
An App Performance Optimization Advisor for Mobile Device App Marketplaces

Rubén Saborido∗, Foutse Khomh

DGIGL, Polytechnique Montréal, Quebec (Canada)

Abram Hindle

University of Alberta, Alberta (Canada)

Enrique Alba
University of Málaga, Málaga (Spain)

Abstract

On mobile phones, users and developers use apps official marketplaces serving as repositories of apps. The Google Play
Store and Apple Store are the official marketplaces of Android and Apple products which offer more than a million apps.
Although both repositories offer description of apps, information concerning performance is not available. Due to the
constrained hardware of mobile devices, users and developers have to meticulously manage the resources available and
they should be given access to performance information about apps. Even if this information was available, the selection
of apps would still depend on user preferences and it would require a huge cognitive effort to make optimal decisions.
Considering this fact we propose APOA, a recommendation system which can be implemented in any marketplace for
helping users and developers to compare apps in terms of performance.

APOA uses as input metric values of apps and a set of metrics to optimize. It solves an optimization problem and
it generates optimal sets of apps for different user’s context. We show how APOA works over an Android case study.
Out of 140 apps, we define typical usage scenarios and we collect measurements of power, CPU, memory, and network
usages to demonstrate the benefit of using APOA.

Keywords: Android; iOS; Contexts of use; Performance metrics; Optimization; Decision Making;

1. Introduction

Typical users of mobile devices purchase and download
apps using platform dependent repositories/marketplaces
of apps, colloquially referred to as app-stores. Android is
an open-source operating system for mobile devices. It is
used by more than 1.4 billion users for a global market
share of 53%1. iOS is a mobile operating system created
and developed by Apple for its hardware. It is the sec-
ond most popular mobile operating system globally after
Android2. Both platforms offer apps belonging to differ-
ent categories through their marketplaces; the Google Play
Store 3 and the Apple Store4 apps, for Android and iOS,
respectively. For each app in any of these marketplaces,
customer ratings are provided as a quality metric. The

∗Corresponding author
Email addresses: ruben.saborido-infantes@polymtl.ca

(Rubén Saborido), foutse.khomh@polymtl.ca (Foutse Khomh),
abram.hindle@ualberta.ca (Abram Hindle), eat@lcc.uma.es
(Enrique Alba)

1http://expandedramblings.com/index.php/android-statistics/
2http://www.kpcb.com/internet-trends
3https://play.google.com/store/apps
4https://itunes.apple.com/ca/genre/ios/id36?mt=8

rating is a number between one and five, which is calcu-
lated as the weighted average of user ratings in the market-
place. Mobile device users compare and select apps from
marketplaces based on their rating and number of down-
loads (Gomes et al. (2016)). This fact results in users
choosing apps that other users choose (popularity), even
if the apps are less efficient than other apps offering similar
functionalities (Saborido et al. (2016)).

Selecting a cost-effective app is a challenging task, be-
cause of the large number of apps that offer similar func-
tionalities, and the lack of information about the perfor-
mance of the apps. For example, there are a very large
number of browsers, cameras, and music players avail-
able but the decision on which app to use lies more on
subjective requirements, such as usability, features, cost,
etc. Interestingly, as we found in our Android case study,
apps with similar functionalities can have a different per-
formance. For instance, to visit an article in Wikipedia,
the browser Chrome uses more power and transmits more
data over the network than the browser Opera (mini).
However, the former uses less CPU. It means that there
exist a trade-off in terms of performance between differ-
ent apps. The same keeps for any category of apps in any

Preprint submitted to Journal of Sustainable Computing: Informatics and Systems May 20, 2018

ar
X

iv
:s

ub
m

it/
22

66
99

4
 [

cs
.C

Y
]

 2
0

M
ay

 2
01

8

marketplace and mobile device platform. But performance
metrics alone are not important, as performance depends
on the context of use and what is important to the end-
user (Falaki et al. (2010)). For example, a majority of users
in underdeveloped markets face constraints not commonly
seen in developed markets: high costs when data connec-
tions are available, low-end devices with reduced memory,
and limited opportunities to recharge batteries during the
day5. To address the needs of users, app performance met-
rics must be aligned closely with users preferences. Thus, if
the user is using a Wi-Fi network connection, battery life
could be more important than network usage, but while
driving during a trip abroad the preference is different be-
cause of cost of the data is higher and mobile car chargers
are cheap.

Making performance information available regarding
power, CPU, memory, and network usages would be use-
ful for both mobile users and developers. It would put
pressure on developers to build more efficient apps, which
benefits final users. However, even if information about
performance metrics of mobile device apps would be avail-
able in marketplaces, the selection of optimal apps would
be complicated because of the cognitive effort imposed to
discriminate between different sets of apps and different
metrics. This is what we define as the App Selection Prob-
lem (ASP).

In a recent research we presented a simple recommen-
dation system to propose optimal sets of Android apps
that minimize power and data usages while maximizing
the apps rating (Saborido et al. (2016)). In this paper we
propose APOA (an App Performance Optimization Advi-
sor) that could complement existing mobile device market-
places allowing users and developers to compare apps in
terms of any combination of metrics (power, CPU, mem-
ory, and network usages, and rating). Each of the possible
combinations of these metrics is a particular instance of
the ASP that matches a context of use (travel abroad,
driving, ...). Therefore, the resolution of an instance of
the ASP is a recommendation of optimal apps for a given
context. The main contribution of this paper is threefold:

• The ASP is introduced and formally defined.

• APOA is proposed as a recommendation system for
mobile device marketplaces and it is evaluated over a
subset of 140 Android apps and different contexts of
use.

• APOA’s implementation is publicly available for
download6.

The rest of the paper is organized as follows. Section 2
formally defines the ASP based on different metrics and in-
troduces basic concepts related to optimization. Section 3

5https://developer.android.com/distribute/best-
practices/develop/build-for-the-next-billion.html

6http://www.ptidej.net/downloads/replications/APOA/

defines four different contexts of use which are used
to evaluate our approach. Section 4 explains and de-
scribes APOA, our App Performance Optimization Ad-
visor. Section 5 shows the case study based on a subset
of Android apps used to evaluate APOA. Next, Section 6
shows the evaluation of APOA and the benefits of using
it. We discuss about threats to validity of our study and
performance measures in Section 7 and Section 8, respec-
tively. Section 9 summarizes related work and we conclude
the paper in Section 10.

2. The App Selection Problem (ASP)

The ASP is when a user wants to select an app or a
set of apps to achieve a goal or task but is faced with
numerous ratings, reviews, performance information, and
context. For instance the right bandwidth-saving app to
help you look up restaurant reviews when you are paying
$1 dollar per kilobyte might not be optimal later when you
are on bandwidth abundant Wi-Fi in your hotel room.

Given the huge number of available apps in mobile de-
vice apps marketplaces, the number of existing categories,
and taking into account that, in a category, apps often
share similar functionalities, we define the selection of apps
as a combinatorial problem. Let C = {C1, ..., CN} be a set
of N categories. Further, assume that each category Ci

contains a set Ai of apps. An element x of the search
space F, x = (x1, . . . , xN), is a set of apps where xl is an
app selected from Al (with l ∈ {1, . . . , N}). A solution
x contains one app from each category in C. Consider-
ing the previous, the size of the search space is given by∏N

i=1 |Ai| = |A1| · |A2| · · · |AN |, where the operator |B|
represents the number of elements in a set B.

We consider that an app has an associated cost in terms
of performance metrics and, therefore, a combination of
apps also has it. However, not all the possible combina-
tions of apps are valid, because some of them could be
more efficient than others. In addition to performance
metrics, we consider the rating of apps as a “quality” indi-
cator of mobile device apps because, as it was studied by
Harman et al. (2012), apps ratings are highly correlated
with the number of app downloads, which is a measure
of their success. For this reason we use five metrics (four
performance metrics to minimize and a quality metric to
maximize) which are enumerated next:

• Energy consumption and power usage. Energy con-
sumption determines the battery life of mobile devices
and, therefore, their availability. Without energy a
mobile device cannot be operated. Energy is defined
as the capacity of doing work while power is the rate
of using energy. Energy (E) is measured in Joules (J)
while power (P) is measured in Watts (W). Energy
is equal to power times the time period T in seconds.
Therefore, E = P×T . Thus, if an app uses two Watts
of power for five seconds it consumes 10 Joules of en-
ergy. Since power usage is hard to be interpreted for

2

users, we translate it into battery life, which specifies
the duration of the battery in hours. We describe bat-
tery life as it is shown in Equation 1, where Load is
the average power usage of a load (for us an app or set
of apps), and CB and VB are the electric charge (in
Ah) and voltage (in V), respectively, of the phone’s
battery.

BatteryLife =
CB × VB

Load
(1)

• CPU usage describes the proportion of time that the
processor is in use. A mobile device’s CPU usage
can vary depending on the types of tasks that are
being performed by an app. We measure CPU usage
in percentage (%), which indicates how much of the
processor’s capacity is currently in use by the system.
Typically CPU is one of the primary sources of energy
consumptions (Halpern et al. (2016)).

• Memory usage. It is the amount of memory (RAM) an
app uses when it is running. This memory is used to
save internal data and app’s instructions. We measure
memory usage in megabytes (MB). Memory limits
the number of apps we can run and the amount of
data they can work with, for this reason this metric
is considered.

• Network usage. It refers to the amount of data moving
across a network (Wi-Fi, 3G, 4G, . . .). We measure
network usage in megabytes (MB). We consider this
metric because network access could be expensive in
terms of bandwidth costs.

• Rating. It is a number between one and five associ-
ated to mobile device apps. The rating of an app in
a marketplace is calculated from its user ratings.

The rating is available in marketplaces but performance
metrics are not and thus it has to be calculated or esti-
mated. Once these metrics are collected and available,
the ASP is modeled as an optimization problem using
as objective function any combination of the described
metrics. A k-combination of a set S is a subset of k
distinct elements of S. If the set has n elements, the
number of k-combinations is equal to the binomial co-
efficient

(
n
k

)
= n!

k!·(n−k)! whenever k ≤ n and which is
zero when k > n. Given that we consider five metrics
(n = 5) and we are interested in any combination of them
(k ∈ {1, 2, 3, 4, 5}), there exist

(
5
1

)
+
(
5
2

)
+
(
5
3

)
+
(
5
4

)
+
(
5
5

)
= 31

different combinations, which can be considered as in-
stances of the ASP. We summarize all of them in Table 1.
The first column contains an identifier associated with
each instance. Performance metrics and the rating are
shown from the second to the sixth column, respectively.
In these columns the symbol “◦” means that the corre-
sponding metric is considered in a particular instance of

the problem. On the contrary, the “-” symbol means that
the corresponding metric is not considered. Finally, the
last column specifies the number of objective functions of
each instance. Thus, Instance 1 considers power usage as
metric to be optimized while Instance 31 considers power,
CPU, memory, and network usages, and the rating.

Table 1: Instances of the ASP when up to five different metrics are
considered.

Instance Power CPU Memory Network Rating #Obj
1 ◦ - - - - 1
2 - ◦ - - - 1
3 - - ◦ - - 1
4 - - - ◦ - 1
5 - - - - ◦ 1
6 ◦ ◦ - - - 2
7 ◦ - ◦ - - 2
8 ◦ - - ◦ - 2
9 ◦ - - - ◦ 2
10 - ◦ ◦ - - 2
11 - ◦ - ◦ - 2
12 - ◦ - - ◦ 2
13 - - ◦ ◦ - 2
14 - - ◦ - ◦ 2
15 - - - ◦ ◦ 2
16 ◦ ◦ ◦ - - 3
17 ◦ ◦ - ◦ - 3
18 ◦ ◦ - - ◦ 3
19 ◦ - ◦ ◦ - 3
20 ◦ - ◦ - ◦ 3
21 ◦ - - ◦ ◦ 3
22 - ◦ ◦ ◦ - 3
23 - ◦ ◦ - ◦ 3
24 - ◦ - ◦ ◦ 3
25 - - ◦ ◦ ◦ 3
26 ◦ ◦ ◦ ◦ - 4
27 ◦ ◦ ◦ - ◦ 4
28 ◦ ◦ - ◦ ◦ 4
29 ◦ - ◦ ◦ ◦ 4
30 - ◦ ◦ ◦ ◦ 4
31 ◦ ◦ ◦ ◦ ◦ 5

Considering that different apps belong to N different
categories in the marketplace and that a solution x of the
ASP is a combination of apps, metrics to be optimized can
be calculated as follow:

power(x) =
∑N

i=1 power(xi)

N
(2)

CPU(x) =
∑N

i=1 CPU(xi)

N
(3)

memory(x) =
∑N

i=1 memory(xi)

N
(4)

network(x) =
∑N

i=1 network(xi)

N
(5)

rating(x) =
∑N

i=1 rating(xi)

N
(6)

In Equations (2), (3), (4), and (5), power(xi), CPU(xi),
memory(xi), and network(xi) are the average values of
power (in W), CPU usage (in %), memory usage (in MB),
and network usage (in MB) for app xi in a certain number

3

of runs and for a given number of exercised app functional-
ities. In Equation (6), rating(xi) is the rating of the appli-
cation xi in the marketplace. Notice that the constant N
is just a rescaling factor and thus, in this case, optimizing∑N

i=1 rating(xi)

N is the same as optimizing
∑N

i=1 rating(xi).
The same holds for performance metrics.

Solving any instance of the ASP finds a set of optimal
apps which maximize the quality metric (rating) and–or
minimize performance metrics7. If only one metric is op-
timized, the problem is considered as a single objective
optimization problem. On the contrary, if the number of
metrics to optimize is greater than one, the problem is
considered as a multi-objective optimization problem. We
think that users likely prefer to optimize more than one
metric, for example maximizing the rating while at least
one performance metric is also optimized. Consequently
we are more interested in instances of the ASP in which
two or more metrics are involved. Therefore, we focus on
multi-objective optimization problems.

Background in Multi-objective Optimization

Many real-world problems involve dealing with several
conflicting criteria or objectives, which must be optimized
simultaneously. These problems, called multi-objective
optimization problems, are defined by criteria and con-
straints that are usually expressed through mathematical
functions. Since, in general, it is impossible to find a so-
lution where all the objectives can reach their individual
optima at the same time, it is necessary to identify com-
promise solutions, which are so-called Pareto optimal or
efficient solutions, where none of the objectives can achieve
a better value without getting worse in at least one of the
other objective function values. The set of Pareto optimal
solutions is called the Pareto optimal set and its image in
the objective space is known as the Pareto optimal front.

Formally multi-objective optimization problems are
mathematical programming problems with a vector-
valued objective function, which is usually denoted by
f(x) = (f1(x), ..., fm(x)), where fj(x), for j = 1, . . . ,m,
is a real-valued function defined on the feasible region
F ⊆ <M . Consequently, the decision space belongs to <M

while the criterion space belongs to <m, and the multi-
objective optimization problem can be stated as follows:

optimize [f1(x), ..., fm(x)]
s.t. x ∈ F

In the functional space of criterion, some objective func-
tions should be maximized (j ∈ Jmax) while others should
be minimized (j ∈ Jmin), these subsets of indices verifying
that Jmax ∪ Jmin = {1, ...,m}. In this context, optimality
is defined on the basis of the concept of dominance, in such
a way that solving the above problem implies finding the

7Minimizing power usage is equivalent to maximize battery life.

subset of non-dominated solutions, that is those feasible
solutions which are not dominated by any other feasible
one. A feasible solution x0 dominates another solution
x ∈ F if and only if fj(x0) ≥ fj(x), for every j ∈ Jmax and
fj(x0) ≤ fj(x), for every j ∈ Jmin, with at least one strict
inequality. The set of non-dominated solutions will also
be referred by Pareto optimal solutions and define the effi-
cient frontier or Pareto optimal front of the multi-objective
optimization problem (see, for instance, Miettinen (1999)).

Different methodologies exist to solve multi-objective
optimization problems. Multiple Criteria Decision Making
(MCDM) (Hwang and Masud (1979); Miettinen (1999))
and Evolutionary Multi-objective Optimization (EMO)
(Deb (2001); Coello et al. (2007)) are the most popular
methodologies which have contributed with several differ-
ent approaches to solve real problems. EMO algorithms,
in general, find a evenly distributed set of Pareto optimal
solutions to approximate the Pareto optimal front while
MCDM takes into account some user preferences to find a
reduced set of optimal solutions.

3. Contexts of Use

Mobile device users could need different kinds of per-
formance depending on their location, time, and intent.
There are many different contexts of mobile device use
due to the wide variation among users’ usage (Falaki
et al. (2010)). We claim that, depending on the context,
some performance metrics are more important than others.
Therefore, even if different apps offer similar functionali-
ties, one app could be preferred over others because of its
performance in that context. Thus, we consider that the
context of use affects users’ preferences about the metrics
to be optimized. In this section, we define four different
contexts of use which are associated to instances of the
ASP. Next, we present these contexts of use which are
used later to evaluate APOA.

Travel Abroad.
This context considers users who travel abroad, whether

for work or leisure. In that case, we suppose that the most
important performance metrics are battery life (as the time
between consecutive charges is likely longer) and network
usage (as data roaming is usually expensive). This context
of use corresponds to Instance 8 of the ASP.

Old Devices.
In addition to energy consumption and network usage,

CPU and memory usages are also important metrics be-
cause apps that are CPU and–or memory greedy, slow
down devices, impacting negatively the user experience.
This is especially important for mobile users in emerg-
ing markets who usually own old mobile devices. In this
context, we consider that the most important metrics are
CPU and memory usages. Therefore, this context of use
corresponds to Instance 10 of the ASP.

4

Driving.
This context includes users who use their mobile devices

as GPS navigator. At this point we divide this context in
two different sub-contexts.

1. Phone is not plugged into the car charger. Here en-
ergy consumption is the most important performance
metric to be optimized. This context of use corre-
sponds to Instance 1 of the ASP.

2. Phone is plugged into the car charger. In this case, we
consider that the most important performance metrics
are the network usage (to minimize data plan usage),
and CPU and memory usages (to avoid lags in GPS
navigation due to the phone’s slowing down). This
context of use corresponds to Instance 22 of the ASP.

These contexts of use and their correspondences to dif-
ferent instances of the ASP are summarized in Table 2.
The first column contains contexts of use while the second
one indicates the associated instance of the ASP. Perfor-
mance metrics are shown from the third to the sixth col-
umn. In these columns the symbol “◦” means that the
corresponding performance metric is considered in that
particular instance of the problem, as it was shown in
Table 1. On the contrary, the “-” symbol means that the
corresponding performance metric is not considered.

Table 2: Correspondence between contexts of use and instances of
the ASP.

Context of Use Instance Power CPU Memory Network
Driving (1) 1 ◦ - - -
Driving (2) 22 - ◦ ◦ ◦
Old devices 10 - ◦ ◦ -
Travel abroad 8 ◦ - - ◦

4. APOA: An App Performance Optimization Ad-
visor

The APOA process is shown in Figure 1. APOA uses
as input the set of metrics to be optimized, which defines
the context of use, and metric values of mobile device apps
(this data can be given as a comma separated values (CSV)
file). Using this information it solves the corresponding in-
stance of the ASP generating, as output, a Pareto optimal
set of apps over which the user chooses the most preferred
solution (decision making). If the input contains metrics
for apps in a single specific category APOA will found op-
timal apps in that category. On the contrary, if metrics are
given for sets of apps in different categories, our approach
will found optimal combinations of apps. APOA could be
considered as a solver of the ASP and it is transparent to
the data collection process.

Given a set of apps in a category, not all of them have
similar metrics. For instance, if a user is interested in in-
stalling a popular and energy efficient camera app, not all
the existing camera apps in the marketplace should be con-
sidered because some of them could be less popular and

more energy greedy than others in the same category. In
that case the number of apps to take into account could
be reduced, because only energy efficient and popular apps
should be taken into account. It means that only camera
apps which are Pareto equivalent considering these two
metrics, rating and battery life, should be shown to the
user. If we extend this fact to all the categories the search
space can be reduced removing Pareto dominated apps in
each category. APOA always applies this reduction ap-
proach, which is formally described in Algorithm 1. As it
was commented in Section 2, Ai is the set of apps con-
tained in category Ci, with i ∈ {1, . . . , N}.

Algorithm 1 Search space reduction.
Input: Metrics to optimize and apps’ metrics.
Output: Pareto optimal apps in each category.
1: for each Ai where i ∈ {1, . . . , N} do
2: A′i = Apply Pareto dominance to apps in Ai.
3: end for
4: return A′i ∀i ∈ {1, . . . , N}

After the search space reduction, depending on the num-
ber of categories and apps by category, the decision space
could still be huge. In that case, EMO algorithms as
NSGA-II (Deb et al. (2002)) can be used to generate a
set of close to optimal solutions. On the contrary, if the
search space is small, an exhaustive search can be applied.
In this case APOA enumerates all the possible combina-
tions and applies the Pareto dominance relation to select
the Pareto optimal combinations of apps.

Algorithm 2 shows the exhaustive search used by
APOA. First, it generates (line 1) all the possible com-
binations of apps belonging to each category. It means
that, if there are N categories and each category contains
a set of A′i apps after the search space reduction,

∏N
i=1 |A′i|

different combinations of apps are generated. Second, for
each combination, objective values associated to the met-
rics to be optimized are calculated using equations (2), (3),
(4), (5), and–or (6) (line 2). Third, the Pareto dominance
relation is applied over the combinations of apps to select
the Pareto optimal ones (line 3).

Algorithm 2 Exhaustive search.
Input: Metrics to optimize and apps’ metrics.
Output: Pareto optimal set of apps (the Pareto optimal front).
1: Comb = Combinations of apps belonging to each category.
2: Calculate objective functions of each combination in Comb.
3: output = Apply Pareto dominance to Comb.
4: return output

As output, APOA shows a Pareto optimal front and the
existing trade-off for each solution and optimized metrics.
All the solutions in a Pareto optimal front are equivalents
considering the Pareto dominance relation, because if an
objective is improved another objective is worsened. For
this reason there is not a best solution and the trade-off
between different solutions and objectives should be ana-
lyzed by the user or decision maker (DM) to choose the

5

Performance

metrics and

rating of apps

optimize [f1(x), ..., fm(x)]

s.t. x in F

APOA

Metrics

to optimize

(context of usage)

Decision making

Figure 1: APOA conceptual sequence of steps. It uses as input a set of metrics to optimize and metric values for a set of apps belonging
to different categories. It solves an optimization problem and it generates, as output, a Pareto optimal front. Each solution in the Pareto
optimal front represents an optimal set of apps. Over the resulting Pareto optimal front the user selects the most preferred solution.

most preferred solution (decision making). The trade-off of
a solution and an objective function specifies the difference
in percentage with respect to the best value of this objec-
tive function in the Pareto optimal front. APOA returns
this information in a table enumerating all the Pareto op-
timal solutions and their trade-offs. In addition, to make
easier the comparison between different solutions APOA
shows trade-offs in a stacked bar graph. The bars in a
stacked bar are divided into different categories, one for
each optimized metric.

APOA and instances of the ASP has been implemented
in jMetal, an object-oriented Java-based framework for
multi-objective optimization (Durillo and Nebro (2011)).
An additional input parameter is used to specify if APOA
solves an instance of the ASP performing an exhaustive
search or running the NSGA-II algorithm.

5. Case Study

In order to evaluate APOA we propose a case study
over a subset of Android apps. We choose the Android
ecosystem because it is the most popular mobile operative
system globally. The goal of this study is to assess APOA
capabilities with the purpose of understanding APOA ap-
plicability to find optimal sets of apps in terms of different
metrics. We want to balance app qualities to find the best
set of apps given a context. This subset of apps will save
users effort and time in evaluating apps. The evaluation
is executed from the perspective of users who wish to se-
lect and install a set of apps from a set of categories, and
the perspective of developers who need to benchmark their
apps against apps in the same category.

The context of the case study consists of a subset of An-
droid apps belonging to different categories in the Google
Play marketplace. First, we select the most popular An-
droid apps in the marketplace (Subsection 5.1). Second,
we define typical usage scenarios (Subsection 5.2). Finally,
we collect and process data of different metrics for the se-
lected apps (Subsection 5.3). In the following subsections
we detail how we handle each of these steps. Using all
of these measures, APOA is evaluated considering differ-
ent contexts of use. In our experiments, we use a LG

Nexus 4 Android phone, equipped with Android Lollipop
operating system (version 5.1.1, Build number LMY47V).
Battery values of this phone’s battery are CB = 2.10Ah
and VB = 3.8V , which are used to translate power usage
to battery life.

5.1. Selecting Most Popular Android Apps

We select a set of free Android apps belonging to seven
different categories (N = 7). These apps are chosen con-
sidering the number of downloads in Google Play, because
Android users choose apps that others choose. Based on
the categories used by Saborido et al. (2016), we define
a subset of these categories considering the most com-
mon apps used by mobile device users: browsers, cameras,
flash lights, music players, news viewers, video players, and
weather forecast. For each category the 100 applications
with the best rating were selected and their descriptions,
statistics, and apk files were downloaded automatically us-
ing a Perl script and the tool Play Store Crawler8.In addi-
tion, a stress-test Python script which uses the adb9 and
Monkey10 Android tools was used to remove the apps that
crashed during their execution on the real phone. This
stress-test was similar to the approach proposed by Li et al.
(2014), configuring Monkey to generate 180 random events
during 60 seconds (three events per second). Around 2%
of the apps crashed during this test and, therefore, were
removed. Considering the rest of apps, the subset of most
downloaded 20 applications were finally selected for each
category. Therefore, in total, we analyze 140 apps for all
of the seven selected categories.

5.2. Definition of Typical Usage Scenarios

For each app in a category, we propose a typical usage
scenario and we play it automatically while performance
metrics are measured. We use the scenarios defined by
Saborido et al. (2016), which were collected interacting

8https://github.com/Akdeniz/google-play-crawler
9http://developer.android.com/tools/help/adb.html

10http://developer.android.com/tools/help/monkey.html

6

with each app under study using the Android app Hiro-
Macro11. This software allows to generate scripts contain-
ing the touch and move events while a user interacts with
each app directly on the phone. The resulting script can
be played automatically using the same app but it was
converted to a Monkeyrunner format. Thus, the interac-
tion to collect the scenario is done using the phone and
the actions can be played automatically from our code us-
ing the Monkeyrunner Android tool. For all of the apps,
a usual scenario for users (for example, navigating using
the browser, taking some pictures, or playing a song) was
simulated. The scenarios defined for each category and
collected for each app are summarized in Table 3.

Table 3: Summary of typical usage scenarios defined for each app
category.

Category Scenario description
Browsers Search and read an article in Wikipedia.
Cameras Take three pictures.
Flash Lights Use the torch during 10 seconds.
Music Players Play two songs during 20 seconds.
News Read the two first news.
Video Players Play a movie for 30 seconds.
Weather Get the forecast for two different cities.

5.3. Data Collection and Processing

For each app we run a simple scenario to start the app,
skip the initial tutorial (if it exists), and interact with the
app to simulate the user interaction. These scenarios are
run automatically while performance metrics are collected.
We run each app 20 times and, in each run, the app is unin-
stalled after its usage and the cache is cleaned using the
Android command adb. A description of the steps is given
in Algorithm 3 which has been implemented as a Python
script. For simplicity we include all the performance met-
rics in the same script but, in fact, power usage is collected
individually to avoid any impact of other metrics’ measure-
ments on it. As it is described, all apps are executed before
a new run is started to avoid that the cache memory on
the phone stores information related to the app.

Before the experiments, the screen brightness is set to
the minimum value and the phone is set to keep the screen
on. In order to avoid any kind of interference during the
measurements, only the essential Android services are run
on the phone. Because some apps need to be set up be-
fore they can be used, in Algorithm 3 there is a step to
initialize the app when it is required. In these cases, the
initialization process uses Monkeyrunner to run a sequence
of events to set up the app. These events were collected
previously for each app using HiroMacro as was explained
before in this section. Finally, when the data are collected,
they are processed to calculate and save in a CSV file the
associated rating existing in Google Play and the average
power, CPU, memory, and network usages for each app
over all the runs.

11https://play.google.com/store/apps/details?id=com.prohiro.macro

Algorithm 3 Collecting performance metrics.
Input: categories, number of runs, and list of apps
1: for each category do
2: for each run do
3: for each app do
4: Install app (using adb).
5: Run app (using adb).
6: Wait 10 seconds (to load the app fully).
7: if (app requires initialization) then
8: Play set-up (using Monkeyrunner).
9: end if
10: Start top command (using adb).
11: Start dumpsys command (using adb).
12: Start tcpdump (using adb).
13: Start oscilloscope to measure power usage.
14: Play scenario to simulate user interaction.
15: Stop oscilloscope.
16: Stop tcpdump (using adb).
17: Stop dumpsys command (using adb).
18: Stop top command (using adb).
19: Stop app (using adb).
20: Uninstall app (using adb).
21: Download the tcpdump file (using adb).
22: Download file containing memory usage (using adb).
23: Download file containing CPU usage (using adb).
24: end for
25: end for
26: end for

Power usage is measured using the same approach
proposed by Saborido et al. (2016) that uses a digital
oscilloscope TiePie Handyscope HS512 which offers the
LibTiePie SDK. The mobile phone is powered by a power
supply and, between both we connect, in series, a uCur-
rent13 device, which is a precision current adapter for mul-
timeters converting the input current in a proportional
output voltage (Vout). Knowing the input current (I)
and the voltage supplied by the power supply (Vsup), we
use the Ohm’s Law to calculate the power usage (P) as
P = Vsup · I. Although from Android API level 21 Google
made available new APIs to estimate the energy consump-
tion of apps, this hybrid software/hardware based approx-
imation, using statistics from the battery itself, is still 5%
inaccurate (Di Nucci et al. (2017)). Instead we used the
described hardware based approach to get more precise
energy measurements.

CPU usage is collected using the same approach used
by Gui et al. (2015). Specifically, the top command is run
on the phone in background obtaining the percentage of
CPU usage associated to an Android app. Every second,
this information is added to a file stored on the phone.

Memory usage is measured using the dumpsys meminfo
command on the phone. Every second, this information is
obtained for the process associated to the Android app and
it is added to a file stored on the phone. Specifically we
measure memory using the Proportional Set Size (PSS),
which is proposed in the Android documentation.This is a
measurement of the app’s RAM use that takes into account

12http://www.tiepie.com/en/products/Oscilloscopes/Handyscope_HS5
13http://www.eevblog.com/projects/ucurrent/

7

sharing pages across processes. This metric is different
from the one used by Gui et al. (2015), where authors
use the Resident Set Size (RSS). RSS indicates how many
physical pages are associated with the process, which is
less precise.

Network usage is collected using the tool tcpdump14,
which has been used in previous works (Gui et al. (2015);
Saborido et al. (2016)). tcpdump is a command line packet
capture utility, useful for capturing packets from the Wi-
Fi and cellular connections. We use this tool via adb to
capture the number of bytes transmitted over the network
connection while an app is running.

In total, for this case study, we collected 11,200 files
(more than one terabyte of data).

6. Results

The rating, existing in the marketplace, and the col-
lected performance metrics of the 140 Android apps se-
lected for the case study are used in this section to evalu-
ate APOA. First, we run APOA over the collected data to
solve all the instances of the ASP. Second, we check using
APOA if popular apps are optimal in terms of performance
metrics. Third, we use APOA to recommend optimal sets
of Android apps for contexts of use described in Section 3.
Finally, we show how collected data about performance
metrics can be used to assist developers.

6.1. Resolution of the App Selection Problem

In this subsection we present the results of using APOA
to solve all the instances of the ASP for the Android
case study. We use both the exhaustive search and the
EMO algorithm NSGA-II. Experiments are run in a
Lenovo ThinkPad laptop (4× Intel Core i5-6200U CPU @
2.30GHz) running Debian GNU/Linux Stretch. Table 4
shows the parameters and operators used in NSGA-II
which are commented by Deb (2001). The Single Point
crossover operator is used because it is one of the simplest
crossover operators and it works reasonably well in com-
binatorial problems. When two parents are selected, with
a probability of Px the operator is used to create new in-
dividuals. It selects a point on both parents and all data
beyond that point in either individual is swapped between
the two parents. The resulting solutions or individuals are
the offspring. Considering the mutation, the flip muta-
tion operator is used. It changes the value of a gene in
the individual, with a probability of Pm, with a new value
generated randomly in the lower and upper bounds range.
The binary tournament selection operator is used to select
individuals in the population to create the offspring. This
operator selects two solutions randomly in the population
and chooses the best one, or one of them with a probability
of 0.5 if they are equivalents.

14http://www.androidtcpdump.com/

Table 4: Parameters settings for the EMO algorithm NSGA-II.

Parameter Value
Population size 200
Generations 300
Crossover operator Single point crossover
Crossover probability (Px) 0.9
Mutation operator Flip mutation
Mutation probability (Pm) 1/C = 0.125
Selection operator Binary tournament

Table 5 shows the number of solutions obtained by
APOA running the exhaustive search. Each row corre-
sponds to each instance of the ASP. From the third to the
ninth columns the number of Pareto optimal apps in each
category is shown. The tenth column shows the number
of possible combinations of apps (solutions) considering
all the categories. Finally, the last column, specifies the
number of Pareto optimal solutions over all the possible so-
lutions (previous column). As it is shown, after the search
space reduction the number of optimal apps in each cate-
gory is reduced. For example, if we consider Instance 31
and the browsers category, out of 20 apps nine (45.00%)
are Pareto optimal. It means that 11 apps are discarded
and they are not considered in the optimization process.
For this reason, after the search space reduction the initial
number of possible solutions is reduced to the value indi-
cated in the tenth column. Over all of these solutions a re-
duced subset are Pareto optimal (eleventh column). If we
consider again Instance 31, 23,591 (0.15%) over 15,459,444
existing solutions are Pareto optimal. This shows the need
of a recommendation system as APOA to filter out non-
optimal solutions and help users to reduce the cognitive
effort to choose the most preferred one.

The exhaustive search took around 22 hours to solve all
the instances of the ASP for the Android case study. Al-
though Instance 31 took 14 of those hours to solve. Using
the EMO algorithm NSGA-II, all the instances are solved
in less than two minutes. Pareto optimal solutions ob-
tained by APOA after the exhaustive search and solutions
found running NSGA-II for two dimensional instances of
the ASP for the Android case study are shown in Figure 2
(instances with more than two objectives are not shown
because the resulting plots are hard to read). In addition,
non-optimal solutions after the search space reduction are
also shown. This figure allows to compare the real Pareto
optimal front obtained by the exhaustive search with re-
spect to the approximation of the Pareto front generated
by NSGA-II. As it is shown, solutions found by the ex-
haustive search and the EMO algorithm are overlapped
which means that the latter is able to find the optimal
solutions for these instances. This fact is expected, given
that the search space is small in that cases. Concerning
the rest of the instances, where the search space is big-
ger and more objective functions are involved, we check
that NSGA-II is able to find solutions close to the opti-
mal ones. From this we conclude that EMO algorithms as
NSGA-II are a good alternative to the exhaustive search to
solve the ASP. In addition to the previous, from Figure 2

8

Table 5: Number of solutions and Pareto optimal solutions for each instance of the ASP for the Android case study.

Instance #Obj Browsers Cameras Flash Lights Music Players News Video Players Weather Solutions Optimal
1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1
5 1 2 1 1 1 1 1 2 4 4
6 2 4 3 2 5 3 3 2 2,160 48
7 2 3 1 1 3 2 4 4 288 18
8 2 1 5 1 3 1 2 4 120 27
9 2 2 2 3 4 2 3 2 576 15
10 2 2 4 2 4 1 1 5 320 31
11 2 5 2 2 5 3 4 2 2,400 70
12 2 2 3 4 3 2 3 1 432 20
13 2 2 4 1 3 2 2 3 288 19
14 2 5 2 3 4 3 3 4 4,320 38
15 2 3 4 5 2 2 2 2 960 29
16 3 6 5 2 7 3 4 13 65,520 309
17 3 6 7 2 9 3 7 6 95,256 608
18 3 6 5 6 9 4 8 3 155,520 461
19 3 3 7 1 4 2 4 6 4,032 184
20 3 6 2 6 5 5 7 9 113,400 440
21 3 4 9 9 4 2 4 6 62,208 668
22 3 8 5 2 7 3 5 8 67,200 367
23 3 7 5 8 8 4 5 6 268,800 535
24 3 5 5 7 8 4 9 2 100,800 638
25 3 8 7 7 4 4 4 7 175,616 466
26 4 8 9 2 10 3 8 13 449,280 1,733
27 4 9 6 10 11 6 10 14 4,989,600 4,243
28 4 6 10 9 11 4 12 7 1,995,840 5,916
29 4 8 10 10 5 5 7 10 1,400,000 3,424
30 4 9 7 9 12 6 10 10 4,082,400 4,272
31 5 9 11 11 13 6 13 14 15,459,444 23,591

2.7 2.9 3.1 3.3

0.
5

1.
0

1.
5

2.
0

2.
5

Battery life

C
P

U

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Instance 6

3.0 3.1 3.2 3.3 3.4

30
40

50
60

70

Battery life

M
em

or
y

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

Instance 7

3.0 3.1 3.2 3.3 3.4

0.
05

0.
15

0.
25

Battery life

N
et

w
or

k

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Instance 8

3.0 3.1 3.2 3.3 3.4

4.
25

4.
35

4.
45

4.
55

Battery life

R
at

in
g ●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

Instance 9

0.5 1.5 2.5 3.5

30
40

50
60

CPU

M
em

or
y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Instance 10

1 2 3 4 5

0.
2

0.
4

0.
6

0.
8

CPU

N
et

w
or

k

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

Instance 11

1 2 3 4 5

4.
25

4.
35

4.
45

4.
55

CPU

R
at

in
g

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Instance 12

30 40 50 60

0.
2

0.
4

0.
6

0.
8

1.
0

Memory

N
et

w
or

k

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

Instance 13

30 50 70 90

4.
1

4.
2

4.
3

4.
4

4.
5

Memory

R
at

in
g

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Instance 14

0.1 0.2 0.3 0.4

4.
25

4.
35

4.
45

4.
55

Network

R
at

in
g

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Instance 15

Figure 2: Solutions of the bi-objective instances of the ASP for the Android case study. Symbol (•) is used for all the possible solutions while
Pareto optimal solutions are shown using the symbol (4). Solutions found by APOA running NSGA-II are shown using the symbol (×).

9

we conclude, as we expected, that there exist a conflict
between objectives because improving one metric implies
to worsen the other. It is also interesting to note that
there exist solution patterns in some instances. For ex-
ample, for Instance 13, where memory and network usage
are taken into account, two different clusters of solutions
are clearly distinguished. A similar behavior exists for
Instance 6, Instance 9, Instance 11, and Instance 15. We
plan to study this phenomenon in a future work.

6.2. Popular Versus Optimal Apps

Saborido et al. (2016) found that a good rating associ-
ated to an app in the marketplace does not warrant an
efficient use of power and–or network. In this subsection
we check if this fact is also true for the four studied per-
formance metrics.

We define the user solution as the set of apps re-
sulting after selecting the app with the maximum rat-
ing in each category. Considering the studied apps, the
user solution is defined by the apps shown in Table 6.
Let us define xuser as the user solution. Based on our
measurements, power(xuser) = 2.81, CPU(xuser) = 8.92,
memory(xuser) = 103.72, network(xuser) = 1.27, and
rating(xuser) = 4.55, calculated using equations (2), (3),
(4), (5), and (6).

Table 6: User solution – Apps with maximum rating per category.

Category App
Browsers mobi.mgeek.TunnyBrowser
Cameras com.roidapp.photogrid
Flash Lights goldenshorestechnologies.brightestflashlight.free
News com.guardian
Music Players com.tbig.playerprotrial
Video Players video.player.audio.player.music
Weather com.handmark.expressweather

The user solution is compared to the optimal solu-
tions found by APOA for Instance 31 of the ASP for the
Android case study, which optimize all the metrics simul-
taneously. Out of 23,591 optimal solutions eight solutions
have the same rating as the user solution. From these eight
solutions we select (1) the best one in terms of power us-
age (xminp), (2) the best one that minimizes the CPU
usage (xminc), (3) the best one in terms of memory usage
(xminm), and (4) the best one that minimizes the network
usage (xminn), and all of them are compared to the user
solution in Figure 3. In this chart, a bar is drawn for each
objective which are normalized to the interval [0, 1] tak-
ing into account its maximum value considering the user
solution and all the solutions in the Pareto optimal front
obtained by APOA. A line is used to represent each so-
lution specifying the normalized value of each objective
function.

Power CPU Memory Network Rating

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Solution with minimum power usage
Solution with minimum CPU usage
Solution with minimum memory usage
Solution with minimum network usage
User solution

Figure 3: Comparison of four optimal solutions found by APOA for
Instance 31 of the ASP for the Android case study and the solution
chosen by the user. All of them with a rating value of 4.55.

As it is shown, APOA is able to find better solutions in
terms of performance metrics. The improvement in power,
CPU, memory, and network usages is 3.66%, 27.44%,
10.73%, and 64.57% respectively, considering xminp ver-
sus xuser. This information is shown in Table 7 for the
four selected solutions. In all the compared solutions the
global rating is similar (4.55) but, as it is shown, perfor-
mance metrics of the user solution are worse than per-
formance metrics of Pareto optimal solutions found by
APOA. Therefore the user solution is not optimal. We
corroborate our prior findings that a good rating associ-
ated to an app in the Google Play marketplace does not
warrant an efficient use of power and–or network usages,
but we extend this fact to CPU and memory usages.

Table 7: Improvement of optimal solutions versus user solution. De-
picted are improvements in % for each metric of optimal solutions
found by APOA for Instance 31 for the ASP from the Android case
study are used instead of the solution chosen by the user. All of
these solutions have a rating value of 4.55.

Solution Power CPU Memory Network Rating
xminp 3.66 27.44 10.73 64.57 0.00
xminc 1.90 37.09 7.63 67.57 0.00
xminm 1.88 33.20 12.33 67.54 0.00
xminn 1.48 34.10 8.00 67.57 0.00

Now we shall investigate preferring performance metrics
more than user ratings. Effectively we study the improve-
ment in performance when the user rating is sacrificed. In
order to carry out this study we analyze the Pareto opti-
mal solutions found by APOA for Instance 26 of the ASP
for the Android case study, which optimize performance
metrics (but not the rating). Out of 1,733 optimal solu-
tions we select the following four solutions: (1) the best
one in terms of power usage (x’(minp)), (2) the best one
that minimizes the CPU usage (x’minc), (3) the best one in
terms of memory usage (x’minm), and (4) the best one that
minimizes the network usage (x’(minn)). In Figure 4 we

10

compare these solutions versus the user solution in terms
of performance and rating.

Power CPU Memory Network Rating

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Solution with minimum power usage
Solution with minimum CPU usage
Solution with minimum memory usage
Solution with minimum network usage
User solution

Figure 4: Comparison of four optimal solutions found by APOA for
Instance 26 of the ASP for the Android case study and the solution
chosen by the user. Sacrificing the user rating performance metrics
greatly improves performance measures.

Regarding our data, when x’(minp) is compared to xuser,
the rating is sacrificed by 7.16%, but the improvement
in power, CPU, memory, and network usages is 15.98%,
67.99%, 26.40%, and 75.73%, respectively. This informa-
tion is shown in Table 8 for each of the selected solutions.
We conclude that, sacrificing the rating in a small magni-
tude, performance metrics are improved in a big propor-
tion.

Table 8: Improvement (in %) for each metric when optimal solutions
found by APOA for Instance 26 of the ASP for the Android case
study are used instead of the solution chosen by the user. Negative
values indicate that a solution found by APOA worsens with respect
to the user solution.

Solution Power CPU Memory Network Rating
x’(minp) 15.98 67.99 26.40 75.73 -7.16
x’(minc) -4.44 94.06 38.55 25.39 -6.62
x’(minm) 3.60 60.47 75.53 20.97 -11.36
x’(minn) 4.60 39.34 35.04 96.09 -7.38

6.3. APOA and Contexts of Use

In this subsection we use APOA in the contexts of use
described previously in Section 3 and, for each of them, we
show the Pareto optimal solutions and the existing trade-
off associated to each solution and performance metric.

Travel Abroad
This context of use considers users who travel abroad

(for working or holidays). In that case we consider bat-
tery life and network usage the most important metrics.
First, because in this context likely the time between con-
secutive charges uses to be longer and, second, because
data roaming is usually expensive. This context of use

corresponds to Instance 8 of the ASP, whose Pareto op-
timal front was previously presented in Figure 2. Out of
120 possible solutions 27 (22.50%) are Pareto optimal in
terms of battery life and network usage. Table 9 shows
these solutions. The second and third columns show the
objective values of these performance metrics. Columns
fourth and fifth show the trade-off associated to each so-
lution and performance metric.

Table 9: Pareto optimal solutions and their associated trade-off for
the Travel Abroad context of use. Objective values for battery life
and network usage are expressed in hours and MB, respectively.

Objective values Trade-off (in %)
Solution Battery Network Battery Network

1 3.38 0.31 0.00 83.88
2 3.36 0.25 0.71 64.30
3 3.36 0.23 0.83 57.54
4 3.34 0.22 1.36 54.60
5 3.34 0.18 1.36 42.70
6 3.33 0.17 1.53 37.96
7 3.32 0.17 1.81 37.45
8 3.31 0.16 2.05 35.02
9 3.31 0.12 2.05 23.12
10 3.31 0.12 2.33 22.61
11 3.29 0.12 2.69 22.35
12 3.26 0.11 3.61 20.24
13 3.25 0.11 3.89 19.72
14 3.24 0.11 4.23 19.47
15 3.18 0.11 5.92 19.42
16 3.14 0.11 7.10 18.54
17 3.14 0.11 7.35 18.03
18 3.13 0.10 7.56 15.60
19 3.13 0.06 7.56 3.70
20 3.12 0.06 7.81 3.18
21 3.11 0.06 8.13 2.92
22 3.08 0.05 8.96 0.82
23 3.07 0.05 9.20 0.30
24 3.06 0.05 9.50 0.04
25 3.03 0.05 10.44 0.04
26 3.01 0.05 11.02 0.00
27 2.98 0.05 11.92 0.00

Figure 5 shows using a bars plot the trade-off of each
solution for battery life and network usage. This plot and
the previous table, used together, are useful for the user to
visualize and compare Pareto optimal solutions. If the user
prefers battery life to network usage, Solution 1 would be
chosen. In that case network usage is increased 0.26 MB
(83.88%) with respect to Solution 27, which has the lowest
network usage. On the contrary, if network usage is pre-
ferred, Solution 27 would be chosen decreasing battery life
24 minutes (11.92%) with respect to Solution 1. If both
performance metrics are equally important, Solution 19
could be chosen as the preferred one because the trade-
off is almost similar for both objective functions. In that
case battery life is decreased 15 minutes (7.56%) respect to
Solution 1 and network usage is increased 0.01 MB (3.70%)
with respect to Solution 27.

Old Devices
This context of use considers users who own old devices

which are limited in terms of CPU and RAM memory.
In that case we consider CPU and memory usages as the
most important performance metrics. This context of use
corresponds to Instance 10 of the ASP, whose Pareto opti-
mal front was previously presented in Figure 2. Over 320

11

Solution

tr
ad

e−
of

f (
in

 %
)

1 3 5 7 9 11 13 15 17 19 21 23 25 27

0
20

40
60

80
10

0

Battery life
Network

Figure 5: Trade-off (in %) for battery life and network usage of each
solution for the Travel Abroad context of use.

existing solutions 31 (9.69%) are Pareto optimal in terms
of CPU and memory usages. Table 10 shows these solu-
tions, their metric values, and the trade-off associated to
each solution and performance metric. Figure 6 shows the
trade-off of each solution for CPU and memory usages. If
the user prefers CPU to memory usage, Solution 1 would
be chosen. In that case memory usage is increased 38.36
MB (60.19%) with respect to Solution 31, which uses less
memory. On the contrary, if memory usage is preferred,
Solution 31 would be chosen increasing CPU usage 3.00%
(trade-off of 84.96%) with respect to Solution 1. If CPU
and memory usages are equally important, Solution 17
could be chosen. However, if memory usage is a little more
important than CPU usage, Solutions from 18 to 31 could
be preferred.

Solution

tr
ad

e−
of

f (
in

 %
)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

0
20

40
60

80
10

0

CPU
Memory

Figure 6: Trade-off (in %) for CPU and memory usages of each
solution for the Old Devices context of use.

Driving
This context includes users who use their mobile devices

as GPS navigator. As we mentioned in Section 3, we di-
vide this context of use in two different subcontexts.

1. Phone is not plugged to the car charger. Here we
consider energy consumption as the most important

Table 10: Pareto optimal solutions and their associated trade-off
for the Old Devices context of use. Objective values for CPU and
memory usages are expressed in percentage and MB, respectively.

Objective values Trade-off (in %)
Solution CPU Memory CPU Memory

1 0.53 63.74 0.00 60.19
2 0.53 62.79 0.04 58.70
3 0.54 55.67 0.15 47.53
4 0.56 52.89 0.81 43.17
5 0.59 52.63 1.71 42.75
6 0.61 51.34 2.16 40.73
7 0.63 48.56 2.81 36.37
8 0.66 48.29 3.72 35.95
9 0.73 47.57 5.58 34.82
10 0.76 47.30 6.48 34.40
11 0.94 45.50 11.63 31.57
12 0.97 45.23 12.54 31.15
13 1.03 44.18 14.05 29.50
14 1.06 43.91 14.95 29.08
15 1.07 42.63 15.39 27.06
16 1.10 39.85 16.05 22.70
17 1.13 39.58 16.96 22.28
18 1.51 37.93 27.65 19.70
19 1.54 37.67 28.56 19.28
20 1.61 36.75 30.66 17.85
21 1.64 36.49 31.57 17.43
22 2.02 34.84 42.26 14.85
23 2.05 34.57 43.16 14.43
24 2.41 32.25 53.39 10.77
25 2.44 29.46 54.05 6.41
26 2.47 29.20 54.95 5.99
27 2.93 29.15 68.00 5.92
28 2.95 26.37 68.66 1.56
29 2.98 26.10 69.56 1.14
30 3.49 25.64 84.06 0.42
31 3.53 25.38 84.96 0.00

performance metric. This context of use corresponds
to Instance 1 of the ASP. There is only one optimal
combination of apps minimizing power usage, which
has associated a battery life of 3.38 hours.

2. Phone is plugged to the car charger. In this case we
consider that the most important performance metrics
are the network usage (to minimize data plan usage),
and CPU and memory usages (to avoid lags in navi-
gation due to the phone’s slow down). This context
of use corresponds to Instance 22 of the ASP. As it is
shown in Table 5, out of 67,200 possible solutions 367
(0.55%) are Pareto optimal in terms of CPU, memory,
and network usages. Because of space limitation these
Pareto optimal solutions cannot be enumerated in the
paper but Figure 6 shows the trade-off of each solu-
tion for CPU, memory, and network usage. If CPU
and memory usages are equally important but a trade-
off for network usage lower than 10.00% is preferred,
any solution from 1 to 196 could be chosen.

Depending on the context of use some metrics could be
more important than others and this fact could affect
users’ preferences. As we showed, even if the number of
Pareto optimal solutions for a given context is much less
than the number of initial possible solutions, still users
should decide the preferred one according to their prefer-
ences. For this reason, in addition to the list of Pareto
optimal solutions, information about the existing trade-off
between solutions and metrics should be given to the user.

12

Solution

tr
ad

e−
of

f (
in

 %
)

1 9 19 31 43 55 67 79 91 105 119 133 147 161 175 189 203 217 231 245 259 273 287 301 315 329 343 357

0
20

40
60

80
10

0

CPU
Memory
Network

Figure 7: Trade-off (in %) for CPU, memory, and network usages of each solution for the Driving context of use when the phone is plugged
to the car charger.

6.4. Assisting Developers in Comparing Apps
We showed that APOA can help users to make efficient

choices about apps in terms of performance metrics. Per-
formance metrics are not only important for mobile device
users but also for developers. For example, given a new
app or a new version of an existing one, knowing how close
or far in terms of performance metrics is the new app to
the others in the same category. In this subsection we show
how collected measures can be used to assist developers in
comparing new apps with respect to their competitors in
the marketplace.

Collected data are used to define the reference values
shown in Table 11. Here, regarding the apps in each cate-
gory, the optimal, median, and worst values for each per-
formance metric are shown. Let us suppose that a new
Android browser app is developed. The scenario associ-
ated to the browsers category is played and performance
metrics are collected. Let us consider that the associated
power usage (battery life), CPU, memory, and data usage
are 3.10W (2.57 hours), 9.00%, 65.00MB, and 0.40MB, re-
spectively, for this new app. Using the reference values
given in Table 11 we can know that power usage (battery
life) associated to the app is worse than battery life asso-
ciated to most of the apps in that category. Concerning
CPU usage, the new app is the worst but it is the best in
terms of memory usage. In addition, network usage of the
new app does not improve the best existing value, but it
is better than the median.

Using histograms, developers can visualize, in a graphi-
cal way, the distribution of performance metrics of apps be-
longing to the same category. It allows developers to know
how their new app is positioned with respect to the oth-
ers. Figure 8 shows the histograms of apps in the browsers
category for each performance metric (where the red bar
represents the new app).

Analyzing the histograms, we confirm that the new app
is the third worst in terms of power usage (battery life),
the worst in terms of CPU usage, but the best in terms of
memory usage. Considering network usage, we conclude
that the new app is the second best app in the category

0

1

2

3

4

2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80

C
ou

nt

Applications
new
other

(a) Battery life (in hours)

0

1

2

3

4

1 2 3 4 5 6 7 8 9

C
ou

nt

Applications
new
other

(b) CPU usage (in %)

0.0

0.5

1.0

1.5

2.0

60 80 100 120 140 160 180

C
ou

nt

Applications
new
other

(c) Memory usage (in MB)

0

2

4

6

8

0.2 0.4 0.6 0.8 1.0 1.2 1.4

C
ou

nt

Applications
new
other

(d) Network usage (in MB)

Figure 8: Distribution of performance metrics for browser apps from
our case study. It allows to know how a new app is positioned in
terms of performance metrics with respect to other apps.

with respect to data usage.

7. Threats to Validity

Threats to internal validity concern factors, internal to
our study, that could have influenced our results. For our
case study we computed performance metrics using well-
known approaches and scenarios. In addition, we repli-
cated several times our measures to ensure statistical va-
lidity.

13

Table 11: Reference values for performance metrics of Android app categories.

Category Battery life (in hours) CPU (in %) Memory (in MB) Network (in MB)
Optimal Median Worst Optimal Median Worst Optimal Median Worst Optimal Median Worst

Browsers 2.79 2.65 2.46 0.95 2.76 7.92 0.07 0.12 0.17 0.24 0.62 1.38
Cameras 2.69 2.24 1.90 0.00 1.78 12.59 0.01 0.09 0.15 0.00 0.02 3.44
Flash Lights 11.90 8.82 5.39 0.00 4.03 13.93 0.01 0.07 0.11 0.00 0.01 1.21
Music Players 4.64 2.74 2.04 0.00 5.07 12.95 0.02 0.08 0.10 0.00 0.00 0.42
News 2.87 2.61 2.18 1.12 10.46 17.48 0.05 0.15 0.27 0.08 1.36 9.16
Video Players 2.75 2.37 1.79 0.11 9.34 13.90 0.01 0.09 0.12 0.00 0.00 0.39
Weather 3.06 2.63 1.91 1.53 6.90 19.44 0.01 0.10 0.18 0.02 0.43 14.00

Threats to construct validity concern relationship be-
tween theory and observation and the extent to which the
measures represent real values. We used a Nexus 4 phone,
the same model used in previous studies (Di Nucci et al.
(2017); Huang et al. (2016); Linares-Vásquez et al. (2014);
Saborido et al. (2016); Sahin et al. (2014, 2016)). Our
measurement apparatus had a higher number of sampling
bits than previous studies and our sampling frequency was
one order of magnitude higher than past studies. Overall,
our measures were more precise or at least as precise as
those in previous studies. Network, CPU and memory
usages were collected using the tool tcpdump and the com-
mands top and dumpsys on the phone, respectively, which
may have introduced extra energy consumption. In order
to avoid any impact of other metrics’ measurements on
it, we collected power usage individually. Another threat
to construct validity is the scenarios and default applica-
tion settings. We only explore the default application set-
tings but there could be drastically different performance
if these settings were to change. Unfortunately we lack
statistics about this behavior and its prevalence, thus it
remains a threat that faces this study.

Threats to conclusion validity concern the relationship
between experimentation and outcome. Further valida-
tions on different marketplaces, larger set of apps, and–or
different phones is desirable to make our findings more
generic.

Threats to external validity concern the generalization
of our findings. The case study was limited to a reduced
number of popular Android apps in the Android market-
place. More experiments over larger set of apps must be
carried out to evaluate APOA in a more realistic way us-
ing tens of categories and million apps. In that case the
exhaustive search could not be feasible and NSGA-II could
have some limitations to solve instances where the num-
ber of objectives is greater than three (Khare et al. (2003);
Ishibuchi et al. (2008)). For this reason more algorithms
should be studied. Furthermore apps evolve and so does
their performance, this kind of work should extend across
multiple versions (Hindle (2012)).

Another concern in this research is whether or not the
scenarios are representative of the overall app behavior.
We are aware that (i) different features have different per-
formance characteristics and (ii) there is no a clear re-
lationship between the rating of apps and their number
of features. Thus, more experiments considering different
scenarios and features is required. Although our goal was

to show APOA feasibility and support the evidence of its
usefulness, we made an effort to define complete scenarios
simulating users behaviour exercising more common app
features. Thus, for example, we got the forecast for two
different cities for apps in the Weather category.

In order to allow the replication of this study and reduce
the threats to validity, all the content used is available in
our replication package15. It is important to notice that
the same model of phone and version of Android operating
system should be used to replicate the case study.

8. Discussion about Performance Measures

Energy impact of apps running on mobile devices can
be measured using hardware based approaches, as the
methodology explained in this paper, or using software
based approaches, as PETrA (Di Nucci et al. (2017))
or Xcode16 for Android and iOS platforms, respec-
tively. However, existing services such as Green Miner
(Hindle et al. (2014)) could also be used. Green Miner is
a dedicated hardware mining software repositories testbed.
It physically measures the energy consumption of mobile
phones and automates the reporting of measurements as a
web service.

CPU, memory, and network usages can be measured us-
ing software based approaches. The Android tools used in
our case study can be used to collect information about
these metrics in Android platforms. For iOS, Xcode in-
struments can be used to automate the collection of these
performance metrics in Apple platforms.

In the Android and Apple app stores there are million
apps. Thus, performance metrics collection for all apps is
infeasible in practice using the solution described in the
APOA case study. Although APOA is independent to the
measurement process, hybrid static and dynamic analy-
sis techniques could be applied to estimate performance
metrics of apps in a marketplace. Based on this idea,
Behrouz et al. (2015) proposed EcoDroid to estimate the
energy cost of Android apps taking into account their API
usage. A similar approach could be applied to estimate
CPU, memory, and network usages of apps. In addition
to this, Google has recently announced, at the I/O 2017
conference, Android Vitals17. Vitals identifies different is-

15http://www.ptidej.net/downloads/replications/APOA/
16https://developer.apple.com/xcode/
17https://developer.android.com/distribute/best-

practices/develop/android-vitals.html

14

sues in Android apps from Android devices whose users
have opted-in to automatically share usage and diagnos-
tics data. The Play Console aggregates this information
and displays metrics about stability, rendering time, and
battery usage, in a specific dashboard. APOA could also
be implemented in the Android marketplace getting dif-
ferent metrics of apps from Vitals.

Nonetheless, performance metrics measurements could
be done as part of a certification process by a third party
who is potentially paid to test and certify apps. This puts
the onus on a business to engage in this practice to provide
badges or approvals to apps that might garner consumer
trust—much like consumer reports.

9. Related Work

There is a growing body of work on analyzing and op-
timizing the performance of mobile devices. Most of them
focused on energy consumption. Li and Halfond (2014)
directed a research to improve code practices and pro-
vided developers with guidelines to extend battery of
mobile devices. Linares-Vásquez et al. (2014) mined An-
droid energy-greedy API usage patterns, making develop-
ers aware of which components and APIs are more energy
efficient. Similarly, Manotas et al. (2014) developed a set
of recommendations to support developers in coding more
energy aware apps. Wan et al. (2015) presented a tech-
nique to detect display energy hotspots of mobile device
apps, reporting them to developers.

In addition to energy consumption, other performance
metrics have also been studied. Gui et al. (2015) quanti-
fied the impact of ads on energy consumption, but also
on CPU, memory, and network usages on mobile device
apps. Chen and Zong (2016) conducted a comprehensive
study on the impact of languages, compilers, and imple-
mentations on the performance of Android apps in terms of
energy consumption and CPU usage. Hasan et al. (2016)
created detailed profiles of the energy consumed by com-
mon operations done on Java list, map, and set imple-
mentations. They also explored the memory usage of list
implementations.

Several works have also studied the impact
of user’s decisions on software performance.
Amsel and Tomlinson (2010) proposed a tool for es-
timating the energy consumption of currently installed
software systems. This tool determines which software
systems are the most efficient given the user’s current
computer configuration. It presents this information to
the user in the form of a chart comparing the energy con-
sumption and the CPU usage of software systems in the
same category. Procaccianti et al. (2011) collected and
analyzed power consumption data of a desktop computer
simulating common usage scenarios. Automated by a
Graphical User Interface (GUI) testing tool, they collected
power consumption data by means of a power meter to
extract an energy profile for each independent scenario.
They obtained that usage patterns impact consistently on

the energy consumption of software. Zhang et al. (2014)
analyzed the energy consumption of different apps and
they highlighted the perils that users face and the ulti-
mate responsibility users have for the battery life of their
devices. For example, they obtained that a command line
music player uses more than six times less energy than
a different music player with a GUI, or that web-based
desktop apps tend to consume more energy than non-web
based. Behrouz et al. (2015) proposed EcoDroid, an
approach that estimates the energy cost of Android apps
in a category and ranks them accordingly to help users
make informed decisions. EcoDroid uses a combination
of dynamic and static analyses and test cases to execute
apps and estimates their energy cost based on their API
usage. These estimates take into account the energy cost
of the paths executed by test cases to rank Android apps
in terms of energy efficiency. Recently, Saborido et al.
(2016) presented ADAGO, a simple recommendation
system to propose optimal sets of Android apps that
minimize power and data usages while maximizing the
apps rating.

The closest works to our approach are EcoDroid and
ADAGO. Both share with APOA the idea of support-
ing users. However, APOA tackles a different problem
to EcoDroid and ADAGO, with different variables (cate-
gories of apps in a marketplace) and objectives (metrics).

10. Conclusion

The official marketplaces of Android and Apple plat-
forms offer more than a million mobile device apps be-
longing to different categories. In both marketplaces infor-
mation about performance metrics is not usually available
and, therefore, mobile users select apps based on other
criteria, as the rating. Even if performance metrics are
available, different apps have different performance and,
depending on the context of use, some metrics could be
more important than others. For instance, users could
prefer to optimize battery life and network usage in a for-
eign trip context while CPU, memory, and network usages
could be preferred if the phone is plugged to the car charger
in a navigation context. All of this makes the comparison
of apps difficult in terms of performance because the re-
quired cognitive effort. APOA is proposed as a recommen-
dation tool to complement mobile device app marketplaces
allowing users and developers to compare optimal apps or
to rank them relevant to their current context and needs.
APOA takes as input metric values of apps and, therefore,
it is totally independent to the measurement process.

We evaluated APOA over an Android case study. Out
seven categories and 140 apps, we defined typical usage
scenarios and we collected information about performance
metrics. We used APOA to show that selecting apps based
on their rating is not an optimal choice in terms of per-
formance. APOA was able to find several sets of Pareto
optimal apps where eight of them had a similar rating

15

but they improved performance metrics. The improve-
ment for power, CPU, memory, and network usages was
up to 3.66%, 37.09%, 12.33%, and 67.57%, respectively.
In addition we also showed that, sacrificing the rating in
a small magnitude, performance metrics are improved in
a big proportion. We obtained that, by only sacrificing
the rating by 7.16% the improvement in performance met-
rics raised in 15.98%, 67.99%, 26.40%, and 75.73%, re-
spectively. We also showed the benefit of using APOA in
different contexts of use to find optimal combinations of
apps and compare the existing trade-off between perfor-
mance metrics. Finally, we illustrated how the availability
of performance metrics can be helpful for developers be-
fore they release a new app. For example, comparing the
performance of a new app with respect to its competitors.
This fact would motivate the development of more efficient
apps, which benefits final mobile device app users.

Once our approach is implemented in a marketplace, it
can be used on-demand by users. However, APOA can
also be automatically used by marketplaces. This is feasi-
ble given that mobile device users usually link their devices
to the app marketplace, such as the Google Play Store or
the Apple Store apps. Thus, marketplaces know which
apps the user has installed and APOA could use this in-
formation to make customized optimal recommendations
for each user.

As future work, we plan to apply the presented approach
dynamically whereby user profiles of app use and their in-
tent are mapped to the contexts that best fit them. Thus,
app marketplaces would use user profiles and performance
behavior to recommend to users which apps they could
download and consume. In addition to this, mobile de-
vice app developers could use inter-app comparison and
performance measures to continuously evaluate their apps
performance in the app store market. When integrated
into continuous integration, the developers could get rel-
ative app ranking per each software change. By integrat-
ing comparison into continuous integration (continuous in-
spection) developers could maintain constant awareness of
performance relevant issues their apps might face.

Acknowledgements

The authors would like to thank the Electrical Engi-
neering department of Polytechnique Montreal for shar-
ing their resources. In particular, we would like to thank
Bryan Tremblay for his valuable help and support.

This work has been partially funded by the Span-
ish MINECO and FEDER project TIN2014-57341-R
(http://moveon.lcc.uma.es).

References

Amsel, N., Tomlinson, B., 2010. Green tracker: A tool for estimating
the energy consumption of software. In: CHI ’10 Extended Ab-
stracts on Human Factors in Computing Systems. CHI EA ’10.
ACM, New York, NY, USA, pp. 3337–3342.
URL http://doi.acm.org/10.1145/1753846.1753981

Behrouz, R. J., Sadeghi, A., Garcia, J., Malek, S., Ammann, P.,
May 2015. EcoDroid: An Approach for Energy-Based Ranking of
Android Apps. In: 2015 IEEE/ACM 4th International Workshop
on Green and Sustainable Software. pp. 8–14.

Chen, X., Zong, Z., Oct. 2016. Android App Energy Efficiency: The
Impact of Language, Runtime, Compiler, and Implementation.
In: 2016 IEEE International Conferences on Big Data and Cloud
Computing (BDCloud), Social Computing and Networking (So-
cialCom), Sustainable Computing and Communications (Sustain-
Com) (BDCloud-SocialCom-SustainCom). pp. 485–492.

Coello, C. A. C., Lamont, G. B., Veldhuizen, D., 2007. Evolutionary
Algorithms for Solving Multi-Objective Problems. Second Edition.
Springer, New York.

Deb, K., 2001. Multi-objective Optimization using Evolutionary Al-
gorithms. Wiley, Chichester.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Transac-
tions on Evolutionary Computation 6 (2), 182–197.

Di Nucci, D., Palomba, F., Prota, A., Panichella, A., Zaidman, A.,
De Lucia, A., 2017. Software-Based Energy Profiling of Android
Apps: Simple, Efficient and Reliable? In: Proceedings of the
24th International Conference on Software Analysis, Evolution
and Reengineering (SANER). Klagenfurt, Austria, pp. 103–114.

Durillo, J. J., Nebro, A. J., 2011. jmetal: A java framework for
multi-objective optimization. Advances in Engineering Software
42, 760–771.
URL http://www.sciencedirect.com/science/article/pii/
S0965997811001219

Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govin-
dan, R., Estrin, D., 2010. Diversity in Smartphone Usage. In:
Proceedings of the 8th International Conference on Mobile Sys-
tems, Applications, and Services. MobiSys ’10. ACM, New York,
NY, USA, pp. 179–194.
URL http://doi.acm.org/10.1145/1814433.1814453

Gomes, L. L. A., Fontão, A. L., Bezerra, A. J. S., Dias-Neto, A. C.,
Oct. 2016. An Empirical Analysis of Mobile Apps’ Popularity Met-
rics in Mobile Software Ecosystems. Maceió (Brazil).

Gui, J., Mcilroy, S., Nagappan, M., Halfond, W. G. J., May 2015.
Truth in Advertising: The Hidden Cost of Mobile Ads for Software
Developers. In: Proceedings of the 37th International Conference
on Software Engineering (ICSE).

Halpern, M., Zhu, Y., Reddi, V. J., 2016. Mobile CPU’s rise to
power: Quantifying the impact of generational mobile CPU design
trends on performance, energy, and user satisfaction. In: 2016
IEEE International Symposium on High Performance Computer
Architecture, HPCA 2016, Barcelona, Spain, March 12-16, 2016.
pp. 64–76.
URL https://doi.org/10.1109/HPCA.2016.7446054

Harman, M., Jia, Y., Zhang, Y., 2012. App store mining and
analysis: MSR for app stores. In: Lanza, M., Penta, M. D., Xie,
T. (Eds.), MSR. IEEE Computer Society, pp. 108–111.
URL http://dblp.uni-trier.de/db/conf/msr/msr2012.html#
HarmanJZ12

Hasan, S., King, Z., Hafiz, M., Sayagh, M., Adams, B., Hindle, A.,
May 2016. Energy Profiles of Java Collections Classes. In: Pro-
ceedings of the 38th International Conference on Software Engi-
neering (ICSE). Austin, TX, US, pp. 225–236.

Hindle, A., Jun. 2012. Green mining: A methodology of relating soft-
ware change to power consumption. In: Mining Software Reposi-
tories (MSR), 2012 9th IEEE Working Conference on. pp. 78–87.

Hindle, A., Wilson, A., Rasmussen, K., Barlow, E. J., Campbell,
J. C., Romansky, S., 2014. GreenMiner: A Hardware Based Min-
ing Software Repositories Software Energy Consumption Frame-
work. In: Proceedings of the 11th Working Conference on Mining
Software Repositories. MSR 2014. ACM, New York, NY, USA,
pp. 12–21.
URL http://doi.acm.org/10.1145/2597073.2597097

Huang, P., Xu, T., Jin, X., Zhou, Y., Jun. 2016. DefDroid: Towards
a More Defensive Mobile OS Against Disruptive App Behavior.
In: Proceedings of the The 14th ACM International Conference

16

http://moveon.lcc.uma.es
http://doi.acm.org/10.1145/1753846.1753981
http://www.sciencedirect.com/science/article/pii/S0965997811001219
http://www.sciencedirect.com/science/article/pii/S0965997811001219
http://doi.acm.org/10.1145/1814433.1814453
https://doi.org/10.1109/HPCA.2016.7446054
http://dblp.uni-trier.de/db/conf/msr/msr2012.html#HarmanJZ12
http://dblp.uni-trier.de/db/conf/msr/msr2012.html#HarmanJZ12
http://doi.acm.org/10.1145/2597073.2597097

on Mobile Systems, Applications, and Services. Singapore, Singa-
pore.
URL http://doi.acm.org/10.1145/2906388.2906419

Hwang, C. L., Masud, A. S. M., 1979. Multiple Objective Decision
Making – Methods and Applications: A State-of-the-Art Survey.
Springer-Verlag, Berlin.

Ishibuchi, H., Tsukamoto, N., Hitotsuyanagi, Y., Nojima, Y., 2008.
Effectiveness of scalability improvement attempts on the perfor-
mance of nsga-ii for many-objective problems. In: Proceedings of
the 10th Annual Conference on Genetic and Evolutionary Com-
putation. GECCO ’08. ACM, New York, NY, USA, pp. 649–656.
URL http://doi.acm.org/10.1145/1389095.1389225

Khare, V., Yao, X., Deb, K., 2003. Performance Scaling of Multi-
objective Evolutionary Algorithms. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 376–390.
URL http://dx.doi.org/10.1007/3-540-36970-8_27

Li, D., Halfond, W. G. J., 2014. An Investigation into Energy-saving
Programming Practices for Android Smartphone App Develop-
ment. In: Proceedings of the 3rd International Workshop on Green
and Sustainable Software. GREENS 2014. ACM, New York, NY,
USA, pp. 46–53.
URL http://doi.acm.org/10.1145/2593743.2593750

Li, D., Hao, S., Gui, J., Halfond, W., Sept 2014. An empirical study
of the energy consumption of android applications. In: Software
Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. pp. 121–130.

Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Oliveto, R.,
Di Penta, M., Poshyvanyk, D., 2014. Mining Energy-greedy API
Usage Patterns in Android Apps: An Empirical Study. In: Pro-
ceedings of the 11th Working Conference on Mining Software
Repositories. MSR 2014. ACM, New York, NY, USA, pp. 2–11.

URL http://doi.acm.org/10.1145/2597073.2597085
Manotas, I., Pollock, L., Clause, J., 2014. SEEDS: A Software Engi-

neer’s Energy-optimization Decision Support Framework. In: Pro-
ceedings of the 36th International Conference on Software Engi-
neering. ICSE 2014. ACM, New York, NY, USA, pp. 503–514.
URL http://doi.acm.org/10.1145/2568225.2568297

Miettinen, K., 1999. Nonlinear Multiobjective Optimization. Kluwer
Academic Publishers, Boston.

Procaccianti, G., Vetro’, A., Ardito, L., Morisio, M., 2011. Profil-
ing power consumption on desktop computer systems. In: Kran-
zlmüller, D., Toja, A. M. (Eds.), Information and Communication
on Technology for the Fight against Global Warming. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 110–123.

Saborido, R., Beltrame, G., Khomh, F., Alba, E., Antoniol, G., Mar.
2016. Optimizing User Experience in Choosing Android Applica-
tions. In: Proceedings of the 23rd IEEE International Conference
on Software Analysis, Evolution, and Reengineering (SANER).

Sahin, C., Pollock, L., Clause, J., 2016. From benchmarks to real
apps: Exploring the energy impacts of performance-directed
changes. Journal of Systems and Software 117, 307 – 316.
URL //www.sciencedirect.com/science/article/pii/
S0164121216000893

Sahin, C., Tornquist, P., Mckenna, R., Pearson, Z., Clause, J., 2014.
How Does Code Obfuscation Impact Energy Usage? In: IC-
SME’14. pp. 131–140.

Wan, M., Jin, Y., Li, D., Halfond, W. G. J., Apr. 2015. Detecting
Display Energy Hotspots in Android Apps. In: Proceedings of the
8th IEEE International Conference on Software Testing, Verifica-
tion and Validation (ICST).

Zhang, C., Hindle, A., German, D. M., 2014. The Impact of User
Choice on Energy Consumption. IEEE Software 31 (3), 69–75.

17

http://doi.acm.org/10.1145/2906388.2906419
http://doi.acm.org/10.1145/1389095.1389225
http://dx.doi.org/10.1007/3-540-36970-8_27
http://doi.acm.org/10.1145/2593743.2593750
http://doi.acm.org/10.1145/2597073.2597085
http://doi.acm.org/10.1145/2568225.2568297
//www.sciencedirect.com/science/article/pii/S0164121216000893
//www.sciencedirect.com/science/article/pii/S0164121216000893

Vitae

Rubén Saborido received his BS. degree in Computer
Engineering and his MS. in Software Engineering and Arti-
ficial Intelligence from University of Malaga (Spain), where
he worked for three years as a researcher. In 2017, he re-
ceived a Ph.D. in Computer Engineering from Polytech-
nique Montréal and his thesis was nominated for best the-
sis award. Rubén research focuses on search based soft-
ware engineering applied to performance and energy op-
timization of mobile devices. He is also interested in the
use of metaheuristics to solve complex multiobjective op-
timization problems and in the design of algorithms to
approximate a part of the whole Pareto optimal front tak-
ing into account user preferences. He has published seven
papers in ISI indexed journals, and conference papers in
MCDM, SANER, and ICPC. He co-organized the Interna-
tional Conference on Multiple Criteria Decision Making,
in 2013.

Foutse Khomh is an associate professor at Poly-
technique Montréal, where he heads the SWAT Lab
on software analytics and cloud engineering research
(http://swat.polymtl.ca/). He received a Ph.D. in Soft-
ware Engineering from the University of Montréal with the
award of excellence. His research interests include software
maintenance and evolution, cloud engineering, empirical
software engineering, and software analytic. He has pub-
lished more than 100 papers in international conferences
and journals, and his work has received one Most Influen-
tial Paper Award, three Best Paper Awards and multiple
nominations for Best Paper Awards. He has served on the
program committees of several international conferences
and reviewed for top international journals such as EMSE,
TSE and TOSEM. He is on the Review Board of EMSE.
He is program chair for Satellite Events at SANER 2015,
program co-chair of SCAM 2015 and ICSME 2018, and
general chair of ICPC 2018. He is one of the organizers of
the RELENG workshop series (http://releng.polymtl.ca)
and has been guest editor for special issues in the IEEE

Software magazine and JSEP.
Abram Hindle is an associate professor at the Uni-

versity of Alberta, in Edmonton, Alberta, Canada within
the Department of Computing Sciences. He focuses his
research on the evidence-based study of software devel-
opment. His research combines the domains of perfor-
mance analysis, energy consumption analysis (Green Min-
ing), natural language processing, computer music, and
information retrieval with software engineering. He has
published several papers in international conferences and
journals, including EMSE, ICSE, FSE, ICSM, MSR, and
SANER. He has served on the program committees of
several international conferences including ICSME, ICSE,
MSR, and SCAM.

Enrique Alba is a professor of computer science at
the University of Málaga, Spain, where he leads the NEO
(Networking and Emerging Optimization) group. His cur-
rent research interests involve the design and application
of evolutionary algorithms, ant colony optimization, parti-
cle swarm optimization, and other bio-inspired systems to
real problems including telecommunications, software en-
gineering, combinatorial optimization, and bioinformatics
among others. Prof. Alba has published 12 monographs
on complex problem solving, more than 70 papers in ISI
indexed journals, and more than 250 conference papers.
He has also coordinated several national and international
research projects in the past. Finally, Prof. Alba works in
the program committee of well-known important confer-
ences in several fields, like ACM GECCO, EvoCOP, IEEE
CEC, IPDPS, PPSN, and many more, as well he has or-
ganized international events like GECCO 2013 (as general
chair), IEEE/ACM MSWiM, and NIDISC. He also works
as reviewer for EJOR, Computer Communications, IEEE
Transactions (on EC, Education, PDS, SMC), JMMA,
Journal of Heuristics, JPDC, PARCO, etc. Besides, Prof.
Alba works in the editorial board of several international
journals related to optimization, telecommunications, and
parallel systems.

18

View publication statsView publication stats

https://www.researchgate.net/publication/319875686

