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Abstract

A risk analysis was performed on transmission 1line
loads due to annual extreme wet snow accretions. Both
horizontal and vertical loads were simulated using a
existing model of wet snow accretion. The model requires
values of five meteorological variables throughout the
precipitation event: air temperature, relative humidity,
precipitation rate, wind speed, and wind direction.
Calculations, based on twenty years of data from CFB Namao,
in central Alberta, Canada, gave the annual frequency of wet
snow events, the duration of these events, and the five
meteorological variables needed for the accretion model. The
annual maximum loads were used in extreme value analyses to
determine the relationships between the extreme loads and -
their mean return times. Finally risk analyses were used to
determine the structural strengths of transmission lines and
towers needed for these structures to have a specified

chance of lasting a specified lifetime.
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Mﬂmumm

a = one of the constants describing the relationship
between extrere values and reduced variates

Antilog = antilog to the base ten

c = fraction of snow that must melt to maintain a
heat balance [fraction]

Cp = specific heat capacity of air at a constant
pressure [J K1 kg'l]

dir = wind direction [degrees]

diry = mean hourly change in wind direction, as a
function of the number of hours since the onset
of the precipitation evert: [degrees]

D = molecular diffusivity of water vapour in
air [m? s~

D, = diameter of the cylinder [m]

e, = Vapour pressure in the ambient air ([kPa]

eg = saturation vapour pressure over ice [kPa)

exp = antilog to the base e

Fp = ventilation coefficient for diffusion [0]

Fg = ventilation coefficient for conduction (0]

I = electrical current [A]

k, = von Karman’s constant [0]

K = thermal conductivity [J m~1 s~1 K1

in = natural log (log to the base e)

Le¢ = specific latent heat of fusion [J kg'lj

Lg = specific latent heat of sublimation (J kg'l]

L, = specific latent heat of vaporization [(J kg'l]



Log = log to the base ten

IWF = liquid water fraction (by mass) of an accretion
or snowflake (fraction)

p = probability of exceedance (fraction)

P = pressure [(kPa)

Pe = mean hourly change in pressure, as a function of
the number of hours since the onset of the
precipitation event [kPa]

P{ ) = probability that the condition within the
brackets is true (fraction]

Pr = Prandtl number [0]

i

PR precipitation rate [mm water equivelent / hour)
Qe = rate of heat exchange due to evaporation or

condensation (J/s)

Qm = rate of heat exchange due to melting of snow
(J/s]
Q7 = rate of heat exchaige due to Joule hoating (/)

Qy = rate of heat exchange due to convection to tho
ambient air (ventilation) (J/s)

r = risk: the probability of an event of magnitudae
greater than a specific value occurring within »
specific time [fraction]

r, = mixing ratio of the air [kqg water vapur/kq air;

rg ~ saturation mixing ratio (kg water vapur/kqg asir]

R = electrical resistance per unit length {ohms/m)

R, = specific gas constant of water

vapour (J kg~! x~1;

xi
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cs

RSD

H 3

at

relative humidity [percent]

critical relative humidity [percent]

surface critical relative humidity [percent]
mean hourly change in relative humidity, as a
function of the number of hours since the onset
of the precipitation event [%]

a randomly generated number of standard
deviations

sticking efficiency [fraction]

Schmidt number [0]

time, usually in hours

temperature of ambient air [°cC]

return time

temperature of ambient air [K]

temperature of transmission line [K]
temperature of the surface of the snow flake [K]
mean hourly change in temperature, as a
function of the number of hours since the onset
of the precipitation event [K]

one of the constants describing the relationship
between extreme values and reducad variates
friction velocity [m/s]

wind speed [m/s]

velocity component of the snowflake,
perpendicular to the cylinder’s axis- [m/s]

mean hourly change in wind speed, as a function

of the number of hours since the onset of the

xii



precipitation event [m/s]

gust speed [m/s]

visibility [km)
mean hourly change in visibility, as a function
of the number of hours since the onset of the

precipitation event [km]

= fall speed of snowflakes [m/s]

reduced variate

height from the surface [m]

roughness length [m])

Kronacker delta

change in the following variable

vapour density of ambient air [kg m'3]
saturation vapour density of air with respect to

ice [kg m™3]
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INTRODUCTION

The accretion of wet snow on transmission lines is a
problem in many countries (Wakahama et al., 1977). The wet,
sticky snow collects around a transmission line (see Fig 1).
This increases its weight. It also increases its surface
ar~a, and hence the force applied by the wind. When
accretion takes place over a large area, several kilometres
of line can be brought down. For example, one storm in
Saskatchewan brought down ninety-three towers (Wakahama et
al., 1989). Damages can result in tens of millions of
dollars in replacement costs. It can also cause power
outages over large areas. In our society this can be 1life
threatening. In an industrialized and electronically
oriented society, prolonged power outages are more than a
minor annoyance. Wet snow accretion is therefore a
significant and costly problem.

1.1 Climatology of wet snow

Wet snow accretion is a problem wherever snow often
falls at temperatures near zero degrees Celsius (Wakahama et
al., 1977). Large bodies of water not only provide a source
of moisture, but they also can moderate the temperature to
values near zero degrees. Mountains provide a means for
lifting moist air to cause precipitation (Finstad et al.,
1988) . Consequently the presence of mountains and large
bodies of water increases the likelihood of wet snow events,

but they are not necessary for it to occur.



Figure 1 - Cross Sections of Wet Snow Accretions

on Cylinders

The figures are sketches of the accretion patterns in
actual wet snow accretions (adapted from Wakahama et al.,

1977) . Note that the accretions are not radially
symmetrical.



Many nations have problems with wet snow. These include
the United states, Canada, Norway, France, and Japan. The
last four have encouraged some research into mitigation of
the problem. Some locations as far inland as Alberta are
likely to receive more than ten wet snow events each year
(Lozowski et al., 1989). In Alberta wet snow events have a
greater tendency to occur in early fall or late spring than
at other times of the year (Lozowski et al., 1989).
Approximately half the wet snow events occur in October and
April. These are the months with the greatest number of
hours with precipitation occurring simultaneously with a
temperature near freezing.

1.2 Transmission line engineering

Transmission 1line conductors are typically several
centimetres in diameter, and hundreds of metres in length
between towers. This provides a large surface area on which
wet snow can collect. The extra weight alone is seldom
enough to down the lines. The wires are strong enough to
hold hundreds of kilograms per metre of line. Poles and
towers are secured in the ground so well that they will
buckle or break before they are pulled from the ground. In a
static situation, the forées on both sides of a pole or
tower are, to a good approximation, symmetrical. Thus the
net force is directed downwards along the axis of the pole
or tower. Wind destroys this otherwise workable system by
directing the net force away from the axis of the tower.

With enough force perpendicular to the pole or tower, it



will buckle or break. Once one tower buckles, the 1lines
exert unbalanced forces on the neighboring towers. This may
create a wave of destruction down the line. A severe wet
snow event can therefore destroy tens of towers and several
kilometers of line.

1.3 Previous and current research

1.3.1 Labecratory research

Wet snow accretions have been studied in Japan since
the 1930s. In 1953, Shoda published a detailed study of the
growth process of wet snow accretions (Wakahama et al,
1977) . He studied only the accretions associated with heavy,
wet snowfalls and winds of less than 3 m/s. These conditions
are typical of the coastal regions of central Honshu, facing
the sea of Japan. Shoda found that wind gusts in excess of 3
m/s would dislodge the accretions from the transmission
lines. The accretions studied by Shoda are a special case.
They are not representive of the bulk of wet snow accretions
throughout the world; most accretions occur with wind speeds'’.
on the order of 10 m/s.

It is very difficult to simulate wet snow in the
laboratory. Man-made wet snow is a poor substitute for the
flakes and water content associated with wet snow (Wakahama
et al., 1977; Admirat et al, 1985b). The method Wakahama
used for making artificial wet snow was to take snow
(preferably fresh) from the ground, and to drop it through a
three layered vibrating sieve to disaggregate the

snowflakes, before they fell into a temperature controllsd



wind tunnel. The snowflakes were made wet by being sprayed,
before they hit the target wires, with water at a
temperature of zero degrees Celsius. The air temperature was
kept between +1°C and +2°c. Time lapse photographs were used
to examine the growth process of the accretion, and to study
the trajectories of snowflakes approaching the accretion.

Wakahama, Kuroiwa, and Goto found that the accretion
would rotate around the cylinder, and that the accretion was
rarely blown away after it encircled the wire. They found
that large accretions could occur at any wind speed. Usually
the accretion would slide down the cylinder, taking the
shortest route to the position where the horizontal
components of the forces acting on the accretion were
balanced about its center of mass. However, at high wind
speeds aerodynamic 1lift might rotate the accretion upward
over the top of the cylinder. When stranded cables (non-
smooth cylinders) were used, they found that unless the wire
rotated easily, the accretions would tend to be blown off
the cylinder. The adhesive stress of the wet snow on the
cylinder was examined and found to be as expected for an
object the size of a snowflake completely coated by water:
19 + 1 kPa. The adhesive stress was found to have such a
value only when the spaces between snowflakes were filled
with water. This was the case when the accretion had a
liquid water faction (by mass) of 20% or greater.

Time lapse photography was used to examine the

collision and sticking efficiencies of wet snowflakes



striking a cylinder. The collision efficiency is the ratio
of the number of snowflakes that hit the cylinder, to the
number of snowflakes that would hit the cylinder if it did
not alter the air flow. The sticking efficiency is the ratio
of the number of snowflakes that stick to the cylinder, to
the number of snowflakes that hit the cylinder. Time lapse
pictures showed that the trajectories ot the
snowflakes,before they hit the cylinder, were straight to a
very good apprcximation. Consequently the collision
efficiency for wet snowflakes is unity. Photographs also
showed that, for a wire 4 cm in diameter, over 80% of the
snowflakes rebounded when they hit the wire. Therefore the
sticking efficiency was less than 20%. This fact is
important, because the mass of the accretion is proportional
to the sticking efficiency.

More recent research on the sticking efficiency of wet
snowflakes has been performed by Admirat, Lapeyre, and
Maccagnan (1985b). They sprayed grated snow into a
temperature controlled wind tunnel. The snow was dry when it
entered the wind tunnel. Heating by the ambient air caused
some melting before the snow hit the target wire. No
measurements of the liquid water fraction of the snowflakes
were made. The relative humidity was kept between 85% and
95%. The wind speed, the precipitation rate, and the air
temperature were easily varied. Experiments were made over a
wide range of these variables. Admirat, Lapeyre, and

Maccagnan’s experimental results were compared to the



predictions of a numerical model developed by the same
research group.

Admirat et al. observed that wet snow accretions had
the same growth and rotational properties that were observed
by Wakahama et al. (1977). Admirat et al. noted that, after
the accretion had rotated 180° from its original position,
its shape was approximately circular, with the cylinder off-
center. They also found that the rate of rotation was almost
constant over the first hour of the accretions. They
examined the temperature of the conductor to confirm their
assumption that the temperature of the accretion was 0°c.
They found that regardless of the air temperature, the
temperature of the line rapidly approached zero (in ten to
fifteen minutes). They also examined the sticking efficiency
of the snowflakes, and the density of the accretion, as
functions of the air temperature and the precipitation rate.
They fitted polynomials to their findings so that these
parameters could be estimated within their accretion model.
The polynomials'are:

S

1.759 PR™1-%09 1.4 - 10,638 PR71-282 1 3 .

34.898 PR™1-277 7.2 - 11,532 exp(-0.612 PR) T, -

0.485 1n(PR) + 1.607,

° = -108.2 + 11.5 PR + 164.7 T, ~ 5.4 PR T,

where

PR = precipitation rate [mm water equivalent /
hour]

S = sti :king efficiency [fraction]
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a temperature of ambient air (K]

density of the wet snow

Predictions of the mass of accretions by a model using these
polynomials compared favorably with the observed
characteristics of accretions in additional wind tunnel
experiments.

Admirat et al. also examined the effects of Joule
heating on the growth of wet snow accretions. Joule heating
is the production of heat by an electric current passing
through a resistive conductor. The power output of Joule
heating is equal to the electrical resistance times the
square of the current. This is of interest because
transmission lines carry a current and consequently produce
heat through Joule heating. Admirat et al. found that line
heating had no effect on the rotation of the accretion, and
no effect on the size of the accretion for precipitation
rates greater than 15 (water equivalent) mm/hr. At lower
precipitation rates the accretions would be too wet, and
consequently they fragment and fall off the 1line. A
precipitation rate of 15 (water equivalent) mm/hr is a heavy
precipitation rate. This implies that wet snow accretion is
unlikely to occur on a hot transmission line. The effect of
Joule heating is to raise the liquid water content of the
accretions.

1.3.2 Mathematical models

Mathematical models are useful research tools because

they allow experiments to be performed on paper or by a



computer. Ice accretion models had been devised as early as
the 1950s (Lozowski and Gates, 1987). Ice accretion is in
some respects similar to wet snow accretion. Both model the
accretion of airborne particles on transmission lines.
However relatively few models have been constructed for wet
snow accretion. Wet snow accretion models to date have been
based on either the thermodynamics or the mechanics of the
accretion process, but not on both.

The model produced by Admirat, Lapeyre, and Maccagnan
(1985a) is a thermodynamical model. It ignores the mechanics
of the problem, and treats the accretion as radially
symmetrical at all times. While this is not the case in
reality, it is certainly workable as a first approximation.
The model separates the accretion process into three stages:
formation, growth, and collapse. The formation stage is a
pre-accretion stage. It determines, relative to the onset of
' the precipitation, when the growth process begins. This
' happens when the temperature of the cylinder is zero degrees
Celsius. If the cable is warmer the snowflakes melt. It is
this melting that lowers the temperature of the conductor to
0°C. In the growth stage, the dominant thermodynamical
processes are balanced to determine the rate of growth of
the accretion. The third stage, collapse, occurs when the
structural strength of the accretion is insufficient to hold
it on the cylinder.

The first and second stages of the accretion process

are governed by the rate of heat exchange per unit length of
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transmission 1line. Terms include convection to the air

stream (Q,), evaporation or condensation (Qg) » melting (Qn),
and Joule heating (Q3). In the first stage, the metal line
also acts as a heat source. In the second stage, these four
heat exchanges rates are balanced as follows:

Qy + Qg + Qp + Q7 = O.
The heat exchanges rates may be written as follows (Admirat
et al., 1985a):

Qy = K (T, - Tg) m D,

- 0.63 -
Qe - LV gﬁ.o‘s3 .K_._(L'ac_.__zsu&cl

P
Qu = Lg © (1 - LWF) S PR (1 + Y 2) D,
W
— 2
and Qy = R I<,
where
c = fraction of snow that must melt to maintain

the heat balance,
p = specific heat capacity of air,

molecular diffusivity of water vapour in air,

O U 0
I

]

c diameter of the cylinder,

H
I

electrical current,

K = thermal conductivity of air,

Le = specific latent heat of fusion,

L, = specific latent heat of evaporation,

LWF = liquid water fraction of the accretion,

Pr = Prandtl number: the ratio of momentum
diffusivity to thermal diffusivity,

r, = mixing ratio of the air,



r

Sc

W

11
= saturation mixing ratio,

= electrical resistance per unit length of

line,

sticking efficiency,

Schmidt number: the ratio of kinetic

viscosity to molecular diffusivity,

= temperature of the ambient air, in degrees
Kelvin,

= temperature of the transmission line in
degrees Kelvin,

= velocity component of the snowflake,
perpendicular to the cylinder’s axis,

= fall speed of the snowflakes.

The equations for the heat exchange processes can be

simplified by collecting the constants and expressing some

of the variables in more convenient forms:

and QJ

- 0.61 ; 0.61
= 14.2 Dg Ug T,

24.3 p 0-61 p 0-61 [ea(Ty) - eg(To)1,

0.93 ¢ (1 - LWF) S PR (1 + gcil Dg/
W

= R 12,

where the units of the heat exchange rates are

€a

es

Joules per second,

vapour pressure in the ambient air,

= saturation vapour pressure over ice.

The model keeps track of the mass of the accretion and the

amount of water present in the accretion. It calculates a

radius for the accretion based on the mass of snow and its



assumed density. Due to the symmetry assumption, this type
of model has the advantage of being quite simple. A hand
calculator is all that is needed to make the calculations.

Mechanical models are much more complicated than
thermodynamical models. They do not make the assumption of
radial symmetry. In this aspect they provide a better
representation of what happens in nature. An examination of
the cross section of wet snow accretions (Wakahama et al.,
1977) shows that the accretion builds asymmetrically on the
windward side of the 1line, until the forces holding the
accretion in place are overcome by gravity. When the
accretion moves it rotates until its center of gravity is
directly below the line. A series of layers caused by the
rotations is often visible (see Figure 1) in cross sections
of the accretions (Wakahama et al., 1977). A mechanical
model (eg. Finstad, 1989; see section two of Appendix F)
gives a better model of the shape and internal layering of
wet snow accretions. This model also gives a reasonably
accurate prediction of shape, mass, and density (Finstad,
1989).

The only time mechanical models use thermodynamics, if
at all, is to calculate when accretion begins. A
thermodynamic balance can estimate the liquid water content
of the accretion. If the liquid water content of the
accretion is not between 20% and 40% by mass, then it will
have insufficient cohesive strength, and is likely to be

blown off a transmission 1line (Wakahama et al., 1977).
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probability is for a ten minute period, then the units of
the return period are tens of minutes. In the case of an
annual analysis of extremes, the most reasonable unit for
time is years.

The risk (r) is defined as the probability that one or
more events will occur, that exceed the system’s tolerance,
during a specified time interval (t). The risk can be
determined as follows (a proof is given in appendix A):

r=21- (1 - p)t. (11)
Equation (10) can be used to replace the probability of
exceedance with mean return period:

r=1-(1-T1ht, (12)
The same un%ts of time must be used for the time interval,
and the return period; one unit of time must be equal to the
interval over which the probability applies. In practical
applications, the time interval, t, is the desired life time
of the system. Table 2 displays risk as a function of the
probability and the time interval. Note that even for a low
probability such as 0.02 (an occurrence of once in every
fifty time units on the average) the risk rises rapidly with

the length of the time interval.
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Table 2 - Risks
Time Probability of Occurrence

Int. _0.50 0.30 0.10 0.05 0.02 0.01 0.001

« 0.7500 0.5100 0.1900 0.0975 0.0396 0.0199 0.0020

5 0.9688 0.8319 0.4095 0.2262 0.0961 0.0490 0.0.50
10 0.9990 0.9718 0.6513 0.4013 0.1829 0.0956 0.0100
20 1.0000 0.9992 0.8784 0.6415 0.3324 0.1821 0.0198
30 1.0000 1.0000 0.9576 0.7854 0.4545 0.2603 0.0296
40 1.0000 1.0000 0.9852 0.8715 0.5543 0.3310 0.0392
50 1.0000 1.0000 ©0.9948 0.9231 0.6358 0.3950 0.0488
75 1.0000 1.0000 0.9996 0.9787 0.7802 0.5294 0.0723
100 1.0000 1.0000 1.0000 0.9941 0.8674 0.6340 0.0952
250 1.0000 1.0000 1.0000 1.0000 0.9936 0.9189 0.2213

500 1.0000 1.0000 1.0000 1.0000 1.0000 0.9934 0.3936

It is possible to express the mean return period as a
function of the risk and the time interval. To do this we
add one to both sides of Equation (12) and take the tth
root:

1 -71= (1 - l/t, (13)
Rearrange Equation (13) to isolate the mean return period
gives:

Tl =1-(1-nl/t=p. (14)
Finally inverting both sides of Equation (14) yields:

T =[1- (1-r)1/%"1, (15)
This is useful because architects have specific maximum

risks and minimum life times (time intervals) in mind when
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they design a structure. With Equation (15) it is possible
to determine the length of the mean return period associated
with the desired risk and the designed life time. The mean
return period and probability are associated with the
magnitude of the phenomenon that is creating the risk. This
in turn, gives the architect an approximation of the forées
his structure will have to be able to withstand. Knowi:. -
this he can attempt to design the structure to withstand
these forces.

The following table (Gumbel, 1958) gives an indication
of how great a tolerance must be built into a system for it
to last a long time with little chance of failure. It lists
the number of mean return periods, for events which an
object must be constructed to withstand, to have a specified

chance of failure over a specified time.
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Table 3 - Minimum Designed Mean Return Periods

k Time Interval t
2 5 10 15 20 25 50 100
2.00 4.02 6.69 11.0 14.9 18.0 35.6 72.7
3.43 7.74 14.9 22.1 29.4 36.6 72;6 145
4.44 10.3 20.1 29.9 39.7 49.5 98.4 196
6.12 14.5 28.5 42.6 56.5 70.6 141 281
7.46 17.9 35.3 52.6 70.0 87.4 174 348
9.47 22.9 45.3 67.7 90.1 113 225 449
12.8 31.3 62.0 90.8 124 154 308 616
19.5 48.1 95.4 143 190 238 475 950
39.5 98.0 196 293 390 448 976 1949
99.5 248 496 743 990 1238 2475 4950
198.4 498 996 1492 1992 2448 4975 9953

For annual wet snow

are years.
years, the system would have to be built to withstand the
effects of an event that occurs on average once in 95.4

years! The probiem of design standards is also affected by

extremes the appropriate units of time

the standards of society.

risk will set the minimum acceptable mean return period

To have a 10% risk of a power outage,

(tolerance) for which a system should be designed.

over ten

The maximum socially acceptable
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3.1 Extreme Value Analysis

Ideally a relationship can be found between the
magnitude of the phenomenon creating the risk and either the
probability of exceedance or the mean return period. Extreme
value analysis can be used to find this relationship. Gumbel
(1958) has described the use and purpose of extreme value
analysis in the following manner: "the statistical theory of
extreme values deals with the behavior of the largest
observations in a statistical series and serves for the
forecast of extremes". It is the ability to forecast the
extremes that makes it possible to find the relationship
between the extremes of a phenomenon and the mean return
period or the exceedance probability related to these
extremes.

The extreme values of interest, the horizontal load and
the vertical load, have no upper limit to their magnitude.
The lower limit is zero. In other words they are unbounded
at the upper end, and bounded at the lower end. This means
they are 1likely to fit what is called an exponential
probability distribution (Kinnison, 1985):

P{x, > X} = exp( -exp( -Y ) ), (16)

where Y= (x-u) / a, (17)

and u and a are constants.
‘Y’ is called the reduced variate. If the distribution of
extreme values is an exponential distribution then Equations

(16) and (17) can be used to relate the probability of
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occurrence to the magnitude of the extreme value. To do this
the constants ’a’ and ‘u’ must be determined.

There are several methods that can be used to determine
the constants of the distribution ‘a’ and ‘u’. The two
methods that will be used will be referred to as the method
of moments and the regression method (Kinnison, 1985). The
method of moments uses the constant’s similarity, in
Equation (17), to a standard deviation and a mean. While ’a’
is not a standard deviation it is a measure of the
dispersion of the extremes. Similarly ‘u’ is not the mean of
the extremes, but it is related to the mean. Let ME be the
mean of the extreme values, and let SDE be the standard
deviation of the extreme values. Then,

SDE = 71 a/69-3, (18)

and ME=u+ aly, (19)

where Y is Euler’s constant: ¥ = 0.5772....

These can be solved for ‘a’ and for ’‘u’:

SDE 69-5/ 4 (20)

a
u=ME - a . (21)
Kinnison implies that this method may be more accurate than
the regression method.
The regression method determines the constants ‘a‘’ and
‘u’ by finding the best fit 1line for the relationship
between the reduced variate and the extremes. Equation (17)
shows that if the distribution of extremes is an exponential
distribution then this relationship will be 1linear. 1In

practice a variation of Equation (17) is used:
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Xx=1u+ ayY. (22)
The slope of the extremes as a function of the reduced
variate is equal to ‘a’. The y-intercept (Y = 0) of Equation
(18) is equal to ’‘u’. The reduced variate is estimated by
estimating the probability of exceedance, and by using the
functional inverse of Equation (16):

Y==1n( - 1In(1 - p) ). (23)
In order to estimate the exceedance probability, the
extremes must be ordered from smallest to largest. If there
ore N, extreme values then the probability of non-exceedance
of the m*P extreme can be approximated as a percentile:

P(x < X(m]} =m / (N + 1). (24)
The probability of exceedance is one minus the probability
of non-exceedance:

P{x > x(m]} =1 ~m / (N + 1). (25)
Equation (25) can be substituted into Equation (23) to
provide an estimate of the reduced variate for each extreme:

Y==-1n{ -1ln{m/ (N-1) ] }. (26)
To use the regression method, there must be enough extreme
values to give a reasonable estimate of the reduced variate.
Gumbel (1958) recommends at least thirty values.

If the constants ‘a’ and ‘u’ can bev found, it is
possible to determine a relationship between the extreme
values and the exceedance probabilities. This is achieved by
substituting Equation (23) into Equation (22):

X=u=-alnl -1In(1-p) ]. (27)
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It should be recalled from page 46 that the methods for
determining the constants ‘a’ and ‘u’ depend upon the
assumption that the distribution of the extremes is an
exponential‘ distribution. This assumption can easily be
tested when the regression method is used to determine ’a’
and ‘u’. The coefficient of regression is a measure of the
‘goodness of fit’ of the linear relationship. If the fit is
good, then the assumption about the distribution of extremes

is likely to be true.
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RESULTS AND DISCUSSION OF SURFACE AND RISK ANALYSES

Twenty-one years of hourly surface meteorological data
were examined to produce a model of annual potential wet
snow events. The data came from CFB Namao from April, 1966
to October, 1986. The meteorological readings were recorded
every hour. The data set was reduced to potential wet snow
events by chosing only the times with precipitation and a
temperature between -2°C and +6°C. This left 1525 hours of
data. The data for every hour of each variable was sorted
according to the number of hours from the onset of the
precipitation event. The hourly means of some of the
variables varied as a function of time. This meant that a
criterion had to be established to determine the beginning
and fhe end of a precipitation event.

Obviously events begin with the onset of precipitation.
Initially, the end of an event was defined as the end of the
last hour, in one or more concurrent hours, when
precipitation occurred. This did not seem entirely
reasonable as a single hour could therefore separate two
events. For such cases one long event seemed to be an
equally valid representation. It would also be a more
accurate representation for calculating the effects of wet
snow accretion on transmission lines. In nature, a 1lull of
one or two hours in the precipitation would have 1little
effect on the final size of the accretion, provided that
there was little or nec melting. Thus statistics that treat

two events that are nearly adjaceat in time as one long
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event would appear to provide a better representation of
the meteorological parameters required for modelling the
accretion process. In order to allow for this possibility, a
lull of one hour without precipitation was not considered to
end an event, provided this hour occurred after the first
three hours of the event. Similarly, a 1lull of two hours
would not end an event, provided it occurred after the first
five hours. Using this criterion, there where 464 potential
wet snow events with 154 events having durations of three or
more hours.
4.1 Results of the analysis of surface input parameters

The model for wet snow accretion used in the extreme
value model requires some surface parameters as input. These
parameters are: air temperature (Ta), relative humidity
(RH), wind direction (dir), wind speed (U), and rate of
precipitation (PR). The extreme value model also needs the
duration (dur) of the event, the number of potential wet
Snow events in a year, and the number of yYyears to be
simulated. The number of years is arbitrary and can be set
interactively when the program is run. The frequency
distribution of the number of potential wet snow events in a
Year made a good fit when compared to a Gaussian
distribution (see Figure 6). Only the nineteen complete
years were used to determine the statistics of the annual

number of potential wet snow events. The distribution had
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Figure 6 - Distribution of the Number of Annual

Potential Wet Snow Events

A Gaussian curve is superimposed on the histogram of
the number of potential wet snow events in one year. The
mean number of events is 22.632 events per year. The

standard deviation is 7.9 events per year.



the following statistics:

mean: 22.632 events per year

standard deviation: 7.946 events per jyear

reduced chi squared: 0.683.

This reduced chi squared value (Taylor, 1982) indicates that
there is a 40% chance that the hypothesis that the
distribution is not Gaussian should be rejected. This means
that a aussian distribution is a fairly good approximation.
Therefore the distribution of the number of events in a year
was simulated by a Gaussian distribution.

A very good distribution also exists for the duration
of potential wet snow events. A linear relationship exists
between the log of the duration and the log of the number of
events with that duration (see Figure 7):

log(dur) = m log(number of events with this dur) + b (28)
A least squares analysis (Taylor, 1982) was used to verify

this. The results were:

slope, m: -1.577
standard deviation of the slope: 0.128
Y intercept, b: 2,290

standard deviation of the Y-intercept: 0.139

correlation coefficient: -0.937

data points: 23
were X is the log (base 10) of duration (hours), and Y is
the log of the number of events of a given duration.
Equation (28) can be used to determine a relationship

between the duration (dur,) and the probability that the
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Figure 7 - Distribution of the Duration of

Potential Wet Snow Events

The vertical axis is the log of the number of potential
wet snow events for a given duration, and the horizontal
axis is the log of the duration of potential wet snow
ev~uts. The distribution makes a good fit (correlation
coefficient of -0.937) to a linear relationship. The ‘best

fit’ line is shown.
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duration of an event will be equal to or less than that

duration:

dur, = £( P{dur, < dur})} ) = f£( dur ). (29)
In other words it is possible to construct a probability
function for the duration of a potential wet snow event. To
demonstrate this let

X’ = leg( dur ), a dummy variable for X,

X = log( dury ),
Y = log( number of events ),
Xo = X/ (Y=0) = -b/m,

m = slope of Equation (28),

b = Y-intercept of Equation (28),

P =P{(X < X)) = P{duro < dur}.
From the least squares analysis it is apparent that Y is (to
a close approximation) a linear function of X’

Y =mX’ + b, (30)

By definition P is the integral of Y from X’=0 to X’=X,
divided by the integral of Y from X’=0 to X’=X,. Thus:

P=0.5mX%+b3x . (31)
0.5 m X% + b X,

Equation (31) may be rearranged as follows:

0.5m X% +b X - (0.5 m Xo2 + b X)) P=o0. (32)
Rewriting X, in terms of the slope and y-intercept:

Xo = b / m. (33)
This was substituted into Equation (32), and Equation (32)

was multiplied by 2/m to yield:

2 + 2 bX+b2P=o0 (34)
m mz



This is a quadratic equation so X can be solved for using
the quadratic formula:

X=[(1-97%9%5_11pb/m. (35)
The antilog of this expression was used to express duration
in terms of the cumulative probability of the occurrence of
that duration (see Figure 8):

dur, = Antilog{ [ (1 -P%)%5 -1 7b /m ;. (36)

Both the duration of events and the number of events in
@ Yyear are therefore easy to generate in a model. To
generate the duration, P is replaced by a random number
between zero and one. Assuming that the random number
generator has a uniform distribution, this will produce a
very accurate simulation of the distribution of the duration
of an event. Its shortcoming is that it limits the duration
to twenty-eight (10'b/m) hours. Durations of greater than
twenty-eight hours are possible in nature, but they are
unlikely. Only one event of the 464 observed potential wet
snow events had a duration greater than twenty-eight hours.
In practice it is impractical to model events of greater
than twenty-eight hours in duration.

Two analyses were required to simulate the behavior of
each meteoroclogical parameter: an examination of its initial
value, and an examination of how the parameter changes with
time. The distribution of initial conditions (see Figures 9
to 11) for each parameter can be approximated as Gaussian.
However, this is not an accurate approximation. Chi squared

tests indicated a probability of less than one percent that
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Figure 8 - Cumulative Probability Distribution of Duration

The duration is shown as a function of the cumulative
pProbability of the occurrence of the duration. Note that the

duration has an upper limit of 28 hours.
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Figure 9 - Frequency Distributions of the Initial

Values of Air Temperature and Relative Humidity
The values of the air temperature (a) and the relative
humidity (b) are sorted according to their number of
standard deviations from the mean. The initial air
temperature has a mean of 2.2 ©c, and a standard deviation
is 2.5 9. The initial relative humidity has a mean of
88.8%, and a standard deviation of 9.0%. A normal frequency

distribution is shown for comparison.
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Figure 10 - Frequency Distributions of the Initial
Values of Wind Direction and Wind Speed

The values of the wind direction (a) and the wind speed

(b) are sorted according to their number of standard

deviations from the mean. The initial wind direction has a
mean of 356 degrees, and a standard deviation of 80 degrees.
The initial wind speed has a mean of 4.9 m/s and a standard

deviation of 3.0 m/s. A normal frequency distribution is

shown for comparison.
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Figure 11 - Frequency Distributions of the Initial
Values of Visibility
The initial values of the visibility are sorted
according to their number of standard deviations from the
mean. The initial visibility has a mean of 11.4 km, and a
standard deviation of 8.8 km. A normal frequency

distribution is shown for comparison.
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the distributions were Gaussian. In the case of the relative
humidity, with an upper bound of 100%, a Gaussian
distribution, which is unboundedqd, is not even a
qualitatively accurate representation of the natural
distribution. However, Gaussian distributions were found to
fit the initial conditions better than other simple
distributions, so they have been used as first
approximations. Section 4.1.4 examines the initial values of
the meteorological parameters more thoroughly.

The hourly change in each parameter was examined next.
A time increment of one hour was used because that was the
smallest time step used in the AES data. The hourly changes
were examined for trends (time dependency), means, standard
deviations, and correlations with each other and Wwith the
value for the preceding hour. In all cases there was found
to be a large degree of independence (see Section 4.1.5).
Consequently the change in a parameter could be described by
only its mean change and its standard deviation from the
mean change. The distributions of hourly changes (see
Figures 12 to 14) were also non-Gaussian. Too much of the
data was grouped too Closely to the mean for the
distributions to be Gaussian. However, as a first
approximation, the distributions were taken to be Gaussian.

Section 4.1.5 examines the hourly changes more thoroughly.
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Figure 12 - Frequency Distributions of the Hourly
Changes in Air Temperature and Relative

Humidity
The hourly changes in the air temperature (a) and the
relative humidity (b) are sorted according to their number
of standard deviations from the mean. The hourly change in
air temperature has a mean of 0.001, and a standard
deviation of 9.656 ©°C. The hourly change in relative
humidity has a wsean of 0.443, and a standard deviation of

4.77%. A normal frequercy distribution is shown for

comparison.
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Figure 13 - Frequency Distributions of the Hourly
Changes in Wind Direction and Wind Speed
The hourly change in the wind direction (a) and t
wind speed (b) are sorted according to their number of

standard deviations from the mean. The hourly change in wind

direction has a mean of -3.349 degrees, and a standard

deviation of 39 degrees. The hourly change in wind speed has
a mean of 0.011 m/s and a standard deviation of 1.6 m/s. A

normal frequency distribution is shown for comparison.
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Figure 14 - Frequency Distributions of the Hourly
Change in Visibility |
The hourly changes in the visibility are sorted
according to their number of standard deviations from the
mean. The hourly change in visibility has a mean of -0.578
km, and a standard deviation of 6.39 km. A normal frequency

distribution is shown for comparison.
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4.1.1 Visibility as a Measure of Precipitation Rate

The hourly rate of precipitation for snow and for wet
snow is not measured at AES surface stations. However, the
rate of precipitation is an important parameter in accretion
models. Consequently the rate of precipitation must be
inferred from other measured data. Stallabrass and others
have undertaken studies (Stallabrass, 1976) of the use of
the visibility to estimate the precipitation rate during
snowfall. Stallabrass determined the following relationship
based on twelve years of snowfall and visibility data from
the Toronto International Airport:

log( V’ ) = -0.419 - 0.607 log( PR’ ), (37)
where V’ is the visibility in units of statute miles,
and PR’ is the rate of precipitation in units of inches
per hour.

This can be rearranged and converted to metric units:

PR = Antilog[ 0.055 - log(V) / 0.607 ], (38)
where V is the visibility in units of kilometres,

and PR is the rate of precipitation in units of

centimetres per hour (which, for dry snow, is

approximately equivalent to units of millimetres of
water equivalent per hour).
Visibility is measured every hour at AES surface stations,
SO precipitation rate can be easily estimated from
visibility (see Figure 15). '
Wasserman and Monte (1972) have also proposed a method

for estimating the precipitation rate from the visibility.
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Figure 15 - Precipitation Rate as a Function of visibility

‘The metric form of Stallabrass’ 1linear relationship
(Equation 38) between the log of the precipitation and the
log of the visibility is shown. The areas representing
light, moderate, and heavy snowfall are also shown. These

make a good fit to st&Ilabrass' line.



66
This method is widely used. It is included in the weather

manual used by the American Air Force (AWS pamphlet 105-56) .
Twenty years of precipitation data from LaGuardia Field in
New York City were used to compare the snow intensity to the

average hourly snowfall (Table 4).

Table 4 ~ Snow Intensity vs. Average Hourly Snowfall

Average Hourly Probable Range of
Snow Intensity Snowfall Snowfall Rate
(cm/hr) (cm/hr)
light (S-) 0.5 0 - 1.15
moderate (S) 2.5 1.2 - 3.5
heavy (S+) 4.0 > 3.5

The snow intensity can also be related to visibility (Table
5). Note that in 1972 visibility was measured in increments

of an eighth of a statute mile.

Table 5 - The Relation of Snow Intensity to Visibility

Snow Intensity Visibility
light (s-) 5/8 statute miles or more
moderate (S) 1/2 or 3/8 statute miles
heavy (S+) 1/4, 1/8, or 0 miles

Figure (15) shows that Equation (37) 1is completely
compatible with Monte and Wasserman’s method of determining

the precipitation rate from the visibility. This implies



that Equation (37) is valid in different climatic regions.
Consequently we take it to be valid in Alberta.

The data that Stallabrass used to determine a linear
relationship between visibility and precipitation rate, had
been previously used in a similar study (Stallabrass, 1976)
by Richards. Richards did not assume a linear relationship
between the visibility and the precipitation rate. Richards’
curve is similar for light precipitation rates (less than
0.5 com/hr). However, for heavy ©precipitation rates
Stallabrass’ 1linear relationship estimates precipitation
rates double those of Richards. Stallabrass may have
extrapolated Equation (37) into situations where it does not
apply. Heavy precipitation comprised less than one percent
of Richards data set (Stallabrass, 1976). Consequently, if
this portion of the data was not heavily weighted in
Stallabrass’ least squared analysiz, even a very good
correlation would be insufficient to prove that Hguation
(37) 1is representive of the precipitation rate in low
visibility situations. However, without Richards data set,
or a similar data set, it is impossible to improve the
accuracy of Equation (37). Consequently Equation (38),
limited to visibilities greater than 100 m, is used in the
extreme accretion model.

4.1.2 Estimation of Gust Speed

A very simple estimate of gust speed is used. The

standard deviation of horizontal wind speed is approximated

(for conditions of neutral stability in the surface layer)

67



by twice the friction velocity u,. The conditions of neutral
giability, an adiabatic lapse rate and no convection, are
unlikely to be met during a wet snow event. However, the
conditions should be close to that of neutral stability
(Stull, 1988). The square of the quantity u, is defined as
the Reynolds stress divided by the average density of the
air in the layer (Stull, 1988). The friction velocity is
independent of height within the surface layer. The average
wind speed as a function of height is assumed to be a log
wind profile as described by K-theory:

U(z) = uy In( z / 24 ), (39)

whére ky, = von Karman’s constant: 0.4,
z - the height,
2o - roughness length.
This can be rewritten to solve for Uy, with a known average

speed at a reference height (Zref):

Uy = Ko U205 (40)
In(z )

ref/ 4u!
If the maximum gust speed (V) 1s assumed to be ’‘n’ standard
deviations greater than the average speed, then this speed

may be described by:

v{(z2) = U(z £l in(z) + n 2 k. U(z £) . (41)
J lg?zref) In(zpef /rgo)

The reference height for AES measurements is ten metres. For
prairie conditions, if the vegetation is not buried by snow,
the roughness 1length can be approximated as three

centimetres. Equation (41) can be solved for the gust
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Purely mechanical models cannot determine the fraction of
the mass that is liquid. This is one of their important
shortcomings. If thermodynamics is included in a mechanical
model, then the accretion must be divided into layers and
sections, and the thermodynamics of each section must be
examined, as well as the thermodynamics of the interactions
between adjacent section. As the accretion grows the size
and shape of these sections changes. This makes modelling
very difficult. Mechanical and thermodynamical process are
not both used in the same model because difficulties in
making and programming such a model.

1.3.3 Prevention of wet snow. accretions

Passive solutions, to the problem of preventing the
growth of large wet snow accretions on transmission 1lines,
have been proposed and even tested, but they have not proven
to be effective for long line spans. Changes to the shape of
the transmission line have been tested in Japan (Wakahama et
al., 1977). Two shapes were tested by the Accretion
Prevention Research Group of the Hokkaido Electric Company.
One modification to the shape of the iine was to place rings
two to four millimetres thick around the line at intervals
of 1.5 - 2 times the length of the stranding pitch (Figure
2a). This stopped accretions from sliding along the strands.
However, this is only useful if the line has a great enough
torsional rigidity and short enough span to prevent rotation
of the line. This technique was effective for an ACSR

(aluminum conductor steel reinforced) line with a diameter
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of 13.5 -~ 18 mm. For longer spans, 0.8 kg weights were
attached to the line at intervals of less than 100m. When
the rings and the weights were used together, they prevented
the growth of large accretions of wet snow.

An alternative modification to the shape of wires was
used for vinyl covered wires. Longitudinal fins were added
to opposite sides of the wire (Figure 2b). These ran the
length of the wire. They prevented the accretion from
sliding around the vinyl. This technique also proved to be
effective in urban situations were vinyl coated wires were
used.

Currently there is no effective method to prevent long
transmission lines from being downed during severe wet snow
events. Moreover, severe wet snow events cannot currently be
forecast with any precision. Thus, if they are to be
prevented, they must be detected and dealt with on site.
Given that the effects could be detected, and that personnel
could reach the site of the problem in time, there are
feasible means to prevent damage. The wet snow could be
knocked or melted off the lines. However, in rural areas,
detection is difficult, because severe wet snow events
reduce both the visibility and the types of available
transportation. While prevention through detection may be
reasonable in some areas, in most areas it is highly

impractical.
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{a)

(b)

Figure 2 -~ Techniques of Accretion Prevention

on Transmission Lines

The growth of large wet snow accretions on transmission
lines can be prevented by modifying the shape of the lines.
Two shapes have been found to be successful in preventing
large accretions from growing on the short 1line spans
typic'* of urban locations. Figure 2a shows rings two to
four millimetres thick around the line at intervals of 1.5 =~
2 times the length of the stranding pitch. Figure 2b shows

fins added to opposite sides of the vinyl coated line.
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THEORY OF WET SNOW_ ACCRETION

In order to thoroughly study the damage done by wet
snow, the problem of accretion must be examined on several
scales. The small-scale physics of the accretion process is
examined to learn how the accretion begins to form, and how
it grows. At the larger scale, the characteristics of
precipitation events must be examined. This serves several
purposes. One is to determine the meteorological conditions
for the occurrence of wet SNOW. Another purpose,
climatological in nature, is to determine the duration and
the frequency of occurrence of potential wet snow events of
a specific location. Potential wet snow events are
precipitation events with é'temperature between -2°C and
+6°C. These studies, used with an accretion model and a risk
analysis, can be used to estimate the chance of occurrence
and the severity of wet snow events.

A risk analysis (see Chapter 3) is the goal of this
study, so only the maximum loads over a specific time period
are of interest. The time period of interest, for our
purposes, is one year. A risk analysis requires the extrema
from at least thirty time periods (Gumbel, 1958). This means
that measurements for at least thirty years are required.
Since the maximum force on transmission lines is not
routinely measured, the force must be estimated through the
use of an accretion model (Finstad. '989). The accretion
model requires certain meteorolo; .1 parameters (air

temperature, relative humidity, precipitation rate, wind and
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velocity) to calculate the force on the 1line. These
meteorological parameters are not constant throughout a wet
snow event, and some, such as wind velocity and
precipitation rate, vary significantly with time. The
horizontal force on the line is proportional to the square
of the wind velocity, so the maximum force could occur at
any time throughout the wet snow event. This means that the
meteorological parameters have to be known (measured) at
intervals, ideally before and after each change in wind
speed, throughout the wet snow event. Meteorological
observation stations are usually not near major transmission
lines. Consequently there are very few measurements of the
meteorological conditions during wet snow events, that were
observed at the site of the transmission lines. To make up
for this deficiency a model of potential wet snow events was
devised.
2.1 The formation of wet snow in the atmosphere

Wet snow is made up of both liquid water and ice. For
large accretions to adhere to transmission lines, between
20% and 40% (Wakahama et al., 1977) of the mass of the
falling snow must be liquid water. Accretions can occur with
liquid water fractions of the snowflakes of less than 20% if
Joule heating is producing enough heat, relative to the
precipitation rate (Admirat et al., 1985b). When 1less than
20% of the mass is liquid the snow retains some of the
qualities of dry snow. It is not very sticky. If greater

than 40% of the mass of most snowflakes is water then the
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liquid water fraction of the accretion will eventually grow
to be greater than 40%. When the liquid water fraction of
the accretion is more than 40%, the structural strength of
the accretion will decrease. This increases the likelihood
of the accretion breaking off the line. The necessary
fraction of liquid water limits the conditions under which
wet snow accretions can occur. The falling snow must begin
to melt, but cannot be excessively melted, by the time it
reaches the ground. Matsuo and Sasyo (1981b) studied the
melting process of wet snow. When the snow enters warm air
there are three stages of melting. During all of the stages,
the snowflake gains heat through convection from the ambient
air. Initially, the heat loss due to sublimation, without
melting, balances the heat gained by convection from the
air. In the second stage, melting.is required to balance the
heat exchange; this is when the snow becomes wet. In the
third stage the heat exchange requires rapid melting. Matsuo
and Sasyo determined a theoretical condition for the
formation of wet snow in a melting layer. Their paper
contained only a graphical representation of the condition.
The relationship between relative humidity and air
temperature in the melting layer appears to be linear, and
described by the equation:
RH > 100 - 12.5 t,, (1)

where the temperature is in degrees Celsius.

A simplified approach (Lozowski, Finstad, and Bourassa,

1989) similar to that of Matsuo and Sasyo can be used to
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19
derive Equation (1). The heat exchanges taking place on the

surface of a wet snowflake are assumed to be balanced. The
effects of condensation are relatively small, and can be
ignored t»> a first approximation. This leaves convection and
sublimation as the balanced heat exchange processes:
Fg K (Ty - Tg) = Fp D Lg Pg(Tg) = 0,(T5) 1, (2)
where
D = molecular diffusivity of water vapour in air,
Fp = ventilation coefficient for diffusion,

Fp = ventilation coefficient for forced

convection,

K = thermal conductivity of air,

Lg = latent heat of sublimation,

T, = temperature of ambient air, in degrees
Kelvin,

T, = temperature of the surface of the snow

flake, in degrees Kelvin,
0, = vapour density of ambient air,

P¢ = saturation vapour density of air.

The effects of ventilation in Equation (2) can also be
ignored (Matsuo and Sasyo, 1981b), since the effect of
ventilation on convection is approximately equal to the
effect of ventilation on diffusion (Fg = Fp). Vapour density
can be removed from Equation (2) through the use of the
ideal gas law applied to the partial pressure of water

vapour:
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e = pR, T, (3)

[t
i

the partial pressure of water vapour,
R,, = specific gas constant of water vapour,

T

temperature in degrees Kelvin.
Substituting Equation (3) into Equation (2), assuming that
the ventilation coefficients are equal, and rearranging,

yields:

K R, (T, = To) = ec(Ts) _ eq- (4)
D S TS Ta

Equation (4) is easier to evaluate when it is expressed in
terms of the relative humidity (RH) rather than the partial

vapour pressure of the ambient air:

®a(Ta) = RH £(To). (5)

Because the snowflake is melting, but is not completely
melted, the temperature at the surface of the snowflake, Tas
is assumed to be 273 K. The minimum relative humidity (RH)

for wet snow to occur may therefore be found from:

KRRy (To_= 273) - e5(273) _ RH. e (T.), (6)
D Lg 273 f00°T,

where the temperature is in degrees Kelvin. If the relative
humidity is less than this critical relative humidity (RH.)
then the snow will sublimate, and freeze or cool rather than
melt. Note that the critical relative humidity refers to the
relative humidity at some height in the atmosphere, rather
than to the relative humidity ét the surface. For melting to
occur, the relative humidity must be greater than the

critical relative humidity.



Equation (6) is non-linear. However, oﬁer the
temperature range from 0°C to 5°C, the curve of the critical
relative humidity as a function of temperature, described by
Equation (6), approximates a straight line. A least squares
fit to the curve yields the following linear approximation:

RH, = 100 - 12.25 t,, (7)
where t, is the temperature measured in degrees
Celsius.
The maximum error in the critical relative humidity, due to
approximating the relationship as linear, is a change of
+2.3%.

Equation (7) represents an approximate boundary
condition, in a space described by relative humidity and air
temperature, on the formation of wet snow. This condition
must be met far enough above the surface for between twenty
percent and forty percent of the mass of the snowflakes to
melt. However surface conditions are the conditions which
are most widely measured. Unfortunately, the Atmospheric
Environment Service (AES) does not record the occurrence of
wet snow. Therefore, in order to estimate the conditions
needed for wet snow at the ground, the surface data for CFB
Namao in Edmonton, Alberta were examined in relation to the
condition of Equation (7), by Lozowski, Finstad, and
Bourassa (1989). In twenty-one years of hourly data from
April, 1966 to October, 1986 there were 1525 hours when
precipitation (rain or snow) occurred with a temperature

between -2°C and +6°C. These precipitation events will be
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referred to as potential wet snow events. The range in
temperature is wide enough to include all the wet snow
events. A method similar to that used by Matsuo and Sasyo
(1981c and 1981d) was used in the analysis of how surface
values of relative humidity and air temperature affect the
occurrence of wet snow. The possible existence of a
relationship similar to Equation (7) was examined. The
potential wet snow events were sorted, according to
temperature, into bins of 0.25°C width. The minimum relative
humidity for rain events was found for each bin (Figure 3).
A least squares analysis was used to determine the best
fitting line for the temperatures and relative humidities of
these minima. Matsuo and Sasyo used only the bins which had
snow present at relative humidities lower than the minimum
relative humidities where rain occurred. This meant that the
maximum relative humidity where snow occurred was also
considered. Unfortunately there were insufficient data in
our observations to allow for this extra condition: too many
of the bins (21 of 32) did not have any snow events. The
best fit line was:
RHog = 90.1 - 5.3 t,, (8)
where RH.g = the surface critical relative
humidity.

Despite the lack of snow events in some of the bins,
Equation (8) is assumed to be a good discriminator between
rain and snow, because Matsuo and Sasyo found similar

equations to be good discriminators at three locations.
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Figure 3 - Surface Critical Relative Humidity

Each triangle marks the lowest relative humidity at
which rain was observed, within a temperature range. The
range of each temperature bin was 0.25 ©C. The two circled
points were rejected as unreasonably extreme. They are
observations from adjacent hours in a precipitation event.
Equation (8) was determined from a linear regression for the

’‘best fit’ line for the remaining points.
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The meteorological processes represented by Equation
(8) are probably similar to those describing Equation (7).
If the surface relative humidity is less than the surface
critical relative humidity, then the falling snow is
pProbably dry. If the surface relative humidity is greater
than the critical surface relative humidity, then there is
probably a melting layer. This melting layer may be thick
enough to cause snowflakes to melt entirely before they hit
the surface. Because Equation (8) is a ‘’best fit’
relationship derived from observations, it does not imply
any theoretical limitation on the occurrence of wet snow.
Equation (8) is a strong indicator of whether precipitation
will be wet or dry, but it is not a completely accurate
test. In Figure (3) there are two examples of rain occurring
when the surface relative humidity was more than 30% less
than the critical relative humidity.

Upper air data from Stony Plain, Alberta was used to
attempt to confirm the relationships between the relative
humidity and the temperature in Equations (7) and (8)
(Lozowski, Finstad, and Bourassa, 1989). Stony Plain is
Alberta’s only reqularly operating upper air station.
Unfortunately the surface station (CFE Namao) and the upper
air station are separated by 44 km, and Stony Plain is 85
metres higher than Namao. An examination of surface frontal
analyses (by CMC) has shown that the presence of one or
occasionally two fronts near the location of the potential

wet snow event is not unlikely. This means that Namao will

24



sometimes be in a different air mass than Stony Plain.
Consequently the conditions at Namao may not be indicative
of the conditions at Stony Plain. Nevertheless, it will be
assumed that the surface conditions at Namao are
representive of the surface conditions at Stony Plain.

The upper air soundings at Stony Plain are taken only
every twelve hours, which is relatively infrequent compared
to the hourly surface data. Ninety-three upper air soundings
were observed during potential wet snow events. Some
soundings were observed during the same surface evént, so of
the 163 surface events approximately 90 are used to test the
validity of Equations (7) and (8). An examination was made
of sounding profiles 1likely to produce wet snow or rain
(results are in Appendix B). These were assumed to be the
profiles with a significantly thick layer (1 kPa) of air
with a relative humidity in the 1layer greater than the
critical relative humidity (RH,, equation 7) needed for wet
snow. The layer thickness of one kiloPascal (approximately
100 m) was used to insure that the falling snow was well
into the melting layer before reached the ground. Seven
soundings had sufficient relative humidity, but insufficient
thickness. Fifty-three of the soundings met both conditions.
Of these fifty-three soundings, only three had a melting
layer which did not extend to the ground. Reversing the
direction of the argument leads to the conclusion that when
the surface relative humidity is greater than the critical

relative humidity, RH there is 1likely to be a melting

cl
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layer sufficiently large for falling snow to become wet snow
(or rain). Thus the surface conditions are likely to be a
good indication of the relevant upper air conditions.

To investigate the practical applications of Equations
(7) and (8), a scatter plot (Figure 4), with axes of
relative humidity and ﬁemperature, was made of the sixty-two
soundings corresponding to snowfall at Namao. The thirty-one
with a sufficiently thick layer of air with a relative
humidity greater than that of the critical relative humidity
(RH,), were assumed to produce wet snow. The other thirty-
one precipitation events were assumed to produce dry snow.
Both lines describing the critical relative humidity and the
surface critical relative humidity are shown on the plot.
Twenty-nine of the thirty-one precipitation events, that met
the criterion for wet snow given on page twenty-six, had
surface relative humidities exceeding the surface critical
relative humidity. Only two of the wet snow events lie below
this line (see Figure 4 and Table 1). Thus the surface
critical relative humidity seems to provide a good
approximate boundary for the occurrence of dry snow. To a
good approxiration, if the relative humidity at the surface
is less than the critical surface relative humidity then,

the snow should be dry.
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Figure 4 - Relative Humidity Regimes

Surface relative humidity versus surface air
temperature at CFB Namao, for times at which upper air
soundings exist and falling snow was observed. The symbols
indicate whether or not there was a sufficiently thick (1
kPa) melting layer over Stony Plain. The critical relative
humidity (RH_), Equation (7), is represented by the solid
line, and the surface critical relative humidity (RH.g) ,

Equation (8), is represented by the dashed line.
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Table 1 - Relative Humidity Regimes

RH < RHcs RHcs < RH < RHc RH > RHc Total

Wet Snow 2 9 20 31
Dry Snow 14 11 6 31
Total 16 20 26 62

The critical relative humidity line also makes a good
boundary. Twenty of the twenty-six soundings with relative
humidities greater than the critical relative humidity met
the criterion for wet snow given on page twenty-six. In a
model it would be reasonable to set the chance of wet snow
occurring, given that the relative humidity is greater than
the critical relative humidity, to be 77% (20/26 = 0.769).
However, the six dry snow events with relative humidities
greater than the critical relative humidity are all close to
the critical relative humidity. It is possible that they lie
 above the critical relative humidity 1line because of
differences between the surface conditions at Namao and the
surface conditions at Stony Plain. If a front lay between
the sites, it could cause¢ changes in temperature large
enough to move the points from positions below the critical
relative humidity to the positions of the six dry snow
points. If the object of the model is to determine a worst
case analysis or a risk analysis, it would be prudent to
assume all events, with surface conditions in this regime,
are wet snow events. In the extreme accretion model this is

assumed.
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In the region where RH,g < RH < RH, nine (45%) of the
twenty points met the criterion for wet snow given on page
twenty-six. Dr Finstad (Lozowski, Finstad, and Bourassa,
1989) added the requirement that events in this regime, in
order to be considered wet snow events, should have a
surface  temperature greater than 1°c. This is a
typographical error, since in this regime there are no
points with an air temperature greater than 1°C. It should
read -1°Cc. In this region there is only one point with an
air temperature 1less than -1°C. oOne observation is
insufficient to reasonably assume any restriction. Further,
because relative humidity cannot exceed 100%, the minimum
temperature, where it is possible for the relative humidity
to exceed the critical relative humidity, is -1.87°C. The
region between -1°C and -1.87°C is small enough to make the
added restriction almost meaningless. However, wet snow will
not occur on the ground with temperatures below zero degrees
Celsius, unless there is a melting layer aloft. Then the wet
flakes could develop within the warm layer aloft before they
pass through the cold layer near the ground. The model of
annual extreme accretions treats the occurrence of wet snow
at a surface temperature less than 0°C, as ﬁhough the snow
fell through a warm inversion layer. When the inversion
occurs the average change in temperature between the warmest
height in the inversion and the surface is 2.3°c (Lozowski,
Finstad, and Bourassa, 1989). Given the current data, in the

regime where RHcs < RH < RH,, the chance of the occurrence
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of wet snow is 45%. The accuracy of the chance of occurrence
of wet snow in this regime would probably be improved if the
upper air station and the ground station were closer
together.

Using surface data alone (RH and t,), it is possible to
estimate the chance of a wet snow event occurring provided

that the snow occurs. These chances are:

RH > RH, 100% chance of wet snow occurring,
RH.g < RH < RH, 45% chance of wet snow occurring,
RH < RH_ g no chance of wet snow occurring.

There are several problems involved with using this set of
criteria for forecasting wet snow events. One problem is the
inaccuracy of the predicted time of +the wet snow event.
Forecasts of temperature and relative humidity are issued at
six hour intervals, not in hourly weather .updates. The six
hour time step means that it will be wvery difficult to
accurately estimate the time that the wet snow event begins,
and the duration of the event. It is possible to program a
wet snow forecasting routine into a weather forecasting
model. Then the occurrence of wet snow could be estimated
for each time step of the model. Since these time sets are
usually less than one hour, the time of the onset of the
event, and the duration of the event could be more
accurately estimated to within an hour.

The second problem in forecasting the occurrence of wet
snow events, is the large influence of small errors in

relative humidity and temperature on the chance of
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occurrence. An error of 0.4 °C in temperature causes an
error of 5% in the critical relative humidity, and an error
of 2.1% in the surface «critical relative humidity.
Considering that the relative humidity is usually over 90%
during potential wet snow events these are large errors.
These errors can significantly effect the prediction of the
chance of the occurrence of wet snow. A third problem is
that it is difficult to accurately predict the time,
location, and intensity of precipitation events. Forecasts
of wet snow accretions, based an visual examinations of the
AES surface meteorological predictions, are inadequate. An
accretion model added to a weather forecasting model would
be more accurate than a forecast produced by a visual
inspection. However, the weather forecasting model would
have to accurately predict the temperature to within a
approximately half a degree before it would be useful in
forecasting the loads due to extreme wet snow accretions.

2.2 The accretion of wet snow on transmission lines

The accretion of wet snow on a transmission line can be
treated as an accretion on a circular cylinder (Finstad,
1989; Admirat et al, 1985a). The number of snowflakes that
hitting the cylinder depends on the rate of precipitation,
the cross sectional area of the cylinder perpendicular to
the direction in which the snowflakes move, and the
parameter of the air flow around the cylinder: the Reynolds
number. The ratio of the number of particles that hit the

cylinder, to the number that would hit the cylinder if it
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did not disturb the air flow, is referred to as the
collision efficiency. Since the air is forced to move around
the cylinder, some of the snowflakes that would otherwise
hit the cylinder are transported by the air flow around the
cylinder. Thus the collision efficiency is 1less than or
equal to unity. The calculation of the collision efficiency
can be further complicated by turbulence. There may be a
turbulent wake behind the cylinder. As snow accretions grow,
they become non-circular and rough (see Figure 5). The
increased roughness increases the size of the turbulent
wake. Because of the turbulence, flakes that would have
passed close by the cylinder can be drawn in and collide
with the back of the cylinder. Little is known about how
this complicating factor effects snowflake trajectories.
Research (Wakahama et al., 1977; Admirat et al., 1985b) has
shown that snowflake trajectories, prior to hitting the
cylinder, can be very accurately approximated as straight
lines. Neither studies detailed an investigation of the
minimum velocity needed for this assumption to be true. The
minimum velocity used in the study be Admirat et al. was
5 m/s, so the minimum velocity must be equal or less than
5 m/s. This means that the complications can be ignored, and
the collision efficiency for wet snowflakes can be
approximated as unity. However, not all snowflakes that hit
the cylinder (or the accretion) will stick to the surface.
They may splash or bounce (Wakahama et al., 1977). The ratio

of the mass of the snowflakes that stick to the cylinder, to
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Figure 5 - Forces Acting on the Accretion

There are six external forces that act on the
accretion. Friction, torsional stiffness, and the normal
force of the cylinder on the accretion are all resistive
forces. The net normal force of the cylinder on the
accretion is equal and opposite the net force the accretion
exerts on the cylinder. The accretion will rotate only if

the net forces on the accretion are unbalanced.
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the mass of the snowflakes that hit the cylinder, is called
the sticking efficiency. The product of the collision
efficiency and the sticking efficiency is called the
collection efficiency. The sticking efficiency is likely to
be influenced by the momentum of the snowflake, its liquid
water content, and its shape. An equation for the sticking
efficiency has been developed by Finstad and Lozowski (1989)
based on the existing experimental work (Wakahama et al.,
1977; Admirat et al., 1985b). This is:

S =10.038 t,, or S = 1, whichever is less, (9)
Ue D¢

valid for: 0 < t, < 4%,

5 < Ug < 15 m/s, where U, is the speed of

the snowflake perpendicular to the axis of

the cylinder,

0.01 < Dy < 0.4 m, where D, is the diameter

of the cylinder including the accretion.
As the accretion grows around the cylinder, the diameter D.
increases. However, wet snow accretions are not cylindrical
(Wakahama et al., 1977). The change in shape will therefore
decrease the quality of this approximation. This
approximation is nevertheless used in the annual extreme
accretion model.

The snow approaches the line from the direction of the
sum of the wind and fall velocity vectors. It moves in
approximately straight trajectories, and if it sticks to the
line, it stays where it hits the 1line. Consequently growth

occurs only on the windward side of the 1line, and the
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accretion growth is not radially symmetrical (Wakahama et
al., 1977) as is assumed in current thermodynamical models
(Admirat et al., 1985a). The accretion grows until the
center of mass of the accretion is horizontally displaced
far enough away from the cylinder (the center of rotation)
that the torque due to gravity is great enough that there is
" net force on the accretion. In other words the torques due
t: gravity and adhesion exceed the torques due to wind drag,

sional stiffness, and the normal force of the line on the

linder (see Figure 5). If the surface is smooth, the
accretion can then either slide down around the cylinder if
static friction is overcome, or it can rotate with the line
if static friction is not overcome. Transmission lines are
usually not smooth, but stranded. They have little torsional
rigidity, and observations have shown that lines do rotate
with the accretion. In nature, and in Finstad’s accretion
model, the center of the line may make several complete
rotations (Finstad, 1986). This growth process continues
until the conditions for growth are no longer met; either
the precipitation ends, it changes to a form other than
sticky, wet snow, the accretion falls off, or the line falls
down.

Little is known about how wet snow accretions fall off
transmission lines. In'the early stages of growth, they are
susceptible to being blown off the line by gqusts of wind
(Wakahama et al., 1977). Gusts are already considered

(Lozowski et al., 1989) in determining the maximum force on
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a line. Through further research it might be possible to add
an additional gust-related growth limiting factor for the
beginning of the accretion process. The structural strength
of wet snow is also unknown. If it is very wet or very dry,
it will lack structural strength and fall off the line.
Evidence (Wakahama et al., 1977) suggests that the liquid
water moves towards the center of the accretion. The physics
of the structural strength of wet snow and the movement of
water in the wet snow are largely unknown. Research into
these areas might make it possible to model the structural
limiting factors to the accretion process.
2.3 Modelling theory

Numerical Models are mathematical representations of
processes and the interaction among these processes. The
ideal model includes the physics of every process related to
the problem of interest. It does not use statistics except
were randomness is a natural part of the phenomena (e.q.
quantum mechanical tunnelling). Ideal models are rarely
developed. Usually the physics of at least one of the
processes involved is not understood. Processes that are not
understood must be approximated from an extrapolation of
experimental results. Another major problem with models is
the time required to use the model to get a particular
result. A model that considered all the processes related to
the problem would usually take far to long to generate the
desired result. To reduce the computational time, an

examination of the influence of each process is made, and
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those with the least influence are ignored, while other
processes are approximated. In practice these approximations
are also influenced by the difficulty in modelling a
particular process. Those that are difficult to model are
often approximated. Wet snow models require approximations
to be made for all these reasons. For example, the
assumptions made in determining the collection efficiency
were described in the previous section. Two additional
assumptions are that the transmission line is straight, and
that the physical characteristics of the accretion are
uniform along the line.

There are insufficient data to perform a proper risk
analysis on wet snow events. There should be at least thirty
time periods (years in this case) of data (Gumbel, 1958). A
risk analysis uses the. maxima of the phenomenon being
considered (the mass of the accretion, vertical force on the
line, and horizontal force on the line) for each year.
Records of the size and mass of wet snow accretions have
been kept only in the last few years. These are only of
limited value as the accretions are usually not examined
until a day or two after the event. However, given suitable
environmental input, a good model could simulate the size
and mass of wet snow accretions on a transmission line. a
risk analysis could then be performed using the data
generated by the model. The problem with this approach is
the accuracy of the input parameters for the model.

Meteorological recording stations are usually not situated
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38
close enough to major transmission lines to provide accurate’

meteorological data as input for the model. This means that
the input parameters also have to be simulated by a model.

The model of the input parameters for the wet snow
accretionh model is a time series for each of the input
parameters. In other words it is a model of how these
parameters develop with time. The parameters of interest are
air temperature, relative humidity, precipitation rate, and
wind velocity (séeed and direction). This model should
consider any time cvpendent trends, and produce values with
the same means and standard deviations as the observed
values. It should also consider the correlations between the
parameters, the correlations between the changes in the
various parameters, as well as the correlations between a
particular parameter and the change in the same parameter. A
probability distribution of the initial values of the
parameters is also necessary. The model of the input
parameters must have similar statistics to a sample set of
data collected under conditions similar to those in which
the model would be used (potential wet snow events).

The model that was developed for the meteorological
input parameters required by Finstad’s wet snow accretion
model was a model of potential wet snow events rather than
for actual wet snow events. This is more practical than
modelling actual wet snow events because precipitation
events can easily shift from wet snow to either rain or dry

snow, and back again. Modelling potential wet snow events



eliminates the difficult constraint that the precipitation
must be wet snow. In the model for the meteorological
parameters, relative humidity and air temperature are
examined to determine if the conditions for wet snow exist.
If the conditions for wet snow exist, then the wet snow
accretion model is used. Since the meteorological variables
are not modelled for all times and conditions, it is
necessary to model both the duration of potential wet snow
events, and the annual number of potential wet snow events.
These considerations will provide an adequate model of the
input parameters for the wet snow accretion model. The
annual maximum wet snow accretions, needed for the risk
analysis, can then be found by modelling all the potential

wet snow events in a year.
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THEORY OF RISK ANALYSIS

Risk analysis is used to estimate the chance (risk) of
something happening. It can be used to determine the quality
of construction needed for a structure to have a particular
chance of lasting a specified time. Risk analysis also can
be used to estimate the frequency of repairs. Given
estimates of the costs of construction and the likely costs
and frequency of repairs, it is possible to estimate the
most cost effective quality of construction.

Repairs are needed when the force on a transmission
line exceeds the tolerance or failure strength of the line
or the towers. The average time between structural failures
can be estimated as a mean return time. The mean return time
(T), of the occurrence of an event of magnitude equal to or
greater than a specific magnitude, is the average time
between these events. If p is the probability, in a specific
time, that the force on the line will exceed the force it

can tolerate, then the mean return time T is equal to 1/p.

That is, if P = P(x > x4},

then T(x,) = 1/p. (10)
where X is the force on the line,
and Xg is the maximum force that the line can

sustain without damage.
A proof of this statement is given in Appendix A. The units
of time for the return period are equal to the time period

over which the probability applies. For example, if the
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velocity in terms of the height of the line and the number
of standard deviations:
vg(z) = U(10 m) ( 0.434 1n(z) + 0.137 n ). (42)
A gust speed two standard deviations greater than the
average wind speed was used in the model. If the frequency
distribution of gust speeds was Gaussian then gusts of this
speed or greater would occur for an average of ninety
seconds each hour. The gust speed is not the maximum speed
of a gust. It is a speed that will be maintained for several
seconds. Both the wind speed and the gust speed increase
with height, so the height of the highest transmission line
on a tower (see Figure 16) is used to determine these
speeds. The height of the highest transmission lines of a
typical tower in southern Alberta is 31.6 m (100.5 ft).
So Vg(36.1 m) = 1.761 U(10 m). (43)

The assumptions involved in determining the above gust
speed were applicable to prairie conditions, without a thick
layer of snow. Under these conditions they make an excellent
first approxima?ion. However, these assumptions cannot be
made for mountainous terrain. Neither the wind speed profile
nor the roughness length would be appropriate. The log wind
profile is applicable for terrain where an infinite plane
can be approximated. For other terrain types a study of the
site may be required.

When the snow completely covers the vegetation, the
roughness length (25) will be reduced. Consequently, as the

drag effects of vegetation decrease, the absolute value of
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the log of the roughness length is increased, and the speed
of the gust is decreased. However, the reduced frictional
drag results in increased wind speeds (Stull, 1988). The
effect of snow cover on the roughness length can have a

large effect on the wind and gust speeds.

4.1.3 Initial values of the meteorological parameters

The initial values of the meteorological parameters are
effectively independent of each other. The correlations
between the initial values of the meteorological parameters
are poor, so each parameter can be treated as independent of
the others. Table 6 lists these correlation coefficients.
The data from all 464 potential wet snow events were used to
determine these correlation coefficients, although only the
201 precipitition events with snow were used for visibility.
Correlation coefficients greater than approximately 0.16
indicate that there is probably a correlation (Taylor,
1982) . However, the fraction of the variance explained by
the correlation is equal to the correlation coefficient
squared (Taylor, 1982). Consequently these correlations are
of 1little use unless the correlation coefficients are
greater than 0.64 (explaining approximately 40% of the

variance).
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Table 6 -~ Correlation Coefficients Between

Initial Values of the Meteorological Parameters

Ta RH \Y U Dir
Air Temperature 1.000 -—— -— _— ——
Relative Humidity -0.084 1.000 —— - _——
Visibility 0.187 =-0.535 1.000 ——— ——
Wind Speed 0.008 =-0.079 =-0.083 1.000 ——

Wind Direction -0.079 -0.073 =-0.003 0.345 1.000

Most of these correlations coefficients have a
magnitude less than 0.1. This means that the parameters are
largely independent of each other. The only correlation with
a magnitude greater than 0.5 is that between visibility and
relative humidity. However, the correlation coefficient of
-0.535 is 1low enough in magnitude (less than 0.64) to
ignore. Therefore, in the model of the meteorological
parameters, all the initial conditions of the parameters
were treated as independent.

The observed distributions for all of these parameters
are non-Gaussian (Figures 10 to 12). The distribution for
wind direction was found by altering the break point
(initially 09/360°) in increments of ten degrees, and
assuming that the best distributiorn had the lowest standard
deviation. All the distributions are too tight about the
mean to be Gaussian. A reduced chi squared test (Taylor,
1982) was used to test the ‘closeness of fit’ to a Gaussian

distribution. The data were split into twelve bins that
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should have held equal numbers of points if the
distributions were Gaussian. Reduced chi squared values
(Table 7) were produced by comparing the number of data
values in each bin to the number expected if the
distribution were Gaussian. The chi squared value should be
approximately one or less for a good fit. In the case of ten
degrees of freedom (twelve bins and two constraints) a
reduced chi squared value of unity would mean that, if the
distribution actually is Gaussian, there is a 44% chance
that it could have reduced chi squared value greater than

unity.

Table 7 -~ Distribution Statistics of Initial Conditions

Standard Reduced
Parameter Mean Deviation Chi Squared
Air Temperature [oC] 2.2 2.5 15.7
Relative Humidity (%) 88.8 9.0 12.3
Visibility [km] 11.4 8.8 15.6
Wind Speed [m/s] 4.9 3.0 4.9
Wind Direction [degs] 356 80 8.9

None of the distributions are extremely well
approximated by a Gaussian distribution. Given the large
reduced chi squared values, it is unlikely that the
distributions are Gaussian. Nevertheless, in the wet snow
accretion model, all these distributions are approximated as
Gaussian, and hence they can be described with a mean and a

standard deviation (Table 7). The approximation that the
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distributions of initial meteorological parameters are
Gaussian distributions is improved by limiting the ranges of
the meteorological parameters. The relative humidity is
limited at both extremes. The relative humidity cannot be
less than zero percent, and cannot be greater than one-
hundred percent. Similarly the visibility cannot be 1less
than zero kilometres or greater than twenty-five kilometres
(AES treats 25 km as the upper limit, equivalent to the
horizon). In the extreme accretion model, the lower limit of
visibility is one tenth of a kilometre. This lower limit is
necessary because of the relationship between the visibility
and the precipitation rate. The precipitation rates
corresponding to visibilities less than one tenth of a
kilometre are unreasonably large (50 mm water equivalent per
hour). Further, the wind speed musf be constrained to be
equal to or greater than 2zero. With the exception of the
upper limit on visibility, similar restrictions would apply
in nature.

The recorded direction of the wind is relative to a
wind flowing from the North. Thus a direction of 0° is
northerly, and a direction of 90° is easterly (from the
East). The extreme wet snow accretion model requires the
initial direction of the wind relative to the axis of the
transmission 1line. Obviously, the mean initial wind
direction and the alignment of the transmission lines will
vary throughout Alberta. It seems unlikely that the

companies building transmission lines would want to have a
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set of standards for the failure strengths of transmission
lines that would vary with the location and the alignment of
the line. Therefore the worst case (resulting in the largest
accretions) is examined. This occurs when the wind direction
is perpendicular to the axis of the transmission line. It
seems unreasonable to model the initial wind direction as
always being at right angles to the line. Therefore, in the
accretion model the mean initial direction is set at ninety

degrees.

4.1.4 Persistence

Examination of the hourly data from CFB Namao showed
there was an unusually large number of hourly changes in
meteorological parameters that were equal to zero. Even
considering that the distributions are non-Gaussian, with a
greater than normal number of small changes, for each
parameter the number of hourly changes equal to zero is much
larger than expected. The expected percentage of hourly
changes equal to zero was determined based on the assumption
that the distributions are Gaussian, and that the
measurements were rounded to the nearest increment (i.e. if
temperature is recorded in tenths of a degree, then
measurements were rounded to the nearest tenth of a degree).
Consequently the fraction of changes rounded to zero is
approximately equal tc the fracticn of changes that are less
than one half of a scale increment. Table 8 lists both the
observed percentages and the expected percentages of hourly

changes that were equal to zero. Some of the differer.e,
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between the observed percentages and the expected
percentages, is probably caused by ‘observer inertia’. If
there was a small change, the observer might have simply
repeated the previous observation, even if the change was
large enough to change the value. The differences between
the observed and the expected percentages (assuming a normal
distribution) are dgreat enough that @persistence is

considered in the model of the meteorological parameters.

Table 8 - Mean Likelihood of Persistence

Scale
Observed Expected Increments

Temperature [oC]: 34% 7.2% 0.1
Relative humidity [%]: 24% 8.0% 1.0
Visibility [kmj: 25% 0.72% 0.1
Wind speed [m/s]: 18% 0.003% 0.01
Wind direction [deq]: 39% 12.9% 10.0

The fraction of hourly changes that are equal to zero
depends on the sensitivity with which the phenomenon is
measured and recorded. Temperature, relative humidity,
visibility, and wind direction are all recorded to a similar
accuracy. They are recorded in increments equal to between
3% and 0.4% of their typical range. Wind speed is recorded
in increments of approximately 0.01% its typical range. This
is a partial explanation of why wind speed has a =maller

fraction of hourly changes that are equal to zero.
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The percentage of the hourly changes in the
meteorological parameters that were equal to zero did not
vary significantly with the time from the onset of the
precipitation event. Table 9 lists the correlations and the
functions of the best fit curves, for each meteorological
parameter, for the percentage of hourly changes equal to

zero as a function of time.

Table 9 - Time Dependence of Hourly Changes Equal To Zero

Meteorological Correlation Function
Parameter Coefficient (t in hours)

Air temperature [°C] 0.485 :iq, = exp(5.88 t + 28.04)

Relative humidity [%] 0.511 S RH exp(0.16 1ln(t) + 2.99)

Visibility [km) 0.423  syjg = exp(203 t2 + 443)

Wind speed [m/s] 0.263 4y exp(78.8 t2 + 218.5)

Wind direction [deg] 0.781 $&p;,. = exp(0.217 t%-5 + 3.202)

The only relationship with a correlation coefficient great
enough to be significant is the wind direction relationship.
Table 10 shows observed percentages of the changes in wind
direction that are equal to zero, and compares them with

percentages predicted by the relationship in Table 9.
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Table 10 - Hourly changes in Wind Direction Equal to Zero
Time (hours)
1 2 3 4 5 6 7 8 9 10 11 12
Predicted 30 33 36 38 40 42 44 45 57 49 50 652

Observed 34 31 31 35 51 42 41 46 39 60 54 47

Table 10 shows that the equation for time dependence of the
percentage of hourly changes that are equal to zero for wind
direction in Table 9 is not a good predictor. In the
meteorological parameter model the percentage of hourly
changes equal to zero is treated as independent of time for
all parameters.

A small effort was made to determine whether or not
hourly changes of meteorological parameters equal to zero
were more likely to occur under certain conditions. There
are two situations where this seems most likely to be the
case. The first occurs when the air temperature at the
beginning of the hour equals the freezing point of water,
zero degrees Celsius. The second occurs when, over one hour,
the temperature remained constant. Both conditions imply

that the air mass might be more stable (see Table 11).
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Table 11 - Fraction of Hourly Changes Equal to Zero
Special Conditions

Hourly Change

Hourly change none in T, =0 T, = 0°C
Air Temperature 34% 100% 55%
Relative Humidity 24% 37% 32%
Visibility 25% 30% 21%
Wind speed 18% 20% 18%
Wind direction 39% 44% 50%

The condition that the hourly change in temperature be
equal to zero (Table 11) has little effect on the percentage
of hourly changes that. are equal to 2ero. Only the
percentage for relative humidity is raised significantly.
However, the percentages for all parameters are increased.
The large increase in the chance of persistence in relative
humidity occurs because of the connection between the
relative humidity and the air temperature. The relative
humidity is the ratio of the vapour pressure to the
saturation vapour pressure. If the relative humidity
changes, then either the vapour pressure or the saturation
vapor pressure must have changed. The saturation vapour
pressure is a function of the air temperature. Consequently
when there is no change in the air temperature, there is no
change in the saturation vapour pressure. Thus, when the
temperature is constant, the relative humidity can change
only if the vapour pressure changes. The condition +that

there is no change in temperature over one hour eliminates



one of the mechanisms for a change in relative humidity. The
correlation (see Section 4.1.5) between the hourly changes
in relative humidity and the hourly changes in visibility
may explain the increase in percentage of changes in
visibility that are equal to zero. In the extreme accretion
model these effects have been ignored.

The condition that the air temperature at the end of
the hour be equal to 0°C (Table 11) has an apparently
significant effect on three of the parameters. The effect on
the percentage of hourly changes that are equal to zero for
visibility and wind speed is negligible (5% or less). The
effect on air temperature is the greatest: an increase of
twenty-one percent. This is not unexpected because an
isothermal layer with a temperature of zero degrees Celsius
can be expected to form in or near a melting layer (Stewart,
1984; Stewart and King, 1987). The air in these layers is
saturated, and conseéuently falling snow does not exchange
heat with the air Ehrough sublimation. Similarly, because
the ambient air temperature is at zero degrees, there is no
melting or freezing occurring on the snowflakes. Heat
exchange due to convection is ignored because to snowflake
is assumed to move with the wind. Since no heat is being
exchanged between the falling snow and the ambient air,
there is less chance of a change in temperature occurring.
The effect on the percentages for relative humidity and for
wind direction is smaller (8% ﬁnd 11% respectively), but

they may be significant.
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The unconditional percentage of hourly changes ;hat are
equal to 2zero can be represented statistically as a
Kronecker delta function. This approach is used in the
extreme value model. If a randomly generated number
(generated from a uniform distribution between zero and one)
is less than or equal to the fraction of changes that are
equal to zero, then the hourly change is set equal to zero.
The fractions of hourly changes equal to =zero were
determined before any changes due t time-dependent trends
were considered. The hourly changes equal to zero were
removed from the data set for the rema.ning calculations.
Consequently any hourly change of a meteorological parameter
can be represented as a delta function times the other
changes. Neither of the special conditions affecting the
delta function are considered in the model.

4.1.5 Time-Dependent Trends

Several of the meteorological parameters were found to
be time-dependent. A curve fitting routine (Appendix G) was
used to run a least squares analysis between time (in hours)
and various functiohs (square, square rocot, 1log, natural
log) of the mean hourly changes, sorted according to the
number of hours from the onset of the precipitation event.
Only data from the first twelve hours of each event were
used. There were too few data points, for later hours, to
a@stablish a good mean hourly change. A detailed listing of

the results is given in Appendix E. Table 12 1list the
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correlation coefficients and formulas for the trends. Plots

of these trends are given in Appendix E.

Table 12 - Time-Dependent Trends

Correlation Trend Formula
Parameter Coefficient (t in hours)
Temperature [°C] -0.869 AT,¢= -[0.156 - 0.066 ln(t))

Relative humidity [%] -0.914 ARHp= 3.172 =~ 1.955 1ln(t)
Visibility [m] -0.563 AVy = [2.299 - 0.787 1ln(t)]9:5
Wind speed [m/s] 0.485 AU. = ( 0.008 t + 0,005 )9-3

Wind direction [deg]  0.217 Adiry=[28.52 ln(t) + 18.54]%:5

Several of these trends were idnored in the accretion
model. The trend for wind direction was ignored bkecause of
the small correlation coefficient (magnitude 1less than
0.64). The trend for wind speed also has a low correlation
coefficient, but it can be ignored for other reasons as
well. The trend in wind speed is insignificantly small
compared to the magnitude of the wind speed and its standard
deviation. Similarly the trend for visibility is also small,
especially early in the event. Table 13 compares the time-
dependent trends of hourly changes, of the first, second,
third, fifth, and tenth hcurs of an event, to the standard
deviations of the hourly changes (for all hours) of thw
observed parameters. Most of the mean hourly changes in
meteorological parameters, due to the time~dependent trends,
are small compared the standard deviations of the hourly
changes. Consequently the hourly changes due to the trends

are small compared to most hourly changes. Only the time-



dependent trends for the hourly changes in air temperature
and relative humidity were used in the accretion model, as
they are the only ones that have trends greater than one
quarter of their corresponding standard deviations. The
time~dependent trends of hourly changes for the other

parameters are approximated as zero for all hours.

Table 13 - Time-Dependent Trends
Standard Hourly changes
Parameters Deviation 1St 2nd ard 5th 10th

Temperature [°C] 0.671 =-0.395 -0.332 -0.289 ~0.223 =0.063
RH [%] 4.992  3.172 1.817 1.024 0.026 0.000
Visibility [km] 6.391 1.516 1.324 1.198 1.016 0.698

Wind Speed [m/s] 1.589 0.145 0.170 0.192 0.230  0.305

The magnitude of the function for the trend in the
hourly changes for wind speed increases with time. The
increase is not bounded; the trend does not approach a
limit. This is because the data for the correlations used in
determining these formulas for the trends used only the mean
hourly changes for the first twelve hours of potential wet
snow events. It is unreascnable to assume that the formulas
are a good representation of the trends at the later stages
of long precipitation events. Both the trends for changes in
air temperature and changes in relative humidity are
monotonic, and in the early hours of the potential wet snow
events they approach zero. When the trends reach zero

(eleven hours for air temperature, and six hours for
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relative humidity), the time-dependent hourly changes are
treated as zero ror the rest of the event. With this
approximation the equations for the time-dependent trends
are used only at times when they are appropriate.
4.1.6 Statistics of Hourly Changes

Meteorological parameters such as temperature and
relative humidity are recorded in time steps of one hour at
AES surface stations. Airports report special updates at
anytime when the changes in meteorological conditions
warrant the report. However, these reports are not on AES’
list of magnetic tapes. This means that the minimum
convenient time step for these parameters is one hour.
Therefore the hourly changes in these parameters have been
examined. The recorded values are the values of the
parameters at the time when the data was recorded; they are
net hourly averages. As with the initial conditions, the
correlations (Table 14) between the hourly changes of the
various parameters are poor and consequently can be ignored.
The correlation coefficients (Table 14) between the
parameter at the beginning of the hour and the change in the

same parameter are also low.
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Table 14 - Correlations Coefficients of Hourly Changes
Hourly Hourly Changes Raw
Changes AT, ARH AV AU ADir Parameter

AT, 1.000 - - ———— -—— -0.254
ARH -0.084 1.000 ———— -—— —-—— -0.451
AV 0141 -0.259 1.000 ——— —— -0.081
AU 0.021 -0.005 -0.025 1.000 ——— -0.185
ADir ~-0.046 -0.032 -0.085 0.043 1.000 0.105

The temporal trends were subtracted from the values of air
temperature and relative humidity before the correlation
coefficients were evaluated. Nu trends were subtracted from
the other variables because the temporal trends for the
other variable have been assumed to be negligible.

The distributions for hourly changes (Figures 12 to 14)
were similar to those for the initial parameters. They were
bell curved but were not Gaussian. These distributions also
had a super-Gaussian peak. A reduced chi squared test was
applied in the same manner as with the distributions of
initial values. In each case the reduced chi squared value
(Table 15) was of the order of one hundred. This means that
it is highly unlikely that the distributions are Gaussian.
Nevertheless for ¢onvenience, these distributions were
approximated as Gaussian. With this approximation, the
probability distributions (which are by definition
normalized) can be described with only their means and

standard deviations (Table 15).

85



Table 15 - Distribution Statistics of Hourly Changes

Standard Reduced

Parameter Mean Deviation Chi Squared
Air Temperature [©C] 0.001 0.656 97.858
Relative Humidity [%]  0.443 4,774 112.420
Visibility [km] -0.578 6.391 103.432
Wind Speed [m/s] 0.011 1.598 124.419
Wind Direction [dey] ~3.345 39.496 99.449

In the extreme accretion model, the meteorological
parameters must have the same ranges that they possess in
nature. A change in a parameter cannot be.large enough to
a’ter the value of the parameter so that it is outside the
natural range of the parameter. These ranges are the same
ranges discussed at the end of Section 4.1.3. The imposition
of these range restrictions forces the probability
distributions to be more accurate.

The change in a parameter could be determined by using
the parameter’s Gaussian proba "lity distribution. The
probability distribution can be written as a cumulative
probability distribution. The cumulative probability has a
minimum of zero, and a maximum of unity. A random number
generator, with a uniform distribution between zero and one,
is used to generate a cumulative probability. The change in
the parameter is the change corresponding to that cumulative
probability. An equivalent technique, that is easier to

program, is to use a normal probability distribution. For a



normal distribution the value corresponding to the
cumulative probability is a certain number of standard
deviation from the mean. This number of standard deviations
is multiplied by the standard deviation of the hourly
changes of a parameter, to determine the value of the hourly
change for that parameter. .f the change in the parameter
would cause the value of the parameter to lie outside the
accepted range of the parameter, then one of two things
would happen. Usually the change is ignored, and new changes
are generated until an acceptable value is found. An
exception to this occurs if the relative humidity or th:
visibility increase beyond their upper limits. In this case,
the parameter is set =squal to itq upper limit. In the case
of visibility, this is an accurate simulation of the
recording technique (i.e. if the visibility is greater than
twenty-five kilometres then it is recorded as twenty-five
kilometers). In the case of relative humidity, this is an
accurate simulation of saturation; in other words, the
relative humidity increase until it reaches 100%, énd then
it can increase no further. The limitations on the ranges of
the parameters makes the accretion model’s simulation of

these input meteorological parameters much more realistic.
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4.2 Results of a risk analysis on extreme line loads

A risk analysis was performed on the extreme annual
values produced by a modified version of Finstad’s wet snow
accretion model (Finstad, 1989). The annual maxima of
accretion mass, vertical load (accretion weight), horizontal
load due to the hourly average wind speed, and the
horizontal 1load due to gusts, were simulated for the
equivalent of one hundred years, on a line 20.38 mm in
diameter, 370 m long, with a torsional rigidity of 0.1 N/m.
This is typical of the transmission lines in southern
Alberta. The sorted extremes are listed in Appendix D. The
analyses for accretion mass and vertical load are similar
because they are related by the gravitational acceleration.
The horizontal loads are more difficult to relate because
the model treats the gust velocity as equal to the average
velocity plus a constant. Despite their similarities all
four extremes were examined.

A linear regression was performed on the extremes and
their reduced variates. The extreme average wind load and
extreme gust lcad had a high correlation (0.893) with the
reduced variate. The exponential distribution is a good fit
for the generated extremes of average wind and gusts (Table
16) . However, it is not a good fit for the mass or the
vertical load (Table 16). Nevertheless, for lack of a better
distribution, the exponential distribution is also used for

these extrenmes.

88



Table 16 - Extreme Value Statistics

Vertical wind Gust

Mass Load Load Load

(kg/m) (N/m) (N/m) (N/m)
Slope: a 1.259 12.354 3.028 4.181
Standard Deviation of a .185 1.815 0.168 0.232
Y-Intercept: u -.419 -4.109 2.475 3.417
Standard Deviation of u .255 2.502 0.231 0.319
Correlation Coefficient 0.599 0.599 0.893 0.893
Number of Data Points 85 85 85 85

The constants ‘u’ and ’a’ describing the distributions
of extremes have been calculated using two methods: linear
regression and the method of moments. The method of moments
determines ‘u’ (Equation 21) through the similarity to a
mean for the distribution of extremes. The ‘u’ determined by
regression is the y-intercept in the linear relatijionship
between the extremes and the reduced variates. The method of
moments examines ’'a’ as a measure of the dispersion of the
extremes, and uses equation (20) to determine ‘a’. However,
'a’ is also the slope of the linear regression relationship
between the extremes and the reduced variates. It should be
noted that in Table 17 the constants for vertical load
differ from those for mass by a factor equal to
gravitational acceleration (9.81 m/sz). This multiplicative
factor carry through to determining estimates of extremes as

a function of mean return time (Table 18), as can be seen
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from Equation (22). This information may be usaful when i

quick estimation of extremes is needed.

Table 17 - Constants ’a’ and ’u’

Regression Method of Moments

Estimates

a u a u
Mass 1.2593 -0.4180 1.6728 =0.4312
Vertical Load 12.3540 -4.1087 16.4099 -4,2306
Wind Load 3.0281 2.4745 2.7485 2.6579
Gust Load 4.1807 3.4166 3.7943 3.6698

Given the parameters ‘a’ and ‘u’, it is possible to
determine the extremes corresponding to any mean return
period or any probability of occurrence in a particular time
period. This is a study of annual extremes, so the time
periods are in units of years. Table 18 shows the extremes
for masses and for vertical loads. The extremes determined
from the parameters derived by both the regression method
and the method of moments are 1listed. Kinnison (1985)
suggests that the method of moments may be the more accurate
of the two techniques. This method produces the larger
extreme values of vertical load for any mean return period
of three years or greater. Because of the poor linear
correlation between the extremes and the reduced variates,
there is a large difference between the constants, ‘u’ and
‘a’, produced by the different methods. Hence there is a

large difference between the extreme values determined by
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each set of constants. With the data available it is not
possible to determine which set of extremes is a better
representation of nature. However, there are three reasons
to use the set derived from the method of moments. The first
is Kinnison’s suggestion that the method is more accurate.
The second is the poor correlation of the linear regression.
The third is that this set represents the worst case, and it

is better to err on the side of caution.
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Return Prob

Table 18 - Extreme Values as a Function of the

Period of

(yrs)

2

3

10

15

20

25

30

35

40

45

50

60

70

80

90

100

Exceed.

.500

.333

.250

.200

.167

. 143

.125

111

.100

. 067

.050

.040

.033

.029

. 025

.022

.020

.017

.014

.013

.011

.010

Mean Return Period

Reduced
Variate

.367

.903
1.246
1.500
1.702
1.870
2.013
2.139
2.250
2.674
2.970
3.199
3.384
3.541
3.676
3.795
3.902
4.086
4.241
4.376
4.494

4.600

Accretion Mass
Extreme Values
Mom.

(kg/m)

Reg.
(kg/m)

. 043

.718
1.150
1.470
1.725
1.936
2.117
2.275
2.415
2.948
3.322
3.609
3.843
4.040
4.211
4.361
4.495
4.727
4.922
5.092
5.241

5.374

1

i

2

2

2

2

3

3

4

4

4

5

5

5

5

6

6

6.

6

7

2

.182
.079
.653
.078
.416
. 697
.937
. 147
.333
.041
.537
.919
.230
.492
.718
.918
.096
.404
663
.888
.087

.264

Vertical Load
Extreme Values

Reg.
(N/m)

.419
7.043
11.283
14.422
16.918
18.991
20.765
22.315
23.692
28.923
32.585
35.406
37.701
39.635
41.308
42.780
44.096
46.369
48.288
49.949
51.413

52.721

Mom.
(N/m)

1.784
10.583
16.214
20.383
23.699
26.453
28.809
30.869
32.698
39.645
44.510
48.257
51.305
53.875
56.096
58.052
59.800
62.819
65.369
67.575
69.519

71.257
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Table 19 - Extreme Values as a Function of the

Return Prob Reduced

Period
(yrs)

2

3

10
15
20
25
30
35
40
45
50
60
70
80
90

100

of
Exceed.

.500
.333
.250
.200
.167
.143
.125
.111
.100
.067
. 050
. 040
.033
.029
.025
.022
.020
.017
.014
.013
.011

.010

Variate

367

.903
1.246
1.500
1.702
1.870
2.013
2.139
2.250
2.674
2.970
3.199
3.384
3.541
3.676
3.795
3.902

4.086

Mean Return Period

Wind Load
Extreme Values
Reg. Mom.
(N/m) (N/m)
2.712 2.694
3.712 3.659
4.351 4.276
4.825 4.731]
5.202 5.097
5.514 5.399
5.782 5.657
6.016 5.883
6.224 6.084
7.013 6.846
7.566 7.379
7.991 7.790
8.338 8.124
8.630 8.406
8.882 8.650
9.104 8.864
9.303 9.056
9.646 9.387
9.935 9.666
10.186 9.908
10.407 10.121
10.604 10.312

Gust Load

Extreme Values

Reg. Mom.

(N/m) (N/m)
5.621 5.581
7.693 7.583
9.019 8.863
10.001 9.811
10.781 10.564
11.430 11.190
11.984 11.726
12.469 12.194
12.900 12.609
14.536 14.189
15.681 15.294
16.563 16.146
17.281 16.8139
17.886 17.423
18.409 17.928
18.870 18.372
19.281 18.769
19.992 19.4%6
20.592 20.03%
21.112 20.%17
21.570 20.978
21.979 21.374
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The extremes for the average hourly horizontal wind
load and the gust load are given in Table 19. In this case
the extremes determined through the regression technique are
more severe for all the listed mean return periods, and also
for any greater mean return periods. The set, derived by the
method of moments, may be more accurate (Kinnison, 1985),
but it does not represent the worst (most severe) case.
Consequently ‘a’ and ‘u’, derived by the regression method,
are used in later analyses of the horizontal load.

The extreme values can be represented as a function of
the risk and the designed lifetime of the transmission line.
This is probably the most useful representation of the data
in tabular forwy In this form the minimum tolerance for
which the transmission lines must be constructed, for a
given risk and 1lifetime, is readily apparent. This
representation is similar to that of Table 2, except that
the minimum tolerance is expressed in terms of force on the
line, rather than the mean return period of that force.
Table 20 gives the minimum mass (kg/m) tolerances. It is
probably more convenient to work in terms of force rather
than mass. The wind drag and the force due to the movement
of the line are also easily expressed in terms of force.
Table 21 gives the minimum vertical load tolerances. It
should be noted that these tables do not include the mass
(0.7872 kg/m) or weight (7.722 N/m) of the transmission
line. The weight of the line is not a large factor, but in

the case of a moderate risk, moderate lifetime situation it
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will be a significant consideration in designing
transmission towers.

Tables 22 and 23 show the minimum horizontal tolerances
for the average hourly wind load and the gust load as a
function of the risk the and designed lifetime. The
tolerance of transmission 1lines must be designed with
respect to the gust load. The gust load i~ by definition
greater than the average wind load. The table for the
average wind loads exists only for the purpose of comparison
with the gust loads. Both tables represent only the static
situation. The load on the system can be greatly increased
by the dynamics of the line (Lozowski and Gates, 1987).
Because of this the gqust table is, for practical purposes,
inadequate for designing line and tower tolerances. It is,

however, a start in the right direction.
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Table 20 - Sufficient Design Mass Tolerance (kg/m)

Risk of Designed Lifetime (years)

Exceedance
(%) 2 5 10 15 20 25 50 100
75 .83 2.61 3.84 4.54 5.03 5.41 6.58 7.75

.50 1.65 3.33 4.54 5.23 5.72 6.10 7.26 8.43
.40 2.08 3.72 4.92 5.61 6.10 6.47 7.64 8.80
.30 2.61 4,22 5.41 6.10 6.58 6.96 8.12 9.28
.25 2.94 4.54 5.72 6.40 6.89 7.26 8.43 9.59
.20 3.33 4.92 6.10 6.78 7.26 7.64 8.80  9.96
.15 3.84 5.41 6.58 7.26 7.75 8.12 9.28 10.44
.10 4.54 6.10 7.26 7.94 8.43 8.80 9.96 11.12
.05 5.72 7.26 8.43 9.11 9.59 9.96 11.12 12.28
.02 7.26 8.80 9.96 10.64 11.12 11.50 12.66 13,82

.01 8.43 9.96 11.12 11.80 12.28 12.66 13.82 14.98



Table 21 -
Risk of
Exceedance

(%) 2

.75 8.16

.50 1l6.21

.40 20.38

.30 25.59

.25 28.81

.20 32.70

.15 37.64

.10 44.51

.05 56.10

.02 71.26

.01 82.67

Sufficient Design Vertical Load Tolerance (N/m)

Designed Lifetime (years)

5
25.59
32.70
36.54
41.43
44.51
48.26
53.06
59.80
71.26

86.34

10
37.64
44.51
48.26
53.06
56.10
59.80
64.56
71.26
82.67

97.73

97.73 109.12

15
44.51
51.31
55.02
59.80
62.82
66.51
71.26
77.94
89.34

104.39

115.77

20
49.34
56.10
59.80
64.56
67.57
71.26
76.00
82.67
94.07

109.12

120.50

25
53.06
59.80
63.49
68.25
71.26
74.94
79.67
86.34
97.73

112.78

124.16

50
64.56
71.26
74.94
79.67
82.67
86.34
91.07
97.73

109.12
124.16

135.53

100
76.00
82.67
86.34
91.07
94.07
97.73
102.46
109.12
120.50
135.53

146.91
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Table 22 - Sufficient Design Average Wind Tolerance

Risk of

Exceedance
(%) 2
.75 3.39
.50 4.28
.40 4.73
.3C 5.30
.25 5.66
.20 6.08
.15 6.63
<10 7.38
.05 8.65
.02 10.31

.01 11.56

10.31
11.97

13.22

Designed Lifetime (years)

10

15

10.31
11.04
12.30
13.95

15.19

20

12.81
l4.46

15.71

25
8.32
9.06

9.46

10.31
10.72
11.23
11.97
13.22
14.87

15.11

50

9.58
10.31
10.72
11.23
11.56
11.97
12.48
13.22
14.46
16.11

17.36

(N/m)

100
10.83
11.56
11.97
12.48
12.81
13.22
13.73
1l4.46
15.71
17.36

18.61
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Table 23 ~ sufficient Design Gust Tolerance (N/m)

Risk of
Exceedance
(%) 2
.75 7.03
.50 8.86
.40 9.81
.30 10.99
.25 11.73
.20 12.861
.15 13.73
.10 15.29
.05 17.93
.02 21.37
.01 23.97

4.3 Current design standards

Rural transmission line towers are designed to similar

10.99
12.61
13.48
14.59
15.29
16.15
17.24
18.77
21.37
24.80

27.39

Designed Lifetime (years)

10
13.73
15.29
16.15
17.24
17.93
18.77
19.85
21.37
23.97
27.39

29.98

15
15.29
16.84
17.68
18.77
19.46
20.29
21.37
22.89
25.48
28.90

31.49

20
16.39
17.93
18.77
19.85
20.54
21.37
22.45
23.97
26.56
29.98

32.56

25

17.24

18.77

19.61

20.69

21.37

22.21

23.29

24.80

27.39

30.81

33.40

19.85
21.37
22.21
23.29
23.97
24.80
25.88
27.39
29.98
33.40

35.98

100
22.45
23.97
24.80
25.88
26.56
27.39
28.47

29.98

35.98

38.57

standards throughout southern Alberta. The phase conductors

(Figure 9), the wires that carry the current, all have the

same failure strengths. The ground wires have a smaller

failure strength, and the towers have a greater failure

strength. The towers are designed so that either the

insulating cable

or the transmission line will break before

the tower is damaged. Table 24 lists the failure loads for

the transmission lines on the L-towers used in southern

Alberta.
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Table 24 - Load Tolerances of Transmission Lines

Horizontal Load Vertical Load
(N/m) (N/m)
Phase wire 17.752 18.724

The tolerances in Table 24 can be compared to the tolerance
‘n Tables 21 and 23. The vertical tolerance (Table 24) is
slightly greater than the tolerance required for the line
to have a 50% chance of being damaged in two years. The
horizontal tolerance (Table 24) is similar to what is
required for the line to have a 15% chance of being damaged
in five years, a 40% chance of being damaged within fifteen
years, and a 75% chancé of being damaged within twenty-five
years. Obviously Tables 20 and 21 overestimate the average
mass and average vertical load per metre on the transmission
lines. Typical transmission line spans last longer than two
years. The loads listed in Tables 21 to 23 are the loads at
the center of the transmission lines. The wet snow accretion
is smaller near the transmission towers because the
transmission lines cannot rotate near the towers.
Consequently Tables 21 to 23 over estimate the average load
per metre, and hence the total load that would be placed on

the transmission lines.



SUMMARY AND RECOMMENDATIONS
The meteorological parameters associated with wet snow

were simulated in order to study extreme wet snow accretions
on transmission lines. This simulation is necessary because
there are insufficient observed data, about the size and
mass of wet snow accretions, to perform a risk analysis. A
wet snow accretion model developed by Finstad simulated the
vertical and horizontal load on a line. The model required
that the air temperature, relative humidity, precipitation
rate, and wind velocity be estimated throughout the event.
The frequency distributions of the initial conditions for
the air temperature, and wind direction during potential wet
snow events have been approximated as Gaussian
distributions. The frequency distributions for the bounded
parameters such as relative humidity were assumed to be
Gaussian only over the range of the variable. 1Initial
conditions outside the range of the variables were ignored,
and when necessary, the initial condition was re-determined
until a value within the acceptable range is found. In the
case of wind speed, this is equivalent to renormalizing the
frequency distribution. For the visibility and the relative
humidity, it is not equivalent to renormalization because
the probability that the initial condition is greater than
the upper limit of the range is added to probability of the
occurrence of the upper limit.

The actual probability distributions, based on

meteorological observations during potential wet snow
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events, were not used in the model because of the ease of
Programming a Gaussian distribution. A Gaussian frequency
distribution can be completely described by a mean and a
standard deviation. Thus the initial conditions of potential
wet snow events have been generated as follows; where RSD is
a randomly generated number of standard deviations with a
frequency distribution that is a normal distribution (a mean
of zero, and a standard deviation of one) :
Tq = 2.202 + 2.49 x RSD [°c)
RH = 88.856 + 9.049 x RSD [%]
where RH > 100 is set to RH = 100,

and in the unlikely event that RH < 0, RH must be

re-determined,
P = 92.869 + 0.724 x RSD [kPa]
V =11.39 + 8.751 x RSD [km]
where V > 25 is set to V = 25,
and if V < 0.1, V must be re-determined,
PR = Antilog( 0.055 - log( V ) / 0.607 ) [cm snow/hr)
U(10 m) = 4.948 + 2.961 x RSD (m/s]

where U < 0 means that U must be re-determined,
U(36.1 m) = 1.486 x U(10 m)
Dir = 90.0 + 80.5 x RSD [degrees]
where the angle is calculated zo 0 < Dir < 360.
The mean wind direction was set at ninety degrees to the”
line because wind directions perpendicular to the 1line

produce larger accretions than winds from other directions.
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The evolution of the meteorological parameters with

time was modeled in hourly steps. The temporal trends for
the air temperature and the relative humidity, based on
observations, are the only trends that were large enough;
compared to the average standard deviations of their hourly
changes, to be considered as significant. It was found that
during potential wet snow events that the temperature -ould
tend to decrease, and the relative humidity would tend to
increase. These temporal trends were represented as:
ATa¢ = -([0.156 - 0.066 1ln(t)], for t < 10, [°c]
= 0, for t > 10 hours (t is in hours),
ARHt = 3.172 - 1.955 1ln(t), for t < 5 hours, (%]
= 0, for t > 5 hours.

Therefore the mean hourly changes in air temperature and
relative humidity are equal to the value of the temporal
trend for the specific hour, while the means of the hourly
changes of the other parameters are set to zero. The
formulas for the frequency distributions of the hourly
changes in the meteorological parameters are similar to the
formulas for the frequency distributions of the initial
conditions. The only major difference is that each equation‘
for hourly changes is multiplied by a delta function.

Assuming that the distributions of the hourly changes
were Gaussian, there was an unusually large fraction of
observations with hourly changes equal to zero. This
phenomenon was found to depend on the temperature and the

change in temperature. The effects of these dependencies
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were small enough to be ignored. In the extreme accretion

model, the unusually large probability of an hourly changes
equal to zero was simulated using a Kronecker delta
function:

1l if x> x

i

S (xg) or
=0 if x < Xor

where x, is the probability of persistence,

and X is a randomly generated number between zero

and one.

The hourly changes of the parameters can be summarized as

follows:

ATa = §(0.34) x (AT, + 0.656 x RSD), [°c
ARH = §(0.24) x (ARHt + 4.774 x RSD), (%]

where RH > 100 is set equal to RH = 100,

and RH < 0 means that RH must be re~-determined,
AP = §(0.17) x 0.065 x RSD, [kPa]
AV = §(0.25) x 6.391 x RSD, [km]

where V > 25 is set equal to V = 25,

and V < 0.1 means that V must be re-determined,
AU(10 m) = §(0.18) x 1.598 x RSD, [m/s]

where U < 0 means that U must be re~determined,
ADir =5 (0.39) x 39.469 x RSD, [degrees]

where the angle is calculated so 0 < Dir < 360.

The gust speed was estimated to exceed the wind speed
by a constant times the reference velocity. For prairie

conditions, an infini<e plain with a roughness 1length of
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3 cm, this constant is approximately 0.275. The assumptions

that lead to a constant of proportionality are not wvalid
where the terrain cannot be approximated as an infinite
plane. Another model for gqust speed will have to be
developed if this extreme value model is to be used to
estimate extremes for mountainous conditions.

The size of the wet snow accretion depends on the
duration of the wet snow event. The cumulative probability
function for the duration of a potential wet snow event,
based on observations, can be described as:

dur, = Antilog( -1.452 x [ ( 1 - P?)%-5 — 1 7 } [hours],

Where P is the cumulative probability of the duration.
Based on a thermodynamical model of falling snow, the
precipitation was considered to be wet snow when the surface
relative humidity was greater than the critical relative
humidity. Based on hourly observations and radiosonde
observations, there was also a 45% chance of wet snow when
the surface relative humidity was less than the critical
relative humidity (RH.), but greater than the critical
surface relative humidity (RH ) -

RHo = 100 - 12.25 t_

RHog = 90.1 - 5.3 t,
These conditions were evaluated for every hour of each
simulated potential wet snow event. In only a few events the
precipitation will be wet snow throughout every hour of the

potential wet snow event.
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The number of events in a particular year influences

the magnitude of the probable magnitude of the annual
extreme accretion. The frequency distribution of the number
of potential wet snow events in one year was approximated as
Gaussian:

annual number of events = 22.632 + 7.946 x RSD.

The extreme value analysis led to the following
formulas for the annual extremes as a function of the

probability of exceeding these extremes:

Mam = -0.41 - 1.67 In[ -1n( 1 - p ) ] [N/m]
Lyam = =423 - 16.41 In[ -1n( 1 - p ) ] [N/m]
Lyam = 2-47 = 3.03 In[ -1n( 1 - p ) ] [(N/m]
Lgam = 3.42 - 4.18 In[ -In( 1 - p ) ] [N/m]

These extremes are representive of the accretion at the
middle of the span. They are not representive of the average
characteristics of the accretions over the whole line.

The extreme value corresponding to a specific risk and
a specific mean 1life time can be found by combining
equations (14) and (27):

X=u-aln[ -In(1 - r) / t ].

Therefore the minimum necessary structural strength of
transmission lines, as a function of the risk and the mean
life time, is the following:

Lyam = —4-23 - 16.41 1n[ -1n(1 - r) / t], [N/m)

Lgam = 3-42 - 4.18 In[ -1n(1 - r) / t ]. © [N/m]
The risk analysis for the vertical load over-estimated the

annual extreme values, while the risk analysis of the
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horizontal load produced reasonable values. The differences

between the quality of the two sets of data is partially due
to an overestimation of the density of the accretions.
5.1 Reccmmendations

l. A means of estimating the mass and shape of the
accretion over the entire length of the 1line between
adjacent towers will be necessary to produce accurate
estimates of accretion induced loads. Examinations of the
variation of the shape and density of accretions over the
length of a line are likely to require a large volume of
open space. This means that wind tunnel experiments are
likely to be an impractical approach to this problem.
Consequently field observations of the variation of the mass
and shape of wet snow accretions may be necessary.

2. The extreme accretion model developed in this study
does not take line dynamics into account. It is a good model
for static or near stacic situations, but it does not
simulate the extreme loads caused by 1line oscillations.
While a line remains intact, it may be forced to oscillate
in one or more dimensions. This means that the motion of the
line applies a centrifugal force (Halliday and Resnick,
1981) to the line. To examine this in detail the 1line
oscillations would probably have to be treated as a forced,
damped, simple harmonic oscillator (Marion, 1970) in one or
two dimensions. This could be further complicated by
considering the different types of oscillations the line

might make in the process of building to its largest type of
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oscillation. A study of the forcing term (gusts) and of the

damping term (friction) would be necessary before good
approximations could be made for the additional load due to
the motion of the line. The dynamic interactions between the
line and the towers should also be considered.

3. The accuracy of the mass and shape of the accretions
produced by Finstad’s wet snow accretion model could be
improved if the accuracy of the input parameters were
improved. The approximations made in this thesis for the
initial values and hourly changes in these parameters (air
temperature, relative humidity, precipitation rate, and wind
velocity) was a first attempt at this process.

4. The estimates of the vertical loads induced by wet
snow accretions would be improved if the accretion model
could produce better estimates of the density, and hence the
mass, of the wet snow accretions.

5. The distributions of the meteorological variables

should be examined locations other than Namao, Alberta.



References

Admirat, P., J. C. Grenier, M. Maccagnan, Theory and
odelli o at ]

’
Clamart Cedex, Departement Transport Appareillage,
1985a
Admirat, P., J. L. Lapeyre, M. Maccagnan, Sj on o e
Cvyli ical retio c sms We ow i Wi

Tunnel, Clamart Cedex, Departement Transport
Appareillage, 1985b

Finstad, Karen, Svein Fikke, Magnar Ervik, Torkild cCarstens,
Meteorological and Cloud Physical Observation of

Atmospheric Icing Events on Gaustatoppen, 1988

Finstad, Karen J., Rime Icing Models, unpublished, 1986
Finstad, Karen, StatKaft Report, unpublished, 1989

Gumbel, E, J., Statistics of Extremes, Columbia University
Press, 1958

Halliday, David, Robert Resnick,"The Dynamics of Unaform
Circular Motion", Fundamentals of Physics, 20
edition, Toronto, John Wiley & Sons, inc., 1981,
pp. 84 - 86

Kinnison, Robert R., Applied Extreme Value Statistics, New
York, Macmillan Publishing Company, 1985

Lozowski, E. P., K. J. Finstad, M. Bourassa, Extensions to a
Wet Snow Accretion Model for Transmissio ines d

Application to Alberta, research report to TransAlta

Utilities, 1989

Lozowski, E. P., E. M. Gates, on_The Modelling of Ice
Accretion, unpublished, written in July 1987

Marion, Jerry B.d Classic ics
Systems, 2“9 edition, New York, Academic Press,

pp. 117 - 149, 1970

Matsuo, Takayo, Yoshio Sasyo, "Empirical Formula for the
Melting Rate of Snowflakes",
Japan, February, 198la, Vol. 59, pp. 1 - 9

Matsuo, Takayo, Yoshio Sasyo, "Melting of Snowflakes below
Freezing Level in the Atmosphere", Journal of
£ , February, 1981b, Vol. 59,
PpP. 10 - 25

109



138
ELSEIF ( L .LT. JUA - 1 ) THEN

L=L+1
GOTO 100
ELSE
UAPT = -99999.0
ENDIF
ENDIF
RETURN
C end of function UAPT
END

7.5.1.2 Function IAYER

C FUNCTION 1IAYER hhkkkdhhhkkhhkhkhhkhkhkhhkhkhhhkkhhkhrhhrtrrhhkhkhkkk
C *
c Purpose: to determine the difference of a variable *
c over a layer in the atmosphere. Oservations must *
C have been made at these pressures for a values *
c to be returned, otherwise -9999.9 is returned. *
C %
Cc Definitions: *
c FUDGE - multiplier to move the decimal of the *
c error designator (-9999.9), so that it *
C matches the error designator of the *
c variable *
c JUA - the number of heights at which *
c observations were made *
Cc L - index (counter) for the hieght in the *
Cc atmosphere. Starts at the top of the *
o) layer *
Cc LAYER - the returned value *
c LLAYER - the pressure at the bottom of the layer *
c TOPJUA - index for the pressure at the top of *
C the layer: ULAYER = UADATA (TOPJUA, 1) *
c UADATA - see METSTAT *
Cc UAVAL - an index of UADATA that indicates the *
c variable of interest *
c ULAYER - the pressure at the top of the layer *
C *
Cc Programmed by Mark Bourassa *
C *
C***********************************************************

FUNCTION LAYER(UADATA,ULAYER,LLAYER,JUA,UAVAL)
INTEGER JUA, UAVAL, L, TOPJU2
REAL UADATA(30,15), ULAYER, LLAYER, FUDGE, LAYER

L =1

FUDGE = 1.0

IF ( UAVAL .EQ. 1 ) FUDGE = 100.0
IF ( UAVAL .EQ. 3 ) FUDGE = 10.0
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100 IF ( UADATA(L,1) .EQ. ULAYER ) THEN
TOPJUA = L
L=1L+1
200 IF ( ( UADATA(L,1) .EQ. LIAYER ) .OR.
2  ( LLAYER .LT. 0.0 ) ) THEN
IF ( LLAYER .LT. 0.0 ) L = JUA - 1

139

IF ( (UADATA(TOPJUA,UVAL) .EQ. -99999.0 / FUDGE)

2 -OR. ( UADATA(L,UVAL) .EQ. -99999.0 / FUDGE ) )
3 THEN
LAYER = -99999.0
ELSE

LAYER =UADATA (TOPJUA,UAVAL) - UADATA (L, UAVAL)

ENDIF
ELSEIF ( L .LT. Jua - 1 ) THEN
L=L+1
GOTO 200
ELSE
LAYER = -99999.0
ENDIF
ELSEIF ( L .LT. JUA - 1 ) THEN
L=L+1
GOTO 100
ELSE
LAYER = -99999.0
ENDIF
RETURN
end of function LAYER
END

7.5.1.3 Function UATEST

SUBROUTINE UATEST ®kkkkhkkkkhhkhhhhhhhhhhhkhhhhhhhrrhkhhhd

Purpose: to find a upper air sounding that was
observed on the same time (hour) as a surface
precipitation event occurred. It searches for
the upper air date until the date of the
sounding is later than or equal the date of the

profile.

Definitions:
DAY - day of the surface precipitaiton event
HOUR - hour of the surface precipitation event
II - ses METSTAT

JFOUND - the number of hours from the onset of
precipitation event

JUuA - ses METSTAT

K - counter

MONTH - month of the surface precipitation
event

UACASE - ses METSTAT
UACNT - ses METSTAT
UADATA - ses METSTAT

* % % % w ¥ ¥ ¥ X ¥ ¥ N ¥ N ¥ ¥ N F * ¥ ¥
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C UADATE -~ see METSTAT *
c UAFND - ses METSTAT *
Cc YEAR - year of the surface event *
C *
c Programmed by Mark Bourassa 1988 *
C *
C***********************************************************

SUBROUTINE UATEST( JUA, YEAR, MONTH, DAY, HOUR,
2 UADATE, UADATA, UACNT, UAFND, JFOUND, II )

LOGICAL UAFND
INTEGER JUA, YEAR(60), MONTH(60), DAY(60), HOUR(60),
2 UACASE, UADATE(4), UACNT, K, II, JFOUND

REAL UADATA(30,15)

CHARACTER*1 HEADNG

JUA = 1
c compare the surface and sounding dates
155 CALL DTCOMP (UADATE (1) ,UADATE (2) ,UADATE (3) ,UADATE (4),
2 YEAR(ITI),MONTH(II),DAY(II),HOUR(II),UACASE,O)

Cc if the sounding date is earlier than the surface date,
Cc then read in the next upper air layer, and compare
c dates again
IF ( UACASE .EQ. 1 ) THEN
C skip over the character headings at the top of each
Cc page
IF ( UACNT .EQ. 1 ) THEN
DO 160 K=1, 3
READ(20,5001) HEADNG
160 CONTINUE
UACNT = 4
ENDIF
READ(20,9015,END=4000) (UADATE(K),K=1,4),
2 (UADATA (JUA,K) ,K=1,15)
UACNT = UACNT + 1
IF ( UACNT .EQ. 61 ) UACNT = 1
GOTO 155
c if the dates are the same then read the variables for
c each observed height in the sounding

ELSEIF ( UACASE .EQ. O ) THEN
JFOUND = II
180 JUA = JUA + 1
UAFND = .TRUE.
IF ( UACNT .EQ. 1 ) THEN
DO 185 K=1, 3
READ (20,9001) HEADNG
185 CONTINUE
UACNT = 4
ENDIF
READ (20,9015, END=4000) (UADATE (K),K=1,4),
2  (UADATA(JUA,K), K=1,15)
UACNT = UACNT + 1
IF ( UACNT .EQ. 61 ) UACNT = 1
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compare the dates of the heights where observations
were made. If the dates are not the same then the
intire profile is stored in UADATA
CALL DTCOMP(UADATE(l),UADATE(Z),UADATE(3),
2  UADATE(4), YEAR(II),MONTH(II),DAY(II),HOUR(II),
3 UACASE, 0)
IF ( UACASE .EQ. O ) THEN
GOTO 180
ELSE
JUA = JUA + 1
DO 187 X=1,15
UADATA (JUA,K) = UADATA(JUA-1,K)
187 CONTINUE
DO 190 K=1,6
UADATA (JUA-1,K) = UADATA (JUA-2,K+6)
190 CONTINUE
ENDIF
ENDIF

4000 RETURN

9001 FORMAT (A)

9015 FORMAT(lX,3(IZ,1X),IZ,F6.2,F7.0,F7.1,3F7.0,F7.2,F7.0,
2 F7.1,4F7.0,2F7.2)
end of subroutine UATEST
END

7.5.1.4 Subroutine DSTRBN
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SUBROUTINE DSTRBN kkkkkkkhkkhhddhhkdhdehddhkhkddhhdhdhdddkhkkkkk

Purpose: to count the different combinations of
precipitation types (rain, snow, and rain with
snow) for each month of each year. This also
counts for the distribution of durations, and
for the distribution of number of hours with
each time (in hours) from the onset of the
precipitation event.

Definitions:
EVENTS - see METSTAT
HOUR1 - see METSTAT
HOUR2 - see METSTAT
K - counter equal to number of hours from
the onset of the precipitation event

ILGCRN - see METSTAT
LGCRS - see METSTAT
LGCSNW - see METSTAT
MNDIS - see METSTAT
MONTH - see METSTAT
RAIN - see METSTAT
SNOW see METSTAT

- TIMSET see METSTAT
UA - see METSTAT
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YEAR - see METSTAT
YEAR1 - see METSTAT
YRNDEX - see METSTAT

*
*
*
*
Programmed by Mark Bourassa 1988 *
*
*

SUBROUTINE DSTRBN( TIMSET, UA, LGCRN, LGCSNW, LGCRS,
2 EVENTS, HOUR1l, HOUR2, MNDIS, YEAR, MONTH, YRNDEX,
2 YEAR1, SNOW, RAIN )

LOGICAL TIMSET, UA, LGCRN, LGCSNW, LGCRS
INTEGER EVENTS (62), HOUR1, HOUR2, MNDIS(4,30,12),
2 YEAR(60), 2 MONTH(60), YRNDEX, YEAR1l, K

REAL SNOW(60), RAIN(60)

for each hour add one to the appropriate counter and
one to the counter for the monthly total
DO 200 K=HOUR1l, HOUR2, 1
IF ( ( ( RAIN(K) .GT. 0.0 ) .AND. LGCRN ) .OR.
( ( SNOW(K) .GT. 0.0 ) .AND. LGCSNW ) .OR.
( ( RAIN(K) .GT. 0.0 ) .AND. ( SNOW(K) .GT. 0.0 )
.AND. LGCRS ) ) THEN
IF ( TIMSET .AND. ( .NOT. UA ) ) THEN
IF ( K .EQ. HOUR1 ) EVENTS(J-1) = EVENTS(J-1)
5 + 1
ELSE
EVENTS (K) = EVENTS(K) + 1
ENDIF
IF ( K .EQ. HOUR1 ) EVENTS(61) = EVENTS(61) + 1
EVENTS(62) = EVENTS(62) + 1

D W

YRNDEX = YEAR(K) - YEARL + 1
IF ( RAIN(K) .GT. 0.0 ) THEN
IF ( SNOW(K) .GT. 0.0 ) THEN
MNDIS (3, YRNDEX, MONTH (K) ) = MNDIS (3, YRNDEX,

2 MONTH(K)) + 1
ELSE
MNDIS (1, YRNDEX,MONTH(K)) = MNDIS (1, YRNDEX,
2 MONTH(K)) + 1
ENDIF

ELSEIF ( SNOW(K) .GT. 0.0 ) THEN
MNDIS (2, YRNDEX,MONTH (K) ) = MNDIS (2, YRNDEX,
MONTH (K)) + 1
ENDIF
MNDIS (4, YRNDEX,MONTH (K) ) = MNDIS (4,YRNDEX,
2 MONTH(K)) + 1
ENDIF

200 CONTINUE

RETURN
end of subroutine DSTRBN
END
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7.5.1.5 Subroutine SETVAL

SUBROUTINE DSTRBN

Purpose: to select the x or y-values:
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A) Surface Ta [C]

B) Surface Ta ~ Tw [C]
C) Time from onset [hours)

D) Duration [hours]
E) Upper air Ta [C]
F) Upper air RH [%]

G) Layer thickness [m]
H) Surface Pressure [kPa]

I) Surface RH [%]
J) Surface Tw [C]
K) Lapse rate [C/km]
L) Wind Shear [1/C)
M) Ta Difference [C)

N) UA Pressure(sfc) [kPa]
O0) SFC Wind direction [degrees]
P) SFC Wind Speed [m/s]

Q) Visibility [km]

R) Snow Precip [cm/hour]
Z) Unity.

Definitions:
DUMMY
HOUR1
HOUR2
J
JUA
K

LGCDDN
LGCDIR

LGCTDF

LGCzZV

LLAYER
MAX
MIN
PRESS
RAIN
RH
SNOW
SPEED
TA

TW

temperary storage location

see
see
see
see

counter equal to the number of hours
from the onset of the precipitation event

METSTAT
METSTAT
METSTAT
METSTAT

- see METSTAT

- logical that is true is the direction
is being examined

- logical that is true if hourly changes
are being examined

- logical that is true if the other
variable is only examined when the this
variable is equal to zero.

see

maximum value
minimum value

see
see
see
see
see
see
see

METSTAT

METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
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UADATA -~ see METSTAT
ULAYER - see METSTAT
VAL - the value being returned
VALUE -~ see METSTAT

VIS - see METSTAT
WINDIR see METSTAT

XYVAR =~ logical that is true if variable being

set is the x-variable

Programmed by Mark Bourassa 1988
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*
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*
*
*
*

SUBROUTINE SETVAL( VALUE, VAL, TA, TW, UADATA, ULAYER,
2 LLAYER, J, JUA, HOUR1l, HOUR2, RH, SPEED, WINDIR,
3 PRESS, VIS, MIN, MAX, XYVAR, LGCDDN, I C TDF, LGCZV,

4 RAIN, SNOW)

IOGICAL LGCTDF, XYVAR, LGCDDN, LGCZV, LGCDIR

INTEGER JUA, J, K, HOUR1l, HOUR2

REAL VAL(60), TA(60), TW(60), UADATA(30,15), ULAYER,
2 LLAYER, RH(60), DUMMY, SNOW(60), RAIN(60), LAYER,
3 SPEED(60), WINDIR(60), PRESS(60), VIS(60), MIN, MAX

CHARACTER*1 VALUE

LGCDIR = .FALSE.
DO 200 K=HOUR1, HOUR2, 1
IF ( ( VALUE .EQ. ‘A’ ) .OR.
2  THEN
VAL(K) = TA(K)
ELSEIF ( ( VALUE .EQ. ’B’) .OR.
2  THEN
VAL(K) = TA(K) - TW(K)

ELSEIF ( ( VALUE .EQ. ’C’) .OR.
2 THEN
VAL(K) = K
ELSEIF ( ( VALUE .EQ. ‘D’) .OR.
2  THEN
VAL(K) = J - 1
ELSEIF ( ( VALUE .EQ. ‘E’) .OR.

2 THEN

VAL(K) = UAPT (UADATA,ULAYER,JUA, 3)

ELSEIF ( ( VALUE .EQ. ’F’) .OR.
2 THEN

VAL(K) = UAPT (UADATA,ULAYER,JUA,4)

ELSEIF ( ( VALUE .EQ. ’G’) .OR.
2 THEN

( VALUE .EQ. ’‘a’ )

VAL(K) = LAYER(UADATA,ULAYER, LLAYER,JUA,2)

ELSEIF ( ( VALUE .EQ. ‘H’) .OR.
2  THEN
VAL(K) = PRESS (K)
ELSEIF ( ( VALUE .EQ. ‘I’) .OR.
2  THEN
VAL(K) = RH(K)

)

) )

.EQ. ’'b’%) )
.EQ. ‘¢’
.EQ. ’d’
.EQ. ‘e’
+EQ. £/
.EQ. ‘g’
.EQ. ’'h’
.EQ. i’



ELSEIF ( ( VALUE .EQ. ‘J’) .OR. (VALUE .EQ. ’3j’
THEN
VAL(K) = TW(K)
ELSEIF ( ( VALUE .EQ. ’K’) .OR. (VALUE .EQ. ’‘k’
THEN
VAL(K) = LAYER(UADATA,ULAYER, LLAYER,JUA, 3)
DUMMY = LAYER(UADATA,ULAYER,LLAYER,JUA,2)
IF ( ( DUMMY .NE. -99999.0 ) .AND. ( VAL(K)
.NE. =-9999.9 ) ) THEN

VAL(K) = - 1000.0 * VAL(K) / DUMMY
ELSE

VAL(K) = -99999.0
ENDIF

ELSEIF ( ( VALUE .EQ. ‘L’) .OR. (VALUE .EQ. ’1’
THEN
VAL(K) = LAYER(UADATA,ULAYER, LLAYER,JUA, 6)
DUMMY = LAYER(UADATA,ULAYER,LLAYER,JUA,2)
IF ( ( DUMMY .NE. -99999.0 ) .AND. ( VAL(K)
.NE. -99999.0 ) ) THEN
VAL(K) = VAL(K) / DUMMY
ELSE
VAL(K) = =-99999.0
ENDIF
ELSEIF ( ( VALUE .EQ. ‘M’) .OR. (VALUE .EQ. ’m’
THEN
VAL(K) = LAYER(UADATA,ULAYER, LLAYER,JUA, 3)
ELSEIF ( ( VALUE .EQ. ‘N’) .OR. (VALUE .EQ. ’'n’
THEN
VAL(K) = UAPT(UADATA,ULAYER,JUA, 1)
ELSEIF ( ( VALUE .EQ. ‘0’) .OR. (VALUE .EQ. ‘c’
THEN
VAL(K) = WINDIR(K)
LGCDIR = .TRUE.
ELSEIF ( ( VALUE .EQ. ‘P’) .OR. (VALUE .EQ. ’‘p’
THEN
VAL(K) = SPEFD(K)
ELSEIF ( ( VALUE .EQ. ‘Q’) .OR. (VALUE .EQ. ‘q’
THEN
IF ( ( SNOW(K) .GT. 0.0 ) .AND.
( RAIN(K) .LE. 0.0 ) ) THEN
VAL(K) = VIS(K)
ELSE
VAL(K) = ~99999.0
ENDIF
ELSEIF ( ( VALUE .EQ. ‘R’) .OR. (VALUE .EQ. ’‘r’
THEN
IF ( VIS(K) .GT. 0.0 ) THEN
DUMMY = 0.055 - LOG10( VIS(K) ) / 0.607
VAL(K) = 10.0 ** DUMMY
ELSE
VAL(K) = -99999.0
ENDIF
ELSEIF ( ( VALUE .EQ. ‘Z’) .OR. (VALUE .EQ. ‘z’
THEN
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VAL(K) = 1.0
ENDIF

adjust to code for no data observed
IF ( VAL(K) .EQ. =-9999.9 ) VAL(K)
IF ( VAL(K) .EQ. -999.99 ) VAL(K)

-99999.0
=99999.0

200 CONTINUE

if the option for hourly differences has been chosen
then take the differences
IF ( LGCTDF ) THEN
HOUR2 = HOUR2 - 1

DO 500 K=HOUR1l, HOUR2, 1

IF ( ( VAL(K+1) .NE. =-99999.0) .AND.
2 (VAL(K) .NE. -99999.0 ) ) THEN

DUMMY = VAL(K+1l) - VAL(K)
remove the trends
IF ( ( DUMMY .NE. 0.0 ) .AND.

2 ( VALUE .EQ. ‘A’ ) .AND. ( K .LT. 11 ) )
3 DUMMY = DUMMY + SQRT(0.156 - 0.066 * LOG(K))
IF ( ( DUMMY .NE. 0.0 ) .AND.
2 ( VALUE .EQ. ‘I’ ) .AND. ( I .LT. 6 ) )
3 DUMMY = DUMMY - 3.172 + 1.955 * LOG(K)
IF ( LGCDIR .AND. ( DUMMY .LT. -180.0 ) )
2 DUMMY = DUMMY + 360.0
IF ( LGCDIR .AND. ( DUMMY .GT. 180.0 ) )
2 DUMMY = DUMMY - 360.0

IF ( LGCDDN ) THEN
IF ( XYVAR ) THEN
WRITE(25,9023) VAL(K), ’,’, DUMMY
ELSE
WRITE(26,9023) VAL(K), ’,’, DUMMY
ENDIF
ENDIF
VAL(K) = DUMMY
ELSE
VAL(K) = -99999.0
ENDIF
CONTINUE
HOUR2 = HOUR2 + 1
ENDIF

if the option to examine the other variable only when
the value of this variable is zero, then set all non-
zero values to the lack of observation code (=9999.9)
DO €00 K=HOUR1l, HOUR2
IF ( LGCZV .AND. ( VAL(K) .NE. 0.0 ) )
2 VAL(KX) = =-99999.0

reset MIN and MAX if more extreme values are found
IF ( ( VAL(K) .LT. MIN ) .AND.

2 ( VAL(K) .NE. =99999.0 ) ) MIN = VAL (K)
IF ( ( VAL(K) .GT. MAX ) .AND.
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2

600 CONTINUE

RETURN

9023 FORMAT( 1X,F9.3,A,3X,F9.3)

( VAL(K) .NE. -99999.0 ) ) MAX = VAL(K)

end of subroutine SETVAL

END

SUBROUTINE IDENT

Purpose: to select specific x and y-values from each
precipitation event. The choices are:

all hours of each event

beginning hour of each event

central hour of each event

end hour of each event

first, central, and last hours

only the ’X’~th hour

skip every ‘X’ data points.

A)
B)
C)
E)
F)
0)
S)

Definitions:

ALLPTS -
BSHAVE ~
ESHAVE -
HOUR1 -~
HOUR2 -~
J -
JMIN -
K -

e
LGCAVE -
IGCRN -~
IGCRS -~
LGCSNW -
MINVAL -
PTS -
RAIN -
RANGE -~
RUNTYP -
SKIP -
SNOW -
TIMSET -
TMSPAN -
UA
XVAL -
YVAL -

Programmed by

see
see
see
See
see
see
see

counter equal o the number of hours
since the onset of the precipitation

vent
see
see
see
see
see
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see
see
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see
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see

Mark Bourassa 1988

7.5.1.6 Subroutine ID} .«

METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT

METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
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SUBROUTINE IDENT( TIMSET, UA, RUNTYP, HOUR1, HOURZ,
2 BSHAVE, ESHAVE, J, SKIP, RAIN, SNOW, XVAL, YVAL,

3 RANGE, MINVAL, LGCSNW, LGCRN, LGCRS, JMIN, ALLPTS,
4 PTS, LGCAVE )

LOGICAL TIMSET, UA, LGCSNW, LGCRN, LGCRS, LGCAVE
INTEGER HOUR1, HOUR2, BSHAVE, ESHAVE, J, SKIP, JMIN,
2 TMSPAN, K, ALLPTS(2)

REAL RAIN(60), SNOW(60), XVAL(60), YVAL(60), RANGE,
2 MINVAL, PTS(1600,3)

CHARACTER*1 RUNTYP

IF (( RUNTYP .EQ. ‘A’ ) .OR. ( RUNTYP .EQ. ’a’ ) .OR.
2 ( RUNTYP .EQ. ‘S’ ) .OR. ( RUNTYP .EQ. ’s’ ) ) THEN
DO 400 K=HOUR1,HOUR2,SKIP
IF ( TIMSET .AND. ( .NOT. UA ) ) THEN
TMSPAN = J - 1

ELSE
TMSPAN = K
ENDIF
IF ( (RAIN(K) .GT. 0.0) .AND. (SNOW(K) .GT. 0.0)
2 .AND. ( XVAL(K) .NE. -99999.0 ) .AND.
3 ( YVAL(K) .NE. -99999.0 ) ) THEN

WRITE(10,9005) XVAL(K), ’,’, YVAL(K), ’ ’, K
IF ( LGCRS .AND. LGCAVE ) CALL

2 PREAVE( ALLPTS, PTS, XVAL(K), YVAL(K), K )
ELSEIF ( ( RAIN(K) .GT. 0.0 ) .AND.

2 ( XVAL(K) .NE. -99999.0 ) .AND.

3 ( YVAL(K) .NE. -99999.0 ) ) THEN

WRITE(8,9005) XVAL(K), ’,’, YVAL(K), ’ /, K
IF ( LGCRN .AND. LGCAVE ) CALL

2 PREAVE( ALLPTS, PTS, XVAL(K), YVAL(K), K )
ELSEIF ( ( XVAL(K) .NE. -99999.0 ) .AND.
2 ( YVAL(K) .NE. -99999.0 ) ) THEN

WRITE(9,9005) XVAL(K), ’,’, YVAL(K), ’ ’, K
IF ( LGCSNW .AND. LGCAVE ) CALL
2 PREAVE( ALLPTS, PTS, XVAL(K), YVAL(K), K )
ENDIF
400 CONTINUE
ELSEIF ( ( RUNTYP .NE. ‘F’) .AND. (RUNTYP .NE. £’ ) )
THEN
IF ( ( RUNTYP .EQ. ‘B’ ) .OR. ( RUNTYP .EQ. ’b’ ) )
2 THEN
K = BSHAVE
ELSEIF ((RUNTYP .EQ. ‘C’) .OR. (RUNTYP .EQ. ‘c’ ) )
2 THEN
K = MOD(J+1,2)
ELSEIF ((RUNTYP .EQ. ‘E’) .OR. (RUNTYP .EQ. ‘e’ ) )
2 THEN
K = J - ESHAVE
ELSE
K
ENDIF

JMIN
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IF ( TIMSET .AND. ( .NOT. UA ) ) THEN
TMSPAN = J - 1
ELSE
TMSPAN = K
ENDIF
IF ( ( K .GE. HOUR1 ) .AND. ( K .LE. HOUR2 ) ) THEN
IF ( (RAIN(K) .GT. 0.0) .AND. (SNOW(K) .GT. 0.0)
.AND. ( XVAL(K) .NE. -99999.0 ) .AND.
( YVAL(K) .NE. -99999.0 ) ) THEN
WRITE(10,9005) XVAL(K), ’,’, YVAL(K)
IF ( LGCRS .AND. LGCAVE ) CALL
PREAVE ( ALLPTS, PTS, XVAL(K), YVAL(K), K )
ELSEIF ( ( RAIN(K) .GT. 0.0 ) .AND.
( XVAL(K) .NE. -99999.0 ) .AND.
( YVAL(K) .NE. -99999.0 ) ) THEN
WRITE(8,9005) XVAL(K), ’,’, YVAL(K)
IF ( LGCRN .AND. LGCAVE ) CALL
PREAVE( ALLPTS, PTS, XVAL(K), YVAL(K), K )
ELSEIF ( ( XVAL(K) .NE. -99999.0 ) .AND.
( YVAL(K) .NE. -99999.0 ) ) THEN
WRITE(9,9005) XVAL(K), ’,’, YVAL(K)
IF ( LGCSNW .AND. LGCAVE ) CALL
PREAVE ( ALLPTS, PTS, XVAL(K), YVAL(K), K )
ENDIF
ENDIF
ELSE

K = MOD(J+1,2)
IF ( ( RAIN(BSHAVE) .GT. 0.0) .AND. (SNOW(BSHAVE)
.GT. 0.0) ) THEN
WRITE(10,9005) XVAL(BSHAVE), ’,’, YVAL(BSHAVE)
ELSEIF ( RAIN(SHAVE) .GT. 0.0 ) THEN
WRITE(8,9005) XVAL(BSHAVE), ’,’, YVAL(BSHAVE)
ELSE
WRITE(9,9005) XVAL(BSHAVE), ‘,’, YVAL(BSHAVE)
ENDIF
IF ( ( RAIN(K) .GT. 0.0) .AND. (SNOW(K) .GT. 0.0) )
THEN
WRITE(13,9005) XVAL(K), ’,’, YVAL(K)
ELSEIF ( RAIN(K) .GT. 0.0 ) THEN
WRITE(11,9005) XVAL(K), ’,’, YVAL(K)
ELSE
WRITE(12,9005) XVAL(K), ’,’, YVAL(K)
ENDIF
IF ( ( RAIN(SHAVE) .GT. 0.0) .AND. (SNOW(SHAVE)
.GT. 0.0 ) ) THEN
WRITE(16,9005) XVAL(ESHAVE), ’,’, YVAL(ESHAVE)
ELSEIF ( RAIN(SHAVE) .GT. 0.0 ) THEN
WRITE(14,9005) XVAL(ESHAVE), ’,’, YVAL(ESHAVE)
ELSE
WRITE(15,9005) XVAL(ESHAVE), ’,’, YVAL(ESHAVE)
ENDIF
ENDIF
RETURN
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9005 FORMAT(lX,F8.2,A,F8.2,A,IZ)

end of subroutine IDENT

END

7.5.1.7 Subroutine SPEAK

SUBROUTINE SPEAK.FOR

Purpose: to interactively set the analysis options.

Definitions:

ALTHR1 -
ALTHR2 -
ALTT1 -
ALTT2 -
BHOUR -
BSHAVE -
DPTS -
EHOUR -~
ESHAVE -
IDUMMY -
JMAX -
JMIN -
LBSHAV -

LGCAVE -
LGCDDN -
LGCHIS -
LGCMIN -
LGCNRM -
LGCPCP -
LGCPRO -
LGCRN -
IGCRS -
ILGCSNW -
LGCWET -
LGCXTD -
LGCYTD -
LGCZRO -
ILGCZXV -
1LGCZYV -
LLAYER -
MINVAL -
MODE -

see
see
see
see
see
see
see
See
see

an integer temperary storage location

see
see

logical that is true if the option has
been chosen to ignore the first hour of
each precipitation event

LESHAV - logical that is true if the option has
been chosen to ignore the last hour of
each precipitation event

see
See
See
see
see
see
see
See
See
sSee
See
sSee
see
See
See
See
See
See

a character variable used when asking
whether the data should be sorted by the
duration of the event, by the number of
hours from the onset of the event,

both

OHOUR =~ if only one hour of each event, defined

METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT

METSTAT
METSTAT

METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
METSTAT
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c by the number of hours from onset, is of *
C interest, then this is the number of *
c hours from onset *
C RANGE -~ see METSTAT *
C RESPON - character response to Yes/no queries *
C RUNTYP - see METSTAT *
C SKIP - see METSTAT *
C START - see METSTAT *
C TIMSET - see METSTAT *
c UA - see METSTAT *
C ULAYER - see METSTAT *
C WIDTH - see METSTAT *
C X - character description of the *
c (horizontal) x-variable *
C XVALUE - see METSTAT *
o] Y ~ character description of the (vertical) =*
c y-variable *
C YVALUE - see METSTAT *
c *
c Programmed by Mark Bourassa 1988 *
c *
C***********************************************************

SUBROUTINE SPEAK(LGCRN, LGCSNW, LGCRS, LGCMIN, LGCAVE,
LGCPCP, START, JMIN, JMAX, BSHAVE ESHAVE SKIP,DPTS, WIDTH
X,Y, XVALUE YVALUE RUNTYP s, RANGE MINVAL TIMSET BHOUR,
EHOUR ULAYER LLAYER UA, ALTTl ALTT2 ALTHRl ALTHRZ
LGCZRO LGCHIS LGCNRM LGCDDN LGCXTD LGCYTD, LGCPRO,
LGCWET, LGCZXV, LGCZYV)

O WN

LOGICAL LGCRN, LGCSNW, LGCRS, LGCMIN, LGCAVE, LGCPCP,
+ LBSHAV, LESHAV, TIMSET UA, LGCZRO, LGCHIS, LGCDDN,
+ LGCNRM, LGCXTD, LGCYTD, LGCPRO, LGCWET LGCZXV
+ LGCZYV

INTEGER I, J, START, JMIN, JMAX, BSHAVE, ESHAVE, SKIP,
+ DPTS, OHOUR EHOUR, BHOUR IDUMMY ALTTl ALTTZ
+ ALTHRl ALTHRZ

REAL WIDTH RANGE, MINVAL, ULAYER, LLAYER

CHARACTER X*? Y*2 MODE*lS

CHARACTER*1 XVALUE, YVALUE, RESPON, RUNTYP

OPEN(UNIT = 4, FILE = ‘RHVTA.BAT’, STATUS = "UNKNOWN')

SKIP = 1
START = 0
LGCMIN = .FALSE.
LGCAVE = .FALSE.
LGCPCP = .FALSE.

LGCRN = .TRUE.
LGCSNW = .TRUE.
LGCRS = .TRUE.
LGCZRO .FALSE.
LGCHIS .FALSE.
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LGCNRM = .TRUE.
LGCDDN = .FALSE.
LGCPRO = .FALSE.
LGCWET = .FALSE.
UA = .FALSE.
RANGE = 8.0
MINVAL = -2.0
TIMSET = .TRUE.

WRITE(6,9003) ‘CHOOSE A TIME (HOURS XX) WHEN AN HOUR’,
2 ’ OR MORE’

WRITE(6,9003) ‘CAN PASS WITHOUT PRECIPITATION WITHIN’,
2 ’ AN EVENT’

READ(4,9004) ALTT1

WRITE(6,9003) ‘HOW MANY HOURS CAN PASS (X)?’
READ(4,9022) ALTHR1

ALTHR1 = ALTHR1l + 1

WRITE (6,9003) ’CHOOSE ANOTHER TIME (HOURS XX) WHEN’,

2 ’ AN HOURS’

WRITE(6,9003) ‘CAN PASS WITHOUT PRECIPITATION WITHIN',
2 ' AN EVENT’

READ(4,9004) ALTT2

WRITE (6,9003) ‘HOW MANY HOURS CAN PASS (X)?’
READ(4,9022) ALTHR2

ALTHR2 = ALTHR2 + 1

A) DURATION’
B) TIME /,

WRITE (6,9003) ’CHOOSE CATAGORIZATION BY:
WRITE(6,9003) ’
2 ’FROM ONSET'’
WRITE(6,9003) ’
READ(4,9001) RESPON
IF (( RESPON .EQ. ’A’ ) .OR. ( RESPON .EQ. ‘C’ )) THEN
TIMSET = .TRUE.
ELSEIF ( RESPON .EQ. /B’ ) THEN
TIMSET = .FALSE.
ELSE
WRITE(6,9003) ‘TRY AGAIN’
GOTO 20
ENDIF

C) SET BOTH’

IF ( TIMSET ) THEN

MODE = ' DURATION ’
ELSE

MODE = ’‘HOUR FROM ONSET’
ENDIF

WRITE(6,9003) ‘ENTER MINIMUM ‘, MODE, '’ OF THE EVENT’
IF ( TIMSET ) THEN
READ(4,9004) JMIN
ELSE
READ(4,9004) BHOUR
IF ( RESPON .EQ. ‘B’ ) JMIN = BHOUR
ENDIF

WRITE(6,9003) ‘ENTER MAXIMUM ’, MODE, ’ Or THE EVENT’
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IF ( TIMSET ) THEN
READ(4,9004) JMAX
IF ( JMAX .LT. JMIN ) THEN
WRITE(6,9003) ‘TRY AGAIN’
GOTO 50
ENDIF
ELSE
READ(4,9004) EHOUR
IF ( EHOUR .LT. BHOUR ) THEN
WRITE(6,9003) ’TRY AGAIN’
GOTO 50
ENDIF
IF ( RESPON .EQ. ‘B’ ) JMAX = 60
EKDIF

IF ( JMAX .GT. 60 ) JMAX = 60

IF ( RESPON .EQ. ‘C’ ) THEN
TIMSET = .FALSE.
RESPON = *D’
GOTO 50

ENDIF

60 WRITE(6,9003) ‘The ’’Y’’ variable will be: A) ¢,
2 ’Raw data’
WRITE(6,9003) B) ,
2 'Time Differences’
READ(4,9001) RESPON
IF ( RESPON .EQ. ‘A’ ) THEN
LGCYTD = .FALSE.
ELSEIF ( RESPON .EQ. ‘B’ ) THEN
LGCYTD = .TRUE.
ELSE
GOTO 60
ENDIF
65 WRITE(6,9003) ‘The ’’Y’’ variable will be: Ay !/,
2 ’'Unconditional’
WRITE(6,9003) B) ‘’y’s v,
2 ’= 0 only’
READ(4,9001) RESPON
IF (( RESPON .EQ. ‘A’ ) .OR. ( RESPON .EQ. ’a’ )) THEN
LGCZYV = ,FALSE.
ELSEIF (( RESPON .EQ. ‘B’ ) .OR. ( RESPON .EQ. ‘b’ ))
2 THEN
LGCZYV = .TRUE.
ELSE
GOTO 65
ENDIF .
CALL VARABS (YVALUE, Y, MINVAL, RANGE, LLAYER, ULAYER,
2 'y’, Ua)

70 WRITE(6,9003) ’The ’’X’’ variable will be: A) Raw ’/,
2 ’'data’
WRITE(6,9003) B) Time /,
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2 ’'Differences’

READ(4,9001) RESPON

IF ( RESPON .EQ. ‘A’ ) THEN
LGCXTD = .FALSE.

ELSEIF ( RESPON .EQ. ‘B’ ) THEN
LGCXTD = .TRUE.

ELSE
GOTO 70

ENDIF

75 WRITE(6,9003) ‘The ’’X’’ variable will be: A) 7,

2 ’Unconditional’
WRITE(6,9003) B) A GRS
2 ’= 0 only’
READ(4,9001) RESPON
IF (( RESPON .EQ. ‘A’ ) .OR. ( RESPON Q. ’a’ )) THEN
LGCZXV = .FALSE.
ELSEIF ((RESPON .EQ. ‘B’) .OR. (RESPON .£Q. ‘b’)) THEN
LGCZXV = . TRUE.
ELSE
GOTO 75
ENDIF
CALL VARABS {XVALUE, X, MINVAL, RANGE, LLAYER, ULAYER,
2 ‘X’, Ua)

500 WRITE(6,9003) ‘LIST A) ALL HOURS OF EACH EVENT’

WRITE(6,9003) * B) BEGINNING HOUR OF EACH EVENT’
WRITE(6,9003) C) CENTRAL HOUR OF EACH EVENT’
WRITE(6,9003) * E) END HOUR OF EACH EVENT’
WRITE(6,9003) ’ F) FIRST, CENTRAL, AND LAST HOURS'’
WRITE(6,9003) O) ONLY THE ’‘’X’’~TH HOUR’

14

WRITE(6,9003)

READ(4,9001) RUNTYP
IF ( ( RUNTYP .EQ. ‘A’ ) .OR. ( RUNTYP .EQ. ’a’ ) .OR.
RUNTYP .EQ. ’B’ ) .OR. ( RUNTYP .EQ. ‘b’ ) .OR.
RUNTYP .EQ. ’C’ ) .OR. ( RUNTYP .EQ. ‘c’ ) .OR.
) (
) (
(

S) SKIP EVERY ’‘’X’’ DATA POINTS’

RUNTYP .EQ. ‘E’ .OR. RUNTYP .EQ. ‘e’ ) .OR.
RUNTYP .EQ. ‘0O’ .OR. RUNTYP .EQ. ‘o’ ) .OR.
RUNTYP .EQ. ’S’ ) .OR. RUNTYP .EQ. ’s’)) THEN
WRITE(8,9003) ’ "Rain" ’
WRITE(9,9003) ’ "Snow" /
WRITE(10,9003) ’ "Rain and Snow" '
IF ((RUNTYP .EQ. ‘A’) .OR. (RUNTYP .EQ. ‘a’)) THEN
IF ( TIMSET ) THEN
WRITE(17,9003) ’ TITLE ",Y,’ vs. ’,X,
2 : All Hours"“,'’
ELSEIF ( BHOUR .NE. EHOUR ) THEN
WRITE(17,9018) ’ TITLE ws,y,’” vs. ’,X%,

O Wi
A~ o~~~

2 ’: Hours ’,BHOUR,’ to ’ ,EHOUR, ",/
ELSE
WRITE(17,9018) ’ TITLE "',Y,’ VS. ’,X,
2 ’: Hour ’/,BHOUR,’",’
ENDIF

ELSEIF ( ( RUNTYP .EQ. ’B’ ) .OR.
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58]

( RUNTYP .EQ. L' ) ) THEN
WRITE(17,9¢0%; * TITLE "’/,Y,’ vs. ’,X,
2 ’: Beginning Hours, ’
ELSEIF ( ( RUNTYP .EQ. ’C’ ) .OR.
2 ( RUNTYP .EQ. ‘c’ ) ) THEN
WRITE(17,9003) ’/ TITLE "’,Y,’ vs. ’,X,
2 ’: Central Hours",’
ELSEIF ( ( RUNTYP .EQ. ’‘E’ ) .OR.
2 ( RUNTYP .EQ. ‘e’ ) ) THEN
WRITE(17,9003) ’/ TITLE "’,Y,’ vs. ’,X,
2 ’: Ending Hours",’
ELSEIF ( ( RUNTYP .EQ. ‘O’ ) .OR.
2 ( RUNTYP .EQ. ‘o’ ) ) THEN
510 WRITE(6,9003) ’‘CHOOSE ‘’X’7’:’
READ(4,9004) OHOUR
IF ( ( OHOUR .LT. JMIN ) .OR.

2 ( OHOUR .GT. JMAX ) ) GOTO 510
JMIN=0HOUR
WRITE(17,9018) ’ TITLE "’,Y,’ vs. ’,X,’: Hour ',
2 JMIN, '™,/
ELSE

WRITE(6,9003) ’ USING EVERY X-TH DATA POINT. ’,
2 'ENTER X: '/
READ(4,9004) SKIP
520 WRITE(6,9003) ‘START WITH WHICH DATA POINT IN ’,
‘AN EVENT?’
WRITE(6,9006) ‘CHOOSE 1 THROUGH ‘, SKIP,’:’
READ(4,9004) START
IF ( START .GT. SKIP ) GOTO 520
WRITE(17,9003) ’ TITLE " ‘.Y, vs. ', X
2 , In,
ENDIF
ELSEIF ( ( RUNTYP .EQ. ’‘F’ ) .OR.
2 ( RUNTYP .EQ. ’‘f’ ) ) THEN
WRITE(8,9003) ’ "Rain: beginning of event"
WRITE(9,9003) ’ "Snow: beginning of event" '/
WRITE(10,9003) ’ "Rain and Snow: beginning of /,
2 'event" /

WRITE(11,9003) ’/ "Rain: middle of event" ’
WRITE(12,9003) ’ "Snow: middle of event" '/
WRITE(13,9003) / "Rain and Snow: middle of event" ’
WRITE(14,9003) ’ “Rain: end of event" ’
WRITE(15,9003) ’ "Snow: end of event" '
WRITE(16,9003) ’ "Rain and Snow: end of event" ’
WRITE(17,9003) ’ TITLE " ry, ¥, vs. !, X, ",/
ELSE
WRITE(6,9003) ’ TRY AGAIN!
GOTO 500
ENDIF
IF ( JMIN .EQ. JMAX ) THEN
WRITE(17,9006) / ™ Duration: ’, JMIN, ’ hours",’
ELSE
WRITE(17,9007) ¢ % Duration: ’,JMIN,’ to ’/,JMAX,

2 ‘hours", ’
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ENDIF

600 WRITE(6,9003) ‘USE: A) EVENTS WITH UPPER AIR PROFILES’
WRITE(6,9003) ’ B) ALL EVENTS’
READ(4,9001) RESPON
IF (( RESPON .EQ. ’A’ ) .OR. ( RESPON .EQ. ’‘a’ )) THEN
LGCPRO = .TRUE.
UA = .FALSE.
ELSEIF ( ( RESPON .NE. ‘B’ ) .AND.
2 ( RESPON .NE. ‘b’ ) ) THEN
WRITE(6,9003) ’‘TRY AGAIN!-’
GOTO 600
ENDIF

LBSHAV = .FALSE.
LESHAV = .TRUE.
700 IF ( LBSHAV ) THEN
WRITE(6,9003) ’‘BOUNDRY OPTIONS: A) ’,
2 ’BEGINNING HOURS REMOVED’
ELSE
WRITE(6,9003) ‘BOUNDRY OPTIONS: A) ’,
2 ’BEGINNING HOURS INCLUDED’

ENDIF
IF ( LESHAV ) THEN
WRITE(6,9003) ’ B) ENDING ’,
2 7HOURS REMOVED’
ELSE
WRITE(6,9003) * B) ENDING ’,
2 ’HOURS INCLUDED’
ENDIF
WRITE(6,9007) / C) CONTINUE AS IS’

READ(4,9001 FESPON
IF (( RESPON .EQ. ‘A’ ) .OR. ( RESPON .EQ. ’a’ )) THEN
LBSHAV = .NCT. LBSHAV
GOTO 700
ELSEIF ( ( RESPON .EQ. ‘B’ ) .OR.
2 ( RESPON .EQ. ‘b’ ) ) THEN
LESHAV = .NOT. LESHAV
GOTO 700
ELSEIF ( ( RESPON .NE. ‘C’ ) .AND.
2 ( RESPON .NE. ‘c’ ) ) THEN
WRITE(6,9003) ’TRY AGAIN!’

GOTO 700
ENDIF
IF ( LBSHAV ) THEN
BSHAVE = 2
ELSE
BSHAVE = 1
ENDIF
IF ( LESHAV ) THEN
ESHAVE = 2
ELSE
ESHAVE = 1

ENDIF



2000

2025

3000

2

IF ( LBSHAV .AND.

WRITE(17,9003)
ELSEIF ( LBSHAV )

WRITE(17,9003) ’ " ((BEGINNING HOURS REMOVED) )"

ELSE
WRITE(17, 9003)

ENDIF

WRITE(17,9003) ‘.

IF (( RUNTYP .NE.
WRITE(6,9003)

LESHAV ) THEN

' "((Bounding hours removed))" ’
THEN

’ "((ENDING HOURS REMOVED))"

’
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'F’) .AND. ( RUNTYP .NE. ‘f’ )) THEN

ENNABLE STATISTICAL MINIMUM /,

'OPTION (Y/N)?’
READ(4,9001) RESPON

IF ( ( RESPON
( RESPON .EQ.
LGCMIN

.EQ. ‘Y’ ) .OR.
‘y’ ) ) THEN

.TRUE.

LGCSNW = .FALSE.

WRITE(6,9003) ‘ENTER WIDTH OF BLOCKS
(in X.XX degrees C)*

READ (4 ,9009) WIDTH

DPTS = INT(

IF ( DPTS .
WRITE(S6,
GOTO 200

ENDIF

WRITE (6,900
WRITE(6,900
READ (4, 9001
IF ( ( RESP
( RESPON .E

S = -1.0

WRITE (19

RANGE / WIDTH + 0.5 )
GT. 100 ) THEN

9003) ’‘WIDTH TOO SMALL, TRY AGAIN’

0

3) ‘DO YOU WANT: A) MAXIMAL POINTS’
3) / B) MINIMAL POINTS’

) RESPON
ON .EQ. ‘A’ ) .OR.
Q. ‘a’ ) ) THEN

,9003) ’ YMaxima"

ELSEIF ( ( RESPON .EQ. ‘B’ ) .OR.
( RESPON .EQ. ‘b’ )) THEN

S = 1.0
WRITE(19
ELSE

,9003) ¢ "Minima" /

WRITE(6,9005) ’‘TRY AGAIN'
GOTO 2025

ENDIF
ENDIF

WRITE (6,9003)
" (Y/N)?*

"ENNABLE STATISTICAL MEAN OPTION ’

READ(4,9001) RESPON

IF ( ( RESPON
( RESPON .EQ.

.EQ. ‘Y’ ) .OR.
'y’ ) ) THEN

LGCAVE = .TRUE.

WRITE(6,9003) ‘Ignore differences of zero '

' (Y/N)2!

14

READ (4,9001) RESPON
IF (( RESPON .EQ. ‘Y’ ) .OR.
( RESPON .EQ. ‘y’ ) ) THEN

’
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LGCZRO = ,TrUE.
ELSEIF ((RESPON .NE. ’N’) .AND.
2 (RESPON .NE. ’n’)) TIEN
WRITE(6,9003) ’TRY AGAIN (Y/N)’
GOTO 4100
ENDIF
4200 WRITE(6,9003) ‘Produce a histogam (Y/N)?~
READ(4,9001) RESPON
IF (( RESPON .EQ. ‘Y’ ) .OR.

2 ( RESPON .EQ. 'y’ ) ) THEN
LGCHIS = .TRUE.
4300 WRITE (6,9003) ’‘Normalize the histogram ’,
2 " (Y/N)?2*

READ(4,9001) RESPON
IF (( RESPON .EQ. ‘Y’ ) .OR.
2 ( RESPON .EQ. ‘y’ ) ) THEN
LGCNRM = .TRUE.
ELSEIF ((RESPON .NE. ’N’) .AND.
2 (RESPON .NE. ‘n’)) THEN
WRITE(6,$003) ‘TRY AGAIN (Y/N)’
GOTO 4300
ENDIF
ELSEIF ((RESPON .NE. ’N’) .AND.
2 (RESPON .NE. ’n’)) THEN
WRITE(6,9003) ’‘TRY AGAIN (Y/N)~’
GOTO 4200
ENDIF
4400 WRITE(6,9003) ‘Output difference vs. raw ’,
2 ’‘value (Y/N)?’
READ(4,9001) RESPON
IF (( RESPON .EQ. 'Y’ ) .OR.
2 ( RESPON .EQ. ’‘y’ ) ) THEN
LGCDDN = .TRUE.
ELSEIF ((RESPON .NE. ’N’) .AND.

2 (RESPON .NE. ’n’)) THEN
WRITE(6,9003) ‘TRY AGAIN (Y/N)’
GOTO 4400
ENDIF

ELSEIF ( ( RESPON .NE. ‘N’ ) .AND.
2 ( RESPON .NE. ’n’ ) ) THEN
WRITE(6,9003) ‘TRY AGAIN! (Y/N)~’
GOTO 3000
ENDIF

IF ( LGCMIN .OR. LGCAVE ) THEN

5000 IF ( LGCRN ) THEN
WRITE(6,9003) ‘WITH RESPSCT TO: #) RAIN ’,
2 ’ TRUE’
ELSE
WRITE(6,9003) 'WITH RESPECT TO: A) RAIN *,
2 ’ FALSE’
ENDIF

IF ( LGCSNW ) THEN



WRITE (6,9003) ¢
’

TRUE’
ELSE
WRITE(6,9003) ¢
’ FALSE’
ENDIF

IF ( LGCRS ) THEN
WRITE (6,9003) *
'WITH SNOW TRUE’

ELSE

WRITE(6,9003) *
'WITH SNOW FALSE’

ENDIF

IF ( LGCWET ) THEN
WRITE (6,9003) ¢
’ ONLY TRUE/’

ELSE

WRITE(6,9003) *
' ONLY FALSE’
ENDIF
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B) SNow: /,

B) SNOW /,

C) RAIN /,

C) RAIN /,

D) WET SNOW’,

D) WET SNow '/,

IF ( LGCRN .OR. LGCSNW .OR. LGCRS ) THEN

WRITE (6,9003) *
’ AS IS’

ENDIF

READ(4,9001) RESPON

IF ( ( RESPON .EQ. ‘A’ ) .OR.

( RESPON .EQ. ‘a’ ) ) THEN
LGCRN = .NOT. LGCRN
GOTO 5000

ELSEIF ( ( RESPON .EQ. ‘B’ ) .OR.
( RESPON .EQ. ‘b’ ) ) THEN
LGCSNW = .NOT. LGCSNW
GOTO 5000

ELSEIF ( ( RESPON .EQ. ‘C’ ) .OR.
( RESPON .EQ. ’‘c’ ) ) THEN
LGCRS = .NOT. LGCRS
GOTO 5000

ELSEIF ( ( RESPON .EQ. ‘D’ ) .OR.
( RESPON .EQ. ’‘d’ ) ) THEN
LGCWET = .NOT. LGCWET
GOTO 5000

ELSEIF ( ( LGCRN .OR. LGCSNW .OR.

( ( RESPON .NE. ‘E’ ) .AND.

( RESFON .NE. ‘e’ ) ) ) THEN
WRITE(6,9003) 'TRY AGAIN!’
GOTO 5000

ENDIF

ENDIF

ENDIF

E) CONTINUE’,

LGCRS ) .AND.

6000 WRITE(6,9003) ’ENNABLE MONTHLY PRECIPITATION TOTALS “/,

2 ' (Y/N)?!
READ(4,9001) RESPON
IF ( ( RESPON .EQ.

IYI

)

.oR.
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C
C
C
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2 ( RESPON .EQ. ‘y’ ) ) THEN
LGCPCP = .TRUE.

ELSEIF ( ( RESPON .NE. ’N’ ) .AND.

2 ( RESPON .NE. ‘n’ ) ) THEN
WRITE(6,9003) ‘TRY AGAIN! (Y/N)’
GOTO 6000

ENDIF

9001 FORMAT (A)

9002 FORMAT(2X,3(I2,3X),1X,I2,2X,F8.1,10X,3(2X,F8.1),12X,
2 F8.1)

9003 FORMAT (1X,A)

9004 FORMAT (I2)

9005 FORMAT(1X,F8.2,A,F8.2)

9006 FORMAT(1X,A,I2,A)

9007 FORMAT(1X,A,I2,A,I2,1X,A)

9003 FORMAT (1X,A,A,A,A,A)

9009 FORMAT (F4.2)

9018 FORMAT(1X,A,A,A,A,A,I2,A,I2,A)

9021 FORMAT(F5.0)

9022 FORMAT(I1)

9999 RETURN

end of subroutine SPEAK
END

7.5.1.8 Subroutine VARABS

SUBROUTINE VARABS kkkkkkhkhkkkhkkhhkhhhhkhdkhhhhkhkhkkhhrhhhdk

Purpose: to interactively determine the variable for
an axis.

*
*
*
*
Definitions: *
LABEL - character label for the variable. *
Passed to X and Y in subroutine SPEAK *

LLAYER - see METSTAT *
MINVAL - see METSTAT *
RANGE - see METSTAT *

UA - see METSTAT *
ULAYER - see METSTAT *
VALUE - character response to the selection of *

the variable. Passed to XVALUE or YVALUE *

XY - character ‘X’ or ’Y’ depending on whcih #*
variable is being selected *

*

*

*

*

Programmed by Mark Bourassa 1988

khkdekhhhhhhhkhkkhkhhhhdhhhhhhhkhhkhkhkkhkhhkhhhkhhhhhhhhhkhkhkdkhkhhkkhkk

SUBROUTINE VARABS( VALUE, LABEL, MINVAL, RANGE,
2 LLAYER, ULAYER, XY, UA )
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LOGICAL UA
REAL MINVAL, RANGE, LLAYER, ULAYER
CHARACTER VALUE*1, LABEL*10, XY*1

WRITE(6,9003) ’‘CHOOSE ’,XY,’ AXIS: A) Surface Ta’
WRITE(6,9003) ’ B) Surface Ta - Tw’
WRITE(6,9003) ‘ C) Time from onset’
WRITE(6,9003) D) Duration’
WRITE(6,9003) E) Upper air Ta’
WRITE(6,9003) * F) Upper air RH’
WRITE(6,9003) G) Layer thickness’
WRITE(6,9003) * H) Surface Pressure’
WRITE(6,9003) I) Surface RH’
WRITE(6,9003) J) Surface Tw’
WRITE (6,9003) * K) Lapse rate’
WRITE(6,9003) * L) Wind Shear’
WRITE(6,9003) M) Ta Difference’
WRITE(6,9003) ’ N) UA Pressure(sfc)’
WRITE(6,9003) * 0) SFC Wind direction’
WRITE(6,9003) * P) SFC Wind Speed’

’

4

WRITE(6,9003) Q) Visibility’
WRITE(6,9003) R) Snow Precip’
WRITE(6,9003) ’ Z) Unity’
READ(4,9001) VALUE
IF ( ( VALUE .EQ. ‘A’ ) .OR. ( VALUE .EQ. ’a’ ) ) THEN
LABEL = ’'Ta‘’
WRITE(17,9003) XY,’ LABEL "Air Temperature ((C))".’
WRITE(17,9003) XY,’ MIN -2.0, MAX 6.0.7
ELSEIF ((VALUE .EQ. ‘B’ ) .OR. ( VALUE .EQ. ‘b’)) THEN
LABEL = ’Ta - Tw’
WRITE(17,9003) XY,’ LABEL "Ta - Tw ((cy)v.r
WRITE(17,9003) ‘X MIN -0.0, MAX 8.0.’
MINVAL = 0.0
ELSEIF ((VALUE .EQ. ’C’ ) .OR. ( VALUE .EQ. ‘c’)) THEN
LABEL 'Time’
RANGE 30.0
MINVAL = 0.0
WRITE(17,9003) XY,’ LABEL "Time From Onset r,
’{(hours) ).’
WRITE(17,9003) XY,’ MIN 0, MAX 25.0.°
ELSEIF ((VALUE .EQ. ‘D’ ) .OR. ( VALUE .EQ. ’‘d’)) THEN
LABEL = ‘Duration’
RANGE = 30.0
MINVAL = 0.0
WRITE(17,9003) XY,’ LABEL "Duration ((hours))w.’
WRITE(17,9003) XY,’ MIN 0, MAX 25.0.°
ELSEIF ((VALUE .EQ. ’E’ ) -OR. ( VALUE .EQ. ’e’)) THEN
UA = .TRUE.
RANGE = 35.0
MINVAL = -25.0
WRITE(6,9003) ’‘ENTER THE PRESSURE OF THE UPPER ’,
’LAYER (XXXX.):’
READ(4,9021) ULAYER
LABEL = ‘Ta(P)’
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IDUMMY = INT( ULAYER )
WRITE(17,9006) XY,’ LABEL "Ta(P=’, IDUMMY, ‘mb) /,

l((c))ll.l
WRITE(17,9003) XY,’ MIN -20.0, MAX 10.0.’

ELSEIF ((VALUE .EQ. ’F’ ) .OR. ( VALUE .EQ. ‘F’)) THEN

UA = .TRUE.
RANGE = 100.0

MINVAL = 0.0

WRITE(6,9003) ‘ENTER THE PRESSURE OF THE UPPER ',
'LAYER (XXXX.):’

READ(4,9021) ULAYER

LABEL = ‘RH(P)’

IDUMMY = INT( ULAYER )

WRITE(17,9006) XY,’ LABEL "RH(P=’, IDUMMY, ‘mb) ’,
r((Cc))n.’

WRITE(17,9003) XY,’ MIN 0.0, MAX 100.0.°’

ELSEIF ((VALUE .EQ. ‘G’ ) .OR. ( VALUE .EQ. ’g’)) THEN

LABEL = ‘4’
RANGE = 1000.0

MINVAL = 1000.0

WRITE(17,9003) XY,’ LABEL "Depth ((m))".’
WRITE(17,9003) XY,’ MIN 1000.0, MAX 2000.0.’

UA = .TRUE.

WRITE(6,9003) ‘ENTER THE PRESSURE OF THE UPPER /,
'LAYER (XXXX.):’

READ(4,9021) ULAYER

WRITE(6,9003) ’ENTER THE PRESSURE OF THE LOWER ’,
’LAYER (XXXX.)'’

WRITE(6,9003) * A NEGATIVE ENTRY YEILDS THE ’,
’ SURFACE VALUE:’

READ(4,9021) LLAYER

IF ( ULAYER .LT. ULAYER ) GOTO 70

ELSEIF ((VALUE .EQ. ’H’ ) .OR. ( VALUE .EQ. ‘h’)) THEN

LABEL = ’SFC Pressure’

RANGE = 15.0

MINVAL = 85.0

WRITE(17,9003) XY,’ LABEL "SFC Pressure ((kPa))".’
WRITE(17,9003) XY,’” MIN 85.0, MAX 100.0.’

ELSEIF ((VALUE .EQ. ‘I’ ) .OR. ( VALUE .EQ. ’i’)) THEN

LABEL = ’RH’
MINVAL = 60.0

RANGE= 40.0

WRITE(17,9003) XY,’ LABEL "RH".'’
WRITE(17,9003) XY,’ MIN 40.0, MAX 100.0.’

ELSEIF ((VALUE .EQ. ‘J’ ) .OR. ( VALUE .EQ. ’j’)) THEN

LABEL = ’Tw’
MINVAL = -6.0

RANGE= 12.0

WRITE(17,9003) XY,’ LABEL "Tw".'’
WRITE(17,9003) XY,’ MIN -6.0, MAX 6.0.°

ELSEIF ((VALUE .EQ. ‘K’ ) .OR. ( VALUE .EQ. ‘k’)) THEN

LABEL = ’‘Lapse Rate’
MINVAL = -15.0
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RANGE = 20.0
WRITE(17,9003) XY,’ LABEL "Lapse Rate ((C/km))".’
WRITE(17,9003) XY,’ MIN -15.0, MAX 5.0.’

UA = .TRUE.

WRITE(6,9003) ‘ENTER THE PRESSURE OF THE UPPER ',
'LAYER (XXXX.):’

READ(4,9021) ULAYER

WRITE(6,9003) ‘ENTER THE PRESSURE OF THE LOWER ',
'LAYER (XXXX.)’

WRITE(6,9003) * A NEGATIVE ENTRY YEILDS THE ’,
' SURFACE VALUE:’

READ(4,9021) LLAYER

IF ( ULAYER .LT. ULAYER ) GOTO 120

ELSEIF ((VALUE .EQ. ‘L’ ) .OR. ( VALUE .EQ. ’1’)) THEN

LABEL = ’Wind Shear’

MINVAL = -15.0

RANGE = 20.0

WRITE(17,9003) XY,’ LABEL "Wind Shear ((1/C))".’
WRITE(17,9003) XY,’ MIN ~15.0, MAX 5.0.°

UA = ,TRUE.

WRITE(6,9003) ’ENTER THE PRESSURE OF THE UPPER ’,
'LAYER (XXXX.):’

READ(4,9021) ULAYER

WRITE(6,9003) ‘ENTER THE PRESSURE OF THE LOWER /,
'LAYER (XXXX.)’

WRITE(6,9003) ’ A NEGATIVE ENTRY YEILDS THE ’,
'SURFACE VALUE:'’

READ(4,9021) LLAYER

IF ( ULAYER .LT. ULAYER ) GOTO 130

ELSEIF ((VALUE .EQ. ‘M’ ) .OR. ( VALUE .EQ. ’m’)) THEN

LABEL = ‘Change in Ta’

MINVAL = ~20.0

RANGE = 25.0

WRITE(17,9003) XY,’ LABEL "Change in Ta ((C))".’
WRITE(17,9003) XY,’ MIN -20.0, MAX 5.0.°’

UA = .TRUE.

WRITE(6,9003) ‘ENTER THE PRESSURE OF THE UPPER '/,
'LAYER (XXXX.):’

READ(4,9021) ULAYER

WRITE(6,9003) ‘ENTER THE PRESSURE OF THE LOWER '/,
'LAYER (XXXX.)’

WRITE(6,9003) A NEGATIVE ENTRY YEILDS THE ’,
’SURFACE VALUE: "’

READ(4,9021) LLAYER

IF ( ULAYER .LT. ULAYER ) GOTO 140

ELSEIF ((VALUE .EQ. N’ ) .OR. ( VALUE .EQ. ’n’)) THEN

UA = ,.TRUE.

LABEL = ‘UA P((SFC))’

MINVAL = 90.0

RANGE = 10.0

ULAYER = -1

WRITE(17,9003) XY,’ LABEL "Surface Pressure ’,

2 7 ((kPa))".’

WRITE(17,9003) XY,’ MIN 90.0, MAX 100.0.’
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ELSEIF ((VALUE .EQ. ‘O’ ) .OR. ( VALUE .EQ. ‘o0’)) THEN

LABEL = ’‘Wind Direction’

MINVAL = 0.0

RANGE = 360.0

WRITE(17,9003) XY,’ LABEL "Sfc Wind Direction ',

2 "((m/s))".”

WRITE(17,9003) XY,’ MIN 00.0, MAX 360.0.°

ELSEIF ((VALUE .EQ. ‘P’ ) .OR. ( VALUE .EQ. ’p’)) THEN

2 ’/(

ELS

ELS

2

ELS
2 (

ELS

LABEL = ’Sfc Wind Speed’

MINVAL = 0.0

RANGE = 40.0

WRITE(17,9003) XY,’ LABEL "Sfc Wind Speed ’,
(kPa))".’

WRITE(17,9003) XY,’ MIN 0.0, MAX 40.0.°

EIF ((VALUE .EQ. ’‘Q’ ) .OR. ( VALUE .EQ. ’q’)) THEN
LABEL = ’Visibility’

MINVAL = 0.0

RANGE = 20.0

WRITE(17,9003) XY,’ LABEL "Visibility ((km))".~’
WRITE(17,9003) XY,’ MIN 0.0, MAX 20.0.’

EIF ((VALUE .EQ. ’R’ ) .OR. ( VALUE .EOQ. r’)) THEN
LABEL = ‘Hourly Precipitation’

MINVAL = 0.0

RANGE = 20.0

WRITE(17,9003) XY,’ LABEL "Hourly Precipitation /,
/((mm Water))".’

WRITE(17,9003) XY,’ MIN 0.0, MAX 20.0.’

EIF ( ( VALUE .EQ. ‘2’ ) .OR.

VALUE .EQ. ’z’ ) ) THEN

LABEL = ’Unity’

WRITE(17,9003) *

WRITE(17,9003) 7

E

GOTO 55

ENDIF

9001 FORMAT(A)
9002 FORMAT(2X,3(I2,3X),1X,I2,2X,6F8.1,10X,3(2X,F8.1),12X,

2 F8

.1)

9003 FORMAT(1X,A,A,A,A)

9004 FORMAT(I2)

9005 FORMAT(1X,F8.2,A,F8.2)

9006 FORMAT(1X,A,I2,A)

9007 FORMAT(1X,A,I2,A,I2,1X,A)

9009 FORMAT(F4.2)

9018 FORMAT(1X,A,A,A,A,A,I2,A,I2,A)
9021 FORMAT(FS5.0)

9022 FORMAT(I1)

9999 RETURN

end
END

of subroutine VARABS
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7.5.1.8 Subroutine PREAVE

SUBROUTINE  dedrcededddeode sk oo s ke de ok ook o ok ok b ok ok ok ok ok ok ok o ok ok ok ok ok ok o e ok e ok ok ok
*

Purpose: to store the all the variables in the matrix *
PTS, and to count the number of data (x,y) *
points. Indices are: *

1) the x-variable, *

2) the y-variable, *

3) the duration of the precipitation event #
associated with the x and y variables, or *

the time from the onset of the *
precipitation event. *

*

Definitions: *
ALLPTS - see METSTAT *

K - the duration of the precipitation event =*
associated with the x and y variables, or *

the time (of the x and y-variables) from =*

the onset of the precipitation event. *

PTS - see METSTAT *
XVAL - see METSTAT *

YVAL - see METSTAT *

*

Programmed by Mark Bourassa 1988 *
*
****************************:\‘r******************************

SUBROUTINE PREAVE( ALLPTS, PTS, XVAL, YVAL, K )

INTEGER ALLPTS(2), K
REAL PTS(1600,3), XVAL, VYVAL

ALLPTS (1) = ALLPTS(1) + 1

PTS (ALLPTS (1),1) = XVAL
PTS (ALLPTS (1) ,2) = YVAL
PTS (ALLPTS (1) ,3) = REAL(K)
RETURN

END

7.5.1.9 Subroutine AVERAG

SUBROUTINE AVERAG hhkkkkhkhkhkhkkhhhhhkhhhhhrkhhh khhkhkhkkk

Purpose: if there is only one variable, to find its
mean and standard deviation for each hour of
interest and its mean and standard deviation for
whole data set. If there are two variables the
purpose is to determine the best fit line for
a linear relationship between the two variables.

¥ % % % * ¥ * ¥
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Appendix A ~ Proofs for equations in risk analysis

Proof of T=1/p

where T = the return period (expressed in numbers
of trial periods)
and P = the probability of exceedance in one

trial pericd.

Let g be the probability of non-exceedance in one trial
period. Then
q=1 - p.
Let i be the nuwber of trial periods. Then the average
number of trial periods between exceedances is:

T= 1ip qi"l

T=p i qi'l.
Substituting k for i - 1:
T=p (k+1) ¥
A formula for this summation exists on page 7 of Gradstein

and Rhyzik:

H
il

PI(1-q !+ qu-qc2)
1/ p.

e
I
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Proof of r =1 - (1 - p)t,

the risk of exceedance in the time

where r
interval t,
p = the probability of exceedance in one
unit of time, where the units of time
must be the same as those for t,
t = the time interval of interest.

The risk is equal to the cumulative probability of
exceedance over a specified number of trials (i) . The number
of trials will be equal to the time interval of interest
(t).

r=p+qp+q2p+...+qt'1p
r=p qk-l
There is a formula for this summation on page 1 of Gradstein

and Rhyzik:

r=p (g% - 1)
q -1

t

1-4q
r=1- (1 - p)t.



Appendix B - Melting layers

were examined for the presence of melting layers. Layers
with a relative humidity greater than the critical relative
humidity, RH., were considered to be melting layers. The
program MELT was used to find these layers.
table 1list the date of the upper air observations, the
pressure at the bottom and the top of the layer, and the
temperature and relative humidity at the bottom of the
layer. Soundings with more than one melting layer are easy

to identify on the table, because a date is listed only for

the melting layer at the gfeatest altitude.

Year
67
67
67
67
67
67
67

67

67
67
68
68
68
69
69
69
69
69
69
70
70
70
70
70

Date

Mon Day Hour

6
7
15
16
9
9
2

3

20
16
10
10

7
14
14
21

2

9
21
10
12
11
24

5.

12
24
12
24
12
24
12

12

12
12
12
24
12
12
12
12
24
24
24
12
12
12
12
12

No

No
No

No

No

No
No
No

Melting
Layer
(kPa)

layer found

91 to 86

layer found
layer found

92 to 79

92 to 90

85 to 78

91 to 86

81 to 78

91 to 89

91 to 87

layer found

92 to 84

layer found

92 to 91

92 to 83

92 to 89

92 to 81

91 to 82

91 to 82

86 to 86

91 to 85

layer found
layer found
layer found

91 to 85
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The upper air observations from Stony Plain, Alberta

The flowing

(%)
32.9

98.4
98.0
96.6
90.0
98.3
96.6
85.2

65.2

100.0
97.2
92.8
98.4
95.8
93.3
97.4
97.0

99.0
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Melting
Date Layer Ta RH
Year Mon Day Hour (kPa) (°C) (%)
70 10 9 12 No layer found
70 10 9 24 92 to 90 1.1 69.8
70 10 12 24 92 to 91 1.7 77.4
71 1 7 24 90 to 83 0.0 100.0
71 3 19 24 No layer found
71 10 17 24 No layer found
71 11 11 24 86 to 85 3.0 57.0
91 to 89 2.6 65.8
72 3 18 24 No layer found
72 3 23 12 85 to 80 3.7 50.0
72 4 14 24 91 to 84 3.5 50.3
72 4 21 24 91 to 86 0.4 94.0
72 4 22 12 No layer found
72 9 5 12 91 to 71 0.1 99.0
72 9 5 24 91 to 89 -0.9 100.2
72 9 19 24 91 to 83 -0.3 99.0
72 9 21 12 No layer found
72 9 21 24 79 to 77 1.1 80.0
72 10 9 12 91 to 77 3.2 53.0
72 10 21 12 89 to 85 0.0 100.0
92 to 92 -0.0 100.0
72 11 2 12 91 to 88 -0.1 100.0
73 2 19 24 No layer found
73 3 10 24 No layer found
73 9 13 12 93 to 92 0.5 91.8
73 10 6 24 91 to 87 -0.1 98.8
73 10 22 24 92 to 89 -0.0 100.0
73 10 24 24 91 to 89 -0.2 96.6
74 4 6 12 No layer found
74 4 12 24 92 to 91 -0.0 96.9
74 5 1 24 No layer found
74 5 9 24 91 to 84 0.3 92.0
74 5 10 12 91 to 85 0.1 95.0
74 9 9 12 79 to 75 1.3 81.0
92 to 83 0.0 99.4
74 9 9 24 91 to 75 1.7 77.0
74 9 10 12 92 to 90 -0.4 99.0
74 10 12 24 92 to 78 2.6 64.3
75 10 7 12 92 to 92 0.7 88.1
75 10 7 24 92 to 90 -0.2 97.0
76 3 7 24 92 to 91 2.3 65.8
76 4 13 12 91 to 84 3.4 51.0
76 4 16 12 No layer found
76 10 3 24 No layer found
77 3 13 12 No layer found
77 3 17 12 No layer found
77 5 15 24 92 to 87 0.2 96.0
77 5 16 12 92 to 92 0.0 100.0
77 10 9 24 No layer found
78 4 11 24 91 to 90 3.9 44.0
78 4 12 24 92 to 92 3.2 57.3
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Melting
Date Layer Ta RH
Year Mon Day Hour (kPa) (°C) (%)
78 4 15 24 No layer found
78 4 17 24 92 to 87 -0.2 99.8
78 4 24 24 92 to 84 3.3 55.4
78 5 11 12 91 to 86 0.4 91.8
78 9 16 24 91 to 84 0.2 96.9
78 10 20 24 92 to 87 0.1 96.0
78 11 23 12 No layer found
79 1 19 12 No layer found
79 4 10 24 91 to 89 0.3 89.5
79 4 11 12 No layer found
79 5 3 12 No layer found
79 5 4 12 No layer found
79 5 4 24 No layer found
79 5 16 24 92 to 81 0.3 94.0
80 3 23 12 No layer found _
80 9 16 24 91 to 72 0.3 89.0
80 9 21 12 92 to 88 0.4 88.8
80 9 22 12 766 to 90 3.3 55.0
80 10 13 12 84 to 74 2.9 61.0
91 to 84 3.8 48.0
80 10 13 24 92 to 85 0.0 100.0
81 10 24 24 92 to 91 0.1 91.5
82 4 8 12 No layer found
82 5 18 24 92 to 79 0.3 94.1
83 4 3 12 92 to 91 -0.1 98.8
83 10 14 12 91 to 77 0.3 96.3
84 3 21 24 81 to 77 -0.3 97.7
91 to 90 0.5 87.7
84 5 21 12 91 to 87 3.6 50.7
84 5 23 24 91 to 84 0.3 96.0
84 9 7 24 92 to 84 0.5 92.8
84 9 20 24 92 to 83 -0.1 99,1
84 9 21 24 92 to 87 ~0.2 100.0
84 9 22 12 No layer found
84 9 22 24 93 to 92 -0.3 97.2

84 10 17 12 No layer found
84 10 17 24 No layer found
84 10 18 12 No layer found
84 10 18 24 No layer found
84 10 19 12 No layer found
84 10 23 24 91 to 81 -0.0 99.8

85 1 16 12 No layer found
85 4 20 12 No layer found
85 4 20 24 No layer found
85 6 15 12 91 to 75 0.9 84.7
85 9 6 24 93 to 90 1.9 71.0
85 9 18 24 92 to 90 1.1 81.0
85 9 21 12 91 to 82 2.8 61.7
85 10 9 12 No layer found
85 10 13 12 91 to 86 3.1 60.0
85 10 14 12 92 to 90 0.0 94.0



Year
85
85
86
86
86
86
86
86

Date
Mon

Day Hour
14 24
15 12
14 24
18 24
22 12
11 12
1 12
7 32

Melting
Layer
(kPa)

91 to 86

92 to 90

92 to 88

92 to 90

91 to 84

92 to 78

93 to 86

92 to 75
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Appendix C - Temporal trends in the mean hourly changes

The following tables show the values derived from the

formulas for the temporal trends of the hourly change in

meteorological
listed because

wind direction

Time (hours)
Ta (°c)

RH (%)

Vis (km)

P (kPa)

U (m/s)

Time (hours)
Ta (°c)

RH (%)

Vis (km)

P (kPa)

U (n/s)

Time (hours)
Ta (°c)

RH (%)

Vis (km)

P (kPa)

U (m/s)

Time éhours)
Ta (~C)

RH (%)

Vis (km)

P (kPa)

U (m/s)

variables. The trend in wind direction is not

of the extremely poor correlation between the

and time.

1l
~.395
3.172
1.516

.018
.145

-.166
.000
.876
.032
«263

13
,000
.000
.530
.000
.342

19
.000
.000
.000
.000
.406

1.
1.

.

2
332
817
324
021
170

137
000
814
034
277

14
000
000
471
000
354

20

000
000
000
000

.416

117

3
-.289
1.024
1.198

.023
.192

-. 105
. 000
. 755
. 036
. 292

15
. 000
. 000
.410
. 000
.365

21
. 000
.000
.000
. 000
.425

4
-.254
.462
1.099
.025
.212

10
~.063
.000
.698
.038
.305

16
.000
.000
.342
.000
.375

22
.000
.000
.000
.000
-435

5
-.223
.026
1.016
.028
.230

11
.000
. 000
.642
.039
.318

17
. 000
.000
.263
.000
.386

23
.000
.000
. 000
.000
-444

6
-.194
.000
.943
.030
247

12
.000
.000
.586
.000
.330

18
.000
.000
.156
.000
.396

24
.000
.000
.000
.000
.453
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The Temporal Trend in the Hourly Change in Air Temperature

The Temporal Trend in the Hourly Change in Relative Humidity



Appendix D - Ordered Annual Extremes

The extreme values generated by the extreme accretion
program are tabled in ascending order. One-hundred years of
wet snow accretions were simulated. The characteristics of
the transmission line were:

Diameter: 20.38 mm,

Torsional stiffness: 0.1 N/m,

Span length: 370 m.
The meteorological variable needed in the extreme accretion
model were modeled upon twenty-one years of observations at
CFB Namao, Alberta. Note that in two of the years there were

no wet snow events.

Vertical Horizontal Gust

Order Mass Load Load Load
(kg) (N/m) (N/m) (N/m)

1 .000 .000 .000 .000
2 .000 . 000 .000 .000
3 .000 .000 .495 .684
4 . 000 .000 .745 1.028
5 .005 . 045 .776 1.072
6 .005 .046 .930 1.284
7 .005 . 046 .945 1.305
8 .005 . 046 1.000 1.380
9 .005 .048 1.037 1.431
10 .006 .055 1.254 1.731
11 . 007 .067 1.262 1.742
12 .007 .073 1.336 1.844
13 .008 .081 1.349 1.863
14 .008 .083 1.398 1.930
15 .009 .093 1.528 2.110
16 .011 .108 1.567 2.164
17 .011 .110 1.568 2.164
18 .012 .116 1.684 2.326
19 .014 .135 1.770 2.443
20 .015 «149 1.919 2.650
21 .017 .166 2.017 2.785
22 .017 .170 2.046 2.824
23 .018 .176 2.226 3.074
24 .020 . 195 2.289 3.160
25 .023 .223 2.305 3.183
26 .028 .270 2.327 3.213

119



Order

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

Mass
(kg)
.028
.028
.030
.031
.032
.033
.038
. 040
.041
. 043
. 048
.050
. 055
. 056
. 059
.063
. 064
. 065
.070
. 072
.072
.073
. 077
.078
.078
.082
. 088
. 088
. 092
. 097
.098
.104
.105
.105
.105
.118
.123
.129
.134
.145
.151
.183
.201
.208
.215
.228
.241
.256
. 299
+307
.310

Vertical
Load
(N/m)

«272
.273
.298
.306
.314
.326
«370
.389
.403
.418
.468
.492
.535
. 550
.580
. 617
«.627
.636
.690
.708
.709
. 717
.760
.764
. 769
.801
.860
.866
.907
. 950
.965
1.025
1.028
1.029
1.033
1.159
1.209
1.268
1.319
1.421
1.486
1.792
1.976
2.043
2.106
2.236
2.365
2.511
2.933
3.009
3.040

Horizontal

Load

(N/m)
2.378
2.442
2.472
2.582
2.667
2.687
2.689
2.745
2.799
2.822
2.845
2.962
2.970
2.993
3.073
3.220
3.287
3.339
3.347
3.401
3.410
3.474
3.534
3.591
3.640
3.803
3.887
3.911
4.010
4.101
4.119
4.154
4.210
4.277
4.282
4.319
4.368
4,383
4.420
4.521
4.683
4.776
4.843
4.968
4.995
5.000
5.264
5.272
5.285
5.321
5.427

Gust
Load
(N/m)
3.284
3.372
3.413
3.565
3.683
3.709
3.713
3.790
3.864
3.896
3.928
4.090
4.101
4.132
4.243
4.446
4.539
4.610
4.621
4.696
4.709
4.797
4.879
4.958
5.026
5.250
5.368
5.400
5.537
5.662
5.687
5.736
5.812
5.906
5.912
5.963
6.031
6.051
6.103
6.242
6.466
6.594
6.687
6.859
6.896
6.903
7.268
7.279
7.297
7.346
7.493
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Order

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
26
97
98
99
100

Mass
(kg)
.312
.342
.352
.381
.420
.470
.518
.616
.627
.836
.873
.948

1.004
1.128
1.157
1.520
1.751
1.933
2.149
2.331
3.304
3.888
20.845

Vertical
Load
(N/m)
3.062
3.359
3.455
3.736
4.122
4.611
5.084
6.041
6.155
8.200
8.562
9.299
9.852
11.070
11.351
14.912
17.177
18.964
21.083
22.866
32.412
38.141
204.487

Horizontal
Load
(N/m)
5.558
5.732
5.970
6.295
6.359
6.553
6.596
6.605
6.624
6.896
7.067
7.260
8.030
8.055
8.097
8.619
8.632
10.678
11.294
11.331
12.305
13.860
30.308

Gust
Load
(N/m)
7.675
7.914
8.243
8.691
8.780
9.048
9.107
9.120
9.147
9.521
9.757
10.024
11.087
11.122
11.180
11.901
11.918
14.743
15.594
15.645
16.989
19.136
41.847
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All the programs, except the program listed in the
Section 7.5.1 meteorological variable analysis program, were
developed using the Microsoft FORTRAN 4.01 compiler (a
FORTRAN 77 compiler). The meteorological variable analysis
program was developed using the FORTRAN 77 compiler
available on the University of Alberta’s Amdal computer.
This program is greater than 64K, and consequently is too
large to compile, without modification, on a microcomputer
with an IBM (non-0S2) archetecture. The modifications made
to this program, to make it work on an IBM, were to comment
out the lines calling the subroutine MINIMA, and to compile

the program with out the subroutine MINIMA.

7.5.1 Meteorological variable analysis program

PROGRAM METSTAT
hkkkhkkhhhhhhhhhhkhhhhkhRhhk ARk RARkrArRAhhhhhkkhkhhhhhrkkrh

C

Cc

C

c Purpose: to perform a large variety of statistics
Cc on both surface and upper air data.

c The hourly meteorological data may be

Cc selected according to the duration of the

c precipita*ion event or according to the

c time from the onset of the event. See

Cc the section on I/0 for more details about
c the options. Either one or two variables may be
c examined at a time.

Cc The data is arranged, in output files, so
c that it can easily be plotted using

C TELL-A-GRAPH.

C
C
C
C
C
C
C
C
C

definitions:

‘number of hours from the onset of an event’

treats the hour when the precipitation event

began as the first hour

ALLPTS - array of the particular data for the
particular phemonena being studied. An
index of 1 implies x-values, an index of
2 implies y-values

LR I IR I I I T I I R T A O P R e,
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ALTHR1

ALTHR2
ALTT1
ALTT2
BHOUR

BSHAVE

CASE

DAY

DELHRS

DSCRPT

EHOUR

ESHAVE

EVENTS

HEADNG
HOUR

HOUR1
HOUR2

- if two series of consequetive hours of
precipitation (1, 2, 3, ..., n and m, m+1,
.+++, K) are seperated by a number of
hours (m - n), then these to precipiation
events are treated as one event of length
k, if n - ALT1 and if (m - n) p ALTHR1
- as for ALTHR1 except ALT2 replaces ALT1
- see ALTHR1l
- see ALTHR2
- if data is sorted according to the time
from the onset of the event this is the
minimum hour of interest
- if the hour at the beginning of the
precipitation event is to be ignored then
this is equal to one, otherwise it is
equal to zero
- indicates how two dates compare (output
from subroutine dtcomp):
0) the first date, plus the number of
allowed hours of difference (DELHRS)
is less than the second date,
1) the second date, plus the number of
allowed hours of difference (DELHRS)
is less than the first date,
2) the first date is within the
allowed difference of hours (DELHRS)
of the second date
- array containing the day of the time
being examined. The index is the time
from, in hours, from the onset of the
precipitation event
-~ the minimum number of hours between
dates, for the dates to be treated as
the same of adjacent
-~ character sting describing the counters
of hours of precipitation in MNDIS: rain,
snow, rain with snow, and the total
- if data is sorted according to the time
from the onset of the event this is the
minimum hour of interest
- if the hour at the end of the
precipitation events is to be ignored
then this is equal to one, otherwise it
is equal to zero
- array counter for the frequency
distribution for the duration of events,
or for each hour from the onset of the
events
- junk variable used to read and skip
character headings in the data files
- array containing the number of hours
from the onset of the event
= minimum hour (from onset) of interest
- maximum hour (form onset) of interest
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I - counter
II - counter
J - counter, usually of the number of hours

in an event

JFOUND - the time (hours), from the onset of the
precipitation event, that the upper air

profile was observed
JUA = counter
JMIN - the minimum duration of interest
JMAX - the maximum duration of interest
K - counter

LAYER - function which returns the difference
of a variable between the top (ULAYER)

and the bottom (LLAYER) of a layer

LGCAVE - logical that is true if the means
and standard deviations of the
data are to be determined

LGCDDN - logical that is true if the
phemonon and its hourly change
are to be writen to the files
XDIFF.OUT and YDIFF.OUT

LGCHIS - logical that is true if a
histogram of the frequency
distribution is to be output to
the file HISTO.OUT

LGCMIN - logical that is true if the best
fit line for the min or max
y-values is to be found. These
points will be output to the file
minima.out

LGCPCP - logical that is ture if a listing
of the monthly number of precip
events is to be writen to the
file PRECIP.OUT

LGCPRO - logical that is true when upper
air profiles are being examined

LGCRN - logical that is true if there is
rain in the precipitation for the
hour being examined

IGCRS - logical that is true if there is
both rain and snow in the precip
for the hour being examined

LGCSNW - logical that is true if there is
snow in the precipitation for the
hour being examined

LGCWET - logical that is true if only wet
snow events are being examined.
this treats all hours with snow

and a RH greater than RHcs or RHc as wet
snow. Wet snow events are those events

with at least one hour of wet snow

LGCWSN ~ logical that is true if one or more
hours of a precipitation event has wet

snow as defined in LGCWET
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LGCXTD

- logical that is true if the x

value is an hourly change

LGCYTD

- logical that is true if the y

value is an hourly change

LGCZRO

- logical that is true if hourly

changes equal to zero should not
be considered in the statistics
of l‘he hourly changes

LGCZXV

LGCZXV

LLAYER

MINVAL

MNDIS

MONTH

PRESS

PTS

RAIN

RANGE
RH

RUNTYP

SKIP

SLP

SNOW

- logical that is true if the option is
chosen to examine only the y-values
occurring when the x-value is equal to
zero.
- logical that is true if the option is
chosen te examine only the x-values
occurring when the y-value is equal to
zero.
- if the change in a variable over a
layer is being examined then this is the
height of the bottom of the layer
- used to alter the upper limit of a
loop. The first time through the loop the
the upper limit must be one less than
usual
- the lower limit of the range of the
x-variable
- array of the number and types of
precipitation levents sorted by year and
month of occurrance
- array of the month (1-12) of the time
being examined. The index is the number
of hours from the time of onset
- array of the pressure [kPA]. The index
is the numkéer of hours from the onset of
the precipitaticn event
- array of the phenomena being examined.
Indices: 1) x-values

2) y-values

3) either the duration of the

event oy the time from onset
- array of the guanity of hourly precip
- the range of the horizontal x-variable:
- array of the relative humidity. The
index is the number of hours from the
onset of the event
- single character choice of the group of
variables to be examined (see interactive
selections)
- if the option to use the data for every
n-th hour is choosen then this is the
number of hours to be skipped (n - 1)
- array of the estimated pressure at sea
level [kPa]. The index is the number of
hours from the onset of the event
- airay of the hourly intensity of
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SPEED

TA

TIMSET

TMSPAN

T™W

UA
UACNT

UACASE

UADATA

UADATE

UAFND

UAVAL

ULAYER - if the value of a variable at a

VIS

126

snowfall
- array of the wind speed. The index is
number of hours from the onset of the
event
- array of hourly air temperatrue. The
index of the array is the number of hours
from the onset of the event
- logical that is true if events are
sorted by their durtation, rather than by
their number of hours from the time of
the onset of the precipitation event
- dummy variable for either the durataion
of the event, or the number of hours from
the onset of the event
- array of wet bulb temperatures. The
index is the number of hours from the
onset of the event.
- logical that is true if upper air
data will be used
- counter for the number of lines on one
page of upper air data
~ as for case except the first date is a
date of an upper air sounding, and the
second date is a date of a surface event.
DELHRS is zero.
- array of upper air data. The first
index (JUA) is a counter of the number
of layers. The second index is for the
type (1-15) of the phenomena:
1) pressure [kPa] at the top of a layer*
2) altitude [m],
3) air temperature [degrees Celcius]
4) relative humidity [%]
5) wind direction [degrees]
6) wind speed [m/s]
7 - 12) as for (1 to 6) for the bottom
of the layer
13) depth of the layer [m]
14) lapse rate of the layer
15) wind shear in the layer
- array for the time of the upper air
profile: year, month, day, hour
- logical that is true if upper air
data is found for the time of
interest
- a dummy variable for the upper air
phenomenon being examined

* ¥ % % ¥ % ¥ ¥ % ¥ ¥ % ¥
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particular height (or difference of
heights) this is the height (or the
height of the top of the layer

- array of the visibility ([km]. The index
is the number of hours from the onset of
the precipitation event
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WIDTH

WINDIR

X
XMAX
XMIN
XVAL
XVALUE
Y
YEAR
YEARN
YEAR1
YMAX
YMIN
YRNDEX
YVAL
YVALUE

I/O0 Streams
4 file

- the size (width) of data pools, on the
(horizontal) x-axis. Used only in finding
the best fit line for either minima or
maxima of selected of a phenomena
associated with selected types of
precipitation

= array of the wind direction [degrees].
The index is the number of hours from the
onset of the event

- character string describing the
x~variable

- the maximum (horizontal) x-value

- the minimum (horizontal) x-value

— array of the (horizontal) wvalues of the
X-phenomenon

- single character choice of the
x~variable

- character string describing the
y-variable

- array containing the year of the time
being examined. The index is the number
hours from the onset of the event

- the last year for which there is data
- the earliest year for which there is
surface data

- maximum (vertical) y-value

- minimum (vertical) y-value

- a dummy index equal to the year of the
data being examined, minus the first
Year, plus one.

- array of the (vertical) values of the
yY-phenomenon being examined

-~ single character choice of the
y-variable

RHVTA.BAT contains the input for the

interactive routine SPEAK. The I/0 streams
can be made truely interactive by changing
the stream 4 of the reads in SPEAK.FOR to
stream 5.

5 keyboard

6 screen

7 file

SFC.DAT the file of surface data. From

left to right, the data contained in this
file must be: hour, day, month, year,
hourly rainfall, hourly intensity of
snowfall, air temperature [C], relative
humidity [%), dew point temperature [C],
wet bulb temperature [C], wind speed [m/s],
wind direction (degress, 0=N,90=E),
pressure [10 kPa), equivelent pressure at
sea level (kPa], visibility [km). These
must match to format number 9002
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10

11

12
13
14
15
16
17

18

19

20

file RAIN.OUT - stores the x and y variables

from hours when rain occurred, but snow did
not occur

file SNOW.OUT - stores the x and y variables

from hours when snow occurred, but rain did
not occur

file RNSW.OUT - stores the x and y varialbes

from hours when both snow and rain occurred

file RAIN2.0UT - as for rain.out, except it is

only used when the beginning, middle and
end hours of precipitation events are being
plotted. The files RAIN.OUT, SNOW.OUT, and
RNSNW.OUT are used for the beginning hours.
RAIN2.0UT, SNOW2.0UT, and RNSW2.0UT are
used for the middle hours. Files RAIN3.0UT,

SNOW3.0UT, and RNSW3.0UT are

used for the

end hours
file SNOW2.0UT - see I/0 stream 11
file RNSW2.0UT - see I/0O stream 11
file RAIN3.OUT - see I/O stream 11
file SNOW3.O0UT ~ see I/0 stream 11
file RNSW3.0UT -~ see I/O stream 11
file TITLE.OUT - the titles for a TELL-A-GRAPH

plot is output here

file STATS.OUT - statistics from the least

squares analysis of the minimum (or
maximum) points in each pool are output
here

file MINIMA.OUT - the minima used in least

squares analysis of the minimum (or
maximum) points in each pool are output
here

file UA.DAT - data file for the upper air

profiles. The oder of the data (from left
to right) must be: year, month, day, hour;
six data from the top of the layer:
pressure [kPA], altitude [m], air
temperature [C], relative humidity (%],
wind direction [degrees, 0=N], and wind
speed (m/s); the same six varaibles from
bottom of the layer; thickness of the layer
[m], lapse rate [C/km], and the wind shear
[1/C]

21 file PRECIP.OUT - output of the number of

hours and totals of each type of
precipitation for each month of each year

22 file STATS2.0UT - output of a least squares

analysis of all x and y data, or an
analysis of the mean and standard deviation
if only one variable is being examined.

23 file ZEROS.OUT - if the values of the

variables that are equal to zero are to be
ignored in the statistical analysis then
data on their frequency is output here
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24 file HISTO.OUT - if only one variable is being *
examined, and if a histogram is requested, *

then the data for the histogram is output *

here *

25 file XDIF.OUT - if the x-values and the hourly *
change in the x-values are requested, then *

this is where they will be output *

26 file YDIF.OUT - if the y-values and the hourly *
change in the y-values are requested, then *

this is where they will be output *

*

%

*

*

*

*

Programmed by Mark Bourassa
September, 1988
University of Alberta
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LOGICAL LGCRN, LGCSNW, LGCRS, LGCMIN, LGCAVE, LGCPCP,
+_ TIMSET, UA, UAFND, LGCZRO, LGCHIS, LGCDDN, LGCXTD,
+ LGCYTD, LGCPRO, LGCWET, LGCWSN, LGCZXV, LGCZYV
INTEGER I, J, MONTH(60), DAY(60), HOUR(60), START,
+ DELHRS, YEAR(60), K, M, JMIN, JMAX, BSHAVE, ESHAVE,
+ SKIP, EVENTS(62), TMSPAN, HOUR1, HOUR2, EHOUR, BHOUR,
+ II, CASE, JUA, UADATE(4), UAVAL, UACASE, JFOUND,
+ UACNT, MNDIS(4,30,12), YEAR1, YEARN, ALLPTS(2),
+ ALTT1, ALTT2, ALTHR1, ALTHR2, YRNDEX

REAL RAIN(60), SNOW(60), TA(60), RH(60), TW(60),
+ RANGE, XVAL(60), YVAL(60), WIDTH, MINVAL, ULAYER,
+ LLAYER, UADATA(30,15), LAYER, SPEED(60), WINDIR(60),
+ PRESS(60), SLP(60), XMIN, XMAX, YMIN, YMAX,
+ PTS(1600,3), VIS(60)

CHARACTER X*7, Y*10

CHARACTER*1 XVALUE, YVALUE, HEADNG, RUNTYP
CHARACTER*5 DSCRPT (4)

Cc open the I/0 streams

OPEN (UNIT = 7, FILE = ’'SFC.DAT’, STATUS = ’‘UNKNOWN’ )
OPEN (UNIT = 8, FILE = ’‘RAIN.OUT’, STATUS = ‘UNKNOWN’)
OPEN (UNIT= 9, FILE = ’/SNOW.OUT’, STATUS = ’‘UNKNOWN’)
OPEN (UNIT=10, FILE = ’RNSW.OUT’, STATUS = ’‘UNKNOWN’)
OPEN (UNIT=11, FILE= ’‘RAIN2.0UT’, STATUS = ’‘UNKNOWN’)
OPEN (UNIT=12, FILE= ’SNOW2.0UT’, STATUS = ’‘UNKNOWN’)
OPEN (UNIT=13, FILE= ’‘RNSW2.0UT’, STATUS = ‘UNKNOWN’)
OPEN (UNIT=14, FILE= ’‘RAIN3.0UT’, STATUS = ‘UNKNOWN’)
OPEN (UNIT=15, FILE= ’SNOW3.0UT’, STATUS = ’‘UNKNOWN’)
OPEN (UNIT=16, FILE= ’‘RNSW3.0UT’, STATUS = ‘UNKNOWN’)
OPEN (UNIT=17, FILE= ’‘TITLE.OUT’, STATUS = ’‘UNKNOWN’)
OPEN (UNIT=18, FILE= ‘STATS.OUT’, STATUS = ’‘UNKNOWN’)

OPEN (UNIT=19, FILE= ‘MINIMA.OUT’, STATUS = ‘UNKNOWN’)
OPEN (UNIT=20, FILE= ‘UA.DAT’, STATUS = ‘UNKNOWN’ )

OPEN (UNIT=21, FILE= ‘PRECIP.OUT’, STATUS = ’'UNKNOWN~’)
OPEN (UNIT=22, FILE= ’‘STATS2.0UT’, STATUS = ‘UNKNOWN’)
OPEN (UNIT=23, FILE= ‘ZEROS.OUT’, STATUS = ‘UNKNOWN’ )
OPEN (UNIT=24, FILE= ‘HISTO.OUT’, STATUS = ’‘UNKNOWN’ )
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"UNKNOWN'’

OPEN (UNIT=25, FILE= ’‘XDIF.OUT’, STATUS
"UNKNOWN'

OPEN (UNIT=26, FILE= ‘YDIF.OUT’, STATUS

initialize vairables
DATA EVENTS/62%*0/
DATA MNDIS/1440*%0/
DATA ALLPTS/2*0/
LGCWSN = ,FALSE.

CASE = 1
JUA = 1

M=0

J =1

DELHRS = 1

DSCRPT (1) = ’RAIN ’
DSCRPT (2) = ’SNOW ’
DSCRPT(3) = ’BOTH ’
DSCRPT (4) = ’TOTAL’
UAFND = .FALSE.
UACASE = 1

UACNT = 1

XMIN = 99999.0
XMAX = -99999.0
YMIN = 99999.0
YMAX = -99999.0

skip over the character headings at the top of the
page of surface data

READ(7,9001) HEADNG

READ(7,9001) HEADNG

call the interactive routine

CALL SPEAK(LGCRN,LGCSNW,LGCRS,LGCMIN,LGCAVE,LGCPCP,
2 START,JMIN,JMAX,BSHAVE,ESHAVE,SKIP,DPTS,WIDTH,X,Y,
3 XVALUE, YVALUE,RUNTYP,S,RANGE,MINVAL,TIMSET,BHOUR,
4 EHOUR,ULAYER, LLAYER,UA,ALTTl,ALTTZ,ALTHRl,ALTHRZ,
5 LGCZRO, LGCHIS, LGCNRM, LGCDDN,LGCXTD,LGCYTD,LGCPRO,
6 LGCWET,LGCZXV,LGCZYV)

read the surface data
READ(7,9002,END=4000) HOUR(J), DAY(J), MONTH(J),
2 YEAR(J), RAIN(J), SNOW(J), TA(J), RH(J), TW(J),
3 SPEED(J), WINDIR(J), PRESS(J), SLP(J), VIS(J)
convert pressure to kPa
PRESS(J) = PRESS(J) / 10.0
set the earliest year
YEAR1 = YEAR(J)
if upper are data is going to be used
IF ( UA ) THEN
read (and ignore) the three lines of headings
DO 65 K=1, 3
READ(20,9001) HEADNG
CONTINUE
read the time at which the upper air profile was

)
)
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observed, and the data for the top layer in the profile
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READ(20,9015,END=4000) (UADATE(K),K=1,4),
2  (UADATA(JUA,K) ,K=1,15)
set the counter for the next line numbe,r in the upper
air file, at five

UACNT = 5
ENDIF
J =2

continue reading and analyzing surface data until the
end of a page (60 lines) is reached.

100 DO 500 I=1,57+M

READ(7,9002,END=4000) HOUR(J), DAY(J), MONTH(J),
2  YEAR(J), RAIN(J), SNOW(J), TA(J), RH(J), TW(J),
3  SPEED(J), WINDIR(J), PRESS(J), SLP(J), VIS(J)

PRESS(J) = PRESS(J) / 10.0
compare the time of occurance of the last two hours of
precipitation.

CALL DTCOMP(YEAR(J-1),MONTH(J-1),DAY(J-1),

2  HOUR(J-1), YEAR(J),MONTH(J),DAY(J),HOUR(J),CASE,
3  DELHRS)
if the last two hours are adjacent in time then
increment the counter of the number of hours in
an event.
IF ( CASE .EQ. 0 ) THEN

J=J+ 1
if there has been enough hours in the event then lulls
of one or more hours might (optionally) be allowed to
occur within events. If so then the minimum difference
in time between hourly precipitation is increased from
one to the alternate value.

IF ( J .GT. ALTT1 ) DELHRS = ALTHR1

IF ( J .GT. ALTT2 ) DELHRS = ALTHR2
if the last to two hours are not considered part of the
same precipitation event, and if some of the duration
is within the range of durations of interest, then
these hours are analyzed.

ELSEIF ((J-1 .GE. JMIN) .AND. (J-1 .LE. JMAX)) THEN
if upper air data is required then each hour of the
event is tested to determine if there is an upper air
profile for the same time.

IF ( UA .OR. LGCPRO ) THEN
IT = BSHAVE
IF ( II .LE. J-ESHAVE ) THEN
compare the dates, moving through the upper air data,
until the upper air date is equal to or greater than
the surface date. If the dates are equal then set UAFND
to be true.
CALL UATEST( JUA, YEAR, MONTH, DAY, HOUR,
2 UADATE, UADATA, UACNT, UAFND, JFOUND, II )
if the dates did not match then increment try the next
hour of the precipitation event.
IF ( .NOT. UAFND ) THEN
II = II + 1
GOTO 195
ELSE
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if the dates matched, then set the lower (HOUR1l) and
upper (HOUR2) limits for the times of interest
IF ( UA ) THEN
if the upper air profile is being examined then only
the hour when the profile was observed is of interest
HOUR1 = JFOUND
HOUR2 = JFOUND
ELSEIF ( TIMth ) THEN
if the data is being sorted according to the duration
of the event then tests have already been preformed to
confirm that the duration of this event is in the range
of interest. If the first or the last hours of the
event are (optionally) to be ignored, then the range of
1ours is adjusted

HOUR1 = BSHAVE
HOUR2 = J - ESHAVE
ELSE

.f the data is being sorted according to the time from
che onset of the event (and optionally the duration)
then the range of hours of interest is set.

HOUR1 = BHOUR

HOUR2 = EHOUR

IF ( HOURl1 .LT. BSHAVE )

2 HOUR1 = BSHAVE
IF ( HOUR2 .GT. J - ESHAVE ) HOUR2 =
2 J -~ ESHAVE
ENDIF

subroutine SETVAL determines the (horixontal) x-values
CALL SETVAL( XVALUE, XVAL, TA, TW,
UADATA, ULAYER, LLAYER, J, JUA, HOUR1,
HOUR2, RH, SPEED, WINDIR, PRESS, VIS,
XMIN, XMAX, .TRUE., LGCDDN, LGCXTD,
LGCZXV, RAIN, SNOW )
subroutine SETVAL determines the (vertical) y-values
CALL SETVAL( YVALUE, YVAL, Ta, TW,
UADATA, ULAYER, LLAYER, J, JUA, HOUR1,
HOUR2, RH, SPEED, WINDIR, PRESS, VIS,
YMIN, YMAX, .FALSE., LGCDDN, LGCYTD,
LGCZYV RAIN, SNOW )
if the hourly changes in either x or y are be1ng
examined, then then the number of variables is reduced
by one. To compensate for this the range of hours is
reduced by one

IF ( LGCXTD .OR. LGCYTD ) HOUR2 =
2 HOUR2 - 1
subroutine IDENT selects the variables from the times
of interest, and copies them into the array PTS
CALL IDENT( TIMSET, UA, RUNTYP, HOUR1,
HOUR2, BSHAVE, ESHAVE, J, SKIP, RAIN,
SNOW, XVAL, YVAL, RANGE, MINVAL,
ILGCSNW, LGCRN, LGCRS, JMIN, ALLPTS,
PTS, LGCAVE )
if the option to examine only wet snow events is not
being used, then subroutine DSTRBN counts the hours of
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rain, snow, and rain with snow for each month of each
year.
IF ( .NOT. LGCWET )

2 CALL DSTRBN( TIMSET, UA, LGCRN, LGCSNW,

3 LGCRS, EVENTS, HOUR1l, HOUR2, MNDIS,

4 YEAR, MONTH, YRNDEX, YEAR1l, SNOW, RAIN)
IF ( LGCXTD .OR. LGCYTD ) HOUR2 =

2 HOUR2 + 1

reset UAFND to false - the precipitation evetn may be
long enough to have more than one hour match that of an
upper air sounding

UAFND = ,FALSE.
the last (first index) set of upper air data, in the
array of upper air data, is the first set of data in
the next profile. This data is moved to the first
postion (JUA = 1).

DO 197 K=1, 15

UADATA(1,K) = UADATA (JUA,K)

CONTINUE
repeat this until all hours of the surface precipiation
event have been examined

II = II + 1

GOTO 195

ENDIF
ENDIF
if no upper air data is required then the lower (HOUR1)
and upper (HOUR2) limits for the times of interest are
set
ELSE
IF ( TIMSET ) THEN

if the data is being sorted according to the duration
of the event then tests have already been preformed to
confirm that the duration of this event is in the range
of interest. If the first or the last hours of the
event are (optionally) to be ignored, then the range of
hours is adjusted

HOUR1 = BSHAVE
HOUR2 = J - ESHAVE
ELSE

if the data is being sorted according to the time from
the onset of the event (and optionally the duration)
then the range of hours of interest is set.

HOUR1 = BHOUR

HOUR2 = EHOUR

IF ( HOUR1 .LT. BSHAVE ) HOUR1l = BSHAVE

IF ( HOUR2 .GT. J - ESHAVE ) HOUR2 =
2 J -~ ESHAVE

ENDIF

if the option to examine only the data from
precipitation events where wet snow occurred is used,
then each hour of the event is examined to determine if
wet snow was resonably likely (45% or greater) to have
fallen. If the RH is greater than RHc or RHcs this is
true.
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IF ( LGCWET ) THEN
LGCWSN = .FALSE.
DO 300 II=HOUR1l, HOUR2
IF ( ( SNOW(II) .GT. 0.0 ) .AND.

2 ( (RH(ITI) .GE. 100.0 - 12.25 * TA(II) )
3 .OR. (RH(II) .GE. 90.1 - 5.3 * TA(II) )
4 ) ) LGCWSN = .TRUE.

CONTINUE

ENDIF
the data from the event is examined, unless only wet
snow events are being examined, and there was no wet
snow.
IF ( ( .NOT. LGCWET ) .OR. LGCWSN ) THEN
subroutine SETVAL determines the (horixontal) x-values
CALL SETVAL( XVALUE, XVAL, TaA, TW, UADATA,

2 ULAYER, LLAYER, J, JUA, HOUR1l, HOUR2, RH,
3 SPEED, WINDIR, PRESS, VIS, XMIN, XMAX,
4 -TRUE., LGCDDN, LGCXTD, LGCZXV, RAIN, SNOW)

subroutine SETVAL determines the (horixontal) x-values
CALL SETVAL( YVALUE, YVAL, TA, TW, UADATA,

2 ULAYER, LLAYER, J, JUA, HOUR1l, HOUR2, RH,
3 SPEED, WINDIR, PRESS, VIS, YMIN, YMAX,
4 -FALSE., LGCDDN, LGCYTD, LGCZYV,RAIN,SNOW)

if the hourly changes in either x or y are being
examined, then then the number of variables is reduced
by one. To compensate for this the range of hours is
reduced by one

IF (LGCXTD .OR. LGCYTD) HOUR2 = HOUR2 - 1
subroutine IDENT selects the variables from the times
of interest, and copies them into the array PTS

CALL IDENT( TIMSET, UA, RUNTYP, HOUR1,

2 HOUR2, BSHAVE, ESHAVE, J, SKIP, RAIN,
3 SNOW, XVAL, YVAL, RANGE, MINVAL, LGCSNW,
4 LGCRN, LGCRS, JMIN, ALLPTS, PTS, LGCAVE )

CALL DSTRBN( TIMSET, UA, LGCRN, LGCSNW,
2 LGCRS, EVENTS, HOUR1, HOUR2, MNDIS, YEAR,
3 MONTH, YRNDEX, YEAR1l, SNOW, RAIN )

IF (LGCXTD .OR. LGCYTD) HOUR2 = HOUR2 + 1

ENDIF
ENDIF

the last values in the arrays of surface data are the
first values of the next precipitation event. After the
event is examined, the first values of the arrays are
reset to equal the first values of the next
precipitation event.

YEAR(1) = YEAR(J)

MONTH(1) = MONTH(J)

DAY (1) = DAY (J)

HOUR(1) = HOUR(J)

TA(1) = TA(J)
TW(1) = TW(J)
RH(1) = RH(J)

RAIN(1) = RAIN(J)
SNOW(1) = SNOW(J)
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SPEED(1) = SPEED(J)
WINDIR(1) = WINDIR(J)
PRESS(1) = PRESS(J)
SLP(1) = SLP(J)

VIS(1) = VIS(J)
J = 2
the maximum difference between hours is reset to one
DELHRS = 1
ELSE

even if the event was not examined, because the
duration was outside the range of interest, the first
values of the surface data arrays must be reset to be
equal to the first values for the next event.

YEAR(1) = YEAR(J)

MONTH (1) = MONTH(J)

DAY (1) = DAY(J)

HOUR(1) = HOUR(J)

TA(1) = TA()
TW(1) = TW(J)
RH(1) = RH(J)

RAIN(1) = RAIN(J)
SNOW (1) = SNOW(J)
SPEED(1) = SPEED(J)
WINDIR(1) = WINDIR(J)
PRESS (1) = PRESS(J)
SLP(1) = SLP(J)
VIS(1l) = VIS(J)
if the duration of the event was greater than the size
of the data array, a warning is written to the screen
IF ( J .GT. 60 ) WRITE(6,9006) ’WARNING’,

2 ’ DURATION OF ’/, J
J =2
ENDIF

500 CONTINUE

after each page of surface data read the character
headings from the top of the next page
READ(7,9001,END=4000) HEADNG

READ(7,9001,END=4000) HEADNG

after the first loop, change the upper limit of the
loop for the number of lines of surface data on a page
to be 58 (57 + 1).

M=1

GOTO 100

set the last year for which there was dataf

4000 YEARN = YEAR(J-~1)

output (to the screen) the distribution of the duration
or the number of hours with precipitation at each hour
from the time of onset
DO 4100 I=0,5
WRITE(6,9013) (K,K=10*I+1,10%(I+1))
WRITE(6,9013) (EVENTS(K),K=10%I+1,10%(I+1))
WRITE(6,9003) ’
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4100 CONTINUE
WRITE(6,9014) ’‘TOTAL NUMBER OF EVENTS IS ’, EVENTS(61)
WRITE(6,9014) ‘TOTAL NUMBER OF HOURS IS ’, EVENTS(62)

if the option for the a count of the number of hours
with each type of precipitation was chosen then output
this information to the file PRECIP.OUT.
IF ( LGCPCP .AND. ( .NOT. UA ) ) THEN
DO 5200 II=YEAR1, YEARN
J = II - YEAR1 + 1
WRITE(21,9003) *
WRITE(21,9003) ‘YEAR ’,
2 ’ MONTH’
WRITE(21,9016) (K,K=1,12)
DO 5100 I=1,4
WRITE(21,9017) II, DSCRPT (1),
2 (MNDIS(I,J,K),K=1,12)
5100 CONTINUE
5200 CONTINUE
ENDIF

naoon

c if the option for general statistics was chosen then
c set the (hourly) limits for the data of interest, and
c call the statistics subroutine AVERAG
9000 IF ( TIMSET ) THEN
HOUR1 = JMIN
HOUR2 = JMAX
ELSE
HOUR1 = BHOUR
HOUR2 = EHOUR
IF ( HOUR1 .LT. BSHAVE ) HOUR1 = BSHAVE
IF ( HOUR2 .GT. J - ESHAVE ) HOUR2 = J - ESHAVE
ENDIF
IF ( LGCAVE .AND. ( EVENTS(62) .GT. 2 ) ) THEN
IF ( LGCZXV ) XVALUE = ‘2’
IF ( LGCZYV ) YVALUE = ’Z’
CALL AVERAG( HOUR1l, HOUR2, ALLPTS(1), PTS, XVALUE,
2 YVALUE, LGCZRO, LGCHIS, LGCNRM )
ENDIF

9001 FORMAT (A)

9002 FORMAT(2X,3(I2,3X),1X,I2,2X,F8.1,10X,3(2X,F8.1),12X,
2 F8.1,F8.2,4(F8.1,2X))

9003 FORMAT(1X,A,A)

9004 FORMAT(I2)

9005 FORMAT (1X,F8.2,A,F8.2)

9006 FORMAT (1X,A,A,I2,A)

9007 FORMAT(1X,A,I2,A,I2,1X,A)

9008 FORMAT(1X,A,A,A,A,A)

9009 FORMAT (F4.2)

9010 FORMAT( 1X,A,F12.4,A,F12.4,A )

9013 FORMAT(1X,10(I3,1X))

9014 FORMAT (1X,A,I4)

9015 FORMAT(1X,3(I2,1X),I2,F6.2,F7.0,F7.1,3F7.0,F7.2,F7.0,
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2 F7.1,4F7.0,3F7.2)

9016 FORMAT(13X,12I4)
9017 FORMAT(2X,I2,1X,A,3X,12I4)

c end of main program METSTAT
END

7.5.1.1 Function UAPT

C FUNCTION UAPT *hkhkkkhkkhkhhkhhhkhhhhkhhhhhhhdhhhhhhkhdhhhhhhkk
C *
c Purpose: to determine the value of one varaible at a *
C specific pressure in atmosphere. There is no *
c extrapolation. *
C *
c Definitions: *
c FUDGE - multiplier to move the decimal of the *
c error designator (-9999.9), so that it *
c matches the error designator of the *
c variable *
C JuA - the number of heights at which *
c observations were made *
c L - index (counter) for the hieght in the *
C atmosphere. Starts at the top of the *
C layer *
C UADATA - see METSTAT *
c UAPT ~ the returned value *
c UAVAL - an index of UADATA that indicates the *
c variable of interest *
c ULAYER - the height of interest *
C *
c Programmed by Mark Bourassa *
C *
C***********************************************************

FUNCTION UAPT (UADATA,ULAYER,JUA, UAVAL)
INTEGER JUA, UAVAL, L
REAL UADATA(30,15), ULAYER, FUDGE, UAPT

L=1

FUDGE = 1.0

IF ( UAVAL .EQ. 1 ) FUDGE = 100.0
IF ( UAVAL .EQ. 3 ) FUDGE = 10.0

IF ( ULAYER .LT. 0.0 ) THEN
UAPT = UADATA (JUA-1,UAVAL)
ELSE
lo0 IF ( UADATA(L,1) .EQ. ULAYER ) THEN
IF (UADATA(L,UAVAL) .EQ. =-99999.0 / FUDGE) THEN
UAPT = ~99999.0
ELSE
UAPT = UADATA(L,UAVAL)
ENDIF
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c

Definitions:
ALLPTS
AVE
DVDND

JMAX
JMIN
LGCHIS
ILGCNRM
LGCZRO
PCENT

PTS

R
SIGMAB
SIGMAM
SIGMAY

SIOPE
SUMX

SUMX2
SUMXY

SUMY
SUMY2
TRUPTS

VARXY
XMEAN
XVALUE
XVAR
YINT

YMEAN
YVALUE
YVAR
ZERO
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- see METSTAT

- average

- the dividend in the equations for a
least squares linear fit

- see METSTAT

- see METSTAT

- see METSTAT

- see METSTAT

- see METSTAT

- the percentage of values that are equal
to zero for a variable

- see METSTAT

- correlation coefficient

- standard deviation in the y-intercept
- standard deviation in the x-intercept
- standard deviation in y cf the best fit
line

- slope of the best fit line

- sum of the x-values

- sum of the squares of the x-values

- sum of the product of the x and

- sum of the y-values

- sum of the squares of the y-values

—- array of the number of data points for
each hour from the onset of the event

- covariance

- mean X-values

- see METSTAT

- variance in x

- y-intercept of the best fit line for
the linear relationship between x and Yy
- mean y-values

- see METSTAT

- variance in y

- the number of values that are equal to
zero. If there are two variables then
ZERO is the number of times both are
equal to zero

Programmed by Mark Bourassa 1988

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
y-values *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**********************************************************

SUBROUTINE AVERAG( JMIN, JMAX, ALLPTS, PTS, XVALUE,
2 YVALUE, LGCZRO, LGCHIS, LGCNRM )

LOGICAL LGCZRO, LGCHIS, LGCNRM
INTEGER JMIN, JMAX, ALLPTS, PCENT(61)
REAL SUMX(61), SUMX2(61), SUMY(61), SUMXY(61),

+ TRUPTS (61)

, DVDND(61), SLOPE(61), SIGMAM(61),

+ YINT(61), SIGMAB(61), PTS(1600,3), AVE(61),

+ SUMY2(61),

SIGMAY(61), ZERO(61), XVAR(61), YVAR(61),
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+ VARXY(61), XMEAN(61), YMEAN(61), R(61)
CHARACTER*1 XVALUE, YVALUE

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

SUMX/61%0.0/
SUMY/61%0.0/
SUMX2/61%0.0/
SUMXY/61%0.0/
SUMY2/61%0.0/
TRUPTS/61%0.0/
DVDND/61%0.0/
SLOPE/61%0.0/
SIGMAM/61%0.0/
YINT/61%0.0/
SIGMAB/61%0.0/
AVE/61%0.0/
SIGMAY/61%0.0/
ZERO/61%0.0/
XMEAN/61%0.0/
YMEAN/61%0.0/
VARXY/61%0.0/
XVAR/61%0.0/
YVAR/61%0.0/

DO 100 K=1,ALLPTS

J = INT( PTS(K,3) )
IF ( ( PTS(K,1) .EQ. 0.0 ) .AND.
2 ( PTS{K,2) .EQ. 0.0 ) .AND. LGCZRO ) THEN
ZERO( J ) = ZERO( J ) + 1.0
ZERO(61) = ZERO(61) + 1.0
ELSE
SUMX( J ) = SUMX( J ) + PTS(K,1)
SUMY( J ) = SUMY( J ) + PTS(K,2)
SUMX2( J ) = SUMX2( J ) + PTS(K,1) * PTS(K,1)
SUMXY( J ) = SUMXY( J ) + PTS(K,1) * PTS(K,2)
SUMY2( J ) = SUMY2( J ) + PTS(K,2) * PTS(K,2)
TRUPTS( J ) = TRUPTS( J } + 1.0
SUMX( 61 ) = SUMX( 61 ) + PTS(K,1)
SUMY( 61 ) = SUMY( 61 ) + PTS(K,2)
SUMX2( 61 ) = ° { 61 ) + PTS(K,1) * PTS(K,1)
SUMXY( 61 ) = " 61 ) + PIS(K,1) * PTS(K,2)
SUMY2( 61 ) = 61 ) + PTS(K,2) * PTS(K,2)

TRUPTS( 61 )

ENDIF
100 CONTINUE

IF (

LGCZRO ) THEN

DO 125 I=1,60
IF ( ( TRUPTS(I) + ZERO(I) ) .NE. 0.0 ) THEN
PCENT(I) = INT( 100.0 * ZERO(I) /
( TRUPTS(I) + ZERO(I) ) )

ELSE
PCENT(I) =
ENDIF

CONTINUE

-1.0

LaulTS( 61 ) + 1.0

167
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PCENT(61) = INT( 100.0 * ZERO(61) / ALLPTS )
DO 135 I=0,5
WRITE(23,9002) ‘Hour’, (J,J=10%*I+1,10%(I+1))
WRITE(23,9002) ‘Null change (%)’, (PCENT(J),
2 J=10*I+1,10*(I+1))
WRITE(23,9001) 7
135 CONTINUE
WRITE(23,9023) PCENT(61), ’‘percent of all changes’,
2 ’ were null changes.’
ENDIF

IF (((XVALUE .NE. ’Z’) .AND. (XVALUE .NE. ‘z’)) .AND.
2 ( (YVALUE .NE. ‘Z’) .AND. (YVALUE .NE. ’z’ ) ) ) THEN
DO 1000 K = JMIN, JMAX
DVDND(K) = TRUPTS(K) * SUMX2(K) ~- SUMX(K) *

2 SUMX (K)
IF ( ( DVDND(K) .NE. 0.0 ) .AND.
2 ( TRUPTS(K) .NE. 1.0 ) ) THEN
SLOPE (K) = (TRUPTS(K) * SUMXY(K) - SUMX(K) *
2 SUMY (K)) / DVDND (K)
YINT(K) = ( SUMX2(K) * SUMY(K) - SUMX(K) *
2 SUMXY (K) ) / DVDND(K)
ENDIF

1000 CONTINUE
DVDND(61) = TRUPTS(61) * SUMX2(61) - SUMX(61) *
2 SUMX(61)
IF ( ( DVDND(61) .NE. 0.0 ) .AND.
2 ( TRUPTS(61) .NE. 1.0 ) ) THEN :
SLOPE(6.) = (TRUPTS(61) * SUMXY(61) - SUMX(61) *

2 SUMY (61)) / DVDND(61)
YINT(61) = ( SUMX2(61) * SUMY(61) - SUMX(61) *
2 SUMXY(61) ) / DVDND(61)
ENDIF

DO 1500 I=1, ALLPTS
= INT( PTS(I,3) )
SIGMAY(K) = SIGMAY(K) + ( PTS(I,2) - YINT(K) -

2 SLOPE(K) * PTS(1,1) )#*%2
SIGMAY(61) = SIGMAY(61) + ( PTS(I,2) - YINT(61)
2 - SLOPE(61) * PTS(I,1) )**2

1500 CONTINUE
DO 2000 K=JMIN, JMAX
IF ( ( INT( TRUPTS(K) ) .GT. 2 ) .AND.

2 ( DVDND(K) .NE. 0.0 ) ) THEN
SIGMAY (K) = SQRT( SIGMAY(K) /

2 ( REAL( TRUPTS(K) ) - 2.0 ) )
SIGMAB(K) = SQRT( SIGMAY(K) *

2 SIGMAY (K) * SUMX2(K) / DVDND(K) )
SIGMAM(K) = SQRT( REAL( TRUPTS(K) ) *

2 SIGMAY(X) * SIGMAY/K) / DVDND(K) )

ENDIF

2000 CONTINUE
IF ( ( INT( TRUPTS(61) ) .GT. 2 ) .AND.
2 ( DVDND(61) .NE. 0.0 ) ) THEN
SIGMAY(61) = SQRT( SIGMAY(61) /
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( REAL( TRUPTS(61) ) - 2.0 ) )

SIGMAB(61) = SQRT( SIGMAY(61) *

SIGMAY(61) * SUMX2(61) / DVDND(61) )

SIGMAM(61) = SQRT( REAL( TRUPTS(61) ) *

SIGMAY(61) * SIGMAY(61) / DVDND(61) )
ENDIF

DO 2100 I = JMIN, JMAX
XMEAN(I) = SUMX(I) / TRUPTS(I)

YMEAN(I) = SUMY(I) / TRUPTS(I)
CONTINUE
XMEAN(61) = SUMX{61) / TRUPTS (61)
YMEAN(61) = SUMY(61) / TRUPTS (61)

DO 2200 I = 1, ALLPTS
VARXY( PTS(I,3) ) = VARXY( PTS(I,3) ) +
({ PTS(I,1) - XMEAN( PTS(I,3) ) ) *
( PTS(I,2) - YMEAN( PTS(I,3) ) )
XVAR( PTS(I,3) ) = XVAR( PTS(I,3) ) +
( PTS(I,1) - XMEAN( PTS(I,3) ) ) ** 2
YVAR( PTS(I,3) ) = YVAR( PTS(I,3) ) +
( PTS(I,2) - YMEAN( PTS(I,3) ) ) #* 2
VARXY( 61 ) = VARXY(61) +
(PTS(I,1) - XMEAN(61)) * (PTS(I,2) - YMEAN(61))
XVAR(61) = XVAR(61) + (PTS(I,1) - XMEAN(61)) #*2
YVAR(61) = YVAR(61) + (PTS(I,2) ~ YMEAN(61)) #*2
CONTINUE
DO 2300 I=TMIN, JMAX
IF ( TRUPTS(I) .GT. 2 ) THEN
R(I) = VARXY(I) / SQRT( XVAR(I) * YVAR(I) )
ELSE
R(I) = -9.99
ENDIF
CONTINUE
IF ( TRUPTS(61) .GT. 2 ) THEN
R(61) = VARXY(61) / SQRT( XVAR(61) * YVAR(61) )
ELSE
R(61) = -9.99
ENDIF

WRITE(22,9021) ‘Time’, (K, K=JMIN, JMAX)
WRITE(22,9022) ’Slope ’,
(SLOPE (K) ,K=JMIN,JMAX), SLOPE(61)
WRITE(22,9022) ’‘Stand. Dev.’,
(SIGMAM(K) ,K=JMIN,JMAX), SIGMAM(61)
WRITE(22,9022) ’‘Y-Intercept’,
(YINT(K) ,K=JMIN,JMAX), YINT(61)
WRITE(22,9022) ’‘Stand. Dev.’,
(SIGMAB(K) ,K=JMIN,JMAX), SIGMAB(61)
DO 2400 I=1,61
IF ( ( TRUPTS(I) + ZERO(I) ) .NE. 0.0 ) THEN
ZERO(I) = INT( 100.0 * ZERO(I) /
( TRUPTS(I) + ZERO(I) ) )
ELSE
ZERO(I) = =-1.0
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ENDIF
2400 CONTINUE
PCENT(61) = INT( 100.0 * ZERO(61) / ALLPTS )
WRITE(22,9022) ‘% Null Diff’,
2 (2ERO(K),K=JMIN,JMAX), ZERO(61)
WRITE(22,9022) ’‘Corr. Coef.’, (R(K) , K=JMIN,JMAX),
2  R(61)
WRITE(22,9021) ‘Data Points’,
2 (INT(TRUPTS (K)) ,K=JMIN,JMAX) ,INT( TRUPTS(61) )
ELSEIF ( ( XVALUE .NE. ‘Z’ ) .AND.
2 ( XVALUE .NE. ‘z’ ) ) THEN
DO 2500 K=JMIN, JMAX
IF ( TRUPTS(K) .GT. 1.0 ) THEN
AVE(X) = SUMX(K) / TRUPTS (K)
SIGMAY(K) = ( SUMX2(K) ~ TRUPTS(K) * AVE(K) *

2 AVE(K) ) / ( TRUPTS(K) - 1.0 )
IF ( SIGMAY(K) .NE. 0.0 ) SIGMAY(K) =
2 SQRT( SIGMAY(K) )
ENDIF

2500 CONTINUE
IF ( TRUPTS(61) .GT. 0.0 ) THEN
AVE(61) = SUMX(61)/TRUPTS (61)
SIGMAY(61) = ( SUMX2(61) - TRUPTS(61) * AVE(61)

2 * AVE(61) ) / ( TRUPTS(61) - 1.0 )
SIGMAY(61) = SQRT( SIGMAY(61) )
ENDIF
WRITE(22,9021) ‘Time’, (K,K=JMIN,JMAX)
WRITE(22,9022) ’‘Average ’, (AVE(K) ,K=JMIN,JMAX),
2  AVE(61)

WRITE({22,9022) ‘Stand. Dev.’,
2 (SIGMAY(K),K=JMIN,JMAX), SIGMAY(61)
DO 2600 I=1,61
IF ( ( TRUPTS(I) + ZERO(I) ) .NE. 0.0 ) THEN
ZERO(I) = INT( 100.0 * ZERO(I) /
2 ( TRUPTS(I) + ZERO(I) ) )
ELSE
ZERO(I) = -1.0
ENDIF
2600 CONTINUE
PCENT(61) = INT( 100.0 * %ERO(61) / ALLPTS )
WRITE(22,9022) ‘% Null Diff’,
2 (ZERO(K),K=JMIN,JMAX) ,ZERO(E1)
WRITE(22,9021) ‘Points’, (INT( TRUPTS(K) ),
2 K=JMIN,JMAX),INT( TRUPTS(61) )

IF ( LGCHIS) CALL HISTO( LGCZRO, LGCNRM, ALLPTS, 1,
2 JMIN, JMAX, PTS, AVE, SIGMAY )

ELSE
DO 3000 K=JMIN, JMAX
IF ( TRUPTS(K) .GT. 1.0 ) THEN
AVE(K) = SUMY(K) / TRUPTS (K)
SIGMAY(K) = ( SUMY2(K) - TRUPTS(K) * AVE(K) *
2 AVE(K) ) / ( TRUPTS(K) - 1.0 )
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IF ( SIGMAY(K) .NE. 0.0 ) SIGMAY(K) =
2 SQRT( SIGMAY(K) )
ENDIF
3000 CONTINUE
IF ( TRUPTS(61) .GT. 1.0 ) THEN
AVE‘61) = SUMY(61) / TRUPTS(61)
SIGMAY(61) = ( SUMY2(61) - TRUPTS(61) * AVE(61)

2 * AVE(61) ) / ( TRUPTS(61) - 1.0 )
SIGMAY(61) = SQRT( SIGMAY(61) )
ENDIF

WRITE(22,9021) ‘Time’, (K,K=JMIN,JMAX)
WRITE(22,9022) ‘Average ’, (AVE(K),K=JMIN,JMAX),
2  AVE(61)
WRITE(22,9022) ’Stand. Dev.’,
2 (SIGMAY(K),K=JMIN,JMAX), SIGMAY (61)
DO 3200 I=1,61
IF ( ( TRUPTS(I) + ZERO(I) ) .NE. 0.0 ) THEN
ZERO(I) = INT( 100.0 * ZERO(I) /
2 ( TRUPTS(I) + ZERO(I) ) )
ELSE
ZERO(I) = -1.0
ENDIF
3200 CONTINUE
PCENT(61) = INT( 100.0 * ZERO(61) / ALLPTS )
WRITE(22,9022) ‘% Null Diff’,
2 (2ERO(K),K=JMIN,JMAX),ZERO(61)
WRITE(22,9021) ‘Points’, (INT( TRUPTS(K) ),
2 K=JMIN,JMAX), INT( TRUPTS(61) )

IF ( LGCHIS) CALL HISTO( LGCZRO, LGCNRM, ALLPTS, 2,
2 JMIN, JMAX, PTS, AVE, SIGMAY )

ENDIF

9001 FORMAT(1X,A,A,A)

9002 FORMAT(1X,A,T25,10I3)

9021 FORMAT(1X,A,7X,61(3X,I3,2X))
9022 FORMAT(1X,A,61(1X,F7.3))
9023 FORMAT(1X,I3,1X,A,A,A)

RETURN
end of subroutine AVERAG
END

7.5.1.10 Subroutine HISTO

SUBROUTINE HISTO kkkkkkhhkhhhkkhkhhhhhhhrdhhhhrhhhhhkhkdhhh

Purpose: to make a histogram of one of the frequency
distribution of one varaible (the other variable
must be unity). The distribution is in z-units
(standard deviaitons). The histogram does not
have to be normalized (LGCNRM). A chi squared

¥ ¥ X % ¥ *
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test is performed on the distribution, to
determine how will it fits a Gaussian

distribution.
Definitions:

ALLPTS -~ see METSTAT

CHI2 - reduced chi squared value for the
distributions goodness of fit to a
Gaussian distribution

HISTOG ~ counters for each pool in histogram.
Each pool is a gwuater of a standard
deviaition wide

I - counter

J - counter

K - counter

LGCNRM - see METSTAT

LGCZRO - see METSTAT

MAX - the greatest duration or time from
onset of interest

MAXSDV - the upper range of the histogram,
measured in quarter standard deviations

MEAN - the mean of the variable

MIN - the least duration or time from onset
of interest

MINSDV - the lower range of he histogram,
measured in quarter standard deviations

OBSR - a set of twelve data pools, bounded in
terms of standard deviations from the
mean. If the distribution is Gaussian
then the size of the pools should be
equal

PTS - see METSTAT

SIGMA - the standard deviation of the variable

XY - see AVERAG

ZDEV - number of standard deviations

Programmed by Mark Bourassa 1988

SUBROUTINE HISTO( LGCZRO, LGCNRM, ALLPTS, XY, MIN,
2 MAX, PTS, MEAN, SIGMA )

LOGICAL LGCZRO, LGCNRM

INTEGER ALLPTS, XY, MIN
REAL PTS(1600,3), MEAN(61), SIGMA(61),

2 ZDEV, OBSR(13,61), CHI2(61)

DATA HISTOG/1525%0.0/
DATA OBSR/793%0.0/
DATA CHI2/61%*0.0/

MINSDV
MAXSDV

-8
8
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, MAX, I, J, MINSDV, MAXSDV, K
HISTOG(61,25),
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DO 100 I=1, ALLPTS
K = INT( PTS(I,3) )
IF ( SIGMA( K ) .GT. 0.0 ) THEN
IF ( .NOT. ( ( PTS(I,XY) .EQ. 0.0 ) -AND. LGCZRO
2 ) ) THEN
determine the number of standard deviations from the
mean, and increment the total and the appropriate pool
ZDEV = ( PTS(I,XY) - MEAN(K) ) / SIGMA( K )
IF ( ZDEV .IE. -1.3844) THEN
OBSR(1,K) = OBSR(1,K) + 1.0
OBSR(1,61) = OBSR(1,61) + 1.0
ELSEIF ( ( ZDEV .GT. -1.3844 ) .AND.
2 ( ZDEV .LE. -0.9773 ) ) THEN
OBSR(2,K) = OBSR(2,K) + 1.0
OBSR(2,61) = OBSR(2,61) + 1.0
ELSEIF ( ( ZDEV .GT. -0.9773 )} .AND.
2 ( ZDEV .LE. -0.6745 ) ) THEN
OBSR(3,K) = OBSR(3,K) + 1.0
OBSR(3,61) = OBSR(3,61) + 1.0
ELSEIF ( ( ZDEV .GT. -0.6745 ) .AND.
2 ( ZDEV .LE. -0.4316 ) ) THEN
OBSR(4,K) = OBSR(4,K) + 1.0
OBSR(4,61) = OBSR(4,61) + 1.0
ELSEIF ( ( ZDEV .GT. ~0.4316 ) .AND.
2 ( ZDEV .LE. -0.2152 ) ) THEN
OBSR(5,K) = OBSR(5,K) + 1.0
OBSR(5,61) = OBSR(5,61) + 1.0
ELSEIF ((ZDEV .GT. -0.2152) .AND.
2 (ZDEV .LE. 0.00)) THEN
OBSR(6,K) = OBSR(6,K) + 1.0
OBSR(6,61) = OBSR(6,61) + 1.0
ELSEIF (( ZDEV .GT. 0.00 ) .AND.
2 (ZDEV .LE. 0.2152)) THEN
OBSR(7,K) = OBSR(7,K) + 1.0
OBSR(7,61) = OBSR(7,61) + 1.0
ELSEIF ((ZDEV .GT. 0.2152) .AND.
2 (ZDEV .LE. 0.4316)) THEN
OBSR(8,K) = OBSR(8,K) + 1.0
OBSR(8,61) = OBSR(8,61) + 1.0
ELSEIF ((ZDEV .GT. 0.4316) .AND.
2 (ZDEV .LT. 0.6745)) THEN
OBSR(9,K) = OBSR(9,K) + 1.0
OBSR(9,61) = OBSR(9,61) + 1.0
ELSEIF ((2DEV .GT. 0.6745) .AND.
2 (ZDEV .1T. 0.9773)) THEN
OBSR(10,K) = OBSR(10,K) + 1.0
OBSR(10,61) = OBSR(10,61) + 1.0
ELSEIF ((ZDEV .GT. 0.9773) .AND.
2 (ZDEV  .T. 1.3844)) THEN
OBSR(11,K) = OBSR(11,K) + 1.0
OBSR(11,61) = OBSR(11,61) + 1.0
ELSE
OBSR(12,K) = OBSR(12,K) + 1.0
OBSR(12,61) = OBSR(12,61) + 1.0
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ENDIF
OBSR(13,K) = OBSR(13,K) + 1.0

POSN = INT( 4.0 * ZDEV ) + 13

IF ( ( POSN .GE. 1 ) .AND. ( POSN .LE. 24 ) )

2 HISTOG( K, POSN ) = HISTOG( K, POSN ) +1.0
HISTOG( K, 25 ) = HISTOG( K, 25 ) + 1.0
ENDIF

IF ( POSN .LT. 5 ) MINSDV = =12
IF ( POSN .GT. 21 ) MAXSDV = 12
ENDIF
100 CONTINUE

c determine the reduced chi squared values
DO 110 I=1,12
DO 105 J=MIN,MAX
IF ( OBSR(13,J) .GT. 0.0 ) CHI2(J) = CHI2(J) +
2 1.0909 * ( ( OBSR(I,J) = OBSR(13,J) / 12.0 )*%*2)
3 / OBSR(13,J)
OBSR(13,61) = OBSR(13,61) + OBSR(I,J)
105 CONTINUE
CHI2(61) = CHI2(61) + 1.0909 *
2 ( ( OBSR(I,61) - OBSR(13,61) / 12.0 ) ** 2) /
3 OBSR(13,61)
110 CONTINUE

DO 150 J=1,25
DO 125 I=MIN,MaX
HISTOG(61,J) = HISTOG(61,J) + HISTOG(I,J)
125 CONTINUE
150 CONTINUE

c if the histcgram isto be normalized then do so
IF ( LGCNRM ) THEN
DO 300 I=1,61
DO 200 J=1,25
IF ( HISTOG(I,25) .GT. 0.0 ) THEN
HISTOG(I,J) = ( HISTOG(I,J) + 0.0005 )

2 / HISTOG(I,25)
ELSE
HISTOG(I,J) = 0.0
ENDIF
200 CONTINUE
300 CONTINUE
ENDIF

WRITE(22,9022) ’Red. Chi*#*2/, (CHI2 (K) ,K=MIN, MAX),
2 CHI2(e61)

DO 102 J=MIN, MAX
WRITE(22,9981) (OBSR(I,J),I=1,13)
9981 FORMAT( 2X, 13(F5.1,1X) )
102 CONTINUE
WRITE(22,9981) (OBSR(I,61),I=1,13)
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WRITE(24,9001) ‘Distance from the mean (in standard
2 ’deviations)’
WRITE(24,9002) '’ From ’,
2 (REAL(J)/4.0,J=MINSDV,MAXSDV-1)
WRITE(24,9002) * To '/,
2 (REAL(J)/4.0,J=MINSDV+1,MAXSDV)

DO 600 I=MIN, MAX

WRITE (24,9002) ‘Points’, (HISTOG(I,J),
2 J=MINSDV + 13, MAXSDV + 13)
600 CONTINUE

WRITE(24,9002) ‘Points’, (HISTOG(61,J),
2 J=MINSDV + 13,MAXSDV + 13)

WRITE(24,9002) ’ From ’, (REAL(J)/4.0,J=MINSDV,
2  MAXSDV-1)

WRITE(24,9002) ’ To ’, (REAL(J)/4.0,J=MINSDV+1,
2  MAXSDV)

9001 FORMAT( 1X,A,A )

9002 FORMAT( 1X,A,1X,25(F6.3,1X))
9003 FORMAT(A)

9022 FORMAT(1X,A,61(2X,F7.3))

RETURN

end of subroutine HISTO
END

7.5.1.11 Subroutine MINIMA
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!

SUBROUTINE MINIMA kkkkkkkhkkhkhhkhkhhhhhhhhhhhhkhkhhhhkkhkkkk

Purpose: to find the minimum (or maximum) y-value in
each of the x-value data pools. These maxima
will be used in subrotuine STATS to find the
best fit line for a linear relationship between
the minimum (or maximum) y-values as a function
of the x-variable.

Definitions:
ALLPTS ~ see METSTAT
DPTS - see METSTAT
K - either the duration of the

precipitation event, or the number of
hours since the onset of the event

MINPTS - see METSTAT

MINVAL -~ see METSTAT

PONL - the index of MINVAL that represent the
postion of the data pool

RANGE -~ see METSTAT

S -~ see METSTAT
XVAL - see METSTAT
YVAL - see METSTAT

Programmed by Mark Bourassa 1988
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C *
C***********************************************************

SUBROUTINE MINIMA( MINPTS, XVAL, YVAL, DPTS, K, S,
2 RANGE, MINVAL )

INTEGER K, DPTS, POOL, ALLPTS
REAL MINPTS(100,2,60), XVAL, YVAL, S, RANGE, MINVAL

POOL = INT( REAL( DPTS ) * ( XVAL - MINVAL ) / RANGE )
IF ( S * YVAL .LT. MINPTS( POOL,2,K ) ) THEN

MINPTS (POOL,1,K) = XVAL

MINPTS (POOL,2,K) = YVAL
ENDIF

RETURN

C end of subroutine MINIMA
END

7.5.1.11 Subroutine STATS

C SUBROUTINE STATS **************************************
C *
Cc Purpose: to find the best fit line for a linear *
c relationship between the minimum (or maximum) *
(o y-values as a function of the x-variable. *
C *
c Definitions: *
C DPTS - see METSTAT *
C DVDND -~ see AVERAG *
C I - counter *
C JMAX - see METSTAT *
C JMIN - see METSTAT *
C K - counter *
C L - counter *
C MAX - counter for the maximum hour of *
C interest *
C MIN - counter for the minimum hour of *
C interest *
C MINPTS - see METSTAT *
C PTS - see METSTAT *
C R - see AVERAG *
C S - see METSTAT *
C SIGMAB - see AVERAG *
C SIGMAM - see AVERAG *
C SIGMAY - see AVERAG *
C SILOPE -~ see AVERAG *
o4 SUMX - see AVERAG *
(04 SUMX2 - see AVERAG *
C SUMXY - see AVERAG *
C SUMY - see AVERAG *
C TRUPTS -~ see AVERAG *
C VARXY - see AVERAG *
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C XMEAN - see AVERAG *
C XVAR -~ see AVERAG *
C YINT - see AVERAG *
C YMEAN -~ see AVERAG *
C YVAR - see AVERAG *
C *
Cc Programmed by Mark Bourassa 1988 *
C *
Chhhkkkhhkhhhhkhkdhhhhhhhhhhhhhhhhhhhhdhhhhrhhhkordrhdnhdhhhksr

30

100
200

SUBROUTINE STATS ( MINPTS,DPTS,S,JMIN,JMAX )

INTE
REAL
+ SUM

GER DPTS, TRUPTS, MIN, MAX, I , JMIN, JMAX, K, L
MINPTS (100,2,60), PTS(100,2), S, SUMX2, SUMX,
¥, SUMXY, SLOPE(60,15), YINT(60,15),

+ SIGMAB(60,15), SIGMAM(60,15), DVDND, SIGMAY(60,15),
+ XMEAN, YMEAN, R, XVAR, YVAR, VARXY

DATA
DATA
DATA
DATA
DATA
XVAR
YVAR

SIGMAY/900%0.0/
SIGMAB/900%0.0/
SIGMAM/900%0.0/
SLOPE/900%0.0/
YINT/900%0.0/

= 0.0

= 0.0

VARXY = 0.0

IF (

DO 1

JMAX .GT. 15 ) JMAX = 15

500 MIN = JMIN, JMAX

DO 1000 MAX = MIN, JMAX

SUMX = 0.0
SUMY = 0.0
SUMX2 = 0.0
SUMXY = 0.0
TRUPTS = 0

DO 30 I=1,DPTS
PTS(I,1) = 999.0
PTS(I,2) = 999.0

CONTINUE

DO 200 J=MIN,MAX
DO 100 I=1, DPTS
IF (S * MINPTS(I,2,J) .LT. PTS(I,2)) THEN
PTS(I,1) = MINPTS(I,1,J)
PTS(I,2) = MINPTS(I,2,J)
ENDIF
CONTINUE
CONTINUE

DO 300 I=1, DPTS
IF ( PTS(I,1) .NE. 999.0 ) THEN
IF ((MIN .EQ. JMIN) .AND. (MAX .EQ. JMAX))
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2 THEN
WRITE(19,9005) PTS(I,1), ’,’, PTS(I,2)
ENDIF
SUMX = SUMX + PTS(I,1)
SUMX2 = SUMX2 + PTS(I,1) * PTS(I,1)
SUMY = SUMY + PTS(I,2)
SUMXY = SUMXY + PTS(I,1) * PTS(I,2)
TRUPTS = TRUPTS + 1
ENDIF
300 CONTINUE

IF ((MIN .EQ. JMIN) .AND. (MAX .EQ. JMAX)) THEN
XMEAN = SUMX / REAL( TRUPTS )
YMEAN = SUMY / REAL( TRUPTS )
DO 400 I = 1, DPTS
IF ( PTS(I,1) .NE. 999.. . THEN
VARXY = VARXY + ( PTS(I,1) - XMEAN ) *
2 ( PTS(I,2) - YMEAN )
XVAR = XVAR + ( PTS(I,1) - XMEAN ) *%* 2
YVAR = YVAR + ( PTS(I,2) - YMEAN ) ** 2
ENDIF
400 CONTINUE
R = VARXY / SCRT( XVAR * YVAR )
ENDIF
DVDND = REAL(TRUPTS) * SUMX2 - SUMX * SUMX
IF ( ( DVDND .NE. 0.0 ) .AND. ( TRUPTS .NE. 1 )

2 ) THEN
SLOPE (MIN,MAX) = ( REAL(TRUPTS) * SUMXY -
2 SUMX * SUMY ) / DVDND
YINT (MIN,MAX) = ( SUMX2 * SUMY -
2 SUMX * SUMXY ) / DVDND

IF ( TRUPIS .GT. 2 ) THEN
DO 500 I=1, DPTS
IF { PTS(I,1) .NE. 999.0 ) THEN
SIGMAY (MIN,MAX) = SIGMAY (MIN,MAX) +

2 ( PTS(L,2) - YINT(MIN,6MAX) -
3 SLOPE (MIN,MAX) * PTS(I,1) )*#*2
ENDIF
500 CONTINUE
SIGMAY (MIN,MAX) = SQRT( SIGMAY (MIN,MAX) /
2 ( REAL(TRUPTS) - 2.0 ) )
SIGMAB(MIN,MAX) = SQRT( SIGMAY (MIN,MAX) *
2 SIGMAY (MIN,MAX) * SUMX2 / DVDND )
SIGMAM (MIN,MAX) = SQRT( REAL(TRUPTS) #*
2 SIGMAY (MIN,MAX) * SIGMAY (MIN,MAX) / DVDND)
ENDIF
ENDIF

1000 CONTINUE
1500 CONTINUE

WRITE(6,9003) ’ ’
WRITE(6,9003) / STD DEV STD DEV CORR.'
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WRITE(6,9003) ’SLOPE SLOPE Y-INT Y-INT COEF.’,
2 '’ POINTS/
WRITE(6,9015) SLOPE(JMIN,JMAX), SIGMAM(JMIN,JMAX),
2 YINT(JMIN,JMAX), SIGMAB (JMIN,JMAX), R, TRUPTS
WRITE(18,9003) ’Slope: Minimum Duration vs. Maximum’
2 ,’ Duration’
WRITE(18,9014) (I,I=JMIN,JMAX)
DO 3500 L=JMIN, JMAX
WRITE(18,9013) L, (SLOPE(L,K),K=JMIN,JMAX)
3500 CONTINUE

WRITE(18,9003) ’‘Y-Intercept: Min. Duration vs. Max.’,
2 !’ puration’
WRITE(18,9014) (I, I=JMIN,JMAX)
DO 3700 L=JMIN, JMaX
WRITE(18,9013) L, (YINT(L,K),K=JMIN,JMAX)
3700 CONTINUE

WRITE(18,9003) ‘Error in Y: Min Duration vs. Max’,
2 '’ Duration’
WRITE(18,9014) (I,I=JMIN,JMAX)
DO 3900 L=JMIN, JMAX
WRITE(18,9013) L, (SIGMAY(L,K),K=JMIN,JMAX)
3900 CONTINUE

WRITE(18,9003) ’Error in Slope: Duration vs. Max’,
2 '/ Duration’
WRITE(18,9014) (I,I=JMIN,JMAX)
DO 4100 L=JMIN, JIMAX
WRITE(18,9013) L, (SIGMAM(L,K),K=JMIN,JMAX)
4100 CONTINUE

WRITE(18,9003) ‘Error in Y-int: Min Duration vs. Max’,
2 ’ Duration’
WRITE(18,9014) (I, I=JMIN,JMAX)
DO 4400 L=JMIN, JMAX
WRITE (18,9013) L, (SIGMAB(L,K),K=JMIN,JMAX)
440C CONTINUE

9001 FORMAT (A)
9003 FORMAT(1X,A,A)
9095 FORMAT (1X,F8.2,A,F8.2)
9711 FORMAT(1X,F5.2,2X,F5.2,3(4X,F5.2))
9t > FORMAT (I2)
7013 FORMAT(1X,12,30(2X,F6.2))
. FORMAT(7X,30(I2,6X))
'+~ FORMAT (1X,F5.2,3X,F5.2,3(2X,F6.2),4X,13)

.99 RETURN
end of usbroutine STATS
ENT
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7.5.1.12 Program

PROGRAM MELT Pkhkkhhk kAt hhhhhhkhhkhhhkhhhhhdkhhhkkdhihdk

C

C

c Purpose: to find find the melting layers in
C soundings.
c
C
C
C

*
*
*
*
Programmed by Mark Bourassa Sept 1988 *
*
%

khkhkhdkhhkhhhhhhhkhkhhhhkhhkhhkrhkhdhkhhdhkhhkhhkhhkhhhhkhhhhhhhhhhhd

LOGICAL FOUND, CONDN

INTEGER UADATE(30,4), JUA, UACNT, I, J, K, ULAYER(20),
2 LLAYER(20), UACASE, EXTRAP

REAL UADATA(30,15), DATA(20,6)

CHARACTER HEADNG*1, CHOICE*1

50 WRITE(6,9001) ‘CHOOSE: A) Theoretical critical siope’

WRITE(6,9001) ’ B) Sfc experimental critical’,
2 ! slope’
WRITE(6,9001) ' C) Standard Melting Layer’

READ(5,9005) CHOICE

FOUND = .FALSE.
JUA = 1

READ(7,9001) HEADNG

READ(7,9001) HEADNG

READ(7,9001) HEADNG

READ(7,9002,END=9999) (UADATE(JUA,I),I=1,4),
2 (UADATA(JUA,I),I=1,15)

JUA = 2

UACNT = 5

100 IF ( UACNT .EQ. 1 ) THEN
READ(7,9001) HEADNG
READ(7,9001) HEADNG
READ(7,9001) HEADNG
UACNT = 4
ENDIF
READ(7,9002,END=9999) (UADATE (JUA,I),I=1,4),
2 (UADATA(JUA,I),I=1,15)
UACNT = UACNT + 1
IF ( UACNT .EQ. 61) UACNT = 1

CALL DTCOMP( UADATE(JUA-1,1), UADATE(JUA-1,2),
2 UADATE(JUA-1,3), UADATE(JUA-1,4), UADATE(JUA,1),
3 UADATE(JUA,2), UADATE(JUA,3), UADATE(JUA,4),UACASE,n)

IF ( UACASE .EQ. O ) THEN
JUA = JUA + 1

GOTO 100
ELSE
K=1
JUA = JUA + 1
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DO 400 I=1,15
UADATA (JUA,I) = UADATA(JUA-1,I)
400 CONTINUE
DO 500 I=1,6
UADATA (JUA-1,Y) = UADATA(JUA-2,I+6)
500 CONTINUE
DO 600 I=1,4
UADATE (JUA,I) = UADATE(JUA-1,I)
UADATE (JUA-1,I) = UADATE (JUA-2,I)
600 CONTINUE

DO 1000 J=1, JUA-1
IF ( (CHOICE .EQ. ’A’) .OR. (CHOICE .EQ. ’a’) )
2 THEN
CONDN = (( UADATA(J,4) .GE. ( 100.0 = 12.65 *

2 UADATA(J,3) )) .AND.
2 ( UADATA(J,3) .NE. =9999.9 ) )
ELSEIF ( (CHOICE .EQ. ‘A’) .OR.
2 (CHOICE .EQ. ’a’) ) THEN
CONDN = ( ( UADATA(J,4) .GE. ( 100.0 - 4.65 *
2 UADATA(J,3) )) .AND.
2 ( UADATA(J,3) .NE. =9999.9 ) )
ELSE
CONDN = ( UADATA(J,3) .GT. 0.0 )
ENDIF

IF ( CONDN ) THEN
IF ( .NOT. FOUND ) THEN
IF ( J .EQ. 1 ) THEN
ULAYER(K) = INT( UADATA(J,2) )
ELSE
ULAYER(K) = EXTRAP( UADATA(J-1,1),

2 UADATA(J-1,2), UADATA(J-1,3),
3 UADATA (J~1,4), UADATA(J,1),UADATA(J,2),
4 UADATA (J,3), UADATA(J,4) )

ENDIF

DATA (K,5) = =99999.0

DATA(K,6) = 0.0

IF ( ( UADATA(J-1,1) .NE. -99999.0 ) .AND.
2 ( UADATA(J,1) .NE. =99999.0 ) .AND.
3 ( UADATA(J-1,3) .NE. -9999.9 ) .AND.
4 ( UADATA(J,3) .NE. -9999.9 ) .AND.
5 ( UADATA(J-1,4) .NE. -99999.9 ) .AND.
6 ( UADATA(J,4) .NE. =99999.9 ) ) THEN

DATA (K,3) = UADATA(J,3) +
2 ( UADATA(J-1,3) - UADATA(J,3) ) *
3 ( ULAYER(K) - UADATA(J,1) ) /
3 ( UADATA(J-1,1) - UADATA(J,1) )
DATA(K,4) = UADATA(J,4) +

2 ( UADATA(J-1,4) - UADATA(J,4) ) *
3 ( ULAYER(K) - UADATA(J,l) ) /
3 { UADATA(J-1,1) - UADATA(J,1) )

IF ( DATA(K,3) .GT. DATA(K,5) )
2 DATA (K,5) = DATA(K,3)
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DATA(K,6) = DATA(K,6) +
( UADATA(J,1l) - ULAYER(K) )
* ( DATA(K,3) + UADATA(J-1,3) ) / 2.0

ELSE
DATA(K,3) = -99999.0
DATA(K,4) = ~99999.0

ENDIF
FOUND = .TRUE.
ELS

IF ( UADATA(J,3) .GT. DATA(K,5) )
DATA(K,S) = UADATA(J,3)
DATA(K,6) = DATA(K,6) +
( UADATA(J,1) - UADATA(J-1,1))
* ( UADATA(J,3) + UADATA(J-1,3) ) / 2.0
ENDIF
ELSEIF ( FOUND ) THEN
IF ( J .EQ. JUA - 1 ) THEN
LLAYER(K) = INT( UADATA(J,2) )
ELSE
LLAYER(K) = EXTRAP( UADATA(J-1,1),
UADATA(J-1,2), UADATA(J-1,3),
UADATA(J-1,4), UADATA(J,1), UADATA(J,2),
UADATA (J,3), UADATA(J,4) )
ENDIF
IF ( ( UADATA(J-1,1) .NE. -99999.0 ) .AND.
( UADATA(J,1) .NE. -99999.0 ) .AND.
( UADATA(J-1,3) .NE. -9999.9) .AND.
(UADATA(J,3) .NE. -9999.9) .AND.
( UADATA(J-1,4) .NE. -99999.9 ) .AND.
( UADATA(J,4) .NE. -99999.9 ) ) THEN
DATA (K,1) = UADATA(J,3) + (UADATA(J~1,3)
UADATA(J,3) ) * (LLAYER(K) - UADATA(J,1)

~

( UADATA(J-1,1) - UADATA(J,1) )

DATA (K,2) = UADATA(J,4) + (UADATA(J-1,4)

UADATA(J,4)) * (LLAYER(K) - UADATA(J,1)) /

( UADATA(J-1,1) - UADATA(J,1) )

IF ( DATA(K,1) .GT. DATA(K,5) )

DATA(K,5) = DATA(K,1)

DATA (K, 6) = DATA(K,6) +

( ULAYER(K) - UADATA(J-1,1) )

% ( DATA(K,1) + UADATA(J-1,3) ) / 2.0

IF ((DATA(K,6) .NE. 0.0 ) .AND. (ULAYER(K)
.NE. LLAYER(K) ) ) THEN

DATA(K,6) = DATA(K,6) /
( LLAYER(K) - ULAYER(K) )
ELSE
DATA(K,6) = -99999.0
ENDIF
ELSE
DATA(K,1) = =-99999.0
DATA(K,2) = =-99999.0
ENDIF

K=K+ 1



FOUND = .FALSE.
ENDIF
1000 ONTINUE

IF ( FOUND ) THEN
LLAYER(K) = INT( UADATA(JUA-1,1) )
FOUND = ,FALSE.

IF ( UADATA(JUA-1,3; .NE. =9999.9 ) DATA(K,1)

2 UADATA (JUA-1, 3)

IF ( UADATA(JUA-1,4) .NE. -9999.9 ) DATA(K, 2)

2 UADATA (JUA-1, 4)
IF ( UADATA(JUA-1,3) .GT. DATA(K,S5)
2 DATA (K,5) = UADATA(JUA-1,3)
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)

IF ( ( LLAYER(K) .NE. ULAYER(K) ) .AND.

2 DATA(K,6) .NE. 0.0 ) THEN
DATA(K,6) = DATA(K, 6)/(LLAYER(K)
ELSE
DATA (K, 6)
ENDIF
K=K+ 1
ENDIF

-99999.0

IF ( K .EQ. 1 ) THEN
WRITE (8,9006) (UADATE(1,I),I=1,4),
ELSEIF ( K .EQ. 2 ) THEN

WRITE (8,9007) (UADATE(1,I),I=1,4),

2 'to’, ULAYER(1), (DATA(1,I),I=1,6)
ELSE

WRITE(8,9007) (UADATE(1,I),I=1,4)

2 ‘to’ ,ULAYER(1), (DATA(1,I),I=1,6)

DO 2000 J=2, K-1

- ULAYER(K))

Not found’

LLAYER(1),

, LLAYER(1),

WRITE (8,9008) LIAYER(J),‘to’,ULAYER(J),

2 (DATA(J,I),I=1,6)
2000 CONTINUE
ENDIF

DO 3000 I =1, 4
UADATE (1,I) = UADATE(JUA,T)
3000 CONTINUE

DO 4000 I = 1, 15
UADATA(1,I) = UADATA(JUA,I)
4000 CONTINUE

JUA = 2
GOTO 100
ENDIF

9001 FORMAT (1X,A,A,A)

9002 FORMAT(1X,3(I2,1X),I2,F6.2,F7.0,F7.1,3F7.0,F7.2,F7.0,

2 F7.1,4F7.0,2F7.2)
9003 FORMAT (1X,2F10.3)
9004 FORMAT( 1X,A,I2,A,I2,A,I2,A,I2,A )
9005 FORMAT( A )
2006 FORMAT( 4(1X,I2),3X,A)
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9007 FORMAT( 4(1X,I2),3X,16,1X,A,1X,16,6(2X,F8.1) )
9008 FORMAT( 15X,16,1X,A,1X,I6,6(2X,F8.1) )

9999 STOP
END
7.5.1.13 Function EXTPAP

FUNCTION EXTRAP( P1,X1,TAl,RH1,P2,X2,TA2,RH2 )
INTEGER EXTRAP
REAL P1, X1, TAl, RH1l, P2, X2, TA2, RH2, X

IF (( P1 .NE. -999.99 ) .AND. ( P2 .NE. -999.99) .AND.
2 ( TAl .NE. -9999.9 ) .AND. ( TA2 .NE. -9999.9 ) .AND.
3 ( RH1 .NE. -99999.0) .AND. (RH2 .NE. -99999.0 )) THEN

X = P2 + (100.0 - RH2 - 12.65 * TA2) * (P1 - P2 ) /
2 ( RH1 - RH2 + 12.65 * ( TAl - TA2 ) )

ELSE
. X = =-99999.0
ENDIF
EXTRAP = INT( X )
RETURN
END
7.5.2 xtreme annual a

The program EXTREMES was used to produce the maximum
annual values for (wet snow) accretion mass, vertical load,
horizontal load due to the hourly average wind speed, and
the horizontal load due to gusting winds. It can be used to
determine the annual extremes for transmission lines of any
diameter, span length, and torsional stiffness. These
variables can be set interactively. Another option is the
number of years of annual extremes. There is no upper limit
to the number of years. When the program was run in an IBM
model 50, with a math coprocessor, it would complete sixteen

Years of extremes in approximately one hour.
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1:5.2. rogram TREMES

PROGRAM EXTREMES.FOR

Purpose: to determine the maximum annual forces
applied transmission lines due to wet snow
accretions. Line dynamics (movement) is
not considered in this model. This serves
as a shell to run a modified version of

Dr. Finstad’s accretion program OMNICYL, or

any other suitably modified accretion

program.
Definitions:
DSEED - input for the random number

DUMMY
EGLOAD

ETMASS

EVLOAD

EWLOAD

EVENT

EVENTS

GAUSS

RAND

RESPON

XGLOAD

XTMASS

XVLOAD

XWLOAD

YEAR

generator RAND

- a temperary storage variable

- extreme horizontal load, in a
wet snow event, due to gust [N/m]
- extreme accreted mass in a wet
snow event [kg/m]

- extreme vertical load in a

wet snow event: the weight of the
snow [N/m]

- extreme horizontal load, in a
wet snow event, due to the hourly
average wind speed [N/m]

- counter for the number of
potential wet snow accretion events
(EVENTS) in a year.

- number of potential wet snow
accretion events in a year

- a probibility function returning
a randomly determined number of
standard deviations from the mean
based on a normal distribution

- a function returning a random
number between zero and one
inclusive.

- the user entered response to a
vyes/no question

- annual extreme horizontal load,
in wet snow events, due to gusts
[N/m]

- anual extreme accreted mass in
wet snow events [kg/m]

- annual extreme vertical load in
wet snow events: the weight of the
snow [N/m]

- annual extreme horizontal load,
in wet snow event, due to the
hourly average wind speed [N/m]

~ counter for the number of years
of extremes that are to be
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generated
YEARS - the number of years of extremes
that are to be generated

I/O Streams:
5 - keyboard. Warning: opening this file
will empty the file
6 - screen
11 - file extremes.out

Subroutines: ACCRETE, GAUSS, KRON, OMNICYL, RAND,
ROTATE, SMOOTH, XTINPT

*
*
*
*
>
*
*
*
*
*
*
*
W
Programmed by Mark Bourassa *
University of Alberta *
Edmonton, Alberta, Canada *
May, 1989 *
*
*

e 2l 22X 2SR R 2 s s 2 S 222 222222222222 2L

DOUBLE PRECISION DSEED, DUMMY, RAND, GAUSS

REAL ITMASS, EVLOAD, EWLOAD, EGLOAD,
+ XTMASS, XVLOAD, XWLOAD, XGLOAD,
+ RANDOM

INTEGER YEARS, YEAR, EVENTS, EVENT
CHARACTER RESPON*1

open the non-predefined I/0 stream.
OPEN (UNIT=11,FILE='EXTREMES.OUT’ ,STATUS='UNKNOWN"’)

ask the user to enter the number of years for which
the program must generate data
100 WRITE(6,*) ’‘ENTER THE NUMBER OF YEARS (INTEGER):’

READ(5,9001) YEARS
check to make sure the entry was correct, if not
ask for a new number

WRITE(6,9008) ’‘You have entered’, YEARS, ’‘is this’,
2 !’ acceptable?’

READ(6,9009) RESPON

IF ( ( RESPON .EQ. 'N’ ) .OR. ( RESPCN .EQ. ’'n’ ) )
2 GOTO 100

ask the user to enter any number to be used as a
seed for the random number generator

WRITE(6,*) ’‘ENTER THE SEED FOR THE RANDOM NUMBER’,
2 ’ GENERATER’

READ(5,*) DSEED

Call the input routine. This routine is a modified
version of INPUT, a subroutine of Dr. Finstad’s
OMNICYL program.
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Cc
C

C

c
Cc
C
Cc
Cc
C
Cc
C
Cc
C
C

4000

5000

9001
9007
9008
9009
9010

CALL XTINPT

DO 5000 YEAR=1,YEARS
Determine the number of events in the year.
DUMMY = 22.632D0 + GAUSS(DSEED) * 7.946D0
EVENTS = INT( DUMMY )
WRITE(6,9007) ‘YEAR ’, YEAR, ’ HAS ’, EVENTS,
2 ! EVENTS’
set the annual extremes to be equal to zero

XTMASS = 0.0
XVIOAD = 0.0
XWLOAD = 0.0
XGLOAD = 0.0

DO 4000 EVENT=1,EVENTS

WRITE(6,9007) ’'YEAR # ’,YEAR,’ EVENT # ‘,EVENT
for each event call OMNICYL: the accretion program

CALL OMNICYL( ETMASS, EVLOAD, EWLOAD, EGLOAD,
2 DSEED )
check the maximum values from the potential wet snow
event. If one is greater than the greatest that has
been found yet in the year, then the annual extreme
is reset to the greater value.

IF ( EUMASS .GT. XTMASS ) XTMASS = ETMASS
IF ( EVLOAD .GT. XVLOAD ) XVLOAD = EVLOAD
IF ( EWLOAD .GT. XWLOAD ) XWLOAD = EWLOAD
IF ( EGLOAD .GT. XGLOAD ) XGLOAD = EGLOAD

CONTINUE
after each year write the yearly maximums to the
EXTREMES . OUT
WRITE(11,9010) XTMASS, XVLOAD, XWLOAD, XGLOAD
CONTINUE

FORMAT (I3)
FORMAT(1X,A,I3,A,I3,3)
FORMAT( 1X,A,1X,I3,1X,A,A)
FORMAT( A )

FORMAT( 1X,4(F8.3,2X) )
end of program EXTREMES
END

7.5.2.2 Subroutine ACCRETE

ACCRETE. FOR
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Subroutine Accrete - for each layer number J within the *
period, accrete calulates the impingement

parameters for the current diameter, the local

sl

ope, density and ice thickness for each surface

pt, and the total mass, mean density and center of
gravity for the layer.

Input parameters: LAYER, TAU
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C Output parameters: TAREA, TMASS *
C *
C Variables defined in Doc.for *
(o] *
ol 2 2 2222222222222 2 2222222 22 222 X 2 R 2 RRRXRRR2AXXR]
SUBROUTINE ACCRETE (LAYER, TAU,TAREA, TMASS)
C
DOUBLE PRECISION ALPHA(900),DROPDI,DUR,GUST, LWC,
+ LAYRX (2,900) ,LAYRY (2,900) , PRESSA,
+ PRECIP,RH,RHO(900) ,SLOPE(900),
+ TEMPA,THICK(900) ,VEL,WINDD
cC
DOUBLE PRECISION ACCRAD,ALPHM,AREA,BETA,BZERO,CNTRX,
+ CNTRY,CYLRAD, DIAG,E,ELAPS, FALL,
+ FREEZ , LAREA, LDENS, LEN, IMASS, L1, L2,
+ L3,L4,LXCG,LYCG,MASS, MR, RHOMAX,
+ RSPEED,STIFF,S1,S2, TAILEN, TAU, TEMPS
’
+ TAREA , TMASS, VNORM,VNZERO, VZERO,
+ WLOAD, XCG, YCG,SPCBET, PI, HALFPI
C
REAL ROTN(2)
C
INTEGER DIFF,RPTS, LAYER, PNUM, SOUKCE,
+ WFLAG, PERIOD, NPTS,STAG, QUAR], QUAR)]
C
LOGICAL SMDROP,GLAZE
C
CHARACTER*40 NAME
C
COMMON/ICE/ LAYRX, LAYRY, ROTN, RPTS, ACCRAD,
+ XCG,YCG, PRECIP, ELAPS ,NPTS
+ /INP1l/ DROPDI,DUR,GUST, LWC, PRESSA,RH,
+ SOURCE, TEMPA ,VEL, WFLAG,WINDD, PNUM
+ /INP2/ LEN,STIFF,CYLRAD, PERIOD,NAME
C
PI = 4.DO0 * DATAN(1.DO)
HALFPI = PI / 2.DO
C
C Determine coordinate number at the stagnation point, and
C at the accretion edges
C
STAG = NPTS / 2
QUAR1 = NPTS / 4
QUAR3 = 3 * NPTS / 4
C
C if source is snow, collection efficiency is sticking
C efficiency, estimated from a rough empirical relatjon
C derived from Japanese data
C

2

IF (SOURCE .EQ.
FALL = 1.D0O

2) THEN

VNORM = DSQRT(FALL * FALL + VEL * VEL) +

DSIN (WINDD)
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If the ground temperature is less than freezing, and
wet snow is occurring, then an temperature inversion
aloft is assumed. The average temperature difference
under these conditions is 2.3 degrees. June 20, 1989
IF ( TEMPA .GT. 0.0 ) THEN
BZERO = 3.8D-2 * TEMPA/(2.0 * ACCRAD * VNORM)

ELSE
BZERO = 3.8D-2 * (TEMPA + 2.3D0) /
2 (2.D0 * ACCRAD * VNORM)
ENDIF
IF (BZERO ,GT. 1.D0)BZERO = 1.D9
ALPHM = HALFPI
GLAZE = .FALSE.

Snow density is contant throughout the deposit. Its value
is estimated from another empirical relation derived from
Japanese data.

IF (VNORM .LE. 17.8D0) THEN
RHOMAX = 50.D0 * VNORM
IF (RHOMAX .LT. 200.D0) RHOMAX = 200.0
ELSE
RHOMAX = 890.DO
ENDIF
ENDIF

Calculate slope and surface angle from finite differences
for each point on current surface. If the wind has
rotated this step, use a larger interval for the slope in
order to smooth over the discontinuity at the accretion
limit of the previous layer.

IF (RPTS .GT. O) THEN
DIFF = (INT(ROTN(1) * 143.2D0) / 5) + 15
IF (DIFF .GT. 100) DIFF = 100

ELSE
DIFF = 1

ENDIF

DO 400 I = QUAR1+1, QUAR3
IF (LAYRY(1,I+DIFF) .EQ. LAYRY(1,I-DIFF)) THEN
SLOPE(I) = SLOPE(I-1)

ELSE
SLOPE(I) = (LAYRX(1,I+DIFF) - LAYRX{1,I-DIFF)) /
+ DABS (LAYRY (1,I+DIFF) - LAYRY(1,I-DIFF))
ENDIF

IF (DABS(SLOPE(I)) .LT. 1.D-8) SLOPE(I) = 0.0

Calculate angle between slope and current free stream
direction

RSPEED = ROTN(1)
IF (RSPEED .GE. (2.D0 * PI)) RSPEED = RSPEED
+ - (INT(RSPEED/(2.DO0 * PI)) * 2.D0 * PI)
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IF (LAYRY(1,I+DIFF) .LT. LAYRY(1,I-DIFF)) THEN
ALPHA(I) = DABS(PI - DATAN(SLOPE(I)) - RSPEED)
ELSE IF (RSPEED .GT. PI) THEN
IF (LAYRY(1,I+DIFF) .LT. LAYRY(1,I-DIFF)) THEN
ALPHA(I) = DABS(PI - DATAN(SLOPE(I)) - RSPEED)

ELSE
ALPHA(I) = DABS(2.DO * PI + DATAN(SLOPE(I)) -
2 RSPEED)
ENDIF
ELSE
ALPHA(I) = DABS(DATAN(SLOPE(I)) - RSPEED)
ENDIF

400 CONTINUE

Calculate for each point local density, collision
efficiency and ice thickness. The method of calculation
for Beta depends on the value of SMDROP.

500 I = QUAR1+1l, QUAR3
RHO(I) = RHOMAX +*
+ (1.DO - .143D0 * (ALPHA(I)/(ALPHM+TAILEN)) -
+ .246D0 * ((ALPHA(I)/(ALPHM+TAILEN)) w## 2) -
+ .309D0 * ((ALPHA(I)/(ALPHM+TAILEN)) ## 3))
Make sure density does not become too small
IF (RHO(I) .LT. 50.D0) RHO(I) = 50.DO
Calculate local collision efficiency

BETA =SPCBET (ALPHA(I) ,SMDROP,GLAZE, SOURCE, BZERO,
+  ALPHM, TAILEN)

Calculate local ice thickness perpendicular to surface
(in non-dimensional units)

THICK(I) = BETA * VNORM #* TAU * LWC /
+ (RHO(I) * CYLRAD)

Define new layer surface coordinates.

IF (LAYRY(1,I+DIFF) .LT. LAYRY(1,I-DIFF)) THEN
LAYRX(2,I) = LAYRX(1,I) + (THICK(I) ¢

+ DCOS (DATAN (SLOPE(I1))))
ELSE
LAYRX(2,I) = LAYRX(1,I) - (THICK(I) +
+ DCOS (DATAN (SLOPE(1))))
ENDIF

LAYRY(2,I) = LAYRY(1,X) ¢+ (THICK(I) »
+ DSIN(DATAN(S°OPE(1))))
500 CONTINUE

Set non-accreting part of surface to be the same as in

190
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the previous layer

DO 525 I = 1,QUAR1
LAYRX(2,I) = LAYRX(1,I)
LAYRY (2,I) = LAYRY(1,I)
LAYRX (2,QUAR3+I) = LAYRX(1,QUAR3+I)
LAYRY (2,QUAR3+I) = LAYRY(1,QUAR3+I)
525 CONTINUE

Calculate mass and mean density of the layer from

the sum of areas between surface points on successive
layers. First, initialize layer mass and area, and the
coordinates for the layer centre of gravity.

LMASS
LAREA
LXCG
LYCG

0.D0
0.DO
0.DO
0.DO

nuownu

DO 560 I = QUAR1+1l, QUAR3-1

IF

((THICK(I) .GT. 0.DO).AND. (THICK(I+1)

2 .GT. 0.D0O)) THEN

L4 = THICK(I) * CYLRAD
L2 = THICK(I+1) * CYLRAD

L1 = DSQRT((LAYRX(1,I+1) - AYRX(1,I))**2 +
(LAYRY(1,I+1) - LAYRY(1,I))»*2) * CYLRAD
L3 = DSQRT((LAYRX(2,I+1) - LAYRX(2,I))**2
(LAYRY(2,I+1) - LAYRY(2,I))**2) * CYLRAD
DIAG = DSQRT( (LAYRX(2,I+1)-LAYRX(1,I))**2 +
(LAYRY(2,I+1) - LAYRY(1,I))**2) * CYLRAD
S1 = 0.5D0 * (DIAG+L1+L2)

S2 = 0.5D0 * (DIAG+L3+L4)

AREA = DSQRT(S1 * (S1-DIAG) * (S1-L1) *
(S1~L2)) + DSQRT(S2 * (S2-DIAG) * (S2-L3) *

+

(S2-L4))
MASS = ((RHO(I) + RHO(I+1)) / 2.DO) * AREA
IMASS = LMASS + MASS

LAREA = LAREA + AREA

Calculate central point of each quad, and its
contribution to the layer centre of gravity

-+

+

CNTRX = 0.25D0 * (LAYRX(2,I) + LAYRX(1,I)
+ LAYRX(2,I+1) + LAYRX(1,I+1))
CNTRY = 0.25D0 * (LAYRY(2,I) + LAYRY(1,I)
+ LAYRY(2,I+1) + LAYRY(1,I+1))
LXCG = LXCG + (MASS * CNTRX)
LYCG = LYCG + (MASS * CNTRY)

ENDIF
560 CONTINUE

Calculate overall centre of gravity including the new

layer

IF ( (TMASS + IMASS) .GT. 0.0 ) THEN
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XCG = ((TMASS * XCG) + LXCG) / (TMASS + LMASS)
YCG = ((TMASS * YCG) + LYCG) / (TMASS + LMASS)
IF (LAYER .EQ. 2) YCG = 0.DO

Calculate mean density.

LDENS = LMASS/LAREA
ENDIF

Add mass and area of current layer to the totals

TAREA = TAREA + LAREA
TMASS = TMASS + LMASS

Shift surface points closer to stagnation point
(this avoids overcrowding or overseparation of surface
points as the shape changes).

IF (LAYER .GT. 2) THEN
DO 600 I= 1,STAG-1
LAYRX(2,I) = LAYRX(2,I) + (0.9 % (I/(STAG-1))
+ * (LAYRX(2,I+1) - LAYRX(2,I)))
LAYRY (2,1) = LAYRY(2,I) + (0.9 * (I/(STAG-1))
+ * (LAYRY(2,I+1) - LAYRY(2,I1)))
LAYRX (2,QUAR3-I) = LAYRX(2,QUAR3-I) + (0.9
+  (I/(STAG-1)) *
+  (LAYRX(2,QUAR3-I-1) - LAYRX(2,QUAR3-I)))
LAYRY (2,QUAR3-I) = LAYRY(2,QUAR3-I) + (0.9 ®
+  (I/(STAG-1)) *
+  (LAYRY(2,QUAR3-I-1) - LAYRY(2,QUAR3-1)))

600 CONTINUE

ENDIF
Call subroutine to rotate array indices if required
IF ( TMASS .NE. 0.0DO ) CALL ROTATE (LAYER,TMASS)

Call subroutine to smooth the profile by weighted moving
averages

CALL SMOOTH
CALL SMOOTH

Update radius of cable plus accretion
ACCRAD = 0.5D0 * C“LRAD * (DSQRT((LAYRX(2,QUAR)) -
+ LAYRX(2,QUAR1+1). ee 2 &
+ (LAYRY(2,QUAR3) =~ LAYRY(2,QUAR1+1)) e 2))
IF (ACCRAD .LT. CYLRAD) ACCRAD = CYLRAD

Copy new layer points into first array, ready to be the
underlying layer for next loop

DO 606 I=], NPTS
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C
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C

LAYRX (2,I)
LAYRY (2,I)

LAYRX(1,T)
LAYRY (1,I)

606 CONTINUE

ROTN (1) = ROTN(2)

RETURN
END

7.5.2.3 Function SPCBET
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*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*®
*

FUNCTION SPCBET -~ Estimates Beta(alpha) for a
simulated droplet size distribution, for a
BZERO either less than or greater than 0.65
The polynomial function is scaled to (alpha
max + tail length), where the tail length
is a function of the mvd.

A special distribution for wet, or
precipitation icing, is based on the
assumption of straight line trajectories.

Input parameters : ALPHA,ALPHM, BZERO,SMDROP, TAYLEN
Variables defined in DOC.FOR

Except for: X - scaled angle = Alpha /
(Alphm + Tailen)
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DOUBLE PRECISION FUNCTION SPCBET (ALPHA,SMDROP,GLAZE,
+ SOURCE,BZERO,ALPHM, TAILEN)

DOUBLE PRECISION ALPHA,ALPHM,BZERO,TAILEN,X,HALFPI
INTEGER SOURCE |

LOGICAL SMDROP, GLAZE

HALFPI = (4.DO * DATAN(1.D0)) / 2.DO

X = ALPHA / (ALPHM+TAILEN)
IF ((GLAZE) .OR. (SOURCE .GT. 1)) THEN

For wet icing, or precipitation icing, assume dist’n
based on straight line trajectories

SPCBET = BZERO * DCOS(X * HALFPI)
ELSE

Local c.e. is zero if we are beyond the accretion limit

IF (ALPHA .GE. (ALPHM+TAILEN)) THEN

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
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SPCBET = 0.DO
ELSE

Local c.e. dist’n based on two typical drop spectra,
depending on the value of SMDROP

IF (SMDROP) THEN
SPCBET = BZERO * (1.DO - 0.0147D0 * X -

+ 0.488D0 * (X ** 2) - 3,01D0 * (X ** 3) +
+ 2.52D0 * (X ** 4))

ELSE

SPCBET = BZERO * (1.DO + 0.0287D0 * X -

+ 1.936D0 * (X #** 2) + 2.484D0 * (X ** 3) -
+ 4.112D0 * (X ** 4) + 2,538D0 * (X ** 5))

ENDIF

ENDIF

ENDIF

IF (SPCBET .LT. 0.DO) SPCBET = 0.DO
IF (SPCBET .GT. BZERO) SPCBET = BZERO

RETURN

END

7.5.2.4 Subroutine OMNICYL

OMNICYL.FOR (Main program - CONVERTED TO SUBROUTINE)

Converted to subroutine OMNICYL by Mark Bourassa in May
1989. The changes made to the code are marked by ’X’
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comment designators. The subroutine passes the end values

of mass/metre (TMASS), the force on the line due to the
mass of the accretion, the force due to the average
hourly wind velocity, and wind load due to the gust
velocity (GLOAD). Most changes removed the I/0
statements that detail individual events. The output
would be too massive to be practical. The loss of the
I/0 also groatly increases the speed of the program!

sv#% that do not deal with wet snow have been
©oraraved.

SUBROUTINE OMNICYL(ETMASS,EVLOAD, EWLOAD, EGLOAD, DSEED)
khkfehkhhkhhkhhhdhhkhkhhhkhhhkhkhkhhkhthhhhkhhhhhhhkkhhhkhkhhhkhhkkhhkkhhk ks

OMNICYL - the main program opens output files,
initalises tables and variables, reads in all
input, determines the layer time step and controls
the accretion subroutines for each layer and
period. When all layers of ice are accreted, the
results are written to output files. Variable
dictionary can be found in ICE.DOC

khkkhhhkkhhhhhkhhkkhhhhhhkhkhhhhhhkhhhhhhbhhhhhhhhhkhhkhdhhdhdkikkhkk

DOUBLE PRECISION DROPDI, DUR, LAYRX(2,900),
+ LAYRY(2,900), GUST, LWC, PRECIP,
+ PRESSA, RH, TEMPA, VEL, WINDD,

*

*
*
%*
*
*
*
*
*
%
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+ TWINDD, VISIB

DOUBLE PRECISION ACCRAD,BZERO,CD,CYLRAD,ELAPS,FALL,
GLOAD, LEN, REMAIN, RHCRIT, STIFF, TAU,
TAREA , TMASS, VLOAD, WLOAD, XCG, YCG, AL,
VZ,E,SATVAP, FREEZ , TEMPS, PT, HALFPI,
MR, RHOMAX, TATRND, RHTRND, GAUSS, KRON,
RANDOM, RAND

+++ ++

REAL ROTN(2), EVLOAD, EWLOAD, EGLOAD,
ETMASS

4

INTEGER SOURCE, WFLAG
INTEGER LAYER,RPTS, PERIOD, PNUM, NPTS
LOGICAL GLAZE
CHARACTER*4ONAME
COMMON /ICE/ LAYRX, LAYRY,ROTN,RPTS ,ACCRAD,
XCG, YCG, PRECIP, ELAPS, NPTS
/INP1l/ DROPDI, DUR,GUST,LWC, PRESSA,RH,

SOURCE, TEMPA, VEL, WFLAG, WINDD, PNUM
/INP2/ LEN, STIFF,CYLRAD, PERIODS, NAME

+4+ 4+ 4+

PI = 4.D0 * DATAN(1.DO)
HALFPI = PI / 2.DO

Initialize total mass, area, centre of gravity coords,
and rotation counters.

TMASS = 0.DO
TAREA = 0.DO
XCG = 1.DO
YCG = 0.DO
ROTN(1) = 0.DO
RPTS = 0

Bare cylinder will be layer no. 1
LAYER =1

Set number of points which define the accretion profile
NPTS = 900

Accretion radius is initially equal to the bare conductor
radius

ACCRAD = CYLRAD

Begin accretion model for each storm period; begins with
the bare conductor profile, and continuing each
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C subsequent period with the accretion profile stored from
C end of the last pericd.
C
X The following lines were added to OMNICYL by
X Mark Bourassa on May 28, 1989.
X Set the duration of each accretion period to be one
X hour
DUR = 3.6D3
C
C Fill array of points defining the initial surface of the
C cylinder in non-dimensional coordinates. The complete
C (360 deg) surface contains NPTS equally spaced points.
C Moved from INPUT. May 28, 1989
C
STAG = NPTS / 2
X Determine the duration (PERIOD) of the event
RANDOM = RAND(DSEED)
X if the random number is great enough to make the
X duration of the event three or more hours then
X proceed. Otherwise set the duration to be equal to
X zero hours. Events of one or two hours in duration
X are ignored.
IF ( RANDOM .GT. 0.68796D0 ) THEN
DUMMY = 1.0D1 ** ( ( SQRT( 1.0D0O - RANDOM ** 2 )
2 - 1.0D0 ) * (-1.452) )
PERIOD = INT( DUMMY + 0.5 )
X The following was copied from Dr. Finstad’s input
X subroutine (INPUT.FOR)
LAYRX(1,STAG) = 0.DO
LAYRY (1,STAG) = 0.DO
LAYRX(1,NPTS) = 2.DO
LAYRY (1,NPTS) = 0.DO

DO 3100 I = 1,STAG-1
ANGLE = DBLE(I) / DBLE (NPTS)
LAYRX(1,I) = 1.DO + DCOS( 2.D0 * PI * ANGLE)
LAYRY(1,I) = - DSIN(2.DO * PI * ANGLE)
3100 CONTINUE
DO 3200 I = 1,STAG-1
LAYRX (1,STAG+I) = LAYRX(1,STAG-I)
LAYRY (1,STAG+I) = -LAYRY(1,STAG-I)
3200 CONTINUE

L}

X determine the initial values for the computer
X generated meteorological parameters
X determining wind speed

200 VEL = 4.948D0 + GAUSS(DSEED) * 2.961D0
IF ( VEL .LT. 0.0D0O ) GOTO 200
X determining gust speed
GUST = 1.275 % VEL
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determining wind direciton. The average wind
direction is perpendicular the line
WINDD = 9.0D1 + GAUSS(DSEED) * 1.199D2

225 IF ( WINDD .GT. 3.6D2 ) THEN

WINDD = WINDD - 360.0D0
GOTO 225
ENDIF

IF ( WINDD .LT. 0.0DO ) THEN
WINDD = WINDD + 360.0D0
GOTO 250

ENDIF

ACCRETE is unable to deal with wind directions
greater than 180 degrees. Wind directions greater
than 180 degress are reduced by 180 degrees
TWINDD = WINDD * 2,0D0 * PI / 3.6D2
IF ( TWINDD .LE. PI ) THEN
WINDD = TWINDD
ELSE
WINDD = TWINDD - PI
ENDIF
determine the air temperature. Note that if this is
negative it will be assumed (in ACCRETE) that there
is an upper level temperature inversion. This
justifies the pressence of wet snow under these
conditions.
TEMPA = 2.202D0 + GAUSS(DSEED) * 2.49D0O
determining the relative humidity :
RH = 8.8856D1 + GAUSS(DSEED) * 9.049DO0
IF ( RH .LT. 0.0D0 ) GOTO 299
IF ( RH .GT. 100.0D0 ) RH = 100.0DO
determining the visibility
VISIB = 1.139D1 + GAUSS (DSEED) * 8.751DO
IF ( VISIB .LE. 0.1D0 ) GOTO 400
IF ( VISIB .GT. 25.0D0 ) VISIB = 25.0D0
determining the rate of precipitation (mm water
equivalent per hour) from the visibility
DUMMY = 0.055 - LOG10( VISIB ) / 0.607
PRECIP = 1.0D1 **%* DUMMY
determining the pressure
PRESSA = ( 9.2869D1 + GAUSS(DSEED) * 0.724D0 ) *
2 1.0D3
determine whether or not the conditions for wet snow
are met. If so set SOURCE to equal 2
IF ( RH .GE. ( 100.0D0 - 12.25D0 * TEMPA ) ) THEN
SOURCE = 2
when the relative humidity is less that the critical
relative humidity, but greater than the surface
critical relative humidity, then there is a 45%
chance of wet snow occurring
ELSEIF ( ( RH .GE. ( 90.1D0O - 5.3D0 * TEMPA ) )
2 .AND. ( TEMPA .LT. 1.5DO ) ) THEN
RANDOM = RAND (DSEED)
IF ( RANDOM .LE. 0.45D0 ) THEN
SOURCE = 2
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ELSE
SOURCE = 3
ENDIF
ELSE
SOURCE = 3
ENDIF

Convert precip rate to flux at the conductor. Assume
terminal speed of snowflakes is 1 m/sec, of raindrops,
4.5 m/sec.

IF (SOURCE .EQ. 2) FALL
IF (SOURCE .EQ. 3) FALL

1.D0
4.5D0

Compute effective liquid water content
ILWC = PRECIP / 3.6D3 / FALL
ELSE
PERIOD = 0
ENDIF
WRITE(6,*) ’‘Duration = ', PERIOD

Set the extreams for the event to be equal

to zero.

ETMASS = 0.0
EVLOAD = 0.0
EWLOAD = 0.0
EGLOAD = 0.0

End of added lines ( 28 May 89)
DO 20 PNUM=1,PERIOD

Set initial values of remaining time and elapsed time in
the period

REMAIN = DUR
ELAPS = 0.DO

Loop for accreting layers begins here
300 CONTINUE

Calculate layer time step, so layer thickness is
roughly 10 percent of current radius. A density value
is assumed based on the icing source, and whether the
icing process is wet or dry.

The next line has been added June 13,1989
IF ( SOURCE .EQ. 2 ) THEN
IF ( VEL .GT. 0.0DO ) THEN
BZERO = 3.8D-2 * TEMPA / (2.0 * ACCRAD * VEL)
IF (BZERO .GT. 1.0D0) BZERO = 1.0DO
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TAU = (20.DO * ACCRAD / (BZERO * VEL * LWC))
The following line was added 14 June 1989; it sets the
minimum time increment to three minutes (5% of an hour)
IF ( TAU .LT. 0.05D0 * DUR ) TAU = 0.05D0 *
2 DUR

ELSE
BZERO = 1.0DO
TAU = DUR
ENDIF
ENDIF

For all layers except the last -
IF ( (TAU .LT. REMAIN) .AND. (SOURCE .EQ. 2) ) THEN
- uypdate remaining time, layer no, and elapsed time

REMAIN = REMAIN - TAU
LAYER = LAYER + 1
ELAPS = ELAPS + TAU

Call subroutine to accrete layer
CALL ACCRETE (LAYER, TAU,TAREA,TMASS)
Write to screen percentage of time elapsed

WRITE (6,350) PNUM,INT (ELAPS/DUR * 100.)
350 FORMAT ('’ ’,’ Period ’/,I12,’ is ’,I2,’ percent’,
2 ! complete’)

Continue with next layer in this period
GO TO 300
Then for the last layer...

ELSE IF ((TAU .GE. REMAIN) .AND. (SOURCE .EQ. 2))
2 THEN
TAU = REMAIN
LAYER = LAYER + 1
ELAPS = ELAPS + TAU
CALL ACCRETE (LAYER, TAU,TAREA, TMASS)
WRITE (6,360) PNUM
360 FORMAT ('’ ’,’ Period ’/,I2,’ is 100 percent’,
2 ! complete’)
ENDIF

Calculate the vertical mass load due to ice, assuming no
aerodynamic forces, only gravity, and write to MASS file.

VLOAD = TMASS * 9.81D0

Calculate the mean and max static horizontal wind
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assume drag coefficient is 1.1. GUST is the

input max’m expected gust speed for the site in question,
as C determined by the user.

Assume a

CcDh

drag coefficient = 1.1

= 1.1

WLOAD = (0.5D0 * 1.3D0 * VEL * VEL) * (2.0D0 *
+ ACCRAD) * CD * DSIN(WINDD) * DSIN(WINDD)

GLOAD = (0.5D0 * 1.3D0 * GUST * GUST) *(2.0D0 *
+ ACCRAD) * CD * DSIN(WINDD) * DSIN(WINDD)

check whether or not this hours values are greater than
the greatest previous values

IF
IF
IF
IF

if it is

( TMASS .GT. ETMASS ) ETMASS = TMASS
( VLOAD .GT. EVLOAD ) EVLOAD = VLOAD
( WLOAD .GT. EWLOAD ) EWLOAD = WLOAD
( GLOAD .GT. EGLOAD ) EGLOAD = GLOAD

not the end of the event then determine and

add the changes for the next hour

IF
Calculate

( PNUM .LT. PERIOD ) THEN

the values for the time related trends

DUMMY = 0.156D0 - DLOG( DBLE (PNUM) )

IF ( DUMMY .LT. 0.0D0 ) DUMMY = 0.0DO

TATRND = -1.0D0 * DSQRT( DUMMY )

RHTRND = 3.172D0 -~ 1.955D0 * DLOG( DBLE (PNUM) )
IF ( RHTRND .LT. 0.0D0 ) RHTRND = 0.0DO

Determine and add the hourly changes for each hour.

450

470

485

TEMPA = TEMPA + KRON(0.34,DSEED) * ( TATRND
+ 0.01 + GAUSS(DSEED) * 0.656D0 )
DUMMY = KRON(0.18) * GAUSS(DSEED) * 1.598DO0
VEL = VEL + DUMMY
IF ( VEL .LT. 0.0D0 ) THEN
VEL = VEL - DUMMY
GOTO 450
ENDIF
GUST = 1.275 * VEL
TWINDD = TWINDD + KRON(O.39,DSEED) *
GAUSS (DSEED) * 39.469D0 * 2.0DO * PI / 3.6D2
IF ( TWINDD .GT. 2.0DO * PI ) THEN
TWINDD = TWINDD - 2.0D0 * PI
GOTO 470
ENDIF
IF ( TWINDD .LT. 0.0DO ) THEN
TWINDD = TWINDD + 2.0D0 * PI
GOTO 485
ENDIF
IF ( TWINDD .LE. PI ) THEN
WINDD = TWINDD
ELSE
WINDD = TWINDD - PI
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ENDIF
500 DUMMY = KRON(0.24,DSEED) * ( RHTRND +
2 25.384D0 - 0.275D0 * RH + GAUSS (DSEED) *
2 4.774D0)

RH = RH + DUMMY
IF ( RH .LT. 0.0DO ) THEN
RH = RH - DUMMY

GOTO 500
ENDIF
IF ( RH .GT. 100.0D0 ) RH = 100.0DO
600 DUMM = KRON(0.25,DSEED) * GAUSS(DSEED) * 6.391D0

VISIB = VISIB + DUMMY
IF ( VISIB .LE. 0.1D0 ) THEN
VISIB = VISIB - DUMMY
GOTO 600
ENDIF
IF ( VISIB .GT. 25.0D0 ) VISIB = 25.0D0
DUMMY = 0.055 - LOG10( VISIB ) / 0.607
PRECIP = 1.0D1 ** DUMMY
PRESSA = PRESSA + KRON(0.17,DSEED) *
2 GAUSS (DSEED) * 6.5D1
IF ( RH .GE. ( 100.0D0 - 12.25D0 * TEMPA ) )
2 THEN

SOURCE = 2
ELSEIF ( ( RH .GE. ( 90.1DO0 - 5.3D0 * TEMPA ) )
2 .AND. {( TEMPA .LT. 1.5D0 ) ) THEN

RANDOM = RAND(DSEED)
IF ( RANDOM .LE. 0.45D0 ) THEN
SOURCE = 2
ELSE
SOURCE = 3
WFLAG = 0
ENDIF
ELSE
SOURCE = 3
WFLAG = 0
ENDIF

Convert precip rate to flux at the conductor. Assume
terminal speed of snowflakes is 1 m/sec, of raindrops,
4.5 m/sec.

1.D0
4.5D0

IF (SOURCE .EQ. 2) FALL
IF (SOURCE .EQ. 3) FALL

Compute effective liquid water content
IWC = PRECIP / 3.6D3 / FALL
ENDIF
End of period loop, continue with next storm period

20 CONTINUE
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999 RETURN
END

7.5.2.5 Subroutine ROTATE

ROTATE.FOR (subroutines Rotate, Smooth)

T e T e Y T Y 12t LTI

SUBROUTINE ROTATE - shifts array indices of current
layer by an amount corresponding to the ice

weight. Additional torque due to the wind is

ignored

Input parameters: LAYER,TMASS

Output ¢ in Common arrays LAYRX,LAYRY,ROTN

Variables defined i

Except for: K,M
RTEMP
GRAV
CONST
ZETA

ANGLE

khkhkhkkhkhkhkhhkhhkhhkhkhkhkhkhhhhhhkhhhhkhkhhkhhhhhkhhkhhhkhhhkhkkhhkkhhkhkhkkk

n

DOC.FOR

index limits for shifting

array of iterated rotation amounts
acceleration due to gravity
combined constants

initial position angle of the
current

centre of gravity of the accretion
angle between the current centre
of gravity and the current free
stream direction

SUBROUTINE ROTATE (LAYER,TMASS)

DOUBLE PRECISION
+

DOUBLE PRECISION

+
+

REAL
INTEGER
CHARACTER#40
COMMON /ICE/

+ /INP2/

Define constants

LAYRX(2,900) , LAYRY (2,900),TX (450),
TY(450) ,RTEMP(20), PRECIP

LEN, STIFF, TMASS, XCG, YCG, CYLRAD,
ANGLE, ZETA, ACCRAD, CONST, DELROT,
GRAV,ELAPS, PI

ROTN (2)

LAYER, RPTS, NPTS, PERIOD

NAME

LAYRX, LAYRY, ROTN, RPTS, ACCRAD,

XCG, YCG, PRECIP,ELAPS, NPTS
LEN, STIFF,CYLRAD, PERIOD, NAME
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*
*
*
*
*
*
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NPTS = 900

GRAV = 9.8DO0

ZETA = DABS(DATAN(YCG / (XCG - 1.0D0)))
PI = 4.D0 * DATAN(1.DO)

Determine angle between current c of g and the wind
direction

IF (XCG .LT. 1.DO) THEN
IF (YCG .GT. =-1.0D-2) THEN

ANGLE = ROTN(1) - ZETA
ELSE
ANGLE = ROTN(1) - (2.DO * PI - ZETA)
ENDIF
ELSE
IF (YCG .GT. =-1.0D-2) THEN
ANGLE = ROTN(1) ~ (PI - ZETA)
ELSE
ANGLE = ROTN(1) - (PI + ZETA)
ENDIF
ENDIF

IF (LAYER .EQ. 2) ANGLE = 0.0DO
Calculate graviational torque constant

CONST = TMASS * GRAV * LEN * CYLRAD *
+ DSQRT(((XCG - 1.D0) ** 2) + (YCG ** 2))

Begin iteration to calculate rotation angle, using
Newton-Raphson method. First guess is angle of new
c of g, or 0.5

IF (LAYER .EQ. 2) THEN
RTEMP(1) = 0.5D0
ELSE
RTEMP(1) = ANGLE
ENDIF

I=1
10 CONTINUE
RTEMP(I+1) = RTEMP(I) + ((CONST * DCOS(RTEMP(I)) -
+ STIFF * RTEMP(I)) /
+ (CONST * DSIN(RTEMP(I)) + STIFF))
IF (DABS(RTEMP(I+1) - RTEMP(I)) .LT. 1.0D-2) THEN
DELROT = RTEMP(I+1) - ANGLE
ELSE IF (I .EQ. 19) THEN
DELROT = RTEMP(I+1) - ANGLE

ELSE
I = I+l
GOTO 10
ENDIF

Calculate the appropriate no. of surface points to
rotate, and total rotation amount

203
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IF (DELROT .LT. 0.D0) DELROT = 0.DO
501 IF (DELROT .GT. 2.0DO * PI ) THEN
DELROT = DELROT - 2.0D0 * PI
GOTO 501
ENDIF
IF ((DELROT .GT. 6.D0) .AND. (ROTN(1) .LT. PI))
2 DELROT = 0.DO
RPTS = DINT((DABS(DELROT) / (2.DO * PI)) *
2 DBLE(NPTS))
IF (RPTS .EQ. 0) DELROT = 0.DO
ROTN(2} = ROTN(1) + DELROT

Save the first increment no. of points from previous
layer in temporoary arrays

eNeNo X9

DO 575 I
TX(I)

TY(I)

575 CONTINUE

1,RPTS
LAYRX (2, 1I)
LAYRY (2,1I)

Renumber layer array to face new direction of wind

o NoNe]

K NPTS
M NPTS
DO 580 I

RPTS

RPTS + 1

1,K

LAYRX(2,I) = LAYRX(2,I+RPTS)
LAYRY(2,I) = LAYRY(2,I+RPTS)

580 CONTINUE

Add increment number of points from the previous layer
to the ’back’ end

sNoNoNe

DO 585 I = M,NPT
LAYRX (2, I)
LAYRY (2, I)

585 CONTINUE

s
TX(I - M + 1)
TY(I - M + 1)

RETURN
END

7. ubro
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C SUBROUTINE SMOOTH - smoothes the array of surface points *

c using a weighted moving average *
c :
C Output : in Common arrays LAYRX,LAYRY *
g Variables defined in DOC.FOR :
g Except for: MAX,MAY - moving average sums :
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PT1,PT2 - first and last point of *

array to be averaged *
*

de g e d e de d de o de ok ok e e ke K &k ok ok ok ok ok e ok e ok e e e e e oK e oK e e de e e ok e e ke ke ok ek ok ok ke ok ke ke ke

SUBROUTINE SMOOTH

O 00000

DOUBLE PRECISION LAYRX(2,900),LAYRY(2,900),MAX(900),
+ MAY (900) , PRECIP

DOUBLE PRECISION  ACCRAD,XCG,YCG,ELAPS
REAL ROTN (2)
INTEGFR RPTS, NPTS, PT1, PT2, STAG

O 0O 0 0

COMMON /ICE/ LAYRX,LAYRY,ROTN, RPTS, ACCRAD,
+ XCG, YCG, PRECIP,ELAPS,NPTS
c
C Form averaged values
C
NPTS 900
STAG NPTS / 2
PT1 = (NPTS / 4) - 10
PT2 = (3 * NPTS / 4) + 10
DO 12 I = 1,STAG+20
MAX(I) = (0.277945D0 * LAYRX(2,PT1+I)) +
0.238693D0 * (LAYRX(2,PT1+I-1) + LAYRX(2,PT1+I+1))
+ 0.141267D0 * (LAYRX(2,PT1+I-2) +
LAYRX(2,PT1+I+2)) + 0.035723D0 * (LAYRX(2,PT1+I-3)
+ LAYRX(2,PT1+I+3)) - 0.026972D0 *
(LAYRX(2,PT1+I-4) + LAYRX(2,PT1+I+4)) ~ 0.027864DO
* (LAYRX(2,PT1+I-5) + LAYRX(2,PT1+I+5))
MAY(I) = (0.277945D0 * LAYRY(2,PT1+I))
+ 0.238693D0 (LAYRY (2,PT1+I-1)+LAYRY (2,PT1+I+1))
0.141267D0 (LAYRY (2,PT1+I-2)+LAYRY (2, PT1+I+2))
0.035723D0 (LAYRY (2,PT1+I-3)+LAYRY (2,PT1+I+3))
0.026972D0 (LAYRY (2,PT1+I~4)+LAYRY (2 ,PT1+I+4))
- 0.027864D0 (LAYRY (2,PT1+I-5)+LAYRY (2,PT1+I+5))
12 CONTINUE

+4+4++4++

*

+++++
|+ +
* % % ¥

DO 20 I = PT1+20,PT2-20
LAYRX(2,I) = MAX(I-PT1)
LAYRY(2,I) = MAY(I-PT1)

20 CONTINUE
c
RETURN
END
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21.5.2.7  Subroutine XTINPT

SUBROUTINE XTINPT
ol L e Yy Y Y Y Y T S Ly

C

o Purpose: to interactively aquire a physical

c description of transmission line:

c line diameter, torsional stiffness, and
c the length of the span.
C
C
C
c
C

*
*
*
*
%*
*
Adapted for subroutine INPUT of Dr. Finstad’s *
accretion model. *

*
KARRRRRERRRRRAR KRR AR KRR RRRR AR RRRRARRRARR AR R RARR AR AR ARk

DOUBLE PRECISION LAYRX(2,900),LAYRY(2,900),PRECIP(60)

DOUBLE PRECISION ACCRAD,CYLRAD,ELAPS, LEN,STIFF, XCG,

2 YCG

REAL ROTN (2)

INTEGER RPTS, PERIOD, NPTS

CHARACTER*40 NAME

COMMON /ICE/LAYRX, LAYRY, ROTN, RPTS , ACCRAD,
I XCG, YCG, PRECIP, ELAPS, NPTS

/INP2/LEN,STIFF,CYLRAD, PERIOD,NAME

WRITE (6,120)
120 FORMAT (/////,' ***kkkkkkkkx TRANSMISSION LINE’,
+ ? ICING MODEL ***************',// 20x
+ ’ Version January 1989 ’,//,22X,’K. J. Flnstad',//,
+ 20X,’ Modified and adapted by Mark Bourassa ’,
+ 'May 1989 ’,//,
+ ’ Please enter parameters to begin accretion: ’,//)

c ask for the diameter of the transmission line
WRITE (6,%)
WRITE (6,*) ’Cylinder diameter in metres? ’
READ (S5,*) CYLRAD
CYLRAD = CYLRAD / 2.0D0O

C ask for the torsional stiffness of the line
WRITE (6,%)
WRITE (6,*) ’‘torsional stiffness in Nm / rad? ’
READ (5,*) STIFF

C ask for the distance between poles or towers
WRITE (6,*)
WRITE (6,*) ’‘span length in metres? ’
READ (5,*) LEN
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10 CONTINUE
RETURN
C end of subroutine XTINPT
END

7.5.3 Statistical programs and subroutines

These statistical programs and subroutines were used in
many of the statistical analyses. For input data they often
used modified forms of the output of the program METSTAT.
METSTAT could have been used to determine may of these
statistics. The advantage of these routine is that they are

much faster.

7.5.3.1 Subroutine CURFIT

SUBROUTNE CURFIT hkkhkhkhhhhkhkhkhhhkkkrkhkrAhhkkkkhhkkkkk ks

PURPOSE: to calculate a ’‘best fit’ curve to
unordered data, or a least squares fit to
unordered data. A least squares fitting
of raw x and y values is performed by
setting CURVX=1l, and CURVY=l.

Definitions:
ALLPTS - number of data points (i.e. the
number of x or y values in PTS
BDOMAN - number of points that fall
outside the domain of either the
X operator or the y operator, for
the best fitting curve

BSGMAB - standard deviation of the y
intercept for the best fitting
curve

BSGMAM - standard deviation of the slope
for the best fitting curve
BSLOPE - slope for the best fitting curve
BTRUPT - number of data points within the
the domain of both operators, for
the best fitting curve

BYINT - Y intercept for the best fitting
curve

CURVX - maximum index fur the x operator

CURVY - maximum index for the y operator

DOMAIN - number of points that fall
outside the domain of either the
x operator or the y operator
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DVDND - a dividend used in calculating
several statistics

GPTS ~- number of valid points to be
used in statistics

I - a counter

J - a counter

K - a counter

MODE - character array describing
coperators

PCENT - the percentage of points that
fall outside the domain of the
operators

PTS - data array from main program.

X values have a second index of 1,
y values have a second index of 2

R ~ correlation coefficient
RBEST -~ correlation coefficient for the
best fitting curve
RESPON - user’s response to yes/no
questions
SIGMAB - standard deviation of the y
intercept

SIGMAM - standard deviation of the slope
SIGMAY - standard deviation of y
SKIP - logical that is true when a data
point falls outside the domain of
one of both of the operators

SLOPE - slope of the line

SUMX - total of x values

SUMXY - total of the product of each x
value and its corresponding y
value

SUMX2 - sum of the squares of x values

SUMY - sum of y values

SUMY2 - sum of the squares of y values

TSTPTS ~ data array of valid points.

¥ values have a second index of 1,
y values have a second index of 2

TRUPTS - true number of points being
examined

VARXY -~ covariance

X - absolute value of regression
coefficient

XBEST - index of best x operator

XMEAN ~ mean of x values

XVAR - variance in x

Y - absolute value of the best
regression coefficient

YBEST - index of best y operator

YINT - y intercept

YMEAN - mean of y values

YVAR - variance in y

Input parameters: ALLPTS, PTS, CURVX, CURVY
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See above

Output parameters: BSLOPE, BYINT, RBEST
See above

*
*
*
*
*
I/0 streams: *
5 - keyboard *

6 - screen *

22 - output file *

*

Programmed by Mark Bourassa *
Feb 21, 1989 *
*

*

*

*

University of Alberta
Edmonton, Alberta, Canada
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SUBROUTINE CURFIT(ALLPTS,PTS,CURVX, CURVY,BYINT,
+ BSLOPE, RBEST)

REAL SUMX, SUMX2, SUMY, SUMXY, TRUPTS, DVDND, SLOPE,

+ SIGMAM, YINT, SIGMAB, PTS(1600,2), SUMY2, SIGMAY,
+ XVAR, YVAR, VARXY, XMEAN, YMEAN, R, X, Y, BSLOPE,
+ BSGMAM, BYINT, BSGMAB, RBEST, TSTPTS(1600,2),
+ PCENT

INTEGER ALLPTS, DOMAIN, BTRUPT, BDOMAN, GPTS, I, J, K,
+ XBEST, YBEST, CURVX, CURVY

LOGICAL SKIP
CHARACTER*12 MODE(7)
CHARACTER*1 RESPON

c initialize arrays, set the best correlation
C coefficient to equal zero

RBEST = 0.0

MODE(1) = ’‘Unmodified '/

MODE(2) = ’Squared ’

MODE(3) = ’Square Root ’

MODE(4) = ’‘Natural Log ’/

MODE(5) = ’‘Log 10 '

MODE(6) = ’Anti-nat Log’

MODE(7) = ’‘Anti-log 10 ’

DO 5000 I=1,CURVX
DO 4900 J=1,CURVY

C for each curve initialize the sums at zero

DOMAIN = 0

SUMX = 0.0

SUMY = 0.0

SUMX2 = 0.0
STMXY = 0.0
SUMY2 = 0.0
TRUPTS = 0.0
DVDND = 0.0
SIOPE = 0.0
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SIGMAM =
YINT = O.
SIGMAB =
SIGMAY =
XMEAN
YMEAN
VARXY
XVAR =
YVAR =
GPTS =

i
* ¢+ OO0O

determine if the x value is within the domain of
the operator. If so determine the modified x value
DO 25 K=1,ALLPTS
SKIP = .FALSE.
IF ( I .EQ. 1 ) THEN
TSTPTS (GPTS,1) = PTS(K,1)
ELSEIF ( I .EQ. 2 ) THEN
TSTPTS (GPTS,1) = PTS(K,1) * PTS(K,1)
ELSEIF ( I .EQ. 3 ) THEN
IF ( PTS(K,1).GT. 0.0 ) THEN
TSTPTS (GPTS,1) = SQRT( PTS(K,1) )
ELSE
SKIP = .TRUE.
ENDIF _
ELSEIF ( T .EQ. 4 ) THEN
IF ( PTS(X,1).GT. 0.0 ) THEN
TSTPTS (GPTS,1) = LOG( PTS(K,1) )
ELSE
SKIP = .TRUE.
ENDIF
ELSEIF ( I .EQ. 5 ) THEN
IF ( PTS(K,1).GT. 0.0 ) THEN
TSTPTS(GPTS,1) = LOG10( PTS(K,1) )
ELSE
SKIP = .TRUE.
ENDIF
ELSEIF ( I .EQ. 6 ) THEN
TSTPTS(GPTS,1) = ALOG( PTS(K,1) )
ELSEIF ( I .EQ. 7 ) THEN
TSTPTS (GPTS,1) = ALOG10( PTS(K,1) )
ENDIF

determine if the y value is within the domain of
the operator. If so determine the modified y value
IF (J .EQ. 1 ) THEN
TSTPTS (GPTS,2) = PTS(K,2)
ELSEIF ( J .EQ. 2 ) THEN
TSTPTS (GPTS,2) = PTS(K,2) * PTS(K,2)
ELSEIF ( J .EQ. 3 ) THEN
IF (PTS(K,2) .GT. 0.0 ) THEN
TSTPTS (GPTS,2) = SQRT( PTS(K,2) )
ELSE
SKIP = .TRUE.
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ENDIF
ELSEIF ( J .EQ. 4 ) THEN
IF (PTS(K,2) .GT. 0.0 ) THEN
TSTPTS (GPTS,2) = LOG( PTS(K,2) )
ELSE
SKIP = .TRUE.
ENDIF
ELSEIF ( J .EQ. 5 ) THEN
IF (PTS(K,2) .GT. 0.0 ) THEN
TSTPTS (GPTS,2) = LOG10( PTS(K,2) )
ELSE
SKIP = .TRUE.
ENDIF
ELSEIF ( J .EQ. 6 ) THEN
TSTPTS (GPTS,2) = ALOG( PTS(K,2) )
ELSEIF ( J .EQ. 7 ) THEN
TSTPTS (GPTS,2) = ALOG10( PTS(K,2) )
ENDIF

I~

keep track of the number of valid points and the
number of points that were outside the domain of
one or both functions
IF ( .NOT. SKIP ) THEN
GPTS = GPTS + 1
ELSE
DOMAIN = DOMAIN + 1
ENDIF
25 CONTINUE
GPTS = GPTS - 1

noan

if some points were rejected write the details to the
screen and ask it the curve should be rejected
IF ( DOMAIN .GT. O ) THEN
PCENT = 100.0 * REAL( DOMAIN ) /
2 REAL( GPTS + DOMAIN )
WRITE (6,9010) DOMAIN,’ points (’,PCENT,
2 ’%) are outside) the domain of the /,
3 ’functions!’
WRITE(6,9001) MODE(I), ’ vs. ’, MODE(J)
WRITE(6,*) ’Is this to high? (Y/N)’
READ(5,9009) RESPON
IF ( RESPON .EQ. ’Y’ ) THEN
WRITE(6,*) ’‘This correlation will be ’/,
2 ’ignored.’
GOTO 4800
ENDIF
ENDIF

no

C make sums
50 DO 100 K=1,GPTS
SUMX SUMX + TSTPTS(K,1)
SUMY SUMY + TSTPTS (K, 2)
SUMX2 SUMX2 + TSTPTS(K,1l) * TSTPTS(K,1)
SUMXY SUMXY + TSTPTS(K,1) * TSTPTS(K,2)
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SUMY2 = SUMY2 + TSTPTS(K,2) * TSTPTS(K,2)
TRUPTS = TRUPTS + 1

100 CONTINUE
C determine the slope, y 1ntercept and the associated
(o] standard deviations

DVDND = TRUPTS * SUMX2 - SUMX * SUMX
IF ( (DVDND .NE. 0.0 ) .AND.

2 ( TRUPTS .NE. 1.0)) THEN
SLOPE = (TRUPTS * SUMXY - SUMX * SUMY) /
2 DVDND
YINT = ( SUMX2 * SUMY - SUMX * SUMXY ) /
2 DVDND
ENDIF

DO 1500 K=1, GPTS
SIGMAY = SIGMAY + ( TSTPTS(K,2) - YINT -

2 SLOPE * TSTPTS(K,1) ) ** 2
1500 CONTINUE
IF ( ( TRUPTS .GT. 2.0 ) .AND.
2 ( DVDND .NE. 0.0 ) ) THEN
SIGMAY = SQRT( ZIGMAY / ( TRUPTS - 2.0 ) )
SIGMAB = SQRT(SIGMAY * SIGMAY * SUMX2 /
2 DVDND)
SIGMAM = SQRT (TRUPTS * SIGMAY * SIGMAY /
2 DVDND)
ENDIF
C determine the means of x and y values
XMEAN SUMX / TRUPTS

YMEAN SUMY / TRUPTS
C determine variances
DO 2200 K= 1, GPTS
VARXY = VARXY + ( TSTPTS(K,1) - XMEAN ) *
2 ( TSTPTS(K,2) - YMEAN )

XVAR = XVAR + ( TSTPTS(K,1) = XMEAN ) #*% 2

YVAR = YVAR + ( TSTPTS(K,2) - YMEAN ) ** 2
2200 CONTINUE

C determine correlation coefficient
IF ( XVAR * YVAR .GT. 0.0 ) THEN
R = VARXY / SQRT( XVAR * YVAR )

ELSE
R = -9.99
ENDIF
Cc determine whether this is better than the previous

c best fit
IF ( R .GE. -1.0 ) THEN
X = ABS( R )
ELSE
X = -1.0
ENDIF
Y = ABS( RBEST )



4800
4900

if the new curve is better then store its
characteristics
IF ( X .GT. Y ) THEN

BSLOPE = SLOPE
BSGMAM = SIGMAM
BYINT = YINT
BSGMAB = SIGMAB
BTRUPT = INT(TRUPTS)
BDOMAN = INT(DOMAIN)
RBEST = R
XBEST = I
YBEST =
ENDIF
CONTINUE

CONTINUE

5000 CONTINUE

&
C

9001
9002
9003
9009
2010
9021
9022
9023

write the results to the screen and to the
output file

2

2

WRITE (6,9022)
WRITE (6,9022)

WRITE(6,9001) *

’

WRITE(6,9001) ‘X becomes ‘,MODE(XBEST),

'& Y becomes '

WRITE(6,9022) ’‘Slope

,MODE (YBEST)
BSLOEE

4
14
WRITE(6,9022) ’Stand. Deviation’, BSGMAM
WRITE(6,9022) ’'Y-Intercept ¢, BYINT

‘stand. Deviation’, BSGMAB
’Correllatn Coef.’, RBEST

WRITE(6,9021) ’‘Data Points ¢, BTRUPT
WRITE(6,2021) ‘Domain Rejection’, BDOMAN

WRITE(22,9001) ’X becomes ‘,MODE (XBEST),
‘& Y becomes ’/,MODE(YBEST)
WRITE(22,9022) ’‘Slope !, BSLOPE
WRITE(22,9022) ‘Stand. Deviation’, BSGMAM
WRITE(22,9022) ’‘Y-Intercept /', BYINT
WRITE(22,9022) ’‘Stand. Deviation’, BSGMAB
WRITE(22,9022) ‘Correllatn Coef.’, RBEST
WRITE(22,9021) ’Data Points ’, BTRUPT
WRITE(22,9021) ‘Domain Rejection’, BDOMAN
FORMAT (1X,A,A,A,A,A)
FORMAT (1X,A,T25,10I3)
FORMAT (A, A,A)

FORMAT( Al )

FORMAT( 1X,I3,A,F4.1,A,A)
FORMAT (1X,A, 3X, 60 (4X,I3,2X))
FORMAT (1X,A, 60 (2X,F7.3))
FORMAT (1X,I3,1X,A,A,A)

RETURN
END

213
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7.5.3. P m_EV.

PROGRAM EVA.FOR
hkkkhkhdhhhkhkkhhihhhkhhkhhkhhhhhhhhhhhhhhhkhkhhhkkdihhkhhhhhkhkkhhk

Purpose: to perform an extreme value analysis.
Minimum tolerances as a function of
designed life time and of risk are also
tabled.

C

C

C

C

C

C

C

C

c Definitions:

C EXTMOM - unmodified extreme value

c determined by moments method

c EXTREM - array of extreme values read in
C from the input file

C EXTREG ~ unmodified extreme value

C determined by regression method
C I - a counter

Cc INPUT - name of the input file

c LIFE - array of the designed life times
C used to calculate the minimum

Cc tolerances as a function of risk
C OUTPUT - name of the output file

C PROB - probability of ¢ in one

c unit of time

C PTS - array of extremes and reduced
C variates. Extremes have a second
C index of 2. Reduced variates have
C a second index of 1

C R - correlation coefficient

C RETRN - array of return periods of

C interest. These are used in a

C table

c RISK - array of risks. These are used
C in a table

c RP - array of return periods

C RV - reduced variate

C SDE - standard deviation of extremes
c SLOPE -~ slope of the best fit line of
C extremes as a function of the

C reduced variate

C VALUES - number of extreme values

C XMEAN - mean value of extremes

c YINT =~ y intercept of the best fit

c line of extremes as a function
C of the reduced variate

C

C

C

C

C

C

C

I/0 streams:
5 = keyboard
6 - screen
7 - input file
22 - output file
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Programmed by Mark Bourassa *
June 25, 1989 *
University of Alberta *
Edmonton, Alberta, Canada *
*
*
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REAL EXTREM(100), R, YINT, SLOPE, PTS(1600,2),
+ DUMMY, XMEAN, SDE, MYINT, MSLOPE, PROB,
+ RV, EXTREG, EXTMOM, LIFE(8), RISK(11)

INTEGER VALUES, I, CURVX, CURVY, RETRN(22)
CHARACTER INPUT*12, OUTPUT#*12

DATA RETRN /2,3,4,5,6,7,8,9,10,15,20,25,30,

+ 35,40,45,50,60,70,80,90,100/
DATA LIFE /2.0,5.0,10.0,15.0,20.0,25.0,50.0,
+ 100.0/

DATA RISK /0.75,0.50,0.40,0.30,0.25,0.20,

+ 0.15,0.10,0.05,0.02,0.01/

ask for and open a data file

WRITE(6,*) ‘ENTER THE NAME OF A DATA FILE’
READ(5,9001) INPUT

OPEN( UNIT=7, FILE=INPUT, STATUS=’UNKNOWN’ )

ask for and open an output file

WRITE(6,*) ’'ENTER THE NAME OF AN OUTPUT FILE’
READ(5,9001) OUTPUT

OPEN( UNIT=22, FILE=OUTPUT, STATUS=’UNKNOWN’ )

read the number of extreme values
READ(7,*) VALUES

XMEAN = 0.0
read each extreme value and determine the mean
DO 100 I=1, VALUES
READ(7,*) EXTREM(I)
EXTREM(I) = EXTREM(I) * 1.275
XMEAN = XMEAN + EXTREM(I)
CONTINUE
XMEAN = XMEAN / REAL( VALUES )

determine the standard deviation of the extremes
SDE = 0.0
DO 150 I = 1, VALUES

SDE = SDE + (EXTREM(I) - XMEAN) *#% 2
CONTINUE
SDE = SQRT( SDE / REAL( VALUES - 1 ) )
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sort the extreme values
CALL SORT( EXTREM, VALUES )

DO 200 I = 1, VALUES
DUMMY = REAL( I ) / REAL( VALUES + 1 )
DUMMY = -1.0 * LOG( DUMMY )

PTS(I,1) = -1.0 * LOG( DUMMY )

PTS(I,2) = EXTREM(I)

WRITE(22,*) PTS(I,1), PTS(I,2)
CONTINUE

perform a least squares analysis on the data
CURVX = 1

CURVY = 1

CALL CURFIT(VALUES, PTS,CURVX, CURVY,YINT, SLOPE,R)

write, to the screen and the output file, the
constants describing the relationship between
the extremes and the reduced variate. These
constants were determined through the regression
method

WRITE(6,9002) ’Regression estimates are: a =/,
2 SIOPE

WRITE(6,9002) ’ u=",
2 YINT

WRITE(22,9002) ’‘Regression estimates are: a = 7/,
2 SIOPE

WRITE (22,9002) u="’,
2 YINT

determine and write the constants found by the
method of moments

MSLOPE = SDE * SQRT( 6.0 ) / 3.1415927

MYINT = XMEAN - MSLOPE * 0.57721566

WRITE(6,9002) ’Moment estimates are: a = ’, MSLOPE

WRITE(6,9002) ’ u = ’, MYINT
WRITE(22,9002) ’‘Moment estimates are: a = ’, MSLOPE
WRITE(22,9002) u = ’, MYINT

make a table with return period, probability of
c, reduced variate, and extremes calculated
by both regression and moment techniques

WRITE(22,9001) ’ Return Reduced /,

+ ’ Extreme Values '’

WRITE(22,9001) ’ Period Probability Variate /,
+ ’ Reg. Mom. '/

WRITE(22,9001) ’ (years) ’,
+ ! ( ) ( )’

DO 1000 I = 1, 22
PROB = 1.0 / REAL( RETRN(I) )
RV = -1.0 * LOG( -1.0 * LOG( 1.0 - PROB ) )
EXTREG = SLOPE * RV + YINT
EXTMOM = MSLOPE * RV + MYINT

216
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WRITE(22,9004) RETRN(I), PROB, RV, EXTREG,
+  EXTMOM
1000 CONTINUE

C make a table of minimum tolerances as a function
(o] of risk and the length of time the structure is
C to remain useable.

WRITE(22,9001) * Designed Lifetime’

WRITE(22,9005) ’Risk’, (INT( LIFE(J) ),J=1,8)
DO 1200 I = 1, 11
WRITE(22,9006) RISK(I), ( MYINT - MSLOPE *
2 LOG( -1.0 * LOG( 1.0 - RISK(I) / LIFE(J) ) ),
3 J=1, 8)
1200 CONTINUE

9001 FORMAT( A,A )
9002 FORMAT( 1X,A,F8.4,3X )
9004 FORMAT( 3X,I3,6X,F5.3,5X,F6.3,5X,F7.3,3X,F7.3 )
9005 FORMAT( 1X,A,3X,I3,7(5X,I3) )
9006 FORMAT( 1X,F4.2,11(2X,F6.2) )
C end of program EVA
END

7.5.3.3 Program GAUSS

FUNCTION GAUSS hkkkhkhkhkhhhkhkhkkhkhhkhkhhkhhhrhkhhhhkhkhhhhrhrk

Purpose: to randomly determine a number of
standard deviations from a mean, based
on the probability distribution of a
normal distribution. In other words to
determine the number of ’z’ values from
the mean.

Definitions:

DELTA - the fraction of a standard
deviation between adjacent
probabilities on the lookup table

DSEED -~ a seed for the random number
generator

GAUSSI - a lookup table of probabilities
for a normal distribution

POINT1 - a pointer for the lookup table

POINT2 - a pointer for the lookup table

POINT3 - a pointer for the lookup table
equal to the average of POINT1 and
POINT2 rounded down

PROBAB ~ the probability corresponding to
the number standard deviations.
This probability is the cumulative
probability (for a one sided
normal distribution) of a random
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c number being within the to be *
Cc determined number of standard *
o] deviations from the mean. *
c RAND - a function generating random *
C numbers *
C RANDOM - a random number *
C A = the number of standard *
Cc deviations from the mean *
C *
C *
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DOUBLE PRECISION FUNCTION GAUSS( DSEED )
DOUBLE PRECISION DSEED, RAND, PROBAB
REAL DELTA, GAUSSI(305), RANDOM, Z
INTEGER POINT1, POINT2, POINT3

DATA GAUSSI/0.0000,0.0080,0.0160,0.0239,0.0319,
0.0399,0.0478,0.0558,0.0638,0.0717,0.0797,0.0876,
0.0955,0.1034,0.1113,0.1192,0.1271,0.1350,0.1428,
0.1507,0.1585,0.1663,0.1741,0.1819,0.1897,0.1974,
0.2051,0.2128,0.2205,0.2282,0.2358,0.2434,0.2510,
0.2586,0.2661,0.2737,0.2812,0.2886,0.2961,0.3035,
0.3108,0.3182,0.3255,0.3328,0.3401,0.3473,0.3545,
0.3616,0.3688,0.3759,0.3829,0.3899,0.3969,0.4039,
0.4108,0.4177,0.4245,0.4313,0.4381,0.4448,0.4515,
0.4581,0.4647,0.4713,0.4778,0.4843,0.4907,0.4971,
0.5035,0.5098,0.5161,0.5223,0.5285,0.5346,0.5407,
0.5467,0.5527,0.5587,0.5646,0.5705,0.5763,0.5821,
0.5878,0.5935,0.5991,0.6047,0.6102,0.6157,0.6211,
0.6256,0.6319,0.6372,0.6424,0.6476,0.6528,0.6579,
0.6629,0.6680,0.6729,0.6778,0.6827,0.6875,0.6923,
0.6970,0.7017,0.7063,0.7109,0.7154,0.7199,0.7243,
0.7287,0.7330,0.7373,0.7415,0.7457,0.7499,0.7540,
0.7583,0.7620,0.7660,0.7699,0.7737,0.7775,0.7813,
0.7850,0.7887,0.7923,0.7959,0.7995,0.8029,0.8064,
0.8098,0.8132,0.8165,0.8198,0.8230,0.8265,0.8293,
0.8324,0.8355,0.8385,0.8415,0.8444,0.8473,0.8501,
0.8529,0.8557,0.8584,0.8611,0.8638,0.8664,0.8690,
0.8715,0.8740,0.8764,0.8789,0.8812,0.8836,0.8859,
0.8882,0.8904,0.8926,0.8948,0.8969,0.8990,0.9011,
0.9031,0.9051,0.9070,0.9090,0.9109,0.9127,0.9146,
0.9164,0.9181,0.9199,0.9216,0.9233,0.9249,0.9265,
0.9281,0.9297,0.9312,0.9328,0.9342,0.9357,0.9371,
0.9385,0.9399,0.9412,0.9426,0.9439,0.9451,0.9464,
0.9476,0.9488,0.9500,0.9512,0.9512,0.9523,0.9534,
0.9545,0.9556,0.9576,0.9586,0.9596,0.9606,0.9615,
0.9625,0.9634,0.9643,0.9651,0.9660,0.9668,0.9676,
0.9684,0.9692,0.9700,0.9707,0.9715,0.9722,0.9729,
0.9736,0.9743,0.9749,0.9756,0.9762,0.9768,0.9774,
0.9780,0.9786,0.9791,0.9797,0.9802,0.9807,0.9812,
0.9817,0.9822,0.9827,0.9832,0.9836,0.9840,0.9845,

+++++F+++r+r++rF A+ +
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0.9849,0.9853,0.9857,0.9861,0.9865,0.9869,0.9872,
0.9876,0.9879,0.9883,0.9886,0.9889,0.9892,0.9895,
0.9898,0.9901,0.9904,0.9907,0.9909,0.9912,0.9915,
0.9917,0.9920,0.9922,0.9924,0.9926,0.9929,0.9931,
0.9933,0.9935,0.9937,0.9939,0.9940,0.9942,0.9944,
0.9946,0.9947,0.9949,0.9950,0.9952,0.9953,0.9955,
0.9956,0.9958,0.9959,0.9960,0.9961,0.9963,0.9964,
0.9965,0.9966,0.9967,0.9968,0.9969,0.9970,0.9971,
0.9972,0.9973,0.9995,0.99994,0.999993,0.9999994/

+++++++++

Randomly determine the number of standard deviations
from the mean. Due to the complexity of the integral
and the slow speed of the program a table is used.

PROBAB = RAND (DSEED)

POINT1 = 0

POINT2 = 305

POINT3 = INT( REAL(POINT1 + POINT2) / 2.0 )

search by halves until the pointers adjacent to the
probability are found
IF ( PROBAB .LT. GAUSSI(POINT3) ) THEN

POINT2 = POINT3
if the probability is greater than the greatest on
the lookup table then the number of standard
deviations for the maximum tabled value is used
ELSEIF ( PROBAB .GT. GAUSSI(POINT3) ) THEN

POINT1 = POINT3
if the probability is equal to a value listed on
the lookup table then both pointers are set at this
value

ELSE
POINT1 = POINT3
POINT2 = POINT3
ENDIF

unless the pointers indicate adjacent values on the
table keep searching
IF ( POINT1 .LT. ( POINT2 - 1 ) ) THEN
GOTO 200
ELSE
IF ( POINT2 .LE. 301 ) THEN
DELTA = 0.01
ELSE
DELTA = 0.5
ENDIF
extrapolate (linearly) between values on the table
IF ( POINT1 .NE. POINT2 ) THEN
Z = REAL( POINT3 - 1 ) / 1.0D2 + DELTA *
2 ( GAUSSI(POINT2) - PROBAB ) /
3 ( GAUSSI(POINT2) - GAUSSI(POINT1) )
if DELTA is 0.5 make the corrections
IF ( POINT2 .GT. 302 ) 2 = Z +
2 REAL( POINT2 - 302 ) * 0.49
ELSE
Z = REAL( POINT3 - 1 ) / 1.0D2
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c if DELTA is 0.5 make the corrections
IF ( POINT2 .GT. 301 ) 2 = 2 +
2 REAL( POINT2 - 301 ) * 0.49
ENDIF
ENDIF
c randomly determine if the number of standard
c deviations 1is above or below the mean

RANDOM = RAND (DSEED)
IF ( RANDOM .GT. 0.5 ) Z = -2
GAUSS = DBLE( Z )

RETURN
C end of subroutine GAUSS
END

7.5.3.4 Program KRON

FUNCTION KRON H*hhkhkkhhhhkkhhkhRkhrhkhkkhkhhhkhkhkhrhkhhkkkhkk

Purpose: to perform a delta function:
if a random number is less than or equal
ALPHA then KRON is set equal to zero;
otherwise it is set equal to one.

*
*
*
*
%*
*
Definitions: *
ALPHA -~ the fractional chance of KRON *
being zero. *

DSEED - the input for the random number *
generator. *

RANDOM - the number generated by RAND *
RAND -~ function for the generation of *
uniform random numbers *

%*

*

%*

*

%*

%*

*

Programmed by Mark Bourassa
University of Alberta
Edmonton, Alberta, Canada

5 April 1989
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DOUBLE PRECISION FUNCTION KRON( ALPHA, DSEED )
DOUBLE PRECISION DSEED, RANDOM, RAND
REAL ALPHA

RANDOM = RAND(DSEED)

IF ( RANDOM .LE. ALPHA ) THEN
KRON = 0.0DO

ELSE
KRON = 1.0DO

ENDIF
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SUBROUTINE SORT

RETURN
END

7.5.3.5 Program SORT

Purpose: to perform a bubble sort.

Definitions:
ENDLST -~ the maximum number of items in
the list that need to be sorted
I - a counter
DATA - an array of the items being

sorted. The number of items is 100

SORTED - a logical that is false when
the data is unsorted

TEMP ~ a temporary storage location
used when items on the list are
being exchanged

VALUES - the number of items in the 1list

Programmed by Mark Bourassa June 5, 1989

Adapted from a handout from a Computer Science

351 course.
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SUBROUTINE SORT( DATA, VALUES )

REAL DATA(100), TEMP

pNe

1co

an

(PN e’

INTEGER VALUES, ENDLST, I
LOGICAL SORTED

set SORTED to be false, and the end of the list to
be 100.
SORTED
ENDLST

.FALSE.
VALUES

while the list is not sorted continue sorting
IF ( ( .NOT. SORTED ) .AND. ( ENDLST .GT. 1 ) ) THEN
assume the list is sorted unless it is found
otherwise
SORTED = .TRUE.
DO 200 I=1, ENDLST - 1
if the order of adjacent data is incorrect then
switch them and set SORTED as false
IF ( DATA(I) .GT. DATA(I+1l) ) THEN
TEMP = DATA(I)
DATA(I) = DATA(I+1)
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200

DATA(I+1) = TEMP
SORTED = .FALSE.
ENDIF
CONTINUE
reduce the number of items in the list that need
to be sorted
ENDLST = ENDLST - 1
GOTO 100
ENDIF

RETURN
end of subroutine SORT
END
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