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Abstract 

 The extensive damages caused by natural disasters incur substantial costs to the built 

environment. The escalating frequency and severity of disasters, particularly hurricanes, driven by 

the impacts of Climate Change, highlight the urgency for prompt post-disaster assessments. A 

thorough and rapid post-disaster assessment plays a crucial role in facilitating the swift evaluation 

of the situation, and enables the determination of the extent of damage for each component in the 

built environment. To address this need, this study proposes an image-processing-based method 

utilizing Unmanned Aerial Vehicle (UAV) imagery of solely the post-disaster situation for the 

automated evaluation of the building damage. The suggested approach accordingly utilizes single 

post-disaster imagery of the buildings, and integrates texture-based features, encompassing texture 

dissimilarity and homogeneity, along with edge-based features. Canny edge detection is employed 

to introduce novel indices that gauge irregularity by assessing entropy of the detected edges and 

uniformity in the distribution of edge line orientations. These features are then input into a Naïve 

Bayesian Classification process, allowing for the classification of damaged and undamaged classes 

while accommodating the underlying uncertainties. The proposed method exhibits a validation 

accuracy of 91.3 percent when applied to unidentified building images, effectively distinguishing 

between damaged and undamaged structures. In addition, the functionality of the proposed method 

has been evaluated through application on a real-life post-disaster scene. The results underscore 

the potential efficacy of utilizing UAV-captured images and advanced image processing 

techniques for rapid and accurate post-disaster damage assessment. 
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Preface 
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Chapter 1. Introduction 

Disasters happen all around the world from time to time. Causing multiple damages, leaving 

people without supplies and even resulting in casualties, disasters can neither be resisted nor 

eradicated. However, by having the necessary tools, the aftermaths can be controlled and the 

consequent financial losses can be minimized. As a result, this research plans to take one step 

further in the post-disaster damage assessment process. In this section, the importance of rapid 

post-disaster assessment has been outlined by focusing on the increasing severity of disasters and 

their unfortunate outcomes. 

1.1  Background and Motivation 

Climate change, having had global impacts since the last century, is increasingly causing 

inevitable substantial costs in the modern world. Within the context of natural disasters, the rising 

global temperatures result in a higher temperature of ocean waters and consequently, rise in the 

ocean levels and moisture in the air. While the risen ocean levels result in more floods, the risen 

ocean temperatures and moisture level amplify the intensity of hurricanes, making them more 

destructive and unpredictable. According to NASA [1], the additional vapor in the air fuels the 

hurricane by creating more intense rainfalls. It is also mentioned that even though the frequency 

of hurricanes have remained rather unchanged, the intensity and category number of the hurricanes 

are increasing. In another example, researchers have found that compared to 100 years ago, the 

frequency of destructive hurricanes has tripled in the United States [2]. In Canada, it has been 

estimated by the Insurance Bureau of Canada (IBC) that 8 of the 10 costliest weather events in the 

country have all happened in the past 10 years (since 2013) when considering the insured financial 

loss resulted from the damages [3][4], as illustrated in Table 1-1. 
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Table 1-1. The 10 Costliest Natural Disasters in Canada 

 Disaster Year Insured Loss (CAD) 

1 
Fort McMurray 

Wildfires 
2016 4 billion 

2 Eastern Ice Storm 1998 2.3 billion 

3 
Southern Alberta 

Floods 
2013 1.8 billion 

4 Alberta Hailstorm 2020 1.2 billion 

5 Toronto Flood 2013 1 billion 

6 
Ontario-Quebec 

Windstorm 
2022 1 billion 

7 Hurricane Fiona 2022 800 million 

8 Toronto Flood 2005 780 million 

9 Ontario Windstorm 2018 695 million 

10 BC Flood 2021 675 million 

 

The Insurance Bureau of Canada has ranked 2022 as the third worst year of Canadian history 

in terms of insured damages, only behind the years 2016 and 2013, with a massive cost of 3.1 

billion Canadian dollars. The organization outlines that the severe weather has been hugely 

responsible for this loss [5], as it could be seen that the most expensive disasters in this year have 

been the Windstorm of Ontario-Quebec and Hurricane Fiona, both being weather-related events. 

In addition, the organization has estimated that the overall trend in insured catastrophic losses in 

Canada has been increasing since 1990, and is predicted to grow in the following years [5]. Many 
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studies have investigated the correlation between climate change and the economic costs of 

hurricanes [6]. For illustration, Hurricane Fiona’s 2022 strike on the Caribbean and Atlantic 

Canada resulted in over 25 casualties, displaced 13000 individuals, and costed approximately 4 

billion Canadian dollars in damages. This has been the costliest disaster to ever happen in the 

region of Atlantic Canada [7]. Furthermore, Knutson et al. [8] have predicted a surge in the 

intensity of hurricanes by the year 2100. As an instance, Hurricane Ian which took its toll on Cuba 

and southern United States in 2022, caused more than 130 casualties and became the fifth strongest 

hurricane to ever hit United States. This hurricane has been the most severe and expensive in 

Florida since 1992 and displaced more than 40,000 people. Hurricane Ian is an illustration of how 

climate change is impacting the severity and strength of hurricanes. Looking specifically at the 

Atlantic basin, the 24-hour intensification of the 5 percent strongest hurricanes is around 16 km/h 

stronger compared to 30 years ago [7]. Fig. 1-1 shows the destruction caused by Hurricane Maria 

in the island of Dominica in 2017. 

 

Fig. 1-1. Destruction caused by Hurricane Maria in Roseau, Dominica in 2017 [9] 

In addition to the weather-induced natural disasters, earthquakes result in tremendous 

financial losses and numerous casualties. In this regard, the earthquake and consequent tsunami 
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that struck the Tōhoku region of Japan in 2011, has been responsible for the direct damage cost of 

211 billion US dollars and stands as the costliest natural disaster ever taking place [10]. As a 

consequence, there is a growing importance in the development and employment of rapid Post-

Disaster Assessment to control the aftermath of such events, smoothen the search and rescue 

process and limit the casualties. Such disasters are also followed by smaller events, such as the 

aftershocks, which result in more casualties. In case the damage and safety of structures can be 

identified immediately after the main event, people can be prevented from entering structures with 

questionable status and more lives could be saved. 

At the current state, the process of post-disaster assessment and damage recognition 

profoundly relies on visual inspection and post-disaster surveys, requiring a substantial amount of 

workforce from experts and skilled personnel [11]. In other words, the process is mostly done 

manually and with manpower. However, this approach to post-disaster assessment exhibits 

inefficiency both in terms of time consumption and resource utilization, while exposing the life of 

crew to danger [12][13]. Moreover, the most severely affected regions frequently encounter 

accessibility issues due to debris and obstructed roads, impeding a prompt entry and therefore, 

deterring a thorough evaluation of damages. As a result, a delay is expected in the post-disaster 

assessment process which has the potential of amplifying losses and casualties. This fact 

emphasizes the critical need for improvements in the overall efficiency of these assessments. [12]. 

As an illustrative example, nearly six days were required for the ground crews assigned to damage 

assessment of Hurricane Irma in Florida to cover only a portion of affected areas, which included 

the regions surrounding Gulf Coast, Atlantic Coast and Florida Keys [14]. Hence, there is an 

immediate need for a rapid, automated and uninterrupted post-disaster assessment to accurately 
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identify damaged areas in a brief amount of time, thus optimizing search and rescue operations 

and limiting the losses.  

1.2  Objectives 

 This study attempts to create a framework for rapid post-disaster damage assessment of 

residential houses, which is based on the post-disaster imagery collected by Unmanned Aerial 

Vehicle (UAV) or commonly known as drone. The intension is to construct a method for analyzing 

the houses within drone imagery and identify their corresponding damage state. The study focuses 

on the building image analysis and classification, and for this purpose, aims to extract features and 

build identifying indices from the building images. For a rapid post-disaster assessment, a 

computationally-light method would be typically required and in this regard, the study employs 

solely image processing to define the indicative parameters for each image. Moreover, the study 

aims to utilize a quick and straightforward probability-based classifier, the result of which being a 

percentage showing the probability of each building being damaged.   

 In order to perform the assessment process as resource-efficient and time-efficient as possible, 

a sole single-view post-disaster drone image of each building is sufficient, meaning that neither 

the pre-disaster imagery of the buildings nor multiple views of a building are required to identify 

whether the building is damaged or not. Accordingly, a single image of each building undergo a 

set of image processing techniques, and 4 indicative indices are subsequently achieved, which are 

further used in a probability-based classifier to identify the damage state of each building. 

Utilization of image processing techniques requires fewer amount of data to be trained in 

comparison to models with deeper learning strategies. In addition, image processing techniques 

provide a platform which is light in terms of computation, can be adjusted or expanded 
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conveniently, and can produce reliable results considering that the outputted features directly 

contribute to understanding the damage state. 

 The method developed in this study specifically detects the damaged residential buildings 

after a disaster, most prominently hurricane. The outcomes derived from this method can 

subsequently serve as an initial step for the post-disaster inspection and enhanced decision-making, 

alongside other applications such as cost estimation and resilience. When combined with a proper 

tool for detecting and localizing the buildings, the method has the ability to aid in decision-making 

by providing the location of damaged houses and therefore, facilitate the disaster recovery process 

in a way that the struck houses can receive aid sooner. In addition, the method is able to provide 

an overall estimation of the costs considering the abundance of struck houses, as well as the overall 

cost of the disaster. A rebuilding plan could also be better adjusted according to the estimated 

damage. As a result, the utilization of this model could be beneficial for governmental and 

municipal organizations which need to properly plan for disaster recovery, as well as other 

particular organizations such as insurance companies which need an estimation of the costs. 

 In the following sections of the study, the current research carried out in terms of post-disaster 

assessment have been outlined, the utilized methodology for image processing and classification 

has been narrated, followed by the results and a real-life application where the method has proven 

to function successfully. At the end, the conclusion along with the limitations and possible future 

growths of the study have been mentioned. A rapid fully-automated post-disaster would not be out 

of reach with the proposed framework of this study. 
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Chapter 2. Literature Review 
 

As mentioned in the previous section, a rapid post-disaster assessment method is vital to 

address the increasing severity of natural disasters and their consequent damages and casualties. 

There are two crucial steps to achieve this outcome, consisting of the data collection and data 

analysis. Together, these two steps insure the readiness of the data necessary to recognize the 

damage, and the recognition of damaged areas and places.  

Historically, the post-disaster assessment has been mostly performed manually, meaning that 

it is remarkably based on manpower-sourced field surveys [11][12][13], which as mentioned in 

the previous section, comes short in both efficiency and safety. Moreover, the approach to perform 

the data collection and to identify damages by collecting ground-view images of the disaster-struck 

region is not quite feasible, since in the aftermath of a disaster, obtaining ground-view images 

could be challenging due to obstructed pathways and debris, meaning that the most severely-struck 

regions are usually the hardest ones to access. Therefore, the research has been more focused 

towards the utilization of Remote Sensing imagery, and in the recent decades, the employment of 

Remote Sensing technologies has been gaining more popularity in the event of natural disasters 

[15]. The damage detection includes direct or indirect approaches [15]. Indirect approaches are 

rather focused on the detection of whole or larger-scale damaged urban areas with substitute 

measures such as the night-time lighting level [15][16][17], while direct approaches are directly 

focused on the damage of buildings, as investigated in this study. Many approaches exist in order 

to collect the remote sensing images, including Optical Satellite images, Synthetic Aperture Radar 

(SAR) images, and Unmanned Aerial Vehicle (UAV) images [18][19]. These types of images 

comprise a broad, and meanwhile, detailed view of different regions, enabling the recognition of 

damage across various sections. In the meantime, collection of these images can be done 
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uninterruptedly in the aftermath of a disaster as opposed to the ground-view images, and 

incorporate significant lower risk [15][18]. Fig 2-1 illustrates a sample remote sensing image from 

a flooded region in Malaysia. Each of these remote sensing approaches, along with their strengths 

and weaknesses are described in this chapter. 

 

Fig. 2-1: Sample remote sensing image from a flooded region in Malaysia (Source: Pexels, Pok Rie [20]) 

2.1  Remote Sensing Imagery 

2.1.1 Optical Satellite Imagery 

The utilization of optical satellite imagery for the post-disaster assessment has been frequently 

researched. A sample satellite imagery from an urban area in Mexico has been presented in Fig. 2-

2. As a classic approach, visual interpretation of the satellite imagery can be used for damage 

detection is the structures [21]. However, this process could be challenging and time-consuming 

when dealing with higher levels of spatial resolution, limiting coverage over large areas [22]. 
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Nonetheless, visual interpretation is against the desired rapid and uninterrupted post-disaster 

assessment process.  

A more effective approach using satellite imagery is change detection, which necessitates the 

acquisition of both pre- and post-disaster images. In this method, various techniques (e.g. Machine 

Learning) are applied to post-classification images to distinguish alterations between the two 

scenarios [21]. Another approach involves data mining on images. This involves extracting 

particular features through image processing and utilizing them for conducting comparisons [23]. 

As an example of using change detection in satellite images, Sublime et al. [13] researched the 

possibility of detecting the areas destroyed by the Tsunami of Tohoku in 2011. This research which 

acquired the real-time satellite images before and after the event, proposed a deep-learning-based 

method in order to identify the affected areas by the automatic recognition of changes within the 

images. In a research done by Lee et al. [24], a semi-supervised learning approach fueled by the 

pre- and post-disaster images is used to detect the damage. The paper investigates disasters such 

as earthquake, armed conflict and wildfire. Another study done by Oludare et al. [25] proposed a 

semi-supervised model for factoring in the various housing styles and unseen images. By capturing 

information from a large amount of unlabeled data and satellite images, their proposed model has 

outperformed the ability of a base model which consists of a two-stream high-resolution network 

and intakes both the pre- and post-disaster images.  

In a rather different approach, Shao et al. [26] developed a deep convolutional neural network 

model which performs a remote sensing pixel-classification based on satellite imagery. The system 

has been created in a way to autonomously categorize each pixel inside a post-disaster image into 

one of three classes of undamaged building, damaged building, or background. For this study, the 

network takes both pre- and post-disaster images as input to enhance semantic information, and 
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optimization of the network involves employing a hybrid loss function, enabling the system to 

recognize damaged buildings. A more recent study done by Shen et al. [27] also incorporated 

convolutional neural networks but with a different approach, and by factoring in the correlation 

between the pre- and post-disaster images. The method first extracts the buildings and their 

locations from satellite images, and then a cross-directional attention module is built to explore 

the correlation between pre- and post-disaster images which are fed to the system separately. This 

correlation results in the damage class identification of disasters such as flood and hurricane. Cao 

et al. [28] proposed a convolutional neural network model for assessing the flooded houses in the 

aftermath of hurricane. The study comprises square-sized images of buildings, which are either 

flooded/damaged or undamaged, and uses the database to train and validate the model.  

While the majority of mentioned studies have had a deeper focus on buildings themselves, 

Ghaffarian et al. [29] investigated the identification of debris for the damage and recovery 

assessment. Their study involved very high resolution satellite images to identify the debris, their 

type and time of removal, through a number of various textural analysis procedures. The study 

concluded that the Histogram of Oriented Gradients, which found the gradients on the image for 

each point on the image, had the highest accuracy in detecting the debris. In another study, Dotel 

et al. [30] investigated the change in topographic features such as roads to identify the damaged 

regions, focusing mainly on water-induced disasters such as hurricanes and floods. The outcome 

is achieved by incorporating convolutional neural networks to perform semantical segmentation 

on the topographic regions. Berezina et al. [31] utilized very high resolution satellite images in 

their study and with the use of coupled convolutional neural networks, they generated the pre-

hurricane building footprints and performed a deep-learning-based classification to identify the 

damaged buildings. 
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Fig. 2-2: Sample optical satellite image from an urban area in Mexico (Source: Pexels, Jorge Zapata [32]) 

While the aforementioned studies have mainly focused on post-disaster assessment based on 

both the pre- and post-disaster images, the post-disaster assessment that utilizes satellite imagery 

can also be accomplished using solely post-disaster images. This has been demonstrated by Zhang 

et al. [33] in the detection of damaged buildings following an earthquake. In their study, which is 

based on the difference of textural heterogeneity in original buildings and damaged regions, 

satellite images are enhanced to reach a desired feature level and then a damage index is introduced 

to detect damaged buildings by the fusion of those features. The features utilized are mainly based 

on the texture of the images. The study reaches an accuracy of 76.75 percent for detecting the post-

earthquake damaged buildings. Another instance of the sole use of post-disaster images is a novel 

study done by Tilon et al. [34], an unsupervised machine learning model has been utilized to 

differentiate the damaged and undamaged buildings after various types of disasters. The study uses 

a mixed amount of imagery containing both satellite and UAV photos of earthquake and other 

types of weather-caused disasters.  
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Despite their usefulness in post-disaster assessment, optical satellite images do have some 

limitations. Firstly, they only provide a single top-down view of the buildings, and are easily 

affected by tall vegetation that cover the roofs when seen from above. In addition, they are limited 

in terms of resolution, failing to provide detailed information of each individual building. 

Moreover, satellite images become affected by the weather conditions such as cloud coverage or 

extreme sunlight, as well as the time of the day and whether it is daytime or nighttime, thus 

obstructing a clear and uninterrupted view of the buildings. All these drawbacks are critical in the 

aftermath of a disaster. However, satellite images can successfully provide information regarding 

overall areas and regions which have been damaged, and can therefore be used for having an 

understanding of the most severely-struck areas.  

2.1.2 SAR Imagery 

To overcome limitations of satellite-based post-disaster assessment, the use of SAR imagery 

has been widely studied in the recent years. A synthetic aperture radar, being an active radar, 

creates two-dimensional or three-dimensional images from the objects. The image construction is 

based on the reflection of the radar received from earth and the movement of radar over a specified 

region, which mitigates the spatial resolution of the images, and provides stereographic 

reformation of the earth landscapes from space, therefore being independent from weather 

conditions and distances [35]. A sample SAR image has been presented in Fig. 2-3.  
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Fig. 2-3: Sample SAR image from Santa Barbara, California, US (Source: Umbra Space, under the Creative 
Commons Attribution 4.0 International (CC BY 4.0) license [36]) 

 
SAR imagery is accordingly functional in post-disaster assessment and damage detection of 

the struck regions and buildings. An application of this tool has been in near-real time flood 

inundation mapping [37]. The creation of post-evet flooding maps currently rely largely on both 

satellite and SAR imagery, along with hydraulic model simulations, as stated by Scotti et al. [38]. 

A study by Kosianka et al. [39] investigated the pre- and post-hurricane monitoring by analyzing 

the data of SAR satellites to generate historical change maps, detect the trends and conclude 

prominent change events such as a baseline for flood mapping following a hurricane. Some 

parameters such as soil moisture and ground disturbance also become investigable using specific 

SAR data.  

In terms of more extensive damage detection after disasters, Chini et al. [40] investigated the 

flood mapping within urban areas. In their method which incorporated SAR imagery, the buildings 

were first detected and afterwards, the coherence feature of SAR data assisted in identifying the 

existence of flood water inside urban areas. Validated by the Hurricane Harvey data, the method 
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proved effective when compared with optical images. Dai et al. [41] employed the SAR images of 

a mountainous region in Sichuan, China to identify the damaged areas caused by Xinmo landslide. 

They integrated SAR data to detect stable areas and find the landslide source areas and boundaries. 

In addition, the tool has been effective in the creation of a precise high-resolution digital elevation 

model before failure, facilitating accurate estimates of the depletion and accumulation volumes of 

the landslide, along with the scraping area through the comparison of pre-failure and post-failure 

data. In another study, Saha et al. [42] proposed an unsupervised model which works based on the 

feature extraction of very high resolution (VHR) SAR imagery. The study aimed to detect 

destroyed buildings through change detection, and to achieve this outcome, it performs a pixelwise 

feature comparison using a convolutional neural network which is pre-trained on aerial imagery 

and optimized for SAR imagery. The model works effective on an earthquake-struck region in 

Italy.  

A more recent study by Ferrentino et al. [43] harnessed multi-polarization SAR data to assess 

the post-quake situation by introducing an index to capture the damage level of clusters of 

buildings based on a decision-tree classifier. Studied over an earthquake in Italy, the method 

reaches an accuracy of 71 percent when considering two levels of damage for the buildings. Even 

though SAR imagery have been widely studied and proven to be useful, they come with a few 

limitations. For instance, a limited data acquisition speed [44], and more complexity when 

considering the data collection and analysis. In addition, the studies which have investigated the 

SAR imagery have focused more on regional and landscape damages, such as landslide or flood-

hit regions, rather than a detailed analysis of the damage of each individual building.  
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2.1.3  UAV Imagery 

The most recent approaches of the image-based post-disaster assessment employ UAV 

imagery to overcome the overall limitations of various satellite-based data. Compared to other 

imagery methods, UAV provides more privilege and adjustability considering that the viewing 

angles and elevation can be modified depending on the application. Currently, UAVs have two 

primary applications, including surveying and inspections [45]. The research industry has also 

taken advantage of the UAV abilities for damage identification. As an instance, there has been a 

growing use of UAVs for flood management. UAV imagery can assist in estimating flood 

volumetric changes in the challenging-to-access areas such as forests, which are impractical for 

ground surveys [46]. Additionally, Ezequiel et al. [47] employed UAV-based aerial imagery in 

order to facilitate the recovery process after a Typhoon, where in addition to the assessment of 

buildings and infrastructure, the harm to the agricultural industry and crops was also investigated. 

Fig. 2-4 demonstrates a sample UAV image captured in Edmonton, Alberta. 

 

Fig. 2-4: Sample UAV image from a residential neighborhood in Edmonton, Alberta 

A growing utilization of UAV imagery is also being witnessed for the damage assessment of 

other disaster types, including hurricanes and earthquakes. The previously-mentioned study by 
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Ghaffarian et al. [29] employs UAV imagery in addition to satellite imagery for assessing the 

debris identification. Calantropio et al. [48] incorporated the UAV photogrammetry alongside a 

deep learning tool as an automated building footprint segmentation and damage classifier to 

perform a post-disaster damage assessment, testing on an earthquake-struck region in Italy. 

Another research on post-earthquake situation has been carried out by Yu et al. [49]. The study 

focuses on the extraction of  geometrical features of the buildings captured by UAV, and segments 

structural components based on point cloud data, which aids in the estimation of structural 

inclination, and residual drift estimation at story-level and system-level. Validated by two multi-

story structures, the method proves to be able to estimate the deformations with high accuracy.  

To provide a low-cost solution for surveys of hurricane damage in the Caribbean island of 

Dominica, Schaefer et al. [50] proposed a UAV-based method which compares the pre-hurricane 

and post-hurricane imagery, and performs an image processing method for detecting the damaged 

areas and geomorphological and landscape changes. Yeom et al. [51] conducted a study exploiting 

UAV for surveying the aftermath of Hurricane Harvey in Southeastern Texas, and employed the 

data for estimating the damage of buildings. The study has been based on a region growing scheme 

and digital elevation model, which quantifies the damage of struck buildings using the elevation 

change and spatial difference of the debris followed by the disaster.  

Utilizing a rather different approach, Zhou et al. [52] investigated the use of LiDAR (Light 

Detection and Ranging) to assess the damage on roof of buildings. Based on the cluster matching 

of pre- and post-event imagery of various types of airborne, satellite and SAR imagery, the volume, 

orientation and shape of the roofs can be determined and utilized to characterize the extent of 

damage within each building followed by events such as hurricanes. A study by Wu et al. [53] 

took advantage of UAV imagery of typhoon aftermath alongside GIS tool to perform a 
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reconstruction of building houses and vegetation areas for different periods, and accordingly 

reflect the damage status of the disaster. Whitehurst et al. [54] utilized UAV imagery and Digital 

Elevation models to build a 3D visualization of flood events and perform segmentation over debris 

to assess the damage of the buildings. Another study with a focus on floods has been done by 

Jimenez-Jimenez et al. [55], which incorporates both satellite and UAV imagery of pre- and post-

disaster situations, digital elevation model and object-based image analysis to assess and estimate 

the number of houses which have been completely washed away or experienced a full or partial 

roof collapse. The method has been validated by a river overflow situation and has proven to be 

accurate. 

Similar to the satellite-based post-disaster damage assessment, UAV-based damage 

assessment has also been rendered achievable through the sole utilization of post-disaster imagery 

and the absence of pre-disaster data. Calton et al. [56] carried out a research that involved damage 

assessment of coastal hazard events such as hurricanes and floods. In their study, transferable 

models consisting of artificial neural networks have been examined to detect the damaged of flood 

and non-flood events, in the categories of damaged roofs, damaged walls, structural damage and 

flood damage. The previously-mentioned study by Zhang et al. [33] which focused on the image 

processing of post-earthquake situation, employed UAV imagery parallel to satellite imagery for 

the validation of their method. By way of comparison between their satellite-based and UAV-

based results, they achieved a higher accuracy of 83.25 percent when using UAV imagery, proving 

its higher effectiveness. 

 Focusing on the building structures, high resolution UAV images capturing various views of 

buildings, such as the top-down and side perspectives, in a single shot makes them invaluable 

toward post-disaster assessment. To name a study that highlights the fruitfulness of having 
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multiple views from a single building, Khajwal et al. [12] proposed a classification based on deep 

multi-view image fusion. While the study does not rely solely on UAV imagery, and includes four 

side-view images of a building in addition to a top view (five views in total), it demonstrates the 

higher workability of the deep learning model when multiple views are accessible by reaching an 

accuracy of about 65 percent in predicting the damage category of building within five damage 

states. Another advantage of capturing multiple views is to facilitate a comprehensive damage 

assessment using a reconstructed 3D model of the building, according to this study. While it could 

be challenging to collect multiple views from a building in a post-disaster situation and specifically 

those captured from a street-view, it can be deducted that the angle seen through a UAV which 

consists of both top view and side views, provides more functionality and precision compared to 

optical satellite imagery which comprise only a single top-down view. This effect is more visible 

in earthquake damages, where a house might undergo a pancake collapse, meaning that the roof is 

seen undamaged from the top nonetheless of the whole destruction of that structure. As a result, 

the use of UAVs offers a more accurate approach compared to other categories of imagery.  

 Another upside of utilizing UAV, currently being under research, is the possibility of 

automatic routing within an area and neighborhood, as studied researchers such as Fu et al. [57] 

and Nagasawa et al. [58]. The former has studied a framework for detecting damage within 

distribution systems, and have validated the routing on a specific neighborhood. Meanwhile, the 

latter has studied the reconstruction of 3D models from damaged buildings, by prioritizing a route 

optimization process. The approach entails the creation of camera location points encircling 

specific damaged buildings, which are subsequently organized through either the K-means or 

Fuzzy C-means techniques. Following the clustering of camera locations and their assignment to 

individual UAV units, a route optimization procedure is implemented, treating it as a multiple 
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traveling salesman problem. The final step involves refining the paths to steer clear of obstacles, 

resulting in optimized routes for each UAV that strike a balance between flight distance and time. 

With the automated navigation and routing of the UAV, a whole urban area and the corresponding 

neighborhoods can be uninterruptedly covered and a real-time damage assessment can be 

provided. 

2.2 Damage Assessment Solely through Post-disaster Imagery 

 The potential of conducting post-disaster assessment using both pre- and post-disaster images 

face a significant limitation due to the need for pre-disaster data, which may not be readily 

available after a disaster for all affected regions. Consequently, attention has been directed towards 

employing only post-disaster imagery as a primary resource. To this end, a range of image 

processing and Machine Learning methods have been developed for the damaged building 

identification employing post-disaster images. In a recent novel study, Cheng et al. [19] analyzed 

UAV imagery with Convolutional Neural Networks to create an effective tool for detecting and 

classifying building damage in hurricane-affected regions. Compared to previous aerial-imagery-

based studies, their study had a deeper and more specific focus on individual buildings rather than 

entire regions, made possible by the high resolution UAV images. The study reaches an accuracy 

of 65.6 percent in localizing the buildings, and 61 percent accuracy in detecting the damage state 

within five damage classes. A novelty of this study is the utilization of Earth Mover’s Distance as 

loss function, which is in fact the “minimum cost required to transform distributions to each other, 

functioning as a metric to assess the difference between two probability density functions” 

[59][19]. 

A challenge associated within all sorts of imagery for post-disaster assessment purpose is the 

recognition and detection of buildings, which is currently being addressed mainly by supervised 
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learning methods. Convolutional neural networks currently play an inevitable role in the object 

detection and within this subject, buildings are not an exception. In this regard, various studies 

have been done, including a study by Pi et al. [60]. Various object classes such as people, car and 

roofs undergo two transferable CNN-based image segmentation models in this study and as a 

result, the countable and bulk objects can be detected. The aforementioned study done by Cheng 

et al. [19] also investigates the localization of hurricane-struck buildings through the exploitation 

of transfer learning and CNN-based architectures. 

While supervised learning methods and especially the utilization of various architectures of 

convolutional neural networks have proven to be effective for performing damage assessment on 

buildings, and have been commonly used for assessing natural disasters showing a substantial 

improvement, the swift implementation of supervised classification remains a challenge. This 

challenge is attributed to the complexity of acquiring numerous labeled samples in the aftermath 

of disasters [25]. As a result, the focus of current research investigating the machine learning 

models has been mostly on semi-supervised and unsupervised models, or supervised models which 

have transferability. For instance, the previously-mentioned study by Tilon et al. [34] harnessed 

unsupervised Generative Adversarial Network (GAN) for detecting anomalies, subsequently 

detecting damaged buildings in the aftermath of disasters using both satellite and UAV. In general, 

the GANs consist of two convolutional neural networks, which include the generator and the 

discriminator. The generator aims to produce data which resembles the original data, and the 

discriminator aims to differentiate between the original data and the data generated by generator. 

These two networks play a zero-sum game and the final goal is to increase the data for the 

underrepresented class. Even though the success of such machine learning models have been 
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inevitable, gaining a deeper understanding of how each feature contributes to buildings damage 

can lead to a more effective and less complex model developments. 

A smaller portion of previous studies have shown that approaches other than machine learning 

are also capable of the damage assessment based on sole use of post-disaster imagery. For instance, 

the previously-mentioned study by Zhang et al. [33] gets advantage of the textural analysis for the 

post-earthquake damage detection. The study incorporates both local and global texture features. 

The local scale is accomplished through Local Binary Patterns (LBP) while the global features are 

resulted by the Gray Level Co-occurrence Matrix (GLCM). The method proposed by Ghaffarian 

et al. [29] which investigates the debris identification also incorporates features resulted by image 

processing including the aforementioned local and global texture features. In addition, the study 

utilizes the Histogram of Oriented Angles, which is a measurement of the orientation of the edges 

and aids in defining the shapes [61]. Another example of damage identification based on the texture 

analysis of post-disaster images is done by Joshi et al. [62], who segmented the images into 

uniform superpixels and harnessed multiple features from each superpixel, utilizing the method 

for damage identification on aerial images of earthquake-struck regions. Being less used for the 

post-disaster assessment purpose, another product of image processing with applications in 

damage detection is the edge detection. For instance, various edge detection methods are utilized 

for the structural health monitoring and more specifically, crack recognition within concrete 

structures [63]. Another instance of utilizing feature analysis alongside machine learning and 

neural networks is done by Ghaffarian et al. [64]. This study attempts to increase the training 

samples for feeding the neural networks, which is done by automatically generating them through 

pre-disaster building data by map tools such as OpenStreetMap. However, after producing the 

training patch, the damaged and demolished buildings are detected partially using their features. 
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More specifically, the Histogram of Oriented Angles and the Angle Density Index (quantity of 

angles on the edge-detected building images) are employed for this purpose. In addition, other 

post-disaster assessment research with less focus on buildings and larger focus on infrastructure 

have used texture analysis. An instance is studied by Wang et al. [65] which investigated the 

damage detection on roads using remote sensing imagery. After recognizing the centerline of 

roads, the study utilizes features such as road brightness, rectangularity and aspect ratio to create 

a knowledge model and detect the damaged roads accordingly. 

Overall, even though being less researched, detecting damage through the image processing 

and feature analysis of post-disaster remote sensing images has a great potential in providing a 

rapid and time-efficient post-disaster damage assessment framework, since of being independent 

from training data and heavy computational processes. In addition, feature analysis through image 

processing provides deeper insight in how the image properties correlate to the damage level, 

therefore increasing the reliability of the models, and enabling the expandability of models and 

making them more efficient and less heavy in terms of computations. 

2.3 Chapter Conclusion 

Even though a large portion of the previous research have focused on the comparison between 

pre- and post-event images, the more recent studies have had a swift towards the sole utilization 

of post-event imagery, which not only compensates for the absence of up-to-date pre-event 

imagery and the mismatch between the pre- and post-event imagery, but also provides a more 

accelerated damage assessment framework as a fewer amount of data and images require to be 

processed. As a consequence of which, this study focuses solely on post-disaster imagery for the 

assessment. Furthermore, considering the aforementioned advantages of UAV imagery compared 

to its satellite counterpart, and in order to obtain higher quality images comprising more details, 
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more sides and views from each house and uninterrupted by weather conditions, utilizing UAV 

(drone) as the primary tool for the post-disaster data collection is more effective. It is however 

noteworthy that satellite images have the potential to be used as a preliminary damage analysis 

and provide information regarding the hardest hit areas, with a more detailed damage analysis 

related to each individual building done afterwards using the drone images. 

Furthermore, despite the current progress in utilization of various supervised or unsupervised 

machine learning tools, having a deeper understanding of the contribution of various features tied 

to each house image is of significant importance. Accordingly, this study focuses more on an 

explicit, expandable and computationally-light damage assessment method based only on image 

processing. In total, this approach places a strong emphasis on the rapid and seamless damage 

evaluation, primarily relying on a single post-disaster UAV image for each house. Consequently, 

In order to fill the current gaps in literature, the study is shaped by the following conventions: 

1. Sole reliance on post-disaster imagery and no reliance on pre-disaster imagery 

2. Requiring only a single-view UAV image of each house 

3. Utilization of Image Processing as the damage assessment tool 

 Depending on the literature, analysis of the texture and edges are some of the effective image-

processing-based features which have the potential of detecting damage, hence being utilized in 

this study. The following chapter provides an in-depth description on each of the aforementioned 

image processing techniques and how they contribute to developing indexes for damage detection. 
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Chapter 3. Methodology 

The method developed in this study is made up of two stages. The first stage is the Image 

Processing, which is in fact the tool for developing damage identifiers and the second stage is the 

Naïve Bayesian Classifier, which utilizes the damage identifier indices provided in the first stage 

as input and predicts the damage state for each building image. The outcome derived from the 

execution of these two procedural stages on the images manifests as a probability value delineating 

the likelihood of each building being damaged. Fig. 3-1 demonstrates the overall flow of the 

methodology in the study. 

 

Fig. 3-1: The illustration of the methodology and the steps for reaching damage assessment 

3.1  Image Processing 

In this study, a novel approach is introduced, based exclusively on image processing, for the 

extraction of four features related to damage detection. The methods and features utilized for 

detecting the damage are detailed in this section, which are divided into two subsections: texture 
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analysis and edge analysis. Each of the two feature analyzes result in the determination of two 

features which lead to identifying indices, producing four indices in total, as described in the 

following. 

3.1.1 Texture Analysis 

Texture is the overall arrangement and appearance of the pixels and their intensities inside an 

image. Different pixels hold different intensities. For instance, some of them are brighter and some 

are darker. This overall variation leads to an understanding of the damage. Two of the features 

essential for damage detection are extracted through the global textural analysis of images. The 

analysis and the features are acquired using the Gray Level Co-occurrence Matrix (GLCM) [66]. 

The GLCM matrix provides a statistical approach which is utilized for understanding the global 

textural properties of the image by quantifying the occurrence frequency of specific gray levels 

within a defined range in the image. When the colors within an image are disregarded and it is 

assumed to be grayscale, each pixel within the image has a specific level of gray, ranging from 

solid black to solid white, and a value defying the gray level is assigned to each of the pixels. As 

a result, the GLCM matrix is a square matrix with rows and columns corresponding to the gray 

levels, and its dimensions are equal to the total number of specified gray levels. For example, if 

256 tons of gray are defined (0 denoting black and 255 denoting white), the resulted GLCM matrix 

will have a dimension of 256 by 256. The matrix elements are populated based on the frequency 

of occurrence of these gray tons in adjacent pixel pairs within the defined range in the image. In 

this study, the default number of gray levels (i.e. 256) is employed, and an adjacent range of 3 

pixels apart is assumed for the selected pixel pairs. For illustration, Fig. 3-2 depicts an example of 

this matrix for a hypothetical 5 by 5 pixels image, assuming the presence of 8 gray levels and a 

neighborhood range of 3 pixels. 
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Fig. 3-2: The GLCM of an example image with 5×5 pixels 

As mentioned, actual images with larger amount of pixels, alongside 256 levels of gray have 

been utilized in this study. Using the GLCM matrix, some features can be derived which 

effectively describe the global texture of an image. Previous studies, such as Zhang et al. which 

used the post-earthquake satellite imagery for damage assessment, have incorporated this matrix 

to extract features including angular second moment, homogeneity, dissimilarity, entropy and 

correlation for performing the post-disaster analysis [33]. In addition, this matrix and its features 

have been used in other fields. For example, in the area of forestry, Abdollahi et al. [67] found the 

high contribution of GLCM features including dissimilarity, homogeneity and the mean value of 

GLCM alongside image-related parameters such as hue and brightness for mapping the urban 

vegetation using aerial imagery. Among the various GLCM features, the study found that GLCM 
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dissimilarity and homogeneity values aid in differentiating the non-vegetation and vegetation 

areas. Meanwhile in the area of agriculture, Romano et al. [68] incorporated GLCM outcomes 

including parameters such as dissimilarity, contrast, entropy and uniformity (second angular 

moment) to evaluate the mixing of soil in organic farms. From the representative features, the 

dissimilarity and uniformity have shown the highest contribution levels.  

The applicability of GLCM has also been investigated for the infrastructure management 

purpose. To assess the road condition for instance, Robet et al. [69] incorporated the homogeneity, 

correlation, contrast and energy features of the recognition of cracks and potholes. Daneshvari et 

al. [70] took advantage of GLCM outcomes to detect between the raveling and non-raveling 

asphalt surface, noting the contribution of contrast, dissimilarity and homogeneity in 

distinguishing the two classes. In terms of urban area management, Kuffer et al. [71] studied the 

extraction of slum areas from satellite imagery using the GLCM variance, which prove effective 

considering the contrast of the buildings with their surroundings. To present a final example, 

O’Byrne et al. [72] utilized the matrix and its derivatives to perform a semi-automated 

segmentation on infrastructure surfaces, identifying surface damages. The features utilized in the 

study include homogeneity, contrast, correlation, and angular second moment. 

Relying on the literature, and considering the damage assessment purpose of the study, the 

GLCM derivatives employed in the study include the frequently-used dissimilarity and 

homogeneity. The indices Id and Ih used for dissimilarity and homogeneity are as shown in Eqs. (1) 

and (2), respectively [66]. 

𝐼𝑑 = ∑  
1

5
(𝑃𝑖,𝑗  |𝑖 − 𝑗|𝑁−1

𝑖,𝑗=1 )   (1) 

𝐼ℎ = ∑
10𝑃𝑖,𝑗

1+(𝑖−𝑗)2
𝑁−1
𝑖,𝑗=1    (2) 
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In the above equations, 𝑃𝑖,𝑗 corresponds to the GLCM value of ith row and jth column. While the 

original equations are free of constant coefficients, in order to scale the indices in a comparative 

manner, a coefficient of 1/5 and 10 have been applied to the dissimilarity and homogeneity 

equations, respectively. 

 In the context of textural analysis and GLCM, dissimilarity represents the average absolute 

difference in the gray level intensity between pairs of pixels at a given distance and a specific 

angle, quantifying how different the pixel values are in the specified direction and range. A lower 

value of dissimilarity means that pixels near each other are closer in terms of intensity and gray 

ton. Homogeneity, which is also known as inverse difference moment [66], also calculates the 

proximity of the gray level intensity values to the diagonal of the GLCM matrix, denoting the 

happening of various gray levels in nearby pixels. However, it is affected more by how often the 

large intensity differences happen within the image, and how far the values are from the main 

diagonal. Homogeneity is also affected by the number of gray level tons within the image and an 

image with less variety of gray level values receives higher homogeneity. A lower homogeneity 

value means that the pixel pairs in the image have larger difference in terms of gray level value, 

depicting a less uniform image.  

 Both dissimilarity and homogeneity are sensitive to sudden and highly-different gray 

intensities in the image. Conversely, a parameter such as angular second moment is not affected 

by how different the intensities of neighboring pixels are. For example, a checkered image, where 

every other pixel is colored pure black and pure white (lowest and highest gray values) can be 

assumed, along with another checkered image with the same setting but instead of black and white, 

two gray levels very close in intensity value have been used for coloring every other pixels. These 

two images represent the same value in terms of angular second moment, unlike dissimilarity and 
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homogeneity in which the latter image scores much higher (lower dissimilarity and higher 

homogeneity value) compared to the former black and white one. As a result, for the damage 

detection purpose where abrupt and intense changes occur regionally in the building image, 

homogeneity and dissimilarity have been chosen as the best representative GLCM features. 

To demonstrate the functionality of the indices on images, an example is provided in Fig. 3-

3. In this figure, Fig. 3-3 (a) depicts a solid-colored image with a consistent gray level throughout. 

In Fig. 3-3 (b), the same solid-colored image incorporates narrow straight lines with a white color, 

while Fig. 3-3 (c) features thicker and irregular white-colored lines. From left to right, the 

dissimilarity index (Id) is computed as 0, 0.96, and 1.35, respectively, demonstrating an ascending 

trend as the lines are introduced and the shapes become more irregular. Conversely, the 

homogeneity index (Ih) is calculated as 10, 9.32, and 8.55 for Fig. 3-3 (a), (b), and (c), respectively, 

indicating a declining pattern. 

     

(a) (b) (c) 

Fig. 3-3: Sample images for investigating the GLCM texture parameters of dissimilarity and homogeneity 

Since increased abrupt fluctuations are anticipated in the gray level of pixels within the image 

of damaged buildings, an increase in the level of dissimilarity and a corresponding decrease in the 

level of homogeneity are expected. To illustrate this, an example of an undamaged building (Fig. 

3-4 (a)) and an example of a damaged building (Fig. 3-4 (b)) are presented and their resulted feature 
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values have been compared. The calculated dissimilarity values are 1.52 and 3.82 for the 

undamaged and damaged scenarios, respectively. Additionally, the homogeneity values are 

determined as 1.88 and 1.04 for the respective cases. As expected, the undamaged building 

incorporates a higher homogeneity and a lower dissimilarity value. 

    

(a) (b) 

Fig. 3-4: Sample image of (a) an undamaged building captured using drone in an Edmonton neighborhood 
and (b) a damaged building captured by drone after a hurricane in Tennessee, USA [73] 

 

3.1.2 Edge Analysis 

Although the texture analysis will provide promising differences between undamaged and 

damaged images, it is prone to certain constraints. An example is the architectural design of the 

building which may significantly affect the patterns observed in the images, which in turn alters 

the textural elements, especially considering that the focus of study is specifically on the buildings. 

Therefore, this study proposes incorporating edge-based analysis to complement the texture-based 

features.  

In a broader context, edge denotes the points within an image where an abrupt and significant 

alteration occurs in the brightness level, primarily signifying object boundaries. An edge-detected 

representation of and image is a visual depiction that highlights the boundaries and transitions 
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between distinct objects or regions within the image. An edge-detected image simplifies the image 

processing by eliminating the unnecessary data of the image while maintaining the important 

structural patterns and features related to the boundaries [74], which are useful for identifying 

damage as the boundary patterns tend to change compared to when damage is nonexistent. Edge 

detection has been used in the monitoring of structures and civil infrastructure systems, as 

employed by Gül et al. [75], studying the edge detection of videos captured by cameras to assess 

the lubrication level of open gears in movable bridges.   

The specialized image processing technique of edge detection is achieved through algorithms 

like Canny edge detection [74]. The capabilities of Canny edge detection method have been widely 

explored across various domains. For instance, in the biomedical field, Ze et al. [76] harnessed the 

Canny edge detector to segment blood vessels in specific image types. The applicability of Canny 

edge detection has also been majorly researched on various forms of object detection. An example 

is done by Chung et al. [77] for detecting highway accidents. The method combines an object 

detection tool, along with Canny edge algorithm, which aids in the detection of accidents and 

compensates for the low amount of database. It has also been useful in detecting moving objects, 

as researched by Zhan et al. [78], where Canny edge detection has complemented a frame-

difference-based algorithm for detecting the objects through continuous frames. In this case, the 

aid of the Canny edge is in achieving the edge difference image to compare the number of non-

zero pixels for detecting the moving parts.  In the area of civil and structures, the method has been 

employed for identifying cracks in concrete bridges, such as an study by Abdel-Qader et al. [79]. 

The study reached a high accuracy utilizing Canny edge detector and concluded that the Canny 

method resulted the second highest accuracy among the other employed methods. Other studies 

focused on the crack identification of infrastructure using the Canny edge detection have been 
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frequently carried out. For instance, Han et al. [80] utilized Canny edge method alongside Decision 

Tree to detect cracks on highway pavements, and concluded the success of Canny edge method in 

crack detection and its helpfulness in obtaining more details of the crack areas in comparison to 

other edge detection methods. Another example which is applicable on metal structures has been 

studied by Wang et al. [81], who investigated the workability of Canny edge method on detecting 

internal cracks within infrared images. The method which involves a three-step thresholding has 

been applied on pipe surfaces. 

Canny edge detection is a technique with computational approach specifically designed to 

enhance edge detection accuracy by systematically analyzing the intensity variations in pixel 

values across an image, with the primary goal of pinpointing abrupt changes that typically signify 

object boundaries or significant features. The method follows three main criteria [74]: The first 

concern is achieving a low error rate to ensure that edges in an image are accurately detected 

without missing any and without generating false responses. The second critical criterion is the 

precise localization of edge points. This involves minimizing the distance between the points 

identified by the detector and the central position of the actual edge. This localization is especially 

crucial in applications like stereo and shape from motion, where small disparities are measured 

between left and right images or images captured at slightly different times. However, since the 

first two criteria would not be adequate for creating smooth edges, Canny method recognizes a 

third criterion to prevent the occurrence of multiple responses to a single edge. Optimal operators 

for ridge and roof edges are derived through numerical optimization. The criteria are further 

tailored for step edges, and a parametric closed form for the solution is provided. To achieve the 

desired outcome of solid and smooth edges while maintaining a light computational procedure and 
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fulfilling the three mentioned criteria of detection, localization and single response, the Canny 

edge method consists of the following steps [74][82]. 

Initially, the grayscale image is subjected to noise reduction, leading to the production of a 

smoother image. Typically, this operation involves the application of a Gaussian kernel to 

convolve the image. Subsequently, the calculation of the image gradient is performed based on the 

intensity variations of gray levels, yielding both gradient magnitude and the orientation and angle 

information [82]. Following this, a non-maxima suppression process is implemented to eliminate 

spurious edge thickness, resulting in edge thinning. More specifically, for each of the pixels in the 

gradient direction of the edges, only the pixel with the highest gradient magnitude within the 

neighborhood is maintained and the other less significant pixels are suppressed. The fourth stage 

involves double thresholding, where pixels possessing robust intensity levels are retained as edges 

while those with insufficient intensity levels are discarded. The step involves two threshold limits, 

including the upper threshold and lower threshold. The threshold values for this phase can be 

adjusted to control and fine-tune the inclusion or exclusion of edges within the image. The pixels 

which demonstrate a higher gradient magnitude than the upper threshold limit are considered as 

strong edges, hence kept in the detection. Meanwhile, the pixels demonstrating a low gradient 

magnitude below the lower threshold limit are not considered edges and therefore, eliminated. The 

pixels falling in between these threshold limits are not considered strong edges, but are maintained 

in case they are connected to strong pixels and belong to a solid edge, a process which leads to the 

fifth and final step, where a hysteresis-based edge tracking method is employed to eliminate the 

weak pixels that do not correspond to well-defined and definitive edges. 
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Fig. 3-5 provides an illustration of the results obtained using the Canny edge method for the 

identical samples of undamaged and damaged buildings previously shown in Fig. 3-5, utilizing the 

default values for the gradient kernel size and gradient calculation. 

 
 

(a) (b) 

Fig. 3-5: Edge-detected images of (a) the undamaged case and (b) the damaged case shown in Fig. 3-4 

As mentioned previously, the threshold limits of the Canny edge detection can be chosen to 

desire, and in this study, the lower limit is adjusted in order to account for the inconsistency of the 

image sizes and prevent the detection of unnecessary edges within images with very high 

resolutions, while keeping the important edges within images having lower resolutions. In order 

to keep the results as consistent as possible, a fixed value has been chosen for the upper threshold 

value, as it is very determinative in the edge-detection result and all the edges with higher 

intensities are kept. Therefore, changing it unprecedentedly alters the edge detection result. 

However, adjusting the lower threshold limit has less effect in the result and comes advantageous 

in preventing the over-detection of edges. In an intensity range between 0 to 255 (0 corresponding 

to pure black and the minimum intensity magnitude, and 255 corresponding to pure white and the 

maximum intensity magnitude), a constant upper threshold of 200 is implemented, meaning that 
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the pixels with an intensity higher than 200 in the aforementioned scale are selected as edges, while 

the lower threshold is adaptively adjusted based on image quality. Specifically, for images with 

higher resolutions, where a greater number of edges are identified, the lower threshold value is 

increased in accordance with Eq. (3). This adjustment aligns the edge detection outcomes between 

high-resolution and low-resolution images, ensuring consistency in edge detection across various 

image types. For the majority of images, the lower threshold value is constrained within the range 

of approximately 60 to 100. The values 60 and 100 are chosen according to the suggestion for 

Canny method, which mentions the method works better when the ratio between the lower 

threshold and upper threshold is kept in the range of 1 to 2 and 1 to 3 [74]. 

Lower threshold limit: 

 𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒

1000
∗ 0.08 + 10   (3) 

Fig. 3-6 illustrates an example of applying different values of lower threshold limit, showing 

how the result of edge detection would be affected. In this figure, (a) presents the original image 

comprising an undamaged building with a rather high resolution, which has been captured by a 

drone in the Edmonton area. Meanwhile, (b) presents the Canny edge detection when the limit 

from Eq. (3) is applied (equal to 99 in this very case), while (b) and (c) present the edge-detected 

image when the lower threshold limit of 60 and 10 have been applied, respectively. As it could be 

observed, adjusting the lower threshold limit results in the exclusion of unnecessary patterns and 

inclusion of the definitive patterns. 
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(a) (b) 

  
(c) (d) 

Fig. 3-6: Sample Canny edge-detected images for the building presented in (a) applying various lower 
threshold values of (b) 99, (c) 60, and (d) 10 

 
Following the application of the lower threshold limit, all Canny-detected images are 

uniformly resized by employing the interpolation resizing techniques. This step is motivated by 

the fact that the analysis outcomes of the edges are closely linked to the resolution of the edge-

detected image. By standardizing the image size while maintaining the ratio between the length 

and height of the image, the negative impact of database inconsistencies can be mitigated. The 

scaled edge-detected images are then utilized for extracting two other features which are further 

described. 
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3.1.2.1 Edge Entropy   

The first edge-based feature utilized for damage detection in the study is the entropy of the 

edges. To achieve this, the Shannon's Entropy method [83] is applied to the Canny edge-detected 

images. Shannon's Entropy is fundamentally employed to gauge the prevailing uncertainty within 

the potential outcomes of an event, and in the context of this study, it accounts for the randomness 

and uncertainty associated with each potential outcome within the edge-detected image. The index 

used in this study is defined in accordance with the fundamental definition of Shannon's Entropy, 

yielding Eq. (4): 

𝐼𝑒 = − ∑ 𝑃(𝑥𝑖) log
2

𝑃(𝑥𝑖)
𝑁
𝑖=1                                                                                         (4) 

in which P denotes the likelihood and xi corresponds to the outcome of each pixel. 

 Developed in 1948 for application in information theory, the equation for Shannon’s entropy 

(Eq. (4)) defines how unpredictable an event could be [83]. An example can be described with an 

event which has two possible outcomes, such as a coin toss. The lowest entropy is achieved when 

only one of the two outcomes happens all the time, for example when the coin always lands on the 

heads and never lands on tails, in which case the entropy would be calculated as zero. Meanwhile, 

the highest entropy is achieved when the coin toss is in complete fair condition, and there is a 50 

percent chance of landing on either of heads or tails. In other words, in a fair coin toss, the result 

is in the most unpredictable state possible. The same scenario happens on the Canny edge-detected 

images, as performed in this study. The functionality of Shannon’s Entropy in structural health 

monitoring and its potential in detecting damage within signal processing of civil infrastructure 

has been studied, with an interesting example of which being the research on damage identification 

in truss structures done by Moreno-Gomez et al. [84]. In this study, the damage associated with 

corrosion in truss bridges has been analyzed using the vibration signals generated at various 
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conditions, and Shannon’s entropy has been one of the utilized tools for analyzing the signals. 

Another study is carried out by Amezquita-Sanchez et al. [85] which evaluates various entropy-

based methods, including the Shannon’s entropy, for damage detection in the high-rise buildings 

exposed to dynamic vibrations through the analysis of their vibrational response recorded by 

sensors and accelerometers. The study concludes the efficiency of Shannon’s entropy among other 

methods in nonlinear measurement for damage detection.  

As shown in Fig. 3-5, the Canny edge-detected images encompass two sets of pixels: black 

pixels, representing non-edges, and white pixels, representing edges. Consequently, each pixel 

within the edge-detected image can be regarded as a system with two potential outcomes. Thus, 

the base of 2 is incorporated for the logarithm in Eq. (4). As a result, Shannon's Entropy calculates 

entropy based on the probabilities associated with black/white pixel outcomes. However, the 

probability of each pixel being black or white is not 50 percent in the Canny edge images. In fact, 

in damaged building images where a more abundant amount of edge pixels have been detected, 

there is a higher possibility of receiving an edge pixel compared to the images of undamaged 

buildings where the edges are fewer. Consequently, P(xi) is higher in an image showing damaged 

state. Higher entropy value hence signifies a greater degree of uncertainty about the edges and a 

larger possibility of having multiple and random edges, implying a potential association with a 

building exhibiting more damage. Conversely, an image characterized by fewer and more uniform 

edges exhibits a lower level of randomness, leading to a diminished entropy value.  

For the Canny edge images featured in Fig. 3-5, the entropy index value derived from Eq. (4) 

is computed as 0.78 and 3.26 for the undamaged and damaged cases, respectively, reaffirming the 

expectation of a higher entropy value in the presence of building damage. Since a random pixel in 
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the damaged case image is more likely to be an edge pixel compared to the undamaged case image, 

the resulted entropy outcome is higher. 

3.1.2.2 Angle Distribution of the Lines   

The second edge-based index introduced in this study revolves around the orientation of edge 

lines and their distribution. To perform this analysis, the initial step involves the identification of 

lines within the edge-detected image. For achieving this, the Hough Line transform [86] is 

employed. This method which is applicable on the Canny edge detected image, relies on a vote-

counting mechanism to detect lines and operates within a parameter space defined by slope (m) 

and intercept (c), with each data point represented by a unique (m, c) pair. Each (m, c) pair is in 

fact a representor of a distinguished line in the system. For every edge pixel (x, y) within the Canny 

edge-detected image, the general equation relating slope and intercept, namely y = mx + c, is 

established, and a vote is registered for each (m, c) pair that satisfies the equation. Subsequently, 

the (m, c) pairs with the highest local vote counts are selected, with each pair corresponding to a 

distinct line characterized by a specific slope and intercept. As a result, the approximate lines 

forming the edge-detected image can be identified. The results of the Hough Line transform for 

the images featured in Fig. 3-3 (b) and Fig. 3-3 (c) are depicted in Fig. 3-7 (a) and Fig. 3-7 (b), 

respectively. 
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(a) (b) 

Fig. 3-7: Hough Line transform of sample images presented in (a) Fig. 3-3 (b) and (b) Fig. 3-3 (c) 

 
One of the previous studies which has incorporated the angle of lines in post-disaster situation, 

as mentioned in the literature review, is done by Ghaffarian et al. [29], who utilized the histogram 

of oriented angles for debris detection. While the method of histogram of oriented angles is utilized 

for understanding the local patterns in the image, this intention of this study is to incorporate a 

global index related to the angles and orientations of the patterns to identify damaged buildings. 

Accordingly, the Hough Line transform is utilized instead. Hough Line transform has been 

previously employed for the monitoring of the structures and infrastructure. One utilization for 

example has been in the wind turbines, as researched by Stokkeland et al. [87], who used the 

Hough line transform on Canny edge detected images captured by UAV from the wind turbine. 

The Hough line here has been specifically used for detecting the tower and blades on turbine, 

aiding in the tracking process for the inspection purpose. Another study which utilizes the Canny 

edge and Hough line transform for data analysis of the turbine Wind Power Curves is carried out 

by Long et al. [88]. In this study the line transform is intended to detect the outliers on the power 

curve produced by the turbines. Furthermore, an interesting study to mention has been carried out 

by Tschopp et al. [89] for localization and high-quality positioning of the railway infrastructure. 
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For this purpose, the Hough transform has been used alongside sensors to construct a map 

resembling the railway network with high accuracy. Other instances of utilization of Hough Line 

transform include a study by Li et al. [90], who have utilized the line transform for UAV-based 

surveillance of the electrical infrastructure. The specific utilization of Hough transform in this case 

is for the detection of straight lines for the final intention of power line recognition. Even though 

there has been a noticeable amount of research employing Hough line transform for infrastructure 

monitoring purpose, the method has not been a focus for post-disaster assessment studies, which 

is despite the potential of using lines for damage detection. As a result, in this study the method 

has been investigated and an index has been built based on the angles of the lines detected on the 

image.  

In the first step, the Canny edge images undergo the Hough Line transform for the lines to be 

detected on the building. After the lines and their associated slopes have been obtained through 

the Hough Line transform, an analysis of angle distribution within the range of 0 to 180 degrees 

and with a precision of 1 degree is conducted. The expectation is that undamaged buildings tend 

to display well-organized lines with angles that are consistent and closely aligned with each other, 

while damaged buildings typically exhibit chaotic gradients in various directions and incorporate 

a wide variety of angle ranges. To assess the degree of angle disorganization, the density histogram 

of these angles is compared to a uniform distribution. As a result, a closer alignment of the 

histogram with a uniform distribution indicates a higher level of angle disorganization, signifying 

an increased likelihood of detecting a damaged building. Conversely, a histogram featuring sharp 

peaks and deep troughs suggests that the angle orientations are concentrated at specific points 

(degrees), indicative of a building with less damage. In order to be assessable and comparable, the 

angle distribution histograms have been formed in 5-degree slots for both undamaged and damaged 
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cases, as presented in Fig. 3-4. The undamaged and damaged case presented in Fig. 3-4 (a) and 

(b), are illustrated in Fig. 3-8 (a) and (b), respectively. Additionally, a red line representing the 

uniform distribution is overlaid on the histograms for reference. A histogram where the bars are 

closer to the uniform line indicates the existence of orientations in all different angles, depicting a 

chaotic and probably damaged image. As demonstrated in Fig. 3-8, the undamaged case sees a 

larger concentration of lines in specific angle ranges around 20, 40, 80 and 100 degrees, and there 

is quite an absence within 120 to 180 degree angles, while the damaged case conversely does not 

have a specific concentration and lines are present in many different angles. 

D
en

si
ty

 

  
 Angle [⸰] Angle [⸰] 

 (a) (b) 

Fig. 3-8: The angle density histogram of (a) the undamaged and (b) the damaged case shown in Fig. 3-4 

 
The index defined in this section is based on the comparison of angle distribution and uniform 

distribution of the histogram, achieved through the Root Mean Square Deviation (RMSD) 

function. To scale the results, a natural logarithm is applied on the RMSD value as shown in Eq. 

(5): 

𝐼𝑎 = 𝑙𝑛(1000√∑
(𝑥𝑖−𝜇)2

𝑛
)   (5) 
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where xi represents the data points within the obtained distribution, μ denotes the probability 

density function (PDF) value corresponding to the uniform distribution, and n represents the total 

number of data points. The coefficient of 1000 is employed to scale the index and render it 

comparable with other indexes. Since the bars in a histogram with sharper peaks and deeper 

troughs tend to have a larger difference with the uniform distribution, the index is expected to be 

calculated higher for undamaged case histograms. The 𝐼𝑎 values for the histograms featured in Fig. 

3-8 (a) and (b) are calculated as 3.13 and 2.10, respectively, with the higher value observed in the 

undamaged case. 

 As a result, four distinct damage identification indices have been delineated. These indices 

are subsequently deployed in the computation of the structural damage classification of the 

building under consideration, leading to the next section describing the classification method and 

the subsequent calculations. 

3.2  Classification 

In this study, Naïve Bayesian classification technique is employed to account for the 

classification of damage category based on the image-based features explained in the previous 

section. The basis of Naïve Bayesian classification is rooted in Bayes' theorem, which is expressed 

as follows: 

𝑃(𝑐|𝑿) =
𝑃(𝑿 | 𝑐)𝑃(𝑐)

𝑃(𝑿)
   (6) 

where P(c |X) is the posterior probability of class c given the observations in vector X, P(X |c) is 

the likelihood function showing the probability of observations in X given the class of c, P(c) is 

the prior probability of class c, and P(X) is the prior probability of the observations. Assuming the 

independence of the features, Eq. (6) can be rewritten as: 
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𝑃(𝑐|𝑿) =
𝑃(𝒙𝟏 | 𝑐)𝑃(𝒙𝟐 | 𝑐)𝑃(𝒙𝟑 | 𝑐)…𝑃(𝒙𝒏 | 𝑐)𝑃(𝑐)

𝑃(𝑿)
   (7) 

The four predictor parameters of angle index (Ia), entropy index (Ie), dissimilarity index (Id), and 

homogeneity index (Ih) which have been defined in this study, are assumed to be independent. This 

is an assumption made for the simplicity, as the as the indices are not completely independent in 

the context of extracting image properties. Consequently, Eq. (7) for this study is shaped as below:   

𝑃(𝑐|𝑰) =
𝑃(𝑰𝒂 | 𝑐)𝑃(𝑰𝒆 | 𝑐)𝑃(𝑰𝒅 | 𝑐)𝑃(𝑰𝒉 | 𝑐)𝑃(𝑐)

𝑃(𝑰)
   (8) 

Considering the two damage classes of this study, namely damaged and undamaged classes, 

Eq. (8) is translated to the following two equations: 

𝑃(𝑈|𝑰) =
𝑃(𝑰𝒂 | 𝑈)𝑃(𝑰𝒆 | 𝑈)𝑃(𝑰𝒅 | 𝑈)𝑃(𝑰𝒉 | 𝑈)𝑃(𝑈)

𝑃(𝑰)
                                       (9) 

𝑃(𝐷|𝑰) =
𝑃(𝑰𝒂 | 𝐷)𝑃(𝑰𝒆 | 𝐷)𝑃(𝑰𝒅 | 𝐷)𝑃(𝑰𝒉 | 𝐷)𝑃(𝐷)

𝑃(𝑰)
  (10) 

The likelihood functions for each feature described in Eq. (9) and Eq. (10) can be derived by 

creating a class-specific database, forming the subsequent density histograms of the indices for 

each of the two classes, and fitting an appropriate probability distribution to the histograms. A 

dataset comprising 202 undamaged and 113 damaged building images (a total of 315 images) has 

been utilized in this study. Exemplary undamaged and damaged images were presented in Fig. 3-

4 of the preceding section. For the testing purpose, at each validation step 15 images are randomly 

selected out for testing, and the rest of the 300 images are used for creating the probability 

distribution functions which is further described in the results section. Furthermore, the prior 

probabilities for each class were computed based on the respective class percentages within the 

database, resulting in 64.1% for the undamaged class or 𝑃(𝑈) and 35.9% for the damaged class or 
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𝑃(𝐷) . The final component in Eq. (9) and Eq. (10), denoted as 𝑃(𝑰) , represents the prior 

probability of the observations, and can be opened up as follows:  

𝑃(𝐼) = 𝑃(𝐼𝑎)𝑃(𝐼𝑒)𝑃(𝐼𝑑)𝑃(𝐼ℎ)                  (11) 

In Eq. (11), 𝑃(𝐼𝑥) is in fact the probability of the feature disregarding the undamaged or 

damaged class. In other words, it is the probability density of that specific number for the feature 

when both classes are combined and there is only one distribution for all the classes gathered. For 

all the four indices, this amount is the same for both the 𝑃(𝐷|𝐼) and 𝑃(𝑈|𝐼), thus canceled out 

during the computation of posterior probabilities for the damaged and undamaged classes, since it 

appears in the denominator of both equations and these classes represent two complimentary 

events with the following relationship: 

𝑃(𝐷|𝑰) + 𝑃(𝑈|𝑰) = 1   (12) 

Accordingly, for each set of new observations of an unknown image, the variables of 𝑃(𝑈|𝐈) and 

𝑃(𝐷|𝐈) are calculated using Eq. (9) and (10) respectively in terms of 𝑃(𝑰) and afterwards, Eq. (12) 

is employed for calculating the probability of being on damaged or damaged category. 

To reach the estimated likelihood function for each of the predictor parameters, a normal 

distribution is fitted to density histogram of each parameter for each of the damaged and 

undamaged classes separately, as presented in Fig. 3-9, all the 315 images in database have been 

used to create the histograms and graphs. Considering that the histograms represent a shape close 

to normal distribution, and having the expectation that a larger database further contributes to 

reaching a normal shape, normal curves have been chosen as the best fitted distribution to the 

histograms. Afterwards, the features and predictor values of unknown buildings i.e. the images 

selected randomly for testing are extracted, and by employing the distribution functions, the 
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posterior probability of the damage observed in that building is calculated through Eqs. (8), (10) 

and (12). 

 Undamaged           Damaged 
 

 Dissimilarity (Id) Homogeneity (Ih) 
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Fig. 3-9: Estimation of likelihood distributions for predicting parameters of Id, Ih, Ia and Ie 

From the graphs presented in Fig. 3-9, it could be seen that the normal distribution is a 

compliant fitting likelihood distribution function for each case. Since the likelihood distributions 
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are all probability density functions, the area under all the curves is equal to one. Consequently, 

each of 𝑃 (𝐼𝑥|𝑈) and 𝑃 (𝐼𝑥|𝐷) phrases in Eq. (9) and (10) could be translated to the probability of 

feature x in the subsequent normal distribution of the feature in each of the damaged and 

undamaged cases. Since the damage is to be identified using the indices, and the value of these 

indices are a representor of the image rather than a direct identification of the inherent damage, a 

continuous distribution function would be acceptable. However, it is noteworthy that the damage 

itself, when investigated inherently, is a rather discrete phenomenon. Considering that the focus of 

this study is to identify overall damage level, and considering the use of indices, a continuous 

distribution can be utilized as a proper estimation. 

In the following, an example has been provided to illustrate the calculation process for 

providing a deeper understanding of how different index values contribute to the damage classes, 

and determining whether the case belongs to the damaged or undamaged category. For this 

purpose, the undamaged house presented in Fig. 3-10 has been utilized.  It is expected that at the 

end of the calculation, the building has a very low probability of being damaged. 
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Fig. 3-10: A sample undamaged building captured by drone in Edmonton area 

 

The feature indices of Fig. 3-10 are calculated accordingly as: 

Angle Distribution:  𝐼𝑎 = 3.53  

Texture Dissimilarity: 𝐼𝑑 = 1.96 

Edge Entropy: 𝐼𝑒 = 0.93 

Texture Homogeneity: 𝐼ℎ = 1.86 

Having the indicating parameters, 𝑃(𝐼𝑥 | 𝐷) 𝑎𝑛𝑑 𝑃(𝐼𝑥 | 𝑈) are calculated for each features 

using the normal density distribution graphs from Fig. 3-9. The red curves are utilized for 

calculating 𝑃(𝐼𝑥 | 𝐷), and the blue curves are utilized for calculating 𝑃(𝐼𝑥 | 𝑈): 

 

 
 
 
 
 
 
 
Angle Distribution (Ia = 3.53):                                     
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 𝑃(𝐼𝑎 | 𝐷) = ~0.04 𝑃(𝐼𝑎 | 𝑈) = ~0.35 
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(a) 

 
 Texture Dissimilarity (Id = 1.96):                                

 𝑃(𝐼𝑑  | 𝐷) = ~0.12 𝑃(𝐼𝑑 | 𝑈) = ~0.75 
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Edge Entropy (Ie = 0.93):                                                  

 𝑃(𝐼𝑒 | 𝐷) = ~0.02 𝑃(𝐼𝑒 | 𝑈) = ~0.55 
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(c) 

 
Texture Homogeneity (Ih = 1.86):                                                

 𝑃(𝐼ℎ | 𝐷) = ~0.55 𝑃(𝐼ℎ | 𝑈) = ~0.65 

D
en

si
ty

 

  

 Predictor Value Predictor Value 
(d) 

 
Fig. 3-11: Finding the probability density value for the parameters of (a) angle distribution, (b)  texture 

dissimilarity, (c) edge entropy and (d) texture homogeneity calculated for the image in Fig. 3-9 
 

Utilizing the approximate probability values calculated from the graphs thorough Fig. 3-11 

inside Eq. (9) and Eq. (10), and considering the ratio of damaged and undamaged cases provided 
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for creating the graphs (113 damaged and 202 undamaged),  𝑃(𝐷|𝐼) and 𝑃(𝑈|𝐼) are calculated as 

follows: 

𝑃(𝐷|𝐼) =  
0.04 ⨯ 0.12 ⨯ 0.02 ⨯ 0.55 ⨯ 113/315

𝑃(𝐼)
=

1.9 𝑒 − 5

𝑃(𝐼)
 

𝑃(𝑈|𝐼) =  
0.35 ⨯ 0.75 ⨯ 0.55 ⨯ 0.65 ⨯ 202/315

𝑃(𝐼)
=

0.06018

𝑃(𝐼)
=  

6018 𝑒 − 5

𝑃(𝐼)
 

Finally, employing Eq. (12) and considering 𝑃(𝑈|𝐼) +  𝑃(𝐷|𝐼) = 1, the final probability of 

being damaged can be calculated accordingly: 

𝑃(𝐷|𝐼)

𝑃(𝐷|𝐼) + 𝑃(𝑈|𝐼)
=  

1.9

1.9 + 6018
= %0.03 

𝑃(𝑈|𝐼)

𝑃(𝐷|𝐼) + 𝑃(𝑈|𝐼)
=  

6018

1.9 + 6018
= %99.7 

The calculation concludes that the building has a very low chance (0.03 percent) of belonging 

to the damaged category, classifying it as undamaged. Having a closer look at the predictor values, 

it is evident that for this specific case the homogeneity feature is the least determinative in terms 

of yielding an undamaged result, as the predictor value for undamaged and damaged case is very 

close (0.65 vs. 0.55). Meanwhile, the edge entropy contributes most to the result, as the difference 

within the undamaged and damaged predictor values is very high (0.55 vs 0.02). However, when 

blended with each other, the effect of less-contributing parameters would be neglected. The case 

is not the same for other images, as for some of them the texture parameters have higher 

contribution to the result compared to the edge parameters, signifying the importance of utilizing 

all four indicators together. 

The Naïve Bayesian Classification as a result provides a transparent and computationally-

light method to classify the buildings according to their damage level. The method has been already 

applied for various purposes in the engineering field. A prominent instance is in the monitoring of 
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pipeline system, and detecting the failures and breaks in the pipes [91][92]. While the method has 

not been researched as much for the post-disaster situations, the transparency and quickness blends 

well with the provided image processing techniques for building a rapid post-disaster assessment 

tool. 

3.3  Chapter Conclusion 

The method of this study is based on the texture-based and edge-based image processing of 

building images, and for each image, 4 identifying indices are built upon the result of analyzes. 

These identifiers include texture dissimilarity, texture homogeneity, edge entropy and the 

distribution of line angles. The damage classification is performed using a Naïve Bayesian 

Classifier, which intakes the 4 subsequent identifiers, with an assumption of their independence, 

and outputs the probability of being damaged with a percentage value, ranging from 0 to 100. To 

perform this, the probability density functions for each of the indices are constructed according to 

a database of undamaged and damaged buildings. Consequently, each building is categorized as 

either damaged or undamaged. The functionality of this model, and its application on real-life 

instances is further described in the following chapter. 
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Chapter 4. Results and Discussion 

In this section, the functionality of this post-disaster assessment model would become evident. 

In the beginning, the database which has been utilized for assessing the model has been described 

in more details, followed by a preliminary application of the model on the database to provide a 

deeper look into the functionality of the model. The model is then undergone a testing examination 

using unseen database (images which have not been used for creating graphs), and finally, a real-

life application on the model has been demonstrated.   

4.1  Database Preparation 

As described in the previous section, the database employed in the study consists of 202 

undamaged and 113 damaged building images. While a smaller portion of the undamaged images 

utilized in the study are sourced from the internet, the majority have been captured by a drone 

through the larger Edmonton area, and from various neighborhoods within the city. Fig. 4-1 depicts 

the image of the drones utilized in the study. The drones include a DJI Mini 2, and a DJI Phantom 

4. 

The elevation of drone during the data collection has been approximately 30 meters from 

ground. The camera had an approximate pitch angle of about 40 degrees, whereas the yaw and roll 

angles have been zero. An illustration of the three axes and their corresponding rotation angles is 

presented in Fig. 4-2. This angle position theoretically means that the camera has a forward vision, 

but instead of looking directly straight, it is tilted 40 degrees towards down (ground). The 

combination of flying elevation and camera angle should be selected wisely, as it should enable 

an inclusive and multi-sided view of the buildings. In other words, a sufficient proportion of each 

of the buildings’ roof and facades should be visible in the images. 
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(a) (b) 

Fig. 4-1: The image of the drones utilized for data collection: (a) DJI Phantom 4 and (b) DJI Mini 2 

 

Fig. 4-2: The demonstration of Yaw, Pitch and Roll axes in the camera 

 Sample drone images captured in two various neighborhoods of the city can be found in Fig. 

4-3 (a) and (b). The location of this neighborhoods is shown in Fig. 4-4. The damaged database 

however is sourced completely through internet, mostly comprising of buildings damaged by 

hurricanes and, with a lesser extent, earthquakes. A sample drone image from a region hit by 

hurricane (storm) which is utilized in the database of this study has been presented in Fig. 4-3 (c). 

Yaw (Z)

Roll (X)

Pitch (Y)
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 4-3: Sample drone images utilized for preparing the database 

(a): An image captured in the neighborhood of Castle Downs in northwest Edmonton 
(b): An image captured in neighborhoods south of University of Alberta Farm 

 (c):  An image showing post-storm damages in Chattanooga, Tennessee, US in April 2020 [73] 
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Fig. 4-4: A map of Edmonton showing the approximate locations where the data has been collected, 
 taken from Google Maps [93]. The northern location shows the neighborhood of Fig. 4-3 (a) and the 

southern neighborhood shows the neighborhood of Fig. 4-3 (b) 

4.2  Functionality of the Proposed Framework 

This step which is incorporated mainly for the investigation purpose rather than testing, 

involves all the 315 building images being fed to the model. The initial result is the probability 

density functions as presented in Fig. 3-9 in the previous section. In these graphs, the shape of the 

histograms closely resemble a normal distribution for each of the cases as they are aligned with 
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the fitted normal curves. More notably, the distributions for undamaged and damaged cases are 

clearly distinguishable from one another. Consequently, it can be inferred that the four selected 

features contribute significantly to the damage level of buildings. 

The Naïve Bayesian classification method is applied to categorize all the images into either 

the "Undamaged" class (with a probability of being damaged below 50 percent) or the "Damaged" 

class (with a probability of being damaged exceeding 50 percent), with the intention of assessing 

the feasibility of the proposed framework. The result of analyzing the 202 undamaged and 113 

damaged images and predicting the damage state using the graphs in Fig. 3-9 (assuming there is 

no unseen sample) would be as follows: 

16 undamaged buildings misclassified as damaged (accuracy: % 92.1) 

6 damaged buildings misclassified as undamaged (accuracy: % 94.7) 

22 misclassified buildings overall (accuracy: % 93.0) 

The method as a result functions successfully in the absence of unseen data. Before running 

the model with unseen sets of database to test the accuracy, a number of cases are presented to 

further identify the underlying reason in achieving wrong results. Fig. 4-5 (a), (b) and (c) present 

three misclassified undamaged cases while Fig. 4-5 (d), (e) and (f) present three correctly-

classified undamaged cases for comparison. All the images are captured by drone in the Edmonton 

area. 
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P(D|I) = %98.5  

P(D|I) = %65.0 

(a) (b) 

 

P(D|I) = %66.6 
 

P(D|I) = %0.6 

(c) (d) 

 

P(D|I) = %0.1 

 

P(D|I) = %0.1 

(e) (f) 

Fig. 4-5: Sample drone images from houses in Edmonton area, with (a), (b) and (c) being misclassified as 
damaged and (d), (e) and (f) being correctly classified as undamaged 
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In Fig. 4-5, the probability of being damaged (P(D|I)) for each of the cases has been included 

on the figure. For images (a), (b) and (c), one underlying reason in the incorrect detection is that 

the roof texture of the buildings is quite rough, resulting in the exaggerated detection of edges. 

Consequently, the edge-based parameters do not contribute well to the damage classification. 

Meanwhile, for (b) and (c), the texture dissimilarity and homogeneity are rather on the verge of 

transition between undamaged and damaged curves mostly due to the roof texture and are therefore 

unable to compensate for the negative edge contribution. In case (a) however, due to the presence 

of more details such as the terrace rail which constantly changes from black to white, even the 

texture features contribute negatively to the damage classification. Meanwhile, case (f), despite 

exhibiting large amount of details, is not misclassified as the texture contrast is not as striking as 

case (a). For case (b), the large size of the building might be seen as a source for the 

misclassification. However, when compared to case (e) which is also large in size, it would become 

evident that the size is not the source of error for this very case. The plants and trees could be 

observed as a minor source of the error for cases (a) and (c). Despite that, case (d) shows the result 

is not majorly affected by this phenomenon as the building has been detected undamaged despite 

the tree covering a portion of the roof and façade. 

A suggested method for overcoming some of the mentioned shortcomings, such as ragged 

roof patterns, is the local texture analysis on the images. In contrast to GLCM which provides 

global texture-related features, a local texture and pattern recognition can help in understanding 

whether a frequent texture change is consistent or disorderly. A consistent change in the pattern is 

more likely to present a building component (such as roof) rather than damage. 
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4.3  Testing Result 

While in the previous subsection the model was analyzed by inputting all the images and 

avoiding the unseen data, it is necessary to evaluate the performance of the model in the event of 

encountering new data not previously used in creating the probability density functions. The same 

classes of "Undamaged" (with a probability of being damaged below 50 percent) and "Damaged" 

(with a probability of being damaged exceeding 50 percent) are employed to assess the proposed 

framework in this step. To perform this assessment and ensuring the feasibility of the model, a 

cross-validation method is employed [94]. In this resampling-based approach, distinct subsets of 

data are designated for testing purposes, while the remaining data are employed for model training 

across multiple iterations. In the current investigation, a total of 10 iterations are utilized for model 

validation. In each iteration, 15 random images are selected from the complete database for testing, 

leaving 300 images for training and the derivation of probabilistic distribution functions. 

Subsequently, accuracy is computed for the undamaged subset, the damaged subset, and the entire 

set of 15 images in each iteration. The cumulative validation results are as shown in Table 4-1. 

Table 4-1: The cross-validation results of the database using the method  

 Val. 

No. 1 

Val. 

No. 2 

Val. 

No. 3 

Val. 

No. 4 

Val. 

No. 5 

Val. 

No. 6 

Val. 

No. 7 

Val. 

No. 8 

Val. 

No. 9 

Val. 

No. 10 

Undamaged 

Accuracy (%) 
88.9 81.8 100.0 100.0 70.0 100.0 88.9 100.0 75.0 88.9 

Damaged 

Accuracy (%) 
100.0 100.0 85.7 83.3 100.0 100.0 83.3 100.0 100.0 100.0 

Overall 

accuracy (%) 
93.3 86.7 93.3 93.3 80.0 100.0 86.7 100.0 86.7 93.3 



 61 

 Overall accuracy: % 91.3 

 As delineated in the table, the overall accuracy stands at 91.3 percent. Although this exhibits 

a marginal decrease compared to the 93 percent accuracy computed in the previous phase wherein 

the entire database was utilized for model training, it is noteworthy that the validation accuracy 

remains considerably high. This outcome serves as a proof attesting to the robust functionality and 

practical utility of the model. While certain measures have been taken in order to account for the 

inconsistency of the database used in the study, by having a more consistent database with image 

resolutions closer to each other, a rise in the overall accuracy can be expected. This is due to the 

fact that the damaged images utilized in this study have been in general lower in resolution 

compared to undamaged images. Considering that some edges and lines are left undetected in 

lower-resolution images, while they can be correctly captured in higher-resolution images, higher-

resolution damaged images are likely to have more accurate classifications based on the edge-

based parameters. However, the texture-related parameters are less likely to experience significant 

changes. 

4.4  Real-life Application 

 In addition to testing the framework through the cross-validation, the method has been 

applied directly on a whole disaster scene to further demonstrate its functionality. Fig. 4-6 presents 

a closer view of the same image of hurricane-hit Tennessee village presented in Fig. 4-3 (c), along 

with the marking of buildings selected for investigating the application in a disaster scene. In this 

image, 6 of the houses have been selected for testing the method, labelled C1 to C6. Cases C1, C2, 

C3 and C4 have frequent damaged parts with C4 being the least damaged one, while C5 and C6 

are barely damaged. Even though some of these buildings have been used in the previous steps for 

the training and validation, in this very step they are not used for training and thus, appear as 
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unseen data to be analyzed. Since all the 6 cases utilized in this step are sourced from the same 

image, the effect of the inconsistency of the analyzed data and their corresponding resolution is 

minimized.  

 

Fig. 4-6: The image presented in Fig. 4-3 (c) showing post-storm damages in Chattanooga, Tennessee, US and 

the 6 buildings selected for analysis 

 The damage analysis results of the selected cases is presented in Table 4-2, while the 

detailed index values on the corresponding probability density graphs have been presented in 

Fig. 4-7. In this figure, the probability of belonging to each category according to each index 

value (P(Ix | D) and P(Ix | U)) can be approximated. 
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Table 4-2. The damage assessment result of select houses from Fig. 4-6 

Category Label House Image 

P (D|I) Using 

Texture only 

(%) 

P (D|I) Using 

Edge only    

(%) 

P (D|I) Using 

All Features 

(%) 

Damaged 

C1 

 

100 83.9 100 

C2 

 

99.9 62.2 100 

C3 

 

99.7 63.9 99.9 

C4 

 

82.8 14.4 59.8 
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Undamaged 

C5 

 

55.5 4.2 9.0 

C6 

 

51.6 20.0 32.9 
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Legend: 
C1 C2 C3 C4 C5 C6 
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 Predictor Value Predictor Value 

Fig. 4-7: The predictor values for each of the six cases selected in Fig. 4-6, illustrated on the probability density 
function graphs 

 
 According to the results in Table 4-2, when all the 4 features are used for the analysis, all 

the damaged and undamaged cases are identified correctly. However, when employing solely the 

texture features (dissimilarity and homogeneity) or solely the edge features (angle distribution and 

edge entropy), the same conclusion cannot be made as some cases are not identified correctly. 
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Even though the results might be partially accurate when each of the texture or edge features are 

used solo (for example C4, C5 and C6 receiving less damage probabilities than C1, C2 and C3), 

there overall result is not acceptable as there would be cases that do not fall in the correct damage 

state category. This emphasizes that the texture-based and edge-based features complement each 

other, thus being important to consider both of them in damage detection. 

 According to Fig. 4-7, for these specific cases, the angle distribution parameter is not 

effective for determining the overall damage level, which is mainly due to the fact that even the 

less damaged cases (C5 and C6) have minor breakages and cracks along with partial tree cover, 

showing the limitation related to the condition of images. Meanwhile, the texture dissimilarity and 

edge entropy demonstrate the highest contribution to the overall damage state. 

 In addition, the damage probability result for C4 is lower than C1, C2 and C3, which 

complies with the fact that C4 is not as severely damaged as the other damaged houses. Even 

though the detection of moderately-damaged houses has not been a scope of this study, this result 

suggests that the method has the potential of identifying a more specific level of damage for each 

building should the database expand consistently. 

4.5  Chapter Conclusion 

 The database and data collection method for the study have been described in the chapter, 

and some of the correctly- and incorrectly-identified drone-captured cases have been further 

investigated. A fundamental reason for the incorrect classification of the selected undamaged cases 

is the rough texture of the roofs, which deteriorates the result of image processing. Furthermore, 

the images have undergone a cross-validation for testing the method, yielding a high accuracy of 

91.3 percent. An analysis over a hurricane-struck region also been done to demonstrate the 
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applicability of the method. All the selected houses in this example could be classified accurately, 

and the contribution level of each parameter to the overall damage state has been illustrated. 
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Chapter 5. Conclusion 

5.1  Outcomes and Achievements 

A novel framework is proposed in this study for the post-disaster detection of damaged 

residential houses, employing image processing techniques exclusively on single post-disaster 

UAV imagery of the houses. A high overall validation accuracy of 91.3 percent for distinguishing 

undamaged and damaged houses is achieved by the method. Moreover, the framework correctly 

detects the damage state of all the selected houses in a real-life post-disaster situation captured by 

UAV, with damage probabilities that are consistent according to the damage severity. The real-

life application example is a proof that the method has the potential to flawlessly recognize damage 

in a post-disaster situation. Furthermore, this approach is characterized by computational 

simplicity, enabling expeditious assessment. Such property not only provides a rapid and time-

efficient assessment framework without requiring an enormous amount of data to be trained, but 

also enables the further expansion of the model to include more disaster types.  Notably, the 

utilization of UAV images permits the observation of multiple building views, such as top view 

and side views, obviating the necessity for capturing multiple perspectives.  In addition, there is 

no requirement for the pre-disaster imagery as the framework does not function based on the 

comparison and rather on the irregularity of the images themselves. Hence, the assessment can be 

performed using only a single post-disaster UAV image of each building, further reducing the 

computational costs. Development of such framework has been possible through the utilization of 

UAV imagery.   

The simplicity and transparency of the model facilitate prospective modifications, with the 

ease of adding or removing features and indices. These augmented features can enhance the 

learning process of Machine Learning models, resulting in expedited and refined model 
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performance. Moreover, the method allows for searching the source of error in each building. The 

source of error might include either or some of the texture dissimilarity, homogeneity, edge 

entropy or angle distribution.  

This model, at its current state, is specifically utilizable for detecting the damage state of 

houses. When implemented on a basis where post-disaster UAV images have been collected and 

the houses are detected, this method has the ability to recognize the houses which have been 

damaged and in order to be put in direct use for a specific region or city, a larger database for 

ensuring the accurate workability of the model would be required. While this model has the 

potential to provide damage in a wider range of buildings, the main focus has been on low-rise 

residential houses. Furthermore, it is noteworthy that the model has been mainly developed based 

on damages resulted by weather-induced events including hurricanes. Earthquake damage usually 

comes with debris which deter the texture and edge feature of images, and a small portion of the 

damaged database comes from post-earthquake scenes, which suggests the ability of the model for 

predicting earthquake damage as well. However, ensuring this requires more study including 

earthquake-related damages.  

5.2  Limitations 

The most prominent limitation of the study arises from the database, most significantly in 

terms of inconsistency. Even though the study has accounted for such inconsistency by updating 

the threshold values and edge image sizes, a database where the images are characterized by more 

consistent qualities and resolutions leads to a better functionality and classification of the 

framework. One solution would be to capture the damaged building database by utilizing the same 

instrument (drone) utilized for capturing undamaged buildings to maintain the same resolution, in 

case a considerable number of disaster-hit houses are available and in reach. In addition, a 
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consistent increase in the quantity of the training data could possibly lead to more accurate 

probability density functions, with a closer resemblance of the actual normal curves that describe 

the feature. The real-life application example in this study suggests that a consistent and close-

conditioned database has the potential to provide better performance and higher accuracy for the 

framework. 

Although UAV imagery possesses advantages in terms of fewer limitations compared to 

alternative remote-sensing modalities like satellite imagery, it is not entirely immune to external 

factors, notably intense sunlight. The consequence of excessive sunlight manifests as certain 

sections of buildings are obscured by dark shadows, while others exhibit high exposure. 

Nevertheless, this limitation, while noteworthy, is not of paramount significance as substantial 

proportions of the majority of buildings retain reasonable visibility. In contrast to optical satellite 

imagery, which is sensitive to a broader range of weather conditions, including cloud cover, UAV 

imagery holds a comparative advantage and demonstrates an upper-hand in overcoming such 

challenges. 

5.3  Future Research 

For future research, the most important step is the inclusion of a more diverse image database 

with consistent and close-conditioned post-disaster images. As previously mentioned, a database 

with matching resolutions could possibly yield even higher accuracies. Additionally, the 

framework has the potential for detecting other disaster types. While the framework of this study 

mainly functions based on data from hurricanes, a larger participation of disasters such as 

earthquakes, and also an addition of disasters such as wildfires can expand the applicability of the 

model. Furthermore, potential expansion of classification categories, such as partially damaged, 

becomes feasible with a more extensive database of damaged buildings. As presented in the real-
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life application, the model has the capability of detecting partial damages from severe damages in 

case of exposure to vaster and more consistent database.  

While testing on a real post-disaster database of a specific region can aid in having a higher 

assurance of applicability, further expansion of the methodology could result in better applicability 

results. For example, utilizing local texture and pattern analysis to identify rough building sections 

(such as roofs) and distinguish them from damages. In addition, localizing the damages of the 

buildings is achievable through local texture analysis, meaning that the damaged part of the 

buildings (for example roof or façade wall) can be identified. Such expansion of the methodology 

can be advantageous in terms of the overall damage analysis result and yield higher accuracies, 

and meanwhile, it can be beneficial if used after the initial damage detection as a tool for a more 

precise localization. The overall methodology also has the potential of being applied on a wider 

variety of tools, such as Virtual Reality, to aid the experts in a more specific and detailed damage 

recognition within structures, such as the bridges. 

 Other areas of expansion consist of the steps towards reaching a fully-automated post-disaster 

assessment tool. More specifically, the first step to reach a complete framework is the automated 

navigation of UAV. In the wake of a disaster, the damage assessment should be immediately 

commenced and the drones should start the data collection by capturing aerial images and videos 

from the  neighborhoods and regions within urban areas. In order to create a fully automated 

framework, various drones should be assigned to different regions, and each should have the ability 

to automatically survey within their corresponding neighborhoods. To achieve this, each drone is 

required to be programmed in a way to route above the neighborhoods, and navigate above the 

streets and roads, until reaching a full coverage of each region and capturing every existing 

building. Having the map of each region, and by following every path, such outcome can be 
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achieved. UAV automation is essential in order to cover every residential block within 

neighborhoods, while the houses remain in the clear sight of the instrument. This means that the 

instrument should fly in a specific route and with specific camera angles which enable a clear 

multi-sided view of the houses. The second crucial step is the building detection and localization. 

Following the full coverage of the neighborhoods and by having the post-disaster images and/or 

videos ready, the next step is to detect the buildings and houses, select them out from the frames 

and localize them according to the positioning of the drone. This step is essential for automatically 

selecting out buildings from the larger images and videos find the accurate location of each on the 

map. Ultimately, the full automation of UAVs, combined with automated building detection and 

image extraction, can culminate in the development of a comprehensive and seamless post-disaster 

assessment tool. Together with these two steps, a cutting-edge rapid post-disaster assessment 

technology would be within reach. 
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