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ABSTRACT

In this thesis, we study_some representation and distribution
problems for the class of generalized r-free integers, called (k,r)-.
integers. These are defined as integers whose k-free part is also f-free
(where k and r are fiiéd integers with 0 < r < k). A special
(1imiting) case of this is the r-free integers (k = @) . Many known
results concerning the r-free integers follow as corollaries of our results
for the (k,r)-integers. Our results include those concerning the
Schnirelmann and asymptotic density for the (k,r)-integers. We study
the distribution of the (k,r)—integefs in a given arithmetic progression
a (mod h) , also the number of representations of an integer as the sum

of two (k,r) type integers, sum of a prime-and a (k,r) integer,etc.
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CHAPTER I

Introduction

For a given natural number r » We recall that an integer n
is said to be r-free whenever it is not divisible by the r~th power of any
prime. In the extreme cases, unity is the only l-free integer, and every
integer is ~-free, There is a vast literature concerning r-free integers
and, in particular, square-free (or quadratfrei) number. Various results
obtained in earlier years by several authors (e.g. S.S. Pillai, K. Rogers,
F. Mertens, etc,) involving square-free integers, (e.g. density, repre-
sentation and distribution problems ) were later, in turn generalized by
others (e.g. L. Mirsky, E. Cohen, T. Estermann, etc.) to r-free integers,

where r 1is any integer 2> 2,

In a paper published in 1960, E. Cohen [13] introduced a class
of integers, called integers of the type (b,k) , which are in fact a
generalization of the k-free integers. For b 2 0 and k21, an
integer of the type (b,k) is defined to be an integer whose greatest

k-thpower divisor is also a bk-th power divisor.

Here we wish to study in some detail a class of integers Qk r?
’
which we call the (k,r)-integers (definad below) of which the r-free

integers and Cohen's (b,k)-type integers arise as special cases.

Let k and r be fixed integers such that 0 < r <k . We
recall that any integer n > 1 has the unique representation n = akb
where b 1is k-free. We shall call ak the k-th power part of n and
b the k-free part. If b is r~free we shall call n a generélized

r-free integer or a (kyr)-integer. Notice that in the limiting case when



k ~» , a (k,r)~integer becomes a r-free integer. We may also observe
that a (k,1)-integer is the same as a k-th power integer. The (k,r)-
integers were first introduced in 1966 in a paper by M.V. Subbarao and
V.C. Harris [1] in connection with generalization of the well known

Ramanujan trigonometric sum C(n,r) .

The purpose of this dissertation is to study some density,
representation and distribution problems involving (k,r)-integers. The
results we obtain are analogous to the corresponding known ones for r-
free integers, and in fact they reduce to the known results for r-free
numbers, on letting k + « . While the methods used for obtaining such
parallel results are generally analogous to those for the r-free integers,
there are also many significant differences of detail in many cases to

warrant a separate study.

Let Qk r(x) denote the number of (k,r)-integers not exceeding
’

x . F. Gegenbauer [1] in 1885 established the classical result that
1

_ X r
(1.1 Qr(x) = IE + 0(x") ,

where Qr(x) denotes the number of r-free integers not exceeding X .

Later in 1931, this result was improved by Evelyn and Linfoot

[1] who proved that

1
T - X
(1.2) Qr(x) = '?;xTr')_ + o(x"e b(log x log log x) )

where b = ar-3/2

and a 1is a positive constant. In Chapter 1I, we
establish results analogous to that of (1.1) and (1.2) for (k,r)-integers.

That is



1
(%%%%l~+ 0(xr) , for r > 1 , uniformly in k ;
(1'3) Qk,r(X) = L
0(xk) . for r =1,
and
1
(1.4) Q0 = Z& 4 oaBesk,) for r> 1,
£ S
[xk] e—b(log (};—E) log log (-}_;—l-(-))
where B(xik,r) = Z jk/r , b= ar—3/2 , a
j=1

being an absolute constant. We also estimate the partial sum of the
generating series for (k,r)-integers, and discuss some properties of the

error function E(x) for Qk r(x) .
?
The asymptotic density G(Qk r) of the (k,r)-integers is
’
defined to be

U, r ™ Lo
n g(r) °

(1.5) 5(q, ) = Llim

n-r-w
and their Schnirelmann density D(Qk r) is, by definition,
]
Q (™)
= ¢
(1.6) D(Qk’r) igf —

In Chapter II,we also establish the following result ,

1.7 D@ ) 2@ - D) - g - P,
’ P

which 1s a generalization of Duncan's [2] result;
(1.8) D(Qy ) < 8(Q ) s

our proof is based on the occurrence of infinitely many change of

sign of the error function E(x) for Qk r(x) .
?

In Chapter III, we study the distribution of (k,r)éintegers in



residue classes (mod h) . We obtain the main result as follows:

(1.9) Let k, r, and q be integers with k >1 and 0 <gq <r . Let

a and h be positive integers with d = (a,h) .

If de qu and pa||h , then we have

kq-1 _ _ _ _
Qup g (F5ao0) = By ZelEL 1 - 77 4 p3KE PTG g 1 - 5T
’ kq p|(a,h)* P
1 plh
-— o -
+ 0(dxk) ; . p,rd

the estimate is uniform in a, h, r, and q . As a special case of the

above result, by letting q=1 and r > = , we obtain
1

k-l % 1
h o M) X _  gaxy

Qm’k(x;a,h) = Qk(x;a,h) = ¢k(h) H' (k)

the estimate is uniform in a, h, r, and q . This is equivalent to the Cohen

and Robinson result [1]. (For notation, see Chapter III, sec. 3, p.28 or p.55)

The problem of the representations of an integer > 1 as the
sum of two k-free integers, was studied by Linfoot and Evelyn. In 1931,
A. Page [1] generalized their result, and obtained the number of represen-
tations of any integer n > 1 as the sum of a k-free and a £ -free integers.

In Chapter IV, we establish the result as follow:

(1.10) Let T(n) denote the number of representations of the integer n

as the sum of a (klr )-integer and a (kzrz,kzqz)—integer, where

1519
kl >13; 0 < q; <1y k2 >13 0 < dy < Ty and k2q2 < k1 .

Then

T(n) ~ nH() ,

where



-k,r
“k.q 1l - E 2 2 q
;(kzrz) [ -p 2°2) +, _ (p 1 1-p l 1)]
H(n) = R a .
. [1_+(1 42 k)r 2) kgt —p 1_1)]
P p 2q2

p¥292|n

In Chapter V, we study the problem of the number of representations of an

integer as the sum of a prime and a (k,r)-integer, and obtain an asymptotic

formula for the number T(k,r;n) of such representations in the form:

(1.11) T(k,r;ﬁ)'= {1+ Q- p_l)—l(l - p“k)-—l(p_k - p_r)} Lin
B
+ F(n) + 0(n e~ 2 Vlog M,
n
where Lin = f il du and
5 log u
F(n) =Lin z ig:; + z A(a)
(ayn) =1 ab+p = n
A A
2V/70g n 2 Ylog n
a>e a>e

and the O-constant depends at most on A only and is uniform in k and

r . For the case when (k,r) > 1 , we are able to obtain an elegant

estimate; the corresponding theorem for this case is given below.

(1.12) Let k, r, q be integers with k > 1 , and 1 <q <

+ Then

T(kr,kq;n) = Lin = {1+ 1 - p—l)-l(l - p-kr)—l(P—kr - p_kq)}

p4n

A
+0(n e 2 Vlog n) s
where Lin = f T du
o log u

and the O-constant depends at most on A only and is uniform in k, r,

and q .



(1.13) Remarks on further generalization

The notion of an r~free integer can be generalized in a very

wide manner (to include our (k;r) integers) as follows.
N
Let r = (rl,rz,rs,...)

denote a sequence of arbitrary positive integers. Then by an T-free

integer we mean an integer n such that

rj. = . -
Pj/rn (G| 1,2,3,..4)

where pj denotes the j-th prime. This notion appears in one of the
applications in the paper of Carlitz [2] . One may add the hypothesis

that r, 2 2 for all but a finite number of j's .

]
More generally, given two sequences
v
r = (rl,rz,r3,...)
n
k = (kl,kz,k3,c.')
such that
1z« rj < kj (J = 1,2,3,...) ,
define Q , as the set of integers n such that, if
k,r

e. e, e
_ 3
n =P Py Py e (ej = 0)

is the canonical factorization of n , then either

e, <r, or e, 2k, (j=1,2,3,...) .

3 3

Again one may add the hypothesis that rj 2 2 for all but a finite



number of j's . With this added hypothesis one should presumably be able
to extend most of the results of the thesis. The possibility of such an

extension has kindly been pointed out by Professor L. Carlitz.
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CHAPTER II

The (k,r)-integers and their density problem

(2.1) Notation. Throughout what follows r denotesa natural number, and
k represents a natural number greater than r , or as a limiting case,

k = » , We use the words "integer'" or "number' to mean a "natural number".
Unless otherwise stated, all the definitions and results that follow
involving k are valid for both these cases: (i) when k is a finite

number > r and (ii) in the limiting case when k = « ,

We recall that, a number n is said to be r-free whenever it
is not divisible by the r-th power ¢f any prime, Now, any integer n can
be written uniquely in the form n = a'b , where b 1is r-free. We shall

call a° the "r-th power part”" and b the "r~free part" of n .

(2.2) Definition. By a (k,r)-integer we mean an integer of the form akb

where a,b are natural numbers and b 1is r-free.
(2.2.1) Remark,' The (<,r) numbers are the same as the r-free numbers.

(2.2,2) Remark. Eckford Cohen [13] studied a class of generalized r-free
numbers which he called "integers of type (b,r)j, b = 0", These are, by
definition, integers whose greatest r-th power divisor is also a br-th
power divisor. It is clear that an integer n 1is of type (b,r) in

the sense of E. Cohen iff it is a (br,r)-integer according to our definition.

(2.2.3) Remark. When r =1, the (k,r) numbers are just the k-th power.

integers.

(2.3) Notation. Let Qk . denote the set of all (k,r) numbers; and
’
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¥ = wk,r the characteristic function of Qk,r .

(2.4) Definition. Let A = Ak r be the multiplicative function defined
]

for powers of an arbitrary prime p as follows:

a 1, a 0 (mod k) ’
A(p) =)-1, a=r (mod k) ,
0, otherwise,

This function, was first studied by M.V. Subbarao and V.C. Harris [1]

who showed that

(2.4.1) Am) _ Ltks) (g

s  z(rs) >

n=1l n

Further we have

(2.5) Lemma. % A@) = y(n) .
dn .

For completeness, we shall give here a short proof.

Proof. The result being trivial for n = 1 , we shall assume that n > 1 .
a, a a
Let n = Py p22 .o pss be the prime factorization of n , then we have

a

d% M@ =1 @)+ Ak + A(pi) + ... +.A(pii
n 1

).

From the definition (2.4), we see that A(l) + A(pi) + A(pi) + 0. +

a
A(pii) = 0 , unless a, = 0,1,2,..4y(xr-1) (mod k), in which case the sum

becomes unity, from which we have

- _J1l, neQ
w<n)-d%nx(d> {0, n ¢ Q

Results (2.4.1) and (2.5) are of fundamental importance in our work.

In passing, also note the useful result that for A(a) # 0 ,

the number a must be of the form a = bkcr , where ¢ 1is square-free

including 1, and A(a) = u(c)
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(2.6) Some general results. Suppose S 1is any non-empty set of positive

integers and Z the set of all positive integers. Let ws(n) denote
the characteristic function ¢f S and let us(n) be defined by the

relation

(2.6.1) % ug(d =y _(m) (n=1,2,3,...)
din

It ié easy to see that this relation defines us(n) uniquely, by recursion.

Now, define for any arithmetic function £(n) ,

(2.6.2) F (n) = % f(d) , F(n) = F_(n) .
s dln Z

n
aiS

Also define
n
(2.6.3) G (n) = d%n E@u @ » 6(m) =G (),

where in Gl(n) the suffix 1 denotes the set consisting of the integer
1 alone.

We then have the following three formulas:

(2.6.4) k() = ] w(d)

d=n

L€8S

n
(2.6.5) F.(n) = d%n u (DFE) .
- n

(2.6.6) G () = d%n ¢ .

deS

These results are not difficult to prove. For a formal proof we refer

to E. Cohen [13]. We could, in particular, apply these formulas for the
case when S = Qk,r .

For example, the result (2.5) can be obtained in this way, but the direct

proof is easier.
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(2.7) Notation. Qk r(x) denotes the number of (k,r) numbers not
]

exceeding x , so that

Qk’r(X) = 7 v .

n<x
We write also

Qr(x) = Q_ r(x) = the number of r-free numbers < x .
]

The result that
1

X_+ 0(xr)

z(x)

(2.8) Qr(X) =

is classical, and the proof of this by F. Gegenbauer [1] in 1885 was
probably the earliest one. This result was not improved until 1931 when

C.J.A. Evelyn and E.H. Linfoot [1] proved that
1

- %
_ X r -b(log x log log x)
(2.9) Q. (x) = o T 0(x'e ) »
3
where b = ar—2 and a 1is a positive constant. Now we turn to the case
of Qk r(x) . In the following results the O-terms correspoud to x + = .
9
(2.10) Theorem. 1
5%%%% + 0(xr) , for r > 1, uniformly imn k ;
k
ox) , for r=1.

Proof. Since is the set of k-th power integers, the above result

U,1

for r =1 1is immediate.

To prove the result for r > 1 . We can use the generating
function in (2.4.1) and some standard arguments. However we shall use

another method based on the following useful and interesting device.
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(2.11) Lemma. Qk,r(x) = Qr(ff) + Qr(§E) + teees
i.e. Qk r(x) = z Qr@{—];
’ n=1 n

This follows from the observation that if m = akb is a (k,r)-integer,

then b is r-free and a is one of the integers 1, 2, 3, ... .

Actually the series above is finite, and ends with the term

Qr(EE) where N is the largest integer such that
N
1

EE 21, that is, N = [xk] .
N

Hence

X X X
(2.12) Qk,r(x) = Qr(?;) + Qr(;lg) + ...t Qr(glz) .

On using (2.8) this gives

1 1
X 1 1 X \T . X .r
Qk,r(X) = C(r) (-lT'f' ene +§E) + 0((1'1-{) + ... + (‘;]E) )
o 1 o
X 1 r k 1
= () - § =D+ox D - 1 )
t(x) j=N41 3" L L

where the constants involved in the O-terms depend only on r . Now we

use the fact that k =2r + 1 . We get

1 1
=) — — o 1
(k) X 1 r+l, 1 r r—
Q _(x) = =L x + o § ) +0@EHx) +0&x ] ) .
kor t(x) 2() yan g% T j=N+1 T

The last two O-terms are clearly 0(xr) , uniformly in k . Now the first

0-term
L 1
x o 7 Ly - X_o( a0 - ey = 06
z(r) j=N+1 jk z(r) _11:(_ (k-1)z (x) ’
X

uniformly in k , because E%I < %-. This proves the theorem (2.10) .
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If we use the result (2.9) of Evelyn and Linfoot instead of
(2.8) and proceed as above, we obtain the following improvement of

theorem (2.10) .

1
(2.13) Theorem. Qk,r(x) = xggk; + 0(x B(x;k,r)) for r > 1 , where
1
k. X X X
[x7] -b(log (=) log log (<))
B(x;k,r) = Z € jk' jk s b= ar_3/2 , a being
j=1 jk/r

an absolute constant.

bl Lo

Proof. Q (%) = Q (—) o+ Q &), N=Ix1.
’ N

1
[ ] «© [ E] / )
0 ) = Eo 1 ___) ro( J & \r -b log(jk)log log( k)
k,r z(r) jzl jk E_ j j=1 j
=[x*]+1
1 1
= 2253 x + O(xk) + 0(x"B(x;k,r))
1
B 2553 x + 0(x B(x3k,r)) , since k > r .

(2.14) An unsolved problem. The theorem (2.10) raises the following

questions. Suppose we write

X
Qr(X) = I + Rr(X)

and

oik)
Qk’r(X) =7 X + Rk’r(X)

B
2 =
What are the true orders Rr(x) , and Rk,r(x) ? If Rk,r(x) 0(x")
uniformly in k , what is the best possible value of B8 ? These are deep
problems, and are not likely to be solved in the near future. Even in

the case of Rr(x) , Evelyn and Linfoot [1] showed that
i
Rr(x) # 0(x2r - 6) for every 6§ > 0 ;
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and, in fact, that
1

(2.14.1) R (x) # olx’") .
On the other hand, Axer [1] proved that on the basis of the Riemann

hypothesis,

(2.14.2) R_(x) = 0(x(2te)/ Qril)y

Thus even with the assumption that the Riemann hypothesis holds, the true
order of Rr(x) is still open, since the gap between the results (2.14.1)

and (2.14.2) is still wide.

In view of the above mentioned results of Evelyn and Linfoot

1l

it is clear that if Rk r(x) = O(XB) uniformly in k , them B8 2 37 °
?

The following result is of some interest in this connection.

(2.15) Theorem. (An estimate for the partial sum of the generating series
for (k,r)-integers.)

Suppose B8 1is the number which satisfies the relation

_ t(k) B
Qk,r(x) e x + 0(x") ,

the O-term being uniform in k .

Then

m m

p(n) _ t(k) X 1 B-o
) = —~+s Z 0(—=—) + 0" %) ,

o1 o 5(B) 2q .8 l+c -8
where 0 = Re(s)
We first prove the following Lemma.

m m

(2.16) Lemma. ) n(—-—1—) + -2 - 7 L |

n=1 n° (n+1)s (m+1)S n



m

) +

Proof. s 5
n=l n (nt+l) (m+1)

o 1 n n m
-} -] .
s-1 8 s
n=1l n n=1 (n+l) (m+1)
- ? 1 m-1 n
n=1 ns-1 n=1 (n+1)s
- B T s I
=1l =5- 1 —=
n=1l n n=1l (n+l)
) % 1 ) m-1 1 . m-1 1
n=1 n°1  nf1@+1)®!  n=1 (nb1)®
m m m
=1 i—l" ! i—1+ ! 1—s
n=ln n=2 n n=2 n
-7 L
n=1 ns

(2.17) Proof of the theorem (2.15)

@ -, (1)

T b ‘f Q,r
n=1

n

Q () (g = =t +

i
~B

1
n=1 n® (n+l)S (m+1)s

Qk,r

} ‘f mg) 1 _ _ 1 . 1 meCk)
el 5 8 i) @® B

m
+ ] & -—L200eh + F—oah .
n=l n (n+l) (m+1)

We now use the Lemma (2.16) .
Thus we get

m m m n+l

) MJ{% I L+s Jomh/ L+t _—owd
n=1 n® tr) h=1 n® n=1 n t° (m+1)s

=]

Y
™~
z
nmIH
+

2 1 B-o
s ) OC—omp) * 0@ )
n=1 n

Y
~
~
~,
=]

il v~
.—J

17
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this proving the theorem.

Evelyn and Linfoot use the special case of this result together

with some properties about the zeros of the Zeta function to show that

1
= -4
Q x) - C( ) # O(x2r ) for any 6§ >0 . We can similarly use the
above result to show that
s
_ xg(k) 2r
Qk,r(x) A03) # O(x ) , for any § > 0 .

(2.18) The density of the (k,r)-integers

In view of result (2.9), the asymptotic density G(Qr) of the r-free

integers

Q (n) 1
T T

(2.18.1) G(Qr) = lim

n-r-e
Their Schnirelmann density D(Qr) is, by definition,

Q. (n)
(2.18.2) D(Q,) = inf —— .
n

As R.L. Duncan [2] remarked, we have
(2.18.3) D(Qy) s 8(Q,) < D(Qy) < §(Q3) < vuu

< D(Q) s 8(Q) < D(Q ;) S 8(Q ) < ».ns
Q. (m)

Since is initially greater than G(Qr) , the question arises if

D(Qr) = G(Qr) » K. Rogers [1] showed that this is not the case for r = 2 .

In fact
(2.18.4) D@, == < &= 5(,) .

Recently H.M. Stark [1] proved, more generally, that
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(2.18.5) D(Qr) < 6(Qr) for all r > 1.

We shall now briefly examine the case of Qk r integers. Their asymptotic
?

density G(Qk r) is given by
]

U,r ™ )
n z(r) °

(2.18.6) G(Qk r) = lim

na>«

Let D(Qk r) be their Schnirelmann density. Since
’

(2.18.7) Q1 ¢ U2 € U,3 0 Qe

it follows that

(2.18.8) D(Qk,l) < D(Qk’z) < D(Qk’3) S e S D(Qk,k—l) <1.

We shall now prove the

(2.19) Lemma.

-r 1 1, k-1
D(Qk’r)zc(k)(l—gp ) =L -9
Proof. casel r = 2 .,
It is clear that
Q_(n) _
Qr(n)Zn-X[Er—] and =——>1-)p "
P P P
Since _n
s n ak
Qk’r(n)2 ) (['—k]-Z[—;])
a=l a P P
w 1
> ] &-1E-) -6 -1,
a=l a P a
We have
1 1
Q () o k _ - - nf
Xt T,y Aol - i awa- Jeh e
a=l a parp P
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Let 1
k L,
£(x) = ” =T - X% 3
then }--2
' 21 Lk
f'(x) = > o 1)x .
X
so that _];_2 1
1. k 1 1. k
f'x) >0 if (1 - Kéx > ;5 , l.e. (1 - E)x >1 .
Thus
1

>0 when x > _Llk,
< 0 when x < ————r———

1.k °
1-9
When x = (1 - %)_k we get the minimum value of f , which is equal to
1,-1
1-@Q-%)
1.-k 1 1, k-
£ - DT = = -ia - D,
(1-9
Hence {
Q, ..(m)
k,r -r 1 1.k-1
LT X S - - =(1 - =
— > £(k)(1 gp ) - FA -7,
and
-r 1 1l.k-1
D(Q ) ZeA =[P ) - -
P
case 2 r =1 . 1
In this case, Qk 1(n) = [nk]
H
1
[nk]
G(Qk ) = 1lim =0, since k 2 2 ,
o1 n
n-—-<o
1

k
inf-[_rl-.l=0
n

D(Qk 1)
’ n

So the lemma result still holds in this case.

(2.20) Remark. The above proof is easily seen to hold even when k = = ,

The corresponding result, namely,
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D) >1-[p ",
P

is due to R.L. Duncan [2] .
We will also be able to establish a result analogous to that of (2.18.5)

for (k,r)-integers.
(2.21) Theorem.
D(Qk,r) < G(Qk’r) , for 1 <r <k .
We need the following results, before proving the theorem.

(2.22) Lemma. If a(n) 2 0 and £f(s) 1is the function determined

a(n)
8

by the series Z
n=1 n

, then f(s) has a singularity at s = o , where

o 1s the abscissa of convergence.

(see Ayoub, R. [1], p. 17).

(2.23) Lemma.

|n'-s + (n+1)" % - s ¢ n-s-ll S |s||s+1|n—0-2 .
(See Landau, E. [3], p. 700).
Now we let the error function be
- _ xg(k)
(2.24) E(x) = Qk,r(x) =)
(2.25) Theorem. For any € > 0 , we have
i
(1) E(@) > n , for infinitely many integers n ,
1
= -c
r

(11) E(n) < -n2 » for infinitely many integers n .
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Proof. Let Z (¢(n) —-%%%% "2 = Rl(s) , since
_t(k) _t(ks)z(s) _ z(k)z(s)
L o - 2@ = St t@
and
_ _ o(k)
Rl(s) - 2 (‘P(n) c(.r_.,))
= Z (E(n) - E(n-1))n 2
=T E@@S - (@1)7%) .
Also, let
s Z E(n)n-s-l = Rz(s) s
Z E(n)n-s--l = R,(s) ,
L.
zan . —s-1 R4(S) ,
and 1 .
J @ - E@)n St Rg(s) ,
L_.
z (n2r + E(n))n_s_1 R _(s) .
¢
(i) VNow suppose that for all n 2 noos E(n) < n2r . Then the series
RS(S) converges for O > %; - ¢, and all but a finite number of coef-

ficients of Rs(s) are non-negative., Hence by lemma (2.22), the abscissa
of convergence of RS(S) must be less than or equal to %; - € . Let

o be its abscissa of convergence, that is «a < i - € . By Lemma (2.23)

T 2r
implies Rl(s) also converges for ¢ > o . But this 1is false because
1 = - €
Rl(s) has singularities on. o = 5= . Thus we must have E(n) > n2r
for infinitely many integers n .
1
2r ¢
(i1) Suppose that for all n 2n, , E(n) 2 -n , then we consider

the series R6(s) , proceed as in (i) and arrive at the same contradiction.
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(2.26) Proof of the theorem (2.21)

By theorem (2.25), there are infinitely many integers n for which

E(n) <0 . For such n,

%, ) | E@ | 2
n z(r) n z(r) °?

which proves the theorem.
(2.27) Theorem. For infinitely many integers n ,
0 <E(mn) <1.

Proof. Let q, be the 2-th (k,r)-integer. Then E(x) as a function of
the real variable =x is continuous in every interval q, < x < qQog1 *
2=1,2,3,... . If a change of sign of E(x) occurs within such an

interval, then by continuity E(x) has at least one zero in that interval.

If E(x) =0 and if [x] =n, so that 0 < x - n <1 , then

_ xg(k) _ ng(k) + (x-n)zg (k)

Qk,r(n) =4 X =TH T To g(r)
Hence E(n) = Qk,r(n) - ngg:g = (x—giigk) « Thus O < E(n) < 2253 <1.

If a change of sign occurs at a (k,r)-integer n , then we prove
that 0 < E(n) < 1 as follows.

nis a (k,r)-integer and E(n-e)E(n) < 0 for small enough ¢ > 0 . Therefore

(n-e)z (k)
z(r)

nz (k) + eg (k)
z(r) z(r)

_(q - EELk)
E(n) 1 ;(r))

E(n-€) = Qk r(n-E) -

Qk,r(n)-l -

A

E(n) , for small € .



24

Thus we must have E(n-e) < 0 < E(n) . So that

_ _ gr(k)
E(n) 1 ;(r)) <0,

eg (k)

i.,e. E() <1 - -ﬁ

<1 . Therefore 0 < E(m) <1 .

Let us now consider the case when k is fixed and r varies;

then we have the following theorem.

(2.28) Theorem.

1 1. k-1
G(Qk,r-l) ) < D(Qk,r) < G(Qk,r) .

Proof. The second inequality follows from theorem (2.21) .

By Lemma (2.19), the first inequality will be true if

8w [T s
P
i.e. if
l -—
Te-1) + Z P < .
Since

Jpt<n(x) -1,
P

it will be sufficient to show that

1

E(T—TT"'C(’:)SZ .
Let g(s) = = z(s) .
z(s-1)
Then, since
z'(s) v -s
= - A(n)n s
z(s) nzz

we have

g'(s) = £'(s) - &XE L - T ~ c(s) (@S .

_n___
:2¢s-1) n=2 507D
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Thus g'(s) > 0 if 1z(s-1)z(s) < 2 .
But z(s)z(s+l) is a decreasing function and £(2)z(3) < 2 .
Hence g'(s) > 0 and g(s) is an increasing function for s 2 3.

The desired result now follows since 1lim g(s) = 2 .
s>®

(2.29) Corollary. D(Qk r-l) - %(l - %Dk-l < D(Qk r) .

(2.30) Corollary. lim D(Qk r) =1.

>

Since G(Qk’r) ='%%%% , it is clear that

1
@.31) Ty S vee < 8Quup ) < 8(Qyy ) < 8 )

Now we have the following

z(r) 1

(2.32) Theorem. D 6(Qk’r) -=x D(Qk,r) < G(Qk,r) .

r

Proof. The second inequality follows from the theorem (2.21). By Lemma

(2.19), the first inequality will be true if

L) (k) 1 v oy 1y o Lkl
Ty Tt~ @ twa Ep - - D .
That is, if
£(k) _ _y.ry 1 _ 1. _lk-1
Ty < twa Ip ) +s-7-D .

p
But in Theorem (2.28), we have proved that
LK) oy -JpT) for rz2.
z(r-1) b

Since -% -'%(1 - %Qk_l >0 for r =2 2 , the desired result follows

immediately.

z(r) 1
(2.33) Corollary. D) D(Qk+l,r) - < D(Qk,r) .

Proof. This follows because



g(r)

z(r-1)

D(Qk+1,1:) -

1 _z()
r z(r-1)
z(r)
* 7D

6(Qk+1,r) -

5 ) - T

< D(Qk,r) .

1
r

1

r
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CHAPTER III

The distribution of. (k,r)-integers in residue classes (mod h). .

(3.1) Introduction. In this chapter, a and h represent integers with

h21, and Ca p Yrepresents the residue class consisting of all integers
’
which are = a (mod h) . Also let Q(x) = Qk r(x;a,h) denote the number
H
of (k,r)-integers which do not exceed x and which belong to the residue

class C Our interest in this chapter is to obtain an estimate for:

a,h '
Qk,r(X;a’h) + Such an estimate was obtz=ined for k-free integers by E,
Cohen and R.L. Robinson [1]. It must be noted that while their result

is a special case of ours (theorem (3.2) below), our theorem cannot be
deduced with the help of their result; lemma (2.11) is not applicable

for this purpose. Various special cases of this problem already exist

in the literature. We shall only mention that Landau [1] considered

the distribution of square-free numbers in residue classes (Cohen and
Robinson [1] pointed out that Landau's error term in this connection was
actually a uniform O-estimate); and that Ostmann ([1], p. 23) gave a

wrong result for r-free numbers (see again Cohen and Robinson [1], p. 283).

Our result for (k,r) numbers given in theorem (3.2) below is evidently

new.

To simplify our analysis, we shall confine ourselves to the

case ri,kq(X;a’h) , where k 1s any integer > 1 and 0 <q < r .

Recalling the notation that pa||h means that pa is a

unitary divisor of h , our theorem may be stated thus:

(3.2) Theorem. Let k, r, and q be integers with k > 1 and 0 < q < r .
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Let a and h be positive integers with d = (a,h).
If de qu and pallh ,» then we have

kq-1

h xt (kr) =kr a-kr a-kq ~kr
Q (x3a,h) = (1L -p +p -p ) = (1-p )
1 APTh
e o
+ 0(dx®) ; pAd

the estimate is uniform in a, h, r, and q .

Before proving the theorem, we have to note some lemmas, First

we begin by defining some arithmetic functions.,

(3.3) The functions +vy(n) , ws(n) , and ¢*(n) .

The function y(n) , called the 'core' of n , is defined to be the product
of the distinct prime divisors of n . It is thus the largest square-

free divisor of n . We define y(1) =1 .

s
We also write ms(n) = X_ﬁ&l s and n' = ws(n) if n € QS .

Let d||n mean that d 1is a unitary divisor of n , i.e.

dln and (d,B) =1,

As usual, let § = (a,n), be the largest unitary divisor of

n which divide of a . If 6§ =1 we say a 1is unitarily prime to n .

*
The function ¢ (n) 1is defined to be the number of integers
*
a (mod n) such that (a,n), =1 . ¢ (n) is the unitary analogue of

¢(n) and is given by
* e
(3.3.1) ¢ () = 7 (p -1),
p%||n

Let p (a) denote the product of the distinct prime divisors
h
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of d which do not divide % .

It is clear. that p (a) = y{((a,h),) .
h
We also let

(%, h)
(3.3.2) o (a,h) = = (1 - -P—f(—-) .
plog(a) »p

(3.4) Lemma. (E. Cohen and R.L. Robinson [1]) .

if H= (a;h), € Qk , then

* 1
ek(a,h) = i—é@—l .

We supply a short proof for completeness. From (3.3.2) and the relation

o] (a) = Y((a,h)*) )
h

G e @m = 7 -l <1-_<L,_._)
ply((a,m,) o5 ~ »pl(a,b),

Since H = (a,h), € Qk y 80 (3.4.1) becomes

= -2y = 1
(3.4.2) Ok(a,h) en (1 Pk) en (1 e ) .
p-||(a,h), polla P
But p®||H 1f and only 1f p~ °||H' .
So from (3.4.2) and (3.3.1), we get.
1 * ")
ek(a,h)= ﬂ(l-—f-)=£?—.
£ P
prl|H'

(3.5) Lemma. Let Yy kq(n) be the characteristic function of (kr,kq)-
9

integers, then we have

Vier g™ = Z A(m) .

|

In future we shall write Ar q(n) as A(n) for brevity.
’
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(3.6) Lemma. Let S(xja,B,y) denote the number of solutions < x of

the congruence
on = B (mod vy)
where d and y are integers 2 1 . Then
S(x;a,B,y) = %-(a,v) +0(Q1) .

(3.7) Lemma. Let d = (a,h) and d ¢ qu and let

2 @ ny , @l

f(m) = m
0o, otherwise.

Then

S z(kr) hkq ~kr a-kr _a-kq -kr

Zf(m)=C(kq)¢ ay T Q-p t+p T -p ) m(Q-p )

m=1 kq "’ p|(a,h), p
p|h
pd

Proof. The function f 1is multiplicative in m ,and it is easy to check

=}

that Z f(m) is absolutely convergent.
m=1
Hence we may express this series as a product in the form

T E@m) = n(L + £(p) + £(p°) + .vr ) .

=] P
Hence
© kr Zkr
Z fm) = = {[1+ (p k’h) + (p Zk;h) + ...]
m=1 kp ) P
P 3}’h
"
e M
kq kr+kq e ]} ’
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because if pkqlh then (pkq,h) =p

1
, and hence p“q|d , which con-
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tradicts our hypothesis that d e qu , the set of all kq-free integers.

Let Pa||h s then (qu,h) = pa s o < kq . If plh and

pa/k'd , then the only non vanishing term in (1 + £(p) + f(pz) + ..0)

1s the first one, namely unity.

Hence
o 1 - p-kq 1 - p-kr +pm-kr _ paekq
Z fm) = m ( ~kr -kr
m=1 p 1 -9 T l-p
R*h plh
p*[d

. <l _ p-kq ] (1 _p-kq.)—l ﬂ 1 - p-kr + pa-’-kr - pa—kq

p 1 - p-kr) 1-p kr 1 - p-kr

pTh pﬁh
p*|d
C(kr) l _ p ) -kr 4+ pokr a-kq
-k -
z(kq) 1-p -p kr
pTh pTh
p’d

) 1 - p—kr + poc-kr a-kq . (l _ =kr

ca) 1-p7d p V1-p

plh p|h
p*|d pfd
kq - - - -

_t(kr) h kr a-kr kq) e kr

T (1-p +p

-p
pTh ' pTh
p*|d pAfd

plh and pald are equivalent to conditions:

h
mfg,iﬁ-PbJM .

" t(kq) 4>kq (h)

The conditions

Also p (a) = y((a,h),) .
h

Thus we get

pld and
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kq - = -
Zf() s B 1 -t ek Ry
m=1 kq p| (a,h),
pTh
pfd
(3.8) Proof of theorem (3.2)
xsja,h) =

Qr kg F3220) zéx Yir,kq

zZa (mod h)

= z Z }\ (m) ’

Z<X |z

z=a (mod h)
In future we shall write )‘r q(n) as A(n) for brevity.

]
So we have
(3.8.1) Q. (x3a,h) = mgn A = [ ]
= =
mkn S X mek n<m
nn = a (mod h) mn £ a (mod h)

= 7 a@sE ;o 8, h) = ] 1 a@sE ok, a, b

k = k

1 m n < xk m
m < xk l_c
. (m*,h) |d
(m",h)|a

Z l A(m){ (m ,h) + 0(1)} On using Lemma 5.
a®h

(m ,h)ld
1
-5 L *n(lﬁ) @ -% ] 1 —-—-*m;‘) @*,h) + 06k
m> X
(m",h)|d (mk’h)|d
d
A(m) , k 1
(3.8.2) | . @, <d [ .3=0 1
. Fead i
m > Xk m > Xk
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On combining (3.8.1), (3.8.2), and Lemma (3.7) and observing that the
1
constants involved in the O-estimates O(dgi) are independent of a, h,

r, and q, we have

kq-1
h xz (kr) -kr , _o-kr a-kq -kr
Q (x3a,h) = —p= T (@1 -p + p - p ) m(@~-p )
1 pih
= o
+ 0@dxS) . pAd

Hence the theorem.is proved.

(3.9) Corollary. Let g=1 and r >, then

k-1 % =
4 - . = h ¢ (H') X k

the estimate igs uniform in a, h, r, and q .
This follows on observing that as r »

cke) »1, 7 (L-pf)>1, and

pﬂ)h
pcﬁl’d
%
- - -k '
- kr o kr _ ptkdy ) é? )

PI (a,h),

This result in an equivalent form, is due to E. Cohen and R.L. Robinson

(1] .
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CHAPTER 1V

Representation of an integer as sum of

two (r,q) type integers

(4.1) Introduction. The problem of the representations of an integer

> 1 as the sum of two k-free integers, was studied by Linfoot and Evelyn [3],
who published their proof in the Journal fur Mathematik. Their result

is the following:

Let n be any integer > 1 and let Tk(n) denote the number

of representations of n as the sum of two k-~free integers, where k

is any integer greater than 1 . 1If ¢, =T (l—2p—k) » then for any
p
postive € , we have
2
k — +€
(4.1.1) T, =cn m B 4ot .
k k k
k p -2
p|n

In 1930, T. Estermann [2] gave a short and elementary proof of the above
result. In 1931, A. Page [l] generalized their result, and obfained the
number of representations of any integer n > 1 as the sum of a k-free
and a %-free integer, Page established an asymptotic formula for such
representations. Page's result is the following:

Let Tk’z(n) denote the number of representations of n as the sum of

a k-free and a f-free integer. If k and & be any integers such.that

-2 -
k>2>2, and C=1m (1-p -p k) , then for any positive € , we have

p
1 Q?iiiii t e,
(4.1.2) Tk,l(n) =Cn 7w (1+ —E:;E:E:ID + 0(n e

3
p’|n
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Now in this chapter, we are going to study the problem of representations
of any integer n > 1 as the sum of a (klrl,qul)—integer and a

(kzrz,kzqz)-integer, where k, > 1 0<q; <1y, ky? 1;
0< q, <r

, and kg, <k

2 292 = %

(4.2) Notation. Let T(n) denote the number of representations of the

integer n as the sum of a (klrl,qul)—integer and a (k2r2,k2q2)-

integer, where k1 >1; 0¢< 4 <ry, k2 >1; 0K 4 < r, s and

kg, <k, .

2% =%

(4.3) Theorem. T(n) vn H(n) ,

where
-k, r
-k,.q 272 -k, k.q
1- 1 1%
) m e 2+ P -p T
P 1-p 11
H(n) = — — — .
1-p k2% . k171 : k19
T+ ER¢ —2——)]
k8, P S I
p“ ‘ln P

We first note for later use an alternate form of theorem (3.2).

*

(4.4) Theorem. Let Qr q(x;a,h) denote the number of (r,q)-integers
’

strictly less than x and = a (mod h) . If kq < j and if

(mj.a) € qu , then

1
kq-] 1
* camd) = (B z(kr) __~kr ky .
ri,kq (x;a,m’) (¢kq(m))(€(kq))x g (1-p %) + 0(dx")
p|md
j

the estimate is uniform in a, m, r, and q .

This follows from the theorem (3.2) on using the fact that
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(4.5) Proof of theorem (4.3). Let wl(n) denote the characteristic functiom

of (klrl,qul)—integers, and wz(n) denote the characteristic function
of the (k2r2,k2q2)—integers.
Then
T(n) = ) g, @, = T ] @) y,(b)
1 2 2
a+b=n a+b=n kll
m ~la
- Joa@uy,) = ¥ A (m) ) ¥, (b)
2 1 2
m’z’b k—
k 1 bam
1 m<n 1
m ~2+b=n bsn (mod m 7)
k
* 1
= ] AmQ (njn,m 7).
1 (kT pskydy)
k
m<n T

Now let € denote an arbitrary number such that 0 < e < L . Then,

T
considering separately those values of m < n 1 and those > n 1 »
we get

] ¥
T(n) = A(m) Q (nsn,m ™)
- (kyrprkydy)
1
m<n
+ 0( 1 Q (n;n,m )) .

R, C (kyrprkyay)

n <m

Since Q* (nj;a,h) = 0E) uniformly in a , we have, by the

theorem (4.4),



22 A (m)
T -
@ = 7,8, XAL e K179
kl m ¢k (m)
m<n 297
k
(m 1’n)er
292
.—l- + —]L - €
ky K
+ 0(n ) + 0(n z 1
1
m>n
1 1
Since . + ri 1, the first O-term is o(n) .
2 1
TC}_ + E(kl—l)
is 0O(n 1 ) and is therefore also o(n) .
T(n) C(k2r2) A (m)
Hm = z(k.q.) ) 1 k,~k
n>w 272 - 172%2
m<n 272

k)
(m ~,n)eQ
kyq,

The series on the right side of the above equation, summed for m
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Also, the second O-term

Hence

1

c(kl)c(kzqz) .

to o is absolutely convergent because it is less than
w kyq,-k ° - -

w22 ! k) kpdp, -1

@ L o T

m=l “k,q, m=1 plm

o -k -k,.q, _

<z mln(l_p22)1=
m=1 P

Now consider the series
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z(k,x,) o)
2ly95) ey
where
-k,r k
A 272 1
k.-K_q (m) L (1'P ) , if (m :n) € Qk q, °’
1 22 P 212
m ¢ (m) K
292 1
plm
g(m) =
0 s otherwise .
The function g is multiplicative in m , and so we have
I} gm) = 7w {1+ g(p)+ g(pz) + 00l
m=1 P
r 2r q q.tr
1 1
T legp D gl DA gD gt - )
- P
- r 2r q q.+r.
1 1 1
U {L+g ™) +glp )+ ... -8 -egl by on
P .
ka9,
P |n
l_p'kzrz p-klrl Ty
o {1+ ( ) ( 2 )}
~ky, kT
= 2P 1-p 1-p
L K22 Tk k9
T 1+ R B )
P RrAY) %151
k,q 1-p 1-p
272
p |nm

Also note that the denominator of the above expression is a bounded
function of n , since a routine calculation shows that each factor in
the product of the denominator lies between 0 and 1 .

It follows that
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tlk,ry))
gonBt

The theorem now follows.

(4.6) Corollary. Let q =4q, = 1 and ry @, T, then we have

Tk

(n) vn (n) as n >
1 gk,

2

where Tk Kk (n) denotes the number of representations of the integer
1°72

n as the sum of a kl-free and a kz—free integer, 1 < k2 =< kl » and

175
(@ =7 @p ~-p % ] @@+ = ) .
Hkl’kz P k, k) ky7k,

P “In

This follows by letting 9 =49, = 1 and I >®, r,>

then T(n)---;Tk K (n) , and H(n)—> Hkl’kz(n> . This result is due

1’72

to E. Cohen and R.L. Robinson [l1]. Another version of the same is due

to A. Page [1].

(4.7) Remarks. It is perhaps possible to apply the results of Carlitz [2]

concerning the asymptotic formula obtained for a expression of the form

Z o, (n,) oo 0o (n)
n +' ..-m =n 1 l S S
1 [}

(where al,...,as are arithmetic functions subject to certain restrictions)

to obtain a formula for the number of solutions of



ne= nl + n2 + .00+ ns. ’

where

nj € Qk ,T (= 1:23-'035) ’

(more generally, nj € Q& n ).

307
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CHAPTER V

The number of representations of 'an integer

as the sum of a prime and a (k,r)-integer.

(5.1) Introduction

Generalizing an earlier result of T. Estermann [3], L. Mirsky
[3] showed that every sufficiently large integer n can be represented
as the sum of a prime and a k-free integer (k > 1); also for n » = ,

the number T(k;n) of such representation is given by

1 n
(5.1.1) T (1 = =———— )Lin+ O(——5~) ;
p§n pk 1(p—l) log Ha

n
where H 1is any positive number, Li n = f I%é‘ﬁ" and the O-comnstant
2 .

depends at most on k and H .

Since the set of r-free integers is a subset of the set of
(k,r)-integers, it is trivial, after Mirsky's result that every sufficiently
large integer n can be represented as a sum of a prime and a (k,r)-
integer. 1In this chapter we shall obtain an expression for the number
T(k,r;n) of such representations. Note that such an expression cannot

be deduced for Mirsky's result (5.1.1) above.

Our result (theorem 5.6 below) for T(k,r;n) includes Mirsky's
result (5.1.1) as a special case, and is in fact an improvement of his

result.

Our improvement is obtained by using the following estimate

namely (see Page, A. [2]), if (d,q) =1 , then

(5.1.2) § 1 =—A<lin+0( e 1080
< ¢ (q)

p<n
pzd’(mod q)
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where A 1is a positive constant, in the place of the following estimate
used by Mirsky: for (d,q) =1
(5.1.3) Z 1 =$-]z'-—)-Li n+0(———n-i-ﬁ--) ,
p<n,p3d (mod q) q log " n
where H 18 any positive number.

We will first prove our improved version of Mirsky's theorem (5.1.1).

(5.2) Theorem, Let r be any integer greater than 1, and A 18 a posi-
tive constant. Then every sufficiently large integer n can be represented
as the sum of a prime and a r-free integer, and, for n -+ «» , the number

T(r;n) = T(n) of such representations is given by

A

57103 n

)i n+ O(n e ),

(5.2.1) T(a) = 1 (1 - —=%
p,fn p “(p-1)

n
du

where Li n= [ =
2 log u

and the O-constant depends at most on r and A .,

Proof. Since ur(m) = ] u(a) , we have
a"ben

T(a) = ) u(m = ] ua)
m+p=n arb+p-n

= ] w@+ ] u(a>-21+22 (say) ,

arb+p-n arb+p-n
asx a>x

where the value of x will be fixed later, To evaluate ) we use
1

the estimate (5.1.2), We have
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I = Jwa ] 1
1 asx p<n
p=n (mod aT)
1 fr——
= } u(a) ry Li n+ 0(n e A log N[ + 0(x)
asx JC
(a,n)=1

D e R TR ) oy s oE=) 4 o)
(a,n)=1 ¢(ar) log n a>x ¢(ar) eA»’log n

_ _ 1 n log log a nx

=7 — ) Lin+ 0(log = ) ” ) + 0( AViog 1 ) + 0(x)
an o(p) a>x a e

_ _ 1 n log log x nx

= 7 (1 ) ) Li n + 0( X 1og n )y + 0( AJIEE—E') + 0(x) ,
pfm p ~(p-1) e

where in obtaining the first O-term above, we use the fact that r > 1 .

Furthermore

Tl J 1<) 1 =025)=03 .
2 ) S r X
a btp=n a b<n
a’x a’x

Thus we have

T(a) = 1 (1 - 1 ) Li n + 0@-icE log X

-1 1l
p*n pr (P"l) x logn
nx n
+ O(eA/'];-g—n Yy + 0(x) + 0(;) .
%Vlog n

The theorem follows immediately by putting x = e .

(5.3) r-free numbers of the form p *+ L .

Let & be a given positive integer. T. Estermann [3] obtained an
asymptotic formula for the number of square-free integers not exceeding

n and having the form a2 + %2 . L. Mirsky [3] generalized this result
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and obtained the following theorem.

(5.3.1) Theorem. Let & be a fixed positive integer, r any integer
greater than 1, and H any positive number. Then the number of r-free

integers m < n , hLaving the form m=p + £ , is

(5.3.2) U@ = 71 (1 -—F——) Lin+0(—2p),

Pf2 p (p-1) log n
as n + «» , where the O-constant depends at most on r, %, and H .
We can improve this result also by using the estimate (5.1.2). Now we
obtain the following theorem whose proof is very similar to that of theorem

(5.2), and is therefore omitted.

(5.4) Theorem. Let & be a fixed positive integer, r any integer
greater than 1, and A 1is a ﬁositive constant. Let U (n) denote the
number of r-free integers m < n , having the form m=p + 2 .

Then, as n + = ,

1 ;%VIog n
(5.4.1) gn) = n (1 - -1 Lin+ 0(ne )
RYL P (p-1)

where the O-constant depends at most on r, %, and A .

(5.5) Representation as a sum of a prime and a (k,r)-integer.

We will now establish an asymptotic formula for the number
T(k,r;n) of representations of an integer as the sum of a prime and a

(k,r)-integer.

We note for later use a well-known result, namely

(5.5.1) Lemma. There exist a constant C > 0 and an integer N such

that
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C < log log n
¢(n) n

for n-2 N .

(see, for example, G.H. Hardy and E.M. Wright [1] Theorem 328, p. 267).

(5.5.2) Lemma. Let £f(a) = %%%% , then f(a) is multiplicative, and
Z f(a) 1is absolutely convergent for r > 1 .
a=1l
A(1)
Proof. Clearly £(1) = E?IT =1 . Also f(a) is multiplicative, since

A(n) and ¢(n) afe multiplicative functions.

To show that z |f(a)| = z lk(a)| is convergent, by lemma
=1 a=1 ¢(2)
(5.5.1), there exist a positive constant C and an integer N; such
that
c log log a
ey < ” for a 2 Nl .
Hence
A(a) 1 1l log log a
|¢(a)| STy S S for az N, .
Put a = nkmr . Then we have
k r
1 < 1l log lognm (nkmr >N .
k r c k r 1
¢(nm) nm

Also, for a given positive € with € <1 - %—, there exists an integer

Nz(s) such that

kr
log tog nm < - i — (nkmr > Nz) .
nm (nm")"

Now let N = max (Nl’NZ) then we have
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Hence, recalling that A(a) = 0 unless a is of the form a = nkmr ,

and that then |A(a)| =1 , we have

T 1
D @] = ) + ]
a=1 n,n d>(nkmr) n,m ¢(nkmr)
1snFm’ <N 25nT>N
< N + Z .1_‘ 1 Toe < ©

n,m=1 ¢ (nkmr)
Hence the lemma is proved.

(5.6) Theorem. Let k,r be integers with k > r > 1, and A a positive
constant. Then for n + « , the number T(k,r;n) of representations of n

as the sum of a prime and a (k,r)-integer is given by

(5.6.1)  T(k,r3n) = 7 {1+ (1 - pHta - p'k)'l(p'k -p H}Lin
P
*n _—\/2 log n
4+ F(n) +0(n e )
"og
where Lin = f T = and
, log u
= A(a)
F(n) =Lin ) YOI ] a(a)
(asn)=1 ab?=n
%Vlog n 5 log n
a>e are

and the O-constant depends at most on A only and is uniform in k and

r .

Proof. Let x denote a certain function of n (to be fixed later) ,
which tends to infinity with n . As usual, p denotes a prime, and

the O-notation refers to the passage n - = . We have
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T(k,r3n) = ) v(@) = } % A(a)
P P am
mtp=n mtp=n

I I xa= I A@)
p ab=m ab+p=n
m+p=n

Z A(a) + Z Aa) = Z + z , say .
ab+p=n ab+p=n 1 2
asx a>x

We use (5.1.2) to evaluate Z

1
Y= ] AMa)= ] @) ] 1
1 ab+p=n asx p<n
asx pEn (mOd a)

= J aa) ] 1 o+ ] aa) ) 1

asx p<n asx p<n
(a,n)=1 p=n (mod a) (a,n)>1 p=n (mod a)
Let us now consider Z A(a) z 1
asx p<n
(a,n)>1 p=n (mod a)

Since (a,n) >1 and n = ab + p , we have (a,n) = p . It is obvious
that the number of a's < x , with (a,n) = p for some prime p , is

certainly < x .

Hence I @) ] 1 = 1 A(a) = 0(x) .
asx p<n ab+p=n
(a,n)>1 p=n (mod a) asx
(a,n)=p
Next,
Y Aa) ) 1 = ) ;\(a){ L Lin+o0( ';—-—n' — ).i
asx p<n asx ¢(a) eA log » ’}
(a,n)=1 pzn (mod a) (a,n)=1

- T MA@ _ q. A(a) n
1 a azl say) " te ] 1 7 ) * O(eA/m) aéx O
(a,n)=l a>x (a’n)=l



AR S _ nx
But O(eA og n n) aéx A(a) = O(LT—eA Tog n) .

(a,n)=1

By lemma (5.5.2), we have

2
yoAa oo M) A Ly
(a,n)=1 p,|rn
so that
® 2
A(a) . Ap) . A(pT)
Lin ) =Lin 7w {1+ + =24 L)
(a,n)=1 qfn
1 1 1
=Lin @ {1+ + + + .
P ¢(pk) ¢(p2k) ¢(p3k)
pfn
L 1 L _ .}
oG5 o™ (T
1 1 1
=Lin = {1+ + +
p Pra-D  pa - D @ -
pjn ‘
1 1 1
-1 + + + .]}
r _1 r+k 1 r+2k _ 1
p (1 p) 1 p) P 1 p)
o 1 1 1 1 1
= Lin 7w {1+ T« % - = - T %
P 1-5 » 1-v¢ -5 P
oo
=Lin 7 {1+ Q- p-l)_l(l - p_k)-l(P-k - P-r)} .
P
pfm
Now we let
F,(n,x) = Li Male 1 @ .
(a,n)=l¢ a ab+p=n
a’x ax

Thus we have

48
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-1 -k

Lla - p o™ - o)

T(k,rjn) = Li nm {1+ @a-p)

P
pjn
nx
+ Fl(n,x) + 0(x) + OT/B—'g‘_—; )
e

A
2/1og n

Put x = e , then

T(k,r3n) =Linw {1+ @1 - p_l)_l(l - p--k)“l(P_k - p-r)}

P
P
_—VA log n
+ F(n) + O(n e ) .

(5.7) Remarks. For general values of k and r , the function

—»’A log n

Fl(n,e2 ) does not seem to be amenable for an elegant estimate.

We therefore prefer to leave it as it 1s for this general case when

k and r are any integers with 1 < r < k . However, in the case when

%u/log n

(k,r) > 1 , an elegant estimate for Fl(n,e ) 1is possible. The

corresponding theorem for this case is given below.

It should be noted that Mirsky's theorem stated in (5.1.1) 1is

a special case of our theorem to follow, with an improved error term.

(5.8) Theorem. Let k, r, q be integers with k>1,and 1 <q<r71x.
Then

1.-1 —kr.-1, -k -k
O™ - D)

T(kr,kqsn) = Linm {1 + (1 - p ) (L=-p )

ppn

A
_Elogn
+ 0(n e )
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du
log u

n

where Lin = f
2

and the O-constant depends at most on A and k,and is uniform in r

and q .

Proof. The proof proceeds as in that for theorem (5.6) except that in the
later part we are now able to estimate the error more precisely.

For completeness, we shall give the details below,

T(kr,kqsn) = ) ¢ (m) = Z Z AL (a)
m+p=n kr,kq m+p=n ak|m »q
- ] @ (a) = A, (@)
a“b+p=n

) A(a) + Yoa@) =] + ], say.
akb+p=n akb+p=n 1 2

asx azx

We use (5.1.2) to evaluate z

1
] = I a@ = ]l Ma)] 1
1 _ asx p<n
ak2:§—n pzn (mod ak)

Z r(a) Z 1 + z A(a) Z 1 .
asx p<n K asx pP<n Kk
(a,n)=1 p=n (mod a ) (a,n)>1 pin (mod a )

Let us now consider

I oa@ ) 1 .
asx p<n Kk
(a,n)>1 pn (mod a’)

Since (a,n) > 1 and n = akb + p , we have (a,n) = p .,

It is obvious that the number of a's < x , with (a,n) = p for some
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prime p , is certainly < x .

Hence Z A(a) Z 1 = Z A(a) = 0(x) .
asx pP<n L
(a,n)>1 pEn (mod ak) a Zzz n
(a,n)=p
Next,
I A} 1 J oaait—11 +o('—n-—
a = a n
(a,n)=1 pEn (mod a ) (a,n)=1

) T A() A(a) —n Aa) .

=Lin ] ==~)-1Lin ) ——+o( —) ]

( as1 ¢(ak)) ((a,n)=1 ¢(ak)) eA.log n) acx
(a,n)=1 a>x (a,n)=1

n nx
But o(eA T n) aéx Aa) = O(eA o s n) )
(a,n)=1

By lemma (5.5.2) , we have

© 2.
pooAal o2 2 L,
a1l ¢(a5)  p 85 4%
(a,n)=1 P,{'n

so that

o 2
Lin( yoooAMa) ) sLian (1+2BL LA L,
a=1

$(a") p s 0 (2%
(a,n)=1 pfn
1 1 1
=Lin {l+ + + + ...
p 8T 4T ¢ )
p,{n
-1 1 1 )

$(p5Y Ry ket T



1 1 1
=Lin m{l+—= . ¥ Tk TR ot
p p 1-= p @Q-- p Q-2
p p p
p,fn
1 1 1
- [ + + + ...0}
k 1 k(q+ 1
pra - &y Rl Ly o keter) o 1
P p P
1 1 1 1 1 1
P 1- » P l1-p 1- > P l1-p
ptn
=Lin w{l+ (1 - p'l)’l(l - pkry~l ke p'kq)} .
p
p,{rn
Now consider
Lin Z A(alz
(a,n)=1 ¢(a)
a>*x
1 n log log a-
- ofrs ] - o
log n asx ¢(ak)) log n asx ak )

_ o(n log log x) .

x log n

Furthermore

I1=1 I r@ls [1
2 akb-i-p=n akb+p=n
azx a>x
n n
< Zl =0(—k_:]-..)=0(;) .
akb<n x
a>x

Thus we have

52
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—kr)-l(p—kr _ —kq)}

T(kr,kqin) = Lin =7 {1 + (1 - p"l)'l(l -7 P

P
B
n log log x DX ___ n
+ 0(——45—3-——x Teen) * o(eA Tos = n) +0@) +00) .
A
The theorem follows immediately by putting x = e2 log n .

(5.9) Remark. Letting q = 1, r + » , theorem (5.8) yields an improved

version Mirsky's result (5.1.1) for T(k;n) .

(5.10) Further extensions. The results of this chapter naturally suggest

the analogous problem of the number of representations of a square integer
and a (k;r)-integer; and more generally, the number of representations of

a natural number n in the form

+ ... + az +n, + ... +n_,

n = a2
1 t

1
where AR L AL SRR L are natural numbers and n, € Qk,r (i=1,...,t).

Instead of squares of a,'s, one can consider also higher powers. We hope

i

to examine these problems in detail on a future occasion.
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Remarks on Notation and some definitions

b|la means that a is divisible by b . We use bfa to express
the contrary of bla .
The symbol [x] denotes the largest integer which does not exceed
(a,b) denotes the greatest common divisor of a,b .
A function £f(n) 1is called multiplicative if £(1) = 1 and
f(mn) = £f(m)£(n) , whenever (m,n) =1 .

1 if n=1,
u(n) = (-1)t if n 1is a product of t distinct primes,
0 if n contains a square divisor > 1 .

u(n) 1is called the Mobius function.

The Riemann zeta function z(s) is defined to be

z(8) =

ne-18

L Re(s) > 1) .
n=1 8

=]

Euler's function ¢(n) denotes the number of positive integers
not greater than and relatively prime to n ; i.e the number of
positive integers m such that 0 <m<n and (m,n) =1 .
Let n be an integral variable and x a continuous variable,
which tends to infinity; g(n)(or g(x)) a positive function of
n(or x) , and £(n)(or £(x))  any other function of n(or x) . Then

(1) f = 0(g) means that |f| < Ag , where A is

independent of n or x ,
(i1) f = o(g) means that -g -0,
(1i1) f v g means that §-+ 1.

¢k(n) (Jerdan's generalization of Euler's ¢-function) denotes the

number of different sets of k (equal or distinct) positive integers



(10)

(11)

(12)

(13)

(14)

(15)
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< n , whose g.c.d. is relatively prime to n . ¢k(n) =

nk(l - lf) eee (1 - lﬂ? , if pl,...,pq are the distinct prime
Pl P
factors of n .

q

The function A(n) is defined by

. logp,n=p ,

(n)_{ 0,n:\=pm.

d||n means that d is a unitary divisor of n , i.e. d|n and
(d,%)=l.
The function y(n) , called the 'core' of n , is defined to be the
product of the distinct prime divisors of n . We define vy(1) = 1.
H = (a,h), 1is the largest unitary divisor of h which divides of

a . It is called the unitary g.c.d. of a with h .

]
g/ = ws(H) - X (3 if H e Qs s Where Qs denotes the set of

H
all s-free integers.
The function ¢#*(n) dis defined to be the number of integers a
(mod n)} such that (a,n), =1 . ¢*(n) 1is the unitary analogue

of ¢(n) and is given by

o*(m) = m (p° -1) .
e
P |[n
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