

University of Alberta

Design and FPGA Implementation of a Log-Domain High-Speed Fuzzy
Control System

by

Md Ali Razib

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science
in

Software Engineering and Intelligent Systems

Electrical and Computer Engineering

©Md Ali Razib
Spring 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Scott Dick, Electrical and Computer Engineering

Vincent Gaudet, Electrical and Computer Engineering

Marek Reformat, Electrical and Computer Engineering

Nelson Amaral, Computing Science

i

Abstract

The speed of fuzzy controllers implemented on dedicated hardware is adequate

for control of any physical process, but too slow for today’s high-complexity data

networks. Defuzzification has been the bottleneck for fast implementations due to

the large number of computationally expensive multiplication and division

operations. In this thesis, we propose a high-speed fuzzy inferential system based

on log-domain arithmetic, which only requires addition and subtraction

operations. The system is implemented on a Xilinx Virtex-II FPGA with a

processing speed of 67.6 MFLIPS having a maximum combinational path delay

of 4.2 ns. It is a clear speedup compared to the reported fastest 50 MFLIPS

implementation. A pipelined version of the controller is also implemented, which

achieves a speed of 248.7 MFLIPS. Although a small approximation error is

introduced, software simulation and hardware implementation on FPGA confirm

high similarity of the outputs for control surfaces and a number of second-order

plants.

ii

Acknowledgments

I express my sincere gratitude to Russell Dodd, Eric Son and Ji Sun for their

valuable suggestions during the implementation of log-domain controller on

FPGA.

iii

Dedication

In loving memory of my father

Md Farman Ali

(1944 - 2007)

iv

TABLE OF CONTENTS

Abstract …………………………………………………………………………... i

Acknowledgments ………………………………………………………………. ii

Dedication ………………………………………………………………………. iii

Table of Contents ……………………………………………………………….. iv

List of Tables ………………………………………………………………….. viii

List of Figures …………………………………………………………………... ix

List of Symbols/ Acronyms ……………………………………………………. xii

CHAPTER 1: INTRODUCTION ……………………………………………….. 1

CHAPTER 2: BACKGROUND LITERATURE ……………………………….. 4

2.1 Overview of Control Systems ……………………………………………….. 4

2.1.1 Basic Feedback Control ……………………………………………. 5

2.1.2 Modes of Control …………………………………………..……… 6

2.1.3 Laplace Transformation …………………………………………… 9

2.1.4 Transfer Functions ………………………………..……………… 12

2.1.5 Step Responses of Continuous-Time Linear Systems …………… 13

v

2.1.6 Digital Control Systems …………………………………………... 16

2.1.7 Z-Transform ……………………………………………………… 18

2.1.8 Discrete Transfer Functions ……………………………………… 18

2.1.9 Continuous-to-Discrete Transfer Function Transformation ……... 19

2.1.10 Stability …………………………………………………………. 20

2.2 Fuzzy Logic and Fuzzy Control ……………………………………………. 21

2.2.1 Basic Concepts of Fuzzy Logic …………………….……….…… 22

2.2.2 Membership Functions …………………………………………… 23

2.2.3 Fuzzy Set Operations …………………………………………….. 24

2.2.4 Fuzzy Logic ………………………………………………………. 27

2.2.5 Fuzzy Controller ……………………………………………….… 29

2.2.6 Components of Fuzzy Controller ………………………………… 30

2.3 Hardware Implementations of Fuzzy Controllers ………………………….. 33

2.3.1 Analog Implementations ………………………………................. 33

2.3.2 Digital Implementations ……………………………….…………. 36

2.3.3 Fast Defuzzification ……………………………………………… 39

vi

CHAPTER 3: PROPOSED LOG-DOMAIN CONTROLLER ….….….……… 41

3.1 Logarithmic Arithmetic ……………………………………………….……. 41

3.2 Approximate Correction Factor …………………………………….……… 42

3.3 Design of the Controller ………….…………….……………………………43

3.4 Simulation Design ………………………………….………….…………… 44

3.4.1 Typical Fuzzy Controller ………………………………………… 44

3.4.2 Log-Domain Controller with Correction Factor …………………. 45

3.4.3 Log-Domain Controller without Correction Factor ……………… 46

CHAPTER 4: EXPERIMENTAL RESULTS IN SIMULATION …………….. 47

4.1 Experiment 1 ……………………………………….………….…………… 47

4.1.1 Controllers ……………………………….……….……….……… 48

4.1.2 Results ……………………………………………….…………… 49

4.1.3 Analysis ……………….…….……….…………………………… 54

4.2 Experiment 2 ………………………………….……………….…………… 55

4.2.1 Controllers ………….…….………………………….…………… 55

4.2.2 Results …………………………………………….……………… 56

vii

4.2.3 Analysis …………….………….………………….……………… 61

CHAPTER 5: HARDWARE IMPLEMENTATION ….…….………….……… 63

5.1 Design Considerations ……………………………………………………... 63

5.2 Log-domain Controller ……………….…………………….……………… 66

5.2.1 Results ……………………………………………………………. 68

5.3 Pipelined Log-domain Controller ……………….………………….……… 71

5.3.1 Results ……………………………………………………………. 73

5.4 Comparative Analysis ……………………………………………………… 74

CHAPTER 6: FUTURE RESEARCH …………………………………………. 76

CHAPTER 7: CONCLUSION …………………………………………………. 77

BIBLIOGRAPHY ……………………………………………………………… 78

viii

List of Tables

Table 4.1: Rule base for the fuzzy controllers …………………………………. 48

Table 4.2: Rise time, settling time, and overshoot for different controllers with a

sampling period of 0.01 s ………………………………………………………. 51

Table 4.3: RMS difference between control surfaces ………………………….. 52

Table 4.4: Rule base for the fuzzy controller …………………………………... 56

Table 4.5: Rise time, settling time and overshoot for the plant 400/(s2+20s) ….. 58

Table 4.6: Rise time, settling time and overshoot for the plant 400/(s2+48.5s) ... 59

Table 4.7: Rise time, settling time and overshoot for the plant 400/(s2+360s) … 59

Table 4.8: RMS difference between control surfaces ………………………….. 61

Table 5.1: FPGA resource utilization for log-domain controller ………………. 70

Table 5.2: FPGA resource utilization for pipelined log-domain controller ……. 74

Table 5.3: Comparisons of rise time, settling time, overshoot and speed between

non-pipelined and pipelined version of log-domain controller ………………… 75

ix

List of Figures

Figure 2.1: Basic control system ………………………………………………… 4

Figure 2.2: Open-loop control system …………………………………………… 5

Figure 2.3: An example of feedback control system …………………….……… 6

Figure 2.4: PID controller ………………………….…………………….……… 6

Figure 2.5: Proportional controller …………………………………….………… 7

Figure 2.6: PI controller ……………………….………………………………… 8

Figure 2.7: Discrete pulse ……………………………………………………… 14

Figure 2.8: Under damped response …………………………………………… 15

Figure 2.9: Over damped response …………………….…………….………… 16

Figure 2.10: Critically damped response ……….……………………………… 16

Figure 2.11: Digital control system ………………….…………….…………… 17

Figure 2.12: Examples of stable and unstable responses …………….………… 20

Figure 2.13: Notion of fuzzy sets ……………………………….……………… 23

Figure 2.14: (a) Trapezoidal and (b) triangular membership functions ….….…. 24

Figure 2.15: Fuzzy control system ………….………….………….…………… 29

x

Figure 2.16: Fuzzy controller block diagram ……….…….……….…………… 30

Figure 3.1: Block diagram of the log-domain controller …………….………… 43

Figure 3.2: Block diagram of CORRECTION ……………………….………… 44

Figure 3.3: Simulink diagram for typical fuzzy controller ….….……………… 45

Figure 3.4: Simulink diagram of log-domain controller ………….…….……… 45

Figure 4.1: PD controller ………………………………….…………………… 47

Figure 4.2: (a) Input and (b) output membership functions ………….………… 48

Figure 4.3: Step responses of different controllers – (a) linear PD, (b) typical

fuzzy, (c) log-domain without a correction factor and (d) log-domain with a

correction factor ………………………………….……….…………….……… 49

Figure 4.4: control surfaces of different controllers - (a) linear PD, (b) typical

fuzzy, (c) log-domain without a correction factor and (d) log-domain with a

correction factor ……………….………….………………….………………… 52

Figure 4.5: (a) Input and (b) output membership functions …….……………… 55

Figure 4.6: Step response of typical fuzzy controller ……………….…….…… 57

Figure 4.7: Step response of log-domain controller without correction factor … 57

Figure 4.8: Step response of log-domain controller with correction factor ….… 58

xi

Figure 4.9: Control surface for typical fuzzy controller ………….…….……… 60

Figure 4.10: Control surface for log-domain controller without correction factor

…………….……….…………….……….…….…………….……….………… 60

Figure 4.11: Control surface for log-domain controller with correction factor ... 61

Figure 5.1: Block Diagram of Lyrtech SignalMaster board which consists of a

DSP, a Virtex-II FPGA and multiple input/output expansions

…………………………………………………….…………….……….……… 63

Figure 5.2: Second order digital filter implementation on FPGA ……………… 64

Figure 5.3: Block diagram of log-domain controller with plant as implemented on

Xilinx Virtex-II FPGA ………….………….…………………….….…………. 66

Figure 5.4: Operations inside the control system ……………….……………… 68

Figure 5.5: Plant outputs for log-domain controller implemented on FPGA and

displayed on an oscilloscope for both positive and negative cycles …………… 69

Figure 5.6: Pipeline stages of log-domain controller ………………...………… 72

Figure 5.7: Plant outputs for pipelined log-domain controller implemented on

FPGA and displayed on an oscilloscope for both positive and negative cycles 73

xii

List of Symbols/ Acronyms

DSP: Digital Signal Processing

FLIPS: Fuzzy Logic Inferences Per Second

FPGA: Field Programmable Gate Array

VLSI: Very Large Scale Integration

PI: Proportional-Integral

PD: Proportional-Derivative

PID: Proportional-Integral-Derivative

LUT: Look-Up Table

COG: Center Of Gravity

MOM: Mean Of Maxima

PWL: Piece Wise Linear

MOS: Metal-Oxide Semiconductor

CMOS: Complementary Metal Oxide Semiconductor

NLL: Normalized Locked Loop

I-V: Current to Voltage

xiii

FPAA: Field Programmable Analog Array

A/D: Analog to Digital

D/A: Digital to Analog

VLSI: Very Large Scale Integration

ROM: Read-Only Memory

RAM: Random Access Memory

ASIC: Application-Specific Integrated Circuit

FPE: Fuzzy Processing Element

FALU: Fuzzy Arithmetic Logic Unit

KAFA: KAist Fuzzy Accelerator

FRHC: Fired Rules Hyper Cube

DA: Distributed Arithmetic

DC: Direct Current

1

CHAPTER 1

INTRODUCTION

Data communication networks, and particularly the Internet, play a pivotal role in

modern society. To improve effective bandwidth, Quality of Service (QoS) and

other performance metrics, the optimization of these networks is very important.

A number of network optimization goals can be represented as control problems,

and solved by traditional control algorithms. However, one drawback of

traditional control is that it requires an exact mathematical model of a system, and

this model is often unavailable for large and complex networks. Intelligent control

systems that do not require exact models have become more commonplace. Fuzzy

logic controllers, proposed in theory by Zadeh [9], [10], and first implemented in

automatic control by Mamdani [11], [12], are a particular class of intelligent

controllers built on fuzzy expert systems, that show substantial performance

improvement in simulation over standard algorithms for these problems.

The implementation of a fuzzy controller, however, is not straightforward.

Software simulations on general-purpose microprocessors are typically slow due

to the lack of instruction-set support for fuzzy operations. This imposes a big

problem for today’s high-complexity and high-speed networks, requiring

specialized hardware. A number of researchers have pursued fuzzy hardware

development, beginning with a voltage-mode analog circuit in 1969. Although

analog implementations [51] provide lower power consumption and lower chip

size [50], they suffer from being slower, less accurate, less flexible and less

scalable compared to their digital counterparts. Thus research into digital

hardware implementations is ongoing, with reported performance of ASIC

implementations ranging from 20 to 50 million fuzzy logic inferences per second

(MFLIPS) [25]. This is a commonly used performance measure for fuzzy

2

systems1

The rest of the thesis is organized as follows. Chapter 2 starts with an overview of

control systems and then goes on to discuss the concepts behind fuzzy controllers

and their analog and digital hardware implementation. A review of published

literature on fast defuzzification is also presented. Chapter 3 discusses the design

of our log-domain controller and the justification of using a correction factor to

improve the results. Simulation results for a number of second-order plants are

detailed in Chapter 4. It also includes performance comparisons with a linear PD

and a typical fuzzy controller. Chapter 5 presents the hardware implementation

with speed and resource usage comparisons between a pipelined and a non-

. It indicates the rate at which a defuzzified output can be computed [24].

Digital fuzzy hardware implementations, however, still have a bottleneck due to

the large number of costly multiplication and division operations required in the

defuzzifier, the last module in the fuzzy controller [22].

In this thesis, we propose and implement a high-speed fuzzy controller on

hardware based on log-domain arithmetic. The basic principle of our approach is

to represent all quantities by their logarithmic values, therefore transforming

multiplication and division functions into computationally much simpler addition

and subtraction operations. The logarithmic values are stored in lookup tables to

facilitate instant conversion between a log value and its exponential value. The

summation of a number of log-domain values is approximated as the maximum

logarithmic value to simplify calculations. Although it introduces a small

approximation error, simulation and hardware implementation results illustrate the

similarity of the generated outputs with the expected outputs. Our system

outperforms the reported fastest implementation in the literature [80] by 33% in

speed. An even higher processing speed is achieved for a pipelined version, which

we postulate would enable our system to be applicable in high-speed data

networking applications.

1 MFLIPS are difficult to use to make comparisons since the reported number is highly dependent

on the number of rules in the rule base and the computational precision.

3

pipelined version of the log-domain controller. Chapter 6 provides directions for

future research, and Chapter 7 concludes the thesis.

4

CHAPTER 2

BACKGROUND LITERATURE

2.1 Overview of Control Systems
A control system is an interconnection of components forming a system

configuration to generate a desired system response. Control systems deal with

the behavior of dynamic systems – systems for which outputs change with time,

and are a factor of the inputs. In a control system, the desired output is called the

reference [1]. A control system produces an output for a given input, where the

input and output represent the desired response and the actual response

respectively. There are numerous examples of control systems being used, such as

home heating and air-conditioning systems controlled by a thermostat, the cruise

control of an automobile, an elevator-position control system used in high-rise

multi-level buildings, human heart using a pacemaker and so on [42]. The device

or process to be controlled is termed as a plant. The plant, for instance, can be a

furnace system where temperature is the output variable. Usually the plant output

is sent back for comparison with the reference to produce the next input, as shown

in Figure 2.1.

Figure 2.1: Basic control system

Error

System
output

-
+

Controller
output

Reference Controller Process to be
controlled

Measuring
device

5

2.1.1 Basic Feedback Control
Control systems are typically classified as open-loop or closed-loop systems.

Open-loop control systems do not monitor or correct the output for disturbances,

while closed-loop system keep monitoring the output and comparing it with the

input. Figure 2.2 shows a general open-loop control system.

 Figure 2.2: Open-loop control system

As seen from Figure 2.2, there is no way for the output to get fixed automatically

if it is not at an acceptable value. Any parameter having a different value than

what was anticipated causes a proportional error in the output. For instance, let us

consider a gas furnace as a control system [2]. In case of no adequate temperature

sensor, manually calibrating the valve is the only way to adjust the gas flow. This

system would only work on average days when the room temperature remains

steady. However, if external weather conditions change, the furnace would not be

able to provide the desired temperature. An open-loop controller is usually an

analytical tool used to design a real closed-loop system.

Closed-loop (feedback) control systems are similar to open-loop ones, except for

the fact that a sensor monitors the output and it is compared with the input signal.

The difference between the input and output signal is referred to as the error. An

ideal feedback system produces the desired response exactly by cancelling out all

errors. Continuing with the previous example, suppose a thermostat is there to

measure the temperature and can be set at any required value. So for normal

temperature, the system works as the open-loop system does; however, it provides

greatest benefits when there is a change in temperature. The thermostat increases

the valve opening if the temperature decreases, and vice versa. This dynamic

Controller
output Reference Controller System to be

controlled

System
output

6

compensation for changes in the output is the principle behind the feedback

control system. A closed-loop control system [38] is shown in Figure 2.3.

Figure 2.3: An example of feedback control system [38]

2.1.2 Modes of Control
Modes of control are the methods to calculate the values of the controller output

variables. The modes are: proportional (P), integral (I) and derivative (D). They

are most commonly used in some combination, although single modes are also

possible. Among the different combinations, proportional-integral-derivative

(PID) controller is very widely used in industrial control systems. Figure 2.4

shows the block diagram of a PID controller. Note that there are other types of

traditional control systems available, namely – phase-lead, phase-lag and

quadratic optimal controller, besides the commonly used PID controllers.

 Figure 2.4: PID Controller

+

+

+ Error

Controller
output

-
+

Reference Proportional
Gain, KP Plant

Integral Gain,
KI

Derivative
Gain, KD

-
+

Reference Controller Gas intake
valve

Temperature
measure

Gas fired
boiler

Hot water
radiator

Room

Plant

7

The proportional part calculates the reaction to the current error, the integral part

considers the sum of recent errors to determine the reaction, and the derivative

part focuses on the rate at which the error has been changing. The gains, KP, KI

and KD, represent the weights applied to each part respectively before summing

them up. To achieve specific design requirements the constant gains are tuned. In

some cases, only one or two modes are needed to provide the appropriate output.

This is done simply by settling the undesired gain to zero. The derivative gain is

often disabled to obtain PI controllers [3]. The individual modes are discussed

below.

2.1.2.1 Proportional Mode

When a controller is in proportional mode, the controller output is, as the name

suggests, proportional to the measured value. It does not keep track of the history

of the value measured neither does it account for the rate of change in measured

value. Tuning the purely proportional controller for the desired performance is

relatively easy; however, a steady-state error exists between the set point and

measured value in most cases. A proportional (P) controller is shown in Figure

2.5.

Figure 2.5: Proportional controller [3]

The behavior is expressed by the following equation:

U(t) = kP e(t) + b (2.1)

where U(t) is the controller output, kp is the proportional gain, e(t) is the error and

b is the output bias.

Bias, b

+

+

Error
Controller

output

-
+

Reference Gain, KP Plant

8

Bias or manual reset provides the value of the output when the error is zero.

2.1.2.2 Integral Mode

The contribution from the integral term is proportional to both the magnitude and

duration of the error. An integral (I) mode controller consists of an integrator.

Thus if the error signal (input to the integrator) is positive, the integrator output

shifts upward, and it shifts downward for negative input. The output remains

steady when measured value is equal to the set point. In comparison with the

proportional controller, an integral controller does not need manual reset to adjust

the output bias. Now the bias is automatically set by the output of the integrator.

Figure 2.6 shows a PI controller.

Figure 2.6: PI controller

The equation for PI controller is:

U(t) = kP e(t) + KI ∫e(t)dt (2.2)

where U(t) is the controller output, kp is the proportional gain, KI is the integral

gain and e(t) is the error.

The integral term (added with the proportional term) accelerates the movement of

the process towards the set point and eliminates the residual steady-state error.

However, the integral term can cause overshooting (cross over the set point and

create a deviation in the other direction).

+

+ Error

Controller
output

-
+

Reference Proportional
Gain, KP Plant

Integral Gain,
KI

9

2.1.2.3 Derivative Mode

Derivative term calculates the rate of change of error and multiplies it by the gain

KD. The derivative term reduces the speed of the rate of change of the controller

output, hence is used to reduce the magnitude of overshoot generated by the

integral term.

The equation for a PID controller is:

dt
tdeKdtteKteKtU DIP
)()()()(++= ∫ (2.3)

A tuning parameter, TD can be used to adjust the relative effect of the derivative

mode. However, derivative term can make the system unstable if the noise and

derivative gain are sufficiently large [3].

2.1.3 Laplace Transformation
A differential equation is one way to describe, in mathematical terms, the

relationship between the input and output of dynamic systems. It depends on the

components which form the dynamic system and the manner in which they are

connected [2]. It is a relationship between a function of time and its derivatives.

For instance, the equations)sin(3 2 yty
dt
dy

+= and 2

2

3

3

dt
ydte

dt
yd y ++= − are two

examples of differential equations [41]. The order of a differential equation is the

order of the highest derivative of the function y appearing in the equation.

Therefore the previous equations are first and third order differential equations,

respectively.

A classic example of developing a differential equation is provided in [2] with a

freely falling body through the air towards the Earth. There are two active forces

being applied to the object. One is the weight of the object, W = mg, where m is

the mass of the object and g is the acceleration of gravity. The other force is the

air resistance acting on the object opposing the motion. To simplify things, a

linear relationship is assumed between the friction force and speed, where the

10

friction force is equal to the product of velocity and the friction coefficient b, that

is,

Friction =
dt
dyb , where y is the position of the object at any value of time t.

Now, applying Newton’s second law which states that force is equal to mass

times acceleration,

2

2

dt
ydmforces∑ = (2.4)

where 2

2

dt
yd

is the acceleration.

Since friction force is opposite to the weight, from (2.4),

2

2

dt
ydmFrictionW =−

Or, mg
dt
dyb

dt
ydm =+2

2

 (2.5)

This is the resulting differential equation. A differential equation can be either

linear or nonlinear. A linear differential equation is any equation that can be

written in the form [39]:

)()()(...)()(011

1

1 xFyxa
dx
dyxa

dx
ydxa

dx
ydxa n

n

nn

n

n =++++ −

−

− (2.6)

where)(xan ,)(1 xan− , …,)(1 xa ,)(0 xa and F(x) depend only on the independent

variable x, not on y. For example, 3
2

2

xy
dx

yd
=+ is a linear second-order

differential equation, while 0cos2

2

=+ y
dx

yd is nonlinear.

11

A nonlinear differential equation does not have a solution in most cases; therefore,

in practice, the equation is approximated as a linear one [39]. That is why linear

differential equations are used to represent practical controllers. As the order of

the differential equations grows, it becomes increasingly difficult and almost

impossible to solve them using standard integration techniques. First order

equations, the simplest ones, are categorized into several classes to be applicable

to specific techniques of integration. For instance, if the right-hand side of the

equation dx = f(x, y) can be expressed as a function that depends only on x times a

function that depends only on y, then the equation is called separable equation and

solved by standard integration methods [39]. For solving higher-order equations,

some approximation methods such as Euler’s method, Taylor and Runge-Kutta

method, have been developed.

The difficulty in solving differential equations using standard techniques gave rise

to an approach called Laplace transformation. It is a very attractive method,

because it converts the solution’s process into a series of algebraic operations. It is

also ideal for solving linear differential equations with constant coefficients. A

system described by such equations is termed a linear-time-invariant (LTI)

system.

The Laplace transformation of a function of time f(t) is given by [5]:

∫
∞

− ==
0

)()()]([sFdtetftfL st (2.7)

Where)]([tfL is the shorthand notation for the Laplace integral and the

parameter s is a complex quantity of the form ωσ j+ .

The transform takes a function of t and produces a function of s, which is done by

multiplying f(t) by ste− and then integrating with respect to t from 0 to∞ .

However, f(t) must meet a couple of requirements to be Laplace-transformable.

The requirements are – the function must be piecewise continuous over every

finite interval 210 ttt ≤≤≤ , and the function must be of exponential order [5]. A

12

function is piecewise continuous in a finite interval if that interval can be divided

into a finite number of subintervals and the function is continuous over each of

the subintervals. f(t) must also possess finite limits at the ends of each

subintervals. A function f(t) is of exponential order if there exists a constant a

such that the product e-at|f(t)| is bounded for all values of t greater than some finite

value T. This imposes the restriction thatσ , the real part of s, must be greater than

a lower bound aσ for which the product |)(| tfe taσ− is of exponential order.

Once the differential equation in time domain is transformed into an equation in s-

domain, it can be solved using algebraic manipulations. However, Laplace

transformation is not an easy operation, except for very simple functions of f(t).

Fortunately, the results can be stored in a table after the operation is performed

once. Finally, to complete the solution, the F(s) needs to be converted to an f(t)

using inverse Laplace transform of F(s). For this process, there is a corresponding

operation, namely:

∫
∞+

∞−

− ==
j

j

stdsesF
j

sFLtf
σ

σπ
)(

2
1)]([)(1 (2.8)

As with the Laplace transform, lookup tables of inverse Laplace transforms for a

number of common functions are published for convenience. When the response

transform cannot be found in the tables, the general procedure is to express F(s) as

the sum of partial fractions with constant coefficients. The partial fractions have a

first-order or quadratic factor in the denominator and are readily found in the

lookup tables. The complete inverse transform is the sum of the inverse

transforms of each fraction.

2.1.4 Transfer Functions
Transfer functions are tools to describe the characteristics of dynamic components

and systems. It provides a common language that allows engineers to

communicate the behavioral aspects of a system. For a linear differential equation,

the ratio of the output variable to the input variable is called the transfer function.

If we take the Laplace transform of the high-order differential

13

equation)(...)()(...)()(
01

1

101

1

1 tub
dt

tudbtya
dt

tyda
dt

tyd
n

n

nn

n

nn

n

++=+++ −

−

−−

−

− , it becomes

an algebraic equation of the form, with zero initial conditions [4]:

)(...)()(...)()(0
1

10
1

1 sUbsUsbsYasYsasYs n
n

n
n

n ++=+++ −
−

−
− (2.9)

If 0
1

1 ...)(asassA n
n

n +++= −
− and 0

1
1 ...)(bsbsB n

n ++= −
− , we get Y(s) = G(s)U(s)

where
)(
)()(

sA
sBsG = and G(s) is the transfer function. The denominator polynomial

A(s) is called characteristic polynomial. The roots of A(s) are the poles of G(s)

and the roots of B(s) are the zeros of G(s).

For instance, let us consider a differential equation of the form:

)(2

2

tw
dt
dyb

dt
ydm =+ (2.10)

Taking the Laplace transform, assuming zero initial conditions,

)()()(2 sWsbsYsYms =+ (2.11)

where W(s) is the Laplace transform of w(t). Now,
bsmssW

sY
+

= 2

1
)(
)(is the transfer

function. Control systems and plants are usually represented by transfer functions.

2.1.5 Step Responses of Continuous-Time Linear Systems
The response of a control system to a sudden input is an important issue from a

practical standpoint, because depending on the amount and rate of deviations from

the long term steady state, they have varying degree of impacts on the overall

system. In addition, the control system response is delayed until the output settles

down to some vicinity of its final value. This makes the response to an impulse or

Dirac Delta function an interesting topic in the study of linear systems. Dirac

Delta is the limit as 0→∆ of the pulse shown in Figure 2.7.

14

Figure 2.7: Discrete pulse

Since the Laplace transform of the Dirac Delta is 1, the transfer function of a

continuous-time system is the Laplace transform of its response to an impulse

with zero initial conditions. Because of the idealization implicit in the definition

of an impulse, a system’s dynamic behaviour is usually studied using the step

response – the time behaviour of the outputs of a system when its inputs change

from zero to one in a very short time.

For a sample step response shown in Figure 4.3 in [4], a set of parameters

describing certain properties of the system is as follows:

Steady-state value is the final value of the step response.

Rise time is the time elapsed up to the instant at which the step response reaches,

for the first time, 90% of the final value.

Overshoot, expressed as a percentage of the steady-state value, is the maximum

instantaneous amount by which the step response exceeds its final value.

Undershoot is the absolute value of the maximum instantaneous amount by

which the step response falls below zero. It is also expressed as a percentage of

the steady-state value.

15

Settling time is the time elapsed until the step response enters a specific deviation

band, δ± , around the final value and does not get out of the band. The deviation

is defined as percentage of the steady-state value.

A control system can respond to a step input in three ways – under damped, over

damped and critically damped response.

Under Damped Response

The system will change the output quickly to the new value. However, there will

always be an overshoot and the output will settle into the new value after a

number of oscillations. Figure 2.8 shows an under damped response.

Figure 2.8: Under damped response [33]

Over Damped Response

In this case, there will be no overshoot, but the response is quite slow to reach the

final value, illustrated by Figure 2.9.

16

Figure 2.9: Over damped response [33]

Critically Damped Response

In this case, there may or may not be any overshoot, but there will be no

oscillation. Critically damped system reaches the final value in the minimum

amount of time. Figure 2.10 shows a critically damped response.

Figure 2.10: Critically damped response [33]

2.1.6 Digital Control Systems
Throughout the past few decades, modern control systems have been implemented

on digital computers. Apart from the fact that the expense of a computer have

gone down significantly with the advent of mass-produced microprocessors and

microcontrollers, there are other contributing factors, such as, any changes or

tuning are easily achieved with software, implementation is not susceptible to

changes due to external conditions, data can be easily transferred to any distant

location without delay, and exponential growth in the speed of the

microcontrollers [2].

17

Digital computers work with sequences of numbers rather than continuous

functions of time. Information is read and updated at discrete points in time –

referred to as sampling. For instance, a radar tracking system provides

information on an airplane’s position and motion to a digital processor at discrete

periods of time. When there is no such inherent sampling, an analog-to-digital

(A/D) converter must be incorporated in a digital control system. The output of

the controller is later converted from discrete form into an analog signal by a

digital-to-analog (D/A) converter. A block diagram of a digital control system is

shown in Figure 2.11.

Figure 2.11: Digital control system

The notations e* and u* denote that these signals are sampled at specific time

intervals. The extent of the information loss due to sampling depends on the

sampling method and the related parameters. If a sequence of samples is taken of

a signal f(t) every∆ seconds, then the sampling frequency needs to be large

enough in comparison with the maximum rate of change of f(t). Otherwise high

frequency components will be mistakenly interpreted as low frequencies in the

sampled sequence, a phenomenon known as aliasing.

For example, let us consider a signal)
3

20cos(2cos3)(πππ ++= tttf . If the

sampling period∆ is chosen to be 0.1 sec, then

5.0)2.0cos(3)
3

2cos()2.0cos(3)(+=++=∆ ππππ kkkkf (2.12)

which illustrates the fact that the high frequency component has been shifted to a

constant.

u(t) u* e(t)

-
+

e* r(t) A/D
Converter

Digital
Controller

Sensors

D/A
Converter Plant

18

The output of a digital controller is another sequence of numbers, which need to

be converted back to continuous time functions before they can be applied to the

plant. Usually, this is done by interpolating them into a staircase.

2.1.7 Z-Transform
The discrete equivalent of a differential equation is called a difference equation. A

linear high-order difference equation is of the form [4]:

][...]1[][...]1[][0101 kubnkubkyankyanky nn ++−+=++−+++ −− (2.13)

The Z-transform is the discrete equivalent of the Laplace transform. It is used to

turn the difference equations into algebraic ones. For a sequence {y[k]; k = 0, 1, 2,

…} the Z-transform pair is given by [4]:

∑
∞

=

−==Ζ
0

][)(]][[
k

k kyzzYky (2.14)

1,)(
2
1][)]([11 −===Ζ ∫ −− jdzzYz

j
kyzY k

π
 (2.15)

where Ζ (.) indicates the Z-transform operation and 1−Ζ (.) represents the inverse

Z-transform. The function Y(z) is essentially a power series in kz− with coefficients

equal to the values of the number sequences {y(k)} [6].

2.1.8 Discrete Transfer Functions
If we take Z-transform on each side of the high-order difference equation (4) with

zero initial condition, Aq(z) Yq(z) = Bq(z) Uq(z), where Yq(z) is the Z-transform of

the sequences {y[k]}, Uq(z) is the Z-transform of the sequences {u[k]}, Aq(z) = zn

+ an-1 zn-1 + … + a0, and Bq(z) = bmzm + bm-1 zm-1 + … + b0.

So, Yq(z) = Gq(z) Uq(z), where
)(
)(

)(
zA
zB

zG
q

q
q = and Gq(z) is the discrete transfer

function. As in the continuous-time case, the transfer function uniquely

determines the input-output behavior at the discrete sampling times. However, the

input-output behavior at times other than the sampling instant is undefined.

19

2.1.9 Continuous-to-Discrete Transfer Function Transformation
This transformation refers to turning the transfer function from the s-domain to

the z-domain. There are different approaches to achieve this transformation, but

two are most commonly used: bilinear transform and backward rule approach

[36]. Tustin or bilinear transformation is a first-order approximation of the natural

logarithm function that is an exact mapping of the s-domain to the z-domain.

Since stez = , where T is the sample time or the reciprocal of the sampling

frequency,

1
12...]

1
1

5
1

1
1

3
1

1
1[2)ln(1 53

+
−

≈+

+
−

+

+
−

+
+
−

==
z
z

Tz
z

z
z

z
z

T
z

T
s (2.16)

Thus the bilinear transform essentially uses first-order approximation and

substitutes into the continuous-time transfer function as
1
12

+
−

←
z
z

T
s . Bilinear

transform gives a one-to-one mapping between analog frequency axis ajs ω= and

the digital frequency axis Tj dez ω= , where T is the sampling interval. Thus the

amplitude response is exactly the same on both axes, while the only defect being a

frequency warping such that equal increments along the unit circle in the z-plane

correspond to larger and larger bandwidths along the ωj axis in the s-plane [37].

The backward rule approach to continuous-to-discrete mapping stems from the

definition of the derivative. The backward difference form of the derivative is [2]:

T
Ttete

dt
de)()(−−

= (2.17)

Taking the Laplace transform, assuming all the initial conditions being zero,

T
esEsEssE

sT−−
=

)()()(

Or,
T
es

sT−−
=

1 (2.18)

20

Since sTez = ,
Tz

z
T
zs 11 1 −

=
−

=
−

 (2.19)

Like the bilinear transform, the backward rule approach preserves stability

(discussed in the next subsection) of the system and is free of aliasing. However,

backward rule approximation requires that the sampling interval be small for

accurate conversion [36].

2.1.10 Stability
A dynamic system is said to be stable if the output eventually reaches a finite

steady-state value after an input or a disturbance. When the output oscillates with

ever-increasing amplitude or it increases or decreases unidirectionally and without

limit, the system is unstable. Let us consider a typical second-order system

equation of the form [31]:

yDfxaDaDa)()(01
2

2 =++ (2.20)

The transient response, and hence stability, of such system depends on the

coefficients a0, a1 and a2. If all the coefficients are above zero, the function will

not contain any positive time exponentials and the system will be stable.

However, if either a1 or a2 is less than zero, the transient response will contain

positive exponentials and the system will be unstable. Figure 2.12 shows some

stable and unstable responses [31].

Figure 2.12: Examples of stable and unstable responses

Routh-Hurwitz stability conditions determine whether a system is stable or

unstable. Let us consider the generalized equation [31]:

21

yDfxaDaDaDa n
n

n
n)()...(01

1
1 =++++ −
− (2.21)

Assuming a0 is positive; a matrix is created of the coefficients:

a 1 a 0 0 0 0 0 0 . . .

a 3 a 2 a 1 a 0 0 0 0 . . .

a 5 a 4 a 3 a 2 a 1 a 0 0 . . .

a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 . .

a 9 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0

For stability of an equation of degree 4, the necessary conditions are as follows:

1. a1 > 0, a2 > 0, a3 > 0, a4 > 0.

2. 0
23

01 >

aa
aa

, that is, 03021 >− aaaa

3. 0
0

0

34

123

01

>

aa
aaa

aa
, that is, 0))0.()((133041321 >−−− aaaaaaaaa

Any fourth-order equation has to meet these criteria to be stable. Note that [.]

refers to the determinant of a square matrix.

2.2 Fuzzy Logic and Fuzzy Control
Fuzzy logic was originally proposed in theory by Zadeh [9][10], and implemented

in automatic control by Mamdani [11][12]. Fuzzy controllers are a particular class

of intelligent controllers built on fuzzy expert systems. One of the advantages of

fuzzy controllers is that they do not require exact mathematical models unlike the

traditional controllers, therefore making it easier to create highly nonlinear

controllers in a very intuitive fashion. This property is very important for today’s

high-complexity and large networks where a precise mathematical model is often

unavailable.

22

A fuzzy controller tries to mimic a knowledgeable human operator by applying a

collection of control rules that might be overlapping and contradictory. The

fuzzifier module receives data from sensor(s) as inputs and converts it by

performing a simple mapping of a numeric quantity to a fuzzy set. The rulebase is

formed by a collection of logical rules depicting the relationship between the

input (antecedent) and output (consequent) of the controller [25]. The

approximate reasoning algorithm is implemented in the inference engine whose

task is to determine the firing degree of each rule, and to produce a fuzzy output

by performing a weighted composition of the consequents for each rule. Finally, a

module called a defuzzifier converts the fuzzy outputs to a single crisp control

signal to be sent to the process.

2.2.1 Basic Concepts of Fuzzy Logic
The underlying mathematical construct of fuzzy logic is a fuzzy set, which is a

generalization of mathematical set theory [13]. It is a set having a characteristic

function with a co-domain consisting of the unit interval [0, 1] rather than the

usual discrete set {0, 1}, and the characteristic function is known as membership

function. This allows for a gradual transition from having a certain property to not

having it [14].

The concepts of fuzzy sets are highly intuitive, since they work the same way

humans tend to reason. In the words of Zadeh [1]:

“Clearly the ‘class of all real numbers that are much greater than 1,’ or ‘the

class of beautiful women,’ or ‘the class of tall men,’ do not constitute classes or

sets in the usual mathematical sense of these terms.”

For example, let us consider a temperature of 20°C as comfortable [7]. In terms of

mathematical set theory, anything less than 20°C would then be not comfortable,

meaning cold, and anything more than 20°C would again be not comfortable,

meaning warm. This makes a value of 19°C to be cold, which is counter-intuitive.

From human perspective, it is still quite comfortable, which is the essence behind

the idea of fuzzy sets. Likewise, the temperature value of 25°C is partially

23

compatible with the terms comfortable and warm, but totally incompatible with

cold. This notion of fuzzy sets is shown in Figure 2.13, where temperature values

up to 10°C are only cold and on or above 30°C are only warm. As the temperature

rises from 10°C to 20°C, the degree of cold decreases while that of comfortable

increases. This goes on till 20°C where degree of comfortable is 1 and there is no

cold. Similarly, the degree of warm goes higher starting from 20°C and

comfortable keeps going down. At 30°C, temperature is totally warm and not

comfortable at all.

 Figure 2.13: Notion of fuzzy sets

2.2.2 Membership Functions
Membership functions are mappings from the universe of discourse to the unit

interval [7]. There are two different ways to represent a membership function:

continuous and discrete [8]. For instance, a trapezoidal membership function is a

piecewise linear, continuous function, and it is based on four parameters {a, b, c,

d} [15].

ℜ∈

≤

≤≤
−
−

≤≤

≤≤
−
−
≤

= x

xd

dxc
cd
xd

cxb

bxa
ab
ax

ax

dcbaxTrapezoid ,

,0

,

,1

,

,0

),,,;(µ

A triangular membership function is piecewise linear, and derived from the

trapezoidal membership function by setting b = c. Figure 2.14 shows the

cold warm comfortable

20°C 30°C 10°C

24

trapezoidal and triangular membership functions representing the time ‘around

noon’ [8].

Membership functions take many forms such as triangular, exponential, Gaussian

membership functions and so on [7]. A discrete fuzzy set is defined by ordered

pairs {)),...(,()),(,(2211 xxxx µµ } where)(ixµ is an evaluation of the membership

function µ at a discrete point ix [8].

 (a) (b)

Figure 2.14: (a) Trapezoidal and (b) triangular membership functions.

2.2.3 Fuzzy Set Operations
Fuzzy set operations, namely – intersection, union and complement, are defined as

functions of membership values. Functions that qualify as fuzzy intersections and

fuzzy unions are usually referred to in the literature as t-norms and t-conorms,

respectively.

2.2.3.1 Fuzzy Intersection

The intersection of two fuzzy sets A and B is defined by a binary operation on the

unit interval; that is, a function of the form

]1,0[]1,0[]1,0[: →×i

25

For each element x of the universal set, this function takes as its argument the pair

consisting of the element’s membership grades in set A and in set B, and yield the

membership grade of the element in the set constituting the intersection of A and

B. Thus,

)](),([))((xBxAixBA =∩ for all Xx∈ .

Functions known as t-norms possess properties which ensure that fuzzy sets

produced by i are intuitively acceptable as meaningful fuzzy intersections of any

given pair of fuzzy sets [21]. Therefore, the class of t-norms is now generally

accepted as equivalent to the class of fuzzy intersections.

A fuzzy intersection or t-norm i is a binary operation on the unit interval that

satisfies at least the following axioms [21] for all]1,0[,, ∈dba :

Axiom I1: i(a, 1) = a (Boundary condition)

Axiom I2: b ≤ d implies i(a, b) ≤ i(a, d) (Monotonicity)

Axiom I3: i(a, b) = i(b, a) (Commutativity)

Axiom I4: i(a, i(b, d)) = i(i(a, b), d) (Associativity)

Axiom I5: i is a continuous function (Continuity)

Axiom I6: i(a, a) ≤ a (Subidempotency)

The following are some examples of t-norms used as fuzzy intersections:

Standard Intersection:),min(BABA µµµ =∩

Algebraic Product: BABA µµµ *=∩

Bounded Difference:)1,0max(−+=∩ BABA µµµ

Drastic Intersection: ABA µµ =∩ when Bµ = 1

 Bµ when Aµ = 1

26

 0 otherwise

2.2.3.2 Fuzzy Union

The general fuzzy union of two fuzzy sets A and B is specified by a function

]1,0[]1,0[]1,0[: →×u

The function returns the membership grade of the element in the set BA∪ . Thus,

)](),([))((xBxAuxBA =∪ for all Xx∈ .

The properties of functions known as t-conorms are exactly the same as those of a

function u that is acceptable as a fuzzy union; therefore, t-conorms and fuzzy

unions are used interchangeably.

A fuzzy union or t-conorm u is a binary operation on the unit interval that satisfies

at least the following axioms for all]1,0[,, ∈dba :

Axiom U1: u(a, 0) = a (boundary condition)

Axiom U2: b ≤ d implies u(a, b) ≤ u(a, d) (monotonicity)

Axiom U3: u(a, b) = u(b, a) (Commutativity)

Axiom U4: u(a, u(b, d)) = u(u(a, b), d) (Associativity)

Axiom U5: u is a continuous function (Continuity)

Axiom U6: u(a, a) ≥ a (Superidempotency)

Axiom U7: a1 < a2 and b1 < b2 implies u(a1, b1) < u(a2, b2) (Strict monotonicity)

Some examples of t-conorms used as fuzzy unions are given below:

Standard Union:),max(BABA µµµ =∪

Algebraic Sum: BABABA µµµµµ −+=∪

Bounded Sum:),1min(BABA µµµ +=∪

27

Drastic Union: =∪BAµ Aµ when Bµ = 0

 Bµ when Aµ = 0

 1 otherwise

2.2.3.3 Fuzzy Complement

Let A be a fuzzy set on X. Therefore, A(x) is interpreted as the degree to which x

belongs to A. Let cA be a fuzzy complement of A. Then, cA(x) may be interpreted

not only as the degree to which x belongs to cA, but also as the degree to which x

does not belong to A.

Let a complement cA be defined by a function]1,0[]1,0[: →c which assigns a

value c(A(x)) to each membership grade A(x) of any given fuzzy set A. The value

c(A(x)) is interpreted as the value of cA(x). Given a fuzzy set A, we obtain cA by

applying function c to values A(x) for all Xx∈ .

To produce meaningful fuzzy complements, function c must satisfy at least the

following two axioms:

Axiom C1: c(0) = 1 and c(1) = 0 (Boundary condition)

Axiom C2: For all a, b ∈ [0, 1], if a ≤ b, then c(a) ≥ c(b) (Monotonicity)

The complement of a fuzzy set A with membership function Aµ usually

corresponds to the connective NOT, and has the membership function

AA µµ −=1 .

2.2.4 Fuzzy Logic
The ‘truth’ or ‘falsehood’ assigned to a proposition is its truth-value [8]. For two-

valued logic, truth-values can only be either 0 (false) or 1 (true). Fuzzy logic is an

extension of the range of truth-values to the continuous interval [0, 1] of real

numbers [16]. In mathematics, the word ‘and’ is used to join two sentences to

28

form the conjunction of the two sentences. The word ‘or’ is used to form the

disjunction of two sentences. From two sentences, we may construct one, of the

form ‘If…then…’, called an implication. The sentence following ‘If’ is the

antecedent, and the sentence following ‘then’ is the consequent. A sentence that is

modified by the word ‘not’ is called the negation of the original sentence. The

words ‘and’, ‘or’, ‘If-then’ are called connectives.

Fuzzy logic connectives are defined similarly. If p is a fuzzy set, negation is

defined as set complement, that is,

 pp −=¬ 1

Disjunction is defined as set union, that is, for fuzzy sets p and q

),max(qpqp ≡∨

Conjunction is defined as set intersection, that is, for sets p and q

),min(qpqp ≡∧

Rules of inference specify conclusions drawn from assertions known or assumed

to be true. One such rule of inference is modus ponens. It is often presented in the

form of an argument:

Q

QP
P

−−−−−
=>

It means, if P is known to be true, and we assume that P => Q is true, then Q must

be true. The assertion P is the premise, the assertion P => Q is the implication,

and the last assertion is the conclusion.

Modus ponens generalized to fuzzy logic is the core of fuzzy reasoning. Let us

consider the argument [8]:

29

B

BA
A

′
−−−−−

=>

′

It is similar to modus ponens, but the premise A′ is slightly different from A and

thus the conclusion B′ is slightly different from B. For example [100],

 This tomato is very red

 If a tomato is red, then the tomato is ripe

 This tomato is very ripe

This is generalized modus ponens.

A fuzzy rule has the form: ‘If x is A then y is B’, in which A and B are fuzzy sets.

This is an implication where ‘x is A’ is the antecedent and ‘y is B’ is the

consequent.

2.2.5 Fuzzy Controller
A fuzzy control system has a similar architecture to a conventional feedback

control system. Figure 2.15 shows a fuzzy controller.

 Figure 2.15: Fuzzy control system [8]

The difference between a fuzzy controller and its conventional counterpart lies in

the control strategy. While the traditional system applies mathematical models

using differential equations to calculate the controller output, a fuzzy controller

Error

Plant
output

-
+

Controller
output

Reference Fuzzy
Controller Plant

30

processes the inputs based on rules expressed in a more or less natural language.

The advantage of using rule-based fuzzy controller stems from the fact that

mathematical models of many control processes may not exist, or may be

mathematically intractable [17].

2.2.6 Components of Fuzzy Controller

 Figure 2.16: Fuzzy controller block diagram [8]

Figure 2.16 shows the general structure of a fuzzy controller. The preprocessor

prepares usable data for further processing from measured inputs by the

measuring device. Preprocessing may involve quantization in connection with

sampling or rounding to integers, normalization or scaling, filtering to eliminate

noise, averaging to obtain tendencies, and so on [8].

2.2.6.1 Fuzzifier Unit

The fuzzifier module calculates the membership grades, expressed in real

numbers, from the membership functions. It evaluates the input measurements

according to the premises of the rules. Each premise produces a membership

grade expressing the degree of fulfillment of the premise. A lookup table [18]

usually contains the membership values for all possible numerical inputs. This

approach, albeit requiring more memory space, can be much faster than

calculating the membership values in real-time [19].

31

2.2.6.2 Rule Base Unit

Three distinct variants of the fuzzy rule base have evolved so far – Mamdani,

TSK or Sugeno and Tsukamoto rule bases. They use the same general inference

scheme, but differ with respect to the conclusion membership functions.

Mamdani rule base uses fuzzy sets as consequents; therefore Mamdani controllers

are computationally more expensive, although the implementation is more

intuitive and well suited to human inputs. TSK or Sugeno rule base replaces the

consequents of Mamdani model with a polynomial equation (usually either a 0th

or 1st degree polynomial) of the (non-fuzzified) input variables. The rules take the

following form:

If x is A and y is B then z = f(x, y)

where A and B are fuzzy sets in the antecedent and z = f(x, y) is a crisp polynomial

function in the consequent. For a zero-order Sugeno model, z is a constant. It is

computationally efficient, works well with linear techniques, has guaranteed

continuity of the output surface and well suited to mathematical analysis.

In the Tsukamoto rule base, the consequents are represented by fuzzy sets with

monotonic membership functions. The rules take the form:

 If x is A and y is B then z = p*x + q*y + r

Scalar values are often used as consequents in practical fuzzy controllers, referred

as singleton consequents. Some of the benefits of using singleton consequents are

simpler calculations, possibility of setting extreme values for the control signal

and so on [8].

2.2.6.3 Inference Engine Unit

For each rule, the inference engine looks up the membership value where each

input intersects a membership function. The firing strength iα of a rule i is the

degree of fulfilment of the rule premise. Rule i causes a fuzzy membership value

corresponding to each input, which are aggregated using the ‘and’ or ‘or’

connective. The activation of a rule is the derivation of a conclusion depending on

32

the firing strength. Minimum or multiplication is used as the activation operator

to activate a portion of each singleton consequent. If consequents are fuzzy sets as

in the Mamdani controller, multiplication scales the membership curves while

minimum clips them. However, for singletons, both operators result the same. All

activated conclusions are accumulated using maximum or summation operator.

The conclusions may contain several control actions.

2.2.6.4 Defuzzification Unit

The resulting fuzzy set from the inference engine has to be converted in the

defuzzifier to a single number to form a control signal to the plant. There are

dozens of defuzzification schemes, such as Center of Gravity (COG), Mean of

Maxima (MOM), Bisector of Area (BOA) and so on [20], [90], [93], [96]. The

crisp control value uCOG is the abscissa of the center of gravity of the fuzzy set.

For singleton consequents, it takes the following form:

∑
∑

=

i
i

i
ii

COGS y

wy
u (2.22)

Where yi is the firing strength of each rule, and wi is the consequent output. The

term COGS stands for Center of Gravity for Singletons [8]. For fuzzy sets in the

consequents, summations are replaced by integrals. It is a widely used method,

but it is also computationally expensive.

The Bisector of Area (BOA) method finds the abscissa x of the vertical line that

partitions the area under the membership function into two areas of equal size. For

singleton consequents, uBOA is the abscissa that minimizes

,)()(
max

11
∑∑

+==

−
i

ji
ic

j

i
ic xx µµ 1 < j < imax (2.23)

Here imax is the index of the largest abscissa
maxix . Its computational complexity is

also relatively high.

33

Another approach is to choose the point of the universe with the highest

membership. Mean of maxima (MOM) is taken among several such points.

})(|{, maxµµ ===
∑
∈

ic
Ii

i

MOM xiI
I

x
u (2.24)

Where I is the crisp set of indices I where)(ic xµ reaches its maximum maxµ , and

|I| is the number of members of the set. Although this method is not concerned

about the shape of the fuzzy set, computationally it is faster.

2.3 Hardware Implementations of Fuzzy Controllers
Although software-based approaches [55], [56] on general-purpose

microprocessors are the most flexible and economical in developing fuzzy

controllers, and satisfactory results have also been obtained in the industrial areas

[54]; existing software fuzzy implementations result in slow operational speed

due to the fact that general-purpose computers do not have hardware

computational units to implement fuzzy operations directly, making it inadequate

for the high-speed processing requirement of real-time control problems [53],

[58]. Therefore massive research activities on dedicated fuzzy hardware

implementation manipulating both analog and digital approaches have been going

on since the 1980s. Analog systems have been preferred where power

consumption and resource usage are the main design criteria; whereas precision

and compatibility issues favor the digital technology [23]. A fuzzy controller

having a processing speed of 10 MFLIPS and developed by OMRON Corporation

is considered a basic performance standard [24], although proposed prototypes in

the literature have speeds up to 40 to 50 MFLIPS [25].

2.3.1 Analog Implementations
Implementation of analog fuzzy controllers began with the work of Yamakawa

and Miki [26] in 1986. They developed nine basic fuzzy logic circuits in current

mode, containing the realization of functions, such as bounded difference, fuzzy

34

complement, fuzzy logic union (MAX), bounded sum, fuzzy logic intersection

(MIN), implication, and so on.

Although current-mode circuits are not exceedingly sensitive to changes in supply

voltages, the fan-out number is limited [27], meaning that problems would arise

when the inputs must be distributed to many operational blocks, a usual scenario

for fuzzy rule base implementation. To overcome this issue, a tunable voltage-

input current-output membership function circuit is presented in [27] using 3.5

µm CMOS design rules based on the fact that voltage inputs can be easily

distributed to many rule blocks.

N-input MIN/MAX circuits are used in the inference engine of a fuzzy controller.

A current-mode multi-input MAX circuit is proposed by Baturone et al. in [32]

and [35]. The MAX circuit also performs the MIN operation using De Morgan’s

law. It uses 3n + 1 transistors while achieving the same level of precision with

less area and power consumption compared to 5n + 1 transistors in [28]. The

MAX/MIN circuit design in [30] follows the similar structure as in [29], but it

only requires n + 4 MOS transistors, which is an improvement over other

implementations.

A current-mode defuzzification circuit based on the square-law MOS

characteristic is described in [34] providing high linearity and large dynamic

range. A square-root circuit is cascaded with a squarer circuit to implement the

multiplier block. Addition is realized by wiring the outputs of the multiplier

blocks together. As the use of this circuit is limited to current-mode only, a

voltage-to-current (V-I) and current-to-voltage (I-V) conversions might be

needed. The division in defuzzification is avoided in [28] by a Normalized

Locked Loop (NLL). The denominator in the COG equation is made constant

with a negative feedback loop, so it becomes a weighted sum operation instead of

weighted average. The maximum simulated error is reported to be within 0.4% of

the full scale current. A simple current-input voltage-output continuous-time

divider circuit is implemented in [35] using a variable transresistance technique,

where a resistance value is controlled by a current. It offers larger dynamic range

35

compared to the approach in [34] and high-frequency operation. The defuzzifier in

[40] is implemented by a multiplier, a divider, three integrators, an I-V converter,

an attenuator and a division control unit. To avoid the nonlinearity of the

multiplier for signals greater than 0.5-V, the attenuator is used. An I-V converter

is needed because the multiplier block is based on a voltage-mode integrator. A

division control unit gets rid of very small signals to be applied to the

denominator.

Programmable analog fuzzy chips have also been developed over the last couple

of decades. Continuous, fuzzy, and multi-valued logic circuits are realized using a

general-purpose Field Programmable Analog Array (FPAA) in [43]. The FPAA is

based on an array of current-mode processing cells, operates from ±3.3 V or ±5 V

power supplies, and works with frequencies up to several hundred MHz. In [44], a

similar field programmable analog fuzzy processor is proposed supporting fifteen

rules, three inputs and one output. The architecture is split into an analog core and

a digital part allowing field programmability. The digital segment relies on a

software tool to compute the programming values. The chip area is 32 mm2 using

a CMOS 0.7-µm n-well technology with the analog core occupying only 7%. The

settling time for a step response is reported to be < 0.6 µs.

Miki and Yamakawa [46] proposed an analog fuzzy processor with an inference

engine of over 1 MFLIPS excluding defuzzification. To have a flexible system

configuration, inferences and defuzzification are handled by two separate chips.

The executed rule can be changed dynamically from one rule set to the other

stored in the on-chip rule memory. The chip in [47] occupies an area of 17.9 mm2

and processes up to 131072 rules, 4096 inputs and 1024 outputs with different

membership functions. Fuzzification of four 12-bit inputs, inference of 80 rules,

and COG defuzzification for a 16-bit output takes 16 µs, translating to a

processing speed of 62.5 KFLIPS. Baturone et al. [48] designed general-purpose

fuzzy chips allowing fully-parallel analog rule processing and optimized digital

circuitry for programmability. The analog core of a two-input processor occupies

a silicon area of 1 mm2 and the response time is less than 2 µs.

36

Although analog implementations have features such as lower power consumption

[23], and not having the requirement of analog-to-digital (A/D) or digital-to-

analog (D/A) converters to communicate with sensors and actuators, they suffer

from poor flexibility, less precision due to noise, distortion, interferences and

parameter mismatch [57], and compatibility issues with other digital systems [52].

2.3.2 Digital Implementations
There are many different ways to implement fuzzy control systems in digital

hardware. One approach is the use of general-purpose processors with a number

of instructions dedicated to fuzzy operations. While this method [85], [86]

provides features such as flexibility and automatic support of non-fuzzy

computations, performance is limited [84]. A better approach in terms of speed is

special-purpose processors designed only for fuzzy operations [87], [88].

However, they have poor flexibility and cannot be used as stand-alone processors

to implement the control system. Most of the studies so far, therefore, have dealt

with dedicated hardware tailored to a particular fuzzy application [64]. Although

this scheme is not flexible at all, the advantages include very fast processing

capability required for real-time systems, low cost in terms of resources, and so on

[84].

Togai and Watanabe [59] [60] were the first to implement fuzzy systems in

digital hardware in the mid 1980s. They developed a VLSI chip, fabricated in 2.5-

µm CMOS technology, to perform the fuzzy inference process. The rulebase is

stored in Read-Only Memory (ROM) because of its faster operation and less area

requirement compared to the Random Access Memory (RAM). The degree of

membership functions is represented by 4 bits, so 16 discrete levels are permitted.

Two circuits with serial processing capabilities are used to implement MAX and

MIN operations. The chip was first demonstrated at AT&T Bell lab. It operates on

a 20.8 MHz clock with a processing speed of 80 KFLIPS.

The second generation of a 1-µm CMOS VLSI chip has been designed by

Watanabe et al. [61] in the early 1990s. The chip consists of 688,000 transistors

out of which 476,000 are used for RAM memory. Either 51 rules with 4 inputs

37

and 2 outputs, or 102 rules with 2 inputs and 1 output can be implemented at a

speed of over 150 KFLIPS. The universe of discourse of a fuzzy set is divided

into 64 elements each being a 4-bit number, therefore occupying 256 bits of

memory for fuzzification table lookup. Instead of dedicating 256 bits for each

fuzzy set, the membership functions for all fuzzy sets are stored in one memory

area in [63]. The representations of the membership functions for each fuzzy set

are overlapped. The effectiveness of this approach depends on the overlap factor

of the fuzzy sets. For a factor of 2, it only requires half of the memory space

compared to that of [61]. To speed up the inference process, the defuzzification

operations are pre-computed and partial results are stored for runtime access. To

save memory, a different way to implement membership functions is described in

[62]. It makes use of three memory spaces to store the fuzzification information.

Each fuzzy set is assigned a 3-bit number in the first space; the other two spaces

keep track of the values that the membership functions possess for any pair of

active fuzzy sets for a particular input.

A custom designed hardware fuzzy logic controller with on-line adaptability is

described in [65], [66]. Look-up tables are used for fuzzification with 4-bit

resolution. To avoid division in defuzzification, all possible division outputs are

pre-calculated and stored in a look-up table with concatenated numerator and

denominator values being used as addresses to access the table contents. To

facilitate on-line adaptation, six extra SRAMs (Static Random Access Memory)

are used to store input membership functions along with 6 others for normal

operations. A fully pipelined version can obtain a speed up to 9 MFLIPS. A

similar design approach [58] achieves 3.3 MFLIPS operational speed, while a

multilevel systolic approach [67] goes up to 10 MFLIPS with the use of 30,000

gates and 3 KB memory. An adaptive fuzzy controller oriented to ASICs is

presented in [75]. Adaptation algorithm works by updating the parameters of

membership functions and rules based on new input data. During each cycle, the

rules with more firing strength are reinforced while others are ignored depending

on the degree of their strength. The circuit is fabricated in 0.7 µm CMOS

technology with 35,000 gates.

38

A general-purpose hardware system called KAFA (KAist Fuzzy Accelerator) to

provide various fuzzy inference methods and fuzzy set operations is presented in

[54], [69]. Fuzzy Processing Elements (FPEs) are separate from the main

controller. Each FPE is connected to its next neighbor, while the first and last

ones are connected to the main controller to form a ring topology. The first

prototype of KAFA is implemented on an FPGA with 128 FPE’s. An FPE unit

consists of a Fuzzy Arithmetic Logic Unit (FALU), a memory space to store 8-bit

membership values, a register file containing nine registers and a communication

link. With 11 basic instructions, FALU implements 8 fuzzy set operations,

namely – logical product, logical sum, algebraic product, algebraic sum, bounded

product, bounded sum, drastic product and drastic sum. KAFA also provides 3

defuzzification methods – maximum criterion, mean-of-maxima, and modified

center of area – with the first two dealing with the problem of finding the FPE

containing the largest membership value in a list of FPEs. A similar hardware

board named Future Board [72], [73] to process fuzzy set operations is proposed

by Tokunaga. It consists of 4 fuzzy set processors (FSPs) to concurrently execute

four streams of fuzzy operations on 8-bit data. Lee and Bien [74] developed a

flexible fuzzy control system called FLEXi. For 8 inputs, 4 outputs and 256 rules

with 16 MHz clock, it operates approximately at 20 KFLIPS.

Sánchez-Solano et al. [70] described two programmable fuzzy controllers that

provide low resource usage and relatively high operational speed by adopting

some restrictions on the degree of overlapping of antecedent membership

functions and by using simplified defuzzification methods employing singleton

consequents. Inference time is reduced by identifying active rules [71] defined as

such rules for which all the antecedent membership grades are non-zero. The

prototypes are implemented in a 1-µm CMOS technology, and they consist of 3

inputs and 1 output using 8 membership functions with an overlapping degree of

2. A memory space of 64 x 15 bits is used for membership functions of each

input. They achieve an inference speed of 3 MFLIPS.

39

Ascia et al. [79] presented a VLSI fuzzy processor with 3 inputs, 1 output and 32

rules, which achieved 5.2 MFLIPS for a clock frequency of 66 MHz. A fuzzy

processor [80] with four 7-bit inputs, one 7-bit output, 7 input membership

functions, 8 output membership functions and 127 rules is implemented in 1 µm

CMOS technology. It is used in a trigger system in High Energy Physics

Experiments, and has a speed of 50 MFLIPS. It uses the active rule selector

approach presented in [71].

An asynchronous computational approach to the hardware design of a fuzzy

controller is described in [68]. The controller is designed as a large asynchronous

pipeline in which most of the hardwired delays are replaced by self-timed

combinational logic controlled by handshaking signals rather than a global clock.

This scheme is useful for low-power embedded applications.

Due to the significant advances in the digital field during the last few decades,

digital approach for fuzzy hardware realization is now easier to design, more

precise, and more flexible in comparison to analog implementation [58].

2.3.3 Fast Defuzzification
Defuzzification has always been a bottleneck for faster implementation of fuzzy

systems. Therefore a number of techniques have been proposed in the literature to

avoid computationally expensive multiplication and division operations. In [89], a

heuristic approach based on adapting any fuzzy output shape into one single

triangle and estimating the centroid position is presented. The processing time for

this approach is reported to be 23 times less than that for COG defuzzification.

Runkler and Glesner [92] proposed a centroid approximation algorithm (CADE)

to decrease the computation cost for defuzzification. Further reduction in

computation is achieved by another algorithm (DECADE) which avoids

multiplication and division operations involved in the previous method. The

maximum error is reported to be about 7% for DECADE.

Eisele et al. [91] presented a fast defuzzification method for hardware

implementation of fuzzy inference algorithms. This approach optimizes the COG

40

method by skipping all the regions for which the output possibility distribution is

zero. As it adapts to the degree of contribution of the regions to the final crisp

value, it is termed as the adaptive integration. One drawback of this method is that

the implementation becomes complicated because of the extra circuitry needed to

determine the relevance of the regions. A similar approach is followed by

Tamukoh et al. [94], [95]. They proposed a bit-shifting-based fuzzy inference

method which uses only the “active units”, meaning those rules which have large

influence on the defuzzified output. The concept of “active rules”, rules that will

contribute to the final result, is also used to speed up the defuzzification process in

[98]. Two similar rule selector blocks are used to examine two rules at every

clock cycle. The division operation is replaced by multiplication with the

estimated reciprocal of the denominator.

Three different implementations of COG defuzzification are proposed in [99].

These methods compute the defuzzified output when the output membership

functions are trapezoidal and form a fuzzy partition. The discretization method is

the easiest among all to implement, because of the fact that the fuzzy output is

approximated by a number of rectangles of equal width and height. With the

increasing number of rectangles, the narrower they become and output is also

better approximated. In the slope-based technique, fuzzy output surface is

partitioned in such a way that the slope of the fuzzy output is constant within each

part and different in two adjacent parts. The modified transformation function

method originates from the transformation method presented in [97]. These

methods are not as straightforward as discretization, but they allow faster and

more accurate computation.

A COG method with only integer additions and one integer division is presented

in [101]. The proposed algorithm maps the real values of fuzzy membership

functions onto an integer grid. It is 12.75 times faster than conventional COG for

the truck-backer problem. Introduction of quantization error is one disadvantage,

because of the mapping of real values to integer ones. Although multiplication is

eliminated, one division operation is still required.

41

CHAPTER 3

PROPOSED LOG-DOMAIN CONTROLLER

3.1 Logarithmic Arithmetic
Logarithmic-domain arithmetic has been used to accelerate hardware for many

applications where there are a large number of multiplication and/or division

operations involved, e.g. in [83]. In the fuzzy controller, the defuzzifier enjoys the

greatest advantage of log-domain arithmetic, since the COG method in equation

(2.22) requires three fundamental operations: multiplication, summation and

division. If x = q1/q2, then log(x) = log(q1) – log(q2), and hence a divider is

replaced by a much simpler subtractor. Computationally expensive multiplication

operations are similarly carried out by addition circuits in log-domain. The

fundamental principle of this log-domain system is to take the logarithmic

transform of all quantities. For instance, instead of performing a computation x =

f(q1, q2), the quantity log(x) is computed using an equivalent function g(log(q1),

log(q2)). If all quantities fall in the range (0, 1], all the logarithmic values are

either 0 or a negative number, and the negative signs can be safely ignored

simplifying calculations. As fuzzy membership values are always within (0, 1],

(assuming we ignore membership values equal to 0 in our computations, as is

commonly done) fuzzy logic controllers are suitable for this type of arithmetic.

Since we are using absolute values of all logarithmic quantities, minimum

operations are changed to maximum and vice versa in the inference engine of the

log-domain controller. However, the summation operation is complicated in the

log-domain. If x = q1 + q2, with q1 > 0 and q2 > 0, then it can be shown [82]:

)1log())log(),max(log()log()log()|log()|log(
2121

21 qqeqqqqx −−++=+= (3.1)

The second logarithmic term in equation (3.1) becomes almost zero when q1 and

q2 are not close in value. This term is often ignored in log-domain arithmetic at a

small loss in precision [83], but can also be very crudely approximated by a

42

correction factor [81], [82] (discussed in the next section). We have implemented

in simulation two versions of our log-domain controller – one without the

correction factor, and the other with the factor.

3.2 Approximate Correction Factor
In this section we describe how a series of numbers are added in the log-domain

controller. Say, we need to calculate the sum of a series of numbers q1, q2, …, qn,

while the only information available to us is the set of their logarithmic values.

Now,)...log()...log()log()log()log()log(
21

21 nqqq
n eeeqqqx +++=+++= (3.2)

If q1 is the maximum among all the qi’s, log(q1) is also the maximum among all

the log values. Now, from (3.2),

))...1(log()log()log()log()log()log()log(1121 qqqqq neeex −− +++=

)...1log()log()log()log()log()log(
1

112 qqqq neeq −− ++++= (3.3)

If q2 is the second largest value, the impact of)log()log(12 qqe − is the highest among all

the other terms. So in our approximation, we treat them as follows:

)log()log()log()log()log()log(12112)...1log(qqqqqq eee n −−− ≈+++ (3.4)

This is the correction factor applied to our system. It involves determining two

maximum (or, minimum) values instead of one. The advantage of using this

correction factor is that the control surface becomes better in terms of RMS (root-

mean-square) difference with respect to the typical fuzzy controller (discussed in

the next chapter). However, step response curves for log-domain controllers with

and without a correction factor show no significant difference. The drawback of

the correction factor is the added computational complexity. Four

addition/subtraction operations and two lookup tables are required to implement

it.

43

3.3 Design of the Controller

Figure 3.1: Block diagram of the log-domain controller

Figure 3.1 shows the block diagram of the log-domain controller. The inputs are

first passed to the fuzzifier module. It consists of a lookup table (LUT) with m+1

number of columns, where m is the number of membership functions. The first

column of each row contains the possible values of the inputs within the input

universe and the other columns have the logarithmic membership values. As all

the log values are negative, we store the values without the signs. We note that

storing logarithmic values in the fuzzifier LUT does not require any extra

hardware compared to a conventional fuzzy LUT.

The inference engine module usually determines the minimum value among the

antecedents for each rule. Since the negative antecedent values are stored as

positive, we use maximum function instead of minimum, and the outputs (Ai) are

passed to the subtractor block, SUB1, inside defuzzifier. The other input for

SUB1, log of all consequent outputs (Si), comes from the rulebase. This subtractor

block and the minimum function inside COMP2 are used because of the positive

Ai values. The subtracted outputs Di go to COMP1 block which calculates the first

two maximum values, D1 and D2, respectively. The second maximum value is

selected to be used later in the CORRECTION block. Similarly, at the same time,

two minimum values, A1 and A2, are chosen from Ai.

44

Figure 3.2: Block diagram of CORRECTION

Inside the CORRECTION block (see Figure 3.2), a subtractor block, SUB2,

computes the difference between D2 and D1, and passes to EXP_LUT1 to get the

corresponding exponential value, exp_diff1. An adder block, ADD1, computes

term1 as D1 plus exp_diff1. Similarly, a parallel subtractor block, SUB2, is used

for A1 and A2, and the output is sent to EXP_LUT2 to determine exp_diff2. Then

A1 is subtracted from exp_diff2 to obtain term2. This subtraction effectively

functions as an addition with the exception that A1 is changed back to its original

negative value. The final subtractor block, SUB5, calculates the difference, LO,

between term1 and term2, and passes it back to defuzzifier module for

exponential calculation, which results in the final crisp output.

It is worth mentioning that if the approximate correction factor is ignored, the

CORRECTION block only contains an adder block which sums D1 with A1. This

is a significant simplification with a negligible performance penalty.

3.4 Simulation Design
In this subsection, we discuss how the log-domain controllers (with and without

the correction factor) along with a typical fuzzy controller are implemented on

MATLAB Simulink.

3.4.1 Typical Fuzzy Controller
The MATLAB Simulink block diagram for the typical fuzzy control system is

shown in Figure 3.3. The plant transfer function is taken from experiment 1,

described in the next chapter.

45

Figure 3.3: Simulink diagram for typical fuzzy controller

A step signal is passed to the Subtractor block at a specific sampling rate. The

output from the plant is used as the negative input for Subtractor. For the first

sample, the second input is considered to be zero. The subtracted value acts as the

error input to the fuzzy controller while the derivative of error is the second input.

The fuzzifier first converts the numerical inputs to fuzzy sets based on the

corresponding membership functions. Note that for each input, there are at most

two fuzzy sets which have non-zero contributions. This is because of the fact that

the overlapping factor of membership functions is 2. Therefore there can be four

“active” rules at a time. The inference engine calculates the firing strength of each

rule by using the minimum function as AND connective of the antecedents. The

defuzzifier multiplies the firing strengths with corresponding consequent outputs

and then adds them together to complete the numerator of the COG equation. The

denominator is calculated by summing the firing strengths, and finally the

numerator value is divided by the denominator to get the crisp value. Note that

multiplication and division operations in the defuzzifier result in a slow

implementation, which is overcome by our log-domain controller.

3.4.2 Log-Domain Controller with Correction Factor
The Simulink block diagram for log-domain controller is shown in Figure 3.4.

Figure 3.4: Simulink diagram of log-domain controller

46

As with the typical fuzzy controller, the fuzzifier receives the error and rate of

error values as inputs. The fuzzifier then sends a set of logarithmic fuzzified

values (log values of the membership degrees for each fuzzy set) for each input to

the inference engine. Note that since all of the log values are 0 or negative, the

sign is truncated and only absolute values are stored to simplify further

calculation. The inference engine uses maximum function for the antecedents of

each rule, because of the stored fuzzified values without signs. The rule base

contains the log values of singleton consequents as well. The negative consequent

values are treated as positive for logarithmic calculations. However, a separate

array keeps track of all the signs of the consequents. This array is used later to

adjust the sign of the final output.

The defuzzifier module first subtracts the log value of the firing strength of each

rule from the log of corresponding consequent output. The subtracted result for all

the rules are then passed to the comparator block which determines the largest two

values (D1 and D2). At the same time, another comparator block computes the

lowest two values (A1 and A2) from the log values of firing strengths. Inside the

comparator block, a subtractor block calculates the difference between D2 and D1,

and the exponential value of the result is obtained. The exponential value is added

to D1 to calculate term1. Similarly A1 minus A2 is performed and the exponential

value is sent to a subtractor block. The other input of this block is A1, and the

result is term2. A subtraction block subtracts term2 from term1, and sends the

result back to the defuzzifier where the final result is set to its exponential value.

3.4.3 Log-Domain Controller without Correction Factor
The architecture of the controller without correction factor is the same as the one

with the correction factor, with the exception of the correction block in the

defuzzifier. The correction block is significantly simplified, because it only

contains an adder block to calculate D1 plus A1. So instead of two, only one value

(largest or smallest) is calculated in the comparators.

47

CHAPTER 4

EXPERIMENTAL RESULTS IN

SIMULATION

Four controllers – typical fuzzy controller, PD controller, log-domain controller

without a correction factor and with a correction factor, – are used in MATLAB

simulation for our experiments.

4.1 Experiment 1
We compare and analyze the performance of the log-domain controllers (with and

without correction factor) with a typical fuzzy and a PD controller. The

benchmark controllers and the plant are taken from [78]. The transfer function of

the second-order plant (representing a DC servomotor) used in our experiments

is
ss +202.0

1 . The output of the linear PD controller (shown in Figure 4.1) is

calculated as
dt
dekeku dp += , where e is the error and

dt
de is the rate of change of

error.

Figure 4.1: PD controller

The error and rate values are multiplied by a proportional (pk) and a derivative

(dk) gain, respectively. Both the values are added together to send to the plant

whose output is fed back to the Subtractor.

48

We measure the performance of our controllers with the help of step response

curves and control surface plots. Rise time, settling time and overshoot – three

parameters of the step response – are compared for different controllers. Next, we

use the Root-Mean-Square (RMS) difference among the control surfaces to

analyze the control laws.

4.1.1 Controllers
The rule base for the fuzzy controllers is shown in Table 4.1.

Table 4.1: Rule base for the fuzzy controllers. Note that NB = Negative Big, NM

= Negative Medium, ZR = Zero, PM = Positive Medium, and PB = Positive Big.

Input2/Input1 NB NM ZR PM PB

PB ZR PS PM PB PB

PM NS ZR PS PM PB

ZR NM NS ZR PS PM

NM NB NM NS ZR PS

NB NB NB NM NS ZR

Input and output membership functions are shown in Figure 4.2.

 (a) (b)

 Figure 4.2: (a) Input and (b) output membership functions

49

The parameters (taken from [78]) for the fuzzy controllers are: Winput1 = 1, Winput2

= 50, L = 50, m1 = 2, m2 = 3, while those for the linear PD controller are: P = 50,

kd = 1.

4.1.2 Results
A comparison of the step response of the different controllers is presented in

Figure 4.3. Table 4.2 illustrates the rise time, settling time, and overshoot for

different controllers. Rise time is defined as the time the plant outputs take to get

to 90% of the step size from a value of 10%. Settling time is the time for outputs

to settle down within 2.5% of the steady state from control start. We express

overshoot (output exceeds the steady state value) as a percentage relative to the

final value of the plant output.

Figure 4.3 (a)

50

Figure 4.3 (b)

Figure 4.3 (c)

51

Figure 4.3 (d)

Figure 4.3: Step responses of different controllers – (a) linear PD, (b) typical

fuzzy, (c) log-domain without a correction factor and (d) log-domain with a

correction factor

Table 4.2: Rise time, settling time, and overshoot for different controllers with a

sampling period of 0.01 s

Controllers Rise

Time

Settling

Time

Overshoot

(%)

PD 0.0688 0.1219 0

Typical fuzzy 0.0719 0.1298 0

Log-domain

(uncorrected)

0.0567 0.1 0.0009

Log-domain

(corrected)

0.0548 0.0997 0.0025

52

Figure 4.4 shows the control surface outputs generated for a linear PD controller,

a typical fuzzy-logic controller, and log-domain controllers (with and without a

correction factor). Table 4.3 reports the RMS difference between control surfaces

of the controllers.

Table 4.3: RMS difference between control surfaces

Controllers PD Log-domain

(uncorrected)

Log-domain (corrected)

Typical 31.8991 11.7040 5.2965

PD 32.2829 32.6604

Log-domain

(uncorrected)

 16.5292

Figure 4.4 (a)

53

Figure 4.4 (b)

Figure 4.4 (c)

54

Figure 4.4 (d)

Figure 4.4: control surfaces of different controllers - (a) linear PD, (b) typical

fuzzy, (c) log-domain without a correction factor and (d) log-domain with a

correction factor

4.1.3 Analysis
As can be seen from the surfaces of Figures 4.4(a) and 4.4(b), the typical fuzzy-

logic controller developed in [78] is an approximation of the linear PD controller.

For output values ranging from -150 to +150, the typical fuzzy controller is able

to provide essentially the same results as the PD controller.

The proposed log-domain controller without correction factor makes use of only

the maximum value to approximate the summation of a set of logarithmic values.

While this approach relieves us from using computationally expensive

multiplication and division operations, the RMS difference value between the

typical and log-domain controller is higher (see also Figure 4.4(c)).

However, with a small correction factor involving the second highest value in a

sequence, the approximate output becomes much more similar to that of typical

fuzzy-logic controller. The corresponding RMS difference confirms the

effectiveness of this approach through a greater than 50% reduction in value of

55

the difference. The impact of having a correction factor is also clear from the

RMS difference value between the log-domain controllers. But when it comes to

approximating the outputs with those of a PD controller, the correction factor does

not seem to offer any advantage.

There is not much obvious difference among the step responses of the different

controllers, as shown in Figure 4.3. Table 4.2, however, presents some very

interesting insights. For each log-domain controller, the rise time is lower than

both the linear PD and typical fuzzy controllers. Log-domain controllers also have

lower settling times, although a small amount of overshoot is introduced.

4.2 Experiment 2
We have used three more second-order plants to verify and analyze the

performance of our proposed controller. The plant transfer functions have the

general form of 400/(s2+ σs), where σ is given three different values: 20, 48.5 and

360, respectively [77].

4.2.1 Controllers
The membership functions and rule base for the typical controller in [77] are

shown in Figure 4.5 and Table 4.4, respectively. The value of (bi+1 - bi) is equal to

1/18 for the first input (error), while (bi+1 - bi) is 4000/18 for the second input

(rate) with b0 = 0. The centers of the output membership functions are defined as

[p-3 p-2 p-1 p0 p1 p2 p3] = [-2500 -1000/3 -50/2 0 50/2 1000/3 2500].

Figure 4.5 (a)

56

Figure 4.5 (b)

Figure 4.5: (a) Input and (b) output membership functions

 Table 4.4: Rule base for the fuzzy controller [77]

Input2/Input1 NB NM NS ZR PS PM PB

PB NB NB NB NB NM NS ZR

PM NB NB NB NM NS ZR PS

PS NB NB NM NS ZR PS PM

ZR NB NM NS ZR PS PM PB

NS NM NS ZR PS PM PB PB

NM NS ZR PS PM PB PB PB

NB ZR PS PM PB PB PB PB

Note that NB = Negative Big, NM = Negative Medium, NS = Negative Small, ZR

= Zero, PS = Positive Small, PM = Positive Medium, and PB = Positive Big.

4.2.2 Results
Figures 4.6, 4.7 and 4.8 compare the step response of our log-domain controllers

(both with and without correction factor) with a typical fuzzy controller for the

plants mentioned above. Tables 4.5 to 4.7 present a comparison of rise time,

settling time, and overshoot for different controllers and different plants.

57

Figure 4.6: Step response of typical fuzzy controller

Figure 4.7: Step response of log-domain controller without correction factor

58

 Figure 4.8: Step response of log-domain controller with correction factor

 Table 4.5: Rise time, settling time and overshoot for the plant 400/(s2+20s)

Controllers Rise Time

(sec)

Settling

Time (sec)

Overshoot

(%)

Typical

Fuzzy

0.0024 0.0145 11.7373

Log-domain

(uncorrected)

0.0022 0.0126 10.8925

Log-domain

(corrected)

0.0024 0.0145 11.5596

59

 Table 4.6: Rise time, settling time and overshoot for the plant 400/(s2+48.5s)

Controllers Rise

Time

(sec)

Settling

Time

(sec)

Overshoot

(%)

Typical Fuzzy 0.0024 0.0145 11.5669

Log-domain

(uncorrected)

0.0022 0.0132 9.6103

Log-domain

(corrected)

0.0024 0.0148 11.4486

 Table 4.7: Rise time, settling time and overshoot for the plant 400/(s2+360s)

Controllers Rise Time

(sec)

Settling

Time (sec)

Overshoot

(%)

Typical

Fuzzy

0.0030 0.0122 10.1534

Log-domain

(uncorrected)

0.0027 0.0099 8.7054

Log-domain

(corrected)

0.0030 0.0123 9.4037

Control surface outputs generated for a typical fuzzy controller, and log-domain

controllers are shown in Figures 4.9, 4.10 and 4.11. Table 4.8 illustrates root-

mean-square (RMS) difference between control surfaces.

60

Figure 4.9: Control surface for typical fuzzy controller

Figure 4.10: Control surface for log-domain controller without correction factor

61

Figure 4.11: Control surface for log-domain controller with correction factor

Table 4.8: RMS difference between control surfaces

 Log-domain

(uncorrected)

Log-

domain

(corrected)

Typical 355.0986 120.1319

Log-domain

(uncorrected)

 332.6803

4.2.3 Analysis
The step responses confirm the effectiveness of our proposed log-domain

controllers. The plots from Figures 4.6, 4.7 and 4.8 are qualitatively similar,

demonstrating that log-domain controllers perform as good as a typical fuzzy

controller.

62

Tables 4.5, 4.6 and 4.7 present some interesting insights. The log-domain

controller without correction factor performs better than both the typical fuzzy

controller and its peer with correction factor for all cases of rise time, settling time

and overshoot. The log-domain controller with correction factor has the same rise

time and better overshoot compared to the typical controller for all the three

plants, although the settling time is slightly higher for a couple of plants. This is a

very promising result considering the fact that our log-domain controllers are

much faster in processing than the typical fuzzy controller.

The control surface plots are also quite similar in shape for the log-domain and

typical fuzzy controllers. Obviously, the surface of log-domain controller with

correction factor resembles more with typical fuzzy controller, because of the

approximate correction factor. Without this factor, the output is crudely

approximated based on only the maximum value in a sequence. That is why there

are some extra staircase outputs in the surface of log-domain controller without

the factor. The RMS difference table also confirms this fact. Roughly a 67%

reduction in output difference between the log-domain and typical fuzzy

controller is obtained because of the correction factor. The impact of having a

correction factor is also clear from the difference between the log-domain

controllers.

63

CHAPTER 5

HARDWARE IMPLEMENTATION

5.1 Design Considerations

Figure 5.1: Block Diagram of Lyrtech SignalMaster board which consists of a

DSP, a Virtex-II FPGA and multiple input/output expansions [49]

We have implemented the log-domain controller without the correction factor on

a Xilinx Virtex – II FPGA (Figure 5.1) [45]. The plant and the rulebase are taken

from [78]. The transfer function of the second-order plant is
ss +202.0

1 . By using

the substitution
Tz

zs 1−
= , with T being the sampling period, as in the backward

rule approach, the continuous transfer function is converted to the discrete transfer

function of the form:

64

21

2

02.0)04.0()02.0(−− ++−+ zzTT
T (5.1)

Since T = 0.01 sec, (5.1) becomes

21 667.0667.11
0033.0

−− +− zz
 (5.2)

This corresponds to the standard form of second order digital filter:

 2
2

1
1

2
2

1
10

1 −−

−−

++
++

zbzb
zazaa (5.3)

Where a0 = 0.0033, a1 = a2 = 0, b1 = -1.667, and b2 = 0.667.

This type of digital filter is implemented in the following form [76]:

)2()1()2()1()()(21210 −−−−−+−+= kybkybkxakxakxaky (5.4)

Where k = current sample in time, x(k) = input to the plant at kth sample, and y(k)

= output from the plant at kth sample.

Figure 5.2 shows how (5.4) is implemented on FPGA [76].

 Figure 5.2: Second order digital filter implementation on FPGA

The fuzzifier module of the log-domain controller accepts two input values,

namely – error and rate of error, both being 10-bit wide. The error value has 2 bits

to represent the integer part and 8 bits for fractional part. The reason for using this

-b1

a2

a1

y(k) x(k)

 +

 Z-1

 Z-1

 Z-1

 Z-1

-b2

65

bit width is that simulation results have shown the possible error values ranging

from 0.0 to 2.0. The rate values, however, can be anything between -39.0 and 0.0.

Therefore, 10 bits for rate input actually represent 6 bits for integer and 4 bits for

fractional part. As the rate values are negative, we are only considering the

absolute quantities without the sign. The lower number of bits for fractional part

does not have any visible impact because of the rate values being sparse. This bit

width also determines the size of the lookup tables (LUTs) being used in the

fuzzifier module. The error and rate LUTs have 1024 rows (all combinations of

10 bits) and five columns representing the logarithm of membership function

values for NB, NM, ZR, PM and PB. The log values stored in the LUTs are all

negative; therefore the sign is ignored. Each value is 16-bit wide with 4 bits for

integer part and 12 bits for fractional part. 4 bits can represent as high as 15 which

is enough for this context, since the maximum log value can be 9.0. Another LUT

contains 4096 rows each having a possible exponential value for an output value.

Since the logarithm of the output can take any value within the range -11.0 to

+5.0, we are using 1 sign bit, 3 bits for integer part and 8 bits for fractional part.

The use of 3 integer bits can only represent a negative number as low as -7; but it

is justified by the fact that any lower number results in the exponential value

being essentially zero. The output from the defuzzifier is represented by 20 bits,

where 1 bit is used as sign, 7 bits for integer part and 12 bits for fractional part.

Since the fuzzy controller output can go as high as 100.0, we have to use at least 7

bits to represent the value. Note that for a generalized hardware log-domain

controller, the bit widths may be different making the rows and columns in the

LUTs bigger or smaller. The performance, however, should be the same except

for a different amount of resource utilization.

The step signal is implemented on the same FPGA as the plant model and the

fuzzy inference engine as a square wave to enable the plant outputs to be shown

on the oscilloscope. On the positive cycle, the step value goes to 2 from 0;

therefore, the first error value becomes 2.0 while the first rate value is zero. These

values are sent to the log-domain controller which produces a defuzzified output

to be passed to the plant. The plant output is compared to 2.0 and the difference

66

becomes the next error value. The next rate value is calculated based on the

current and the previous error values. Eventually both the error and rate values

become zero.

5.2 Log-domain Controller
The block diagram of our log-domain controller with the plant implemented on

FPGA is shown in Figure 5.3. Note that, unlike the plant (expressed in transfer

function) in the simulation; here the plant is implemented as a second-order

digital filter as described in Section 5.1.

Figure 5.3: Block diagram of log-domain controller with plant as implemented on

Xilinx Virtex-II FPGA

The fuzzifier module passes the corresponding row from both of the error and rate

LUTs to the inference engine. The inference engine calculates the maximum value

(log of firing strength for a rule) for each of the 25 possible pairs. Although the

conventional task of inference engine is to calculate the minimum values, we are

using maximum instead, since all the negative log values are stored as positive.

The six maximum values are passed to the defuzzifier module.

The defuzzifier module subtracts the log of firing strength values (log_fs) from

the log of consequent values (log_c), and stores the results in an array named

log_d. The maximum value among log_d (log_dmax) is calculated, while the

minimum for log_fs is also determined. These two values are added together and

67

the summation result (log_output) is used to find the corresponding exponential

value from a LUT. This exponential value is assigned to the output, when the

particular value of log_c (that contributes to the calculation of the value log_dmax)

comes from a positive consequent value. Otherwise the exponential value is made

negative before assigning it to the final output.

The output from the log-domain controller goes to the plant. It also accepts the

plant output and an adding factor from the previous sample. The previous adding

factor is used to calculate the current plant output, whereas the previous plant

output contributes to generate the new adding factor. The fuzzy controller output

(x(k)) gets multiplied by a0 (0.0033) and added to Adding_factor(k-1) to generate

the new plant output (y(k)). Adding_factor(k) is calculated as

Adding_factor(k) = –b1*y(k) –b2*y(k-1)

The plant output (y(k)) is passed to Next Input Calculator which generates the

next error and rate values. Error(k+1) is calculated as step minus plant output at

kth sample, whereas Rate(k+1) is calculated in two steps. First, new error value is

subtracted from the previous error value, and then the result is multiplied by 1/T

(100.0). It is worth mentioning that all the multiplication operations are basically

a group of additions because one of the operands is always a constant value.

Figure 5.4 illustrates the operations that take place in the control system.

68

Figure 5.4: Operations inside the control system

5.2.1 Results
Figure 5.5 displays the plant outputs on an oscilloscope for the log-domain

controller. Here the positive cycle refers to the plant outputs for a step signal. The

negative cycle simply mirrors the plant outputs along the horizontal axis. Note

that in Figure 5.5, one waveform represents the reference (Figure 2.1) and the

other waveform represents the step response, i.e. the outputs of the plant.

69

Figure 5.5: Plant outputs for log-domain controller implemented on FPGA and

displayed on an oscilloscope for both positive and negative cycles

Rise Time

In our implementation, rise time means the time for the plant output to reach a

value of 1.8 from 0.2. Since it takes 8 samples to get to 1.8 and each sample takes

14.8 ns, so rise time is (8*14.8)ns = 118.4 ns. In the simulation results, rise time

was 0.0567 sec with a sampling period of 0.01 sec. This means, about 6 samples

were needed in simulation.

Settling Time

Settling time is the time when the plant output reaches a value of at least 1.95 and

never goes lower. As 11 samples are required to settle down for the plant outputs

in our implementation, settling time is (11*14.8)ns = 162.8 ns. Settling time was

shown to be 0.1 sec in the simulation results, which correspond to 10 samples.

Overshoot

Overshoot occurs when the plant output goes beyond the steady-state value,

which, for our log-domain controller, does not happen. So overshoot is zero. For

the simulation experiments, overshoot was 0.0009%.

70

Speed

From the synthesis report, the maximum clock frequency of our log-domain

controller is 67.6 MHz; since our controller processes one plant output per clock

cycles, this implies a processing speed of 67.6 MFLIPS. This is an improvement

over the reported fastest fuzzy controller implementation [80] on 1.0 µm CMOS

technology having a speed of 50 MFLIPS. It demonstrates the effectiveness of our

approach in using the log-domain arithmetic.

Resource Utilization

Table 5.1 shows the resource utilization for our controller on FPGA – one with

the plant model and the other one without the plant. It can be seen from the table

that the log-domain controller uses a very small percentage of the overall

available resources.

Table 5.1: FPGA resource utilization for log-domain controller

Resources Log--domain controller
with plant

Log--domain
controller without

plant

ROMS 3 3

Adders/Subtractors 1 1

Counters 2 2

Registers 84 84

Comparators 9 9

Priority Encoders 6 6

XORs 1363 243

Slices 118 out of 46592 65 out of 46592

Slice Flip-flops 62 out of 93184 53 out of 93184

Bonded IOBs 201 out of 824 201 out of 824

71

5.3 Pipelined Log-domain Controller
We have already shown a clear speedup for our controller compared to the 50

MFLIPS implementation [80]. One drawback of this type of feedback system is

that the inputs at any sample depend on the output from previous sample. So the

system cannot accept inputs at every clock cycle; rather it waits several clock

cycles so that the plant output for a particular input set gets calculated. This

results in a substantial waste of resources for systems where there is no

dependency among the inputs. We believe our proposed controller is more

suitable for networking applications (e.g. per-packet inspection) where inputs

would be independent of one another and the output ports cannot be idle for the

entire processing time. That is why we have designed a pipelined version of our

controller which generates a plant output at every clock cycle.

As four clock cycles are required to generate a plant output after the error and rate

inputs are applied, we use pre-calculated error and rate inputs for the first four

cycles so that plant outputs start to be generated from fifth cycle onward. When a

new pair of error and rate inputs (Error(k) and Rate(k)) is applied to the fuzzifier,

the membership values stored in the LUTs are calculated instantaneously and

passed to the inference engine without any delay. At the same time, the error

value and plant output at the current cycle is passed to Next Input Calculator

module to calculate the next error and rate values. The inference engine

implements the maximum function for each combination of membership values,

and the result is passed to the defuzzifier at the start of next clock cycle (pipeline

stage 1).

The defuzzifier first calculates log_d values and then finds the maximum among

them. At the same time, the minimum value among the log of firing strength

values is determined. Both these values are sent for addition at the next cycle

(pipeline stage 2). The summation result is used for an exponential value from a

LUT and sign is adjusted before it gets to the plant at the next cycle (pipeline

stage 3). Fuzzy controller output (x(k)) is multiplied by a0 and the result is added

to Adding_factor(k-1) to calculate the plant output (y(k)) at the next cycle

72

(pipeline stage 4). The plant output is multiplied by (-b1), while previous plant

output is multiplied by b2. They are passed to a subtractor block to calculate the

adding factor at the following clock cycle. Although Adding_factor(k) is

generated one cycle later than the plant output; it does not make any difference in

the overall system performance, because it is used only after the next plant output

is calculated, which takes place 3 cycles later.

So at the start of 5th cycle we have a plant output for the inputs applied in the 1st

cycle. The new pair of input values produced in the first cycle is sent to the 2nd

cycle to generate a plant output at the 6th cycle. This continues and eventually the

plant outputs become stable.

Figure 5.6 shows the block diagram of the pipelined version of the log-domain

controller. REG blocks refer to the registers being used to accomplish the

pipelining stages.

Figure 5.6: Pipeline stages of log-domain controller

73

5.3.1 Results
Figure 5.7 shows the oscilloscope plot for pipelined version of the controller.

Figure 5.7: Plant outputs for pipelined log-domain controller implemented on

FPGA and displayed on an oscilloscope for both positive and negative cycles

Rise Time

Since it takes 27 cycles for plant outputs to reach to 1.8, rise time is (27*4.02) ns

= 108.5 ns.

Settling Time

46 cycles are required to reach within 2.5% of the step signal, so settling time is

(46*4.02) ns = 184.9 ns.

Overshoot

Overshoot is zero, because plant output never exceeds the step signal.

Speed

The pipelining results in a processing speed of 248.7 MFLIPS, a significant

improvement in fuzzy controller implementation in hardware.

74

Resource Utilization

Table 5.2 illustrates the resource utilization on FPGA for our pipelined log-

domain controller – one with the plant model and another without the plant.

Similar to its non-pipelined version, the pipelined controller still uses a limited

number of resources; although resource consumption is slightly higher in several

cases. Less registers and XORs are used when we do not consider the plant on

FPGA.

Table 5.2: FPGA resource utilization for pipelined log-domain controller

Resources Pipelined log-domain
controller with plant

Pipelined log-domain
controller without

plant
ROMS 4 4

Adders/Subtractors 1 1

Counters 2 2

Registers 642 572

Comparators 9 9

Priority Encoders 6 6

XORs 1363 243

Slices 196 out of 46592 196 out of 46592

Slice Flip-flops 257 out of 93184 257 out of 93184

Bonded IOBs 201 out of 824 201 out of 824

5.4 Comparative Analysis
Comparisons of rise time, settling time, overshoot and speed between non-

pipelined and pipelined version of log-domain controller are shown in Table 5.3.

75

Table 5.3: Comparisons of rise time, settling time, overshoot and speed between

non-pipelined and pipelined version of log-domain controller

 Log-domain controller
(without pipelines)

Log-domain controller
(with pipelines)

Rise Time (ns) 118.4 108.5

Settling Time (ns) 162.8 184.9

Overshoot (%) 0 0

Speed (MFLIPS) 67.6 248.7

As can be seen from Table 5.3, and Figures 5.5 and 5.7, the pipelined version has

lower rise time, but higher settling time. The longer settling time results from the

initial oscillation in the plot for pipelined controller. The oscillation is due to the

dependency of the plant outputs, which is natural for feedback systems. However,

for real-life networking applications, where each input set will be independent of

one another, our log-domain controller is capable of achieving very fast

processing speed as demonstrated by the speed comparisons between two versions

of the controller.

In terms of the resource utilization, non-pipelined version uses fewer number of

ROMs, registers, slices and slice flip-flops, because of the fact that pipelining has

some processing overhead. This is compensated by a speedup of almost 4 times

due to pipelining.

76

CHAPTER 6

FUTURE RESEARCH

The log-domain fuzzy controller confirms the effectiveness of the proposed

approach for a number of second-order plants in the simulation of step responses

and control surfaces. The hardware versions achieve a significant speedup

compared to the existing fuzzy controllers. Our future research will focus on

implementing this log-domain technique for more higher-order plants to gain

further insights into this method. One other goal will be to develop a

computationally simpler correction factor to compensate for the performance

penalty. Finally, although we have limited our study to FPGA-based

implementations, we feel that a valid direction of future research would

investigate the performance of fuzzy inference engines on current state-of-the-art

microprocessors, including the application of our log-domain techniques.

77

CHAPTER 7

CONCLUSION

In this thesis, a logarithmic arithmetic based fuzzy logic controller is described,

which results in a very high-speed hardware implementation. This approach gets

rid of computationally expensive multiplication and division operations that have

been the bottlenecks for fuzzy control systems. As the simulation results illustrate,

log-domain implementations – with and without the approximate correction factor

– perform better than the typical fuzzy and linear PD controllers in terms of rise

time and settling time of the step response curves. Although there has been a

small approximation error in the control surfaces, this does not have much impact

on the system performance as depicted by the step response. The hardware

implementation on FPGA without the correction factor also achieves similar

response to the step signal. The processing speed of the hardware version is 67.6

MFLIPS which exceeds the fastest fuzzy controller implementation in literature

that we are aware of by 33%. Note, however, that the implementation [80] was

performed in 1.0 µm CMOS VLSI technology in 1995 with four 7-bit inputs, one

7-bit output, 7 membership functions for each variable, and up to 127 rules. If we

had implemented this controller on the same Xilinx Virtex-II FPGA that we have

used for our log-domain controller, it would have resulted in a different speed.

Nevertheless in this thesis, we have been able to develop a very fast fuzzy

controller using logarithmic arithmetic, which is a totally new approach to design

fuzzy logic control systems. The experiments have shown the ability of the

controllers to produce outputs that are close to the expected ones. A further

speedup to 248.7 MFLIPS is also achieved by a pipelined version of the log-

domain controller. We believe that this is a very promising result making the log-

domain controllers potentially suitable for high-speed and large networks.

78

BIBLIOGRAPHY

[1] Levine, W. S. (1996). The Control Handbook. New York: CRC Press.

[2] Macia, N. F., & Thaler, G. J. (2004). Modeling and Control of Dynamic

Systems. Albany: Delmar Cengage Learning.

[3] Wade, H. L. (2004). Basic and Advanced Regulatory Control: System Design

and Application. Isa-The Instrumentation, Systems, and Automation Society.

[4] Goodwin, G. C., Graebe, S. F., & Salgado, M. E. (2001). Control System

Design. Alexandria, VA: Prentice Hall.

[5] J.D-Azzo, J., Houpis, C. H., & Sheldon, S. N. (2003). Linear Control System

Analysis and Design with Matlab, Fifth Edition. CRC Press.

[6] Nagle, C. L., & Phillips, H. T. (1995). Digital Control System Analysis and

Design. Alexandria, VA: Prentice Hall.

[7] Pedrycz, W., & Gomide, F. (2007). Fuzzy Systems Engineering. Hoboken,

New Jersey: John Wiley & Sons Inc.

[8] Jantzen, J. (2007). Foundations of Fuzzy Control. New York, NY: Wiley.

[9] Zadeh, L. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353.

[10] Zadeh, L. (1968). Fuzzy Algorithms. Information and Control, 12, 94-102.

[11] Mamdani, E. H. (1977). Application of Fuzzy Logic to Approximate

Reasoning. IEEE Trans. Computers, Issue 26, 1182-1191.

[12] Mamdani, E. H. (1974). Application of Fuzzy Algorithms for Control of a

Simple Dynamic Plant. Proc. IEEE, Issue 121, 1585-1588.

[13] Stoll, R. R. (1979). Set Theory and Logic. New York: Dover Publications.

79

[14] Filev, D. P., & Yager, R. R. (1994). Essentials of Fuzzy Modeling and

Control. New York, NY: Wiley.

[15] Jang, J. R., Mizutani, E., & Sun, C. (1996). Neuro-Fuzzy and Soft

Computing: A Computational Approach to Learning and Machine Intelligence.

Alexandria, VA: Prentice Hall.

[16] Nguyen, H. T., & Walker, E. A. (2000). A First Course in Fuzzy Logic. New

York: Chapman & Hall.

[17] Gerla, G. (2005). Fuzzy Logic Programming and Fuzzy Control, Studia

Logica, 79, 231-254.

[18] Ibrahim, A. (2004). Fuzzy Logic for Embedded Systems Applications.

Elsevier.

[19] Kim, Y. D. (1997). High Speed Flexible Fuzzy Hardware for Fuzzy

Information Processing. IEEE Trans. on Systems, Man, and Cybernetics – Part A,

27 (1), 45-56.

[20] Lee, C. S., & Lin, C. (1996). Neural Fuzzy Systems: A Neuro-Fuzzy

Synergism to Intelligent Systems. Alexandria, VA: Prentice Hall.

[21] Klir, G. J., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and

Applications. Upper Saddle River: Prentice Hall PTR.

[22] Lee, S. G., & Carpinalli, J. D. (2005). High-speed Integer Operations in the

Fuzzy Consequent Part and the Defuzzification Stage for Intelligent Systems.

International Journal of Intelligent Control and Systems. 10 (4), 258-268.

[23] Manaresi, N., Rovatti, R., Franchi, E., Guerrieri, R., & Baccarani, G. (1996).

Automatic synthesis of analog fuzzy controllers: a hardware and software

approach. IEEE Transactions on Industrial Electronics, 43(1), 217 - 225.

80

[24] Dick, S., Gaudet, V., & Bai, H. (2008). Bit-serial arithmetic: A novel

approach to fuzzy hardware implementation. Annual Meeting of the North

American Fuzzy Information Processing Society, 1-6.

[25] Kalaykov, I. & Tolt, G. (2002). Fast fuzzy signal and image processing

hardware. Annual Meeting of the North American Fuzzy Information Processing

Society, 7-12.

[26] Yamakawa, T., & Miki, T. (1986). The current mode fuzzy logic integrated

circuits fabricated by the standard CMOS process . IEEE Transactions on

Computers, C-35(2), 161-167.

[27] Chen, J. -J., Chen, C. -C., & Tsao, H. -W. (1992). Turnable membership

function circuit for fuzzy control systems using CMOS technology. Electronics

Letters, 28(22), 2101-2103.

[28] Sasaki, M., Ishikawa, N., Ueno, F., & Inoue, T. (1992). Current-mode analog

fuzzy hardware with voltage input interface and normalization locked loop. IEEE

International Conference on Fuzzy Systems, 451-457.

[29] Yamakawa, T. (1993). A fuzzy inference engine in nonlinear analog mode

and its application to a fuzzy logic control. IEEE Transactions on Neural

Networks, 4(3), 496-522.

[30] Ota, Y., & Wilamowski, B. (1996). CMOS Implementation of a Voltage-

Mode Fuzzy Min-Max Controller. Journal of Circuits, Systems, and Computers,

6(2), 171-184.

[31] Control System Stability. (n.d.). RoyMech Index page. Retrieved December

30, 2009, from http://www.roymech.co.uk/Related/Control/Stability.html.

[32] Baturone, I., Huertas, J., Barriga, A., & Sánchez, S. (1994). Current-mode

multiple-input Max circuit. Electronics Letters, 30(9), 678-680.

81

[33] Introduction to Systems Engineering. (n.d.). Federation of American

Scientists. Retrieved December 30, 2009, from http://www.fas.org/man/dod-

101/navy/docs/es310/Int_SysE/Int_SysE.htm.

[34] Liu, B., Huang, C., & Wu, H. (1994). Modular current-mode defuzzification

circuit for fuzzy logic controllers. Electronics Letters, 30(16), 1287-1288.

[35] Baturone, M., Sánchez-Solano, S., & Huertas, J. (1994). Current-mode

singleton fuzzy controller. 3rd. International Conference on Fuzzy Logic, Neural

Nets and Soft Computing (IIZUKA’94), 647-648.

[36] Tham, M. (n.d.). Mathematics of Sampled Data Systems. Newcasle

University. Retrieved December 30, 2009, from

http://lorien.ncl.ac.uk/ming/digicont/digimath/sampled2.htm.

[37] Smith, J. (n.d.). Frequency Warping. Introduction to Digital Filters with

Audio Applications. Retrieved December 29, 2009, from

http://ccrma.stanford.edu/~jos/filters.

[38] Ken, J., Li, W., & Liu, J. (2008). Fuzzy Immune Self-tuning PID Controller

and Its Simulation. 3rd IEEE Conference on Industrial Electronics and

Applications, 625 - 628.

[39] Nagle, R. K., & Saff, E. B. (1993). Fundamentals of Differential Equations

(3 ed.). Toronto: Addison Wesley.

[40] Bouras, S., Kotronakis, M., Suyama, K., & Tsividis, Y. (1998). Mixed

analog-digital fuzzy logic controller with continuous-amplitude fuzzy inferences

and defuzzification. IEEE Transactions on Fuzzy Systems, 6(2), 205-215.

[41] Braun, M. (1992). Differential Equations and Their Applications: An

Introduction to Applied Mathematics (4th ed.). New York: Springer.

[42] Dukkipati, R. V. (2005). Control Systems. London: Alpha Science

International, Ltd.

82

[43] Pierzchala, E., Perkowski, M., & Grygiel, S. (1994). A field programmable

analog array for continuous, fuzzy, and multi-valued logic applications. Twenty-

Fourth International Symposium on Multiple-Valued Logic, 148-155.

[44] Manaresi, N., Franchi, E., Guerrieri, R., & Baccarani, G. (1996). A field

programmable analog fuzzy processor with enhanced temperature performance.

Proc. 22nd European Solid-State Circuits Conf. (ESSCIRC‘ 96), 152–155.

[45] SignalMaster Quad. (n.d.). Lyrtech DSP-FPGA design house, digital signal

processing product design services. Retrieved December 14, 2009, from

http://www.lyrtech.com/index.php?act=view&pv=SignalMaster%20Quad.

[46] Miki, T., & Yamakawa, T. (1995). Fuzzy inference on an analog fuzzy chip.

IEEE Micro, 15(4), 8-18.

[47] Eichfeld, H., Kunemund, T., & Menke, M. (1996). A 12b general-purpose

fuzzy logic controller chip. IEEE Transactions on Fuzzy Systems, 4(4), 460-475.

[48] Baturone, I., Barriga, A., Sánchez-Solano, S., & Huertas, J. (1998). Mixed-

signal design of a fully parallel fuzzy processor. Electronics Letters, 34(5), 437-

438.

[49] Lyrtech Inc. (n.d.). Quad TMS320C6713/ Dual Virtex-II-based SignalMaster.

Retrieved January 26, 2010, from

http://www.dspecialists.de/pix/inhalt/lyrtech/pdf/1_3_signalmaster_quad_tms320

c6713_en.pdf.

[50] Tigaeru, L. (2003). Programmable analogue membership function circuit for

hybrid-mode fuzzy systems. Electronics Letters, 39(8), 642–644.

[51] Han, I. S. (2007), Membership Function Circuit for Neural/Fuzzy Hardware

of Analog-Mixed Operation Based on the Programmable Conductance, IEEE Int.

Fuzzy Systems Conf., 1-4.

83

[52] Guo, S., Peters, L., & Surmann, H. (1996). Design and application of an

analog fuzzy logic controller. IEEE Transactions on Fuzzy Systems, 4(4), 429 -

438.

[53] Baturone, I., Sanchez-Solano, S., Barriga, A., & Huertas, J. (1997).

Implementation of CMOS fuzzy controllers as mixed-signal integrated circuits.

IEEE Transactions on Fuzzy Systems, 5(1), 1-19.

[54] Kim, Y., & Lee-Kwang, H. (1997). High Speed Flexible Fuzzy Hardware for

Fuzzy Information Processing. IEEE Transactions On Systems, Man, and

Cybernetics, 27(1), 45-56.

[55] Saito, Y. (1989). A high speed software fuzzy inference controller.

Proceedings of the 3rd IFSA World Congress, 12-15.

[56] Eshera, M., & Barash, S. (1989). Parallel rule-based fuzzy inference on

mesh-connected systolic arrays. IEEE Expert, 4(4), 27-35.

[57] Tombs, J., Torralba, A., & Franquelo, L. (1994). Design of a Fuzzy

Controller Mixing Analog and Digital Techniques. Proceedings of the Third IEEE

Conference on Fuzzy Systems, 1755 - 1758.

[58] Hung, D. (1995). Dedicated digital fuzzy hardware. IEEE Micro, 15(4), 31-

39.

[59] Togai, M., & Watanabe, H. (1986). Expert System on a Chip: An Engine for

Real-Time Approximate Reasoning. IEEE Expert, 1(3), 55-62.

[60] Togai, M., & Watanabe, H. (1986). VLSI implementation of a fuzzy-

inference engine: Toward an expert system on a chip. Information Sciences, 38,

147-163.

[61] Watanabe, H., Symon, J., Dettloff, W., & Yount, K. (1991). VLSI fuzzy chip

and inference accelerator board systems. Proceedings of the Twenty-First

International Multiple-Valued Logic, 120-127.

84

[62] Eichfeld, H., Lohner, M., & Muller, N. (1992). Architecture of a CMOS

fuzzy logic controller with optimized memoryorganisation and operator design.

IEEE International Conference on Fuzzy Systems, 1317-1323.

[63] Chiueh, T. (1992). Optimization of fuzzy logic inference architecture.

Computer, 25(5), 67-71.

[64] Watanabe, H. (1992). RISC approach to design of fuzzy processor

architecture. IEEE International Conference on Fuzzy Systems, 431-441.

[65] Hung, D. (1994). Custom design of a hardware fuzzy logic controller.

Proceedings of the Third IEEE Conference on Fuzzy Systems, 1781-1785.

[66] Hung, D., & Zajak, W. (1995). Design and implementation of a hardware

fuzzy inference system. Information Sciences-Applications, 3(3), 193-207.

[67] Salvador, L. D., & Gutierrez, J. (1995). A multilevel systolic approach for

fuzzy inference hardware. IEEE Micro, 15(5), 61-71.

[68] Costa, A., Gloria, A. D., & Olivieri, M. (1996). Hardware design of

asynchronous fuzzy controllers. IEEE Transactions on Fuzzy Systems, 4(3), 328-

338.

[69] Kim, Y., Park, K., & Leekwang, H. (1995). Parallel fuzzy information

processing system. Fuzzy Sets and Systems, 72(3), 323-329.

[70] Sánchez-Solano, S., Barriga, A., Jiménez, C., & Huertas, J. (1997). Design

and application of digital fuzzy controllers. Proceedings of the Sixth IEEE

International Conference on Fuzzy Systems, 869-874.

[71] Ikeda, H., Kisu, N., Hiramoto, Y., & Nakamura, S. (1992). A fuzzy inference

coprocessor using a flexible active-rule-driven architecture. IEEE International

Conference on Fuzzy Systems, 537-544.

85

[72] Tokunaga, H., Terano, T., Terano, M., Mukaidono, M., & Shigemasu, K.

(1992). Fuzzy computer prototype system—FUTURE BOARD system. Fuzzy

Engineering Toward Human Friendly Systems, 1106–1107.

[73] Ghosh, S., Razouqi, Q., Schumacher, H., & Celmins, A. (1998). A survey of

recent advances in fuzzy logic in telecommunications networks and new

challenges. IEEE Transactions on Fuzzy Systems, 6(3), 443-447.

[74] Lee, S., & Bien, Z. (1994). Design of expandable fuzzy inference processor.

IEEE Transactions on Consumer Electronics, 40(2), 171-175.

[75] Evmorfopoulos, N., & Avaritsiotis, J. (1999). Adaptive digital fuzzy

hardware in application-specific integrated circuits. The 6th IEEE International

Conference on Electronics, Circuits and Systems, 1635-1638.

[76] Gwaltney, D. King, K., Smith, K. & Ormsby, J. (2002), Implementation of

Adaptive Digital Controllers on Programmable Logic Devices,

https://www.researchgate.net/publication/23892297_Implementation_of_Adaptiv

e_Digital_Controllers_on_Programmable_Logic_Devices.

[77] Taur, J. & Tao, C. (1997). Design and Analysis of Region-Wise Linear

Fuzzy Controllers. IEEE Trans. On Systems, Man and Cybernetics, 27(3), 526-

532.

[78] Kawaji, S., Maeda, T. & Matsunaga, N. (1991). Fuzzy Control Using

Knowledge Acquired from PD Control, Industrial Electronics, Control and

Instrumentation, vol 2, 1549-1554.

[79] Ascia, G., Catania, V., & Russo, M. (1999). VLSI hardware architecture for

complex fuzzy systems. IEEE Transactions on Fuzzy Systems, 7(5), 553-570.

[80] Gabrielli, A., Gandolfi, E., Masetti, M., & Russo, M. (1995). Design of a

VLSI very high speed reconfigurable digital fuzzy processor. Proc. ACM Symp.

Appl. Comput., 477–481.

86

[81] Gross, W. & Gulak, G. (1998). Simplified MAP Algorithm Suitable for

Implementation of Turbo Decoders. IEE Electronics Letters, 34 (16), 1577-1578.

[82] Erfanian, J., Pasupathy, S., & Gulak, G. (1990). Reduced Complexity

Symbol Detectors with Parallel Structures. IEEE GLOBECOM, 704-708.

[83] Robertson, P., Villebrun, E., & Hoeher, P. (1995). A Comparison of Optimal

and Sub-Optimal MAP Decoding Algorithms Operating in the Log Domain. IEEE

Int. Conf. Communications, Seattle, WA, 1009-1013.

[84] Costa, A., Gloria, A. D., Faraboschi, P., & Pagni, A. (1995). Hardware

solutions for fuzzy control. Proceedings of the IEEE, 83(3), 422-434.

[85] INFORM Inc., (1992). Fuzzy-166 Processor--The Chip for Flexible High-

Performance Fuzzy Solutions. INFORM GmbH, Aachen, Germany.

[86] Wang, J. (1993). A 12-bit fuzzy computational acceleration (FCA) core.

Proc. Fuzzy Logic ’93, M332.

[87] Sanchez, E. (1986). Medical applications with fuzzy sets. A. Jones, A.

Kaufmann and H.-J. Zimmermann (eds.), Fuzzy Set Theory and Applications, D.

Reidel, Boston, MA.

[88] Shimizu, K., Osumi, M., & Imae, F. (1992). The digital fuzzy processor FP-

5000. Proc. 2nd Int. Conf. on Fuzzy Logic and Neural Networks, 539-542.

[89] Ginart, A., & Sanchez, G. (2002). Fast Defuzzification Method Based on

Centroid Estimation. Applied Modelling and Simulation.

[90] Saetieo, S., & Torrey, D. (1998). Fuzzy logic control of a space-vector PWM

current regulator for three-phase power converters. IEEE Transactions on Power

Electronics, 13(3), 419 - 426.

[91] Eisele, M., Hentschel, K., & Kunemund, T. (1994). Hardware realization of

fast defuzzification by adaptive integration. Proceedings of the Fourth

87

International Conference on Microelectronics for Neural Networks and Fuzzy

Systems, 318-323.

[92] Runkler, T., & Glesner, M. (1994). DECADE—fast centroid approximation

defuzzification for real time fuzzy control applications. Proceedings of the 1994

ACM symposium on Applied computing, 161 - 165.

[93] Saletic, D., Velasevic, D., & Mastorakis, N. (2002). Analysis of Basic

Defuzzification Techniques. Proceedings of the 6th WSES International

Multiconference on Circuits, Systems, Communications and Computers.

[94] Tamukoh, H., Horio, K., & Yamakawa, T. (2007). A bit-shifting-based fuzzy

inference for self-organizing relationship (SOR) network. IEICE Electronics

Express, 4(2), 60-65.

[95] Tamukoh, H., Horio, K., & Yamakawa, T. (2006). A Digital Hardware

Architecture of Self-Organizing Relationship (SOR) Network. Lecture Notes in

Computer Science, Springer, 4234, 1168-1177.

[96] Lancaster, S., & Wierman, M. (2003). Empirical study of defuzzification.

22nd International Conference of the North American Fuzzy Information

Processing Society, 121- 126.

[97] Patel, A. (2004). Transformation functions for trapezoidal membership

functions. International Journal of Computational Cognition, 2(3), 115 - 135.

[98] Deliparaschos, K., Nenedakis, F., & Tzafestas, S. (2005). A fast digital fuzzy

logic controller: FPGA design and implementation. 10th IEEE Conference on

Emerging Technologies and Factory Automation, 1, 259 - 262.

[99] Broekhoven, E., & Baets, B. (2006). Fast and accurate center of gravity

defuzzification of fuzzy system outputs defined on trapezoidal fuzzy partitions.

Fuzzy Sets and Systems, 157(7), 904-918.

[100] Zimmermann, H. (1999). Practical Applications of Fuzzy Technologies

(The Handbooks of Fuzzy Sets). New York: Springer.

88

[101] Lee, S., Miyazaki, M., & Kim, J. (2009). Design of Very High-Speed

Integer Fuzzy Controller Without Multiplications by Using VHDL. Lecture Notes

in Computer Science, Springer, 4692, 93-100.

	titlewith-2
	examcommittee
	prefatory pages_ali_razib
	Abstract
	Acknowledgments

	thesis_ali_razib.pdf
	2.1 Overview of Control Systems
	2.1.1 Basic Feedback Control
	2.1.2 Modes of Control
	2.1.2.1 Proportional Mode
	2.1.2.2 Integral Mode
	2.1.2.3 Derivative Mode

	2.1.3 Laplace Transformation
	2.1.4 Transfer Functions
	2.1.5 Step Responses of Continuous-Time Linear Systems
	2.1.6 Digital Control Systems
	2.1.7 Z-Transform
	2.1.8 Discrete Transfer Functions
	2.1.9 Continuous-to-Discrete Transfer Function Transformation
	2.1.10 Stability

	2.2 Fuzzy Logic and Fuzzy Control
	2.2.1 Basic Concepts of Fuzzy Logic
	2.2.2 Membership Functions
	2.2.3 Fuzzy Set Operations
	2.2.3.1 Fuzzy Intersection
	2.2.3.2 Fuzzy Union
	2.2.3.3 Fuzzy Complement

	2.2.4 Fuzzy Logic
	2.2.5 Fuzzy Controller
	2.2.6 Components of Fuzzy Controller
	2.2.6.1 Fuzzifier Unit
	2.2.6.2 Rule Base Unit
	2.2.6.3 Inference Engine Unit
	2.2.6.4 Defuzzification Unit

	2.3 Hardware Implementations of Fuzzy Controllers
	2.3.1 Analog Implementations
	2.3.2 Digital Implementations
	2.3.3 Fast Defuzzification

	3.1 Logarithmic Arithmetic
	3.2 Approximate Correction Factor
	3.3 Design of the Controller
	3.4 Simulation Design
	3.4.1 Typical Fuzzy Controller
	3.4.2 Log-Domain Controller with Correction Factor
	3.4.3 Log-Domain Controller without Correction Factor

	4.1 Experiment 1
	4.1.1 Controllers
	4.1.2 Results
	4.1.3 Analysis

	4.2 Experiment 2
	4.2.1 Controllers
	4.2.2 Results
	4.2.3 Analysis

	5.1 Design Considerations
	5.2 Log-domain Controller
	5.2.1 Results
	Rise Time
	Settling Time
	Overshoot
	Speed
	Resource Utilization

	5.3 Pipelined Log-domain Controller
	5.3.1 Results
	Rise Time
	Settling Time
	Overshoot
	Speed
	Resource Utilization

	5.4 Comparative Analysis

