν
,

has been previously applied in the literature [13], [51]. Chen [12] proposed an

extension to any arbitrary quantile level τ ∈ (0, 1) with the generalized Huber

function,

Hτν(u) ,


u(τ − 1)− 1

2
(τ − 1)2ν, u < (τ − 1)ν

u2

2ν
, (τ − 1)ν ≤ u < τν

uτ − 1
2
τ 2ν, u ≥ τν

. (3.5)

Muggeo et al. [55] more recently used an approach based on iteratively weighted
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Figure 3.1: The quantile loss function ρτ for τ = 0.1, 0.5, 0.7, coloured as per
the legend.

least squares (IWLS) using the IWLS approximator,

Sτν(u) ,


u(τ − 1), u ≤ −ντ
u2(1−τ)

2ντ
+ ντ(1−τ)

2
, −τν < u ≤ 0,

u2τ
2ν(1−τ)

+ ντ(1−τ)
2

, 0 < u < (1− τ)ν,

uτ, u ≥ (1− τ)ν

. (3.6)

The quantile loss function and the two approximations above (and their deriva-

tives) are shown in Figure 3.2. Muggeo et al. claim that Sτν is superior to Hτν

by more closely approximating ρ′τ for u > 0 (u < 0) when τ < 0.5 (τ > 0.5)

where the derivative is “more important”, and that the choice of ν in Sτν has

less impact on estimates than in Hτν . The authors don’t provide an empirical

comparison of the two claims, however.

Both Chen [12] and Muggeo et al. [55] derive regularity conditions sim-

ilar to (but not following directly from) those presented in Theorem 3.3 of

Koenker and Bassett [45]. Making use of a solution curve method, these con-

ditions guarantee that for smoothing parameter ν > 0 sufficiently close to

zero, the solutions obtained by minimizing the smoothed loss is exactly the

solution to the original, unsmoothed problem (i.e., the minimizer of l), and
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Figure 3.2: The generalized Huber function Hτν (left) and iteratively weighted
least squares (IWLS) approximator Sτν (right) to the quantile loss ρτ (shown
with dotted lines) and their derivatives (bottom). Both approximations are
convex, continuously differentiable, and converge uniformly to ρτ as ν → 0+.

that this solution interpolates some of the data. Both authors further propose

an algorithm for updating (i.e., decreasing) ν with successive iterations. These

updates generate a new smoothing parameter νN+1 as a function of νN , current

model estimates θN , and observed data.

We prefer to take ρτν = Hτν in this thesis since it has ρτ as an upper

bound. This property will be convenient later on in Subsection 4.2.3, but is

not critical provided that the chosen approximation has a suitable envelope.

Further motivating the choice of Hτν is our focus on exploring regularized esti-

mates: Chen gives heuristic guidelines for generic updates of νN dependent on

dataset size but independent of θN . While increasing the number of iterations

required, this update scheme fits well into our gradient-based implementation.

As an important point, note that both of these approximations converge

uniformly to ρτ as v → 0+. We show in Subsection 4.1.3 that, as a result, the
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solution to the optimization problem in 3.4 when ρτ is replaced by ρτν will

converge to the solution of the original problem in 3.4.

3.2.2 Block Relaxation

Block relaxation algorithms are a general class of optimization techniques

that subsume the well-known majorization-minimization (MM), expectation-

minimization (EM), and alternating least squares algorithms [47]. So-called

cyclic examples allow the optimization of a scalar function ψ over several blocks

of parameters ωj ∈ Ωj for j = 1, . . . , p by repeating a cycle of p sequential block

updates of the form

ωk+1
j = arg min

ωj∈Ωp

ψ(ωk+1
1 , . . . , ωk+1

j−1 , ωj, ω
k
j+1, . . . , ωp−1, ω

k
p),

where superscript k denotes an estimate in the k-th update cycle. (On the

other hand, free-steering variants do not specify a fixed order for block up-

dates.) In general, parameter blocks are updated sequentially, holding other

parameter blocks constant at their most current estimate. This technique

comes with well-established global and local convergence results (under cer-

tain conditions).

In the qD-TQR setting, block relaxation proves extremely useful. The

objective function ψ = l is clearly not convex in all its parameters due to the

Tucker decomposition. However, if we consider the parameter blocks ω1 =

(α,βββ), ω2 = (ΛΛΛ), ω3 = (ΓΓΓ(1)), . . . , ωq+2 = (ΓΓΓ(q)), it is easy to see that the error

η , y − α− xxx>βββ − 〈ZZZ, [[ΛΛΛ |ΓΓΓ(1), . . . ,ΓΓΓ(q)]]〉

is an affine linear combination (and thus convex) with respect to each block

individually. Thus, ρτ (η) is blockwise convex as the composition of convex

functions. The block updates are then convex optimization problems.

For notational simplicity, denote ΓΓΓ⊗ , ΓΓΓ(q) ⊗ · · · ⊗ΓΓΓ(1) and ΓΓΓ⊗d , ΓΓΓ(d)⊗−d. . .⊗ΓΓΓ(1)

from here on. The scalar block update for (α,βββ) is trivial as a standard lin-

ear quantile regression problem. The factor block updates for (ΓΓΓ(d)) requires

reformulation of the linear predictor. Lemma 2 allows us to write

η = y − α− xxx>βββ − 〈ZZZ [[d]],ΓΓΓ
(d)ΛΛΛ[[d]]ΓΓΓ

⊗
d
>〉
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= y − α− xxx>βββ − 〈ZZZ [[d]]ΓΓΓ
⊗
d ΛΛΛ>[[d]],ΓΓΓ

(d)〉, (3.7)

where the second inequality follows from Lemma 1. Similarly for the core block

update of (ΛΛΛ), we apply Lemma 3 to obtain

η = y − α− xxx>βββ − 〈vecZZZ,ΓΓΓ⊗vecΛΛΛ〉

= y − α− xxx>βββ − 〈ΓΓΓ⊗>vecZZZ, vecΛΛΛ〉. (3.8)

With this, each block update can be treated as a linear quantile regression

problem in a relatively small number of parameters, specifically, RdId for factor

matrix updates and
∏q

d=1 Rd for core tensor updates (or fewer if estimates are

restricted to Gq).

3.2.3 Algorithm

Based on the previous two subsections, we propose Algorithm 1 to estimate

the qD-FLQR model. We assume a preset rule for determining a decreas-

ing sequence of positive smoothing parameters (νN)N , with νN+1 possibly a

function of νN and current model parameter estimates θθθN that are generally

unknown at initialization. We also assume preset Tucker decomposition ranks

R1, . . . , Rq. Section 3.2.4 gives two criteria from existing literature to deter-

mine suitable decomposition ranks.

The inner loop in lines 3-8 of Algorithm 1 employs block relaxation to esti-

mate model parameters using smoothed quantile loss ρτνN for a fixed smooth-

ing parameter νN . We give a stopping criteria based on absolute change in the

loss lN for simplicity, although in practice we implement convergence criteria

based on relative loss with tolerance 0.1%. The outer loop uses a given rule

to decrease the smoothing parameter νN to νN+1, possibly as a function of

current model residuals (as per Chen [12] and Muggeo et al. [55]). The con-

vergence criteria might depend on the smoothing approximation used, so we

leave this general.

We have implemented our algorithm entirely in R [63]. Because no pack-

age exists for solving the approximate quantile regression problem, we apply
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Algorithm 1: qD-FLQR model estimation algorithm given fixed Tucker
decomposition ranks R1, . . . , Rq, a single tensor covariate in RI1×···×Iq ,
p scalar covariates, prespecified convergence tolerance ε, and a rule
for generating a decreasing sequence of positive smoothing parameters
(νN)N potentially as a function of model estimates at the time of update.

1 for N = 1, . . . , Nmax do

2 Initialize: α(0) ∈ R,βββ(0) ∈ Rp,ΛΛΛ(0) ∈ RR1×···×Rq ,ΓΓΓ
(d)
(0) ∈ RId×Rd

3 for b = 1, 2, . . . , bmax do

4 (α(b),βββ(b)) = arg minα,βββ lN(α,βββ,ΓΓΓ
(1)
(b−1), . . . ,ΓΓΓ

(q)
(b−1),ΛΛΛ(b−1))

5 for d = 1, . . . , q do

6 ΓΓΓ
(d)
(b) =

arg minΓΓΓ(d) lN(α(b),βββ(b),ΓΓΓ
(1)
(b) , . . . ,ΓΓΓ

(d−1)
(b) ,ΓΓΓ(d),ΓΓΓ

(d+1)
(b−1) , . . . ,ΓΓΓ

(q)
(b−1),ΛΛΛ(b−1))

7 end

8 ΛΛΛ(b) = arg minΛΛΛ lN(α(b),βββ(b),ΓΓΓ
(1)
(b) , . . . ,ΓΓΓ

(q)
(b),ΛΛΛ)

9 if lN(α(b−1),βββ(b−1),ΓΓΓ
(1)
(b−1), . . . ,ΓΓΓ

(q)
(b−1),ΛΛΛ)−

lN(α(b),βββ(b),ΓΓΓ
(1)
(b) , . . . ,ΓΓΓ

(q)
(b),ΛΛΛ(b)) < ε then

10 break;

11 end

12 Save (α̂, β̂ββ, Γ̂ΓΓ
(1)
, . . . , Γ̂ΓΓ

(q)
, Λ̂ΛΛ) = (α(b),βββ(b),ΓΓΓ

(1)
(b) , . . . ,ΓΓΓ

(q)
(b),ΛΛΛ(b))

13 if convergent in N , then
14 break;

15 end

16 return (α̂, β̂ββ, Γ̂ΓΓ
(1)
, . . . , Γ̂ΓΓ

(q)
, Λ̂ΛΛ)
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a gradient descent method with Barzilai-Borwein adaptive step size [5], which

is known to perform well for high-dimensional problems. A gradient-based

method is flexible and convenient for our goal of exploring different penalty

functions. Our implementation is able to restrict estimated Tucker decom-

positions to Gq. We do not consider second-order methods due to the lack of

curvature in the loss lN in each block update for large N . To ensure decreasing

loss across block updates, we implement a line search that shrinks step size if

necessary. Based on the heuristics given by Chen [12], we set νN = 2−(N+1)

and Nmax = 15 and use a relative loss convergence criteria based on l.

3.2.4 Choice of Decomposition Ranks

The Tucker decomposition ranks R1, . . . , Rq determine the number of basis

elements along each dimension (i.e., model size/complexity) of the qD-FLQR

model and are to be fixed before before estimation. As usual, these hyper-

parameters should be large enough to give the model the capacity to learn

the true signal, but not too large as to induce overfitting. Several criteria,

including BIC and cross-validation criteria, exist for other models in the liter-

ature [43], [50], [77].

A cross-validation (CV) criteria is given by

CV =
1

n

n∑
i=1

ρτ (yi − α(−i) − xxx>i β̂ββ
(−i)
− 〈ZZZi, Γ̂

(−i)〉)

for a dataset of size n, where superscripts (−i) denote an estimate obtained

after removing the i-th observation from the data. This leave-one-out CV

criteria is easily adjusted to obtain a K-fold CV criteria [33], which we use in

our analyses later on.

3.3 Extensions

In this section, we explore two extensions of the previous qD-FLQR model.

First, we discuss incorporating more than one functional covariate, either of

the same or different shapes. Second, we modify the model-fitting algorithm

to allow for penalty terms that regularize the tensor effect estimate Γ̂ΓΓ through
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the structure imposed by the Tucker decomposition. Existing literature for

the Tucker tensor GLM generally only consider regularizing Λ̂ΛΛ.

3.3.1 Multiple Functional Covariates

In practice, we might wish to use more than one functional covariate as predic-

tors in the qD-FLQR model. Although these functional covariates are typically

observed over the same grid in practice, this need not be the case in general.

In this subsection, we briefly discuss ways to accommodate both of these cases.

For simplicity, we only consider cases with s = 2 functional covariates. Gen-

eralizations for s > 2 follow immediately.

First, consider the case with two functional covariates with observation ten-

sors ZZZ(1),ZZZ(2) ∈ RI1×···×Iq and respective tensor effects ΓΓΓ = [[ΛΛΛ |ΓΓΓ(1), . . . ,ΓΓΓ(q)]]

and ∆∆∆ = [[ΠΠΠ |∆∆∆(1), . . . ,∆∆∆(q)]]. We do not require the “times” ti1 , . . . , tiq at

which the functional covariates are observed to be the same between ZZZ(1) and

ZZZ(2). Without any assumptions on the decomposition ranks for each effect, we

can write the new loss function as

l(α,βββ,ΓΓΓ(1), . . . ,ΓΓΓ(q),ΛΛΛ,∆∆∆(1), . . . ,∆∆∆(q),ΠΠΠ)

=
1

n

n∑
i=1

ρτ
(
yi − α− xxx>i βββ − 〈ZZZ

(1)
i , [[ΛΛΛ |ΓΓΓ(1), . . . ,ΓΓΓ(q)]]〉 − 〈ZZZ(2)

i , [[ΠΠΠ |∆∆∆(1), . . . ,∆∆∆(q)]]〉
)
.

Noting that the new loss is blockwise convex with respect to the blocks (ΓΓΓ(1),∆∆∆(1)),

. . . , (ΓΓΓ(q),∆∆∆(q)), (ΛΛΛ,ΠΠΠ), we may simply modify Algorithm 1 to update both

d-th factor matrices together (on line 5) and both core tensors together (on

line 8). This approach increases the dimensionality of each problem but, on

the other hand, does not require separate treatment of the second functional

covariate (as described at the end of this subsection).

Further simplification is possible if we exploit the Tucker decomposition’s

nonsingular transformation indeterminacy. Here, we additionally assume that

both functional covariates have the same decomposition ranks R1, . . . , Rq and

that, for d = 1, . . . , q, we can write ∆∆∆(d) = ΓΓΓ(d)OOOd for some nonsingular ma-

trix OOOd ∈ RRd×Rd . Recall that we referred to this as factor equivalence in

34



Subsection 2.2.3. The Tucker decomposition of ∆∆∆ then can be written as

[[ΠΠΠ |∆∆∆(1), . . . ,∆∆∆(q)]] = [[ΠΠΠ×1 OOO
−1
1 · · · ×q OOO−1

q |∆∆∆(1)OOO
(1)
1 , . . . ,∆∆∆(q)OOOq]]

= [[ΠΠΠ×1 OOO
−1
1 · · · ×q OOO−1

q |ΓΓΓ(1), . . . ,ΓΓΓ(q)]].

Defining Λ̃ΛΛ ∈ RR1×···×Rq×2 with Λ̃ΛΛr1,...,rq ,1 , ΛΛΛr1,...,rq and Λ̃ΛΛr1,...,rq ,2 , (ΠΠΠ ×1

OOO−1
1 · · · ×q OOO−1

q )r1,...,rq , we can write

Γ̃ΓΓ = [[Λ̃ΛΛ |ΓΓΓ(1), . . . ,ΓΓΓ(q),1112×2]],

which is the tensor effect corresponding to Z̃ZZ ∈ RI1,...,Iq ,2 with Z̃ZZi1,...,iq ,1 , ZZZ
(1)
i1,...iq

and Z̃ZZi1,...,iq ,2 , ZZZ
(2)
i1,...iq

. In other words, we have replaced both q-dimensional

observation tensors ZZZ(1) and ZZZ(2) with a single q+ 1-dimensional tensor Z̃ZZ and

need only estimate the parameters for a single Tucker decomposition. While

computationally convenient, it is unclear how to verify the assumption that

∆∆∆(d) = ΓΓΓ(d)OOOd in practice. We explore the effect of this assumption in Section

5.1 in cases where it (not) appropriate.

In the most general case, where ZZZ(1) ∈ RI1×···×Iq1 and ZZZ(2) ∈ RJ1×···×Jq2 , we

can trivially modify Algorithm 1 to consider blocks (α,βββ), (ΓΓΓ(1)), . . . , (ΓΓΓ(q1)),

(ΛΛΛ), (∆∆∆(1)), . . . , (∆∆∆(q2)), (ΠΠΠ). A slight modification might use blocks (ΓΓΓ(d),∆∆∆(d))

for d = 1, . . . ,min{q1, q2} and (ΛΛΛ,ΠΠΠ).

3.3.2 Model Regularization

Previous work has demonstrated the need to regularize tensor effect estimates

in the tensor GLM setting, whether using the CP [97] or Tucker [49] tensor de-

compositions, due to noise present in estimated tensor effects [96]. Our initial

simulation results in Chapter 5 suggest this need for the tensor quantile setting

as well. In this subsection, we extend the qD-FLQR model to include a con-

vex, differentiable penalty. Unlike previous work, we directly penalize tensor

effect estimates through the low rank structure imposed by the Tucker decom-

position in a way that fits seamlessly into our gradient-based block relaxation

approach. The results in this subsection allow us to implement LASSO and

fused LASSO penalties in the data analyses in Chapter 5. Although we do
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not directly estimate or penalize the functional effect γ, penalties on ΓΓΓ may be

viewed as having the same effect, being a restriction of γ to a discrete domain.

Consider the general setting where a differentiable scalar penalty function

J is defined as a function of ΓΓΓ. The qD-TQR loss becomes

l(α,βββ,ΓΓΓ(1), . . . ,ΓΓΓ(q),ΛΛΛ) =
1

n

n∑
i=1

ρτ
(
yi − α− xxx>i βββ − 〈ZZZi,ΓΓΓ〉

)
+ λJ(ΓΓΓ),

where λ > 0 is the usual fidelity-penalty tradeoff hyperparameter.

As a useful first result, we derive

∂vecΓΓΓ[[d]]

∂vecΓΓΓ(d)
=

∂

∂vecΓΓΓ(d)
vec (ΓΓΓ(d)ΛΛΛ[[d]]ΓΓΓ

⊗
d
>

)

=
∂

∂vecΓΓΓ(d)
[IIIId ⊗ (ΓΓΓ⊗d ΛΛΛ>[[d]])]vecΓΓΓ(d)

= [IIIId ⊗ (ΓΓΓ⊗d ΛΛΛ>[[d]])] ∈ R
∏
j Ij×IdRd . (3.9)

Equality above follows by Lemma 2 and the well-known result that vec (XY ZXY ZXY Z) =

(XXX ⊗ZZZ>)vecYYY . It follows by the chain rule that

∂J

∂vecΓΓΓ(d)
=

∂J

∂vecΓΓΓ[[d]]

∂vecΓΓΓ[[d]]

∂vecΓΓΓ(d)

=

(
vec

(
∂J

∂ΓΓΓ

)
[[d]]

)>
[IIIId ⊗ (ΓΓΓ⊗d ΛΛΛ>[[d]])] ∈ R1×IdRd ,

and so

∇ΓΓΓ(d)J = [IIIId ⊗ (ΓΓΓ⊗d ΛΛΛ>[[d]])]
>vec

(
∂J

∂ΓΓΓ

)
[[d]]

= vec

[(
∂J

∂ΓΓΓ

)
[[d]]

ΓΓΓ⊗d ΛΛΛ>[[d]]

]
.

Similarly applying the results of Lemma 3, we see that

∂vecΓΓΓ

∂vecΛΛΛ
=

∂

∂vecΛΛΛ
[ΓΓΓ⊗vecΛΛΛ] = ΓΓΓ⊗, (3.10)

so that

∇ΛΛΛJ = ΓΓΓ⊗
>

vec
∂J

∂ΓΓΓ
.

It is often the case that J sums the elements of ΓΓΓ after a scalar penalty

function ζ : R→ R is applied elementwise to ΓΓΓ, namely,

J(ΓΓΓ) = J =

I1∑
i1=1

· · ·
Iq∑
iq=1

ζ(ΓΓΓi1,...,iq).

36



The previous assumption on J translates to a requirement that ζ be differen-

tiable. Let ζζζ and ζζζ ′ denote the elementwise application of ζ and ζ ′, respectively,

to a vector or tensor.

This setting yields the convenient notation

∂J

∂ΓΓΓ
= ζζζ ′(ΓΓΓ),

and gives the simplified gradients

∇ΓΓΓ(d)J = vec
[
ζζζ ′(ΓΓΓ)[[d]]ΓΓΓ

⊗
d ΛΛΛ>[[d]]

]
= vec

[
ζζζ ′(ΓΓΓ(d)ΛΛΛ[[d]]ΓΓΓ

⊗
d
>

)ΓΓΓ⊗d ΛΛΛ>[[d]]

]
and

∇ΛΛΛJ = ΓΓΓ⊗
>

vecζζζ ′(ΓΓΓ) = ΓΓΓ⊗
>
ζζζ ′(ΓΓΓ⊗vecΛΛΛ)

since the elementwise application of ζ allows ζζζ ′ to commute with vectorization

and matricization.

The above gradients are simple to compute given current estimates of ten-

sor decomposition parameters and are thus easily incorporated into Algorithm

1.

Imposing a LASSO penalty presents a difficulty in the non-differentiability

of the L1 loss. We address this problem in the same way as the non-differentiable

quantile loss ρτ . Noting that the LASSO penalty function is 2ρτ=0.5, we can

use the same smooth approximation 2ρτ=0.5,ν as before. Model estimates ob-

tained from Algorithm 1 with this approximate LASSO penalty converge to

the true LASSO-regularized estimates, as shown in Section 4.1.3.
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Chapter 4

Model and Estimator Properties

In the following chapter, we examine properties of the proposed qD-FLQR

estimators and algorithm. After establishing some basic properties regarding

the approximated loss

lN(α,βββ,ΓΓΓ(1), . . . ,ΓΓΓ(q),ΛΛΛ) ,
1

n

n∑
i=1

ρτνN
(
yi−α−xxx>i βββ−〈ZZZi, [[ΛΛΛ |ΓΓΓ(1), . . . ,ΓΓΓ(q)]]〉

)
,

we study convergence of the solution to the approximated problem as ν
N→∞→ 0.

Following this, we establish the asymptotic consistency and normality of the

proposed estimators. While similar properties were examined in the tensor

GLM setting for both the CP and Tucker decompositions [49], [97], these

properties do not generalize immediately to the quantile case and thus require

separate treatment.

Throughout this section, we assume a monotonic, zero-convergent sequence

(νN)N of positive smoothing parameters and fixed Tucker decomposition ranks

R1, . . . , Rq. We define the the linear predictor η = α+xxx>βββ+〈ZZZ, [[ΛΛΛ |ΓΓΓ(1), . . . ,ΓΓΓ(q)]]〉,

possibly with a subscript i in the sample case. For simplicity, we let θθθ denote

the sequence of model parameters (α,βββ,ΓΓΓ(1), . . . ,ΓΓΓ(q),ΛΛΛ). We refer to the pa-

rameter blocks (α,βββ), (ΓΓΓ(1)), . . . , (ΓΓΓ(q)), (ΛΛΛ) as the zeroth, first, . . . , q-th, and

(q + 1)-th blocks, respectively. We continue to use the shorthand notation ΓΓΓ⊗

and ΓΓΓ⊗d defined in Subsection 3.2.2.
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4.1 Smoothed Loss and Algorithm Properties

This section focuses on the approximated/smoothed qD-FLQR loss lN : we

lay out some basic properties of lN as well as global and local convergence

properties of the proposed algorithm. The former will be used later to es-

tablish approximation convergence—that the minimizer of lN converges to the

minimizer of l as N →∞.

We assume uniform convergence of lN to l as v → 0. This is clear for the

generalized Huber loss Hτν (Equation 3.5) since, for all u ∈ R,

|Hτν(u)− ρτ (u)| ≤

{
1
2
(τ − 1)2ν, u < 0

1
2
τ 2ν, u ≥ 0

,

and so maxu∈R|Hτν(u)− ρτ (u)| ≤ max{1
2
(τ − 1)2ν, 1

2
τ 2ν} v→0→ 0.

From the continuous differentiability of ρτν , it is trivial to see that lN is con-

tinuously differentiable in its parameters. As noted previously, the smoothed

loss is also (not strictly) convex in each block of its parameters.

4.1.1 Global Convergence

We wish to show that the sequence of iterates θθθ(k) generated by Algorithm

1 converges regardless of the initial estimate θθθ(0). We impose two regularity

conditions also used in previous work [49], [97]. Assume that lN is coercive

(so that {θθθ | lN(θθθ) ≤ lN(θθθ0)} is compact for any θθθ0) and that the stationary

points θθθ∗ of lN are isolated. These are reasonable regularity conditions on the

data. Note that we do not need to consider the nonsingular transformation

indeterminacy (see Subsection 2.2.3) as each step holds constant all but at

most one component of the Tucker decomposition.

Previous works also assume that each block update is strictly convex, al-

though this is clearly not the case for ρτν in general (e.g., for either Hτν or Sτν).

Furthermore, the regularity condition supposed in Theorem 3.3 of Koenker and

Bassett [45], which in fact takes advantage of the non-differentiability of ρτ ,

no longer yields a unique solution (that would interpolate some of the data) if

using the smoothed loss. Fortunately, continuity and convexity of lN and the

above regularity conditions guarantee a unique solution in each update step.
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In each block update, a global minimum is unique since lN is continuous and

coercive. If two global minima exist, then by the convexity of lN , the loss must

be constant over the segment connecting them. This violates the assumption

of isolated minima.

With the above results, we apply the work of Fiorot and Huard [22] (as

discussed in [47]). Additionally noting that the loss lN is strictly monotonic

over block updates and that the feasible set in each update is hemicontinuous

in the fixed model parameters, global convergence follows immediately. The

same arguments hold when considering any convex penalty.

4.1.2 Local Convergence Rates

We are next interested in local convergence rates—how quickly algorithm it-

erates within some neighbourhood of a local mininum θθθ∗ converge to θθθ∗—and

the rate of this convergence. Investigating this property requires stronger con-

ditions and assumptions than before. We follow the general discussion of de

Leeuw [47] that relies on the classical Ostrowski theorem [59], most notably

requiring that, at the fixed point, the algorithmic update map be differentiable

and the spectral radius of the iteration Jacobian be strictly less than one.

Let the i-th block update map be denoted by Bi, for i = 0, . . . , q + 1. The

algorithmic update map is then A = Bq+1 ◦ · · · ◦ B0. The individual block up-

dates Bi are differentiable, as is A as a composition of differentiable functions.

The iteration JacobianMMM = DA is the derivative matrix of the algorithmic

map. We assume that, at θθθ = θθθ∗, at least one of the residuals yi − ηi for

i = 1, . . . , n lies within
(
(τ − 1)νN , τνN

)
. With this assumption when using

Hτν (or an analogous condition given by Muggeo et al. [55] for Sτν), the loss

lN is strictly convex at θθθ = θθθ∗, ensuring that the conditions for the implicit

function theorem are met.

Let DijlN be the mixed derivative matrix of lN with respect to parameter

blocks i and j. Applying the implicit function theorem, we can write MMM =

−(LLL+DDD)−1LLLT , where LLL and DDD are strictly lower and diagonal block matrices

with blocks DijlN [47]. By strict convexity, the diagonal blocks of DDD (and

thus DDD itself) are positive definite. It can be shown that the spectral radius
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of MMM = −(LLL +DDD)−1LLLT is strictly less than one. This proves (by Ostrowski’s

theorem) that local convergence is linear.

4.1.3 Approximation Convergence

Algorithm 1 uses a smooth loss ρτν that converges uniformly to the quantile

loss ρτ as ν → 0. We show here that the iterates generated by the algorithm

do indeed converge to a minimizer of the original problem with loss l. This

follows from Lemma 2 of Hjort and Polland [36], albeit in a less general setting

(e.g., with a sequence of deterministic rather than random functions), so we

find it useful to reproduce here. We use the standard notation Bδ(xxx) to denote

the open ball of radius δ > 0 in Rp centred at xxx ∈ Rp.

Let θθθ∗N ∈ Rp be the unique minimizer of the smoothed loss lN and θθθ∗ ∈ Rp

a minimizer of l. Since lN converges uniformly to l, we can choose Nε ∈

N such that supθθθ|lN(θθθ) − l(θθθ)| < ε for all N > Nε. Further define ∆δ ,

infsss:|sss−θθθ∗|=δ l(sss) − l(θθθ∗). Let θθθ , θθθ∗ + tvvv for any t > δ and unit vector uuu ∈ Rp

so that θθθ /∈ Bδ(θθθ
∗).

By the convexity of lN ,

(1− δ/t)lN(θθθ∗) + (δ/t)lN(θθθ) ≥ lN
(
(1− δ/t)θθθ∗ + (δ/t)θθθ

)
= lN(θθθ∗ + δuuu).

It follows that, for N > Nε with ε < ∆δ

2
,

(δ/t)
[
lN(θθθ)− lN(θθθ∗)

]
≥ lN(θθθ∗ + δuuu)− lN(θθθ∗)

=
[
l(θθθ∗ + δuuu)− l(θθθ∗)

]
+
[
lN(θθθ∗ + δuuu)− l(θθθ∗ + δuuu)

]
−
[
l(θθθ∗)− lN(θθθ∗)

]
≥ ∆δ − 2ε

> 0.

Therefore, lN(θθθ) > lN(θθθ∗) for all θθθ /∈ Bδ(θθθ
∗). Then it must be that θθθ∗N ∈ Nδ(θθθ

∗).

Thus, given δ > 0, we can find N ′δ = Nε (with ε < ∆δ

2
) so that θθθ∗N ∈

Bδ(θθθ
∗) for all N > N ′δ, and so limN→∞ θθθ

∗
N = θθθ∗. This proves approximation

convergence.
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4.2 Statistical Properties

We are now concerned with important statistical properties of qD-FLQR model

estimators. It has been shown previously that the problem of minimizing

the quantile loss l is equivalent to that of maximizing the log-likelihood of

independent and identically-distributed asymmetric Laplace observations [72],

[92]. Indeed, the general asymmetric Laplace density function is given by

f(y;m,λ, κ) =

(
λ

κ+ 1/κ

)
exp

{
− |y −m|λκsgn(y−m)

}
for m ∈ R, λ, κ > 0. Setting λ =

√
τ(1− τ), κ =

√
τ/1− τ, and m = η (for

known τ), we obtain

f(y; η) =

{
τ(1− τ) exp{−τ(y − η)}, y ≥ η

τ(1− τ) exp{−(τ − 1)(y − η)}, y < η
= τ(1− τ)e−ρτ (y−η),

with negative log-likelihood equal (up to an additive constant in τ) to the

quantile loss.

As such, it is meaningful to derive a score function and information matrix.

For notational simplicity, we ignore the scalar part of the model, which is trivial

to incorporate.

Following this, we examine qD-FLQR model identifiability as well as the

consistency and asymptotic normality of model estimators. Since l is not

differentiable but the smoothed loss lN converges uniformly to l as N → ∞,

we derive these properties using lN instead, adopting the standard asymptotic

setup with sample size n → ∞. This is valid as the uniform convergence of

ρτν to ρτ suggests that

fτν(y; η) , Cτνe
−ρτν(y−η)

for some constant Cτν > 0 dependent on τ and ν > 0 is a valid probability

density. We refer to fτν as the smoothed asymmetric Laplace density.

Note that the (smoothed) asymmetric Laplace distribution is not in the

exponential class when η is unknown (as is the case here), so the results of this

chapter do not follow as a special case of previous work for the GLM model [49],

although we take a similar approach using empirical process theory [82].
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4.2.1 Score, Information, and Identifiability

For notational convenience throughout this subsection, we define, for d =

1, . . . , q, the Jacobian matrices Jd , ∂vecΓΓΓ
∂vecΓΓΓ(d) . From the results of Subsection

3.3.2, it follows that

JJJd = ΠΠΠd

∂vecΓΓΓ[[d]]

∂vecΓΓΓ(d)
= ΠΠΠd[IIIId ⊗ (ΓΓΓ⊗d ΛΛΛ>[[d]])]

where ΠΠΠd ∈ R
∏
j Ij×

∏
j Ij is the (row) permutation matrix mapping vecAAA[[d]] to

vecAAA for any AAA ∈ RI1×···×Iq .

Letting η be the linear predictor as defined at the beginning of this chapter,

it is easy to see that, by application of the chain rule,

∂η

∂vecΓΓΓ(d)
=

∂η

∂vecΓΓΓ

∂vecΓΓΓ

∂vecΓΓΓ(d)
= (vecZZZ)>JJJd.

and

vec
∂η

∂ΛΛΛ
=

∂η

∂vecΓΓΓ

∂vecΓΓΓ

∂vecΛΛΛ
= (vecZZZ)>ΓΓΓ⊗

It follows that the gradient of η with respect to Tucker decomposition param-

eters (which we take to be the vector of partial derivatives with respect to

(vecΓΓΓ(1)>, . . . , vecΓΓΓ(q)>, vecΛΛΛ>)>) is

∇θθθη = [JJJ1| . . . |JJJq|ΓΓΓ⊗]>vecZZZ,

yielding the score function (for n = 1)

∇lN(ΓΓΓ(1), . . . ,ΓΓΓ(q),ΛΛΛ) = −ρ′τνN (y − η)[JJJ1| . . . |JJJq|ΓΓΓ⊗]>vecZZZ.

The (expected) Fisher Information follows as

IN(ΓΓΓ(1), . . . ,ΓΓΓ(q),ΛΛΛ) = E[∇lN∇l>N ]

= E[(ρ′τνN (y − η))2][JJJ1, . . . , JJJq,ΓΓΓ
⊗]>vecZZZ(vecZZZ)>[JJJ1, . . . , JJJq,ΓΓΓ

⊗].

The non-uniqueness of the Tucker decomposition under nonsingular linear

transformations of its components was discussed in Subsection 2.2.3. Conse-

quently, the qD-TQR model is not identifiable without further restrictions. To

address this, we gave one (of infinitely many) restricted parameter spaces Gq
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within which the Tucker decomposition would be unique. The above score and

information matrix require adjustment to account for this. We don’t attempt

this here for Gq as the choice of parameter space is arbitrary and motivated

by context.

We investigate model identifiability in Gq and refer to the results of Rothen-

berg [71], noting that all required assumptions are satisfied. Specifically, Gq
may be viewed as Rp

eff
q , where peff

q is the number of parameters in the Tucker

decomposition not fixed at unity (as given in Equation 2.6), and is thus open

(inside itself); fτν is a proper density for all θθθ ∈ Gq; the support of fτν does

not depend on θθθ; and fτν is continuously differentiable with respect to η, and

thus, θθθ.

We say the qD-FLQR model with parameters θθθ0 is locally identifiable in

Gq if, in some open neighbourhood U ⊆ Gq of θθθ0, no other θθθ ∈ Gq suggests

the same distribution for the observed random variables Y . By Theorem 1 of

Rothenberg, this holds if and only if I(θθθ) has full rank in U .

Global identifiability is difficult to establish outside the exponential class.

Theorem 4 of Rothenberg provides a general criteria requiring, for all model

parameters θi, that θi = E[φi(Y )] for some known function φi. Unfortunately,

this is not the case for the qD-FLQR model, as η depends on all parameters

of the Tucker decomposition and are not “interpretable characteristics” of

fτν . Fortunately, local identifiability is enough to establish the asymptotic

properties in the next two subsections.

4.2.2 Consistency

The following two subsections primarily employ properties of M -estimation in

empirical process theory [82]. We loosely follow the arguments of [97] and [49].

We establish estimator consistency via Theorem 5.7 of van der Vaart [82]:

Lemma 4. for random functions Mn and a fixed function M of θ ∈ Θ such

that, for all ε > 0,

sup
θ∈Θ
|Mn(θ)−M(θ)| p→ 0, (4.1)
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sup
θ:|θ−θ0|≥ε

M(θ) < M(θ0), (4.2)

any sequence of estimators θ̂n with Mn(θ̂n) ≥ Mn(θ0) − oP (1) converges in

probability to θ0.

In our setting, we take θ̂n = θ̂θθn to be the estimators of θ0 = θθθ0 from a

sample of size n so that Γ̂ΓΓn = [[Λ̂ΛΛn | Γ̂ΓΓ
(1)

n , . . . , Γ̂ΓΓ
(q)

n ]] and ΓΓΓ0 = [[ΛΛΛ0 |ΓΓΓ(1)
0 , . . . ,ΓΓΓ

(q)
0 ]],

suppressing the implicit relationship between ΓΓΓ and θθθ. It is enough to let θθθ be

any individual parameter block. Let

M(θθθ) = PlN(Y ;θθθ) =

∫
R
lN(y;θθθ)fτνN (y;θθθ0)dy

and

Mn(θθθ) = PnM(θθθ) =
1

n

n∑
i=1

lN(yi;θθθ),

where Pn denotes the empirical measure. By the Strong Law of Large Num-

bers, Mn(θθθ)
a.s.→ M(θθθ) and the stochastic order property for θ̂θθn is satisfied.

Condition 4.2 (possibly with equality) follows from the Cramer-Rao lower

bound (i.e., the information inequality). Local identifiability is then sufficient

to guarantee strict inequality, so Condition 4.2 holds.

We verify Condition 4.1 using the Glivenko-Cantelli Theorem, the state-

ment for which we omit here for brevity (Theorem 19.13, van der Vaart [82]).

Note that {〈ZZZ,ΓΓΓ〉 |ΓΓΓ = ΓΓΓ(θθθ), θθθ ∈ Gq} is a Vapnik-C̆ervonekis class as a col-

lection of polynomials with finite degree, and is thus also Glivenko-Cantelli

and Donsker. Previous work ensures that {lN(y;θθθ) |θθθ ∈ Gq} is also Donsker

by restricting the parameter space to a compact subset. Such a restriction is

not necessary here, as lN is already Lipschitz in its parameters, so this set is

Donsker as the composition of a Donsker class with a Lischitz function. The

function l provides a suitable envelope for this class (when ρτν = Hτν , the

generalized Huber function, although other envelopes can be easily found for

other approximations) as Pl < ∞ and Pl2 < ∞. This set is therefore also

P-Glvenko-Cantelli and P-Donsker (Chapter 19, van der Vaart [82]). The con-

ditions for the Glivenko-Cantelli Theorem are thus satisfied, so Condition 4.1

holds.
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We conclude that θθθn converges in probability to θθθ0. This also implies that

Γ̂ΓΓ
p→ ΓΓΓ0 by the Open Mapping Theorem.

It is easy to show that the consistency results also hold if we consider

n,N →∞. Let θθθ
(N)
n be the estimator of the solution θθθ

(N)
0 to the problem using

smoothed loss lN , and let θθθ0 be the solution to the non-smoothed problem with

loss l. Using known consistency results for the quantile regression estimators

and approximation convergence from Subsection 4.1.3, it follows that, for all

ε > 0,

lim
n→∞

P(| lim
N→∞

θθθ(N)
n − θθθ0| ≥ ε)

≤ lim
n→∞

P(| lim
N→∞

θθθ(N)
n − θθθ(N)

0 | ≥ ε/2) + lim
n→∞

P(| lim
N→∞

θθθ
(N)
0 − θθθ0| ≥ ε/2)

= 0.

This verifies the consistency of the estimators proposed in Algorithm 1.

4.2.3 Asymptotic Normality

Quadratic mean differentiability of lN (definition omitted for brevity) is cen-

tral to the following proof of the asymptotic normality of θ̂θθn. By Theorem 7.6

of van der Vaart [82], continuous differentiability of lN and the existence and

continuity of the elements of IN are sufficient for quadratic mean differentia-

bility. This is clearly the case, so we conclude that the model estimated under

loss lN is differentiable in quadratic mean.

As a final step, we apply Theorem 5.39 of van der Vaart [82]:

Lemma 5. Suppose that the model (Pθ : θ ∈ Θ ⊂ Rk) is differentiable in

quadratic mean at an interior point θ0 ∈ Θ and that there exists a measurable

function l̇ with Pθ0 l̇
2 <∞ such that, for every θ1, θ2 in a neighbourhood of θ0,

|log pθ1(x)− log pθ2(x) ≤ l̇(x)|θ1 − θ2|.

If the Fisher information matrix I(θ0) is nonsingular and θ̂n is consistent, then
√
n(θ̂n − θ0) is asymptotically normal with mean zero and covariance matrix

I(θ0)−1.
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The stated conditions hold by the consistency proven in Subsection 4.2.2

and since lN is Lipschitz in its parameters. In particular, for a neighbourhood

U of θ0 = θθθ0 we take log pθ(y) = log fτν(y;θθθ) with l̇(y) , supθθθ∈U |∇θ log fτ (y)|,

which satisfies the square-integrability condition. The above result applies,

proving asymptotic normality of θ̂θθn.
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Chapter 5

Data Analysis

In the following chapter, we examine the performance of the proposed model

algorithm and estimators in two settings. The first, in Section 5.1, is a simula-

tion study that has been previously used in the tensor regression literature [49],

[96], [97] and the second, in Section 5.2, is an application to a real-world neu-

roimaging dataset derived from the ADNI [88]. Our simulation studies consider

a variety of settings, including different Tucker decomposition ranks, quantile

levels τ , response signal-to-noise ratios, response error distributions, numbers

of functional covariates, and regularization strengths λ. In particular, our re-

sults highlight the superiority of our quantile approach relative to the tensor

GLM in the case of heavy-tailed errors and the use of regularization even in

ideal, simulated settings. We also examine the assumption of factor equiva-

lence discussed in Subsection 5.1.4. Our real-world data analyses illustrate an

application of our model to noisy data in non-ideal settings and the necessity

of regularization in obtaining interpretable tensor effect estimates.

5.1 Simulation Studies

Our simulation setup is similar to that of Li et al. and Zhou et al. [49], [97].

Following the qD-TQR model notation used in Chapter 3, we take ΓΓΓ ∈ R64×64

(i.e., q = 2 with I1 = I2 = 64) as the true tensor effect with simulated tensor

observations ZZZi ∈ R64×64, for i = 1, . . . , n, with independent standard normal

elements. We take α = 0 and βββ = (1, . . . , 5)> with scalar observations xxxi ∈ R5

with elements again sampled from independent standard normal distributions.
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The scalar response Yi is simulated via Yi = ηi+εi with ηi = α+〈xxxi,βββ〉+〈ZZZi,ΓΓΓΓΓΓΓΓΓ〉,

where the εi are independent, identically distributed random variables. We

consider normal, T, Cauchy, and χ2 distributions for the ε, with parameters

set to achieve a signal-to-noise ratio (SNR) of either 3 or 5. For simplicity, we

set R1 = R2 , R throughout.

Our model’s ability to predict Y for new observations and estimate ΓΓΓ is of

primary interest, so we consider a few geometric shapes of varying complexity

for ΓΓΓ. Shown in Figure 5.1, these are the square, T, triangle, circle, and star

signals. As measures of model performance, we present (quantile) prediction

error for both training and tests sets as well as estimator root-mean-square-

error (RMSE) for ΓΓΓ, all averaged over five iterations. The same dataset Dk is

used for the k-th iteration across all tests using the same sample size. Since we

are working with simulated data, we use test set error as a model goodness-

of-fit criteria for determining an optimal decomposition rank R.

5.1.1 Unregularized Estimation and Comparison to the
Tensor GLM

We first apply the proposed qD-FLQR model without regularization (i.e, λ =

0) and the settings described previously, simulating training and test sets of

size ntrain = 2000 and ntest = 200, respectively. To demonstrate the advantages

of the quantile model, we compare our results (for median regression, i.e.,

τ = 0.5) to the Tucker tensor GLM proposed by Zhou et al. [49].

Figure 5.1 shows the true tensor effects ΓΓΓ with example estimates Γ̂ΓΓ ob-

tained using Tucker decomposition ranks R = 1, . . . , 5, for all five signals, at

τ = 0.5, SNR = 3, and Gaussian error. Figure 5.2 shows the same estimates

but for Cauchy error. As expected, training loss decreases as R increases (i.e.,

as model capacity increases), although it is clear from the test loss that large

values of R can result in overfitting. This can be seen in Figure 5.4, which plots

training/test loss and estimator RMSE under Gaussian and Cauchy error. In

particular, training loss decreases but test loss and estimate RMSE increases

for the T signal around R = 1. Visually, this produces estimates Γ̂ΓΓ with

increasingly intense background noise, although the qD-FLQR estimates are
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clearly much less noisy under Cauchy error. This further motivates estimate

regularization, which we examine in Subsection 5.1.3.

Comparing the qD-FLQR model with the Tucker tensor GLM (which sim-

ilarly uses a block relaxation approach), we find that relative performance is

dependent on the true error distribution. Table 5.1 shows estimator RMSE at

SNR = 3 and τ = 0.5 for all shapes, Tucker decomposition ranks R = 1, . . . , 5,

error distributions, and signal shapes, while Figure 5.4 shows this graphically

for only Gaussian and Cauchy errors. For Gaussian error (or T-distributed

error to a lesser extent), we find that both approaches perform nearly iden-

tically. However, for Cauchy error, the qD-FLQR model clearly outperforms

the Tucker tensor GLM. As both models use block relaxation in a similar way,

this difference can be attributed to the general benefits of quantile regres-

sion, which we know to be superior to least-squares regression when outliers

or heavy-tailed errors (such as Cauchy) are present. A comparison of example

qD-FLQR estimates Γ̂ΓΓ under different errors is available in Figure 5.3, which

also compares qD-FLQR and Tucker tensor GLM estimates.

As expected, more complex signals require a higher value of R to be ad-

equately recovered, as seen in Figures 5.1 and 5.4. For example, the square

requires R = 1 while the T requires R = 2 to minimize estimate RMSE.

Also unsurprisingly, model performance increases with increasing SNR, as il-

lustrated in Figure 5.5. All performance measures worsened as τ deviated

from 0.5 (Figure 5.6), as is the case in traditional quantile regression. Visu-

ally, estimates obtained under Cauchy error did not change as much as those

under Gaussian error, with noticeable degradation only occurring at τ = 0.2

or τ = 0.95.

Overall, these result suggest that the proposed qD-FLQR model and esti-

mators perform well under a variety of error distributions (which do not need

to be specified a priori) and are particularly well-suited to heavy-tailed errors.

Furthermore, Figure 5.2 and Table 5.1 suggest excellent performance when

error follows a Cauchy distribution.
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Figure 5.1: Examples of tensor effect estimates obtained for the 2D-FLQR
model for five signals using Tucker decomposition ranks R = 1, 2, 3, 4, τ = 0.5,
SNR = 3, Gaussian error, and n = 2000. The colour scale indicates the effect
of each pixel, from -1.5 (red) to 0 (white) to 1.5 (blue). Each row corresponds
to a different true signal ΓΓΓ. The leftmost column shows this true signal with
individual pixels having value either 0 or 1. The four columns to the right
show estimates Γ̂ΓΓ for R = 1, 2, 3, 4, from left to right.
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Figure 5.2: Examples of tensor effect estimates obtained for the 2D-FLQR
model for five signals using Tucker decomposition ranks R = 1, 2, 3, 4, τ = 0.5,
SNR = 3, Cauchy error, and n = 2000. The colour scale indicates the effect
of each pixel, from -1.5 (red) to 0 (white) to 1.5 (blue). Each row corresponds
to a different true signal ΓΓΓ. The leftmost column shows this true signal with
individual pixels having value either 0 or 1. The four columns to the right
show estimates Γ̂ΓΓ for R = 1, 2, 3, 4, from left to right.
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R Shape
2D-FLQR Tucker Tensor GLM

Gaussian Cauchy T χ2 Gaussian Cauchy T χ2

1

Square 0.052 0.001 0.040 0.046 0.041 0.042 0.039 0.040
T 0.102 0.094 0.100 0.100 0.098 0.098 0.098 0.097

Triangle 0.111 0.102 0.109 0.109 0.107 0.106 0.106 0.107
Circle 0.099 0.086 0.096 0.096 0.093 0.093 0.093 0.093

Star 0.149 0.139 0.148 0.149 0.145 0.146 0.145 0.144

2

Square 0.082 0.003 0.065 0.072 0.071 0.071 0.070 0.069
T 0.055 0.002 0.045 0.049 0.045 0.042 0.043 0.043

Triangle 0.116 0.077 0.102 0.099 0.092 0.093 0.091 0.092
Circle 0.106 0.061 0.094 0.096 0.087 0.086 0.084 0.088

Star 0.153 0.112 0.143 0.148 0.130 0.132 0.131 0.129

3

Square 0.099 0.004 0.086 0.089 0.092 0.092 0.094 0.094
T 0.070 0.002 0.059 0.066 0.063 0.062 0.061 0.062

Triangle 0.122 0.065 0.111 0.114 0.100 0.104 0.102 0.100
Circle 0.117 0.051 0.110 0.106 0.101 0.102 0.099 0.101

Star 0.161 0.084 0.141 0.139 0.128 0.124 0.125 0.129

4

Square 0.116 0.005 0.101 0.105 0.115 0.111 0.116 0.115
T 0.084 0.003 0.074 0.075 0.081 0.078 0.078 0.077

Triangle 0.131 0.062 0.124 0.119 0.117 0.120 0.118 0.116
Circle 0.133 0.039 0.118 0.119 0.122 0.115 0.117 0.118

Star 0.173 0.081 0.155 0.165 0.148 0.149 0.143 0.147

5

Square 0.131 0.006 0.115 0.120 0.134 0.127 0.135 0.136
T 0.097 0.004 0.087 0.089 0.094 0.088 0.094 0.096

Triangle 0.141 0.057 0.134 0.138 0.136 0.134 0.135 0.131
Circle 0.145 0.025 0.137 0.136 0.139 0.136 0.139 0.140

Star 0.191 0.078 0.166 0.179 0.172 0.168 0.168 0.173

Table 5.1: Estimate RMSE for Γ̂ΓΓ using the 2D-FLQR model and the Tucker
tensor GLM for various signals, error distributions, and tensor decomposition
ranks R. We hold τ = 0.5 (so that the conditional mean/median estimates are
comparable), SNR = 3, and n = 2000. Each value in the table is an average
over 5 simulations.
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Figure 5.3: Examples of tensor effect estimates for the star signal obtained for
the 2D-FLQR model (top) and for the Tucker tensor GLM (bottom) under
various error distributions, Tucker decomposition rank R = 3, τ = 0.5, SNR =
3 and n = 2000. The colour scale indicates the effect of each pixel, from -1.5
(red) to 0 (white) to 1.5 (blue).

5.1.2 Sample size

In this subsection, we briefly consider the effect of sample size n on tensor

effect estimates Γ̂ΓΓ. Figure 5.7 shows how estimates degrade as sample size

decreases. Again we find that the qD-FLQR model performs well when the

error distribution is heavy-tailed, as in the Cauchy distribution. Figure 5.8

shows how training and test loss and RMSE change over different values of n.

Estimate performance degrades similarly regardless of signal complexity (e.g.,

the star vs. the T signal) or error distribution.

5.1.3 Regularization

We next consider regularizing model estimates using a LASSO penalty, as

described in Subsection 3.3.2. In this setting, a LASSO penalty applied to

individual entries of Γ̂ΓΓ is motivated by estimate background noise observed

in the previous subsection, while an explicit smoothness penalty does not

(yet) seem necessary. Throughout this section, we fix SNR = 3, R = 3,

n = 2000, and τ = 0.5. We choose to use a Gaussian error here since we have
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Figure 5.4: Model performance measures (averaged over 5 simulations) under
Gaussian (top) and Cauchy (bottom) error distributions vs. Tucker decom-
position rank R, with τ = 0.5, SNR = 3, and n = 2000. The two panes in
the left, centre, and right colums show training (quantile) loss, test (quantile)

loss, and RMSE for Γ̂ΓΓ, respectively. Plot symbols represent the true signal
(T, triangle, circle, or star) being estimated, while color indicates whether the
estimate was obtained from the 2D-FLQR model (blue) or the Tucker tensor
GLM (black).

Figure 5.5: Examples of tensor effect estimates of the star signal for the 2D-
FLQR model for SNR = 1, 3, 5, using Tucker decomposition ranks R = 3, τ =
0.5, Gaussian error, and n = 2000. The colour scale indicates the estimated
effect of each pixel, from -1.5 (red) to 0 (white) to 1.5 (blue).
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Figure 5.6: Examples of tensor effect estimates of the star signal for the 2D-
FLQR model for quantile levels τ = 0.2, 0.4, 0.6, 0.8, 0.9 and Gaussian (top)
or Cauchy (bottom) error, using Tucker decomposition ranks R = 3 and n =
2000. The colour scale indicates the estimated effect of each pixel, from -1.5
(red) to 0 (white) to 1.5 (blue).

Figure 5.7: Examples of tensor effect estimates of the star signal for the 2D-
FLQR model at various sample sizes n = 2000, 1600, 1200, 800, 400 and Gaus-
sian (top) or Cauchy (bottom) error, using Tucker decomposition ranks R = 3,
τ = 0.5, and SNR = 3. The colour scale indicates the estimated effect of each
pixel, from -1.5 (red) to 0 (white) to 1.5 (blue).
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Figure 5.8: Model performance measures (averaged over 5 simulations) under
Gaussian (black) and Cauchy (blue) error distributions vs. sample size n, with
Tucker decomposition rank R = 3, τ = 0.5, SNR = 3, and n = 2000. Subplots
show training (quantile) loss (left), test (quantile) loss (centre), and RMSE

for Γ̂ΓΓ (right), respectively. Plot symbols represent the true signal (T or star)
being estimated.

already found it can result in noisy effect estimates (Figure 5.1). Since we are

simulating training and test data, we use test error (quantile loss plus penalty)

to determine an optimal value of the regularization parameter λ.

Figure 5.12 shows example estimates Γ̂ΓΓ for various values of λ, while Figure

5.10 plots test loss as a function of λ and presents the optimal tensor effect

estimate. Visually, the regularized estimates are less noisy and the true signal

is easier to identify. As we will see later, penalties enforcing the smoothness

of tensor effect estimates will be necessary with real-world and/or less-ideal

data.

5.1.4 Factor Equivalence and Multiple Covariates

Subsection 3.3.1 discussed ways to incorporate multiple functional covariates

into the qD-FLQR model. We noted as a special case that tensor observa-

tions of the same size and with factor equivalent Tucker decompositions (Sub-

section2.2.3) can be combined into a single tensor (with an extra “variable

selection” dimension). Relative to treating each tensor decomposition sepa-

rately, this approach is convenient and computationally efficient in terms of
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Figure 5.9: Examples of tensor effect estimates of the star (top) and T (bot-
tom) signals for the 2D-FLQR model for various regularization parameter
values λ, using Tucker decomposition ranks R = 3, τ = 0.5, Gaussian error,
and n = 2000. The colour scale indicates the estimatedeffect of each pixel,
from -1.5 (red) to 0 (white) to 1.5 (blue).

the proposed algorithm. In this subsection, we investigate the effect of as-

suming factor equivalence in cases where it is or is not appropriate to do so.

We use the T signal as an example throughout since it has an exact Tucker

decomposition with q = 2 and ranks R1 = R2 = 2.

The Tucker decomposition of a two-dimensional tensor (i.e., a matrix) has

a convenient form. Namely, for AAA ∈ RI1×I2 ,

AAA = [[ΛΛΛ |ΓΓΓ(1),ΓΓΓ(2)]] = ΓΓΓ(1)ΛΛΛΓΓΓ(2)>,

suggesting that the application of any linear transformation TTT ∈ RI2×J to AAA

will yield Tucker decomposition

AAATTT = [[ΛΛΛ |ΓΓΓ(1),TTT>ΓΓΓ(2)]] = ΓΓΓ(1)ΛΛΛ
(
TTT>ΓΓΓ(2)

)>
= ΓΓΓ(1)ΛΛΛΓΓΓ(2)>TTT .

These two decompositions are not factor equivalent, even when J = I2. We

demonstrate below that, even for very simple linear transformations, an incor-

rect assumption of factor equivalence will heavily affect tensor effect estimates.
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Figure 5.10: Test loss (left) and estimator RMSE (centre) as a function of
regularization parameter λ for the star (top) and T (bottom) signals, with
Tucker decomposition rank R = 3, τ = 0.5, SNR = 3, and Gaussian error. The
minimum in each graph is indicated in red. (Right) Tensor effect estimate Γ̂ΓΓ for
the 2D-FLQR model obtained at the optimal value of lambda, λ = 0.0045 and
λ = 0.005, for the star and T signals, respectively. The colour scale indicates
the estimated effect of each pixel, from -1.5 (red) to 0 (white) to 1.5 (blue).
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Figure 5.11: Exact Tucker decompositions (at decomposition ranks R = 2)
for the T signal (left), vertically-reflected T signal (centre), and T signal with
vertically-reflected second factor matrix (right). Only the first and last of these
decompositions are factor equivalent. The colour scale indicates the effect of
each pixel, from -1.5 (red) to 0 (white) to 1.5 (blue).

Figure 5.11 visualizes the exact Tucker decompositions for the T signal,

the T signal transformed under a vertical reflection, and the T signal when its

second factor matrix is vertically reflected. Among these three signals, only

the first and last are factor equivalent.

The effect estimates in Figure 5.12 demonstrate that when factor equiva-

lence holds, individual tensor effects can be adequately recovered when tensor

observations are combined into one tensor (as per Subsection 3.3.1). On the

other hand, if factor equivalence is incorrectly assumed (even when signals

differ by only a linear transformation), we find individual effect estimates to

be a mixture of the true signals.

5.2 Neuroimaging Application

We now consider an application of the qD-FLQR model to a real-world neu-

roimaging dataset derived from the ADNI [88]. The dataset used in this section

consists of clinical information and neuroimaging data from 824 patients.

Clinical information includes the scalar covariates gender, handedness (left

or right), marital status (married, widowed, divorced, or never married), years

of education, binary retirement status, and age. We include all these variables

in our analyses. The response of interest is mini mental state examination

(MMSE) score—a convenient and widely-used criteria for screening neurode-

generative conditions such as dementia and Alzheimer’s disease and for mon-
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Figure 5.12: Examples of tensor effect estimates obtained for the 2D-FLQR
model when two tensor covariates are combined into a single tensor (as per
Subsection 3.3.1), with R = 2, τ = 0.5, SNR = 5, Gaussian error, and n =
1000. (Top) Estimates when factor equivalence holds between the two tensor
covariates. True signals are the left and right signals in Figure 5.11. (Middle)
Estimates obtained when factor equivalence does not hold. True signals are
the left and middle signals in Figure 5.11. (Bottom) Estimates when true
signals are the (not factor equivalent) T and triangle signals, respectively.

61



itoring cognitive function over time [60]. MMSE is clinically evaluated as an

integer from 0 to 30, inclusive, with high scores indicating normal cognitive

function.

The functional neuroimaging data in this analysis is the same as that used

by Wang et al. [87]. We highlight a few important contextual points here, but

refer to the original paper for more detailed information on its extraction from

raw imaging data. The dataset is derived from baseline T1-weighted MRI

scans of the hippocampus and includes surface-based radial distance, (three)

surface multivariate tensor-based morphometry (mTBM) features, and other

Jacobian-based measures including the determinant and minimum and maxi-

mum eigenvalues. Each of these measures was computed along the surface of

the hippocampus that, for each patient, was parameterized as a 30, 000-point

mesh in two variables. Figure 5.13 visualizes this parameterization and illus-

trates how surface measures can be meaningfully interpreted as 3-dimensional

tensors. Each side of the hippocampus yields a 150 × 100 matrix of measure-

ments for each of the seven measures, resulting in a R7×2×150×100 observation

tensor for each patient.

Wang et al. [87] consider surface-based measures rather than the historically-

used volume-based ones. Recent studies demonstrate numerous benefits of

the former, which is better able to measure brain atrophy and, correspond-

ingly, cognitive ability and other clinical outcomes. Wang et al. demonstrate

that, together, radial distance and mTBM increase statistical power to detect

neurodegenerative diseases relative to other Jacobian-based measures. Radial

distance and the three mTBM measures (which we call mTBM1, mTBM2,

and mTBM3 ) convey information on surface deformation in the hippocampal

surface along the normal and tangent directions, respectively. Due to their

complementary nature, we consider a model with these four functional vari-

ables.

We obtain an analytic sample of size n = 798 after cleaning and match-

ing clinical and neuroimaging datasets. For each neuroimaging variable, we

use Tucker decomposition ranks R1 = 2 and R2 = R3 = R, where we apply

6-fold cross-validation to determine an optimal value of R. For computational
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Figure 5.13: Visualization of our mapping from the hippocampal surface (left)
to a 3-dimensional tensor (R2×150×100) (right). Each subplot on the right rep-
resents a 150 × 100 slice of the tensor observation matrix for a single neu-
roimaging measure. The colour gradient and black lines help illustrate the
correspondence between the hippocampal surface and our parameterization.
Specifically, the two 150 × 100 slices represents the left and right hippocam-
pus. The rows and columns of these slices correspond to different level set rings
around the hippocampal surface and position within these rings, respectively.
Increasing column indices correspond to oppositely-oriented rotations around
the surface, reflecting the stereoisometry of the left and right hippocampi.

convenience, we use a reduced dataset created by averaging neuroimaging mea-

sures in discrete 2 × 2 point partitions of the hippocampal surface, resulting

in one 2 × 75 × 50 tensor representing the hippocampal surface per variable

per patient.

In the following analyses, we first obtain unregularized qD-FLQR model

estimates. Results suggest the need for a tensor effect smoothness penalty,

which we implement using fused LASSO. For comparison, we also consider

a LASSO penalty despite fused LASSO being, a priori, better-motivated in

practice.

5.2.1 Unregularized Estimation

Figure 5.15 shows that training loss decreases with increasing R in the (un-

regularized) neuroimaging model. This suggests that the model does indeed

have the capacity to learn a relationship between the functional neuroimaging

data and MMSE. In terms of 6-fold CV test error, however, we see very little

63



Figure 5.14: Visualization of the four functional variables considered in the
model, as observed from a single patient. Radial distance is shown in the top-
left subplot, while other subplots show the three mTBM measures. The colour
scale differs for each subplot but ranges from red (for large, negative values)
to grey (zero) to blue (large, positive values). Values are of similar numerical
scale but are in different units, so we omit explicit gradient scales.
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change across the models with R = 1, . . . , 5 despite R = 5 having the lowest

test error (but only by a minute margin). This suggests that R = 1 is sufficient

for obtaining an estimate Γ̂ΓΓ that is adequately predictive of MMSE across R.

That the optimal R is not higher might also be due to low SNR. This result is

not so surprising given our simulation studies in Section 5.1, specifically for the

square or T signals, which exhibited constant or only slowly increasing test

error for large R. Post-hoc analyses on the neuroimaging data show slowly

increasing test error for R ≥ 6 (not presented here), further supporting this

conclusion.

Different algorithm settings do not influence these conclusions. Our con-

vergence criteria is sufficiently strict and none of our fitted models reached the

maximum allowed number of iterations. Taking a more slowly-decreasing se-

quence of smoothing parameters (νN)N does not affect our conclusions. Differ-

ent initialization schemes, such as randomly initializing all model parameters

(rather than setting them to zero) at the start typically produce lower training

error, but result in test error higher (up to 10-15 times as R increases beyond

5) than what we report here, suggesting greater susceptibility to overfitting.

This makes sense given the backfitting nature of Algorithm 1, which would

then be more prone to fit random noise.

Figure 5.16 compares tensor effect estimates for the unregularized R = 1

and R = 5 models. Higher R clearly allows for more complex estimates,

although the amount of noise and variation in both is not amenable to in-

terpretation. In a first attempt to address this, the next subsection applies

the same LASSO penalty as Subsection 5.1.3. However, the unregularized esti-

mates more strongly suggest that extreme variability across adjacent points on

the hippocampal surface would be better addressed by a fused LASSO penalty.

This is evident in the “checkerboard” patterns of Figure 5.16, suggesting that

a more complex penalty should be used to control estimate smoothness. We

explore this in Subsection 5.2.3 via fused LASSO penalty and continue to

compare estimates for different R throughout.
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Figure 5.15: Training loss (left) and 6-fold CV test loss (right) when R =
1, . . . , 5 for the unregularized (i.e., λ = 0) neuroimaging model. Grey lines
(and associated numbers k = 1, . . . , 5) indicate performance when the k-th
fold is the test fold. Minimum test loss, occuring at R = 5, is indicated in red.

5.2.2 LASSO-Regularized Estimation

We apply LASSO penalization to the neuroimaging model with R = 1 and

R = 5, as described in Subsection 3.3.2. An optimal value of λ = 0.015 and

λ = 0.010, respectively, is obtained through 6-fold CV: Figure 5.17 displays

training and test errors across various λ for the R = 1 model. Plots for R = 3, 5

are similar. Figure 5.18 illustrates differences between the optimal R = 1 and

R = 5 tensor effect estimates.

Despite the LASSO penalty’s elementwise application to Γ̂ΓΓ, we notice a

substantial decrease in variability across adjacent points on the hippocampal

surface. This is due to the structure assumed by the Tucker decomposition:

elements of Γ̂ΓΓ are penalized through Tucker decomposition parameters that,

individually, control values of Γ̂ΓΓ along a single row, column, or slice of our pa-

rameterization. This might suggest that the model is picking up on some true

signal, although the still-present “checkerboard” pattern (albeit with larger

regions) in the R = 1 model again suggests we impose a constraint on esti-

mate smoothness. This pattern suggests that tensor effect estimates for this

model are influenced by the choice of parameterization.
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Figure 5.16: Comparison of the estimated effect of mTBM1, visualized on the
hippocampal surface (left) and on our 3-dimensional parameterization (right),
for the unregularized R = 1 (top) and R = 5 (bottom) neuroimaging models
fit to the full dataset. Both subplots use the same colour gradient scale, so
estimates are visually comparable.
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Figure 5.17: Training loss (left) and 6-fold CV test loss (right) as a function of
the regularization parameter λ for the LASSO-penalized neuroimaging model
with R = 1. Minimum test loss, occuring at λ = 0.015, is indicated in red.

Unregularized estimates in the previous subsection showed that higher R

results in more complex estimates. This remains true with the LASSO penalty,

as shown in Figure 5.18. The R = 5 estimate does not seem as restricted to

our parameterization, although estimate’s non-smoothness again motivates the

fused LASSO penalty applied in the next subsection.

5.2.3 Enforcing Smoothness via Fused LASSO Penalty

The fused LASSO penalty is a well-known variant of LASSO as another L1

penalty. In general, fused LASSO additionally penalizes absolute differences in

pre-specified “fused” pairs of model parameters, whereas the LASSO penalty

only penalizes parameter absolute values. For more detailed information, refer

to the paper by Tibshrani et al. [79]. The fused LASSO encourages fused

parameters to be similar in value. For computational simplicity, we do not

incorporate the sparsity penalty (which sums absolute values) in our work here,

as this would require another regularization hyperparameter λ2 and would

make exploration much more computationally intensive. Visually, our results

below do not suggest the need to this sparsity penalty. We briefly outline the

application to our neuroimaging data below, using the word slice to refer to
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Figure 5.18: Comparison of the estimated effect of mTBM1, visualized on the
hippocampal surface (left) and on our 3-dimensional parameterization (right),
for the LASSO-regularized neuroimaging models with R = 1 (λ = 0.03) (top)
and R = 5 (λ = 0.03) (bottom). Both subplots use the same colour gradient
scale, so estimates are visually comparable.
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a matrix formed by holding a constant position in the first dimension of a

tensor.

Given the tensor effect estimate Γ̂ΓΓ ∈ R2×I×J for the hippocampus data,

define the fused LASSO penalty as

J(Γ̂ΓΓ) ,
2∑

k=1

I−1∑
i=1

J∑
j=1

|Γ̂ΓΓk,i,j − Γ̂ΓΓk,i+1,j|+ |ΓΓΓk,i,j − Γ̂ΓΓk,i,j+1|,

where Γ̂ΓΓk,i,J+1 , Γ̂ΓΓk,i,1. As before, we approximate the absolute value |·| with

ρν , 2ρτ=0.5,ν , denoting ρρρν as its elementwise application and Jν the approx-

imated loss. Thus, J penalizes differences between adjacent (not including

diagonally-adjacent) elements in our tensor parameterization, with no penalty

enforced between the the left and right hippocampi. The sum up to J and the

definition of Γ̂ΓΓk,i,J+1 account for the fact that the first and J-th columns of

each I × J slice are adjacent: each row in a slice corresponds to a closed loop

on the hippocampal surface. Formally, define
ˆ̃
ΓΓΓ , (Γ̂ΓΓk,i,j)k,i,j ∈ R2×I×(J+1).

We briefly describe our implementation of the fused LASSO penalty. De-

note CCC , [+1,−1] ∈ R1×2 and ∗ the usual discrete convolutional operator

applied along slices of the input image. This is the “same” convolutional oper-

ator that produces an output of the same size as its input (via zero-padding),

given a discrete kernel. For simplicity, we do not “reflect” the kernel when ap-

plying a convolution with ∗, even though this is common convention. Define

CCCH , (
ˆ̃
ΓΓΓ ∗CCC)[:,:,−(J+1)] ∈ R2×I×J

CCCV , (
ˆ̃
ΓΓΓ ∗CCC>)[:,−I,:] ∈ R2×(I−1)×J ,

where subscripts denote removal of the (J + 1)-th column and I-th row of

each slice. The (k, i, j)-th elements of CCCH and CCCV are thus Γ̂ΓΓk,i,j − Γ̂ΓΓk,i,j+1 and

Γ̂ΓΓk,i,j − Γ̂ΓΓk,i+1,j, respectively. The loss J and its derivative with respect to Γ̂ΓΓ

depend only on the elements of these matrices.

It follows that

Jν(Γ̂ΓΓ) =
∑
k,i,j

ρρρν(CCC
H)k,i,j +

∑
k,i,j

ρρρν(CCC
V )k,i,j,

Define CCCH+ , CCCH , and CCCV+ ∈ R2×I×J equal to CCCV but with slices aug-

mented below by a zero row. These matrices each have (k, i, j)-th element
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equal to one of the differences in J containing +Γ̂ΓΓk,i,j (or 0 if such a difference

does not exist). Similarly, define CCCH− ∈ R2×I×J to be equal to CCCH with slice

columns permuted via [1, . . . , J ] 7→ [J, 1, . . . , J − 1], and CCCV− ∈ R2×I×J equal

to CCCV but with slices augmented above by a zero row. These matrices each

have (k, i, j)-th element equal to one of the differences in J containing −Γ̂ΓΓk,i,j

(or 0 if such a difference does not exist).

From this, it is not hard to see that

∂Jν

∂Γ̂ΓΓ
= ρρρν

′(CCCH+) + ρρρν
′(CCCV+)− ρρρν ′(CCCH−)− ρρρν ′(CCCV−).

As per Subsection 3.3.2, we have derived all expressions needed to implement

the fused LASSO penalty (in a computationally convenient way). Our results

follow for the R = 1, 3, 5 models.

Figure 5.19 plots training and 6-told CV test loss for the R = 1, 3, 5 models.

Consistent with previous results, higher R results in marginally lower train-

ing error and little change in test error. Figure 5.20 visualizes tensor effect

estimates at the optimal λ (separately cross-validated for each R).

The optimal R = 1 model still seems influenced by the parameterization

(shown in the “checkerboard” pattern and the horizontal and vertical grey

lines), although this effect seems to decrease as R increases. The effect of

the fused LASSO penalty is visible in the smoother boundaries around the

coloured regions.

On the other hand, the R = 5 model seems best able to break from the

parameterized grid with curved nonlinear boundaries separating some areas

of positive (blue) and negative (red) effect. With nearly no change in test

error, the R = 5 model seems more practical and interpretable than the R =

1 models. Despite this, all models suggest the same general areas on the

hippocampal surface to be associated with MMSE.
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Figure 5.19: Training loss (left) and 6-fold CV test loss (right) as a function
of the regularization parameter λ for the hippocampus model regularized via
fused LASSO penalty. Tucker decomposition rank R = 1, 3, 5 is as indicated
by the colour legend. Minimum test loss for each R is noted in red.
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Figure 5.20: Comparison of the estimated effect of mTBM1, visualized on the
hippocampal surface (left) and on our 3-dimensional parameterization (right),
for the fused-LASSO-regularized neuroimaging models with R = 1 (λ = 0.03)
(top) and R = 5 (λ = 0.03) (bottom). Both subplots use the same colour
gradient scale, so estimates are visually comparable.
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Chapter 6

Conclusion

The research presented in this thesis concerns quantile regression in func-

tional data analysis. Specifically, we focused on incorporating functional vari-

ables with multidimensional input—observed on a discrete, uniform grid as

tensors—into the quantile regression framework. Our work is motivated largely

by tensor-valued neuroimaging data observed over a uniform spatial grid.

Our approach builds on the tensor GLM established by Zhou et al. [97], Li

et al. [49], and Yu’s doctoral work [90] on extensions to the quantile setting

through the Tucker tensor decomposition [46], block relaxation techniques [47],

and a smooth approximation to the quantile loss [12]. Building on their work,

we provided a more rigorous formulation of the qD-FLQR model, a new es-

timation algorithm, and proofs of corresponding algorithmic and statistical

properties which did not follow immediately from tensor GLM results. In our

baseline/exploratory results, we have highlighted avenues for future work in

this area, noted below.

The proposed algorithm uses block relaxation to split the non-convex model

estimation problem into a fixed cycle of convex updates. Future work could

improve algorithm efficiency by applying updates to parameter blocks most

in need of improvement. As discussed by de Leeuw [47], this type of gen-

eral block relaxation method, called free-steering methods, is less-studied in

the literature and has fewer established theoretical guarantees. For generality,

our algorithm currently updates the smoothing parameter νN as a function of

only νN−1. However, previous works [12], [55] have laid out residual-dependent
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rules for updating ν and convergence criteria specific to the smooth approxi-

mation used for the quantile loss. More work is required to incorporate this

into the qD-FLQR model/algorithm and establish theoretical properties, but

could improve computational efficiency in the long-run. Further improvements

to computational efficiency might come from more complex optimization pro-

cedures such as Nesterov accelerated gradient descent or proximal gradient

methods, which have garnered popularity in machine learning and non-convex

optimization.

We further extended our model to allow multiple functional covariates

and added the capacity for model regularization using a convex, differentiable

penalty. We also enlarged the class of allowable penalties to ones approximable

by convex, differentiable functions, particularly the LASSO and fused LASSO

to address background estimate noise and non-smoothness, respectively. Fur-

ther extending this framework to other non-convex and/or non-differentiable

functions such as SCAD or MCP will be an important step forward. This

development could be achieved through other optimization methods, as noted

above, or by an IWLS approach as discussed by Zhou et al. [96] and Muggeo

et al. [55].

In both simulation studies and real-world data analyses using neuroimag-

ing data, we demonstrated the superiority of our method to existing tensor

regression techniques, particularly when the error distribution is heavy-tailed.

Our neuroimaging application showed the necessity of model regularization in

producing interpretable tensor effect estimates. Future simulations or applied

studies could examine model performance on different high-rank signals, such

as the “butterfly signal” in Zhou et al [96]. Furthermore, different penalties

could be explored and compared in greater detail. This could include both the

sparsity and similarity penalties for the fused LASSO, of which the latter was

only considered in this work.
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