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     ABSTRACT   

Vector representations of words, also known as a distributed representation of words or word 

embeddings, have recently attracted a lot of attention in computational semantics and natural 

language processing. They have been used in a variety of tasks such as named entity recognition, 

part-of-speech tagging, spoken language understanding, and several word similarity tasks. The 

numerical representations of words are mainly acquired either through co-occurrence of words 

(count-based) or neural networks (predictive). These two techniques represent words with 

different numerical distributions, and therefore, several studies have been led to estimate the 

quality of word embeddings for several downstream tasks. Our research sheds light on the 

evaluation of predictive and count-based word vectors using cluster and semantic similarity 

analysis. In particular, we have analyzed two crisp clustering algorithms- k-means, k-medoids 

and two fuzzy clustering algorithms – fuzzy C-means and fuzzy Gustafson-Kessel on several 

dimensional word vectors from the perspective of quality of word clustering. Moreover, we also 

measure the semantic similarity of word vectors in regard to a gold standard dataset to observe 

how different dimensional word vectors express a similarity to human-based judgment. The 

empirical results show that fuzzy C-means algorithm with adjusted parameter settings group 

words properly until around hundred dimensions but fails in higher dimensions. Also, fuzzy 

Gustafson-Kessel clustering was proved to be completely unstable even in around fifty 

dimensions. Crisp clustering methods, on the other hand, show impressive performance, and 

even surprisingly their performance becomes better as the dimensionality increases. Furthermore, 

the results indicated that higher dimensions represent words better in word similarity tasks based 

on the human judgment. Finally, we conclude that one word embedding method cannot be 



 iii 

unanimously said to beat another one in all tasks, and different word vector architectures may 

produce different experimental results depending on a specific problem. 
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CHAPTER 1 

Introduction 

1.1 Setting  

Recent studies in the distributional semantics have shown interesting linguistic and semantic 

properties of words. Representing words as distributed vectors has disclosed many surprising 

outcomes. To be more precise, distributional semantic models (DSM) embed words as 

distributed vectors in a way that semantically similar words are located near each other in vector 

space. In addition, simple vector calculations of words seem to enable the discovery of nearby 

objects in the distributed space. Eventually, word embeddings have attracted many researchers’ 

attention in the field of artificial intelligence, particularly, in natural language processing and 

computational linguistics. They have been applied to several NLP tasks such as part-of-speech 

tagging, named entity recognition, syntactic parsing, chunking [1] [43] [44], and linguistic tasks 

such as word similarity and analogical reasoning tasks. Moreover, word embeddings, due to 

recent improvements in their quality, have also been applied to error detection in spoken 

language understanding [45], and the calibration of speech confidence in automatic speech 

recognition (ASR) systems [46]. 

The idea of representing words as distributed vectors gained popularity after the introduction of 

neural language models by Bengio et al. [11]. The diverse approaches using word vector space 

concept can be categorized in two ways: predictive and count-based methods [12]. Predictive 

models leverage a neural probabilistic language that uses artificial neural networks to capture 

and learn the distributed representations of words. Count-based methods, on the other hand, rely 

on the latent sentiment analysis (LSA) technique to inspect relationships between terms and set 

of documents by calculating the statistics of how often  specific words appear with their 

surrounding words in  text corpora. Specifically, Word2Vec, introduced by Google Research, 

and GloVe, proposed by Stanford University researchers are two successful examples of word 

representations indicating the features of these two distinctive methods, respectively. The word 

embeddings produced by these models significantly outperform other techniques, i.e., traditional 

models, such as pointwise mutual information (PMI) and Singular Value Decomposition (SVD). 
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Several hundreds of thousands most frequent word embeddings yielded by these models have 

been made publicly available for further natural language studies: GloVe vectors in 50, 100, 

200,300, and Word2Vec vectors in 300 dimensions are available online.  

1.2 Thesis goal 

Our research focuses on comparative analysis of two word embeddings: Word2Vec and GloVe, 

in terms of their ability to embody a semantic similarity of words. We investigate the influence 

of embeddings’ dimensionality on the similarity of words using two different approaches. Firstly, 

we use four data clustering algorithms, K-means, K-medoids, Fuzzy C-means and Fuzzy 

Gustafson-Kessel, to inspect how well words represented by embeddings of different 

dimensionality are grouped by these techniques. Secondly, we use the WordSim-353 dataset to 

create a gold standard of semantic similarity of words and investigate how well semantic 

similarity of words represented by Word2Vec and GloVe matches similarities obtained with 

embeddings of different dimensionality. In particular, our study answers the following questions: 

• For cluster-based analysis: How different data clustering algorithms are able to group words 

and how this grouping depending on the embeddings’ dimensionality? Is any of the embedding 

methods better than others? 

• For ranking-based similarity evaluation: How does semantic similarity of words determined 

with different embeddings change depending on the embedding dimensionality in reference to 

the gold standard? Which word embedding technique provides better similarity values when the 

same dimension of embeddings is used? 

1.3 Thesis outline 

The thesis structure is organized in the following way: Chapter 2 presents works related to 

estimation of the  quality of word embeddings. Chapter 3 includes a brief overview of artificial 

neural networks used for constructing embeddings. The theoretical backgrounds behind the two 

embeddings: GloVe and Word2Vec are covered in Chapter 4. In Chapter 5, we describe the used 

clustering techniques and visualization method for the word embeddings. Chapter 6 describes 

evaluation criteria used for assessing and comparison of word embeddings. Finally, we show our 

empirical results in Chapter 7 and conclude with the contributions of our research in Chapter 8. 
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CHAPTER 2 

Related Works 

As the vector representations of words carry many interesting linguistic and semantic 

regularities, several studies have been performed to estimate their performance in several 

application domains. Schnabel et al. [1] have performed a solid study of evaluating word 

embeddings from different perspectives. They have shown a comprehensive overview of existing 

methodologies (i.e., intrinsic and extrinsic evaluation techniques) for estimating words in vector 

spaces and also propose new techniques for the reliability of these evaluations. They propose that 

except pre-collected offline data, word embeddings may be evaluated directly with the online 

query and real users. In addition to this, instead of taking words in ad hoc trend, they suggest that 

word queries should be selected in regard to their part-of-speech, abstractness and frequency. 

The research led by Zhai et al. [2] sheds light on the intrinsic and extrinsic estimation of word 

embeddings. For the intrinsic evaluation, the results of k-means, g-means, hierarchical-g-means 

and agglomerative clustering algorithms have been compared to the collection of hundred most 

frequent synonyms and hyponyms of verbs and nouns of WordNet [3] lexical database. The 

authors report that k-means algorithm substantially outperforms other clustering algorithms in 

terms of the purity score (i.e., the percentage of correctly classified data points) and degree of 

agreement with WordNet synonyms collection. For instance, the purity scores for several cluster 

numbers in terms of k-means and fuzzy c-means are as presented in Table 2.1. 

 

Table 2.1: Purity scores yielded by k-means and fuzzy c-means. Reproduced from Zhai et al.’s 

clustering plots. 

Number of   

clusters 

    20      25     30     35     40     45      50 

K-means   0.23   0.27   0.31    0.33   0.37    0.40    0.43 

Fuzzy C- 

means 

  0.15   0.18   0.19    0.22   0.24   0.23    0.24 
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For the extrinsic evaluation, word representation clusters have been utilized as features for two 

natural language processing tasks: Named Entity Recognition (NER) and Part-of-Speech tagging 

(POS). As text corpora, the English version of OntoNotes 5 has been used and Continuous-Bag-

of Words (CBOW), Skip-Gram with negative sampling, and GloVe models have been employed 

to produce word embeddings (These architectures will be discussed in Chapter 4 in detail). 

Brown, agglomerative, k-means, g-means have been taken as clustering algorithms. For 

evaluation purposes, F-1 score and accuracy have been used. According to authors’ findings, the 

highest F-1 score (86.19) has been produced by skip-gram with negative sampling model using 

agglomerative clustering. Conversely, the best accuracy (97.51) has been yielded by Brown 

clustering. The authors conclude that increasing number of clusters does not significantly 

enhance the quality of clustering for the NER and POS tasks. 

Ghannay et al. [4] have explored the performance of four word representations (GloVe, 

Word2Vec, CSLM, and Word2vecf) on four different NLP tasks (POS, Chunking (CHK), NER, 

and Mention detection (MENT)), and two linguistic tasks – analogical reasoning and word 

similarity tasks. They have used 4 billion words from Gigaword corpus and eliminated words 

occurring less than hundred times. Experiments have been led in 200 dimensions and a window 

size of 5. According to results, w2vf-deps outperforms remaining word embeddings across all of 

these NLP tasks with 96,66% accuracy in POS, 92.02% F1 score in CHK, 79.37 F1% score in 

NER, and 58.06% F1 score in MENT task. For the analogical tasks, five types of semantic 

questions such as capital- country relationships (Warsaw: Poland → Prague: ?) and family ( 

father: mother → brother: ?) , and nine types of syntactic questions (nice: nicely→ loud: ?) have 

been evaluated. In these experiments, GloVe with 65.5% accuracy has surpassed Skip-Gram 

(62.3%) and CBOW (57.2%) models. Regarding word similarity, WordSim-353(Finkelstein et 

al., 2001), Rare Words (Luong et al., 2013) and MEN (Bruni et al., 2012) gold standard datasets 

have been employed, and while CBOW with 59.0 percent beats other models in reference to 

WordSim-353, Skip-Gram has achieved better results in the remaining two gold standards with 

50.2% Rare Words and 66.2% MEN similarities. Except these evaluations criteria, authors have 

also shown that the combination of word embeddings using concatenation, Principal Component 

Analysis (PCA) and autoencoder achieves a good performance across many tasks such as 

81.06%, 79.66% and 80.43% F1 scores in concatenation, PCA and autoencoder, respectively in 

NER task, and 71.4%, 70.07% analogical reasoning task using autoencoder and PCA. They also 
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prove that the combination of word embedding significantly improves automatic speech 

recognition (ASR) error detection. 

The study led by Nayak et al. [5] examines the evaluations of word representations using a 

benchmark suite of practical tasks. They have tested the two syntactic (part-of-speech tagging 

and chunking) and the four semantic properties (named entity recognition, sentiment 

classification, question classification, phrase-level natural language inference) of word 

embeddings. Then these results have been compared to singular values decomposition (SVD) – a 

baseline method to obtain word vectors. The experimental results indicate that except NER, all 

the remaining tasks outperform baseline method. The authors note that this study is mainly 

concerned with providing a benchmark suite to estimate words in vector spaces efficiently and 

will enable extrinsic evaluations to be differentiated in a more interpretable manner. 

Tsvetkov et al. [6] propose QVEC – an intrinsic measure of the word vectors based on alignment 

to feature matrix obtained from manual lexical resources. As a performance measure, QVEC 

uses recall, based on the intuition that incoherent dimensions in word vector space are less 

detrimental than main dimensions we are missing. The key point behind the QVEC is to measure 

the correlation between distributed vector representations of words and linguistic resource 

obtained by human judgment. For the evaluation of the semantic word vectors, SemCor (a corpus 

of syntactically and semantically tagged words) is taken, and a set of linguistic word vectors are 

constructed. Then the dimensions of the word vector spaces are aligned to dimensions in the 

linguistic word vectors. This alignment enables to obtain a reasonable annotation of the 

dimensions in the vector space. Thus, the primary conjecture of QVEC is that dimensions in the 

distributed word vectors correspond to the linguistic properties. Apparently, the dimensions of 

the linguistic matrix may not capture all properties correctly, and low correlations are usually 

due to the missing information in those linguistic matrices. Therefore, QVEC is a more recall-

oriented quantification than accuracy. The authors have used a variety of word embeddings 

model (Word2Vec, GloVe, LSA) for word similarity, text classification, and metaphor detection 

tasks and calculate the correlation between QVEC and these benchmark tasks. They report the 

Pearson’s correlation r = 0.87 between sentiment analysis (a binary classification task between 

positive and negative movie reviews) and QVEC, and r = 0.75 between metaphor detection and 

QVEC. So, they conclude that the proposed model is an efficient intrinsic estimation method for 
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word vectors and indicates a strong correlation with the rankings yielded by the downstream 

tasks.   

One interesting study led by Baroni et al. [7] compares the performance of context-counting and 

context-predicting word vectors. They have estimated these vectors in a variety of benchmark 

tasks. The authors have performed their studies under different parameter settings for both word 

embedding methods. More precisely, they firstly construct a corpus of 2.8 billion tokens by 

concatenating the English Wikipedia1, the British National Corpus, and ukWAC2 and uses first 

300,000 most occurring words in the corpus for both word vector models. Count-based models 

are extracted using DİSSECT toolkit3. Using different parameter settings and dimensionality 

(from 200 to 500), they evaluate 36 models. Predictive models, on the other hand, are acquired 

using Word2Vec toolkit4. With the same dimensions, as in the count-based model, they evaluate 

48 predictive models totally. Then the following benchmark tasks are implemented: 

• Semantic relatedness – Correlation between word vectors and gold standard datasets (RG, 

WordSim353, WordNet, and MEN) are measured 

•  Synonym detection –  classic TOEFL dataset (80 multiple questions aiming the most 

appropriate target term with four candidates) 

•  Selectional preference –  selecting most associated noun out of several nouns for a given verb  

•  Analogy – several word analogy tasks to find an appropriate word (i.e., quick→quickly, careful 

→?) where the correct answer should exactly be carefully. 

The empirical results show the impressive overall performance of predictive vectors on count-

based vectors in most benchmark tasks. For example, for the predictive and count based vectors, 

Spearman’s correlation on RG data is 74 %, 84%, for WordSim-353 data is 62%, 75%, and for 

MEN data is 72%, 80%, respectively. In synonym detection, the predictive model also 

outperforms count vectors in accuracy (91%,76%). Only in the selectional preference task count 

vectors perform almost same as the predictive ones (41% Spearman’s correlation for the both of 

                                                 
1 http://en.wikipedia.org 
2 http://wacky.sslmit.unibo.it 
3 http://clic.cimec.unitn.it/composes/toolkit/ 
4 https://code.google.com/archive/p/word2vec/ 



 7 

models). Thus, they extrapolate that the predictive distributed vector space models are generally 

better than the count-based vectors in terms of quality across many downstream tasks when 

performing a systematic comparison. 
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CHAPTER 3 

A Brief Review of Artificial Neural Networks 

3.1 Introduction 

Artificial Neural Networks (ANN), inspired by the biological neural networks are computational 

models simulating working principle of the human brain [8]. The brain is a nonlinear, an 

extremely complex, and a massive information processing system. It consists of more than a 

hundred billions of interconnected neurons to perform several calculations (i.e., perception, 

recognition, reaction, control) many times faster than the existing fastest computers do today. 

ANN is a calculation model that can be applied to real-world problems such as providing input-

output mapping, evidential response, contextual information, and approximation [8,9].We have 

described the structure and learning algorithms for the single and multiple layer neural networks 

in the subsequent sections. 

 

3.2 Single Layer Neural Networks 

Single layer neural network also called a single layer perceptron is the simplest artificial neural 

network to classify linearly separable objects (also known as Rosenblatt’s perceptron). The  

target output is either 0 or 1: 

                              

                                                 Figure 3.1:  Single layer perceptron 
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Here x are input neurons, w appropriate weight, and b bias term to shift the activation function if 

necessary.This perceptron model works in the following way: 

                                                                        𝑦 = 𝑓(𝑣)        (3.1) 

The model calculates the sum of the linear combination of the input values x  applied to the 

synaptic weights w. If the result is negative or zero, then output y becomes zero and if positive 

then the output becomes one: 

                                                                           𝑦 =  {
1, 𝑖𝑓 ∑ 𝑤𝑖𝑥𝑖 > 0𝑛

1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                          (3.2) 

After input values are given the perceptron if the predicted output equals the desired output, then 

the performance is good, and no any updates are made to the synaptic weights. Nevertheless, if 

the actual output does not match the desired output, then the following weight adjustment is 

applied: 

                                                                   ∆𝑤 = 𝜂 ∙ 𝑑 ∙ 𝑥                      (3.3)  

Here 𝜂 is a learning rate parameter (usually between 0 and 1), d is the difference between the 

predicted and actual output and x is the input value given to the perceptron. 

 

3.3 Multiple Layer Neural Networks 

Above we have shown that the applications of a Rosenblatt’s perceptron are limited to linear 

separation of the objects. However, in many real-world problems, data often become more 

complicated, and the single layer perceptron model cannot be applied to such kind of problems. 

To overcome the practical restrictions of the Rosenblatt’s perceptron, we use an artificial neural 

network structure known as a multilayer perceptron (also known as the multilayer feedforward 

network).Multilayer perceptron differs from the single-layer perceptron by containing one or 

more hidden layers. We have depicted the structure of the multilayer perceptron in Figure 3.2: 
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                                  Figure 3.2: Structure of the multilayer perceptron 

An effective method to train the multilayer perceptron is called backpropagation algorithm. It 

consists of two stages:  the forward phase and the back phase propagation. In the forward phase 

propagation, the weights remain fixed, and the input signals are propagated through the network: 

                                                               𝑣 = ∑ 𝑤 ∙ 𝑥           (3.4) 

        𝑓(𝑣) =
1

1+𝑒−𝑣              (3.5) 

In the backward propagation, for the output neuron, the error signal is yielded by comparing the 

output of the network with the desired output in the following way: 

                                                               𝑑𝑜 = 𝑦 ∙ (1 − 𝑦) ∙ (𝑡 − 𝑦)                                           (3.6) 

 For the hidden layer, the error is produced as follows: 

        𝑑𝑖 = 𝑦𝑖 ∙ (1 − 𝑦𝑖) ∙ (𝑤𝑖 ∙ 𝑑𝑜)                                       (3.7)  

Finally, the updates to the weights  are made in this way: 

        ∆𝑤 = 𝜂 ∙ 𝑑 ∙ 𝑥             (3.8)   

From (3.6) and (3.7), we see that the computation of weight adjustments for the output layer is 

pretty simple, however, fairly challenging for the neurons of hidden layer.  
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CHAPTER 4     

Predictive and Count-based Vector Space Models 

4.1 Word2Vec 

Word2Vec, proposed by Mikolov et al. [13] is an efficient predictive model that learns 

distributed word representations from a text corpus. It can use two models of architecture to yield 

word embeddings: the Continuous Bag of Words (CBOW) and the Skip-Gram. CBOW predicts 

target words from a window of surrounding context. Utilizing a bag-of-words presumption, the 

order of the context words does not affect the prediction. In the Skip-Gram model, the inverse 

operation is performed, and the source words are predicted from the given target 

words.According to the authors, CBOW is several times faster than the Skip-Gram and slightly 

shows a better precision for the frequent words. On the contrary, Skip-Gram represents rare 

words well and works better with a small amount of data. In the next sections, we have indicated 

the neurocomputational model for both of the architectures.  

4.1.1 Continuous Bag-of-Words Architecture 

Assuming we have a corpus of {“The”, “children”, “on”, “the” “ground”} as a text context and 

we would like to predict the center word “played”. First, let us set up the known parameters. We 

represent the known parameters as one hot encoded vectors: Indicate each of words as ℝ|𝑉|×1 

vector with all 0s and only 1 at the index of that specific word [14]. Then we define our input 

context as 𝑥(𝑐) and the output content as 𝑦(𝑐). Since we will have only one output in the CBOW 

model, we can call the output just 𝑦 so that there will be only one hot vector for the predicted 

center word. We denote two matrices, 𝐴 ∈ ℝ𝑛×|𝑉| and 𝑀 ∈ ℝ|𝑉|×𝑛, where n is any size that 

defines the size of word-vector space. A is the input matrix such that the i-th column of A is an 

n-dimensional vector for the word 𝑤𝑖 when it is given as an input to the model. We call this 

vector as 𝑣𝑖. Likewise, M is the output matrix and the j-th row of M is an n-dimensional vector 

for word  𝑤𝑗 when it gets an output of this model. We indicate this row of M as 𝑢𝑗 . So, in fact, in 

this model we get two embedded word representation for each of word 𝑤𝑖: one input vector - 𝑣𝑖, 

and one output vector - 𝑢𝑗 . For convenience, we have tabulated above notations in Table 4.1: 
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Table 4.1:  CBOW parameter notations 

𝑥(𝑐)  one hot encoded input word vector 

y one hot encoded output word vectors 

𝑤𝑖    an i-th word from vocabulary V 

 𝐴 ∈ ℝ𝑛×|𝑉| Word matrix of input 

𝑣𝑖   an i-th column of A, input vector space model of word 𝑤𝑖  

𝑀 ∈ ℝ|𝑉|×𝑛  Word matrix of output 

𝑢𝑗   an i-th row of 𝑀, output vector space model of word 𝑤𝑖 

 

 

Once we have all of the parameters ready, we can send them to a neural network to train the 

model.  Figure 4.1 demonstrates the structure and artificial neural network model for the CBOW 

architecture: 

Figure 4.1:  Working principle of CBOW model. Algorithm aims to learn 𝑊𝑉×𝑁 and 𝑊′𝑁×𝑉  

The flow of the model is as follows: 
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1. Having the input context with the size m, we encode it with one hot vectors (𝑥(𝑐−𝑚), … 𝑥(𝑐−1),

 𝑥(𝑐+1), … 𝑥(𝑐+𝑚)) 

2. We have two sets of synaptic weights: the first one (𝑊𝑉×𝑁) is between input and hidden layer, 

and the second one (𝑊′𝑁×𝑉) between hidden and output layer. Here N is a hyper parameter for 

the network and can be any number. It also gets the dimension of the embedding space. 

3. Obtain vector representations of words from the content (𝑣𝑐−𝑚=𝐴𝑥(𝑐−𝑚), . . . , 𝑣𝑐+𝑚=𝐴𝑥(𝑐+𝑚))  

4. Find average of these vectors to get 𝓋 =
𝑣𝑐−𝑚+𝑣𝑐−𝑚+1 +⋯+ 𝑣𝑐+𝑚

2𝑚
  

5. Produce a score vector of 𝑧 =𝑀𝓋 

6. Generate the probabilities of these scores 𝛾=𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) 

7. We want the obtained probabilities, 𝛾, to correspond to the true probabilities, 𝑦, that is 

expected to be one hot vector of the actual output word. 

Now that we have a clear understanding of the model, how the input matrix 𝐴 and the output 

matrix 𝑀 can be learned? For this, objective function is needed to be defined. As a reliable 

choice to find a probability from the true probability, we use cross-entropy as it is a preferred 

method to calculate the distance between two distributions. It can be shown in the following way 

for our model: 

                                                  𝐻(𝛾, 𝑦) = − ∑  𝑦𝑗 ∙ 𝑙𝑜𝑔
|𝑉|
𝑗=1 (𝛾𝑗)           (4.1) 

Knowing that y is a one-hot encoded vector, we can simplify above formula as follows: 

                                        𝐻(𝛾, 𝑦) = 𝑦𝑖 ∙ log (𝛾𝑖)             (4.2) 

In the fourth step, the parameter c stands for the index where encoded one hot vector for the 

correct word equals 1. For the perfect prediction, 𝛾𝑐=1. So, applying this in Eq. (4.2) we get -

1∙log (1) =0 which means we do not have any loss. However, if we suppose the pessimistic case, 

such that, 𝛾𝑐 is very close to 0 (i.e., 0.001) then calculating it in Eq. (4.2) gives -1∙log (0.001) 

≈6.91. Thus, we can conclude that cross entropy gives a good result and should be a preferred 

technique. Eventually, we try to minimize the following objective function: 
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                                             𝐽 = − log 𝑃(𝑤𝑐 |𝑤𝑐−𝑚 , … , 𝑤𝑐+𝑚 )= − log 𝑃(𝑢𝑐|𝓋) 

                                            =− log
exp(𝑢𝑐

𝑇𝓋)

∑ exp(𝑢𝑗
𝑇𝓋)

|𝑉|
𝑗=1

 = −𝑢𝑗
𝑇𝓋 + log ∑ exp(𝑢𝑗

𝑇𝓋)
|𝑉|
𝑗=1           (4.3) 

Then all of the pertinent word vectors - 𝑢𝑐 and 𝑣𝑗  can be adjusted by using stochastic gradient 

descent. The synaptic weights between hidden layer and output layer will be vector 

representations of the related words. Mikolov et al. report that CBOW works pretty well with 

frequent words, but also has some issues regarding the quality of the vectors. The model by 

default generates only one vector for each unique term. For instance, in cases words having the 

same spelling but different meanings (i.e., apple as fruit and Apple as company), the model may 

predict other meaning of word (i.e., predicts fruit apple instead of the company Apple) depending 

on the context. 

4.1.2 Skip-Gram Architecture 

The Skip-Gram model intends to predict surrounding words given a context word. Referring to 

the previous example, given the word “played,” the model tries to predict the surrounding words 

{“The”, “children”, “on”, “the”, “ground”}. So, its parameter setup is very similar to CBOW 

architecture except the input and output values are swapped here (i.e., x becomes y, and y 

becomes x). Since there is only one word as an input, we represent it as one hot encoded vector x, 

and the output vectors as 𝑦(𝑐). Thus, the parameter settings for the Skip-Gram model can be 

summarized as given in the Table 4.2: 

Table 4.2: Skip-Gram parameter notations 

x one hot encoded input word vector 

𝑦(𝑐)  one hot encoded output word vectors 

𝑤𝑖    an i-th word from vocabulary V 

 𝐴 ∈ ℝ𝑛×|𝑉| Word matrix of input 

𝑣𝑖   an i-th column of A, input vector space model of word 𝑤𝑖  

𝑀 ∈ ℝ|𝑉|×𝑛  Word matrix of output 

𝑢𝑗   an i-th row of 𝑀, output vector space model of word 𝑤𝑖 
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Having the parameters, we can describe the artificial neural network for this architecture. Figure 

4.2 summarizes the Skip-Gram model: 

 

Figure 4.2:  Working principle of the Skip-Gram. Algorithm aims to learn 𝑊𝑉×𝑁 and 𝑊′𝑁×𝑉 

 

 

The working flow of the model goes through these steps: 

1.  We produce one hot encoded vector x for the input word 

2. We obtain vector for the context 𝑣𝑐 = 𝐴𝑥    

3. As there is no any averaging of vectors, we can assign 𝓋 =  𝑣𝑐  

4. We create 2m score vectors 𝑢𝑐−𝑚,… 𝑢𝑐−1,, … 𝑢𝑐+𝑚 from 𝑢 = 𝑀𝑣𝑐  

5. Generate the scores into the probabilities using 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑢) 
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6. We expect that the generated probability vector will match true probabilities that is 

𝑦(𝑐−𝑚), … , 𝑦(𝑐−1) , … , 𝑦(𝑐+𝑚) , real one hot vector of the output. 

Thus, we see that the learning method of the Skip-Gram model is very similar to the CBOW 

architecture in terms of a process flow. Now we need to define our cost function to validate the 

model efficiently. Unlike the bag-of-words assumption, it is a little bit difficult to define the cost 

function for the Skip-Gram model as the obtained surrounding word contexts are independent 

words. So, using naïve assumption, we try to minimize: 

                     J = − log 𝑃 (𝑤𝑐−𝑚, … , 𝑤𝑐+1 , … , 𝑤𝑐+𝑚|𝑤𝑐 ) = − log ∏ 𝑃(𝑤𝑐−𝑚+𝑗|𝑤𝑐)2𝑚
𝑗=0,𝑗≠𝑚  

                       = − log ∏ 𝑃(𝑢𝑐−𝑚+𝑗|𝑣𝑐) = − log ∏
exp(𝑢𝑐−𝑚+𝑗 

𝑇 𝑣𝑐)

∑ exp(𝑢𝑘
𝑇𝑣𝑐)

|𝑉|
𝑘=1

2𝑚
𝑗=0,𝑗≠𝑚

2𝑚   
𝑗=0,𝑗≠𝑚                    (4.4) 

                       = − ∑ 𝑢𝑐−𝑚+𝑗
𝑇  𝑣𝑐 + 2𝑚 log ∑ exp( 𝑢𝑘

𝑇𝑣𝑐)
|𝑉|
𝑘=1

2𝑚
𝑗=0,𝑗≠𝑚  

Utilizing this cost function, we are able to calculate the gradients with respect to the unknown 

parameters and adjust them consistently in each iteration by mean of Stochastic Gradient 

Descent. 

4.1.3 Training Word2Vec 

Word2Vec model is trained using two ways: hierarchical softmax and negative sampling. In the 

following subsections, we have indicated the overview of both approximation methods in detail. 

4.1.3.1 Hierarchical Softmax 

First, let us recall the softmax model. Assuming our word context comprises a sequence of T 

words 𝑤1, 𝑤2, … , 𝑤𝑇  that pertain to some vocabulary V. Each of the context word is assigned an 

input embedding 𝑣𝑤 with dimensions d and an output embedding 𝑣𝑤
′ . Having h as an output 

vector of the next layer, softmax function estimates the probability of word 𝑤 in a context of c as 

follows[15]: 

                                            p(w|c) = 
exp(ℎ𝑇𝑣𝑤

′ )

∑ exp(ℎ𝑇𝑣𝑤𝑖
′ )𝑉

𝑤=1
                                                                (4.5)                                          
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We see that this approximation is computationally expensive because our model train very large 

number of words (usually more than 105). Thus, due to this issue, a more robust formulation is 

needed. Such function was firstly introduced by Morin et al. in the context of neurocomputing 

and is called a hierarchical softmax [16]. The main superiority of hierarchical softmax over 

regular softmax is that instead of computing W output nodes to get the probability distribution, 

we actually need to calculate approximately log2 𝑊 nodes. It replaces the standard softmax layer 

with a hierarchical layer and utilize a binary tree representation of the output layer of W words as 

leaves in a tree and assigns probability distributions for each of the child nodes. To be more 

precise, we know that there is a path to any word 𝜔 from the root of the tree in the binary tree 

model. Let the j-th node on the path from the root of tree to 𝜔 become 𝑛(𝜔, 𝑗) and 𝐿(𝜔) become 

the length of this path, therefore, 𝑛(𝜔, 𝐿(𝜔)) = 𝜔. Moreover, let 𝑐ℎ𝑖𝑙𝑑(𝑛) be any fixed child of 

n and we say ⟦𝑥⟧ equals 1 when x is true and -1 in all other cases. Then the hierarchical softmax 

function can be formulated in the following way: 

                      𝑝(𝜔|𝑤𝐼) = ∏ 𝜎(⟦𝑛(𝜔, 𝑗 + 1) = 𝑐ℎ𝑖𝑙𝑑(𝑛(𝜔, 𝑗))⟧ ∙  𝑣′
𝑛(𝜔,𝑗)
𝑇

𝑣𝜔𝐼)𝐿(𝜔)−1
𝑗=1              (4.6) 

where 𝜎(𝑥) =  (
1

1+𝑒𝑥𝑝 −𝑥).  Hierarchical softmax, in terms of a binary tree, can be described as 

follows: 

Figure 4.3:  Binary tree representation of hierarchical softmax  
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Recalling the previous example {“The”, “children”, “?”, “on”, “the”, “ground”}, from the fixed 

vocabulary V that consists of words in the tree, we expect that the predicted word “played” will 

have a higher probability among other words, and CBOW will predict this word for our missing 

input context. As this a balanced binary tree, the maximal depth is  log2(|𝑉|) , therefore, we only 

need to compute at most log2(|𝑉|)  nodes to get the final probability of any word. The sum of 

the probabilities of all leaves will be 1 as this is a probability distribution. Thus, we see that 

hierarchical softmax approximation substantially outperforms the standard softmax approach. 

 4.1.3.2 Negative Sampling 

Another objective function to hierarchical softmax is Noise Contrastive Estimation (NCE), 

proposed by Gutmann et al. [17] and applied to neural probabilistic language modeling by Mnih 

et al. [18]. The NCE function assumes that a robust model should separate data from the noisy 

terms. As the goal of the Skip-Gram model is to learn high-quality vector space models, we can 

simplify the NCE approach for our model until the embedded vectors keep their quality. The 

Negative sampling (NEG) for our model is defined by the objective of 

                                log 𝜎(𝑣′
𝜔𝑂
𝑇

 𝑣𝜔𝐼) +  ∑ 𝔼𝑤𝑖~𝑃𝑛(𝜔)[log 𝜎(−𝑣′𝑤𝑖

𝑇 𝑣𝜔𝐼)]𝑘
𝑖=1      (4.7) 

to substitute every log 𝑃(𝜔𝑂|𝜔𝐼)  term in the Skip-Gram. Eventually, our goal becomes to 

differentiate the target word 𝜔𝑂 from the noisy distribution 𝑃𝑛(𝜔) employing logistic regression, 

where there are k samples for each of data sample. Mikolov et al. report that for smaller datasets, 

the optimal range for k is 5-20 whereas 2-5 range is more preferable to train larger datasets [13]. 

The main advantage of NEG on NCE is that NEG only uses samples while NCE calculates both 

samples and the noisy distributions. 

4.1.4 Training Corpora 

The authors have used one billion Google news words as a text corpus. The words existing less 

than five times have been discarded in order to boost the quality of word embeddings, and 

eventually, 692KB data with context size of 5 and 300 dimensions have been trained with the 
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Skip Gram model. From this corpus, 3,000,000 word vectors have been made publicly available 

by the authors.5 

4.1.5 Specific Features of Word2Vec Vectors 

The vectors produced by Word2Vec model have yielded some interesting outcomes. These 

vector spaces embed words in a way that words semantically alike are mapped close to each 

other. Consequently, clustering these vectors produce very sensible results. In addition, 

Word2Vec vectors can capture many linguistic and semantic regularities. For example, if “V” is 

denoted as a vector representation of words, and word vectors such as “king,” “male,” and” 

female” are chosen, the following vector – V (king) - V(male) + V(female) – will be close to the 

vector for “queen.” Word embeddings can also capture plurality and other aspects of meaning for 

linguistic research such as verb tense and capital/country relationships between words. In two 

examples, V(walking) -V(walked) ≈ V(swimming) - V(swam) and V(Portugal) - V (Lisbon) ≈ 

V(Germany) - V (Berlin). Producing semantics from simple vector calculations is indeed 

noteworthy. Consequently, vector representations of words seem to have broad perspectives in 

further computational linguistics and natural language processing research. 

4.2 GloVe Vectors 

After the introduction of Word2Vec model by Mikolov et al., several studies have been led by 

researchers to get meaningful word representations. Except the neural probabilistic model, the 

statistics of word occurrences in text corpora seems to be an efficient way to produce distributed 

model for words. GloVe, proposed by Pennington et al., is a model to produce word embeddings 

based on this hypothesis [19]. The term GloVe stands for Global Vectors as it is able to capture 

global corpora statistics. The authors propose a particular weighted least squares model that 

counts word-word co-occurrence and makes the frequency statistics useful for word 

representation purposes.  

First of all, we create some parameter notations. Let us define word-word co-occurrence counts 

matrix as X, where 𝑋𝑖𝑗 shows the number of times the word 𝑗 exists in the context of the word i. 

Let use denote 𝑋𝑖 = ∑ 𝑋𝑖𝑘𝑘  the number of times any word appears in the context of word i. 

                                                 
5 Pre-trained Word2Vec vectors available in:     https://code.google.com/archive/p/word2vec/ 
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Lastly, let 𝑃𝑖𝑗 = 𝑃(𝑗|𝑖) = 𝑋𝑖𝑗/𝑋𝑖  become the probability in which word j exists in the context of 

word i. Using simple approach, we demonstrate how aspects of meaning can be extracted from 

word-word co-occurrences statistics. Pennington et al. shows with good examples. Assuming we 

have text corpora related to thermodynamics and we may take words 𝑖 = 𝑖𝑐𝑒 and 𝑗 = 𝑠𝑡𝑒𝑎𝑚. We 

investigate the relationship of these words by learning from the co-occurrence probabilities with 

other sample words. For instance, if take word 𝑖𝑐𝑒 and word t, we can expect that 𝑃𝑖𝑡/𝑃𝑗𝑡 will be 

large. Likewise, if we select words t that are related to steam not ice such that t=gas, then we 

expect that the value of ratio should be small. The authors have reported the co-occurrence 

probabilities for target words ice and steam with context words from six billion token corpora. 

The obtained ratio values prove the proposed hypothesis to be valid: The pertinent words solid 

and gas have been distinguished from irrelevant terms water and fashion such that the same 

concept words have higher probabilities of co-occurrences. Below table demonstrates the 

probabilities and ratios for the given sample words: 

 

Table 4.3: Co-occurrence probabilities of sample words ice and steam with chosen context words 

from a six billion token corpus. Reproduced from Pennington et al. (2014) 

Probability and 

ratio 

t=solid t=gas t=water t=fashion 

P(t|ice) 1.9 × 10−4 6.6 × 10−5 3.0 × 10−3 1.7 × 10−5 

P(t|steam) 2.2 × 10−5 7.8 × 10−4 2.2 × 10−3 1.8 × 10−5 

P(t|ice)/P(t|steam) 8.9 8.5 × 10−2 1.36 0.96 

 

Thus, we see that word-word co-occurrence seems to be a good starting point to get distributed 

representation from frequency statistics. However, one question can naturally be raised here: 

how word vectors can be obtained from this method? We know that unlike Word2Vec which is 

based on neural networks, Glove should yield vectors without neuro-computing. We leverage 

Singular Value Decomposition (SVD) technique to produce the vectors for this approach. For a 

canonical example, let us assume we have three sentences and the window size is one: 
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1. I play piano. 

2. I like soccer. 

3. I like computer science. 

Then our word-word co-occurrence matrix can be illustrated as follows: 

 

 

                     I           like        computer    science    soccer    play    piano      .   

I                   0             2                0                0            0            1         0         0 

like              2             0                1            0            0            1         0         0 

computer     0             1                0                0            0            0         0         0 

science        0             0                1                0            0            0         0          1    

soccer          0             1               0                 0            0            1         1         1 

play             1             0               0                 0            1            0         1          0 

piano           0             0               0                 0            0            1         0          1 

    .               0             0               0                 1           1             0         1          0 

                       

We apply SVD on this co-occurrence matrix, observe the singular values, and cut them in some 

specified index h. The SVD for X is defined as follows: 

                                                         𝑋 = 𝑈𝑆𝑉𝑇                                                                         (4.8) 

After this, we use the submatrix of 𝑈1:|𝑉|,1:ℎ to become our matrix of word embeddings. As a 

result, we get an h-dimensional vector representation for each of word in our vocabulary. 

However, the obtained context word vectors 𝑤˜ ,  and word vectors 𝑤 have some drawbacks to 

be used as actual representation of words [14]. First, the matrix becomes very sparse as the 
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majority of words are not prone to co-occur. Also, the dimensions of matrix become moderately 

high and it gets computationally expensive to perform SVD. In the section 4.3.1, we will show 

how appropriate word representations are achieved. 

The approach showed that learning vector representations by capturing frequency statistics 

should rely on finding ratios of co-occurrence probabilities rather than utilizing those numerical 

probabilities. Global vectors try to leverage a series of functions called F that represents those 

ratios [19] [20]. These F functions for the ratio of 𝑃𝑖𝑡/𝑃𝑗𝑡  depend on words i, j, t to reflect the 

vector space models with linear structures: 

                                                   𝐹 (𝑤𝑖, 𝑤𝑗 , 𝑤𝑡˜) =  
𝑃𝑖𝑡

𝑃𝑗𝑡 
           (4.9) 

where w ∈ 𝑅 are real word vectors and 𝑤𝑡˜ ∈ 𝑅 are separate context word vectors. In order to 

attain the symmetry, we require F to be a homomorphism and eventually express Eq. (4.9) as:  

        
𝐹(𝑤𝑖

𝑇𝑤𝑡˜)

𝐹(𝑤𝑗
𝑇𝑤𝑡˜)

=
𝑃𝑖𝑡

𝑃𝑗𝑡
                   (4.10)    

Adding bias terms for the 𝑏𝑖 and 𝑏𝑡˜ for the vectors 𝑤𝑖 and 𝑤𝑡 ˜ and expressing F=exp,  

                                                   𝑤𝑖
𝑇 𝑤𝑡˜ +𝑏𝑖 + 𝑏𝑡˜  = log (𝑋𝑖𝑡)      (4.11) 

 One disadvantage of the Eq. (4.11) is that the logarithm diverges when its argument becomes 0. 

Optimal solution to deal with this problem is to represent the right side as log (1 + 𝑋𝑖𝑡) where it 

preserves the sparsity of X and avoid the divergence.  

Based on the above method, the objective function for Glove which combines a least squares 

regression model with the weight function 𝑓(𝑋𝑖𝑗) is defined in the following way: 

           𝐽 = ∑ 𝑓(𝑋𝑖𝑗)𝑉
𝑖,𝑗=1 (𝑤𝑖

𝑇 𝑤𝑗˜ + 𝑏𝑖 + 𝑏𝑗˜ − 𝑙𝑜𝑔 𝑋𝑖𝑗)2                       (4.12) 

Here V is the size of the vocabulary and 𝑋𝑖𝑗 shows the number of times the word 𝑗 exists in the 

context of the word i. The weighting function should conform to the following properties: 

i. 𝑓(0) = 0. If we see the f as a continuous function, then when x→0, f should approach zero. 

ii. 𝑓(𝑥) has to be a non-decreasing function such that infrequent co-occurrences are not 

overweighted.  
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iii.  When the argument x gets large values, 𝑓(𝑥) should get smaller values in order to avoid the 

overweighting of frequent co-occurrences. 

We can find out many functions that obey these properties. Optimal one proposed by the authors 

is as follows: 

                                           𝑓(𝑥) = {
(𝑥/𝑥𝑚𝑎𝑥)𝛼,    𝑖𝑓 𝑥 < 𝑥𝑚𝑎𝑥

        1              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                     (4.13) 

     

After several experiments, the optimal choice of 𝛼 found to be 3/4, according to the authors. In 

addition,  𝑥𝑚𝑎𝑥 has been set to 100 in the training. 

4.2.1 Training GloVe and Corpora 

The objective to train Glove model is to find appropriate vectors that minimize the objective 

function in Eq. (4.12). As standard gradient descent algorithm heavily depends on the same 

learning rate, it does not become helpful to find errors and update them properly. Adaptive 

gradient algorithm (AdaGrad) has been proposed to solve the problem which adaptively assigns 

different learning rates to each of parameters [19] [20]. After training, the model produces two 

sets of vectors - W and W ˜. When X is symmetric, the generated word vectors intrinsically 

perform equally and can become different only owing to random initializations. The authors 

show the best way to handle with these two vectors is to sum and assign the sum vector as a 

unique representation for our word: 

            𝑊𝑓𝑖𝑛𝑎𝑙 = 𝑊 +  𝑊 ˜       (4.14) 

That is it! Summing two sets of vectors into one effectively reflects words in the embedded 

space. The model has been trained on five different text corpora. Below table summarizes the 

data source and size for each one: 
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Table 4.4: Training corpora of Glove 

                       Data source                               Size 

2010 Wikipedia dump                        1 billion tokens 

2014 Wikipedia dump                       1.6 billion tokens 

Gigaword 5                       4.3 billion tokens 

Gigaword 5 + Wikipedia 2014 dump                       6 billion tokens 

Common Crawl web data                       42 billion tokens 

 

 

Each corpus has been lowercased and tokenized by Stanford tokenizer. The authors have built 

the vocabulary of most frequent 400,000 words, and have made them publicly available online 

with 50,100, 200 and 300 dimensions, under Public Domain Dedication and License6. 

Like Word2Vec, Glove also proves to capture syntactic, linguistic and semantic features of 

words. For instance, V(walking) - V(walked) ≈ V(swimming) - V(swam). In addition, in the 

provided example [51] if word vectors such as “paris,” “france,” and “germany” are chosen, the 

generated probabilities/words for the following vector – V (paris) - V(france) + V(germany) are 

as follows: 

{‘berlin’- 0.8015437, ‘paris’- 0.7623165, ‘munich’ - 0.7013252, ‘leipzig’ -0.6616945 

‘germany’-0.6540700}. Thus, we see that model correctly captured the expected word ‘berlin’ 

with the highest probability among other context words.   

 

 

 

 

 

 

                                                 
6Pre-trained 400,000 GloVe vectors available in:    https://nlp.stanford.edu/projects/glove/  
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CHAPTER 5 

High-Dimensional Data Clustering and Visualization 

5.1 Introduction 

Data clustering is the task of grouping objects in a way that similarity between data points of the 

same groups (clusters) becomes as high as possible and similarity between different groups gets 

as small as possible. It is an important task in data mining and has successful applications in 

pattern recognition [21] [22], image segmentation [23], fault diagnosis and search engines [24]. 

Clustering is helpful to understand hidden structure of set of objects or discover knowledge from 

data. There are several well-known clustering algorithms in machine learning, and the 

performance of these data clustering techniques can change depending on training corpora, 

parameter settings, dimensionality and so on. Generally, in terms of data point and cluster 

membership principle, clustering methods can be divided into two types- crisp and fuzzy 

clustering algorithms. Crisp clustering techniques assign data points to exactly one cluster 

whereas in fuzzy clustering data may belong to several groups with varying membership degrees. 

Specifically, high dimensional spaces often have a devastating effect on data in terms of 

performance, where this issue is regarded as the curse of dimensionality. From the perspective of 

clustering word embeddings, we have employed two crisp clustering algorithms – k-means and 

k-medoids, and two fuzzy clustering algorithms- fuzzy C-means and fuzzy Gustafson-Kessel 

clustering to analyze how these algorithms behave in high-dimensional spaces. In the following 

sections, we have described an overview of these algorithms in detail. 

5.2 Crisp Clustering Algorithms 

5.2.1 K-means Clustering 

K-means is a data-partitioning algorithm that assigns n observations into k groups K= 

{𝑘1,𝑘2...𝑘𝑘} by minimizing within cluster sum of squares (i.e., variance) using iterative 

refinement [25]: To be more precise, the algorithm aims to find: 
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                                                                    arg min ∑ ∑ ||𝑥𝑖 − 𝜇𝑖||
2

𝑥∈𝐾𝑖

                                               (5.1)

𝑘

𝑖=1

 

where 𝜇𝑖   is the mean of data points in 𝐾𝑖 and 𝑥𝑖 are data points. The algorithm proceeds in the 

following way: 

1. Choose k initial cluster centroids or randomly initialize them 

2. Calculate point to cluster centroid distances of all data points for each cluster 

3. Assign each data point to the cluster with the nearest distance 

4. Calculate the average of the data points in each cluster to get new locations of centroids  

5. Repeat steps 2,3,4 until observations-cluster assignments do not change. 

5.2.2 K-medoids clustering 

K-medoids clustering [26] is very similar to the k-means algorithm: Both algorithms try to 

partition data to the specified number of groups and minimize the distance between observations 

labeled to a group and point identified as the center of that group. The main difference between 

k-medoids and k-means is that k-medoids utilizes a generalized form of Manhattan distance (i.e., 

uses pairwise dissimilarities) rather than standard Euclidean distance, and always chooses its 

data points to be cluster centers. Due to this, k-medoids is usually solider to outliers and noise 

[26]. This method is also known as the Partition Around Medoids (PAM) algorithm. The 

algorithm generally proceeds as follows: 

1. Randomly select k of the n observations as medoids  

2. Assign each data point to the closest medoid  

3. For each of medoid m and each non-medoid observation o associated to m, swap m and o, and 

re-calculate cost. 
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5.2.3 Validity Indices for Crisp Clustering 

Selecting an optimal number of clusters for both - k-means and k-medoids is an important step to 

efficiently separate data into clusters. There are several methods to determine the number of 

clusters for these algorithms that are called cluster validity indices. We have chosen two well-

known indices, Dunn index, and PBM index to determine k. The details of these indices have 

been described in the upcoming sections. 

5.2.3.1 Dunn index 

The diameter of a cluster can be determined in several ways. For example, we can estimate it as a 

distance between two farthest data points in a cluster or we may determine it as a mean of all the 

pairwise distances between observations in a cluster. Let us denote  𝐶𝑖 as a cluster of vectors. 

Assuming x and y is arbitrary two n dimensional feature vector associated with that cluster 𝐶𝑖. 

Then we define largest distance between x and y as follows: 

                                                                         

                                                                ∆𝑖= 𝑚𝑎𝑥 𝑥,𝑦∈𝐶𝑖
𝑑(𝑥, 𝑦)                                                             (5.2)                                                                      

Then let 𝛿(𝐶𝑖, 𝐶𝑖) become intercluster distance between the two clusters 𝐶𝑖 and 𝐶𝑗. Within these 

definitions, if we have t clusters, then the Dunn index [27] is calculated as follows: 

 

                                                 𝐷 =
𝑚𝑖𝑛1≤𝑖<𝑗≤𝑡𝛿(𝐶𝑖 , 𝐶𝑗) 

𝑚𝑎𝑥1≤𝑘≤𝑡∆𝑘
                                              (5.3) 

Bigger D corresponds to a better clustering. Thus the number of clusters that maximizing this 

index becomes the optimal number of clusters for given data. 

5.2.3.2 PBM index 

The PBM index (the acronym shows the names of authors) is another effective way to determine 

an optimal number of clusters [28]. It is computed using distances between observations and 

their cluster center, and the distances between individual cluster centers and the overall gravity 
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center of the dataset. Let us define 𝐷𝑐 as the largest distance between two cluster centers and 𝑀𝑖 

as data points: 

 

                                                         𝐷𝑐 = 𝑚𝑎𝑥𝑘<𝑘′𝑑(𝐺{𝑘}, 𝐺{𝑘′})                                                         (5.4) 

         

Then let us define the sum of the distances of the observations of each cluster to their center as 

𝐸𝑊 and the sum of the distances of all observations to the gravity center of the whole dataset as 

𝐸𝑇: 

                                                             𝐸𝑊 =  ∑ ∑ 𝑑(𝑀𝑖, 𝐺{𝑘})                                                         (5.5)

𝑖∈𝐼𝑘

𝐾

𝑘=1

 

                                                             𝐸𝑇  =   ∑ 𝑑(𝑀𝑖, 𝐺)                                                                     (5.6)

𝑁

𝑖=0

 

 

Having these parameters, the PBM index is calculated as follows: 

                                                             𝑃𝐵𝑀 =  (
1

𝐾
 ×

𝐸𝑇

𝐸𝑊
 × 𝐷𝑐  )

2

                                                     (5.7) 

The maximum value of 𝑃𝐵𝑀 indicates best partition. Thus, if take some range of K values to be 

number of the clusters, and calculate PBM index, the 𝐾𝑖  where we acquire the maximum value 

of this validity index will be optimal number of clusters for the dataset.  

5.3 Fuzzy Clustering  

After Zadeh’s fuzzy sets theory [29], a lot of studies have been led by researchers to apply 

theoretical and empirical concepts of fuzzy logic-based clustering. In contrast to hard clustering 

techniques where one point is exactly assigned to only one cluster, fuzzy clustering allows data 

points to belong to several numbers of clusters with different membership grades. We have 

specifically analyzed the performance of two most known fuzzy clustering methods to see how 

they behave in clustering high dimensional data. The details of these clustering techniques have 

been depicted in the following sections.  
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5.3.1 Fuzzy C-means Clustering 

Fuzzy C-means (FCM) was introduced by Bezdek [30] in 1974. It allows the observation to 

belong to multiple clusters with varying grades of membership. Having D as the number of data 

points, N as the number of clusters, m as the fuzzifier parameter, 𝑥𝑖 as the ith data point, 𝑐𝑖 as the 

center of the jth cluster, 𝜇𝑖𝑗 as the membership degree of 𝑥𝑖 for the jth cluster, FCM aims to 

minimize  

 

                                                                        𝐽 =  ∑ ∑ 𝜇𝑖𝑗
𝑚 ||𝑥𝑖 − 𝑐𝑗||2

𝑁

𝑗=1

                                            (5.8)

𝐷

𝑖=1

 

 

The FCM clustering proceeds in the following way: 

1. Cluster membership values 𝜇𝑖𝑗 and initial cluster centers are initialized randomly. 

2. Cluster centers are computed according to this formula: 

    

                                                                    𝑐𝑗 =
∑ 𝜇𝑖𝑗

𝑚𝑥𝑖
𝐷
𝑖=1

∑ 𝜇𝑖𝑗
𝑚𝐷

𝑖=1

                                                                    (5.9) 

3. Membership grades 𝜇𝑖𝑗  are updated in the following way: 

                                              

                                     𝜇𝑖𝑗 =
1

∑ (
||𝑥𝑖 − 𝑐𝑗||
||𝑥𝑖 − 𝑐𝑘||

)

2
𝑚−1

𝑁
1

 , 𝑢𝑖𝑗 ∈ [0,1]   𝑎𝑛𝑑  ∑ 𝑢𝑖𝑗

𝑐

𝑖=1

= 1                     (5.10) 

 

4. The objective function 𝐽 is calculated 

5. The steps 2,3,4 are repeated until the objective function gets less than a specified threshold.  
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Fuzzy C-means has many useful applications in medical image analysis, pattern recognition, 

software quality prediction [30,31] and so on. The most important factors affecting the 

performance of this algorithm is the fuzzifier parameter m, the size of training data, and the 

dimensionality of data. The performance analysis of the algorithm for high dimensional 

clustering will be discussed in Chapter 7 in detail. 

 5.3.2 Fuzzy Gustafson-Kessel Clustering 

Fuzzy Gustafson-Kessel (FGK) extends fuzzy C-means by introducing an adaptive distance 

norm that allows the algorithm to identify clusters with different geometrical shapes [32]. The 

distance metric is defined in the following way: 

                             𝐷𝐺𝐾
2 =  (𝑥𝑘 −∨𝑖)

𝑇𝐴𝑖(𝑥𝑘 −∨𝑖)                                          (5.11) 

where 𝐴𝑖  itself is computed from fuzzy covariance matrix of each cluster: 

            

                                𝐴𝑖 = (𝜌𝑖|𝐶𝑖)
1/𝑑𝐶𝑖

−1 ,     𝐶𝑖  =
∑ 𝜇𝑖𝑘

𝑚(𝑥𝑘 −∨𝑖)
𝑇(𝑥𝑘 −∨𝑖) 𝑁

𝑘=1

∑ 𝜇𝑖𝑘
𝑚𝑁

𝑘=1

                         (5.12) 

Here the parameter 𝜌𝑖 is the constrained form of the determinant of 𝐴𝑖:  

    

                                                             |𝐴𝑖| = 𝜌𝑖 ,  𝜌𝑖 > 0, ∀ 𝑖      (5.13)  

Enabling the matrix 𝐴𝑖 to change with fixed determinant serves to optimize the shape of clusters 

by keeping the cluster’s volume constant [32]. Having this parameter setting, Gustafson-Kessel 

clustering minimizes the following criterion: 

  

                              𝐽 = ∑ ∑ 𝜇𝑖𝑘
𝑚 𝐷𝐺𝐾

2 =
𝑁

𝑘=1

𝑐

𝑖=1

∑ ∑ 𝜇𝑖𝑘
𝑚(𝑥𝑘 −∨𝑖)

𝑇𝐴𝑖(𝑥𝑘 −∨𝑖) 
𝑁

𝑖=1
                      (5.14)

𝑐

𝑖=1
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Like FCM, this optimization is also subject to the following constraints: 

   

                                     𝑢𝑖𝑘 ∈ [0,1] , ∀ 𝑖, 𝑘 and   ∑ 𝑢𝑖𝑘
𝑐
𝑖=1   =1, ∀𝑘                     (5.15) 

 

 We see that the computation of the FGK algorithm is more convoluted than FCM clustering.  

5.3.3 Validity Indices for Fuzzy Clustering 

There are several validity indices to analyze the performance of the fuzzy clustering algorithms. 

One of them was proposed by Bezdek in 1974 [30] and called a fuzzy partition coefficient (FPC). 

This index is calculated as follows:   

                                                                      𝐹𝑃𝐶 =
1

𝑁
∑ ∑ 𝑢𝑖𝑘

2

𝑐

𝑖=1

𝑁

𝑘=1

                                                     (5.16) 

FPC changes between [0,1] range and the maximum value indicates best clustering quality. 

Another popular index to measure fuzzy clustering quality was proposed by Xie and Beni (XB) 

in 1991 [33] which focuses on two properties: cluster compactness and separation: 

       

                                                            𝑋𝐵 = ∑
∑ (𝜇𝑖𝑘)𝑚||𝑥𝑘 −∨𝑖||

2𝑁
𝑘=1

𝑁𝑚𝑖𝑛 𝑖𝑘||𝑥𝑘 −∨𝑖||2

𝑐

𝑖=1

                                          (5.17) 

The numerator part shows the strength of the compactness of fuzzy grouping, and the 

denominator shows the strength of separation between those fuzzy groups. If a range of clusters 

{ 𝑘1, 𝑘2… 𝑘𝑖} are taken, the 𝑘𝑖 minimizing this index will be the optimal number of clusters for 

the dataset.  

5.4 Visualization of High-Dimensional Word Embeddings 

Visualizing high-dimensional data is a significant problem in a variety of machine learning 

applications. High-dimensional data can be observed in many areas such as chemistry, biology, 

health science, applied mathematics and so on. To get a clear understanding of such data, firstly 
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they should be transformed from high dimensions into a lower one. One of the good 

dimensionality reduction methods was proposed by Maaten and Hinton in 2008 [34] and called t-

distributed stochastic neighbor embedding (t-SNE). The t-SNE is a non-linear dimensionality-

reduction method that transforms high-dimensional data into lower dimensions (two or three) by 

constructing probability distribution on the pairs of high-dimensional objects. First, high-

dimensional Euclidean distances between observations are converted to conditional probabilities. 

Having N-dimensional objects 𝑥1, 𝑥2, … 𝑥𝑛  , the probabilities 𝑝𝑖𝑗 indicating the similarity of the 

objects 𝑥𝑖 and 𝑥𝑗 are calculated in the following way: 

   

                                                          𝑝𝑗|𝑖 =
exp(−||𝑥𝑖 − 𝑥𝑗||2/ 2𝜎𝑖

2)

∑ exp(−||𝑥𝑖 − 𝑥𝑘||2/ 2𝜎𝑖
2)𝑘≠𝑖

                                     (5.18) 

 

Here 𝜎𝑖
2 is the Gaussian variance. Maaten and Hinton posit that the similarity between 𝑥𝑖 and 𝑥𝑗 

is the conditional probability in which 𝑥𝑖  takes 𝑥𝑗 as its neighboring point in correspondence 

with their probability density under the Gaussian distribution. Then the final conditional 

probability can be indicated as follows:   

                                                                             𝑝𝑖𝑗 =
𝑝𝑖𝑗 + 𝑝𝑗𝑖

2𝑁
                                                           (5.19) 

                                                                              

The t-SNE intends to learn a d-dimensional map  𝑑1, 𝑑2, … 𝑑𝑁  reflecting the similarities as much 

as possible. Eventually, using a similar approach, the similarities between any two points in the 

map 𝑑𝑖  and 𝑑𝑗 is measured in the following way: 

 

                                                            𝑞𝑖𝑗 =
(1 + ||𝑑𝑖 − 𝑑𝑗||2)−1

∑ (1 + ||𝑑𝑖 − 𝑑𝑗||2)−1
𝑘≠𝑖

                                             (5.20)  

If the similarity between high-dimensional observations 𝑥𝑖 and 𝑥𝑗 are mapped correctly by the 

map points 𝑑𝑖 and 𝑑𝑗, then the probabilities   𝑝𝑖𝑗 and 𝑞𝑖𝑗 will be same. Inspired by this outcome, 

stochastic neighbor embedding intends to find out a low-dimensional space that minimize the 
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discrepancy between   𝑝𝑖𝑗 and 𝑞𝑖𝑗. A good and reliable measure for this purpose is the Kullback- 

Leibler divergence [35]. This measure for the distribution Q and the distribution P can be 

computed as follows: 

                                                               𝐾𝐿𝑃||𝑄 =  ∑   𝑝𝑖𝑗 log
  𝑝𝑖𝑗 

𝑞𝑖𝑗
                                                    (5.21)

𝑖≠𝑗

 

The sum of all Kullback-Leibler divergence on data points is minimized by the stochastic 

gradient descent method. The outcome of this optimization forms a map that indicates the 

similarities between high-dimensional data points properly. The transformed space then can 

easily be visualized using a scatter plot.  
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CHAPTER 6 

Evaluation Criteria 

6.1 Introduction 

Our evaluation of word embeddings is based on two criteria: the rank correlation and the 

clustering analysis. For correlation analysis, we use WordSim353 [36] – a semantic similarity 

dataset of word pairs, as a gold standard. This dataset contains semantic similarity scores of 353 

word pairs from 437 different words. These pairs have been merged from 153 pairs scored by 13 

humans and 200 pairs scored by 16 humans. The semantic similarity scores for the pairs vary in 

the range of [0-10]. For example, the similarity measures for the words journey and voyage, 

computer and internet, and media and gain are 9.29, 7.58 and 2.88, respectively. Many 

researchers have referred to WordSim353 as a gold standard for different word similarity tasks 

[19,37,38,39]. We firstly sort these 353 pairs based on their similarity ranks and take this as a 

golden ranking. Then 437 words and corresponding vectors are extracted from the GloVe and 

Word2Vec data for all available dimensions. Finally, cosine similarities between the vectors are 

calculated. Given two word vectors A and 𝐵, the cosine similarity between these vectors is 

computed as follows: 

         

                                                 cos(𝜃) =
𝐴 ∙ 𝐵

||𝐴|| ∙ ||𝐵||
=  

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

                                  (6.1) 

where 𝐴𝑖 and 𝐵𝑖 are the corresponding vector components. We sort the cosine similarities for 

those dimensions based on the golden ranking of WordSim353, and then correlation ranks are 

measured. We have employed three well-known rank correlation methods: Spearman’s rank 

correlation, Kendall’s rank correlation, and Rank-Biased Overlap. The overview of these 

correlation techniques will be provided in the following sections. Regarding the clustering 

analysis, we compare word clustering quality between different dimensions of GloVe vectors 

with each other, and 300-dimensional GloVe vectors with 300 dimensional Word2Vec vectors 

based on cluster validity indices and WordSim pair counts in clusters. The golden 437 words of 
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WordSim353 have been used for this purpose as well. The exact details of the cluster analysis 

will be indicated in the Empirical results section.   

6.2 Spearman’s Rank Correlation Coefficient 

Spearman’s rank correlation is a nonparametric measure used to determine the strength of 

association between two ranked variables [40]. This correlation can assess both linear and non-

linear (i.e., monotonic) relationships. Depending on the rankings, Spearman’s correlation can be 

calculated in two ways: 1) Data do not have any tied ranks and 2) Data have one or more tied 

ranks. If there are no any tied ranks, then the correlation is calculated as follows:  

  

                                                          𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
                                                                         (6.2) 

where  𝑑𝑖 indicates the difference in the paired ranks and n indicates the number of observations. 

If there are any tied ranks between the corresponding pairs, the correlation is formulated in the 

following way:     

                                                 𝜌 =
∑ (𝑥𝑖 − 𝑥˜)(𝑦𝑖 − 𝑦˜)𝑖

√∑ (𝑥𝑖 − 𝑥˜)2 ∑ (𝑦𝑖 − 𝑦˜)2
𝑖𝑖

                                                          (6.3) 

 where the numerator shows the covariance of the ranked variables and the denominator shows 

the standard deviations of these variables. Spearman’s correlation varies between -1 and 1, in 

which -1 indicates a perfect negative correlation and 1 indicates a perfect positive correlation. 

For example, we have two ranked variables: X- the independent variable, and Y- the dependent 

variable. If X increases and Y also tends to increase, the Spearman’s rank correlation becomes 

positive. If Y tends to increase when X decreases, the rank correlation becomes negative. The 

correlation is expected to be zero when any tendency for Y is not observed when increasing or 

decreasing X. 

6.3 Kendall’s Rank Correlation Coefficient 

Kendall’s rank correlation, also known as Kendall Tau (𝜏) determines the probability of the two 

items appearing in the same order in two different ranked lists [41]. It measures the difference 
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between the probability that data in two lists have same ordering versus the probability that data 

of the two ranked lists do not have the same ordering. Let us define (𝑥1, 𝑦1), (𝑥2, 𝑦2), …, (𝑥𝑛, 𝑦𝑛) 

to be a set of data points of the random variables X and Y correspondingly, and all the values for 

the (𝑥𝑖) and (𝑦𝑖) are distinct. The pairs (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗, 𝑦𝑗) with 𝑖 ≠ 𝑗 preserving ranks of both 

elements (i.e., if both  𝑥𝑖 > 𝑥𝑗  and 𝑦𝑖 > 𝑦𝑗  or if both 𝑥𝑖 < 𝑥𝑗  and 𝑦𝑖 < 𝑦𝑗 ) are called the 

concordant pairs. The pairs are called discordant if 𝑥𝑖 > 𝑥𝑗  and 𝑦𝑖 < 𝑦𝑗 or 𝑥𝑖 < 𝑥𝑗  and 𝑦𝑖 > 𝑦𝑗 . 

Having these definitions, Kendall’s Tau is mathematically expressed in the following way:              

                𝜏 = 𝑃(𝐶) − 𝑃(𝐷) =
𝐶−𝐷

𝑛(𝑛−1)/2
                                                          (6.4) 

The parameter C and D indicates the number of the concordant and discordant pairs, 

respectively. The denominator indicates the total number of pairs in which n is the number of 

items in a list. Like Spearman’s correlation, Kendall’s Tau also changes in the [-1;1] range. If the 

two ranked lists have a perfect agreement, the rank correlation becomes 1. On the other hand, if a 

perfect disagreement is observed between the lists, this coefficient becomes -1. Finally, if the 

variables are totally independent, the correlation may be expected to be nearly zero. 

6.4 Rank-Biased Overlap 

There are several common challenges Spearman’s correlation and Kendall’s Tau do not meet 

effectively. The first issue is dis-jointness of lists, where an item is observed in only one of the 

links. The second one is a top-weightedness problem where the top of the list is considered more 

important than the tail. And the third, they are indefinite: For instance, in an example of search 

engines, if the user searches for query “2017 new books”, the search engine may return 

thousands of results related to this query. However, the user is not likely to browse all of these 

links and probably will not look beyond first few query results. Eventually, these three features 

form an indefinite ranking: As the ranking is top-weighted, the value decreases with depth and 

thus urges the shortening of the list in some arbitrary rank, due to this decay. That’s why this cut-

off makes ranking indefinite. 

Rank-Biased Overlap (RBO), proposed by Webber et al. [42] is a measure meeting all the 

criteria identified as similarity measure for indefinite ranking. This approach is based on a simple 

model where the user makes a comparison of the overlap between two ranks at growing depths. 
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The user imposes some level of patience and specifies a probability of stopping which can be 

principled as a Bernoulli random variable. Based on this, RBO is calculated as the expected 

average overlap in which the user continues comparing the two lists. The measure specifies a 

parameter, indicating the probability that the user knowing overlap at some ranking will continue 

to examine the overlap at the next rank. The product of these probabilities determines the weight 

of the overlap at the rank where the user will come. The most important point behind RBO is to 

regulate the corresponding overlap at each point by a convergent series of these weights (i.e., the 

sum of the series is bounded). Let us show the steps behind this intuition. We start by giving 

some notations. Assuming M and N are two infinite ranks, and 𝑀𝑖 is the element at ranking i in 

the list M. We indicate the elements from the place c to d as 𝑀𝑐:𝑑   in the list M. At each depth d, 

the intersection of M and D is shown as follows:     

                                                                     𝐼𝑀,𝑁,𝑑 = 𝑀:𝑑⋂𝑁:𝑑                                                                 (6.5) 

The size of the intersection shows the overlap of these two lists at depth d:   

                                                                     𝐿𝑀,𝑁,𝑑 = |𝐼𝑀,𝑁,𝑑|                                                                   (6.6) 

The overlapping agreement of these lists at depth d is then calculated as                               

                                                                    𝐴𝑀,𝑁,𝑑 =  
  𝐿𝑀,𝑁,𝑑

𝑑
                                                                  (6.7) 

For the estimation depth k, the average overlap is determined as follows:                                                

                                                                  𝐴𝑂(𝑀, 𝑁, 𝑘) =
1

𝑘
∑ 𝐴𝑀,𝑁,𝑑

𝑘

𝑑=1

                                                (6.8) 

Considering overlap-based rank similarity families form    

                                                                  𝑆𝐼𝑀(𝑀, 𝑁, 𝑤) = ∑ 𝑤𝑑 ∙ 𝐴𝑀,𝑁,𝑑

∞

𝑑=1

                                       (6.9) 

where 𝑤 shows vector of weights and 𝑤𝑑 shows the weight at position d. SIM(M, N, w) changes 

in the interval [0, ∑ 𝑤𝑑𝑑 ]. If 𝑤 converges, each AM,N,d obtains a fixed distribution 𝑤𝑑/ ∑ 𝑤𝑑𝑑  

[42]. A solid example to such a convergent series is a geometric sequence in which the value for 

the dth term equals 𝑝𝑑−1, and can be formulated as         
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                                                                   ∑ 𝑝𝑑−1 =
1

1 − 𝑝

∞

𝑑=1

                                                                (6.10) 

If we set 𝑤𝑑 to (1 − 𝑝)𝑝𝑑−1  where ∑ 𝑤𝑑𝑑 = 1, we can finally formulate RBO as follows:      

        

                                                 𝑅𝐵𝑂(𝑀, 𝑁, 𝑝) = (1 − 𝑝) ∑ 𝑝𝑑−1

∞

𝑑=1

𝐴𝑀,𝑁,𝑑                                       (6.11) 

RBO changes in the range [0,1] where 0 shows disjoint and 1 means an identical ranking. Here 

the parameter p indicates the steepness of the decline [42]. The metric becomes more top-

weighted when p becomes smaller. Conversely, if p gets close to 1, then the estimation of 

measure becomes deeper. Therefore, for the evaluation of rankings with many elements, p is 

recommended to be taken between 0.9 and 1. 
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CHAPTER 7 

Empirical Results 

7.1 Data Sets  

The experiments and their results presented in this section use words from the WordSim-353 test 

collection [36]. The set contains a total of 353 pairs of words. Each pair’s relatedness was 

evaluated by 13 or 16 individuals that ‘possessed a near-native command of English’ [36]. 

Hereafter, we call this set of pairs the gold standard. We treat it as a reference in determining 

how well word embeddings represent semantic similarity. The list of pairs is included in this 

link7. 

The words from the gold standard are used in the clustering experiments. There are 437 unique 

words among all pairs from the standard.  Further, to evaluate quality – from the point of view of 

semantic similarity – of obtained clusters, we used a subset of pairs from the gold standard. In 

this case, we select of pairs of words with a value of similarity above 0.75 (in the scale from 0 to 

1). Such a selected subset allows us to determine if creating clusters contain pairs of words from 

the gold standard and how many of them. Such an evaluation of clusters is motivated by the fact 

that a clustering process works based on similarity of words; therefore, clusters should contain 

pairs of similar words.  

7.2 Ranking-based Analysis of Embeddings  

7.2.1 Description  

The approach presented here is based on a comparison of the similarity of word pairs determined 

using word embeddings with the ranking determined by the gold standard, i.e., by the ranking 

expressing human-based semantic similarity of words. 

Each word embedding, i.e., GloVe with the representation of words by vectors of size 50, 100, 

200, 300 and Word2Vec, is used to determine the similarity of word pairs. We use cosine 

                                                 
7 http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/ 
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similarity measure for that purpose. The word pairs are sorted based on the obtained similarity 

values. As a result, we have five different rankings. Each of them represents similarity of words 

determined using different word embeddings.  

We compare these rankings with three different correlation measures (Sections 6.2, 6.3, 6.4): 

• Spearman 

• Kendall tau 

• Rank Biased Overlap 

  

7.2.2 Results and Their Analysis  

The values of correlation measures obtained via comparing the ranking of the gold standard with 

rankings obtained using different embeddings are shown in Table 7.1. 

 

Table 7.1 Embeddings vs Golden Standard: Correlation of Rankings 

embedding GloVe50 GloVe100 GloVe200 GloVe300 Word2Vec 

Spearman 0.49 0.52 0.57 0.60 0.70 

Kendall tau 0.35 0.38 0.41 0.44 0.50 

Rank Biased Overlap 0.41 0.43 0.46 0.48 0.59 

 

 

As we can see, the presented values lead to the following conclusions: 

• Increase in the dimensionality of vectors used for word embedding showed an increase in 

the ability of a given embedding to represent/express human-based semantic similarity. 

• Word2Vec seems to represent the semantic similarity of words better than GloVe300 

(even with a version with 300-dimensional vectors). 

Please note that these observations are consistent across all three correlation measures. 
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7.3 Clustering-based Analysis of Embeddings 

7.3.1 Description  

One of the important parameters of a clustering process is the number of clusters. The nature of 

unsupervised learning means that number needs to be set a priori. In our experiments, we have 

determined the boundaries for the number of clusters we consider. 

Lower Boundary. We use a simple visualization of words based on t-SNE (Section 5.4).  The 

two-dimensional representation is shown in Figure 7.1  

 

Figure 7.1 Two-dimensional representation of 437 words used in the clustering processes. 

 

Based on a visual inspection, we have identified the most obvious groups of words. As you can 

see, there are ten locations characterized by a higher concentration of words. Therefore, we use 

ten as our lower boundary for the number of clusters. 
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Upper Boundary. There are 437 words in the dataset we use in clustering experiments. We have 

anticipated that a larger number of clusters would provide better performance in the sense of 

clustering performance measures. However, we would like to avoid creating too small clusters – 

smaller cluster would be counterintuitive to our need for observing pairs of words in clusters.  

Therefore, we have established the acceptable smaller size, on average, of a cluster to around 10.  

That would lead to a maximum of 50 cluster – and this becomes our upper boundary for the 

number of clusters. 

7.3.2 The Quantitative Analysis of the Results 

The first set of the experiments focuses entirely on the clustering. Here, we use four different 

clustering techniques: two fuzzy ones, and two crisp ones. Each type of clustering has its own 

performance measures: Xie-Beni and FPC (Section 5.3.3) for fuzzy clustering, and Dunn and 

PBM indexes (Section 5.2.3) for crisp clustering. 

Once the lower and upper boundaries have been set to 10 and 50, respectively, we have decided 

on the following numbers of clusters: 10, 15, 20, 25, 30, 40, and 50. All experiments presented 

here are done using four different clustering techniques for these number of clusters, and they are 

evaluated by two different performance indexes. 

Fuzzy Clustering. The results for obtained using fuzzy clustering are shown in Tables 7.2, 7.3, 

and 7.4.  It is well-known that fuzzy clustering shows some problems in the case of clustering 

high dimensional data [47]. Winkler et al. have shown that performance of fuzzy clustering 

dramatically changes with the fuzzifier parameter: when using m=2, the majority of prototypes 

go into the center of the gravity of the whole dataset; therefore, we neither acquire the expected 

number of clusters nor sensible clustering results. Adjusting the fuzzifier around 1 such as 1.1 

substantially improves the performance of the clustering and we get high-quality groupings of 

observations until some dimensions. Based on this conclusion, we have set the fuzzifier to 1.1 for 

our experiments as well. As we can see in the tables,clustering of words with 200dim embedding 

(Table 7.4) results with the performance measures values that start to look quite unreasonable 

(Xie-Beni index), while values of the index FPC become quite small. Due to such a situation, we 

consider for further analysis (next subsection) clusters obtained using FCM and FGK with 50dim 

GloVe embedding, and only clusters obtained using FCM for 100dim embedding.  
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Table 7.2 GloVe Embedding: 50dim (fuzzy clustering) 

# of clusters 10 15 20 25 30 40 50 

Fuzzy C-Means 

Xie-Beni index 0.0054 0.0053 0.0053 0.0056 0.0053 0.0047 0.0041 

FPC 0.7246 0.7242 0.7476 0.8021 0.8227 0.8683 0.8878 

Fuzzy Gustafson-Kessel 

Xie-Beni index 16.48 13.43 10.12 13.43 11.58 9.53 8.00 

FPC 0.9999 0.9878 0.9863 0.9875 0.9874 0.9879 0.9892 
 

Table 7.3 GloVe Embedding: 100dim (fuzzy clustering) 

# of clusters 10 15 20 25 30 40 50 

Fuzzy C-Means 

Xie-Beni index 0.0096 0.0122 0.0092 0.0081 0.0108 0.0080 0.0076 

FPC 0.5917 0.5987 0.6471 0.6980 0.7210 0.7817 0.8322 

Fuzzy Gustafson-Kessel 

Xie-Beni index* 30.03 25.40 21.56 20.58 15.11 12.65 10.87 

FPC 0.9817 0.9783 0.9708 0.9747 0.9713 0.9648 0.9701 
*numbers in gray represent unacceptable values 

 

Table 7.4 GloVe Embedding: 200dim (fuzzy clustering) 

# of clusters 10 15 20 25 30 40 50 

Fuzzy C-Means 

Xie-Beni index* 30997.7 8685.2 10542791 156571.2 641690.1 572974.6 30602.8 

FPC 0.2612 0.2896 0.3470 0.3638 0.4935 0.5714 0.5907 

Fuzzy Gustafson-Kessel 

Xie-Beni index* 696.62 731.98 706.72 728.19 782.20 769.02 749.63 

FPC 0.4154 0.2978 0.2276 0.1842 0.1568 0.1194 0.0951  
*numbers in gray represent unacceptable values 

 

Fuzzy clustering means that it is possible that some words do not fully belong to a single cluster. 

Some words can belong to a few clusters to a different degree. Among all words we have 
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clustered, there are 25 words that have at the maximum membership value of 0.75 to a single 

cluster for 50dim embedding, and 52 such words for 100dim embedding. 

Crisp Clustering. In the case of crisp clustering, we have been able to obtain clusters of 

acceptable quality for all dimensions. The results are shown in Tables 7.5 – 7.9. A few 

interesting facts can be observed: 

• the values of the performance measures indicate a different number of clusters as the 

highest performance situation: 50 clusters are indicted when we consider Dunn index, 

and 10 clusters when PBM; 

• if we compare the results across dimensionality of vectors – the higher dimensionality 

leads to clusters that provide better values of performance measures; 

• the k-means clustering method seems to be a technique that provides better values of 

performance measures. 

Table 7.5 GloVe Embedding: 50dim (crisp clustering) 

# of clusters 10 15 20 25 30 40 50 

K-Means 

Dunn index 0.2685 0.2551 0.2766 0.2836 0.2835 0.2987 0.3183 

PBM 0.3288 0.1896 0.1699 0.1210 0.0731 0.0516 0.0409 

K-Medoids 

Dunn index 0.2295 0.2355 0.2537 0.2537 0.2537 0.2636 0.3116 

PBM 0.3486 0.1913 0.1259 0.1249 0.0915 0.0679 0.0467 
 

Table 7.6 GloVe Embedding: 100dim (crisp clustering) 

# of clusters 10 15 20 25 30 40 50 

K-Means 

Dunn index 0.2659 0.3740 0.3752 0.3751 0.3241 0.3121 0.4059 

PBM 0.2638 0.1978 0.1180 0.0891 0.0850 0.0603 0.0376 

K-Medoids 

Dunn index 0.2582 0.2582 0.3544 0.3544 0.2685 0.3676 0.3637 

PBM 0.4029 0.2698 0.1699 0.1134 0.0827 0.0568 0.0523 
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Table 7.7 GloVe Embedding: 200dim (crisp clustering) 

# of clusters 10 15 20 25 30 40 50 

K-Means 

Dunn index 0.3615 0.2853 0.4373 0.3938 0.4091 0.3634 0.3669 

PBM 0.3092 0.2658 0.1211 0.1013 0.0861 0.0625 0.0632 

K-Medoids 

Dunn index 0.3292 0.2945 0.3471 0.3633 0.3657 0.3657 0.3674 

PBM 0.6030 0.3110 0.1824 0.1529 0.1412 0.0851 0.0798 
 

Table 7.8 GloVe Embedding: 300dim (crisp clustering) 

# of clusters 10 15 20 25 30 40 50 

K-Means 

Dunn index 0.3613 0.3029 0.3029 0.3821 0.3029 0.3211 0.3821 

PBM 0.3003 0.1988 0.1636 0.0900 0.1137 0.0684 0.0665 

K-Medoids 

Dunn index 0.2838 0.3006 0.3393 0.3597 0.3597 0.3606 0.3624 

PBM 0.8492 0.4094 0.2735 0.2105 0.1513 0.1252 0.0852 
 

Table 7.9 Word2Vec Embedding: 300dim (crisp clustering) 

# of clusters 10 15 20 25 30 40 50 

K-Means 

Dunn index 0.3137 0.3507 0.2979 0.3560 0.3720 0.4106 0.4331 

PBM 0.0713 0.0645 0.0405 0.1069 0.0771 0.0460 0.0312 

K-Medoids 

Dunn index 0.3171 0.2182 0.2305 0.2641 0.2641 0.2757 0.2982 

PBM 0.1291 0.0681 0.1057 0.0699 0.0742 0.0448 0.0307 

 

7.3.3 The Qualitative Analysis of the Results  

The results presented in the previous subsection describe clusters from the point of view of their 

quality as measured by the performance indexes. However, these indexes do not show how well 

the clusters’ and clustering techniques’ group semantically similar words. For this purpose, we 

propose another way of determining the quality of clusters from the point of view of grouping 

similar – according to humans – words.  
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The first step in the proposed approach has been to identify a set of pairs of words that are 

similar. Here, we use the gold standard, i.e., a set of 353 pairs of words. We have assumed that 

the similarity value of 0.75 could be considered as a reasonable and practical level of treating 

words as similar. As a result, we obtain 93 pairs of words. 

The second step of the approach is to determine the number of pairs that are present in the same 

cluster. Additionally, we look at the distribution of pairs among clusters, i.e., we have identified 

clusters with zero, one, two and so on number of pairs.  

Let us start with fuzzy clustering. As mentioned earlier, we have only clusters for low-

dimensionality embedding. The results are presented in Table 7.10. As we can see, the Fuzzy C-

Means is the best performing technique. Also, increase in dimensionality leads to better results. 

 

Table 7.10 GloVe Embedding: number of word pairs found in clusters:                                          

a clustering process with 50 clusters 

GloVe dimensionality: 50 100 

Fuzzy C-Means 44 48 

Fuzzy Gustafson-Kessel 9 - 

 

For the case of crisp clustering, we have more clustering results thus we can perform a better 

analysis of obtained clusters. At the beginning, let us take a look at the GloVe embedding and 

analysis an influence of dimensionality in the Table 7.11. We can draw two conclusions: K-

means leads to better results, and better results are associated with the higher dimensionality of 

embedding. 

Table 7.11 GloVe Embedding: number of word pairs found in clusters 50 clusters 

GloVe dimensionality: 50 100 200 300 

K-Means 44 43 47 45 

K-Medoids 26 40 30 42 
 

It seems more intriguing in the comparison of two different embeddings: GloVe and Word2Vec. 

Here we provide results for K-means, in Table 7.12, and K-medoids, in Table 7.14. Each of these 
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tables contains a number of pairs found in clusters when clustering process has been repeated 10 

times. This allows us to perform statistical analysis that leads to a more formal indication which 

embedding is better in reflecting human similarity. 

K-means clustering. Table 7.12 contains numbers of word pairs found in clusters found in each 

result of clustering for GloVe 300-dim and Word2Vec which also has 300-dim vector 

representation. The question we have been interested in is related to the quality of embedding. 

The assumption is that higher number of word pairs found in the clusters – better the embedding.  

 

Table 7.12: Number of word pairs in K-means clustering: 50 clusters, 300dim embeddings 

experiment # 1 2 3 4 5 6 7 8 9 10 

GloVe 45 39 38 42 41 43 43 38 36 37 

Word2Vec 43 41 52 54 46 48 48 38 40 53 

 

 

Table 7.13 provides the outcomes of statistical analysis of obtained clustering results. If we 

assume a normal distribution of the number of found word pairs, we can rely on a t-test. The 

obtained value of p = 0.007658 indicates the statement that Word2Vec is a better embedding 

from the semantic similarity point of view which is statistically significant at p < 0.01. However, 

if we remove the assumption of the normal distribution, we perform Mann-Whitney (Wilcoxon) 

test for unpaired data. With this test, the same statement is significant at p < 0.02. 

 

Table 7.13 K-means clustering: 50 clusters, 300dim embeddings 

 

mean 
std. 
dev. 

Level of significance 

t-test 
Mann-Whitney (Wilcoxon) test  

for unpaired data 

GloVe 40.2 3.01 
p=.007658 p =.018661 

Word2Vec 46.3 5.68 
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Figure 7.2 represents the distribution of pairs among clusters with GloVe embedding. As we can 

see, the majority of clusters with the word pairs contain just a single pair. It seems that in almost 

all clustering experiments we have clusters with one, two and three word pairs. The clusters with 

a larger number of pairs do not appear consistently in all clustering runs.  

 

 

 

Figure 7.2. The distribution of the number of word pairs among clusters for GloVe embedding                                                                    

(x – the number of pairs per clusters, y – the number of clusters with a specific number of pairs). 

 

Figure 7.3 represents the distribution of pairs among clusters with Word2Vec embedding. This 

time, all clustering experiments we have clusters with one, two and three and even four word 

pairs. When distributions are compared, we can say that in the case of Word2Vec there are more 

clusters with larger numbers of word pairs.  
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Figure 7.3.The distribution of the number of word pairs among clusters for Word2Vec embedding                                                                    

(x – the number of pairs per clusters, y – the number of clusters with a specific number of pairs). 

 

K-medoids clustering. Table 7.14 includes the results of experiments with K-medoids clustering 

technique while Table 7.15 contains their statistical analysis. As we can see, based on the 

obtained p-values for the both t-test and Mann-Whitney test, we cannot conclude which of the 

embeddings represents semantic similarity better.  

Table 7.14 GloVe Embedding: 50 clusters, 300dim, K-medoids 

experiment # 1 2 3 4 5 6 7 8 9 10 

GloVe 41 36 42 39 32 33 50 41 38 42 

Word2Vec 37 50 43 41 39 38 39 31 40 41 

 

Table 7.15 K-medoids clustering: 50 clusters, 300dim embeddings 

 

mean 
std. 
dev. 

Level of significance 

t-test 
Mann-Whitney (Wilcoxon) test  

for unpaired data 

GloVe 39.4 2.83 
p=.825065 p =.969656 

Word2Vec 39.9 9.19 
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When we compare the both clustering techniques – K-means and K-medoids – for Word2Vec 

embedding, the value of p=.007658 for the t-test, and p =.018661 for the Mann-Whitney test is 

observed. Based on these outcomes, we can say with significance at p < 0.03 that K-means is a 

better clustering method than K-medoids for Word2Vec word embedding. However, for GloVe 

embedding, it is not resolvable (p=.825065 for the t-test, and p =.969656 for the Mann-Whitney 

test). 
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CHAPTER 8 

Conclusions, Contributions and Future Works 

8.1 Conclusions 

In this thesis, we have examined the performance of high-dimensional word vector spaces using 

cluster and semantic similarity-based approaches. We analyzed the performance of two well-

known crisp clustering algorithms: K-means and K-medoids; and two fuzzy clustering ones: 

fuzzy C-means and fuzzy Gustafson-Kessel. We applied them to cluster word embeddings and 

examined obtained clusters. In addition, we explored the semantic similarity of words in 

reference to the existing gold standard dataset.  Our study and related works prove that vector 

spaces of words obtained by the state of the art models have broad and justified applications in 

computational linguistics and natural language processing. They can be applied in areas, such as 

machine translation, sentiment analysis, information retrieval, pattern recognition, spoken 

language understanding, and automatic speech recognition. 

8.2 Contributions 

The main contributions of our research can be described as follows: 

I. Among the proposed data clustering algorithms, K-means seems to be the most efficient one to 

cluster word embeddings. Higher quality of word clusters and more cardinality of highly similar 

word pairs are mostly observed in this clustering technique. Interestingly, the performance of K-

means clustering improves with the dimensionality of embeddings: higher dimensionality 

resulted in a better performance regarding the quality of clustering. The performance of K-

medoids can be said to be moderate, and its performance is lesser to K-means only by a small 

margin. 

II. Fuzzy clustering algorithms were proved to be very sensitive to high dimensional data. Fuzzy 

C-means with fuzzifier parameter m=1.1 can provide sensible word clustering results for up to 

100-dimensional word embeddings. However, in higher dimensions, it fails to produce both the 
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expected number of clusters and plausible word clustering results. Fuzzy Gustafson-Kessel 

clustering technique, on the other hand, should be avoided for high dimensional data. Even for 

the case of fifty-dimensional data,  very poor performance has been observed. 

III. Increasing the dimensionality of word vector space has indicated the ability of the examined 

embeddings, according to all used correlation measures, to represent human-based similarity 

judgments better: the similarity scores consistently increased with the increased dimensionality. 

Moreover, each of the three correlations measures has indicated that the Word2Vec vectors 

express human-based similarity better than the 300-dimensional GloVe. 

IV. Overall, based on our research and the related works, we can conclude that there is no certain 

winner between predictive and count-based word embedding methods. It is possible that one of 

them can be more suitable for a specific task but not so for other ones. Consequently, the 

comparative analysis of these word representations should be performed for considered tasks.  

 

8.3 Future Works 

As a further task, we will extend our research by comparing the word embeddings to the other 

gold standard datasets. These datasets include Bruni et al.’s MEN [48], Hill et al.’s SimLex [49] 

and HyperLex [50]. As our current study revealed the proportionality of higher dimensionality to 

better human-based similarity scores, it is worthwhile to take further directions to investigate 

whether the disclosed tendency is observed in the case of other gold standard datasets as well. 

We also anticipate additional work on the suitability of clustering methods for word embeddings.  
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