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ABSTRACT

In this thesis, we consider the problems of hedging contingent claims and 

utility maximization in the framework of two interest rates financial markets. 

The upper and lower hedging prices are derived for European options by means 

of auxiliary completions of the initial market.

The well known financial markets consider a unique interest rates for both 

credit and deposit purposes, see for instance the Black -Scholes, Merton and 

Cox-Ingersoll-Ross models. The latter assumption allows to derive a unique 

price called the fair price on which the buyer and seller of the claim agree. 

Instead of a unique price, the hedging problem in the two interest rates finan­

cial markets admits an interval of initial prices on which buyer and seller can 

agree.

Using a similar technique of market completions, we consider the problem of 

an investor searching to maximize the expected utility of his terminal wealth, 

in the two interest rates financial markets. We show that under suitable con­

ditions the latter problem can be reduced to a standard investment problem. 

This methodology is then adapted on the problem of shortfall risk minimiza­

tion.

We finally consider the problem of pricing equity linked-life insurance con­

tracts with guarantee in the two interest rates financial markets considered. 

To address the problem, we adapt a technique used by Melnikov [37] to price 

equity linked-life insurance contract, in one interest rate jump-diffusion finan­

cial market.

On one hand, the motivation of these problems lies on the realities of financial
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markets where, the credit rate is always higher than the deposit rate. Taking 

into account such a constraint brings new difficulties in the problems of pricing 

contingent claims and utility maximization (investment).

On the other hand, the previous works in this topic were mostly made in 

a Black-Scholes and Cox-Ross-Rubinstein (binomial) frameworks. Yet, it is 

common knowledge in the area of finance that stock prices involve jumps, in 

order to take into account new extreme events. Therefore, besides a Black- 

Scholes model, we have considered a pure Merton (or pure jump) model and 

a two factors jump-diffusion model.

The thesis is organized as follows. In chapter 2, we consider a Black-Scholes 

and Merton model. We solve the hedging and utility maximization problems 

on a two interest rates financial market. Further, we give the solution of the 

shortfall risk minimization problem. In chapter 3, the same problems are con­

sidered but in a more general setting of two factors jump-diffusion model. 

In chapter 4, we consider the problem of pricing pure endowment life insur­

ance contract with guarantee on the different interest rates financial markets. 

We give an approximation of the interval of survival probabilities and the 

corresponding policy-holder interval of ages. Finally, chapter 5 allows us to 

compare our hedging results on a jump-diffusion basis to those obtained by 

Bergman on a Black-Scholes model.
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Chapter 1

Introduction

In what follows we give the relevant literature on two interest rates financial 

markets.

Early works on two interest rates financial markets include Barron and Jensen 

[5], the latter authors use a utility based technique to solve the problem of 

pricing. Later, Karatzas and Cvitanic [19],[18] see also [30] consider a more 

general setting of constrained market, solve the problem of pricing contin­

gent claims and utility maximization, using a technique of duality theory on 

a Black-Scholes (with deterministic coefficient) setting. In particular, they 

consider the case where the drift of the wealth process is concave as function 

of the portfolio, which includes the case of a two interest rates model. Then, 

they adapt the convex duality method to derive the upper hedging price of 

the claim by solving a Hamilton-Jacobi-Bellman equation (they called such a 

price the seller price in opposite to Korn [31], who called it the buyer price). 

They also solve the utility maximization from terminal wealth problem in the 

two interest financial market using the same convex duality method. Korn 

[31] adapts Karatzas and Cvitanic methodology to derive both upper (buyer

1
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’s price) and lower (seller’s price) hedging prices of European call and put 

options, in a Black-Scholes setting. He then extends the obtained results to 

a special set of contingent claims. Bergman [7], considers the same pricing 

problem and derives the buyer and seller prices by using duplicating strategies 

and partial differential equation with switching interest rates. He argues that 

in the case of a call for instance, the long position involves only borrowing 

therefore the Black-Scholes pricing with borrowing rate is applicable.

Bart [6] considers the problem in a Cox-Ross-Rubinstein model and gives a 

description of the complete structure of optimal hedging. His methodology 

is adapted from Volkov and Kramkov [48]. An elegant exposition of markets 

with structural constraints (transaction costs, short selling restrictions, dif­

ferent credit and deposit rates) can be found in Melnikov et al. [39]. The 

authors provide as in Bart the structure of an optimal hedge but besides 

the Cox-Ingersoll-Ross model, the Black-Scholes, Merton and jump-diffusion 

models are considered.

On the expected shortfall risk minimization side, Follmer and Leukert [26], 

[27] consider a one interest rate financial market, find the optimal hedge of an 

investor whose initial capital is less than the fair price (Black-Scholes) of the 

option . The criteria to choose the optimal strategy being maximizing the 

probability of successful hedge for the quantile hedge and, minimizing the ex­

pected value of the shortfall (that amount the portfolio is short of covering the 

claim: ( / r —ATt )+), weighted by a loss function. Nakano [45] follows a method­

ology suggested in Follmer and Leukert [27] (convex duality method) to de­

rive the optimal strategy of the problem in a two factor jump-diffusion model. 

He treats the problem as a utility maximization one, and adapts Karatzas-

2
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Cvitanic methodology. In parallel, Melnikov-Krutchenko [33] solve the same 

problem via efficient hedging which is based on the Neyman- Pearson lemma. 

In our application on expected shortfall risk minimization on a two interest 

rates financial market, we have used the Nakano results. We provide condi­

tions under which the two interest rates problem of shortfall risk minimization 

can be reduced to the similar problem on an unconstrained market.

We now turn to equity linked-life insurance contracts. Since Brennan- 

Schwartz [13], equity-linked life insurance contracts have been widely studied 

in finance and insurance see for instance Brennan-Schwartz [14], Moller [43] 

[44], Boyle-Schwartz [11], Common to those articles is: they were focused 

on how to price those instruments on complete or incomplete markets. More 

recently, Melnikov [36],[37], [38] used imperfect hedge (quantile and efficient) 

to price pure endowment life insurance contract with guarantee. We use the 

latter results to derive the survival probabilities and age interval of a policy­

holder of the contract, on two interest rates financial markets.

In this thesis the problems will be considered in a Black-Scholes, pure Mer­

ton, and a Jump-diffusion setting. Jump-diffusion are a special case of Levy 

processes. More details in this topic are provided for instance in Corcuera, 

Nualart, Schoutens [21] and Bertoin [8].

The first paper on jump-diffusion in option pricing was introduced by Merton 

[34],[42] on a (B,S)~market. In his setting, two types of uncertainties arise, 

one from the diffusion the other from the jumps, which made the pricing by 

using no-arbitrage argument alone impossible. In order to price the European 

option, Merton assumed the jumps diversifiable. However, the latter assump­

tion induces the existence of a market portfolio containing the asset without

3
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showing the jumps characteristics (see for instance Bjork and Naslund [10]). 

The advantage of the jump-diffusion model used here is based on the com­

pletion of the market. The latter characteristic allows to price options by 

the sole use of no-arbitrage argument (see for instance Runggaldier [46]) for 

a survey. Other papers related to jump-diffusion and their estimations in­

clude Honore [28], Kou [32], Runggaldier [46], Mercurio-Runggaldier [41] and 

Ball and Torous [3] who also show the impact of jumps on option pricing. In 

contrast to Ball and Torous who find that the difference between the Merton 

(original model) and Black-Scholes model is highest for out-of-the-money calls 

and lowest for in-the-money calls, in the model used here the largest difference 

occurs at-the-money.

4
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Chapter 2 

The pure M erton and 

Black-Scholes m odels

2.1 Introduction

In this chapter we begin by recalling some standard results on pricing deriv­

atives, investment and also on shortfall risk minimization problems. We 

also provide the corresponding results in two interest rates financial markets 

(Black-Scholes and pure Merton).

2.2 Prelim inaries

Let (fi, T , F = (Ft), P) be a standard stochastic basis on which we consider 

a financial market with 2 assets: a bank account Bt and a stock St evolving 

according to the following stochastic differential equations

5
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dBt - rBtdt;

dSt = S t- (pdt — vdXlt^ ;

(2 .2 .1)

(2 .2 .2)

or

dSt = S t (jidt + crdWt'j , (2.2.3)

We assume p  G R, o > 0, v < 1, St- =  lim„Tt SU7 and II =  {IIt , T t)t>o is a 

P-Poisson process with intensity A > 0, Wt is a Brownian motion. The time 

horizon T  is finite.

Denote the above financial markets by (B :S ). The model will be said a pure 

jump (or Merton) model if equations (2.2.1) and (2.2.2) are verified, otherwise 

if equations (2 .2 .1 ) and (2.2.3) hold a Black-Scholes model.

Definition 2.1. A portfolio t\ is an Pi-predictable process.

In the (B , S) market, at any time £, the position of an investor is given 

by a portfolio tt =  (fit, It) where (3 and 7  are respectively the number of units 

invested in the bank account and stock. The balance equation of the portfolio 

process 7r at any time t is given by

Definition 2.2. A portfolio 7r is said self-financing and denoted (SF) if

Vfi — f3tBt +  'YtSt n.s.

dVfi — fitdBt +  jtdSt

alternatively

6
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Such a portfolio will be said admissible if

Vt* > 0 a.s, V t > 0. (2.2.4)

In the sequel we will denote the set of admissible strategies with initial capital 

x by A(x).

The (SF) condition means that there will be no inflow or outflow of capital 

during the hedging period. One might think of it in terms of variations. The 

variations of Vt come solely from the variations of the underlying assets and 

not the number of assets involved.

Definition 2.3. A process X t will be said a wealth process if generated by 

a self-financing and admissible strategy (Xt > 0 ,  V t > 0) and, a debt 

process Yt if —Yt is generated by a self financing and admissible strategy (Yt < 

0, V t > 0).

As in Korn ([31]), we call buyer (resp. seller), the agent purchasing the 

claim at time t = 0 (resp. selling f T). Consequently, the buyer of a claim f T 

can be seen as an agent whose initial investment x grows to X t at time t < T  

(Xt =  fr),  while the seller represents an agent whose initial debt y grows to 

Yt , hence will have to reimburse — YT = f r  at time T. The process Y  gives 

the position of the seller.

Definition 2.4. A contingent claim f r  is a non-negative J^-measurable ran­

dom variable.

Definition 2.5. The portfolio 7r is called a hedge for the buyer of the claim 

fx  if the wealth process verifies

X ^ ( x ) > f T a.s.,

7
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such a hedge will be said minimal and denoted t t *  if further for any other 

hedge t t ,

X? > X f  a.s. V 0 < t < T

In parallel for the seller of the same claim, we say that a portfolio t t  with initial 

debt y is a hedge if

Such a hedge will be said minimal and denoted by t t *  if further for any other 

hedge n,

2.3 T he com plete (B , S ) market results

We first give a fundamental result in the (B , ,5')-market

Statement 2.6. The (B, ^ -m arket is complete.

1) In the pure Merton model, the density Zt of the martingale measure P* 

is given by the following equality

where Nt = ip(Ut -  Xt), 4> = ^  -  1 with A* =  v ^  0.

2) In the Black-Scholes model, the density Zt is provided by the formula

Yt < — fr  as-

YZ < YZ a.s. V 0 < t < T

yp* (
Zt = - jp  K  = £t(N ) = exp|(A — X*)t +  (InA* -  lnA)nt j  , (2.3.1)

(2.3.2)

with Nt = <f>Wt and <j> = —iL̂ L

8
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3) Under the new measure P*, the given Poisson process II has intensity A* 

and, H'7 = Wt — (f>t is a Wiener process.

The proof of this statement can be found in Melnikov et al. [39].

From the theory of complete market (One law price), at any time t, the position 

of a buyer X t of a claim f r  is given by the opposite position of a seller —Yt of 

the same claim. The dynamics of such positions are provided below

dXt dYt . dSt , v
TT- =  w -  =  (1 -<*t)r dt +  a t— , (2.3.3)A*- Yt- &t-

where at = (resp. at = 7y 7  ) denotes the proportion of capital invested 

on stocks. The derivation of the formula can be found on the Appendix. We 

next give some standard hedging results.

2.3.1 Hedging

Consider the buyer case. The notion of hedge defined above is perfect since it 

occurs without any risk in the probabilistic sense, namely P{Xj.{x) < f r )  =  0. 

Now, if there is a risk involved {P{Xfrx) < fr )  0) then, hedging in this con­

text will be said imperfect. One example of such an imperfect hedge is quantile 

hedging. It consists in finding the minimal initial capital required, given the 

probability of hedge. Alternatively, one can find the maximal probability of a 

hedge, given the initial capital of the hedge i.e.

Max{x<X0<Cr}P ^X ^(x)  -  f r  > 0^,

where Cr is the fair price of the claim fr .  Solving this problem requires the 

use of the Neyman-Pearson Lemma (see Melnikov [39], Follmer and Leukert

9
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[26]).

One more example of imperfect hedge we will need later is given by the efficient 

hedge methodoiogy. fn this case, one minimizes the expected shortfall weighted 

by a loss function, given a constraint on the initial capital of the hedge i.e.

M in{x<Cr}E [lp(fT -  X£(x))+] , p > 1.

Quantile hedge can be retrieved from efficient hedge by taking the indicator 

function as the loss function.

Perfect hedge results

We give the fair price of the Merton and Black-Scholes models in their corre­

sponding settings.

Lemma 2.1. At any time t, the fair price of a European call option f r  = 

(S f  — K )+ in the (B ,S) -market is given by

Cr(t) =  E* [ e ^ - ^ i S r  -  K )+ \ f t \

(no, A*(l -  v){T - 1)) -  K e ^ - ^ i n o ,  X*(T -  t)), if  v < 0;

=  < (2.3.4)

St$(n„,A*(l - i y ) ( T - t ) ) - K e ( - < T- ^ ^ ( n 0,X * (T - t ) ) ,  if 0 < u < 1-

(2.3.5)

Where V0 = inf {a; > 0; 3 6 G A(x); V^'x > FT a.s.} represents the ini­

tial capital of the minimal hedge, ^ (k ,y )  =  Y^=k an<̂  $(fc)2/) =

*pk (mElA - v)
L ^ n = 0 n! c  >

n0
\ n { K / S t ] - p ( T - t )  

l n[ l—v\

~ I n  [K/St ]—f i (T—t) 
ln{ l —i/]

+  1 if v < 0

if 0 < v < 1.
(2.3.6)

10
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with [[a]] s.t. [[a]] < a < [[a]] +  1.

For the Black-Scholes model the following holds

Cr(t) =  E* [ e - ^ i S r  -  K)+ \Et] ,

= S M d ,( S t,K ,  a, r ,T ,t)) -  a, r ,T , t ) ) , (2.3.7)

=  Vo , (2.3.8)

with

dffSt,K ,a ,r ,T , t )  = ln ( f  ) +  ( T - t ) ( r  +  £ )
aV T —t

d2(St,K ,a ,r ,T , t ) =  di(St, K ,a ,r ,T , t) - a f f T  - t ,  (2.3.9)

The corresponding prices in the different models for European puts are 

derived from the Put-Call parity relation:

Pr{t) = Cr{t) -  St +  Ke~r(-T~t\

We only give the proof of equality (2.3.4) in the pure Merton model, the 

proof of equality (2.3.5) is similar to the one developed in Karatzas-Shreve [30] 

for a Black-Scholes setting. We omit the proof of the Black-Scholes case since 

it can be found in Melnikov et al [39], Elliott-Kopp [24], and Karatzas-Shreve 

[30] among others.

Proof. From the stochastic exponent relation (6.2.2) in the Appendix

ST =  nT-n,)in(i-v)} (2.3.10)

=  5 ,t e f r (T- 0 + I/-v‘,(T- 0 + ( n T - n t) in ( i - ' ') }  (2 .3 .1 1 )

For the computation of E*[e~r(T~^ (St ~ K ) + |Wt |, it is more convenient to use 

the second formulation of St

E*[e~<T~t){ST -  K )+ |T t \ =  E*[(Ste{vX*{T- t)+{YlT- Ilt)x̂ 1- l')} -  f l e -r(T-t))+ \Et \

11
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Keeping in mind that IP is a P* Poisson process with intensity A* and hence 

(n t — A*t) is a P*-martingale, we derive the following

E *[e- r(r -t)(sT - K ) + \ f t ] = S t e ^ ' V - W E *  \ E t \

- K e - ^ - ^ E *  [ I {S t > k }  I F t ]  •

We rewrite the set { S t  >  K }  as

( Ke~r(-T~t')
{,S t > K } =  |  (nT -  n t) In (1 -  I /)  > In (-----—----- ) - v \ * { T - t )

Depending on the sign of ln(l — u) we derive 

{St > K} =
{(nT - n f) > ( \ (1̂ } ( if in ( i  - 1/) > o (!/ < o)

In  ( K e  f  ('T  i . - \ * ( T  O

{(nT - n t) < ------- \ (1_y)---------}, if ln (l - u )  < 0  ( 0  < V <

Assume v < 0, then we obtain

((nT-n £)in(i-i/))r \jr
(nT-n t)>

—Ke~r T̂~^E*

Prom the Poisson process properties II t — 11/ is independent of E t. hence

ln (#)-M(T-£) i \Ft(nT-n t)>- f‘(!

Cr (t) =  Ste{vX̂ T^t)}E*

- K e - ^ - ^ E *

e((nT-n t) in (i->/)) j

Cr (t) =  V^  ji

E-A 'e"r(r“t) V  c~**(r-t)
f-3=n o

12
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Where

n 0 = (A*(l v)(T t)Y x*(i-v)(T-t)in f j j ,  S t ^  j  — e

-Ke > 0

(2.3.13)

and, from above if In (1 — v) > 0 {i.e. v < 0), we have

, r f  ̂ Xn{K ^ L )_ v>, { T _ t ) ^
n0 =  inf < n s.t. n > --------------—j-----r---------- > .I In (1 -  v) J

We finally arrive to

Cr{t) =  5t^(no, A*(l -  v)(T -  t)) -  K e ^ r(-T- ^ ^ { n 0, \*(T - 1)). 

Applying a same methodology for 0 < v < 1 yields to

Cr{t) =  5t$(no, A*(l -  v){T - 1)) -  K e ^ T~ ^ ^ { n 0, A*{T - 1)).

□

We next establish a special property of the fair prices given by lemma 2 . 1  

in what follows.

Theorem  2.7. The price Cr(t), of a European Call option is a non-decreasing 

function of r and the price of a European Put option Pr (t ) is a non-increasing 

function of r.

Proof. We derive the pure Merton model results. For convenience purposes 

we will consider separately the cases v e  (—oo,0) and u e  (0,1). We first

13
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turn to the case v < 0 .

The case of a European Call option with v < 0 .

Let us note that in our context, A* =  hence =  v  and,

9 0 ( 0 )  =  M f o ,  A T ( 1  -  „ ) )  +  v r )  _  A T )
or or or

The computation of ^  yields

n o  —1^ ( n 0 ,A*r) =  [A*T]
dr v (no — 1 )!

Identically,

^ ( n o , A * r ( i - i / ) )  =  r ( i - i z )  f- A m i - ^ [ A * r ( i - i / ) ]  
<9r ^ (no — 1)!

The following relation hold

<9fr(n0,A *r(l - v ) )  _  wxmdm(np,\*T)
dr dr

Therefore the previous computations allow us to rewrite dĜ

n o  —1

50^0) =  d^ ( n̂ X T ) _  ^n ce,  A*T _  K e-rT^j +  K T e~rTy (n0, A*T)

By definition of no, £>o(l — v)noev X*T — Ke~rT is positive or null, and for v 

negative, the expression ?q' ^ X T) is positive consequently

dCr(0) ^  0 

dr ~

The case of a European Put option with u < 0.

The parity Put-call relationship Pt = Ct — St + Ke~r(T~t') taken at time t =  0

14
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yields to 

dPr{ 0) d ^ (n 0 ,A*T)
(S 0( l -v )"« e '/ x*T - K e ~ rT ĵ

dr dr
+KTe~rT^ ( n 0, X*T) -  TKe~rT 
d't>(n0,\*T)

dr ([5 0(1 -  u)”° -  50(1 -  ^)no“1 +  50(1 -  i/)"0"1]

\  n o - 1 ( \ * rn \ k
e" X*T -  Ke~rT) -  TKe~rT ] T  e ^ T^ A 1 }

k\

-  u r ^ x^ {no/ * T ) ( i  - v - i )  +dr V /  dr
no —1

-  J')"0-1 -  Ke~rT ĵ -  TKe~rT Y
”5 1 / \ *rP\k

( — A T )
(X*T)k

kl

- u S o i l  -  I/ ) ” 0 - i e [ ^ +
dr

9* {ngrX*T) ( e ^ g o C l  -  -  Ke~rT^
f \ * rn \n o  — 1 n o —2 /  \

- T K e - rTe ^ {X1)  , -  T / f e ^  V
n 0 - 1 ! ^  fc!

Note — T = Te  ̂ A*T̂ ^ ^ rjT -  then, rearranging the terms yields to

=  [50(1 -  i/)"°-ie[^«ri _  K e - r ]^ (n°?A*r ) (l ~ 
a r dr

n<r̂ 2 f\*rT\k
J - V T )  J  1TKe~rT Y ev

As i/ < 0 , by definition of n0, the first term of the right hand side of the 

equality is negative, the second term also. Hence the following holds

9Pr(0) ^  Q 
dr

We now consider the case where 0 < v < 1.

15
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The case of European Call option with 0 < v < 1.

Cr (0) =  S0$>(n0, \ * T ( l - v ) ) - K e {- rT)$ (n0,\*T),  with

*(fc,y) =  E ^ r eH,)
n = 0

8 0 (0 )  _  s m n a, X J ( l - , ) ) ) + K  
or or

_rTd<t>(n0,\*T)
Ke~

dr
d<&(n0,\*T) _  T  _X,T (\*T)n° 

dr v n0!
9^>(n0, A*T(1 — v)) =  i ^ ^ K A *T)

dr dr

dCr(0) =  o u ( !  l M i c- \* T y d H n o A * T )  K c (-rT) d H n 0, A T ( 1  -  u))  
dr dr dr

- S 0(l -  ^)»oe^*Td$(no,A*r) +  _  ^ r #(nc,AET)
dr dr

+KTe~rT<&(n0, \*T)
= _  a$(t^,A "r ) _  T

dr dr
—Ke~rT) +  K T e -rT$(n0, A*T)

Now writing <L(no, A*T) as function of <b(no —1, A*T) and simplifying we obtain 

50^0) =  ^ (n o , A*r) [go(l _  u)n0evx-T _  (1 _  y]

+  i^Te[_rT1$(n0 — 1,A*T).

From there, it’s clear that
d_£M  > 0

dr ~~

The case of a European Put option with 0 < u < 1.
dPr{  0 )Let us first rewrite 9r

[So(l -  v)n°+1e~x*Tv -  Ke~rT] d^ n °’X*Tl
dPr( 0)

dr r ^ ‘ '  ' ~ J gr

+KTe~rT[$(n0, \*T) — 1].

16
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We shall note that by definition of n0, T) [So ( 1 — u)no+1e A*r " — K e r l]

is negative, and KTe~rT [3>(n0, A*T) — 1] is also negative. Hence we obtain

9Pr(0 ) ^  Q 
dr ~~

Let us now turn to the Black-Scholes case. It is well known that

=  KTe~rTH d 2(S0,K ,a ,r ,T ,0 ))

=  iLTe-r r [$(d2 (S0 , iL ,a ,r ,T ,0 ) ) - l ]

Hence the theorem is also proved for the Black-Scholes model □

We now will provide the results of the investment problem in the auxiliary 

market.

2.3.2 Investing

Consider an investor with a given initial capital x. The investment problem 

consists in maximizing the expected utility of the investor terminal wealth, 

namely we will find: the price function

u(x) = sup E[U(X£(x))], (2.3.14)
7TS S F

the optimal terminal wealth X?f and the optimal strategy a*. We give the 

solution of the problem in a complete market setting, then we consider its appli­

cation on the Merton and Black-Scholes models (see Melnikov [39], Karatzas- 

Shreve [30], Cvitanic [16],[17], among others).

Consider a utility function U : R+ — > R, concave, non-decreasing, continu­

ously differentiable, and

17
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Let u(x) be the price function in the (JB,S'1,S'2)-market. The investment 

problem (see, for instance Karatzas and Shreve [30], Melnikov et al [39]) con­

sists in finding

u{x) = sup E  (U(X£(x))) = E  (U (X f(x )) )  ,
ttG SF

(2.3.16)

The above problem can be transformed as

u{x) = sup E(U(YT(x))) = E(U{Yf(x)))
y£x

where x  = {Ypositive : Yt(x) = x  +  J*'yudXs} with 7  a predictable process 

and X  is a P* local martingale. To solve the problem, we need the next 

theorem:

Theorem  2.8. L e tV (y ) the conjugate function ofU(x), whose relations to 

the latter is given by what follows:

V(y) = sup U(x) — xy y >  0, (2.3.17)
x > 0

U(x) = inf V(y) + xy x > 0 .  (2.3.18)
2 / > 0

We denote I(x) = ((t7')_1(a:)) =  —V'{x), y0 = inf{y : v(y) < 0 0 } and

x0 = limy-*yo(—v'(y))- The functions v(y) and u(x) verifies what follows.

1) The function u{x) < 0 0  is continuously differentiable for all x > 0, 

stricly concave on (0,Xo), and the function v(x) < 0 0  is continuously

18
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differentiable for all y > 0, strictly convex on (yo, oo).

v(y) = su.pu(x) — xy y >  0, (2.3.19)
x > 0

u(x) =  inf v(y) + xy x > 0. (2.3.20)y>o

I f  V = u'(x) where x < Xq and y < yo then the optimal solution of 

(3.2.19) is

Yf(x)  =  I(yZT). (2.3.21)

We next provide the solution of Problem (2.3.14) in the setting of the pure 

Merton model. Consider the case U(x) = ln(.x) in the (B , S) financial market. 

We substitute U(x) in (2.3.17), derive V(y) = — In(y) — 1 and,

v(y) = E[V(yZT)} = -E[ln(yZT)\ -  1 =  -  Info) -  1 -  E[\n(ZT)}

= -  Info) -  1 -  (ln(A*) -  ln(A)) AT +  (A* -  A)T.

We substitute the above expression of v(y) into equality (2.3.20), and find the 

price function

u(x) = Info) -  (ln(A*) -  ln(A))AT +  (A* -  A)T. (2.3.22)

Next, we derive the optimal proportions invested on the different assets in­

volved. From (2.3.21), we know that

Yf(x)
V'TT
B]f

= = k

=  X e x p  j - n r l n ( y )  +  ( A * - A ) r j

(2.3.23)
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and solving (2.3.3) for at := a yields

X n f  1
= x  • exp | a(n — r) +  ln( 1 — a^)IIT > .

(2.3.24)

We identify expression (2.3.23) and (2.3.24) and obtain the value of a

a t = a = (2.3.25)
z/(/x — r)

Let us now turn to the Black-Scholes model setting, where as above the prob­

lem (2.3.14) is considered. We follow the same methodology as in the pure 

Merton model case. Let IJ(x) = ln(x), following the same procedure we derive

V(y) = — ln(r/) — 1,

v(y) = E[V(yZT)] = - \ n ( y ) - l - E [ \ n ( Z T)} = - \ n ( y ) - l  + ^ T ,  

The cost function is given by

u(x) =  ln(a:) +  — T , (2.3.26)

and the discounted optimal terminal wealth follows

Yt (x ) = x ■ exp I  —̂ )Wt +  -^-T | ,

From relation (2.3.21) we obtain

X f
Yt (x )

I(yZT) = yZT ZT

= x ■ exp <J ~(f)WT + y T .

20
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Solving equation (2.3.3) for at = a yields to

^  =  x  • exp |  (a(ji -  r) -  j  . (2.3.27)

We identify expression (2.3.27) and (2.3.27) and obtain the value for a

at :=a = . (2.3.28)ol

The later ratio is called the Merton point.

2.3.3 Minimizing the shortfall risk

We previously introduced the notion of imperfect hedge (quantile and efficient 

hedge). When minimizing the expected shortfall, the investor has an initial 

capital less than the required Black-Scholes fair price. In this situation where 

the inequality X^{x) < f r  also holds, the investor wants to find the opti­

mal strategy that minimizes the expected value of his shortfall ( fr  ~ ^ t (x ))+ 

weighted by a loss function say lp(x) =  ~  with p > 1 (see Follmer and Leuk- 

ert [26], [27]).

The problem of shortfall risk minimization can be seen as an investment 

problem (see Nakano [45]) or an efficient hedge problem (see Melnikov and 

Kruchenko [33]). One can see the relation between efficient hedge and short­

fall risk minimization in Follmer and Leukert [27]. We will follow the Nakano 

methodology.

Nakano adapts the methodology used in Cvitanic [17], [16], Karatzas-Shreve 

[30] for the maximization of the expected value of the utility function of an 

investor to solve the problem of minimization of an expected shortfall in a 

case of a one interest rate jump-diffusion market. The procedure was first
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suggested in Follmer and Leukert [27]. The problem is given by

u(x) inf E[lp{{fT - X ^ x ) ) +)\. (2.3.29)

it e  A,

x < E*[f {Sj)e~rT\

where the set A =  {k s.t. E  [sup0<t<T |^7(0)|p] < 0 0 }, f T e  Lp+e(Q,,pT, P), 

for some e > 0 and, E* is the expected value taken under the unique martingale 

measure. From Nakano [45], the solution of the problem (3.2.24) in the setting 

of a (B , S')-market consists in finding the perfect hedge of the claim f r  (see 

Section 2.1.1) and the optimal strategy for an expected utility maximization 

problem (Theorem 2.8 helps in solving this part, see also Karatzas-Shreve [30], 

Nakano [45]).

Theorem  2.9. The optimal hedge 7r* =  ix/T — 7r0, where 1r/T is the perfect 

hedge (in the Nakano sense, see [45]) for f T and, 7r0 is the optimal portfolio 

for

with z = XfT — x. We denote

A q{z) = (tt G A  and X f  > 0  t € [0, T] a.5 .}.

In the pure Merton model a solution is characterized by what follows.

a) Let a0(t) be the optimal portfolio proportions associated to 7r0 solution 

of (2.3.30), then a0(t) := a0 = (al,al)  of J(z) is given by

J ( z ) ~  inf■ E[lp(XUz))}
ttZlAo (z)

(2.3.30)

(2.3.31)

where q is such that -  +  - = 1.P i
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b) The price function

u(x) = lp(xfT — x) exp (—(jp — l )a T ) , (2.3.32)

with a =  - q r  -  A ((q -  1) -  q ( ^ )  +  ( ^ ) 9) .

c) The optimal terminal wealth is given by

X ^ fT~no(x) = f T -  {xfT -  x)(ZT)g~1 exp ■

In the Black-Scholes setting we derive

a) Let ao(t) be the optimal portfolio proportions associated to 7r0 solution 

of (2.3.30), then a0(t) := a0 = (a l ,aq) of J(z) is given by

0 crp — 1 ’
(2.3.33)

b) The price function

u(x) = lp(xfT — x) exp (p — l)aT^ , (2.3.34)

with a — —qr +  \q{q — 1 )4>2

c) The optimal terminal wealth is given by

X ^ ,T~no(x) = f T -  (x fT ~  x)(ZT)q~1 exp r )  •

Let us now turn to a constrained market case.
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2.4 The constrained m arket results

We previously provided the solution to the problems of pricing a contingent 

claim, investing, and expected shortfall minimization in a context of a unique 

interest rate (unconstrained) pure jump and pure diffusion financial markets. 

We now consider the previous problems in the context of a financial market 

where the risk free borrowing and lending rates differ (Bl , B 2, 5), where B 1 is 

the lending account, B 2 the borrowing account, we assume the corresponding 

interest rates are both constants and rq < r2. We also consider that investors 

will not borrow and lend money simultaneously. The dynamics of the different 

assets involved this market are given by equations (2 .2 .2 ) and what follows

dBl = B jr id t , (2-4.1)

dB2 = B 2r2d t , (2.4.2)

in a Merton model. In a Black-Scholes model, the stock price verifies (2.2.3) 

and the lending and borrowing accounts follows respectively (2.4.1) and (2.4.2). 

We denote the above financial markets by (B1, B 2, S ).

A portfolio 7r is provided by (d1 , fi2, 7 ) (see Definition 2.1), where f¥ denotes 

the number of units of the ilh bond, and 7  the number of units of stock in the 

portfolio.

At any time t, the value of such a portfolio is given by

= P l B l+ p 2B 2 + l t St a.s. , (2.4.3)

with (31 > 0 < 0.

We assume that the definitions of a wealth and debt processes (see 2.3-2.5)

still hold. The standard methods for pricing and investing do not work in
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this setting. One way to solve the problems of pricing claims, investment, and 

risk minimization is to introduce suitable auxiliary markets (B d, S,)de[0,r-2- r1] 

where the bank account B d admits an interest rate rd = r 1 +  d. Each such 

an auxiliary market is complete (see Statement 2.6). From relation (2.1) or

(2.3.7) the fair price C rd of the the claim f r  is known. The initial prices of a 

buyer and seller in the (.B1, f?2, S')-market are given by the initial cost of the 

minimal hedge provided the latter exists.

To solve the investment and shortfall risk minimization problems of the (B 1, B 2, S )-  

market, we first consider the problems in a standard unconstrained market 

(Bd,S), then derive the corresponding results in the two interest rates model 

(.B \ B \ S ).

2.4.1 Hedging

We consider a contingent claim f T. Hedging this claim requires the construc­

tion of a wealth process X t and debt process Yt for respectively the buyer 

and seller of the claim. In the constrained (B1, B2, S) market the buyer and 

seller positions do not coincide, it is therefore necessary to distinguish the two 

processes.

Under the assumptions made in the previous section, the wealth and debt 

processes will have the following dynamics

dXt = X t~ (1 — o ttY ^d t  — (1 — at) r2dt +  OLt dSt'
St-

dYt = Yt- (1 — at)+r2dt — (1 — at) r ldt + at dSt

(2.4.4)

(2.4.5)
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where, at = (resp. at =  ) is the proportion of cash invested in the

stock for a buyer (resp. seller), and

a+ = max(a, 0) 

a~ =  — min(a,0).

The derivation of the above formulas will be found on the Appendix. Let us 

turn to the buyer case. The objective of the buying agent is to pay (or invest) 

the minimal initial amount “possible”. Further, the terminal wealth X^(x)  

of the buyer should at least match the value of the claim (i.e. Xj,(x) > fr)- 

Hence, the initial price required for a buying agent is

Vo =  inf{x > 0 : 3 7r e A(x), s.t. X > f T} . (2.4.6)

We will sometimes refer to the above as the upper hedging price of the two

interest rates financial market. We give next a statement relating the (B d, S)-  

market to the (B1, B 2, .S'j-markct for both the Merton and Black-Scholes mod­

els.

S tatem ent 2.10. Let d =  (dt) & [0, r 2 — r 1] a predictable process and assume 

that ad the optimal hedging strategy against / r  in the (B d, S ) market verifies

(r2 -  r 1 -  dt)(l -  at)~ +  dt{ 1 -  at)+ =  0, (2-4-7)

Then, Crd the initial of the minimal hedge against f r  in (B d, S ) is equal to

C + the initial price of the minimal hedging strategy in (B1, B 2, S ).

This statement was proved in Korn [31] on a Black-Scholes setting. We 

give the proof in a Merton type model.
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Proof. Let a  be the optimal hedging strategy against f r  in the (Bd, S)-market 

and assume it verifies (2.4.7), then a  is a hedge against the same claim in the 

(B1, B 2, S^-market.

To prove this claim let Crd be the initial capital associated to a in (B d, S ), 

and denote the wealth processes in (B d, S ) and (B l , B'2, S) respectively by 

V a’d and V a, then

dVta,d  ̂ d , d S t— j-  =  (1 -  at)r dt +  at—  ,
V t b t -

= r 1 (1 — at)dt + d( 1 — at)+dt — d( 1 — at)~dt +  .

Now, from equation (2.4.7), we derive

d( 1 -  at)+ = - ( r 2 - r 1 -  d){ 1 -  cq)_

and, by substitution

dVa,d d *7
— t—j- = r1 (1 — at)dt — (r2 — r 1 — d)(l — at)~ dt — d(l — a t)~ dt +
y “>

=  r : (l -  a t)+df -  r 2(l -  at)~dt +  ^

dVta 
Vta '

Consequently for a same initial capital Crd, the next equalities hold

Vta {Crd) =  Vta’d(CTd)

V p ( C rd) =  V« 'd(Crd) =  f T .

Now we have proved the claim made at the beginning of the proof, let us show 

that such a strategy a  is optimal in the ( B 1, B 2, 5')-market. It suffices to show

^ ’* [ /(4 )e - rdr] < x ,
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where x  is the initial capital of (aa) an arbitrary hedge against f r  in the 

(B1, B2, S')-market and, E d'* is the expected value under the risk neutral mea­

sure P*,d (for simplification we shall write P*).

If V “a is the wealth process associated to aa then

Ed’*[V£ae~TdT} < x .  (2.4.8)

To show relation (2.4.8) let us denote X t := Vte~rdt and using Kolmogorov-Ito 

formula we derive for a Black-Scholes model we derive

dXt = VtaPe~rdt ([(1 -  a?)“ (r1 -  r 2) -  d( 1 -  «“)] dt + c?t odW dt ’*) ,

(2.4.9)

and the dynamic of the discounted wealth process in the pure Merton model 

follows

dXt =  VtaPe~rdt ( [ ( l - a D - i r 1 - r 2) - d ( l - a ? ) ] d t - a at v d(Ht - \ * t ) )  .

(2.4.10)

Since r 1 < r2, we note

(1 - r 2) - d ( l  -ocat ) < 0

hence,

f T f T
/  dXt < - V ta“e-rdta?vd(nt - \ * t ) .

J o  Jo

Since —Vte~rdta!lv d(Ut—X*t) is a P* local martingale and any local martingale 

bounded from below is a super-martingale (the process X t is non-negative). 

Upon taking the P* expectation, we obtain, for all t in [0, T],
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B id ,* r rT 1
/  dXt < Ed’*

. Jo
f  -V taae~rdtaat ud{n t -  A*t) 

J o

E d’*[Xt] = E d’* [Vtaae~rit] < x. (2.4.11)

The initial capital of a  is less than the initial capital of any arbitrary strategy 

in the (B 1,B 2,S)  market. Hence Crd = C+ by definition of C+.

A similar proof for the put yields to Prd = P +. □

We next give an example of the European put and call prices for a buyer in 

the (f?1, # 2, ^-m arket.

Exam ple 2.11. Let us begin with the Merton model

A) Prom the Merton call price (2.3.4), and the self-financing property of the 

portfolio (Definition 2.2), the amount of cash invested at any time t in 

any (B d, S^-market is negative hence (1 — a)+ =  0 and solving for (2.4.7) 

yields to d = r2 — r1 and C+ = Cr2 . The European put option admits 

a positive amount of cash invested hence (1 — a)~ = 0 and solving for 

equation (2.4.7) yields to d = 0 and P+ = Pr 1.

B) The Black-Scholes call price (2.3.7) shows a negative amount of cash 

invested (i.e. (1 — a)+ = 0), hence d = r2 —r 1 and C+ = Cr2 . A similar 

method for the European put option yields P+ = Pr 1.

We now turn to the seller case, we consider the latter has a debt process of 

initial amount y. In the {Bl ,B 2, S )~market denote the lowest amount initial 

that allows the seller to repay his debt f r  by CL and let Yt(y) be the debt
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process giving the position of the seller then, C_ =  \y\. Consequently the 

minimal initial debt in the latter market follows

—CL =  sup{r/ < 0 /  3 a  =  (a1, a2) e A'(x)s.t., Y f  < —fr }  (2.4.12)

and A'(x)  represents the set of self financing strategies a  such that the 

generated debt process Yta < 0 , Vf > 0.

Statement 2.12. Let d = (dt) be a predictable process in [0,r2 — r 1], and let 

ad, the minimal hedging strategy against f r  in (B d, .S'1, S'2) verify the equation

(r2 -  r 1 -  dt)(l -  at)+ +  dt{ 1 -  at)~ = 0. (2.4.13)

Then,

1. the strategy ad is a hedge against —f r  in ( B \  B 2. S).

2. if further, C rd (resp. Prd) the fair price of the claim in (B d, S'1, S'2) verifies 

Crd = inffeg[0ir2_ri] Crk (resp. Prd — inffcg[o,r2- r 1] Prk ) then,

Crd =  (^-(resp. Prd = P_),

where (resp. P_) is the initial debt of the minimal hedge (see 2.4.12), 

also called the seller price.

We next enounce a Lemma that helps us to proof Statement 2.12.

Lemma 2.2. The minimal hedging strategy against f r  in (Bd, S) is the min­

imal hedging strategy against — f r  in the same market.

Proof. In the unconstrained (B d, S)-market, the stochastic differential equa­

tions of the debt and wealth processes coincide, then if is a hedge against
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f r  in (B d, S) we have Vfr'x = fr .  Now, taking y =  — x  as initial price for the 

debt process yields YT = —V fr ’x = —fr .  Henceforth, ad is a hedge against 

- / T in (B d, S ).

□

Proof, (of Statement 2.12)

Let (otd,Crd) be the pair hedge, initial price against f r  in the (B d, S ) ~  

market. Further assume verify the relation (2.4.13) then, from the previous 

Lemma ad is a hedge against —f r  with initial price —Crd. From equality

(2.4.13) the pair (aa, —Crd) hedges against —f r  in the ( B 1, B 1, >S)-market. It 

remains to show that ad is the optimal hedge in the latter market.

Let us assume that Crd =  inffce[0ir2_ri] Crk, and let y be the initial value of 

the debt process generated by a,  an arbitrary strategy in ( B ] , B 2, S).

We shall show that y < supfce[0r2_ri](—Crk) :=  — Crd. Henceforth, any hedg­

ing strategy against —fr  has an initial value less than — Crd, but —Crd is itself 

an initial debt of a hedge (ad) against —f r  in ( B 11B 21S ). Consequently —Crd 

gives the lowest initial debt in ( B 1, B 2, S ).

Let us show that y < supfce[0 r2_ri] (—Crk) := —Crd.

Any hedging strategy against —f r  in (A1, B 2. S )  is a hedging strategy against 

the same claim in (B d, S)  where

But, —Crd < —Crd by definition. Therefore y < —Crd.

The proof holds for both Put and Call options. It follows that C_ =  Prd (resp.

otherwise.
(2.4.14)

P- = Prd). □
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Exam ple 2.13. We give the prices of the seller for the European put and call 

options.

A) For the Merton case, the price of a European call in any (B d, S^-market 

and at any time t is provided by formula (2.3.4). From the self-financing 

property (see Definition 2.2), the amount of cash in the portfolio is always 

negative. Hence (1 — a )4 =  0 and taking this into account in relation 

(2.4.13) yields to d = 0 and C- = Cri(0). Similarly for the European 

put option the amount in the bank account is always positive hence 

(1 — a)~ — 0, d = r2 — r 1 and P_ =  Pr2(0).

B) Regarding the Black-Scholes model, the price of a European contingent 

claim is given by formula (2.3.7) and the amount of cash invested, at 

any time t, in any market (B d, S) is negative. Hence (1 — a)+ = 0 and 

solving equation (2.4.13) yields to d = 0 and C_ =  Cri(0). A similar 

procedure for the European put yields P_ =  Pr2 (0 ).

A more intuitive way to derive the possible option prices in a case of a 

different interest rates market would consist in approximating the arbitrage- 

free region by taking the interval [infde[0 r2_ri] Cr,i, supde[0 2_rq Crd\ where 

Crd is the price of the option in the (Bd, P)-market. From Theorem (2.7), the 

arbitrage-free region in the case of a European put option is [Cr 1 , CV2] and for 

a call option we derive [Pr2 , Pri|. Consequently, the completion methodology 

confirm the intuition in these particular cases.
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2.4.2 Investing

We consider the investment problem described in (2.3.14) on a setting of a two 

interest-rates (B1, B 2, 5)-market. Hence the next theorem follows

Theorem  2.14. Consider a logarithmic utility function U(x) =  ln(x) in the 

(B1, B 2, S) -market. Denote the wealth processes generated by a portfolio tv in 

(.B d,S ) and (B 1,B 2,S) markets by X f ,d and X f  respectively, and let them 

verify equations (2.3.3) and (2.4-4) respectively. Now, assume a* the optimal 

strategy on the stock in the (Bd, S)-market verifies (2-4-7) then,

1) the cost function u(x) is given by (2.3.22) for the pure Merton model 

and (2.3.26) for the Black-Scholes one.

2) The optimal proportions invested in the (i?1, 5 2, S') -market are a* on 

stocks, (1 — a*)+ on the deposit account, and (1 — a*)+ on the credit 

account.

3) The optimal terminal wealth are given by (2.3.24) and (2.3.27) in resp. 

the Merton and Black-Scholes models.

Proof. Let a* be the optimal proportion in the (B d, S')-market and assume it 

verifies equation (2.4.7) then a* is optimal in the [B], B 2. S) financial market.

For any strategy t v  the relation X f  (x) < X f 'd(x) holds since there are better 

investing conditions in the {Bd, ^ -m arket than in the (Bl ,B 2,S)  one. Thus

sup E[U{X^x) ) \  < sup E  \u{Xf 'd{x)) 1 =  E  \ u ( X f ’d(x))} (2= 7) E  [U(Xf(x))]  ,
n e S F  i r e S F  1  1 1

and

sup E  [U(Xf(x))\ = E [U(Xf(x))] = E  t/(X£v (z)) =  u (x ) . (2.4.15) 
n^SF L -I
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Regarding the optimal proportions in the (B1, B 2, S')-market, From (2.4.7) and

(2.4.15), we derive

XJf{x) =  X t ’\ x )  =  Y*’d(x)erdT. (2.4.16)

It remains to derive the optimal proportions in the (B1, B 2, S')-market. We 

already know that a* is optimal in the (B1, B2, S )} and it is given respectively 

in the Merton and in Black scholes model by (2.3.25) and (2.3.28).

Thus, one invests a* in stocks and the rest in the bank accounts, the 

positive part (1 — a*)+ in the deposit account and (1 — a*)~ in the credit 

account. □

In the next example we give some analytical solutions.

Example 2.15. The optimal proportion found is constant (since the optimiza­

tion problem is solved on the set of {at := a}). Therefore (1 — a*) is either 

positive or negative. Assume (1 — a*) is positive (i.e. a* < 1), then by solving 

equation (2.4.7) we obtain d = 0 hence rd = r 1. Thus we derive the optimal 

proportions invested in stocks on respectively the Merton and Black-Scholes 

models

/W y - r i - y x

a* = ^ ,  if ^ < 1 .  (2.4.18)
<j a 2

We consider now (1 — a*) is negative (i.e. a* > 1), then by solving equation

(2.4.7) we obtain d = r2 — r 1 and therefore rd = r2. From there the optimal 

proportions invested on the stocks in resp.the Merton and Black-Scholes mod-
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els are

t _  p — r2 — v \  n — r2 — vA
a vfa — r2) ’ 1 v ( n ~ r 2) >

H - r 2 n ~ r 2
a  =  — , if  r— > 1.a1 az

2.4.3 Minimizing the Shortfall Risk

We consider the problem similar to (3.2.24) in the two interest rates financial 

market (B1, B 2, S ) . Such a problem is described as follows.

u{x)=  inf E[lp((fT - X £ d(x))+)\(2.4.19)

71 G A,

x < CL := infdE d’*[f(ST)e~rdT}

The solution of the problem (2.4.19) is provided by the next Theorem

Theorem  2.16. Denote the wealth processes with initial capital x in respec­

tively the (B d, S) and (B1, B 2, S)-market by X f ’d(x) and Xfax). Suppose that 

X f ,d(x) and Xf ( x )  verify resp. (2.3.3) and (2.4-4)- Assume that a the op­

timal proportion of problem 3.2.24 in the (B d, S ) market verify (2-4-7) and, 

assume also that oifT the optimal hedge of fa  in the (Bd, S) -market fulfills the 

conditions of Statement 2.12 then,

1) the cost function fax) is given by (2.3.32)

2) and, the optimal proportions invested are

a = <*tX t ' T(Xlr) -  a»X ? ( XIt ~  X) g
( X )

(1 — a)~ on the credit account and (1 — a)+ on the deposit account.
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The proof of this Theorem is identical to the one given in the jump-diffusion 

case.
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Chapter 3

The jum p—diffusion m odel

3.1 Introduction

In this chapter we first give the standard results of the problem of pricing, 

investing and minimizing the shortfall risk in an unconstrained jump-diffusion 

financial market. Then, as in the previous chapter we extend those results to a 

two interest rates financial market. We also exploit a particular characteristic 

of the European put and call options to approximate the arbitrage free interval 

of prices.

3.2 The com plete m arket results

Let F =  ( ^ ) t>0, P} be a standard stochastic basis. Assume there are

two risky assets S \  i — 1,2, whose prices are described by the equations

dSlt = S I . (jfd t  +  <JldWL -  i/dll,)}, * =  1,2. (3.2.1)

Here W  is a standard Wiener process and n  is a Poisson process with positive 

intensity A. The filtration F is generated by the independent processes W  and
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II, pi G R, a* > 0, 1/  < 1.

We also assume that there is a bank account B  verifying

dBt = Btr d t . (3.2.2)

Denote (B, S 1, S 2) the market described by the above assets, and consider a 

contingent claim f r  , and a portfolio 7r =  (ffi7 1, y2) (see Definitions 2.4 and

2 .1 ), where we denote respectively by f3 and 7 * the number of units of bond 

and i t h  stock in the wealth. The value of such a portfolio t v  is given in this 

model by

Vt = ptB t +  7 t Si +  7 t2S 2t , a.s. (3.2.3)

Definition 3.1. A portfolio t v  is said self-financing (SF) if it verifies the

following property

dVt = fitdBt +  7 \dS\ + ifd S t ,  a.s. (3.2.4)

Such a portfolio will be said admissible if

Vt > 0  a.s V t > 0.

The set of admissible portfolios with initial capital x  is denoted by A(x).

The buyer and the seller positions can be identified with the wealth process X t

and the debt process Yt respectively (see Definition 2.3).

Let a 1!/2 ct2zA, and the parameters

(p1 -  r)v2 -  (/x2 — r)vl 
* = o-V2 -  a2v l ’

(p1 -  r)a2 -  {g2 -  r )a 2 t
t 9 1 1 9  ">

(3 .2 .5 )

then the next Statement holds (see Melnikov et al [39]).
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S tatem ent 3.2. The (5 , S,1,S'2)-market is complete, and the density of the 

martingale measure Zt =  ^  is provided below

where Nt = (})Wt + Oh — At). Under the martingale measure, the given Pois- 

son process II has intensity A* =  A(1 +  ijj) and W* = Wt — <j>t is a Wiener 

process.

From the above Statement, the (B, S 1, 5 2)-market is complete, thus ac-

is obtained by taking —X t(x), where X t is the buyer position. The dynamics 

of the wealth and debt processes follow

We turn to standard hedging results in the complete market.

3.2.1 Hedging results in an auxiliary market

As in the previous chapter we are considering a perfect hedge. In this section, 

the contingent claims will be of the form f x  = f iS f ) -  The initial price of the 

derivative is provided next.

Lem m a 3.1. The fair price of the call option (Sf  — K ) + in this (B , S 1, S 2)-  

market is given by the formula

Zt = £t(N) = exp <̂j>Wt -  y i  +  (A -  A*)t +  (In A* -  lnA)IIt} , (3.2.6)

cording to the One Law Price, Yt (x) the position of the seller of the Claim fx

=  C 'r(O ) =  V o, (3.2.8)

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where V0 = inf {a; > 0 : 3 -k e A ( x), s.t. Xf.(x) > f ( S if)},

CBs{x, r, a, K) = x$(di) -  Ke rT$(d2) ,

(TV J

We derive the well known price of a Put option from the Call-Put parity.

For more details on the Lemma 3.1 one can Aase [1], Bardhan and Chao 

[4], Colwell and Elliott [15], Mercurio and Runggaldier [41], Melnikov et al. 

[39].

The next Lemma studies the monotonic properties of Cr (see formula (3.2.8)) 

as a function of r.

Lem m a 3.2. If the following inequalities are fulfilled

3.1) e g > 0 , or

3.2) e g  < 0 and v1 > 0, or

3.3) e g  < 0, u1 < 0 and < $(d2(0))
9  r

then, pc '■= | i s  positive.

If the next inequalities are verified

3.1’) e g  < 0 , or

3.2’) e g  > o and u1 < 0, or

3.3’) e g  > o, v l > 0 and $>(d2(0)) <
L ~t U  d r

then, pP := ^  is negative.
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Proof. We start the proof with the case of the call option,

a) The case of a call option.

For convenience purposes we shall choose to use a different representation of 

whether ^  is positive or negative. Differentiating (3.2.8) yields to 

dC dA* (X*T)n \«t’ , / . _rrp (A*T')n . , ..
&T =  T ^ r E ^ T ~ e A(n ) +  KTe E ^ f - e * ( W ) .

n > 0  n > 0

if —  > 0. (3.2.9)
or

dr dr n!
n > 0

-  v T ^ K e - r T Y J ~ f Le - ,''T (*{<-« n + l ) )  - « ( < «
n > 0

+  WTe-rTJ ] ^ E ^ e - A*T$(d2(n)),
n > 0

f) \ *
if < 0. (3.2.10)

dr

Where A(n) and B(n) have the following expressions

A{n) = 50(1 — v1)n+1e'/lx*T {§{d\(n +  1)) — $(di 

- K e ~ rT(${d2(n+l))-<!>(d2(

B(n ) =  S o ( l  — ^1)"ei/lA*T^$(di(n +  1 ) )  — 4>(di(n))j

- K e ~ rT($(d 2 {n+  1)) -  *(d2(n))),

we denote a 1 by o, and

In [S/K] + n ln (l — u1) +  vlX*T +  (r — ^r)T 
rf2(n) -  ,

di(n) = d2(n) + oVT.

One can easily show that A(n) > 0 and B(n) < 0.

We only give the proof that A(n) > 0 since a similar method is used to show
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that B(n) < 0.

A(n) = 50( l - i / 1)n+1e,,lA*r ( $ ( d i ( n + l ) ) - ^ ( d

- K e - rT^ ( d 2(n + l ) ) - ^ d 2(n))^j,

where d»(n +  1) =  d*(n) +  , * =  1, 2.

1 /  , /*dl(n+l) 2 f d2
A(n) =  - r = [ S 0( l - v 1)n+1e ' 'x*T e ~ ^ d x - K e ~ rT

v27T \ Jd2(t

1 ( s 0{ l - v l )n+levlx*T ^  e - iX+dl̂ }~ d x
\/2k V jo

^ l n (  1 — u ^ )

- K e - T J  " "  e~i=±±̂ A x \

l n ( l  — iv1)

1 f  vVT (  lN n + 1  v l \ * T  <x + d l ( T‘))2 - r T  -  (x + d 2(” )>2 \  ,—== / ( 50(1 — ^ ) e e 2 — Ke e  2 I dx
V  27T J o  \  J

l n ( l  — v ^ )

‘ s 0( l - „ ' r 1e " Te -S±!S“  ,  ,

V ( I - * '1

gXO-y/T
dx

If ln(l — j/1) is negative then (1 — nl j-s) is also negative. Hence, A{n) is

positive. Identically, if ln(l — v1) is positive then (1 — ^-zpry) is also positive. 

Hence, A(n) is always positive. Consequently

1) For ^  > 0, from the sign of A(n) and equation (3.2.9) we obtain ^  > 0.

2) Similarly for ^  < 0, since B(n) < 0 and from equation (3.2.10), we 

only need to find the sign of

- u lT ^ K e ^ TJ 2  ^ - ^ e - x*T(<t>(d2(n+ 1)) -  <b(d2(n)))
n > 0

+KTe~rT J 2  X̂* ^ ne~x*T<t>(d2(n)).
n > 0  U ‘

(3.2.11)
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Expression (3.2.11) can be transformed as

K T e ~rtJ 2 ~ ? ~  ( ^ W X l  +  ^ ^ r )  - z ' 1̂ r $(d2(n +  l ) ) \
n>0 ' '  '

(3.2.12)

To guarantee the positivity of the above expression, it is sufficient to 

prove that

( c t\*  f) A* \
$(d2(n))(l +  v1— ) -  z / — $(d2(n +  1))J  .

is positive.

Let us now consider two cases vl > 0 or v1 < 0 and note that from the 

expression of d2(n) the following always holds

/ ( $ ( d 2(n +  l ) ) - $ ( d 2 < 0.

(a) If v1 < 0, then from the previous relation, $  is a non decreasing 

function of n and (l +  z^y^r) > 0, therefore

$(da(0))(1 +  v1^ - )  -  < X.

,,1 d\*
Hence, if <t>(d2(0)) > then X  > 0 and ^  > 0.

'  d r

(b) If v1 > 0 then $  is a non increasing function of n i.e. <f>(d2(rz+1)) < 

<f>(d2(n)), and <h(d2(n +  1)) < X.

X  is therefore non negative and ^  > 0.

b) The case of a p u t option
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The p of the put option is given by the following

%  =  T ^ Y ^ ^ e~r T ( s ^ 1 - ^ n+leVlyT{ ^ d^ n + 1 ^ - ^ di<<n^ )
n>  0  '

- K e - rT($(d2(n + 1)) -  $(d2(n)))^

- K T e ~ rT J 2  ^ ^ e - A*T(l -  $(d2(n))), if ^  < 0. (3.2.13)n! or
n> 0

And

¥  = T ^ ( l - ^ ) ^ h 2 T e- ^ ( s „ ( l - „ ‘r e-," ( * ( < i 1(n + l ) ) - « . ( d 1(n)))
n> 0  '  '■

-  A e-r r ($(d2(n +  l ) ) - $ ( d 2(n)))^

-  v ' T ^ K e - ^  Y  {- ^ ^ e - x'T ($(d2(n + 1)) -  <f>(d2(n)))
n > 0

-  A'Te-r r ^ ^ ^ e - x*:r( l - $ ( d 2(n))), if ^  > 0. (3.2.14)
n> 0

1- If < 0, from the sign of A(n) we get ^  < 0.

2. Now if > 0, since B(n) < 0 and (1 — u1) > 0, the first term of ^  is 

negative. We only need to determine the sign of

- v ' T ^ K e ~ rT Y  ^ r ~ e~XtT ( ^ ( n  +  X)) -  ^ ( n)))
n > 0

- K T e - t ?  £  {2̂ ^ ’T ( l  -  * (* (« )))  •
n > 0

(3.2.15)

As in the Call case, let us note that u1(^(d2(n +  1)) — 4>(d2(n))^ < 0, 

we shall consider again two cases u1 > 0 and u1 < 0. Again we consider 

the problem of finding the sign of

- V ^ r ($ (d 2( n +  1)) -  $(^2(n))j

- ( l - 4 > ( d 2(n))) (3.2.16)
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(a) For v1 > 0, we rewrite the expression (3.2.16) as

Y  =  ( _z/1^ r ( ^ ( d2 H ) - ^ ( ^ ( n  +  l) ) )  -  (^(d2(ri)))^ ,

= ^F(d 2 (n)) ^ - 1  -  +  ul ~ ^ ( d 2{n + 1 ))^

(3.2.17)

where $  =  1 — \F

The above is negative if an upper bound of Y  is negative. But, for 

the same reason as in the call case (here 4/ is an increasing function 

of n), so

Y  < ( tf ( i 2 ( 0 ) ) ( - l  -  ■

Hence for
10*1

^(d 2(0 )) =  l - $ ( d 2(0 ) ) ) > —
l +  i d f r

or

*(*<°)) < T T P f r
or

fsr> .^  is negative.

(b) For v1 < 0 we note that <b(d2 (n)) (resp. T (d2(n))) is a non de­

creasing (resp. non increasing) function of n and

Y  < —\&(d2 (n)).

Hence Y  is negative and so is □

Let us turn to the investment problem
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3.2.2 Investing in an auxiliary market

In parallel to the hedging agent who wants to find the optimal strategy to 

hedge his claim f r  (see previous sections), an investing agent is to find the 

optimal strategy that allows him to maximize the expected utility of his ter­

minal wealth. Assume a given utility function U : R + — > R, concave, non­

decreasing, continuously differentiable, and

limT_>00 U'(x) = 0,
(3.2.18)

lim ^o U'{x) =  oo .

Let u(x) be the cost function in the (Bd, S 1, S'2)-market. The investment prob­

lem (see, for instance Karatzas and Shreve [30], Melnikov et al [39]) consists 

in finding

u(x) = sup E  (u(X£d{x)f) = E ( u { x £ ’d(x))s)

(3.2.19)

The same transformation as in the previous chapter is applicable

u(x) = sup E {U(YT(x))) = E(U(Y*(x)))  
y£x

where x =  {Ypositive : Yt(x) = x + J*'yudXs} with 7  a predictable process 

and X is a P* local martingale. To solve the problem, we use Theorem 2.8. 

We consider the case U{x) =  ln(x) in the (Bd, S1, S 2) financial market. Sub­

stituting U(x) in (2.3.17), we derive V(y) =  — ln(y) — 1 and,

v(y) -  E[V{yZT)} = - E\\u{yZT)] -  1 =  -  ln(y) -  1 -  E[\n(ZT)\

= -  ln(y) -  1 +  y T  -  (ln(A*) -  ln(A)) XT + (A* -  A)T.
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We substitute the above expression of v(y) into equality (2.3.20), and find the 

cost function

u(x) = ln(s) +  y T ~  ( ln(A*) ~  ln(A)) XT +  (A* -  A)T- (3.2.20)

Next, we derive the optimal proportions invested on the different assets in­

volved. From (2.3.21), we know that

X * * ,d 1 r
Y*(x) = =  I(yZT) = —  =  4 -

Ty J Bt j yZT ZT

=  s e x p { - 0 W r  +  ^ - T - n r l n ( y )  +  ( A*  -  A ) r }

(3.2.21)

and solving (3.2.7) for at — a  yields

XZ'd r i  i  . n / 2 (a1 a1 +  a2a2) 2= x e x p |(a  (ji - r d) + a ( f i  -  rd) ------------  )T

+ (a 1a 1 +  a2a2)Wr  + ln(l — a 1u1 — a 2̂ 2)Il7’|  •

(3.2.22)

We identify expression (3.2.21) and (3.2.22) and obtain the values for a 1 and

a2

a 2 = ^  ^  t ) 

uLaz — uzaL uzal — vLcr2

In the (B d, S1, S 2) market, the optimal proportions invested are a 1 on the first 

stock, a 2 on the second stock and the rest (1 — a 1 — a2) on the bank account.
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3.2.3 The shortfall risk minimization problem in an aux­

iliary market

In the (B d, S'1, S'2)-market, we previously found the optimal strategy and ini­

tial capital required to hedge perfectly a claim f{Sfa  (see Section 1 of the 

current chapter). We also derived the optimal investment strategy and termi­

nal wealth of an expected utility maximization problem.

Consider now an investor whose initial capital x is less than the required 

bjd'*[e r'd'Tf ’i'\. In such a case a perfect hedge is no longer possible but one can 

minimize the risk of shortfall given the initial cost’s constraint

The loss function lp(x) = y  with p > 1, A  — {7r s.t. E  [sup0<t<r  |X7(0)|] < 

oo} and fa  G Lp+e(fi,Xr, P), for some e > 0.

The Theorem (2.8) from Chapter 2. gives the optimal solution of the problem. 

The latter is characterized in the (Bd, S 1, S'2)-market by what follows.

a) Let oio(f) be the optimal portfolio proportions associated to 7r0 solution 

of the problem (2.3.30), then a0{t) := a0 =  (aJ,Q!o) °f J(z ) 1S given by

u(x) inf E[lp( ( f a - X ”’d(x))+)}. (3.2.24)

tv e  A.

x < E d’*[f(S^)e~rdT]

(3.2.25)

Hence
.2 (

v^a1 — v lo2 a2̂ 1 — a1Z22
(3.2.26)

where q is such that - +  - =  1.1 p q
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b) The cost function

u(x) = lp{xfT -  x)e{- (p- 1)aT), (3.2.27)

with a = —qrd + \q(q -  1 )fi2 -  A ({q -  1) -  q ( ^ )  +  ( f ) 9) .

c) The optimal terminal wealth is given by

X l iT~*°’d{x) =  f T -  (xfT -  x X Z r ^ e  ~ a+̂  T .

3.3 The constrained market results

We consider the same standard stochastic basis. Assume there are two risky

assets Sl, i — 1,2, whose prices are given by the equations (3.2.1).

We also assume that there are a deposit account B 1 and a credit account B2 

satisfying to

dB\ =  B^Bdt, * =  1,2. (3.3.1)

Denote (B1, B 2, S 1, S 2) the market described by the above assets, and any 

non-negative ^ “measurable random variable f r  is called a contingent claim 

with the maturity time T. In the (B1, B 2, S 1, S 2)-market, a portfolio tt — 

(/31, (32,7 1, q2) is an ^y-predictable process, where we denote respectively by 

and 7 * the number of units of the ith bond and ith stock in the wealth. The 

value of the portfolio tt is given by

= P\B\ +  P2B 2 + 7\S l  +  7I S l  a.s. (3.3.2)

A portfolio 7r is said self-financing (SF) if it verifies the following property

dVt =  p\dB\  +  PldBl + t \dS\  +  72t d S l  a.s. (3.3.3)
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we now turn to the hedging in the two interest rates (B1, B 2, S l , S 2)-  

market.

3.3.1 Hedging in a two interest rates market

Let us now turn to the hedging in the (B1, B 2, S 1, 5 2)-ma,rket. We first de­

fine suitable auxiliaries markets (Bd, S 1, S2)dg[o,r2-ri]) where a bank account 

B = B d is defined by the interest rates rd = r l +  d. From (3.2.8), the minimal 

initial hedging cost Crd of the claim f r  in the complete (Bd, S 1, S 2) market is 

known. In the (B1, B 2, S 1, <S2)-market the buyer or seller price of the claim 

fx  will be given by the initial cost of the minimal hedge provided the latter 

exists.

We finally study the optimal investment problem in the given jump-diffusion fi­

nancial market given by relations (3.2.1) and (3.3.1). Considering the problem 

in a standard unconstrained financial market, we then derive the corresponding 

results in a two interest rates model.

As in Chapter 2 under the assumptions made, The Wealth and Debt 

processes have the following dynamics:

dVt = Vt- (1 -  a] -  a t2) V d f  -  (1 -  a] -  a2) r2dt +  + a 2^ -

(3.3.4)
r . _ _

dYt -  K- (1 -  a] -  a2)+r2dt -  (1 -  a] -  a 2) r ldt +  a ] ^ -  + a2^ -

(3.3.5)

Where at represents again the proportion invested in stocks. The derivation 

of the above formulas are provided in the Appendix.
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Consider first the position of a buyer. From a buyer’s viewpoint, the in­

vestor wishes to invest the minimal initial amount and, at the same time 

generate a terminal wealth matching at least fr- Consequently the buyer’s 

price is defined as follows:

inf{x > 0 3 a G A(x), s.t. V£’a > f r  a.s.}, and represents the initial capital 

of the minimal hedge (if it exists) against the claim fr- The upper hedging 

price (or buyer price) in the jump-diffusion (J31, B 2, S 1, S'2)-market will be 

given by what follows (see Korn [31] for the Black-Scholes model). 

S ta tem ent 3.1. Let d = (dt) G [0 ,r2 — r 1] be a predictable process and let 

a := (a1, a2) the optimal hedge against f r  in the (Brf  S 1, 5 2)-market verify

( r2 — r1 — dt)( 1 — cq1 — a2)~ + dt ( 1 -  cq1 -  a2)+ — 0, (3.3.6)

Crd(0) (resp. PTd{0)) the initial price of the minimal hedge in (Bd, S 1, S 2) 

against f r  is equal to C+ (resp. P+) the initial price of the minimal hedging 

strategy in (B1, B 2, S 1, S2). Namely

Crd(0) = C+ ( resp. Prd(0) =  P+).

Proof. Let us first show that under relation (3.3.6), the minimal hedging strat- 

egy (a) in (Bd, S 1, S 2) is a hedging strategy in (J31, B 2, S 1, S 2). Let CTd be 

the initial capital associated to that hedge in (Bd, S 1, S 2). If a  verifies (3.3.6), 

then the stochastic differential equations of the wealth processes Vta,d and Vta 

of respectively (Bd, S 1, S 2) and (B1, B 2, S 1, S 2) coincide. Taking CTd as the 

initial price in both markets yields an equality between the two processes at 

any time t G [0, T]. Consequently V^’d — VfL = f (S f ) .

Now, let us show that under the assumption of the Statement 3.1. the strategy 

a is minimal among the hedges against f(S^)  in the (B1, B 2, S 1, S 2) market.
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For that purpose, it suffices to establish the following

E d'*[f{SlT)e~rdT] < x,

where x  represents the initial capital of aa an arbitrary strategy in (F?1, B 2, S 1, S 2). 

Let Vtaa be the wealth process generated by aa in the (B1, B 2, S'1, S'2) market.

We will prove that E d’*[V^ae~rdT] < x.

Consider the discounted wealth process X t := Vtaae~rdt, then by using Ito- 

Kolmogorov’s formula we obtain

dXt = VtaJe~rit ([(1 -  a]’a -  -  r2) -  d{ 1 -  a\'a -  a 2*)] dt

+ (aJ’V  +  a2t 'aa2)dWt* -  { a ^ u 1 +  a2t 'au2)d(Ut -  A*t)). (3.3.7)

Now, we note that

(1 -  a}’a -  a2’a)~(r1 -  r2) -  d(l -  a}’a -  a2'a) < 0

and,

71 +  a2'aa2)dWt — (a]^u1 +  ot2'av2)d(Jlt — A *t)

is a P* local martingale. Whence upon first integrating the relation (3.3.7) 

then taking the P* expectation, we obtain, for all t in [0,T],

E d’*[Xt] = E d’*[Vtaae~rdt] < x. (3.3.8)

aa is a hedge for f T, yields V£ae~r'lT =  X t  > f r X 1''1'1' henceforth

E d'*{fTe~rdT] < E d'*[XT\ = E d'*lV«ae~rdT] < x.

From there, Cra — E d’*[fTe~rdT] < x  where x  is the initial capital of an 

arbitrary hedge for f T in (B1, B 2, S 1, S 2). Further, provided relation (3.3.6) 

fulfilled, Crd is an initial price of a hedge for f T in the latter market. Therefore

Crd ~  C-j- , 
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where C + is the initial capital of the minimal hedge in (Bl , B 2, S 1, S 2).

The proof is similar for the Put case hence Pri = P+. □

Secondly we study the position of a seller. From a seller’s perspective, one 

can imagine the seller contracting an initial debt of value |y|, where y is the 

initial value of a debt process Y.  The seller’s objective is to find a strategy a 

with the lowest initial debt CL =  \y\, that allows him to “honor his contract” 

( Yj* < —fr)- The minimal initial debt possible given by CL is described by 

what follows,

—CL =  sup{y < 0 /  3 a = (cc1, a2) € A'(x)s.t., Y£ < —/ t }

and A! {x) represents the set of self financing strategies a  such that the gener­

ated debt process Yta < 0 , Vf > 0.

S tatem ent 3.2. Let d — (dt) be a predictable process in [0,r2 — r 1], and let 

ad, the minimal hedging strategy against f r  in (Bd, S 1, S 2) verify the equation

(r2 — r1 — dt)( 1 — cq1 — a2)+ +  dt ( 1 — a\ — a2)~ = 0. (3.3.9)

Then,

1. The proportion ad is a hedge against —fa  in (B1, B 2, S l , S 2).

2. If further, Crd (resp. Pr,i) the fair price of the claim in (Bd, S'1, S'2) verifies 

Cra — inffegjOj^-r1] Crk (resp. Prd — inffeg[o,r2-r1] Prk ) then,

Crd — C_(resp. Prd = P S),

where CL (resp. P_) is the initial debt of the minimal hedge (i.e., 

the seller price). Namely —C_ (resp. — P_) =  sup{y < 0 /  3 a G 

A'(x)s.t., YT < - f T}.
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In order to proof Statement 3.2 let us first state the following

Lem m a 3.3. The minimal hedging strategy against f r  in (Bd, S 1, S 2) (for a 

buyer) is the minimal hedging strategy against —f T (for a seller) in the same 

market.

Proof In the unconstrained (Bd, S 1, S'2)-market, the stochastic differential 

equations of the debt and wealth processes coincide, then if ad is a hedge 

against f r  in (B d, S 1 ,S 2) we have Vf?'d,x = fr-  Now, taking y — —x  as initial 

price for the debt process yields Yt — —V(fd'x — —f T. Henceforth, a(l is a 

hedge against — f r  in (Bd, S 1, S 2).

□

Proof, (of Statement 3.2) Provided relation (3.3.9) is verified, a fj is a hedge in 

(B1, B 2, S 1, S 2) against — fr,  with initial price —Cr,i. Only, we need to find the 

minimal hedge in the latter market. Let us assume that Crd =  inffee[0 r2_ri] Crk, 

and let y be the initial value of the debt process generated by cr, an arbitrary 

strategy in (Bl , B 2, S l , S 2).

We shall show that y < supfee[0r2_ri](—Crk) := —Crd. Henceforth, any hedg­

ing strategy against — f r  has an initial value less than —Cr<t, but —Crd is itself 

an initial debt of a hedge (ad) against —f r  in (B1, B 2, S l , S 2). Consequently 

—Crd gives the lowest initial debt in (Bl , B 2, S 1, S’2).

Let us show that y < supfce[0)r2_ri] (—Crk) := —Crd.

Any hedging strategy against —f T in (B1, B 2, S 1, S 2) is a hedging strategy 

against the same claim in (Bd, S 1, S 2) where

d =
r2 — r1 if 1 — a) — a2 > 0

(3.3.10) 
otherwise.
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But, —Crd < —Crd by definition. Therefore y < —Crd. 

The proof holds for both Put and Call options. □

Let us give an approximation of the arbitrage free prices of the claim f y  = 

(5y — K )+. The key ingredient of the method relies on the following. Taking 

the supremum (resp. infimum) over the auxiliary markets of the actual prices 

we find some natural approximations for the upper and lower hedging prices 

of the claim, (the buyer and seller prices of the claim fr) ,  and hence we 

approximate the arbitrage-free interval of prices by taking

Exploiting the Call-Put parity a similar method is used for f x  = {K — S f ) +. 

Let us realize this in the following.

The next Theorem contains our main pricing formulas.

Let us first introduce the following conditions:

Under these conditions combining Lemma 3.1, Statement 3.1 and Statement 

3.2 we arrive to the main result.

Theorem  3.3. If  condition (I) or (II) or (III) are fulfilled, then the following 

pricing formulas hold.

d€[0,r2—r1]inf Crd, sup Crd .
3,r2—r 1] dE[0,r2—ri]

(i) <  o,

(II) v1 > 0 and ^  > 0 and $(d2(0)) <
d r

. . 1  d \ *

(III) Z,1 < 0 and f r  < 0 and < <f>(d2(0)).
d r

sup Crd
d £  [ 0 , r 2 — r 1 ]

>  Cr2 , sup Prd > Pri
dE[0,r2— r1]

inf Crd
d€ [0,r2—r1] Prd < Pr2 . (3.3.11)
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Corollary 3.1. (See Korn [31]) The Black-Scholes model verifies (3.3.11) 

since conditions (I), (II) and (III) are fulfilled: u1 =  0, — 0 and

0 < <k(d2) < 1.

Corollary 3.2. The pure jump case (the Merton model) verifies (3.3.11) since 

condition (I) holds: — — 1.

3.3.2 Investing in a two interest rates financial market

In the (Bd, S 1, S 2) market, the optimal proportions invested are a 1 on the first 

stock, a 2 on the second stock and the rest (1 — a 1 — a2) on the bank account.

Let us turn to the two interest rate financial market (B1, B 2, S 1, S 2). The 

previous results lead to the following theorem

Theorem 3.4. Let the wealth processes in the (B d, S 1, S 2) and (B1, B 2, S 1, S 2) 

financial markets X f ’d(x) and X f (x )  verify (3.3.4) and (3.2.7) respectively, 

and let (3.3.6) hold for at the optimal proportions in the (B d, 5 1, S 2)-market. 

Then considering a logarithmic utility function, in the (B1, B 2, S 1, S 2)-market

1) the cost function u(x) is given by (3.2.20) and,

2) the optimal proportions invested on the different assets are a 1 on S l , a2 

on S 2, (1 — a 1 — a 2)+ on the deposit account (if (1 — a 1 — a2) > 0) and 

(1 — a 1 — a2)~ on the credit account (if (1 — a 1 — a 2) < 0).

Proof. Let a* the optimal proportions in the (Bd, S 1, iS2)-market verify (3.3.6) 

then, a* is optimal for the (B ], B 2, S'1, S2) -market. For any hedge n, we have 

X?(x) < X f ' d(x) and,

sup E [U(Xf(x))\ < sup E \u(X*’d(x))1 -  E \u(Xf*’d(x)) 1 (3= 6) E \U (X f (x ) ) ]
7r e SF  ireSF L -1 L -I

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Hence

sup E [U(X£(x))] = E  \U(X f(x))]  = E  \ u ( X £ 'd(x))\ = u (x ) . (3.3.12)
7T e S F  L

Regarding the optimal proportions in the (B1, B 1, S 1, S'2)-market, From (3.3.6) 

and (3.3.12), we derive

X f ( x )  = X ”*'d{x) = Y*4 {x)erdT. (3.3.13)

Solving equation (3.3.4) for X£* (x) and identifying the latter with Y^’derdT 

the optimal proportions invested in the (B1, B 2, S'1. S'2 (-market are a 1 on S 1, 

a2 on S 2.

Since a 1, a 2 are constants then if (1 — a 1 — a 2) > 0 we invest (1 — a 1 — a 2)+

on B 1 and if (1 — a 1 — a2) < 0 we invest —(1 — a 1 — a2)~ on B 2. □

Consider a particular case a1 = 0, v2 =  0 and assume (1—a 1—a 2) > 0 (only 

the lending rate r1 is applicable). Then, the market (Bd, S 1, S 2) is defined by

dBt — rdBtdt, B0 > 0,

dSl = Si(fEdt -  v ldRt) , Sq > 0,

dS2 = S 2{fi2dt -  a2dWt), S2 > 0.

From relation (3.2.5) we obtain that

H2 — r 1 
02

A* =
fj1 — r 1

Exploiting (3.3.14) and (3.2.23) we derive

a l /i1 — r 1 — Xu1 2 ix2 -  r 1a. =
(^2)2

(3.3.14)

(3.3.15)

Note that a\ and a2 are the Merton point in a pure jump and pure diffusion 

model respectively. In the setting of a two interest rates financial market with 

the above assumptions the optimal proportions invested are defined by (3.3.15) 

for S 1 and S 2 respectively, and (1 — a 1 — a 2) in B 1 and 0 in B 2.
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3.3.3 Shortfall risk minimization problem in a two in­

terest rates market

Consider now the same problem in a two interest-rates financial market. We 

give in what follows the solution of problem (3.2.24) in such a setting.

Theorem  3.5. Let X f ’d(x) and X f (x )  the wealth processes in the (Bd, S 1, S 2) 

and (J31, B 2, S 1, S 2) with initial capitalx verify respectively (3.3.4) and (3.2.7). 

Further, assume at the optimal proportion (for Problem 3.2.24) *n the (B d, S1, S 2)- 

market verifies (3.3.6), assume also that otfT the optimal strategy hedging f r  

in the (Bd, S 1,S 2) fulfills the conditions provided in Statement 3.2. Then, in 

the (B1 , B 2, S 1 , S 2) -market

1) the cost function (3.2.24) is given by (3.2.27).

2) the optimal proportions invested are

1 a}X t-T (x fr ) -  alX t- (xSt ~ x ) aX— ------------=-----=---------------------  on b ,
X tl T \ x )

2 a } X ? ( x f r ) - o i X ™ ( X,T - x )
at — ----------- ;—-rz-----------------------  on b ,

X tl T °{x)

and (1 — a) — a2)+ on the deposit account and (1 — af — a2)~ on the 

credit account.

Proof. Let a£, the optimal proportions invested for the problem (3.2.24) in 

the (Bd, S 1, S'2)-financial market verify (3.3.6). Then, for all 0 < t < T,

X f  ’d(x) — Xf* (x) and a* is optimal for the same problem in the (B1, B 2, S 1, S 2)-  

financial market (since the (B l , B 2, S l , S'2)-market admits higher deposit rate 

and lower lending rate than the (B d, S 1, 5’2)--market. Therefore for any hedge 

7r, Xf (x )  < X ( x ) f ’d and
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inf E
7r€A,{x<Ed'’*[e~rdT / t ]}

~lp ({ fT - X * ' d{x))+) ' <
inf £ [ I p (( /t - W ) ] .

7 7 g y l,{ x < i5 'J'* [e _ r  T f r]}

(3.3.16)

Now if a* is optimal for the left hand side of inequality (3.3.16) and verifies 

equality (3.3.6) then it is also optimal for the right hand side.

The cost function u(x) is given by

u(pc) =  inf E
i rEA,{x<Ed’*[e~rd'r  f r ] }

= E

ip ({ fT - x * ' d{x )y  

lp ([ fT - X $ ' d{x))+)_

= E[lp { ( f r - X f ( x ))+)]

inf E[ lp ((fT - X Z ( x ) ) +)]
x e A ,{ x < E d’*[e T T / r ] }

inf E[lp {(fT - X * ( x ) ) +)] .
{■KEA,{x<C^—inid E d’*[e~rdTf T}}}

Note that the last equality is obtained from

inf E[lp ((fT - X £ ( x ) ) +) ] <
{ ireA ,{x< E d’*[e r T / r ] } }

inf E[lp ((fT - X Z ( x ) ) +)]
{’KEA,{x<C——inf(i E d’*[e r t / t ]}}

and since afT the optimal proportions hedging f T is assumed to verify the 

conditions of Statement 3.2. (i.e. C_ =  Crn). The optimal terminal wealth is 

X%{x) = X £ d(x) = X*f (xf ) -  X*°(x -  x f ).

The optimal proportions invested are given by
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7 r  =  TTf -  7 T 0

1ft S  =  i ft , fS -  KtflS 

ottXt- — ottjX^_ — at,oXf-  (3 .3 .17)

□
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Chapter 4 

Application on life insurance 

contract w ith guarantee

4.1 Introduction

In this section we begin by giving some standard results on quantile hedging in 

the Merton, Black-Scholes, and Jump-diffusion models. We introduce a new 

type of instrument with both finance and insurance risk called unit-linked or 

pure endowment insurance contract with guarantee (see Brennan and Schwartz 

[13],[14], Moller [43], Aase and Persson [2]). Melnikov [36] proposes efficient 

and quantile hedging to price these instruments on a framework of one interest 

rates financial market. We exploit the latter results to approximate the interval 

of survival probabilities for the holder of unit-linked insurance contract with 

guarantee, in the {Bl , B 2,S)  and (B1, B 2, S 1, S 2) markets. At the end of 

the chapter, we provide 2 numerical examples on which the interval of ages 

required for a policy-holder of the latter contract is derived on a two interest 

rates Black-Scholes model.
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4.2 Standard results on quantile hedging

Since Follmer and Leukert [26], [27], we know that an investor unwilling to 

pay the fair price of a claim f r  (see formula 3.2.8), could pay less than the 

required fair price but at a higher risk. The quantile hedging problem can be 

modelized as follows

where tt is in the set of Self-financing strategies.

Consider an investor whose initial capital :r0 is less than Cr the fair price of the 

contingent claim fa. The quantile problem consists in finding the strategy that 

maximizes the probability of successful hedge for such an investor. The set 

of successful hedge for a strategy 7r with an initial capital x  and a contingent 

claim f r  is given by A (x .7r, f r )  = {u>,Xf(ui)(x) > / T}. The solution of the 

problem (4.2.1) is provided by the next lemma.

Lem m a 4.1. An optimal strategy for the Problem (4-^-1) is given by the perfect 

hedge of the modified option f l f  where A has the form

More details on the proof of Lemma 4.1 can be found in Follmer and 

Leukert [26] or Melnikov et al [39]. Alternatively to the problem (4.2.1) (primal 

problem), we could have formulated the dual Problem: given the probability of

to hedge the claim f T.

We next provide the analytical results of respectively the pure Merton, Black- 

Scholes and jump-diffusion models (see Melnikov et al [39], Melnikov [36]).

Max{x<X0<Cr}P(Xf,(x) > f T) (4.2.1)

> const

the maximal set of successful hedge, derive the minimal initial capital required
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Statement 4.1. Let x0 be as previously the initial capital held by the investor 

and assume

In (A*) -  In (A)
aM In (1 -  v)

(4.2.2)

then, two cases arise.

la) If qm < 1 then A, the set of successful hedge is given by {Ilr < d} =  

{St < b}, where d =  ln(11_t/) * (ln(J^) — /LT) and b is the solution of

xo — So $(«*-, A*(l -  v)T) -  $ (n6, A*(l -  u)T)

-Ke - tT

(4.2.3)

with nx
In -S- —u T  %
In ( I —*')

2a) Else, if a j j  > 1, then

+  1.

A  — { S t  <  &i} U { S t  >  ^2} — {ILx <  U { fix ’ >  d2{,

where bx and b2 are solutions of

^ 0  — So $(71*-, A*(l -  v)T) -  $ (nM, A*(l -  v)T) +  4>(nfc2, A*(l -  v)T)

- K e - r T $(nK, A*T) -  $ (nM, A*T) + 4>(n62, A*T) (4.2.4)

We now provide the quantile hedge results in a Black-Scholes framework.

Statement 4.2. Let x0 be the initial capital held by the investor and Denote 

aBS by

ji — r <f>
OtBS a (4.2.5)

Then, we derive what follows
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lb) For ass  < 1, the maximal set of successful hedge

A = {ST < B} = {W? <b} = <JVT < b -  ( ^ - ^ }

and, the solution of the problem (4.2.1) is given by

p (A)  = * ( ^ 5 z L ) , (4.2.6)

where b is derived from the initial capital constraint

xq — So ®(di) — — - j=  yj - K e -tT

(4.2.7)

and d\ and da are provided by formula (2.3.9).

2b) For ass  > 1, the maximal set of successful hedge

A = {ST <  £ i}U {S t  >  B2} = { WT < 61- ( ^ - ^ ) r } u { w r  >  

hence the solution of problem (4.2.1) is given by

P ( A ) - * ( — # - ) + * ( — A ) '

with bi, b2 verifying

x 0 — Sq

—Ke - r T
• ( * > - * ( - 4 ) +  « ( - & )V t V t J\

(4.2.8)

(4.2.9)

We finally arrive to the jump-diffusion model.

S tatem ent 4.3. Let (j> be as in formula (3.2.5) and, x 0 the initial capital held 

by the investor, then A  the set of successful hedge is such that
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1) If < 1 then, the conditioned maximal set of successful hedge

i | { n r = „ }  = {S t  < B(n)} = {W£ < b(n)} = { W T < b(n) + <f>T} ,

where Vra, B(n) is the unique solution of

— ̂  -4-x~^ = hnconst(x — K)  and , h
A*

A(1 -

Further, the initial capital of the quantile hedge is given by

x0 E
71=0

*rr \ n a —\* T(A * T fe
ni

5(1 -  ^ A*T($(d+(n)) -  <&(6+(n))) 

~Ke~rT(^(d_{n))  -  $(6_(n)))

(4.2.10)

2) Else if ^  > 1 then, the conditioned set of successful hedge d i |{ n T= n }  is 

provided by

j4|{nr=n} = {St < Bi(n)} U {St  > B2(n)}

= {WT <b1{n) + (t>T}yj{WT>b2{n) + <t>T},

with Bi{n) and 5 2(n) solutions of the equation (4.2.10). The latter 

admits two solutions when ^  > 1. The initial capital of the quantile 

hedge follows

x0 E
71=0

*rr \ n ~ - \ * T(A *T)ne
n! 5(1 -  v)ne»x'T (${d+{n)) -  $(61+(n)) +  $(62+(n))) 

- K e ~ rT (§(d_{n)) -  $(&!_(«)) +  $(62_(n)))

(4.2.11)
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where we denote

d-(ri) =  -------- —--------==-----------   , d+(ri) = d-(n)  +  a V T ,
cryT

+  (r -  ° i)T
b-(n) = --------- —----- -=---------------, b+(n) =  6_(n) + crVT,

cryT
~ bip) , , v 6(n)=  6+(„) =  ^ - w ,

+  (r _ d ) r
6i_(n) =  --------- — ----- j= ---------------- , bi+{n) =  b i - (n ) +  a V T ,

cryT
—bi(n) bi[n)

=  — ? = -  m+(n) — c r y T  = - ,
V T  V t  ’

z =  1, 2.

We have chosen to express the quantile hedging initial price as a function 

of b±(n), bi±(n), for convenience purposes on the proof. We have pro­

vided the formulas necessary to obtain the quantile hedging initial price 

as a function of b(n) and bi(n) (as it was expressed in the pure Mer­

ton and Black-Scholes models). Also to avoid cumbersome notations we 

have respectively denoted the parameters fi1, a1, u1 by p, a, v.

4.3 Pricing unit—linked insurance contract us­

ing quantile hedge

A unit-linked insurance contract holds both finance risk (from the stock mar­

ket evolution in (Q,P,P))  and insurance risk (from the mortality of the in­

sured in (Q,P,P)).  To take into account theses features a probability space
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(fl x O, T  x JF, P  x P) is considered. Unit-linked insurance contract are paid 

upon survival of the insured at the maturity of the contract. Let the random 

variable T(x)  G (Q,P,P)  be the survival time of an insured whose current 

age is x, and K  the guarantee of the contract then, the terminal payoff of this 

insurance claim is described by

max(5t, K ) I {T{x)>t }

To price this contract, we consider the probability measure P — P* x P , where 

P* is the new measure defined by Statement (2.6) and denote the premium of 

the contract in the auxiliary market (B , S ) (resp. ( B , S l , S 2)) by t Ux and let 

Tpx = P(T(x) > T ) then,

TUX = E[e~rTmax(ST, K ) I {T{x)>Ty\

= E[e-rT(K  +  (ST ~  K ) +)I{T{x>T}]

= TpxKe~rT +  TPxCr ■

Let us rewrite the above equation as follows

t Ux — rPx^e  rT — tPxCt ■

Since tVxCt < Cr the quantile hedge of f r  with initial capital constraint rPxCr 

is considered (see Melnikov [36]). From the solution of the quantile hedge the 

next equation holds

TPxCr %Q i

where x 0 verifies relation (4.2.3) or (4.2.4) in the Merton model, (4.2.7) or

(4.2.8) in the Black-Scholes model and (4.2.10) or (4.2.11) in the Jump-

diffusion model. We summarize next the survival probabilities obtained in 

the different models of unconstrained markets.
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1) The pure Merton model

If olm < 1 the survival probability is given by the next equality

T P x C l
S0 ($ (n 0, AT(1 -  u)) -  $ (n1; AT(1 -  i/)))

- K e ~ rT(§{n0,\*T)  -  $ (m , A T

Else if olm > 1, it follows that 

1
T P x  —

CL
50($ (n 0, AT(1 -  i/)) -  AT(1 -  u)) + <h(n2, AT(1 -  i/)))

- K e - rT(${no, AT) -  $ (n 1; A T) +  $(n2, A T ))

Here, the initial price of the pure Merton model with strike price K  is 

denoted by Cr.

2) The Black-Scholes model.

From equation (4.2.8) we derive the survival probabilities

a) for the case where ^  < 1,/ (j — >

T P x  — ~Q~ ' S o
x /T '

~ r T

b) and for the case where —̂ > 1 the next holds

t P x — ■ S0

- K e - r T

We have denoted the Black-Scholes initial price with strike price K  by

Cr.
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3) The Jump-diffusion model

a) For ^  < 1, the survival probability is given by

T P x
1

r  7 1 = 0

(A *T)ne
n\

b) For > 1, we obtain

T P x
r  n = 0

(A *T)ne
n\

S ( l - u ) ne ^ T {^(d+( n ) ) - ^ ( b +(n)))

- K e ~ rT($ (d4n) )  -  $(M ™ )))

S( 1 -  u)nevX'T (*(d+(n)) -  $(61+H )  +  $(&2+(n)))

- f l e _ r r ($(d_(n)) -  $(61_(n)) +  $(62_(n)))

where we have denoted C ^  the jump-diffusion initial price with strike 

price K.

4.4 The constrained market

In the previous section we have considered the problem of pricing unit linked 

life insurance contracts and derived the survival probability of the insured 

(purchaser of the claim) in a (B , S) (resp. (B , S 1, S'2))-market. In this section 

we consider the same problem in a two interest rates financial ((B l , B 2, S ) 

and (B1, B 2, S 1, 5'2)-markets). The solution of the problem follows from the 

previous chapters. We consider the auxiliary (B d, S')-market for the pure Mer­

ton and Black-Scholes models and (B d, S 1, S 2) for the jump-diffusion model, 

where the applicable interest rate rd r1 +  d is such that r1 < rd < r2. We 

derive monotonic properties of the survival probability in the different mod­

els. This monotonicity allows us to approximate the interval of survival prob­

abilities in the two interest rates (B1, B 2, S,)-market (resp. (B1, B 2, S 1, S 2)-
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market). From there we can retrieve the interval of possible ages of the insured, 

using the Table of Bowers et al. [12].

1) The structure of the survival probability in the (B1, B 2, ^ -m ark et de­

pends on the parameters of the initial model. We provide in what follows 

the interval of the survival probabilities on a two interest rates Merton 

model.

Theorem 4.4. Let tPTx be the survival probability in the (Bd, S) market, 

and let I  [inf^g [ o , r 2 - r i ]  supdg [ o ^ - r 1] tPTx] be an approximation 

of the interval of survival probabilities in the {Bl , B 2,S) market.

a) If olm  <  1  V d e  [0, r2 -  r 1] then, I  = [Tpr*, Tp]̂ ] .

b) Else if olm > 1 ,  V d G [0, r2 — r 1], we distinguish two cases 

according to v < 0 or 0 < u < 1.
a)

b)

The case where the param eter u < 0.

I f n 2 < n* then, I  = [tPx , tPx \- 

Else if n* < n\ then,I — [tPx ^tP^]

The case where  0 < v < 1.

If  n 2 < n* then, I  = [Tpr*,TPx]-

If  n* < m  then, I  = [tPx ^tPx ]-

where, we denote

In(^) — p T  ln(ig) — p T  ln(%f) — p T
no i / i  \ ’ n\ i 7z \ ? n2 z r- /m(l — v) m(l — v) ln(l — v)
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n
 %  4  " for 0 < t' < 1Grd iA*T 

a c r d  . c  T ( l - v )

^  rd y + 1 , for u < 0 .r  ~
r d  v \ * T

2) For the Black-Scholes model the following theorem shall hold

Theorem  4.5. Let tPTx be the survival probability in the (B d, S ) market,

1) The case where < 1 Vd G [0, r 2 — r 1].

The interval

I  — [tPTx iTPTx \

2) The case where lL̂ ~  > 1 Vd G [0, r2 — r1},

~jr < Xl and[a)l ~7p < x i and “Tf < x i where xj  is given by

aVTS$(d+)
X j  — crd

then,

1  =  [TPrx > TPx ]•

[b)J Else if > xi and > Xi then,

1  =  [tPx ,T P rx ]•

3) For the Jump-diffusion model

Theorem  4.6. Let Tplf be the survival probability in the (Bd, S x, S 2)- 

market, let f> verify formula (3.2.5) and, denote

u tP* ’ sup t p *} de  [0,r2—r 1] d e  [o .t-2 —r i]

then, the following cases hold

A ) the case where <  i ,
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al) i f " f£r > _1 then> 1 =  Tpx}

a2) if =  — 1 then, we are in the pure jump case (see previous re­

sults).

a3) ifv^pr < -1  then, I  = [Tpp , TPx ]

B ) For the case where > 1, three possibilities arise.

bi) i f v § £ > - 1,

and, if V n, b l- (n ) < b*_(n) i/ien; we obtain I  = [tPTx , tPTx }

else if  V n, b*_{n) < 62_(n) then, I  = [tPTx , tpC]-

b2) The case — —1 leads again to the pure jump case.

b3) I f v & < - 1,

and if V n, bl-(n) < b*_(n) then, I  = [tP ^ , tPVx ]> 

else if V n, b*_(n) < 62_(n) then, I  = [rPrx , rPTx] ■

Where, we denote

b* ,  \ _  ~ ~ ft£  +  C(fdT ^ j  -  1 +  t/) -  ( i /^ r  +  l )

M n J
J rd ctVT

The next remark is a direct consequence of the above theorem and the previous 

results from Chapter 3.
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R em ark 1. If the inequality — £ < 1 is verified and — 1 < < 0 then the

following equalities are true.

1) The interval of survival probabilities I  — [tP^ , rPrx- ] ■

2) The arbitrage free interval of the Call option is given by

[infCrd, supCrd] =  [Cri, Cr2].

3) Identically, the arbitrage free region of a put option follows [infrf Pr,i, sup Prd\ 

[Pr2 , P ri].

We now will provide the proof of the above Theorems. Throughout all the

proof we will denote the interval of survival probabilities by

1 := L min2f SUPd 6 [ 0 , r 2 —r 1] d e [0>r2 _ r i]

Let us begin by the proof of the Theorem 4.4 .

Proof. The Pure Merton Model

1. Assume a jj  =  a* < 1. Then two cases will be considered:

The case where u < 0.

Denote C^d = — v))) — Ke~rT$(ni,  A*T), we recall that

Crd = S($(n0, A*T(1 -  !/))) -  K e - rT$(n0, A*T)

where no is given by formula (2.3.6) and n\ — and we recall that

since C > K  we have no < n i . We derive the following formulas

d$(n,A*r) _  T  (\*T)n- l _A,T 
drd v n — 1!

d$(n,  A*T(1 — u)) _  M w_x jA.r ^ ( n ,A T )
drd drd
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dCrd = 5<h(nQ, X*T) 
drd drd

dc°d 0$(m ,A  *T)
drd drd

5(1 -  v)n°evX*T -  Ke~rdT 1 +  K T e - rdT$(n0,\*T).  

5(1 -  v)nievX*T -  Ke~riT 1 +  K T e ^ T^{nu \*T)

(j  qC qC
Note that tPx — —175—— = 1 — ^  hence

(<v0

^TPx
drd

2dTPrx
drd = c.

dr ’
~ dC d dCcdtC ra /~i rd'-'Vddrd drd ’

and we derive

( a drd =  (5(1 -  v)n'(?x'T -  Ke~rdT&(ni, A*T)) 

-  Cr<i ( j5 ( l  -  ^)nie"A’T -  X e-rdT]

dCrd
drd 

d$(n i , \*T)
+ K T e - rdT$(nu \*T

( dC
$ K  A*T(1 -  v ) ) - ^ -  -  Crd{ 1 -  v)n'e

drd
,rti „kA 'T  ( n l  i A * r )

5 $(n l 5A*T)
drd

CrdT$(ni,  \*T)

Let

(<?r
; d(Tpx(n{)) 

drd

In order to find the sign of the above we shall compute A f ni = f ( n j) — f(rii —

1). Using the following equalities

®(ni, A*T) — <L((ni — 1 ) ,  A*T) =  - i  ^ r r e - ^ ,
(ni -  !)!

$(ny, A*T(1 — v)) — $((ni — 1), A*T(1 — u)) =  _ ^ T (1 ~  ^  V ^ p - d
(n 1 -  1)!
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d$(nl ,\*T) _  g$((nx -  l),A*r)
drd drd

d^{nu A*T(1 -  u)) d$((nx -  1), A*T(1 -  u))
drd drd

T  (A*T)rai~2 _X,T 
v (ni — 2)!
T  (AT(1 -  n))wi~2
j/ (nx — 2)!

A*T(1 -  v)

_ A * T  

nx — 1
3- A * T ( l - « / )

1 -

nx — 1

we then derive

(A *T)n i  — 1 ^—\*T
(nx -  1)! [ S ( l ev\-T _  K<; - rdT

dCrd , ^  T ( l - u )  „  T n x - 1
“r L/rd--------------0_dSH ' ~ra v “ r“ i/ A*T

When n < 0, n0 represents inf{n s.t. 5(1 — v)nevX*T — Ke~rdT > 0}. Now 

from the choice of the maximal set of successful hedging C > K.  That yields 

to ni > no and by definition of n0 we obtain 5(1 — v)ni~le'jX'T — Ke~rdT > 0 

A f ni is therefore positive (i.e. f ril increasing) if the expression

^  + c J - ^ - c 7 - n- ^ > «drd v A*T

i.e

ni — 1 >

9C j

agr d
drd + c T ( l - v )

c dr v \* T

n i >
+  c ' dm-v)

c + i
r d v \* T

+ i.

Otherwise Af ni is negative and hence f ni decreasing. Combining the above 

results with / ( n 0) = 0 and lim^-nx,/(nx) =  0 implies /(nx) < 0 always.

Case where 0 < v < 1

Note that in this case the definition of <f>(n,A*T) is given by $(n,A*T) =

E n
k=<
n  (A*T)k

0 k\ and is different from the previous case where $(n, A*T)
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YfkLn (AI )fc e A*T ! the following holds

3$(n,A*T) _  T {X*T)n ̂ _X,T
drd

d<f>(n, A*T(1 -  v)) 
drd

v n\
— (1 _  v y i+ l c v \* T ® ® (n i ^*-^)

drd

= ~ - (y  ̂  (g ( l ~ v)noevX*T -  ^ e ~ rdT) (1 -  v) +  KTe~rdT$(n0 -  1, A *r), 

(S ( l  -  v)niJ'x'T -  K e - riT ĵ { l - v )  + K T e - ^ i r i !  -  1, A*T).

a q ( n  \2 Qt Px — n C   _  ____
v ^ t ’d )  Q j -d  d r d  ' ^ ' r d  Q r d

9Crd dc°d

(Cr, ^  °TPrx
drd

dCrC 
drd

- C rd-

(S${nu A*T(1 -  v)) -  K e - rdT${nu A*T))

5(1 -  v)nievX*T -  Ke~rdT 

+ K T e-rdT<S>{m -  1, A*T)

d$ (n 1;A*r)
drd ( ! -« /)

Denote the above equality by /(n i)  and as previously we shall compute A /m = 

/(™i) -  f (n i -  t) then,

/ K )  =

d$(m,A*T)
K e ~ rdT ( ^ $ ( m , A * r )  -  £7^(1 -  +  C ^ T ^ m  -  1, A*T)^

c?rd

Hence

A /ni =
(A*T)m

nj!
-A*T 5(1 -  i/T e 'n \  v \* T Ke -rdT dCi ± _ r  T(  1 -  i/) , ^  T_rq_ 

5rd rd i/ r%  A*T

As above the following shall hold for 0 < v < 1 .

In this case n0 — sup jn  s.t. 5(1 — v)nievX*T — Ke~rdT > o|.  From the 

choice of the set of successful hedging C > K  and the sign of ln(l — v), we
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derive n i < n0 and 5(1 — v)n''-eI'x‘T — Ke rdT > 0. Consequently, Af ni is 

positive if
ac

n i > dr**
CL,r“ u \* T

and negative otherwise, i.e. /  is increasing for

ac
n\ > r d v

r  T
^ r d v \* T

+  1.

The expression of f ( n j) implies /(0) < 0 and, f ( n 0) =  0. Consequently 

f(ni)  < 0 always.

2. If ctM > 1 then, from the expression of tp£  we derive

Crd- 0 ( n i) + 0 ( n 2) C f f im )  , Cr̂ ( n 2)
TPx =  —-----------~-------    =  1 -Crd C d

we obtain next

( c  n2 drPrx _  ( c  \2
{ ri) drd ~  ~ ^ r d>

d CCJ{ni)

cri

d i'cS M

drd +  (Crdf drd

where we denote

0  = S ^ n u X * T ( l - u ) ) - K e - rdT^ ( n i ,X*T), 

0  = S$(n2, X * T ( l - v ) ) - K e - rdT$(n2,X*T).

The above expression is /(n i)  — f {n2) where

/(n i)  =  - (C rd)2
drd

Now, depending on u < 0 or 0 < v < 1 we have derived the expression of 

f(n \ )  in the previous part.
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Case w here u < 0

We have no < n\ < n2, and the function /  is decreasing [no, xj\ and, increasing 

in [xi, oo). Hence, we consider two cases

1) for n i,n 2 6 [n0, Xj] , we derive

^  =  / ( » , ) - / M  > 0,

the latter yields to

I  =  [t p I  , TPrx } ■

2) for n i,n 2 €E [x/, oo] the survival probability

^  = /(» i)  -  f ( m )  < 0,

hence

J =  [tPx ) TPx ] ■

Case where 0 < v < 1

We have n2 < ni < n0, and the function /  is decreasing in [0, xi\ and increasing 

in [xi,n0\. Therefore we consider two possibilities:

1) for n i,n 2 € [0, x i ] ,

=  / K ) - / M <  o

consequently we derive

i = i T Pr: ,  t p : 1} .

2) and for n i,n 2 € [x/, no],

=  / ( » . ) - / M  > o

which yields to

1 =  , rPx 1 •
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We turn now to the proof of Black-Scholes model.

Proof of the Theorem (4.5)

The case where ass  =  < 1  Vd € [0, r2 — r1].

The survival probability is given by what follows

S o  ( 4 > ( i + ) -  +  ° J T ) )  ~ K e - ^  ( < 6 ( < L )  -  * ( $ ) )
TPx =   y,-----------------------------------------------

'-'rd

Hence differentiating the above yields to the following relation

Next we prove that d is negative.

In order to derive the sign of the survival probability’s derivative, let us con­

sider the function /  given by

'(-£ ) -

Note that < d_ (since C, the endpoint of the set of successful hedging is 

chosen such that C > K).

Now /(d_) =  0, l i m = 0 and f is a continuous function in 

(—0 0 , d_].

We next show that f decreases in (—0 0 ,xj)  then increases in (x/, d_) where
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_  as/TS3>{d+ ) 
X l  ~  C „

f ( ± )  -  S . - W

Ke~rdTe^ ( 7 ?)

- ^  + crVT)Crd + ^ K e - rdTH d ^(—  \ , / T

- I  
V T

= Se ~2 ( V + _  K e -r«T 2 ( j ) y ( - ^ ) Cr* + ° ^ T S $ { d +)

A s  ~ 7 T  <  d -
Se Ke~rdTe 2 (* ) ' > 0, it follows

) C rd + a V T S$(d+)that the sign of / '  is determined by the sign of 

The case a ss  > 1 Vd G [0, r2 — r 1].

We proceed in the same way as in the pure Merton model. Consequently, the

survival probability is given by

r » / ~iCi ( / ^ C 2 /  —  b?. L  f~<Ci (  — &i  L  s~iCi (  —62 \

_  ^ r A \ j T ) + L ' r < i \ s/ T )  _  ^ \ V t )  J T )
TPx

we obtain next

c. cv CL

(C, \2 ̂ TP̂ x
d

=  ~(C,
(* ) d

drd r drd +  (C r,

-.C2 /  - 62  ̂
'r* \VT )

drd

^Frorn the properties of the function / ,  and given C'2 > C'i > /C, we have

-^= < < d-  and hence

for ^  < xi  and < X] the next relation holds

—b2\= -f( zh.\ + f( —t j > 0
drd J \ V T ^  \ V T ^ -

7- t  ̂ r 2

I  =  t P x , t P x
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where we denote

Ccd2 =  W ^  +  c t \ / t )  - K e - rdT$ f ^ V
\ y /T  J \ J t )

Let us turn to the jump-diffusion case

Proof, of the jump-diffusion case see Theorem 4.6

A) If - A  < 1 Vd G [0, r 2 -  r1]

The corresponding survival probability is provided next:

0 0  / \ * T \ n 0 —X*T -1 ^  (A*T)ne- 
rP.  =  m L

ra n = 0
n! 5(1 -  ^ ’^ ( d ^ n ) )  -  4>(Mn))) 

—Ke~rT ($(d_(n)) -  $(&_(«)))

Rewriting the above yields to =  1 — where, the following holds

c5 = £ ( A ' T ) V  A*r
n!

= E
n= 0

n = 0

00 / \*TTAn̂ ,-A*r{\*T)ne~
n\

S{ 1 -  ^)ne"A*T$(d+(n)) -  Rre-rTcE.(d_(n)) 

5(1 -  ^)nei/A*T$(6+(n)) -  RTe-r r $(6_(n))'

Henceforth

^ T P x _    g K ^ r d  /~<B
drd

dCBd Rr“ /^iB rd■d r\ J 'Srd "<9rd
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As

dCfd
drd =  t — TQrd £_/

d\* ^  (X*T)ne~x*T

71=0
n\ 5(1 -  v)nevX 1 $(6+(n)) -  Ke~Tl $(6_(n))

n = 0
n\

T  ( v ^  +  1) ^  (X*T)ne~x*T
a s / T £ ■

7 1 = 0
n\ (5(1 -  -  ATe-rTe ^ (<i”{n))2) ,

we derive

drd
dX*
drd

E
7 1 = 0

(A *T)ne
n\ 5(1 -  i / ) V A J $(&+(")) -  ATe~ri $(&_(«))

<9A*
+  ( ^  +  1 ) ^ T E

rdT ^  (X*T)ne*rT \n „ —\* T

n = 0
n! -$(&_(«))

r  ( t f f i  +  1) ”  (X*T)ne~x'T 
a V T  ^  rr!v n = 0

0 0  I \ * rT \ n n —X*T

£
7 1 = 0

(A *T)ne
n\

5(1 -  Zy)"e!/A*Te^i(d+(ri))2 -  K e - rTe ^ {d~{n))2

dC?d
5(1 -  u)ne THb+{n)) -  ATe-r r 4>(f>_(n))

drd

j^A (n ,6_ (n ))
* qn \n„ —\* T(X*T)ne

71=0
7 1 !

(4.4.1)
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where,

A(n, b-(n)) =  S { l - v ) neuX'T

( ^ T * ( M " ) )  ~ Cr M K { n ) ) T ^  -  1 +  v)

_ rr r 1/ K  ~ \ ( b +{n))2 d rd 0

v V T y / to

- K e ~ rdT

-  c X & - ( » ) ) r ~  (j A  ~ 1 +  ")

-rcjrS(M,)̂ +wj (■$+0 $<t- (n)) 

Let us fix n and consider A(n,b-(n))  as a function of 6_(n), A(n,b-(n)) 

f(b_(n)) , differentiating /  w.r.t. 6_(n) yields to what follows.

=  S ( 1  -00— (77)

( dC* c k t Q\* \
^ drd rd drd \ \ * T  )

+b+{n)TC*dk {v +  !)
crVT

- K e ~ rdTe~^{b~{n))21 rd -  CKdT —  ( —
dC« d \
Q r d r d d r d y x *T

><k {v +- 0  , 7 („\rrnK ( \py*

(;

~ T C y  X j t  +  b- ^ T C *  + 1
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^ - d[A(n,l,_(n))] =  A.Te_ i(6+(n))2 _ ^ e_rdTe_ i(6_(„))2N
ob-(n) \ J

( d C $ _
y drd

c5 t
d\* ( n
drd (a*T l + U)

\  :

r “  / —  T C ^ d  ( V- +  1(J V T  V drd

As bn < d - ' i n >  0,

(5(1 -  v)nevX'Te - ^ b+i-n))2 -  K e - TdTe-^{b- {n))2̂  > 0.

Al) If {y~[  +  l) > 0 then A(b-(n)) decreases from (—0 0 ,b*_(n)) then, increases 

from (b*_(n),d-(n)) where b*_(n) is given by what follows

b*_(n) = — + C* T p̂i {-^t ~ 1 + v) ~ TC^  ("|pr + l)

Further lim&_(n)_>_00 A(6_(n)) =  0, and A(d-(n)) — 0. Henceforth A(b-(n)) < 

0. Now lets us show that A(d-(n)) — 0 holds.

As

^ k ^ ^ tPx _  £,k ^  dC^i _
drd Qr d ra Qr d

E A T
n\

n
Crd(n -  j)drd[Crd(j)] -  Crd(n -  j)drd[Crd(j)\

71=0 j=  0

identifying the above expression to equation(4.4.1) yields

j —n

A(n, b-(n)) = J V A T
n\

3 =0 jK n - jV -
Crd{n -  j)drd[Crd(j)\ -  Crd(n -  j)drd[Crd(j)}

Henceforth

A(n, d-(n)) — 0

A2) Using a similar method we obtain +  l) < 0 = >  A{b- (n)) > 0
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A3) If (I'fpr +  l) =  0 then ^  — 0, and b(n) = 0 lead to the pure Merton

case (see previous part).

A4) Fixing v — ^  =  0, and 6_(n) =  f>_(0) lead to the Black-Scholes case

We turn now to the alternative case.

B) If > 1 Vd € [0, r2 — r1] we shall consider two cases.

B l)  T he case w here +  1 > 0

The survival probability is provided by

Let us fix n, from the previous part A(n, 6_(n)) is decreasing from (—oo, b*_{n)] 

and, increasing in [b*_(n),d-(n)]. As 62_(n) < 61_(n) < d_(n), it follows from 

the variations of A(b(n)) that

- K e ~ rT ($(d_(n)) -  $(&!_(«)) +  $(62_(n))
r^B\ r^B2

  -i   rd I rd
~  1 n K  n K^ rd ^ rd

differentiating the above expression and using the previous part yield to

1) If Vn, 62_(n), 61_(n) 6 (—oo, b*_(n)] then,

A(n, 61_(n)) — A(n, 62_(ra)) < 0,

and hence
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2) If Vn, 62_(n), 61_(n) € [61 (n) cL(n] then,

A(n ,61_(n)) — A(n , 62_(n)) > 0,

hence,

> 0  and I  — [rPxr1, Tpxr2].

B2) Case +  1 < 0

The expression A(n, 6_(n)) is increasing from (—oo, &!_(n)] then, decreasing in 

[61(n),cL(n)].

As 62_(n) < 61_(n) < eL(n), it follows that

1) If Vn, &2_(n), 61_(n) € (—oo, b*_(n)] then,

A(n, 61_(n)) — A(n, 62_(n)) > 0

consequently,

- > 0  and I  = [Tpxr \  Tpxr2).

2) If Vn, 62_(n), 61_(n) e [61 (n) d_(n)] then,

A(n, 61_(n)) — A(n, 62_(n)) < 0

and hence

2 1
- g ^ - < 0 ,  and /  =  [t/4 , t Ptx ]■

□

4.5 N um erical results on a Black—Scholes set­

ting

For simplicity we have used the Black-Scholes model with the parameters of 

the S&P500 provided on Table 5.2. Hence a volatility a =  0.195, a mean
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/x =  0.109 are considered. Further, we assume the interest rates r 1 =  0.14 

and r 2 =  0.19 (since for very small and or two close interest rates, there is no 

much difference between the upper and lower hedging prices), the strike price 

K  — $1200 and the stock price So — $1205.

For a given risk level e, we derive b =  v/T4>-1( 1 — e) +  ^r~T from formula 

(4.2.6). We compute the initial quantile hedge price and the survival proba­

bility associated to the given risk level. Tables 4.1, 4.2 and 4.3 provide the 

interval of survival probabilities and the corresponding policy holder interval 

of ages for different maturities and level of risk.

Risk level (e) 0.01 0.03 0.05

^ ( r 1) 170.438 152.248 137.631

rPxi r1) 0.9275 0.828 0.7489

x0(r2) 199.074 171.659 151.382

TPx{r2) 0.8932 0.7702 0.6792

I  =  [rPxir2), TPx{rl )\ [0.8932, 0.9275] [0.7702, 0.828] [0.6792, 0.7489]

Age Interval [80.37, 84.75] [90.98, 95.02] [96.52, 103.39,]

Table 4.1: The next table gives the required interval of ages for a policy holder 

of the pure endowment insurance contract in a two interest rates financial 

market . It is obtained for a maturity T  — 1 year. The Black-Scholes lower 

and upper hedging prices are provided respectively by Cri =  $183,756 and 

Cr 2 =  $222,869. The value x0(r) is the initial price of the quantile hedge with 

r being the applicable interest rates.
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Risk level (e) 0.01 0.03 0.05

^ ( r 1) 389.35 345.376 311.728

TPx{rl ) 0.9152 0.8118 0.7327

x 0 (r2) 438.598 361.953 311.222

TPx(r2) 0.8363 0.6902 0.5934

1 =  [rPxir2), TPx{r1)} [0.8363, 0.9152] [0.6902, 0.8118] [0.5934, 0.7327]

Age Interval [68.19, 76.99] [78.79, 85.03] [83.05, 89.05]

Table 4.2: This table provides the required interval of ages of policy holders 

in the two interest rates market. The maturity T  =  3 years, the Black- 

Scholes lower and upper hedging price are provided by Cr 1 =  $425,409 and 

Cr 2 = $524,409.

R em ark  2. The results provided on Table 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 are 

obtained by using the Bowers et al. Table. Further, we have used some 

special smoothing technique to derive the appropriate interval of ages x.

We next consider different parameters and derive as above, the correspond­

ing survival probability tables (see Tables 4.4, 4.5, 4.6). The stock price 

S  = $150, the strike K  = $145, p — 0.2, a — 0.9,
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Risk level (e) 0.01 0.03 0.05

^ ( r 1) 549.824 482.57 433.075

TPxir1) 0.9011 0.7909 0.7098

x 0 (r2) 571.706 451.625 378.434

TPx(r2) 0.7771 0.6138 0.5143

I  = [rPxir2), rPxi r1)} [0.7771,.9011] [0.6138, 0.7909] [0.5143, 0.7098]

Age Interval [70.11, 80.89] [80.14, 88.23] [84.16, 91.98]

Table 4.3: The table provides for a maturity T  =  5 years, the survival proba­

bilities, initial quantile prices and the age of policy-holder in the two interest 

rates financial market. The lower and upper Black-Scholes hedging prices are 

provided by Cr 1 =  $610,136 and Cr 2 =  $735,683

Risk level (e) 0.01 0.03 0.05

xoi r1) 51.63 41.86 34.94

TPxir1) 0.85 0.68 0.57

x 0(r2) 53.12 42.66 35.38

TPx(r2) 0.83 0.67 0.55

1 =  [rPx(r2), TPxir1)} [0.83, 0.85] [0.67, 0.68] [0.55, 0.57]

Age Interval [89.2, 90] [102.2, 104] [, ]

Table 4.4: The table provides for a maturity T  = 1 year, the survival probabil­

ities, initial quantile prices and the age of a policy-holder in the two interest 

rates financial market. The lower and upper Black-Scholes hedging prices are 

provided by Cr 1 =  $60.73 and Cr 2 =  $63.25
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Risk level (e) 0.01 0.03 0.05

xoir1) 78.28 51.43 39.59

TPxir1) 0.72 0.52 0.40

x0(r2) 71.67 50.63 38.48

TPx(r2) 0.69 0.49 0.37

I  =  [:TPx(r2), tPx^ 1)} [0.69, 0.72] [0.49, 0.52] [0.37, 0.40]

Age Interval [83.7, 84.9] [91.8, 93] [96.8, 98]

Table 4.5: The table provides for a maturity T  =  3 years, the survival proba­

bilities, initial quantile prices and the age of policy-holder in the two interest

rates financial market. The lower and upper Black-Scholes hedging prices are

provided by Cr 1 =  $98.88 and Cri =  $103.25

Risk level (e) 0.01 0.03 0.05

O'1) 70.68 46.02 33.10

TPxir1) 0.59 0.38 0.27

x 0 (r2) 68.33 43.13 30.46

TPxir2) 0.55 0.35 0.24

I  =  [TPxir2), TPxir1)] [0.55, 0.59] [0.35, 0.38] [0.24, 0.27]

Age Interval [82.1, 83.3] [89, 90.4] [93.3, 94.7]

Table 4.6: The table provides for a maturity T  =  5 years, the survival proba­

bilities, initial quantile prices and the age of policy-holder in the two interest 

rates financial market. The lower and upper Black-Scholes hedging prices are 

provided by Cri = $118.45 and Cr 2 =  $122.92
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Chapter 5

Graphs and numerical results

5.1 Introduction

In this section we begin by giving 2 examples that show how adding a jumps of 

different sizes affect the arbitrage free interval of prices. We compare some of 

our results to the Bergman’s [7]. We provide a selection of graphs comparing 

the Black Scholes’s option prices to those obtained from the jump-diffusion 

model and also graphs showing the difference between the upper and lower 

hedging prices.

5.2 N um erical exam ple

We give two examples to illustrate the results obtained and to allow a com­

parison with previous results from Bergman (1981). As in Bergman let us 

consider the pricing of a Bear Spread of calls. A Bear Spread can consist in 

buying a Call with strike price Ki  and selling a Call with strike price K 2 where 

K 2 < K i . The price of this instrument is provided by C(K2) — C(Ki)  in a one
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interest rates financial market. As we have seen in previous chapters, for the 

2 interest rates market, the buyer and seller price will differ. Their value are 

respectively provided by C -(K 2 ) — C+(K\) and C-(K{) — C+{K2).

In the first example, we consider the following parameters for the Black- 

Scholes case S = S 1 = 30, a -  0.3, K 2 = 30, Ki  =  $20, n  =  14%, r2 =  19%. 

Regarding the jump-diffusion case the previous parameters will represent the 

parameters of the first stock and will be completed by fi\ = 0.05, u1 = —0.2. 

The second stock’s parameters are /i2 =  0.09, a2 =  0.15, u2 — —0.35. It is well 

known from empirical results in finance that the log normal return of stocks 

have an excess of Kurtosis which is not taken into account in the Black-Scholes 

pricing. Jump-diffusion models such as the Merton [42] capture better this 

excess of kurtosis see (Kou [32], Honore [28]). Hence, 5.1 (Table 1, 2), 5.2 and 

5.3 show the importance of adding a jump component in the jump-diffusion 

model used here.

In the first part of Figure 5.1 (Table 1), we consider the Calls separately and 

derive the upper, lower hedging prices for the Black-Scholes case (Note that for 

id =  0, The jump-diffusion and Black-Scholes prices coincide). We also derive 

the spread between the upper and lower hedging prices. We obtain slightly 

different results than Bergman. For instance for the upper hedging price of 

the C(Ki),  Bergman gets 13.26 while we obtain 13.519. This is probably due 

to the software used or he used a method of duplication. One observes that 

with larger jump sizes of S 1 (in absolute value) some interesting differences 

arise on the interval of possible prices between the Black-Scholes model and 

the jump-diffusion one. The farther we move away from the Black-Scholes
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model the larger the spread of the option prices becomes.

However this characteristic will not be verified in the second example.

The second part of Figure 5.1 (Table 2) gives the interval of prices of a Spread 

of Calls in a two interest rates market. Again, the same conclusion can be 

drawn regarding the jump size. Let us note in the case of the Spread of 

Calls it has been shown by Bergman in a Black-Scholes setting that such 

interval of prices ([CL, C+]) can be narrowed by solving a Partial Differential 

Equation with switching function. This was possible because that the latter 

method offsets borrowing and lending while in the method used here, one 

simultaneously borrows and lends for the case of the Spread of Calls. Such 

problem would also occur in the case considered in Korn [31] for the sum of a 

Put and Call.

In our second example we consider different parameters than the previously 

in the previous example: ji1 =  0.25, ji2  =  0.2, a 1 =  0.3, a2  = 0.5, vl — 0.7, 

v2  — 0.6 and, we derive Figure 5.2 and Figure 5.3.
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Figures 5.4 and 5.5 confirm the results found in Figure 5.1

5.3 Graphs and com parison betw een  the J u m p -  

diffusion and B lack-Scholes m odels

The following graphs are mostly using the data of the indices SSzPbOO, S&P600 

and the DJI (Dow Jones Industrial Average). Daily quotations of the indices 

from January /  September 1995 to January 2004 have been used. To estimate 

the parameters of the jump-diffusion and Black-Scholes models, we have used 

the method of moments. Let us denote the log return of the stock by X ,  then 

from equation (2.2.3) for the Black-Scholes model, we derive the following 

discretization.

=  ( v - — )At + aAW t (5.3.1)

and from equation (3.2.1) for the jump-diffusion model we obtain

2

Xi = (p -  )At  +  oA W t +  ln(l -  u)AUt , (5.3.2)

where we denote

At = ti - t i- 1, AW t =  Wu -  Wt =  Z-y/ti- 1  -  U , and AFIt =  IItj -  IItj^.3.3)

with Z  ~  N (0,1) and, AIIt ~  B(Xt) where B  is a Bernoulli random variable 

with intensity A.

For the jump-diffusion (resp. Black-Scholes) model, matching the 4 (resp.

2 ) first moments of the random variable Xi to their empirical estimations
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provided by what follows

-  £ ( xi)3> Xi = In , j  = 1-4 (resp. j  =  1,2),
i = 1 '  *i ~ 1 '

leads to the parameters estimates for the Jump-diffusion model in Table 5.1. 

Similarly the parameters estimates of the Black-Scholes model are provided

Index a V A

S&P500 .109320 .195255 .269618 .154027e-2

P&P600 .897931e-l .216732 .172591 .833322e-2

O IX .548259e-l .236278 .557323 ,358894e-4

D JT .304172e-l .267501 .284170 .112879e-l

D JI .691585e-l .207432 .184409 ,130687e-l

T X X .196158 .414473 -.276029 .508951e-l

RUT .103595 .201855 .114260 .667166e-l

Nasdaq .197425 .393108 -.631982 .417905e-2

Table 5.1: Jump-diffusion parameters

in Table 5.2.

Let us note that the parameters obtained on the Table 5.1 and Table 5.2 are 

in general very close. For the Dow Jones Transportation Index, the Black- 

Scholes model does not give any result. It appears that in our estimations the 

parameter A are fairly small. For instance the rate of jumps for the 5&P500 

in a year is around 0.015. However the jump diffusion option price does not 

depend on A in our model, hence this should not affect much our results.

The parameters are all expressed in annual terms since we have chosen (At = 

2gj). We consider r l = 0.14 and r2 =  0.19. For such interest rates, the
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Index a

P&P500 .108912 .195644

S k P m .883639e-l .217421

O IX .548086e-l .236328

D JT NA NA

D J I .667660e-l .208737

T X X .210076 .418105

RUT .959917e-l .204274

Nasdaq .199973 .394381

Table 5.2: Black Scholes parameters

parameter A* is positive for the pairs (S&P500, S&.PQ00), (S&P500, DJI). 

Hence the choice of pricing the options on the index S&P500 using as second 

stock either the S&P600 or the D J I . Note that we could have as well used 

an option on the P&PSOO as the second stock (see Runggaldier [46], Melnikov 

et al. [39])

We provide next a selection of graphs comparing the jump-diffusion option 

prices to the Black-Scholes ones and also the upper and lower hedging prices. 

The graphs shows the following important features.

1) The spread (difference of the Jump-diffusion model to the Black-Scholes 

one) reaches its maximum when the initial value of the stock is around the 

strike price for shorter maturities (see Figure 5.7 ), however this characteristic 

does not seem to hold for longer maturities (see Figure 5.8). In contrast, Ball 

and Torous [3], compare the original Merton model to the Black-Scholes and 

shows that the highest difference occurs for out-of-the-money calls and lowest
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for in-the-money calls.

2) Most of the changes on the spread of the options prices with different interest 

rates occurs when the stock price is close to the strike price value.
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Figure 5.1: The tables show the behavior of the jump-diffusion option prices 

as the jump size changes. A comparison with the Black-Scholes model (which 

corresponds to u1 — 0) is provided. 98
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Figure 5.2: The tables show the behavior of the jump-diffusion option prices 

as the jump size changes.
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diff CJD-CBS(K,nu1),nu2=-0.35

Figure 5.4: The graph provides the difference between the option prices of the 

jump-diffusion and Black-Scholes models, while using the Bergman’s parame­

ters (see Section 5.2). The graph confirms the results found on Figure 5.1. 

The farther the parameter v 1 is from zero the larger is the spread between the 

two models.

diff CJD-CBS(S,nu1), nu2^0.35

Figure 5.5: This graph shows the difference between the option prices between 

the jump-diffusion and Black-Scholes models plotted in Figure 5.4. The graph 

is a function of the maturity and the stock price. The same conclusions as those 

made in Figure 5.4 and 5.1 are drawn here.
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S&P500 options,CJD(SP600),CBS prices(K.T)

Figure 5.6: Graphs of the option prices derived from the Jump-diffusion and 

Black-Scholes models for the S&.P500. The prices are given as functions of 

the strike price K  and the maturity date T. The parameters of S 1 (5&P500) 

are fii =  0.109, o\ =  0.195, ui =  0.269. The second asset S 2  is the S&P600, 

whose parameters are /j2 =  0.089, a2 =  0.216, v2  — 0.172 (see Table 5.1). The 

quotation of the S&iPbOO at the closure of the market, the 11th of February 

was $1205. We considered the interest-rate r 1 =  0.14.
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S&P500 (SP600)option prices:CJD-CBS

Figure 5.7: The spread between the jump-diffusion model to the Black-Scholes 

model (CJD — CBS) as a function of the strike price K  and the maturity T. The 

initial graphs are provided on Figure 5.6. For shorter maturities the spread 

reaches its maximum around the initial value of the stock price 5 1 =  $1205.

S&P500 (SP600)option prices (other view):CJD-CBS

Figure 5.8: The graph shows the difference of the option prices CJD — CBS as 

a function of the maturity T  and strike price K. The view focuses on longer 

term maturities. The spread is an increasing function of the strike price.
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CJD(S&P500,S&P600),CBS(S&P500) option prices(S.T)

Figure 5.9: These graphs give the jump-diffusion and Black-Scholes option 

prices on the S'&P500. The graph is a function of the maturity and the stock 

price. The strike price is set equal to $1200. As in Figure 5.6, the option prices 

are very close.
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S&P500(SP600) option prices(S,T): CJD-CBS

Figure 5.10: This graph provides the difference between the option prices on 

the iS&;P500 (CJD — CBS) as function of the maturity T  and the stock price S l . 

The strike price K  is set equal to $1200. The maximum of the spread occurs 

around the strike price S 1 — K  ~  $1200 and increases with the maturity. The 

initial graphs are provided in Figure 5.5.
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S&P500 diff_option prices(K,T):CJD(DJI)-CJD(SP600)

Figure 5.11: The graph shows the difference between the options prices ob­

tained from two jump-diffusion models on the S&P500. One of which uses the 

DJI as second stock, while the second option uses the S&P600 as second stock: 

Cj d (SSzP500, DJI) — CJD(SSzP500, S&1 P 6 OO). The graphs are function of 

(.S 1,T). We can compare this graph with Figure 5.10.
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S&P500 option prices(K,T):CJD(rA1),CJD(rA2)

2400

Figure 5.12: Graphs of the option prices on the S&P500 for the jump-diffusion 

model. The second stock S 2 is the SSzP600. The upper graph is the option 

price for r2 =  0.19 and the lower one is the option price for r 1 =  0.14. The 

parameter K  is set equal to $1200.
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S&P500 option prices(S,T):CJD(rA2)-CJD(rA1)

Figure 5.13: Difference between the jump-diffusion option prices (CJD{r2) — 

CJD(r1)) as a function of the stock price (S&P500) and the maturity T. The 

initial graphs are shown in Figure 5.12. The parameters of this model verify 

the conditions v 1 > 0, 4^- =  =  —0.594 < 0, hence it was expected to

have CJD(r2) as the upper hedging price and CJD(r1) a lower hedging price. 

We note that in some cases when the conditions of Lemma 3.2 was not verified, 

the values C (r2) (resp. C(r1)) did not provide the upper (resp. lower) hedging 

price.
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S&P500 option prices(K,T):CJD(rA2)-CJD(rA1)

Figure 5.14: This graph provides the spread (CJD(r2) — CJD(r1)) on the 

SSzPbOO as a function of the strike price and maturity. From the parame­

ters of the model, the graph is consistent with the results provided by Lemma 

3.2. The maximum of the spread occurs around K  = $1200, very close to the 

initial value of the stock price.

Figure 5.15: These graphs compare the Black-Scholes model to the Jump- 

diffusion one for the parameters fi1 = 0.25, /x2 =  0.2, a 1 — 0.3, a 2  — 0.5, ul = 

0.7, v2  = 0.6 and S = $30.
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JD - BS ;K,T

Figure 5.16: The graph provides the difference between the jump-diffusion 

and the Black-Scholes models for the parameters (of the second example) 

p1 =  0.25, p2 =  0.2, a 1 = 0.3, a 2 =  0.5, v 1 = 0.7, v2  = 0.6.

CJD - CBS;nu,T

Figure 5.17: The graph gives the difference between the jump-diffusion and the 

Black-Scholes models. The parameters chosen are /r1 =  0.25, p2 =  0.2, a 1 — 

0.3, a 2 =  0.5, v 2 — 0.6. Here S  =  K  =  $30. The graph is plotted as a function 

of the jumps v 1 and the maturity T.
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CJD - CBS;nu,T

Figure 5.18: The graph gives the difference between the jump-diffusion and the 

Black-Scholes models. The parameters chosen are /r1 =  0.25, /r2 =  0.2, a 1 — 

0.3, a2 =  0.5, v2  — 0.6. The graph is plotted as a function of the jump v 1 and 

the exercise price K. The value of the stock is S — $30. Most of the difference 

occurs at-the-money.
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Chapter 6

A ppendix

In this chapter we give some properties on stochastic processes that are relevant 

to the previous chapters of the thesis

6.1 Som e properties about P oisson  processes

D efinition 6.1. A Poisson process X t with intensity A > 0 is defined as 

follows:

1) The initial value of the process X 0  — 0 a.s.;

2) The increment X t — X s is independant of T s V s <t;

3) Further X t — X s has a Poisson distribution with parameter A(t — ,s).

S tatem ent 6.2. If X t is a Poisson process in (Q, F, P, T t) with intensity A, 

then

1) The process X t — Xt is a P-martingale.

2) The process X t — X*t is a P*-martingale where A* verifies (3.2.5) and P* is

defined as in Statement 3.2.
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6.2 Prelim inaries in stochastic  exponentia l

Statem ent 6.3. A process M is said local martingale if there is a sequence of 

stopping times rn |  oo as n —> oo such that M Tn MtTn is a martingale for 

all n

Statement 6.4. A semi-martingale is a process of the form

X t  = Xq +  A t +  M t ,

where A € V, M  £ A4;oc and X0 is .Fo-measurable.

The set of finite variation in each finite interval is denoted by V. The set 

Mioc represents the set of local martingales.

Statement 6.5. Let X t and Yt be semi-martingales, then

a) the unique solution of the equation

Yt = l + J*YB-dXa ( f  =  « . )  (6-2-1)

is given by the Dolean exponent (stochastic exponent)

Yt = Y 0£t ( X ) =  yoe(*-*°-*<*.c.*.c>t)n {s<t}(l + AXS) exp ( - A X S) (6.2.2)

where (X c, X c) represents the quadratic characteristic of a continuous martin­

gale part of X  : X c

b) the stochastic multiplication (Yor’s formula)

£t (X. )  * £t {Y ) = £ t (X.  + Y  +  [A, Y ] ) , (6.2.3)

where [ X , Y } t = ( X c, Y %  + £  AXSAYa.

Multivariate Kolmogorov-Ito for a jump-diffusion Process (Dolean-Meyer).
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Statem ent 6.6. Let /  : Rn —>• R 1 be a twice differentiable function and X t 

be a semimartingale with values in R n, then

r t i =n £ i t f V \  1 r*  i =n

f(Xt)  = 5/(X s- W +
— f a — d X s  +  2 dxidxjf{Xo)+ / 2̂

J o  i=l

1 rt i~ ,v

U s

8<t i = 1

- d ( { x*y , { x*y ) t

(6.2.4)

6.3 D ynam ics of the w ealth  and debt processes

The derivation of the dynamic of the wealth process generated by the portfolio 

7r with initial capital x in the (S, S')-market

X t = PtBt + 'YtSt (6.3.1)

The self financing property (2.2) yields to

dXt — (3tdBt +  7tdSt , (6.3.2)
dXt (3t , l t St- d S t
Xr = xr-dBt +

Writing at = - ^ J~  and substituing into the relation
A t “

1 -  R Bt , S*~

yield to (3t — U U  consequently

d X t  n  w . , cZ5t—  = (1 -  at)rdt + at— . 
A . t ~ £>t-

We identically show that

dY* n  w _ l .  dS*—  =  (1 - a t)rdf +  a t— .
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Hence (2.3.3) holds.

Derivation of the stochastic differential equations of the buyer and seller in 

the two interest rates (B , S ) financial market. We have from the self financing 

property

dXt =  P]dBl +  32 dB 2  +  'ytdSt where (3l > 0, 6 2  < 0 
dXt = f td B l  (32 dB 2  l t dSt
X t- X t- X t- X t-

Using the previous notation of a t , the signs of /31 and f62 we derive

-̂  =  (1 -  at)+r ldt -  (1 -  at)~r2dt +
Xt-  <~>t-

identically taking into account that the process Yt is negative, the dynamic of 

a seller in the two interest rates market follows

^  = (1 -  at)+r 2 d t -  (1 -  o ttY ^d t + a t ^ .  
i t -  bt~

We now turn to the derivation of the dynamic of the wealth and debt 

processes in the (B1, B 2, S 1, S'2)-market. Let us begin with the wealth process, 

X t > 0 and from the self financing condition

dXt =  $ d B l  + P2 dB 2 +  t ^dS] +  7 2 dS 2 where (31 > 0 , /32 < 0
dXt =  PlBl dBl (32 B 2 dB 2  i lS j-d S }  l 2 tS 2. d S 2  

Xt- X t- B] +  Xt- B 2 +  Xt- S I  X t- S I

7 1S 1_  7 2 S 2_Denote a 1 =  *XJ~  and a 2 =  x  , then we obtain,

=  I1 -  “ t1 -  ct2)+r ldt -  (1 -  aj -  a 2t )~r2dt +  +  a2^ .

An identical procedure yields to the stochastic differential equation of the seller

^ 7  =  ( i  -  a £  -  a | ) + r 2d t  -  (1  -  a*1 -  a ? )  r ldt + a l ^ +  a 2^ .
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