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Abstract

The primary goal of the present siudy was to develop a model for plume dispersion on
the upwind side and in the wake region of a building, and to compare it with

experiments done in a water channel.

Scveral measurement techniques were used to investigate flow behaviour around two
sizes of model buildings. A laser doppler velocimetry system was used to measure the
flow characteristics, such as the mean flow velocity, turbulence intensity and Reynolds
stress, with and without buildings present. The concentration measurements were done
with laser fluorescence using dual light sheet and single laser beam linescan techniques

and showed satisfactory agreement with model predictions.

The model incorporates the effects of the increase of the crosswind and vertical plume
spreads due to the presence of a building. The crosswind and vertical spreads of a plume
are assumed t¢ be directly related to each other through a simple power function. The
increase of the plume crosswind and vertical spreads produces the increased dilution of
the plume in the vicinity of buildings. The new component of this single plume model
is its ability to simulate the gradual and continuous increase in the plume crosswind

spread upwind of a building.
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flow convective velocity (cm/s)

flow mean velocity with a building present (cm/s)

flow mean vel. -ity without a building present (cm/s)

turbulence velocity (cm/s)

model building width (mm)

streamwise coordinate starting at the source location, defined in Figure 2.2
streamwise coordinate starting at the channel test section entrance, defined in
Figure 2.2

streamwise coordinate starting at the building front face, defined in Figure 2.2
finite difference distance between two adjacent pixels in crosswind

direction (mm)

crosswind coordinate starting at the source location, defined in Figure 2.2
plume centre of first moment of concentration in crosswind direction, see
Equation (3.15)

crosswind coordinate starting at the channel test section entrance, defined in

Figure 2.2



V' crosswind coordinate starting at the building front face. defined in Figure 2.2

Z, roughness length from an analytical solution (mm). sce Liquation (2.2)

Z,., roughness length obtained from experiment (mm)

z vertical coordinate starting at the source location, defined in Figure 2.2

z vertical coordinate starting at the channel test section entrance, defined in
Figure 2.2

z' vertical coordinate starting at the building front face, defined in Figure 2.2

Greek Symbols

o empirical constant to account for the camera non-linearity, sce Equation
(A.11)

B, clear water response of the video image system at i pixel on a video
image

0 building yaw angle (°)
von Karman's constant (0.4)

roughness element area concentration factor, see Equation (2.1)

£ laser extinction coefficient [mm-(mol/litre)]"

o molecular cross section of dye particles (cm?), see Equation ( A.20)

o, plume crosswind spread (mm)

¢,'  adjusted plume crosswind spread downwind a Luiiding using by other models
(mm)

O, Plume crosswind spread with a building present (mm)

plume crosswind spread without a building present (mm), see Liquation (3.17)

§AL]

O,.w0 Plume crosswind spread at x = 0mm without a building present ( mm),
see Equation (3.17)
o. plume vertical spread (mm)

0.’ adjusted plume vertical spread downwind a building using by other models
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o)

(mm)

plume vertical spread with a building present (mm)

plume vertical spread without a building present (mm), see Equation (3.20)
plume vertical spread at x = Omin without a building present (mm),

sce Liquation (3.20)

constant with a value of 3.141592654

cxperimentally obtained fluorescent dye bleaching constant (second), see
Liquation (A.22)

photon flux of the laser beam (photons/mm?s)

function relates the plume crosswind spread with and without a building

present, sce Equation (3.22)



Chapter 1

Introduction and Literature Review

1.1 Review of Models

The first estimate of building effects on plume dispersion was made by Giftord (1960)
who proposed a model that increased plume dilution downwind of a building by adding
an additional vertical and crosswind plume spread to the standard Gaussian model for
predicting the centerline ground level concentration. Gifford (1960) suggested that this
added plume spread should be directly proportional to the building projected frontal arca.
Since then, several variations of this model have been published. Turner (1969) and Baker
(1982) proposed virtual source models; Ferea and Cagnettis (1980) and Huber and Snyder
(1976,1982 ) used different values for the vertical and crosswind components of the added
sprcaus. None of these models accounte: for the gradual change of the plume spread that
br “ins several building heights upstrean stead, the building was assimed to produce
. abrupt increase in plume spread (and de..cease in concentration) at its downwind wall.
The present study is the first one to quantitatively study this phenomenon and develop a

model which incorporates and predicts the plume dilutions upwind of a building.

Other than the Gaussian models to deal with the building effluent on plume dispersion,
turbulence difiusion and self-preserving wake theory have also been used to cope with the
effects of buildings. Hunt (19715) developed a model for the laminar velocity wake
behind a two-dimensional obstacle in a laminar boundary layer. Based or [Hunt's (19715)
theory, Counihan, Hunt and Jackson (1974) proposed their model which was able to deal
with the velocity wakes behind two-dimensional surface mounted obstacles in turbulent

a boundary layer.

Starting from the diffusion equation, Hunt, Puttock and Snyder (1979) derived equations
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for predicting plume concentrations around a three-dimensional hill in stratified and
reatral flows. Combining constant eddy diffusivity with the advective diffusion equation,
Puttock and Hunt (1979) proposed a eddy diffusivity model for predicting plume
concentrations from a source near an obstacle. Diffusion models have more complicated
formulations for plume concentration and have not showed great advantages over the

widely accepted Gaussian plume models.

The building wake recirculation region is also of great interest for many practical
applications such as the design of the building ventilation intakes. Vincent (1977), (1978)
proposed a residence time model to characterize wake diffusion by the time constant
decay rate of the spatially averaged wake concentration. Robins and Fackrell (1980)
related Vincent's residence time model to estimate the average concentration by
modelling the recirculation zone surface area. Wilson and Britter (1982), suggested a
design cquation that treats the concentration in wake recirculation as a constant for wake
cavity concentration dominated by flow recirculation and self-entrainment. Wilson and
Britter’s proposal is supported by many other studies such as Drivas and Shair (1974),
Halitsky (1977), Robins and Castro (1977) and Thompson (1993).

One recent investigation of building influence on plun= dispersion was conducted by
Genikhovich and Snyder (1994). They proposed a new mathematical model that
incorporates a non-Gaussian concept into a currently used Gaussian model by superposing
the circulating and non-circulating flow fields around a building through a probability
function. This new model was tested against tracer gas data measured fifteen building
heights downwind from the building and field measurements from Bowers and Anderson
(1981), Ogawa and er al (1983), Berlyand and et al (1987b) and Genikhovich and et a/
(1987). This new Genikhovich and Snyder model showed better performance both in the
near and far w.ike region than the older models. However, the new model usually over-

predicted ¢ -und level concentrations without a building present.
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At present, the modified Gaussian plume model. proposed by Huber and Snyder (1982)
from their wind tunnel studies, is used by the U.S. Environmental Protection Agency o
predict the plume concentrations within the near wake recirculation region, and on
building roofs and walls. But this model has deficiencies caused by discontinuities in
plume spread based on the abrupt transition between the recirculation, near wake and the

far wake regions, and on the ratio of stack or source height to the building height.

1.2 Review of Experimental Techniques

Different techniques had been used to investigate the plume dispersion process under the
influence of an obstacle. Tracer gases in wind tunnel simulations have been used by
several investigators; helium and propane mixtures by Robins and Castro (1977). helium
by Wilson and Netterville (1978) and Li and Meroney (1983), sulphur hexafluoride by
Ogawa and Oikawa (1982), air-methane mixtures by Huber and Snyder (1982) and ethane
by Huber (1989,1991).

Optical means of continuously recording the plume images illuminated by various types
of light sources have also been used; Poreh and Cermak (1991) used infra red light on a
carbon dioxide gas plume, Lee et al (1991) used banks of fluorescent lamps to illuminate
vaporized paraffin oil smoke, Huber ef al (1991) used strong floodlights on an oil-fog

smoke, and Martinuzzi and Tropea (1993) used a laser to illuminate fluorescent dye.

1.3 Overview of this Study

The present study was undertaken to develop a plume model for plume impingement on
a building from a ground level source. The goal was to make accurate estimation of the
ratio of plume concentration with and without a building present for a wide range of
wind direction angles for different building sizes. A Gaussian plume model was used as
the stepping-stone for deriving the theoretical model used in this thesis. Both theoretical

and experimental means were used to achieve the goal of developing a simple model



which accounts for building effects for a plume from a ground level source.

To correctly simulate neutral atmospheric flow in the water channel, 1 new rough surface
was designed and constructed. Flow characteristics such as mean velocity, turbulence
intensity, integral length scale and Reynolds stress were measured using Laser Doppler
Velocimetry. Planar Laser Induced Fluorescence was used for full-field plume
visualization and image collection. From these full-field images, plume mean
concentrations, vertical and crosswind spread were calculated. In conjunction a single
beam linescan method was used to illuminate the plume at different along-stream and

vertical positions for cross plume concentration measurements.

The experimental results obtained by using both dual laser sheet and linescan methods to
determine the plume spreads and the concentration ratio between with and without a
building present will be presented. By comparing the theoretical prediction of the plume
concentration to the experimental data, the Gaussian plume model developed in this thesis

will show good agreement with measurements.



Chapter 2

Laboratory Simulation of Atmospheric Turbulence

and Dispersion

2.1 Introduction

Experimental measurements were uscd to determine the influence of buildings on the

concentration distribution of a plume released upstream at ground level. Buildings with

different dimensions, placed at varying locations downwind from the source and at
different yaw angles to flow, were investigated.

. Laser Doppler Velocimetry (LDV) was used to investigate the velocity and
turbulence characteristics of the boundary layer of the channel flow with and
without a building in place.

. Full-field flow visualization for flow around the model buildings was performed
by illuminating fluorescein dye tracer solution released from a ground level source
using the Planar Laser Induced Fluorescence (PLIF ) technique.

. Linescan concentration measurements were made by shining a single laser light
beam through the plume to produce laser induced fluorescence in the tracer dye

solution.

Each of these techniques provided information needed to develop a modified Gaussian

plume model that includes the upwind and downwind effects of buildings.

2.2  Water Channel

The current study was conducted in the atmospheric simulation water channel of the
Mechanical Engineering Department at the University of Alberta. The test section of the
water channel was 5000mm long x 680mm wide x 476mm deep and consisted of three

sides of clear glass with an open top surface. A schematic diagram of the channel is
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shown in Figure 2.1. The two stainless steel tanks at each end of the test section together
hold about 5000 litres of water. Two 5 h.p. water pumps were used to circulate the
required flow from tank to tank through a 152mm L.D. return pipe situated underneath the
test section. The water flow rate at the test section was monitored with a manometer on
an orifice mounted inside the return pipe. The 350mm water depth at the test section used
for the current studies was controlled by adjusting the angle of the weir gate located at the

downstream end of the test section.

Before entering the test section, water flowed through two flow straighteners shown in
Figure 2.1 to remove swirl in the flow. The two screens placed across the supply tank
were used to damp out turbulence. The flow straightener at the beginning of the test
section had dimensions of 680mm wide x 476mm high x 100mm thick and was

constructed using stainless steel strips.

Flow Straighteners Test Section Weir Gate
SN S \
o -« \
. ‘ N weemoe e o Free water. susface .. . Ny s
amsingay \\\
L > Y
v S Water Flow
4N
Screens
Supply tank /9nﬁce Overflow tank
~
v
I e IS
Pump P —
] L \/ ST —
.\ U 1 Manometer

Figure 2.1 Schematic diagram of the water channel



2.3 Development of the Required Boundary Layer

Correct simulation of the mean velocity, turbulence intensity and scale in the turbulent

boundary layer are the essential requirements for atmospheric simulation.

2.3.1 Design of the Roughness Base Plate

In order to produce the correct boundary layer simulation, roughness basc plates were
constructed to cover the bottom of the test section. With an arbitrarily chosen scale factor
0f 500:1 and a full scale roughness length Z, in the range 0.5 ~ 1.0m, the simulated Z,

in the water channel should be in the range of | ~2mm.

Raupach er al (1980) suggested that the laboratory Z, is a function of the chosen height
(h), breadth (D,), separation distance (¢) and area concentration factor (A) of the roughness
elements. The factor A is the ratio between the frontal area of a roughness element and its
surrounding plan view floor area. Under the assun:ption that the flow is full y developed,
Raupach et al proposed an analytical equation to relate Z,, ¢ and A:

ZO

o exp[ ~Xf(A)] (2.1)
where: k = 0.4, von Karman'’s constaat, and AA) = function of A.

Equation (2.1) was further simplified by Raupach et a/ (1980) in the region wherc
10° <A <1.2x10" to,

zZ
2 = A (2.2)
h

where, from geometrical considerations the area concentration factor, A, of the roughness

elements is:



A= (2.3)

where,
A =roughness area concentration;
h = height of one roughness element (mm);
D, = crosswind width (diameter) of the roughness element (mm);

¢ = separation distance from the nearest neighbouring roughness element (mm).

This relation implicitly assumes that the flow separates from the leading edges of the

roughness elements so that their length in the flow direction is not relevant.

The desired full scale roughness was Z, = 0.7m, or Z, = 1.40 mm in 500:1 scale. This
corresponds to a built up urban area or industrial plant site. Based on the calculations
using Equations (2.2) and (2.3), A, D, and { were chosen as 12.0mm, 1.6mm and 13.0mm
respectively. To create this surface roughness a set of interlocking polycarbonate base
plates were fabricated, each with dimensions of 800mm long x 680mm wide x 15mm
thick. An array of holes with D, = 1.6mm and ¢ = 13.0mm was drilled in the plate. Then,
the roughness elements, about 20,000 nylon pins, were press fit one by one into the drilled

holes on the base plates using specially made tools.

2.3.2 Generating the Required Boundary Layer

If allowed to develop naturally, flow entering the water channel test section would
eventually form a fully developed boundary layer with a logarithmic mean velocity
profile extending up to the free surface. But, the 5000mm long test section of the water
channel is not sufficient for such a flow to develop naturally. Therefore, the length
required to create a fully developed boundary layer had to be reduced by artificial means.
Several different methods were tried to develop the optimal flow required for the current

studies. They were:
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Several layers of wire screen were laminated to produce more blockage at the
bottom than at the top. It was found that the screen was not open enough at the
medium height region to further accelerate the flow in the upper portion of the
boundary layer. Both vertical and horizontal velocity profiles had unacceptable

irregularities in mean and turbulence profiles.

Rubber and foam plugs were inserted into selected channels in the 100mm thick
flow straightener placed at the inlet of the test section so that the water flow
entering the test section encountered more resistance near the bottom. However,

the same probiems occurred as mentioned in trial 1.

A triangular flow straightenér was made to have a height of 508mm and flow
channels 120mm long'ét its bottom, with their length decreasing to zero at the top.
This time, the results were much more encouraging even though the triangular
flow straightener was still not good enough to produce the required velocity

profiles. More blockage at bottom region of the water flow was needed.

The newly made triangular flow straightener was tilted about 5° towards the
oncoming flow. The vertical profile obtained at the channel centerline at 1300mm
downwind of the channel inlet was satisfactory, but the horizontal/cross stream
velocity profile measured at the same x' location (see Figure 2.2 for definition of

the coordinate systems) was not uniform.

A flat screen, which had the same dimensions as the water channel cross-section,
with arrays of 18mm x 18mm diamond shaped holes, was put into the channel
vertically 100mm downstream of the new flow straightener. The flat screen did
help to smooth out the irregularities in the horizontal velocity profile, but also

reduced the turbulence in the flow too much.
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6. The flat blockage screen with diamond-shaped holes used in trial 5 was modified
to produce variable blockage. Cutouts were used to create decreasing blockage
with height. After many trials, the final combination of modified flat screen and
the trip wall, necessary to generate the expected boundary layer flow in the test
section was found, see Figure 2.3. The modified flat screen, attached to the
downstream side of the flow straightener, was 340mm high and 674 mm wide
with higher blockage at the bottom, less blockage at the medium height region and
no blockage at the top. The trip wall, which was 40mm high and placed 300mm
downwind of the modified screen, created the flow separation, momentum deficit

and turbulence necessary for developing the log-mean boundary layer

e
y’ x’
e --”"Entrance to water channel

~.

Figure 2.2 New coordinate system definition

2.4 Velocity Measurement

Determining the atmospheric wind that had been accurately simulated required
measurements of mean flow velocity, turbulence and Reynolds stress profiles at various
locations in the test section in the cross stream, vertical and along stream directions. It is

also important to know how the mean velocity and the turbulence fields are disturbed by
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the presence of an obstacle to understand the plume dispersion process. LDV was used

to measure the necessary flow characteristics.

The LDV system used was an Ion Laser Technologies (ILT) air cooled 300 mW argon-ion

continuous wave laser. For the experiments conducted in the water channel, the laser was

run in a single wavelength mode to generate 514.5 nm wavelength laser light. At this

single wavelength, the rated power of the laser was reduced to 100 mW and further

regulated down to 75 mW to increase the laser tube life.

The LDV sys:n, shown in Figure 2.4, was mounted on a computer-controlled two-axis

traversing system (cross-stream and vertical). The focusing/receiving optics were

manufactured by Thermo Systems Inc. (TSI) and consisted of:
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beam splitter — separates the single laser beam emerging from the laser generator

into two parallel and equal intensity beams;

. Bragg cell — shifts the frequency of one of the beams which enables the
measurement of the negative (reversed flow) velocity. The TSI Bragg cell shifted

the beam frequency up 20 KHz;

. Beam expander — separates the two split laser beams further and makes each of
them thicker to cover more of the focusing lens area, to produce a smaller

measuring volume when the two beams intersect;

. Focusing lens — focuses the expanded beams to an intersection point using
spherical lenses. A 571mm focal length lens was able to cover the entire width of
the channel cross section. A 351mm focal length lens had better spatial resolution

because its wider half angle a produced a smaller measuring volume;

. Receiving optics — focuses the scattered light back from the measuring volume

onto the photomultiplier;

. Photomultiplier — converts the light intensity into voltages and sends the
electrical signals to a TSI 1980B signal processor. The information from the

signal processor was then stored in a 486/33MHz PC for later analysis.

For the LDV to work properly, the flow must be seeded. To seed the flow, about 20ml.
of 3.0g/L titanium oxide (TiO,) water mixture was poured in the water channel. This
quantity of seeding solution was sufficient for about ten days. The data rate was
approximately 350 randomly spaced points per second. The velocity data collected in the
water channel used either 60 second or 500 second averages depending on what kind of

the flow characteristics was required. A 60 second average was used for longitudinal
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mean velocity data and a 500 second average was used if the x-component of turbulence
intensity, length scale or Reynolds stress were needed. The software used to collect and
analyse the raw data was written by Zelt (1991) and is described in detail in his Ph.D.

thesis,

2.4.1 Velocity and Turbulence Intensity Over the Rough Surface

The velocity and turbulence intensity profiles evolve with distance from the entrance of
the test section. After the flow reached x’ = 2500mm downwind of the test section inlet
it became fully developed as Figures 2.6 and 2.7 show. All the model buildings, source
and experimental data were collected in the region from x’ = 3000mm to x’ = 3600mm
dc avwind of the test section entrance. The x-component of mean velocity, turbulerice
intensity, turbulence length scale and the Reynolds stress profiles in the fully developed

flow at the location x’ = 3000mm are shown in Figure 2.8.

.Using the mean velocity data measured from the fully developed flow on a rough surface,
it was found that Z, xp = 1.6mm by applying the log-law to the mean velocity profile in
Figure 2.9. At a scale of 500:1, this corresponds to an urban environment with Z,=0.8m.
This was quite close to the design value of Z, = 0.7m for which the roughness pins were
specified. Also, u*, the turbulent velocity (1.96 cr/s) from log-law is in good agreement

with the value from measurement ( 2.06 cm/s), see Figures 2.8 and 2.9.

2.4.2 Rough to Smooth Flow Transition on the Building Base Plate

In order to mount the model buildings at various locations downstream of the ground
level source, one roughness plate was replaced by a smooth . ate as shown in the Figure
2.3. Measurement were made to determine how the flow responded to the sudden change
of the roughness. From the velocity measurement results in the Figures 2.9 and 2.10, only
the semi-log plot revealed that the bottom part of the boundary layer accelerated (as

expected) as the surface roughness chianged from rough to smooth.
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Although the acceleration was confined te the bottom 15mm of the 350mm thick
boundary layer, it had some effect on the spreading of the plume from the ground level
source. The flow acceleration over the smooth plate caused an increase in flow mean
convective velocity from U, = 70mm/s to U, = 95mm/s at z = Smm where the tull-field

dual laser light sheet profiles were taken.

Without a building present, at a plume height of z = 0,. the mean velocity increased from
U, =85mm/s at x = 60mm to U = 140mm/s at x = 350mm as the plume travelled
downwind. With no rough to smooth transition this velocity change would have been
from U, = 21mm/s at x = 60mm to U, = 128mm/s at x = 350mm. This change due to the
rough to smooth surface roughness transition was neglected in the theoretical model for

Gaussian dispersion.

2.43 Model Buildings and Wind Direction Angles

Two model buildings, with aspect ratios of 1 t0 0.5 to 0.4 and 1.0 t0 1.0 to 0.4 (width to
height to length) and made of clear plastic with dimensions 100mm wide 50mm height
x 40mm long for building 4 and 100mm wide x 100mm height x 40mm long for building

B, were used in the current study.

The buildings were mounted at three locations, x = 170, 270 and 370mm downwind of
the source and also rotated through wind angles of 0°, 5°, 10°, 20°, 30°, 45 ©, 60", 90° 10

study the influence of wind direction on plume dispersion.

2.4.4 Velocity and Turbulence in the Vicinity of a Building
It is helpful in understanding plume dispersion behaviour if the mean velocity and

turbulence characteristics in the building vicinity are known. Some measurements were
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carried out in the wake of building 4. Figures 2.11 and 2.12 shows that the building
upwind mean velocity and turbulence intensity did not change significantly in the flow
approaching the building. Here, the effect of the building is to cause the upwind

streamlines (and the ground-level plume) to diverge, see Figure 2.26.

Figures 2.13 and 2.14 show the recirculation flow in the near wake region of the building,

and the slow flow out to eight building heights downwind.

2.5 Tracer Source

Disodium flourescein is a good tracer to reveal the turbulent dispersion of a plume
because it has a completely independent process of absorption and emission of light, a
wide measurable concentration range and the dye absolute concentration is easy to

determine (Walker ,1987).

Disodium fluorescein tracer, commercially called Uranine, with a molecular weight of
276.28g/mol was first dissolved in distilled water to form a highly concentrated solution
in a two litre flask . Then the concentrated solution was then further diluted in a 20 litre
container using ordinary tap water and transferred to the 80 litre pressure vessel shown
in Figure 2.3. The vessel was pressurized by compressed air which was regulated to 70
kPa. The tracer solution then passed through a needle valve for fine control of the flow

rate and a toggle shut-off valve.

A rotameter with a range from 0.0 to 13.0 cms was calibrated by measuring the volume
flow in 60 second intervals for various nominal rotameter readings and the results, as
shown in the Figure 2.15, showed good agreement with the claimed response by the
manufacturer. At the injection flow rate of 1.2cm?/s used in the current experiment, the

rotameter was accurate within 5%.
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Figure 2.15  Calibration of the rotameter used in the current

experiment for tracer dye flow control

2.5.1 Ground Level Tracer Source

A 10mm diameter circular area source shown in Figure 2.16 was used to release the
concentrated dye solution into the boundary layer. The fluorescein dye tracer solution
emerged from this flush circular hole after passing through a plastic foam pad to distribute
the flow uniformly over the source area. At the source vertical velocity of 15mm/s used
in this study, vertical momentum was negligible compared to the momentum produced

by the flow over the top of the roughness elements at a velocity of 100mm/s.

Pluna

l)y. intat from
........ ¢ tank

-
. ® - L J
-

Clrcular avurce T

Figure 2.16  Schematic diagram of dye source
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2.5.2 Behaviour of Disodium Fluorescein Tracer Dye

The fluorescent dye molecules have a broad absorption and fluorescence emission spectra,
and the emitted light wavelength is always longer than the absorbed light wavelength
(Walker, 1987). When excited by the argon-ion laser with a wavelength of 514.5nm,
disodium fluorescein emits visible light at wavelengths ranging from 530nm to 580nm,
with the peak value at 550nm. The difference in the light wavelength between the laser
and the dye fluorescence allowed the laser light to be removed (leaving the dye

fluorescence) by using a Kodak Wratten No.21 gelatin filter on the video camera.

As described by Walker (1987), the intensity of the emitted light from fluorescein dye is

affected by:

. dye concentration;

. excitation light intensity;
. dye solution pH;

. dye temperature.

Lingg' ... '960) and Walker (1987) showed that the emission intensity of disodium
fluor cin ye decreases if the dye pH value falls below 8.0. It was found by
measurement that the pH value of water in the channel was slightly above 8.0, so no pH

balancing buffer solution was required.

According to Walker (1987), with dye pH value > 9.0, the intensity variation of dye
fluorescence is no more than 0.3% per degree Kelvin. To minimize this temperature
effect, the dye solution in the injection tank and the water in the channel were allowed
several hours to reach room temperature after they were refilled. Hot water was added
when filling the water channel to ensure dye and the channel water had about the same
temperature. Water temperature during each run of experiments was found very steady
and only increased about 1.0K for two hours continuous running of the channel. Since the

channel needed draining and refilling after about 50 minutes of run time to remove the
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background concentration buildup, temperature effects are negligible.

Under normal conditions in the laboratory, the emitted light intensity of the {luorecein dye
is the function of input laser light intensity and the concentration of the fluorescein dye

solution,

2.6 Linescan Concentration Measurements

Some concentration measurements were made using the linescan method, with the plume
illuminated by a single laser bean generated by the LDV laser. In order to use the LDV
laser to produce a single laser beam for linescan measurement, two mirors shown in
Figure 2.17 were used to by-pass the LDV focusing/receiving optics. The beam was about
Imm in diameter in the water, the same as the distance between two pixels on the digital

video image.

Because the maximum spatial resolution of the image system was also about 1mm, there
was no need to make corrections for the Gaussian intensity distribution across the laser
beam. However, the light attenuation along the beam path was not negligible, especially
where the plume concentration was higii. The light attenuation corrections are discussed
later and also in more detail in Appendix A. Attenuation corrections were applied to each
collected linescan image before converting the intensity data into concentration and time
avera,ing the concentration values.

An image processing system was used to collect the data from each run of experiment
(see Figure 2.18). The frame grabber, which digitized the signals from the video camera,

.....

played a key role in the image processing svstci.

steps:
. collection of digitized images;
. correction for background, laser beam attenuation and system non-linearity;

. determination of plume mean concentration.
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Figure 2.17  Schematic diagram of the single laser system

2.6.1 Image Acquisition

The raw data containing instantaneous intensity information were recorded directly to a
computer hard disk using a binary format for each run of 300 seconds at a speed of 15
frames per second. The colour video camera and the frame grabber in the 486-33 MKZ
PC were used together to convert and digitize video signals into RGB (red, green, blue)
signals. The camera used was a SONY DXC-151 S-VHS/RGB colour video camera. It
has a built in interline transfer CCD (Charge Coupled Device) with 768 horizontal x 493
vertical picture element resolution and an electronic shutter range from 1/30% of a second
to 1/10,000* of a second. A shutter speed at 1/250% of a second was used when collecting
linescan data because at this shutter speed a particle in the bulk fluid moved only one
pixel’s distance (less than Imm) in the streamwise direction, matching with the spatial

resolution of the image system.

The trame grabber, a Dzta Translation model DT2871, was used to digitize and translate
the standard RGB television signals into HSI (hue, saturation and intensity) signals. HSI

mode was chosen because light intensity is directly related to dye concentration. Intensity
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information in each pixel was stored as an 8 bit integer, so only 256 intensity levels could

be recorded for each pixel.

Even though each digitized output image from the frame grabber has a resolution of 512
x 512 pixels, the video signals used only 480 of the horizontal lines which left the last 32
lines unused. The maximum value from the nine video lines in the neighbourhood of the
illuminated line (i.e. 9x512 pixels), was chosen to account for the laser and camera

misalignment and stored for later analysis.

Hard Disk
A
i ¥
RGB
Camera | >
Frame grabber
: ~
™ i
Monitor Video convertor

486-33 MHz PC

Figure 2.18  Schematic diagram of image acquisition and processing system

2.6.2 Linescan Image Correction

The correction and analysis of images was done separately from the image acquisition
process. The first step in the process was to correct for light attenuation effects along the
beam path. This light attenuation can be neglected only when the dye concentration is
very low, see details in Appendix A. Assuming that there is no radial expansion of the
laser beam in the water channel, the laser beam attenuation along the beam path is solely

due to dye absorption and governed by Lambert-Beer Law (see Brungan, Petric and ¢/ al,
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1991). This assumes that attenuation is linearly proportional to the local dye concentration
C with a constant of proportionality € ( defined as the laser extinction coefficient with

units of [mm-(mol/litre)]™"),

dIin
= -eCdy 2.4)

where dl,, is the loss of light intensity due tc absorption over the beam length dy with

the local dye concentration C. The fluorescent light output is related to the input laser

intensity through a calibration function f as:

low = 1, 1(C) (2.5)

However, in the experiments it was found that the camera actually responded to input
light intensity in a non-linear fashion, not the desired linear response shown in Figure
2.19. Therefore, an empirical exponent o was imposed to account for this camera non-

linearity and the modified Equation (2.5) is,

Icam,i = (Im,i)af(c) (26)

where o was found by correlating attenuated images at varying intensities to be,

I .
@ = (1 - emi 2.7
( 255.0) @)

A discrete pixel-by-pixel form of Equation (2.5) derived from Equations (2.7) and (2.5)

is shown in Appendix A to be,

Icam,i - p,-

il (2.8)
LoI1 (1-eac, ap)

Jj=0

J(cy =
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where:

| = i'"™ measured pixel intensity (digital counts);

B, = clear water pixel response of the image system (digital counts);
¢ = fluorescent dye absorption extinction coefficient ([mm-(mol/litre)]");
o = empirical exponent defined as in Equation (2.7);

ay = the beam path length of one pixel in the Linescan image (mm);

C, = dye concentration at i* pixel location (mol/litre).

The second step in the correction process was to remove the background dye
concentration. Because the dye released into the channel was recirculated, the background
dye concentration increased with time. An average background concentration value for
each pixel was obtained by taking the mean of the concentration from 50 frames collected
at the beginning and the ex:d of each experimental run. The time average of background
concentrations for each pixel from the 50 frames collected at the beginning or end of a run
was obtained by averaging the sum of the instantaneous concentration of each pixel from
cach frame over the total frames collected and applying the attenuation correction to each
pixel in each collected frame separately. The average background concentration for each
pixel was subtracted from each of plume concentration profiles. The background dye
fluorescent intensity ir: the channel varied from 0 to 20 digital counts (out of a range of

0-255 for intensity) depending on the dye background concentration level.

2.6.3 Determination of Fluorescein Dye Mean Concentration

Two sets of known concentration calibration bottles were prepared by successively
diluting the previous bottle solution by a factor of two. The initial (the highest)
concentration solution was made by weighing an appropriate amount of fluorescein dye
powder (with molecular weight of 376.28g/mole) and dissolving it in distilled water. The
first set of 12 bottles with dye concentrations were prepared to cover the range from 100.0
wumol/litre down to 0.05 wmol/litre. The second set calibration bottles consisted of 10

bottles with conceitrations ranging from 70.0 xmol/litre to 0.14 umol/litre. To avoid
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saturating the video camera, two camera aperture settings. fo,, = 1.4 and £, = 5.6, were

used.

A 60 second time average intensity was used for linescan bottle calibrations. Assuming
there was no light attenuation when the excitation laser beam first encountered the dye
solution, the measured intensity on a line though bottle was extrapolated to the edge of
a bottle by fitting the measured intensity data througk: the ..odified Lambert-Beer Law.
as shown in Figure 2.20. See Appendix A for details. Using the extrapolation method
calibration curves were obtained and plotted in Figure 2.21. Then, these - “libration curves
were used to generate the conversion function f(C) in Equation (2.6) to convert the
corrected fluoresc:- ¢ intensity data into corresponding concentration values. The
equations used to fit the non-linear calibration curves for different camera aperture
settings were:

when f,,, =14,

e
]

0.940 exp(0.00957) - 0.894 (2.8)

and when f,, = 5.6,

c

44.38 exp(0.0163 1) - 43.86 (2.9)

With units of I in digital counts and C in umol/litre. For each image (approximately 15
images per second for 300 seconds, a total of 4,500) these intensity conversion equations
were applied to successive pixels along the beam path to convert the attenuation-

corrected intensity data to concentration.

To deal with the day-to-day variation of the laser initial intensity (i.e. I, ,), a calibration
bottle was used at the beginning of each set of data collection runs to define the [ my With
the curves in Figure 2.21 as the standard response of the imaging system. Assuming the
change in the calibration curve (shown as dotted or dashed lines in Figure 2.22) was duc

solely to the variation of the laser output power, the calibration curve was shifted along
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the intensity axis, using the ratio of the initial bottle intensities.

This ratio was taken as the ratio between the value predicted from the standara calibration
curve and newly measured value taken with a known concentration bottle at the time of
data collection runs. If this intensity ratio was greater than 1.0, the initial laser intensity
at the time of testing was greater than the standard value so the calibration curve was
shifted forward shown as the dashed line in Figure 2.22. The calibration curve was shified
backward as the dotted line shown in Figure 2.22 if the intensity ratio was less than 1.0.
Therefore, the constants in Equations (2.8) and (2.9) changed slightly from day to day
based on the initial laser intensity calibration. Saiaples of the corrected and uncorrected
concentration profiles using known concentration bottles and experimental runs are

shown in Figures 2.23 and 2.24.

2.7 Full-Field Images Using PLIF

Full-field light sheet images were used to visualize the dispersion of neutrally buoyant
material in the ncar and far wake region of a building, and to measure plume cr: 55 stream

and vertical concentrations and spreads.

The water channel was illuminated by dual laser light sheets as shown in Figure 2.25. The
laser used was a Coherent Innova 70, 4W argon-ion continuous wave laser that produced
multi-wavelength laser light ranging from 488nm to 514.5nm (blue-green). Two laser
sheets approximately 2mm thick were generated from the single laser beam. The details
are discussed in Appendix B. Because the bottom of the water channel was covered by
the surface roughness plate, the only way to view the test section was from top of the
channel. A mirror, with dimensions of 500mm wide x 1000mm long angled at 45°
towards the video camera was used to view the test section. To decrease the water surface

reflection caused by the surface waves, a piece of Styrofoam was floated on the water
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surface upstream to act as a wave suppressor. The laser sheet usually passed through the
water channel horizontally, but could also be turned vertically so both the x-y and y-z
plane could be illuminated. Even though there was no need to correct the light sheet
attenuations on the full-field images obtained by using PLIF method (Campbell, 1991),
other corrections had to be made for the background concentration, the building shadows,
and the light sheet edge effects. The background concentration was caused by a buildup
of the fluorescent dye concentration in the water channel. The shadows from the building
edges were caused by the different refraction indices of the channel water and the
plexiglass used to construct the model buildings. The intensity across the laser light sheets
was a Gaussian distribution, so at the edges of the light sheets the light was dimmer. Air
bubbles and other small particles in the water scattered the laser li ght. To cope with these
problems, a 9x9 spatial averaging filter was found to be the best to smooth the
irregularities in the collected full-field images, see Appendix B for details of the spatial

filtering.

2.7.1 Image Collection

The same image system (Figure 2.18) used for the linescan was used to collect the full-

field images. The steps used were:

. Calibrating laser output using a known concentration bottle.

. Taking 50 frames as the background intensity before each run of experiment.

. Turning on the ground-level source.

. Collecting plume images for 300 seconds at the rate of 8 frames per second.

. Turning off the ground-level source.

. Taking 50 frames at the end of each run.

. Adding small amount of concentrated dye solution to the channel for obtaining

a sheet image (a 50 frame average image) which was used as the intensity map to

correct the background and plume images.
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2.7.2 Image Corrections

The steps used in this correction process were:

Filtering the time averaged sheet image using the 9x9 lowpass digital filter and
at the same time applying an empirical constant to correct the light sheet edge
effects. The filtered sheet image was then normalized by the intensity (10x10
pixel average) measured at the same location where the single-bottle initial
calibration was carried out.

Filtering the two background images and the plume images using the 9x9 lowpass
filter and also correcting for laser sheet edge effects.

Normalizing the filtercd background and plume images using the corrected sheet
image.

Converting the corrected background and plume intensity images into
concentrations.

Subtracting the average background concentration image, obtained by averaging
the two background concentrations (at the beginning and end of each run), from

the plume concentration image.

See Appendix B for details on the full-field image collection, corrections and derivation

of correction equations. Some example of the corrected full-field concentration images

are shown in Figure 2.26.
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Chapter 3

Plume Spread with Downwind Buildings

3.1 Introduction

Disper-ion near a building is greatly influenced by the flow field. This is determined by
:re shape and orientation of the buildings and the upstream condition. Due to the greater
crosswind and vertical spreading of a plume behind a building, the standard Gaussian

plume model makes serious errors in predicting concentrations.

The first simple theoretical model dealing with plume dispersion under the influence of
a building was proposed by Gifford (1960). Gifford allowed for greater initial plume
dilution at buildings by adding a term proportional the building projected area A, to the
Gaussian dispersion mode! for the plume centre line ground level concentration
downstream of the building,

C = Y
(noyoz +kAp)Uc

(3.1)

In Equation (3.1) the constant k is an empirical number estimated to be in the range 0.5<

k <2.0.

Turner (1969) and Barker’s (1982) virtual source models match the plume from a virtual
upstream source with the experimental observations of the greater dilution in the near
wake region. In these virtual source models, the plume crosswind and vertical spread at
the rear face of a building are specified as fraction of the building height and width by
choosing the virtual source position. In Turner’s model, the crosswind and vertical
spreads are defined as o', = /3, and o', = H/2.15. In Barkers model, o',=W/43and o',
= H/3.0.
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The Ferra and Cagnetti (1980) model was developed by applying the concept introduced
by Halitsky (1977) of using the dimensions of an equivalent flat plate to a building. Some
quantity which were linearly proportional to the plate size were added to the plume

crosswind and vertical spreads downwind of a building to produce higher wake

dispersion.
/ Lid
> 7% s
. 7
/ , H (3.2)
O, =G, +
; ) 2.507

where W and H are the building upwind face width and height.

The Huber and Snyder (1982) model, based on their wind tunnel studies, is more
complicated than other models. It is divided into near-wake, far-wake and recirculation
regions. In the near-wake region, defined as 3H< x <10H, where x is measured from the
building rear face and ¥ is the building height, the plume crosswind and vertical sprecad
are specified as:

o’y =0.7H + E—I:—H)

(3.3)
(x-3H)

o' =0.7H +
: 15

The far-wake region is defined as x >10/. The virtual model is chosen so that the plume
spreads match with the values predicted from the near-wake model at x = 104, Bu, if the
plume spreads predicted by the model are less than the undisturbed flow, then the virtual
source model should be used. If the source height is above H (the building height), only
the vertical spread is enhanced and the crosswind spread is not affected. Note that the
Huber and Snyder (1982) model assumes a constant concentration in recirculating region
downwind of a building, where x < 34, and this constant concentration could be estimated

using the Equation (3.3) by seeting x = 3H.
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All of these models are basically the same in their treatment of the building influence by
adding larger initial plume spreads related to building size to the standard Gaussian
model. In this thesis, the objective is to develop a model that can be used to predict the
plume concentration either upwind or downwind of a building using a concept similar to

the above models.

3.2 Concentration Predictions Using Gaussian Plume Models
Since the plume spreads modelled in this thesis use the Gaussian plume concept, it is

necessary to briefly describe its formulation

If the mass release rate Q of the source is varying slowly wit> “ime or .s a steady release,
along-wind diffusion can be neglected, and the plurne concentration with wind speed U,

is given by the reflected Gaussian profile (Csanady, 1973),

—y? -(z-h)? -(z+h.)?
C= Q exp[ Y )[exp( _(z_‘_)_) +exp(.._€.z ) )} 3.4)
@mU.o,0, 20, 20 20

This implies homogeneous turbulence, and neglects the change in vertical eddy diffusivity
with height above the ground. So the ground level concentration of the plume can be

found by setting z = 0 in Equation (3.4),

0 -y’ ~h
Co= - exv( ; )exp( - ) (3.5)
noyozljc 20y 202

where the downwind distance x enters Equation (3.5) through the variation of o, and o..

3.3  Extending the Gaussian Plume Model to the Current Studies

The main interest in the current study is to develop a simple model which can be used to
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predict the concentration of a neutrally buoyant plume released from a ground level point
source upstream of buildings. Experimental methods such as laser linescan and PLIF were
used to investigate plume dispersion either in the near wake region or upwind of
buildings. The flow in the vicinity of buildings is greatly disturbed and its pattern
becomes very complicated and extremely hard to trace due to the interactions among
different flow regions and vortices. Therefore, to simplify this complicated problem, the
following assumptions were made in the proposed model:

. the mean flow is neutrally stratified stable flow;

. the contaminant released, for the present study, is neutrally buoyant,
highly concentrated flourescein dye solution;

. the source is considered as a point source and its flow rate is steady;

. the along-wind plume spread g, is small comparing with the along-wind

distance travelled by a fluid parcel in the same time interval, af.

3.3.1 Developing the Plume Model Using Gaussian Plume Concept
The Gaussian plume is used as the stepping-stone towards the complex problem of plume
dispersion and dilution around buildings. The additional plume dispersion due to the
presence of a building is assumed to be caused solely by the change of plume crosswind
and vertical spreads, 0, and 0., and neglects changes in convective windspeed U, . The
plume maximum concentration, even under the influence of buildings, retains the similar
form of the Equation (3.5), with A, =0 andy = y,,
c -__ 2

o mU, 0,0, (3.6)

The maximum mean concentration ratio of the plume at ground level with and without

a building will be:
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(k)
C U o g
-

wioy,wi oz, wi

0
o o (3.7)

wo y,wo  zZ,wo

- wo y.wo 2,wo
\ Uw’ g, . (o]

y.owi 2 Wi

if a plume develops without a building, its vertical spread will be proportional to its

crosswina spread, so it might be reasonable to assume:

Oz_wo Oy,wa ‘ .
=] - (5_8)
g ag
z,wi y.wi

3.9)

As Figure 3.1 shows, for a diverging plume, the principle of conservation of mass leads

to:

0, U,0, =0, U,0, (3.10)

2



n
—

and Equation (3.10) can be rewritten as:

U o o,
2:( y,)( 1) G.11)
U, a 4]

Equation (3.11) indicates that the change in velocity U as the plume approaches a building
is linked to changes in plume spreads o, and o, since both the plume spread and velocity
are the result of diverging streamlines due to deceleration of the flow. To express the ratio

of velocities in Equation (3.11) in terms of plume dimensions, assume an empirical

Uwo Oym /Ozm b
U :[ 0' Lo. ] (3-12)

where the exponent b is an empiricai constant. Note that Equation (3.9) relates the

relation of the form,

velocities of two different plumes at the same x location, but Equation (3.10) links the

velocities of a single plume at two different x locations. Equation (3.11) is an empirical

Flow direction

Sphtting plume

v o 4
>Ul-°yharl U,0,0, ;//
A
A

Figure3.1  Schematic diagram showing the crosswind spread of a plume
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rather than an exact relation of plume velocities with and without a building present.

Applying Liquation (3.8) to Equation (3.12),

[ Al
(/wn . ( Oy,m ) ( oy,w )
U ag g

wi L y.wo y.wo

(3.13)
o )h(l ‘a)
y,wi
o
y.wo
IFinally, combining Equation (3.9) and (3.13),
C ( o )(l +a)(1-8)
wi o y.wi
—_= (3.14)
Cwn oy,wo

In the case when value of b = 1.0, the increase of the plume spreads, o, and 0., caused by
the diverging streamlines is exactly balanced by the decrease of the plume velocity U, as
the flow decelerates while approaching the building. This limiting case produces no

change in plume concentration resulting from introducing a building into a plume.

In order to use the Equation (3.14) to predict the effect of a building, the ratio of
(0,../0,,.,) must be determined using experimental data. To determine the empirical

function, a new coordinate system is defined as shown in the Figure 2.2.

To take the building effects into account for the disturbed flow around buildings, a length
scale R proposed by Wilson (1979) which R = L'3S*? where L and S are defined as the
largest and smallest dimensions of upwind building face, is used to normalize all
distances and plume spreads. Other length scales were also tested, such as R = L"*S** and
R =L'S"?. Based on the experimental data obtained in the present experiment they are
shown in Figure 3.2 and 3.3 where we see that the choice of exponents for L and S makes
little difference for the present case. The building length scale defined by Wilson (1979)

was chosen because it was developed over larger range of building dimensions.
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3.3.2 Determining the Plume Spreads
As mentioned above, the ratio of 0,.../0,.,, is determined using experimental data. The
plume concentration acruss the stream was used to determine the plume centre () from

its first moment.

f :’y C(y) dy
L RAR)]
[ e

If the centre of the plume at a specified x location is known, its crosswind spread o, is the

second spatial moment of the plume cross stream concentration.

e _ 2
- [Ty o dy

9

— (3.16)
f C(y) dy

Using Equations (3.15) and (3.16), the plume crosswind spread can be found at any

streamwise location.

I. Finding 0,
0, is determined first because it is easier to find and express as a function of the along-
wind distance (x) from the source. Making use of the Equations (3.15) and (3.16), (o J.

was calculated from concentration images such as one shown in the ¥ igure 3.4(a), and

fitted using a power function,

2 2
y.wo oy,wo,O

+2.06x'" (3.17)

with 0,,,,,, = 4.47 mm and x in mm. As shown in the Figure 3.4(b), Equation (3.17) fits
the experimental data quite well. From Equation (3.17), g, » x"* the exponent (.54 is

a bit smaller than expected value which is about 0.55 (Griffiths, 1991). "This might be
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causcd by the narrow width of the water channel that has effects on the turbulence scale

at the test section. This fitted function is used in all the calculations in this thesis to find

the ratio 0,,,,/0,,,,,.

II. Finding o,

There is no simple way to fit g, ,,, through a simple function like the one used for g,
The building has profound effects on the plume as it approaches the building. Two
selected concentration images are shown in Figure 3.5. The ~xperimental data from each
individual concentration image were retrieved and used to determine g,,,, in the cross-
wind (p) direction at specified streamwise, x lccations using Equations (3.15) and (3.16).
Sclected examples of plume crosswind spread with a building present when comparing

with no building present are shown in Figures 3.6, 3.7, 3.8 and 3.9.

I1l. Findingo,,,,

When determining the plume vertical spread, o.,,, data gathered at only four x locations
were available for examinatior Direct calculations were made with Equations (3.15) and
(3.16) on plume concentratio images obtained by turning the dual laser sheet in its

vertical position. The image i . m one of the four locations is shown in Figure 3.10(a).

An independent calculation of ... was made by fitting a Gaussian profile to vertical
profiles of concentration on the plume centerline (y = 0) using both linescan data and
values from full-field images. Equation (3.4) for a ground level source with the sheet at

height z (z = Smm) was used,

c-—2 exp( "’2) (3.18)

2
n0,0,U, 20°

Since at a specified x location, U,, o,, 0. are constants, then the Equation (3.18) can be

further simplified,
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C =C, exp( —i—) RE Y

20° (
From the experimental data using both full-field images and linescan profiles, Figures
3.10(b) , 3.10(c), and 3.11, show that the plume vertical spread o, ,,, can be fitted using

a power function,

2 2
O = 0,

z,wo

41255108 (3.20)

N

with 0., = 5.0 and x in mm.

3.3.3 Verifying the Gaussian Model Using Full-field Images

Applying the experimentally determine:! functions of O,.. and 0., from Equations (3.17)
and (3.20) respectively to the Gaussian model for centerline ground-.evel concentration
of a ground-level source plume to compare with the concentration at the centerline from

a plume image shown in Figure 3.12,

= Y
Co =
TU 00
[ag y 2z
321
= Q (
i —
i Uc(oi,wo,o +2.06x 1-07)2 (o:,wn,o +1.255] 05)2

with 0,,,,=5.0, 0.,,,, =4.47 and U, is a constant which was calculated at z = Smm the
laser sheet height. The theoretical prediction and the experimental measurement showed
a good agreement (shown in Figure 3.12). The small amount of concentration offsct from
the predicted values possibly was caused by the concentration calibration offset from

calibration curves (see Figures 2.21, 2.22 and B-4).
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3.3.4 Normalizing the Plume Spread Difference (Oy i = Oy o)

The experimental data suggested that there might be a function which could be used to
describe the plume crosswind spread with the presence of buildings. After plotting up the
data in several normalized forms, the function ¢ which was most successful in correlating

the change in o, with a building presence was:

i:_ - oy.wi _Oy.wo) ( (oy.wo)alx‘=0 )0'5 3.22
( e ( P’ P (3.22)

with function ¢(x'/R) in Equation (3.22) represented empirically as a gradual increase
approaching the building front face, followed by a constant added plume width downwind
from the building front face, see Figures 3.13 and 3.14. The approximate straight line
behaviour of the function ¢(x"/R) upwind of building on the semi-log plots of F igures 3.2
and 3.3 suggests an exponential function. The fitted functions shown are:

downwind of the building front face,

M%) = 0.45 for% >0 (3.23)

upwind of the building front face,

x’ x’ x’
Xy =045 (——) £ <o 3.24
d)( R ) exP 0.8 R Jor R ( )

3.3.5 Combining the Related Equations to Predict the Concentration
Ratio

After making assumptions on plume crosswind and vertical spreads and their relations

and developing an equation for the normalized plume crosswind spreads for the plume in

the case when building is present and absent, all the related equations can be combined

to derive the final explicit form for the concentration ratio stated as Equation (3.14). By
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factoring out 0,../R from Equation (3.22),

x' OV wo ov wi (ov wu)ul ] ) 0 -
—) = | = -~ -1 _— “2.
0 - TSm0 (.29

yv.wo

so, solving for the plume spread ratio 0,./0

(AT

g » ‘ R R 0.5
T )( ) ( ) 1 (3.26)
0'y,wo y.wo (Oy_wn)ulx o

and, the Equation (3.26) can be alternatively expressed as,

oy,wa . l

o ' yos 307
» 1.0 + ¢(%)(_£__ (_.h_")*__.*_) ¢ )

oy,wo (Oy,wu)uu ]

Finally, combining Equations (3.14) and (3.27).

(Lay(1 by

wi

Cwo X'(
1 -
+d>(R)

R

- ) s (3.28)
z’y,wu A (Oy,wo)al.r '—;

where ¢ is the empirical function defined as in the Equations (3.23) and (3.24). It was
also found, based on the experiments, that Equation (3.28) best fit the experimental data

with (1+a)(1- b) = 1.5. This will be shown in the next chapter.

Using this simple formula to predict the plume concentration when a building is present
only requires the plume crosswind spread when there is ne building. The building cffects

enter Equation (3.28) through the building length scale R, where

1 2
- = ¢
R =138} (3.29)
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with L cqual to the larger of height // or width W, and S is equal to the smaller of the two.
Equation (3.28) will be used to calculate the predicted plume concentration, and the
predicted concentration values at the same x locations wiil be compared with the

experimental data collected for the present studies in later chapters.
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Figure 3.5

(a) Building A

(b) Buildng B source

Two ~elected concentration images from present experiment for
buildings at 270.0 mm from source and 0° yaw angle (dimensions of
buildings: 4, 100mm widex50mm hightx40mm long; B, 100mm

widex 100mm hightx-40mm lory)
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Chapter 4

Comparison of Plurae Model to Experimental Data

4.1 Introduction

In this chanter. the newly developed plume model will be compared to the experimental
data taken for this study from PLIF and linescan methods. The ability ol this plume n el
to predict plume dilution from the neutrally buoyant ground level point source wil he

examined.

4.2  Plume Spread

The plume model is based on the experimental observation that the plume crosswind and
vertical spread and dilution increased after encountering buildings. The plume
experiences an increase in its size and a decrease of its concentration produced by the
change of plume crosswind and vertical spread. As described in Chapter 3, the key

assumptions in the development of this model are:

. the plume itself still behaves as the Gaussian single plume even after encountering
buildings;
. the plume vertical spread can be related to the plume crosswind spread through

a simple power function;
. velocity changes caused by the building presence could be related to the plume

crosswind and vertical spreads through an empirical function.

Based on these assumptions, an equation for predicting plume concentration ratio of with
to without a building present was derived as Equation (3.28). The value of (14 a) (1-b) ~
1.5 is determined empirically later in this chapter from data collected using two model
buildings at three locations, 170.0 mm, 270.0 mm and 370.0 mm from the source.

Equation (3.28) gives,
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Equations (4.1) and (4.2) are in reasonably good agreement with the experimental data,
as it will be shown later with the experimental data that the empirically determined value

of (1+a)(1-b) = 1.5 fits the data best.

4.3 Determination of the Plume Maximum Concentration from

Full-field Images
In order to compare the concentration ratio (C,/C,,) with the equations above, the
experimental data from full-field concentration images were used. When a plume
encounters a building the plume splits into two as shown ir Figures 3.5 to 3.9. The ratio
C../C,, in Equation (4.1) and (4.2) is defined as the plume local maximum at each x
location, not at the centerline of the building. To determine this maximum concentration
in a plume at specified x locations, the local maximum was selected. For a plume at x
location the experimental concentration ratio C,/C,,, is calculated from the maximum
concentrations with and without the building present. Due to the fact that the two
concentration peaks at the sides of a building for building yaw angles of either 0° or 90°
differ by less than ten percent the average of the two concentration peaks was used to

determine C,,. But for cases with building yaw angles between 0° and 90° , a single



74

maximum concentration value was used to detern the C,,, because the percentage
difference of the Loncentration peaks at the sides of a building was much larger than ten
percent. Therefore, for a plume at any x location the experimental concentration ratio
(C../C,,) can be found as the division of the selected maximum concentration between
plume with and without the building present. The local maxima of a plume will change
irom one side of a building to the other as the building yaw angle changes from 00 (o 90°

as Figures 4.2 to 4.6 demonstrate.,

4.4 Plumes at Yaw Angles of 0° and 90°

Figures 4.7 to 4.12 show the ratio of concentration with and without a building for two
different buildings placed at three locations. Experimental data in these figures were
extracted from the full-field concentration images in steps of about 10 mm in the

streamwise direction. The model predicts a higher recovery rate in the wake of buildings.

4.5 Plumes at Yaw Angles of Between 0° and 90°

The primary goal of this study was to develop a simple model which could be used to
predict the plume concentration ratio (C,/C,,,) when a plume encounters buildings at their
usual orientation such as 0° or 90° to the wind direction. When the building yaw angle is
not equal to either 0° or 90° to the wind direction, then there is a problem calculating the

building length scale (R), one of the key variables in this single plume model.

L, D*Sin(a)
WeCos(6) y

Projected Width

%
A’ Wind Direction

Figure 4.1  Building projected width



4.5.1 Using Projected Building Width to Calculate R

As the Figure 4.1 shows, one way to treat the new width of the building when yaw angle
of the building is not at either 0° or 90° is to use the projected width of the building since
the plume spread is directly related to this projected width. Then it is reasonable to use
the building projected width for calculating the new building length scale (R) in these
cases. Figures 4.13 to 4.1% show that the model is still be able to predict the plume
concentration ratio. The theory always overpredicts when applied to the taller building
uscd in this siudy. These results suggest that the building length scale (R) may not depend

simply on projected building width.

4.5.2 Linearly Interpolating R Using R,, and R,

Considering how streamlines pass around the building, when the building yaw angle
increases from 0° to 90° a building becomes more streamlined. The projected width does
not account for this streamlining effect. As an alternative, the building length scale (R)
was calculated as a linear interpolation between R at 90° and R at 0°. As Figures 4.19 and
4.20 show, if the new length scale (R) calculated using linear interpolation from the

following equation,

R =(R,, —Ro)(g—%) +R, (4.3)

the predicted value fits the experimental data a bit better. Even though this method is not
used by the current model, it gives a hint that the appropriate building length scale (R) for

wind angles that are not at 0° or 90° is not as simple as R = L'35%3,

4.6 Comparing the Predicted Concentrations to Linescan

Measurements
Another technique used in this study to measure the plume concentration at precise

locations was the linescan method. As Figure 4.21 shows the model predicted value and
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the linescan measurements agree well with cach other. This confirms that this simple

single plume model does a good job in predicting the plume concentration ratio (€, /).

4.7  Error in Interpreting the Measured Concentrations as Ground
Level Concentrations

Due to surface light reflection errors, the dual laser sheet used in the current studies to
illuminate ihe tracer, the fluorescent dye, could not be lowered to the positions closer than
Smm to the ground. All the horizontal full-field images were taken at Smm above the
ground. The data from the full-field concentration images were used as the ground level
concentrations to compare with the model. From Equation (3.19), the plume
concentration at Smm above the ground level will be,

C

o (5.0)
“sme T ‘ve"p("z‘o‘z' ) (4.4)

Z,wo

The percentage error caused by the interpretation of measured concentration at = = Smn

as the ground level concentration at z = Omm is,

Omm ~C5mm

error% = Y x 100 (4.5)

Omm

Substituting Equations (4 ) and (3.20) into Equation (4.5),

2
C, —Coexp( - 5.9 ]
. 203,\«0
c, (4.6)

2
. ] —exp( —_@l*)
50.0+2.5x !
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The calculated errors from interpreting the measured concentrations as the ground level

concentrations at specified x locations for plume are shown in Table 4.1.

Table 4.1 Error from Interpreting Measured Concentration at z = Smm

as Ground Level Concentration

x, dist. fr. source error
170 mm 3.05%
230 mm 2.15%
330 mm 1.65%
430 mm 1.33%

From this, using the measured concentrations at z = 5mm above the ground as the ground

level concentrations is reasonable.

4.8 Empiricism in this Plume Model

In deriving the single plume mode! three fundamental constants were determined using

various amounts of empirical manipulation.

. The constants (0.45 and 0.8) used in the ¢p(x*/R) function both have a low level
of empiricism since they were determined by comparing the measured data for
two different model buildings at three different streamwise locations for buildings
at both 0° and 90° yaw angle.

. The :onstant, (1+a)(1-b) exponent is used in Equation (3.8) and (3.12) to relate
the plume crosswind spread to the plume vertical spread and streamwise velocity.
The value of this product has a high level of empiricism because it was
determined by comparing measured profiles visually to determine a best fit, with

an emphasis on getting the correct value at the building front face.



4.9 Comparison to Other Models

One way to test the current model is to compare it with other existing models. Some of
the Gaussian models were briefly discussed in Chapter 3 are used here when making
concentration predictions at the rear face of a buildi.. The equation used to calculate the
plume concentration(C,,,) for no building case was Equation (3.6). To calculate (C,,) for
the case of a building present, Equation (3.1) was used for Gifford (1960) model,
Equation (3.2) was used for Ferra and Cagnetti (1980) model, and Equation (3.3) was
used for Huber and Snyder (1982) model. For the no building case, plume crosswind and
vertical spreads were calculated using Equations (3.17) and (3.20). Equation (3.28) with
its exponent (1+a)(1+b) = 1.5 was used for the present model. The results are shown in
the following tables. Note that the constant k used in Gifford (1960) model was set at 1.0

as the centre value of his suggested 0.5 to 2.0 range.

Tabie 4.2 Comparing Predicted and Measured Concentration Ratios (C,,/C,,) at the
Building Rear Face for Building 4 at Yaw anglc 0 = 0°

Distance from Source x =190 mm x =290 mm x =390 mm
Models Predicted | Measured | Predicted | Measured | Predicted | Measured
Gifford (1960) 0.07 0.15 0.09 0.20 0.i2 0.23
Ferra & Cagnetti (1980) 0.18 0.15 0.23 0.20 027 0.23
Huber & Snyder (1982) C1i8 0.15 0.28 0.20 0.38 0.23
Present Study 0.17 0.15 0.25 0.20 0.26 0.23

Table 4.3 Comparing Predicted and Mensured Concentration Ratios (C,./C,,) at

the Building Rear Face for Building B at Yaw angle 0 = ("

Distance from Source x =190 mm x =290 mm x =390 mm
Models Predicted | Measured | Predicted | Measured | Predicted | Measured
Gifford (1960) 0.04 0.10 0.06 0.13 0.07 0.17
Ferra & Cagnetti (1980) 0.12 0.10 0.16 0.13 0.16 L 0.17
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Distance from Source x 190 r x = 290 mm x =390 mm
Modcls Predicted | Measured | Predicted | Measured | Predicted | Measured
Huber & Snyder (1982) 0.09 0.10 0.14 0.13 0.19 0.17
Present Study 0.08 0.10 0.12 0.13 0.16 0.17

Table 4.4 Comparing Predicted and Measured Concentration Ratios (C,,/C,,) at
the Building Rear Face for Building 4 at Yaw angle 6 = 90°
Distance from Source x =190 mm x =290 mm x =390 mm
Models Predicted | Measured | Predicted | Measured | Predicted | Measured
Gitford (1960) 0.07 0.26 0.09 0.32 0.12 035
Ferra & Cagnetti (1980) 0.31 0.26 0.36 0.32 0.40 0.35
Huber & Snyder (1982) 0.09 0.26 0.14 0.32 0.18 0.35
Present Study 0.28 0.26 0.38 0.32 0.38 0.35

Table 4.5 Comparing Predicted and Measured Concentration Ratios (C,/C,,) at
the Building Rear Face for Building B at Yaw angle 6 = 90°
Distance from Source x =190 mm x =290 mm x =390 mm
Models Predicted | Measured | Predicted | Measured | Predicted | Measured
Gifford (1960) 0.14 0.22 0.17 0.27 0.19 0.34
Ferra & Cagnetti (1980) 0.20 0.22 0.25 0.27 0.28 0.34
Huber & Snyder (1982) 0.23 0.22 0.34 0.27 0.46 0.34
Present Study ‘ 0.23 0.22 0.31 0.27 0.37 0.34

Tables 4.2 to 4.5 show that the current model accurately predicts plume concentration
ratios at the rear face of a building. The Gifford (1960) model always under-predicts the
same concentration ratio. The Ferra and Cagnetti (1980) model predicts the concentration
ratios with a quite good agreement with the experimental data. By assuming constant

concentration in the building wake recirculation region, the Huber and Snyder (1982)
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model has good agreement with the square face building. but not other shape of buildings

as the results show.

4.10 Summary

In this chapter the experimental data from the PLIF and linescan method were compared

with the predicted values from the newly developed single plume model. The main

conclusions that can be made are:

The plume measured concentration ratios of C W/ C o were determined by dividing
the experimental values C,, by C,,,. Only in the cases when building yaw angle
was at either 0° or 90° were the average peak concentrations from both sides of
a building was used to define C,,. Otherwise. the local maximum . was used.

The theory does a reascnably good job when the building yaw angles were 0 and
90°.

The theory is not good at predicting the concentration ratio when the building yaw
angle is other than 0° or 90° and the projected frontal width is used.

The theory gives a slightly better estimates if the building length scale is
calculated by linearly interpolation between R,, and R, when building yaw angle
was between 0° and 90°.

The theoretically predicted values are close to the measured data from linescan
method.

The newly developed model is more more accurate than other exiting models in
predicting the plume maximum ground level concentration ratio in the building

near-wake region.
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Chapter 5

Summary and Conclusions

5.1 Summary

The primary goal of the present study was to develop a model for plume dispersion on the
upwind side, and in the wake region of buildings; and compare it to experiments done
with the water channel using both the PLIF and linescan methods. This model
incorporates the effects caused by the increase of the crosswind and vertical plume
spreads du. to the presence of buildings. The crosswind and vertical spreads of a plume
are assumed to be directly related to each other through a simple power function. The
increase of the plume crosswind and vertical spreads produces the increased dilution of
the plume in the vicinity of buildings. The new component of this single plume 1nodel is
its ability to simulate the gradual and continuous increase in the plume crosswind spread

upwind of a building.

In Chapter 2, the experimental apparatus and methods were outlined. Firsi, the
development of the required boundary layer, using the newly designed ror ss base
plates with a turbulence generating screen attached to the flow straigh’ the test
section entrance, was discussed in detail. The Laser Doppler Velocimetrs .nts and
the operation principle used to collect velocity data were discussed. Kc....  .com LDV
measurement for the boundary layer velocity profiles with and without the building were
also presented. The mechanisms of laser induced fluorescence were then introduced. Both
linescan and full-field images were collected over a 300 second time average and stored
in a computer hard disk to permit faster collection rate and allow a maximum number of
imagcs to be processed. The collected raw images were corrected and analysed later. A

description of the image processing techniques developed to obtain concentration data
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from the digital ensemble averaged image was then given. Finally. the image correction
process for light attenuation, light scattering, and conversion from fluorescent light
intensity to concentration for both the linescan and dual light sheet methods were

discussed.

In Chapter 3, the single plume model developed for this thesis was discussed and an
equation to predict the plume concentration ratio of (C,/C,,,) was derived. The three key
assumptions of this model were the ambient flow was homogeneous, the plume vertical
spread could be modelled using an empirical power function to relate it to the crosswind
spread, and the velocity ratio at the same x ’ location could be expressed in terms of
crosswind and vertical plume spreads through an empirical power function based on a
mass conservation analogy. A new coordinate system was defined and used to coordinate
the new model with the new x origin set at the building froat face. The building length
scale (R) defined by Wilson (1979) was used to normalize the plume travel distance in the
streamwise direction and the plume crosswind spread as described in Equation (3.22). To
better correlate with the experimental data the normalized plume spread in Equation
:3.22) was divided into two regimes that added a constant additional spread to the plume
downwind of the building front face, with an exponential increase in the plume spread as

the flow approaches the building front face.

Chapter 4 presented the experimental results and demonstrated the effectiveness of the
single plume model when predicting the plume concentration ratio (Cu/Cyo)- This simple
model is able to predict the plume concentration ratio quite accurately if the building yaw
angle either at 0° or 90°, but it over predicts the plume recovery rate downwind of
buildings. Comparing with other Gaussian models such as Gifford (1960), Ferra and
Cagnetti (1980) and Huber and Snyder (1982) model, the present model demonstrated
superior capability and accuracy on predicting plume maximum ground level
concentration especially in the near wake region. Considering the simplifying

assumptions made when deriving the single plume model to predict the plume
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concentratien ratio, this model appears to be a remarkably accurate estimate for

concentration in plumes from a ground- level source encountering a building.

5.2

Conclusions

The single plume model for predicting concentration ratios with the presence of a building

represents a new physical modelling approach which has been successfully applied in this

thesis. Conclusions that can be made from the current studies are:

53

Plume dilution actually starts several building heights upwind and is sinigficantly
reduced at the front face of a building. This is not as what was indicated and
modellec by earlier research with the plume dilution suddenly occurring at the
downwind side of a building.

Plume spreads (crosswind and vertical) are the key factors in modelling plume
dispersion process even with presence of a building. These crosswind and vertical
plume spreads were affected by building yaw angles.

The Planar Laser Induced Fluorescence technique is feasible for both flow
visualization and concentration measurements for a plume dispersing around a
building from a ground-level source. The linescan technique is also a good,
feasible method for its high spatial resolution, fast sample rate and convenience
in measuring plume crosswind concentrations in various along-wind and vertical
positions.

The Gaussian plume model is still a good, simple model for predicting the plume
ground-level concentrations in the along-stream direction if the plume spreads

could be appropriately modelled.

Recommendations for Future Studies

In future studies a more and thorough investigation of fluid mechanics around buildings

should be undertaken to try and determine the actual relations between the lateral and

vertical spread of a plume when a building is present. This would permit the comparison
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to the assumption made for the current model when determining the plume vertical
spread. Also, the strong horse-shoe vortex, that wraps around buildings, should be
examined because it must have a great etfect on bringing down more fluid from the upper

portion of a building to dilute the plume at the upwind face.

As the Figures 5.1 to 5.4 show, a two plume model, with a pair of plumes coming from
imaginary locations upstream of a building, should be the next step to predict the plume
concentraiion more accurately. Lin and Hildemann (1996) have done some work on

predicting the plume concentrations from dual sources with no obstacle present.
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Figure 5.1 Plume concentration contour from full-field image and
concentration profiles from linescan data for building 4 at yaw
angle 0° and 30° (100mm widex50mm heightx40 mm long). (a)
and (b) building location at x = 270mm from the source; (c) and

(d) laser beam position at x = 330 mm, z =5 mm
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Figure 5.2

Plume concentration contour from full-field image and

concentration profiles from linescan data for building A at yaw
angle 60°and 90° (100mm widex50mm height<40 mm long). (a)
and (b) building location at x = 270 mm from the source; (c) and

(d) laser beam position at x = 330 mm, z = 5 mm
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Figure 5.3  Plume concentration contour from full-field image and
concentration profiles from linescan data for building B at yaw
angle 0° and 30° (100mm widex100mm heightx40 mm long). (a)
and (b) building location at x = 270 mm from the source; (c) and

(d) laser beam position at x = 330 mm, z = 5 mm
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Figure 54  Plume concentration contour from full-field image and
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and (d) laser beam position at x = 330 mm, z = 5 mm
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Appendix A

Laser Light Attenuation Correction for Linescan

I.Analysis

Disodium fluorescein, the dye used in the experiment as tracer, has a number of
advantages compared to other type of fluorescent dyes such as Rhodamine 207 and
Rhodamine 127. Disodium fluorescein is highly soluble in water, shows no toxicity to
humans, permeates other materials at an extremely low rate, and can be used to measure
a wider range of concentration. It has a high quantum yield fraction, F, typically 85%.
The quantum yield fraction F, of the dye is the fraction of absorbed photons resulting in

fluorescent emission (Guilbault, 1973).

The dye fluorescence when excited by laser light is affected by four factors, as described
in Section 2.5.2 of Chapter 2 in this thesis. Attenuation of laser light by absorption and
scattering is an important factor causing the dye fluorescence intensity to change along

the beam path if the dye concentration is high.

The attenuation dI of excitation light intensity I, as the beam passes through a fluorescein
dye solution with local concentration C, is described by the Lambert Beer Law in

Brungart et al, (1991), which is

=-£CY) 1,0 (A1)

dl (y)
d

where y is the distance (mm) along the beam path from a reference location, and € is the
laser beam extinction coefficient. The Lambert Beer law considers only first-order

attenuation effects, so the laser beam attenuation is linearly proportional to the local dye
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concentration and light intensity. Integrating Equation (A.1), the attenuation of the

excitation light intensity of the beam at location y will be:

y
1,0) =1, 5exp(~€ [ CO)ar) (A.2)
0

where 1,4 is the excitation beam intensity at y = 0. The local fluorescent intensity of a
small slice, ay, can be obtained by combining Equation (A.2), the local dye concentration

and the quantum yield fraction F,.

y
1) =F ,eC(y) ay I, jexp(-~€ f Cy)dy) (A.3)
0

where F is a dimensionless constant. The exponential term in Equation (A.3) accounts
for excitation beam absorption and may be large even though eC(y)ay is small
(eC(y)ay«1) everywhere because attenuation is cumulative along the beam path. Since
the dye fluorescent radiation is randomly polarized and emitted uniformly in all directions
in space, there is no need to correct for the directional effects of the fluorescent light

itself.

The signal strength from an element cantured by the image system, ay, of dye in the laser
beam, (ie. the i-th pixe! element ), depends on a number of factors such as light collection
angle, lens reflections and imperfections, pixel sensitivity, device gain, magnification,
excitation beam, and local dye concentration. Effects caused by these factors can be
combined and accounted for through a calibration function f(C,) and calibration constants
B.. Here, f(C)) is the amplitude gain factor ‘or the /-th nixel element when it responses
to the local dye concentration C under the excitation beam intensity L. i1y and B, is the
dark noise (or clear water response) of the image system on each pixel for the photodiode

array in the camera.
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The digital output signal from the frame grabber for the i-th pixel is a number of counts,

I..m » which is proportional to input excitation light intensity and a function of the local

dye concentration C, and the local laser beam excitation intensity 1, ,.,, . Here, it is

assumed that the output (fluorescence) intensity captured by the imaging system is,

Lum, i » linearly proportional to the input light intensity I,, .., and non-linearly related to

the concentration C, through f{C,). From this we have,

Icam,i :f(cl) ]in,(l'-l) + ﬁ:

(A4)

Equation (A .4) can be rewritten using a finite approximation method. First write Equation

(A.1) as:

Ly ="ECWDI, .y

in,i in,(i-1) "~

Equation (A.5) can be expressed in an explicit form:

for pixel #1:

Ly = 1, ,(1-€Cay)
then for pixel #2:

I, = 1, ,(1-€C ay)
and for pixel #3:

m3 = L, (1 -€C,0y)
S0,

I, =1.'n_o(l “€C ay)(1-€C, ay)(1-€C, ay)

n,

which leads the general form:

i-1
]in,i = m,oH (1 -SCjAy)
=0

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)
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From experiment it was found that the camera responded to the input light intensity in a
non-linear fashion as it is shown in Figure 2.19, so a general function was proposed to

deal with this camera intensity non-linear response,
I =(1,)" (A.11)

where,

cam
)

o=(i.0-
255.0

Therefore, combining Equations (A.4), (A.i0) and (A.11),

i-1
Ly =R, T (1-€0.C 0p) +, (A.12)
j=0

From this, the local fluorescent dye concentration at each pixel location can e calculated

by the inverse function, g, of the calibration function f{C)):

C,=g(_,.») (A.13)

cam,i

where the product term in (A.11) accounts for absorption of the excitation beam over its
path. Both 1, ,, B and G ) have the units of digital counts, while € has the unit of
(mm'mol/litre) . The parameters I,,,, AC;) and ¢ are determined experimentally and will
be explained in the next section. From the experiment it was found that B,’s were spatially

random distributed constants.

Except at fairly low dye concentration, this attenuation was significant. For example, for
a 500:1 dilution of source concentration (C, = 10010 mol/litre) which is C = 2107
mol/litre, Ay=0.8mm and € = 1.20x10° (cmmol/litre) "' and the cross-stream width of a

plume typically occupied about 300 pixels on the video image. From Equation (A.10) the
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excitation beam attenuation along its path, assuming the laser power output is a constant,

is:

299
L o0 =1 o I [1 -1.2x102(2.0x107) x0.8)

i
J=0

=1, (1-1.92x107%)**
=1, [1-(299)(1.92x10 7]
=0.99437

in,0

which is negligible. But if there is only a 20:1 dilution of source concentration, then C =
510 mol/litre, so the attenuation over 300 pixels becomes 1,, ,,, =0.8565 1,, thatisa
significant change. Therefore, the beam attenuation along its path is negligible only when

the concentration of the fluorescent dye in the water is sufficiently low.

II. Response of the Imaging Optics and Determination of f{C;), £ and f;
In order to use Equations (A.11) and (A.12) to correct for the attenuation of the laser
beam, bottles of well mixed dye solutions with varying known concentrations C were
used to determine the response of the image system. Each rectangular plastic bottle
containing a known dye concentration, was placed in the test section at the measurement
location and set up so that the sides of the bottle were normal to the laser beam in order
to minimize the light reflection losses. When collecting data to determine the quantities

of B,, AC) and &, a 60 second average was used.

Tests using sheets of plastic cut from the sides and top of the bottles showed that surface
reflections of the laser beam from sides of these bottles, and the fluorescent light from the
ton produced negligible errors. The laser beam was then passed through the bottles and
the fluorescent light intensities were captured by a video camera system, saved and

analysed. To prevent saturation of the photodiode array inside the video camera and
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extend the range of dye concentrations that can be measured, different camera apertures

(faop = 1.4 and 5.6) were used.

Calibration bottles were prepared by successively diluting the mixture used in the
previous bottle by a factor of two. The initial (highest concentration) solution was made
by weighing fluorescein dye powder which has a molecular weight of 376.28 g/mole and
dissolving it into distilled water. Two sets of dye concentration bottles, the first set
consisting of 12 bottles from 100.0 mol/litre to 0.05 mol/litre, and the second set
consisting of 10 bottles from 70.0 mol/litre to 0.14 mol/litre, were made up and used to
find out how the system responded in different camera modes. Dye concentrations
ranging from 10.0x10° mol/litre to 0.05x10° mol/litre were used when the camera
aperture was set at f1.4. When the camera aperture was at £5.6, bottles with dye

concentration ranging from 70x10 mol/litre to 0.1x10¢ mol/litre were tested.

The measured intensity was extrapolated to the edge of the bottle to minimize the light
reflection and attenuation error by fitting the data through a modified Lambert Beer's law
with an empirical exponent to account for the camera output non-linearity with varying

input intensity. It is,

Lum * Feomcen EXPLEC O 3, )1 )" (A.14)

where,
Icam, cen 15 the light intensity at the centre, y,.,,, of a calibration bottle;

0= (1.0 - Ly, cer/255.0 ) is the empirical camera non-linearity factor.

Equation (A.14) was also used to determine the intensity of the dye solution at the edge
of the calibration bottle, where light attenuation was neglected. This formula can be

expressed in a form more useful for finite difference, it is
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I(_'um N lcqm_o exp(s ] C' (y _yo)) (A-]S)

See Figure 2.20 for details how to define I, , Figures A-1 to A-6 show how the
extrapolation was done for the bottles tested. Figure A-7 shows how the imaging system
responded to different dye concentrations (umol/litre) at different camera aperture
settings. An exponential function was used to fit the data using either camera Jaopat 1.4

or 5.6. For £, = 1.4, the function has the form:

C =0.93963 exp(0.0064950 1) -0.893 84 (A.16)

While for £, = 5.6:

C =44.38149exp(0.001625 1) -43.86201 (A.17)

In Figure A-7, 1, , was defined for convenience to be unity. For details on how to deal

with the day-to-day variation of laser output see section 2.5.3 of Chapter 2.

Constant B, as shown in the Figure A-8, was determined by measuring the digital outputs
along the laser beam path while the laser beam passed through clear water at the test
section. It was found that f, acted as a spatially distributed random variable with mostly
at zero counts and some 1 counts. B,’s were used as a pixel-by-pixel digital offset when

correcting the laser beam attenuation.

The laser beam extinction coefficient € was determined by fitting the intensity data using
exponential fit, as shown in Figures A-1 to A-6 for every known concentration calibration
bottle tested, using Equation (A.13). It was found that € was a constant for camera Jeop

at both 1.4 and 5.6:

€ = 120.0 (mmmolllitre)™ (A.18)

1. Numerical Correction for Dye Attenuation

A computer program was written to correct the laser light attenuation caused by the high
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concentration plume clouds. The correction subroutine of the program is based on

Equation (A.12) and the aim is to find the C,., ,. After rearranging Equation (A.12),
Icam.l B ﬁl

i-1
Loll(-gac oy
j=0

C =
f( CO",I) (Al())

where C_,, ; is calculated from the formulae obtained from fitting the calibration results
presented in the Figure A-7(a) or B-7(b) depending on the camera f,,, . When the camera
aperture was set at 1.4, the fitting equation (A.16) was used and equation (A.17) was used
when the camera aperture was set at 5.6. The attenuation was not taken into account until

the occurrence of 1., ;> B..

C.ori can be calculated pixel by pixel after the attenuation correction for each run of
experiment using adjusted Equation (A.16) or (A.17) depending on the camera apetture
setting. The correction scheme was tested against the known dye concentration by using

the dye bottles and performed well, as shown in Figure A-9.

IV. Time-Dependent Dye Bleaching

Another factor that can have effects on the dye fluorescent intensity is bleaching. When
flourescein dye is continuously expesed to laser excitation radiation it undergos a photo
bleaching reaction to a non-fluorescing state. Even though the bleaching effects did not

cause any problem in the present studies, it is worth mentioning.

When fluorescent dye is continuously exposed to excitation radiation, it undergoes a
photo bleaching reaction and reaches a non-fluorescing state. The fraction of photo
bleached molecules per photon absorbed is defined as the bleaching quantum efficiency,
F,, a very small number. It was determined by Ippen er al (1971) that Fy=4-10" for

fluorescein dye exposed to light at 514.5nm wavelength . As suggested by Koochesfahani
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(1984), the number of dy¢ molecules available for fluorescence decreases exponentially

with a time constant given by the following formula:

1

l S —
absorb
F, do

(A.20)

where ® is the photon flux, and o is the molecular cross section of the dye in cm? The
molecular cross section is determined from the extinction coefficient €, using
0=2,300e/N,, from Parder(1968), where N, is Avogadro's number which is equal to
6.023x10% molecules/mol. For the present experiment, ® and 6 can be found as the

following.

P
b=
Y (A21)

photon” 1

where:
P = the power of the laser beam (w);
Ehoton = €nergy per photon (J/photon)
= hv ( where h is the Plank constant and v is the laser light frequency);
A the cross-sectional area of the laser beam(mm?);
with,
P=75 mW;
E oion=3.86356x 10" J/photon;
A~0.78540 mm?

then, ©=2.47163x10"" photons/mm?/s, and 0=4.58243>10""® mm%photon and this leads
10 Lop0rs = 36.8 minutes. An experiment was done to test Koochesfahani’s (1984) dye
exponential decay hypothesis. It was found that the measured time constant was about 42

minutes (as shown in the Figure A-10).

The test results indicate that the photo-bleaching of the dye solution exposed to laser light
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could be controlled by the initial number of available fluorescing dye molecules, the
sensitivity of the image system if the laser output power is kept as a constant. Both the
dye photo-bleaching test result and theoretical prediction ensure that for the current study
this photo-bleaching effects can be neglected because on average the time required for
a fluid element to travel across the laser beam or the laser sheet is. from 0.01 to 0.3

second, as shown in Figure A-11, far less than the bleaching constant.

The longtime bleaching reduced the measured light intensity by about 10%, with the data
fitted by, '

1=216.0x(1-0.123exp(-+)) (A.22)
T

From this it was concluded that photo-bleaching effects do not cause any problems when
collecting the fluorescent intensity data since the fluid is moving all the time. However,
while doing calibrations using the known concentration bottles, the laser light was
blocked before taking any intensity data as a precaution. It was found that for very long
time exposures to the laser light the intensity readings for the same known dyc
concentration solution could drop to as low as 90% of their ori ginal values (shown as in
the Figure A-10). But over the few minutes during which a calibration bottle was

exposed, bleaching errors were negligible.
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Figure A-11 Illustration of dye particle path across the laser sheet
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Appendix B

Image Processing for Sheet Lighting

Flow patterns around the model buildings were visualized using the Planar Laser Induced
Fluorescence (PLIF) system. In the present experiment, disodium fluorescein dye was
released into the water channel from a ground level source and illuminated by a laser
sheet. A video image was then taken, so the dye concent.ation could be determined from

its fluorescent intensity.

L. Generating a Pair of Laser Light Sheets

The PLIF system used was similar to the one developed by Campbell (1991) and used by
Johnston (1993). A Coherent Innova 70, 4W argon-ion continuous wave laser was
operated in multi wavelength mode, producing light at 488 nm and 514.5 nm (bluc-
green). To increase the laser operational life, the laser was run at 3W instead of a: its
maximum output 4W. The single beam from the laser was split into two beams using a
50/50 dielectric mirror beam splitter shown in Figure B-1 to generate the two opposite

laser sheets.

The two split beams were then passed through 20> microscope objectives to reduce their
diameters smaller than the 50 um of the core diameter of the fibre optic cable to improve
the coupling efficiency. Fibre optic cable was used to transfer the laser light emerging
from the 20x microscope objective to the receiving optics to produce a laser light sheet,

as shown in Figure B-2.

The light emerging from the fibre optic cables was refocused into a narrow becam using
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a 20~ microscope objective, followed by 100 mm and 300 mm focal length spherical
lenses to refocus the beam at a point about 2000 mm away, in the centre of the water
channel. The 20x microscope objective was positioned directly in front of the optic fibre
cable such that the maximum laser power was transferred. The 100 mm and 300 mm focal
length spherical lenses were placed Smm and 400 mm away from the microscope
objective. Following the 300mm lens each beam passed through a 10 mm focal length
cylindrical lens. The 10 mm focal length cylindrical lens was placed 415 mm in front of
the 20% microscope objective. The laser light sheet had an approximate 1.5mm minimum
thickness at 2000mm from the 10mm focal length cyiindrical lens increasing to about

3mm at £500mm from this minimum thickness location.

The Gaussian light intensity profile makes a laser sheet brighter at the centre and dimmer
at the edges. Therefore, to produce a more uniform light sheet at the test section and avoid
problems of light sheet attenuation the test section was lit from both sides of the water
channel. As shown in Figure B-2, the optics assemblies used to refocus and expand the
laser beams into sheets were mounted on two optic stands placed at opposite sides of the
channel. The overall power transmission efficiency from the laser beam splitter to the

laser sheet was approximately 60%.

I1. Viewing Plume Cross Sections

Two different views of the plume around a model building are shown in Figure 2.25 as
sections x-y and y-z. With the laser sheets orientated horizontally, section x-y was lit. To
view the horizontal section x-y, the video camera was horizontally mounted to look at the
reflection mirror the reflection mirror, which is 400mm widex1000mm long, was

mounted to & ¥rame angled at 45° towards the camera, shown in Figure 2.25.

The ot..cr plume viewing section y-z is also shown in Figure 2.25. To view this vertical

cross stream section of the plume, a periscope was positioned downstre 1m of the model
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building. The lower portion of the periscope is a 90° PV pipe elbow with 12" nominal
diameter. A mirror was mounted inside at 45° and the opening facing upstream was
covered by a piece of clear glass and silicone sealant. The upper portion was a picce of
straight tubing with mounting brackets and the camera holding, frame. The periscope then
was fastenedto:  ame secured to the water channel railing. The camera was clamped on
the camera holding bracket at the top of the periscope to capture the plume cross section

images looking upstrean-,

III. Correcting the Raw Images

The full-field images were st. . :ctly on the computer hard disk. Each pixel in an
image was an 8 bit "~tegerrepre..  .ng the fluorescence intensity level tor that pixel. The
intensity information then had to be converted into concentration to determine the
concentration distribution across the plume. To reduce the shadows caused by the edges
of the model building and the camera amplifier noise , the raw images were corrected

using a square 9x9 pixel average (lowpass) filter to spatially filter the image.

a). Intensity and Concentration Conversion
To convert the fluorescent intensities to their corresponding concentrations for cach pixel,
the intensity response of the imaging system needed to be known. As the I igure B-3
shows, the problem is that I,,,,, for the group of pixels where the bottle calibration is
carried out is unknown. Some assumptions were made to make analysis possible:

i For dual light sheets the laser light attenuation can be neglected, so | my at

j" pixel is independent of concentration along laser light path;
ii. I,n; varies only due to nonuniform intensity in space, but 1s stcady in time;

iii. I; is linearly proportional to 1,,, for a given C,.

A square of 10x10 pixels located at the centre of the bottle was set as the reference

location, and based on assumption (iii) #bove, a set of known concentration bottles
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ranging from 0.25210° to 100x 10 mol/litre were used to determine the output response,
I,.... of the image system at different dye concentrations while keeping the laser sheet
intensity constant. The empirical concentration calculation function g(c)) for pixel j is

defined by,

L ou ™10, 8(¢) (B.1)

‘Then, invert this function to produce the usual calibration curve,

I
¢, A (B.2)

in,j

when this is applied to an average over the 10x10 square of reference pixels “ref”,

Iref
C, =N ) (B.3)
1
in,ref
In general the value of 1,,,,, is unknown. Here, it was set arbitrarily to unity in all
calibration curve fits as shown in the Figure B-4. The curve fit function then was used to
convert the known fluorescent intensity into its corresponding concentration or vice versa.
Data with measured intensity values close to the camera saturation point of 255 counts
were discarded because the attenuation effects induced by the high calibration

concentration lead to problems, and the intensity data were clipped.

b). Intensity Correction
Since the light sheet intensity varies in space, it is necsssary to correct this intensity
variation for each pixel. To do so, the input light intcusit 7 must be known, I, - The first

step is to use the inverse function of Equation (B.1),

Iref = Iin,refg(cref) (B4)

The second step is to fill the water channel with dilute dye concentration C,,,,, , measure

the intensity I ., for each pixel in the image and also the average sheet intensity at the
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same location where the bottle calibrations used. The L, can be tound trom:

I ..
my T T (B.5)
g(Csheu)
substituting Equation (B.4) into (B.5).
1
,shee
]mJ = Im,re[ : ' (B.())
ref,sheet

However, later in the actual experiment it was found that the Equation (B.6) overcorrected
the pixel intensity at the centre of the sheet and under corrected the pixel intensity at the
edges of the sheet. To solve this problem, an empirical constant A, was added to the
Equation (B.6). 4 | was determined by comparing concentration images for known
concentration calibration bottles measured at different locations using the same light
sheet. In the present study, the value for this empirical constant, 4,, is 0.3. So, Equation

(B.6) is modified as,

+A4

I =7 Ij,.\'heel 1
in,j— in,refI +A4 (137)

ref,sheet 1

Then, using Equation (B.2) and (B.6), the concentration at each pixel of the image of the

plume will be:

—

I
- J
C, Iy (13.8)
I ( J.sheet 1 )
n,ref +A4
ref,sheet 1

The value 1,,,.,is set arbitrarily to I,,,,., = 1.00, so,
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I
- /
CI f 1] sheet +Al (Bg)
(-‘———:;")

ref,sheet 1
The corrected pixel intensity for an image will be:
1
[ . = .
: ( I +A,] (C.9)
1

J.Sheet

I + A

ref.sheet

This equation will be the backbone of the methods that correct the background, building

shadows and other light sheet irregularities.

¢). Background Level Correction

When the amount of fluorescent dye released into the water increased during the
experiment, the background intensity increased. To deal with this problem, a 50 frame
average intensity image at the beginning and the end of each data collection run was
recorded separately. The background intensity was filtered using the 9x9 pixel spatial
average filter first, and normalized by the corrected corresponding sheet image using the
same size lowpass filter. Then the corrected background images were converted into
concentration and subtracted from the corrected full-field concentration image pixel by

pixel.

d). Corrections for Building Shadows and Light Si Jularities

Because of the different refraction index between water and the plexiglass used to make
the two model buildings, shadows were generated by the edges of buildings. A spatial
average filter was used to smooth the building shadows. It was found that a 9x9 average

(lowpass) filter was the best among other choices suck median, edge enhancing and
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blurring filters. Some samples are shown in the Figures B-5 and B-6. These pictures were
taken with the camera looking down from above of the water channel. The maximum
dilution from the source concentration to the outermost contour of these pictures is
2000:1. The source concentration used was 100x10® mol/litre, and the minimum
concentration showed on these pictures is 0.05x 10" mol/litre. Each contour layer from

these pictures has a dilution factor of 1.50.
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Figure B-1  Laser and splitting optics (used in PLIF)
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.
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Figure B.3 Schematic diagram of dual laser sheet concentration calibration
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Figure B-4  Calibration curve for the dual laser light sheet with the camera

settings as: f,,,=2, speed=1/60 s and laser power=3.0 W
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Figure B-5  Effect of using different size lowpass filter on a selected plume

image
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(b) Model building
A at 90°

(d) Model building B
at 90°

Figure B-6  Examples of selected images corrected by using 9x9 lowpass
filter (Building location: x = 270mm from the source. Building
size: building 4, 100mm wide x 50mm height x 40mm long;:
building B, 100mm wide x 100mm height x 40mm long)



