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Abstract 

The speed of fuzzy controllers implemented on dedicated hardware is adequate 

for control of any physical process, but too slow for today’s high-complexity data 

networks. Defuzzification has been the bottleneck for fast implementations due to 

the large number of computationally expensive multiplication and division 

operations. In this thesis, we propose a high-speed fuzzy inferential system based 

on log-domain arithmetic, which only requires addition and subtraction 

operations. The system is implemented on a Xilinx Virtex-II FPGA with a 

processing speed of 67.6 MFLIPS having a maximum combinational path delay 

of 4.2 ns. It is a clear speedup compared to the reported fastest 50 MFLIPS 

implementation. A pipelined version of the controller is also implemented, which 

achieves a speed of 248.7 MFLIPS. Although a small approximation error is 

introduced, software simulation and hardware implementation on FPGA confirm 

high similarity of the outputs for control surfaces and a number of second-order 

plants. 
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CHAPTER 1 

INTRODUCTION 

Data communication networks, and particularly the Internet, play a pivotal role in 

modern society. To improve effective bandwidth, Quality of Service (QoS) and 

other performance metrics, the optimization of these networks is very important. 

A number of network optimization goals can be represented as control problems, 

and solved by traditional control algorithms. However, one drawback of 

traditional control is that it requires an exact mathematical model of a system, and 

this model is often unavailable for large and complex networks. Intelligent control 

systems that do not require exact models have become more commonplace. Fuzzy 

logic controllers, proposed in theory by Zadeh [9], [10], and first implemented in 

automatic control by Mamdani [11], [12], are a particular class of intelligent 

controllers built on fuzzy expert systems, that show substantial performance 

improvement in simulation over standard algorithms for these problems. 

The implementation of a fuzzy controller, however, is not straightforward. 

Software simulations on general-purpose microprocessors are typically slow due 

to the lack of instruction-set support for fuzzy operations. This imposes a big 

problem for today’s high-complexity and high-speed networks, requiring 

specialized hardware. A number of researchers have pursued fuzzy hardware 

development, beginning with a voltage-mode analog circuit in 1969. Although 

analog implementations [51] provide lower power consumption and lower chip 

size [50], they suffer from being slower, less accurate, less flexible and less 

scalable compared to their digital counterparts. Thus research into digital 

hardware implementations is ongoing, with reported performance of ASIC 

implementations ranging from 20 to 50 million fuzzy logic inferences per second 

(MFLIPS) [25]. This is a commonly used performance measure for fuzzy 
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systems1

The rest of the thesis is organized as follows. Chapter 2 starts with an overview of 

control systems and then goes on to discuss the concepts behind fuzzy controllers 

and their analog and digital hardware implementation. A review of published 

literature on fast defuzzification is also presented. Chapter 3 discusses the design 

of our log-domain controller and the justification of using a correction factor to 

improve the results. Simulation results for a number of second-order plants are 

detailed in Chapter 4. It also includes performance comparisons with a linear PD 

and a typical fuzzy controller. Chapter 5 presents the hardware implementation 

with speed and resource usage comparisons between a pipelined and a non-

. It indicates the rate at which a defuzzified output can be computed [24]. 

Digital fuzzy hardware implementations, however, still have a bottleneck due to 

the large number of costly multiplication and division operations required in the 

defuzzifier, the last module in the fuzzy controller [22].  

In this thesis, we propose and implement a high-speed fuzzy controller on 

hardware based on log-domain arithmetic. The basic principle of our approach is 

to represent all quantities by their logarithmic values, therefore transforming 

multiplication and division functions into computationally much simpler addition 

and subtraction operations. The logarithmic values are stored in lookup tables to 

facilitate instant conversion between a log value and its exponential value. The 

summation of a number of log-domain values is approximated as the maximum 

logarithmic value to simplify calculations. Although it introduces a small 

approximation error, simulation and hardware implementation results illustrate the 

similarity of the generated outputs with the expected outputs. Our system 

outperforms the reported fastest implementation in the literature [80] by 33% in 

speed. An even higher processing speed is achieved for a pipelined version, which 

we postulate would enable our system to be applicable in high-speed data 

networking applications. 

                                                      
1 MFLIPS are difficult to use to make comparisons since the reported number is highly dependent 

on the number of rules in the rule base and the computational precision. 
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pipelined version of the log-domain controller. Chapter 6 provides directions for 

future research, and Chapter 7 concludes the thesis. 
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CHAPTER 2 

BACKGROUND LITERATURE 

2.1 Overview of Control Systems 
A control system is an interconnection of components forming a system 

configuration to generate a desired system response. Control systems deal with 

the behavior of dynamic systems – systems for which outputs change with time, 

and are a factor of the inputs. In a control system, the desired output is called the 

reference [1]. A control system produces an output for a given input, where the 

input and output represent the desired response and the actual response 

respectively. There are numerous examples of control systems being used, such as 

home heating and air-conditioning systems controlled by a thermostat, the cruise 

control of an automobile, an elevator-position control system used in high-rise 

multi-level buildings, human heart using a pacemaker and so on [42]. The device 

or process to be controlled is termed as a plant. The plant, for instance, can be a 

furnace system where temperature is the output variable. Usually the plant output 

is sent back for comparison with the reference to produce the next input, as shown 

in Figure 2.1. 

 

 

Figure 2.1: Basic control system 

Error 

System 
output 

- 
+ 

Controller 
output 

Reference Controller Process to be 
controlled 

Measuring 
device 
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2.1.1 Basic Feedback Control 
Control systems are typically classified as open-loop or closed-loop systems. 

Open-loop control systems do not monitor or correct the output for disturbances, 

while closed-loop system keep monitoring the output and comparing it with the 

input. Figure 2.2 shows a general open-loop control system. 

          

    Figure 2.2: Open-loop control system 

As seen from Figure 2.2, there is no way for the output to get fixed automatically 

if it is not at an acceptable value. Any parameter having a different value than 

what was anticipated causes a proportional error in the output. For instance, let us 

consider a gas furnace as a control system [2]. In case of no adequate temperature 

sensor, manually calibrating the valve is the only way to adjust the gas flow. This 

system would only work on average days when the room temperature remains 

steady. However, if external weather conditions change, the furnace would not be 

able to provide the desired temperature. An open-loop controller is usually an 

analytical tool used to design a real closed-loop system. 

Closed-loop (feedback) control systems are similar to open-loop ones, except for 

the fact that a sensor monitors the output and it is compared with the input signal. 

The difference between the input and output signal is referred to as the error. An 

ideal feedback system produces the desired response exactly by cancelling out all 

errors. Continuing with the previous example, suppose a thermostat is there to 

measure the temperature and can be set at any required value. So for normal 

temperature, the system works as the open-loop system does; however, it provides 

greatest benefits when there is a change in temperature. The thermostat increases 

the valve opening if the temperature decreases, and vice versa. This dynamic 

Controller 
output Reference Controller System to be 

controlled 

System 
output 
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compensation for changes in the output is the principle behind the feedback 

control system. A closed-loop control system [38] is shown in Figure 2.3. 

 

Figure 2.3: An example of feedback control system [38] 

2.1.2 Modes of Control 
Modes of control are the methods to calculate the values of the controller output 

variables. The modes are: proportional (P), integral (I) and derivative (D). They 

are most commonly used in some combination, although single modes are also 

possible. Among the different combinations, proportional-integral-derivative 

(PID) controller is very widely used in industrial control systems. Figure 2.4 

shows the block diagram of a PID controller. Note that there are other types of 

traditional control systems available, namely – phase-lead, phase-lag and 

quadratic optimal controller, besides the commonly used PID controllers. 

 

         Figure 2.4: PID Controller 
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The proportional part calculates the reaction to the current error, the integral part 

considers the sum of recent errors to determine the reaction, and the derivative 

part focuses on the rate at which the error has been changing. The gains, KP, KI 

and KD, represent the weights applied to each part respectively before summing 

them up. To achieve specific design requirements the constant gains are tuned. In 

some cases, only one or two modes are needed to provide the appropriate output. 

This is done simply by settling the undesired gain to zero. The derivative gain is 

often disabled to obtain PI controllers [3]. The individual modes are discussed 

below. 

2.1.2.1 Proportional Mode 

When a controller is in proportional mode, the controller output is, as the name 

suggests, proportional to the measured value. It does not keep track of the history 

of the value measured neither does it account for the rate of change in measured 

value. Tuning the purely proportional controller for the desired performance is 

relatively easy; however, a steady-state error exists between the set point and 

measured value in most cases. A proportional (P) controller is shown in Figure 

2.5. 

 

Figure 2.5: Proportional controller [3] 

The behavior is expressed by the following equation: 

U(t) = kP e(t) + b              (2.1) 

where U(t) is the controller output, kp is the proportional gain, e(t) is the error and 

b is the output bias. 

Bias, b 
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+ 

Error 
Controller 

output 
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Bias or manual reset provides the value of the output when the error is zero. 

2.1.2.2 Integral Mode 

The contribution from the integral term is proportional to both the magnitude and 

duration of the error. An integral (I) mode controller consists of an integrator. 

Thus if the error signal (input to the integrator) is positive, the integrator output 

shifts upward, and it shifts downward for negative input. The output remains 

steady when measured value is equal to the set point. In comparison with the 

proportional controller, an integral controller does not need manual reset to adjust 

the output bias. Now the bias is automatically set by the output of the integrator. 

Figure 2.6 shows a PI controller. 

 

Figure 2.6: PI controller 

The equation for PI controller is: 

U(t) = kP e(t) + KI ∫e(t)dt            (2.2) 

where U(t) is the controller output, kp is the proportional gain, KI  is the integral 

gain and e(t) is the error. 

The integral term (added with the proportional term) accelerates the movement of 

the process towards the set point and eliminates the residual steady-state error. 

However, the integral term can cause overshooting (cross over the set point and 

create a deviation in the other direction). 

+ 

+ Error 

Controller 
output 
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2.1.2.3 Derivative Mode 

Derivative term calculates the rate of change of error and multiplies it by the gain 

KD. The derivative term reduces the speed of the rate of change of the controller 

output, hence is used to reduce the magnitude of overshoot generated by the 

integral term.  

The equation for a PID controller is:   

dt
tdeKdtteKteKtU DIP
)()()()( ++= ∫           (2.3) 

A tuning parameter, TD can be used to adjust the relative effect of the derivative 

mode. However, derivative term can make the system unstable if the noise and 

derivative gain are sufficiently large [3]. 

2.1.3 Laplace Transformation 
A differential equation is one way to describe, in mathematical terms, the 

relationship between the input and output of dynamic systems. It depends on the 

components which form the dynamic system and the manner in which they are 

connected [2]. It is a relationship between a function of time and its derivatives. 

For instance, the equations )sin(3 2 yty
dt
dy

+= and 2

2

3

3

dt
ydte

dt
yd y ++= − are two 

examples of differential equations [41]. The order of a differential equation is the 

order of the highest derivative of the function y appearing in the equation. 

Therefore the previous equations are first and third order differential equations, 

respectively. 

A classic example of developing a differential equation is provided in [2] with a 

freely falling body through the air towards the Earth. There are two active forces 

being applied to the object. One is the weight of the object, W = mg, where m is 

the mass of the object and g is the acceleration of gravity. The other force is the 

air resistance acting on the object opposing the motion. To simplify things, a 

linear relationship is assumed between the friction force and speed, where the 
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friction force is equal to the product of velocity and the friction coefficient b, that 

is, 

Friction =
dt
dyb , where y is the position of the object at any value of time t. 

Now, applying Newton’s second law which states that force is equal to mass 

times acceleration, 

2

2

dt
ydmforces∑ =                                                                                              (2.4) 

where 2

2

dt
yd

is the acceleration. 

Since friction force is opposite to the weight, from (2.4), 

2

2

dt
ydmFrictionW =−  

Or, mg
dt
dyb

dt
ydm =+2

2

                                                                                      (2.5) 

This is the resulting differential equation. A differential equation can be either 

linear or nonlinear. A linear differential equation is any equation that can be 

written in the form [39]: 

)()()(...)()( 011

1

1 xFyxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n =++++ −

−

−                                  (2.6) 

where )(xan , )(1 xan− , …, )(1 xa , )(0 xa and F(x) depend only on the independent 

variable x, not on y. For example, 3
2

2

xy
dx

yd
=+ is a linear second-order 

differential equation, while 0cos2

2

=+ y
dx

yd is nonlinear.  
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A nonlinear differential equation does not have a solution in most cases; therefore, 

in practice, the equation is approximated as a linear one [39]. That is why linear 

differential equations are used to represent practical controllers. As the order of 

the differential equations grows, it becomes increasingly difficult and almost 

impossible to solve them using standard integration techniques. First order 

equations, the simplest ones, are categorized into several classes to be applicable 

to specific techniques of integration. For instance, if the right-hand side of the 

equation dx = f(x, y) can be expressed as a function that depends only on x times a 

function that depends only on y, then the equation is called separable equation and 

solved by standard integration methods [39]. For solving higher-order equations, 

some approximation methods such as Euler’s method, Taylor and Runge-Kutta 

method, have been developed. 

The difficulty in solving differential equations using standard techniques gave rise 

to an approach called Laplace transformation. It is a very attractive method, 

because it converts the solution’s process into a series of algebraic operations. It is 

also ideal for solving linear differential equations with constant coefficients. A 

system described by such equations is termed a linear-time-invariant (LTI) 

system. 

The Laplace transformation of a function of time f(t) is given by [5]: 

∫
∞

− ==
0

)()()]([ sFdtetftfL st                                                                             (2.7) 

Where )]([ tfL is the shorthand notation for the Laplace integral and the 

parameter s is a complex quantity of the form ωσ j+ . 

The transform takes a function of t and produces a function of s, which is done by 

multiplying f(t) by ste− and then integrating with respect to t from 0 to∞ . 

However, f(t) must meet a couple of requirements to be Laplace-transformable. 

The requirements are – the function must be piecewise continuous over every 

finite interval 210 ttt ≤≤≤ , and the function must be of exponential order [5]. A 
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function is piecewise continuous in a finite interval if that interval can be divided 

into a finite number of subintervals and the function is continuous over each of 

the subintervals. f(t) must also possess finite limits at the ends of each 

subintervals. A function f(t) is of exponential order if there exists a constant a 

such that the product e-at|f(t)| is bounded for all values of t greater than some finite 

value T. This imposes the restriction thatσ , the real part of s, must be greater than 

a lower bound aσ for which the product |)(| tfe taσ− is of exponential order.  

Once the differential equation in time domain is transformed into an equation in s-

domain, it can be solved using algebraic manipulations. However, Laplace 

transformation is not an easy operation, except for very simple functions of f(t). 

Fortunately, the results can be stored in a table after the operation is performed 

once. Finally, to complete the solution, the F(s) needs to be converted to an f(t) 

using inverse Laplace transform of F(s). For this process, there is a corresponding 

operation, namely: 

∫
∞+

∞−

− ==
j

j

stdsesF
j

sFLtf
σ

σπ
)(

2
1)]([)( 1                                                                   (2.8) 

As with the Laplace transform, lookup tables of inverse Laplace transforms for a 

number of common functions are published for convenience. When the response 

transform cannot be found in the tables, the general procedure is to express F(s) as 

the sum of partial fractions with constant coefficients. The partial fractions have a 

first-order or quadratic factor in the denominator and are readily found in the 

lookup tables. The complete inverse transform is the sum of the inverse 

transforms of each fraction. 

2.1.4 Transfer Functions 
Transfer functions are tools to describe the characteristics of dynamic components 

and systems. It provides a common language that allows engineers to 

communicate the behavioral aspects of a system. For a linear differential equation, 

the ratio of the output variable to the input variable is called the transfer function. 

If we take the Laplace transform of the high-order differential 
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equation )(...)()(...)()(
01

1

101

1

1 tub
dt

tudbtya
dt

tyda
dt

tyd
n

n

nn

n

nn

n

++=+++ −

−

−−

−

− , it becomes 

an algebraic equation of the form, with zero initial conditions [4]: 

)(...)()(...)()( 0
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n
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n

n ++=+++ −
−

−
−                          (2.9) 

If 0
1

1 ...)( asassA n
n

n +++= −
− and 0

1
1 ...)( bsbsB n

n ++= −
− , we get Y(s) = G(s)U(s) 

where 
)(
)()(

sA
sBsG = and G(s) is the transfer function. The denominator polynomial 

A(s) is called characteristic polynomial. The roots of A(s) are the poles of G(s) 

and the roots of B(s) are the zeros of G(s).  

For instance, let us consider a differential equation of the form: 

)(2

2

tw
dt
dyb

dt
ydm =+                                                                                          (2.10) 

Taking the Laplace transform, assuming zero initial conditions, 

)()()(2 sWsbsYsYms =+                                                                               (2.11) 

where W(s) is the Laplace transform of w(t). Now,
bsmssW

sY
+

= 2

1
)(
)( is the transfer 

function. Control systems and plants are usually represented by transfer functions.                                                    

2.1.5 Step Responses of Continuous-Time Linear Systems 
The response of a control system to a sudden input is an important issue from a 

practical standpoint, because depending on the amount and rate of deviations from 

the long term steady state, they have varying degree of impacts on the overall 

system. In addition, the control system response is delayed until the output settles 

down to some vicinity of its final value. This makes the response to an impulse or 

Dirac Delta function an interesting topic in the study of linear systems. Dirac 

Delta is the limit as 0→∆ of the pulse shown in Figure 2.7. 



14 
 

 

Figure 2.7: Discrete pulse 

Since the Laplace transform of the Dirac Delta is 1, the transfer function of a 

continuous-time system is the Laplace transform of its response to an impulse 

with zero initial conditions. Because of the idealization implicit in the definition 

of an impulse, a system’s dynamic behaviour is usually studied using the step 

response – the time behaviour of the outputs of a system when its inputs change 

from zero to one in a very short time. 

For a sample step response shown in Figure 4.3 in [4], a set of parameters 

describing certain properties of the system is as follows: 

Steady-state value is the final value of the step response. 

Rise time is the time elapsed up to the instant at which the step response reaches, 

for the first time, 90% of the final value. 

Overshoot, expressed as a percentage of the steady-state value, is the maximum 

instantaneous amount by which the step response exceeds its final value. 

Undershoot is the absolute value of the maximum instantaneous amount by 

which the step response falls below zero. It is also expressed as a percentage of 

the steady-state value. 
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Settling time is the time elapsed until the step response enters a specific deviation 

band, δ± , around the final value and does not get out of the band. The deviation 

is defined as percentage of the steady-state value. 

A control system can respond to a step input in three ways – under damped, over 

damped and critically damped response. 

Under Damped Response 

The system will change the output quickly to the new value. However, there will 

always be an overshoot and the output will settle into the new value after a 

number of oscillations. Figure 2.8 shows an under damped response. 

 

Figure 2.8: Under damped response [33] 

Over Damped Response 

In this case, there will be no overshoot, but the response is quite slow to reach the 

final value, illustrated by Figure 2.9. 
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Figure 2.9: Over damped response [33] 

Critically Damped Response 

In this case, there may or may not be any overshoot, but there will be no 

oscillation. Critically damped system reaches the final value in the minimum 

amount of time. Figure 2.10 shows a critically damped response. 

 
Figure 2.10: Critically damped response [33] 

2.1.6 Digital Control Systems 
Throughout the past few decades, modern control systems have been implemented 

on digital computers. Apart from the fact that the expense of a computer have 

gone down significantly with the advent of mass-produced microprocessors and 

microcontrollers, there are other contributing factors, such as, any changes or 

tuning are easily achieved with software, implementation is not susceptible to 

changes due to external conditions, data can be easily transferred to any distant 

location without delay, and exponential growth in the speed of the 

microcontrollers [2]. 
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Digital computers work with sequences of numbers rather than continuous 

functions of time. Information is read and updated at discrete points in time – 

referred to as sampling. For instance, a radar tracking system provides 

information on an airplane’s position and motion to a digital processor at discrete 

periods of time. When there is no such inherent sampling, an analog-to-digital 

(A/D) converter must be incorporated in a digital control system. The output of 

the controller is later converted from discrete form into an analog signal by a 

digital-to-analog (D/A) converter. A block diagram of a digital control system is 

shown in Figure 2.11. 

 

Figure 2.11: Digital control system 

The notations e* and u* denote that these signals are sampled at specific time 

intervals. The extent of the information loss due to sampling depends on the 

sampling method and the related parameters. If a sequence of samples is taken of 

a signal f(t) every∆ seconds, then the sampling frequency needs to be large 

enough in comparison with the maximum rate of change of f(t). Otherwise high 

frequency components will be mistakenly interpreted as low frequencies in the 

sampled sequence, a phenomenon known as aliasing. 

For example, let us consider a signal )
3

20cos(2cos3)( πππ ++= tttf . If the 

sampling period∆ is chosen to be 0.1 sec, then 

5.0)2.0cos(3)
3

2cos()2.0cos(3)( +=++=∆ ππππ kkkkf                               (2.12) 

which illustrates the fact that the high frequency component has been shifted to a 

constant.  

u(t) u* e(t) 

- 
+ 

e* r(t) A/D 
Converter 

Digital 
Controller 

Sensors 

D/A 
Converter Plant 
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The output of a digital controller is another sequence of numbers, which need to 

be converted back to continuous time functions before they can be applied to the 

plant. Usually, this is done by interpolating them into a staircase. 

2.1.7 Z-Transform 
The discrete equivalent of a differential equation is called a difference equation. A 

linear high-order difference equation is of the form [4]: 

][...]1[][...]1[][ 0101 kubnkubkyankyanky nn ++−+=++−+++ −−                 (2.13) 

The Z-transform is the discrete equivalent of the Laplace transform. It is used to 

turn the difference equations into algebraic ones. For a sequence {y[k]; k = 0, 1, 2, 

…} the Z-transform pair is given by [4]: 

∑
∞

=

−==Ζ
0

][)(]][[
k

k kyzzYky                                                                              (2.14) 

1,)(
2
1][)]([ 11 −===Ζ ∫ −− jdzzYz

j
kyzY k

π
                                                   (2.15) 

where Ζ (.) indicates the Z-transform operation and 1−Ζ (.) represents the inverse 

Z-transform. The function Y(z) is essentially a power series in kz− with coefficients 

equal to the values of the number sequences {y(k)} [6].  

2.1.8 Discrete Transfer Functions 
If we take Z-transform on each side of the high-order difference equation (4) with 

zero initial condition, Aq(z) Yq(z) = Bq(z) Uq(z), where Yq(z) is the Z-transform of 

the sequences {y[k]}, Uq(z) is the Z-transform of the sequences {u[k]}, Aq(z) = zn 

+ an-1 zn-1 + … + a0, and Bq(z) = bmzm + bm-1 zm-1 + … + b0. 

So, Yq(z) = Gq(z) Uq(z), where 
)(
)(

)(
zA
zB

zG
q

q
q = and Gq(z) is the discrete transfer 

function. As in the continuous-time case, the transfer function uniquely 

determines the input-output behavior at the discrete sampling times. However, the 

input-output behavior at times other than the sampling instant is undefined. 



19 
 

2.1.9 Continuous-to-Discrete Transfer Function Transformation 
This transformation refers to turning the transfer function from the s-domain to 

the z-domain. There are different approaches to achieve this transformation, but 

two are most commonly used: bilinear transform and backward rule approach 

[36]. Tustin or bilinear transformation is a first-order approximation of the natural 

logarithm function that is an exact mapping of the s-domain to the z-domain. 

Since stez = , where T is the sample time or the reciprocal of the sampling 

frequency, 

1
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s                           (2.16) 

Thus the bilinear transform essentially uses first-order approximation and 

substitutes into the continuous-time transfer function as
1
12

+
−

←
z
z

T
s . Bilinear 

transform gives a one-to-one mapping between analog frequency axis ajs ω= and 

the digital frequency axis Tj dez ω= , where T is the sampling interval. Thus the 

amplitude response is exactly the same on both axes, while the only defect being a 

frequency warping such that equal increments along the unit circle in the z-plane 

correspond to larger and larger bandwidths along the ωj axis in the s-plane [37]. 

The backward rule approach to continuous-to-discrete mapping stems from the 

definition of the derivative. The backward difference form of the derivative is [2]: 

T
Ttete

dt
de )()( −−

=                                                                                         (2.17) 

Taking the Laplace transform, assuming all the initial conditions being zero, 

T
esEsEssE

sT−−
=

)()()(  

Or, 
T
es

sT−−
=

1                                                                                                 (2.18) 
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Since sTez = , 
Tz

z
T
zs 11 1 −

=
−

=
−

                                                                      (2.19) 

Like the bilinear transform, the backward rule approach preserves stability 

(discussed in the next subsection) of the system and is free of aliasing. However, 

backward rule approximation requires that the sampling interval be small for 

accurate conversion [36]. 

2.1.10 Stability 
A dynamic system is said to be stable if the output eventually reaches a finite 

steady-state value after an input or a disturbance. When the output oscillates with 

ever-increasing amplitude or it increases or decreases unidirectionally and without 

limit, the system is unstable. Let us consider a typical second-order system 

equation of the form [31]: 

yDfxaDaDa )()( 01
2

2 =++                                                                           (2.20) 

The transient response, and hence stability, of such system depends on the 

coefficients a0, a1 and a2. If all the coefficients are above zero, the function will 

not contain any positive time exponentials and the system will be stable. 

However, if either a1 or a2 is less than zero, the transient response will contain 

positive exponentials and the system will be unstable. Figure 2.12 shows some 

stable and unstable responses [31]. 

 

Figure 2.12: Examples of stable and unstable responses 

Routh-Hurwitz stability conditions determine whether a system is stable or 

unstable. Let us consider the generalized equation [31]: 
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yDfxaDaDaDa n
n

n
n )()...( 01

1
1 =++++ −
−                                                     (2.21) 

Assuming a0 is positive; a matrix is created of the coefficients: 

a 1 a 0 0 0 0 0 0 . . . 

a 3 a 2 a 1 a 0 0 0 0 . . . 

a 5 a 4 a 3 a 2 a 1 a 0 0 . . . 

a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 . . 

a 9 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 

 

For stability of an equation of degree 4, the necessary conditions are as follows: 

1. a1 > 0, a2 > 0, a3 > 0, a4 > 0. 

2. 0
23

01 >







aa
aa

, that is, 03021 >− aaaa  

3. 0
0

0

34

123

01

>
















aa
aaa

aa
, that is, 0))0.()(( 133041321 >−−− aaaaaaaaa  

Any fourth-order equation has to meet these criteria to be stable. Note that [.] 

refers to the determinant of a square matrix.  

2.2 Fuzzy Logic and Fuzzy Control 
Fuzzy logic was originally proposed in theory by Zadeh [9][10], and implemented 

in automatic control by Mamdani [11][12]. Fuzzy controllers are a particular class 

of intelligent controllers built on fuzzy expert systems. One of the advantages of 

fuzzy controllers is that they do not require exact mathematical models unlike the 

traditional controllers, therefore making it easier to create highly nonlinear 

controllers in a very intuitive fashion. This property is very important for today’s 

high-complexity and large networks where a precise mathematical model is often 

unavailable.  
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A fuzzy controller tries to mimic a knowledgeable human operator by applying a 

collection of control rules that might be overlapping and contradictory. The 

fuzzifier module receives data from sensor(s) as inputs and converts it by 

performing a simple mapping of a numeric quantity to a fuzzy set. The rulebase is 

formed by a collection of logical rules depicting the relationship between the 

input (antecedent) and output (consequent) of the controller [25]. The 

approximate reasoning algorithm is implemented in the inference engine whose 

task is to determine the firing degree of each rule, and to produce a fuzzy output 

by performing a weighted composition of the consequents for each rule. Finally, a 

module called a defuzzifier converts the fuzzy outputs to a single crisp control 

signal to be sent to the process. 

2.2.1 Basic Concepts of Fuzzy Logic 
The underlying mathematical construct of fuzzy logic is a fuzzy set, which is a 

generalization of mathematical set theory [13]. It is a set having a characteristic 

function with a co-domain consisting of the unit interval [0, 1] rather than the 

usual discrete set {0, 1}, and the characteristic function is known as membership 

function. This allows for a gradual transition from having a certain property to not 

having it [14]. 

The concepts of fuzzy sets are highly intuitive, since they work the same way 

humans tend to reason. In the words of Zadeh [1]: 

“Clearly the ‘class of all real numbers that are much greater than 1,’ or ‘the 

class of beautiful women,’ or ‘the class of tall men,’ do not constitute classes or 

sets in the usual mathematical sense of these terms.” 

For example, let us consider a temperature of 20°C as comfortable [7]. In terms of 

mathematical set theory, anything less than 20°C would then be not comfortable, 

meaning cold, and anything more than 20°C would again be not comfortable, 

meaning warm. This makes a value of 19°C to be cold, which is counter-intuitive. 

From human perspective, it is still quite comfortable, which is the essence behind 

the idea of fuzzy sets. Likewise, the temperature value of 25°C is partially 
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compatible with the terms comfortable and warm, but totally incompatible with 

cold. This notion of fuzzy sets is shown in Figure 2.13, where temperature values 

up to 10°C are only cold and on or above 30°C are only warm. As the temperature 

rises from 10°C to 20°C, the degree of cold decreases while that of comfortable 

increases. This goes on till 20°C where degree of comfortable is 1 and there is no 

cold. Similarly, the degree of warm goes higher starting from 20°C and 

comfortable keeps going down. At 30°C, temperature is totally warm and not 

comfortable at all. 

                                    

               Figure 2.13: Notion of fuzzy sets 

2.2.2 Membership Functions 
Membership functions are mappings from the universe of discourse to the unit 

interval [7]. There are two different ways to represent a membership function: 

continuous and discrete [8]. For instance, a trapezoidal membership function is a 

piecewise linear, continuous function, and it is based on four parameters {a, b, c, 

d} [15]. 
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trapezoidal and triangular membership functions representing the time ‘around 

noon’ [8]. 

Membership functions take many forms such as triangular, exponential, Gaussian 

membership functions and so on [7]. A discrete fuzzy set is defined by ordered 

pairs { )),...(,()),(,( 2211 xxxx µµ } where  )( ixµ  is an evaluation of the membership 

function µ  at a discrete point ix  [8].  

           

                                  (a)                                                               (b)  

Figure 2.14: (a) Trapezoidal and (b) triangular membership functions. 

2.2.3 Fuzzy Set Operations 
Fuzzy set operations, namely – intersection, union and complement, are defined as 

functions of membership values. Functions that qualify as fuzzy intersections and 

fuzzy unions are usually referred to in the literature as t-norms and t-conorms, 

respectively. 

2.2.3.1 Fuzzy Intersection 

The intersection of two fuzzy sets A and B is defined by a binary operation on the 

unit interval; that is, a function of the form 

]1,0[]1,0[]1,0[: →×i  
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For each element x of the universal set, this function takes as its argument the pair 

consisting of the element’s membership grades in set A and in set B, and yield the 

membership grade of the element in the set constituting the intersection of A and 

B. Thus, 

)](),([))(( xBxAixBA =∩  for all Xx∈ . 

Functions known as t-norms possess properties which ensure that fuzzy sets 

produced by i are intuitively acceptable as meaningful fuzzy intersections of any 

given pair of fuzzy sets [21]. Therefore, the class of t-norms is now generally 

accepted as equivalent to the class of fuzzy intersections. 

A fuzzy intersection or t-norm i is a binary operation on the unit interval that 

satisfies at least the following axioms [21] for all ]1,0[,, ∈dba : 

Axiom I1: i(a, 1) = a (Boundary condition) 

Axiom I2: b ≤ d implies i(a, b) ≤ i(a, d) (Monotonicity) 

Axiom I3: i(a, b) = i(b, a) (Commutativity) 

Axiom I4: i(a, i(b, d)) = i(i(a, b), d) (Associativity) 

Axiom I5: i is a continuous function (Continuity) 

Axiom I6: i(a, a) ≤ a (Subidempotency) 

The following are some examples of t-norms used as fuzzy intersections: 

Standard Intersection: ),min( BABA µµµ =∩  

Algebraic Product: BABA µµµ *=∩  

Bounded Difference: )1,0max( −+=∩ BABA µµµ  

Drastic Intersection: ABA µµ =∩ when Bµ = 1 

             Bµ when Aµ = 1 
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    0 otherwise 

2.2.3.2 Fuzzy Union 

The general fuzzy union of two fuzzy sets A and B is specified by a function 

]1,0[]1,0[]1,0[: →×u  

The function returns the membership grade of the element in the set BA∪ . Thus, 

)](),([))(( xBxAuxBA =∪  for all Xx∈ . 

The properties of functions known as t-conorms are exactly the same as those of a 

function u that is acceptable as a fuzzy union; therefore, t-conorms and fuzzy 

unions are used interchangeably. 

A fuzzy union or t-conorm u is a binary operation on the unit interval that satisfies 

at least the following axioms for all ]1,0[,, ∈dba : 

Axiom U1: u(a, 0) = a (boundary condition) 

Axiom U2: b ≤ d implies u(a, b) ≤ u(a, d) (monotonicity) 

Axiom U3: u(a, b) = u(b, a) (Commutativity) 

Axiom U4: u(a, u(b, d)) = u(u(a, b), d) (Associativity) 

Axiom U5: u is a continuous function (Continuity) 

Axiom U6: u(a, a) ≥ a (Superidempotency) 

Axiom U7: a1 < a2 and b1 < b2 implies u(a1, b1) < u(a2, b2) (Strict monotonicity) 

Some examples of t-conorms used as fuzzy unions are given below: 

 

Standard Union: ),max( BABA µµµ =∪  

Algebraic Sum: BABABA µµµµµ −+=∪  

Bounded Sum: ),1min( BABA µµµ +=∪  
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Drastic Union: =∪BAµ Aµ  when Bµ = 0 

    Bµ  when Aµ = 0 

                      1 otherwise 

2.2.3.3 Fuzzy Complement 

Let A be a fuzzy set on X. Therefore, A(x) is interpreted as the degree to which x 

belongs to A. Let cA be a fuzzy complement of A. Then, cA(x) may be interpreted 

not only as the degree to which x belongs to cA, but also as the degree to which x 

does not belong to A.  

Let a complement cA be defined by a function ]1,0[]1,0[: →c  which assigns a 

value c(A(x)) to each membership grade A(x) of any given fuzzy set A. The value 

c(A(x)) is interpreted as the value of cA(x). Given a fuzzy set A, we obtain cA by 

applying function c to values A(x) for all Xx∈ . 

To produce meaningful fuzzy complements, function c must satisfy at least the 

following two axioms: 

Axiom C1: c(0) = 1 and c(1) = 0 (Boundary condition) 

Axiom C2: For all a, b ∈ [0, 1], if a ≤ b, then c(a) ≥ c(b) (Monotonicity) 

The complement of a fuzzy set A with membership function Aµ usually 

corresponds to the connective NOT, and has the membership function 

AA µµ −=1 . 

2.2.4 Fuzzy Logic 
The ‘truth’ or ‘falsehood’ assigned to a proposition is its truth-value [8]. For two-

valued logic, truth-values can only be either 0 (false) or 1 (true). Fuzzy logic is an 

extension of the range of truth-values to the continuous interval [0, 1] of real 

numbers [16]. In mathematics, the word ‘and’ is used to join two sentences to 
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form the conjunction of the two sentences. The word ‘or’ is used to form the 

disjunction of two sentences. From two sentences, we may construct one, of the 

form ‘If…then…’, called an implication. The sentence following ‘If’ is the 

antecedent, and the sentence following ‘then’ is the consequent. A sentence that is 

modified by the word ‘not’ is called the negation of the original sentence. The 

words ‘and’, ‘or’, ‘If-then’ are called connectives. 

Fuzzy logic connectives are defined similarly. If p is a fuzzy set, negation is 

defined as set complement, that is, 

                                                  pp −=¬ 1  

Disjunction is defined as set union, that is, for fuzzy sets p and q 

                                            ),max( qpqp ≡∨  

Conjunction is defined as set intersection, that is, for sets p and q 

                                           ),min( qpqp ≡∧  

Rules of inference specify conclusions drawn from assertions known or assumed 

to be true. One such rule of inference is modus ponens. It is often presented in the 

form of an argument: 

                                                    

Q

QP
P

−−−−−
=>

 

It means, if P is known to be true, and we assume that P => Q is true, then Q must 

be true. The assertion P is the premise, the assertion P => Q is the implication, 

and the last assertion is the conclusion. 

Modus ponens generalized to fuzzy logic is the core of fuzzy reasoning. Let us 

consider the argument [8]: 
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B

BA
A

′
−−−−−

=>

′

 

It is similar to modus ponens, but the premise A′ is slightly different from A and 

thus the conclusion B′ is slightly different from B. For example [100], 

                              This tomato is very red 

                              If a tomato is red, then the tomato is ripe 

                              --------------------------------------------------- 

                              This tomato is very ripe 

This is generalized modus ponens.  

A fuzzy rule has the form: ‘If x is A then y is B’, in which A and B are fuzzy sets. 

This is an implication where ‘x is A’ is the antecedent and ‘y is B’ is the 

consequent.  

2.2.5 Fuzzy Controller 
A fuzzy control system has a similar architecture to a conventional feedback 

control system. Figure 2.15 shows a fuzzy controller. 

          

                                     Figure 2.15: Fuzzy control system [8] 

The difference between a fuzzy controller and its conventional counterpart lies in 

the control strategy. While the traditional system applies mathematical models 

using differential equations to calculate the controller output, a fuzzy controller 
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processes the inputs based on rules expressed in a more or less natural language. 

The advantage of using rule-based fuzzy controller stems from the fact that 

mathematical models of many control processes may not exist, or may be 

mathematically intractable [17].  

2.2.6 Components of Fuzzy Controller 
 

 

                                  Figure 2.16: Fuzzy controller block diagram [8] 

Figure 2.16 shows the general structure of a fuzzy controller. The preprocessor 

prepares usable data for further processing from measured inputs by the 

measuring device. Preprocessing may involve quantization in connection with 

sampling or rounding to integers, normalization or scaling, filtering to eliminate 

noise, averaging to obtain tendencies, and so on [8]. 

2.2.6.1 Fuzzifier Unit 

The fuzzifier module calculates the membership grades, expressed in real 

numbers, from the membership functions. It evaluates the input measurements 

according to the premises of the rules. Each premise produces a membership 

grade expressing the degree of fulfillment of the premise. A lookup table [18] 

usually contains the membership values for all possible numerical inputs. This 

approach, albeit requiring more memory space, can be much faster than 

calculating the membership values in real-time [19]. 
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2.2.6.2 Rule Base Unit 

Three distinct variants of the fuzzy rule base have evolved so far – Mamdani, 

TSK or Sugeno and Tsukamoto rule bases. They use the same general inference 

scheme, but differ with respect to the conclusion membership functions. 

Mamdani rule base uses fuzzy sets as consequents; therefore Mamdani controllers 

are computationally more expensive, although the implementation is more 

intuitive and well suited to human inputs. TSK or Sugeno rule base replaces the 

consequents of Mamdani model with a polynomial equation (usually either a 0th 

or 1st degree polynomial) of the (non-fuzzified) input variables. The rules take the 

following form: 

If x is A and y is B then z = f(x, y) 

where A and B are fuzzy sets in the antecedent and z = f(x, y) is a crisp polynomial 

function in the consequent. For a zero-order Sugeno model, z is a constant. It is 

computationally efficient, works well with linear techniques, has guaranteed 

continuity of the output surface and well suited to mathematical analysis. 

In the Tsukamoto rule base, the consequents are represented by fuzzy sets with 

monotonic membership functions. The rules take the form: 

                       If x is A and y is B then z = p*x + q*y + r 

Scalar values are often used as consequents in practical fuzzy controllers, referred 

as singleton consequents. Some of the benefits of using singleton consequents are 

simpler calculations, possibility of setting extreme values for the control signal 

and so on [8]. 

2.2.6.3 Inference Engine Unit 

For each rule, the inference engine looks up the membership value where each 

input intersects a membership function. The firing strength iα of a rule i is the 

degree of fulfilment of the rule premise. Rule i causes a fuzzy membership value 

corresponding to each input, which are aggregated using the ‘and’ or ‘or’ 

connective. The activation of a rule is the derivation of a conclusion depending on 
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the firing strength. Minimum or multiplication is used as the activation operator 

to activate a portion of each singleton consequent. If consequents are fuzzy sets as 

in the Mamdani controller, multiplication scales the membership curves while 

minimum clips them. However, for singletons, both operators result the same. All 

activated conclusions are accumulated using maximum or summation operator. 

The conclusions may contain several control actions. 

2.2.6.4 Defuzzification Unit 

The resulting fuzzy set from the inference engine has to be converted in the 

defuzzifier to a single number to form a control signal to the plant. There are 

dozens of defuzzification schemes, such as Center of Gravity (COG), Mean of 

Maxima (MOM), Bisector of Area (BOA) and so on [20], [90], [93], [96]. The 

crisp control value uCOG is the abscissa of the center of gravity of the fuzzy set. 

For singleton consequents, it takes the following form: 

∑
∑

=

i
i

i
ii

COGS y

wy
u                                                                                                 (2.22) 

Where yi is the firing strength of each rule, and wi is the consequent output. The 

term COGS stands for Center of Gravity for Singletons [8]. For fuzzy sets in the 

consequents, summations are replaced by integrals. It is a widely used method, 

but it is also computationally expensive. 

The Bisector of Area (BOA) method finds the abscissa x of the vertical line that 

partitions the area under the membership function into two areas of equal size. For 

singleton consequents, uBOA is the abscissa that minimizes  
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Here imax is the index of the largest abscissa
maxix . Its computational complexity is 

also relatively high. 
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Another approach is to choose the point of the universe with the highest 

membership. Mean of maxima (MOM) is taken among several such points. 

})(|{, maxµµ ===
∑
∈

ic
Ii

i

MOM xiI
I

x
u                                                                  (2.24) 

Where I is the crisp set of indices I where )( ic xµ reaches its maximum maxµ , and 

|I| is the number of members of the set. Although this method is not concerned 

about the shape of the fuzzy set, computationally it is faster. 

2.3 Hardware Implementations of Fuzzy Controllers 
Although software-based approaches [55], [56] on general-purpose 

microprocessors are the most flexible and economical in developing fuzzy 

controllers, and satisfactory results have also been obtained in the industrial areas 

[54]; existing software fuzzy implementations result in slow operational speed 

due to the fact that general-purpose computers do not have hardware 

computational units to implement fuzzy operations directly, making it inadequate 

for the high-speed processing requirement of real-time control problems [53], 

[58]. Therefore massive research activities on dedicated fuzzy hardware 

implementation manipulating both analog and digital approaches have been going 

on since the 1980s. Analog systems have been preferred where power 

consumption and resource usage are the main design criteria; whereas precision 

and compatibility issues favor the digital technology [23]. A fuzzy controller 

having a processing speed of 10 MFLIPS and developed by OMRON Corporation 

is considered a basic performance standard [24], although proposed prototypes in 

the literature have speeds up to 40 to 50 MFLIPS [25].  

2.3.1 Analog Implementations 
Implementation of analog fuzzy controllers began with the work of Yamakawa 

and Miki [26] in 1986. They developed nine basic fuzzy logic circuits in current 

mode, containing the realization of functions, such as bounded difference, fuzzy 
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complement, fuzzy logic union (MAX), bounded sum, fuzzy logic intersection 

(MIN), implication, and so on.  

Although current-mode circuits are not exceedingly sensitive to changes in supply 

voltages, the fan-out number is limited [27], meaning that problems would arise 

when the inputs must be distributed to many operational blocks, a usual scenario 

for fuzzy rule base implementation. To overcome this issue, a tunable voltage-

input current-output membership function circuit is presented in [27] using 3.5 

µm CMOS design rules based on the fact that voltage inputs can be easily 

distributed to many rule blocks.  

N-input MIN/MAX circuits are used in the inference engine of a fuzzy controller. 

A current-mode multi-input MAX circuit is proposed by Baturone et al. in [32] 

and [35]. The MAX circuit also performs the MIN operation using De Morgan’s 

law. It uses 3n + 1 transistors while achieving the same level of precision with 

less area and power consumption compared to 5n + 1 transistors in [28]. The 

MAX/MIN circuit design in [30] follows the similar structure as in [29], but it 

only requires n + 4 MOS transistors, which is an improvement over other 

implementations.  

A current-mode defuzzification circuit based on the square-law MOS 

characteristic is described in [34] providing high linearity and large dynamic 

range. A square-root circuit is cascaded with a squarer circuit to implement the 

multiplier block. Addition is realized by wiring the outputs of the multiplier 

blocks together. As the use of this circuit is limited to current-mode only, a 

voltage-to-current (V-I) and current-to-voltage (I-V) conversions might be 

needed. The division in defuzzification is avoided in [28] by a Normalized 

Locked Loop (NLL). The denominator in the COG equation is made constant 

with a negative feedback loop, so it becomes a weighted sum operation instead of 

weighted average. The maximum simulated error is reported to be within 0.4% of 

the full scale current. A simple current-input voltage-output continuous-time 

divider circuit is implemented in [35] using a variable transresistance technique, 

where a resistance value is controlled by a current. It offers larger dynamic range 
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compared to the approach in [34] and high-frequency operation. The defuzzifier in 

[40] is implemented by a multiplier, a divider, three integrators, an I-V converter, 

an attenuator and a division control unit. To avoid the nonlinearity of the 

multiplier for signals greater than 0.5-V, the attenuator is used. An I-V converter 

is needed because the multiplier block is based on a voltage-mode integrator. A 

division control unit gets rid of very small signals to be applied to the 

denominator. 

Programmable analog fuzzy chips have also been developed over the last couple 

of decades. Continuous, fuzzy, and multi-valued logic circuits are realized using a 

general-purpose Field Programmable Analog Array (FPAA) in [43]. The FPAA is 

based on an array of current-mode processing cells, operates from ±3.3 V or ±5 V 

power supplies, and works with frequencies up to several hundred MHz. In [44], a 

similar field programmable analog fuzzy processor is proposed supporting fifteen 

rules, three inputs and one output. The architecture is split into an analog core and 

a digital part allowing field programmability. The digital segment relies on a 

software tool to compute the programming values. The chip area is 32 mm2 using 

a CMOS 0.7-µm n-well technology with the analog core occupying only 7%. The 

settling time for a step response is reported to be < 0.6 µs.  

Miki and Yamakawa [46] proposed an analog fuzzy processor with an inference 

engine of over 1 MFLIPS excluding defuzzification. To have a flexible system 

configuration, inferences and defuzzification are handled by two separate chips. 

The executed rule can be changed dynamically from one rule set to the other 

stored in the on-chip rule memory. The chip in [47] occupies an area of 17.9 mm2 

and processes up to 131072 rules, 4096 inputs and 1024 outputs with different 

membership functions. Fuzzification of four 12-bit inputs, inference of 80 rules, 

and COG defuzzification for a 16-bit output takes 16 µs, translating to a 

processing speed of 62.5 KFLIPS. Baturone et al. [48] designed general-purpose 

fuzzy chips allowing fully-parallel analog rule processing and optimized digital 

circuitry for programmability. The analog core of a two-input processor occupies 

a silicon area of 1 mm2 and the response time is less than 2 µs.  
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Although analog implementations have features such as lower power consumption 

[23], and not having the requirement of analog-to-digital (A/D) or digital-to-

analog (D/A) converters to communicate with sensors and actuators, they suffer 

from poor flexibility, less precision due to noise, distortion, interferences and 

parameter mismatch [57], and compatibility issues with other digital systems [52]. 

2.3.2 Digital Implementations 
There are many different ways to implement fuzzy control systems in digital 

hardware. One approach is the use of general-purpose processors with a number 

of instructions dedicated to fuzzy operations. While this method [85], [86] 

provides features such as flexibility and automatic support of non-fuzzy 

computations, performance is limited [84]. A better approach in terms of speed is 

special-purpose processors designed only for fuzzy operations [87], [88]. 

However, they have poor flexibility and cannot be used as stand-alone processors 

to implement the control system. Most of the studies so far, therefore, have dealt 

with dedicated hardware tailored to a particular fuzzy application [64]. Although 

this scheme is not flexible at all, the advantages include very fast processing 

capability required for real-time systems, low cost in terms of resources, and so on 

[84].  

Togai and Watanabe [59]  [60] were the first to implement fuzzy systems in 

digital hardware in the mid 1980s. They developed a VLSI chip, fabricated in 2.5-

µm CMOS technology, to perform the fuzzy inference process. The rulebase is 

stored in Read-Only Memory (ROM) because of its faster operation and less area 

requirement compared to the Random Access Memory (RAM). The degree of 

membership functions is represented by 4 bits, so 16 discrete levels are permitted. 

Two circuits with serial processing capabilities are used to implement MAX and 

MIN operations. The chip was first demonstrated at AT&T Bell lab. It operates on 

a 20.8 MHz clock with a processing speed of 80 KFLIPS. 

The second generation of a 1-µm CMOS VLSI chip has been designed by 

Watanabe et al. [61] in the early 1990s. The chip consists of 688,000 transistors 

out of which 476,000 are used for RAM memory. Either 51 rules with 4 inputs 
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and 2 outputs, or 102 rules with 2 inputs and 1 output can be implemented at a 

speed of over 150 KFLIPS. The universe of discourse of a fuzzy set is divided 

into 64 elements each being a 4-bit number, therefore occupying 256 bits of 

memory for fuzzification table lookup. Instead of dedicating 256 bits for each 

fuzzy set, the membership functions for all fuzzy sets are stored in one memory 

area in [63]. The representations of the membership functions for each fuzzy set 

are overlapped. The effectiveness of this approach depends on the overlap factor 

of the fuzzy sets. For a factor of 2, it only requires half of the memory space 

compared to that of [61]. To speed up the inference process, the defuzzification 

operations are pre-computed and partial results are stored for runtime access. To 

save memory, a different way to implement membership functions is described in 

[62]. It makes use of three memory spaces to store the fuzzification information. 

Each fuzzy set is assigned a 3-bit number in the first space; the other two spaces 

keep track of the values that the membership functions possess for any pair of 

active fuzzy sets for a particular input.  

A custom designed hardware fuzzy logic controller with on-line adaptability is 

described in [65], [66]. Look-up tables are used for fuzzification with 4-bit 

resolution. To avoid division in defuzzification, all possible division outputs are 

pre-calculated and stored in a look-up table with concatenated numerator and 

denominator values being used as addresses to access the table contents. To 

facilitate on-line adaptation, six extra SRAMs (Static Random Access Memory) 

are used to store input membership functions along with 6 others for normal 

operations. A fully pipelined version can obtain a speed up to 9 MFLIPS. A 

similar design approach [58] achieves 3.3 MFLIPS operational speed, while a 

multilevel systolic approach [67] goes up to 10 MFLIPS with the use of 30,000 

gates and 3 KB memory. An adaptive fuzzy controller oriented to ASICs is 

presented in [75]. Adaptation algorithm works by updating the parameters of 

membership functions and rules based on new input data. During each cycle, the 

rules with more firing strength are reinforced while others are ignored depending 

on the degree of their strength. The circuit is fabricated in 0.7 µm CMOS 

technology with 35,000 gates. 
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A general-purpose hardware system called KAFA (KAist Fuzzy Accelerator) to 

provide various fuzzy inference methods and fuzzy set operations is presented in 

[54], [69]. Fuzzy Processing Elements (FPEs) are separate from the main 

controller. Each FPE is connected to its next neighbor, while the first and last 

ones are connected to the main controller to form a ring topology. The first 

prototype of KAFA is implemented on an FPGA with 128 FPE’s. An FPE unit 

consists of a Fuzzy Arithmetic Logic Unit (FALU), a memory space to store 8-bit 

membership values, a register file containing nine registers and a communication 

link.  With 11 basic instructions, FALU implements 8 fuzzy set operations, 

namely – logical product, logical sum, algebraic product, algebraic sum, bounded 

product, bounded sum, drastic product and drastic sum. KAFA also provides 3 

defuzzification methods – maximum criterion, mean-of-maxima, and modified 

center of area – with the first two dealing with the problem of finding the FPE 

containing the largest membership value in a list of FPEs. A similar hardware 

board named Future Board [72], [73] to process fuzzy set operations is proposed 

by Tokunaga. It consists of 4 fuzzy set processors (FSPs) to concurrently execute 

four streams of fuzzy operations on 8-bit data. Lee and Bien [74] developed a 

flexible fuzzy control system called FLEXi. For 8 inputs, 4 outputs and 256 rules 

with 16 MHz clock, it operates approximately at 20 KFLIPS. 

Sánchez-Solano et al. [70] described two programmable fuzzy controllers that 

provide low resource usage and relatively high operational speed by adopting 

some restrictions on the degree of overlapping of antecedent membership 

functions and by using simplified defuzzification methods employing singleton 

consequents. Inference time is reduced by identifying active rules [71] defined as 

such rules for which all the antecedent membership grades are non-zero. The 

prototypes are implemented in a 1-µm CMOS technology, and they consist of 3 

inputs and 1 output using 8 membership functions with an overlapping degree of 

2. A memory space of 64 x 15 bits is used for membership functions of each 

input. They achieve an inference speed of 3 MFLIPS.  
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Ascia et al. [79] presented a VLSI fuzzy processor with 3 inputs, 1 output and 32 

rules, which achieved 5.2 MFLIPS for a clock frequency of 66 MHz. A fuzzy 

processor [80] with four 7-bit inputs, one 7-bit output, 7 input membership 

functions, 8 output membership functions and 127 rules is implemented in 1 µm 

CMOS technology. It is used in a trigger system in High Energy Physics 

Experiments, and has a speed of 50 MFLIPS. It uses the active rule selector 

approach presented in [71].  

An asynchronous computational approach to the hardware design of a fuzzy 

controller is described in [68]. The controller is designed as a large asynchronous 

pipeline in which most of the hardwired delays are replaced by self-timed 

combinational logic controlled by handshaking signals rather than a global clock. 

This scheme is useful for low-power embedded applications. 

Due to the significant advances in the digital field during the last few decades, 

digital approach for fuzzy hardware realization is now easier to design, more 

precise, and more flexible in comparison to analog implementation [58]. 

2.3.3 Fast Defuzzification 
Defuzzification has always been a bottleneck for faster implementation of fuzzy 

systems. Therefore a number of techniques have been proposed in the literature to 

avoid computationally expensive multiplication and division operations. In [89], a 

heuristic approach based on adapting any fuzzy output shape into one single 

triangle and estimating the centroid position is presented. The processing time for 

this approach is reported to be 23 times less than that for COG defuzzification. 

Runkler and Glesner [92] proposed a centroid approximation algorithm (CADE) 

to decrease the computation cost for defuzzification. Further reduction in 

computation is achieved by another algorithm (DECADE) which avoids 

multiplication and division operations involved in the previous method. The 

maximum error is reported to be about 7% for DECADE. 

Eisele et al. [91] presented a fast defuzzification method for hardware 

implementation of fuzzy inference algorithms. This approach optimizes the COG 
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method by skipping all the regions for which the output possibility distribution is 

zero. As it adapts to the degree of contribution of the regions to the final crisp 

value, it is termed as the adaptive integration. One drawback of this method is that 

the implementation becomes complicated because of the extra circuitry needed to 

determine the relevance of the regions. A similar approach is followed by 

Tamukoh et al. [94], [95]. They proposed a bit-shifting-based fuzzy inference 

method which uses only the “active units”, meaning those rules which have large 

influence on the defuzzified output. The concept of “active rules”, rules that will 

contribute to the final result, is also used to speed up the defuzzification process in 

[98]. Two similar rule selector blocks are used to examine two rules at every 

clock cycle. The division operation is replaced by multiplication with the 

estimated reciprocal of the denominator.  

Three different implementations of COG defuzzification are proposed in [99]. 

These methods compute the defuzzified output when the output membership 

functions are trapezoidal and form a fuzzy partition.  The discretization method is 

the easiest among all to implement, because of the fact that the fuzzy output is 

approximated by a number of rectangles of equal width and height. With the 

increasing number of rectangles, the narrower they become and output is also 

better approximated. In the slope-based technique, fuzzy output surface is 

partitioned in such a way that the slope of the fuzzy output is constant within each 

part and different in two adjacent parts. The modified transformation function 

method originates from the transformation method presented in [97]. These 

methods are not as straightforward as discretization, but they allow faster and 

more accurate computation. 

A COG method with only integer additions and one integer division is presented 

in [101]. The proposed algorithm maps the real values of fuzzy membership 

functions onto an integer grid. It is 12.75 times faster than conventional COG for 

the truck-backer problem. Introduction of quantization error is one disadvantage, 

because of the mapping of real values to integer ones. Although multiplication is 

eliminated, one division operation is still required. 



41 
 

CHAPTER 3 

PROPOSED LOG-DOMAIN CONTROLLER 

3.1 Logarithmic Arithmetic 
Logarithmic-domain arithmetic has been used to accelerate hardware for many 

applications where there are a large number of multiplication and/or division 

operations involved, e.g. in [83]. In the fuzzy controller, the defuzzifier enjoys the 

greatest advantage of log-domain arithmetic, since the COG method in equation 

(2.22) requires three fundamental operations: multiplication, summation and 

division. If x = q1/q2, then log(x) = log(q1) – log(q2), and hence a divider is 

replaced by a much simpler subtractor. Computationally expensive multiplication 

operations are similarly carried out by addition circuits in log-domain. The 

fundamental principle of this log-domain system is to take the logarithmic 

transform of all quantities. For instance, instead of performing a computation x = 

f(q1, q2), the quantity log(x) is computed using an equivalent function g(log(q1), 

log(q2)). If all quantities fall in the range (0, 1], all the logarithmic values are 

either 0 or a negative number, and the negative signs can be safely ignored 

simplifying calculations. As fuzzy membership values are always within (0, 1], 

(assuming we ignore membership values equal to 0 in our computations, as is 

commonly done) fuzzy logic controllers are suitable for this type of arithmetic. 

Since we are using absolute values of all logarithmic quantities, minimum 

operations are changed to maximum and vice versa in the inference engine of the 

log-domain controller. However, the summation operation is complicated in the 

log-domain. If x = q1 + q2, with q1 > 0 and q2 > 0, then it can be shown [82]: 

)1log())log(),max(log()log()log( )|log()|log(
2121

21 qqeqqqqx −−++=+=            (3.1) 

The second logarithmic term in equation (3.1) becomes almost zero when q1 and 

q2 are not close in value. This term is often ignored in log-domain arithmetic at a 

small loss in precision [83], but can also be very crudely approximated by a 



42 
 

correction factor [81], [82] (discussed in the next section). We have implemented 

in simulation two versions of our log-domain controller – one without the 

correction factor, and the other with the factor. 

3.2 Approximate Correction Factor 
In this section we describe how a series of numbers are added in the log-domain 

controller. Say, we need to calculate the sum of a series of numbers q1, q2, …, qn, 

while the only information available to us is the set of their logarithmic values. 

Now, )...log()...log()log( )log()log()log(
21

21 nqqq
n eeeqqqx +++=+++=      (3.2) 

If q1 is the maximum among all the qi’s, log(q1) is also the maximum among all 

the log values. Now, from (3.2), 

))...1(log()log( )log()log()log()log()log( 1121 qqqqq neeex −− +++=  

         )...1log()log( )log()log()log()log(
1

112 qqqq neeq −− ++++=       (3.3) 

If q2 is the second largest value, the impact of )log()log( 12 qqe − is the highest among all 

the other terms. So in our approximation, we treat them as follows: 

)log()log()log()log()log()log( 12112 )...1log( qqqqqq eee n −−− ≈+++       (3.4) 

This is the correction factor applied to our system. It involves determining two 

maximum (or, minimum) values instead of one. The advantage of using this 

correction factor is that the control surface becomes better in terms of RMS (root-

mean-square) difference with respect to the typical fuzzy controller (discussed in 

the next chapter). However, step response curves for log-domain controllers with 

and without a correction factor show no significant difference. The drawback of 

the correction factor is the added computational complexity. Four 

addition/subtraction operations and two lookup tables are required to implement 

it. 
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3.3 Design of the Controller 

 

Figure 3.1: Block diagram of the log-domain controller 

Figure 3.1 shows the block diagram of the log-domain controller. The inputs are 

first passed to the fuzzifier module. It consists of a lookup table (LUT) with m+1 

number of columns, where m is the number of membership functions. The first 

column of each row contains the possible values of the inputs within the input 

universe and the other columns have the logarithmic membership values. As all 

the log values are negative, we store the values without the signs. We note that 

storing logarithmic values in the fuzzifier LUT does not require any extra 

hardware compared to a conventional fuzzy LUT. 

The inference engine module usually determines the minimum value among the 

antecedents for each rule. Since the negative antecedent values are stored as 

positive, we use maximum function instead of minimum, and the outputs (Ai) are 

passed to the subtractor block, SUB1, inside defuzzifier. The other input for 

SUB1, log of all consequent outputs (Si), comes from the rulebase. This subtractor 

block and the minimum function inside COMP2 are used because of the positive 

Ai values. The subtracted outputs Di go to COMP1 block which calculates the first 

two maximum values, D1 and D2, respectively. The second maximum value is 

selected to be used later in the CORRECTION block. Similarly, at the same time, 

two minimum values, A1 and A2, are chosen from Ai.  
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Figure 3.2: Block diagram of CORRECTION 

Inside the CORRECTION block (see Figure 3.2), a subtractor block, SUB2, 

computes the difference between D2 and D1, and passes to EXP_LUT1 to get the 

corresponding exponential value, exp_diff1. An adder block, ADD1, computes 

term1 as D1 plus exp_diff1. Similarly, a parallel subtractor block, SUB2, is used 

for A1 and A2, and the output is sent to EXP_LUT2 to determine exp_diff2. Then 

A1 is subtracted from exp_diff2 to obtain term2. This subtraction effectively 

functions as an addition with the exception that A1 is changed back to its original 

negative value. The final subtractor block, SUB5, calculates the difference, LO, 

between term1 and term2, and passes it back to defuzzifier module for 

exponential calculation, which results in the final crisp output.  

It is worth mentioning that if the approximate correction factor is ignored, the 

CORRECTION block only contains an adder block which sums D1 with A1. This 

is a significant simplification with a negligible performance penalty. 

3.4 Simulation Design 
In this subsection, we discuss how the log-domain controllers (with and without 

the correction factor) along with a typical fuzzy controller are implemented on 

MATLAB Simulink. 

3.4.1 Typical Fuzzy Controller 
The MATLAB Simulink block diagram for the typical fuzzy control system is 

shown in Figure 3.3. The plant transfer function is taken from experiment 1, 

described in the next chapter. 
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Figure 3.3: Simulink diagram for typical fuzzy controller 

A step signal is passed to the Subtractor block at a specific sampling rate. The 

output from the plant is used as the negative input for Subtractor. For the first 

sample, the second input is considered to be zero. The subtracted value acts as the 

error input to the fuzzy controller while the derivative of error is the second input. 

The fuzzifier first converts the numerical inputs to fuzzy sets based on the 

corresponding membership functions. Note that for each input, there are at most 

two fuzzy sets which have non-zero contributions. This is because of the fact that 

the overlapping factor of membership functions is 2. Therefore there can be four 

“active” rules at a time. The inference engine calculates the firing strength of each 

rule by using the minimum function as AND connective of the antecedents. The 

defuzzifier multiplies the firing strengths with corresponding consequent outputs 

and then adds them together to complete the numerator of the COG equation. The 

denominator is calculated by summing the firing strengths, and finally the 

numerator value is divided by the denominator to get the crisp value. Note that 

multiplication and division operations in the defuzzifier result in a slow 

implementation, which is overcome by our log-domain controller. 

3.4.2 Log-Domain Controller with Correction Factor 
The Simulink block diagram for log-domain controller is shown in Figure 3.4. 

 

Figure 3.4: Simulink diagram of log-domain controller 
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As with the typical fuzzy controller, the fuzzifier receives the error and rate of 

error values as inputs. The fuzzifier then sends a set of logarithmic fuzzified 

values (log values of the membership degrees for each fuzzy set) for each input to 

the inference engine. Note that since all of the log values are 0 or negative, the 

sign is truncated and only absolute values are stored to simplify further 

calculation. The inference engine uses maximum function for the antecedents of 

each rule, because of the stored fuzzified values without signs. The rule base 

contains the log values of singleton consequents as well. The negative consequent 

values are treated as positive for logarithmic calculations. However, a separate 

array keeps track of all the signs of the consequents. This array is used later to 

adjust the sign of the final output. 

The defuzzifier module first subtracts the log value of the firing strength of each 

rule from the log of corresponding consequent output. The subtracted result for all 

the rules are then passed to the comparator block which determines the largest two 

values (D1 and D2). At the same time, another comparator block computes the 

lowest two values (A1 and A2) from the log values of firing strengths. Inside the 

comparator block, a subtractor block calculates the difference between D2 and D1, 

and the exponential value of the result is obtained. The exponential value is added 

to D1 to calculate term1. Similarly A1 minus A2 is performed and the exponential 

value is sent to a subtractor block. The other input of this block is A1, and the 

result is term2. A subtraction block subtracts term2 from term1, and sends the 

result back to the defuzzifier where the final result is set to its exponential value. 

3.4.3 Log-Domain Controller without Correction Factor 
The architecture of the controller without correction factor is the same as the one 

with the correction factor, with the exception of the correction block in the 

defuzzifier. The correction block is significantly simplified, because it only 

contains an adder block to calculate D1 plus A1. So instead of two, only one value 

(largest or smallest) is calculated in the comparators. 
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CHAPTER 4 

EXPERIMENTAL RESULTS IN 

SIMULATION 

Four controllers – typical fuzzy controller, PD controller, log-domain controller 

without a correction factor and with a correction factor, – are used in MATLAB 

simulation for our experiments. 

4.1 Experiment 1 
We compare and analyze the performance of the log-domain controllers (with and 

without correction factor) with a typical fuzzy and a PD controller. The 

benchmark controllers and the plant are taken from [78]. The transfer function of 

the second-order plant (representing a DC servomotor) used in our experiments 

is
ss +202.0

1  . The output of the linear PD controller (shown in Figure 4.1) is 

calculated as
dt
dekeku dp += , where e is the error and

dt
de  is the rate of change of 

error. 

 

Figure 4.1: PD controller 

The error and rate values are multiplied by a proportional ( pk ) and a derivative 

( dk ) gain, respectively. Both the values are added together to send to the plant 

whose output is fed back to the Subtractor. 
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We measure the performance of our controllers with the help of step response 

curves and control surface plots. Rise time, settling time and overshoot – three 

parameters of the step response – are compared for different controllers. Next, we 

use the Root-Mean-Square (RMS) difference among the control surfaces to 

analyze the control laws.  

4.1.1 Controllers 
The rule base for the fuzzy controllers is shown in Table 4.1.  

Table 4.1: Rule base for the fuzzy controllers. Note that NB = Negative Big, NM 

= Negative Medium, ZR = Zero, PM = Positive Medium, and PB = Positive Big. 

Input2/Input1 NB NM ZR PM PB 

PB ZR PS PM PB PB 

PM NS ZR PS PM PB 

ZR NM NS ZR PS PM 

NM NB NM NS ZR PS 

NB NB NB NM NS ZR 

 

Input and output membership functions are shown in Figure 4.2. 

 

                        (a)                                                                    (b) 

    Figure 4.2: (a) Input and (b) output membership functions 
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The parameters (taken from [78]) for the fuzzy controllers are: Winput1 = 1, Winput2 

= 50, L = 50, m1 = 2, m2 = 3, while those for the linear PD controller are: P = 50, 

kd = 1. 

4.1.2 Results 
A comparison of the step response of the different controllers is presented in 

Figure 4.3. Table 4.2 illustrates the rise time, settling time, and overshoot for 

different controllers. Rise time is defined as the time the plant outputs take to get 

to 90% of the step size from a value of 10%. Settling time is the time for outputs 

to settle down within 2.5% of the steady state from control start. We express 

overshoot (output exceeds the steady state value) as a percentage relative to the 

final value of the plant output. 

 

Figure 4.3 (a) 
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Figure 4.3 (b) 

 

Figure 4.3 (c) 
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Figure 4.3 (d) 

Figure 4.3: Step responses of different controllers – (a) linear PD, (b) typical 

fuzzy, (c) log-domain without a correction factor and (d) log-domain with a 

correction factor 

Table 4.2: Rise time, settling time, and overshoot for different controllers with a 

sampling period of 0.01 s 

Controllers Rise 

Time  

Settling 

Time  

Overshoot  

(%) 

PD 0.0688 0.1219 0 

Typical fuzzy  0.0719 0.1298 0 

Log-domain  

(uncorrected)  

0.0567 0.1 0.0009 

Log-domain 

(corrected)  

0.0548 0.0997 0.0025 
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Figure 4.4 shows the control surface outputs generated for a linear PD controller, 

a typical fuzzy-logic controller, and log-domain controllers (with and without a 

correction factor). Table 4.3 reports the RMS difference between control surfaces 

of the controllers.  

Table 4.3: RMS difference between control surfaces 

Controllers PD Log-domain 

(uncorrected) 

Log-domain (corrected) 

Typical 31.8991 11.7040 5.2965 

PD  32.2829 32.6604 

Log-domain 

(uncorrected) 

  16.5292 

  

 

 

Figure 4.4 (a)  
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Figure 4.4 (b) 

 

Figure 4.4 (c) 
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Figure 4.4 (d) 

Figure 4.4: control surfaces of different controllers - (a) linear PD, (b) typical 

fuzzy, (c) log-domain without a correction factor and (d) log-domain with a 

correction factor 

4.1.3 Analysis 
As can be seen from the surfaces of Figures 4.4(a) and 4.4(b), the typical fuzzy-

logic controller developed in [78] is an approximation of the linear PD controller. 

For output values ranging from -150 to +150, the typical fuzzy controller is able 

to provide essentially the same results as the PD controller.  

The proposed log-domain controller without correction factor makes use of only 

the maximum value to approximate the summation of a set of logarithmic values. 

While this approach relieves us from using computationally expensive 

multiplication and division operations, the RMS difference value between the 

typical and log-domain controller is higher (see also Figure 4.4(c)). 

However, with a small correction factor involving the second highest value in a 

sequence, the approximate output becomes much more similar to that of typical 

fuzzy-logic controller. The corresponding RMS difference confirms the 

effectiveness of this approach through a greater than 50% reduction in value of 
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the difference. The impact of having a correction factor is also clear from the 

RMS difference value between the log-domain controllers. But when it comes to 

approximating the outputs with those of a PD controller, the correction factor does 

not seem to offer any advantage.  

There is not much obvious difference among the step responses of the different 

controllers, as shown in Figure 4.3. Table 4.2, however, presents some very 

interesting insights. For each log-domain controller, the rise time is lower than 

both the linear PD and typical fuzzy controllers. Log-domain controllers also have 

lower settling times, although a small amount of overshoot is introduced. 

4.2 Experiment 2 
We have used three more second-order plants to verify and analyze the 

performance of our proposed controller. The plant transfer functions have the 

general form of 400/(s2+ σs), where σ is given three different values: 20, 48.5 and 

360, respectively [77].  

4.2.1 Controllers 
The membership functions and rule base for the typical controller in [77] are 

shown in Figure 4.5 and Table 4.4, respectively. The value of (bi+1 - bi) is equal to 

1/18 for the first input (error), while (bi+1 - bi) is 4000/18 for the second input 

(rate) with b0 = 0. The centers of the output membership functions are defined as 

[p-3 p-2 p-1 p0 p1 p2 p3] = [-2500 -1000/3 -50/2 0 50/2 1000/3 2500].  

 

Figure 4.5 (a) 
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Figure 4.5 (b) 

Figure 4.5: (a) Input and (b) output membership functions 

   Table 4.4: Rule base for the fuzzy controller [77] 

Input2/Input1 NB NM NS ZR PS PM PB 

PB NB NB NB NB NM NS ZR 

PM NB NB NB NM NS ZR PS 

PS NB NB NM NS ZR PS PM 

ZR NB NM NS ZR PS PM PB 

NS NM NS ZR PS PM PB PB 

NM NS ZR PS PM PB PB PB 

NB ZR PS PM PB PB PB PB 

 

Note that NB = Negative Big, NM = Negative Medium, NS = Negative Small, ZR 

= Zero, PS = Positive Small, PM = Positive Medium, and PB = Positive Big. 

4.2.2 Results 
Figures 4.6, 4.7 and 4.8 compare the step response of our log-domain controllers 

(both with and without correction factor) with a typical fuzzy controller for the 

plants mentioned above. Tables 4.5 to 4.7 present a comparison of rise time, 

settling time, and overshoot for different controllers and different plants. 
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Figure 4.6: Step response of typical fuzzy controller 

 

Figure 4.7: Step response of log-domain controller without correction factor 



58 
 

 

     Figure 4.8: Step response of log-domain controller with correction factor 

     Table 4.5: Rise time, settling time and overshoot for the plant 400/(s2+20s) 

Controllers Rise Time 

(sec) 

Settling 

Time (sec) 

Overshoot 

(%) 

Typical 

Fuzzy 

0.0024 0.0145 11.7373 

Log-domain 

(uncorrected) 

0.0022 0.0126 10.8925 

Log-domain 

(corrected) 

0.0024 0.0145 11.5596 
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    Table 4.6: Rise time, settling time and overshoot for the plant 400/(s2+48.5s) 

Controllers Rise 

Time 

(sec) 

Settling 

Time 

(sec) 

Overshoot 

(%) 

Typical Fuzzy 0.0024 0.0145 11.5669 

Log-domain 

(uncorrected) 

0.0022 0.0132 9.6103 

Log-domain 

(corrected) 

0.0024 0.0148 11.4486 

 

     Table 4.7: Rise time, settling time and overshoot for the plant 400/(s2+360s) 

Controllers Rise Time 

(sec) 

Settling 

Time (sec) 

Overshoot 

(%) 

Typical 

Fuzzy 

0.0030 0.0122 10.1534 

Log-domain 

(uncorrected) 

0.0027 0.0099 8.7054 

Log-domain 

(corrected) 

0.0030 0.0123 9.4037 

 

Control surface outputs generated for a typical fuzzy controller, and log-domain 

controllers are shown in Figures 4.9, 4.10 and 4.11. Table 4.8 illustrates root-

mean-square (RMS) difference between control surfaces. 
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Figure 4.9: Control surface for typical fuzzy controller 

 

Figure 4.10: Control surface for log-domain controller without correction factor 
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Figure 4.11: Control surface for log-domain controller with correction factor 

Table 4.8: RMS difference between control surfaces 

 Log-domain 

(uncorrected) 

Log-

domain 

(corrected) 

Typical 355.0986 120.1319 

Log-domain 

(uncorrected) 

 332.6803 

 

4.2.3 Analysis 
The step responses confirm the effectiveness of our proposed log-domain 

controllers. The plots from Figures 4.6, 4.7 and 4.8 are qualitatively similar, 

demonstrating that log-domain controllers perform as good as a typical fuzzy 

controller.  
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Tables 4.5, 4.6 and 4.7 present some interesting insights. The log-domain 

controller without correction factor performs better than both the typical fuzzy 

controller and its peer with correction factor for all cases of rise time, settling time 

and overshoot. The log-domain controller with correction factor has the same rise 

time and better overshoot compared to the typical controller for all the three 

plants, although the settling time is slightly higher for a couple of plants. This is a 

very promising result considering the fact that our log-domain controllers are 

much faster in processing than the typical fuzzy controller. 

The control surface plots are also quite similar in shape for the log-domain and 

typical fuzzy controllers. Obviously, the surface of log-domain controller with 

correction factor resembles more with typical fuzzy controller, because of the 

approximate correction factor. Without this factor, the output is crudely 

approximated based on only the maximum value in a sequence. That is why there 

are some extra staircase outputs in the surface of log-domain controller without 

the factor. The RMS difference table also confirms this fact. Roughly a 67% 

reduction in output difference between the log-domain and typical fuzzy 

controller is obtained because of the correction factor. The impact of having a 

correction factor is also clear from the difference between the log-domain 

controllers. 
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CHAPTER 5 

HARDWARE IMPLEMENTATION 

5.1 Design Considerations 

 

Figure 5.1: Block Diagram of Lyrtech SignalMaster board which consists of a 

DSP, a Virtex-II FPGA and multiple input/output expansions [49] 

We have implemented the log-domain controller without the correction factor on 

a Xilinx Virtex – II FPGA (Figure 5.1) [45]. The plant and the rulebase are taken 

from [78]. The transfer function of the second-order plant is 
ss +202.0

1 . By using 

the substitution
Tz

zs 1−
= , with T being the sampling period, as in the backward 

rule approach, the continuous transfer function is converted to the discrete transfer 

function of the form: 
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21

2

02.0)04.0()02.0( −− ++−+ zzTT
T                                                                   (5.1) 

Since T = 0.01 sec, (5.1) becomes 

21 667.0667.11
0033.0

−− +− zz
                                        (5.2) 

This corresponds to the standard form of second order digital filter: 

    2
2

1
1

2
2

1
10

1 −−

−−

++
++

zbzb
zazaa                   (5.3) 

Where a0 = 0.0033, a1 = a2 = 0, b1 = -1.667, and b2 = 0.667. 

This type of digital filter is implemented in the following form [76]: 

)2()1()2()1()()( 21210 −−−−−+−+= kybkybkxakxakxaky         (5.4) 

Where k = current sample in time, x(k) = input to the plant at kth sample, and y(k) 

= output from the plant at kth sample.  

Figure 5.2 shows how (5.4) is implemented on FPGA [76]. 

                              

           Figure 5.2: Second order digital filter implementation on FPGA 

The fuzzifier module of the log-domain controller accepts two input values, 

namely – error and rate of error, both being 10-bit wide. The error value has 2 bits 

to represent the integer part and 8 bits for fractional part. The reason for using this 

            

-b1 

a2 

a1 

y(k) x(k) 

 + 

 Z-1 

 Z-1 

 Z-1 

 Z-1 

-b2 
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bit width is that simulation results have shown the possible error values ranging 

from 0.0 to 2.0. The rate values, however, can be anything between -39.0 and 0.0. 

Therefore, 10 bits for rate input actually represent 6 bits for integer and 4 bits for 

fractional part. As the rate values are negative, we are only considering the 

absolute quantities without the sign. The lower number of bits for fractional part 

does not have any visible impact because of the rate values being sparse. This bit 

width also determines the size of the lookup tables (LUTs) being used in the 

fuzzifier module. The error and rate LUTs have 1024 rows (all combinations of 

10 bits) and five columns representing the logarithm of membership function 

values for NB, NM, ZR, PM and PB. The log values stored in the LUTs are all 

negative; therefore the sign is ignored. Each value is 16-bit wide with 4 bits for 

integer part and 12 bits for fractional part. 4 bits can represent as high as 15 which 

is enough for this context, since the maximum log value can be 9.0. Another LUT 

contains 4096 rows each having a possible exponential value for an output value. 

Since the logarithm of the output can take any value within the range -11.0 to 

+5.0, we are using 1 sign bit, 3 bits for integer part and 8 bits for fractional part. 

The use of 3 integer bits can only represent a negative number as low as -7; but it 

is justified by the fact that any lower number results in the exponential value 

being essentially zero. The output from the defuzzifier is represented by 20 bits, 

where 1 bit is used as sign, 7 bits for integer part and 12 bits for fractional part. 

Since the fuzzy controller output can go as high as 100.0, we have to use at least 7 

bits to represent the value. Note that for a generalized hardware log-domain 

controller, the bit widths may be different making the rows and columns in the 

LUTs bigger or smaller. The performance, however, should be the same except 

for a different amount of resource utilization. 

The step signal is implemented on the same FPGA as the plant model and the 

fuzzy inference engine as a square wave to enable the plant outputs to be shown 

on the oscilloscope. On the positive cycle, the step value goes to 2 from 0; 

therefore, the first error value becomes 2.0 while the first rate value is zero. These 

values are sent to the log-domain controller which produces a defuzzified output 

to be passed to the plant. The plant output is compared to 2.0 and the difference 
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becomes the next error value. The next rate value is calculated based on the 

current and the previous error values. Eventually both the error and rate values 

become zero. 

5.2 Log-domain Controller 
The block diagram of our log-domain controller with the plant implemented on 

FPGA is shown in Figure 5.3. Note that, unlike the plant (expressed in transfer 

function) in the simulation; here the plant is implemented as a second-order 

digital filter as described in Section 5.1. 

 

 

Figure 5.3: Block diagram of log-domain controller with plant as implemented on 

Xilinx Virtex-II FPGA 

The fuzzifier module passes the corresponding row from both of the error and rate 

LUTs to the inference engine. The inference engine calculates the maximum value 

(log of firing strength for a rule) for each of the 25 possible pairs. Although the 

conventional task of inference engine is to calculate the minimum values, we are 

using maximum instead, since all the negative log values are stored as positive. 

The six maximum values are passed to the defuzzifier module.  

The defuzzifier module subtracts the log of firing strength values (log_fs) from 

the log of consequent values (log_c), and stores the results in an array named 

log_d. The maximum value among log_d (log_dmax) is calculated, while the 

minimum for log_fs is also determined. These two values are added together and 
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the summation result (log_output) is used to find the corresponding exponential 

value from a LUT. This exponential value is assigned to the output, when the 

particular value of log_c (that contributes to the calculation of the value log_dmax) 

comes from a positive consequent value. Otherwise the exponential value is made 

negative before assigning it to the final output.  

The output from the log-domain controller goes to the plant. It also accepts the 

plant output and an adding factor from the previous sample. The previous adding 

factor is used to calculate the current plant output, whereas the previous plant 

output contributes to generate the new adding factor. The fuzzy controller output 

(x(k)) gets multiplied by a0 (0.0033) and added to Adding_factor(k-1) to generate 

the new plant output (y(k)). Adding_factor(k) is calculated as 

Adding_factor(k) = –b1*y(k) –b2*y(k-1) 

The plant output (y(k)) is passed to Next Input Calculator which generates the 

next error and rate values. Error(k+1) is calculated as step minus plant output at 

kth sample, whereas Rate(k+1) is calculated in two steps. First, new error value is 

subtracted from the previous error value, and then the result is multiplied by 1/T 

(100.0). It is worth mentioning that all the multiplication operations are basically 

a group of additions because one of the operands is always a constant value.  

Figure 5.4 illustrates the operations that take place in the control system. 
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Figure 5.4: Operations inside the control system 

5.2.1 Results 
Figure 5.5 displays the plant outputs on an oscilloscope for the log-domain 

controller. Here the positive cycle refers to the plant outputs for a step signal. The 

negative cycle simply mirrors the plant outputs along the horizontal axis. Note 

that in Figure 5.5, one waveform represents the reference (Figure 2.1) and the 

other waveform represents the step response, i.e. the outputs of the plant.  
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Figure 5.5: Plant outputs for log-domain controller implemented on FPGA and 

displayed on an oscilloscope for both positive and negative cycles 

Rise Time 

In our implementation, rise time means the time for the plant output to reach a 

value of 1.8 from 0.2. Since it takes 8 samples to get to 1.8 and each sample takes 

14.8 ns, so rise time is (8*14.8)ns = 118.4 ns. In the simulation results, rise time 

was 0.0567 sec with a sampling period of 0.01 sec. This means, about 6 samples 

were needed in simulation. 

Settling Time 

Settling time is the time when the plant output reaches a value of at least 1.95 and 

never goes lower. As 11 samples are required to settle down for the plant outputs 

in our implementation, settling time is (11*14.8)ns = 162.8 ns. Settling time was 

shown to be 0.1 sec in the simulation results, which correspond to 10 samples. 

Overshoot 

Overshoot occurs when the plant output goes beyond the steady-state value, 

which, for our log-domain controller, does not happen. So overshoot is zero. For 

the simulation experiments, overshoot was 0.0009%. 
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Speed 

From the synthesis report, the maximum clock frequency of our log-domain 

controller is 67.6 MHz; since our controller processes one plant output per clock 

cycles, this implies a processing speed of 67.6 MFLIPS. This is an improvement 

over the reported fastest fuzzy controller implementation [80] on 1.0 µm CMOS 

technology having a speed of 50 MFLIPS. It demonstrates the effectiveness of our 

approach in using the log-domain arithmetic. 

Resource Utilization 

Table 5.1 shows the resource utilization for our controller on FPGA – one with 

the plant model and the other one without the plant. It can be seen from the table 

that the log-domain controller uses a very small percentage of the overall 

available resources. 

Table 5.1: FPGA resource utilization for log-domain controller 

Resources Log--domain controller 
with plant 

Log--domain 
controller without 

plant 

ROMS 3 3 

Adders/Subtractors 1 1 

Counters 2 2 

Registers 84 84 

Comparators 9 9 

Priority Encoders 6 6 

XORs 1363 243 

Slices 118 out of 46592 65 out of 46592 

Slice Flip-flops 62 out of 93184 53 out of 93184 

Bonded IOBs 201 out of 824 201 out of 824 



71 
 

5.3 Pipelined Log-domain Controller 
We have already shown a clear speedup for our controller compared to the 50 

MFLIPS implementation [80]. One drawback of this type of feedback system is 

that the inputs at any sample depend on the output from previous sample. So the 

system cannot accept inputs at every clock cycle; rather it waits several clock 

cycles so that the plant output for a particular input set gets calculated. This 

results in a substantial waste of resources for systems where there is no 

dependency among the inputs. We believe our proposed controller is more 

suitable for networking applications (e.g. per-packet inspection) where inputs 

would be independent of one another and the output ports cannot be idle for the 

entire processing time. That is why we have designed a pipelined version of our 

controller which generates a plant output at every clock cycle.  

As four clock cycles are required to generate a plant output after the error and rate 

inputs are applied, we use pre-calculated error and rate inputs for the first four 

cycles so that plant outputs start to be generated from fifth cycle onward.  When a 

new pair of error and rate inputs (Error(k) and Rate(k)) is applied to the fuzzifier, 

the membership values stored in the LUTs are calculated instantaneously and 

passed to the inference engine without any delay. At the same time, the error 

value and plant output at the current cycle is passed to Next Input Calculator 

module to calculate the next error and rate values. The inference engine 

implements the maximum function for each combination of membership values, 

and the result is passed to the defuzzifier at the start of next clock cycle (pipeline 

stage 1). 

The defuzzifier first calculates log_d values and then finds the maximum among 

them. At the same time, the minimum value among the log of firing strength 

values is determined. Both these values are sent for addition at the next cycle 

(pipeline stage 2). The summation result is used for an exponential value from a 

LUT and sign is adjusted before it gets to the plant at the next cycle (pipeline 

stage 3). Fuzzy controller output (x(k)) is multiplied by a0 and the result is added 

to Adding_factor(k-1) to calculate the plant output (y(k)) at the next cycle 
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(pipeline stage 4). The plant output is multiplied by (-b1), while previous plant 

output is multiplied by b2. They are passed to a subtractor block to calculate the 

adding factor at the following clock cycle. Although Adding_factor(k) is 

generated one cycle later than the plant output; it does not make any difference in 

the overall system performance, because it is used only after the next plant output 

is calculated, which takes place 3 cycles later. 

So at the start of 5th cycle we have a plant output for the inputs applied in the 1st 

cycle. The new pair of input values produced in the first cycle is sent to the 2nd 

cycle to generate a plant output at the 6th cycle. This continues and eventually the 

plant outputs become stable.  

Figure 5.6 shows the block diagram of the pipelined version of the log-domain 

controller. REG blocks refer to the registers being used to accomplish the 

pipelining stages. 

        

Figure 5.6: Pipeline stages of log-domain controller 
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5.3.1 Results 
Figure 5.7 shows the oscilloscope plot for pipelined version of the controller. 

 

Figure 5.7: Plant outputs for pipelined log-domain controller implemented on 

FPGA and displayed on an oscilloscope for both positive and negative cycles 

Rise Time 

Since it takes 27 cycles for plant outputs to reach to 1.8, rise time is (27*4.02) ns 

= 108.5 ns. 

Settling Time 

46 cycles are required to reach within 2.5% of the step signal, so settling time is 

(46*4.02) ns = 184.9 ns. 

Overshoot 

Overshoot is zero, because plant output never exceeds the step signal. 

Speed 

The pipelining results in a processing speed of 248.7 MFLIPS, a significant 

improvement in fuzzy controller implementation in hardware.  
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Resource Utilization 

Table 5.2 illustrates the resource utilization on FPGA for our pipelined log-

domain controller – one with the plant model and another without the plant. 

Similar to its non-pipelined version, the pipelined controller still uses a limited 

number of resources; although resource consumption is slightly higher in several 

cases. Less registers and XORs are used when we do not consider the plant on 

FPGA. 

Table 5.2: FPGA resource utilization for pipelined log-domain controller 

Resources Pipelined log-domain 
controller with plant 

Pipelined log-domain 
controller without 

plant 
ROMS 4 4 

Adders/Subtractors 1 1 

Counters 2 2 

Registers 642 572 

Comparators 9 9 

Priority Encoders 6 6 

XORs 1363 243 

Slices 196 out of 46592 196 out of 46592 

Slice Flip-flops 257 out of 93184 257 out of 93184 

Bonded IOBs 201 out of 824 201 out of 824 

5.4 Comparative Analysis 
Comparisons of rise time, settling time, overshoot and speed between non-

pipelined and pipelined version of log-domain controller are shown in Table 5.3. 
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Table 5.3: Comparisons of rise time, settling time, overshoot and speed between 

non-pipelined and pipelined version of log-domain controller 

 Log-domain controller 
(without pipelines) 

Log-domain controller 
(with pipelines) 

Rise Time (ns) 118.4 108.5 

Settling Time (ns) 162.8 184.9 

Overshoot (%) 0 0 

Speed (MFLIPS) 67.6 248.7 

 

As can be seen from Table 5.3, and Figures 5.5 and 5.7, the pipelined version has 

lower rise time, but higher settling time. The longer settling time results from the 

initial oscillation in the plot for pipelined controller. The oscillation is due to the 

dependency of the plant outputs, which is natural for feedback systems. However, 

for real-life networking applications, where each input set will be independent of 

one another, our log-domain controller is capable of achieving very fast 

processing speed as demonstrated by the speed comparisons between two versions 

of the controller.        

In terms of the resource utilization, non-pipelined version uses fewer number of 

ROMs, registers, slices and slice flip-flops, because of the fact that pipelining has 

some processing overhead. This is compensated by a speedup of almost 4 times 

due to pipelining. 
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CHAPTER 6 

FUTURE RESEARCH 

The log-domain fuzzy controller confirms the effectiveness of the proposed 

approach for a number of second-order plants in the simulation of step responses 

and control surfaces. The hardware versions achieve a significant speedup 

compared to the existing fuzzy controllers. Our future research will focus on 

implementing this log-domain technique for more higher-order plants to gain 

further insights into this method. One other goal will be to develop a 

computationally simpler correction factor to compensate for the performance 

penalty. Finally, although we have limited our study to FPGA-based 

implementations, we feel that a valid direction of future research would 

investigate the performance of fuzzy inference engines on current state-of-the-art 

microprocessors, including the application of our log-domain techniques. 
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CHAPTER 7 

CONCLUSION 

In this thesis, a logarithmic arithmetic based fuzzy logic controller is described, 

which results in a very high-speed hardware implementation. This approach gets 

rid of computationally expensive multiplication and division operations that have 

been the bottlenecks for fuzzy control systems. As the simulation results illustrate, 

log-domain implementations – with and without the approximate correction factor 

– perform better than the typical fuzzy and linear PD controllers in terms of rise 

time and settling time of the step response curves. Although there has been a 

small approximation error in the control surfaces, this does not have much impact 

on the system performance as depicted by the step response. The hardware 

implementation on FPGA without the correction factor also achieves similar 

response to the step signal. The processing speed of the hardware version is 67.6 

MFLIPS which exceeds the fastest fuzzy controller implementation in literature 

that we are aware of by 33%. Note, however, that the implementation [80] was 

performed in 1.0 µm CMOS VLSI technology in 1995 with four 7-bit inputs, one 

7-bit output, 7 membership functions for each variable, and up to 127 rules. If we 

had implemented this controller on the same Xilinx Virtex-II FPGA that we have 

used for our log-domain controller, it would have resulted in a different speed. 

Nevertheless in this thesis, we have been able to develop a very fast fuzzy 

controller using logarithmic arithmetic, which is a totally new approach to design 

fuzzy logic control systems. The experiments have shown the ability of the 

controllers to produce outputs that are close to the expected ones. A further 

speedup to 248.7 MFLIPS is also achieved by a pipelined version of the log-

domain controller. We believe that this is a very promising result making the log-

domain controllers potentially suitable for high-speed and large networks.  
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