
Sparse Representation Neural Networks for Online
Reinforcement Learning

by

Vincent Liu

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Statistical Machine Learning

Department of Computing Science

University of Alberta

c© Vincent Liu, 2019

Abstract

In this thesis, we investigate sparse representations in reinforcement learning.

We begin by discussing catastrophic interference in reinforcement learning with

function approximation, and empirically investigating difficulties of online re-

inforcement learning in both policy evaluation and control. We then demon-

strate that learning a control policy incrementally with a representation from a

standard neural network fails in classic control domains, whereas learning with

a sparse representation is effective. We provide evidence that the reason for

this is that the sparse representation avoids catastrophic interference. Lastly,

we discuss how to learn such sparse representations. We explore the idea of

Distributional Regularizers, where the activation of hidden nodes is encour-

aged to match a particular distribution that results in sparse activation across

time. We identify a simple but effective way to obtain sparse representations,

not afforded by previously proposed strategies, making it more practical for

further investigation into sparse representations for reinforcement learning.

ii

Preface

This thesis is an original work by Vincent Liu. Parts of it are based on publica-

tion as Vincent Liu, Raksha Kumaraswamy, Lei Le, and Martha White, “The

Utility of Sparse Representations for Control in Reinforcement Learning”. In

Proceedings of The Thirty-Third AAAI Conference on Artificial Intelligence,

2019. Raksha Kumaraswamy and I developed the regularization method, de-

signed and performed experiments, and wrote the paper together. Lei Le

provided comments on the paper. Martha White was the supervisory author,

provided comments and edited the paper for publication.

iii

To my family.

iv

Acknowledgements

I would like to thank my supervisor Martha White for her support. She has

spent numerous hours discussing research with me, and deeply influenced me

as a researcher. I would also like to thank Raksha Kumaraswamy. She helped

me a lot when I started my journey in this field and always gave me useful

suggestions. I am fortunate to meet a group of wonderful people #boba guys:

Wesley Chung, Sungsu Lim and Muhammad Zaheer. I am also thankful for my

collaborators, friends and colleagues for their help: Yi Wan, Taher Jaferjee,

Somjit Nath, Han Wang, Hengshuai Yao, Chenjun Xiao, Prof. Or Sheffet,

Lei Le, Andrew Jacobsen, Roshan Shariff, Prof. Adam White, and Brendan

Bennett. I would also like to thank all RLAI and AMII members for their help

during the past two years.

Thank my parents and my sister for their encouragement and support.

v

Contents

1 Introduction 1

2 Background 5
2.1 Markov Decision Process . 5
2.2 Reinforcement Learning Algorithms 6
2.3 Linear Function Approximation 8
2.4 Non-linear Function Approximation with Neural Networks . . 9

3 Interference in Online Reinforcement Learning 11
3.1 Defining Interference in RL 12
3.2 Hypothesis about Interference in RL 13
3.3 Testing the hypothesis . 14

3.3.1 Experimental setup . 14
3.3.2 Algorithms . 15
3.3.3 Prediction . 16
3.3.4 Control . 17

3.4 Experimental Details . 18

4 The Utility of Sparse Representation for Control 20
4.1 Control Performance with SR-NN 20
4.2 The Effect of Regularization 22
4.3 Evaluation of Learned Representations 23
4.4 Experimental Details . 27

5 Learning Sparse Representations with Neural Networks 29
5.1 Distributional Regularizers for Sparsity 29
5.2 Evaluation of Distributional Regularizers 33
5.3 Experimental Details . 37

6 Discussion and Future Work 39
6.1 Summary of Contributions . 39
6.2 Future Directions . 40

References 41

vi

List of Tables

4.1 Activation overlap in Mountain Car and Puddle World. Overlap
and orthogonality are averaged over all state pairs. Non-dead
neurons are the number of features which are non-zero for some
states. The numbers are averaged over 30 runs. The standard
errors are small (less than 1 for Overlap and Non-dead Neurons,
and less than 0.01 for Orthogonality) so we do not report the
error bars here. 25

vii

List of Figures

1.1 A neural network with dense connections producing a sparse
representation: Sparse Representation Neural Network (SR-
NN). The green squares indicate active (nonzero) units, mak-
ing a sparse last hidden layer where only a small percentage
of units are active. This contrasts a network with sparse con-
nections—which is often also called sparse. Sparse connections
remove connections between nodes, but are likely to still pro-
duce a dense representation. 2

3.1 Learning curves for Sarsa(0). All learning curves are averaged
over 30 runs, and are plotted with exponential moving average
(β = 0.1) and one standard deviation of the average. 17

3.2 Learning curves for Q-learning. All learning curves are averaged
over 30 runs, and are plotted with exponential moving average
(β = 0.1) and one standard deviation of the average. 18

4.1 Learning curves for Sarsa(0) comparing SR-NN, Tile Coding
and vanilla NN in the four domains. All learning curves are
averaged over 30 runs, and are plotted with exponential moving
average (β = 0.1). 21

4.2 Learning curves for Sarsa(0) comparing SR-NN to the regular-
ized representations. All learning curves are averaged over 30
runs, and are plotted with exponential moving average (β =
0.1). 23

4.3 Learning curve during the representation learning phase with
regularization methods. All curves are averaged over 30 runs. . 23

4.4 The activation maps for 16 randomly chosen neurons for dif-
ferent representations—each cell in the heatmap corresponds to
the complete 2D state space. 26

4.5 Instance sparsity comparing SR-NN to the regularized variants
and vanilla NN. The percentage evaluation is designed to disre-
gard units that are never active across all samples in the batch
(dead units). The numbers are averaged over 30 runs. 26

5.1 Instance sparsity as evaluated on a batch of test data compar-
ing Exp+KL and Exp+SKL to NN. While Exp+KL can make
representations denser than just NN, Exp+SKL always results
in sparser representations. The numbers are averaged over 30
runs. 34

5.2 Learning curves for Sarsa(0) with different Distributional Reg-
ularizers. All learning curves are averaged over 30 runs, and are
plotted with exponential moving average (β = 0.1). 36

viii

5.3 Instance sparsity as evaluated on a batch of test data comparing
with different Distributional Regularizers. The numbers are
averaged over 30 runs. 36

5.4 Learning curves for Sarsa(0) comparing SR-NN to previous pro-
posed sparse representations learning strategies. All learning
curves are averaged over 30 runs, and are plotted with expo-
nential moving average (β = 0.1). 36

5.5 Instance sparsity comparing SR-NN to previous proposed sparse
representations learning strategies. The numbers are averaged
over 30 runs. 37

ix

Chapter 1

Introduction

Learning performance in artificial intelligence systems is highly dependent on

the data representation. An effective representation captures important at-

tributes of the state (or instance), as well as simplifies the estimation of predic-

tors. Consider a reinforcement learning agent. A local representation enables

the agent to more feasibly make accurate predictions for that local region,

because the local dynamics are likely to be a simpler function than learning

global dynamics. Additionally, such a representation can help prevent forget-

ting or interference [12, 33], by only updating local weights, as opposed to

dense representations where any update would modify many weights. At the

same time, it is important to have a distributed representation [7, 8], where the

representation for an input is distributed across multiple features or attributes,

promoting generalization and a more compact representation.

Such properties can be well captured by sparse representations: those for

which only a few features are active for a given input (Figure 1.1). Enforc-

ing sparsity promotes identifying key attributes, because it encourages the

input to be well-described by a small subset of attributes. Sparsity, then,

promotes locality, because local inputs are likely to share similar attributes

(similar activation patterns) with less overlap to non-local inputs. In fact,

many handcrafted features are sparse representations, including tile coding

[51, 52], radial basis functions and sparse distributed memory [21, 42]. Other

useful properties of sparse representations include invariance [17, 45]; decor-

related features [11]; improved computational efficiency for updating weights

1

fully
connected

fully
connected

x1

:

x2

xn

fully
connected yfully

connected

SPARSE
REPRESENTATION

SUPERVISION
SIGNAL

SPARSE REPRESENTATION NEURAL NETWORK

Figure 1.1: A neural network with dense connections producing a sparse repre-
sentation: Sparse Representation Neural Network (SR-NN). The green squares
indicate active (nonzero) units, making a sparse last hidden layer where only
a small percentage of units are active. This contrasts a network with sparse
connections—which is often also called sparse. Sparse connections remove con-
nections between nodes, but are likely to still produce a dense representation.

in the predictor, as only weights corresponding to active features need to be

updates; and enabling linear separability in the high-dimensional space [10],

which facilitates the learning of a simple linear predictor. Further, sparse

distributed representations have been observed in the brain [2, 38, 39].

Traditionally, sparse representations have been common for control in re-

inforcement learning, such as tile coding and radial basis functions [52]. They

are effective for incremental learning, but can be difficult to scale to high-

dimensional inputs because they grow exponentially with input dimension.

Neural networks much more feasibly enable scaling to high-dimensional in-

puts, such as images, but can be problematic when used with incremental

training. Instead, techniques like experience replay and target networks, in-

spired by batch methods such as fitted Q-iteration [43], have been necessary

for many of the successes of control with neural networks. We provide some

evidence in this paper that this modification is needed with dense, but not

sparse, networks because of interference in the value function. Local repre-

sentations, however, are much less likely to suffer from interference. Learned

sparse representations, then, are a promising strategy to obtain the benefits

2

of previously common, fixed sparse representations with the scaling of neural

networks.

Learning sparse representations, however, does remain a challenge. There

have been some approaches developed to learning sparse representations incre-

mentally, particularly through factorization approaches for dictionary learning

[24, 29, 30] or for general sparse distributions [25, 37, 38, 40, 41, 53], like

Boltzmann machines. In sparse coding, for example, the sparse representation

learning problem is formulated as a matrix factorization, where input instances

are reconstructed using a sparse, or small subset, of a large dictionary. Many

of the methods for general sparse distribution, however, are expensive or com-

plex to train and those based on sparse coding have been found to have serious

out-of-sample issues [24, 26, 30].

There are fewer methods using feedforward neural network architectures.

Certain activation functions—such as linear threshold units (LTU) [34] and

rectified linear units (ReLU) [15]—naturally provide some level of sparsity, but

provide no such guarantees. Early work on catastrophic interference investi-

gated some simple heuristics for encouraging sparsity, such as node sharpening

[12]. Though catastrophic interference was reduced, the resulting networks

were still quite dense.1 k-sparse auto-encoders [31] use a top-k constraint per

instance: only the top k nodes with largest activations are kept, and the rest

are zeroed. Winnner-Take-All auto-encoders [32] use a k% response constraint

per node across instances, during training, to promote sparse activations of

the node over time. These approaches, however, can be problematic—as we

reaffirm in this work—because they tend to truncate non-negligible values or

produce insufficiently sparse representations. Another line of work has investi-

gated learning or specifying sparse activation functions for neural networks [3,

26, 41, 54], but used a sigmoid activation which is unlikely to result in sparse

1There have been strategies developed for catastrophic interference that rely on rehearsal
or dedicating subparts of the network to particular tasks. This work is a complementary
direction for understanding catastrophic interference for a sequential multi-task setting. We
explore specifically the utility of sparse representations for alleviating interference for RL
agents learning incrementally on one task, but do not necessarily imply that it is the only
strategy to alleviate such interference. The comparisons in this work, therefore, focus on
other strategies to learn sparse representations.

3

representations. They define sparsity based on norms of the vector, rather

than activation level.

In summary, the main contributions of this dissertation are the following:

• We empirically demonstrate failures in online reinforcement learning

with function approximation, more specifically, with representations pro-

duced by neural networks (Chapter 3).

• We demonstrate the utility of sparse representations for control in online

reinforcement learning, and provide evidence that sparsity helps avoid

interference (Chapter 4).

• We investigate a simple strategy to obtain sparse representations with

neural networks: regularizing the distribution of activation to match

a desired distribution. We propose a modification to the KL, called

the Set-KL, and show that the resulting regularized objective produces

effective sparse representations (Chapter 5).

4

Chapter 2

Background

In this chapter, we introduce some basics of reinforcement learning which are

necessary to understand this thesis. We begin with a formal definition of a

Markov Decision Process (MDP), and then present reinforcement learning al-

gorithms for solving MDPs. Finally, we discuss linear function approximation

and non-linear function approximation.

2.1 Markov Decision Process

In reinforcement learning (RL), an agent interacts with its environment, receiv-

ing observations and selecting actions to maximize a reward signal. We assume

the environment can be formalized as a Markov decision process (MDP). An

MDP is a tuple (S,A,Pr, R, γ) where S is a set of states, A is an set of actions,

Pr : S ×A×S → [0, 1] is the transition probability, R : S ×A×S → R is the

reward function, and γ is the discount factor ∈ [0, 1] which define the relative

value of future rewards.

The agent’s goal is to find a policy which maximizes the expected return.

The return Gt is defined as the discounted sum of rewards:

Gt :=
∞∑
k=0

γkRt+k+1

where Rt is the reward received at time t. A policy π : S → A is a function

mapping from the states to the actions1. Given a policy π, the value of a state

1For simplicity, we only consider deterministic policies here. In general, policies can be
stochastic.

5

s is the expected return starting from state s and thereafter following policy

π. Formally, we define the value function V π by

V π(s) := Eπ[Gt|St = s], ∀s ∈ S

where Eπ is the expectation given that actions are selected based on policy π.

Similarly, the action-value of a state s and an action a is the expected return

starting from state s, taking action a and following policy π. We define the

action-value function by

Qπ(s, a) := Eπ[Gt|St = s, At = a], ∀s ∈ S and ∀a ∈ A.

We also define the optimal value function as the best value that can be attained

for any policy, i.e.,

V ∗(s) := max
π

V π(s), ∀s ∈ S

and the optimal action-value function as

Q∗(s, a) := max
π

Qπ(s, a), ∀s ∈ S and ∀a ∈ A.

A policy π is an optimal policy if it achieves the optimal action-value in

all state action pairs, i.e.,

Qπ(s, a) = Q∗(s, a), ∀s ∈ S and ∀a ∈ A.

We say that a policy π is greedy with respect to an action-value function Q,

and write π = πQ if, for all s ∈ S,

πQ(s) = arg max
a∈A

Q(s, a)

It is known that a greedy policy with respect to Q∗ is an optimal policy.

Therefore, knowing Q∗ is sufficient for behaving optimally.

2.2 Reinforcement Learning Algorithms

In practice, the transition probability and reward function are usually un-

known. The agent has to directly estimate Qπ from experience—a sequence

6

of states, actions and rewards. Here we describe three reinforcement learning

algorithms: Monte Carlo Methods, Sarsa and Q-Learning.

Monte Carlo methods estimate the action-value function from sample re-

turns, and improve the policy with respect to the estimated action-value func-

tion. We use Q to denote the estimated action-value function, where the value

of each state-action pair can be separately stored. The agent executes its

current policy until an episode ends, and updates the estimated action-value

function for all state action pairs in the episode according to

Q(St, At)← Q(St, At) + α[Gt −Q(St, At)]

where α is a step size and Gt is the actual return following time t.

Monte Carlo is an offline method, where all updates are performed at

the end of an episode. On the other hand, Sarsa and Q-learning are online

methods where an update is performed at each time step. The idea is based on

temporal difference learning [50], which bootstraps from the current estimate

as a target.

Sarsa updates the action-value function for the current behavior policy by

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]

and it acts near-greedily according to the estimated action-value function. It is

an on-policy control method since it estimates the action-value for its behavior

policy.

Q-learning [56] is an off-policy control algorithm. It directly estimates the

optimal action-value function while following a behavior policy π. The update

rule is

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)].

Q-learning converges to the optimal action-value Q∗ with probability 1, under

certain assumptions on the behavior policy and the sequence of step-size. In

practice, we can use an ε-greedy policy as the behavior policy. The agent

selects an action randomly with probability ε and selects a greedy action with

respect to the current action-value estimate with probability 1 − ε.
7

2.3 Linear Function Approximation

In the previous section, we assumed that the state space was finite and the

value of each state can be separately stored. These are called tabular meth-

ods. We can extend these methods to very large or continuous state space

with function approximation. In such cases we seek to find a good function

approximation to approximate the value functions.

The simplest function approximation is a linear function, where the true

value function is approximated by a linear function parameterized by a weight

vector w ∈ Rd:

Qπ(s, a) ≈ Qw(s, a) := φ(s, a)>w (2.1)

where φ : S ×A → Rd is the representation of a state action pair.

Similar to the tabular methods, we have Monte Carlo update:

wt+1 ← wt + α[Gt − φ(St, At)
>wt]φ(St, At),

semi-gradient Sarsa update:

wt+1 ← wt + α[Rt+1 + γφ(St+1, At+1)
>wt − φ(St, At)

>wt]φ(St, At),

and semi-gradient Q-learning’s update:

wt+1 ← wt + α[Rt+1 + γmax
a

φ(St+1, a)>wt − φ(St, At)
>wt]φ(St, At).

The Sarsa and Q-learning updates are not in fact a true gradient descent

method since they ignore the effect on the target when changing the weight

vector. Therefore, we refer to such updates as semi-gradient methods.

There are various methods to build a representation function, including

Polynomials, Fourier basis, coarse coding and tile coding [52]. Tile coding uses

overlapping grids to partition the state space, to convert continuous states to

binary feature vectors. Each partition is called a tiling, and each element of a

partition is called a tile. The representations generated by it are sparse and

distributed based on a static hashing technique.

8

2.4 Non-linear Function Approximation with

Neural Networks

Linear function approximation with tile coding has made great success in solv-

ing reinforcement learning tasks [51]. However, designing good handcrafted

features for linear functions requires non-trivial effort, especially for high-

dimensional state space. Neural networks enable automating feature extrac-

tion from data. They are an approach to non-linear function approximation in

reinforcement learning. This combination is usually called deep reinforcement

learning.

A neural network typically uses a linear layer on the last layer, hence we

can view a value function as a two-part approximation with a representation

function and a linear weight:

Qπ(s, a) ≈ Qw,θ(s, a) := φθ(s, a)>w (2.2)

where w ∈ Rd is the weights in the last layer and φθ : S × A → Rd is the

representation function learned by the network with weights θ, composed of

all the hidden layers in the network. The function φθ(s, a) corresponds to the

last layer in the network, with θ the weights of the network. The efficacy of the

action-value approximation, therefore, relies on the representation φθ(s, a).

In most deep reinforcement learning algorithms, the representation and

weight are learned concurrently. Let β = [w,θ], the online update for non-

linear semi-gradient Q learning is

βt+1 ← βt + α[Rt+1 + γmax
a
Qβt(St+1, a)−Qβt(St, At)]∇βtQβt(St, At).

where the gradient is a vector of first partial derivatives

∇βtQβt(St, At) = (
∂Qβt(St, At)

∂βt1
, ...,

∂Qβt(St, At)

∂βtN
).

Recently, Mnih et al. [35] proposed the Deep-Q-Network (DQN), which

uses experience replay [27] and a target network. It stores transitions in a

replay buffer D when interacting with the environment. When it performs an

update, it samples a mini-batch of transitions {(Si, Ai, Ri, S
′
i)}Bi=1 from D, and

9

optimizes the mean squared error between Q function and fixed targets:

βt+1 ← βt + α
1

B

B∑
i=1

[(Ri + γmax
a′

Q̄(S ′i, a
′)−Qβt(Si, Ai))∇βtQβt(Si, Ai)]

where Q̄ is the target network which are updated periodically. These two

techniques have been found to stabilize the training process [35, 43] and are

widely used in most deep reinforcement learning algorithms.

Alternately, the representation parameters θ and linear weight w can be

optimized with different objectives [9], or the representation can be pre-trained

and fixed while optimizing for the linear weight [6, 24]. In the later case, the

approximation reduces to linear function approximation with a fixed represen-

tation φθ.

10

Chapter 3

Interference in Online
Reinforcement Learning

In online reinforcement learning, an agent updates its value function or policy

at each time step t. Online updating uses limited memory and computation,

and can quickly react to new information. It is one of the important charac-

teristics of temporal difference learning [50]. We are particularly interested in

a fully online RL algorithm: updating the value function based on the current

transition {St, At, Rt, St+1} at each time step. A successful example of such

online RL algorithms with function approximation is tile coding, which has

been shown to solve benchmark RL tasks [51]. On the other hand, non-linear

function approximation with neural networks often fails to solve simple RL

tasks in a fully online setting [14].

When neural networks are used for function approximation, an update on

the weights is likely to change the function globally. After seeing a sequence

of new examples, the agent might forget previously learned information. This

issue is referred to as catastrophic interference [13, 33, 49], and previous works

on catastrophic interference focus on sequential supervised learning and multi-

task learning [16, 23, 28, 44]. In this chapter, we investigate this phenomenon

in online RL algorithms with function approximation in a single-task setting.

11

3.1 Defining Interference in RL

Interference is tied to generalization in function approximation. Therefore, in

this section, we first study generalization between a pair of examples. Intu-

itively, when an agent performs an update based on an example, the update

can generalize to another example positively (positive generalization), nega-

tively (interference), or no effect (no generalization).

Let’s consider a simple case: generalization in an estimated action-value

function for policy evaluation. Given a policy π, we denote Qπ as the true

action-value function and Qθ as the estimated action-value function, param-

eterized by the parameter θ. A natural objective function to minimize is the

Mean Squared Value Error (MSVE) [52], defined as

J(θ) := Es∼d(·),a∼π(·|s)[(Qπ(s, a)−Qθ(s, a))2]

where d is the stationary distribution induced by the policy π.

In RL, we use some approximation to the true value as our target output.

We denote the target output of the tth example by Ut ∈ R. When we perform

an update on the tth example (st, at), the update is computed by

θt+1 = θt + α[Ut −Qθt(st, at)]∇θtQθt(st, at)

where α is the step size. The pairwise interference between two examples

(st, at) and (si, ai) can be defined as change in the objective function for the

example (si, ai) given the update based on the example (st, at):

PI(θt; (st, at), (si, ai)) := J(θt+1; si, ai)− J(θt; si, ai). (3.1)

If PI is negative, the error decreases for the example (si, ai) and positive

generalization occurs. Negative PI corresponds to a measure of positive gen-

eralization. If PI is positive, the error increases and interference occurs. The

update based on example (st, at) results in unlearning of the example (si, ai).

Note that in tabular methods, there is no generalization between states so

PI = 0 for any pair of examples.

12

Equation (3.1) can be approximated by a Taylor expansion:

PI(θt; (st, at), (si, ai))

≈ (θt+1 − θt)
∂J(θt; si, ai)

∂θt
= 2α[Ut −Qθt(st, at)][Q

π(si, ai)−Qθt(si, ai)]∇θtQθt(st, at)
>∇θtQθt(si, ai).

(3.2)

This equation provides some insight into previous analysis of generalization in

function approximation. The term ∇θtQθt(si, ai)
>∇θtQθt(st, at) is the neural

tangent kernel (NTK) [20] of the Q function, which has been used to analyze

generalization in the Q function across state-action pairs [1]. However, to

determine whether positive generalization or interference occurs, we also need

to know [Ut −Qθt(st, at)] and [Qπ(si, ai)−Qθt(si, ai)].

The PI is difficult to measure since it requires the true values. Nonetheless,

it provides a way to think about interference in reinforcement learning. When

we update the value of a state which has high PI with many other states, the

update might cause instability in training. The PI informs the hypothesis in

the next section.

3.2 Hypothesis about Interference in RL

Generalization has been extensively studied in supervised learning. We nor-

mally assume that we have a training set D = {(st, at), ut}nt=1, where each

input (st, at) is an identically and independently distributed (i.i.d.) sample

from a fixed input distribution and the target output ut is sampled from a

fixed conditional distribution. However, in online reinforcement learning, we

face new challenges for both prediction and control:

1. When an agent interacts with an environment, it receives a sequence of

observations, which are likely to be temporally correlated.

2. The agent updates the value estimate based on one current sample, which

might result in high variance of the gradient [55].

3. The agent uses its own estimates as targets, which depend on the pa-

rameters and hence are non-stationary.

13

Therefore, we aim to investigate the following hypothesis:

In a setting with significant pairwise interference, any of the three

issues mentioned above results in instability in training and failure

to learn accurate value estimates.

3.3 Testing the hypothesis

We test our hypothesis in linear function approximation with a learned repre-

sentation from a neural network. We design experiments to remove each issue

individually with a different algorithm, and report the performance in both

prediction and control.

3.3.1 Experimental setup

The experimental setup is as follows. We first pre-train a neural network on a

batch of data to extract a representation, to be used for prediction or control.

Learning a good representation φθ(s, a) in the case of finite actions can be

transformed to learning a good representation of the form φθ(s), and using

that to represent the action-value function as:

Qw,θ(s, a) := φθ(s)>wa. (3.3)

Here, φθ(s) is the representation of the state s, which is used in conjunction

with the linear predictor wa to estimate action-values for action a across the

state space. Note that this decomposition does not allow generalization over

actions.

This learned representation is then fixed, and used for estimating action-

values in prediction and control. We use a fully online Sarsa algorithm for

learning the action-value function and a fully online Q-learning for learning

the optimal action-value function, where only the weights w on the last layer

are updated. Additional details on this experiment are provided in Section

3.4.

We choose this two-stage training regime to remove confounding factors in

difficulties of training neural networks incrementally and also to keep a con-

14

sistent experimental setup with the next chapter. Our goal here is to identify

the issues in learning value function online, not necessarily in learning the neu-

ral network. The networks are trained with an objective for learning values,

on a large batch of data generated by a policy that covers the input space;

the learned representations are capable of representing the true values. We

investigate their utility for online learning. Outside of this carefully controlled

experiment, we advocate for learning the representation incrementally, for the

task faced by the agent.

An easy objective to train connectionist networks with simple backpropa-

gation is the Mean Squared Temporal Difference Error (MSTDE) [50]. For a

given policy, the MSTDE is defined as:

Es∼d(·)[(Rt+1 + γt+1φθ(St+1)
>wv − φθ(St)

>wv)
2|St = s] (3.4)

where γt+1 = γ if St+1 is not a terminal state and γt+1 = 0 if St+1 is a terminal

state. Here, d denotes the stationary distribution over the states induced

by the given policy, and θ and wv are parameters that can be learned with

stochastic gradient descent. Therefore, given experience generated by a policy

that explores sufficiently in an environment, a strong function approximator

(a dense neural network) can be trained to estimate useful features, φθ(s).

3.3.2 Algorithms

To remove the issues of (1) correlated samples; (2) high variance of gradient

based on one sample; and (3) non-stationarity of the data distribution, we

employ (1) experience replay; (2) mini-batch updates; and (3) target networks.

These are commonly-used techniques to enable online learning. Experience

replay provides decorrelated samples from past experience and sampling from

a replay buffer can be seen as sampling i.i.d. data from a set of transitions

following mixed policies. Mini-batch updates average the gradients over a

mini-batch of samples to reduce the variance of the update. Target networks

reduce the non-stationarity of target outputs during training by updating the

target outputs periodically.

We test all combinations of these three techniques, denoted as

15

1. Buffer-Batch: mini-batch updates sampling from a buffer.

2. Batch: mini-batch updates with recent samples.

3. Buffer : stochastic updates with a single example sampling from a buffer.

4. Online: update with an online sample.

5. Target-Buffer-Batch: Buffer-Batch plus target network.

6. Target-Batch: Batch plus target network.

7. Target-Buffer : Buffer plus target network.

8. Target-Online: Online plus target network.

3.3.3 Prediction

We report the Root Mean Squared Value Error (RMSVE) for predicted action-

values, which is evaluated as follows:

RMSVE =

√∑
(s,a)∈Dtest(Q̂(s, a)−Qπ(s, a))2

Dtest

(3.5)

where Dtest is a set of state and action pairs, Q̂ is the estimated value func-

tion and Qπ(s, a) is the true value function computed using Monte Carlo roll-

outs [46].

Figure 3.1 shows the learning curve with a constant step-size Sarsa in three

benchmark domains: Mountain Car, Puddle World and Acrobot. Buffer-Batch

achieves the lowest testing error across all domains, but using either Batch or

Buffer is not as effective. Target-Batch also learns good predictions in Puddle

World and Acrobot. The target network in general seems to provide little help

and largely slows down learning. Overall, the result suggests that the learned

representation is able to represent accurate action-values, however, learning

fully incrementally (without i.i.d. samples and mini-batch update) with such

representation is less effective.

16

of Updates

Te
st

in
g

R
M

SV
E

Mountain Car Puddle World Acrobot

Buffer-Batch Batch Buffer Online
without target network with target network

Figure 3.1: Learning curves for Sarsa(0). All learning curves are averaged over
30 runs, and are plotted with exponential moving average (β = 0.1) and one
standard deviation of the average.

3.3.4 Control

Figure 3.2 shows the learning curve with a constant step-size Q-learning for

control. Again, Buffer-Batch is important to obtain good performance. Target-

Batch performs well in two domains but fails in Puddle World. Target network

seems to be a critical technique here. We think the reason is that target distri-

bution is much more unstable in control, where the policy changes at each time

step. Hence, using stationary targets can significantly stabilize the training.

In summary, the results suggest that online RL, even with linear function

approximation, suffers from interference due to non-i.i.d. samples, small mini-

batch size, and non-stationary target distribution. Techniques like experience

replay and target networks, hence, have been needed for many reinforcement

learning algorithms [35, 43].

However, recall that our hypothesis states that these three issues are a

problem under significant pairwise interference. An orthogonal approach to

mitigate this problem is to reduce interference in function approximation. We

discuss a potential strategy to decrease interference in the next chapter.

17

Episode number

C
um

ul
at

iv
e

 re
w

ar
d

pe
r e

pi
so

de

Mountain Car Puddle World Acrobot

Buffer-Batch Batch Buffer Online
without target network with target network

Figure 3.2: Learning curves for Q-learning. All learning curves are averaged
over 30 runs, and are plotted with exponential moving average (β = 0.1) and
one standard deviation of the average.

3.4 Experimental Details

Policies to generate training and testing data In Mountain Car, we use

the standard energy pumping policy with 10% randomness. In Puddle World,

by a policy that chooses to go North with 50% probability and East with 50%

probability on each step. The data in Acrobot is generated by a near-optimal

policy. We use these policies to generate training samples and testing samples.

For Mountain Car, Puddle World and Acrobot, we have 1k episode cut-off. All

domains are episodic, with discount set to 1 until termination.

Representation Learning Phase We used neural networks with two hid-

den layers. The first layer 32 hidden units. The second layer, which is the rep-

resentation layer used for prediction, has 256 units. In representation learning

phase, we optimized the neural network weights using Adam optimization [22]

with a batch size of 64 and learning rate 0.001. The neural network weights are

initialized based on He initialization [18]. That is, the neural networks weights

are initialized with zero-mean Gaussian distribution with variance equals to

2/nl, where nl is the number of input nodes for layer l.

18

Prediction & Control Performance The learned representations are then

used for policy evaluation and control. The value function weight w is ini-

tialized with zero-mean Gaussian distribution with small variance. We use

semi-gradient Sarsa and Q-learning with fixed learning rate, which is swept in

the set:

α ∈ {0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001}.

The range of grid search for other hyperparameters are as follows:

target network update frequency ∈ {25, 50, 100, 200, 400}

buffer size ∈ {1000, 10000}.

We fix the mini-batch size of 64 for Buffer-Batch and Batch. All the sweeps for

selecting the hyperparameters across domains use 10 runs. We report the best

hyperparameters based on the final RMSE for prediction and average return

over 100 episodes for control.

19

Chapter 4

The Utility of Sparse
Representation for Control

In this chapter, we highlight the utility of sparsity for control in an incre-

mental setting. We show that two sparse representations—tile coding and

sparse representation learned by a neural network (referred to as SR-NN from

here-on)—both significantly improve stability and performance in control. We

choose tile coding, a static representation, as a baseline to compare to, as it

known to perform very well in the benchmark RL domains we experiment with

[52]. We use a regularization method, described in a later chapter, to learn

SR-NN. It is a more specific model than the SR-NN introduced in Figure 1.1.

We provide the full details in Chapter 5.

We hypothesize that interference is much less problematic for representa-

tions which generalize locally, which are typically provided by sparse represen-

tations. We show that agents that learn sparse representations perform better,

providing some evidence for this hypothesis.

4.1 Control Performance with SR-NN

We evaluate control performance on four domains: Mountain Car, Puddle

World, Acrobot and Catcher. We choose these domains because they are well-

understood, and typically considered relatively simple. A priori, it would be

expected that a standard action-value method, like Sarsa, with a two-layer

neural network, should be capable of learning a near-optimal policy in all four

20

Episode number

C
um

ul
at

iv
e

 re
w

ar
d

pe
r e

pi
so

de

Mountain Car Puddle World Acrobot Catcher

SR-NN
SR-NN SR-NN

SR-NNTC

NN

TC

NN

TC

NN

TC

NN

Figure 4.1: Learning curves for Sarsa(0) comparing SR-NN, Tile Coding and
vanilla NN in the four domains. All learning curves are averaged over 30 runs,
and are plotted with exponential moving average (β = 0.1).

of these domains.

The experimental setting is the same as the one in the previous chapter.

We pre-train a representation with a MSTDE objective given a batch of data.

The learned representation is then fixed, and used for estimating action-values

in control for learning the (near) optimal behaviour policy in the environment.

We use a fully online Sarsa algorithm for learning the control policy, where

only the weights w on the last layer are updated. Both SR-NN and NN used

two-layers, of size 32 and 256 respectively, with ReLU activations. The meta-

parameters for the batch-trained neural network producing the representation

and the control agent were swept in a wide range, and chosen based on control

performance. The aim is to provide the best opportunity for a regular feed-

forward network (NN) to learn on these problems, as it is more sensitive to

its meta-parameters than the SR-NN. Additional details on hyper-parameter

optimization are provided in Section 4.4.

The learning curves for the four domains, with Tile-Coding (TC), SR-NN

and NN, are shown in Figure 4.1. The NNs performs surprisingly poorly, in

some case increasing and then decreasing in performance (Mountain Car), and

in others failing altogether (Catcher). In all the benchmark RL domains, the

baseline sparse representation, TC, performs well and learns a nearly opti-

mal policy, as expected. The learned SR-NN performs as well in all domains,

and is effective for learning in Catcher, whereas NN performs really poorly

in all domains, and does not learn anything in Catcher. Both SR-NN and

21

NN representations were trained in the same regime, with similar represen-

tational capabilities. In fact, the NN is the same representation from Figure

3.2, where it is able to learn a good policy with ER and target network. The

representational ability of the NN is therefore not the problem. Yet, SR-NN

enables the Sarsa(0) agent to learn, where the regular feed-forward NN does

not. We investigate this effect further in the next sets of experiments, to better

understand the phenomenon.

4.2 The Effect of Regularization

Overfitting is a problem for neural networks with limited training data [8].

In our experiments, representations are pre-trained with a fixed number of

training data, hence, the learned representation can overfit and not general-

ize effectively. To determine if the main impact of the sparse representation

is simply from regularization, preventing overfitting, we tested several regu-

larization strategies for the neural network. These include `2 and `1 on the

weights of the network (`2-NN and `1-NN respectively) and Dropout on the

activation (Dropout-NN) [48]. The `1 regularizer encourages weights to go to

zero, reducing the number of connections, but does not necessarily provide a

sparse representation. The Dropout regularizer randomly zeros out activation

in hidden layers during training, but does not necessarily provide a sparse

representation during inference.

In Figure 4.2, we can see that regularization is unlikely to account for the

improvements in control. SR-NN performs well across all domains, whereas

none of the regularization strategies consistently perform well. `1-NN and

`2-NN perform well in Mountain Car during early learning, but fail in other

domains. Dropout-NN performs poorly in all domains.

Additionally, we show the learning curve during representation learning

phase in Figures 4.3. The metric on the y-axis is the RMSVE for predicted

state-values evaluated on a set of test states, similar as Equation (3.5) for

action-values. The number of test states are 5000 for benchmark domains and

1000 for Catcher. Most algorithms converge within 50 epochs in Mountain Car,

22

Episode number

C
um

ul
at

iv
e

 re
w

ar
d

pe
r e

pi
so

de

Mountain Car Puddle World Acrobot Catcher

SR-NN

Dropout NN

l1-NN l2-NN

Figure 4.2: Learning curves for Sarsa(0) comparing SR-NN to the regularized
representations. All learning curves are averaged over 30 runs, and are plotted
with exponential moving average (β = 0.1).

Te
st

in
g

R
M

SV
E

Training Epoch

Mountain Car Puddle World Acrobot Catcher

SR-NN

Dropout NN

l1-NN
l2-NN

NN

Figure 4.3: Learning curve during the representation learning phase with reg-
ularization methods. All curves are averaged over 30 runs.

Puddle World and Catcher, and 100 epochs in Acrobot as shown in the figures.

Note that these representations are optimized for the MSTDE objective, not

the RMSE objective. Nevertheless, these curves show the predictive ability

of these learned representations. Interestingly, NN achieves the lowest testing

error across all domains and regularization methods, especially Dropout-NN

and `1-NN, seem to have higher testing error.

4.3 Evaluation of Learned Representations

We next investigate the hypothesis that sparse representations provide locality,

which should help mitigate interference. Recall in the previous chapter, the

magnitude of generalization in an estimated Q function for two examples xi

and xj is proportional to the dot product of two gradients:

|PI(w; (xi, a), (xj, a))| ∝ |∇Qw(xi, a)>∇Qw(xj, a)| = |φ(xi)
>φ(xj)|.

23

If two representations are orthogonal, interference would be zero. Updating

the value function with respect to one state, therefore, would not affect the

other state’s value. Moreover, if the representations are non-negative, these

representation are likely to be sparse and have little shared activation between

samples.

Activation overlap, introduced by [12], reflects the amount of shared acti-

vation between any two inputs. We consider two variants of activation overlap.

The first one measures the number of shared activation between two represen-

tations, φ(x1) and φ(x2), for two samples, x1, and x2:

overlap(φ(xi),φ(xj)) =
∑
k

1[(φk(xi) > 0) ∧ (φk(xj) > 0)],

where φk(x) is the k-th component of the feature vector, and the second one

measures the orthogonality of two representations:

orthogonality(φ(xi),φ(xj)) = φ(xi)
>φ(xj)/ ‖φ(xi)‖2 ‖φ(xj)‖2 .

We normalize the magnitude by the norm of the representations. Note that

the dot product is always non-negative because of ReLU activation. This

orthogonality measure is the cosine similarity between two gradients, which

has been used to quantify the degree of interference [47]. It is also similar to

the ratio of the off-diagonal entry to the on-diagonal entry in the NTK [1].

We report the average overlap and average orthogonality over a subset of

states S equally covering the state space in Puddle World and Mountain Car.

Specifically, S = {(−1.2 + 0.17x,−0.07 + 0.014y) : x, y = 0, 1, 2, ..., 10} in

Mountain Car and S = {(0.1x, 0.1y) : x, y = 0, 1, 2, ..., 10} in Puddle World.

Table 4.1 shows the activation overlap, and once again, SR-NN has less

overlap and its feature vectors are more orthogonal. In Puddle World, the

feature vectors of SR-NN are much more orthogonal than other representa-

tions, and correspondingly, SR-NN is the only one which performs well in the

domain. In Mountain Car, the difference in orthogonality between SR-NN and

other representations is not significant, and they seem to have similar control

performance.

24

Mountain Car SR-NN `2-NN `1-NN Dropout-NN NN
Overlap 12.23 90.18 122.19 74.65 109.64

Orthogonality 0.66 0.71 0.85 0.76 0.68
Non-dead Neurons 123.73 144.67 135.30 240.77 212.73

Puddle World SR-NN `2-NN `1-NN Dropout-NN NN
Overlap 15.59 80.34 147.32 33.68 56.43

Orthogonality 0.23 0.77 0.95 0.48 0.80
Non-dead Neurons 216.60 147.80 147.43 216.30 176.60

Table 4.1: Activation overlap in Mountain Car and Puddle World. Overlap
and orthogonality are averaged over all state pairs. Non-dead neurons are
the number of features which are non-zero for some states. The numbers are
averaged over 30 runs. The standard errors are small (less than 1 for Overlap
and Non-dead Neurons, and less than 0.01 for Orthogonality) so we do not
report the error bars here.

To show the locality of the learned representations, we visualize the learned

representations. Figure 4.4 shows the activation map of randomly selected

hidden neurons with the different networks. We can see that each hidden

neuron in SR-NN only responds to a local region of the input space, while

some hidden neurons in NN respond to a large part of the space. Consequently,

when one state is updated in a part of the space with the NN representation,

it is more likely to significantly shift the values in other parts of the space,

as compared to the more local SR-NN. The `2-NN, and `1-NN representations

do not exhibit any discernible locality properties. Dropout-NN does achieve

some degree of locality in Puddle World.

We also report a measure of sparsity, called instance sparsity, to determine

if the successful methods are indeed sparse. Instance sparsity corresponds to

the percentage of active units for each input. A sparse representation should

be instance sparse, where most inputs produce relatively low percentage acti-

vation. As shown in Figure 4.5, SR-NN has consistently low instance sparsity

across all four domains. Dropout-NN appears to have learned a sparse repre-

sentation in Puddle World. It has been observed that Dropout can at times

learn sparse representations [5], but not consistently, as corroborated by our

experiments. The NN representation, which has no regularization, has some

25

SR-NN l2-NN l1-NN Dropout-NN NN

(a) Mountain Car

SR-NN l2-NN l1-NN Dropout-NN NN

(b) Puddle World

Figure 4.4: The activation maps for 16 randomly chosen neurons for different
representations—each cell in the heatmap corresponds to the complete 2D
state space.

SR-NN l2-NN l1-NN Dropout-NN NN

N
um

be
r o

f i
ns

ta
nc

es
(1

,0
00

)

Percentage of hidden units used

Mountain Car Puddle World Acrobot Catcher

Figure 4.5: Instance sparsity comparing SR-NN to the regularized variants
and vanilla NN. The percentage evaluation is designed to disregard units that
are never active across all samples in the batch (dead units). The numbers are
averaged over 30 runs.

26

instance sparsity, likely due to simply using ReLU activation. Interestingly,

`1-NN and `2-NN actually produced less instance sparsity in some domains.

Overall, these results provide some evidence that (a) sparse representations

can improve control performance in an incremental learning setting, (b) these

sparse representations appear to provide locality and orthogonal feature vector.

These results are a first step, and warrant further investigation. They do

nonetheless motivate that learning sparse representations could be a promising

direction for control in reinforcement learning.

4.4 Experimental Details

Policies to generate training and testing data For Mountain Car, Pud-

dle World and Acrobot, the policies are described in the previous chapter. In

Catcher, the agent chooses to move toward the apple with 50% probability,

and selects a random action with 50% probability on each step; and gets only

1 life in the environment. We use these policies to generate training samples

and testing samples. For Catcher, we have a 10k episode cut-off. All domains

are episodic, with discount set to 1 until termination.

Tile coding hyperparameter We compare to Tile Coding (TC) represen-

tation, a well-known sparse representation, as the baseline. We experiment

with several configurations for the fixed representation:

number of tiles (N) ∈ {4, 8, 16}

number of tilings (D) ∈ {4, 8, 16}.

We use a hash size of 4096, which is significantly larger than the feature size

of 256, as used in the other learned representation models we compare to. The

results shown in Figure 4.1 are for the best configuration of the static tile-coder

after a sweep.

27

Neural networks hyperparameters The range of grid search for the rep-

resentation hyperparameters are as follows:

λKL ∈ {0.1, 0.01, 0.001} [SR-NN]

β ∈ {0.05, 0.1} [SR-NN]

λNN ∈ {0.1, 0.01, 0.001, 0.0001} [`1-NN and `2-NN]

dropout probability p ∈ {0.1, 0.2, 0.3, 0.4, 0.5} [Dropout-NN]

For dropout, given the form of the supervision goal (MSTDE), the same

dropout mask is chosen to generate the representation for both states St+1

and St – this preserves dropouts role as regularizer w.r.t. the target. We have

also experimented with different dropout masks for St+1 and St, and the result

suggests that it is not able to learn good representations even for prediction

across all domains. For `1 and `2, regularization is not applied to the bias

units.

Control Performance The learned representations are used for control

with fixed ε = 0.1. The value function weight w is initialized with zero-mean

Gaussian distribution with small variance. For sparse representations, we use

semi-gradient Sarsa or Q-learning with fixed learnining rate. For dense repre-

sentations, we use adaptive learning rate method RMSprop [19] with α = 0.9.

We do not use

The initial learning rate is swept in the set:

α ∈ {0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00001}

All the sweeps for selecting the representation learning hyperparameters across

domains use 10 runs. We report the best hyperparameters based on average

return over episodes.

28

Chapter 5

Learning Sparse
Representations with Neural
Networks

In this chapter, we describe how to use Distributional Regularizers to learn

sparse representations with neural networks. The idea was originally intro-

duced for neural networks with Sigmoid activations in an unpublished set

of notes [36], and as yet has not been systematically explored. When used

out-of-the-box, we found important limitations in the learned representations,

including from using Sigmoid activations instead of ReLU and from using the

KL to a specific distribution. We explore the idea in-depth here, to make it

a practical option for learning sparse representations. Besides, we introduce

a Set Distributional Regularizer, which when paired with ReLU activations

enables sparse representations to be learned, as we demonstrate in the exper-

iments. We first describe how to define Distributional Regularizers on neural

networks, and then discuss the extension to a Set Distributional Regularizer,

and motivation for doing so.

5.1 Distributional Regularizers for Sparsity

The goal of using Distributional Regularizers is to encourage the distribution

of each hidden node—across samples—to match a desired target distribution.

In a neural network, we can view the hidden nodes, Y1, . . . , Yd, as random vari-

ables, with randomness due to random inputs. Each of these random variables

29

Yj has a distribution pβ̂j(θ), where the parameters β̂j(θ) of this distribution are

induced by the weights θ of the neural network:

pβ̂j(θ)(y) =

∫
s∈S

p(s)p(φj,θ(s) = y)ds.

This provides a distribution over the values for the feature φj,θ(s), across

inputs s. A Distributional Regularizer is a KL divergence KL(pβ||pβ̂j(θ)) that

encourages this distribution to match a desired target distribution pβ with

parameter β.

Such a regularizer can be used to encourage sparsity, by selecting a target

distribution that has high mass or density at zero. Consider a Bernoulli distri-

bution for activations, with Yj ∈ {0, 1}. Using a Bernoulli target distribution

with β = 0.1, giving pβ(Y = 1) = 0.1, encodes a desired activation of 10%. As

another example, for continuous nonnegative Yj, the target distribution can be

set to an exponential distribution pβ(y) = β−1 exp(−y/β), which has highest

density at zero with expected value β. Setting β = 0.1 encourages the average

activation to be 0.1 and increases density on y = 0.

The efficacy of this regularizer, however, is tied to the parameterization of

the network, which should match the target distribution. For a ReLU acti-

vation, for example, which has a range [0,∞), a Bernoulli target distribution

is not appropriate. Rather, for the range [0,∞), an exponential distribution

is more suitable. For a Sigmoid activation, giving values between [0, 1], a

Bernoulli is reasonably appropriate. Additionally, the parametrization should

be able to set activations to zero. The ReLU activation naturally enables zero

values [15], by pushing activations to negative values. The addition of a Dis-

tributional Regularizer simply encourages this natural tendency, and is more

likely to provide sparse representations. Activations under Sigmoid and tanh,

on the other hand, are more difficult to encourage to zero, because they require

highly negative input values or input values exactly equal to 0.5, respectively,

to set the hidden node to zero. For these reasons, we advocate for ReLU for

the sparse layer, with an exponential target distribution.

Finally, we modify this regularizer to provide a Set Distributional Regu-

larizer, which does not require an exact level of sparsity to be achieved. It

30

can be difficult to choose a precise level of sparsity, making the Distributional

Regularizer prone to misspecification. Rather, the actual goal is typically to

obtain at least some level of sparsity, where some nodes can be even more

sparse. For this modification, we specify that the distribution should match

any of a set of target distributions Qβ, giving a Set KL: minp∈Qβ KL(p||pβ̂j(θ)).

Generally, this Set KL can be hard to evaluate. However, as we show below,

it corresponds to a simple clipped KL-divergence for certain choices of Qβ,

importantly including for exponential distributions where Qβ = {pβ̃ |β̃ ≤ β}.

Theorem 1 (Set KL as a Clipped-KL). Let pη be a one-dimensional exponen-

tial family distribution with the natural parameter η, B = [η1, η2] be a convex

set in the natural parameter space and QB = {pη : η ∈ B}. Then the Set KL

divergence

SKL(QB||pη) := min
p∈QB

KL(p||pη) (5.1)

is (a) non-negative (b) convex in η and (c) corresponds to a simple clipped

form

SKL(QB||pη) =

KL(pη2 ||pη) if η > η2
KL(pη1 ||pη) if η < η1

0 else
(5.2)

Proof. For exponential families, the KL divergence correspond to a Bregman

divergence [4]:

KL(pη1 ||pη) = DF (η||η1)

for a convex potential function F that depends on the exponential family.

Hence, we have

SKL(QB||pη) = arg min
η̃∈B

DF (η||η̃)

If η ∈ B, this minimum over Bregman divergences is clearly zero. If η < η1

and η > η2, we have to consider the minimization. The Bregman divergence

is not necessarily convex in the second argument. Instead, we can rely on

31

convexity of the set B. Taking the derivative of DF (η||η̃) wrt η̃, we get

d

dη̃
DF (η||η̃) =

d

dη̃

[
F (η)− F (η̃)− (η − η̃)

d

dη̃
F (η̃)

]
= − d

dη̃
F (η̃) +

d

dη̃
F (η̃)− (η − η̃)

d2

dη̃2
F (η̃)

= − d2

dη̃2
F (η̃)(η − η̃)

Now because F is convex, − d2

dη̃2
F (η̃) is always negative. The derivative, then,

is negative when η̃ < η, indicating η̃ should be increased to decrease DF (η||η̃).

Similarly, when η̃ > η, the derivative is positive, indicating η̃ should be de-

creased to decrease DF (η||η̃). This derivative, then, points η̃ to the boundaries

when η /∈ B, respectively to the boundary points closest to η.

Corollary 1 (SKL for Exponential Distributions). For pβ an exponential dis-

tribution, with natural parameter η = −β−1, and B = (0, β], then

SKL(QB||pβ̂) =

{
log β̂ + β

β̂
− log β − 1 if β̂ > β

0 else
(5.3)

We use the SKL in Corollary 1, to encode a sparsity level of at least β—

rather than exactly β—for the last layer in a two-layer neural network with

ReLU activations. This regularizer was used to encourage sparse activations

for SR-NN in the preceding chapter.

The overall loss function is

Jsparse(θ) = J(θ) + λKL

d∑
i

SKL(QB||pβ̂j)

where J(θ) is the vanilla objective function, d is the dimension of represen-

tation, and λKL controls the sparsity regularization. We include pseudocode

for optimizing the regularized objective with the SKL for Exponential Distri-

butions in Algorithm 1. Note that this algorithm is not used online, since we

learn the representation for a batch of data. The pseudocode is given for the

offline batch setting.

32

Algorithm 1 Optimizing the regularized objective

1: Initialize neural networks weights based on He initialization [18]: for each

layer l and each element ij of the weight matrix W
(l)
ij ∼ N (0, 2

nl
) and

b(l) = 0 where nl the number of input nodes for layer l.
2: while not converge to a minimum do
3: Draw m samples {(x1, y1), ..., (xm, ym)} from the dataset uniformly at

random
4: Forward pass: compute the activation hij in the last layer for each sam-

ple xi and each feature j.
5: Backward Pass: for j = 1, ..., k, compute β̂j =

∑m
i=1 hij/m and the

gradient:
∂SKL(QB||pβ̂j)

∂β̂j
= (

1

β̂j
− β

β̂2
j

)1[β̂j > β]

6: Update each weight θ ∈ {∀l,W(l),b(l)} with the gradient:

∂J(θ)

∂θ
+ λKL

k∑
j=1

∂SKL(QB||pβ̂j)

∂β̂j

∂β̂j
∂θ

7: end while

5.2 Evaluation of Distributional Regularizers

In this section, we investigate the efficacy of Distributional Regularizers for

obtaining sparsity. There are a variety of possible choices with Distributional

Regularizers, including activation function and corresponding target distribu-

tion and using a KL versus a Set KL. In this section, we investigate some

of these combinations, particularly focusing on the difference in sparsity and

performance when using (a) KL and SKL; (b) Bernoulli distribution (with sig-

moid), Exponential distribution (with ReLU) and Gaussian distribution (with

ReLU); and (c) previous strategies to obtain sparse representations versus the

proposed variant of the Distributional Regularizer.

Here we provides details of the Set KL for Bernoulli distributions and Gaus-

sian distributions. Let pρ be a Bernoulli distribution, with natural parameter

ρ, B = [0, ρ] and QB = {pη : η ∈ B}, then SKL for Bernoulli distributions is

SKL(QB||pβ̂j) =

{
ρ log ρ

β̂j
+ (1− ρ) log 1−ρ

1−β̂j
if β̂j > ρ

0 else.

33

N
um

be
r o

f i
ns

ta
nc

es
(1

,0
00

)

Percentage of hidden units used

Mountain Car Puddle World Acrobot Catcher

 ReLU+SKL ReLU+KL NN

Figure 5.1: Instance sparsity as evaluated on a batch of test data comparing
Exp+KL and Exp+SKL to NN. While Exp+KL can make representations
denser than just NN, Exp+SKL always results in sparser representations. The
numbers are averaged over 30 runs.

Similarly, let pµ,σ be a Gaussian distribution, with natural parameter (µ, σ),

B = (−∞, µ] and QB = {pη,σ : η ∈ B}, then SKL for Gaussian distributions

is

SKL(QB||pβ̂j ,σ) =

{
σ2+(β̂j−µ)2

2σ2 − 1
2

if β̂j > µ
0 else

In the first set of experiments, we compare the instance sparsity of KL

to Set KL, with ReLU activations and Exponential Distributions (Exp+KL

and Exp+SKL). Figure 5.1 shows the instance sparsity for these, and for the

NN without regularization. Interestingly, Exp+KL actually reduces sparsity

in several domains, because the optimization encouraging an exact level of

sparsity is quite finicky. Exp+SKL, on the other hand, significantly improves

instance sparsity over the NN. This instance sparsity again translates into

control performance, where Exp+KL does noticeably worse than Exp+SKL

across the four domains in Figure 5.2. Despite the poor instance sparsity,

Exp+KL does actually seem to provide some useful regularity, that does allow

some learning across all four domains. This contrasts the previous regulariza-

tion strategies, `2, `1 and Dropout, which all failed to learn on at least one

domain, particularly Catcher.

In the next set of experiments, we compare with different distributional

34

regularizers: a Gaussian distribution with ReLu activation and a Bernoulli dis-

tribution with Sigmoid activation. We included both KL and Set KL, giving

the combinations Exp+KL, Exp+SKL, Gau+KL, Gau+SKL, Ber+KL, and

Ber+SKL. We expect Sigmoid with Bernoulli to perform significantly worse—

in terms of sparsity levels and performance—because the Sigmoid activation

makes it difficult to truly get sparse representations. This hypothesis is val-

idated in the learning curves in Figure 5.2. Ber+KL and Ber+SKL perform

poorly across domains, even in Puddle World, where they achieved their best

performance. Unlike ReLU with Exponential, here the Set KL seems to pro-

vide little benefit. Gau+SKL and Gau+KL perform well across all domains,

but Gau+KL has a slower learning in Puddle World. The instance sparsity in

Figure 5.3 shows that Gau+SKL and Gau+KL have similar sparsity levels. In

fact, since we use ReLU activation, the Set KL equals to the regular KL when

µ = 0 and they are close when µ is small. This explains why Gau+SKL and

Gau+KL have similar performance in our experiments.

We compare to previously proposed strategies for learning sparse represen-

tations with neural networks. These include using `1 and `2 regularization on

the activation (denoted by `1R-NN and `2R-NN respectively); k-sparse NNs,

where all but the top k activation are zeroed [31] (k-sparse-NN); and Winner-

Take-All NNs that keep the top k% of the activation per node across instances

in the minibatch during training, to promote sparse activation of nodes over

time [32] (WTA-NN). These approaches, however, can be problematic because

they tend to truncate non-negligible values or produce insufficiently sparse

representations. Both k-sparse-NNs and WTA-NNs were introduced for auto-

encoders, though the idea can be applied more generally to NNs. We tested

these methods with autoencoders, but performance was significantly worse.

We include learning curves and instance sparsity for these methods, for a

ReLU activation, in Figures 5.4 and 5.5. Neither WTA-NN nor k-sparse-NN

are effective. We found the k-sparse-NN was prone to dead units, and often

truncates non-negligible value. Surprisingly, `2R-NN performs comparably to

SR-NN in Mountain Car and Acrobot, whereas `1R-NN is effective only during

early learning in Mountain Car. From the instance sparsity plots in Puddle

35

Episode number

C
um

ul
at

iv
e

 re
w

ar
d

pe
r e

pi
so

de

Mountain Car Puddle World Acrobot Catcher

ReLU+SKL

ReLU+KL

Gau+SKL
Gau+KL

Ber+SKL
Ber+KL

Figure 5.2: Learning curves for Sarsa(0) with different Distributional Regu-
larizers. All learning curves are averaged over 30 runs, and are plotted with
exponential moving average (β = 0.1).

N
um

be
r o

f i
ns

ta
nc

es
(1

,0
00

)

Percentage of hidden units used

Mountain Car Puddle World Acrobot Catcher

 ReLU+SKL ReLU+KL Gau+SKL GAU+KL SIG+SKL SIG+KL

Figure 5.3: Instance sparsity as evaluated on a batch of test data comparing
with different Distributional Regularizers. The numbers are averaged over 30
runs.

Episode number

C
um

ul
at

iv
e

 re
w

ar
d

pe
r e

pi
so

de

Mountain Car Puddle World Acrobot Catcher

ReLU+SKL

k-sparse-NN
WTA-NN

l2R-NN

l1R-NN

Figure 5.4: Learning curves for Sarsa(0) comparing SR-NN to previous pro-
posed sparse representations learning strategies. All learning curves are aver-
aged over 30 runs, and are plotted with exponential moving average (β = 0.1).

36

N
um

be
r o

f i
ns

ta
nc

es
(1

,0
00

)

Percentage of hidden units used

Mountain Car Puddle World Acrobot Catcher

SR-NN l2R-NN l1R-NN k-sparse-NN WTA-NN

Figure 5.5: Instance sparsity comparing SR-NN to previous proposed sparse
representations learning strategies. The numbers are averaged over 30 runs.

World and Catcher, we see that `1R-NN and `2R-NN produce highly sparse

(<5% instance sparsity), potentially explaining its poor performance. This was

with considerable parameter optimization for the regularization parameter.

In conclusion, previous approaches such as `1R-NN, `2R-NN and k-sparse-

NN are prone to collapsing to a few elements and resulting in dead units. This

problem often occurs in sparse coding as well as autoencoders with instance

sparsity regularization [31, 32]. Distributional regularizers, however, naturally

avoid this problem by forcing each unit to be sparsely active over its lifetime.

We empirically evaluate theses methods in reinforcement learning tasks, and

the results suggest that distributional regularizers are able to learn effective

sparse representations, especially with ReLu activation and Exp+SKL.

5.3 Experimental Details

We used the same neural network architecture as the experiments in the previ-

ous chapter. The range of grid search for the representation hyperparameters

37

are as follows:

λKL ∈ {0.1, 0.01, 0.001} [Distributional Regularizers]

β ∈ {0.05, 0.1} [Exp+KL and Exp+SKL]

ρ ∈ {0.05, 0.1} [Ber+KL and Ber+SKL]

µ ∈ {0.0, 0.05, 0.1} [Gau+KL and Gau+SKL]

λNN ∈ {0.1, 0.01, 0.001, 0.0001} [`1R-NN and `2R-NN]

k ∈ {16, 32, 64, 128} [k-sparse-NN]

k ∈ {6.25%, 12.5%, 25%, 50%} [WTA-NN]

For the KL and Set KL for Gaussian distributions, we fix σ = 1. For

k-sparse networks, only the top-k hidden units in the representation layer are

activated. We also use scheduling of sparsity level described in the original

paper [31].

38

Chapter 6

Discussion and Future Work

We summarize the contributions presented in this dissertation, followed by a

discussion on future research directions.

6.1 Summary of Contributions

In this work, we investigate using and learning sparse representations with

neural networks for control in reinforcement learning. We show that sparse

representations can significantly improve control performance when used in

an online learning setting, and provide some evidence that this is because the

sparsity of the representation reduces catastrophic interference which would

otherwise overwrite value estimates. We formalize Distributional Regularizers,

with a practically important extension to a Set KL, for learning a Sparse Rep-

resentation Neural Network (SR-NN). We provide an empirical investigation

into the sparsity properties and control performance under different Distribu-

tional Regularizers, as well as compared to other algorithms to obtain sparse

representations with neural networks. We conclude that SR-NN performs con-

sistently well across domains.

This work highlights an important phenomenon that arises in online rein-

forcement learning, beyond the typical issues with catastrophic interference.

Interference is typically considered for sequential multi-task learning, where

previous functions are forgotten by training on a new task. Interference could

occur even in a single-task setting, if the agent has sequences of correlated ob-

servations. In reinforcement learning, however, this problem is magnified by

39

the fact that the data distribution is changing at each time step during train-

ing. This work provides some first empirical steps, in a carefully controlled

set of experiments, to identify that this could be an issue, and that sparse

representations could be a promising direction to alleviate the problem.

6.2 Future Directions

In this dissertation, we show sparse representation with linear function approx-

imation improves control performance. A fist next-step extension is to apply

the same strategy to non-linear function approximation with multi-layer neu-

ral networks. In backpropagation, the first partial derivatives w.r.t. the weight

W
(l)
ij in layer l is

∂J(W)

∂W
(l)
ij

=
∂J(W)

∂z
(l+1)
i

a
(l)
j .

where z
(l+1)
i is the ith input (before activation function) in layer l+ 1 and a

(l)
j

is the jth activation in layer l. If each layer has sparse activation, the gradient

vector w.r.t. the weights would be sparse and, therefore, have less interference.

Applying Distributional Regularizers in each layer is a straightforward method

to achieve sparsity in each layer, however, we hypothesize that the regularizer

would strongly penalize the first few layers and generate an ineffective function

approximation. Another line of research is to develop algorithms to learn

sparse representations and the value function concurrently and incrementally,

where the value function is linear w.r.t. sparse representations. Hence, a

single sparse activation layer is sufficient to reduce interference in the value

function. Two-timescale networks [9] could be a useful framework for this line

of research.

This dissertation opens up interesting research directions on interference

and sparse representation in reinforcement learning. We hope for this work to

spur further empirical investigation into what we believe is a widespread issue,

and further algorithmic development into learning sparse representations for

reinforcement learning.

40

References

[1] J. Achiam, E. Knight, and P. Abbeel, “Towards characterizing diver-
gence in deep q-learning,” arXiv:1903.08894, 2019. 13, 24

[2] S. Ahmad and J. Hawkins, “Properties of Sparse Distributed Represen-
tations and their Application to Hierarchical Temporal Memory,” 2015.
arXiv: 1503.07469. 2

[3] D. Arpit, Y. Zhou, H. Ngo, and V. Govindaraju, “Why regularized auto-
encoders learn sparse representation?” In International Conference on
Machine Learning, 2015. 3

[4] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with
bregman divergences,” Journal of Machine Learning Research, 2005. 31

[5] A. Banino, C. Barry, B. Uria, C. Blundell, T. Lillicrap, P. Mirowski,
A. Pritzel, M. J. Chadwick, T. Degris, J. Modayil, et al., “Vector-based
navigation using grid-like representations in artificial agents,” Nature,
2018. 25

[6] M. G. Bellemare, W. Dabney, R. Dadashi, A. A. Taıga, P. S. Castro,
N. L. Roux, D. Schuurmans, T. Lattimore, and C. Lyle, “A geomet-
ric perspective on optimal representations for reinforcement learning,”
arXiv:1901.11530, 2019. 10

[7] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends
in Machine Learning, 2009. 1

[8] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2013. 1, 22

[9] W. Chung, S. Nath, A. Joseph, and M. White, “Two-timescale networks
for nonlinear value function approximation,” 2018. 10, 40

[10] T. M. Cover, “Geometrical and Statistical Properties of Systems of Lin-
ear Inequalities with Applications in Pattern Recognition.,” IEEE Trans.
Electronic Computers, 1965. 2

[11] P. Földiák, “Forming sparse representations by local anti-Hebbian learn-
ing,” Biological Cybernetics, 1990. 1

41

http://arxiv.org/abs/1503.07469

[12] R. M. French, “Using semi-distributed representations to overcome catas-
trophic forgetting in connectionist networks,” in Annual Cognitive Sci-
ence Society Conference, 1991. 1, 3, 24

[13] ——, “Catastrophic forgetting in connectionist networks,” Trends in cog-
nitive sciences, 1999. 11

[14] S. Ghiassian, H. Yu, B. Rafiee, and R. S. Sutton, “Two geometric in-
put transformation methods for fast online reinforcement learning with
neural nets,” arXiv:1805.07476, 2018. 11

[15] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works,” in International Conference on Artificial Intelligence and Statis-
tics, 2011. 3, 30

[16] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An
empirical investigation of catastrophic forgetting in gradient-based neu-
ral networks,” arXiv:1312.6211, 2013. 11

[17] I. Goodfellow, H. Lee, Q. V. Le, A. Saxe, and A. Y. Ng, “Measuring
invariances in deep networks,” in Advances in Neural Information Pro-
cessing Systems, 2009. 1

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification,” in IEEE
International Conference on Computer Vision, 2015. 18, 33

[19] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent,” 2012. 28

[20] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Conver-
gence and generalization in neural networks,” in Advances in neural in-
formation processing systems, 2018. 13

[21] P. Kanerva, Sparse Distributed Memory. MIT Press, 1988. 1

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014. 18

[23] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et
al., “Overcoming catastrophic forgetting in neural networks,” Proceed-
ings of the national academy of sciences, 2017. 11

[24] L. Le, R. Kumaraswamy, and M. White, “Learning sparse representa-
tions in reinforcement learning with sparse coding,” arXiv:1707.08316,
2017. 3, 10

[25] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model for
visual area v2,” in Advances in neural information processing systems,
2008. 3

[26] A. Lemme, R. F. Reinhart, and J. J. Steil, “Online learning and gen-
eralization of parts-based image representations by non-negative sparse
autoencoders,” Neural Networks, 2012. 3

42

[27] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, Tech.
Rep., 1993. 9

[28] D. Lopez-Paz et al., “Gradient episodic memory for continual learning,”
in Advances in Neural Information Processing Systems, 2017. 11

[29] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” Journal of Machine Learning Research,
2010. 3

[30] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Supervised
dictionary learning,” in Advances in Neural Information Processing Sys-
tems, 2009. 3

[31] A. Makhzani and B. Frey, “k-sparse autoencoders,” arXiv:1312.5663,
2013. 3, 35, 37, 38

[32] ——, “Winner-take-all autoencoders,” in Advances in Neural Informa-
tion Processing Systems, 2015. 3, 35, 37

[33] M. McCloskey and N. J. Cohen, “Catastrophic Interference in Con-
nectionist Networks: The Sequential Learning Problem,” Psychology of
Learning and Motivation, 1989. 1, 11

[34] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The Bulletin of Mathematical Biophysics, 1943. 3

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et
al., “Human-level control through deep reinforcement learning,” Nature,
2015. 9, 10, 17

[36] A. Ng, “Sparse autoencoder,” CS294A Lecture notes, 2011. 29

[37] B. A. Olshausen, “Sparse Codes and Spikes,” in Probabilistic Models of
the Brain, 2002. 3

[38] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete
basis set: A strategy employed by V1?” Vision Research, 1997. 2, 3

[39] R. Quian Quiroga and G. Kreiman, “Measuring sparseness in the brain:
Comment on bowers (2009).,” 2010. 2

[40] M. Ranzato, Y.-L. Boureau, and Y. LeCun, “Sparse Feature Learning for
Deep Belief Networks.,” in Advances in Neural Information Processing
Systems, 2007. 3

[41] M. Ranzato, C. S. Poultney, S. Chopra, and Y. LeCun, “Efficient Learn-
ing of Sparse Representations with an Energy-Based Model.,” in Ad-
vances in Neural Information Processing Systems, 2006. 3

[42] B. Ratitch and D. Precup, “Sparse distributed memories for on-line
value-based reinforcement learning,” in Machine Learning: ECML PKDD,
2004. 1

43

[43] M. Riedmiller, “Neural fitted Q iteration–first experiences with a data
efficient neural reinforcement learning method,” in European Conference
on Machine Learning, 2005. 2, 10, 17

[44] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro,
“Learning to learn without forgetting by maximizing transfer and mini-
mizing interference,” arXiv:1810.11910, 2018. 11

[45] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” in Inter-
national Conference on Machine Learning, 2011. 1

[46] T. Sajed, W. Chung, and M. White, “High-confidence error estimates
for learned value functions,” arXiv preprint arXiv:1808.09127, 2018. 16

[47] T. Schaul, D. Borsa, J. Modayil, and R. Pascanu, “Ray interference: A
source of plateaus in deep reinforcement learning,” arXiv:1904.11455,
2019. 24

[48] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” The Journal of Machine Learning Research, 2014. 22

[49] R. S. Sutton, “Two problems with back propagation and other steepest
descent learning procedures for networks,” in Proceedings of the Eighth
Annual Conference of the Cognitive Science Society, 1986. 11

[50] ——, “Learning to predict by the methods of temporal differences,” Ma-
chine learning, 1988. 7, 11, 15

[51] ——, “Generalization in reinforcement learning: Successful examples us-
ing sparse coarse coding,” in Advances in Neural Information Processing
Systems, 1996. 1, 9, 11

[52] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
2018. 1, 2, 8, 12, 20

[53] Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton, “Energy-Based
Models for Sparse Overcomplete Representations.,” Journal of Machine
Learning Research, 2003. 3

[54] J. Triesch, “A Gradient Rule for the Plasticity of a Neuron’s Intrinsic
Excitability,” in ICANN, 2005. 3

[55] C. Wang, X. Chen, A. J. Smola, and E. P. Xing, “Variance reduction
for stochastic gradient optimization,” in Advances in Neural Information
Processing Systems, 2013. 13

[56] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, 1992. 7

44

	Introduction
	Background
	Markov Decision Process
	Reinforcement Learning Algorithms
	Linear Function Approximation
	Non-linear Function Approximation with Neural Networks

	Interference in Online Reinforcement Learning
	Defining Interference in RL
	Hypothesis about Interference in RL
	Testing the hypothesis
	Experimental setup
	Algorithms
	Prediction
	Control

	Experimental Details

	The Utility of Sparse Representation for Control
	Control Performance with SR-NN
	The Effect of Regularization
	Evaluation of Learned Representations
	Experimental Details

	Learning Sparse Representations with Neural Networks
	Distributional Regularizers for Sparsity
	Evaluation of Distributional Regularizers
	Experimental Details

	Discussion and Future Work
	Summary of Contributions
	Future Directions

	References

