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ABSTRACT

Military tanks, cargo or troop carriers, missile carriers or rocket launchers often hide themselves from detection in
the forests. This plagues the detection problem of locating these hidden targets. An electro-optic camera mounted
on a surveillance aircraft or unmanned aerial vehicle is used to capture the images of the forests with possible
hidden targets, e.g., rocket launchers. We consider random forests of longitudinal and latitudinal correlations.
Specifically, foliage coverage is encoded with a binary representation (i.e., foliage or no foliage), and is correlated in
adjacent regions. We address the detection problem of camouflaged targets hidden in random forests by building
memory into the observations. In particular, we propose an efficient algorithm to generate random forests,
ground, and camouflage of hidden targets with two dimensional correlations. The observations are a sequence
of snapshots consisting of foliage-obscured ground or target. Theoretically, detection is possible because there
are subtle differences in the correlations of the ground and camouflage of the rocket launcher. However, these
differences are well beyond human perception. To detect the presence of hidden targets automatically, we develop
a Markov representation for these sequences and modify the classical filtering equations to allow the Markov
chain observation. Particle filters are used to estimate the position of the targets in combination with a novel
random weighting technique. Furthermore, we give positive proof-of-concept simulations.
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1. INTRODUCTION

1.1 Random Forests, Grounds, and Camouflages of Ground Objects

Military tanks, cargo or troop carriers, missile carriers and rocket launchers are the main modern military
ground transportation vehicles or weapons. These objects usually obscure themselves from detection by moving
or hiding under various forms of shelter . Kouritzin et al studied target tracking problems where targets obscure
themselves by moving under random blockages, see.8 In,8 the blockages are random buildings or forests of many
types classified by their shapes. However, the random forests described in that paper do not have a correlation
structure, which we will formulate in this paper. Generally, forests contain many tree species within a small
area and can be classified by the predominant composition of broadleaf trees, coniferous (needle-leaved) trees,
or mixed. The forest type varies from region to region and the foliage shape and density vary from season to
season. Moreover, the strong wind can change the features of the foliage. All the above factors may make the
observation of the forest from the electro-optic equipment mounted on a drone random. Indeed, foliage changes
as leaves move, grow, or fall but the overall density and correlations remain relatively constant from day to day.
Herein, we focus on the characterization of the density of the foliage and the correlations among the foliage. We
introduce the marginal probabilities to describe the density of the foliage and the covariances to characterize the
correlations among them in the pixel by pixel scale. The ground in the forests is either covered with grass or just
the soil. The sunshine, humidity and temperature may cause the appearance of the ground to change. Similarly
as the forests, we characterize the correlation structure of the ground in terms of the marginal probabilities and
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the covariances. Henceforth, we consider the rocket launchers as an example of the latent ground object. Rocket
launchers usually stand still in the forest, and use the turf as the camouflage to look like part of the surroundings.
The best camouflaged strategy for rocket launchers is to imitate the correlation structure of ground colors, so
the correlation structures of the rocket launcher and ground should be slightly different.

1.2 Detection Problem
The rocket launcher sits still in the forest and we use a camera mounted on a drone flying over the forest
to capture the image of the forest with hidden target rocket launchers. The electro-optic equipment can not
penetrate through the foliage, and the foliage blocks the latent ground objects from detection. However, we can
observe partial images of the ground through the gaps among the leaves. The observed color of rocket launcher
on the images is either green or brown, the inherent color on its surface and there is some type of correlation
structure among pixels. Similarly, the ground is a mixture of the grass and soil, and its color is randomly
either green or brown with some type of correlation structure. The information from within the forest called
the observations, can be easily obtained from stored historical overhead pictures and analyzed pixel by pixel
for each small area. These snapshots are characterized in terms of the correlation structure, i.e., the marginal
probabilities and pairwise correlation matrices of the columns of observed colors of the foliage and ground or
target below, both of which are correlated in the adjacent regions.

A method for generating Bernoulli variables with given marginal probabilities and pairwise covariances is
discussed in.7 In this paper, we propose an algorithm in Proposition 2.1 to generate random forests, and an
algorithm in Proposition 2.5 to generate random ground or camouflage of rocket launchers, each of them having
correlated random vectors with given marginal probabilities and pairwise correlation matrices or vectors, up to
a lag l. These algorithms are very efficient, because the random forest, ground or rocket launcher are generated
via component random variables. We also propose an algorithm in Proposition 2.7 to compute the conditional
probabilities of random ground or rocket launcher vectors which will be employed to calculate the random weight
functions for the SERP filter.

The observations are modelled as layered Markov chains; we only see part of the ground or rocket launcher
since the foliage obscures the vision of hidden targets and creates random blockages. However, knowledge of
the stochastic laws of the colors of rocket launcher and ground along with a sequence of observations over time
enables detecting the presence of a target. In a very suspicious small area, the detection problem becomes
determining whether there is a rocket launcher or not. When the plane flies over this area, a sequence of images
are captured. Since the suspicious area is small, we can assume that the rocket launcher either occupies the
entire image or not. For future work, we may consider the case that rocket launcher occupies part of the image,
which is a complicated case of the detection problems.

1.3 SERP Filter
The classical particle filter method is a two-stage process. First, particles are evolved according to the law of
the signal over time. Second, the weight for each particle is recalculated when the new observation is received.
However, most of the particles tend to be unrepresentative of the real signal, so a resampling step has been
added to the classical scheme by adapting the particles to observations. But the resampling can add unnecessary
randomness to the filtering system, thereby degrading performance. A highly effective solution is the selectively
resampling particle (SERP) filter which was first mentioned in Ballantyne, Kim and Kouritzin.4 The basic
idea is that particles are evolved as in the classical weighted method until such a time that the ratio of the
largest particle weight to the smallest particle weight exceeds some factor ρ, which is often determined by solving
a stochastic optimization problem. Then, particles are resampled pairwise until the ratio of the weights falls
within the value ρ.

2. METHODS FOR GENERATING RANDOM FOREST, GROUND, AND ROCKET
LAUNCHER

2.1 Formulation and Algorithm for Generating Random Forest
In this subsection, firstly we introduce notations to formulate the random forest, using marginal probabilities to
express foliage densities and covariances to express the foliage correlation structure. Then, we state a proposition
for generating the random forest. Lastly, we propose the corresponding algorithm for implementation.

Proc. of SPIE Vol. 7336  73360N-2

Downloaded From: http://spiedigitallibrary.org/ on 12/13/2013 Terms of Use: http://spiedl.org/terms



We consider a raster of forest images containing M ×N pixels, and each image is denoted by {ξ1, ξ2, ..., ξN},
where ξj = (ξ1

j , ξ2
j , ..., ξM

j )T (1 ≤ j ≤ N). For 1 ≤ i ≤ M , 1 ≤ j ≤ N , define

ξi
j =

{
2, if we observe tree leaf color at the (i, j)th pixel,
0, otherwise.

(1)

In this subsection, we let c1 = 0, c2 = 2 and C = {c1, c2} be the common state space of component random
variables {ξi

j}
M,N
i=1,j=1. Let qi,j,s

F = P (ξi
j = cs), for s = 1, 2, denote the density of leaves in a small area of the

forest at the (i, j)th pixel. Let l ∈ N be the lag of the Markov chain structure which we will employ to generate
the random forest. For the (i, j)th entry of the image, we denote the lags in the row and column directions
by ni = l ∧ (i − 1) and nj = l ∧ (j − 1). For the (i, j)th node, we define the most recent ni elements in the
jth column by ξl

i,j = (ξi−ni

j , ξi−ni+1
j , ..., ξi

j)
T . Define the pairwise correlations by al,i,j,x

F = cov(ξi
j , ξ

l
i,j−x), i.e.,

al,i,j,x
F = (al,i,j,x

F,v )1×(ni+1), where al,i,j,x
F,v = cov(ξi

j , ξ
i−ni+v
j−x ), 0 ≤ v ≤ ni; βl,i,j,y

F = cov(ξi
j , ξ

i−y
j ) for 1 ≤ y ≤ ni.

Both {al,i,j,x
F }M,N,nj

i=1,j=2,x=1 and {βl,i,j,y
F }M,N,ni

i=2,j=1,y=1 partly characterize the correlation structure of tree leaf densi-
ties. For fixed 1 ≤ i ≤ M , we introduce the (ni + 1)-dimensional vector el

i = (1, ..., 1)T . We assign conditional

probabilities P

(
ξi
j = cs

∣∣∣∣ ξi−1
j =mi−1

j ,...,ξ
i−ni
j =m

i−ni
j ;

ξl
i,j−1=ml

i,j−1,...,ξl
i,j−nj

=ml
i,j−nj

)
for the component random variable ξi

j by Proposition

2.1, such that the desired covariances and marginal probabilities are maintained as i and j increase:

Proposition 2.1. Suppose that M, N, l ∈ N,
{
qi,j,s
F

}M,N,2

i=1,j=1,s=1
are positive and qi,j,1

F + qi,j,2
F = 1; and al,i,j,x

F ,

for 1 ≤ x ≤ nj, is a real (ni + 1)-vector and βl,i,j,y
F , for 1 ≤ y ≤ ni, is a real number. Suppose also that{

qi,j,s
F

}M,N,2

i=1,j=1,s=1
and

{
al,i,j,x

F

}M,N,nj

i=1,j=2,x=1
and

{
βl,i,j,y

F

}M,N,ni

i=2,j=1,y=1
are such that the numbers on the RHS of

(2) are between 0 and 1. Form the conditional probabilities recursively, starting with i = 1, j = 1, as

P

(
ξi
j = cs

∣∣∣∣ ξi−1
j =mi−1

j ,...,ξ
i−ni
j =m

i−ni
j ;

ξl
i,j−1=ml

i,j−1,...,ξl
i,j−nj

=ml
i,j−nj

)
(2)

= qi,j,s
F +

nj∑
x=1

(cs − 1)(al,i,j,x
F )T (ml

i,j−x − el
j) +

ni∑
y=1

(cs − 1)βl,i,j,y
F (mi−y

j − 1)

2(ni+1)(nj+1)P

(
ξi−1

j =mi−1
j ,...,ξ

i−ni
j =m

i−ni
j ;

ξl
i,j−1=ml

i,j−1,...,ξl
i,j−nj

=ml
i,j−nj

)

for each cs ∈ {0, 2}, mi−y
j ∈ {0, 2}, y = 1, ..., ni and ml

i,j−x = (mi−ni

j−x , mi−ni+1
j−x , ..., mi

j−x)T ∈ {0, 2}ni+1,
x = 1, ..., nj, where ni = l ∧ (i − 1), nj = l ∧ (j − 1). Then, {ξj = (ξ1

j , ξ2
j , ..., ξM

j )T }N
j=1 are correlated random

vectors with component probabilities qi,j,s
F = P (ξi

j = cs), s = 1, 2, and covariance vectors al,i,j,x
F = cov(ξi

j , ξ
l
i,j−x)

and x = 1, ..., nj and βl,i,j,y
F = cov(ξi

j , ξ
i−y
j ), y = 1, ..., ni, for all 1 < i ≤ M and 1 ≤ j ≤ N .

Remark 2.2. l is the number of adjacent longitudinal or latitudinal correlations we are concerned with for each

node. ni and nj allow us to start-up when we have fewer than l rows or columns;
{

qi,j,s
F

}M,N,2

i=1,j=1,s=1
, lag correla-

tions
{
al,i,j,x

F

}M,N,nj

i=1,j=2,x=1
and

{
βl,i,j,y

F

}M,N,ni

i=2,j=1,y=1
are quantities that vary in time (e.g., qi,j,2

F is the probability

of (i, j)th pixel being leaf color). For fixed (i, j) ∈ {1, 2, ..., M}× {1, 2, ..., N}, we call al,i,j,x
F (1 ≤ x ≤ nj) x-step

correlation and βl,i,j,y
F (1 ≤ y ≤ ni) y-step correlation (e.g. both a3,i,j,2

F and β3,i,j,2
F are 2-step correlations, here

lag l = 3).

Remark 2.3. If the right hand side of (2) is not between 0 and 1 for some (i, j) ∈ {1, 2, ..., M} × {1, 2, ..., N},
some mi−1

j , ..., mi−ni

j ∈ {0, 2}, and some ml
i,j−1, ...,m

l
i,j−nj

∈ {0, 2}ni+1, then we cannot use this proposition to
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create {ξ1, ξ2, ..., ξN} with the desired marginal probabilities and covariances. However, we will see in the sequel
that when adjacent correlations are not extremely strong, the right hand side of (2) is always between 0 and 1.

Proposition 2.1 enables us to efficiently construct the random forest {ξ1, ξ2, . . . , ξN} to match the predescribed
correlation structures al,i,j,x

F = cov(ξi
j , ξ

l
i,j−x) (1 ≤ i ≤ M , 1 < j ≤ N , and x = 1, ..., l ∧ (j − 1) ), and βl,i,j,y

F =
cov(ξi

j , ξ
i−y
j ) (1 < i ≤ M and 1 ≤ j ≤ N , y = 1, ..., l ∧ (i − 1)), and marginal probabilities qi,j,s

F = P (ξi
j = cs)

(1 ≤ i ≤ M , 1 ≤ j ≤ N , cs ∈ {0, 2}) of component random variables {ξi
j}

M,N
i=1,j=1 up to a fixed lag l.

We use the following algorithm to simulate the correlated random forest {ξ1, ξ2, ..., ξN}. Repeat for the
sequence ξj , j = 1, 2, . . . , N :

1. Given the past nj = min(j − 1, l) random vectors, repeat for ξi
j , i = 1, . . . , M .

2. Given the past ni = min(i − 1, l) random variables, compute P

(
ξi
j = 0

∣∣∣∣ ξi−1
j =mi−1

j ,...,ξ
i−ni
j =m

i−ni
j ;

ξl
i,j−1=ml

i,j−1,...,ξl
i,j−nj

=ml
i,j−nj

)
,

using Proposition 2.1.

3. Generate a [0, 1]-uniform random variable U . Then,

ξi
j =

⎧⎨
⎩0 If U ≤ P

(
ξi
j = 0

∣∣∣∣ ξi−1
j =mi−1

j ,...,ξ
i−ni
j =m

i−ni
j ;

ξl
i,j−1=ml

i,j−1,...,ξl
i,j−nj

=ml
i,j−nj

)
,

2 otherwise.

When i = M , we obtain ξj = (ξ1
j , · · · , ξM

j )T .

Remark 2.4. The above algorithm based on Proposition 2.1 is optimal in the sense that the computation grows
linearly with the number of component random variables MN . Simulations based on this algorithm proved the
efficiency of this algorithm.

2.2 Formulation and Algorithm for Generating Random Ground and Rocket Launcher
We describe the algorithm to generate the random ground and the camouflage of rocket launcher, which is very
similar to the algorithm in the random forest subsection. We use notations with subscript or superscript G for
ground and R for rocket launcher. Therefore, everything developed for the ground can be applied to the rocket
launcher simply by replacing G with R.

We denote the ground image containing M × N pixels by {G1,G2, ...,GN} where Gj = (G1
j , G

2
j , ..., G

M
j )T

(1 ≤ j ≤ N). For 1 ≤ i ≤ M , 1 ≤ j ≤ N , let

Gi
j =

{
1, if we observe grass color at the (i, j)th pixel,
−1, otherwise.

(3)

In the current subsection, we let C = {c1, c2} be the common state space of component random variables
{Gi

j}
M,N
i=1,j=1, where c1 = −1 and c2 = 1. Denote by qi,j,s

G = P (Gi
j = cs) (s = 1, 2) the density of grass in a

small area of the ground at the (i, j)th pixel. We use the same notation of lag l ∈ N for the Markov chain
structure of the random ground, and keep the same implications for ni = l ∧ (i− 1), nj = l ∧ (j − 1) and Gl

i,j =
(Gi−ni

j , Gi−ni+1
j , ..., Gi

j)
T . Denote the covariances by al,i,j,x

G = cov(Gi
j ,G

l
i,j−x), i.e., al,i,j,x

G = (al,i,j,x
G,v )1×(ni+1),

where al,i,j,x
G,v = cov(Gi

j , G
i−ni+v
j−x ), 0 ≤ v ≤ ni; and βl,i,j,y

G = cov(Gi
j , G

i−y
j ) for 1 ≤ y ≤ ni.

Proposition 2.5 is an analogue of Proposition 2.1. We maintain the desired covariances and marginal probabil-

ities by assigning the conditional probabilities P

(
Gi

j = cs

∣∣∣∣ Gi−1
j =mi−1

j ,...,G
i−ni
j =m

i−ni
j ;

Gl
i,j−1=ml

i,j−1,...,Gl
i,j−nj

=ml
i,j−nj

)
for each component

random variable Gi
j .

Proposition 2.5. Suppose that M, N, l ∈ N,
{

qi,j,s
G

}M,N,2

i=1,j=1,s=1
are positive and qi,j,1

G + qi,j,2
G = 1; al,i,j,x

G ,

for 1 ≤ x ≤ nj, is a real (ni + 1)-vector and βl,i,j,y
G , for 1 ≤ y ≤ ni, is a real number. Suppose also that
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{
qi,j,s
G

}M,N,2

i=1,j=1,s=1
and

{
al,i,j,x

G

}M,N,nj

i=1,j=2,x=1
and

{
βl,i,j,y

G

}M,N,ni

i=2,j=1,y=1
are such that the numbers on the RHS of

(4) are between 0 and 1. Form the conditional probabilities recursively, starting with i = 1, j = 1, as

P

(
Gi

j = cs

∣∣∣∣ Gi−1
j =mi−1

j ,...,G
i−ni
j =m

i−ni
j ;

Gl
i,j−1=ml

i,j−1,...,Gl
i,j−nj

=ml
i,j−nj

)
(4)

= qi,j,s
G +

nj∑
x=1

cs(a
l,i,j,x
G )Tml

i,j−x +
ni∑

y=1

csβ
l,i,j,y
G mi−y

j

2(ni+1)(nj+1)P

(
Gi−1

j =mi−1
j ,...,G

i−ni
j =m

i−ni
j ;

Gl
i,j−1=ml

i,j−1,...,Gl
i,j−nj

=ml
i,j−nj

)

for each cs ∈ {−1, 1}, mi−y
j ∈ {−1, 1}, y = 1, ..., ni and ml

i,j−x = (mi−ni

j−x , mi−ni+1
j−x , · · · , mi

j−x)T ∈ {−1, 1}ni+1,
x = 1, ..., nj, where ni = l ∧ (i − 1), nj = l ∧ (j − 1). Then, {Gj = (G1

j , G
2
j , ..., G

M
j )T }N

j=1 are correlated
random vectors with component probabilities qi,j,s

G = P (Gi
j = cs), s = 1, 2, and covariance vectors al,i,j,x

G =
cov(Gi

j ,G
l
i,j−x), x = 1, ..., nj and βl,i,j,y

G = cov(Gi
j , G

i−y
j ), y = 1, ..., ni, for all 1 < i ≤ M and 1 ≤ j ≤ N .

Proposition 2.5 gives us a very efficient way of constructing the random ground {G1,G2, ...,GN} to match
the predescribed correlation structures al,i,j,x

G = cov(Gi
j ,G

l
i,j−x) (1 ≤ i ≤ M , 1 < j ≤ N , and x = 1, ..., l∧(j−1)

) and βl,i,j,y
G = cov(Gi

j , G
i−y
j ) (1 < i ≤ M and 1 ≤ j ≤ N , y = 1, ..., l ∧ (i − 1)), and marginal probabilities

qi,j,s
G = P (Gi

j = cs) (1 ≤ i ≤ M , 1 ≤ j ≤ N , cs ∈ {−1, 1}) of component random variables {Gi
j}

M,N
i=1,j=1, up to a

fixed lag l.

We use the following algorithm to simulate the correlated random ground {G1,G2, ...,GN}. Repeat for the
sequence Gj , j = 1, 2, . . . , N :

1. Given the past nj = min(j − 1, l) random vectors, repeat for Gi
j , i = 1, . . . , M .

2. Given the past ni = min(i−1, l) random variables, compute P

(
Gi

j = −1
∣∣∣∣ Gi−1

j =mi−1
j ,...,G

i−ni
j =m

i−ni
j ;

Gl
i,j−1=ml

i,j−1,...,Gl
i,j−nj

=ml
i,j−nj

)
,

using Proposition 2.5.

3. Generate a [0, 1]-uniform random variable U . Then,

Gi
j =

⎧⎨
⎩−1 If U ≤ P

(
Gi

j = −1
∣∣∣∣ Gi−1

j =mi−1
j ,...,G

i−ni
j =m

i−ni
j ;

Gl
i,j−1=ml

i,j−1,...,Gl
i,j−nj

=ml
i,j−nj

)
,

1 otherwise.

When i = M , we obtain Gj = (G1
j , · · · , GM

j )T .

Remark 2.6. The random forest and the random ground are assumed to be independent. The correlated structure
of the random forest predetermined in Proposition 2.1 is about correlations of the foliage. Similarly, the correlated
structure of random ground predescribed in Proposition 2.5 is about correlations of grass. It is assumed that there
are no correlations between foliage and grass. This assumption only simplifies the presentation of the work. In
fact, we have developed formula much stronger than (2) and (4) which allow for multiple colors instead of only
two colors. We developed formula similar to (2) or (4), with the common state space C containing more than
two values, in contrast to C = {0, 2} in subsection 2.1 or C = {−1, 1} in subsection 2.2. Therefore, we have
a formula to support a more complicated structure of the problem, and the structure takes into account the
correlations between the foliage and grass.

2.3 Formula Used in Weighting functions

The following proposition enables us to compute the conditional probabilities of N ∈ N correlated random vectors
with given marginal probabilities and pairwise correlation matrices up to a fixed lag l. For the first l−1 columns
in the image, the lag could be at most the number of the column itself. In the following context, we still use nj
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to denote the lag, and nj = l∧ (j−1) for 1 < j ≤ N . We define the marginal probabilities of each random vector
of the random ground {Gj = (G1

j , G
2
j , ..., G

M
j )T }N

j=1: qjs = P (Gj = cs) where s = (s1, ..., sM )T ∈ {1, 2}M ,
i.e., cs = (cs1 , ..., csM )T ∈ {−1, 1}M (1 ≤ j ≤ N). We define the pairwise correlation matrices of ground image
Al,j,k

G = cov(Gj ,Gj−k), i.e., Al,j,k
G = (al,j,k

G,u,v)M×M , where al,j,k
G,u,v = cov(Gu

j , Gv
j−k), for 1 < j ≤ N , 1 ≤ k ≤ nj

and 1 ≤ u, v ≤ M . We compute conditional probabilities P (Gj = cs|Gj−1 = mj−1, . . . ,Gj−nj = mj−nj ) in the
following proposition if the covariance matrices and marginal probabilities satisfy aforementioned conditions.

Proposition 2.7. Suppose that M, N, l ∈ N, qjs = P (Gj = cs) where cs = (cs1 , ..., csM )T ∈ {−1, 1}M . Suppose
that Al,j,k

G = cov(Gj ,Gj−k) for 1 < j ≤ N , 1 ≤ k ≤ nj. Then if {Gj}N
j=1 is constructed through Proposition

2.5, we have that

P (Gj = cs|Gj−1 = mj−1, . . . ,Gj−nj = mj−nj ) (5)

= qjs +

nj∑
k=1

((cs)T Al,j,k
G mj−k)

2(nj+1)MP (Gj−1 = mj−1, . . . ,Gj−nj = mj−nj )

for each cs = (cs1 , ..., csM )T ∈ {−1, 1}M and mj−k ∈ {−1, 1}M ( j = 2, ..., N , k = 1, ..., nj ), where nj =
l ∧ (j − 1).

3. SIGNAL AND OBSERVATION MODEL

We consider the signal Xk in our model to be the presence of rocket launcher in the suspicious area, which does
not change with time. The signal dynamics are completely deterministic; it is just the initial condition that is
random and unknown. In contrast to the signal model in,8 we do not model the forest as part of the signal since
including forest into the signal increases computation dimensionality significantly. Let Xk = θ, where

θ =

{
1, presence of rocket launcher,
−1, otherwise.

(6)

The particle filter is initialized with Np particles X
j
0, j = 1, · · · , Np. For the forest, although the leaves and

grass colors are green, we assume that we can tell the difference of the color between foliage and grass. For
simplicity, we say the leaves are black even though they are really just dark green. If there are leaves in the
(i, j)th pixel, we observe the black color, otherwise, the color of the rocket launcher or ground. In a battle,
the rocket launcher is always trying to hide itself and cover its surface with turf. So the surface of the rocket
launcher has random colors, either green or brown. The correlation structures of the ground and rocket launcher
are known and slightly different in our setting. The observations are made at a sequence of times {tk, k ≥ 0},
consisting of a discrete sequence Yk of images, each of which is a two-dimensional raster of pixels. Although
the camera can take photographs for a broad area, in this proof-of-concept work, we assume that each image
is a two-dimensional raster of 60 × 60 pixels and each pixel on the image represents a ground area of 1.5 × 1.5
inches. The rocket launcher would be roughly 20 × 10 feet, and occupies 150× 75 pixels. At time k, we observe
Yk = (ζk, ζk−1, . . . , ζk−59), and the new observed column is ζk = (ζ1

k , ζ2
k , . . . , ζ60

k )T when compared to Yk−1. The
observation for each node ζi

k is defined by Y i
k = ξi

k + 2−ξi
k

2 Ri
k(Xk). If we observe the leaf color black in (i, k)th bit,

ξi
k = 2, otherwise 0, and Ri

k is the random color corresponding to the rocket launcher if the rocket launcher is
present, otherwise the ground color. The value of Ri

k will be a random function of whether or not the pixel (i, k)
is within the area of the observation domain that a rocket launcher occupies. We preprocess the observations
and define the image as the most recent nk columns with length 60, i.e., Yk = (ζk, ζk−1, . . . , ζk+1−nk

) where
nk = l ∧ (k − 1).

3.1 Measure Change

We treat the observations as a multi step Markov chain and assume we know the correlation structures for both

ground and rocket launcher. Let the canonical process be Y i
j = ξi

j + 2−ξi
j

2 Gi
j under the fictitious measure Q,
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which amounts to changing Ri
j(Xj) into Gi

j , the random color corresponding to the ground. Then the weighting
function ηk is,

ηk =
dQ

dP
|
k

=
k−1∏
j=0

PGj−1→Gj

PRj−1→Rj (Xj)
, (7)

where Gj = (Gj ,Gj−1, . . . ,Gj+1−nj ) and Rj = (Rj ,Rj−1, . . . ,Rj+1−nj ) where nj = l ∧ (j − 1), i.e., Gj is the
most recent nj columns of observations of the ground color at time j and Rj is the most recent nj columns of
observations of the rocket launcher color when Xj = 1, otherwise of the ground color.

We need to approximate

μk(dx) .=
EQ[1Xk∈dxηk|FY

k ]
EQ[ηk|FY

k ]
, (8)

where EQ denotes the expectation with respect to the reference probability measure Q and the information,
{FY

k = σ(Y0, · · · , Yk)} is generated by the observations up to time k. Sampling independent signal particles
{X

i
k, k = 1, 2, ...}∞i=1 from the signal distribution. The weights are

ηi
k =

dQ

dP
=

k−1∏
j=0

PGj−1→Gj

PRj−1→Rj (Xi
j)

. (9)

By deFinnetti’s theorem and the law of large numbers,

1
Np

Np∑
i=1

ηi
kδXi

k
(dx) ⇒ μk(dx), (10)

then the approximated conditional distribution of the signal state is calculated via

θ̂ = EP (Xk|FY

k ) =
∫

xμk(dx)
μk(1)

≈
1

Np

∑Np

i=1 ηi
kX

i
k

1
Np

∑Np

i=1 ηi
k

. (11)

3.2 Approximation of Transition Probabilities

By looking at the expression of the weighting function in (7), we need the ratios of transition probabilities in the
computation of the weighting function. When there is no target in the area, Gj = Rj for all j, and the transition
probabilities PGj−1→Gj , and PRj−1→Rj are the same and hence the weighting function is just 1. When there is a
target underneath the forest, we do not know what the actual colors of the rocket launcher and the ground are
for those areas obscured by the foliage. To be able to compute the weighting function, we need an approximation
to what is happening underneath the trees. As we know the correlation structures for the rocket launcher and
the ground, we can make use of this information and fill in the color of those obscured portions using Proposition
2.5, and then evaluate the state-dependent transition probability PRj−1→Rj (Xj) and PGj−1→Gj (Xj) for the chain
Rj and Gj separately through Proposition 2.7.

4. RESULTS

4.1 Simulation Description

In this simulation, we do not consider extremely dense forest, since the obscuration by foliage corrupts the
measurement of the colors of rocket launcher or ground and makes the detection problem very hard. To apply
Proposition 2.1 to generate forests, we specify the correlation structure characterized with time-homogeneous
marginal probabilities and pairwise correlations between component random variables with a lag l = 2. Specifi-
cally, in experiment 1, for each pixel, the observation is foliage with a probability 0.5, and a gap with a probability
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Figure 1. A camouflaged weapon compared with ground (white corresponding to brown color and grey corresponding to
green color) under foliage (black); can you tell them apart?

0.5, and the covariances are 0.05 and 0.01 for 1-step and 2-step lags separately. We take the correlation struc-
tures of the rocket launcher and ground to be close to each other in terms of marginal probabilities, otherwise,
the detection problem becomes trivial since we can easily distinguish the target and ground with our eyes. We
choose equal marginal probabilities for the observation colors of the target and the covariances are 0.1 and 0.05
for 1-step and 2-step lags separately. For the ground, the observation is grass with a probability 0.6, and soil
with a probability 0.4, and the covariances are 0.04 and 0.01 for 1-step and 2-step lags separately. We draw the
pictures of the images with the rocket launcher present and just the ground in figure 1. We are also interested
in the performance of our algorithm for the dense forest case. In experiment 2, we set the density of the forest
to 0.8 and all other parameters are set as the same as experiment 1.

Next we make the detection problem more difficult by specifying much closer correlation structures between
the rocket launcher and the ground. In experiment 3, we choose equal marginal probabilities and the covariance
0.02 and 0.01 for 1-step and 2-step lags separately for the observation colors of the ground. The marginal prob-
abilities of the rocket launcher and ground are exactly the same, but covariances are a little bit more different
when compared with experiment 1. Any other parameters are set exactly the same as experiment 1. Next, in
experiment 4, we consider the sparse forest. Specifically, for each pixel, the observation is foliage with probability
0.2, and a gap with probability 0.8.

4.2 Filtering Results

We present the detection performance on small areas with either rocket launcher or ground present. The detection
probability P is calculated as the number of correct detections divided by the number of trials NT = 100; we
use an equal number of areas of rocket launcher present or just ground NRL = NG = 50. We also present the
performance in terms of the Type I and Type II errors, i.e., a miss and false alarm in radar terminology. The
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missing probability Pm is calculated as 1 - the correct detection percentage of rocket launcher. The false alarm
Pf is calculated as 1 - the correct detection percentage of the ground. The number of particles initialized are
200.

Exp PRL=B , Cov1, Cov2 PG=B, Cov1, Cov2 PTree=Black, Cov1, Cov2 Pm Pf P
1 0.5, 0.1, 0.05 0.4, 0.04, 0.01 0.5, 0.05, 0.01 0.04 0.0 0.98
2 0.5, 0.1, 0.05 0.4, 0.04, 0.01 0.8, 0.05, 0.01 0.5 0.0 0.75
3 0.5, 0.1, 0.05 0.5, 0.02, 0.01 0.5, 0.05, 0.01 0.0 1 0.5
4 0.5, 0.1, 0.05 0.5, 0.02, 0.01 0.2, 0.05, 0.01 0.0 0.28 0.86

4.3 Remark
The results coincide with what we expect. In experiment 1, the result is very good. In experiment 2, we consider
the dense forests, but other parameters are set exactly the same as those in experiment 1. The performance
is worse when compared with the previous experiment and it shows the density of the forest does matter and
affect the performance greatly. The large miss, 0.5, can be partly explained by the random weighting functions.
When there is a target underneath the forest, we approximate the weighting function by randomly filling in the
color of those obscured portions. In the process of estimating the weighting function, we introduce more errors
which lead to higher miss, especially when the marginal probabilities of the rocket launcher and the ground are
much more different. In experiment 3, we set the marginal probabilities of the rocket launcher and the ground
are exactly the same but the covariances are much more different. The outcome shows that the false alarm is 1,
i.e., a rocket launcher is frequently detected when none is present. Since the marginal probabilities of the rocket
launcher and the ground are the same, the 1-step and 2-step covariances are critical in the detection process.
But the lager difference in covariances does not contribute too much to improve the performance in the relatively
dense foliage case. In the last experiment, we consider the sparse forests and the performance is good. The false
alarm rate 0.28 is relatively high compared to the miss 0. The density of the forest plays an important role,
since the lower density allows us to take advantage of the 1-step and 2-step covariances information . Then the
improvement of the correct detection probability from experiment 3 to experiment 4 can be explained. We only
chose 200 particles in the simulation, the performance could be improved if more particles are used.

5. CONCLUSION

In this paper, we generalize the method of simulating correlated binary variables to correlated vectors. We
apply filtering to solve the detection problem in the setting of correlation structures formulated by marginal
probabilities and pairwise correlation matrices. We also propose a very novel random weighting technique.
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