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Abstract

Monitoring industrial processes is essential to maintain efficient and safe

operation. An alarm system is an imperative component of industrial process

monitoring, as it alerts operators to abnormal conditions. Alarms indicate

when the process is disrupted, which allows operators to react accordingly.

A modern industrial plant consisting of many interconnections is susceptible

to fault propagation via information and material flow pathways. During

fault propagation, a large number of alarms are triggered in control rooms,

which results in a phenomenon known as alarm flood. As a result, operators

are overwhelmed with a high volume of alarms and may miss out on safety

and efficiency measures. It is therefore crucial to deal with the problem of

alarm floods, particularly for online applications. The development of efficient

online alarm flood analysis can provide operator decision support for root

cause analysis of abnormal events and prevent the occurrence of destructive

effects. The large amount of data generated by modern computerized processes

has recently led to considerable interest in data-based methods. Developing

data-driven methods in the field of machine learning can reduce reliance on

expert knowledge and human effort in online alarm monitoring. Therefore,

this thesis focuses on the development of machine learning-based methods for

alarm management and alarm flood monitoring using alarm data.

Our research primarily focuses on the investigation of methods for trans-

forming alarm floods from time stamped alarm sequences into inputs suitable
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for machine learning algorithms. As a result of making alarm floods compati-

ble with machine learning, effective online operator assistance mechanisms can

be implemented. We begin by developing a modified version of an alarm flood

vector representation based on exponentially attenuated component analysis,

which utilizes the time information of unlabeled historical alarm floods. To

ensure safe and efficient operation, it is beneficial to classify ongoing alarm

floods as early as possible. It can provide online decision support for plant

operators to take timely action, without waiting for the end of an alarm flood.

We propose an approach employing the Gaussian mixture model to address

the early classification problem with unlabeled historical data. It includes two

phases: offline clustering and online classification, where the clustering step is

automated in terms of choosing the optimal number of clusters by applying

an efficient cluster validity index.

In a plant operation, there can be alarm flood scenarios that correspond

to previously unseen abnormal situations. Therefore, early online assistance

for plant operators in both previously known and new situations is of great

importance. To address this issue, we propose an operator assistance system

that relies on similarity analysis of alarm floods and alarm scoring. First,

inspired by natural language processing, a vector representation called the

Modified Bag-of-Words is devised to turn alarm floods into feature vectors.

Modified Bag-of-Words vectors are then used in an offline clustering algorithm

for grouping similar alarm floods using efficient similarity measurement. Sub-

sequently, we extend the study to the case of online alarm flood analysis, where

an open set early classification method based on systematic similarity thresh-

old estimation is proposed to handle the new alarm flood scenarios. These

studies are based on an alarm weighting strategy reflecting the key features

of alarm floods. It provides alarm ranking to assist operators in identify-
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ing alarms relevant to specific abnormal situations in both offline and online

applications.

Order ambiguity of alarms in the alarm sequences associated with alarm

floods is an important problem that has not been extensively investigated.

Finally, we developed a probabilistic framework capable of incorporating the

triggered alarm tags and their timestamps, as well as tolerating the effect of

irrelevant alarms and alarm order ambiguities. In this study, an ML-based

alarm flood analysis is established, where a convolutional neural network is

trained to predict upcoming fault scenarios by observing online alarm floods.

The proposed methods are evaluated through case studies using alarm

datasets from the well-established Tennessee Eastman benchmark, a Vinyl

Acetate Monomer process and an industrial facility. Comparative studies

with state-of-the-art alarm flood analysis methods are also provided to show

the effectiveness of the proposed approaches. In light of these findings, online

operator assistance mechanisms can be implemented to provide early decision

support and ensure safe and efficient plant operation.
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Chapter 1

Introduction ∗

This chapter introduces the research background on alarm flood monitor-

ing and root cause analysis, and provides a mathematical overview of three

data-driven strategies that have been commonly used to analyze the root

causes of abnormal conditions. Subsequently, a literature survey is presented

to summarize recent developments in root cause analysis and alarm flood man-

agement in abnormal situations. Thereafter, the contributions of the thesis

are highlighted, and a thesis outline is provided.

1.1 Research Background

Safety and reliability have become increasingly important in modern in-

dustrial processes. There have been numerous methods proposed in recent

years that cover process monitoring [70, 115], fault diagnosis [49, 58], and re-

maining useful life prediction [114]. These methods were designed to improve

the health management of industrial equipment and the smooth operation of

the system. In all aspects of system operation, indicating whether the system

is functioning properly or not is critical. These functions are often integrated

into an alarm system, which is a crucial asset in industrial process monitoring.

∗An overview of alarm root cause analysis methods presented in this chapter has been
published as: Haniyeh Seyed Alinezhad, Mohammad Hossein Roohi, and Tongwen Chen,
“A review of alarm root cause analysis in process industries: Common methods, recent
research status and challenges,”Chemical Engineering Research and Design, vol. 188, pp.
846–860, 2022.
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Alarm systems serve as warning mechanisms to notify plant operators about

possible failure or performance degradation so that they can take the neces-

sary safety measures. Alarms are configured on process variables to indicate

abnormal conditions, when measurements deviate from predetermined normal

operating ranges. In modern process industries, process monitoring systems

such as distributed control systems (DCSs) and supervisory control and data

acquisition (SCADA) systems are used to control processes. Integrating these

computerized monitoring systems into industrial facilities has led to highly

automated operations. Process automation has facilitated alarm configura-

tion in alarm systems and has been beneficial in improving plant efficiency

and safety compared with high-cost hardware-based monitoring systems [46].

However, owing to the enormous amount of process data in large-scale plants,

easier alarm configuration in computerized alarm systems increases the num-

ber of alarm variables considerably. In addition, complex physical connections

in large-scale industrial plants may cause the propagation of faults and abnor-

malities leading to sequences of alarm annunciations. Consequently, plant op-

erators are overloaded with an excessive number of triggered alarms in a short

period of time preventing them from taking timely safety precautions [102].

Therefore, investigating methods for supporting on-site operators in case of

alarm overloading has recently become an important topic in the area of alarm

management.

1.2 Alarm Floods

Plants are usually composed of numerous interconnected devices and mul-

tiple control loops. In case of failure, complex connections in modern industrial

processes lead to the propagation of faults along the material and information

flow pathways. This is the main cause of a situation called alarm flood, which

is a special case of the alarm overloading phenomenon [102]. It refers to a

situation with a large number of consecutive alarm annunciations in a short

period of time, where operator action is needed for the sake of efficiency and
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safety. Alarm floods could distract plant operators from the root cause of an

abnormal situation and may lead to serious safety issues. Hence, developing

methods to assist operators in case of alarm floods has been of significant

importance for safe plant operation.

1.2.1 Root Cause Analysis

The development of methods for root cause analysis of abnormal conditions

can provide plant operators with valuable support when they are overloaded

with alarms. The existing methodologies in the literature can generally be

classified into two types, namely, knowledge-based methods and data-based

methods. In knowledge-based methods, a root alarm is identified mainly based

on qualitative process information and expert knowledge. These methods try

to find the fault propagation paths among different units of the process, which

can be used for the localization of the root cause in certain abnormal situa-

tions and, thus, identifying the most plausible root cause. Efficient quali-

tative models such as multilevel flow models (MFMs) [56], signed directed

graphs (SDGs) [98] and adjacency matrices [51] were adopted to provide a

representation for process connectivity. An MFM provides a straightforward

graphical model to describe the plant objectives, functions, and causal rela-

tions among them. Process knowledge including piping and instrumentation

diagrams (P&IDs) and differential equations are utilized to model SDGs. An

SDG is used to represent causal relations in processes as a graphical model,

which shows the information flow as well as the cause-effect direction. Another

technique to model plant connectivity and causality is by using the concept of

an adjacency matrix, which is a common representation for directed graphs.

Kirchhübel et al. introduced a method to represent the knowledge of an in-

dustrial process based on modeling the mass and energy flows to be used

for causal discovery in case of failures [56]. In their method they identified

propagation rules of abnormalities and built a failure tree, which could show

the root cause and possible direction for fault propagation. The concept of
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adjacency matrices was used in [51] for root cause diagnosis by converting

the process schematic to a directed graph. Wan et al. proposed a method

that first identified a list of potential root nodes using qualitative reasoning

on SDG; Next, quantitative statistical tests were applied to those nodes and

finally a cause-effect graph was obtained [98]. Knowledge-based methods ex-

ploit the process model to capture the cause-and-effect relationships in the

process, which are used for root cause analysis. Although process knowl-

edge is a reliable source for alarm root cause identification, obtaining accurate

process information depends on expert knowledge that is not always easily

available. Obtaining process knowledge for the large-scale complex processes

is a time-consuming and difficult task. Thus, this class of methods is more

appropriate for analyzing alarm root causes in processes that have relatively

low complexity.

Data-based root cause analysis methods have recently received consider-

able attention due to large amount of data in modern computerized processes.

This class of methods investigates measured process variables or alarm data

to uncover the root cause of abnormal conditions and reduce dependency on

expert knowledge and human effort for process monitoring. Data-based root

cause analysis methods can be viewed as different categories, namely, times se-

ries causality analysis, probabilistic graphical models (PGMs), machine learn-

ing and other data-driven strategies. In the area of times series causality anal-

ysis, Granger causality (GC) and transfer entropy (TE) are the two widely

used methods for alarm root cause analysis. GC is a concept originated from

econometrics, and investigates the causal associations between time series [37].

TE is an information-theoretic data-driven approach for testing the causality

between two variables, which is defined based on the information entropy pro-

posed by Shannon [87]. The most popular types of PGMs utilized in root

cause analysis area are Bayesian networks (BNs) that are directed acyclic

PGMs [74]. There also exist approaches exploiting different machine learning

(ML) methods and other data-driven strategies such as correlation analysis,
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nonlinearity indices, and nearest neighbors. There exist methods that uti-

lize process knowledge in combination with process data as a complimentary

source for root cause analysis. Knowledge-based causal maps combined with

multivariate statistics were used by Chiang et al. for analyzing the causal de-

pendency between measured process variables [23]. In [94], a cause-and-effect

matrix derived from process measurements was combined with qualitative in-

formation of the process. Schleburg et al. integrated the process knowledge

and connectivity information with alarm data [82]. Although process knowl-

edge is a reliable source for alarm root cause identification, obtaining accurate

process information for large-scale complex processes is a time consuming and

difficult task and depends on expert knowledge that is not always easily avail-

able. To overcome this limitation and thereby reduce the reliance on human

effort, data-based root cause analysis methods have been established for pro-

cess monitoring. The following provides a mathematical background to three

data-driven strategies that have been commonly used for root cause analysis,

namely GC, TE, and BN.

Granger Causality

The underlying principle of Granger causality (GC) is based on predictabil-

ity improvement. Consider the time series X1 and X2. X1 is a Granger cause

of X2 if future values of X2 can be predicted better when its past values are

used combined with the past values of X1 (in comparison with the case that

the prediction is solely based on X2). The Granger’s definition of causality is

based on temporal precedence, which assumes that the cause occurs before its

effect. This could be similar to a situation in process industries, where a fault

appears in a process variable and then propagates to other variables with time

lags. Process variables can reflect the characteristics of the industrial process.

Thus, causality analysis of process variables, which are in the form of time

series data, could provide useful information for diagnosing the root cause

variable corresponding to the original fault and its propagation path. Several

data-driven methods using GC have been proposed for root cause analysis
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based on the causality inference between process variables.

Conventional GC Test The most common mathematical interpretation of

the GC is based on bivariate and univariate auto-regressive (AR) models for

time series. Consider two stationary time seriesX1 = {x1(1), x1(2), · · · , x1(n)}

and X2 = {x2(1), x2(2), · · · , x2(n)}. They can be expressed by the following

bivariate AR models (also known as full models):

x1(t) =
L∑

p=1

α11,px1(t− p) +
L∑

p=1

α12,px2(t− p) + ε12(t) (1.1)

x2(t) =
L∑

p=1

α21,px1(t− p) +
L∑

p=1

α22,px2(t− p) + ε21(t) (1.2)

The corresponding univariate AR models (or reduced models) are defined as

follows:

x1(t) =
L∑

p=1

β1,px1(t− p) + ε1(t) (1.3)

x2(t) =
L∑

p=1

β2,px2(t− p) + ε2(t) (1.4)

where, αij,p and βi,p are the coefficients of the AR models, εij shows the predic-

tion errors or residuals of the full AR model, and εi represents the residuals of

the univariate AR model, which is used to predict the current value of signal

Xi considering only past values of itself. The order of AR model, denoted as

L, is the time lag length, which defines the number of historical values from

time series used for prediction.

The variability of model error reflects prediction accuracy, which can be

utilized to quantify the evaluation of Granger causality relationship between

time series as follows:

FXj→Xi
= ln

var(εi)

var(εij)
(1.5)

Comparing the variance of residuals, if var(εij) ≤ var(εi), there is improve-

ment in predicting Xi including the past information of Xj, where i = 1, 2,

j = 1, 2 and i ̸= j. Accordingly, when FXj→Xi
≥ 0, Xj is the Granger cause
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of Xi. Otherwise, there is no Granger causality between time series. Note

that, FXj→Xi
can never be negative. To test whether Xj Granger-causes Xi,

the null hypothesis, which aims at discarding the possibility of adding predic-

tive power by Xj, must be rejected. The statistical significance of this causal

influence can be tested using the following F-statistic:

Fstatistic =
(RSS0 −RSS1)/L

RSS1/(N − 2L− 1)
∼ F (L,MN − 2L− 1) (1.6)

where RSS0 and RSS1 are the residual sum of squares in the reduced model

and full model respectively, and N denotes the total number of observations

used to build the model. If the null hypothesis is rejected with a significance

level α for the distribution F , then Xj is said to be the Granger cause of Xi.

Multivariate GC In process industries, the two time series used in GC-

based formulation are two candidate process variables. Process variables

are mostly correlated due to multisource correlations and interconnections

in large-scale processes. This could make the conventional pairwise GC ineffi-

cient for an accurate root cause analysis. The conditional GC or multivariate

Granger causality (MGC), which is a generalization of the bivariate GC is

used to address this problem [16]. For root cause analysis using multivariate

GC, multiple candidate process variables are simultaneously integrated into

the AR model such that the full AR model is defined as follows:

x1(t) =
L∑

p=1

α11,px1(t− p) +
L∑

p=1

α12,px2(t− p) +
J∑

j=3

L∑
p=1

α1j,pxj(t− p) + ε12(t)

(1.7)

x2(t) =
L∑

p=1

α21,px1(t− p) +
L∑

p=1

α22,px2(t− p) +
J∑

j=3

L∑
p=1

α2j,pxj(t− p) + ε21(t)

(1.8)

Also, the corresponding reduced AR models are defined as follows:

x1(t) =
L∑

p=1

β1,px1(t− p) +
J∑

j=3

L∑
p=1

β1j,pxj(t− p) + ε1(t) (1.9)
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x2(t) =
L∑

p=1

β2,px2(t− p) +
J∑

j=3

L∑
p=1

β2j,pxj(t− p) + ε2(t) (1.10)

Here, J represents the total number of variables under consideration. For

root cause analysis using the multivariate GC, direct GC relationships for all

variable pairs are determined by building the above AR models and repeating

the GC test proposed in (1.6).

Transfer Entropy

By quantifying variable uncertainty using the Shannon entropy, the con-

cept of transfer entropy (TE) was proposed by Schreiber to measure the in-

formation exchange between two variables [83]. This work provides the in-

formation flow by measuring the uncertainty reduction of one variable under

the influence of another variable. Compared with GC, the major advantage

of TE is that it is suitable for causality inference for both linear and nonlinear

relationships. Thus, TE can be considered as a useful method for causality

analysis in industrial processes using both process variables and alarm vari-

ables.

Definition of TE Measuring information flow in a process can show how the

variation in process variables transfers from one variable to another. There-

fore, application of TE using process variables has attracted the attention of

researchers and was successfully used by Bauer et al. to address the problem

of causality analysis in chemical processes [12].

Let X1 and X2 denote two stationary time series obtained by sampling

two continuous process variables x1(t) and x2(t) at time instances t with t =

1, 2, 3, n. The transfer entropy from time series X1 to X2 is defined as

T (X1|X2) =
∑

p
(
x1(t+ h), χk

1(t), χ
l
2(t)
)

.log2
p
(
x1(t+ h)|χk

1(t), χ
l
2(t)
)

p
(
x1(t+ h)| χk

1(t)
)

= H(x1(t+ h)|χk
1(t)) −H

(
x1(t+ h)|χk

1(t), χ
l
2(t)
) (1.11)
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where p (·) and p ( · | ·) denote the joint and conditional probability density

functions (PDFs), respectively; h is called the prediction horizon, and time

instant t + h means h steps in the future from t; χk
1(t) = {x1(t), x1(t −

τ), · · · , x1(t − (k − 1)τ)} and χl
2(t) = {x2(t), x2(t − τ), · · · , x2(t − (l − 1)τ)}

are referred to as embedding vectors including the past values of X1 and X2,

respectively; the integer τ is the sampling period; the integers k and l are

the dimensions of the historical vectors χk
1(t) and χl

2(t), respectively; the sum

symbol represents k + l + 1 sums over all amplitude bins of the probability

distribution functions; H (·) denotes the Shannon entropy.

The mathematical definition proposed in (1.11) is based on conditional

probabilities that contain causal information between two variables. Accord-

ing to this definition, if there exists causality from X1 to X2, then in the

argument of the logarithm, the conditional probability in the numerator is

greater than that of the denominator and TE measure is greater than zero;

otherwise, the value of T (X1|X2) is zero. From Shannon entropy’s point of

view, TE represents the transferred information from X1 to X2 by measuring

the reduction of the uncertainty when predicting a future observation of vari-

able X1 with the help of the historical values of both variables X1 and X2,

instead of using only the past values of X1 (Figure 1.1). TE is an asymmetric

method for distinguishing the causality between variables. Therefore, in [12]

a causality measure for determining the direction and quantity of information

transfer was defined as tX1→X2 = T (X1|X2)− T (X2|X1). According to this

definition, positive values of tX1→X2 represent that X1 is the cause of X2, neg-

ative values represent the reverse case and zero means no causality. It can be

verified that the basic concept of TE is similar to that of GC. It was shown

by Barnett et al. that GC and TE are equivalent for Gaussian distributed

variables with linear relationships [10].

Estimation of TE For calculating the TE using (1.11), conditional PDFs

are replaced by joint PDFs based on the Bayesian principle. Then, the value

of TE is calculated by estimating the PDFs from time series X1 and X2 via the
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H
(
x1(t + h)|χk

1 (t), χl
2(t)

)Uncertainty in the future of x1 given
the past values of x1 and x2

T (X1|X2)

Transferred information
from x2 to x1

0 H(x1(t + h)|χk
1 (t))

Uncertainty in the future of x1 given the past values of itself

Figure 1.1: Interpretation of TE using the concept of Shannon entropy.

histogram or kernel method [90], which are nonparametric approaches utilized

for fitting distributions. The kernel method has been widely used for PDF

estimation in TE estimation due to its more robust and precise estimation

compared with the histogram method. Moreover, because of the high order

of PDFs, an extremely large number of samples is required in the histogram

method that makes the kernel method [12,27] advantageous.

In the kernel method, a univariate PDF is estimated by the following kernel

estimator:

p̂(x) =
1

n

n∑
t=1

K (x− x(t)) (1.12)

The kernel function K is centered at every sample point and summed to

estimate the PDF. The Gaussian kernel is mostly used in TE methods, which

is defined as:

K (x− x(t)) =
1√
2πθ

exp

(
−(x− x(t))2

2θ2

)
(1.13)

Here θ is the estimator width defined as θ = 1.06σN−1/5, where σ is the

standard deviation of data samples [12]. θ is chosen such that the mean

integrated squared error of the PDF estimation is minimized. A multivariate

J-dimensional joint PDF can be estimated in a similar manner by using the

following kernel estimator:

p̂(x1, x2, · · · , xJ) =
1

n

n∑
t=1

K (x1 − x1(t))K (x2 − x2(t)) · · ·K (xJ − xJ(t))

(1.14)
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In this case, the estimator width parameter for each univariate kernel function

is defined as θi = 1.06σiN
−1/(4+J), where i = 1, 2, · · · , J and σi is the standard

deviation of data samples of the ith variable [12,90].

There are four adjustable parameters, namely k, l, h and τ , that could

greatly affect the estimation results of the TE and need to be determined

before calculating TE. Parameters k and l should be carefully chosen as the

computational complexity and the number of samples required for PDF es-

timation are highly dependent on the values of the embedding dimensions.

Therefore, embedding dimensions should be selected as small as possible. On

the other hand, Schreiber suggested selecting a greater value of l compared

to k to focus more on the effect of X2 on X1 rather than the effect of X1 on

X1 [83]. Following this suggestion, efficient values were determined for these

parameters in several studies like [12]. A more systematic method for deter-

mining embedding dimensions was also proposed in [27,112], which was based

on the change rate of the conditional Shannon entropy. As stated in [12], the

optimal values of h and τ can be determined based on the prior knowledge

of the process dynamics. As the TE measure requires robustness for parame-

ter changes [12], small values for prediction horizon h and sampling period τ

could lead to reliable results if the process dynamics are unknown. Duan et

al. recommended to choose h and τ as a rule of thumb [27] and a modified

mutual information (MI) was proposed in [92] to determine the values for the

prediction horizon and sampling period.

Significance Test The TE measure shown in equation (1.11) is zero if there

is no causal relationship between the corresponding process variables. How-

ever, in real industrial processes, the TE measure for variables without causal-

ity may not be exactly zero owing to noises or disturbances. Thus, a threshold

should be obtained for causality significance level to distinguish the true causal

relationships from the false results. The Monte Carlo method was suggested

in a majority of studies to identify such a threshold. This method provides a

significance test by constructing surrogate data with some desired property.

11



Surrogate data can be constructed by randomly disorganizing original time se-

ries or by iterative amplitude adjusted Fourier transform (iAAFT) [27]. The

significance test is defined based on rejecting the null hypothesis, which means

there is no significant causality between time series. To this end, surrogate

time series are generated from Ns simulations such that the causality in new

data is destroyed, and the causality measure for each pair of new time series

is calculated as

λi = tiXNew
1 →XNew

2
(1.15)

Then the threshold, above which tX1→X2 is identified as a valid causality re-

lationship, is defined based on the mean value and standard deviation of λi’s

with i = 1, 2, · · · , Ns. Denoting the mean and the standard deviation as µλ

and σλ respectively, the significance level is defined as sX1→X2 = µλ + γ σλ,

where γ = 3 and γ = 6 are two values that have been mostly used in the

literature. When the estimated causality measure for X1 and X2 exceeds this

threshold, the null hypothesis is rejected, which means there is significant

causality between time series.

Bayesian Networks

Bayesian networks (BNs) are directed acyclic probabilistic graphical mod-

els consisting of nodes and arcs. In root alarm identification using BNs, nodes

are corresponding to the alarm tags A = {A1, A2, · · · , AN} and their causal

relationships are shown by arcs. Considering a Bayesian network G, the joint

probability of random variables can be simplified to

p(A|G) =
∏
Av∈A

p(Av|Apav), (1.16)

where Apav denote the parent set of Av, which are the nodes with an edge to-

ward Av, and p(Av|Apav) represent the conditional probability distributions.

By learning an underlying BN from observational data (as opposed to inter-

ventional data) one can narrow down the possible causal relationships among

alarm tags to some Markov equivalence class. Before formally defining the
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Markov equivalence class, let us illustrate it with an elementary example. As-

suming that analysis of data regarding two alarm tags A1 and A2 indicates that

they are correlated. This investigation encodes both A1 → A2 and A2 → A1.

This implies that these two structures are not distinguishable using only the

observational data. More generally, two graphs are Markov equivalence if they

possess the same set of links (arcs without direction) and v-structures [97].

For three nodes A1, A2, A3 belonging to graph G, a v-structure is defined as

A1 → A2 ← A3. As a trivial example, A1 → A2 and A1 ← A2 are Markov

equivalent as they are free of v-structures and in both graphs, A1 and A2 are

directly connected.

Methods introduced in the literature for learning BNs from data can be cat-

egorized as constraint-based, optimization-based (also known as score-based)

and hybrid approaches. Constraint-based methods determine dependencies

among nodes by indicating some arc directions regarding v-structures. More

details on this approach can be found in [84].

Constraint-Based These methods generally consist of two main steps:

• Identification of links between each pair of variables in the network by

performing conditional independence tests.

• Obtaining directions of some of the arcs based on a set of rules [24].

It is important to note that the second step does not necessarily indicate the

direction of all arcs, which results in a set of graphs that are a subset of a

Markov equivalence class. Further details on constraint-based approaches can

be found in [91].

Optimization-Based In these methods, a score is defined, which represents

goodness of fit for each BN structure, and the one with the highest score is

selected. The score is defined as p(G|A). Using the Bayes’ rule, multiplying

this score to p(A)
p(G) yields p(A|G). We assume no expert knowledge is available
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on structure G. So to maximize the score, it is equivalent to maximize p(A|G),

which is calculated as

p(A|G) =
∫

p(A|G,Θ)p(Θ|G)dΘ (1.17)

where Θ indicate parameters of the Bayesian network.

Similar to the constraint-based methods, this method can discover up to

some Markov equivalence class of structures that have the same score. Details

of this method can be found in [25].

Hybrid Methods Hybrid algorithms inherit from both of the above ap-

proaches. They use the conditional independence test of constraint-based al-

gorithms to narrow down candidate DAGs. Then, an optimization-based algo-

rithm is applied to those DAGs to identify the optimal one. These methods are

commonly assumed to be faster and/or more accurate than the optimization-

based or constraint-based algorithm. However, a comparison performed by [85]

reveals that the swiftness and accuracy of structure learning are related more

to the selected statistical criteria than the algorithms themselves.

1.2.2 Data-Based Alarm Flood Analysis

The majority of existing data-driven approaches that address the problem

of root cause analysis and operator assistance are based on process data. The

use of alarm data is an alternative to using process data in alarm flood moni-

toring and root cause analysis. An alarm is raised only in the event of a fault

occurrence and contains useful information regarding abnormal conditions.

However, process data is generated by regularly monitoring and measuring

process variables during process operation. Therefore, the volume of alarm

data is generally lower than that of process data, which leads to lower com-

putational complexity in data-based methods which is of great importance

for online applications. The data collected about historical alarms can pro-

vide valuable insight into abnormal situations. In general, alarm floods re-

sulting from the same abnormality consist of common alarms that are raised
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chronologically in a similar order. Comparing similarities among alarm flood

data has been shown to be a useful means of handling alarm flood situa-

tions [2,33]. It has been shown that pattern mining methods can be effectively

used to analyze the similarity among alarm sequences and alarm flood man-

agement [22, 38, 45, 47, 61, 75, 118]. Most research in this area has focused on

offline alarm flood analysis, which is aimed at investigating data from alarm

and event (A&E) logs. By utilizing these methods, plant operators can be

provided with valuable information regarding alarm patterns that can assist

them in root cause analysis and making decisions. However, developing on-

line decision support mechanisms to reduce the reliance on operator workload

and involvement is of great importance for managing ongoing alarm floods

safely [62, 77]. ML has become increasingly appealing in many areas of re-

search due to its ability to reduce the human effort involved in performing

complex tasks accurately. In online applications, ML-based data classification

techniques can be employed to design effective alarm flood management so-

lutions. This concept has been used in the literature to come up with fault

classification techniques that rely on process data [8, 15, 67, 104]. Making use

of alarm data to develop ML-based classification methods for alarm flood

management can lead to effective operator assistance solutions. Categorizing

online alarm floods into groups of historically similar alarm floods can help op-

erators in identifying the underlying cause of the current alarm floods [32,68].

Moreover, to prevent ongoing alarm floods from turning into major incidents

and process failures, it is imperative to provide early assistance to plant op-

erators [86].

Motivated by the aforementioned considerations, this thesis proposes sev-

eral advanced machine learning-based methods using alarm data to develop

operator assistance mechanisms for early online alarm flood management and

root cause analysis.
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1.3 Literature Review

This thesis focuses on the development of online operator assistance mecha-

nisms for early online alarm flood management and root cause analysis. This

section provides a comprehensive overview of the research status on alarm

flood monitoring and root cause analysis focusing on state-of-the-art data-

based studies.

1.3.1 Causal Inference Incorporating GC

The phenomenon of plant-wide oscillations, resulting from plant and con-

trol interactions, is a common performance degradation in processes with

closed-loop control systems. Root cause diagnosis of plant-wide oscillations

based on MGC was studied in [113], where principal component analysis

(PCA) was employed as a pre-processing step to exclude the process variables

irrelevant to the oscillations from root cause analysis. Chen et al. proposed a

grouping MGC (GMGC) method to address the root cause analysis of multi-

ple plant-wide oscillations in process control systems with time-varying oscil-

lations [18]. The authors combined MGC with a grouping strategy based on

multivariate nonlinear chirp mode decomposition (MNCMD), which was uti-

lized to detect plant-wide oscillations and cluster process variables with similar

oscillations into the same group. Then, Using MGC, the causal relationships

between the variables with similar oscillation frequencies were evaluated to

locate the root causes. They aimed at capturing a clearer causal network and

calculation efficiency by avoiding causality analysis for all oscillating variables

in plants with multiple oscillation frequency components.

In [44], GC was used to address the problem of alarm root cause diag-

nosis for petrochemical plants, where the process variables that could be the

possible cause of a triggered alarm were selected based on prior knowledge of

interactions and relationships among process parameters. The fault propaga-

tion path corresponding to the occurred alarms was determined by causality

inference between process variable time series using the GC test. The process
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variable located at the end of the path was then identified as the root cause

of the current fault. To improve the accuracy of GC-based causality analy-

sis in batch processes, a root cause diagnosis approach named comparative

Granger causality (CGC) was proposed in [30], where process variables were

divided into time series slices to perform causality analysis. By performing

the GC test on time slices, a sequence of causality values for any pair of vari-

ables was obtained, which was used to identify the abnormal causalities based

on comparative results. The variable with the greatest number of abnormal

causalities was then identified as the root cause variable.

The MGC method was used in [78] for root cause diagnosis via constructing

the causality matrix for the magnitude variables affected by the fault. Hier-

archical magnitude sensors were identified for the process faults by analyzing

the fault contributions based on singular value decomposition (SVD). In an

MGC-based root cause analysis of the abnormalities in multivariate industrial

processes, repeated causality analysis between all pairs of process variables

is needed. The correlation among process variables can result in a complex

causal map, which makes it difficult to analyze the cause-and-effect relation-

ships accurately. To facilitate root cause analysis, a simplified causal map was

developed in [17], where the maximum spanning tree was found for a causal

map derived using a conditional GC test. The causal map was constructed by

utilizing graph theory, where the causality strength between process variables

in the causal graph was represented by employing the F-statistic used in the

conditional GC test as the weight of each edge. The maximum spanning tree

was performed as a simplification step to determine the most significant causal

sub-graph by eliminating unnecessary links from the original causal graph.

It should be noted that the GC-based methods discussed above are based

on the linear regression of stationary time series data. To apply GC method

on non-stationary data either a transformation (removing the trend) needs to

be performed to make the data stationary or the first (or a higher) difference

of the data should be used. However, there could be situations in which
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linearity and stationarity assumptions are not applicable to complex industrial

processes. Thus, it is necessary to develop methods to overcome linearity

and stationarity restrictions. In [88], an extension of the conventional GC,

called Copula-based GC, was proposed to obtain the causality analysis for

stationary and nonlinearly related process signals. In this method, the GC

was combined with the Copula function from the field of statistics so that by

converting the GC into a log likelihood ratio, an estimation was derived via the

conditional copula. For root cause diagnosis of triggered alarms in chemical

processes, a causality analysis framework based on a multivariate GC test and

Gaussian process regression (GPR) was proposed in [16]. GPR was used to

address the problem of GC-based causality inference for nonlinearly related

and non-stationary time series. Alarm root cause analysis was conducted by

constructing a causal map via determining the pairwise causal relationships

between faulty process variables identified in a fault isolation pre-step. An

important advantage of GPR-based GC to deal with non-stationary signals is

that it avoids missing any trends from time series, which is a possible issue in

the mostly utilized first order difference method [44].

1.3.2 Causality Analysis Using the Concept of TE

The concept of direct transfer entropy (DTE) was proposed in [27], to

detect spurious causalities and differentiate between direct causal pathways

and indirect causal pathways with some intermediate process variables. This

study was based on the differential TE and aimed to improve the fault root

cause analysis through reducing the number of connections in the causal map.

In [28], a transfer 0-entropy (T0E) concept was proposed, which does not as-

sume the existence of a well-defined probability distribution for process data.

In addition to the T0E for capturing total causal relationships, a direct T0E

(DT0E) was also developed to distinguish between direct and indirect causal-

ities in multivariate cases. Although the stationarity of the data is not a

necessary requirement in this method and there is no need for very large data
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lengths, the captured causal relationships might be conservative. In [89], a

modification was made to the TE to achieve an improved estimation of time

delays in causal relationships. In this approach, for each pair of process vari-

ables, the maximum value of the measured TE over different values of the

prediction horizon was defined as the causality strength and the correspond-

ing prediction horizon was defined as the time delay.

By considering the trends of process variables in causality analysis, a

trend transfer entropy (TTE) method was developed in [39] to represent trend

causality instead of value causality for variables. The TTE is based on cal-

culating the TE for a symbolic series generated via piece-wise linearization of

original variables, which leads to the reduction of computational burden and

robustness towards noise and data drifting. Aiming at providing a fast and

efficient real-time root cause diagnosis, a symbolic dynamic-based normalized

transfer entropy (SDNTE) method was proposed in [79], which was defined

based on the concepts of Shannon entropy, time series symbolization, and xD-

Markov machines. In comparison with conventional kernel-based methods,

SDNTE requires a smaller amount of historical data and has a significantly

lower computational burden when calculating transfer entropies. However, it

cannot handle non-stationary process variables for root cause analysis. By in-

corporating the concept of information granulation as a data compression tech-

nique, a novel TE-based causality inference was proposed in [116] to address

the computational complexity of TE in high-dimensional embedded spaces.

Compared with causality analysis methods that determine system dynamic

relationships by using process data, alarm data-based approaches are more

computationally efficient. Reference [112] was the first attempt to use binary

alarm series directly for causality analysis of process variables based on TE,

which could facilitate the management of alarms by inferring causal relation-

ships in abnormal situations. The concepts of normalized TE (NTE) and

normalized DTE (NDTE) with a modified statistical test for calculating the

significance threshold were proposed in [48] to infer causal relationships based
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on binary alarm data by taking into account the random occurrence delays

and the mutual independence occurrences of alarms. By using alarm data, a

modified conditional mutual information (CMI) was proposed in [92] to iden-

tify direct causal relationships from the causal map derived by TE, where a

multi-valued alarm signal definition was proposed to provide more information

for causality analysis. In [29], the alarm log file was divided into groups of

timely close alarms, named timed-clusters, and similar clusters were further

used for root cause analysis using TE.

1.3.3 Probabilistic Graphical Model

Probabilistic graphical models (PGMs) are probabilistic models, in which

the conditional dependencies of random variables are expressed by directed

or undirected graphs. Reference [107] presented a comparison among various

probabilistic graphical models for root causes of alarms in case of alarm floods

in industrial plants. The studied models are Markov chains, hidden Markov

models, Bayesian networks, timed automata and restricted Boltzmann ma-

chines. The comparison reveals that Bayesian networks outperform others

based on criteria including (but not limited to) capability of presenting causal

relations, being trained from data, and scalability. However, Bayesian net-

works have more complex calculations in comparison to Markov chains and

timed automata.

Bayesian Networks

By using alarm floods data, reference [108] evaluated major classes of

Bayesian network learning algorithms, namely, score-based, constraint-based,

and hybrid: the best result was achieved using a hybrid algorithm, which in

turn came at the cost of longer computation time. As a continuum to [108],

[109] assumed that a causal model for a plant was available, and investigated

different inference methods to determine the respective root causes, including

variable elimination, logic sampling and likelihood weighting. While the latter

two approaches were approximate inference, they provided similar detection
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accuracy as variable elimination. The paper also raised an important question

about reliability of using plant’s causal model in case that root alarm node

was not the root of this model. In [35], the authors integrated kernel principal

component analysis as a fault detection tool with a Bayesian network that

represented the process knowledge. They also proposed a method to convert

cyclic causal networks to acyclic ones so that they could be modeled as BNs.

Reference [1] proposed an architecture to combine expert knowledge and alarm

data for constructing a causal map, which aimed at finding the root cause in

case of an alarm flood. In this approach, the Bayesian network structure was

identified using a constraint-based method. Paper [55] used plant information

to construct an MFM, which was a modeling approach for complex indus-

trial processes. To build the model, the authors used piping, instrumentation

and process flow information together with operation manuals. Based on this

MFM they built a BN, which was finally used for causal inference. MFM

was also used in [54], which was first transformed to a fault tree model and

subsequently to a BN that facilitated root alarm analysis. Industrial plants

contain control loops, which inevitably result in the existence of loops in the

constructed causal models. Bayesian networks are acyclic models, which gen-

erally do not account for loops. As a solution, reference [119] devised a BN

with cyclic structures such that each node was duplicated into two state nodes

allowing the BN to implicitly represent cycles. Reference [20] followed a sim-

ilar approach by adding a dummy node in case that the process knowledge

revealed the existence of loops. Another shortcoming in some BN-based root

alarm analysis research is the inability to handle the existence of multiple root

alarms. In [103] an approach was proposed to overcome this issue by limiting

space of possible structures to those with one child and multiple parent nodes.

Reference [81] introduced the application of causal Bayesian networks (CBNs)

for identification of causal relationships among alarm tags. The core concept

that differentiates BNs and CBNs is intervention, which is the manipulation of

nodes by some external agents. The authors studied the analogy between fault
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Figure 1.2: Illustration of dynamic Bayesian networks. The dashed arc shows
the conditional dependency of A2 at t given A2 at t− 1.

and intervention and formulated the root cause identification as discovering

intervention of some unknown alarm tags. In [42], root alarms corresponding

to the abnormal situation were identified by using the BN approach based

on process variables, where hazard and operability analysis (HAZOP) were

applied to determine the nodes of the model.

Dynamic Bayesian Networks

A dynamic Bayesian network (DBN) is a BN that is extended to model

temporal dependencies of the corresponding stochastic variables at different

instants of time. A DBN can be viewed as a sequence of BNs, in which each

time slice represents the underlying system. There can be arcs from a time

slice to its consecutive slices (see Figure 1.2) to describe temporal probabilistic

dependencies of the variables.

DBNs are adopted by many researchers to address the causal relationship

identification problem in case of abnormalities and hazards [4, 43, 117]. A

comparison of DBN-based and BN-based root alarm analysis methods was

provided in [5], which suggested the superiority of the DBN-based approach.

Reference [64] used DBNs to deal with the problem of “phantom alarms”,

which are raised when a plant is in transition from abnormal to normal modes.

In [106], the exploited DBNs were BNs that for each slice of time are object-

oriented Bayesian networks (OOBNs). An OOBN adopts the ideal object-

oriented programming for BNs, in which the OOBN contains instance nodes

(in addition to ordinary nodes of BNs), which themselves are BNs. Reference
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[111] combined process data with knowledge-based monitoring methods to

construct a DBN to identify root cause as well as propagation paths of faults.

Combination of TE with BN

There are methodologies that combine the concepts of TE and BN for

achieving a more efficient root cause analysis in industrial processes. To ad-

dress the difficulties in BN learning, reference [73] integrated TE and BN to

define the concept of a family transfer entropy (FTE) for alarm variables,

which was used to develop a scoring function for BN learning. The multi-

block transfer entropy (MBTE) method was proposed in [121] to define a

scoring function for BN learning based on dividing complex processes into

some submodules using process knowledge and searching the structure of each

submodule according to the corresponding alarm data. Aiming at achieving

a more accurate BN structure scoring, an improved TE was proposed to de-

velop a MBTE-based Bayesian network. In [69], a novel multiblock BN model

based on the concept of active dynamic transfer entropy (ADTE) was pro-

posed to simplify the construction of BN structure and improve its accuracy,

where the alarm propagation time could also be extracted. In [26], a modified

K2 algorithm was proposed for BN structure learning, where TE was utilized

to generate a causal graph for pre-ordering nodes within the network struc-

ture. To address the problem of cyclic causal relationships in process faults,

a modified Bayesian network was developed in [60], where a TE-based score

was used to quantify the causality strength and identify the weakest causal

relationships in cyclic loops. The identified causal relations were converted

into temporal relations, which were then used to decompose networks with

cyclic loops into acyclic causal networks over time, leading to a more accurate

root cause analysis.

1.3.4 ML-Based Approaches

ML algorithms uncover useful relationships among historical data to con-

struct models for analyzing new data. The application of ML methods to
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process measurements and alarm data can be beneficial to alarm root cause

analysis. There are studies in the field of alarm management that take advan-

tage of ML algorithms for alarm root cause analysis.

Machine learning can be used for causality analysis by exploring the corre-

lations between sequentially dependent data from the process. It is capable of

providing a means of identifying the cause of alarms through the investigation

of the alarm propagation pathways. Recurrent neural networks (RNNs) are

artificial neural networks (ANNs) that can capture sequential characteristics

and patterns of data by investigating the temporal correlations between past

experiences and current observations. An RNN is a predictive model that uses

a self-learning mechanism to predict the correlations between its inputs and

outputs. A Long short-term memory (LSTM) is an ANN architecture that

follows a more complex and improved predictive framework when compared

to an RNN. There are special blocks in LSTM known as memory blocks that

give it the ability to detect the long-range dependencies of time series making

it an improved alternative to RNN. An ML-based GC technique incorporat-

ing an attention-based LSTM (ALSTM) and MGC was developed in [40] to

infer causal relationships among process variables and investigate the alarm

propagation pathways. The proposed ALSTM model was created by adding

an attention mechanism between the input and the first hidden layer of an

LSTM network. It was used to convert the MGC AR model into a set of

nonlinear ANN-based regression estimators using the time series data of the

process variables as inputs. A soft attention for nonlinear causality modeling

was developed by using the Softmax activation function, and a robust strategy

was devised for training the model. This method can deal with long-term and

varying transmission delays and make causality analysis more computationally

efficient by avoiding nested loops. In addition, ALSTM addresses the problem

of spurious causalities caused by unobservable variables via a sensitivity-based

method and provides a simplified structure for alarm traceability. By utilizing

model reduction and recursive variable selection, an algorithm for causality
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analysis of process data based on the support vector machine (SVM) method

was developed in [59]. Aiming at providing more evidence for the obtained

causal relationships, GC, TE and cross-correlation function (CCF) methods

were also applied and their corresponding results for causality strength be-

tween variables were combined into a causal matrix that was further used

to generate a root cause priority list. Reference [9] devised a method based

on decision trees. This method resulted in models with a high degree of in-

tractability. As using a single tree may lead to an over-fitted model with high

variance, the author also expanded the method to random forests. In [76] a

map was created by extracting patterns, which related alarms to known faults

using an alarm and event log. Patterns were then exploited for an online im-

plementation step. If a match was found, the root cause could be determined

based on the generated map.

Managing abnormal situations in process industries can be viewed as a ML-

based classification problem. There have been several data-based approaches

proposed in the literature, which utilize process measurements to devise fault

classification mechanisms. A random forest technique was used in [15, 67] to

develop classification methods based on process variables. The former was

based on decision tree selection and a weighted voting rule, and the latter

proposed an enhanced random forest algorithm incorporating static and dy-

namic information. ANNs are well-established models in the ML area that

can be used for root cause analysis. This can be accomplished by building an

ANN using historical data that characterize fault scenarios in an industrial

process. This concept was employed in [8] to train a neural network based

on process data for fault classification and root cause identification. In this

approach, a specific number of samples from process variables were fed as in-

puts to an ANN with one hidden layer including ReLU activation functions.

A fault scenario was identified as an output for the proposed ANN-based fault

classification model, where a permutation algorithm was utilized to deter-

mine the root cause of the detected faulty condition by investigating the most
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contributed process variable for the classified fault. In [104], a deep neural

network framework was devised to learn fault-relevant features from raw in-

put data by using a supervised stacked auto-encoder, where the output was

the fault type label. The authors in [66] proposed two methods for root cause

analysis of anomalies called sequential state switching and artificial anomaly

association. The former was based on restricted Boltzmann machines (RBMs)

and the latter could be viewed as a classification approach based on deep neu-

ral networks (DNNs), which refer to ANNs with multiple hidden layers. This

approach involved a supervised learning strategy to identify the relationships

between anomalous patterns in process data and their associated root causes

as labels. By using a spatiotemporal pattern network (STPN), multivariate

process time-series were defined as input vectors to the classification model.

Alarm data can be utilized as an alternative to process data to establish

classification schemes for handling abnormal conditions. During the monitor-

ing procedure, alarms are triggered whenever an abnormal situation or fault

is identified in the process. On the other hand, process data are recorded by

continuously measuring process variables during process operations. As a re-

sult, alarm data are normally of lower volume compared to process data and

carry information concerning abnormal conditions. This makes alarm data

an advantageous candidate for developing ML-based classification strategies

aiming to address the problem of online alarm floods.

By using alarm data, a classification-based fault diagnosis method using

a discrete hidden Markov model (HMM) was proposed in [7], which aimed to

provide an online root cause analysis mechanism. An HMM is a probabilis-

tic model that assumes the system being modeled is in one of a variety of

states at any given moment. In this model, the states are subject to a Markov

property and evolve by relying on the transition probabilities of each state.

Given a set of observations, the estimation of the HMM parameters can be

obtained by using the Baum-Welch algorithm that is based on the expecta-

tion maximization (EM) algorithm. With the aid of the Viterbi algorithm,
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the trained HMM model can be utilized to uncover the hidden state sequence

that explains a given sequence of observations. The authors in [7], assumed

the possible process faults from historical data as the states of an HMM and

alarm sequences associated with fault scenarios as observation sequences. By

using historical fault scenarios and their associated alarm sequences, an HMM

was trained for an online fault diagnosis and root cause analysis. By using

the trained HMM, the fault scenario (most probable hidden state sequence)

for a particular alarm sequence was identified. To find the most probable root

causes, the first and second most probable hidden faults were determined by

identifying the first and second most likely states in the most probable hidden

state sequence. In [68], a classification-based approach using binary alarm

signals was proposed for online analysis of alarm floods, where coactivations

of alarm signals were used to measure similarity. A method for classifying

online alarm floods was developed in [32], where alarm floods were modeled

as numerical vectors without taking the time factor into account. Online root

cause analysis can be facilitated by categorizing ongoing alarm floods into

groups that have historically been encountered. As an important challenge

in online alarm flood management, providing early online assistance for plant

operators can significantly reduce the risk of process failures and hazardous

incidents. As a result of incorporating the triggering time of alarms, a method

for early classification of alarm floods was developed in [86], where a vector-

ization mechanism was proposed to represent alarm floods as feature vectors.

1.3.5 Other Data-Based Approaches

There has also been research on other concepts that can be used for alarm

flood management and root cause analysis. Reference [95] devised a method to

locate the root cause of oscillations in dynamic systems with control loops. The

key concept of this approach was a nonlinearity score, which was illustrated

to be strongest at the source of abnormalities. In [13] the interdependence

of process variables was analyzed based on the nearest neighbors calculation
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method, where the direction of the fault propagation path was investigated

to address the ambiguous nonlinearity problem obtained in [95]. Correlation

analysis is another method that has been employed to analyze the cause-and-

effect relationships. The CCF was utilized in [14] to create a causal map

by detecting the time delay between two consecutive process measurements

during the disturbance propagation. It is worth noting that, models that

rely on correlation analysis do not necessarily reveal the causality between

variables and can lead to unreliable results.

Some research exploited contribution plots for root alarm discovery tasks.

The contribution values of process variables (various scores can be defined for

this purpose) were evaluated, and the one with the most significant contri-

bution was obtained as the root alarm. Paper [120] formulated the mutual

contributions of variables and defined a new score based on these contribu-

tions, which could be calculated in an iterative manner. Then, the process

variable that showed the first abnormal fluctuation was identified as the root

cause. Also, in [41], the authors used contribution plots to discover the root

cause of alarms. They improved these plots by applying an iterative approach

based on a filtered version of contribution values.

The authors in [99] introduced an approach to determine a set of root

cause process variables according to their qualitative trends. These qualita-

tive trends were captured from historical data based on amplitude changes,

time duration and correlation coefficients of process variables. They defined

primary process variables as those whose abnormalities had the highest con-

cerns for safety and/or proficiency of the process. Root cause variables were

determined to be those whose qualitative trends had the most significant ef-

fect on trends of primary process variables. A graph-based causal discovery

model was proposed in [19] to avoid some of the limitations encountered in BN

modeling. Although the proposed method provided a more compact system

structure and could be more easily implemented compared with BN models,

it was computationally expensive in solving large-scale problems with a high
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number of process variables. Convergent cross mapping (CCM) is another

method that was used for causality analysis in the literature, see e.g., [96].

The theory behind this technique states that causality can be detected if time

series of the affected variable can be used to recover the state of the causal

variable.

A&E logs have been increasingly employed by researchers in the area of

alarm management to conduct data-driven alarm flood monitoring and root

cause analysis. By defining an alarm time series using the information of his-

torical alarm logs, [31] used statistical approaches to investigate the temporal

dependencies between alarm events by considering the time interval between

successive triggered alarms as a random variable. For root cause analysis in

non-stationary faulty processes, paper [65] proposed a causality index based

on dynamic time warping, which was a method commonly used for similar-

ity analysis of temporal sequences. In [101], a fuzzy association rule mining

approach was developed to find potential linguistic alarm association rules by

analyzing consequential alarms. The authors in [63] established a framework

for alarm analysis, where they first created batches of alarm sequences corre-

sponding to system stoppages and the first alarms that appear simultaneously

in the batches were identified as the root alarms. An alarm root cause analysis

method based on evaluating the correlations and time delays between alarm

data was developed in [21].

Alarm floods originating from the same abnormal situation are likely to

contain common alarms triggered in a particular chronological order. Sim-

ilarity analysis of historical alarm floods has been found to be an effective

strategy for managing alarm flooding. Based on representing alarm floods as

binary vectors and using consecutive alarm frequencies, an alarm flood similar-

ity analysis using the Jaccard distance and dynamic time warping was devised

in [2]. In recent years, sequence alignment methods have been effectively used

for similarity analysis of alarm floods. Inspired by pattern matching methods,

a modified Smith–Waterman (MSW) algorithm was proposed in [22] to exam-
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ine the similarity of alarm sequences associated with two alarm floods. In [61],

the MSW method was extended to consider pattern mining in multiple alarm

floods. A method for local sequence alignment using the basic local alignment

search tool (BLAST) was presented in [47], in which set-based pre-matching

was incorporated to reduce computational complexity. In [38], a match-based

accelerated alignment (MAA) strategy was developed aiming at improving

robustness against nuisance alarms and computational efficiency. A modified

PrefixSpan algorithm to detect similar sequential alarm patterns across dif-

ferent alarm floods was proposed in [75]. Hu et al. devised a frequent pattern

mining approach to detect groups of alarms requiring suppression [45]. An

alarm sequence mining mechanism based on a modified CloFAST algorithm

was developed in [118], which aimed at extracting compact sequential alarm

patterns and addressing the problem of alarm order switching.

According to the reviewed literature, existing research mostly deals with

the problem of alarm floods and root cause analysis for offline applications.

Aside from the attempts at developing online approaches discussed in the

literature review, some pattern mining approaches have also been proposed

to address online similarity analysis of alarm flood sequences (see [62, 77]).

However, high computational complexity is a key feature of these approaches,

which makes them inappropriate for solving online problems, such as early

classification. Developing methods to provide useful online operator assis-

tance for taking timely corrective actions is still of significant importance for

process safety and efficiency. It is possible to develop machine learning-based

approaches to fill the gaps existing in the field of online alarm flood monitoring

and root cause analysis, which was the motivation for our research.

1.4 Thesis Contributions

Aiming at providing decision support mechanisms for on-site plant opera-

tors, this thesis proposes advanced machine learning-based methods for online

alarm flood management and root cause analysis using alarm data. Following
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is a summary of the major contributions that differentiate this thesis from

related literature.

• First, Alarm floods are modeled as feature vectors based on exponen-

tially attenuated component (EAC) analysis, which uses the temporal

information of unlabeled historical alarm floods. A uniform strategy

based on a Gaussian mixture model (GMM) that incorporates offline

labeling and online classification is developed for early classification of

ongoing alarm floods. During the offline phase, training data is auto-

matically prepared based on partial labeling of historical alarm floods.

• Second, inspired by natural language processing (NLP), a novel vec-

tor representation called Modified Bag-of-Words (MBoW) is developed,

which could capture the key features of alarm flood sequences including

the chronological order of triggered alarms. Similarity analysis for alarm

floods is addressed by grouping similar alarm flood vectors via an ML-

based clustering method while using efficient similarity measurement. A

weighting strategy that ranks alarms based on their relevance to spe-

cific abnormal situations is proposed to assist operators in alarm flood

management. The proposed method can provide insight from historical

data, and facilitate the handling of large datasets.

• Third, an online extension of the MBoW vectorization model and alarm

ranking is employed to develop an online operator assistance mecha-

nism. An ML-based open set classification strategy based on a system-

atic similarity threshold estimation technique is proposed to deal with

previously unseen situations. The open set classifier can avoid incorrect

classifications by excluding samples with low classification confidence via

incorporating a reject option. The proposed classification method along

with alarm ranking can help operators make timely decisions to handle

both previously seen and new alarm flood scenarios.

• Finally, A novel alarm flood representation based on a probabilistic
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framework is proposed, which is capable of tolerating alarm order am-

biguities and the effect of irrelevant alarms. The proposed represen-

tation transforms the time stamped alarm sequences associated with

alarm flood data into suitable inputs for a convolutional neural network

(CNN). An online alarm flood analysis is then carried out through train-

ing a CNN, which predicts upcoming fault scenarios by observing online

alarm floods. Due to a modified training process, the classification ac-

curacy of online alarm floods with alarm order ambiguity is improved

even at early stages of alarm flood occurrence.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 the mod-

ified EAC analysis for modeling alarm floods as feature vectors is presented

and a Semi-Supervised Learning strategy based on the GMM is developed for

early classification of industrial alarm floods. In Chapter 3 an MBoW alarm

flood vector model is introduced along with an alarm ranking technique, and

similarity analysis of alarm floods is conducted. Chapter 4 extends the pro-

posed MBoW representation for online alarm floods and develops an online

alarm flood classification mechanism to deal with previously unseen abnormal

situations. In Chapter 5 a novel alarm flood representation based on a prob-

abilistic framework is proposed aiming at tolerating alarm order ambiguities

and the effect of irrelevant alarms. An analysis of online alarm floods is then

conducted using a CNN, where upcoming abnormalities are predicted based

on observations of online alarm floods. Finally, Chapter 6 concludes the thesis

and suggests some potential directions for future research.
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Chapter 2

Early Classification of Industrial
Alarm Floods Based on
Semisupervised Learning∗

In this chapter, we propose a semi-supervised data-driven method for the

problem of early classification of ongoing alarm floods with unlabeled histor-

ical data. EAC analysis is used to represent alarm floods as feature vectors.

A method based on the unlabeled historical alarm floods is formulated to

determine the attenuation coefficient for EAC representation. The proposed

semi-supervised approach is formulated based on the GMM and includes two

phases, namely, 1) offline clustering and labeling, and 2) online early classifi-

cation. By applying an efficient cluster validity index, the proposed clustering

method is automated in terms of choosing the optimal number of clusters.

In the labeling step, it is not necessary to label all the individual historical

alarm floods, making the proposed strategy much more practical. Moreover,

a uniform strategy based on GMM is developed for an accurate early alarm

flood classification. The effectiveness of the proposed approach is then shown

by using the Tennessee Eastman process (TEP) benchmark and an industrial

alarm flood dataset.

This chapter is organized as follows. In Section 2.1, a brief review of

∗The material in this chapter has been published as: Haniyeh Seyed Alinezhad, Jun
Shang, and Tongwen Chen, “Early classification of industrial alarm floods based on semisu-
pervised learning,” IEEE Transactions on Industrial Informatics, vol. 18, no. 3, pp. 1845–
1853, 2022.
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the concepts used in flood analysis is provided. Section 2.2 shows how the

EAC representation is used to define alarm flood feature vectors and proposes

a method for determining the attenuation coefficient. The developed semi-

supervised alarm flood classification strategy is elaborated in Section 2.3 with

discussion on both offline labeling and online early classification steps. In Sec-

tion 2.4, two case studies are presented to verify the efficiency of the proposed

algorithm. Section 2.5 concludes this chapter.

2.1 Historical Alarm Flood Data

During an industrial plant operation, the information of triggered alarms

is recorded into a database called historical A&E log. To have an efficient

alarm flood detection, it is necessary to preprocess the stored alarm data by

removing chattering alarms. Preprocessing A&E log and historical alarm flood

detection are performed offline, and the outcome is a list of alarm floods stored

as time-stamped alarm sequences.

2.1.1 Removing Chattering Alarms

It is necessary to eliminate the alarm chatters from historical A&E log be-

fore detecting alarm floods. A chattering alarm is an alarm tag with repeated

transitions between normal and abnormal states in a short period of time.

Whereas chattering alarms include the useful information regarding the cor-

responding alarm tags, repeatedly triggered alarm tags increase the number

of alarms within a short time interval, which could lead to the misidentifica-

tion of alarm floods. Therefore, removing the chattering alarms in addition

to preserving the information of their alarm tags is important for an effective

alarm flood detection and analysis. Chattering alarms can be detected by

using a time window to count the number of a certain alarm tag activations

within a short time period without considering other associated alarm tags.

For chattering alarm removal, different alarm suppression techniques, such as

delay timers, deadbands, and filters can be applied [93,100,105]. For instance,
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a method for suppressing the alarm chatters is to consider only one alarm in-

stead of chattering alarms by merging the repeating alarm tags within the

corresponding time interval [2].

2.1.2 Detecting Alarm Floods

After suppressing the chattering alarms, historical alarm floods can be

extracted from A&E log for further analysis. General conditions can be defined

for identifying the start and the end of an alarm flood sequence. To this end,

arising at least σ alarm messages within time interval T is considered as the

triggering condition of an alarm flood. For example, in ANSI/ISA-18.2, alarm

rate in an alarm flood is assumed to be at least 10 alarms per 10 minutes:

σ = 10 and T = 10 [50]. Similarly, triggering less than κσ alarms, where

κ ∈ (0, 1], shows the end of the alarm flood. Based on these conditions, alarm

floods can be detected by using a T -width sliding time window, which counts

the number of historical alarm messages within time T . Then an alarm flood

indicator ηt can be defined as

ηt =


1, if ηt−δ = 0,£(t− T , t) > σ
1, if ηt−δ = 1,£(t− T , t) > κσ
0, otherwise

(2.1)

where δ is the step size of the sliding window, and £(t1, t2) denotes the number

of activated alarms within the time interval [t1, t2] [86]. While the alarm flood

indicator is equal to one, detected alarm sequence from A&E log is identified

as an alarm flood. Finally, detected alarm floods are recorded as sequences of

time-stamped alarm tags in a historical alarm flood database.

2.2 Alarm Flood Vector Representation

Similar alarm floods can be assumed to be caused by the same abnor-

mal situation. Thus, classifying an online alarm flood to the group of similar

historical alarm floods is an idea for providing online assistance for plant op-

erators. Inspired from pattern mining methods, several efficient approaches,
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such as MSW, have been proposed to address the similarity analysis and clas-

sification of flood sequences. However, high computational complexity is an

important feature of pattern mining approaches, which makes them inappro-

priate for solving online problems like early classification. To fill this gap,

the classification problem of alarm floods can be studied based on machine

learning, which includes powerful tools for clustering and classification.

Representing alarm floods in the form of feature vectors makes alarm se-

quences fit for machine learning applications. In general, sequences of alarm

messages in alarm floods can be converted into binary vectors such that each

entry indicates the state of an alarm with values “1” and “0” serving as the

abnormal and normal states, respectively. Each binary alarm flood vector

is denoted as 𭟋 ∈ Rn, where n is the total number of unique alarm tags

in the monitoring system. Nonzero entries of 𭟋 correspond to the annunci-

ated alarms in the flood sequence and the total number of annunciations in

𭟋 is equal to the 0-norm of 𭟋, ∥𭟋∥0. This way, an alarm flood database,

including m flood sequences, can be defined as a set of binary vectors, namely,

F = {𭟋1,𭟋2, . . . ,𭟋m}. As the original alarm floods are in the form of time-

stamped alarm sequences, it is not suitable to use 𭟋 directly as feature vector

because it ignores the time information of flood sequences. Moreover, owing

to the importance of earlier triggered alarms in providing the early classifica-

tion of alarm floods, it is not efficient to use equal weights for alarms in the

flood vector. Therefore, establishing a vector representation, which dedicates

different weights to alarms while preserving the chronological order of alarms,

is necessary.

2.2.1 EAC Feature Vector

In addition to representing alarm states of the jth flood sequence, for

j ∈ {1, 2, . . . ,m}, in the form of the binary vector 𭟋j, the triggering time of

each alarm can also be recorded as a relative time vector denoted as τj ∈ Rn.

For defining this vector, the time instant of the first annunciated alarm in
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the jth flood is considered as a baseline, and the time durations between the

later annunciated alarms and this baseline are calculated. The resulting values

serve as the nonzero entries of τj, which are recorded in the locations same as

those of their corresponding alarms in 𭟋j. The entries of τj corresponding to

the alarms that are not annunciated during the alarm flood are then set to

zero. Finally, by applying these steps to all of the historical alarm floods, a

historical time dataset including all relative time vectors can be constructed,

denoted as T = {τ1, τ2, . . . , τm}.

In early classification, the information of alarms activated in the early

stages of a flood is available, and efficiently utilizing this limited number of

alarms for achieving accurate classification is important. Following the effect

of fault propagation in many industrial processes, the triggered alarms during

an alarm flood are likely to be causally interrelated rather than following a

coincidental relationship. This usually makes the alarms activated at the ear-

lier steps more relevant to the root causes of abnormalities that lead to alarm

floods. An EAC vector representation was proposed to take the important

roles of the earlier annunciated alarms into account for enhancing an accurate

early classification [86]. Relative triggering time information in T is embed-

ded into this representation as exponentially attenuated weights, which are

dedicated to alarm tags with respect to elapsed times. Accordingly, the EAC

feature vector is defined as follows:

κ = 𭟋 ◦ exp(−λτ) (2.2)

where λ is the attenuation coefficient, ◦ denotes the Hadamard product, which

is an elementwise product between two matrices, and exp(·) is an elementwise

exponential function. In contrast to the binary flood vector 𭟋, vector repre-

sentation κ not only includes the information about the chronological order

of the alarms in the flood sequence but also takes advantage of the earlier

activated alarms to achieve an accurate early classification. Note that the

attenuation coefficient determines the attenuation degree of the weights dedi-

cated to alarms. Thus, choosing an appropriate λ is crucial to fully reflect the

37



time information in T.

2.2.2 Determining Attenuation Coefficient

By assuming the attenuation coefficient λ as a description for the charac-

teristics of the system, it is considered to be constant for a specific industrial

process, and a reasonable value for λ can be determined by using the historical

alarm flood data. However, under this assumption, unbalanced weights may

be dedicated to the alarm floods with different durations. Therefore, providing

an efficient way to determine λ is necessary for the purpose of accurate early

classification. Shang and Chen [86] proposed a supervised method to learn λ

from labeled historical flood data. In practical cases, it is difficult and time-

consuming to obtain enough labeled data for an effective offline training. To

address this problem, an efficient method without needing a priori knowledge

about the labels of alarm floods is proposed in this section.

According to (2.2), the weights for the jth flood are defined in the form of

an exponentially decaying quantity as

q(t(ij)) = exp(−λt(ij)) (2.3)

where t(ij) denotes the relative triggering time corresponding to the alarm tag

ij ∈ Aj such that Aj = {astartj , . . . , aendj } denotes the set of the unique alarm

tags triggered in the jth alarm flood sequence. The nonzero elements of flood

vector 𭟋j correspond to the alarm tags in the set Aj and the vector τj includes

the relative triggering time instants t(ij).

For j = {1, 2, . . . ,m}, q(t(ij)) creates a set of exponentially attenuated ele-

ments depending on the information of τj and the value of λ. The attenuation

coefficient λ is a positive constant and determines how rapid the attenuated

elements vanish, such that a larger λ leads to a more rapid vanishing of the

decaying quantity (2.3). The behavior of the exponentially attenuated quan-

tity in (2.3) with different values of λ is shown in Figure 2.1. According to

this property, a too large λ may ignore many of later triggered alarms in long

alarm floods and a too small λ could not properly reflect the importance of
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Figure 2.1: Exponentially attenuated weights of the jth alarm flood with
respect to elapsed time for different values of λ, where λ6 > λ5 > · · · > λ1.

earlier triggered alarms in short flood sequences. Note that in Figure 2.1, the

function in (2.3) is depicted in the time interval [0, t(aendj )] including the time

instants of τj.

Since the lengths of historical alarm flood sequences can vary remarkably,

a careful selection of λ is necessary to preserve the important information of

all floods in the EAC flood representation. Following the stated properties,

an efficient method can be provided to determine a proper value for λ based

on the information of the maximum triggering time of historical alarm floods

in T. An important prerequisite for an efficient selection of λ is to keep the

units of all historical time vectors in T consistent. The dataset for the purpose

of offline learning of λ is defined by extracting the maximum triggering time

instants as Te = {t(aend1 ), . . . , t(aendm )}. Then a reasonable way to determine λ

is to consider the median value of the set Te, as the mean lifetime of decaying
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quantity (2.3), which is denoted as M. Mean lifetime can be defined as M =

1/λ, and it is the time at which the initial value of (2.3) is reduced to 1/e,

where e is Euler’s number [57]. This way, the alarms with the triggering

times belonging to the interval [0,M] are allocated weights with values from

the interval [0, 1/e]. Then, alarms triggered at time instants greater than

M obtain attenuated weights less than 1/e. Choosing a uniform attenuation

coefficient for a set of historical alarm floods with different durations contains

a trade-off between dedicating balanced weights to all floods and preserving

the information of all triggered alarms. By choosing the value of attenuation

coefficient in terms of the concept of mean lifetime, i.e., λ = 1/M, reasonable

weights are dedicated to all triggered alarms in historical alarm flood data.

Therefore, important features of floods with different durations are reflected

in EAC vectors while the importance of earlier triggered alarms is preserved.

In addition, the proposed method does not need labeled alarm flood data and

the training dataset just contains the relative triggering time information of

the historical alarm flood sequences.

2.3 Semi-Supervised Early Classification

For classifying an online alarm flood in the machine learning framework, a

dataset including historical alarm floods with their class labels corresponding

to abnormal situations is needed to train a classifier. Providing such a dataset

is a complex and time-consuming task, which may impose unnecessary costs.

In this section, a semi-supervised approach based on GMM is formulated to

address the problem of early classification using unlabeled historical data.

The proposed method consists of two phases: A) An offline phase for data

preprocessing and providing the labeled training dataset; B) An online phase

for early classification of ongoing alarm floods.
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2.3.1 GMM-Based Offline Alarm Flood Labeling

Data clustering is an unsupervised learning strategy used for grouping

similar data in an unlabeled historical dataset. This machine learning method

can be used for data labeling by considering the data of each cluster from the

same category. Exploring the group-structures in the context of GMM is a

probabilistic cluster analysis, which is renowned for its efficiency and flexibility.

In this framework, data observations are considered to be realizations of a

random variable with a PDF in the form of a finite GMM.

GMM-Based Clustering

Consider the set of historical alarm flood data with m observations. χ =

{κ1, . . . ,κm} ∈ Rn are realizations of a random vector X. In GMM, it is

assumed that the observed flood data are made up of a mixture of c Gaussian

distributions in proportions ρ1, . . . , ρc as follows:

g(κ; Φ) =
c∑

i=1

ρigi (κ;φi) (2.4)

where g(κ; Φ) is the PDF of the mixture model for random variableX. Mixing

weights ρi are nonnegative such that
∑c

i=1 ρi = 1, and gi(κ;φi) is the PDF

of the ith Gaussian component. φi = (µi,Σi) denotes the vector of unknown

parameters including covariance matrix and mean of the ith Gaussian distri-

bution, denoted as Σi and µi, respectively. Also, Φ = [θT , ρ1, . . . , ρc]
T denotes

the vector of mixture model parameters such that θT includes the elements of

all φi’s.

Given data observations in χ, mixture model can be fitted via the maxi-

mum likelihood approach, which aims at estimating mixture model parameter

vector Φ, by maximizing the log-likelihood of (2.4) [71]. However, in the

context of data clustering, there is some missing information including data

labels, denoted as z1, z2, . . . , zm, and the number of clusters, which makes χ

incomplete for the maximum likelihood estimator.

In GMM clustering, each Gaussian component is considered as a cluster
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and the number of clusters in mixture model is denoted as c. Assuming

that the number of components is known, clusters can be assigned labels

defined as C = {1, 2, ..., c}. Then, the data labels Z = {z1, . . . , zm} can be

considered as observations of a categorical random variable Z taking its values

from the set C with probabilities ρ = {ρ1, . . . , ρc}. The random categorical

variable Z can be defined in the form of a c-dimensional random vector Z such

that its observation corresponding to the label of data point κj is defined as

zj = [zij]c×1, where

zij =

{
1, ifxj has arisen from the ith component
0, otherwise

(2.5)

Then, the possible results of the random variable Z are defined through a

multinomial distribution zj = Multc(1, ρ) including one trial over c categories

belonging to the set C with probabilities ρ1, . . . , ρc. Based on this definition,

the complete-data vector for maximum likelihood estimation in the context of

GMM clustering is defined as κcomplete
j = (κT

j , z
T
j )

T .

For the purpose of clustering using GMM, the posterior probability that κj

arises from the ith mixture component indicates whether the jth observation

belongs to the ith group or not. From Bayes’ theorem it can be verified that

the posterior probability is given as follows [71]:

Pi(κj; Φ̂) = Pr{Zi = 1|X = κj} =
ρ̂igi(κj; φ̂i)

g(κj; Φ̂)
(2.6)

where Zi is the random variable corresponding to zji . The estimates of pa-

rameter vectors Φ̂ and φ̂ are obtained via the expectation–maximization (EM)

algorithm. This way, a probabilistic clustering is provided to group data obser-

vations χ into c groups. This clustering algorithm is based on fitted member-

ship posterior probabilities such that data points are assigned to components

having highest Pi.

The EM algorithm is an iterative scheme including two steps, used for es-

timating mixture parameters [71]. This algorithm uses the following complete
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log-likelihood function for the purpose of inferring the mixture model:

Lc(Φ) =
c∑

i=1

m∑
j=1

zij{log ρi + log gi(κj; φi)} (2.7)

For obtaining Φ̂ in the EM algorithm, the conditional expectation Ψ(Φ;Φ∗) =

E{Lc(Φ)|χ,Φ∗} given the observed data and current fit of Φ, Φ∗, is iteratively

maximized. To this end, two steps, namely the E-step and M-step, are alter-

nated iteratively until a specific condition is satisfied.The criterion for stopping

the EM iterations is defined as |Lc(Φ
(k+1))− Lc(Φ

(k))| < ε, where ε is a small

positive value.

Silhouette Validity Index

Note that the number of Gaussian components needs to be specified before

running the clustering algorithm. In real applications, there is mostly no prior

information about the exact number of alarm flood categories. Therefore,

providing a measurement to assess the quality of clustering results for different

numbers of clusters is needed for determining the optimal cluster number. The

clustering quality can be measured via an internal cluster validity index, called

Silhouette index, in terms of the concepts of cohesion and separation [6].

In a clustering partition, for a predefined number of clusters K, consider

that the flood observation κj is assigned to the cluster C such that C ∈

{1, . . . ,K}. Then, the Silhouette coefficient for the jth historical flood data is

defined as

Silhouetteκj
=

mj − aCj
max{mj, aCj }

(2.8)

where aCj denotes the average distance of κj to all other flood data in the

cluster C. The indicatormj is defined asmj = min
C̄ ̸=C
{dC̄j } wherein dC̄j represents

the average distance of the κj to all the data points belonging to all other

clusters denoted as C̄. The proposed index ranges from 0 to 1; a higher value

shows a better assignment of data point κj to the cluster C. Similarly, the

average Silhouette index of all historical flood data can be used as a validity

measurement for the quality of the overall clustering result. But this needs
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the computation of all distances among all m data points, which imposes

the computational cost as O(nm2). To reduce the computational burden, a

simplified Silhouette index can be provided by redefining the index (2.8) based

on the distance of the data points to cluster centers, denoted as sκj
. Then, the

following average index is used to assess the quality of the clustering result:

S =
1

m

m∑
j=1

sκj
(2.9)

which reduces the computational cost to O(cmn).

In the offline phase, each component of the resulting GMM can be labeled

by utilizing the information of the abnormal situation corresponding to the

alarm flood vector with the highest posterior probability in the component.

Plant experts can use the original sequence representations of alarm floods to

determine their class labels by using their knowledge about the plant. To this

end, some annotations are provided for each alarm flood to be used for labeling

its corresponding mixture component. It should be noted that data labeling

based on expert knowledge could be considered as a limitation of the proposed

method; but this partial labeling would be more applicable and efficient than

labeling all alarm floods in the training dataset. Moreover, by using this

training dataset, the online phase of the proposed method may not directly

give root causes of ongoing alarm floods. However, by early classification,

some previously diagnosed and annotated information is provided for on-site

operators, which can help them know the root causes and then take a timely

action. The overall procedures for providing the labeled GMM is summarized

in Algorithm 1.

2.3.2 Online Alarm Flood Classification

In the online phase, an ongoing alarm flood is assumed to come from one

of the c components in the training dataset, and it is assumed that each of

the components relates to one unique root cause. Then, the label of the cor-

responding mixture component is considered as the class label of the observed

44



Algorithm 1: Offline alarm flood labeling

Input:{F,T}
Output: g(κ; Φ̂) with labeled components
begin

Create Te;
Compute median value of Te and save as M;
Set λ = 1/M;
Create EAC flood dataset χ by (2.2);
for C ∈ {1, . . . ,K} do

Initialization: Select Φ(0);
Set k = 0;

while |Lc(Φ
(k+1))− Lc(Φ

(k))| > ε do
E step:
Compute Ψ(Φ;Φ(k));
M step:
Find Φ(k+1) by solving Φ(k+1) = argmax

Φ
Ψ(Φ;Φ(k));

k ←− k + 1;

Φ̂C ←− Φ(k+1);

Compute SC for GMM gC(κ; Φ̂C) by (2.9);

c = argmax
C
SC;

g(κ; Φ̂)←− gc(κ; Φ̂c);
for i = 1 to c do

Solve κlabeli = max
κ
Pi(κ; Φ̂)

S.t.,κ∈χ

;

Convert κlabeli to its original sequence form;
Determine the category of the resulting sequence;
Label the ith component by determined category;
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alarm flood. This is achieved via classification based on the estimated poste-

rior probabilities defined in (2.6). For classifying an ongoing alarm flood in

early stages, an immediate classification needs to be generated when an alarm

flood is detected. To this end, once an online flood sequence is detected based

on (2.1), it needs to be converted to the form of EAC vectors as

κ̂online = 𭟋̂ ◦ exp(−λτ̂) (2.10)

Owing to smaller numbers of activated alarms, 𭟋̂ and τ̂ include less infor-

mation than those of full flood sequences, namely 𭟋 and τ ; consequently,

∥κ̂online∥0 ≤ ∥κ∥0. Then, κ̂online is assigned to the mixture component with

the highest estimated posterior probability such that

ẑionline =

 1, if i = argmax
α
Pα(κ̂online; Φ̂)

S.t.,α∈C
0, otherwise

(2.11)

This way, the estimated class label is defined as ẑonline = i. In the cases that the

current alarm flood is caused by a new fault, there is no matching alarm flood

in the historical data. These types of alarm floods are referred to as new classes

and can be used later for updating the trained GMM. A threshold, denoted

as γ, is introduced for the highest estimated posterior probability in (2.11)

to prevent the hazardous consequence of misclassifying a new unseen alarm

flood. This threshold is defined as a cutoff parameter to determine if κ̂online

belongs to a new class or to a class previously seen in the training dataset.

To this end, an ongoing alarm flood is assigned to the mixture component

with the highest estimated posterior probability greater than or equal to γ;

otherwise it is identified as an alarm flood caused by a new fault. By triggering

new alarms in the ongoing flood sequence, flood vector (2.10) is updated and

subsequently corresponding generated classification is updated until the end

of the alarm flood. These updates lead to higher classification accuracies due

to using more alarm information. However, using the EAC representation

for alarm floods could lead to an acceptable classification accuracy even in

the early stage of an alarm flood [86]. The summary of the proposed online

classification is presented in Algorithm 2.
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Algorithm 2: Online alarm flood classification

Input: Online alarm sequence, training data g(κ; Φ̂);
Output: Class label of the ongoing alarm flood
begin

while ηt = 1 do
Convert the detected flood sequence to EAC vector
representation κ̂online by (2.10);

Solve i = argmax
α
Pα(κ̂online; Φ̂)

S.t.,α∈C

if Pi(κ̂online; Φ̂) ≤ γ then
κ̂online is caused by a new fault;

else
Show the label of the ith component as class label of the
κ̂online;

Update κ̂online;

As mentioned, an important feature of the alarm sequence alignment ap-

proaches, among which the MSW method [22] is chosen as a benchmark for

alarm flood analysis, is the high computational complexity. The proposed

approach addresses this problem aiming at achieving an acceptable computa-

tional complexity in alarm flood classification. Given one flood pair the com-

putational complexity for calculation of similarity score in MSW algorithm is

O(MNn), where M and N are the numbers of alarms that are included in two

floods. For classifying a new alarm flood by using the historical data including

m floods, the total computational burden of the similarity measurements is

O(MNn(m+ 1)2). As the MSW algorithm needs to utilize full sequences of

alarm floods, comparison is carried out on complete alarm flood sequences.

Therefore, the proposed classification method is applied to the full episode

of the alarm flood represented as κ ∈ Rn. In the proposed algorithm, the

computational complexity for classifying an ongoing alarm flood in any of

its updating steps is the same. This is due to the vector representation of

alarm floods, which leads to the same dimension of the flood vector at any

step. The inverse and determinant of the estimated covariance matrices can

be calculated once before the classification step. Then, the total complexity
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Table 2.1: Silhouette scores of GMMs with different numbers of components

Number of clusters C = 2 C = 3 C = 4 C = 5 C = 6 C = 7 C = 8 C = 9 C = 10

SC 0.4613 0.4728 0.5226 0.6052 0.6417 0.6632 0.6524 0.6505 0.6504

of computing the posterior probabilities for classifying the alarm flood κ is

O(cn), which is much lower than that of the MSW algorithm.

2.4 Case Studies

2.4.1 TEP Dataset

The TEP benchmark with closed-loop plant simulator, developed in [11], is

utilized to evaluate the performance of the developed approach. For simulating

the alarm system, 39 process variables are considered for alarm configuration

with four different states, namely ”PVH,” ”PVL,” ”PVHH,” and ”PVLL”.

The simulation time is set as 10h and process measurements are uniformly

sampled with a 0.6 min sampling interval. Seven faults, leading to different

abnormal conditions, are considered as alarm flood categories [86]. For gen-

erating the alarm floods, the standard definition in (2.1) is applied by setting

the parameters as T = 10 min, σ = 8, and κ = 0.75. The flood dataset

includes 280 alarm flood sequences with 40 floods in each category. The data

are further split into training and test datasets, which contain 80% and 20%

of total data samples.

According to the value M = 25.5 obtained from the extracted set Te for

training data, the attenuation coefficient is determined as λ = 0.039. Al-

gorithm 1 is implemented by setting K = 10, and the Silhouette scores for

resulting GMMs with different numbers of components are recorded in Table

2.1. It can be seen that the maximum value of the Silhouette validity index

corresponds to the GMM with 7 components, which is equal to the number of

alarm flood categories in the historical dataset. This shows the efficiency of

the proposed algorithm in automatically determining the optimal number of

clusters.
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Table 2.2: External validity indices for different methods

Method Proposed method λ = 0 Method in [32]

Purity 99.52% 71.42% 75.71%

NMI 0.9892 0.8285 0.8557

Apart from the developed clustering method, we also implement the method

in [32] and Algorithm 1 without attenuation for comparison. To show the ef-

ficiency of the alarm flood clustering and proposed EAC flood representation,

true class labels of data are utilized to provide a clearer cluster evaluation in

terms of two external cluster validity measures, namely, Purity and normal-

ized mutual information (NMI) [3]. These two external cluster validity indices

can be calculated by

Purity(C, L) =
1

m

∑
i∈C

max
l∈L
|i ∩ l| (2.12)

NMI(C, L) =

2
∑
i∈C

∑
l∈L

Pr(i ∩ l) log Pr(i∩l)
Pr(i) Pr(l)

H(C) +H(L)
(2.13)

where C and L are set of evaluated clusters and set of true classes, respectively.

Pr(i), Pr(l), and Pr(i∩l) are the probabilities of an alarm flood being in cluster

i, class l, and intersection of i and l, respectively. H(·) denotes the entropy.

The measured validity indices are recorded in Table 5.2, which confirm the

effectiveness of the proposed method in achieving an accurate data grouping.

It can be seen that the clustering method developed in this study outperforms

that of [32].

The efficiency of the proposed method for determining the attenuation

coefficient is also investigated by fixing the value of C in Algorithm 1 and

using different values for λ. The clustering results with different values of λ

are shown in Figure 2.2, evaluated by Purity and NMI.

Algorithm 2 is then implemented to provide early classification of the test

flood dataset. In Figure 2.3, the average classification accuracies in different

time intervals are demonstrated with respect to the elapsed time. Online
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Figure 2.2: Clustering performance for different values of λ.
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Figure 2.3: Average classification accuracy for TEP data.
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Figure 2.4: Classifications for an alarm flood from the first category in TEP
data.

classification results for a single alarm flood in different time intervals are

shown in Figure 2.4. Vertical dashed lines in Figs. 2.3 and 2.4 show the

amount of time that each method takes to reach a classification accuracy,

which will not change in the next updates of the online classification. It can

be seen that the proposed method outperforms the others on different aspects

such as early classification, maximum classification accuracy, and the number

of labeled data required for classification.

The average running times of different methods for classifying an alarm

flood in test dataset are recorded in Table 5.3. The methods are implemented

in MATLAB 2020 on a 64-bit Windows PC with Intel Core i7-8700 CPU @

3.20GHz and 8.0 GB RAM. These results show that the proposed algorithm

is also more efficient in terms of running time. This is because the proposed

classification method uses only the means of the c Gaussian components for

51



Table 2.3: Running times of different methods

Method Proposed method λ = 0 Method in [86] Method in [32]

Running time (ms) 0.0129 0.0155 0.118 0.141

similarity analysis, but the other two approaches utilize the 1-NN algorithm

that uses all m historical data points for classification.

2.4.2 Industrial Dataset

The alarm data corresponding to one-year operation of an industrial pro-

cess is utilized to demonstrate the effectiveness of the proposed algorithm in

real alarm flood data analysis. The recorded A&E log consists of the infor-

mation of triggered alarms in the monitoring system from March 3, 2019 to

May 2, 2020. An off-delay timer is applied to reduce chattering alarms in

the A&E log. The alarm flood dataset is generated based on definition (2.1)

by using industrial standard ANSI/ISA 18.2 [50]. The resulting alarm flood

dataset includes 6 groups of similar alarm floods with maximum and average

durations as 36.4 min and 12.19 min, respectively. Like the TEP dataset,

alarm flood data are split into training dataset and test dataset to be used in

offline training and online classification phases.

By implementing Algorithm 1 for training dataset, the value of attenuation

coefficient is determined as λ = 0.0017, and the optimal number of components

is achieved as c = 6. By using the true labels of the alarm floods, the clustering

result is shown in Table 2.4 in terms of the confusion matrix and two validity

indices. These results confirm the efficiency of the proposed algorithm in

partitioning similar alarm floods. Finally, Algorithm 2 is implemented for test

data, and the early classification performance is validated by depicting the

evolution of the online classification accuracy with respect to elapsed time in

Figure 2.5.

52



Table 2.4: Clustering results of the industrial dataset

Predicted category

A
ct
u
al

ca
te
go
ry

1 2 3 4 5 6

1 9 - - - - -

2 - 12 - - - -

3 - - 5 - - -

4 - - - 4 - 1

5 - - - - 5 -

6 - - - - - 9

Purity=97.77% NMI=0.9628
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Figure 2.5: Average classification accuracy for industrial data.
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2.5 Conclusion

In this chapter, a semi-supervised data-driven approach based on GMM

was proposed to address the problem of early classification of ongoing alarm

floods with unlabeled historical data. A vector representation called EAC

was utilized to convert alarm flood sequences to feature vectors, which can

reduce the computational complexity encountered in online pattern mining

approaches. EAC feature vectors could also lead to an accurate early classifi-

cation of alarm floods by considering the important role of the earlier triggered

alarms. The attenuation coefficient was determined via an efficient approach

based on the time information of historical alarm flood data. The perfor-

mance of the developed approach is validated by the simulations on the TEP

benchmark and a real industrial dataset.
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Chapter 3

A Modified Bag-of-Words
Representation for Industrial
Alarm Floods ∗

In this chapter, a vector representation inspired by NLP is developed,

which could capture the important features of alarm flood sequences including

the chronological order of triggered alarms. For defining feature vectors, a

weighting strategy is proposed such that the ranking of alarms is provided to

help operators distinguish key alarms relevant to specific abnormal situations.

Offline similarity analysis of alarm floods is addressed by grouping similar

alarm flood vectors via an ML-based clustering method while using an efficient

similarity measurement. An evaluation of the proposed approach is made

using the TEP benchmark.

This chapter is organized as follows. Section 3.1 gives a brief review of the

alarm flood detection. Section 3.2 presents an MBoW vector representation

for alarm floods. Section 3.3 describes the utilized similarity measurement and

clustering method. Section 3.4 provides a case study to validate the proposed

approach. Finally, Section 3.5 concludes this chapter.

∗The material in this chapter has been published as: Haniyeh Seyed Alinezhad, Jun
Shang, and Tongwen Chen, “A modified Bag-of-Words representation for industrial alarm
floods,” in 9th International Symposium on Advanced Control of Industrial Processes (Ad-
CONIP), Vancouver, BC, August 2022.
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3.1 Historical Alarm Flood Detection

The history of alarms activated during industrial plant operation is stored

in a database known as the A&E log, which can be used to detect historical

alarm floods for further analysis. There is a class of nuisance alarms known as

chattering alarms, which are typically encountered in stored alarm data. As

the name implies, a chattering alarm refers to an alarm tag that frequently

switches between normal and abnormal states within a short amount of time.

For instance, a noisy process variable fluctuating around an alarm limit could

cause alarm chatters. Chattering alarms mistakenly increase the number of

alarm annunciations over time, which could mask real alarm characteristics

and distract operators from managing alarm floods properly. However, the

alarm tags corresponding to the chattering alarms carry valuable information

for plant operators. Thus, eliminating the alarm chatters while preserving the

associated alarm tag information is essential prior to alarm flood detection to

conduct an efficient alarm flood analysis. Multiple alarm suppression methods

are available for removing chattering alarms, such as delay timers, deadbands,

and filters. A detailed discussion of chattering alarm removal falls outside the

scope of this study.

After eliminating the repeating information of chattering alarms, a pre-

processed A&E log is used to detect alarm floods. Detecting alarm flood can

be accomplished through a sliding time window, which counts the number of

activated alarms within a certain period of time. It is then possible to define

general conditions that determine when an alarm flood begins and ends as

follows:

Start of an Alarm Flood: An alarm flood begins when there are at

least α alarm messages appearing in a time interval τ .

End of an Alarm Flood: An alarm flood ends when there are less

than δα alarm messages in a time interval τ , where δ ∈ (0, 1].

In the above conditions, τ represents the width of the sliding time window,
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and parameters can be determined depending on the studied application. As

an example, the industrial standard ANSI/ISA-18.2 assumes that alarms are

generated at a rate of at least 10 per 10 minutes during an alarm flood [50].

The sliding time window is applied to the A&E log to identify the historical

alarm floods, which are then stored as time-stamped alarm sequences in a

historical alarm flood dataset.

3.2 MBoW Representation for Alarm Floods

For addressing alarm flood problems in the field of machine learning, a

major challenge is making ML-based algorithms understand alarm flood se-

quences. In this section, an NLP-inspired vectorization strategy is developed

to represent alarm floods as feature vectors that are well suited to ML tech-

niques. The goal is to convert an alarm flood from a sequence of time-stamped

alarms into a feature vector such that:

• The information regarding activated alarms and their triggering times

is preserved.

• Alarms are ranked by importance to assist operators in finding alarms

related to the underlying cause of an abnormal condition.

• The accuracy of early classification is taken into account, which is ad-

vantageous for online applications.

NLP is an area of Artificial Intelligence (AI) that gives computers the abil-

ity to understand human language and analyze text automatically. In NLP,

text vectorization refers to the process of converting text data into numerical

vectors that can be employed for tasks such as topic classification through ML

algorithms. Bag-of-Words is a common model for representing text data as

feature vectors, which indicates the words appearing within a specific docu-

ment.

We propose a modified Bag-of-Words (MBoW) representation for alarm

floods by assuming an alarm flood to be a document and each triggered alarm
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as a term. Although alarm floods lack some of the complexities associated with

text data, such as semantic analysis, triggered alarms are time-stamped, and

the ability to properly analyze the temporal context of alarms is critical. With

this in mind, and considering the above-mentioned objectives, we propose the

following alarm weighting strategy for defining alarm flood vectors:

W(a, F ) = TF(a, F )× IDF(a)× TW(a, F ) (3.1)

where W(a, F ) denotes the weight defined for a unique alarm a activated in

the flood F ∈ F, where F is the set of historical alarm floods.

TF(a, F ) and IDF(a) are defined based on the term frequency (TF) and

inverse document frequency (IDF) concepts from NLP as

TF(a, F ) =
|Fa|
|F |

(3.2)

IDF(a) = loge
|F|

|{F ∈ F|a ∈ F}|
(3.3)

Here |Fa| denotes the number of annunciations of alarm a in flood F ; |F |

represents the total number of alarm activations in F ; |F| is the total number

of alarm floods in historical dataset; the denominator in (3.3) is the number

of historical alarm floods which include alarm a.

The third term in (3.1) is the time weight, denoted as TW(a, F ), which is

defined as follows:

TW(a, F ) = loge
tmax

ta,F
(3.4)

where tmax denotes the maximum triggering time and ta,F is the measure of the

time interval between the triggering time of alarm a, and the first annunciated

alarm in the alarm flood F . To calculate ta,F , the first annunciated alarm in

the flood is taken as a baseline and the time distances between subsequent

alarms are calculated from this baseline.

According to the measures defined in (3.2) and (3.3), alarms in an alarm

flood are weighted depending on how frequent and discriminative they are
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compared to the historical data. Generally, the frequency of alarm activations

in an alarm flood can provide a representative idea of the nature of the alarm

flood. However, some alarms appear frequently and are common among many

alarm floods, but they may not be strongly related to the origin of the abnor-

mality. In this case, IDF index adjusts the alarm weight by allocating a lower

weight to this type of alarms.

Time weights are defined to embed the temporal information of alarm

floods into alarm flood feature vectors, while considering the significance of

earlier activated alarms. Through the proposed weights, it is possible to reflect

the chronological order of alarms in feature vectors as a result of incorporating

the temporal information of triggered alarms. This measure would avoid any

possible ambiguity regarding the order in which alarms are recorded in A&E

logs.

The proposed MBoW is a vector, denoted as FMBoW ∈ Rn where n is the

total number of unique alarms configured for the plant. In the alarm flood

feature vectors, each entry indicates the alarm’s weight, calculated according

to the strategy proposed in (3.1). The proposed vector representation captures

important features of alarm flood sequences and can be used to perform ML-

based alarm flood similarity analysis. Additionally, by providing a ranking of

alarms, it could help operators identify the alarms that might be more relevant

to the abnormal situation.

3.3 Alarm Flood Similarity Analysis

Similarity analysis for alarm floods is considered in this section, which uses

an ML-based clustering method in conjunction with an efficient similarity

measurement to group similar alarm flood vectors. Using data clustering,

similar alarm flood vectors in an unlabeled historical dataset can be grouped

in the same clusters to obtain insights from historical data and help plant

operators in managing alarm flood problem.
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3.3.1 Similarity Measure

As part of clustering the MBoW alarm flood vectors, it is necessary to de-

termine how to define the similarity between alarm flood data. Flood vector

entries are valued based on the triggering time and frequency of the alarms

associated with them. The presence of noise during real plant operation may

influence recorded data. As a result, there would be two alarm floods within

the same category, each with a different size and number of alarms activated.

Additionally, the alarm triggering time might also be different between the

two, even though alarms are activated in a similar chronological order. Con-

sequently, two alarm floods in the same category may differ in size. An anal-

ogy for similarity analysis between feature vectors can be made by using the

Euclidean distance, which is a dissimilarity index commonly used in ML al-

gorithms. The Euclidean distance depends on the size of feature vectors, so

based on this metric, two similar alarm floods could be considered far apart in

our application. To reduce the sensitivity of similarity measurement to vector

sizes and improve similarity analysis, we employ the cosine similarity.

Cosine similarity is a measure for assessing how similar the alarm flood

vectors are regardless of their sizes. It shows the orientation of the MBoW

vectors in the alarm flood vector space, where each dimension corresponds to

an alarm in the monitoring system. For a historical dataset withm alarm flood

vectors, denoted as F = {FMBoW
1 , FMBoW

2 , · · · , FMBoW
m }, the cosine similarity

for each pair of alarm floods is calculated as follows:

cossim(F
MBoW
i , FMBoW

j ) =
FMBoW
i · FMBoW

j

∥FMBoW
i ∥∥FMBoW

j ∥
(3.5)

where, ∥ · ∥ is the Euclidean norm of the vector, and “·” denotes the dot

product of two vectors.

Cosine similarity is a measure of similarity between two vectors in multidi-

mensional space using the cosine of the angle between the vectors. For MBoW

alarm flood vectors, it can take values between zero and one, with zero rep-

resenting no similarity and one representing identical matches. Therefore, a
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Figure 3.1: An example for AHC tree

smaller angle between vectors indicates a greater degree of similarity.

3.3.2 Similarity Analysis

Based on the cosine similarity measure, alarm flood similarity analysis is

carried out using agglomerative hierarchical cluster (AHC) tree method. An

AHC tree is a clustering algorithm that starts by assigning each observation to

a distinct cluster. Afterward, it merges each pair of similar clusters gradually

until all clusters are merged into one, or when the highest pairwise similarity

measure for clusters falls below a predefined threshold. An illustrative example

for the process of constructing an AHC tree is depicted in Figure 3.1. In this

study, the similarity between the clusters is measured based on the average

linkage criteria [22].

To provide plant operators with a visual tool, the pairwise similarity matrix

for historical alarm floods is calculated and color-coded. As a result, cluster

color maps are visualized by reordering the similarity scores based on the

clustering order of the AHC tree. By cutting off the clustering process at a

certain point, one would be able to get a clustering solution. In this study,

alarm flood vectors with a pairwise cosine similarity index greater than 0.6

are grouped together.

The proposed alarm flood similarity analysis is intended to develop an op-

erator assistance system using retrospective analysis of historical data. Group-
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ing similar alarm floods in the historical data could facilitate the handling of

large datasets by operators. Moreover, the provided scores for alarms could

help operators in locating the cause of the abnormality associated with each

alarm flood group. Therefore, annotated or labeled groups of alarm floods can

be provided by considering the data of each cluster from the same category

of abnormal situation. These categorized historical alarm floods can be also

used as a valuable dataset for online alarm flood analysis.

3.4 Case Study

3.4.1 Data Description

For assessing the effectiveness of the proposed method, the TEP bench-

mark with a closed-loop plant simulator developed in [11] is employed. A

total of 39 process variables are used to simulate the alarm system, where

four states, namely “PVH”, “PVL”, “PVHH”, and “PVLL” are defined for

alarm configuration. There is not enough space to include more detail about

process variables. A complete list of variables and alarm limits for the different

states can be found in [86].

Over the simulation period of 10 hours, process measurements are sampled

uniformly every 0.6 minutes. The alarm floods are generated by setting the

parameters τ = 10 min, α = 8, and δ = 0.75 according to the standard

definition presented in Section 3.1. The dataset used for this study consists

of 150 alarm flood sequences from 5 categories, each with 30 alarm floods.

A list of faults corresponding to the root cause categories of alarm floods in

historical data is provided in Table 3.1.

3.4.2 Similarity Analysis of Alarm Floods

All historical alarm flood sequences are first converted to the MBoW vector

format. Using the dataset including historical flood vectors, pairwise cosine

similarity between all flood vectors is calculated and used to generate an AHC

tree. Cluster color maps are presented in Figure 3.2 as visualizations of clus-
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Table 3.1: Description of five categories of alarm flood causes in TEP

Fault Description Type

C1 A/C feed ratio, B composition constant (Stream 4) Step

C2 B composition, A/C feed constant (Stream 4) Step

C3 Reactor cooling water inlet temperature Step

C4 C header pressure loss (Stream 4) Step

C5 Reactor cooling water valve Sticking

tering results. A darker color on the color map indicates greater similarity

between sequences.

For comparison, three cases for similarity analysis are provided in Figure

3.2. The color map presented in Figure 3.2(a) corresponds to the method

proposed in this study. Figure 3.2(b) shows the clustering result based on co-

sine similarity and MBoW feature vectors without temporal information. The

similarity color map in Figure 3.2(c) shows the similarity analysis of MBoW

vectors based on the Euclidean distance. These results confirm that the pro-

posed method achieves better discrimination between alarm floods belonging

to different categories compared with the other cases. As seen in Figure 3.2(b),

discarding the time information in alarm flood feature vectors results in identi-

fying more similarity between different alarm flood categories. It could be the

result of ignoring the chronological order of alarm sequences in alarm floods,

which leads to comparing alarm floods based only on their triggered alarms.

Figure 3.2(c) also shows that when analyzing the similarity of MBoW vectors

cosine similarity behaves better than the Euclidean distance and makes a bet-

ter distinction. Using the cut off threshold of 0.6 for similarity measures in

the AHC tree, the proposed method achieves 99.33% purity. Here purity is a

cluster validity index and its definition can be found in (2.12).
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Figure 3.2: Cluster color maps derived from similarity analysis of alarm floods:
(a) The proposed Method. (b) Bag-of-Words representation excluding tem-
poral information [32]. (c) Similarity analysis of MBoW vectors based on
Euclidean distance.
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After similarity analysis and clustering historical alarm floods, our method

provides operators with a list of scored alarms for each alarm flood. The

ranks of alarms and their corresponding scores could facilitate finding the

fault category for each alarm flood group. To demonstrate the effectiveness

of the proposed alarm scoring method, Table 3.2 shows the list of alarms and

their scores for an alarm flood from fault category C5. Table 3.1 explains

that this alarm flood is due to a failure of the reactor cooling water valve.

According to the alarm scores and their descriptions, we can see that higher

scores are assigned to the alarms that are more relevant to this fault category.

Table 3.2: Alarm scoring results for an alarm flood from category C5

Alarm Rank Alarm Index Alarm Identifier Alarm Scores Description

1 137 LL 0.71 Reactor cooling water outlet temperature

2 59 L 0.67 Reactor cooling water outlet temperature

3 87 HH 0.49 Reactor temperature

4 126 LL 0.43 Reactor temperature

5 9 H 0.39 Reactor temperature

6 48 L 0.31 Reactor temperature

7 98 HH 0.04 Reactor cooling water outlet temperature

8 7 H 0.02 Reactor pressure

9 20 H 14× 10−3 Reactor cooling water outlet temperature

10 13 H 12× 10−3 Product separator pressure

11 46 L 10× 10−3 Reactor pressure

12 52 L 5× 10−3 Product separator pressure

13 55 L 3× 10−3 Stripper pressure

14 16 H 17× 10−4 Stripper pressure

15 50 L 10× 10−4 Product separator temperature

16 60 L 68× 10−5 separator cooling water outlet temperature

17 44 L 61× 10−5 Recycle flow (stream 8)

18 33 H 42× 10−5 Component F (stream 9)

3.5 Conclusion

In this chapter, a vector representation model inspired by NLP for indus-

trial alarm floods was developed. This representation is capable of reflect-

ing the important characteristics of the triggered alarms in an alarm flood

sequence, including their chronological orders. Proposing alarm flood fea-
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ture vectors is mainly intended to make them useful for ML-based similarity

analysis algorithms. An advantage of using ML-based strategies is that they

can be easily adapted for online applications. A weighting strategy was pro-

posed to define alarm flood feature vectors so that a degree of importance for

alarms can be provided to help operators recognize key alarms relevant to spe-

cific abnormal situations. Furthermore, the accuracy for early classification of

alarm floods was taken into account when embedding temporal information

into feature vectors to make them appropriate for online applications. Alarm

flood similarity analysis was conducted by grouping similar alarm flood vec-

tors through AHC trees and cluster color maps by using the cosine similarity

measurement. To reduce sensitivity against sizes of feature vectors, the co-

sine similarity index was used to measure the similarity between alarm floods.

Utilizing the TEP benchmark, an evaluation of the proposed approach was

conducted and favorable results were obtained.
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Chapter 4

Open Set Online Classification
of Industrial Alarm Floods with
Alarm Ranking ∗

In this chapter, an ML-based early classification of alarm floods is devel-

oped, which is capable of handling online alarm floods corresponding to new

abnormal situations. Online alarm floods are modeled as feature vectors us-

ing an online extension of the weighting strategy developed in the previous

chapter. Online feature vectors incorporate the triggering times of alarms as-

sociated with alarm floods such that early classification accuracy is enhanced.

Besides reflecting important characteristics of alarm flood sequences, such as

temporal information, the proposed vector representation provides ranking

of alarms to help operators find key alarms that are relevant to abnormal

situations. Modeling alarm floods as feature vectors makes them suitable for

ML-based methods, which have been found to be effective in a variety of appli-

cations. Although the problem of online alarm flood classification was studied

in the literature, dealing with previously unseen alarm flood scenarios has

not been fully investigated. ML-based classifiers are classically constructed

under the closed set assumption, where all upcoming data must be from cat-

egories that previously appeared in the historical dataset. This assumption

∗The material in this chapter has been published as: Haniyeh Seyed Alinezhad, Jun
Shang, and Tongwen Chen, “Open set online classification of industrial alarm floods with
alarm ranking,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp.
article 3500811, 2023.
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may be valid in many situations, but it is generally a restrictive assumption.

As previously unseen situations can occur in practice, a more realistic scenario

needs to be considered. This chapter proposes an ML-based open set classifi-

cation method based on a systematic similarity threshold estimation to deal

with previously unseen situations. A classifier with an open set classification

capability can avoid incorrect classifications by excluding samples with low

classification confidence via incorporating a reject option. The survey paper

presented in [34] provided a comprehensive review of existing open set classifi-

cation methods. The proposed classification method along with alarm ranking

can help operators in making timely decisions to handle both previously seen

and new alarm flood scenarios. A case study by using the Tennessee Eastman

benchmark is illustrated to assess the effectiveness of the proposed method.

This chapter is organized as follows. In Section 4.1, alarm flood detection

and the developed alarm flood feature vectors are presented. Section 4.2

discusses the proposed open set classification and alarm ranking. A case study

is presented in Section 4.3 to evaluate the efficiency of the proposed method.

Finally, Section 4.4 concludes the chapter.

4.1 Alarm Floods

This section demonstrates how alarm floods can be detected using both

historical and real-time alarm data. Then an alarm weighting strategy is

proposed to convert alarm floods from alarm sequences to feature vectors.

4.1.1 Alarm Flood Detection

Alarms are set up in industrial alarm systems to detect process deviations

from predetermined normal operating ranges, which serve to warn plant op-

erators. Let A = {ai, i = 1, 2, . . . , n} denote the set of unique alarm variables

configured in an alarm system. The alarm occurrence signal for ai can be
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defined as follows:

Ai(t) =

{
1, if Xi(t− s) ∈ Ni & Xi(t) /∈ Ni

0, otherwise
(4.1)

where Xi indicates a process variable whose normal operating characteristics

are represented by Ni, and s denotes the sampling size.

As the name implies, an alarm flood is a situation in which plant operators

are overwhelmed with many alarms within a short period of time. Thus,

general conditions can be derived for detecting the start and the end of an

alarm flood based on the alarm rate. At time instant t, the alarm rate for a

past time interval of size T can be calculated as follows:

R(t) =
n∑

i=1

∑
j∈[t−T,t]

Ai(j). (4.2)

Here a T -width sliding window is used to count the number of triggered alarms.

An alarm flood can be detected by comparing the calculated alarm rate with

predetermined thresholds. This can be accomplished by defining an indicator

for the occurance of alarm floods as

λt =


1, if λt−δ = 0, R(t) ≥ γ
1, if λt−δ = 1, R(t) ≥ ϵγ
0, otherwise

(4.3)

where ϵ ∈ (0, 1] and δ is the step size of the sliding window. When the

indicator is one, the sequence of alarms detected by the sliding window is

considered to be an alarm flood. It is easy to verify the start and end time

of an alarm flood using this indicator. An alarm flood starts at time instant

ts = td − T if λtd−δ = 0 and R(td) ≥ γ. Also, an alarm flood ends at time

instant te when λte−δ = 1 and R(te) < ϵγ. For instance, according to the

ANSI/ISA-18.2 standards [50], the values of the parameters T , ϵ, and γ are 10

min, 0.5 and 10 respectively. This indicates that an alarm flood begins when

the rate of activated alarms reaches the threshold of 10 alarms per 10 minutes

and ends when less than 5 alarms are triggered within a 10-minute period.

The described strategy can be used to identify the occurrence of alarm floods

in both offline and online scenarios.
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It should be noted that there are some alarm tags that frequently switch

between normal and abnormal states in a short period of time, known as chat-

tering alarms. The presence of chattering alarms increases the alarm rate and

can lead to nuisance alarm flood detection. Thus, it is essential to remove chat-

tering alarms before alarm flood diagnosis. Multiple well-established methods

are available for reducing chattering alarms in both offline and online appli-

cations [45, 62]. It is beyond the scope of this study to discuss reduction of

chattering alarms. Hence, in the remainder of this chapter, it is assumed that

chattering alarms have been reduced, at least in the alarm data collected.

Offline Detection

The offline detection of alarm floods is possible through the A&E logs

that contain historical alarm data. An A&E log includes several attributes

including the alarm tag and triggering time stamp for alarms that are activated

during plant operation. By applying the sliding time window to the A&E log,

alarm floods are detected as time-stamped alarm sequences and stored in a

historical alarm flood dataset that can be used for further analysis. Each

historical alarm flood sequence is recorded as follows:

fk = {(αk
1, t

k
α1
), (αk

2, t
k
α2
), . . . , (αk

|fk|, t
k
α|fk|

)}. (4.4)

Here | · | indicates the number of elements in a set or sequence; fk ∈ F is

the kth alarm flood of the historical alarm flood dataset F , k = 1, 2, . . . , |F|;

αk
m ∈ A represents the mth triggered alarm tag in fk, m = 1, 2, . . . , |fk|; tkαm

denotes the triggering time stamp corresponding to αk
m that belongs to the

time interval [tks , t
k
e ]; t

k
s and tke are the start time and end time of fk.

Online Detection

A T -width sliding time window can also be used for real-time calculation

of the alarm rate, which can be utilized for identifying online alarm floods.

Figure 4.1 demonstrates how (4.3) can be used to detect an ongoing alarm

flood using online alarm events. An online alarm flood f 1
o is detected at time
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Figure 4.1: Online alarm flood detection.

td when λt changes from zero to one. The record of the T -width time window is

updated during online plant operation. In each update, alarm records beyond

the time span T are removed and new alarms are added to calculate the alarm

rate. As long as λt = 1 the alarm record in the online alarm flood is updated.

Once λt changes from one to zero the end of the alarm flood is detected.

Different updates of an online alarm flood can be recorded as follows using

the corresponding alarms and time stamps:

f 1
o = {(αo

1, ts), (α
o
2, t

o
α2
), . . . , (αo

|f1
o |
, toα|f1o |

)}
...
fκ
o = {(αo

1, ts), (α
o
2, t

o
α2
), . . . , (αo

|f1
o |
, toα|f1o |

),

. . . , (αo
|fκ

o |
, toα|fκo |

)}
...
f full
o = {(αo

1, ts), (α
o
2, t

o
α2
), . . . , (αo

|f1
o |
, toα|f1o |

),

. . . , (αo
|fκ

o |
, toα|fκo |

), . . . , (αo

|f full
o |, te)}.

(4.5)

Here fκ
o and f full

o represent the κth and last update of the alarm flood re-

spectively; αo
r denotes the rth triggered alarm tag in the online alarm flood,

r = 1, 2, . . . , |f full
o |; toαr

is the triggering time stamp corresponding to αo
r; ts

and te are the start time and end time of f full
o respectively.
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4.1.2 Alarm Flood Feature Vectors

ML techniques can be used to investigate the problem of alarm floods effi-

ciently in both offline and online applications. In applying ML-based methods

to alarm flood analysis, one of the most challenging parts is to make the ML

algorithms understand the alarm floods, which are sequences of time-stamped

alarms. In the following, a vectorization method inspired by NLP is proposed

to represent alarm floods as feature vectors, which can be used as suitable

inputs for ML-based methods.

Alarm Weighting Strategy

NLP is a branch of artificial intelligence that enables computers to under-

stand and analyze text automatically. As a part of NLP, text vectorization

aims at representing a text as a numerical vector, which can be used to ac-

complish tasks such as topic classification with ML algorithms. Bag-of-Words

is a widely-accepted numerical vector model used for text vectorization that

shows whether a text contains or excludes certain words [52]. We propose a

modified Bag-of-Words (MBoW) model for alarm flood vectorization by con-

sidering each alarm flood as a document and the alarms associated with it as

terms.

Alarm flood data is not subject to the same challenges as text data, e.g.,

semantic complexities. However, considering the temporal context of alarm

sequences is an important factor in the vectorization of alarm floods. To

achieve effective alarm flood vectorization, we aim to come up with an alarm

weighting strategy, which 1) preserves information about triggered alarms and

their chronological order; 2) offers a ranking of alarms reflecting their relevance

to the underlying abnormal condition; 3) considers the early classification

accuracy for online situations. Accordingly, the weight of the alarm α in the

alarm flood f , which is denoted as W(α, f), is defined as follows:

W(α, f) = TF(α, f)× IDF(α)× TW(α, f). (4.6)

The first two terms, TF(α, f) and IDF(α), are defined based on two NLP con-
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cepts, namely, the term frequency (TF) and the inverse document frequency

(IDF) as follows:

TF(α, f) =
N(α, f)

|f |
(4.7)

IDF(α) = loge
|F|
|Fα|

. (4.8)

Here N(α, f) indicates the number of activations of alarm α in flood f ; |f | is

the total number of triggered alarms in f ; |F| represents the number of alarm

floods recorded in historical dataset; Fα denotes the set of historical alarm

floods that contain alarm α and |Fα| represents the total number of elements

in this set.

The term TW(α, f) in (4.6) denotes the time weight which is defined as

TW(α, f) = loge
τmax

τα,f
(4.9)

where τα,f is the time distance between the start time of the alarm flood f

and the time instant when the alarm α is activated in f , and τmax denotes the

maximum alarm flood duration in historical data.

The terms defined in (4.7) and (4.8) are employed in the weighting strategy

to capture the frequency and significance of each alarm in an alarm flood. The

TF is intended to reflect the general characteristics of an alarm flood by cal-

culating the frequency of each unique alarm. There can be alarm activations

that are frequent and common to several alarm floods, which are not neces-

sarily related to the source of the abnormality. IDF is utilized in this case

for weight adjustments by assigning lower weights to this type of alarms. The

TW defined in (4.9) is included in the weighting strategy to incorporate the

temporal characteristics of the alarm sequences into the alarm flood feature

vectors. It aims at capturing the chronological order of alarms while preserv-

ing the importance of earlier activated alarms. It would also avoid potential

ambiguity in the order that alarms appear in the A&E log.
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MBoW Feature Vectors

The proposed alarm weighting strategy is used to convert alarm floods from

alarm sequences to MBoW feature vectors. An MBoW alarm flood vector is an

n-dimensional vector, where n is the number of unique alarm tags configured

for the plant. Each entry of this feature vector represents the weight of its

corresponding alarm tag calculated by (4.6)–(4.9).

To build an MBoW vector for an alarm flood f , it is required to calcu-

late the weights of the unique alarms ai ∈ A, i = 1, 2, . . . , n, configured for

the plant. To accomplish this, IDF(ai) and τmax can be derived by using his-

torical data, and after the calculation of TF(ai, f), TW(ai, f) is obtained by

computing the time distance corresponding to each unique alarm tag as

τai,f =

{
min

l
(tai,l − tfs ) if TF(ai, f) ̸= 0

0, otherwise
(4.10)

where l is the number of activations of ai in f and tai,l denotes the time stamp

associated with each activation. In (4.10), τai,f is calculated by taking the

start time of the f , denoted as tfs as a baseline.

Following the above calculations, the MBoW vector for alarm flood f ,

denoted as 𭟋, can be constructed as follows:

𭟋 = [W(a1, f), W(a2, f), . . . , W(an, f)]
T . (4.11)

The MBoW vector model can represent important characteristics of alarm

flood sequences and can be used as a suitable input to ML-based analysis of

alarm floods. In addition, the proposed alarm weighting can provide plant

operators with a ranking of alarms, which can be helpful in identifying alarms

that are more likely to be related to underlying abnormal conditions.

4.2 Classification of Online Alarm Floods

The classification of online alarm floods into groups of similar historical

alarm floods can be viewed as an operator assistance mechanism for safe op-

eration. This can facilitate handling the abnormal situations corresponding
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to the classified alarm floods by providing information about similar historical

alarm floods and their causes. Early classification of an ongoing alarm flood

is important for enabling plant operators to take timely and efficient safety

measures without waiting for the alarm flood to end, especially in the case of

long-duration alarm floods.

4.2.1 Problem Definition

Alarm flood classification can be accomplished by developing a method

based on machine learning, which has been found effective in various applica-

tions. Let H denote a training dataset defined as

H = {(𭟋1, L1), (𭟋2, L2), . . . , (𭟋|F|, L|F|)} (4.12)

where 𭟋k = [W(a1, fk), W(a2, fk), . . . , W(an, fk)]
T is the MBoW feature vec-

tor corresponding to the kth historical alarm flood fk, and Lk ∈ C represents

the class label of the kth alarm flood belonging to the set of labels correspond-

ing to alarm flood categories denoted by C = {c1, c2, . . . , cρ}. The category

information in C can be arbitrarily selected and used to train and implement

the classifier based on the training dataset defined in (4.12). Regardless of

what categorical label is selected for each alarm flood class, each category is

characterized by some descriptions or annotations related to its corresponding

abnormal condition. When classification is performed, the information asso-

ciated with the predicted category for the classified alarm flood is provided

for on-site operators to help them diagnose the root cause. It is possible to

label and annotate the categories in the training dataset with the help of plant

experts and historical records. The preparation of the training dataset can

be facilitated using offline alarm flood management approaches, such as the

method presented in the previous chapter, which help handle large datasets

by providing insight into similar historical alarm floods.

An ML-based model for online alarm flood classification can be developed

based on the training dataset represented in (4.12). A classic ML-based classi-

fier works under the closed set assumption, where all the upcoming data being
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classified must be from classes that appeared in the historical dataset. While

this can be true in many cases, it is generally a restrictive assumption. Be-

cause obtaining historical samples that cover all possible scenarios is difficult

and previously unseen situations can occur in practice. Thus, a more realistic

scenario needs to be considered.

We aim to address the problem of online alarm flood classification by

building a classifier that can accurately classify previously observed alarm

floods into the categories in the training dataset and identify unseen alarm

floods caused by new abnormal situations. The open set classification refers to

such a scenario, where new situations can be handled by incorporating a reject

option that allows the classifier to avoid incorrect classifications by excluding

samples with low classification confidence [34].

In online classification, an immediate classification should be initiated upon

detection of the ongoing alarm flood fo. As new alarms are triggered in the

ongoing alarm sequence, the classification result should be updated until the

alarm flood ends. The input of the classifier at every update requires to be in

the form of a MBoW feature vector as defined in (4.11). Thus, alarm sequences

identified in each update of the online alarm flood detection process shown in

(4.5) need to be converted to MBoW vectors as follows:

𭟋1
o = [W(a1, f

1
o ), W(a2, f

1
o ), . . . , W(an, f

1
o )]
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o ), . . . , W(an, f

full
o )]

T
.

(4.13)

With the proposed alarm weighting strategy, classification of ongoing alarm

floods can serve as an online decision support tool for plant operators by

providing early alarm flood classification and alarm ranking.

4.2.2 Open Set Classification

The following proposes a multi-class open set classification model aiming

at classifying each online alarm flood to one of the historical categories in C
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or rejecting it to indicate that it is from an unseen or new class, i.e., it is not

from any of the ρ seen classes. This is accomplished by using the concept

of logistic regression (LR) for classification based on thresholding the output

class probability.

Logistic Regression

LR is a probabilistic classification method that can make binary decisions

about input observations. It performs the classification task based on the

class probabilities, which are calculated with a sigmoid function as hθ(x) =

sigmoid(z), where z = wTx + b. For an input vector x, hθ(x) represents

the probability of belonging to a class that is characterized by parameter

θ = (w, b). The parameter θ is obtained from a training process, which is

based on solving an optimization problem using historical data with the aim

of maximizing the likelihood of the class label of the training observations

being correct [53].

When the optimal value of θ (denoted as θ∗) is obtained, the LR classifier

can predict a class probability for a newly observed input observation. The

output of an LR classifier, denoted by y, can be either 1 indicating that the

given input observation belongs to the class or 0 indicating that it does not

belong to the class. Thus, the probability of xnew being a member of the

class (being in the positive class) is Pr(y = 1|xnew) = hθ∗(xnew), and the

probability of not being a member of the class (being in the negative class)

is Pr(y = 0|xnew) = 1 − hθ∗(xnew). An input observation is classified into a

positive or negative class using a decision boundary for class probability, which

is commonly set at 0.5. As a result, a new input instance xnew is classified into

the positive class when hθ∗(xnew) > 0.5 and into the negative class otherwise.

Multi-Class Classification

As real industrial processes typically involve multiple categories of abnor-

mal situations, the historical data of alarm floods may contain multiple classes.

Therefore, developing a multi-class classification strategy is required for ad-
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dressing the problem of alarm flood classification. To this end, the one-vs-rest

approach is employed to develop a multi-class classification based on the LR

algorithm. With this strategy, a binary classifier is fitted for each class, so

that each class is compared against all other classes.

With ρ classes of historical alarm floods, a one-vs-rest LR model is trained

separately for each class, such that the rth sigmoid function takes all the

training observations with y = cr as positive examples, and all the rest with

y ̸= cr as negative examples. Thus, based on training dataH defined in (4.12),

the parameter θr for the rth one-vs-rest classifier is learned by utilizing the

following data:

Pr = {(x, y) = (𭟋q, Lq)|q ∈ {1, 2, . . . , |F|}, Lq = cr}
Nr = {(x, y) = (𭟋q, Lq)|q ∈ {1, 2, . . . , |F|}, Lq ̸= cr}

where Pr and Nr are the sets of positive and negative examples respectively,

and r = {1, 2, . . . , ρ}. For Pr, q denotes the index of historical alarm floods

with labels equal to the rth alarm flood category label cr in the training dataset

H, and for Nr, q denotes the index of historical alarm floods with labels

other than cr. Alternatively, Pr is a subset of training dataset H including

historical alarm floods that belong to the rth class. In contrast, Nr is a subset

of training dataset H including historical alarm floods that are not of class r.

When the multi-class classifier is built using the obtained parameters for each

class (denoted as θ∗r = (w∗
r , b

∗
r)), the rth class probability for an online alarm

flood 𭟋o can be obtained through the corresponding sigmoid function as

hθ∗r (𭟋o) = sigmoid(zr) (4.14)

where zr = w∗
r
T𭟋o + b∗r. For classification, a decision boundary is set for

each trained class, so that if the predicted class probabilities fall below the

corresponding threshold, the online alarm flood is rejected; otherwise, it is

assigned to the class with the highest probability. The common value for the

decision boundary is 0.5, as previously mentioned.

This strategy provides the advantage of training each class independently

and enables the classifier to add a reject option by thresholding the class
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probability. Since the sigmoid function corresponding to each class considers

its input value separately, inspecting trained classifiers can provide insight

into each class. The default probability threshold of 0.5 may not be a proper

choice for decision making in alarm flood classification. This can result in

incorrect classifications in case of previously unseen alarm floods. As a result

of the interpretability feature of this classification strategy, it is possible to

develop a threshold estimation strategy based on historical data to improve

the decision boundaries for each class.

Open Set Classification Decision Boundaries

In the case of online alarm flood classification, the class probability value

for a previously unseen example may exceed the default threshold of 0.5 due

to some similar alarm tags. As a result, the unseen example is classified

incorrectly into one of the seen categories. When training sigmoid functions,

positive examples tend to be associated with higher class probabilities, i.e.,

closer to “1”. Hence, the risk of incorrect classification of new observations

can be reduced by increasing the probability threshold.

It is possible to estimate the appropriate decision boundaries for each class

by using the class probabilities corresponding to training data. To accomplish

this, for the rth class, it is assumed that predicted probabilities follow one

half of a Gaussian distribution, with a mean of “1”. Using the class proba-

bilities as Pr(Lk = cr|𭟋k), the other half of the Gaussian distribution can be

generated by calculating probability values as 1 + (1 − Pr(Lk = cr|𭟋k)). A

Gaussian distribution describes the probability of a variable taking on different

values. Variables closer to the mean of a Gaussian distribution have a higher

probability density, whereas variables away from the mean have a decreasing

probability density. We know that the classifier is trained such that the likeli-

hood of the class label of the training observations being correct is maximized.

As a result, positive examples are more likely to have class probabilities closer

to “1”, while negative examples take probability values away from “1”. Thus,

by fitting a Gaussian distribution with a mean of “1” on class probabilities, a
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Algorithm 3: Open set classification of alarm floods

Input: Online alarm sequence as defined in (4.5), trained one-vs-rest
classifiers, estimated decision boundaries;
Output: Classification decision for the ongoing alarm flood fo
begin

while λt = 1 do
Record the time-stamped triggered alarms from ts to t;
Calculate the time distance for each alarm by using (4.10);
Covnert the current update of fo to MBoW vector 𭟋o

according to (4.13);
for r = 1 to ρ do

Calculate hθ∗r (𭟋o) by (4.14);

if hθ∗r (𭟋o) ≤ ξr then
Identify the online alam flood as a new abnormal situation;

else
Make a classification decision according to
OS(𭟋o) = argmax

r
hθ∗r (𭟋o);

Update fo;

The summary of the proposed open set classification for online alarm floods

is presented in Algorithm 3. When an online alarm flood from a previously

seen category is classified in each update of its occurrence, plant operators

are offered online assistance based on the information regarding classified ab-

normal categories, which can be confirmed further using the provided alarm

rankings. If an online alarm flood is discovered as a new abnormal situation,

alarm ranking can help plant operators in coping with high alarm rates and

taking safety precautions in a timely manner. It can serve as an online decision

support tool for plant operators, allowing them to identify the most urgent

alarms and handle abnormal situations accordingly.

4.3 Case Study

In this section, the proposed method is evaluated by using the TEP with a

closed-loop plant simulator, which is a well-established benchmark [11]. In this

process, alarms are generated for measured process variables sampled over a

81



Table 4.1: Description of five alarm flood categories in TEP

Class index Label Fault description Type

1 c1 A/C feed ratio, B composition constant (Stream 4) Step

2 c2 B composition, A/C feed constant (Stream 4) Step

3 c3 Reactor cooling water inlet temperature Step

4 c4 C header pressure loss (Stream 4) Step

5 c5 Reactor cooling water valve Sticking

6 New1 Condenser cooling water inlet temperature Step

7 New2 A feed loss (Stream 1) Step

10-hour simulation period with a 0.6-min sampling interval. This study exam-

ines seven types of abnormal situations caused by different faults. As shown

in Table 4.1, five abnormal conditions associated with the lables c1, c2, . . . , c5

are considered to be previously seen, while two categories labeled New1 and

New2 are assumed to be new abnormal situations.

The alarm floods associated with each abnormal condition are detected

based on the strategy presented in (4.3) by using the parameters T = 10,

ϵ = 0.75, and γ = 8. During the alarm configuration process, alarms are

set for 39 measured process variables based on four different thresholds. As a

result, four alarm tags are defined for each process variable as “XMEAS pv H”,

“XMEAS pv L”, “XMEAS pv HH”, and “XMEAS pv LL”. In this format

“pv” indicates the process variable index, “H” and “HH” represent “High”

and “High High” alarms, and “L” and “LL” represent “Low” and “Low Low”

alarms, respectively. For example, alarm tag “XMEAS 01 H” is annunciated

when process variable number one exceeds its corresponding threshold for

the “High” alarm. The list of all process variables and their corresponding

thresholds can be found in [86].

As an example of simulated alarm data, the A&E log of an alarm flood

belonging to category c4 is provided in Table 4.2. The list of alarm tags

triggered during this alarm flood is presented in the first column. The second

82



column shows the triggering time of alarm tags, and the last column includes

a description for each alarm.

Table 4.2: An alarm flood from c4

Alarm Time Description

XMEAS 20 H 6:03:00 Compressor work
XMEAS 04 L 6:03:00 A and C feed (stream 4)
XMEAS 07 L 6:03:00 Reactor pressure
XMEAS 09 L 6:03:00 Reactor temperature
XMEAS 13 L 6:03:00 Product separator pressure
XMEAS 16 L 6:03:00 Stripper pressure
XMEAS 20 HH 6:03:00 Compressor work
XMEAS 04 LL 6:03:00 A and C feed (stream 4)
XMEAS 07 LL 6:03:00 Reactor pressure
XMEAS 13 LL 6:03:00 Product separator pressure
XMEAS 16 LL 6:03:00 Stripper pressure
XMEAS 18 H 6:03:36 Stripper temperature
XMEAS 21 H 6:03:36 Reactor cooling Water outlet temperature
XMEAS 06 L 6:03:36 Reactor feed rate (stream 6)
XMEAS 21 HH 6:03:36 Reactor cooling Water outlet temperature
XMEAS 09 LL 6:03:36 Reactor temperature
XMEAS 22 H 6:04:12 Separator cooling Water outlet temperature
XMEAS 18 HH 6:04:12 Stripper temperature
XMEAS 10 L 6:05:24 Purge rate (stream 9)
XMEAS 11 H 6:06:36 Product separator temperature
XMEAS 10 LL 6:07:48 Purge rate (stream 9)
XMEAS 04 L 6:09:00 A and C feed (stream 4)
XMEAS 06 L 6:10:48 Reactor feed rate (stream 6)
XMEAS 21 H 6:11:24 Reactor cooling Water outlet temperature
XMEAS 21 HH 6:11:24 Reactor cooling Water outlet temperature
XMEAS 34 H 6:13:12 Component F (stream 9)

Every abnormal condition is associated with a total of 40 alarm floods. 75%

of the alarm floods caused by seen categories are used to train the classifier,

and 25% of them in addition to 20 alarm floods corresponding to new classes

are used to test the online open set classification. The training dataset is built

using (4.12) and utilized to train five one-vs-rest classifiers. Figure 4.3 shows

the trained sigmoid functions for each class, which are used to generate class
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alarm flood feature vectors.

An alarm flood from the unseen class New2 is used to conduct an exper-

imental analysis of the proposed weighting strategy. The weights of the top

three alarms in different updates of the online alarm flood are listed in Table

4.3. This is to demonstrate the effectiveness of the online alarm ranking offered

by the proposed vectorization method. The records in this table correspond

to updates when new alarms are triggered in the online alarm flood. Table 4.3

shows that the two top alarm tags in all updates correspond to the process

measurement related to A feed, which take values considerably higher than

the lower ranked tags. These alarms have been configured as “LL”, and “L”

for the associated process variable, indicating that the process measurement

falls below the alarm limits of “Low-Low” and “Low”. Additionally, most up-

dates have reactor pressure and reactor feed rate alarms as the third highest

ranked alarms. According to Table 4.1, the fault description corresponding

to class New2 states that this category of alarm floods is caused by A feed

loss. In [40], the entire TEP was divided into multiple sub-blocks using the

P&IDs and expert knowledge to provide a clear insight into the process. It is

evident from the information provided in [40] that the feed and reactor can

be combined into one block as they are connected through physical structures

and control loops. Thus, it can be verified that at every update, reasonable

rankings of alarms are provided, which correspond to abnormal conditions.

4.4 Conclusion

In this chapter, an online operator-assistance mechanism proposed that re-

lies on early classification of alarm floods and alarm ranking. A vectorization

model was developed to represent alarm floods as feature vectors considering

key alarm characteristics, including the temporal information. A strategy for

weighting alarms based on their relevance to the abnormal situation was devel-

oped, while taking early classification accuracy into account. A classification

method based on decision boundary estimation was proposed to handle the
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Table 4.3: An example of online alarm ranking for a new alarm flood

Time Alarm Description Score

Start of the alarm flood
XMEAS 01 LL A feed 2.26
XMEAS 01 L A feed 1.95
XMEAS 07 LL Reactor pressure 0.31

1.8 min later
XMEAS 01 LL A feed 2.10
XMEAS 01 L A feed 1.80
XMEAS 07 LL Reactor pressure 0.30

3 min later
XMEAS 01 LL A feed 1.96
XMEAS 01 L A feed 1.69
XMEAS 07 LL Reactor pressure 0.28

4.2 min later
XMEAS 01 LL A feed 1.73
XMEAS 01 L A feed 1.49
XMEAS 07 LL Reactor pressure 0.25

5.4 min later
XMEAS 01 LL A feed 1.63
XMEAS 01 L A feed 1.40
XMEAS 20 LL Compressor work 0.36

7.8 min later
XMEAS 01 LL A feed 1.54
XMEAS 01 L A feed 1.33
XMEAS 06 L Reactor feed rate 0.38

10.8 min later
XMEAS 01 LL A feed 1.47
XMEAS 01 L A feed 1.26
XMEAS 06 L Reactor feed rate 0.55

11.4 min later
XMEAS 01 LL A feed 1.40
XMEAS 01 L A feed 1.20
XMEAS 06 L Reactor feed rate 0.52

13.2 min later
XMEAS 01 LL A feed 1.33
XMEAS 01 L A feed 1.15
XMEAS 06 L Reactor feed rate 0.50

13.8 min later
(End of the alarm flood)

XMEAS 01 LL A feed 1.33
XMEAS 01 L A feed 1.15
XMEAS 06 L Reactor feed rate 0.50

new alarm flood scenarios. The benchmark TEP validates the performance of

the proposed method.
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Chapter 5

A Probabilistic Framework for
Online Analysis of Alarm
Floods Using Convolutional
Neural Networks ∗

In this chapter, a novel alarm flood representation based on a probabilistic

framework is proposed, which is capable of tolerating alarm order ambiguities

and the effect of irrelevant alarms. The proposed representation incorporates

historical alarm tags and their triggering time to define conditional probabil-

ity distribution functions (CPDF)s for temporal information inherent in alarm

floods. Using the resulting CPDFs, time-stamped alarm sequences associated

with alarm flood data of different sizes are transformed into fixed order ma-

trices that can be fed into convolutional neural networks (CNNs). An online

alarm flood analysis is then carried out through training a CNN, which pre-

dicts upcoming fault scenarios by observing online alarm floods. By using

a modified training process, online alarm floods with alarm order ambiguity

can be classified accurately even at early stages of occurrence. Based on this

strategy, online operator assistance mechanisms can be implemented to pro-

vide early decision support and ensure safe and efficient plant operations. The

∗The material in this chapter has been submitted for publication as: Haniyeh Seyed
Alinezhad, Jun Shang, Tongwen Chen, and Sirish L. Shah, “A probabilistic framework for
online analysis of alarm floods using convolutional neural networks,” IEEE Transactions on
Instrumentation and Measurement.
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proposed method is evaluated through case studies using alarm datasets from

the well-established TEP benchmark and a Vinyl Acetate Monomer (VAM)

process. Comparative studies with state-of-the-art alarm flood analysis meth-

ods are also provided to show the effectiveness of the proposed approach.

This chapter is organized as follows. Section 5.1 provides the definition of

an alarm flood and a summary of challenges in alarm flood monitoring. In

Section 5.2, the proposed ML-based online alarm flood monitoring technique

is introduced. Two case studies evaluating the effectiveness of the proposed

method are presented in Section 5.3. The chapter is finally concluded in

Section 5.4.

5.1 Alarm Floods

Alarm floods occur when plant operators receive too many alarms within

a relatively short period of time, making it difficult for them to deal with the

data and respond appropriately. An alarm flood can be detected using alarm

rate as a metric for defining its start and end. The calculation of the alarm

rate can be implemented through a sliding time window, which counts the

number of triggered alarms within a predefined time frame. The detection

of alarm floods can then be accomplished by setting alarm rate thresholds

corresponding to the start and end conditions. For example, according to

the industrial standard ANSI/ISA-18.2, an alarm flood occurs when alarms

are raised at a rate of at least 10 alarms per 10 minutes and ends when no

more than five alarms are raised in a 10-min period [50]. This strategy can

be applied both to historical alarm logs and upcoming real-time alarm data

to identify alarm floods. A detailed explanation of the application of a sliding

time window to online and offline alarm flood detection has been presented in

Chapter 4.

In the field of alarm management, the development of alarm flood analysis

techniques can contribute to assisting plant operators in addressing alarm

flood issues. Analyzing similarity between alarm sequences associated with
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alarm floods is a useful way to handle alarm floods. Similar alarm sequences

are often indicative of alarm floods caused by the same abnormality. Therefore,

data from similar historical alarm floods can provide useful information for

operators to manage alarm overloading situations. To conduct an effective

similarity analysis, it is imperative to take into account certain aspects of

alarm data corresponding to alarm floods.

1. Alarm Order Ambiguity : The ambiguity of alarm orders during an alarm

flood is one of the critical features to consider. Alarms in similar alarm

floods are expected to follow certain patterns revealing a sequential re-

lationship between specific alarm variables. It is however possible that

an alarm may appear after a subsequent alarm due to noise and random

detection delays. For example, highly correlated alarms that almost hap-

pen simultaneously can be subject to uncertainty regarding their order

of occurrence.

2. Similar Alarm Floods with Different Sizes and Alarm Tags : Due to noise

in real plant operations, the number of triggered alarms during similar

alarm floods may vary, which results in alarm sequences differing in

size. There is also a possibility that similar alarm floods may contain a

number of non-identical alarm tags in their alarm sequences, that may

not be relevant to their root cause category.

3. Triggering Time: An alarm flood is a sequence of time-stamped alarm

tags. For similar alarm floods, the triggering time of common alarms

may vary, even when alarm sequences have similar chronological orders.

Two alarm floods from the same root cause category that comprise of the

aforementioned characteristics are shown in Table 5.1. The data were collected

from alarm datasets of the plant simulator for a VAM process [110]. In this

example, the red alarm tags indicate alarms that are not shared by two alarm

sequences, while the black alarm tags indicate alarms that are the same in

both alarm sequences.
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Table 5.1: Alarm flood examples

Alarm Flood 1 Alarm Flood 2

Alarm Tag Triggering Time Alarm Tag Triggering Time

C FI131.PV.Low 17:00:00 FI131.PV.Low 18:33:00
FI132.PV.Low 17:00:00 FI132.PV.Low 18:33:00
FI502.PV.Low 17:00:00 FI502.PV.Low 18:33:00
QI175.PV.High 17:00:00 QI176.PV.High 18:33:00
QI176.PV.High 17:00:00 QI404.PV.Low 18:33:00
QI175.PV.High 17:00:00 QI531.PV.Low 18:33:00
QI401.PV.High 17:00:00 QI561.PV.Low 18:33:00
QI404.PV.Low 17:00:00 EI330.PV.Low 18:33:00
QI531.PV.High 17:00:00 EI560.PV.Low 18:33:00
QI531.PV.Low 17:00:00 QI173.PV.High 18:33:10
QI561.PV.Low 17:00:00 FI131.PV.High 18:33:28
EI330.PV.Low 17:00:00 QI460.PV.High 18:33:30
EI560.PV.Low 17:00:00 PI131.PV.High 18:33:32
QI173.PV.High 17:00:30 FI401.PV.Low 18:33:40
FI401.PV.Low 17:00:32 QI206.PV.High 18:33:42
FI131.PV.High 17:00:37 QI174.PV.Low 18:34:20
PI131.PV.High 17:01:03 QI400.PV.Low 18:34:32
QI206.PV.High 17:01:05 QI412.PV.High 18:34:50
QI174.PV.Low 17:01:30 QI402.PV.High 18:36:02
QI400.PV.Low 17:01:40 QI411.PV.Low 18:36:07

For alarm floods originating from the same cause, investigating the alarm

patterns directly without considering the above features can lead to false sim-

ilarity analysis. The problem arises when two alarm sequences from the same

source have small patterns in common, which leads to categorizing them into

different alarm flood types. This study addresses the issues listed above to

conduct an efficient similarity analysis of alarm floods and to design a reliable

operator assistance mechanism.

There is a class of alarms known as chattering alarms, which are charac-

terized by the frequent transition of a single alarm tag between normal and

abnormal states [102]. There is a possibility of false alarm flood detection due

to chattering alarms causing an increase in the alarm rate. The removal of
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chattering alarms is thus necessary before conducting alarm flood detection.

In both offline and online applications, several effective techniques have been

developed to address the problem of chattering alarms [45, 62]. Since dealing

with chattering alarms is outside the scope of this study, the rest of the chap-

ter assumes that chattering alarms have been reduced in the alarm data being

examined.

5.2 ML-Based Alarm Flood Monitoring

ML provides methods for analyzing newly generated data by leveraging

historical data. An A&E log contains the history of alarms that have been

triggered during plant operation. Historically recorded alarms contain valu-

able information about abnormal circumstances and can be used to provide

insights into such situations. Thus, it is possible to develop an ML-based

online alarm flood monitoring strategy through the use of historical A&E

logs. For ML-based alarm flood analysis, it is necessary to make alarm floods

compatible with ML algorithms. Thus, our research primarily focuses on the

investigation of a method for transforming alarm floods from time-stamped

alarm sequences into inputs suitable for ML algorithms.

5.2.1 A Probabilistic Alarm Flood Matrix

Here a framework is developed to model time-stamped alarm sequences as-

sociated with alarm floods as feature matrices that can be applied to a CNN.

The proposed alarm flood representation is based on a probabilistic incorpo-

ration of temporal information of alarm floods aiming to increase tolerance

for alarm order ambiguity across similar alarm floods.

Time data corresponding to historical alarm floods from A&E logs are em-

ployed to achieve an alarm flood representation that addresses the three con-

cerns described in the previous section. To accomplish this, temporal datasets

including the relative triggering time of alarms in historical alarm floods are
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created as follows:

Tij = {taij |aij ∈ Fj}. (5.1)

Here the index i indicates the unique alarm tag such that i ∈ {1, 2, . . . , n};

n denotes the total number of unique alarms configured for the plant; j is

the index of the alarm flood category, where j = 1, 2, . . . , c and c denotes the

total number of alarm flood categories observed in the historical alarm floods;

Fj = {F kj}mj

k=1 denotes the set of alarm sequences corresponding to historical

alarm floods from the jth category; mj is the number of alarm flood samples

in Fj; aij represents the ith alarm tag triggered in alarm floods from set Fj;

Tij is the set including historical time distances corresponding to the alarm

aij, denoted by taij , which is defined as

taij = ttaij − tsFkj ,aij
, k ∈ {1, . . . ,mj} (5.2)

where ttaij is the triggering time corresponding to aij, and ts
Fkj ,aij

is the start

time of the kth alarm flood from the jth category, which includes the ith

unique alarm tag in its alarm sequence.

To build datasets defined in (5.1), the triggering times of unique alarm

tags that satisfy the following assumption are collected:

NFj
(aij) ≥ σmj (5.3)

where NFj
(aij) is the number of alarm floods from the jth historical category

that include the ith unique alarm tag in their alarm sequences, and 0 < σ ≤ 1.

According to (5.3), alarm tags that are observed in at least a certain num-

ber of historical alarm floods of a category are used to define (5.1). This

assumption is made to filter out irrelevant or less important alarm tags in

each category. Therefore, a value greater than 0.5 would be a reasonable

choice for σ to reflect triggering times corresponding to alarm tags activated

in the majority of alarm floods. The generated historical time datasets are

used to estimate a CPDF for each unique alarm tag activated in each alarm

flood category. The CPDF of historical data belonging to the dataset Tij
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Algorithm 4: Estimation of CPDFs

Input: Alarm floods detected from historical A&E logs, n unique
alarm tags configured for the plant;
Output: Estimated CPDFs
begin

for j = 1 to c do
for i = 1 to n do

if NFj
(aij) ≥ σmj then

for k = 1 to mj do
Calculate taij by (5.2);

else
Ignore the effect of ith unique alarm tag in the jth
alarm flood category;

Build the dataset Tij based on (5.1);
Estimate the CPDF for Tij by (5.4);

is denoted as Ptai
(t|Cj), which is estimated using the well-established kernel

density estimation method as

Ptai
(t|Cj) =

1

nijh

nij∑
l=1

K(
t− taij

h
) (5.4)

where K(·) is the kernel function, which is a Gaussian kernel here, and h is the

kernel bandwidth that is selected as the optimal choice proposed by [90]. The

process of estimating CPDFs from historical temporal data is summarized in

Algorithm 4.

The functions estimated based on (5.4) represent the probability distri-

bution of the temporal data corresponding to the ith unique alarm ai when

it is triggered in the jth alarm flood category Cj. The resulting CDFs are

employed to define a probabilistic matrix representing an alarm sequence as-

sociated with an alarm flood as follows:

F = [fji]c×n (5.5)

where

fji =

{
maxPtai

(tai |Cj), if ai ∈ Fj

0, otherwise.
(5.6)
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The proposed representation can be used to convert alarm sequences of

any size into a fixed order matrix, which can be used as input to a CNN.

Activated alarm tags and temporal characteristics related to alarm floods can

be reflected in this matrix representation. This probabilistic model aims to

capture the stochastic nature of temporal information in alarm floods. Using

probability-based temporal data rather than exact time stamp values helps

to mitigate alarm order uncertainty when performing alarm flood similarity

analysis.

5.2.2 CNN-Based Early Classification

Similar alarm sequences are likely to be associated with alarm floods caused

by the same abnormality. Online operator assistance for managing alarm

floods can be viewed as an ML-based classification method based on similarity

analysis between upcoming alarm floods and historical alarm floods. Providing

early online assistance for plant operators is crucial to minimize the risk of

hazardous incidents and process failures. Therefore we seek to develop a

classification process that is capable of providing accurate early predictions

for the categories of online alarm floods.

Convolutional Neural Networks

The superior ability of CNNs to deal with complicated problems has led

to their successful implementation in many fields. Due to their powerful self-

tuning and learning capabilities, CNNs can capture complex features from

high-dimensional inputs efficiently. In general, CNNs consist of three basic

components, convolutional layer, pooling layer, and fully connected layer.

Convolution is the core operation of a CNN that is carried out through

a convolutional layer. In a convolutional layer, a set of learnable kernels are

employed to extract local features from input data increasing the generaliza-

tion capability of the CNN to handle new inputs. The convolved results or

produced feature maps are then sent through an activation function to in-

corporate nonlinearity. As a result, the CNN is able to learn more complex
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representations and becomes more expressive. If the flood matrix F is used as

the input to a convolutional layer, the resulting output feature map is defined

as follows:

F conv = gconv(W ∗ F in) (5.7)

where gconv(·) denotes a nonlinear activation function; W represents a w × w

convolutional kernel, and “∗” indicates the 2-dimensional convolutional oper-

ator, which calculates the inner product of the kernel matrix at each location

of the input by moving kernel across the input data.

Typically, a pooling layer is placed after a convolutional layer, which ap-

plies a downsampling operation to feature maps aiming to reduce the input

dimensionality, the computational cost, and the possibility of over-fitting. The

pooling operation for a feature map extracted from an alarm flood matrix can

be defined as follows:

Fpool = gpool(F conv). (5.8)

Here gpool(·) is the pooling function. The most common pooling strategies in

CNNs are average-pooling and max-pooling. This work uses the max-pooling

operation to generate feature maps including prominent attributes.

Following feature extraction layers, the resulting feature maps are flattened

into a one-dimensional vector for feeding into a fully connected layer as

Ofc = gfc(wfcIfc+ bfc). (5.9)

Here a weighted sum of the input Ifc is performed, which is then put through

an activation function gfc(·). This layer is a key component of the CNN archi-

tecture, which helps to conduct classification tasks via providing a probability

distribution over different classes based on the output Ofc.

A CNN can be constructed by using multiple feature extraction layers with

kernels of different sizes and multiple fully connected layers. This enables the

extraction of deep features from input data and helps improve classification

accuracy. Weights and biases in the fully connected layer and convolutional

kernels are learned during the training process of a CNN by processing a
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set of historical data. The trained CNN can then be used to perform the

classification task on the incoming input data [80].

CNN-Based Online Alarm Flood Monitoring

By using the probabilistic model proposed in (5.5) and (5.6), a training

dataset including historical alarm flood matrices can be built, which can be

used to train a CNN. A classification-based mechanism for monitoring online

floods can then be implemented using the trained CNN.

In this study, training data are modified so that early classification ac-

curacy is enhanced. As a result, each historical alarm flood sequence F kj is

broken down into sub-sequences of varying lengths as follows:

F kj
s = F kj

tkjs : tkjd +(s−1)∆
. (5.10)

Here F kj
s is a sub-sequence of F kj including the alarms that have been triggered

within the time interval tkjs : tkjd + (s− 1)∆; tkjs is the start time of the alarm

flood; tkjd is the time at which the alarm flood was detected; s = 1, 2, . . . , sekj ,

such that for s = sekj , t
kj
d + (s − 1)∆ = tkje , where tkje is the end time of the

alarm flood; and ∆ is a predefined step size to increase the length of generated

sub-sequence.

To improve the early classification accuracy, a modified training dataset

can be created by converting the alarm sub-sequences corresponding to each

historical alarm flood into the proposed probability matrices and labeling them

identically. Using this dataset rather than a set of full-length historical alarm

flood data allows the classifier to learn different updates of alarm floods from

each fault category. As a result, the trained CNN can handle the classification

of online alarm floods even at early stages of occurrence more effectively. Al-

gorithm 5 summarizes the proposed data prepossessing that is used to prepare

the training data for the CNN.

As a result of the proposed CNN-based strategy, a classification-based

mechanism for online analysis of alarm floods is achieved, which is capable
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Algorithm 5: Training CNN

Input: Historical alarm floods, estimated CPDFs;
Output: Trained CNN
begin

for j = 1 to c do
for k = 1 to mj do

while s ≤ sekj do
Extract the sub-sequence F kj

s by using (5.10);
Convert F kj

s to the matrix form (5.5) using (5.6);
Label the resulting alarm flood matrix as category j;
Save labeled data in a training dataset;

Train the CNN using the built training dataset;

of identifying the fault category for an online alarm sequence. To establish

early classification and provide timely decision support for plant operators, it

is essential to initiate classification once an ongoing alarm flood is detected.

To perform online classification, the CPDFs estimated by (5.4) are assumed

to be a set of generative models representing temporal information about

historical alarm floods. The probabilistic representation of the temporal data

corresponding to newly detected alarm flood samples can be drawn from these

generative models. The result is utilized to generate the alarm flood feature

matrix for the online alarm flood, which is then used as an input to the

trained neural network that predicts the ongoing fault category. Whenever the

online alarm flood is updated over time the alarm flood matrix and subsequent

classification results should also be updated until the alarm flood ends. By

defining the online alarm flood in (5.11), the summary of the proposed alarm

flood monitoring methodology can be represented by Algorithm 6.

F o
u = F o

tos : t
o
d+(u−1)δ (5.11)

Here F o
u indicates the uth update of the online alarm flood, denoted as F o,

which includes the alarms that have been triggered within the time period

tos : tod + (u− 1)δ; tos = tod − To is the start time of the online alarm flood;

tod is the time at which the online alarm flood is detected; δ and To denote
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Algorithm 6: CNN-based alarm flood monitoring

Input: Online alarm sequence F o, estimated CPDFs, and trained
CNN;
Output: Classification decision for the ongoing alarm flood
begin

while u ≤ ue do
Convert F o to the matrix form (5.5) using (5.6);
Feed the resulting alarm flood matrix to the CNN trained by
Algorithm 5;
Make a classification decision about ongoing fault category to
offer online assistance to plant operators;
Update F o;

the step size and the width of the sliding time window used to detect alarm

floods during online operation, respectively; and u = 1, 2, . . . , ue, such that for

u = ue, t
o
d + (u− 1)δ = toe, where toe is the end time of the online alarm flood.

With the proposed probabilistic framework and modified training scheme, we

can achieve high accuracy when classifying online alarm floods despite possible

ambiguities in alarm orders.

5.3 Case Studies

In this section, an evaluation of the proposed method is presented through

case studies utilizing alarm data from the TE process and a VAM process

[11,110]. Moreover, to demonstrate the effectiveness of the developed method-

ology, comparisons are made with state-of-the-art online alarm flood analysis

methods.

5.3.1 TE Process Alarm Data

Here, alarm flood data generated by TE process with a closed-loop plant

simulator, a well-established benchmark, are employed to assess the perfor-

mance of the proposed technique [11]. Alarm data for this process are collected

through simulated process variables with a 0.6 min sampling interval. Detailed

information regarding all process variables and their configured alarm thresh-
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Table 5.2: Description of four alarm flood categories in TE process

Class index Fault description

1 A/C feed ratio, B composition constant (Stream 4)

2 B composition, A/C feed constant (Stream 4)

3 A feed loss (Stream 1)

4 C header pressure loss (Stream 4)

olds can be found in [86]. This study analyzes alarm floods resulting from four

different abnormal situations listed in Table 5.2. A total of 40 alarm floods

accompany every abnormal condition, where average duration of alarm floods

is 21.6 minutes. We use 75% of the alarm floods as historical data, and the

remaining 25% as test data for online alarm flood analysis.

Historical time stamps of alarm tags in each alarm flood category are

used to estimate CPDFs by using Algorithm 4, which are shown in Figure

5.1. By using historical alarm flood data, Algorithm 5 prepares the training

data, which is then used to train a CNN. Adjusting CNN parameters, such

as network structure, is a data-dependent task, which is here achieved based

on the common practice adopted by the deep learning community [36]. We

use a CNN with three convolutional layers, two pooling layers, and a fully

connected layer.

The number of convolution kernels for the three convolution layers is set

to 8, 16, and 32, respectively, with 3 × 3 kernels and the rectified linear unit

(ReLU) as the activation function gconv. The function gpool implements max-

pooling with a window size of 2 × 2, and the fully connected layer performs

classification through a softmax activation function.

Through the implementation of Algorithm 6 on test data, the classification

performance of the trained CNN is evaluated. Figure 5.2 illustrates the average

classification accuracy of test data calculated for each online classification

update. Considering the average duration of the employed alarm flood data,
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Figure 5.1: Estimated CPDFs for TE process alarm flood data: (a) Class 1.
(b) Class 2, (c) Class 3. (d) Class 4.

it is evident that the developed classifier works well even at the initial stages

of online alarm floods.

5.3.2 VAM Process Alarm Data

In this part, alarm data from a VAM process is used to conduct a compar-

ative study between the proposed approach and state-of-the-art online alarm

flood analysis methods. As compared to the alarm flood data collected through

the TE process, alarm floods from the VAM process include a higher degree of

alarm order ambiguity. This makes it suitable for evaluating whether the pro-

posed method is effective in handling alarm order ambiguity when compared

with existing online methods. A VAM process simulator is used to model dif-
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Figure 5.2: Average classification accuracy using TE process alarm flood data.

Table 5.3: Description of four alarm flood categories in VAM process

Class index Fault description

1 Absorber circulation pump fail

2 Column bottom pump fail

3 Separator bottom valve fail

4 Compressor surging

ferent faulty conditions and generate alarm data for process variables based

on approximately 10 seconds sampling intervals [110]. Here we examine alarm

floods resulting from four different abnormal conditions listed in Table 5.3.

For each abnormal situation, 30 alarm flood samples are generated, and the

average duration of alarm floods is about 10.05 minutes. To perform online

alarm flood analysis, we use about 75% of the alarm floods as historical data

and the remaining 25% as test data.

Algorithm 4 is utilized to estimate the CPDFs, which are shown in Fig-

ure 5.3. Consequently, Algorithm 5 is used to prepare the dataset for CNN
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training. We use a network structure with three convolution layers, two max-

pooling layers with 2 × 2 pooling windows, and a fully connected layer. The

three convolution layers utilize 16, 32, and 64 convolution kernels, respectively,

and the classification is carried out with the softmax activation function.
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Figure 5.3: Estimated CPDFs for VAM process alarm flood data: (a) Class
1. (b) Class 2, (c) Class 3. (d) Class 4.

Algorithm 6 is implemented to perform online classification on test data.

A comparison of the classification results with those of the state-of-the-art

online alarm flood classification methodologies is conducted. Average clas-

sification accuracy of test data at each time update is used to evaluate the

effectiveness of the proposed method. According to the results shown in Figure

5.4, the developed method outperforms the others in all classification updates.

This shows how the proposed probabilistic framework contributes to resolving
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uncertainty in alarm orders when conducting online similarity analysis.
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Figure 5.4: Average classification accuracy using VAM process alarm flood
data.

5.4 Conclusion

In this chapter, a probabilistic framework based on alarm data was pro-

posed to convert alarm floods into suitable inputs for CNNs. Using historical

alarm tags and their triggering times, the proposed framework transformed

alarm sequences associated with alarm flood data of different sizes into fixed

order probabilistic matrices. We developed ML-based alarm flood analysis

using historical alarm flood matrices, in which a CNN was trained to predict

upcoming fault categories from online alarm flood data. As a result of an

improved training process, online alarm floods could be classified accurately

even in their early stages of development. Moreover, this method was capable

of tolerating irrelevant alarms and ambiguous alarm orders in the similarity

analysis of alarm floods due to its probabilistic nature. We evaluated the ef-

fectiveness of the proposed approach using two alarm datasets from the TE

process and a VAM process.
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Chapter 6

Conclusions and Future Work

This chapter concludes the thesis by providing some remarks on the main

findings. It also points out some problems and potential research directions

for future work.

6.1 Conclusions

This thesis proposes advanced ML-based methods for online alarm flood

monitoring using alarm data, with the ultimate goal of supporting plant op-

erators in analyzing failure root causes. The outcomes of the investigations in

this thesis are summarized as follows:

1. First, an EAC analysis was used to model alarm floods as feature vectors

by utilizing the time stamps associated with their corresponding alarm

sequences. Based on the concept of GMM, an approach incorporating

offline labeling and online classification was developed using unlabeled

historical alarm floods. In the offline phase, GMM-based data clustering

was performed, which was automated in terms of choosing the optimal

number of clusters by applying an efficient cluster validity index. Par-

tially labeled historical alarm flood clusters were then employed for early

classification of ongoing alarm floods.

2. Second, a novel alarm flood vector representation called MBoW was

developed inspired by NLP. This representation could reflect the key
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features of time-stamped alarm sequences associated with alarm floods.

Alarm flood similarity analysis was carried out by grouping similar vec-

tors through an ML-based clustering technique based on an efficient simi-

larity measurement. A weighting strategy was devised to rank alarms ac-

cording to their relevance to specific abnormal conditions. This method

could provide insights from historical data and facilitate the handling of

large datasets.

3. Third, an online operator assistance mechanism was developed through

the extension of the MBoW model. Aiming at dealing with previously

unseen abnormal situations, an ML-based open set classification tech-

nique using systematic similarity threshold estimation was devised. The

proposed classifier could reduce the risk of incorrect classifications by re-

jecting samples with low classification confidence. Plant operators could

benefit from this approach to make timely decisions regarding both pre-

viously observed and unseen alarm flood scenarios.

4. Finally, a probabilistic framework was developed to address the problem

of alarm order ambiguity in alarm floods. A set of CPDFs were estimated

for the temporal information associated with historical alarm floods,

which were then utilized to convert alarm floods into suitable inputs

for CNNs. As a result, time-stamped alarm sequences associated with

alarm flood data of different sizes were transformed into fixed order

matrices. The proposed alarm flood matrices were used to establish

an ML-based online operator assistance mechanism, where a CNN was

trained to predict upcoming fault scenarios by observing online alarm

floods. By utilizing a modified CNN training process, it was possible to

classify online alarm floods accurately even at the early stages of their

occurrence.
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6.2 Future Work

Aiming at the development of operator assistance mechanisms, the thesis

proposed effective methods for managing abnormal conditions based on on-

line alarm flood monitoring. Alarm flood management during online plant

operation is a critical and imperative topic of research which deserves further

investigation. Some possible future directions for alarm flood monitoring are

summarized as follows.

1. Benefiting from Alarm Data:

The use of data-based approaches to manage alarm floods associated

with abnormal situations has received considerable attention due to the

large amount of data available in modern computerized processes. This

class of methods aims to reduce human effort in process monitoring, and

ensure safe and efficient plant operation. The majority of existing re-

search in abnormality management and process safety is based on process

data. As an alternative to process data, alarm data related to abnormal

conditions can provide useful information for the development of opera-

tor assistance systems. Alarms are raised only during fault occurrence,

but process data are generated regularly by measuring process variables

during normal process operation. As a result, alarm data have lower

volume than process data, while provide valuable insights into abnor-

mal conditions. This makes alarm data an advantageous candidate for

developing online operator assistance mechanisms with lower implemen-

tation and computational complexity. There have been several methods

for analyzing alarm flood data in offline applications. However, utilizing

alarm data to provide operator decision support during online abnormal

situations has not been extensively studied in the literature, and further

research is still required to fill the existing gap.

2. Minimizing Human Effort:

In this thesis operator assistance mechanisms were proposed on the basis
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of similarity analysis of alarm flood data. Data classification strategies

using labeled alarm floods were developed to predict fault categories

corresponding to online alarm floods. Labeling alarm floods with infor-

mation regarding process variables that contribute to their root causes

is essential to facilitate the identification of possible solutions to handle

abnormal situations efficiently. However, expert evaluation and pro-

cess knowledge are required to categorize alarm flood data by their root

causes. It is therefore imperative to develop root cause identification

methods to minimize the reliance on expert knowledge and thus save

a considerable amount of time. For instance, integrating causality in-

ference strategies reviewed in the thesis with ML-based strategies can

improve the online alarm flood monitoring. This can provide further

support via incorporating root cause identification capabilities into the

online operator assistance mechanism.

3. Dealing with Situations Involving Multiple Faults:

In this thesis, the study is based on the assumption that alarm floods

are the result of a single fault. However, this may not always be the case

when dealing with real-world industrial applications, and alarm floods

may be caused by a combination of multiple faults during a single inci-

dent. In the literature, the situation of multiple faults has not been fully

addressed. Thus, it is important to take this condition into consideration

when investigating alarm flood analysis methods.
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