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Abstract

Dimensionality assessments are often conducted to validate a construct, which 

also has implications for diagnostic testing (e.g., Tate, 2002). DETECT is a 

nonparametric dimensionality assessment procedure with two indices, Dmax and rmax.

The indices are used to assess the strength of multidimensionality and whether the 

dimensional structure identified is simple or complex. DETECT has been shown to work 

well with test data of simple or approximate simple structure (e.g., Zhang & Stout,

1999b). However, its performance with data of complex structure has only been 

evaluated in one published study (Gierl, Leighton, & Tan, in press). The present study 

evaluated the performance of DETECT under conditions of approximate simple and 

complex structures using simulated and real data. The impact of three factors on the 

performance of DETECT was investigated—degree of complexity in data structure, 

correlation between dimensions, and sample size.

In the simulation study, a 3 x 4 x 3 fully crossed design was used. The effect of 

the three factors on Dmax, rmax, classification accuracy and classification consistency,

were studied. Regression analyses for both £>max and rmax, regressing on classification 

accuracy, were used to find new critical values for Dmax and rmax. In the real data study, 

DETECT was used to analyze the SAT 2005 March administration data with 

hypothesized dimensional structure to confirm results found in the simulation study.

Results from the simulation study suggested that DETECT could adequately 

identify the dimensional structure of tests (with 80% or higher classification accuracy and 

consistency) for 15 of 24 cases under the approximate simple structure conditions and 10 

of 48 cases under the complex structure conditions. While sample size did not have a
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significant effect on DETECT results, the other factors all affected DETECT results 

significantly. Relaxed evaluation criteria of 0.15 for Z)max and 0.60 for rmax were

proposed based on results from the regression analyses. Results from the real data study 

agreed with the simulation results, and thus indicated the simulated conditions were 

realistic. Implications to researchers and practitioners were given based on the simulation 

results. Limitations of the present study and future directions were also discussed.
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Evaluating DETECT 1

Chapter 1: Introduction 

In order to identify, interpret, and validate the underlying latent construct 

measured by a test, dimensionality analyses are often conducted (Ackerman, Gierl, & 

Walker, 2003; Hambleton & Rovinelli, 1986; McDonald, 2000; Nussbaum, Hamilton, & 

Snow, 1997). The dimensionality of a test refers to the “minimum number of dimensions 

or statistical abilities required to fully describe all test-related differences among the 

examinees in a population” (Tate, 2002, p. 184). For a test that is unidimensional, 

unidimensional item response theory (IRT) procedures can be used to model the test data. 

However, when the assumptions for test unidimensionality do not hold, which implies 

that multiple dimensions exist in a test, multidimensional item response theory (MIRT) 

model should be used to model the test data. To determine which of these two models 

should be used, dimensionality analyses should be conducted first.

There are a number of parametric and nonparametric procedures available to 

assess the dimensionality of a set of data. These procedures identify distinct clusters of 

test items that represent multidimensional latent traits constituting the underlying 

construct. The dimensional structure produced can then be interpreted substantively to 

assign labels and associate meanings with the different dimensions. For example, 

succinct terms such as “spatial knowledge” can be used to characterize the dimension 

measured by a set of test items for a specific group of examinees. When the two aspects 

of dimensionality analyses, statistical and substantive, are successfully connected, 

information about the dimensional structure of a test can be used to interpret the 

interaction between the examinees and the items. This interpretation has important 

implications for using test scores for diagnostic purposes. The identification of distinct
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Evaluating DETECT 2

dimensions makes it possible to pinpoint students’ deficiencies in areas identified as 

dimensions. Instead of reporting only the total scores for comparative or selective 

purposes, testing agencies can provide diagnostic feedback, based on performances on 

different dimensions (either content-based or cognitive) to students and teachers for 

remedial instructional activities.

The Dimensionality Evaluation to Enumerate Contributing Traits (DETECT; Kim, 

1994; Zhang & Stout, 1999b) is a recently developed nonparametric procedure for 

identifying the dimensions of a dataset. As a nonparametric procedure, it avoids the need 

to meet strong assumptions underlying the use of parametric procedures. Further, 

DETECT does not involve computationally intensive techniques. It is also the first 

nonparametric procedure that tests for the strength of multidimensionality in a test, 

estimates the number of dimensions, and identifies the primary dimension measured by 

each test item (Roussos & Ozbek, 2003). It produces two indices, Z)max and rmax. The

Dmax index indicates the strength of multidimensionality in a test. The rmax index

indicates whether the classification of items represents simple (rmax near one) or complex

structure (rmax near zero).

When tests of simple or approximate simple structure (a test item measures 

primarily one dimension) are analyzed, it has been shown that DETECT can adequately 

identify mutually exclusive, dimensionally homogeneous clusters of items, thereby 

confirming the dimensional structure of a test in many simulation as well as real data 

studies (e.g., Gierl, Leighton, & Tan, in press; Zhang & Stout, 1999b). Conversely, when 

tests of complex structure (a test item might measure multiple dimensions) are analyzed, 

DETECT has been shown to perform inconsistently across samples in several real data
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Evaluating DETECT 3

studies (e.g., Gierl, Tan, & Wang, 2005; Leighton, Gokiert, & Cui, in press). 

Consequently, the performance of DETECT, particularly under conditions of complex 

structure, is still not clear, and only one study was found in which this issue was 

systematically investigated through simulation (Gierl et al., in press).

The successful determination of the number of dimensions underlying a test and 

the meaningful interpretation of the identified dimensions are dependent upon the 

consistency and accuracy of the dimensionality assessment procedures. As the true 

underlying dimensional structure is seldom known in real testing situations, decisions on 

the dimensional structure of a test rely on cross validation using several samples. Only 

when consistent results are found across samples can we draw conclusions about the 

dimensional structure underlying a test with confidence. DETECT has been shown to 

perform well under restricted conditions with simple and approximate simple structures 

(Gierl et al., in press; Roussos & Ozbek, 2003; Stout, Habing, Douglas, Kim, Roussos, & 

Zhang, 1996; Zhang & Stout, 1999b). While the existence of approximate simple 

structure in test data is known for some large-scale tests such as the Analytic Reasoning 

and Reading Comprehension subtests of the LSAT, for other large-scale tests such as the 

Logical Reasoning subtest of the LSAT and the School Achievement Indicators Program 

(SAIP) science test, the test data display a complex dimensional structure (Leighton, et 

al., in press; Stout et al., 1996). The Gierl et al. (in press) study yielded significant 

findings on the performance of DETECT in relation to several factors including the 

degree of complexity in data structure, correlation between dimensions, and sample size. 

However, the scope of the factors and conditions within factors considered to date is still 

limited.
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Evaluating DETECT 4

Purpose o f Current Study 

The purpose of the present study was, therefore, 1) to evaluate systematically the 

performance of DETECT under conditions of both approximate simple and complex data 

structures using simulated data; 2) to further investigate the impact of three factors on the 

performance of DETECT—degree of complexity in data structure, correlation between 

dimensions, and sample size; and 3) to illustrate the connection between the simulated 

conditions and real testing situations by using DETECT to analyze data from the SAT 

2005 March administration. The research questions addressed in this study included:

1. Are the Dmax and rmax indices, classification accuracy (percentage of items classified

into the correct dimensions), and classification consistency (percentage of items 

classified into the same dimensions across samples) of DETECT influenced by the 

presence of different degrees of complexity in data structure?

2. Are the and rmax indices, classification accuracy, and classification consistency 

of DETECT influenced by the correlations among dimensions?

3. Are the Dmax and rmax indices, classification accuracy, and classification consistency 

of DETECT influenced by the sample size?

4. Is there a relationship between the Z)max index and classification accuracy? If there is 

a relationship, what is the direction of the relationships?

5. Is there a relationship between the rmax index and classification accuracy? If there is a 

relationship, what is the direction of the relationships?

Definition o f Terms

Index o f strength o f multidimensionality—Dmax. Dmax is the maximum DETECT 

value produced by partitioning items on a test into mutually exclusive and dimensionally
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Evaluating DETECT 5

homogeneous clusters (see p.34 for the formula). It assesses the amount/strength of 

multidimensionality in a test, namely the distinctiveness of different dimensions. Tests 

that are unidimensional should produce a Dmax of zero; tests that have minor dimensions

and are essentially unidimensional should produce a £>raax value close to zero; tests that 

are multidimensional should produce a Dmax value significantly different from zero. 

According to Kim (1994), a Dmax value of 0.1 or less indicates essential 

unidimensionality; a value greater than 0.1 and less than or equal to 0.5 indicates 

weak multidimensionality; a Z)max value greater than 0.5 and less than or equal to 1 

indicates moderate multidimensionality; and a Dmax value greater than 1 indicates strong 

multidimensionality.

Index o f nature o f dimensional structure—rmax . The rmax index assesses whether

the partitioning of items produced by DETECT has a simple or a complex dimensional 

structure (see p.35 for the formula). This index indicates the nature of the dimensional 

structure of a test. A rmax value greater than or equal to 0.80 indicates simple or

approximate simple structure, and a rmax value less than 0.80 indicates complex structure.

Classification accuracy. Classification accuracy refers to the rate of accurate 

classification, namely, the percentage of items on a test accurately partitioned into the 

dimensions that the items intend to measure. This statistic is obtained based on the true 

dimensional structure of a test. An item is considered as belonging to the dimension on 

which it has the highest discrimination parameter.

Classification consistency. Classification consistency refers to the rate of 

consistent classification, namely, the percentage of items on a test consistently partitioned
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Evaluating DETECT 6

into the same dimensions across samples. This statistic is obtained based on agreements 

among samples.

Organization o f the Study

First, the conceptual framework of dimensionality assessment and different 

methods for dimensionality assessment are described and reviewed in Chapter 2. This 

review is then followed by an introduction to the DETECT procedure and a review of 

related literature in Chapter 3. Details on the research design, data simulation, and data 

analyses of the present study are elaborated in Chapter 4. The results are then reported in 

Chapter 5. Chapter 6 provides a summary and discussion of the results and proposes new 

guidelines for using and interpreting the DETECT indices. The conclusions and 

limitations of the present study are then presented. Implications for practice and 

suggestions for future research conclude this chapter.
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Evaluating DETECT 7

Chapter 2: Conceptual Framework and Methods for Dimensionality Assessment 

DETECT, a procedure for exploring the dimensional structure of a test, falls in 

the conceptual framework of dimensionality assessment. This chapter provides an 

overview of the concepts related to test dimensionality and methods for assessing test 

dimensionality. In the first section, the two forms of test dimensionality, 

unidimensionality and multidimensionality, are introduced together with the assumptions 

involved and the models used to describe them. The discussions focus mainly on the item 

response theory (IRT) models because DETECT, although a nonparametric procedure, 

has its theoretical underpinnings rooted in the IRT framework. The DETECT procedure 

is based on theories about conditional covariances (Junker, 1993; Zhang & Stout, 1999a). 

These theories evolved from Stout’s (1987) conceptualization of “essential 

unidimensionality”, which are spelled out in the IRT language. Thus, discussions on the 

IRT models suffice as an introduction to the theoretical background for DETECT. In the 

second section, methods for dimensionality assessment are discussed as to their 

mechanism and their strengths and weaknesses.

Test Dimensionality 

The identification and interpretation of intended content-based or cognitive 

dimensions of an assessment instrument provide evidence for construct validity, meaning 

that a test actually measures what was intended to be measured (Cattell, 1946). The 

dimensional structure of a test can take one of two forms, either unidimensional or 

multidimensional. While, traditionally, unidimensionality has been assumed for most 

standardized achievement or aptitude tests1, several researchers have argued that the 

presence of multiple subdomains and skills in a test introduces multidimensionality

1 Unidimensionality was assumed maybe because we had the capacity to analyze only unidimensional tests.
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Evaluating DETECT 8

(Reckase, 1979; Reckase, Ackerman, & Carlson, 1988; Roussos & Ozbek, 2003; Traub 

& Mclean, 1985; Thurstone, 1947; Yen, 1984,1985). When more than one dimension 

can be reliably identified and the scores validly interpreted, diagnostic information on 

students’ strengths and weaknesses can be obtained based on their performances on 

distinct clusters of items representing different dimensions (Luecht, Gierl, & Huff, 2006; 

Standards for Educational and Psychological Testing, 1999; Tate, 2002,2004). 

Unidimensionality and Item Response Theory

Test unidimensionality is assumed when only one dominant dimension influences 

test performance and that performance on an item is monotone along the ability scale and 

independent from performance on another item after conditioned on ability. When a test 

purports to measure only one attribute or dimension and total scores are used for 

comparisons across individuals, it is essential to assess the fit of the test data to the 

unidimensional model. Moreover, the assumptions of unidimensionality need to be 

evaluated and satisfied before it can be claimed that the unidimensional model provides 

an adequate fit to the data.

The three assumptions underlying the use of the unidimensional IRT model (the 

monotone homogeneity model) include unidimensionality, monotonicity, and local 

independence (LI) (Lord, 1980). To satisfy the unidimensionality assumption, there 

should exist a unidimensional random variable, 6 , which denotes ability, that accounts 

for all examinee performance. The responses for a test with N  items can be denoted by 

U = (£/,, U2 ,...,UN). The probability of obtaining a response pattern, u e U , can be 

expressed using the following formula:
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Evaluating DETECT 9

00
P(U = u)= \P(U = u | 0 )f(9 )d 0 ,

- 0 0

where / (0) is the density function for 9 . Monotonicity means that the probabilistic 

function, P(U = u \ 9), is a non-decreasing function of 6. As ability increases, the 

probability of a correct response (density) increases as well.

Local independence states that the performance for examinees with the same 

ability on an item is independent of their performance on any other item. This definition 

is very stringent and often referred to as strong local independence (SLI). For a test with 

N  items, SLI holds if for all possible response patterns U and all 0,

N

P(U = u | 0) = Y l p (u i = ui I 9) »
M

where Ul denotes any possible response to item i, and ut denotes an incidence of 

response to item i.

SLI requires that, after the ability is held constant, not only are the covariances 

between any two items zero, but also that the probability of obtaining a response pattern 

is the product of all item probabilities. This assumption is complex and difficult to verify 

statistically. For practical reasons, the traditional definition of SLI is replaced by the 

definition of weak local independence (WLI), also called pairwise LI (MacDonald,

1979). WLI states that for all item pairs, i and j ,  and all 9, the conditional covariances are 

zero, which can be expressed as:

Cov(Ui,UJ \0) = O.

WLI can also be expressed using probabilistic terms. That is, a test is said to be weakly 

locally independent (WLI) if for all item pairs, i and j ,  and all 9 ,
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Evaluating DETECT 10

According to MacDonald (1994), although WLI and SLI are not mathematically

equivalent, they are practically equivalent since:

“we are unlikely to suppose that while every pair of items gives statistically 
independent responses [conditional on a latent variable], responses to some items 
[conditional on the latent variable] are dependent on responses to two or more 
other items.” (p. 67)

The use of WLI in place of SLI led to the concept of “essential unidimensionality” 

proposed by Stout (1987). According to Stout (1987), a test of length N  is said to be 

essentially unidimensional if for all item pairs, i and j,  and all 6 ,

Essential unidimensionality means 1) only one dominant dimension exists for a test and 2) 

the existence of minor dimensions (traits) common to just a few items should not be 

counted as dimensions. Several statistical procedures based on the analysis of conditional 

covariances, such as DIMTEST (Stout, 1987), were developed from the principle of 

essential unidimensionality for the assessment of dimensionality. By statistically 

investigating conditional covariances using a valid conditioning variable 0 , we can test 

the tenability of WLI and, in turn, the tenability of test unidimensionality.

The assumption of WLI is intertwined with the assumption of dimensionality. 

When only one dominant dimension exists in a test, WLI will be achieved. In contrast, 

when more than one dominant dimension exist on a test, WLI can be achieved only if 

item responses are independent after conditioning on all contributing latent abilities. Thus, 

to assess test unidimensionality, we can statistically test the WLI assumption by 

assuming that a unidimensional random ability underlies the test. The way test

j< N
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unidimensionality is assessed in programs, such as DIMTEST, is by fitting a 

unidimensional model to the data and testing whether WLI holds or not. The two 

concepts, WLI and dimensionality, should never be mixed and used interchangeably.

Satisfying the three assumptions of test unidimensionality must occur before 

unidimensional IRT models are fit to test data. IRT models use a monotonically 

increasing function called the item response function (IRF) or item characteristic curve 

(ICC) to describe the relationship between item performance and examinee ability 

measured by the test and the characteristics of the item. Three of the most popular 

unidimensional IRT models are the one-, two-, and three-parameter logistic models. 

However, it should be noted that these three models are only appropriate for 

dichotomously-scored items. Only the two-parameter logistic (2PL) model is described 

here since the present study used a 2PL multidimensional IRT model for simulating data.

The two item parameters in the 2PL model are the item discrimination parameter 

a and the difficulty parameter b. The a-parameter represents the discrimination parameter 

of an item in separating students into different ability levels. The 6-parameter represents 

the difficulty level of an item, which is equal to the ability estimate for students who have 

a 0.50 chance of answering the item correctly. The 2PL model can be expressed using the 

following formula:

P ( 6 J ^ =  l  +  e - D a,(Or bl ) »

where P(0j) is the probability that an examinee j  with ability 6j answers item i 

correctly, a, is the discrimination parameter for item i, bl is the difficulty parameter for
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item i, and D (=1.7) is the scaling factor for making the logistic function close to the 

normal ogive function.

IRT models have several desirable features that have important theoretical as well 

as practical implications. The item parameter estimates are independent of the group of 

examinees taking the test (when there is large ability differences between two groups, 

parameter estimates using different groups could be off, but the shapes of the IRFs would 

be the same for the two groups). Likewise, the examinee ability estimates are 

independent from the test items. These two features are often called the invariance 

property of the item parameter estimates and the examinee ability estimates. When 

assessing model-data fit, these two features are often tested along with the WLI 

assumption to see if the data fit the unidimensional IRT model. The standard errors 

associated with ability estimates obtained using IRT models are known, and they vary 

across ability levels. These features have many important practical implications. For 

example, computer adaptive testing (CAT) uses different sets of items to test different 

students and reports scores as the estimated abilities with certain precision because the 

item and ability estimates are invariant.

Multidimensionality and Multidimensional Item Response Theory

When the assumptions of unidimensionality do not hold and there is empirical 

evidence that multiple factors account for differences among students, a test is considered 

multidimensional. In most dimensionality analyses, only the dominant dimensions are 

studied while the influence of minor dimensions is ignored. This idea is conceptualized as 

essential dimensionality, which refers to the minimum number of dominant dimensions
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required to satisfy the assumption of WLI after conditioning on all the dominant 

dimensions (Stout, 1987).

According to Tate (2002), there are two main sources of test multidimensionality: 

planned content and cognitive structure and unintended sources of multidimensionality. 

Four aspects should be considered when discussing the associated consequences: validity, 

reliability, test fairness, and score comparability. Test multidimensionality due to the 

planned content and cognitive structure could be introduced by the inclusion of various 

content areas and cognitive thinking levels in the test blueprint during the test 

development stage. Different item formats tapping different levels of thinking skills, such 

as multiple-choice versus constructed-response, could also introduce 

multidimensionality. The multiple dimensions, either content-based or cognitive, if 

congruent with the test plan, are integral parts of a test that are intended to be measured. 

Their inclusion should not jeopardize the validity of the total test score, and the use of 

subscores will lead to valid inferences and provide diagnostic information as to student 

strengths and weaknesses (Kim & Stout, 1993; Reckase, Ackerman, & Carlson, 1988; 

Walker & Beretvas, 2003).

The second main source, unintended sources of multidimensionality, includes 

different kinds of systematic nuisance or construct-irrelevant factors produced by 

inappropriate test development or administration. For example, if a math test includes 

several items that require not only math reasoning skills but also vocabulary skill for 

understanding specific words and students have different combinations of these two 

skills, the vocabulary skill acts as a construct-irrelevant factor that was not intended to be 

measured. Nuisance or construct-irrelevant factors can also be introduced by test
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speededness, differences in student motivation, test-wiseness, and special item formats 

such as testlets organized according to reading passages. If the influence of these factors 

contributes significantly to the test composite score, then the validity and reliability of the 

total test scores are questionable since unintended dimensions were measured. Test 

fairness is also a serious concern when nuisance or construct-irrelevant factors contribute 

to test scores. For example, differential item functioning (DIF) often occurs as a result of 

the differential ability of different subgroups on the nuisance or construct-irrelevant 

dimensions even though the subgroups have the same ability on the construct intended to 

be measured (Shealy & Stout, 1993; Roussos & Stout, 1996; Gierl, 2005). The item bias 

produced by DIF is one of the threats to test fairness (Standards for Educational and 

Psychological Testing, 1999). For a test that has questionable validity, reliability, and 

fairness, score comparability cannot be achieved through equating. These concerns do not 

arise when DIF occurs as a result of item impact, namely the subgroups have different 

abilities on the construct intended to be measured.

For the current study, which focused on test multidimensionality, only the first 

source of multidimensionality was considered and studied since the identification of 

multiple dimensions introduced by planned content and cognitive structure is of most 

importance for construct validation purposes. The identification of nuisance or construct- 

irrelevant dimensions, which are the direct cause of DIF, is also important for ensuring 

the fairness of a test and the cleanness of the construct being measured. However, since 

DIF is not the outcome of interest for the current study and nuisance or construct- 

irrelevant dimensions are not a part of the construct intended to be measured, the second 

source of multidimensionality was not considered.
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In order to model multidimensional tests that consist of items measuring different 

levels of multiple skills, multidimensional item response theory (MIRT) should be used. 

An extension of unidimensional IRT, MIRT uses probabilistic functions to model the 

interaction between the probability of a correct response to an item with a set of item 

characteristics and examinees’ abilities on two or more latent traits or dimensions. The 

assumptions of monotonicity and WLI (as a proxy for LI) need to be satisfied before 

MIRT models can be used. The monotonicity assumption states that the item response 

surface is monotonically increasing as the abilities on different dimensions increase. The 

WLI assumption states that, for groups of examinees with the same abilities on all k 

dimensions, the conditional covariances for all item pairs, i and j , are zero:

Cov(Ui,UJ \0v 02,...,0k) = O.

Two types of models are generally used to describe test data that are 

dichotomously scored—the compensatory model and the noncompensatory model. For 

the compensatory model (Reckase, 1985), low ability on one dimension can be 

compensated by high ability on another dimension. For example, on a reading 

comprehension test that also measures specialized content knowledge, such as football 

rules, a student who has extensive knowledge on that content area could perform well 

even though he/she might have poor reading skills. For the noncompensatory model 

(Sympson, 1978), low ability on one dimension cannot be compensated by high ability on 

another dimension. An example would be a language test that measures both vocabulary 

and grammar knowledge. Knowing more words would not help a student perform better 

on items measuring grammatical knowledge. Although item parameters for the 

noncompensatory model can be estimated using recently developed Markov Chain Monte
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Carlo methods, much research still needs to be conducted to apply and evaluate these 

methods (Ackerman, Gierl, & Walker, 2003). The compensatory MIRT model, on the 

other hand, is the more commonly used model, and several computer programs, such as 

NOHARM and TESTFACT, have been developed for estimating its associated item 

parameters. Data used in the current study were simulated using the compensatory 2PL 

MIRT model. The 2PL item response function (IRF) for the compensatory MIRT model 

can be expressed by the following formula:

where Ui is the response to item i, 9 T ={0x,...,6k) is the examinee ability vector,

-*• Tai = (an,..., alk) is the item discrimination vector, dt is a scalar difficulty parameter, 

and k is the number of dimensions underlying the test. Unlike the difficulty parameters 

for the unidimensional IRT model, negative d, s indicate more difficult items while

positive dts indicate easier items.

Methods for Dimensionality Assessment 

The use of MIRT to model multidimensional test data is preceded by the 

determination of the correct number of dimensions and the meaningful interpretation of 

the identified dimensions (Ackerman, 1994; Nandakumar & Ackerman, 2004). Many 

parametric and nonparametric statistical procedures haven been developed for assessing 

the dimensionality of a test such as linear and nonlinear factor analysis, residual analysis, 

the Bejar (1980) analysis method, and methods based on conditional associations (e.g., 

Hambleton & Rovinelli, 1986; Hattie, 1985; Stout, 2002). Unfortunately, however, no
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standard set of recommendations or guidelines exist on the proper use of these procedures 

for large-scale testing (Tate, 2002).

Methods commonly used today for dimensionality assessment can be classified 

into two categories, parametric factor analytic methods and nonparametric methods based 

on conditional associations. The factor analytic methods use the matrix of item 

correlations (phi or tetrachoric correlations) to extract factors common to clusters of 

items. Methods based on conditional associations use the matrix of item conditional 

covariances to partition items into mutually exclusive and dimensionally homogeneous 

clusters and test the violation of the WLI assumption with the identified item clusters. 

Both sets of methods have their strengths and weaknesses.

Factor Analytic Methods

Factor analytic methods attempt to model examinee responses to dichotomously- 

scored test items using either a classical linear model or a nonlinear model. Classical 

linear factor analysis models the relationship between the item responses and a set of 

multiple factors or abilities; nonlinear factor analysis models the relationship between the 

probability of a correct response and a set of multiple factors or abilities. Classical linear 

factor analysis can be conducted with various factor extraction methods, rules for 

identifying the number of factors, and rotation/transformation methods, as implemented 

in SPSS (exploratory, SPSS Inc., 2005) and LISREL (confirmatory, Joreskog & Sorbom, 

1993). The normal-ogive harmonic analysis robust method (NOHARM) (McDonald, 

1967,1997; Fraser & McDonald, 1988) and TESTFACT programs (Bock, Gibbons, 

Schilling, Muraki, Wilson, & Wood, 1999) use the nonlinear factor analysis model. The 

nonlinear factor analysis model has been shown to be essentially equivalent to the MIRT
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model (McDonald, 1967,1999). Thus, the item discrimination, item difficulty, and 

guessing parameters associated with the MIRT model can be estimated using the 

TESTFACT and NOHARM programs.

Factor analytic methods can be used in two modes, exploratory and confirmatory. 

When there is no prior belief or strong theoretical support for hypothesis about a test’s 

dimensionality, the exploratory mode should be adopted. First, different numbers of 

dimensions are specified to be extracted from the correlation matrix. The fit is then 

assessed by examining the residual correlation matrix or a summary of this matrix such as 

the root mean square of residuals. The residual matrix is calculated as the matrix of 

difference between the observed correlation matrix and the correlation matrix reproduced 

from the number of factors extracted from the observed correlation matrix. Determination 

of the final number of dimensions is a balanced decision between the parsimony and 

interpretability of the factor pattern matrix and the fit indices. A factor or pattern matrix 

that has higher values of residuals may be selected as the final solution if it represents a 

more parsimonious and interpretable solution with a small number of dimensions.

The confirmatory mode should be adopted when there is strong theoretical 

support for a test’s dimensional structure, either from substantive reviews or from careful 

test development based on an established content/cognitive structure, pilot studies, or 

cross-validation studies. In this case, a hypothesized model of the test can be provided by 

specifying the number of factors and the factor(s) each item loads on. Different fit indices, 

such as the root mean square residual (RMSR, Fraser, 1988), can be used to assess how 

well the hypothesized model fits the data, and when the model fails to fit, to provide 

information on where the model has failed.
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Factor analytic methods share the common pitfalls of all parametric procedures. 

Assumptions made about an assumed model cannot always be satisfied. For example, the 

multivariate normality assumption in the normal ogive model may not be satisfied. Also 

it may be problematic to assume that there is a bivariate normally distributed latent 

response variable underlying the dichotomously-scored items when tetrachoric 

correlations are used. Classical linear factor analysis is inappropriate for use with 

dichotomously-scored items even when tetrachoric correlations are used (Hattie, 1985). 

Research has indicated that increasing nonnormality leads to attenuated item loading 

estimates and lack of fit (Curran, West, & Finch, 1996; Olsson, 1979). Another problem 

associated with factor analytic methods is that the requirement of a positive semidefinite 

correlation matrix is not always satisfied with real data. When a dataset is found not to be 

positive semidefinite, researchers usually inspect the response data and eliminate 

redundant variables (Todd Rogers, personal communication, May 25,2006). The last 

limitation of factor analytic methods is the indeterminacy of different decision rules for 

identifying the number of meaningful factors (Mislevy, 1986). The decision rules seem to 

perform differentially under different circumstances (e.g., high versus low saturation— 

magnitude of factor loadings, see Hakstian, Rogers, & Cattell, 1982) producing solutions 

with varying numbers of factors (Zwick & Velicer, 1982,1986; Leighton et al., in press). 

Conditional Association Methods

Methods based on conditional associations are derived either from the WLI 

assumption of test unidimensionality or from the concept of essential unidimensionality. 

By testing whether the individual conditional covariances for all item pairs or the sum of 

the absolute values of the conditional covariances for all item pairs after conditioning on

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Evaluating DETECT 20

a single ability are close to zero, one can infer the dimensional structure of a test. 

Therefore, there are two categories of methods based on conditional associations. The 

first is based on the review of individual conditional covariances for all item pairs 

(derived from the WLI assumption). The second is based on a global measure of all 

conditional covariances (derived from essential unidimensionality). Seven measures of 

local item dependency based on individual conditional covariances are provided by the 

IRTNEW program (Chen, 1993; Chen & Thissen, 1997). These indices are all parametric 

since the conditioning is based on a unidimensional IRT model. These individual-index 

based measures suffer not only from the weaknesses of parametric procedures as 

mentioned previously but also from the inflated family-wise error when an omnibus test 

of conditional covariances for all item pairs is conducted. Furthermore, these procedures 

do not provide an estimate of the number of dimensions underlying a test, but are useful 

for identifying local item dependency for selected item pairs in an exploratory mode.

Three commonly used programs based on the global measure of conditional 

covariances include the dimensionality test (DIMTEST, Froelich & Habing, 2001), 

hierarchical cluster analysis (HCA/CCPROX, Roussos, 1995), and DETECT (Zhang & 

Stout, 1999b). These methods have been reviewed and evaluated in many simulation and 

real data studies (e.g., Hattie, Krakowski, & Swaminathan, 1996; Nandakumar, 1991, 

1993; Nandakumar & Ackerman, 2004; Stout et al., 1996; Zhang & Stout, 1999b). They 

are nonparametric in the sense that number-correct scores are used as the conditioning 

variable representing the composite ability. As nonparametric procedures, these global 

methods are not restricted by any model assumptions and are computationally efficient.
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To understand how these methods based on global measures work, it is necessary 

to first understand the properties of item pair conditional covariances. A better way to 

illustrate the properties of item pair conditional covariances is through geometrical 

representation of multidimensional items.

Geometrical representation o f multidimensional items. A geometrical 

representation of items in the multidimensional space is often used to help make it easier 

to understand the relationship between individual items and the multiple dimensions 

being measured. For illustrative simplicity, only the two-dimensional case is used to 

explain how geometrical representations are created. The two-dimensional space is 

represented by a Cartesian coordinate system with the x axis being ability dimension one, 

0X, and the y  axis being ability dimension two, 02. The origin of the coordinate system 

represents the population means of abilities on both dimensions. An item is represented 

by a vector, which, when extended, passes through the origin. The length of the vector, 

which represents the multidimensional discrimination parameter denoted by MDISC,

equals ^(afx+af2) , where aa and al2 are the discrimination parameters associated with 

the two dimensions. The direction of the vector represents the composite of 0X and 02 at 

which the item is most discriminating, and is called the direction of best measurement of 

an item. The direction is given by the angle of the item vector, with respect to the x axis,

a .: a, = arccos(— —— ). Thus, items measuring more of dimension one will have an 
' ' MDISC 5

angular direction smaller than 45°, and items measuring more of dimension two will have

an angular direction greater than 45°. The location of the vector, the signed distance of

the item vector from the origin, represents the multidimensional difficulty parameter,
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which equals the multidimensional ability at which the probability of a correct response 

is 0.5. The signed distance means that a positive or negative sign is associated with the 

distance measure: item vectors in the first quadrant are given a positive sign; item vectors 

in the third quadrant are given a negative sign. This multidimensional difficulty

parameter is denoted by Dt = , where di is the scalar difficulty parameter for

item i as defined in the MIRT model. Since the multidimensional discrimination 

parameters are always positive, the item vectors lie only in the first and/or the third 

quadrants. Items lying in the first quadrant represent harder items than items lying in the 

third quadrant. Figure 1 is an example of the geometrical representation of three items in 

the two-dimensional space. The item parameters for the three items are included in Table 

1.

Table 1

Item Parameters for Three Two-dimensional Items

Items an an dt
1 0.75 0.15 -1
2 0.10 0.45 -0.5
3 0.30 0.35 0.5

As illustrated in Figure 1, item 1 has the longest item vector since its multidimensional 

discrimination parameter is the highest while item 3 lies in the third quadrant since it is 

an easier item with a positive d t . Item 1 measures primarily dimension one, as illustrated 

with a small slope; item 2 measures primarily dimension two with a large slope; and item 

3 measures both dimensions comparably with a medium slope.
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Muni 

-—*• 0 |

Figure 1. Vector plot of three two-dimensional items.

Simple to complex data structures. The way item vectors cluster in the two- 

dimensional space relative to the two axes provides useful information about the 

dimensional structure underlying a test. If all the item vectors of a test lie exactly along 

the two axes, as illustrated in Figure 2, then the test is considered to have simple 

structure. Having simple structure means all items in the test measures only one of the 

dimensions even though the dimensions may be correlated. If the item vectors of a test lie 

in two narrow sectors close to the two axes as in Figure 3, then the test is considered to 

have approximate simple structure (Stout, 1987). In this case, the items measure 

primarily one of the dimensions and slightly the other dimension. As shown in Figure 3, 

items 1,2 and 6 measure primarily dimension one, and items 3,4 and 5 measure

NMif
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Figure 2. Vector plot of items showing simple structure.
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Figure 3. Vector plot of items showing approximate simple structure.
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primarily dimension two. If the item vectors of a test spread throughout the first and/or 

the third quadrants as in Figure 4, then the test is considered to have complex structure. 

There are items measuring primarily one of the dimensions (items 1 and 2 measure 

primarily dimension one, and items 6 and 7 measure primarily dimension 2) and also 

items measuring a composite of the two dimensions with differential weights (items 3 to 

5 and items 8 to 10).

ao~

i   i a ir
2.0 - L ^ D

b r ,- L 0-

m  m  &o . 4m

Figure 4. Vector plot of items showing complex structure.

Properties o f item conditional covariances. Zhang and Stout (1999a) established 

the theoretical basis for using conditional covariances to determine the dimensional 

structure of a test. The conditional covariances have been shown to exhibit a consistent 

sign behavior when the conditioning variable is set to be the composite ability 

represented by the vector 0 ^  in Figures 2, 3, and 4. 0[T is defined to be a standardized

linear combination of the examinee ability vector 6 :
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0„. = a T0  = Y s a i9i >
i= 1

where £ is the number of dimensions underlying a test, a T = («j,£Z2,...,«*) is the 

direction of best measurement for the composite ability with a i equal to

Cl — 7-

—v —' , and 0 = (0v 02,...,0k) is the examinee ability vector. The conditional
^a l+ al+ ...+ a2k

covariance for an item pair, i and j ,  is positive if items i and j  measure similar ability 

dimensions, negative if items i and j  measure different ability dimensions, and zero if one 

of the items measures the composite ability 01T. Illustrated graphically, in the two- 

dimensional case shown in Figure 3, the conditional covariance of an item pair is positive 

if the item vectors in the pair lie on the same side of the vector 0rl representing the 

direction of best measurement for the conditioning variable, negative if the item vectors 

in the pair lie on the opposite side of 0IT, and close to zero if one of the item vectors lies 

near 0rr. For example, the conditional covariance is positive for items 2 and 6 and 

negative for items 2 and 5. An item vector x was added in Figure 3 to illustrate the zero 

conditional covariance case. The item vector for item x lies along the vector for 0 ^ . The 

conditional covariances between item x and items 1 to 6 are zero.

The magnitude of item pair conditional covariances is related to the closeness of 

the item pair vectors’ directions, the closeness of one of the item vectors to vector 0 ^ , 

and the magnitude of the items’ multidimensional discrimination parameters. The 

conditional covariance of an item pair increases as the angle between the item pair 

vectors decreases and as the angle between either of the item vectors and the vector 0JT 

increases. The conditional covariance of an item pair is also positively correlated with the
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item’s multidimensional discrimination parameters. The characteristics of the item pair 

conditional covariances laid the foundation for using global methods based on 

conditional covariances to assess the dimensionality of a test. The three global methods to 

be discussed here, DIMTEST, HCA/CCPROX, and DETECT, utilize these 

characteristics in different ways to explore the dimensional structure of a test.

DIMTEST. DIMTEST (Froelich & Habing, 2001; Nandakumar & Stout, 1993; 

Stout, 1987) tests the tenability of the assumption of essential unidimensionality. A test 

is, first, partitioned into two subtests, the assessment subtest (AT) and the partitioning 

subtest (PT). The subtest items are selected in a way that, when a test is 

multidimensional, the AT subtest items represent one homogeneous dimension and the 

PT subtest items represent the composition of multiple dimensions. DIMTEST then tests 

the null hypothesis of essential unidimensionality by evaluating whether the sum of the 

conditional covariances of all item pairs in the AT is significantly greater than zero after 

conditioning on the PT subtest score. If a test is unidimensional, then the AT and PT 

items are measuring the same dimension and the sum of conditional covariances should 

be close to zero according to the essential unidimensionality assumption which states that 

a test of length N  is essentially unidimensional if for all item pairs, i and j ,  and all 6 ,

If the AT subtest items represent a distinct dimension, then there will be local item 

dependence after conditioning on PT and the sum of conditional covariances should be 

significantly greater than zero. This procedure, as with most factor analytic methods, can 

be used in both exploratory and confirmatory modes. When no substantive support for the 

AT candidate items exists, the exploratory mode is adopted. Exploratory factor analysis is
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used to set a fixed number of items (specified as a percentage of the total number of 

items) with the highest loadings on the second extracted factor from an unrotated linear 

factor solution as the AT items. When substantive support exists for the identification of 

a distinct cluster of items, the confirmatory mode is adopted where the AT subtest items 

can be specified. However, DIMTEST only tests whether a test is unidimensional or 

multidimensional. It does not give an estimate of the number of dimensions and the 

partition of items when a test is proven to be multidimensional.

HCA/CCPROX. HCA/CCPROX (Roussos, 1995; Roussos, Stout, & Marden, 

1998) uses a proximity measure based on conditional covariances to conduct a 

hierarchical cluster analysis. The proximity measure determines how similar two item 

clusters are. It is calculated as a weighted sum of conditional covariances between items 

in two clusters. Different weighting schemes can be used such as the unweighted pair 

group method of averages (UPGMA; Sokal & Michener, 1958). The program starts with 

each item representing one cluster, progressively combines two clusters with the highest 

proximity, and ends with all items clustered together. For a test of N  items, 

HCA/CCPROX will produce N  solutions, with from one to N  items in a cluster. The N  

solutions are all candidates for the best partitioning of items into different dimensions. 

The procedure is useful as an initial attempt for exploring the dimensional structure of a 

test, but its use must be supplemented by other procedures, such as DIMTEST (in the 

confirmatory mode) and DETECT, to select the best clustering solution.

DETECT. DETECT (Kim, 1994; Zhang & Stout, 1999b) uses a genetic algorithm 

to find, in various partitions of the test items, the one that maximizes the DETECT index, 

which is defined as the mean of the signed conditional covariances of all item pairs. The
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resulting maximum DETECT index represents the amount of multidimensionality present 

in a test. The partition of items associated with the maximum DETECT index is provided 

to shed light on the dimensional structure of the test. An index of whether the partition of 

test items represents simple or complex structure is also provided. The program can be 

run in two modes, exploratory and cross-validated. For the exploratory mode, the genetic 

algorithm is used to identify the partition of items in a dataset that maximizes the 

DETECT index. For the cross-validated mode, two datasets are involved. The genetic 

algorithm is used to identify the partition of items for the first dataset, and then this 

partition is used for the second dataset to obtain a set of cross-validated indices. Details 

about DETECT will be fully described in the next chapter, which provides a review of 

the development and evaluation of DETECT.

DIMTEST and HCA/CCPROX are not suited for determining the dimensional 

structure of a multidimensional test. DETECT, on the other hand, is a better candidate for 

this purpose. It tests for the strength of multidimensionality, estimates the number of 

dimensions underlying a test, and identifies the primary dimension measured by each 

item. However, as pointed by Tate (2002), the ability of DETECT to uncover the 

dimensional structure underlying a test of complex structure is still not clear since the 

procedure identifies mutually exclusive clusters of items and is most useful when 

approximate simple structure prevails. The current study will focus on the DETECT 

procedure and try to answer the question of how DETECT performs when test data 

possess complex dimensional structure.
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Chapter 3: Review of DETECT 

DETECT was originally developed by Kim (1994). The DETECT procedure is 

based on the structure and properties of conditional covariances which are informative 

about the dimensional structure of a test (Zhang & Stout, 1999a). Since its proposal, at 

least 14 studies have been conducted using simulated and/or real data to refine estimation 

procedures used in DETECT, to investigate the performance of DETECT under different 

conditions, and to compare DETECT with other dimensionality assessment procedures 

(e.g., Gierl et al., in press; Nandakumar & Ackerman, 2004; Stout et al., 1996; Zhang,

Yu, & Nandakumar, 2003; Zhang & Stout, 1999b). These studies provide a better 

understanding of the theoretical underpinning and statistical properties of DETECT. This 

chapter is organized in three sections. In the first section, the theoretical development of 

DETECT is introduced by reviewing studies on the structure and properties of 

conditional covariances, which led to the proposal of DETECT, and studies that proposed 

and refined the DETECT procedure. In the second section, studies evaluating the 

performance of DETECT and applying DETECT to real test data are reviewed and 

organized according to the data structure of the tests being analyzed. A summary of the 

literature is provided in the final section.

Theoretical Development o f DETECT 

Properties o f Conditional Covariances

The idea of using conditional covariances to investigate the dimensional structure 

of a test grew out of Stout’s (1987) conceptualization of “essential unidimensionality.” A 

test is considered essentially unidimensional if the item pair conditional covariances are 

close to zero given a unidimensional latent composite. This means responses to items on
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a test are essentially independent from each other with close to zero conditional 

covariances despite the influence of possible trivial dimensions. Represented 

mathematically, a test of length N  is said to be essentially unidimensional if for all item 

pairs, i and j , and all 0 ,

The properties of item pair conditional covariances for unidimensional cases were 

investigated by Douglas, Kim, Habing, and Gao (1998), Holland and Rosenbaum (1986), 

and Junker (1993). These researchers showed that violation of the assumptions of 

unidimensionality, caused either by the existence of nuisance dimensions or by the 

existence of multiple traits, would result in conditional covariances other than zero for 

items measuring the nuisance dimensions or clusters of items measuring multiple 

dimensions. Douglas et al. (1998) described the sign behavior of conditional covariances 

under conditions of multidimensionality and provided a rationale using illustrative 

examples. However, mathematical proof or theoretical support was not provided.

Zhang and Stout (1999a) investigated, mathematically, the structure and 

properties of conditional covariances under the generalized compensatory 

multidimensional model, which laid the foundation for using conditional covariances to 

infer the dimensional structure of a test (see also Chapter 2 of Zhang, 1997). The 

conditional covariances were mathematically proven to exhibit a consistent sign behavior 

and to correlate with several factors. The conditional covariance for an item pair, i and j ,  

is positive if items i and j  measure similar ability dimensions (i.e., lie on the same side of 

the direction of best measurement of the composite test), negative if items i and j  measure 

different ability dimensions (i.e., lie on the opposite side of the direction of best

IS ; it j< N
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measurement of the composite test), and zero if one of the items measures the composite 

ability 6rr (i.e., lies along the direction of best measurement of the composite test). The 

sign behavior of conditional covariances makes it possible to investigate the dimensional 

structure of a test by identifying clusters of items that have positive within-cluster (the 

item pair comes from the same cluster) conditional covariances and negative between- 

cluster (the item pair comes from different clusters) conditional covariances. DETECT 

utilizes this mechanism to search for the partition of items into different dimensions that 

maximizes the sum of the signed conditional covariances to determine the dimensional 

structure of a test.

The magnitude of the conditional covariances is correlated negatively with the 

magnitude of the angle between the two item vectors for an item pair in the 

multidimensional space. Conversely, the magnitude of the conditional covariances is 

positively correlated with the discrimination parameter of the items.

Zhang and Stout (1999a) also discussed the estimation of the expected conditional 

covariances. Two basic types of conditional scores (used as the surrogate to 0i r ) can be

used to estimate conditional covariances. The first one uses the total scores on the 

remaining items other than the two items in consideration as the conditional score while 

the second one uses the total scores as the conditional score. The former is known to have 

a positive bias, while the latter is known to have a negative bias (Holland & Rosenbaum, 

1986; Junker, 1993). In order to reduce estimation bias, Zhang and Stout (1999a) used the 

equally weighted average of two estimates. The positively biased estimator of 

E[Cov(Xj, X j | djj] is calculated as:
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Et [Cov(X„Xj 19TT] ^ E S v ( X „ X J |S = i),
k= 0  J

where S equals the total score on the remaining items, excluding items i and j ,  J  is the 

total number of examinees, J k is the number of examinees obtaining a score of k on the

remaining items, and Cov{Xi,X j \ S  = k) is the observed covariance between the scores

on items i and j  for examinees obtaining a score of k on the remaining items. The positive 

bias associated with this estimator was first documented by Holland and Rosenbaum 

(1986). The degree of bias decreases as the reliability of the test increases. Thus, the 

positive bias will be smaller as the test becomes longer.

The negatively biased estimator of E[Cov(Xi,X J \Ojj] is calculated as:

E_[Cov(Xi,X J \6>TT] = f j ^-C ^v(X „ X J |T = k),
k=0 J

where T equals the total test score including items i and j ,  J  is the total number of 

examinees, J k is the number of examinees obtaining a total test score of k, and

Cov(Xi, Xj | T = k) is the observed covariance between the scores on items / and j  for

examinees obtaining a total test score of k. The negative bias of this estimator is caused 

by including the scores on the two items for which the conditional covariance is being 

calculated (Junker, 1993; Zhang & Stout, 1999a). Like the positive bias, the negative bias 

also decreases as the length of the test increases.

Zhang and Stout (1999a) showed that for a 40-item unidimensional test the 

negative and positive biases were very close to each other. Thus, the final DETECT 

conditional covariance estimator is calculated as the equally weighted average of the two 

estimates,
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E[Cov(Xi,X J \0rr] =
EJCovjXt'Xj + EACoviX^XjlOrr] 

2

Proposal and Refinement o f DETECT

Kim (1994) first proposed the DETECT procedure for determining the number of 

dimensions underlying a test, estimating the strength of multidimensionality, and 

identifying the items contributing to each dominant dimension. To estimate the strength

of multidimensionality, Kim proposed the DETECT index, D (P ):

where N  is the number of dichotomous items on a test, P denotes the partition of N  items 

into k clusters, /, and i2 are the two items in each pair, CovVl (S) -  Cov(S) is the bias 

corrected estimate of conditional covariance between items ix and i2, and (P) is 

analogous to the Kronecker delta, which takes two values—

The partition, P*, that maximizes D(P) is the dimensional structure of the test, and 

D(P’) is called the maximum DETECT index ( Dmax). To identify the partition of items 

that maximizes Z)max, Kim used the Hierarchical Agglomerative Cluster (HAC) analysis

algorithm programmed by Roussos (1993). However, the D(P*) values obtained from 

HAC do not always represent the maximal values since the HAC algorithm only 

considers up to N  possible clustering of items with a test of N  items. A centering 

technique was used to correct the positive bias caused by using the S score as the

£  (P)[Cov^ (S) -  Cov(S)],

1 i f  items ix and i2 are in the same cluster o f P, 
-1 otherwise.
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A

conditioning score. As shown in the formula for D(P) , this is done by subtracting the

mean of the estimates, Cov,,,2 (S ) , from the conditional covariance estimates, Cov/[/2 (S ).

According to Kim (1994), a Dmm value of 0.1 or less indicates essential

unidimensionality; a Dmax value between 0.1 and 0.5 indicates weak multidimensionality;

a Dmsx value between 0.5 and 1 indicates moderate multidimensionality; and a Z)max

value greater than 1 indicates strong multidimensionality. Although results from real and 

simulated data analyses were promising, the bias correction procedure still could be 

improved.

Since DETECT identifies mutually exclusive clusters of items, it works best when 

data display simple or approximate simple structure. To determine whether the 

partitioning, P*, represents simple or complex structure, Kim (1994) proposed an index 

named, rmax, computed as the following ratio:

D{P*)r — s ------
max D( P*)

where,

0 ( f ) =  I  £  ^ ( /> ) |c S « (S ) -C o v (S ) |,
i v  ( jy  —  l )  \<jl<i2<M

and | Covhh (S)-Cov(S) | is the absolute value of the bias corrected estimate of the 

conditional covariance between items z, and i2. It is the maximum possible value that can 

be obtained by summing across all the corrected estimates of conditional covariances 

regardless of sign. If the partition, P*, returns a strictly simple structure solution, then 

D(P*) will be equal to D(P*), and the rmax will be one. If the partition, P*, departs from
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a strictly simple structure solution, then D(P*) will be less than D(P’) . This is because 

some of the bias corrected between-cluster conditional covariances could be positive due 

to the complexity of the data structure (besides the different dominant dimensions, two 

items in different clusters could measure another common dimension). When the negative 

sign of Siih (P) is applied to these bias corrected between-cluster conditional covariances,

the value of D(P ) becomes less than the value of D(P ). The rmax will, then, be less

than one. Values of rmax greater than or equal to 0.80 suggest the data display

approximate simple structure, whereas values less than 0.80 suggest the data display 

complex structure (Kim, 1994).

Zhang and Stout (1999b), in the first part of their study, refined the DETECT 

procedure by providing a theoretical justification for DETECT, proposing a genetic 

algorithm to search for the partition that maximizes the DETECT index, and using a new 

bias correction procedure for estimating conditional covariances (see also Chapter 3 in 

Zhang, 1997). Their theoretical justification for DETECT was provided by defining the 

theoretical DETECT index and mathematically describing its behavior. The theoretical 

DETECT index is defined using the following formula:

where D(P) is called the theoretical DETECT index, N  is the number of dichotomous 

items on a test, P denotes the partition of N  items into k clusters, 0 ^  is the test composite 

ability, X t and X } are observed scores on items i and j ,  E[Cov{Xi, X . \0Tr] is the 

expected conditional covariance between items i and j ,  and 8U is defined in the same way
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as Shh (P) . For a test that is unidimensional, random clusters of items will be identified

by DETECT. As a result, the within-cluster conditional covariances will be positive for 

some item pairs and negative for others, resulting in a value close to zero if summed up 

across all item pairs. However, for a test that is multidimensional, if DETECT 

successfully identifies the partition of items for which all the within-cluster conditional 

covariances are positive and all the between-cluster conditional covariances are negative, 

then the sum of the signed conditional covariances will be positive and equal to the 

maximum possible value. The theoretical DETECT index of D(P) is operationalized by 

using number correct score as a surrogate for composite ability, 6^ ,  and using the

average of Cov(Xj,X } \ T = k) and Cov(Xj, X j | S = k) to estimate E[Cov(Xl,X } \ 0Tl-]

(Zhang & Stout, 1999a).

Genetic algorithms, which are often used for optimization problems, borrow ideas 

from genetics and evolution to mutate and generate offspring solutions from existing 

outcomes to search for the optimal solution (Zhang, 1997). Since computing D(P) for all 

possible partitions of items in a test would be computationally inefficient, Zhang and 

Stout (1999b) proposed using HCA/CCPROX (Roussos, 1995) to generate an initial set 

of partitions as a starting point to run the genetic algorithm. This process is described in 

Zhang and Stout (1999b, see also Stout et al., 1996).

Zhang and Stout (1999b) and Kim (1994) used two different bias correction 

methods for calculating conditional covariances. In order to evaluate the adequacy of 

different bias correction methods for calculating conditional covariances, Zhang, Yu, and 

Nandakumar (2003) investigated four bias correction methods in a simulation study. 

These correction methods included: 1) conditional covariances estimated by conditioning
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on the total scores of the remaining items and centered (Cov,,,2 (S ) -  Cov(S)); 2) 

conditional covariances estimated as the average of two estimators, one conditioning T

and the other conditioning on S' ( -  0V'xh -t )• 3) conditional covariances

estimated by conditioning on the total scores and centered ( Covith (T) -  Cov(T)); and 4) 

conditional covariances estimated as the average of the two centered estimators,

CoVilh (S ) -  Cov(S) and Covili2 (T) -  Cov(T) . Six independent variables were studied, 

including method for estimating conditional covariances (four bias corrected estimates

A A

plus two original biased estimates, E+ and E_), number of dimensions (1,2), sample size

(500,1000), test length (30,60), angle between clusters of items for the two-dimensional 

case (90°, 70°, 50°, 30°, 10°, 0°), and item distribution for the two-dimensional case 

(items equally distributed into clusters, items unequally distributed into clusters). The 

dependent variables included classification accuracy computed as the percentage of items 

correctly classified into dimensions, and the Dmax and rmax indices. Item parameters were

generated from the estimated item parameters from the 1992 National Assessment of 

Educational Progress (NAEP) test data. One hundred replications were done for each 

condition in the study.

Results from the simulation indicated that performance of the two biased 

estimates of conditional covariances was very unstable and classification accuracy 

dropped 30% to 50% when the angle between dimensions decreased. Consequently, these 

two estimation methods were not compared to the other bias corrected estimation 

methods. The last four independent variables had an impact on the dependent variables. 

For the unidimensional case, sample size and test length had a negative impact on the
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Dmax index. For the two-dimensional case, angle between clusters of items had a positive 

impact on all three dependent variables. As the sample size increased, classification 

accuracy and the rmax index increased, while the index decreased. As test length 

increased, the rmax index decreased. When items were unequally distributed into clusters, 

all three dependent variables were slightly lower than those obtained for datasets with 

items equally distributed into clusters. This indicated that DETECT had difficulty in 

identifying the dimensional structure of a test when an unequal number of items was 

present in different dimensions. When the different estimation methods were compared,

the first bias corrected estimation method using Covhh (S) -  Cov(S) produced slightly 

better results for the Z)max and rmax indices. The third bias correction method using

CoViih (T) -  Cov(T) produced slightly better results for classification accuracy. However, 

the differences found were very small and not statistically tested for significance, which 

made it difficult to conclude which estimation method worked the best. As discussed in 

the previous section, Zhang and Stout (1999a) provided both mathematical justification 

as well as empirical evidence that the average without centering bias correction method 

worked reasonably well. The bias correction method produced estimated conditional 

covariances with much reduced bias than the two biased estimates. Thus, the DETECT 

procedure uses this approach to estimate the conditional covariances.

Evaluation and Application o f DETECT 

Since the proposal of DETECT, 12 studies have been conducted to evaluate 

different aspects of DETECT—its estimation bias, its performance by itself and relative 

to other procedures—and to use DETECT with real as opposed to simulated tests (e.g.,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Evaluating DETECT 40

Finch & Habing, 2005; Roussos & Ozbek, 2003; Zhang & Stout, 1999b). These studies 

were conducted with simulated and/or real test data that had different structures. Data can 

assume simple, approximate simple or complex structures. As the review of these 

evaluation and application studies will reveal, diverse results were obtained.

Studies Using Data that Focus on Simple or Approximate Simple Dimensional Structures 

Monahan, Stump, Finch, and Hambleton (2005) and Roussos and Ozbek (2003) 

evaluated bias associated with the estimators of the DETECT index ( Dmax) and the 

conditional covariances through simulation. Monahan et al. (2005) considered only the 

bias of the estimated Dmax index for the unidimensional case. Four independent variables 

were studied: test length (5,10,15,20,40, 80), sample size (100, 500,1000, 5000), IRT 

model used to generate data (1PL, 2PL, 3PL), and type of calculation method for the Dmm 

index (exploratory, cross-validated). The dependent variable was the bias associated with 

the Dm3x index. The bias was operationalized as the departure of mean Dmax values

across replications from zero since the Z)max index should be zero for the unidimensional 

case. The item parameters used for simulation were adopted from a state mathematics 

exam in the United States. According to the assumption of essential unidimensionality 

and the sign behavior of conditional covariances, the Dmax index should be zero for 

unidimensional tests. Results from the study showed that under the null hypothesis of 

unidimensionality (Dmax = 0), the cross-validated estimates of Dmax index had a better 

control over bias ( Dmax = 0.21, the bias was 0.21) than the exploratory estimates of D ^  

index (Dmax = 0.39, the bias was 0.39) across all studied conditions. Because the focus of
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the present study is on multidimensional data of different structures, the Monahan et al. 

(2005) study is not reviewed and discussed in detail.

Roussos and Ozbek (2003) investigated both the unidimensional and 

multidimensional cases and evaluated not only the bias of the Z)max and conditional

covariance estimates but also the accuracy of classification when multidimensional data 

were simulated. Only data of simple or approximate simple structure were simulated. The 

independent variables included the number of dimensions (1,2, 3), test length (5,10,20, 

40), correlation between dimensions (0.50, 0.70), item distribution into clusters (equal 

and unequal), and type of item dimensionality structure (simple, approximate simple with 

item vectors in a fan of 15°, approximate simple with item vectors in a fan of 30°). The 

dependent variables included Dmax bias, accuracy in clusters, IDN index (percentage of

item pairs for which the sign of the conditional covariances was correctly estimated), 

average conditional covariance bias, and root mean square (RMS) conditional covariance 

bias. Item parameters were set in ranges that were typical in standardized tests (0.5 to 2.0 

for item discrimination parameters, and -1.5 to 1.5 for item difficulty parameters). These 

parameters, as admitted by the authors, did not correspond perfectly to any real dataset, 

which limited the generalizability of the study. Although this is a simulation study, the 

authors did not mention the number of replications done for each condition.

Results from the study showed that DETECT had adequate control over bias (the 

Dmm biases were 0.07 or less in all studied conditions for the multidimensional cases) for

tests with 20 or more items. This is because the biases associated with the conditional 

covariance estimates were relatively small and the biases tended to cancel each other out 

for the within- and between-cluster estimates. While the correlations between dimensions,
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dimensional structure, and item distribution did not show any influence on the bias 

associated with and conditional covariance, they did influence the values of Z)max. 

Higher correlations between dimensions, larger departures from simple structure, and 

unequal item distribution were associated with lower values of Dmax. Classification

accuracy results were all higher than 90% for the simulated multidimensional conditions 

indicating the adequacy of DETECT under simple or approximate simple structure 

conditions. This study showed that DETECT, with adequate control over bias and fairly 

high classification accuracy, was suitable for analyzing the dimensional structure of a test 

if the data displayed simple or approximate simple structure. However, it should be noted 

that the discrimination parameters used in the simulation were relatively high (i.e., 0.5 to 

2.0), and since higher discrimination parameters are associated with higher estimates of 

conditional covariance, which, in turn, produce higher values, high classification

accuracy obtained in this study could be attributed to the item parameters used for the 

simulation.

Zhang and Stout (1999b), in the second part of their study, evaluated the 

performance of DETECT with simulated data as well as data from the Analytical 

Reasoning section of the Graduate Record Examination (GRE) and the Reading 

Comprehension section of the December 1991 Law School Admission Test (LSAT).

Only data with approximate simple structure were simulated. Independent variables 

included the number of dimensions (1, 2, 3, 4), test length (20, 40), sample size (400, 

800), and the presence of guessing in the unidimensional case. The dependent variables 

included the and rmax indices and classification accuracy. Item parameters were
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chosen to be representative of those from the LSAT. One hundred replications were done 

for each condition.

Simulation results showed that DETECT adequately estimated the Dmax and rmax 

indices (D max was less than 0.1 in the unidimensional cases and higher than 0.85 in the 

multidimensional cases; rmax was higher than 0.9 for all multidimensional cases). The 

number of runs with correct classification was greater than 90% for all the simulated 

conditions. The favorable results found in the simulation are limited by the influence of 

high discrimination parameters used in the simulation (i.e., 0.5 to 2.0). Two of the 

independent variables studied, test length and sample size, were shown to have a positive 

influence, while the number of dimensions was shown to have a negative influence on the 

dependent variables. In the analysis of the real test data, DETECT worked reasonably 

well identifying both sections as multidimensional and uncovering successfully the 

passage-based dimensions.

Only three studies in which the performance of DETECT was evaluated relative 

to other dimensionality assessment procedures were found in the literature (van 

Abswoude, van der Ark, & Sijtsma, 2004; Finch & Habing, 2005; Mroch & Bolt, 2006). 

The results of these studies revealed both strengths and weaknesses with DETECT. Van 

Abswoude et al. (2004) compared four nonparametric procedures: Mokken Scale 

Analysis for Polytomous Items (MSP, Molenaar & Sijtsma, 2000), DETECT, 

HCA/CCPROX, and DIMTEST. MSP is a nonparametric dimensionality assessment 

procedure based on normalized unconditional covariances. Van Abswoude et al. (2004) 

considered only data of simple structure. The independent variables included the 

dimensionality assessment procedure used (MSP, DETECT, HCA/CCPROX, DIMTEST),
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IRT model used for simulating the data (2PL model, five-parameter acceleration model 

[5-PAM, Sijtsma & van der Ark, 2001]), number of dimensions (2,4), correlation 

between dimensions (0.0, 0.2, 0.4, 0.6,0.8,1), test length (14,28,42, 56, 84), and item 

discrimination parameter (high, low). The dependent variables included the classification 

accuracy and the adequacy of the Z)max index for DETECT and the T statistic for

DIMTEST. Item parameters used for simulation were claimed to resemble parameter 

estimates from real test data (item discrimination parameters distributed with mean of 

0.75 and standard deviation of 0.1, and item difficulty parameters set in the range from - 

2.0 to 2.0). However, it was not specified which test or which type of test the item 

parameters were generated from. While five replications were done for 27 studied 

conditions to check for stability of results from different procedures, only one dataset was 

simulated for the other studied conditions.

It was shown that the conditional covariance based procedures (DETECT and 

HCA/CCPROX) were superior to MSP in identifying the dimensional structure of the 

simulated tests (higher classification accuracy for studied conditions). The performance 

of all three procedures dropped as the correlations between dimensions increased. In 

general, DETECT performed better than HCA/CCPROX in uncovering the dimensional 

structure except for situations where the discrimination parameters of items were low and 

tests were long. The adequacy of the Dmax index for DETECT was evaluated relative to

the T statistic for DIMTEST. Both statistics were negatively influenced by the correlation 

between dimensions and positively influenced by the discrimination parameters of items. 

However, the Dmax index was negatively influenced when unequal numbers of items
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were distributed into clusters, while the T statistic was negatively influenced when equal 

numbers of items were distributed into clusters.

Based on the results obtained from the study, van Abswoude, et al. (2004) 

recommended using all of the procedures in data analysis and then to select the best one. 

However, it should be noted that the different procedures function in different ways. 

HCA/CCPROX produces a set of dimensional solutions, and one has to pick from among 

them the correct solution. DIMTEST tests for the presence of multidimensionality, but 

does not estimate the number of dimensions or identify the dimensional structure of a test. 

Using these procedures together could bring more light into the dimensional structure of 

a test, but it could also potentially complicate the situation by providing too much mixed 

information.

Mroch and Bolt (2006) compared three dimensionality assessment procedures.

Two of them were nonparametric procedures: DETECT and MSP. The third procedure 

was a parametric procedure that grouped items based on their estimated discrimination 

parameters and was referred to as parametric cluster analysis (PCA; Miller & Hirsch, 

1992). Only data of simple and approximate simple structures were simulated. The 

independent variables included sample size (250,1000), number of dimensions (2, 3,4), 

correlation between dimensions (matrix of equal correlations, matrix of unequal 

correlations of high and moderate values, matrix of unequal correlations of high, 

moderate, and low values), item distribution into clusters (equal, unequal), data structure 

(simple, approximate simple), and data generation model (MIRT 2PL compensatory 

model [M2PL], MIRT 2PL noncompensatory model [M2PLN]). The dependent variable, 

similarity coefficient (SM coefficient), was the percentage of item pairs accurately
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matched according to their cluster membership. One hundred replications were conducted 

for each condition. A six-way ANOVA was conducted to evaluate the effects of the six 

independent variables. Paired-sample t tests and Cohen’s d effect sizes were used to 

compare the three dimensionality assessment methods.

Results from the study suggested that DETECT and PCA performed quite 

similarly (the obtained SM coefficients were not significantly different from each other 

with d  = 0.02) while both procedures outperformed MSP with significant differences 

between SM coefficients (d> 1). The correlation between dimensions affected DETECT 

and MSP more than PCA (larger effect size measures were obtained from ANOVA for 

DETECT and MSP). SM coefficients decreased for all three methods when correlations 

between dimensions increased. Data structure affected PCA the most (partial r f  = 0.59), 

but DETECT and MSP were also substantially affected (0.29 < partial i f  < 0.45). 

Lower SM coefficients were obtained for the approximate simple condition than the 

simple condition for all three methods. The parametric procedure, PCA, was affected 

more by reduction in sample size than the two nonparametric procedures, DETECT and 

MSP. When an unequal number of items was put into each cluster, DETECT seemed to 

be affected the most, although the effect was small (partial rj1 = 0.01). Different data 

generation models did not show significant effect for all three procedures suggesting that 

PCA was robust to model misspecification. In summary, Mroch and Bolt (2006) found 

that DETECT and PCA were more preferable for dimensionality assessment than MSP.

Finch and Habing (2005, see also Finch, 2003) compared the performance of 

NOHARM and DETECT using both simulated and real data from a statewide reading 

instrument. Only data of approximate simple structure were simulated. The following
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independent variables were considered: the number of dimensions (2, 6), skewness of the 

latent traits (-1.5, -0.5,0,0.5,1.5), difficulty level of item parameters (average 

representing those of a basic skill exam, moderate representing those of SAT), presence 

of guessing, test length (15, 30, 60), sample size (1000,2000), and correlations between 

dimensions (0,0.30,0.80,0.95). The dependent variables included the number of 

dimensions identified and classification accuracy. Two sets of item parameters were used, 

one based on a statewide basic skill exam (mean of 0.97 and standard deviation of 0.32 

for discrimination parameters, and mean of -0.92 and standard deviation of 0.76 for 

difficulty parameters) and the other based on the SAT (a lognormal distribution with 

mean of 0.00 and standard deviation of 0.35 for discrimination parameters, and mean of 0 

and standard deviation of 1 for difficulty parameters). Five hundred replications were 

conducted for each condition.

Finch and Habing (2005) found that overall NOHARM and DETECT performed 

comparably in identifying the number of dimensions underlying a test and classifying 

items into correct clusters. However, under various conditions, the procedures performed 

differentially. DETECT was shown to perform better in classifying items into the correct 

clusters when the number of dimensions was low at two, while NOHARM was shown to 

perform better in identifying the number of dimensions. When error was made about the 

number of dimensions, DETECT tended to overestimate the number of dimensions for 

conditions with lower numbers of dimensions and underestimate the number of 

dimensions for conditions with higher numbers of dimensions. However, the number of 

dimensions estimated by NOHARM was generally close to the true number of 

dimensions simulated. Overall, the classification errors were lower for DETECT than for
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NOHARM. When classification errors were made, DETECT tended to falsely separate 

items that should belong together, and NOHARM tended to combine items that should be 

separated. Number of dimensions and correlation between dimensions both showed a 

negative impact on the performance of the two procedures. Neither sample size nor test 

length showed a clear impact on the performance of the procedures. Both procedures 

performed better when no guessing was involved in the data. The real data analysis 

confirmed the results found in the simulation. Although NOHARM (d = 5) came closer 

than DETECT (d = 3) to identifying the expected number of dimensions (d = 6),

DETECT grouped the items more consistently with the paragraphs in the exam and 

produced lower classification error rate. This study showed that DETECT performed 

inadequately when higher number of dimensions were involved (six in this case) even if 

data of approximate simple structure were simulated. This study also indicated that 

DETECT did not perform as well for tests simulated with typical difficulty than for tests 

simulated with low difficulty (classification accuracies were consistently lower for the 

tests simulated with the SAT parameters). However, since the magnitude of conditional 

covariances are positively influenced by the discrimination parameter of items, not the 

difficulty of the items, the lower classification accuracy results found in this study for the 

SAT parameters could be attributable to the lower discriminating parameters of the SAT 

than those of the basic skill exam.

Studies Using Data that Focus on Complex Dimensional Structures

Nandakumar and Ackerman (2004), in a book chapter, proposed an algorithm for 

combining DIMTEST and DETECT. Six steps were involved in the algorithm which first 

uses DIMTEST and DETECT sequentially and then iteratively to identify the minimum
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number of clusters of items representing homogeneous unidimensional traits (DIMTEST 

is always ran before DETECT, and the algorithm stops whenever DIMTEST identifies a 

test or a subsection of the test as unidimensional). This study is different from the 

previously reviewed studies in that data of both approximate simple and complex 

structure were simulated to evaluate this new algorithm. Independent variables included 

the number of dimensions (1,2), dimensional structure of multidimensional data 

(approximate simple, complex), and correlation between dimensions (0.50, 0.70). 

Dependent variables included the Z)raax index and classification accuracy. Item 

parameters were selected from estimated parameters from several nationally administered 

standardized achievement tests in the United States. Only one dataset was simulated for 

each studied condition.

The algorithm performed adequately for the unidimensional case and the simple 

structure conditions in the multidimensional cases. DIMTEST identified all the 

unidimensional tests as unidimensional eliminating the need to run DETECT. DIMTEST 

identified all the multidimensional tests as multidimensional in the approximate simple 

structure conditions, and DETECT identified the true dimensional structure in these 

conditions by correctly classifying all the items. However, for the complex structure 

conditions in the multidimensional cases, the algorithm performed less desirably for the 

0.50 correlation condition and poorly for the 0.70 correlation condition. The clusters of 

items identified for the 0.50 correlation condition were still close to the true dimensional 

structure, but for the 0.70 correlation condition the algorithm stopped at the initial step 

since DIMTEST identified the test as unidimensional. This is the first study that assessed 

the performance of DETECT using simulated datasets that assumed complex data
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structure. However, only one dataset was simulated for each correlation condition and 

DETECT was used only for one of the two datasets, thus limiting the inferences that 

could be drawn from the study regarding the performance of DETECT under conditions 

of complex structure.

Besides studies evaluating DETECT through simulation, researchers have also 

tried to analyze real test data with DETECT. Stout et al. (1996) used DIMTEST, 

HCA/CCPROX, and DETECT to investigate the dimensional structure of the December 

1991, June 1992, and October 1992 administrations of the LSAT (see also Douglas, Kim, 

Roussos, Stout, & Zhang, 1999). Three subtests of the test were studied: the logical 

reasoning (LR) subtest, the analytical reasoning (AR) subtest, and the reading 

comprehension (RC) subtest. For the AR and RC subtests, the Dmax and rmax values

obtained indicated moderate to strong multidimensionality with simple structure. 

DETECT performed perfectly classifying items into passage-based clusters for these two 

subtests except for one analysis in which DETECT combined two science passages into 

one cluster for the RC subtest of the December 1991 administration. These results are 

reasonably close to the dimensional structure of these two subtests. However, for the LR 

subtest, the obtained and rmax values indicated weak to no multidimensionality

with complex structure. DETECT identified inconsistent clusters of items across 

administrations making it difficult to determine the dimensional structure of the LR 

subtest. Similar results were found in other studies applying DETECT to investigate the 

dimensional structures of test data from the School Achievement Indicators Program 

(SAIP, Leighton et al., in press), the National Assessment of Educational Progress 

(NAEP, Uribe-Zarain, Nandakumar, & Yu, 2005), and the SAT (Gierl et al., 2005).
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The above four real data studies highlight DETECT’s deficiency in analyzing data 

of complex structure. This situation is unfortunate because many real testing situations 

involve data that display complex structure (e.g., Nandakumar & Ackerman, 2004; Stout 

et al., 1996). However, after a review of the literature, only one article was found 

investigating the performance of DETECT systematically through simulation under the 

conditions of complex structure (Gierl et al., in press).

Gierl et al. (in press) investigated the performance of DETECT under conditions 

of both approximate simple and complex structure using simulated as well as real data 

from the SAT and the SAIP. The independent variables included in their study were the 

degree of complexity in data structure (0%, 10%, 30%, 50%), correlation between 

dimensions (0.00,0.30, 0.60,0.90), and sample size (500,1000,1500). The dependent 

variables included classification accuracy and consistency. The item parameters were 

selected to resemble those from the LSAT and set in the same range as those in Zhang 

and Stout’s (1999b) study. One hundred replications were conducted for each condition.

Simulation results from the study suggested that DETECT worked well, using a 

criterion that 90% of the items be partitioned into the correct clusters, for 31 of 45 

complex data structure conditions. Correlation between dimensions was found to have a 

noticeable impact on the performance of DETECT. For correlations of 0.60 or lower, 

DETECT worked above the criterion of 90% even for the three complex data structure 

conditions given adequate sample size (1000 for the complex 30% condition, and 1500 

for the complex 50% condition). When the correlation was 0.75, DETECT worked above 

criterion only for the approximate simple, complex 10%, and complex 30% conditions 

given the sample size for the complex 30% conditions was 1000 or higher. Classification
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rates for the complex 50% conditions dropped to around 80%. However, for the 

correlation of 0.90, DETECT worked poorly for all complex data structure conditions 

(classification rates dropped from above criterion to less than 50% for the complex 50% 

conditions). Correlation between dimensions and degree of complexity both influenced 

classification rates negatively. In contrast, sample size was found to influence 

classification accuracy positively (higher sample sizes produced higher classification 

rates).

The real data analyses were conducted with two datasets extracted from the SAT 

and the S AIP. A two-dimensional approximate simple structure was hypothesized for the 

SAT dataset containing two dimensions according to content areas, Math and Critical 

Reading, with moderate correlation between dimensions. The SAIP dataset, on the other 

hand, was hypothesized as having a two-dimensional complex structure containing two 

dimensions according to item types, multiple choice and constructed response items, with 

high correlation between dimensions. Results from the analyses of the two datasets had 

good correspondence with the simulation results. The SAT dataset was identified as 

multidimensional, and 96% of items were correctly and consistently classified into two 

clusters. In contrast, the SAIP dataset were identified as weakly multidimensional and 

only 45% of items were correctly and consistently classified into two clusters.

Despite these outcomes, four questions still remain unanswered about the 

performance of DETECT with items that display complex structure. First, it is very likely 

that a test of complex structure will have more than 50% of its items measuring multiple 

dimensions. For example, when the math section of the SAT 2003 field trial data was 

analyzed by setting the number of dimensions to two based on exploratory factor analysis
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results, a correlation of 0.69 between the dimensions was obtained using NOHARM 

(Gierl et al., 2005). When the data was analyzed with DETECT, a classification 

consistency of 44% was obtained across two samples. This result is much lower than the 

corresponding classification consistency result obtained in the Gierl et al. (in press) study 

(for the 0.75 correlation and complex 50% condition, the classification consistency was 

around 75%). This result suggests that the SAT math section could have a degree of 

complexity higher than 50%, which led to the low classification consistency. Furthermore, 

research on cognitive processes suggests that cognitive skills do not operate in isolation 

but function in a network of interrelated processes (e.g., Kuhn, 2001; Vosniadou & 

Brewer, 1992). This interrelatedness will likely cause tests to display higher degrees of 

complexity. Thus, whether DETECT will perform satisfactorily for correlations of 0.60 

or lower when higher degrees of complexity are present needs to be investigated.

Second, for most educational and psychological tests where social science 

constructs are involved, the correlations between dimensions are moderate to high (e.g., 

Anastasi & Urbina, 1996; Sattler, 2001). Thus, the use of correlations such as 0.0 and 0.3 

is, to some degree, unrealistic. As shown by the simulation results in the Gierl et al. (in 

press) study, DETECT classification accuracy and consistency dropped dramatically 

(from above 90% to below 50% in the complex 50% cases) when the correlation went 

from 0.60 to 0.90. It will be informative and meaningful to set finer intervals for 

investigation between the correlations of 0.60 and 0.90 since these correlations are most 

commonly expected on educational and psychological tests.

Third, as the magnitude of the conditional covariances is positively correlated 

with item discrimination, the impact of discrimination parameter of items on the
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performance of DETECT should be investigated. The discrimination indices of the items 

used for simulation in the Gierl et al. (in press) study were moderate to high (0.5 to 1.1). 

Therefore, it is necessary to investigate the performance of DETECT for tests with a 

wider range of discrimination indices. Fourth, the effect of larger sample sizes (e.g., up to 

2500) should be studied since larger sample sizes are commonly found in field tests of 

large-scale testing programs.

Summary

DETECT, as a dimensionality assessment procedure with a much shorter history 

than most factor analytic procedures, has been investigated in 14 studies using simulated 

and real data. The review of these studies presented in this chapter shows that DETECT 

performed quite well identifying the true number of dimensions and the correct item 

clusters associated with different dimensions when data possessed simple or approximate 

simple structure (e.g., Stout et al., 1996; Zhang & Stout, 1999b; Nandakumar & 

Ackerman, 2004). However, when complex structure was involved, DETECT performed 

inadequately and inconsistently across some study conditions (e.g., Gierl et al., 2005; 

Nandakumar & Ackerman, 2004; Stout et al., 1996). While the existence of approximate 

simple structure in test data is known for some large-scale tests (e.g., the AR and RC 

subtests of the LSAT), for many realistic testing situations the test data display a complex 

dimensional structure (Gierl et al., in press; Nandakumar & Ackerman, 2004). Since 

DETECT identifies mutually exclusive and dimensionally homogeneous clusters of items 

through analysis of the conditional covariance matrix, it works best for data of simple or 

approximate simple structures and might be problematic for analyzing data of complex
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structure (Zhang & Stout, 1999b). However, the use of DETECT would still be

meaningful since Zhang and Stout (1999b) claimed:

It is very important to note that DETECT is still informative when approximate 
simple structure fails to hold. In particular, it can still locate relatively 
dimensionally homogeneous clusters; however, there is no longer a unique ‘best’ 
or ‘correct’ partition to be found by DETECT because there will be little to no 
separation between some of the clusters found, (p. 215)

Hence, studies evaluating the properties and performance of DETECT under conditions 

of complex data structure deserve more attention. However, only one published study 

was found studying this issue systematically through simulation (Gierl et al., in press). 

Results from the Gierl et al. (in press) study shed some light on the restrictions that need 

to be satisfied in order for DETECT to perform adequately for test data of complex 

structure. However, as discussed in the previous section, many questions were still left 

unanswered. The present study was thus proposed to answer these questions.
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Chapter 4: Method

The study was completed in two stages. In stage one, simulation studies were 

conducted to evaluate the performance of DETECT when data displayed approximate 

simple and different degrees of complex structure. This evaluation was made in terms of 

the Dmax and rmax indices and the accuracy of the classification results. The impact of 

three factors—degree of complexity in data structure, correlation between dimensions, 

and sample size—was studied. The relationship between the Dmax index and

classification accuracy and the relationship between the rmax index and classification

accuracy were also studied. In stage two, real data studies were conducted in which 

DETECT was applied to the SAT 2005 March administration data to check for 

consistency between the results from the real and the simulated conditions. Results 

obtained from both stages were then used to develop new guidelines and 

recommendations for using and interpreting DETECT results under conditions of both 

approximate simple and complex data structure.

Stage 1: Simulation Studies

Data

Examinee responses to a 40-item test were simulated with two different sets of 

item parameters, one based on the LSAT and the other on the SAT. The LSAT represents 

a large-scale test with items having moderate to relatively high discrimination parameters 

(i.e., range from 0.5 to 1.1). The SAT, on the other hand, represents a large-scale test with 

items having a range of low to high discrimination parameters (i.e., range from 0.2 to 

1.3). These two sets of item parameters were used to simulate different real testing 

situations where large-scale tests were involved. Since the discrimination parameters of
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the items for the two tests overlapped, they cannot be used to determine the impact of 

item discrimination parameter on the performance of DETECT. However, the use of 

these two parameter sets could shed some light on the possible impact of item 

discrimination parameter if differences were to be found.

To keep the study sharp and focused, only two-dimensional data were simulated. 

An extension of the Gierl et al. (in press) study, the intent was to gain a fuller 

understanding the performance of DETECT with the existence of complex structures in 

the two-dimensional case. The length of the test was also fixed. Simulation studies 

suggested that DETECT estimation bias was well controlled for tests that had 20 or more 

items resulting in high classification accuracy (Roussos & Ozbek, 2003; Zhang & Stout, 

1999b). Thus, 40 items were simulated for all studied conditions.

The data were simulated using the compensatory multidimensional item response 

theory (MIRT) model (Reckase, 1997). The 2PL item response function for the 

compensatory MIRT model can be expressed using the following formula:

Pt[Ui =1 | (9x,- ,0 k)] =  ̂+ e-ll(anol+an61+...a,k8k+dl) ’

where Ui is the response to item i, 0 T = (0l,...,0k) is the examinee ability vector, 

a] ~{ax,...,ak) is the item discrimination vector, di is the item difficulty parameter, and 

k  is the number of dimensions underlying the test. The examinee abilities were assumed 

to have a bivariate normal distribution with a mean of (0,0) and a standard deviation of 

(1,1). There are reasons why the 2PL MIRT model was adopted. First, for tests such as 

the SAT, formula scoring is used where points are deducted for incorrect answers to 

multiple-choice items to penalize guessing. Being aware of the formula scoring
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procedure, examinees tend to omit questions instead of eliminating one and randomly 

guessing among others (Oh & Reshetar, 2004). Thus, guessing becomes a less prominent 

issue in tests such as the SAT. Although the LSAT does not use formula scoring and is 

still prone to guessing, most researchers using the LSAT parameters for simulations 

adopted the 2PL model (Gierl et al., in press; Roussos & Ozbek, 2003; Zhang & Stout, 

1999b). Second, studies have shown that dimensionality assessment procedures including 

DETECT and NOHARM perform better when guessing is not present in the data (Finch 

& Habing, 2005; Zhang & Stout, 1999b). Based on these two considerations, the 

presence of guessing was not studied, and the 2PL MIRT model was used for data 

simulation. The first set of item parameters, ai~, ci2-, and d-parameters, was adopted from 

the Gierl et al. (in press) study to resemble multidimensional tests like the LSAT. The 

second set of item parameters was obtained from analysis of the SAT 2003 field trial data 

(Gierl et al., 2005).

LSAT item parameters. When data of approximate simple structure were 

simulated, for items measuring dimension one, the ay-parameters were set in the range of 

0.5 to 1.1 with an increment of 0.2, whereas the ^-parameters were set in the range of 

0.05 to 0.20 with an increment of 0.05. The values of the «/- and ^-parameters were set 

in the opposite way from those of the dimension one items for items measuring 

dimension two. The d-parameters for all items ranged from -1 to 1 with an increment of 

0.5. The angular directions of the dimension one items ranged from 5.71° to 10.30°, and 

those of the dimension two items ranged from 79.66° to 84.26°. The angular directions 

were both within 20 degrees from the x- or y-axis and were representative of an 

approximate simple structure solution (Froelich & Habing, 2001). The item parameters

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Evaluating DETECT 59

and the angular directions of the items are presented in Table 2. Figure 5 contains the 

vector plot of the items for the approximate simple structure condition.

Table 2

Item Parameters for the Simulated Approximate Simple Structure Items Using the LSAT

Parameters

Simple Complex 40% Complex 80% ai a2 d Direction
1 X X 0.50 0.05 -1.00 5.71
2 0.70 0.10 -0.50 8.13
3 X 0.90 0.15 0.00 9.46
4 1.10 0.20 0.50 10.30
5 0.50 0.05 1.00 5.71
6 X X 0.70 0.10 -1.00 8.13
7 X X 0.90 0.15 -0.50 9.46
8 X 1.10 0.20 0.00 10.30
9 X X 0.50 0.05 0.50 5.71
10 X 0.70 0.10 1.00 8.13
11 0.90 0.15 -1.00 9.46
12 X X 1.10 0.20 -0.50 10.30
13 X 0.50 0.05 0.00 5.71
14 X X 0.70 0.10 0.50 8.13
15 X X 0.90 0.15 1.00 9.46
16 X 1.10 0.20 -1.00 10.30
17 X 0.50 0.05 -0.50 5.71
18 X 0.70 0.10 0.00 8.13
19 X 0.90 0.15 0.50 9.46
20 X X 1.10 0.20 1.00 10.30
21 X X 0.05 0.50 -1.00 84.26
22 X X 0.10 0.70 -0.50 81.84
23 X 0.15 0.90 0.00 80.51
24 X 0.20 1.10 0.50 79.66
25 X X 0.05 0.50 1.00 84.26
26 X 0.10 0.70 -1.00 81.84
27 X 0.15 0.90 -0.50 80.51
28 X X 0.20 1.10 0.00 79.66
29 X 0.05 0.50 0.50 84.26
30 X 0.10 0.70 1.00 81.84
31 0.15 0.90 -1.00 80.51
32 X 0.20 1.10 -0.50 79.66
33 X 0.05 0.50 0.00 84.26
34 0.10 0.70 0.50 81.84
35 X X 0.15 0.90 1.00 80.51
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Table 2con’t

Simple Complex 40% Complex 80% ai a2 d Direction
37 0.05 0.50 -0.50 84.26
38 X X 0.10 0.70 0.00 81.84
39 X X 0.15 0.90 0.50 80.51
40 0.20 1.10 1.00 79.66

Simple Mean 0.46 0.46 0.00 44.98
(SD) (0.38) (0.38) (0.72) (37.09)

Complex Mean 0.46 0.46 0.00 44.98
40% (SD) (0.38) (0.38) (0.68) (37.41)

Complex Mean 0.46 0.46 0.00 44.98
80% (SD) (0.40) (0.40) (0.85) (39.15)

Note. X indicates the item was omitted.
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Figure 5. Vector plot of simulated items for the approximate simple structure condition 
using the LSAT parameters.

When data of complex structure were simulated, both the aj- and ̂ -parameters of 

the complex structure items were set within the range of 0.5 to 1.1 with an increment of 

0.2, and the difference between the two was set to 0.2. The ^-parameters remained the 

same. The angular directions of the complex structure items ranged from 35.52° to 54.44°,
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which was within ten degrees from the test composite direction of 45°, representative of 

the complex structure. Two complex data structure conditions were included, complex 

40% and complex 80%. For the complex 40% condition, eight items measuring 

dimension one and eight items measuring dimension two were replaced with 16 complex 

items measuring the composite of dimensions one and two. Figure 6 contains the vector 

plot of items in the complex 40% condition. For the complex 80% condition, 16 items

2.0

1.0

1.0 2.0  3.0

i.Q

C©«i»©sifc#

•3.0 ■J

Figure 6. Vector plot of simulated items for the complex 40% structure condition using 
the LSAT parameters.

measuring dimension one and 16 items measuring dimension two were replaced with 32 

complex items measuring the composite of dimensions one and two. Figure 7 contains 

the vector plot of items in the complex 80% condition.
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Figure 7. Vector plot of simulated items for the complex 80% structure condition using 
the LSAT parameters.

The item parameters and angular directions for all the three conditions are 

presented in Table 2 and Table 3. The item parameters were manipulated so that they 

were similar across conditions. The distributions (means and standard deviations) of item 

parameters across conditions were very similar as shown by the descriptive statistics in 

the bottom rows in Tables 2 and 3.

SAT item parameters. The estimated item parameters from the Math and Critical 

Reading subtests of the SAT 2003 field trial were used as the basis for simulation (cf., 

Gierl et al., 2005). The item parameters for the dimension one items were determined by 

the distribution of the Math items. The item parameters for the dimension two items were 

determined by the distribution of the Critical Reading items. When data of approximate 

simple structure were simulated, the <3/-parameters were set in the range of 0.40 to 1.30 

with an increment of 0.10, whereas the a^-parameters were set in the range of 0.00 to 0.18
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Table 3

Item Parameters for the Simulated Complex Structure Items Using the LSAT Parameters

Simple Complex 40% Complex 80% ai a2 d Direction
X 0.70 0.50 -1.00 35.52
X 0.70 0.50 -0.50 35.52
X 0.70 0.50 0.00 35.52
X X 0.70 0.50 0.50 35.52
X X 0.70 0.50 1.00 35.52
X X 0.90 0.70 -1.00 37.86
X X 0.90 0.70 -0.50 37.86
X X 0.90 0.70 0.00 37.86
X 0.90 0.70 0.50 37.86
X 0.90 0.70 1.00 37.86
X X 0.90 0.70 -1.00 37.86
X 1.10 0.90 -0.50 39.27
X 1.10 0.90 0.00 39.27
X 1.10 0.90 0.50 39.27
X X 1.10 0.90 1.00 39.27
X X 1.10 0.90 0.00 39.27
X 0.90 1.10 -1.00 50.69
X X 0.90 1.10 -0.50 50.69
X 0.90 1.10 0.00 50.69
X X 0.90 1.10 0.50 50.69
X 0.90 1.10 1.00 50.69
X 0.70 0.90 -1.00 52.10
X X 0.70 0.90 -0.50 52.10
X X 0.70 0.90 0.00 52.10
X 0.70 0.90 0.50 52.10
X X 0.70 0.90 1.00 52.10
X X 0.70 0.90 -1.00 52.10
X 0.50 0.70 -0.50 54.44
X 0.50 0.70 0.00 54.44
X X 0.50 0.70 0.50 54.44
X 0.50 0.70 1.00 54.44
X X 0.50 0.70 0.00 54.44

Simple Mean (SD) — — — —

Complex Mean (SD) 0.80 0.80 0.00 44.98
40% (0.21) (0.21) (0.71) (7.90)

Complex Mean (SD) 0.80 0.80 0.00 44.98
80% (0.19) (0.19) (0.70) (7.68)

Note. X indicates the item was omitted.
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with an increment of 0.02 for items measuring dimension one. For items measuring 

dimension two, the a/-parameters were set in the range of 0.20 to 0.65 with an increment 

of 0.05, whereas the ^-parameters were set in the range of 0.25 to 0.60 with an increment 

of 0.05. The ^-parameters ranged from -1 to 1 with an increment of 0.5 for both cases.

The angular directions of the dimension one items ranged from 0.00° to 7.88°, while the 

angular directions of the dimension two items ranged from 31.60° to 51.32°. Although the 

angular directions of the dimension two items were not within 20 degrees from the y-axis 

that corresponds to dimension two, there was a clear separation between the dimension 

one and dimension two items, indicating two independent item clusters. Analysis of the 

SAT 2003 field trial data showed that the rmax value for the two dimensional data was 

0.86, indicating approximate simple structure. Thus, the definition of the approximate 

simple structure might be too limited by restricting the angular departure of items from its 

correspondent axes to 20 degrees. Analysis of the simulated data that approximated the 

SAT composite test was conducted to try to refine the definition of the approximate 

simple structure and the evaluation criterion for rmax. The item parameters and angular 

directions for the approximate simple structure items are presented in Table 4. Figure 8 

contains the vector plot of the approximate simple structure condition.
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Table 4

Item Parameters for the Simulated Approximate Simple Structure Items Using the SAT

Parameters

Simple Complex 40% Complex 80% ai a2 d Direction
1 X X 1.30 0.18 -1.00 7.88
2 X 1.20 0.16 -0.50 7.59
3 X X 1.10 0.14 0.00 7.25
4 X X 1.00 0.12 0.50 6.84
5 X X 0.90 0.10 1.00 6.34
6 X 0.80 0.08 -1.00 5.71
7 X 0.70 0.06 -0.50 4.90
8 0.60 0.04 0.00 3.81
9 X 0.50 0.02 0.50 2.29
10 X 0.40 0.00 1.00 0.00
11 X 1.30 0.18 1.00 7.88
12 1.20 0.16 0.50 7.59
13 X 1.10 0.14 0.00 7.25
14 X 1.00 0.12 -0.50 6.84
15 X 0.90 0.10 -1.00 6.34
16 X 0.80 0.08 1.00 5.71
17 X X 0.70 0.06 0.50 4.90
18 X X 0.60 0.04 0.00 3.81
19 0.50 0.02 -0.50 2.29
20 X X 0.40 0.00 -1.00 0.00
21 X X 0.65 0.40 -1.00 31.59
22 X 0.60 0.45 -0.50 36.86
23 X X 0.55 0.50 0.00 42.26
24 X 0.50 0.55 0.50 47.71
25 X X 0.45 0.60 1.00 53.11
26 0.40 0.45 -1.00 48.35
27 X X 0.35 0.40 -0.50 48.79
28 X 0.30 0.35 0.00 49.38
29 X 0.25 0.30 0.50 50.17
30 X 0.20 0.25 1.00 51.32
31 X 0.65 0.40 1.00 31.59
32 0.60 0.45 0.50 36.86
33 0.55 0.50 0.00 42.26
34 X X 0.50 0.55 -0.50 47.71
35 X 0.45 0.60 -1.00 53.11
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Table 4con’t

Simple Complex 40% Complex 80% ai a2 d Direction
37 X 0.35 0.40 0.50 48.79
38 X X 0.30 0.35 0.00 49.38
39 0.25 0.30 -0.50 50.17
40 X X 0.20 0.25 -1.00 51.32

Simple Mean 0.64 0.26 0.00 25.61
(SD) (0.31) (0.19) (0.72) (21.20)

Complex Mean 0.64 0.25 0.00 25.38
40% (SD) (0.32) (0.19) (0.69) (21.23)

Complex Mean 0.61 0.25 0.00 24.63
80% (SD) (0.29) (0.20) (0.65) (21.57)

Note. X indicates the item was omitted.

2,0 -

m

1.0 2.0  _ 3.0

1.0
Oonposita AnglasdS®

2.0

3.0

Figure 8. Vector plot of simulated items for the approximate simple structure condition 
using the SAT parameters.

When data of complex structure were simulated, the a/-parameters of the first set 

of complex structure items (still measure more of dimension one) were set in the range of 

0.50 to 1.10 with an increment of 0.20, whereas the arparameters were set in the range of 

0.17 to 0.32 with an increment of 0.05. The ay-parameters of the second set of complex
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structure items (still measure more of dimension two) were set in the range of 0.40 to 

0.70 with an increment of 0.10, whereas the ^-parameters were set in the range of 0.15 to 

0.30 with an increment of 0.05. The ^-parameters remained the same. The angular 

directions of the complex structure items ranged from 16.21° to 23.19°. The two complex 

structure conditions, complex 40% and complex 80%, were set in the same way as those 

for the data simulated using the LSAT item parameters. Figures 9 and 10 contain the 

vector plots for items in these two conditions. The item parameters and angular directions 

for all the three conditions are presented in Table 4 and Table 5. The descriptive statistics 

in the bottom rows indicated that the item parameters were similar (with similar means 

and standard deviations) across conditions.

1.0 3.0

1.0

3.0

Figure 9. Vector plot of simulated items for the complex 40% structure condition using 
the SAT parameters.
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Figure 10. Vector plot of simulated items for the complex 80% structure condition using 
the SAT parameters.

Research Design

Three independent variables, including the degree of complex data structure, the 

correlation between dimensions, and the sample size, were manipulated in the current 

study to form a 3 x 4 x 3 fully crossed design. The degree of complexity had three levels, 

0%, 40%, and 80%. The complex 40% condition represented tests with lower degrees of 

complexity while the complex 80% condition represented tests with higher degrees of 

complexity. The correlation between dimensions had four levels, 0.6,0.7, 0.8, and 0.9. 

The sample size had three levels, 1500,2000, and 2500.
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Table 5

Item Parameters for the Simulated Complex Structure Items Using the SAT Parameters

Simple Complex 40% Complex 80% ai a2 d Direction
X 1.10 0.32 -1.00 16.21
X X 0.90 0.27 -0.50 16.69
X 0.70 0.22 0.00 17.44
X X 0.50 0.17 0.50 18.77
X X 1.10 0.32 1.00 16.21
X 0.90 0.27 -1.00 16.69
X X 0.70 0.22 -0.50 17.44
X 0.50 0.17 0.00 18.77
X 1.10 0.32 0.50 16.21
X 0.90 0.27 1.00 16.69
X X 0.70 0.22 -1.00 17.44
X 0.50 0.17 -0.50 18.77
X X 1.10 0.32 0.00 16.21
X X 0.90 0.27 0.50 16.69
X 0.70 0.22 1.00 17.44
X X 0.50 0.17 -1.00 18.77
X 0.40 0.15 -0.50 20.55
X 0.50 0.20 0.00 21.79
X X 0.60 0.25 0.50 22.61
X X 0.70 0.30 1.00 23.19
X 0.40 0.15 -1.00 20.55
X X 0.50 0.20 -0.50 21.79
X 0.60 0.25 0.00 22.61
X 0.70 0.30 0.50 23.19
X X 0.40 0.15 1.00 20.55
X X 0.50 0.20 -1.00 21.79
X X 0.60 0.25 -0.50 22.61
X X 0.70 0.30 0.00 23.19
X X 0.40 0.15 0.50 20.55
X 0.50 0.20 1.00 21.79
X 0.60 0.25 1.00 22.61
X 0.70 0.30 -1.00 23.19

Simple Mean (SD) — — — —

Complex Mean (SD) 0.68 0.24 0.00 19.66
40% (0.22) (0.06) (0.77) (2.66)

Complex Mean (SD) 0.68 0.24 0.00 19.66
80% (0.22) (0.06) (0.74) (2.61)

Note. X indicates the item was omitted.
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Data Analysis

The data were simulated using the MULTISIM software (The William Stout 

Institute for Measurement, 1993) and analyzed with DETECT. Each condition was 

replicated 100 times to obtain stable estimates of the indices and classification rates 

(Harwell, Stone, Hsu, & Kirisci, 1996). The Visual Basic code for batch processing the 

simulation and DETECT runs in EXCEL is included in Appendix A.

The four dependent variables included Dmax, rmax, classification accuracy, and

classification consistency. Classification accuracy was obtained by calculating the match 

between the DETECT item classification and the true item clustering as simulated. This 

match was calculated as the percentage of items partitioned into the correct dimensions. 

The mean and standard deviation of the match over 100 replications were used as the 

final statistics to evaluate classification accuracy. The Visual Basic code for batch 

processing DETECT outputs and calculating classification accuracy is included in 

Appendix B.

Classification consistency was used to evaluate cross-sample consistency of 

DETECT item classification. When analyzing real data, researchers rarely know the true 

underlying dimensional structure of the data. In most cases, they rely on cross-validation 

using results obtained from randomly equivalent samples to confirm the item 

classification produced by the testing sample. Thus, in the current study, two random 

samples were generated for each simulated condition, and the match between the 

classification results obtained from the two samples was used to evaluate DETECT 

classification consistency. The match was calculated as the percentage of items 

consistently partitioned into the same dimensions across the two samples. The mean and
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standard deviation of this match over 100 replications were used as the final statistics for 

evaluating classification consistency. However, consistency does not always indicate 

accuracy. It is possible that a match between two samples on an item is actually wrong 

and the item belongs to a different dimension. In order to indicate what percentage of the 

matching rate might be due to error in different simulated conditions, an index called 

misclassification error was calculated as the difference between the matching rate and the 

correctly classified matching rate. By correctly classified matching rate, it means 

DETECT not only consistently classified an item into the same dimension across samples 

but also classified the item into the correct dimension it was simulated to measure. Since 

the truth is known in the simulation, the misclassification error can be obtained which 

indicates the rate of consistent misclassification. It helps researchers estimate the 

misclassification error rate under different conditions and determine whether the 

consistency found indicates the real dimensional structure. The mean and standard 

deviation of this index over 100 replications were used to evaluate misclassification error. 

Appendix C includes the Visual Basic code for calculating classification consistency.

The relationship between the Z)max values and the classification accuracy was

examined to propose refinement of the evaluation criteria for the Dmax index. Since Dmax

is an index of the strength of multidimensionality, its magnitude should be related to the 

classification accuracy. As a test exhibits more explicit multidimensionality, DETECT 

should be able to identify the dimensional structure of the test more easily. The 

evaluation criteria for evaluating Dmax should be made in relation to the classification

accuracy. Thus, a regression analysis between Dmax and the classification accuracy was

conducted to establish a new critical value for evaluating Dmax. The classification
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accuracy was treated as the independent variable while Dmax was treated as the dependent 

variable.

The relationship between the rmax values and the classification accuracy was 

investigated using regression analysis. A clear positive relationship was found between 

the rmax values and the classification accuracy (Gierl et al., in press). According to Kim

(1994), a rmax value less than 0.80 indicates complex data structure. As discussed

previously in the description of the SAT composite data, the definition of simple or 

approximate simple structure might be too restrictive. A regression analysis was 

conducted to find a better break point to indicate simple or approximate simple structure, 

above which DETECT could identify the true dimensional structure of a test with ease. 

Since the degree of complexity in data structure and the correlation between dimensions 

might not be known to researchers in real data analysis, this break point in rmax index can 

serve as the critical value above which DETECT classification results are reliable. The 

classification accuracy was treated as independent variable while the rmax index was 

treated as the dependent variable.

MULTISIM. MULTISIM is a FORTRAN program that simulates dichotomous 

multidimensional test responses using the compensatory MIRT model. The maximum 

numbers of dimensions and items it can simulate are 4 and 120 respectively. It employs a 

user-specified multivariate normal distribution as the underlying latent ability 

distribution. The output from the program includes the simulated dataset, summary 

statistics of the dataset, and the ability estimates for the simulated sample.
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Stage 2: Real Data Studies

One common critique of simulation studies is that the simulated conditions might 

not resemble real testing situations and, thus, have limited generalizability to real tests. 

This is because the item parameters used for simulation are usually systematically 

generated. However, since realistic item parameters were used for the simulation in the 

present study, there should be a close correspondence between the simulated and the real 

conditions. In order to establish the connection between the simulated conditions and real 

testing situations, real data analyses were conducted using the SAT 2005 March 

administration data.

Data

The SAT. Data from the 2005 March administration of the SAT were used in the 

current study. The SAT is a high-stake standardized test designed to measure college 

readiness. Both critical thinking and reasoning skills are tested. It includes three sections, 

Math, Critical Reading, and Writing. Only the Math and Critical Reading sections were 

used in the current study. This is because these two sections have been studied and 

hypotheses about their dimensional structure have been proposed and tested (Gierl et al., 

2005). These hypotheses were used as the hypothesized true dimensional structure to be 

confirmed in the present study.

The Math section contains 54 items referenced to four primary skills and four 

content areas. The four skill categories are Applying Basic Mathematical Knowledge 

(AMK1), Applying Advanced Mathematical Knowledge (AMK2), Managing Complexity 

(MC), and Modeling and Insight (creating representation and insight, CRI) (O’Callaghan, 

Morley, & Schwartz, 2004). The four content areas are Algebra, Arithmetic, Geometry,
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and Miscellaneous. Although both multiple-choice and constructed response items are 

included, both are scored dichotomously.

The Critical Reading section contains 67 items of two item types referenced to 

four primary skills. The four skill categories are Determining the Meaning of Words 

(WM), Understanding the Content, Form, and Function of Sentences (LC),

Understanding the Content, Form, and Function of Larger Sections of Text (GC), and 

Analyzing Authors’ Goals and Strategies (P) (VanderVeen, 2004). The two item types 

are sentence completion items and critical reading items associated with short and long 

passages. All items are multiple-choice items and are scored dichotomously. There are 

121 items in total for the two subtests. All of the items were used in the data analysis.

Participants. A total of 294,960 students took the 2005 March administration of 

the SAT. These students, typically, are high school juniors in the U.S. as well as in 

Canada who intend to go to college in the U.S.

Samples. Two random samples of 2500 examinees were extracted from the data. 

The first sample served as the testing sample. The second sample served as the cross- 

validation sample.

Data Analyses

Three analyses were involved, one at the composite test level (Math and Critical 

Reading), and two at the subtest level (Math). The three datasets allowed for the testing 

of different proposed dimensional structures.

At the composite test level, the dataset included both the Math and die Critical 

Reading subtests that were identified as two separate dimensions by Gierl et al. (2005).
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The composite test was expected to assume an approximate simple structure and to affirm 

the results of the simulated simple structure conditions.

At the subtest level, two analyses were conducted for the Math section. Two 

datasets were extracted and analyzed. Gierl et al. (2005) found that the AMK1 (skill 1) 

and the CRI (skill 4) items were distinct from each other while the AMK2 (skill 2) and 

MC (skill 3) items were not distinct. Thus, the skills 1 and 4 items were extracted to form 

the first dataset, and the skills 2 and 3 items were extracted to form the second dataset. 

Analysis of the first dataset was expected to yield fairly accurate and consistent results 

similar to the simulated low complexity condition (i.e., the complex 40% conditions), 

while analysis of the second dataset was expected to yield inaccurate and inconsistent 

results similar to the results of the simulated high complexity condition (i.e., the complex 

80% conditions).

For all three analyses and the initial and cross-validation samples, NOHARM 

(Fraser, 1988) was used to obtain the item parameters and the correlation between the 

dimensions using an exploratory two dimensional compensatory MIRT model. Then, 

DETECT was used to obtain the and r indices and the classification results. Inmax niax

order to get the classification accuracy and consistency, the two samples were analyzed 

with DETECT separately. The average of the classification accuracy was obtained as the 

final statistic; the match between the two samples was calculated as the classification 

consistency. The NOHARM results and the hypothesized truth of the dimensional 

structure not only provided information on the properties of the dataset but also helped to 

make the connection between the real data and the corresponding simulated condition.
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NOHARM. NOHARM (Fraser, 1988), the acronym for the Normal Ogive 

Harmonic Analysis Robust Method, uses a nonlinear factor analytic approach (McDonald, 

1967) to fit the unidimensional and multidimensional normal ogive models of latent trait 

to test data. The program can be used to model multidimensional data either using a 

nonlinear factor analytic model or an equivalent latent trait compensatory MIRT model.

NOHARM was used to obtain the correlation between dimensions and to estimate 

item parameters. Using the common factor parameterization of the multidimensional 

model, one can estimate the correlation between factors that represent dimensions 

underlying a test. Using the latent trait parameterization of the multidimensional model, 

one can estimate the multidimensional item parameters of the test items.

NOHARM can be used in either exploratory or confirmatory mode. When the 

underlying dimensional structure is not known, the exploratory mode should be used. 

However, if substantive analysis precedes statistical analysis or hypothesis about the 

dimensional structure of a test exists, the confirmatory mode should be used. However, 

when the confirmatory mode is adopted, the pattern matrix entered for specifying the 

dimensions that test items load on forces a simple structure for the data. Since complex 

dimensional structures are present in the datasets involved in the present study, using the 

confirmatory mode will not obtain accurate estimates of the item parameters. Thus, the 

exploratory mode of NOHARM was used.
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Chapter 5: Results

The results of the analyses described in the previous chapter are presented in 

Chapter 5. The results from the simulation studies are presented first, followed by the 

results from the real data studies. The results from the real data studies are described with 

reference to the simulation results to establish connections between the simulated and real 

testing situations.

Simulation Results

The results from the simulation studies are presented in two sections, one for the 

results associated with the LSAT parameters, the other for the results associated with the 

SAT parameters. Due to the similar nature of the Dmax and rmax results obtained for the 

initial and the cross validation samples, only the Dmax and rmax results for the initial 

samples are presented. The classification accuracy, classification consistency, and 

misclassification error are presented for three subsets of the simulated datasets. First, 

results for the overall datasets are presented and discussed. Then, results are presented 

and discussed for items measuring dimensions one and two separately. Finally, results for 

the complex structure items are presented and discussed.

To evaluate whether the differences in Dmax, rmax, classification accuracy,

classification consistency, and misclassification error were significant across different 

levels within an independent variable, a critical value was developed. There were two 

reasons why a critical value was used to evaluate mean differences. First, the existence of 

three independent variables with three to four levels prohibited the use of ANOVA to 

analyze mean differences. It would be very difficult to disentangle the three-way 

interaction effect, let alone interpreting it. Moreover, a large number of post-hoc

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Evaluating DETECT 78

comparisons would further complicate the analyses. Second, large sample size (100 

replications) and small standard deviations across replications within conditions would 

make slight differences significant if /-tests were to be used. As shown in the previous 

study conducted by Gierl et al. (in press), the results from 100 replications within the 

studied conditions were relatively stable with standard deviations less than 0.10 for more 

than half of the cases. This would make mean differences less than 0.02 significant at the 

0.05 level. Moreover, with a 3x4x3 design, two sets of item parameters, and five 

statistics to be evaluated, there would be 750 comparisons to be made in the present study 

if consecutive levels within a factor were compared.

Based on these considerations, a critical value was derived from the effect size 

measure for mean differences. The effect size measure for mean differences is calculated 

with the following formula (Cohen, 1988):

\rh<?l+n2ol 
V ni +n2

where d is Cohen’s effect size measure, Mx and M2 are the means for samples one and 

two, r\ and n2 are the sample sizes for samples one and two, and a \  and cr2 are the

variances for samples one and two. According to Cohen (1988), a d  o f 0.2 indicates a 

small effect, ad  of 0.5 indicates a medium effect, and a d  of 0.8 indicates a large effect. 

The 0.2 value was selected as indicative of significant differences in the present study. A 

review of the Gierl et al. (in press) study found that the standard deviations within 

conditions were all less than or equal to 0.25 with one exception. For that case the 

standard deviation was 0.26. Thus, a standard deviation of 0.25 for both samples was 

used to obtain the critical value for mean differences. When these values were substituted
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into the formula, a mean difference of 0.05 was obtained. Thus, a critical value of 0.05 

was used to evaluate mean differences in Dmax, rmax, classification accuracy,

classification consistency, and misclassification error.

The differences in values between levels within an independent variable, if greater 

than or equal to 0.05, were considered significant and indicative of meaningful impact. 

For example, suppose classification accuracy values of 0.90,0.95, and 1.00 were 

obtained for the sample size conditions of 1500,2000, and 2500, respectively. The 

differences across levels are both positive and at the critical value of 0.05. Thus, they 

indicate significant differences and a consistent positive effect of sample size on 

classification accuracy.

LSAT Results

D v and r indices. The means and standard deviations of the I) and rmavmax m ax m ax max

indices obtained for the different conditions simulated with the LSAT parameters are 

presented in Table 6. The standard deviations are presented in parenthesis. For the Dmax

index, as the degree of complexity increased, Dmax decreased consistently with mean 

differences greater than or equal to 0.05 (0.05 to 0.32) for all cases except for the three 

cases where mean differences were 0.02 (r = 0.90, complex 40% vs. 80%). Degree of 

complexity generally showed a consistent negative impact on Dmax. As the correlation

between dimensions increased, Dmax decreased consistently with mean differences 

greater than or equal to 0.05 (from 0.06 to 0.16) for the approximate simple and complex 

40% conditions, whereas the mean differences across different levels of complexity were 

less than 0.05 for the complex 80% conditions. There was an interaction between 

correlation and degree of complexity. Correlation between dimensions showed a negative
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Table 6

Dmax and rmax Indices for Simulated Conditions with the LSAT Parameters

Simple
Structure 

Complex 40% Complex 80%
Correlation Sample Dm ax rmax Dm ax rmax Dm.ax rmax

n /cn 1 <ftft 0.62 0.94 0.31 0.69 0.11 0.36u.ou 1 j UU (0.03) (0.02) (0.02) (0.03) (0.01) (0.04)
Oftftft 0.63 0.96 0.31 0.74 0.11 0.39zuuu (0.03) (0.02) (0.02) (0.03) (0.01) (0.04)
Ô ftft 0.61 0.97 0.31 0.78 0.11 0.42Zj UU (0.03) (0.03) (0.02) (0.02) (0.01) (0.04)

n 7a 1 <ftft 0.46 0.87 0.23 0.60 0.09 0.32U. i\) 1DUU (0.03) (0.02) (0.02) (0.03) (0.01) (0.04)
Oftftft 0.47 0.92 0.24 0.65 0.09 0.33.zuuu (0.02) (0.01) (0.02) (0.03) (0.01) (0.04)
Ô ftft 0.46 0.94 0.24 0.69 0.09 0.37Zj UU (0.02) (0.01) (0.01) (0.03) (0.01) (0.04)

ft Oft 1 f̂tft 0.31 0.72 0.16 0.47 0.08 0.30U.oU 1 j UU (0.02) (0.03) (0.02) (0.04) (0.01) (0.03)
Oftftft 0.31 0.79 0.16 0.52 0.08 0.30

(0.02) (0.03) (0.01) (0.03) (0.01) (0.03)
Ô ftft 0.31 0.83 0.16 0.55 0.07 0.32

(0.02) (0.02) (0.02) (0.04) (0.01) (0.03)
ft Oft 1 f̂tft 0.15 0.42 0.10 0.32 0.08 0.29u.yu X j UU (0.03) (0.07) (0.01) (0.04) (0.01) (0.03)

Oftftft 0.16 0.51 0.09 0.34 0.07 0.29ZulIU (0.02) (0.06) (0.01) (0.05) (0.01) (0.03)
Ô ftft 0.15 0.53 0.09 0.36 0.07 0.30ZDUU (0.01) (0.05) (0.01) (0.05) (0.01) (0.03)

impact on Z)max only when the approximate simple or complex 40% structures were 

involved. There was no impact when the complex 80% structure was involved. However, 

when the results for the complex 80% conditions were examined, the Z)max values 

clustered at the low end of the scale. In contrast to the approximate simple and complex 

40% conditions where Dmax ranged from 0.15 to 0.63 and from 0.09 to 0.31 respectively, 

for the complex 80% conditions Dmax remained within the range of 0.07 to 0.11. The

narrow range of values for the complex 80% conditions led to the interaction effect 

between correlation and degree of complexity. Sample size did not show an impact on
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Dmax: as sample size increased, the mean differences across levels of sample size were 

less than 0.05 for all cases.

For the rmdX index, as the degree of complexity increased, rmax decreased 

consistently with mean differences greater than or equal to 0.05 (from 0.05 to 0.35) for all 

except one case with a mean difference of 0.03 (r = 0.90, n = 1500, Complex 40% vs. 

80%). Thus, degree of complexity showed a negative impact on rmax.

As the correlation between dimensions increased, rmax decreased consistently with 

mean differences greater than or equal to 0.05 (from 0.07 to 0.30) for all except two cases 

(simple, n = 2000,2500, 0.60 vs. 0.70) for the approximate simple and complex 40% 

conditions; rmax decreased consistently with mean differences greater than or equal to 

0.05 (from 0.05 to 0.06) for only three of the nine cases for the complex 80% conditions 

(n = 2000,2500, 0.60 vs. 0.70; n = 2500, 0.70 vs. 0.80). An interaction effect was again 

found between correlation and degree of complexity. Correlation between dimensions 

showed a negative impact on rmax only when approximate simple or complex 40% 

structures were involved. When the results were examined, for the two cases in the 

approximate simple structure conditions with mean differences less than 0.05, the rmax 

values were very close to the highest possible value of 1, which led to the insignificant 

mean differences. However, for the complex 80% conditions, the rmax values clustered at 

the low end. Compared with the ranges of 0.42 to 0.97 and 0.32 to 0.78 for the 

approximate simple and complex 40% conditions, rmax had a narrow range from 0.29 to 

0.42 for the complex 80% conditions. This explained the interaction effect between 

correlation and degree of complexity.
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As sample size increased, rmax increased consistently with mean differences 

greater than or equal 0.05 (from 0.05 to 0.09) only for six of 24 cases (simple, r = 0.70, 

0.80,0.90,1500 vs. 2000; complex 40%, r = 0.60,0.70, 0.80,1500 vs. 2000). All six 

cases occurred when sample size increased from 1500 to 2000. However, the significant 

results were not across all four correlation conditions for the approximate simple and 

complex 40% conditions. This could be attributable to the clustering of values at both 

ends of the scale: for the approximate simple and 0.60 correlation conditions, the rmax 

values clustered within the range of 0.94 to 0.97; and for the complex 40% and 0.90 

conditions, the rmax values clustered within the range of 0.32 to 0.36. Despite these 

narrow ranges of rmax values, sample size showed a positive impact on rmax when it 

increased from 1500 to 2000 for the approximate simple and complex 40% conditions.

Based on the evaluation criteria for the two indices (Kim, 1994), the three cases in 

the complex 40% conditions for the correlation of 0.90 and the nine cases in the complex 

80% conditions for correlations of 0.70, 0.80, and 0.90 were judged as essentially 

unidimensional. For all these cases, the obtained Dmax values were less than or equal to 

0.10. All other conditions were judged as displaying weak (0.1 <Dmax < 0.5) to moderate 

multidimensionality (0.5 <£>max < 1). Further, the rmax indices obtained for all the 

complex structure conditions were less than 0.80—the evaluation criterion for rmax.

However, five cases in the approximate simple structure conditions (correlation 0.80 

conditions with sample sizes of 1500 and 2000 and all three correlation 0.90 conditions) 

were judged as having a complex structure with rmax values less than 0.80. The standard
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deviations of Z)max and rmax across 100 replications were relatively small (less than or

equal to 0.05) indicating stability of results across replications.

Classification accuracy (overall). The classification accuracy results are 

presented in three tables. Table 7 contains the means and standard deviations of overall 

classification accuracy results when all 40 items were considered in the simulated 

datasets. The standard deviations are in parenthesis.

Table 7

Overall Classification Accuracy for Simulated Conditions with the LSAT Parameters

Correlation Sample Simple
Structure 

Complex 40% Complex 80%
0.60 1500 1.00 (0.01) 0.96 (0.03) 0.77 (0.09)

2000 1.00 (0.01) 0.98 (0.02) 0.84(0.08)
2500 1.00 (0.01) 0.99 (0.02) 0.88 (0.06)

0.70 1500 1.00 (0.01) 0.94 (0.03) 0.70(0.10)
2000 1.00(0.00) 0.96 (0.03) 0.75 (0.10)
2500 1.00 (0.00) 0.98 (0.02) 0.81 (0.08)

0.80 1500 1.00(0.01) 0.89 (0.05) 0.61 (0.10)
2000 1.00 (0.01) 0.92 (0.04) 0.65 (0.09)
2500 1.00(0.00) 0.95 (0.05) 0.71 (0.10)

0.90 1500 0.92 (0.14) 0.70(0.12) 0.56 (0.08)
2000 0.99 (0.05) 0.75 (0.12) 0.58 (0.08)
2500 0.99 (0.05) 0.81 (0.12) 0.60 (0.07)

The criterion for acceptable accuracy was set at 0.85 (i.e., 85% of items

accurately placed on the dimensions they were simulated to measure) in this study. 

Classification accuracy should be fairly high for meaningful interpretation of the 

dimensions identified. A classification accuracy of 85% indicates that no more than six 

items should be misclassified for a 40-item test. A criterion of 85% is strict but 

reasonable.
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As indicated in Table 7, overall classification accuracy was above criterion for all 

approximate simple structure conditions (92% to 100%). For the complex 40% conditions, 

overall classification accuracy was above criterion for all but the three cases when the 

correlation was 0.90. For the complex 80% conditions, overall classification accuracy 

was above criterion only for the condition with a correlation of 0.60 and a sample size of 

2500.

As the degree of complexity increased, classification accuracy decreased 

consistently with mean differences greater than or equal to 5% (from 5% to 28%) for all 

except five cases (r = 0.60, n = 1500,2000,2500, simple vs. complex 40%; r = 0.7, n = 

2000,2500, simple vs. complex 40%). All exceptions occurred for the two lower values 

of correlation. When the results were examined, for the approximate simple and the lower 

correlation (0.60 and 0.70) conditions for the complex 40% conditions, classification 

accuracy was close to 100%, the highest possible value. This led to the five exceptions 

with mean differences less than 5%. Thus, degree of complexity showed a negative 

impact on classification accuracy.

As the correlation between dimensions increased, for the approximate simple 

structure conditions, classification accuracy decreased consistently with mean differences 

greater than or equal to 5% (7%) only for one case (n = 1500,0.80 vs. 0.90). For the 

complex 40% conditions, classification accuracy decreased consistently with mean 

differences from 5% to 19% for four of nine cases. Three of the four cases occurred for 

the comparison between the 0.80 and the 0.90 correlation conditions. For the complex 

80% conditions, classification accuracy decreased consistently with mean differences 

greater than or equal to 5% (5% to 11%) for all cases. Thus, there was an interaction
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effect between correlation and degree of complexity: correlation between dimensions did 

not show an impact on classification accuracy for the approximate simple structure 

conditions, a negative impact when the correlation went from 0.80 to 0.90 for the 

complex 40% conditions, and a negative impact across all levels of correlation for the 

complex 80% condition. Again, the clustering of values close to 100% for the 

approximate simple and the two lower correlation conditions of the complex 40% 

conditions led to the interaction effect between correlation and degree of complexity.

As sample size increased, classification accuracy increased consistently with 

mean differences greater than or equal to 5% (from 5% to 7%) for seven of 24 cases 

(simple, r = 0.90, 1500 vs. 2000; complex 40%, r = 0.90, 1500 vs. 2000, and 2000 vs. 

2500; complex 40%, r = 0.60,1500 vs. 2000, r = 0.70,1500 vs. 2000,2000 vs. 2500, and 

r = 0.80,2000 vs. 2500). These cases spread across all conditions without an identifiable 

pattern. Thus, sample size did not show a significant impact on classification accuracy.

Classification accuracy (dimensions one and two items). Table 8 contains the 

classification accuracy results for dimensions one and two. These results were obtained to 

check if classification error occurred more often in one of the two dimensions. The mean 

differences between dimensions one and two were also evaluated with the 0.05 critical 

value. The results showed that for the approximate simple and the complex 40% 

conditions the classification accuracy results for the two dimensions were similar to one 

another with mean differences less than 5%. However, for the complex 80% conditions, 

the classification accuracy results for the dimension one items were consistently higher 

than those for the dimension two items for seven of 12 cases. The impact of the three 

independent variables—degree of complexity, correlation between dimensions, and
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sample size—and the pattern of results (above or below criterion) were the same as for 

the overall classification accuracy results.

Table 8

Classification Accuracy for Dimensions One and Two for Simulated Conditions with the 

LSAT Parameters

Structure
Simple Complex 40% Complex 80%

Correlation Sample Dim. I Dim. II Dim. I Dim. II Dim. I Dim. II
n An 1 *nn 1.00 1.00 0.96 0.96 0.79 0.75u.ou 1DUU (0.01) (0.00) (0.04) (0.04) (0.13) (0.12)

onnn 1.00 1.00 0.98 0.98 0.87 0.80ZUUU (0.01) (0.01) (0.03) (0.03) (0.11) (0.11)
o^nn 1.00 1.00 0.98 1.00 0.92 0.84ZDUU (0.01) (0.00) (0.03) (0.02) (0.08) (0.08)

n 7n 1 *nn 1.00 1.00 0.94 0.94 0.71 0.68U. /U 1DUU (0.01) (0.01) (0.06) (0.05) (0.16) (0.12)
onnn 1.00 1.00 0.96 0.96 0.77 0.74zuuu (0.00) (0.00) (0.05) (0.05) (0.17) (0.13)
o^nn 1.00 1.00 0.97 0.99 0.89 0.73ZDUU (0.00) (0.00) (0.04) (0.03) (0.08) (0.14)

n Qn 1 <nn 1.00 1.00 0.90 0.88 0.63 0.59U.oU 1DUU (0.01) (0.01) (0.07) (0.09) (0.18) (0.12)
onnn 1.00 1.00 0.92 0.92 0.70 0.60ZUUU (0.01) (0.01) (0.07) (0.07) (0.16) (0.15)
o<nn 1.00 1.00 0.94 0.96 0.80 0.62ZDUU (0.01) (0.00) (0.06) (0.08) (0.13) (0.16)

n on 1 <nn 0.92 0.91 0.71 0.68 0.56 0.56u.yu 1 j I/U (0.12) (0.17) (0.16) (0.16) (0.16) (0.11)
onnn 0.98 0.99 0.76 0.75 0.61 0.55ZUUU (0.06) (0.05) (0.17) (0.16) (0.17) (0.12)
o*nn 0.99 0.99 0.82 0.81 0.70 0.50Zj UU (0.03) (0.07) (0.16) (0.17) (0.15) (o.ii).

Classification accuracy (complex structure items). The classification accuracy

results for the subsets of complex structure items are presented in Table 9. The 

classification accuracy results for these items were lower than the overall classification 

accuracy results (Table 7) with mean differences greater than or equal 5% for all except 

three cases for the complex 40% conditions (r = 0.60, n = 2000,2500; r = 0.70, n = 

2500). For the complex 80% conditions, the classification accuracy results for the
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complex items were comparable to the overall classification accuracy except for two 

cases with mean differences of 5% (r = 0.70, n = 1500; r = 0.80, n = 2000). The complex 

structure items measured a composite of dimensions one and two, which makes it 

difficult for DETECT to classify them correctly. This likely led to the lower classification 

accuracy results for the complex structure items for the complex 40% conditions. 

However, for the complex 80% conditions, a large proportion of items (32 of 40) were 

complex structure items, making the classification accuracy results for the subsets of 

complex item comparable to those for the overall datasets.

Table 9

Classification Accuracy for Complex Structure Items for Simulated Conditions with the

LSAT Parameters

Correlation Sample
Complex Structure 

40% (16 items) 80% (32 items)
0.60 1500 0.91 (0.06) 0.73 (0.10)

2000 0.96 (0.05) 0.80 (0.09)
2500 0.97 (0.04) 0.85 (0.07)

0.70 1500 0.84 (0.08) 0.65 (0.10)
2000 0.90 (0.08) 0.71 (0.11)
2500 0.95 (0.06) 0.77 (0.10)

0.80 1500 0.74 (0.10) 0.57 (0.10)
2000 0.81 (0.11) 0.60(0.10)
2500 0.88 (0.09) 0.67(0.11)

0.90 1500 0.55 (0.11) 0.53 (0.08)
2000 0.59 (0.12) 0.55 (0.09)
2500 0.67 (0.15) 0.57 (0.08)

Classification consistency and misclassification error (overall). High consistency 

among samples is needed to gain confidence in DETECT classification results when the 

true dimensional structure is not known. A cross-validation sample was generated for 

each simulated condition to calculate the classification consistency and misclassification
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error rate in the present study. The classification consistency and misclassification error 

rate were calculated for the overall tests, the dimension one and dimension two items 

separately, and the complex structure items. The same evaluation criterion of 85% was 

used for evaluating classification consistency. An index of error rate, misclassification 

error should be fairly low for classification consistency results to be useful for inferring 

the dimensional structure of a test. Therefore, the criterion of 5% was used for evaluating 

misclassification error: misclassification error values 5% or greater were considered to be 

significantly different from zero.

Table 10 includes the overall classification consistency and misclassification error 

results. Classification consistency was above the criterion of 85% for all the approximate 

simple structure conditions. For the complex 40% conditions, classification consistency 

was above or on criterion when the correlation between dimensions was 0.80 or lower. 

For the complex 80% conditions, none of the classification consistency results were 

above criterion.

As the degree of complexity increased, classification consistency decreased 

consistently with mean differences greater than or equal to 5% (from 0.07 to 0.30) for all 

except two cases (r = 0.60, n = 2000, 2500, simple vs. complex 40%). Degree of 

complexity showed a negative impact on classification consistency. Clustering at the high 

end of the scale was also found for classification consistency. Classification consistency 

was at the highest possible value of 100% for the approximate simple structure conditions 

with correlations of 0.80 or lower and was close to 100% for the lower correlation 

conditions (0.60 and 0.70) for the complex 40% conditions. This likely led to the two
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cases with mean differences smaller than 5% for the approximate simple structure 

conditions with a correlation of 0.60.

Table 10

Classification Consistency and Misclassification Error Rates between Primary and 

Cross-Validation Samples for Simulated Conditions with the LSAT Parameters

Structure

Simple Complex 40% Complex 80%

Correlation Sample CC ME CC ME CC ME

0.60 1500 1.00 0.00 0.93 0.00 0.69 0.07
(0.01) (0.00) (0.04) (0.01) (0.11) (0.04)

2000 1.00 0.00 0.97 0.00 0.74 0.05
(0.01) (0.00) (0.03) (0.01) (0.11) (0.04)

2500 1.00 0.00 0.98 0.00 0.84 0.05
(0.01) (0.00) (0.02) (0.00) (0.09) (0.03)

0.70 1500 1.00 0.00 0.90 0.01 0.63 0.12
(0.01) (0.00) (0.04) (0.02) (0.11) (0.05)

2000 1.00 0.00 0.93 0.01 0.66 0.09
(0.01) (0.00) (0.04) (0.01) (0.12) (0.06)

2500 1.00 0.00 0.96 0.00 0.76 0.09
(0.00) (0.00) (0.03) (0.01) (0.10) (0.05)

0.80 1500 1.00 0.00 0.85 0.03 0.55 0.17
(0.01) (0.00) (0.06) (0.03) (0.14) (0.08)

2000 1.00 0.00 0.87 0.02 0.58 0.15
(0.01) (0.00) (0.05) (0.02) (0.13) (0.07)

2500 1.00 0.00 0.92 0.01 0.70 0.15
(0.01) (0.00) (0.06) (0.01) (0.13) (0.08)

0.90 1500 0.88 0.00 0.64 0.11 0.53 0.21
(0.15) (0.01) (0.13) (0.06) (0.13) (0.09)

2000 0.95 0.00 0.70 0.09 0.52 0.19
(0.12) (0.00) (0.13) (0.06) (0.14) (0.09)

2500 0.99 0.00 0.73 0.06 0.61 0.22
(0.05) (0.00) (0.14) (0.05) (0.17) (0.08)

Note. CC is classification consistency, and ME is misclassification error.

As the correlation between dimensions increased, classification consistency

decreased with mean differences from 5% to 12% for only two of the nine approximate

simple cases (n = 1500,2000,0.80 vs. 0.90). For the complex 40% conditions,
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classification consistency decreased consistently as the correlation increased with mean 

differences greater than or equal to 5% (5% to 21%) for five of the nine cases. Mean 

differences between correlations of 0.70 and 0.80 were meaningful for two sample size 

conditions of 1500 and 2000; mean differences between correlations of 0.80 and 0.90 

were meaningful for all three sample size conditions. For the complex 80% conditions, 

classification consistency decreased consistently as the correlation increased with mean 

differences greater than or equal to 5% (6% to 9%) for all but one of the nine cases (n = 

1500,0.80 vs. 0.90). Thus, an interaction effect was found between correlation and 

degree of complexity: correlation did not show an impact on classification consistency 

for the approximate simple structure conditions; a negative impact when it went from 

0.70 to 0.90 for the complex 40% conditions; and a consistent negative impact across all 

levels of correlation for the complex 80% conditions. The clustering of values close to 

100% accounted for the interaction between correlation and degree of complexity.

As sample size increased, classification consistency increased consistently with 

mean differences greater than or equal to 5% for eight of 24 cases. For the approximate 

simple and complex 40% conditions, three cases of mean differences above 5% (from 5% 

to 12%) spread across all conditions (simple, r = 0.90,1500 vs. 2000; complex 40%, r = 

0.80,2000 vs. 2500, r = 0.90,1500 vs. 2000). For the complex 80% conditions, four 

cases of mean differences above 5% occurred when sample size went from 2000 to 2500 

across all correlation conditions. Thus, sample size showed a positive effect on 

classification consistency when it went from 2000 to 2500 for the complex 80% 

conditions.
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The misclassification error rate was zero for all approximate simple structure 

conditions; DETECT not only consistently classified items into the same dimensions 

across samples but also identified the correct dimensions for each item. For the complex 

40% conditions, the misclassification error rate was satisfactory (less than or equal to 5%) 

when the correlation between dimensions was less than or equal to 0.80. For the complex 

80% conditions, the misclassification error rate was satisfactory only when the 

correlation between dimensions was 0.60 and the sample size was 2000 or higher.

As the degree of complexity increased, the misclassification error rate increased 

consistently with mean differences greater than or equal to 5% (from 5% to 16%) for 15 

of 24 cases. For the correlations of 0.60, 0.70, and 0.80, misclassification error increased 

with mean differences greater or equal to 5% when degree of complexity went from 40% 

to 80%. For the correlation of 0.90, misclassification error increased with meaningful 

mean differences for all cases. Therefore, an interaction effect was found between degree 

of complexity and correlation. Degree of complexity showed a positive impact on 

misclassification error when it went from 40% to 80% for the correlations of 0.60 to 0.80. 

For the correlation of 0.90, it showed a positive impact on misclassification error across 

all levels of complexity. When the results were examined, misclassification error rates 

clustered near the lowest possible value of 0% for the low complexity (simple and 

complex 40%) conditions. This accounted for the interaction effect between degree of 

complexity and correlation between dimensions.

As the correlation between dimensions increased, misclassification error 

increased consistently with mean differences greater than or equal to 5% (from 5% to 8%) 

for eight of 27 cases. For the approximate simple structure conditions, misclassification
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error remained zero. For the complex 40% conditions, mean differences above 5% 

occurred for all three sample size conditions when the correlation went from 0.80 to 0.90. 

For the complex 80% conditions, mean differences above 5% occurred for all three 

sample size conditions when the correlation went from 0.70 to 0.80. Thus, there was an 

interaction effect between correlation and degree of complexity. For the approximate 

simple conditions, correlation did not show an impact on misclassification error. For the 

complex 40% conditions, correlation showed a positive impact when the correlation went 

from 0.80 to 0.90. For the complex 80% conditions, correlation showed a positive impact 

when correlation went from 0.70 to 0.80.

As sample size increased, mean differences in misclassification error were all 

below 5%. Thus, sample size did not show a significant impact on misclassification error.

Classification consistency and misclassification error (dimensions one and two 

items and complex items). Table 11 contains the classification consistency and 

misclassification error results for the dimension one and dimension two items separately, 

and Table 12 contains the classification consistency and misclassification error results for 

the complex structure items. The classification consistency results for the dimension one 

and dimension two items were similar for the approximate simple and complex 40% 

conditions with mean differences less than 5% for all cases. The results for the dimension 

one items were higher than those for the dimension two items for six of 12 cases for the 

complex 80% conditions (r = 0.60, n = 2000,2500; r = 0.70, n = 2000,2500; r = 0.80, n 

= 2000,2500).

The misclassification error rates for the dimensions one and two items were 

similar for the approximate simple and complex 40% conditions with mean differences
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Table 12

Classification Consistency and Misclassification Error Rates for Complex Structure 

Items for Simulated Conditions with the LSAT Parameters

Complex Structure 
40% (16 items) 80% (32 items)

Correlation Sample CC ME CC ME

0.60 1500 0.84 (0.09) 0.01 (0.02) 0.63 (0.12) 0.08 (0.05)

2000 0.92 (0.07) 0.00 (0.01) 0.69(0.12) 0.06 (0.05)

2500 0.95 (0.05) 0.00 (0.01) 0.81 (0.10) 0.06 (0.04)

0.70 1500 0.75 (0.10) 0.03 (0.05) 0.58 (0.12) 0.14 (0.07)

2000 0.83 (0.09) 0.02 (0.04) 0.61 (0.13) 0.10(0.07)

2500 0.91 (0.07) 0.01 (0.02) 0.72 (0.12) 0.10(0.06)

0.80 1500 0.65(0.11) 0.08 (0.06) 0.52 (0.14) 0.19(0.09)

2000 0.69(0.12) 0.05 (0.05) 0.55 (0.14) 0.18(0.08)

2500 0.81 (0.11) 0.02 (0.04) 0.66 (0.13) 0.17(0.09)

0.90 1500 0.54(0.15) 0.21 (0.11) 0.51 (0.14) 0.24 (0.10)

2000 0.55 (0.19) 0.19(0.12) 0.50 (0.14) 0.22 (0.09)

2500 0.57(0.18) 0.13(0.11) 0.59(0.17) 0.24 (0.09)
Note. CC is classification consistency, and ME is misclassification error.

less than 5% for all cases. For the complex 80% conditions, misclassification error rates 

were lower for the dimension one items than those for the dimension two items with 

mean differences greater than or equal to 0.05 for five of 12 cases (r = 0.60, n = 2500; r = 

0.70, n = 2500; r = 0.80, n = 2000,2500; r = 0.90, n = 2500).

As seen from Table 12, the classification consistency for the complex structure 

items was lower than the overall classification consistency for all items (Table 10) with 

mean differences greater than or equal to 5% for all but one cases for the complex 40% 

conditions (r = 0.60, n = 2500). The classification consistency results for the complex
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structure items were lower than the overall classification consistency results with mean 

differences greater than or equal to 5% for only four of 12 cases (r = 0.60, n = 1500,2000; 

r = 0.70, n = 1500,2000). On the other hand, the misclassification error rates for the 

complex structure items were higher than the overall misclassification error rates with 

mean differences greater than or equal to 5% for four of 12 cases for the complex 40% 

conditions (r = 0.80, n -  1500; r = 0.90, n = 1500, 2000, and 2500). For the complex 80% 

conditions, the misclassification error rates were comparable between those for the 

complex item and those for all the items with mean differences less than 5% for all cases. 

SAT Results

Z) and r indices. The Z> and r v indices obtained for different
i l l o A  u l a X  U la A  U la X

conditions simulated with the SAT parameters are presented in Table 13. As the degree 

of complexity increased, Dmax decreased consistently with mean differences greater than 

or equal to 0.05 (from 0.06 to 0.07) only for three of 24 cases (r = 0.60, n = 1500,2000, 

and 2500, simple vs. complex 40%). Thus, degree of complexity did not show a 

significant impact on Dmax. In the case of the SAT, the Z)max values clustered within the

range of 0.07 to 0.19 for all cases. Given the relatively narrow range of Dmax values, 

changes in the correlation (with one exception: r = 0.60, n = 1500,0.60 vs. 0.70) and 

sample size did not significantly impacted Dmax.

For the rmax index, as the degree of complexity increased, rmax decreased 

consistently with mean differences greater than or equal to 0.05 (from 0.05 to 0.18) for 10 

of 24 cases. For the correlation of 0.60, rmax decreased with mean differences from 0.07
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Table 13

Dmax and rmax Indices for Simulated Conditions with the SAT Parameters

Structure
Simple Complex 40% Complex 80%

Correlation Sample Dmax rmax Dmax rmax Dmax rmax

0.60 1500

2000

2500

0.19 0.50 0.12 0.35 0.09 0.28
(0.02)
0.18

(0.05)
0.52

(0.02)
0.12

(0.04)
0.37

(0.01)
0.08

(0.03)
0.28

(0.03)
0.17

(0.09)
0.55

(0.01)
0.10

(0.04)
0.37

(0.01)
0.08

(0.03)
0.30

(0.02) (0.07) (0.01) (0.05) (0.01) (0.03)

0.70 1500

2000

2500

0.14 0.39 0.11 0.32 0.09 0.28
(0.02)
0.14

(0.06)
0.42

(0.01)
0.10

(0.04)
0.33

(0.01)
0.08

(0.03)
0.28

(0.02)
0.13

(0.07)
0.43

(0.01)
0.09

(0.04)
0.33

(0.01)
0.08

(0.02)
0.30

(0.02) (0.08) (0.01) (0.04) (0.01) (0.03)

0.80 1500

2000

2500

0.11 0.32 0.10 0.30 0.09 0.28
(0.01)
0.10

(0.04)
0.33

(0.01)
0.09

(0.03)
0.31

(0.01)
0.08

(0.03)
0.29

(0.01)
0.09

(0.04)
0.33

(0.01)
0.08

(0.03)
0.30

(0.01)
0.08

(0.02)
0.30

(0.01) (0.04) (0.01) (0.03) (0.01) (0.03)

0.90 1500

2000

2500

0.10 0.29 0.10 0.29 0.09 0.28
(0.01)
0.09

(0.02)
0.31

(0.01)
0.08

(0.03)
0.29

(0.01)
0.08

(0.03)
0.29

(0.01)
0.08

(0.02)
0.31

(0.01)
0.08

(0.03)
0.30

(0.01)
0.07

(0.03)
0.29

(0.01) (0.03) (0.01) (0.02) (0.01) (0.03)

to 0.18 for all cases. For the correlation of 0.70, four of six cases had mean differences 

from 0.05 to 0.10. Mean differences were above 0.05 for all three sample size conditions 

when degree of complexity went from 0% to 40%, whereas mean difference was 0.05 

only for the sample size of 2000 when degree of complexity went from 40% to 80%. For 

the correlations of 0.80 and 0.90, mean differences were all less than 0.05. Thus, there 

was an interaction effect between degree of complexity and correlation. Degree of 

complexity showed a negative impact on rmax for the correlation of 0.60, while it showed
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a negative impact on rmax for the correlation 0.70 when the degree of complexity went 

from 0% to 40%. Degree of complexity did not show an impact on rmax for the 

correlations of 0.80 and 0.90. The rmax values clustered within the range of 0.28 to 0.32 

for the high correlation conditions (0.80 and 0.90) of the complex 40% conditions and for 

all complex 80% conditions. This accounted for the interaction effect between degree of 

complexity and correlation.

As the correlation between dimensions increased, rmax decreased for six of 27 

cases. These cases all occurred for the approximate simple structure conditions when the 

correlation went from 0.6 to 0.7 and from 0.7 to 0.8. Therefore, an interaction effect was 

found between correlation and degree of complexity. Correlation between dimensions 

showed a negative impact on rmax for the approximate simple structure conditions when

the correlation went from 0.6 to 0.8, but it did not show an impact on rmax for the 

complex 40% and complex 80% conditions. As sample size increased, mean differences 

in rmax were all less than 0.05. Thus, sample size did not show a significant impact on

rmax

Based on the evaluation criteria for the two indices (Kim, 1994), all cases in the 

complex 80% conditions were judged as unidimensional with Draax values less than or

equal to 0.10. For the complex 40% conditions, nine of 12 cases were judged as 

unidimensional (when correlation was 0.60 and sample size was 2500, when correlation 

was 0.70 and sample size was 2000 or 2500, and when correlation was 0.80 or 0.90) and 

five cases in the approximate simple structure conditions (when correlation was 0.80 and 

sample size was 2000 or 2500, and when correlation was 0.90). All other cases displayed
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weak multidimensionality. However, despite these differences, all conditions across the 

three independent variables were judged as having complex structures with rmax values

less than 0.80. The standard deviations across 100 replications were small (less than or 

equal to 0.08) indicating stability across replications.

Classification accuracy (overall). The classification accuracy results are 

presented in three tables. The same evaluation criterion of 85% was used. As indicated in 

Table 14, overall classification accuracy was above criterion (86% to 95%) for the 

approximate simple structure conditions only for the correlation of 0.60 and for the 

correlation of 0.70 with sample sizes of 1500 and 2000. For the complex structure 

conditions, the overall classification accuracy was below criterion (50% to 80%) across 

all conditions.

Table 14

Overall Classification Accuracy for Simulated Conditions with the SAT Parameters

Correlation Sample Simple
Structure 

Complex 40% Complex 80%
0.60 1500 0.95 (0.05) 0.74(0.10) 0.54(0.10)

2000 0.93 (0.15) 0.80 (0.09) 0.54 (0.12)
2500 0.95 (0.12) 0.78 (0.13) 0.59(0.12)

0.70 1500 0.86(0.15) 0.68 (0.11) 0.55 (0.10)
2000 0.86(0.18) 0.73 (0.12) 0.55(0.11)
2500 0.82 (0.23) 0.70(0.13) 0.57(0.10)

0.80 1500 0.71 (0.17) 0.62 (0.09) 0.52 (0.09)
2000 0.67 (0.19) 0.65 (0.12) 0.50(0.11)
2500 0.61 (0.19) 0.60(0.12) 0.58 (0.11)

0.90 1500 0.58 (0.10) 0.59 (0.07) 0.51 (0.10)
2000 0.53 (0.10) 0.59 (0.09) 0.52(0.11)
2500 0.55 (0.10) 0.54 (0.08) 0.56(0.11)

As the degree of complexity increased, classification accuracy decreased with

mean differences greater than or equal to 5% (from 12% to 26%) for the correlations of
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0.60 and 0.70. Mean differences were from 9% to 15% for three of six cases for the 

correlation of 0.80 (n = 1500, simple vs. complex 40%; n -  1500,2500, complex 40% vs. 

complex 80%). Two of these three cases occurred when the degree of complexity went 

from 40% to 80%. For the 0.90 correlation conditions, classification accuracy showed 

inconsistent change with one significant negative mean difference of 6% (n = 2000, 

simple vs. complex 40%) and two significant positive mean differences of 7% to 8% (n -  

1500,2000, complex 40% vs. complex 80%). Therefore, an interaction effect was found 

between degree of complexity and correlation: degree of complexity had a negative 

impact on classification accuracy for correlations of 0.60 and 0.70, a negative impact for 

the correlation of 0.80 when degree of complexity went from 40% to 80%, and an 

inconsistent impact for the correlation of 0.90. Classification accuracy clustered at the 

low end of the scale with a narrow range of values for the two high correlations (0.80 and 

0.90) and the complex 80% conditions. This led to the interaction effect.

As the correlation between dimensions increased, classification accuracy 

decreased consistently with mean differences greater than or equal to 5% (from 6% to 

21%) for all cases for the approximate simple structure conditions and all but one for the 

complex 40% conditions (complex 40%, n = 1500,0.80 vs. 0.90). For the complex 80% 

conditions, only one case with mean difference greater than 5% was found (n = 2000,

0.70 vs. 0.80). Thus, there was an interaction effect between correlation and degree of 

complexity. Correlation between dimensions had a negative impact on classification 

accuracy for the approximate simple and complex 40% conditions and no impact for the 

complex 80% conditions. Again the clustering of classification accuracy values at the low 

end of the scale for the complex 80% conditions led to the interaction effect.
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As sample size increased, inconsistent mean differences were found with four 

significant negative mean differences of 5% to 6% (simple, r = 0.80,2000 vs. 2500, r = 

0.90,1500 vs. 2000; complex 40%, r = 0.80,2000 vs. 2500, r = 0.90,2000 vs. 2500) and 

four significant positive mean differences of 5% to 8% (complex 40%, r = 0.60,1500 vs. 

2000, r = 0.70,1500 vs. 2000; complex 80%, r -  0.60,2000 vs. 2500, r = 0.80,2000 vs. 

2500). Thus, sample size did not show a consistent impact on classification accuracy.

Classification accuracy (dimensions one and two items). Table 15 contains the 

classification accuracy results for the dimensions one and two items. These results were 

Table 15

Classification Accuracy for Dimensions One and Two for Simulated Conditions with the

SAT Parameters

Structure
Simple Complex 40% Complex 80%

Correlation Sample Dim. I Dim. II Dim. I Dim. II Dim. I Dim. II
n rn 1 <nn 0.98 0.92 0.83 0.66 0.54 0.54u.ou JOUU (0.05) (0.07) (0.10) (0.11) (0.19) (0.09)

onnn 0.96 0.89 0.89 0.71 0.54 0.54zuuu (0.10) (0.20) (0.09) (0.11) (0.23) (0.07)
o^nn 0.98 0.91 0.87 0.69 0.65 0.52ZDUU (0.08) (0.17) (0.10) (0.17) (0.25) (0.09)

A lf\ 1 ^nn 0.92 0.80 0.76 0.60 0.56 0.53u. /u J. JvU (0.12) (0.20) (0.12) (0.13) (0.18) (0.08)
onnn 0.93 0.80 0.83 0.63 0.57 0.53ZUUU (0.12) (0.24) (0.11) (0.15) (0.22) (0.08)
o^nn 0.91 0.74 0.80 0.60 0.64 0.51Zj UU (0.16) (0.31) (0.10) (0.20) (0.24) (0.08)

A QA 1 ^nn 0.80 0.62 0.71 0.53 0.53 0.52U.ou 1 ̂ UU (0.14) (0.23) (0.13) (0.12) (0.19) (0.08)
onnn 0.79 0.55 0.76 0.55 0.48 0.52ZUUu (0.15) (0.25) (0.13) (0.15) (0.23) (0.08)

0.77 0.45 0.75 0.46 0.64 0.51ZDUU (0.13) (0.27) (0.10) (0.16) (0.24) (0.08)
n on 1 ÂA 0.69 0.46 0.67 0.50 0.51 0.51u.yu 1DUU (0.11) (0.15) (0.10) (0.11) (0.19) (0.08)

OAAA 0.70 0.37 0.72 0.46 0.51 0.53zuuu (0.09) (0.15) (0.10) (0.13) (0.21) (0.10)
o^nn 0.72 0.37 0.71 0.38 0.60 0.51Zj UU (0.08) (0.16) (0.09) (0.13) (0.25) (0.08)
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obtained to check if error occurred more often in one of the two dimensions. A critical 

value of 5% was again used. The classification accuracy results for the dimension one 

items were consistently higher than those for the dimension two items with mean 

differences of 6% to 35% for the approximate simple and complex 40% conditions. For 

the complex 80% conditions, the classification accuracy results for the dimension one 

items were consistently higher than those for the dimension two items with mean 

differences of 9% to 13% for the sample size of 2500, but not for the two lower sample 

sizes.

Classification accuracy (complex structure items). The classification accuracy 

results for the subset of complex structure items are presented in Table 16. The 

Table 16

Classification Accuracy for Complex Structure Items for Simulated Conditions with the

SAT Parameters

Correlation Sample
Complex Structure 

40% (16 items) 80% (32 items)
0.60 1500 0.59 (0.11) 0.51 (0.12)

2000 0.66(0.10) 0.51 (0.14)
2500 0.62 (0.12) 0.56(0.15)

0.70 1500 0.57 (0.12) 0.52(0.12)
2000 0.63(0.11) 0.52(0.14)
2500 0.60(0.10) 0.56 (0.13)

0.80 1500 0.56 (0.12) 0.50(0.12)
2000 0.60 (0.12) 0.47(0.14)
2500 0.56(0.11) 0.56(0.14)

0.90 1500 0.55 (0.12) 0.48 (0.13)
2000 0.58 (0.12) 0.49(0.14)
2500 0.53 (0.10) 0.54 (0.14)
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classification accuracy results for these items were lower than the overall classification 

accuracy results (Table 14) with mean differences greater than or equal 5% (from 5% to 

16%) for all except four cases for the complex 40% conditions (r = 0.80, n = 2500; r = 

0.90, n = 1500,2000,2500). For the complex 80% conditions, the classification accuracy 

for the complex items was comparable to the overall classification accuracy with mean 

differences less than 5%. The complex structure items measured a composite of 

dimensions one and two, which makes it difficult for DETECT to classify them correctly. 

This likely led to the lower classification accuracy results for the complex structure items 

for the complex 40% conditions. However, for the complex 80% conditions, a large 

proportion of items (32 of 40) were complex structure items, making the classification 

accuracy results for the subsets of complex item comparable to those for the overall 

datasets.

Classification consistency and misclassification error (overall). The classification 

consistency and misclassification error rates were calculated for the overall tests, the 

dimension one and dimension two items separately, and the complex structure items. The 

same evaluation criterion of 85% was used for evaluating classification consistency, and 

a criterion of 5% was used for evaluating misclassification error.

Table 17 includes the overall classification consistency and misclassification error 

results. Classification consistency was above criterion for the three cases in the 

approximate simple conditions when the correlation was 0.60, but below criterion for the 

remaining correlations. For both complex conditions, classification consistency was 

below criterion (48% to 78%) across all conditions.
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As the degree of complexity increased, classification consistency decreased 

consistently with mean difference greater than or equal to 5% (5% to 39%) for all except 

three cases (r = 0.80, n = 1500, 2500, simple vs. complex 40%; r = 0.90, n = 1500, 

simple vs. complex 40%). Thus, degree of complexity showed a negative impact on 

classification consistency.

Table 17

Classification Consistency and Misclassification Error Rates between Primary and 

Cross-Validation Samples for Simulated Conditions with the SAT Parameters

Structure
Simple_________ Complex 40%______ Complex 80%

Correlation Sample CC ME CC ME CC ME
a  / :  a 1 ÂA 0.92 0.01 0.73 0.11 0.50 0.21U.OU 1 DvU (0.09) (0.02) (0.12) (0.05) (0.14) (0.09)

OAAA 0.88 0.02 0.78 0.09 0.50 0.21ZUUU (0.18) (0.05) (0.10) (0.05) (0.16) (0.11)
Ô AA 0.91 0.02 0.78 0.10 0.59 0.20Zj UU (0.16) (0.06) (0.13) (0.06) (0.23) (0.10)

fi 1C\ 1 5AA 0.80 0.05 0.65 0.14 0.54 0.22U. /U 1 j UU (0.16) (0.06) (0.12) (0.06) (0.12) (0.10)
OAAA 0.79 0.04 0.70 0.12 0.52 0.21ZUUU (0.21) (0.09) (0.13) (0.07) (0.16) (0.10)
Ô AA 0.77 0.06 0.70 0.15 0.56 0.20Zj UU (0.23) (0.12) (0.14) (0.09) (0.24) (0.11)

a CA 1 ÂA 0.64 0.11 0.61 0.19 0.48 0.21U.oU 1 j UU (0.14) (0.10) (0.12) (0.08) (0.13) (0.10)
OAAA 0.67 0.15 0.62 0.15 0.53 0.25ZUUU (0.16) (0.15) (0.13) (0.07) (0.15) (0.12)
Ô AA 0.71 0.25 0.67 0.22 0.52 0.19Zj UU (0.16) (0.18) (0.16) (0.10) (0.24) (0.09)

A OA 1 ÂA 0.59 0.22 0.58 0.21 0.53 0.25u.yu 1 j UU (0.13) (0.10) (0.14) (0.08) (0.12) (0.10)
OAAA 0.67 0.29 0.59 0.20 0.52 0.24ZUUU (0.16) (0.13) (0.15) (0.09) (0.16) (0.12)
Ô AA 0.73 0.34 0.63 0.26 0.53 0.21ZJUU (0.13) (0.12) (0.18) (0.11) (0.21) (0.12)

As the correlation between dimensions increased, classification consistency 

decreased consistently with mean differences greater than or equal to 5% (5% to 16%) for
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11 of 18 cases for the approximate simple and complex 40% conditions. Six of these 11 

cases occurred for the approximate simple structure conditions when the correlation went 

from 0.60 to 0.70 and from 0.70 to 0.80. Three of these 11 cases occurred for the 

complex 40% conditions when correlation went from 0.60 to 0.70. For the complex 80% 

conditions, inconsistent mean differences were found with one significant negative mean 

difference of 5% (n = 1500,0.80 vs. 0.90) and one significant positive mean difference of 

6% (n = 1500,0.7 vs. 0.80). Thus, an interaction effect was found between correlation 

and degree of complexity: correlation between dimensions showed a negative impact on 

classification consistency for the approximate simple structure conditions when the 

correlation went from 0.6 to 0.80, a negative impact on classification consistency for the 

complex 40% conditions when correlation went from 0.60 to 0.70, and no impact on 

classification consistency for the complex 80% conditions. Again, for the complex 80% 

conditions, classification consistency clustered within a narrow range of 48% to 59%.

This narrow range led to the insignificant impact for the complex 40% conditions and the 

interaction effect between correlation and degree of complexity.

As sample size increased, classification consistency decreased with mean 

differences greater than or equal to 5% (from 5% to 9%) for seven of 24 cases (simple, r 

= 0.90,1500 vs. 2000,2000 vs. 2500; complex 40%, r = 0.60,0.70,1500 vs. 2000, r = 

0.80,2000 vs. 2500; complex 80%, r = 0.60,2000 vs. 2500, r = 0.80,1500 vs. 2000). 

These seven cases occurred without an identifiable pattern, thus sample size did not show 

an impact on classification consistency.

The misclassification error rate was satisfactory (less than or equal to 5%) only 

for the approximate simple condition when the correlation between dimensions was 0.60
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or 0.70 (for the correlation 0.70 conditions, the sample size was 1500 or 2000). As the 

degree of complexity increased, misclassification error increased consistently with mean 

differences greater than or equal to 5% (from 5% to 12%) for all cases for the correlations 

of 0.60 and 0.70. For the correlations of 0.80 and 0.90, inconsistent mean differences 

were found with two significant positive mean differences of 8% to 10% for the 

correlation of 0.80 (n = 1500, simple vs. complex 40%; n = 2000, complex 40% vs. 

complex 80%) and three significant negative mean differences of 5% to 9% for the 

correlation of 0.90 (n = 2000,2500, simple vs. complex 40%; n = 2500, complex 40% vs. 

complex 80%). Therefore, there was an interaction effect between degree of complexity 

and correlation. Degree of complexity showed a consistent positive impact on 

misclassification error for the correlations of 0.60 and 0.70. Degree of complexity did not 

show a consistent impact on misclassification error for the correlations of 0.80 and 0.90.

As the correlation between dimensions increased, misclassification error 

increased consistently with mean differences greater than or equal to 5% for nine of 18 

cases for the approximate simple and complex 40% conditions. Five of these nine cases 

occurred for the approximate simple structure conditions when the correlation went from 

0.80 to 0.90. The other four cases spread out in the complex 40% conditions without an 

identifiable pattern (n =1500,0.70 vs. 0.80; n = 2000, 0.80 vs. 0.90; n = 2500,0.60 vs. 

0.70, and 0.70 vs. 0.80). For the complex 80% conditions, the mean differences were all 

less than 5%. Therefore, there was an interaction effect between correlation and degree of 

complexity. Correlation between dimensions showed a positive impact on 

misclassification error for the approximate simple structure conditions when the
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correlation went from 0.80 to 0.90. Correlation between dimensions did not show an 

impact on misclassification error for both of the complex structure conditions.

As sample size increased, inconsistent results were found with five significant 

positive mean differences of 5% to 10% (simple, r = 0.80,2000 vs. 2500, r = 0.90,1500 

vs. 2000,2000 vs. 2500; complex 40%, r = 0.80,2000 vs. 2500, r = 0.90,2000 vs. 2500) 

and one negative mean difference of 6% (complex 80%, r = 0.80,2000 vs. 2500) in 

misclassification error. Thus, sample size did not show a consistent impact on 

misclassification error.

Classification consistency and misclassification error (dimensions one and two 

items and complex items). Table 18 contains the classification consistency results for the 

dimension one and dimension two items separately. Table 19 contains the classification 

consistency results for the subsets of complex structure items. The same critical value of 

5% was used to evaluate mean differences in classification consistency and 

misclassification error between the dimensions. The classification consistency results for 

the dimension one items were relatively higher than those for the dimension two items for 

the approximate simple and complex 40% conditions with mean differences of 6% to 

15% for all except the three complex 40% conditions (r = 0.60, n = 1500; r = 0.90, n = 

1500,2500). Mean differences for the complex 80% conditions were all less than 5%.

The misclassification error rates were lower for the dimension one items than 

those for the dimension two items for the approximate simple and complex 40% 

conditions with mean differences of 6% to 32% for all except three cases for the 

approximate simple structure conditions (r -  0.60, n = 1500,2000, and 2500). For the 

complex 80% conditions, for the sample size of 2500, misclassification error was
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Table 19

Classification Consistency and Misclassification Error Rates for Complex Structure

Items for Simulated Conditions with the SAT Parameters

Complex Structure 
40% (16 items) 80% (32 items)

Correlation Sample CC ME CC ME

0.60 1500 0.65 (0.14) 0.23 (0.10) 0.49 (0.15) 0.23(0.11)

2000 0.68 (0.14) 0.19(0.09) 0.48 (0.18) 0.24 (0.13)

2500 0.69 (0.14) 0.21 (0.10) 0.58(0.25) 0.22 (0.12)

0.70 1500 0.61 (0.14) 0.24 (0.10) 0.52 (0.13) 0.25 (0.11)

2000 0.67 (0.16) 0.22 (0.11) 0.51 (0.18) 0.23 (0.12)

2500 0.66(0.15) 0.23(0.11) 0.56 (0.26) 0.21 (0.13)

0.80 1500 0.59(0.15) 0.25 (0.12) 0.47 (0.15) 0.24(0.12)

2000 0.59 (0.17) 0.21 (0.11) 0.52 (0.17) 0.28 (0.14)

2500 0.67(0.17) 0.28(0.11) 0.51 (0.25) 0.20(0.10)

0.90 1500 0.57(0.18) 0.25 (0.13) 0.52(0.13) 0.27 (0.12)

2000 0.60 (0.19) 0.23 (0.12) 0.51 (0.17) 0.27(0.14)

2500 0.62 (0.20) 0.28 (0.12) 0.53 (0.23) 0.23 (0.13)
Note. CC is classification consistency, and ME is misclassification error.

consistently lower across the four correlation conditions for the dimension one items than 

the dimension two items with mean difference of 9% to 14%.

As seen from Table 19, classification consistency results for the complex structure 

items were lower than the overall classification accuracy results (Table 17) with mean 

differences greater than or equal 5% (from 5% to 16%) only for three cases for the 

approximate simple structure conditions (r = 0.60, n = 1500,2000,2500). The 

classification consistency results for the complex structure items were comparable to 

those for all items.
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The misclassification error rates for the complex structure items were consistently 

lower than the misclassification error rates for all items with mean differences from 6% 

to 12% for the complex 40% conditions with a correlation of 0.80 and lower. All mean 

differences were less than 5% for the complex 80% conditions. Thus the misclassification 

error rates for the complex structure items were comparable to the misclassification error 

rates for all items for the complex 80% conditions.

LSAT Results versus SAT Results

When the £>max, rmax, classification accuracy, classification consistency, and

misclassification error results for the LSAT parameters were compared with those for the 

SAT parameters, the LSAT results were generally better than the SAT results. For the 

Z)max index, the LSAT results were consistently higher than the SAT results with mean

differences greater than or equal to 0.05 for all the approximate simple structure 

conditions and for the correlations of 0.60,0.70, and 0.80 for the complex 40% 

conditions (see Tables 6 and 13). The Z)max values were comparable for remaining 

complex 40% conditions and the complex 80% conditions.

For the rmax index, the LSAT results were consistently higher than the SAT 

results with mean differences greater than or equal to 0.05 for all except one case 

(complex 40%, r = 0.90, n = 1500) for the approximate simple and complex 40% 

conditions (see Tables 6 and 13). For the complex 80% conditions, the LSAT results 

were consistently higher than the SAT results for the correlations of 0.60 and 0.70. For 

the correlations of 0.80 and 0.90, the results were comparable.

For the classification accuracy, the LSAT results were consistently higher than the 

SAT results with mean differences greater than or equal to 5% except for one case
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(complex 80%, r = 0.90, n  = 2500; see Tables 7 and 14). For the classification 

consistency, the LSAT results were consistently higher than the SAT results with mean 

differences greater than or equal to 5% except for two cases (complex 80%, r = 0.90, n = 

1500,2000; see Tables 10 and 17). For the misclassification error rate, the LSAT results 

were consistently lower than the SAT results with mean differences greater than or equal 

to 5% except for eight of 36 cases. For the approximate simple structure with a 

correlation of 0.60, misclassification error rates for both were lower than 5% for the three 

sample size conditions. Misclassification error rates were comparable in this case. All 

other cases with mean differences less than 5% (simple, r = 0.70, n = 2000; complex 80%, 

r = 0.80, n = 1500,2500, r = 0.90, n = 1500,2500) spread across conditions without an 

identifiable pattern. Thus, the misclassification error rates for the LSAT parameters were 

consistently lower than those for the SAT parameters for the approximate simple 

structure conditions with correlations of 0.70 to 0.90 and for the complex 40% and 

complex 80% conditions.

Since the discrimination parameters of items are different for the two sets of 

parameters, differences found between the LSAT and the SAT results could be 

attributable to differences in item discrimination parameters. The LSAT parameters 

included moderate to high discriminating items while the SAT parameters included low 

to high discriminating items. The existence of low discriminating items (20% of total 

items) in the SAT parameters could be responsible for the degraded SAT results.

Another possible explanation has to do with the difference in angular departures 

between the two dimensions. For the LSAT parameters, the dimension one items had 

angular directions from 0° to 15°, and the dimension two items had angular directions
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from 75° to 90°. The angular difference between the two dimensions was 60°. For the 

SAT parameters, the dimension one items had angular directions from 0° to 10°, and the 

dimension two items had angular directions from 30° to 55°. The angular difference was 

20°. When the angular departure between the two dimensions becomes smaller, it is more 

difficult for DETECT to distinguish between the two dimensions. This could be another 

reason why the LSAT results were much better than the SAT results.

Regression Analysis for Dmax and Classification Accuracy

The Dmax and classification accuracy results in Tables 6 and 7 and Tables 13 and 

14 indicated that higher Dmax values were associated with higher classification accuracy 

results. An inspection of these tables suggested that all conditions with a Dmax value of 

greater than or equal to 0.15 obtained classification accuracy greater than or equal to 

85%, the criterion used for evaluating classification accuracy. When at least 85% of the 

items are accurately classified, we should be relatively confident in considering a test as 

multidimensional. Thus, a classification accuracy of 85% was used as an indicator of 

multidimensionality in a test. A regression analysis was conducted in which Dmax was 

regressed on classification accuracy to confirm empirically this finding by comparing the 

predicted Dmax with a classification accuracy of 85% and the 0.15 observational finding.

First, the scatter plot with Dmax on the x  axis and classification accuracy on the y

axis was examined to see if the relationship between the two variables was linear. As 

shown in Figure 11, the scatter plot showed a curvilinear relationship between the two 

variables. Different curvilinear models as well as the linear model were fit to the data.

The regression functions for the different models considered are presented in Table 20.
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Figure 11 is the scatter plot with the four corresponding reference lines. Based on Table 

20, all models exhibited adequate fit with significant F  tests at the alpha level of 0.05.

The increment in R squared can be tested using the following formula (Pedhazur, 1982):

(* * -!% )/(* ,-A^)
( l - ^ ) / ^ - * , - 1 ) ’

where F  is the F  test with degree of freedom ((&, -  k2), (N -  -1)), is die R squared

associated with the model to be tested, R^ is the R squared associated with the baseline 

model, kx is the degree of freedom associated with the model to be tested, k2 is the 

degree of freedom associated with the baseline model, and N  is the sample size.

Table 20

Regression Analysis Results for Dmax and Classification Accuracy

Model Summary Parameter Estimates
R2 F dfl df2 Sig. B0 Bj B2 B3

Linear 0.41 4944.46 1 7198 0.00 -0.16 0.43
Quadratic 0.56 4596.69 2 7197 0.00 0.63 -1.92 1.61
Cubic 0.59 5087.65 2 7197 0.00 0.25 0.00 -1.42 1.50
Exponential 0.59 10163.07 1 7198 0.00 0.02 2.30 __________

However, this test could not be used to test whether the increment in R squared

was significant in the present study because the linear and exponential models and the

quadratic and cubic models had the same degrees of freedom. Besides, the sample size of

7200 would likely make any increment statistically significant if the test could be

conducted. In order to determine the best model, a critical value of 0.05 was used to

assess increment in R squared, which meant an increment of 5% variance explained

indicated a significant difference between models.
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Figure 11. Linear and nonlinear fitting functions for regressing Dmax on classification 
accuracy.

The increment between the exponential and the linear models was 0.18, so the 

exponential model explained significantly more variance. The increment between the 

quadratic model and the exponential model was -0.03, and the increment between the 

cubic model and the exponential model was 0.00. Thus, these three models provided 

comparable fit. Examination of the reference lines in Figure 11 suggested that these three 

models provided adequate fit to the test data except at the end of the scale corresponding 

to the 100% classification accuracy. However, since the 100% classification accuracy 

was not used for prediction, this proved not to be a problem.

A classification accuracy of 85% was used as the cut-score to predict the critical 

value for Dmax. Using the regression functions obtained for the exponential, quadratic,
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and cubic models, predicted Dmax values of 0.16, 0.16, and 0.15, respectively, were 

obtained. These values are close to the 0.15 observational value. Thus, a critical value of 

0.15 was proposed for evaluating Dmax. A  Dmax value equal to or greater than 0.15

suggests moderate to strong multidimensionality, while values less than 0.15 suggest 

essential unidimensionality to weak multidimensionality.

Regression Analysis forrmax and Classification Accuracy

rmax was also closely related to classification accuracy. An inspection of Tables 6, 

7,13, and 14 suggested that higher rmax values are associated with higher classification 

accuracy results. However, what value should the minimum classification accuracy be to 

indicate simple or approximate simple structure? Results in the simulation study revealed 

that even for some complex structure conditions the classification accuracy could exceed 

90% (e.g., for the complex 40% and correlation 0.8 condition in the LSAT results, 

classification accuracy was 92% when sample size was 2000). Thus, a high classification 

accuracy of 95% was used as an indicator of simple or approximate simple structure, 

which will reduce the chance of setting a critical value that is overly liberal. A visual 

inspection of the simulation results suggested that all conditions with rmax values greater 

than or equal to 0.60 obtained classification accuracy greater than or equal to 95%. Thus, 

a regression analysis was conducted in which rmax was regressed on classification 

accuracy to confirm the visual inspection with statistical outcome and to obtain the 

predicted rmax with a classification accuracy of 95%.

First, the scatter plot with rmax as the x axis and classification accuracy as the y  

axis was examined to see if the relationship between the two was linear (Figure 12). The
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scatter plot showed a curvilinear relationship. Different models including linear, 

exponential, quadratic, and cubic were fitted. The regression functions are presented in 

Table 21. Figure 12 is the scatter plot with the four corresponding reference lines. Based 

Table 21

Regression Analysis Results for rmax and Classification Accuracy

Model Summary Parameter Estimates
R2 F dfl df2 Sig. Bp B,  B2 B3

Linear 0.59 10370.11 1 7198 0.00 -0.16 0.80
Quadratic 0.76 11147.18 2 7197 0.00 1.11 -2.98 2.58
Cubic 0.78 12422.59 2 7197 0.00 0.51 0.00 -2.06 2.27
Exponential 0.69 15839.08 1 7198 0.00 0.11 1.68_____________

on Table 21, all models exhibited adequate fit given that they all had significant F  tests at 

the alpha level of 0.05. A critical value of 0.05 was again used to assess increment in R 

squared to determine the best model for prediction. The increment between the 

exponential and the linear models was 0.10, so the exponential model explained 

significantly more variance. The increment between the quadratic and the exponential 

models was 0.07, so the quadratic model explained significantly more variance. The 

increment between the cubic and the quadratic models was only 0.02. Thus, the quadratic 

and the cubic models provided comparable fit. Examination of the reference lines in 

Figure 12 also suggested that these two models provided adequate fit to the test data.

A classification accuracy of 95% was used to predict the critical value for rmax. 

Using the regression functions obtained for the quadratic and the cubic models, predicted 

rmax values of 0.61 and 0.60 were obtained, which are close to the 0.60 observational

value. Thus, a critical value of 0.60 was proposed for evaluating rmax. Values greater than
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or equal to 0.60 suggest simple or approximate simple structure, while values less than 

0.60 suggest complex structure.

0  O b s e r v e d  

-  -  4 J n e a r

 Q u a d r a t i c

  C u b i c

 E x p o n e n t i a l

I  t  1 I  t

0,20 QM  0 . 6 0  0 . 8 0  1 . 0 0

Classification Accuracy

Figure 12. Linear and nonlinear fitting functions for regressing rmax on classification 
accuracy.

Real Data Studies

Data from the 2005 March administration of the SAT were analyzed to establish 

the connection between the simulation results and real testing outcomes. Three analyses 

were conducted, one at the composite test level and two at the Math subtest level.

At the composite test level, the dataset contained Math and Critical Reading items. 

The hypothesized dimensionality was two-dimensional with these two content categories 

as the two dimensions. The NOHARM analysis revealed that the correlation between the 

two dimensions was 0.72. The item parameters obtained from the NOHARM analysis

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Evaluating DETECT 117

were used to produce the vector plot of items for the SAT 2005 March composite test 

(see top graph of Figure 13). The graph clearly indicated an approximate simple structure 

with moderate correlation between dimensions. The corresponding condition in the 

simulation study is the approximate simple structure condition with a correlation of 0.70 

and a sample size of 2500 for the data simulated with the SAT parameters.

The D v and r indices obtained from DETECT were 0.43 and 0.86,
t i i o X  U Io a

respectively, indicating weak multidimensionality with approximate simple structure 

using Kim’s (1994) evaluation criteria. The classification accuracy and consistency were 

both 99%, and the misclassification error rate was 0.00. The classification results for the 

composite test were higher than those obtained from the corresponding simulated 

condition (classification accuracy 99% vs. 82% and classification consistency 0.99 vs. 

0.77, see Tables 14 and 17). It should be noted that the real test consisted of 121 items 

with a variety of combinations of ai and ci2 parameters. A large number of items had 

extremely high discrimination parameters on one dimension and extremely low 

discrimination parameters on the other dimension (e.g., an item with aj of 1.34 and a? of

0.04). In contrast, although the item parameter pairs used for simulation approximated the 

distribution of the item parameters of the SAT 2003 field trial data, they did not contain 

extreme pattern pairs. Furthermore, when the item parameters of the SAT 2003 field trial 

data were compared to those of the SAT 2005 March administration data, it was found 

that the SAT 2005 March administration data had a clearer dimensional structure. As 

seen from the vector plot of items for the SAT 2003 field trial (see bottom graph of
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Figure 13. Vector plots of items for the composite tests.
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Figure 13), the items on the field trial have a wider span than the items on the 2005 

March administration. These differences likely produced the discrepancy between the 

real and the simulated conditions given the item parameters used for the simulation were 

adopted from the 2003 field trial item parameters.

For the Math subtest, two analyses were conducted. For the first dataset, skill 1 

and skill 4 items were analyzed together. The hypothesized dimensionality was two- 

dimensional with these two skills as the dimensions. This dataset was expected to exhibit 

a low degree of complexity that corresponded to the simulated complex 40% conditions. 

A value of 0.57 was obtained for the correlation between dimensions. The item 

parameters obtained from NOHARM were used to produce the vector plot of items (top 

graph of Figure 14). As seen from this graph, most of the skill 1 and 4 items have a clear 

separation. The two clusters of items do not have a large separation angle, but item 

overlap is minimal. The corresponding condition in the simulation study is the complex 

40% condition with a correlation of 0.60 and a sample size o f2500.

The £) and r indices obtained from DETECT were 0.13 and 0.51,LU oX  I I lo X  '

respectively, indicating weak multidimensionality with complex structure. The 

classification accuracy and consistency were 83% and 74%, respectively, and the 

misclassification error rate was 4%. Compared to the results in the corresponding 

simulated condition (78% and 78% respectively), the results were close between the 

simulated and the real data conditions.

For the second dataset, skills 2 and 3 items were analyzed together. The 

hypothesized dimensionality was again two-dimensional with these two skills as 

dimensions. However, in contrast to the previous dataset, this dataset was expected to
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Figure 14. Vector plots of items for the Math subtest.
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exhibit a high degree of complexity that corresponded to the simulated complex 80% 

conditions. A value of 0.80 was obtained for the correlation between dimensions. The 

item parameters obtained from NOHARM were used to produce the vector plot of items 

(bottom graph of Figure 14). As seen from the graph, most of the skill 2 and skill 3 items 

clustered together indicating a complex dimensional structure. The corresponding 

condition in the simulation study is the complex 80% condition with a correlation of 0.80 

and a sample size of 2500.

The Z) and r indices obtained from DETECT were 0.13 and 0.42,max max

respectively, indicating weak multidimensionality with complex structure. The 

classification accuracy and consistency were 61% and 48% respectively, and the 

misclassification error rate was 35%. Compared to the results in the corresponding 

simulated condition, the classification accuracy and consistency results were comparable 

(61% vs. 58% and 48% vs. 52% respectively). The two subtest level results showed 

strong correspondence with the results from the associated simulated conditions.
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Chapter 6: Discussion and Conclusions 

Five sections are included in this chapter. First, the research questions are 

revisited together with a brief summary of the methods used for the present study. Second, 

a summary and discussion of the results are provided. Third, the conclusions from the 

present study are presented. Fourth, the limitations of the study are outlined. Fifth, the 

educational and practical implications from the study and recommendations for future 

research are discussed.

Restatement o f Research Questions and Summary o f Methods 

The purpose of this study was to evaluate the performance of DETECT under 

conditions of both approximate simple and complex structures. The accuracy and 

consistency with which DETECT can classify dichotomously scored items into 

dimensions is key to helping researchers and practitioners identify the dimensional 

structure of a test. DETECT, as shown in literature, produces accurate and consistent 

classification results when the data possess simple or approximate simple structure 

(Roussos & Ozbek, 2003; Stout et al., 1996; Zhang & Stout, 1999b). However, when data 

with complex structure are analyzed, DETECT has been shown to perform inconsistently 

across samples in simulated and real data analyses (Gierl et al., 2005; Leighton et al., in 

press; Uribe-Zarain, Nandakumar, & Yu, 2005). In the present study, the performance of 

DETECT was evaluated for data with complex structure through simulation and with 

incorporation of data with the approximate simple structure to serve as the baseline for 

comparison. The impact of three factors on Dmax, rmax, classification accuracy, and

classification consistency was studied systematically through simulation. Real data 

studies using DETECT to analyze data with hypothesized dimensional structure were
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also conducted to bring a sense of reality into the simulation results. The research 

questions addressed in this study included:

1. Are the Dmax and rmax indices, classification accuracy, and classification consistency 

of DETECT influenced by the presence of different degrees of complexity in data 

structure?

2. Are the Dmax and rmax indices, classification accuracy, and classification consistency 

of DETECT influenced by the correlations among dimensions?

3. Are the Dmax and rmax indices, classification accuracy, and classification consistency 

of DETECT influenced by the sample size?

4. Is there a relationship between the Dmax index and classification accuracy? If there is 

a relationship, what is the direction of the relationships?

5. Is there a relationship between the rmax index and classification accuracy? If there is a

relationship, what is the direction of the relationships?

To answer the first question, tests with different percentages of items measuring 

multiple dimensions were simulated to create different degrees of complexity in the data. 

Three levels were created: one for the approximate simple structure, with 0% of the items 

measuring multiple dimensions and two for the complex structure, with 40% and 80% 

items measuring multiple dimensions. To answer the second question, different values of 

correlation between dimensions were selected for simulation. Four levels were created 

with moderate to high correlations (0.60 to 0.90 with an increment of 0.10). To answer 

the third question, three different sample sizes (1500,2000, and 2500) were used for 

simulation.
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To answer the fourth question, a regression analysis was conducted setting 

classification accuracy as the independent variable and Dmzx as the dependent variable. 

After the relationship between the two variables was established, a classification accuracy 

value was selected to predict the critical value for Z)max to serve as a new criterion for

indicating multidimensionality.

Similarly, to answer the fifth question, a regression analysis was conducted 

setting classification accuracy as the independent variable and rmax ad the dependent 

variable. After the relationship between the two was established, a value was selected for 

classification accuracy to predict a critical value for rmax to serve as a new criterion for 

indicating the nature of the data structure—simple or complex.

Discussion o f Results and Conclusions

Simulation Results

Impact o f the degree o f complexity in data structure. For the data simulated with 

the LS AT parameters, degree of complexity showed a consistent negative impact on 

Anax > rmax > classification accuracy, and classification consistency. However, an 

interaction effect was found between degree of complexity and correlation between 

dimensions on misclassification error. Misclassification error rate increased only when 

the degree of complexity increased from 40% to 80% for the correlations of 0.60 to 0.80. 

Misclassification error rate increased when the degree of complexity increased across all 

levels for the correlation of 0.90. This interaction effect was likely caused by the 

clustering of misclassification error rates close to the lowest possible value of 0% for the 

approximate simple structure conditions and for the three lower correlation conditions for 

the complex 40% conditions.
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For the data simulated with the SAT parameters, degree of complexity did not 

show a significant impact on Dmax. However, it did show an impact on rmax with an 

interaction with the correlation between dimensions. rmax decreased when the degree of 

complexity increased for the correlation of 0.60. rmax decreased when the degree of 

complexity increased from 0% to 40% for the correlation of 0.70. For other correlation 

conditions, degree of complexity did not show a significant impact on rmax. The

interaction effect was again caused by the clustering of rmax values at the low end of the

scale for the two high correlation conditions (0.80 and 0.90).

Degree of complexity also showed an impact on classification accuracy with an 

interaction with the correlation between dimensions. Classification accuracy decreased as 

the degree of complexity increased for correlations of 0.60 and 0.70. Classification 

accuracy decreased for the correlation of 0.80 only when the degree of complexity 

increased from 40% to 80%. Degree of complexity did not show a consistent impact on 

classification accuracy for the correlation of 0.90. The clustering of classification 

accuracy values at the low end of the scale for the two high correlation conditions (0.80 

and 0.90) and the complex 80% conditions accounted for the interaction effect.

A consistent negative effect was found on classification consistency. 

Classification consistency decreased as the degree of complexity increased. Finally, there 

was an interaction effect between degree of complexity and correlation between 

dimensions on misclassification error. Misclassification error increased as the degree of 

complexity increased for the correlations of 0.60 and 0.70. Degree of complexity did not 

show a consistent impact on misclassification error for the correlations of 0.80 and 0.90.
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Impact o f the correlation between dimensions. For the data simulated with the 

LSAT parameters, correlation between dimensions showed an impact on all five 

statistics, Dmax, rmax, classification accuracy, classification consistency, and 

misclassification error. However, an interaction effect was found with the degree of 

complexity for all five statistics. Dmax decreased when the correlation between 

dimensions increased only when the approximate simple or complex 40% structures were 

involved. For the rmax index, a negative impact was found only when the approximate

simple or complex 40% structures were involved. Clustering of values at the low end for 

the complex 80% conditions were found for both statistics. The narrow ranges resulted 

from this clustering effect led to the interaction effects.

For the classification accuracy, no significant impact was found for the 

approximate simple structure conditions. Classification accuracy decreased only when the 

correlation increased from 0.80 to 0.90 for the complex 40% conditions. Classification 

accuracy decreased when the correlation increased for the complex 80% condition. For 

the classification consistency, correlation did not show an impact for the approximate 

simple structure conditions. Classification consistency decreased only when the 

correlation increased from 0.70 to 0.90 for the complex 40% conditions. Classification 

consistency decreased when the correlation increased for the complex 80% conditions. 

For both classification accuracy and consistency, there was a clustering effect with values 

clustering at the highest possible value of 100% for the approximate simple and the low 

correlation (0.60) conditions for the complex 40% conditions. This led to the interaction 

effect between correlation and degree of complexity for both statistics.
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Misclassification error rate increased only when the correlation increased from 

0.80 to 0.90 for the complex 40% conditions. Misclassification error increased only when 

the correlation went from 0.70 to 0.80 for the complex 80% conditions.

For the data simulated with the SAT parameters, correlation between dimensions 

did not show a significant impact on Z)max. However, it did show an impact on rmax with

an interaction with the degree of complexity. rmax decreased only when the correlation 

increased from 0.60 to 0.80 for the approximate simple structure conditions. For the 

complex 40% and 80% conditions, correlation did not show a significant impact on rmax. 

The rmax values clustered at the low end of the scale for the two high correlations (0.80 

and 0.90) of the complex 40% conditions and for all complex 80% conditions. The 

narrow ranges resulted from the clustering effect led to the interaction effect.

For the classification accuracy, classification consistency, and misclassification 

error, correlation between dimensions showed an impact on all three statistics with an 

interaction with the degree of complexity. Classification accuracy decreased as the 

correlation increased for the approximate simple and complex 40% conditions. 

Correlation between dimensions did not show consistent impact on classification 

accuracy for the complex 80% conditions. Classification consistency decreased when the 

correlation increased from 0.60 to 0.8 for the approximate simple structure conditions. 

Classification consistency decreased when the correlation increased from 0.60 to 0.70 for 

the complex 40% conditions. Correlation between dimensions did not show a consistent 

impact on classification consistency for the complex 80% conditions. For both 

classification accuracy and consistency, there was a clustering effect near the low end of
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the scale for the two high correlations (0.80 and 0.90) of the complex 40% conditions and 

for all complex 80% conditions. This led to the interaction effects for both statistics.

Misclassification error increased when the correlation increased from 0.80 to 0.90 

for the approximate simple structure conditions. For the complex 40% and 80% 

conditions, correlation between dimensions did not show a consistent impact on 

misclassification error.

Impact o f the sample size. For the data simulated with the LSAT parameters, 

sample size did not show a significant impact on Dmax, classification accuracy, and 

misclassification error. However, it did show an impact on rmax and classification 

consistency with an interaction with the degree of complexity. The rmax index increased

as sample size increased from 1500 to 2000 for the approximate simple and complex 40% 

conditions. For the classification consistency, sample size did not show a significant 

impact on it for the approximate simple and complex 40% conditions, but for the 

complex 80% conditions classification consistency increased when the sample size 

increased from 2000 to 2500. For the data simulated with the SAT parameters, sample 

size did not an impact on any of the five statistics, Dmax, rmax, classification accuracy,

classification consistency, and misclassification error.

Discrepancies between the LSAT and SAT results. Overall, better results were 

obtained with the LSAT parameters than with the SAT parameters. Higher Dmax, rmax, 

classification accuracy, and classification consistency were found together with lower 

misclassification error rates for the data simulated with the LSAT parameters. These 

discrepancies could be attributable to the inclusion of less discriminating items in the 

SAT parameters. Low discrimination parameters with values from 0.2 to 0.4 were
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included in the SAT parameters, while the LSAT parameters only included moderate to 

high discrimination parameters with values from 0.5 to 1.1. This finding is consistent 

with research in the literature (e.g., van Abswoude et al., 2004).

Another possible explanation had to do with the difference in angular departures 

of the two dimensions. For the LSAT parameters, the angular departure between the two 

dimensions was 60°. For the SAT parameters, the angular departure between the two 

dimensions was 20°. When the angular departure between the two dimensions becomes 

smaller, it becomes more difficult for DETECT to distinguish between the two 

dimensions. This could be another reason why the LSAT results were much better than 

the SAT results.

Adequacy o f classification accuracy and consistency. The successful 

identification of the number of dimensions underlying the responses on a test and the 

meaningful interpretation of the identified dimensions depend on the accuracy and 

consistency of the dimensionality assessment procedures. As the true underlying 

dimensional structure is seldom known in real testing situations, decisions on the 

dimensional structure of a test rely on cross validation using multiple samples. Only 

when consistent results are found across samples can we draw conclusions on the 

dimensional structure underlying a test with confidence.

Results from this study showed that DETECT worked adequately producing 

classification accuracy and consistency greater than or equal to the criterion of 85% for 

15 of 24 conditions when data displayed approximate simple structure and for 10 of 48 

conditions when data displayed complex structure. When tests with moderate to high 

discriminating items and clearer multidimensional structure, such as the LSAT, were
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analyzed, DETECT worked well for all approximate simple structure conditions. When 

lower degrees of complexity (40%) were involved, DETECT produced classification 

accuracy and consistency greater than or equal to 85% as long as the correlation between 

dimensions was less than or equal to 0.80. DETECT worked satisfactorily for tests with 

higher degrees of complexity (80%) only when the correlation was 0.60 given a sample 

size of 2500.

However, when tests that included low discriminating item and possessed a 

messier dimensional structure, such as the SAT, were analyzed, DETECT worked 

satisfactorily only under limited conditions with approximate simple structure (i.e., when 

the correlation was 0.60). DETECT worked poorly for all complex structure conditions. 

Refinement o f Evaluation Criteria for Z)max and rmax

An important issue raised in this study is the refinement of the evaluation criteria 

for the DETECT indices. For the Dmax index, high classification accuracy results were

obtained for many Dmax values indicating weak multidimensionality according to Kim’s 

(1994) criteria. For example, for the 0.60 correlation and approximate simple structure 

condition with the LSAT parameters, the Dmax values were 0.61 to 0.63 indicating

moderate multidimensionality. The classification accuracy obtained for these conditions 

was 100%. For the 0.90 correlation and approximate simple structure conditions with the 

LSAT parameters, the Dmax values were 0.15 and 0.16 indicating weak 

multidimensionality. However, the classification accuracy remained above 90%. This 

outcome suggested the data were clearly two-dimensional, and the DmSK values of 0.15 

and 0.16 actually indicated, at least, moderate multidimensionality. Thus, the evaluation
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criteria for the Z)max index might be underestimating the strength of multidimensionality 

in a test.

A visual inspection of the simulation results for Z)max and classification accuracy 

and the regression analysis between them both suggested a critical value of 0.15 when 

datasets with classification accuracy greater than or equal to 85% were considered 

multidimensional. Thus, instead of the multi-level evaluation criteria proposed by Kim 

(1994), a single critical value was proposed in the present study to impose a dichotomy 

on Dmax. Values greater than or equal to 0.15 indicate moderate to strong 

multidimensionality, while values less than 0.15 indicate essential unidimensionality to 

weak multidimensionality.

The rmax index was also related to classification accuracy. For example, using the 

SAT parameters, when data of approximate simple structure were simulated and the 

correlation between dimensions was set to 0.60, the rmax obtained was 0.55 for the

sample size of 2500. This value, according to Kim (1994), indicated complex structure. 

However, an analysis of the vector plot of items (Figure 8) as well as the high 

classification accuracy result (95%) suggested otherwise. DETECT clearly identified the 

items as measuring two dimensions with high accuracy and consistency. Thus, the 0.80 

evaluation criterion for rmax might be too stringent.

A visual inspection of the simulation results for rmax and classification accuracy 

and the regression analysis between them both suggested a critical value of 0.60 when 

datasets with classification accuracy greater than or equal to 95% were considered as 

showing approximate simple to simple structure. Values greater than or equal to 0.60
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indicate simple or approximate simple structure, while values less than 0.60 indicate 

complex structure.

Real Data Results

All three analyses conducted in the real data studies showed important 

consistencies with the simulation results. Analysis of the composite test obtained much 

higher classification accuracy and consistency (both at 99%) than the corresponding 

simulated condition (82% and 77%). However, as discussed in the previous chapter, the 

real data exhibited a cleaner dimensional structure, and this led to the discrepancy 

between the real and the simulated conditions. The two datasets analyzed at the Math 

subtest level both obtained reasonably close classification accuracy and consistency 

results with those obtained in the corresponding simulated conditions. The skills 1 and 4 

dataset produced similar results to those obtained for the simulated complex 40% and 

correlation 0.60 conditions. The skills 2 and 3 dataset produced similar results to those 

obtained for the simulated complex 80% and correlation 0.80 conditions. The replication 

of the simulation results in the real data analyses illustrated the truthfulness of the 

simulation conditions relative to actual testing situations. The use of different item 

parameters that resembled real tests brought reality into the simulation study. The 

comparable results obtained in the simulation and real data studies also provide us with 

confidence in the new guidelines proposed for interpreting the £>max and rmax indices.

Conclusions

Based on the simulation and real data results, it can be concluded that DETECT 

can identify the dimensional structure of a test with considerable accuracy and 

consistency only under limited conditions when complex structure is involved. These
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conditions include restrictions on the discrimination parameter of items (moderate to 

high), the degree of complexity involved (lower than or equal to 40%), and the 

correlation between dimensions (lower than or equal to 0.80). DETECT is a suitable 

candidate for assessing the dimensionality of a test only when approximate simple 

structure or low degree of complexity are involved in the data.

Degree of complexity and correlation between dimensions both have negative 

impacts on the DETECT indices and classification accuracy and consistency in some 

form, either consistent negative impact by itself or with an interaction with each other. 

Sample size do not have a significant or consistent impact on the DETECT indices and 

classification accuracy. Although it did show a positive impact on classification 

consistency under limited conditions, overall there is no significant and consistent impact 

on classification consistency.

Analyses of the DETECT indices suggest that the evaluation criteria for them are 

somewhat stringent. The regression analyses between the DETECT indices and 

classification accuracy suggest a new critical value of 0.15 for Dmax and a new critical 

value of 0.60 for r .max

Limitations o f the Study 

The present study is limited in two aspects. First, only two-dimensional data were 

simulated. Number of dimensions was not selected as a factor to be studied. However, 

previous research has shown that DETECT is prone to making more classification errors 

when higher numbers of dimensions are involved in a test (Finch & Habing, 2005; Zhang 

& Stout, 1999b). Not including number of dimensions as a factor to be studied limits the 

generalizability of the present study. The pattern of results found in this study might not

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



Evaluating DETECT 134

be replicated when data with higher numbers of dimensions are simulated. This limitation 

also reduces the usefulness of the proposed refinement to the evaluation criterion for the 

£) and r v indices because the new criterion values are only based on results obtainedin cL/C m ax »

in the two-dimensional case.

Another limitation of the study relates to the item parameters used for simulation. 

In order to shed light on whether item discrimination parameter has any impact on 

DETECT classification accuracy and consistency, two sets of item parameters were used 

to simulate two levels within this factor. Although the SAT parameters involved 

discrimination parameters as low as 0.2, the maximum value for the discrimination 

parameters was 1.3. This range overlapped with the LSAT parameters with 

discrimination parameters of 0.5 to 1.1. Thus, only a portion of the items simulated with 

the SAT parameters had a low level of discrimination. The overlapping of the two levels 

of item discrimination also reduces the power of this study to identify differences due to 

item discrimination parameter. Moreover, the angular departures between the two 

dimensions for the two sets of parameters were also different, 60° for the LSAT 

parameter set and 20° for the SAT parameter set. The two factors, overlapping 

discriminating parameters and differential angular departures, made it impossible to 

attribute the differences found in the LSAT and the SAT results to one of them.

Implications and Future Directions 

Educational and Practical Implications

DETECT, as illustrated in this study, can adequately identify the correct 

dimensional structure for the two dimensional case classifying items accurately and 

consistently (at least at the 85% rate) for a limited number of conditions with complex
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dimensional structures. The factors that should be considered by researchers and 

practitioners, when evaluating the trustworthiness of the DETECT results, include degree 

of complexity in data structure, correlation between dimensions, sample size, and 

possibly discrimination parameter of items. When tests consisting of items with moderate 

to high discrimination parameter are analyzed, DETECT can be used even when higher 

degrees of complexity (e.g., 80% of the items measuring a composite of 9X and 02) are

present, given that the correlation between dimensions is low to moderate (< 0.60) and 

sample size is appropriately chosen (2500 for the correlation of 0.60). When lower 

degrees of complexity are present in the data, DETECT can be used with confidence if 

the correlation between dimensions is low to high (< 0.80). However, when tests that 

include items with low discrimination parameter (< 0.4) are analyzed, DETECT can only 

be used with confidence under limited conditions. When data of approximate simple 

structure are involved, DETECT can be used only when the correlation is low to 

moderate (< 0.60). DETECT will work inaccurately and inconsistently when the data 

possess complex structure both for the conditions of low (40%) and high (80%) degrees 

of complexity.

When the nature of the data and the correlation between dimensions are not 

known to researchers and practitioners, DETECT can still be used, but the interpretation 

of the results should proceed with caution. With the proposed refinement for the 

evaluation criterion of the Z)max and rmax index, one can be fairly confident with the 

classification accuracy of DETECT when a Dmax value greater than or equal to 0.15 and 

a rmax value greater than or equal to 0.60 are obtained for a dataset.
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Future Research Directions

Three major issues still need to be addressed in future studies. First, the present 

study only investigated the two-dimensional case. How DETECT will perform under 

conditions of complex structure with higher numbers of dimensions still needs to be 

studied. This line of research will contribute to our understanding of DETECT under 

conditions of complex structure and help develop a comprehensive set of guidelines for 

using and interpreting DETECT results. A simulation study can be conducted setting 

number of dimensions as a factor to be studied. Different numbers of dimensions (e.g., 3 

to 6) can be specified for a simulated dataset. Impact of the factor on , rmax,

classification accuracy, and classification consistency can then be studied.

Second, the two sets of item parameters used in the present study had overlapping 

ranges of item discrimination parameters. This reduces the power of the study to make a 

claim about the impact of item discrimination parameter on £>max, rmax, classification

accuracy, and classification consistency. In future research, the use of item parameter sets 

that have discrete levels of item discrimination will make item discrimination parameter 

an explicit factor to be studied. Large-scale high-stakes tests as well as low-stakes tests 

can be sought after to identify item parameter sets with discrete levels of item 

discrimination.

Moreover, the discrepant results found for the LSAT and SAT parameters could 

also be attributable to different angular departures between the two dimensions. In the 

present study, this factor was intertwined with the item discrimination factor, which 

makes it impossible to separate the effect associated with each of them. In future research, 

different parameter sets could also be used that have different angular departures between
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dimensions to study the effect of angular departure between dimensions on DETECT 

performance.

Third, the present study was conducted using Kim’s (1994) guidelines. How 

DETECT will perform with the newly proposed guidelines for Dmax and rmax must be 

addressed. The present study proposed a critical value of 0.15 for the £>max index and 

relaxed the evaluation criterion of the rmax index to 0.60. These new guidelines are still

tentative and need to be validated systematically through simulation studies of the 

associated Type I error and power rates. When evaluating the adequacy of the evaluation 

criterion for I) and rm„ , unidimensional and multidimensional data should bem ax max

simulated. The Type I error rate and power associated with the two critical values can 

then be obtained based on replication data. Only after these studies have been conducted 

and the correctness of the refinements has been established can we use these new 

guidelines, with confidence, for directing practice and future research.
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Appendix A. Visual Basic Code for Batch Processing of Simulation and DETECT Runs

S u b  s i m u l a t i o n {)
D i m  c o m p ( l  T o  3 )  A s  S t r i n g ,  c o r ( l  T o  4 )  A s  S i n g l e

D i m  s a m p l e ( 1  T o  3 )  A s  I n t e g e r ,  m e s s a g e ( 1 2 )  A s  S t r i n g
D i m  h  A s  I n t e g e r ,  i  A s  I n t e g e r ,  j  A s  I n t e g e r ,  a  A s  I n t e g e r ,  b  A s

I n t e g e r ,  c  A s  I n t e g e r
D i m  o u t f i l e  A s  S t r i n g ,  s t r  A s  S t r i n g ,  p a t h  A s  S t r i n g ,  d a t p a t h  A s

S t r i n g ,  o u t p a t h  A s  S t r i n g

D i m  R e t V a l ,  F i n d l t  A s  S t r i n g
p a t h  =  " l o c a l p a t h \ m u l t i s i m \ "
d a t p a t h  =  "  l o c a l p a t h \ d a t a \ S A T 2 \ "

o u t p a t h  =  "  l o c a l p a t h \ r e s u l t \ S A T 2 \ "
c o m p ( l )  =  " s i m p l e "

c o m p ( 2 )  =  " c o m p l e x 4 0 "
c o m p ( 3 )  =  " c o m p l e x 8  0 "  1

c o r ( l )  =  0 . 6

c o r ( 2 )  =  0 . 7

c o r ( 3 )  =  0 . 8

c o r ( 4 )  =  0 . 9
s a m p l e ( 1 )  =  1 5 0 0

s a m p l e ( 2 ) =  2 0 0 0

s a m p l e ( 3 )  =  2 5 0 0

' c r e a t e  directories f o r  d a t a  and output r e s u l t s .

F o r  a  =  1  T o  1  'complexity: 0, 40, 80
'needed f o r  original set generation, 
s t r  =  d a t p a t h  & c o m p ( a )

M k D i r  s t r
s t r  =  o u t p a t h  & c o m p ( a )

M k D i r  s t r

'end f o r  o r i g i n a l  s e t  f o l d e r  s e t  u p .

F o r  b  =  1  T o  2  'correlation: 0.6, 0.7, 0 . 8 ,  0.9
'needed for original set generation.
s t r = d a t p a t h  & c o m p ( a )  & " \ c o r "  & F o r m a t N u m b e r ( c o r ( b ) , 1 , v b T r u e )  

M k D i r  s t r
s t r = o u t p a t h  & c o m p ( a )  & " \ c o r "  & F o r m a t N u m b e r ( c o r ( b ) , 1 , v b T r u e )  
M k D i r  s t r

'end for original set folder set up.

F o r  c  =  1  T o  3  'sample size: 1500, 2 0 0 0 ,  2500
'needed for original set generation.
s t r  =  d a t p a t h  & c o m p ( a )  & " \ c o r "  & F o r m a t N u m b e r ( c o r ( b ) ,  1 ,  

v b T r u e )  & " \ "  & s a m p l e ( c )

M k D i r  s t r

s t r  =  o u t p a t h  & c o m p ( a )  & " \ c o r "  & F o r m a t N u m b e r ( c o r ( b ) ,  1 ,  

v b T r u e )  & " \ "  & s a m p l e ( c )
M k D i r  s t r

'end for original set folder set up.

'needed for cross-validation set generation.
'str =  d a t p a t h  & c o m p ( a )  & "Ycor" & FormatNumber(cor ( b ) ,  1 ,  

vbTrue) & "\" & sample(c) & "c"
'MkDir str
• s t r  »  outpath & comp(a) & "\cor" & FormatNumber(cor(b), 1 ,  

vbTrue) '& "\" & sample(c) & "c"
'MkDir str
'end for cross-valid set folder set up.
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N e x t  c  

N e x t  b  

N e x t  a

’ s t a r t  simulation, MULTISIM s y n t a x  g e n e r a t i o n ,  same f o r  all c o n d i t i o n s .  

F o r  h  =  1  T o  1 0 0
o u t f i l e  =  p a t h  & " M U L "  & h  & " . T X T "

O p e n  o u t f i l e  F o r  O u t p u t  A s  # 1

P r i n t  # 1 ,  " S I M "  & h  & " . T X T "

C l o s e  # 1  

N e x t  h

F o r  a  =  1  T o  3  'sample size: 1500, 2000, 2500

'DETECT syntax generation, same within each s a m p l e  condition.
F o r  h  =  1  T o  1 0 0

o u t f i l e  =  p a t h  & " D S Y N "  & h  & " . T X T "  

m e s s a g e d )  =  " S I M "  & h  & " . D A T "  

m e s s a g e ( 2 )  =  " 4 0 "
m e s s a g e ( 3 )  =  s a m p l e ( a )  'sample size
m e s s a g e ( 4 )  =  " 1 0 "

m e s s a g e ( 5 )  =  " 5 "
m e s s a g e ( 6 ) =  " 2 "
m e s s a g e ( 7 )  =  " D S Y N "  & h  & " . O U T "

m e s s a g e ( 8 ) =  " 0 "
m e s s a g e ( 9 )  =  " - 1 2 3 4 "

m e s s a g e ( 1 0 ) =  " 0 "

O p e n  o u t f i l e  F o r  O u t p u t  A s  # 1  
F o r  i  =  1  T o  1 0

P r i n t  # 1 ,  m e s s a g e ( i )
N e x t  i  

C l o s e  # 1
N e x t  h

F o r  b  =  1  T o  1  ’ c o m p l e x i t y :  0, 40, 80
F o r  c  =  1  T o  2  'correlation: 0.6, 0.7, 0.8, 0.9

'Multisim simh.txt generation, differ for each condition. 
F o r  h  =  1  T o  1 0 0

o u t f i l e  =  p a t h  & " S I M "  & h  & " . T X T "

m e s s a g e ( 1 )  =  " S I M "  & h  & " . O U T "
m e s s a g e ( 2 ) =  " 2 "

m e s s a g e d )  =  " 4 0 "
m e s s a g e ( 4 )  =  s a m p l e ( a )  'sample size
m e s s a g e ( 5 )  =  " 1 "  

m e s s a g e ( 6 ) =  " 1 "
m e s s a g e ( 7 )  =  F o r m a t N u m b e r ( c o r ( c ) ,  1 ,  v b T r u e )  'cor 
m e s s a g e ( 8 ) =  " 0 . 0 "

m e s s a g e d )  =  " 0 . 0 "

m e s s a g e ( 1 0 )  =  0  -  h  -  1 0 0  'random seed change for CV 
m e s s a g e ( 1 1 ) =  " 1 "
m e s s a g e ( 1 2 )  =  " S I M "  & h  & " . D A T "

O p e n  o u t f i l e  F o r  O u t p u t  A s  # 1  

F o r  i  =  1  T o  3
P r i n t  # 1 ,  m e s s a g e ( i )

N e x t  i
O p e n  p a t h  & " F o l d e r V  & c o m p ( b )  & " . p r m  "  F o r  I n p u t  A s

# 2  'item parameter file
F o r  j  =  1  T o  4 0  

I n p u t  # 2 ,  s t r
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P r i n t  # 1 ,  s t r  

N e x t  j  

C l o s e  # 2  
F o r  i  =  4  T o  1 2

I f  i  =  5  O r  i  =  8  T h e n  
F o r  j  =  1  T o  4

P r i n t  # 1 ,  m e s s a g e ( i )

N e x t  j
E l s e

P r i n t  # 1 ,  m e s s a g e ( i )

E n d  I f  

N e x t  i  

C l o s e  # 1  

N e x t  h

' run mu l t i s im.bat
R e t V a l  =  S h e l l ( p a t h  & " m u l t i s i m . b a t " ,  1 )

'wait for multisim.bat to finish.
F i n d l t  =  D i r ( p a t h  & " S I M 1 0 0 . D A T " )

W h i l e  L e n ( F i n d l t )  =  0

F i n d l t  =  D i r ( p a t h  & " S I M 1 0 0 . D A T " )

W e n d

'run d e t e c t s y n . b a t
R e t V a l  =  S h e l l ( p a t h  & " d e t e c t s y n . b a t " )

'wait for detectsyn.bat to finish.
F i n d l t  =  D i r ( p a t h  & " D S Y N 1 0 0 . O U T " )

W h i l e .  L e n ( F i n d l t )  =  0
F i n d l t  =  D i r ( p a t h  & " D S Y N I O O . O U T " )

W e n d

'move .dat and .out files.
O p e n  p a t h  & " c l e a n . b a t "  F o r  O u t p u t  A s  # 1

'for original set.
s t r  =  " M o v e  L o c a l p a t h \ m u l t i s i m \ S I M * . D A T  "

& c o m p ( b )  & " \ c o r "  & F o r m a t N u m b e r ( c o r ( c ) , 1  

& " \ "  & T r i m ( C S t r ( s a m p l e ( a ) ) )
P r i n t  # 1 ,  s t r
s t r  =  " M o v e  L o c a l p a t h \ m u l t i s i m \ D S Y N * . O U T  "  

& c o m p ( b )  & " \ c o r "  & F o r m a t N u m b e r ( c o r ( c ) ,

& " \ "  & T r i m ( C S t r ( s a m p l e ( a ) ) )

P r i n t  # 1 ,  s t r
'end for original set

'for cross-validation set.
'str = "Move LocaIpath\multisim\SIM*.DAT " 
* S  c o m p ( b )  & "\cor" & FormatNumber(cor(c), 
'& "\" & Trim(CStr(sample(a))) & "c"
'Print # 1 ,  s t r
"str = "Move Localpath\multisim\DSYN*.OUT 
'  fi c o r o p ( b )  & " \ c o r "  & F o r m a t N u m b e r  ( c o r  ( c )  , 

' & "\" & Trim(CStr(sample(a))) & "c"
'Print #1, str
'end f o r  cross-valid set.

C l o s e  # 1
R e t V a l  =  S h e l l ( p a t h  & " c l e a n . b a t " )

'wait for clean.bat to finish.
F i n d l t  =  D i r ( p a t h  & " D S Y N 9 9 . O U T " )

W h i l e  L e n ( F i n d l t )  < >  0

& d a t p a t h  

, v b T r u e )

& o u t p a t h  

1 ,  v b T r u e )

& datpath 
1, vbTrue)

" & outpath 
1 , vbTrue)
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F i n d l t  =  D i r ( p a t h  & " D S Y N 9 9 . O U T " )

W e n d  
N e x t  c  

N e x t  b  
N e x t  a

' f i n a l  clean u p  of i n t e r m e d i a t e  files.
R e t V a l  =  S h e l l ( p a t h  & " f i n a l c l e a n . b a t " )

E n d  S u b

Content of “multisim.bat”:

c d  l o c a l p a t h \ m u l t i s i m  

M U L T I S I M  <  M U L l . t x t

M U L T I S I M  <  M U L 1 0 0 . t x t

Content of “detectsyn.bat”:

c d  l o c a l p a t h \ m u l t i s i m  

D E T E C T  <  D S Y N l . t x t

D E T E C T  <  D S Y N 1 0 0 . t x t

Content of “finalclean.bat”:

d e l  L o c a l p a t h \ m u l t i s i m \ S I M * . T X T  

d e l  L o c a l p a t h \ m u l t i s i m \ S I M * . O U T  
d e l  L o c a l p a t h \ m u l t i s i m \ M U L * . T X T  
d e l  L o c a l p a t h \ m u l t i s i m \ D S Y N * . T X T  

d e l  L o c a l p a t h \ m u l t i s i m \ B R I E F . O U T
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Appendix B. Visual Basic Code for Batch Processing DETECT Output and Calculating 

Classification Accuracy

S u b  a d d s h e e t ( )
' i n s e r t  e n o u g h  w o r k s h e e t s .
F o r  i  =  1  T o  3 4
S h e e t s . A d d  A f t e r : = S h e e t s ( i  +  2 )
N e x t  i  

E n d  S u b  
S u b  r e s u l t ( )

D i m  c o m p ( l  T o  3 )  A s  S t r i n g ,  c o r ( l  T o  4 )  A s  S i n g l e ,  s a m p l e ( l  T o  3 )  A s
I n t e g e r ,  h  A s  I n t e g e r ,  i  A s  I n t e g e r ,  j  A s  I n t e g e r ,  a  A s  I n t e g e r ,  b  A s
I n t e g e r ,  c  A s  I n t e g e r ,  s t r  A s  S t r i n g ,  p a t h  A s  S t r i n g ,  p a t h l  A s  S t r i n g
D i m  k  A s  I n t e g e r ,  e  A s  I n t e g e r ,  d  A s  I n t e g e r ,  c o r r e c t  A s  I n t e g e r ,  d i m l  A s
I n t e g e r ,  c o r r e c t l  A s  I n t e g e r ,  c o r r e c t 3  A s  I n t e g e r ,  f  A s  I n t e g e r ,  g  A s
I n t e g e r ,  d i m 2  A s  I n t e g e r ,  s t r 2  A s  S t r i n g
p a t h  =  " L o c a l p a t h / r e s u l t / L S A T / "
c o m p ( l )  =  " s i m p l e  "
c o m p ( 2 )  =  " c o m p l e x 4 0 "
c o m p ( 3 )  =  " c o m p l e x 8 0 "
c o r ( l )  = 0 . 6

c o r ( 2 )  =  0 . 7
c o r ( 3 )  =  0 . 8
c o r ( 4 )  =  0 . 9
s a m p l e ( 1 )  =  1 5 0 0
s a m p l e ( 2 ) =  2 0 0 0

s a m p l e ( 3 )  =  2 5 0 0

' f i n a l r e s u l t  s h e e t  i n i t i a l i z a t i o n .
S h e e t 3 7 . N a m e  =  " f i n a l r e s u l t "
S h e e t 3 7 . C e l l s ( 3 ,  2 )  =  " D E T E C T m a x "
S h e e t 3 7 . C e l l s ( 3 ,  4 )  =  " r  I n d e x "
S h e e t 3 7 . C e l l s ( 3 ,  6 ) =  " P r e c i s i o n "
S h e e t 3 7 . C e l l s ( 3 ,  8 ) =  " P r e c  I "
S h e e t 3 7 . C e l l s ( 3 ,  1 0 )  =  " P r e c  I I "
S h e e t 3 7 . C e l l s ( 3 ,  1 2 )  =  " P r e c  C o m p l e x "
F o r  j  =  1  T o  6

S h e e t 3 7 . C e l l s ( 4 ,  ( j  -  1 )  * 2 + 2 )  =  " M e a n "
S h e e t 3 7 . C e l l s ( 4 ,  ( j  -  1 )  * 2  +  3 )  =  " S D "

N e x t

' r e a d  D E T E C T  o u t p u t  i n  a n d  c a l c u l a t e  p r e c i s i o n .
F o r  a  =  1  T o  3  ' c o m p l e x i t y :  0 ,  4 0 ,  8 0

F o r  b  =  1  T o  4 ' c o r r e l a t i o n :  0 . 6 ,  0 . 7 ,  0 . 8 ,  0 . 9
F o r  c  =  1  T o  3  ' s a m p l e  s i z e :  1 5 0 0 ,  2 0 0 0 ,  2 5 0 0

h =  ( a - 1 )  * 1 2 +  ( b  — 1 )  * 3 + c  ' s h e e t  n u m b e r

' r e a d  o u t p u t  i n .
p a t h l  =  p a t h  & T r i m ( c o m p ( a ) ) & " / c o r "  & F o r m a t N u m b e r ( c o r ( b ) ,  1 ,  

v b T r u e )  & " / "  & T r i m ( C S t r ( s a m p l e ( c ) ) )  & " / "
W o r k s h e e t s ( h ) . N a m e  =  T r i m ( L e f t ( c o m p ( a ) ,  1 )  & R i g h t ( c o m p ( a ) ,  2 ) )  

& & F o r m a t N u m b e r ( c o r ( b ) ,  1 ,  v b T r u e )  & & T r i m ( C S t r ( s a m p l e ( c ) ) )
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 1 ,  1 )  =  " D a t a s e t "
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 2 ,  1 )  =  " #  o f  D "
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 3 ,  1 )  =  " D m a x "
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 4 ,  1 )  =  " r  I n d e x "
F o r  i  =  1  T o  4 0

T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( ( i  +  4 ) ,  1 )  =  " I t e m "  & i  
N e x t  i
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 4 5 ,  1 )  =  " P r e c  t o t a l "
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T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 4 6 ,  1 )  =  " P r e c  I "
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 4 7 ,  1 )  =  " P r e c  I I "
C a l l  r e a d o u t p u t ( p a t h l , h )

'calculate precision.
S e l e c t  C a s e  c o m p ( a )
'Simple precision.

C a s e  " s i m p l e  "
F o r  i  =  1  T o  1 0 0

I f  i  \  2 6  =  0  T h e n
s t r  =  C h r ( 6 5  +  i )  & " 5 "  & & C h r ( 6 5  +  i )  & " 2 4 "

E l s e
s t r  =  C h r ( 6 4  +  i \ 2 6 )  & C h r ( 6 5 +  ( i  M o d  2 6 ) )  & " 5 "  &

& C h r ( 6 4  +  i  \  2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 2 4 "
E n d  I f  
d  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r )  ,  " = 1 " )  
e  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r )  ,  " = 2 " )
I f  d  > =  e  T h e n  

d i m l  =  1  

E l s e
d i m l  =  2  

E n d  I f
F o r  j  =  1  T o  2 0

I f  W o r k s h e e t s ( h ) . C e l l s ( j  + 4 ,  i  +  1 )  =  d i m l  T h e n  
c o r r e c t  =  c o r r e c t  +  1  

c o r r e c t l  =  c o r r e c t l  +  1  

E n d  I f  
N e x t  j
F o r  j  =  2 1  T o  4 0

I f  W o r k s h e e t s ( h ) . C e l l s ( j  + 4 ,  i  +  1 )  < >  d i m l  T h e n  
c o r r e c t  =  c o r r e c t  +  1  

E n d  I f
N e x t
W o r k s h e e t s ( h ) . C e l l s ( 4 5 ,  i  +  1 )  =  c o r r e c t  /  4 0
W o r k s h e e t s ( h ) . C e l l s ( 4 6 ,  i  +  1 )  =  c o r r e c t l  /  2 0
W o r k s h e e t s ( h ) . C e l l s ( 4 7 ,  i  +  1 )  =  ( c o r r e c t - c o r r e c t l ) / 2 0
c o r r e c t  =  0  

c o r r e c t l  =  0  

N e x t  i

'complex40 precision.
C a s e  " c o m p l e x 4 0 "

W o r k s h e e t s ( h ) . C e l l s ( 4 8 ,  1 )  =  " P r e c  C o m p l e x "
F o r  i  =  1  T o  1 0 0

I f  i  \  2 6  =  0  T h e n
s t r  =  C h r ( 6 5  +  i )  & " 5 "  & & C h r ( 6 5  +  i )  & " 1 6 "

E l s e
s t r  =  C h r ( 6 4  + i \ 2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 5 "  &

& C h r ( 6 4  +  i  \  2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 1 6 "
E n d  I f  
d  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r ) , " = 1 " )  
e  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r ) ,  " = 2 " )
I f  d  > =  e  T h e n  

d i m l  =  1  

E l s e
d i m l  =  2  

E n d  I f
F o r  j  =  1  T o  1 2

I f  W o r k s h e e t s ( h ) . C e l l s ( j  + 4 ,  i  +  1 )  =  d i m l  T h e n
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c o r r e c t  =  c o r r e c t  +  1  

c o r r e c t l  =  c o r r e c t l  +  1  

E n d  I f  
N e x t  j
F o r  j  =  1 3  T o  2 4

I f  W o r k s h e e t s ( h ) . C e l l s ( j  + 4 ,  i  +  1 )  < >  d i m l  T h e n  
c o r r e c t  =  c o r r e c t  +  1  

E n d  I f
N e x t
F o r  j  =  2 5  T o  3 2

I f  W o r k s h e e t s ( h ) . C e l l s ( j  +  4 ,  i  +  1 )  =  d i m l  T h e n  
c o r r e c t  =  c o r r e c t  +  1  

c o r r e c t l  =  c o r r e c t l  +  1  

c o r r e c t 3  =  c o r r e c t 3  +  1 
E n d  I f  

N e x t  j
F o r  j  =  3 3  T o  4 0

I f  W o r k s h e e t s ( h ) . C e l l s ( j  + 4 ,  i  +  1 )  < >  d i m l  T h e n  
c o r r e c t  =  c o r r e c t  +  1  

c o r r e c t 3  =  c o r r e c t 3  + 1 
E n d  I f

N e x t
W o r k s h e e t s ( h ) . C e l l s ( 4 5 ,  i  +  1 )  =  c o r r e c t  /  4 0
W o r k s h e e t s ( h ) . C e l l s ( 4 6 ,  i  +  1 )  =  c o r r e c t l  /  2 0
W o r k s h e e t s ( h ) . C e l l s ( 4 7 ,  i  +  1 )  =  ( c o r r e c t - c o r r e c t l ) /  2 0
W o r k s h e e t s ( h ) . C e l l s ( 4 8 ,  i  +  1 )  =  c o r r e c t 3  /  1 6
c o r r e c t  =  0  

c o r r e c t l  =  0  

c o r r e c t 3  =  0 
N e x t  i
W o r k s h e e t s ( h ) . C e l l s ( 4 8 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 4 8 : C W 4 8 " ) )  
W o r k s h e e t s ( h ) . C e l l s ( 4 8 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 4 8 : C W 4 8 " ) )

• c o r a p l e x S O  c o n d i t i o n .
C a s e  " c o m p l e x 8 0 "

W o r k s h e e t s ( h ) . C e l l s ( 4 8 ,  1 )  =  " P r e c  C o m p l e x "
F o r  i  =  1  T o  1 0 0

I f  i  \  2 6  =  0  T h e n
s t r  =  C h r ( 6 5  +  i )  & " 5 "  & & C h r ( 6 5  +  i )  & " 8 "
s t r 2  =  C h r ( 6 5  +  i )  & " 9 "  & & C h r ( 6 5  +  i )  & " 1 2 "

E l s e
s t r  =  C h r ( 6 4  + i \ 2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 5 ”  &
" : "  & C h r ( 6 4  +  i  \  2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 8 "
s t r 2  =  C h r ( 6 4  + i \ 2 6 )  & C h r ( 6 5  + ( i  M o d  2 6 ) )  & " 9 "  &
" : "  & C h r ( 6 4  +  i  \  2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 1 2 "

E n d  I f  
d  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r ) ,  " = 1 " )  
e  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r ) ,  " = 2 " )  
f  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r 2 ) ,  " = 1 ” )

g =
A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r 2 ) ,  " = 2 " )

I f  d  > =  e  T h e n
I f  f  > =  g  T h e n

I f  d  > =  f  T h e n  
d i m l  =  1

E l s e
d i m l  =  2  

E n d  I f
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E l s e
d i m l  =  1  

E n d  I f
E l s e

I f  f  > =  g  T h e n  
d i m l  =  2

E l s e
I f  e  > =  g  T h e n  

d i m l  =  2

E l s e
d i m l  =  1  

E n d  I f  
E n d  I f  

E n d  I f
F o r  j  =  1 T o  4

I f  W o r k s h e e t s ( h ) . C e l l s ( j  + 4 ,  i  +  1 )  =  d i m l  T h e n  
c o r r e c t  =  c o r r e c t  +  1  

c o r r e c t l  =  c o r r e c t l  +  1  

E n d  I f  
N e x t  j
F o r  j  =  5  T o  8

I f  W o r k s h e e t s ( h ) . C e l l s ( j  + 4 ,  i  +  1 )  < >  d i m l  T h e n  
c o r r e c t  =  c o r r e c t  +  1  

E n d  I f
N e x t
F o r  j  =  9  T o  2 4

I f  W o r k s h e e t s ( h ) . C e l l s ( j  + 4 ,  i  +  1 )  =  d i m l  T h e n  
c o r r e c t  =  c o r r e c t  +  1  

c o r r e c t l  =  c o r r e c t l  + 1  

c o r r e c t 3  =  c o r r e c t 3  + 1 
E n d  I f  

N e x t  j
F o r  j  =  2 5  T o  4 0

I f  W o r k s h e e t s ( h ) . C e l l s ( j  + 4 ,  i  +  1 )  < >  d i m l  T h e n  
c o r r e c t  =  c o r r e c t  +  1  

c o r r e c t 3  =  c o r r e c t 3  +  1 
E n d  I f

N e x t
W o r k s h e e t s ( h ) . C e l l s ( 4 5 ,  i  +  1 )  =  c o r r e c t  /  4 0
W o r k s h e e t s ( h ) . C e l l s ( 4 6 ,  i  +  1 )  =  c o r r e c t l  /  2 0
W o r k s h e e t s ( h ) . C e l l s ( 4 7 ,  i  +  1 )  =  ( c o r r e c t  - c o r r e c t l ) / 2 0
W o r k s h e e t s ( h ) . C e l l s ( 4 8 ,  i  +  1 )  =  c o r r e c t 3  /  3 2
c o r r e c t  =  0  

c o r r e c t l  =  0  

c o r r e c t 3  =  0 
N e x t  i
W o r k s h e e t s ( h ) . C e l l s ( 4 8 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 4 8 : C W 4 8 " ) )  
W o r k s h e e t s ( h ) . C e l l s ( 4 8 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 4 8 : C W 4 8 " ) )

E n d  S e l e c t
W o r k s h e e t s ( h ) . C e l l s ( 3 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 3 : C W 3 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 3 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 3 : C W 3 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 4 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 4 : C W 4 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 4 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 4 : C W 4 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 4 5 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 4 5 : C W 4 5 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 4 5 ,  1 0 3 )  =
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A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 4 5 : C W 4 5 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 4 6 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 4  6 : C W 4  6 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 4 6 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 4  6 : C W 4 6 " ) )  
W o r k s h e e t s ( h ) . C e l l s ( 4 7 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 4 7 : C W 4 7 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 4 7 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 4 7 : C W 4 7 " ) )

" w r i t e  i n t o  f i n a l  r e s u l t .
S h e e t 3 7 . C e l l s ( h  +  4 ,  1 )  =  W o r k s h e e t s ( h ) . N a m e  
F o r  k  =  1 T o  2

S h e e t 3 7 . C e l l s ( h  + 4 ,  k  +  1 )  =  _
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 3 ,  1 0 1  +  k )
S h e e t 3 7 . C e l l s ( h  + 4 ,  k  +  3 )  =  _
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 4 ,  1 0 1  +  k )
S h e e t 3 7 . C e l l s ( h  + 4 ,  k  +  5 )  =  _
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 4 5 ,  1 0 1  +  k )
S h e e t 3 7 . C e l l s ( h  + 4 ,  k  +  7 )  =  _
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 4 6 ,  1 0 1  +  k )
S h e e t 3 7 . C e l l s ( h  + 4 ,  k  +  9 )  =  _
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 4 7 ,  1 0 1  +  k )
S h e e t 3 7 . C e l l s ( h  +  4 ,  k  +  1 1 )  =  _
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 4 8 ,  1 0 1  +  k )

N e x t  k  
N e x t  c  

N e x t  b  
N e x t  a  

E n d  S u b

P u b l i c  S u b  r e a d o u t p u t  ( p a t h l  a s  S t r i n g ,  h  a s  I n t e g e r )
D i m  i  a s  i n t e g e r ,  j  a s  i n t e g e r ,  k  a s  i n t e g e r ,  s t r  a s  s t r i n g  
F o r  i  =  1  T o  1 0 0

T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 1 ,  i  +  1 )  =  i  
O p e n  p a t h l  & " D S Y N "  & i  & " . O U T "  F o r  I n p u t  A s  # 1  

F o r  j  =  1  T o  8

I n p u t  # 1 ,  s t r
N e x t  j
I n p u t  # 1 ,  s t r
W o r k s h e e t s ( h ) . C e l l s ( 2 , i  +  1 )  =  V a l ( R i g h t ( T r i m ( s t r ) ,  1 ) )  
F o r  j  =  1  T o  2

F o r  k  =  1  T o  2
I n p u t  # 1 ,  s t r

N e x t  k
W o r k s h e e t s ( h ) . C e l l s ( 2  +  j ,  i  +  1 )  =  _
R o u n d ( V a l ( R i g h t ( T r i m ( s t r ) ,  6 ) ) ,  4 )

N e x t  j
F o r  j  =  1 T o  6

I n p u t  # 1 ,  s t r
N e x t  j
F o r  j  =  0  T o  3

I n p u t  # 1 ,  s t r  
F o r  k  =  1  T o  1 0

W o r k s h e e t s ( h ) . C e l l s ( j  * 1 0  +  k  +  4 ,  i  +  1 )  
V a l ( L e f t ( T r i m ( s t r )  ,  1 ) )
s t r  =  R i g h t ( T r i m ( s t r ) ,  L e n ( T r i m ( s t r ) ) -  1 )

N e x t  k
N e x t  j  

C l o s e  # 1
N e x t  i  

E n d  S u b
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Appendix C. Visual Basic Code for Calculating Classification Consistency

S u b  r e s u l t c v ( )
D i m  i  A s  I n t e g e r ,  c o r ( l  T o  4 )  A s  S i n g l e
D i m  c o m p ( l  T o  3 )  A s  S t r i n g ,  s a m p l e ( 1  T o  3 )  A s  I n t e g e r
D i m  h  A s  I n t e g e r ,  j  A s  I n t e g e r ,  a  A s  I n t e g e r ,  b  A s  I n t e g e r ,  c  A s  I n t e g e r  
D i m  s t r  A s  S t r i n g ,  s t r 2  A s  S t r i n g ,  p a t h  A s  S t r i n g ,  p a t h l  A s  S t r i n g ,  s t r 3  A s  
S t r i n g ,  s t r 4  A s  S t r i n g ,  k  A s  I n t e g e r ,  e  A s  I n t e g e r ,  d  A s  I n t e g e r ,  c o r r e c t  A s  
I n t e g e r ,  d i m l  A s  I n t e g e r ,  c o r r e c t l  A s  I n t e g e r ,  c o r r e c t 3  A s  I n t e g e r ,  
r e a l c o r r e c t  A s  I n t e g e r ,  d i m 2  A s  I n t e g e r ,  r e a l c o r r e c t l  A s  I n t e g e r ,  
r e a l c o r r e c t 3  A s  I n t e g e r ,  f  A s  I n t e g e r ,  g  A s  I n t e g e r

p a t h  =  " l o c a l p a t h \ r e s u l t \ L S A T \ "
c o m p ( l )  =  " s i m p l e  "
c o m p ( 2 )  =  " c o m p l e x 4 0 "
c o m p ( 3 )  =  " c o m p l e x 8 0 "
c o r ( l )  =  0 . 6

c o r ( 2 )  = 0 . 7
c o r ( 3 )  =  0 . 8
c o r ( 4 )  = 0 . 9
s a m p l e ( 1 )  =  1 5 0 0
s a m p l e ( 2 ) =  2 0 0 0

s a m p l e ( 3 )  =  2 5 0 0

' f i n a l r e s u l t  s h e e t  
S h e e t 3 7 . C e l l s ( 4 1 ,  
S h e e t 3 7 . C e l l s  ( 4 1 ,  
S h e e t 3 7 . C e l l s  ( 4 1 ,  
S h e e t 3 7 . C e l l s  ( 4 1 ,  
S h e e t 3 7 . C e l l s ( 4 1 ,  
S h e e t 3 7 . C e l l s ( 4 1 ,  
S h e e t 3 7 . C e l l s  ( 4 1 ,  
S h e e t 3 7 . C e l l s ( 4 1 ,  
S h e e t 3 7 . C e l l s ( 4 1 ,  
S h e e t 3 7 . C e l l s ( 4 1 ,  
F o r  j  =  1  T o  1 0

S h e e t 3 7 . C e l l s ( 
S h e e t 3 7 . C e l l s (

N e x t

ini 
2 ) =  

4 )  =  
6 ) =  
8 ) =  
1 0 ) ■ 

1 2 ) ■ 

1 4 )  : 
1 6 )  < 
1 8 )  ■ 
2 0 ) '

4 2 ,
4 2 ,

t i a l i z a t i o n .
" D E T E C T m a x "
" r  I n d e x "
" M a t c h i n g  R a t e "
" R e a l  M a t c h i n g  R a t e "  

" M a t c h i n g  I "
" R e a l  M a t c h i n g  I "  
" M a t c h i n g  I I "
" R e a l  M a t c h i n g  I I "  
" M a t c h i n g  C o m p l e x "
" R e a l  M a t c h i n g  C o m p l e x "

( j  -  1 ) 
( j  -  1 )

* 2 + 2 )  =  " M e a n "  
* 2 + 3 )  =  " S D "

'read DETECT o u t p u t  i n  a n d  calculate p r e c i s i o n .
F o r  a  =  1  T o  3  ' c o m p l e x i t y :  0 ,  4 0 ,  8 0

F o r  b  =  1  T o  4 ' c o r r e l a t i o n :  0 . 6 ,  0 . 7 ,  0 . 8 ,  0 . 9
F o r  c  =  1  T o  3  ' s a m p l e  s i z e :  1 5 0 0 ,  2 0 0 0 ,  2 5 0 0

h  =  ( a  -  1 )  * 1 2  +  ( b  -  1 )  * 3  +  c  
'read output in.

p a t h l  =  p a t h  & T r i m ( c o m p ( a ) ) & " \ c o r "  & F o r m a t N u m b e r ( c o r ( b ) ,  1 ,  
v b T r u e )  & " \ "  & T r i m ( C S t r ( s a m p l e ( c ) ) )  & " c \ "

T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 5 0 ,  1 )  =  " D a t a s e t "  
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 5 1 ,  1 )  =  " #  o f  D "
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 5 2 ,  1 )  =  " D m a x "
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 5 3 ,  1 )  =  " r  I n d e x "
F o r  i  =  1  T o  4 0

T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( ( i  +  5 3 ) ,  1 )  =  " I t e m "  & i  
N e x t  i
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 9 4 ,  1 )  =  " M a t c h  R "  
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 9 5 ,  1 )  =  " R e a l  M a t c h R "  
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 9 6 ,  1 )  =  " M a t c h  I "  
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 9 7 ,  1 )  =  " R e a l  M a t c h I "  
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 9 8 ,  1 )  =  " M a t c h  I I "  
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 9 9 ,  1 )  =  " R e a l  M a t c h l l "  
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 1 0 0 ,  1 )  =  " M a t c h  I I I "  'complex
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T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 1 0 1 ,  1 )  =  " R e a l  M a t c h l l l "  
C a l l  r e a d o u t p u t ( p a t h l , h )

'calculate cross-validation.
S e l e c t  C a s e  c o m p ( a )
’Simple precision.
C a s e  " s i m p l e  "

F o r  i  =  1  T o  1 0 0
I f  i  \  2 6  =  0  T h e n

s t r  =  C h r ( 6 5  +  i )  & " 5 "  & 
s t r 2  =  C h r ( 6 5  +  i )  & ” 5 4 "
s t r 3  =  C h r ( 6 5  +  i )  & " 2 5 "
s t r 4  =  C h r ( 6 5  +  i )  & " 7 4 "

E l s e

& C h r ( 6 5  +  i )  &
C h r ( 6 5  
C h r ( 6 5  
C h r ( 6 5

i )
i )
i )

" 2 4 "
& " 7 3 "  
& " 4 4 "  

& " 9 3 "

s t r C h r ( 6 4  + i \ 2 6 ) & C h r ( 6 5 + ( i  M o d  2 6 )  ) & " 5 " &
" :  "  & C h r ( 6 4  +  i  \ 2 6 ) & C h r ( 6 5 +  ( i M o d 2 6 )  ) & " 2 4 '
s t r 2  := C h r ( 6 4 + i \ 2 6 ) & C h r ( 6 5 +  ( i  M o d 2 6 )  ) & " 5 4 " &

& C h r ( 6 4  +  i  \ 2 6 ) & C h r ( 6 5 +  ( i M o d 2 6 )  ) & "1 3
s t r 3  ;= C h r ( 6 4 + i \ 2 6 ) & C h r ( 6 5 +  ( i  M o d 2 6 ) ) & " 2 5 " &
" :  "  & C h r ( 6 4  +  i  \ 2 6 ) & C h r ( 6 5 +  ( i M o d 2 6 )  ) & " 4 4 '

s t r 4  ■= C h r ( 6 4 + i \ 2 6 ) & C h r ( 6 5 +  ( i  M o d 2 6 ) ) & " 7 4 " &
" : "  & C h r ( 6 4  +  i  \ 2 6 ) & C h r ( 6 5 +  ( i M o d 2 6 ) ) & " 9 3 '

E n d  I f
C a l l  j u d g e ( h , d i m l , d i m 2 , s t r , s t r 2 , s t r 3 , s t r 4 )
F o r  j  =  1 T o  2 0

C a l l  s i m p l e d i m l ( d i m l , d i m 2 , h , j , c o r r e c t , r e a l c o r r e c t )  
N e x t  j
c o r r e c t l  =  c o r r e c t  
r e a l c o r r e c t l  =  r e a l c o r r e c t  
F o r  j  =  2 1  T o  4 0

C a l l  s i m p l e d i m 2 ( d i m l , d i m 2 , h , j , c o r r e c t , r e a l c o r r e c t )  
N e x t
W o r k s h e e t s ( h ) . C e l l s ( 9 4 ,  
W o r k s h e e t s ( h ) . C e l l s ( 9 5 ,  
W o r k s h e e t s ( h ) . C e l l s ( 9 6 ,  
W o r k s h e e t s ( h ) . C e l l s ( 9 7 ,  
W o r k s h e e t s ( h ) . C e l l s ( 9 8 ,  
W o r k s h e e t s ( h ) . C e l l s ( 9 9 ,  
r e a l c o r r e c t l )  /  2 0  

c o r r e c t  =  0  

c o r r e c t l  =  0  

r e a l c o r r e c t  =  0  

r e a l c o r r e c t l  =  0  

N e x t  i

i  +  1 )  =  c o r r e c t  /  4 0
i  +  1 )  =  r e a l c o r r e c t  /  4 0
i  +  1 ) =  c o r r e c t l  /  2 0

i  +  1 ) =  r e a l c o r r e c t l  /  2 0

i + 1 ) =  ( c o r r e c t  -  c o r r e c t l ) / 2 0  

i  +  1 ) =  ( r e a l c o r r e c t  -

' c o m p l e x 4 0  p r e c i s i o n .
C a s e  " c o m p l e x 4 0 "

F o r  i  =  1 T o  1 0 0
I f  i  \  2 6  =  0  T h e n

s t r  =  C h r ( 6 5  +  i )  & " 5 "  & " : "  & C h r ( 6 5  +  i )  & " 1 6 "
s t r 2  =  C h r ( 6 5  +  i )  & " 5 4 "  & & C h r ( 6 5  +  i )  & " 6 5 "
s t r 3  =  C h r ( 6 5  +  i )  & " 1 7 "  & & C h r ( 6 5  +  i )  & " 2 8 "
s t r 4  =  C h r ( 6 5  +  i )  & " 6 6 "  & & C h r ( 6 5  +  i )  & " 7 7 "

E l s e
s t r  =  C h r ( 6 4 + i \ 2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 5 "  &

& C h r ( 6 4  +  i  \  2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 1 6 "  
s t r 2  =  C h r ( 6 4 + i \ 2 6 )  & C h r ( 6 5  + ( i  M o d  2 6 ) )  & " 5 4 "  &

& C h r ( 6 4  +  i  \  2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 6 5 "  
s t r 3  =  C h r ( 6 4 + i \ 2 6 )  & C h r ( 6 5  + ( i  M o d  2 6 ) )  & " 1 7 "  &

& C h r ( 6 4  +  i  \  2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 2 8 "  
s t r 4  =  C h r ( 6 4 + i \ 2 6 )  & C h r ( 6 5  + ( i  M o d  2 6 ) )  & " 6 6 "  &

& C h r ( 6 4  +  i  \  2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 7 7 "
E n d  I f
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C a l l  j u d g e ( h , d i m l , d i m 2 , s t r , s t r 2 , s t r 3 , s t r 4 )
F o r  j  =  1  T o  1 2

C a l l  s i m p l e d i m l ( d i m l , d i m 2 , h , j , c o r r e c t , r e a l c o r r e c t )  
N e x t  j
c o r r e c t l  =  c o r r e c t  
r e a l c o r r e c t l  =  r e a l c o r r e c t  
F o r  j  =  1 3  T o  2 4

C a l l  s i m p l e d i m 2 ( d i m l , d i m 2 ,  h ,  j  ,  c o r r e c t ,  r e a l c o r r e c t )
N e x t
F o r  j  =  2 5  T o  3 2  

C a l l
c o m p l e x d i m l ( d i m l , d i m 2 , h , j , c o r r e c t , r e a l c o r r e c t ,  _  
c o r r e c t l ,  r e a l c o r r e c t l , c o r r e c t 3 , r e a l c o r r e c t 3 )

N e x t  j
F o r  j  =  3 3  T o  4 0  

C a l l
C o m p l e x d i m 2 ( d i m l , d i m 2 , h , j ,  c o r r e c t ,  r e a l c o r r e c t ,  _  
c o r r e c t l ,  r e a l c o r r e c t l , c o r r e c t 3 , r e a l c o r r e c t 3 )

N e x t  j
W o r k s h e e t s ( h ) . C e l l s ( 9 4 ,  i  +  1 )  =  c o r r e c t  /  4 0
W o r k s h e e t s ( h ) . C e l l s ( 9 5 ,  i  +  1 )  =  r e a l c o r r e c t  /  4 0
W o r k s h e e t s ( h ) . C e l l s ( 9 6 ,  i  +  1 )  =  c o r r e c t l  /  2 0
W o r k s h e e t s ( h ) . C e l l s ( 9 7 ,  i  +  1 )  =  r e a l c o r r e c t l  /  2 0

W o r k s h e e t s ( h ) . C e l l s ( 9 8 ,  i  +  1 )  =  ( c o r r e c t - c o r r e c t l ) / 2 0
W o r k s h e e t s ( h ) . C e l l s ( 9 9 ,  i  +  1 )  =  ( r e a l c o r r e c t  -  _
r e a l c o r r e c t l )  /  2 0
W o r k s h e e t s ( h ) . C e l l s ( 1 0 0 ,  i  +  1 )  =  c o r r e c t 3  /  1 6  
W o r k s h e e t s ( h ) . C e l l s ( 1 0 1 ,  i  +  1 )  =  r e a l c o r r e c t 3  /  1 6  
c o r r e c t  = 0  

c o r r e c t l  =  0  

c o r r e c t 3  =  0 
r e a l c o r r e c t  =  0  

r e a l c o r r e c t l  =  0  

r e a l c o r r e c t 3  =  0  
N e x t  i
W o r k s h e e t s ( h ) . C e l l s ( 1 0 0 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 1 0 0 : C W 1 0 0 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 1 0 0 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 1 0 0 : C W 1 0 0 " ) )  
W o r k s h e e t s ( h ) . C e l l s ( 1 0 1 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 1 0 1 : C W 1 0 1 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 1 0 1 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 1 0 1 : C W 1 0 1 " ) )

'complex80 precision.
C a s e  " c o m p l e x 8 0 "

F o r  i  =  1  T o  1 0 0
I f  i  \  2 6  =  0  T h e n

s t r  =  C h r ( 6 5  +  i )  & " 5 "  & & C h r ( 6 5  +  i )  & " 8 "
s t r 2  =  C h r ( 6 5  +  i )  & " 5 4 "  & & C h r ( 6 5  +  i )  & " 5 7 "
s t r 3  =  C h r ( 6 5  +  i )  & " 9 "  & " : "  & C h r ( 6 5  +  i )  & " 1 2 "  
s t r 4  =  C h r ( 6 5  +  i )  & " 5 8 "  & & C h r ( 6 5  +  i )  & " 6 1 "

E l s e
s t r  =  C h r ( 6 4 + i \ 2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 5 "  &

& C h r ( 6 4  +  i  \  2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 8 "  
s t r 2  =  C h r ( 6 4 + i \ 2 6 )  & C h r ( 6 5  + ( i  M o d  2 6 ) )  & " 5 4 "  &

& C h r ( 6 4  +  i  \  2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 5 7 "  
s t r 3  =  C h r ( 6 4 + i \ 2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 9 "  & 
" : "  & C h r ( 6 4  +  i  \  2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 1 2 "  
s t r 4  =  C h r ( 6 4 + i \ 2 6 )  & C h r ( 6 5  + ( i  M o d  2 6 ) )  & " 5 8 "  &

& C h r ( 6 4  +  i  \  2 6 )  & C h r ( 6 5  +  ( i  M o d  2 6 ) )  & " 6 1 "
E n d  I f
C a l l  j u d g e ( h , d i m l , d i m 2 , s t r , s t r 2 , s t r 3 ,  s t r 4 )
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F o r  j  =  1  T o  4

C a l l  s i m p l e d i m l ( d i m l , d i m 2 , h ,  j ,  c o r r e c t ,  r e a l c o r r e c t )  
N e x t  j
c o r r e c t l  =  c o r r e c t  
r e a l c o r r e c t l  =  r e a l c o r r e c t  
F o r  j  =  5  T o  8

C a l l  s i m p l e d i m 2 ( d i m l , d i m 2 , h , j , c o r r e c t , r e a l c o r r e c t )
N e x t
F o r  j  =  9 T o  2 4  

C a l l  _
c o m p l e x d i m l ( d i m l , d i m 2 , h , j , c o r r e c t , r e a l c o r r e c t ,  _  
c o r r e c t l ,  r e a l c o r r e c t l , c o r r e c t 3 , r e a l c o r r e c t 3 )

N e x t  j
F o r  j  2 5  t o  4 0  

C a l l

C o m p l e x d i m 2 ( d i m l , d i m 2 , h , j , c o r r e c t , r e a l c o r r e c t ,  _  
c o r r e c t l ,  r e a l c o r r e c t l , c o r r e c t 3 , r e a l c o r r e c t 3 )

N e x t  j

W o r k s h e e t s ( h ) . C e l l s ( 9 4 ,  i  +  1 )  =  c o r r e c t  /  4 0
W o r k s h e e t s ( h ) . C e l l s ( 9 5 ,  i  +  1 )  =  r e a l c o r r e c t  /  4 0
W o r k s h e e t s ( h ) . C e l l s ( 9 6 ,  i  +  1 )  =  c o r r e c t l  /  2 0
W o r k s h e e t s ( h ) . C e l l s ( 9 7 ,  i  +  1 )  =  r e a l c o r r e c t l  /  2 0
W o r k s h e e t s ( h ) . C e l l s ( 9 8 ,  i  +  1 )  =  ( c o r r e c t - c o r r e c t l ) / 2 0
W o r k s h e e t s ( h ) . C e l l s ( 9 9 ,  i  +  1 )  =  ( r e a l c o r r e c t  -  _
r e a l c o r r e c t l )  /  2 0
W o r k s h e e t s ( h ) . C e l l s ( 1 0 0 ,  i  +  1 )  =  c o r r e c t 3  /  3 2  
W o r k s h e e t s ( h ) . C e l l s ( 1 0 1 ,  i  +  1 )  =  r e a l c o r r e c t 3  /  3 2  
c o r r e c t  =  0  

c o r r e c t l  =  0  

c o r r e c t 3  =  0 
r e a l c o r r e c t  =  0  

r e a l c o r r e c t l  =  0  

r e a l c o r r e c t 3  =  0 
N e x t  i
W o r k s h e e t s ( h ) . C e l l s ( 1 0 0 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 1 0 0 : C W 1 0 0 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 1 0 0 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 1 0 0 : C W 1 0 0 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 1 0 1 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 1 0 1 : C W 1 0 1 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 1 0 1 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 1 0 1 : C W 1 0 1 " ) )
E n d  S e l e c t
W o r k s h e e t s ( h ) . C e l l s ( 5 2 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 5 2 : C W 5 2 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 5 2 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 5 2 : C W 5 2 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 5 3 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 5 3 : C W 5 3 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 5 3 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 5 3 : C W 5 3 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 9 4 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 9 4 : C W 9 4 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 9 4 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 9 4 : C W 9 4 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 9 5 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 9 5 : C W 9 5 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 9 5 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 9 5 : C W 9 5 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 9 6 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 9 6 : C W 9 6 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 9 6 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 9 6 : C W 9 6 " ) )
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W o r k s h e e t s ( h ) . C e l l s ( 9 7 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 9 7 : C W 9 7 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 9 7 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 9 7 : C W 9 7 " ) )
W o r k s h e e t s ( h ) . C e l l s ( 9 8 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 9 8 : C W 9 8 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 9 8 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 9 8 : C W 9 8 " ) )
W o r k s h e e t s ( h ) . C e l l s ( 9 9 ,  1 0 2 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . A v e r a g e ( W o r k s h e e t s ( h ) . R a n g e ( " B 9 9 : C W 9 9 " ) ) 
W o r k s h e e t s ( h ) . C e l l s ( 9 9 ,  1 0 3 )  =

A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . S t D e v P ( W o r k s h e e t s ( h ) . R a n g e ( " B 9 9 : C W 9 9 " ) )

'write into final result.
S h e e t 3 7 . C e l l s ( h  +  4 2 ,  1 )  =  W o r k s h e e t s ( h ) . N a m e  
F o r  i  =  1  T o  2 0  S t e p  2  

F o r  k  =  1  T o  2
I f  i  <  4 T h e n

S h e e t 3 7 . C e l l s ( h  +  4 2 ,  k  +  i )  =  _
T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 5 2  +  ( i  \  2 ) ,  1 0 1  +  k )

E l s e
S h e e t 3 7 . C e l l s ( h  + 4 2 ,  k  +  i )

T h i s W o r k b o o k . W o r k s h e e t s ( h ) . C e l l s ( 9 2  +  ( i  \  2 ) ,  1 0 1  +  k )
E n d  I f  

N e x t  k  
N e x t  i  

N e x t  c  
N e x t  b  

N e x t  a  
E n d  S u b

P r i v a t e  S u b  J u d g e  ( h  a s  i n t e g e r , b y R e f  d i m l  a s  i n t e g e r ,  B y R e f  d i m 2  a s  i n t e g e r ,  
s t r  a s  S t r i n g ,  S t r 2  a s  S t r i n g ,  S t r 3  a s  S t r i n g ,  S t r 4  a s  S t r i n g )

D i m  d  a s  I n t e g e r ,  e  a s  I n t e g e r ,  f  a s  I n t e g e r ,  g  a s  I n t e g e r  
d  =  A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r ) ,  " = 1 " )  
e  =  A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r ) ,  " = 2 " )  
f  =  A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r 3 ) , " = 1 " )  
g  =  A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r 3 ) , " = 2 " )  
I f  d  >  e  T h e n  

d i m l  =  1  

E l s e l f  d  <  e  T h e n  
d i m l  =  2

E l s e
I f  f  > =  g  T h e n  

d i m l  =  2

E l s e
d i m l  =  1

E n d  I f
E n d  I f
d  =  A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r 2 ) , " = 1 " )  
e  =  A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r 2 ) , " = 2 " )  
f  =  A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r 4 ) , " = 1 " )  
g  =  A p p l i c a t i o n . W o r k s h e e t F u n c t i o n . C o u n t l f ( W o r k s h e e t s ( h ) . R a n g e ( s t r 4 ) , " = 2 " )  
I f  d  >  e  T h e n  

d i m 2  =  1  

E l s e l f  d  <  e  T h e n  
d i m 2  =  2

E l s e
I f  f  > =  g  T h e n  

d i m 2  =  2

E l s e
d i m 2  =  1

E n d  I f
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E n d  I f  
E n d  S u b

P r i v a t e  S u b  s i m p l e d i m l ( d i m l  a s  I n t e g e r ,  d i m 2  a s  I n t e g e r ,  h  a s  I n t e g e r ,  
I n t e g e r ,  B y R e f  c o r r e c t  a s  I n t e g e r ,  B y R e f  r e a l c o r r e c t  a s  I n t e g e r )

I f  d i m l  =  d i m 2  T h e n
I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  T h e n  

c o r r e c t  =  c o r r e c t  +  1

E n d  I f
I f  d i m l  =  1 T h e n

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  _  
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  A n d  _  
W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  1  T h e n  

r e a l c o r r e c t  =  r e a l c o r r e c t  +  1

E n d  I f
E l s e

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  _  
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  A n d  _  
W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  = 2  T h e n  

r e a l c o r r e c t  =  r e a l c o r r e c t  +  1

E n d  I f
E n d  I f

E l s e
I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  < >  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  T h e n

c o r r e c t  =  c o r r e c t  +  1

E n d  I f
I f  d i m l  =  1  T h e n

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  < >  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  A n d  _
W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  1  T h e n  

r e a l c o r r e c t  =  r e a l c o r r e c t  +  1

E n d  I f
E l s e

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  < >  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  A n d  _
W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  = 2  T h e n  

r e a l c o r r e c t  =  r e a l c o r r e c t  +  1

E n d  I f
E n d  I f

E n d  I f  
E n d  S u b

P r i v a t e  S u b  s i m p l e d i m 2 ( d i m l  a s  I n t e g e r ,  d i m 2  a s  I n t e g e r ,  h  a s  I n t e g e r ,  
I n t e g e r ,  B y R e f  c o r r e c t  a s  I n t e g e r ,  B y R e f  r e a l c o r r e c t  a s  I n t e g e r )

I f  d i m l  =  d i m 2  T h e n
I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  T h e n  

c o r r e c t  =  c o r r e c t  +  1

E n d  I f
I f  d i m l  =  1  T h e n

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  A n d  _
W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  = 2  T h e n  

r e a l c o r r e c t  =  r e a l c o r r e c t  +  1

E n d  I f
E l s e

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  A n d  _
W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  = 1  T h e n  

r e a l c o r r e c t  =  r e a l c o r r e c t  +  1

E n d  I f

j  a s

j  a s
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E n d  I f
E l s e

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  < >  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  T h e n  

c o r r e c t  =  c o r r e c t  +  1

E n d  I f
I f  d i m l  =  1  T h e n

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  < >  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  A n d  _
W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  = 2  T h e n  

r e a l c o r r e c t  =  r e a l c o r r e c t  +  1

E n d  I f
E l s e

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  < >  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  A n d  _
W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  1  T h e n  

r e a l c o r r e c t  =  r e a l c o r r e c t  +  1

E n d  I f
E n d  I f

E n d  I f  
E n d  S u b

P r i v a t e  S u b  c o m p l e x d i m l ( d i m l  a s  I n t e g e r ,  d i m 2  a s  I n t e g e r ,  h  a s  I n t e g e r ,  j  a s  
I n t e g e r ,  B y R e f  c o r r e c t  a s  I n t e g e r ,  B y R e f  r e a l c o r r e c t  a s  I n t e g e r ,  B y R e f  c o r r e c t l  
a s  I n t e g e r ,  B y R e f  r e a l c o r r e c t l  a s  I n t e g e r ,  B y R e f  c o r r e c t 3  a s  I n t e g e r ,  B y R e f  
r e a l c o r r e c t 3  a s  I n t e g e r )

I f  d i m l  =  d i m 2  T h e n
I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  T h e n  

c o r r e c t  =  c o r r e c t  +  1  

c o r r e c t l  =  c o r r e c t l  +  1  

c o r r e c t 3  =  c o r r e c t 3  +  1
E n d  I f
I f  d i m l  =  1  T h e n

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  A n d  _
W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  = 1  T h e n  

r e a l c o r r e c t  =  r e a l c o r r e c t  +  1  

r e a l c o r r e c t l  =  r e a l c o r r e c t l  +  1  

r e a l c o r r e c t 3  =  r e a l c o r r e c t 3  +  1
E n d  I f

E l s e
I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  A n d  _
W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  2  T h e n  

r e a l c o r r e c t  =  r e a l c o r r e c t  +  1  

r e a l c o r r e c t l  =  r e a l c o r r e c t l  +  1  

r e a l c o r r e c t 3  =  r e a l c o r r e c t 3  +  1
E n d  I f

E n d  I f
E l s e

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  < >  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  T h e n

c o r r e c t  =  c o r r e c t  +  1  

c o r r e c t l  =  c o r r e c t l  +  1  

c o r r e c t 3  =  c o r r e c t 3  +  1
E n d  I f
I f  d i m l  =  1  T h e n

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  < >  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  A n d  _
W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  = 1  T h e n  

r e a l c o r r e c t  =  r e a l c o r r e c t  +  1  

r e a l c o r r e c t l  =  r e a l c o r r e c t l  +  1
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r e a l c o r r e c t 3  =  r e a l c o r r e c t 3  +  1

E n d  I f
E l s e

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  < >  _
W o r k s h e e t s  ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  A n d  _
W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  = 2  T h e n  

r e a l c o r r e c t  =  r e a l c o r r e c t  +  1  

r e a l c o r r e c t l  =  r e a l c o r r e c t l  +  1  

r e a l c o r r e c t 3  =  r e a l c o r r e c t 3  +  1

E n d  I f
E n d  I f

E n d  I f  
E n d  S u b

P r i v a t e  S u b  c o m p l e x d i m 2 ( d i m l  a s  I n t e g e r ,  d i m 2  a s  I n t e g e r ,  h  a s  I n t e g e r ,  j  a s  
I n t e g e r ,  B y R e f  c o r r e c t  a s  I n t e g e r ,  B y R e f  r e a l c o r r e c t  a s  I n t e g e r ,  B y R e f  c o r r e c t l  
a s  I n t e g e r ,  B y R e f  r e a l c o r r e c t l  a s  I n t e g e r ,  B y R e f  c o r r e c t 3  a s  I n t e g e r ,  B y R e f  
r e a l c o r r e c t 3  a s  I n t e g e r )

I f  d i m l  =  d i m 2  T h e n
I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  T h e n  

c o r r e c t  =  c o r r e c t  +  1  

c o r r e c t 3  =  c o r r e c t 3  +  1
E n d  I f
I f  d i m l  =  1 T h e n

I f  W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  =  _
W o r k s h e e t s ( h ) . C e l l s ( 5 3  +  j ,  i  +  1 )  A n d  _
W o r k s h e e t s ( h ) . C e l l s ( 4  +  j ,  i  +  1 )  = 2  T h e n  

r e a l c o r r e c t  =  r e a l c o r r e c t  +  1  

r e a l c o r r e c t 3  =  r e a l c o r r e c t 3  +  1
E n d  I f

E l s e
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