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Abstract

Seismic events or earthquakes occur due to stress perturbations in the sub-

surface and are related to the generation of new faults or reactivation of pre-

existing faults. Completeness of an earthquake catalogue is critical for gain-

ing a better understanding of sub-surface processes and this can be achieved

through detection and location of seismic events. They are especially important

in applications such as monitoring reservoir changes during hydraulic fracturing

treatments, as it can aid in revealing the extent of fracture growth. However,

there are challenges involved in both processes. The low magnitude of most

seismic events and the presence of noise may reduce the accuracy of most event

detection methods. Furthermore, most event detection algorithms produce ini-

tial estimates of arrival times which sometimes contain large errors, degrading

the accuracy of earthquake location procedures. The uncertainty associated

with the estimated hypocenter locations can sometimes be larger than the seis-

mic source dimensions as a result, restricting the resolution of the seismicity

image.

In this work, a statistical approach known as the subspace detector is in-
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vestigated and used to detect weak and variable events embedded in noise. It

involves the construction of a vector space comprised of signals to be detected

from seismic sources of interest. Waveforms are grouped together based on

similarity to increase sensitivity of the detector to events of a particular seis-

mic source, and waveform alignment is applied to reduce waveform variability

in the subspace representation. The vector representation of the signals rep-

resenting the seismic sources is shown to contain hypocenter information on

the signals represented and have improved signal-to-noise ratios relative to the

templates forming the subspace. Detected events are relocated relative to these

vector representations, and further improvements in location accuracy can be

achieved by correcting arrival time inconsistencies and reducing variation in

back-azimuths via cross correlation.

The detection capabilities of the subspace detector are compared to the con-

ventional matched filter and short-time average/long-time average (STA/LTA)

detectors via tests on synthetic and real data examples. The results show that

the subspace detector produces more detections than the matched filter at a

reasonable false alarm rate. It can also be made general to accommodate a

variety of waveforms and offers more detections relative to the STA/LTA de-

tector with fewer false alarms. Event locations obtained by relocation relative

to the vector representations are also compared to those obtained by a standard

relocation technique in the form of the double difference algorithm. It is found
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that the relative locations obtained using both the subspace detector and the

double difference algorithm are fairly similar. There is also a significant reduc-

tion in the spatial extent of event locations after relocation with the subspace

detector compared to routine absolute location techniques.
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Chapter 1

Introduction

1.1 Background

Seismic monitoring describes the passive recording of acoustic emissions known

as earthquakes or seismic events which occur due to stress changes in a medium

(Ry et al., 2017; De Meersman et al., 2009). A seismic event is normally gener-

ated at an unknown origin time and spatial coordinates known as the hypocen-

ter, and can either be naturally occurring or artificially induced (Ry et al., 2017;

Eisner et al., 2010). The elastic waves generated are usually the result of geome-

chanical fracture deformations, and can be digitally recorded by instruments

called geophones. These devices convert ground motion into electric impulses

that are proportional to its displacement, velocity or acceleration. The result-

ing ground motion is represented as a series of numbers which comprise what is

known as a seismogram (Havskov and Alguacil, 2004). Seismic monitoring has

a wide variety of applications, such as in the classification of mining explosions,

screening for nuclear tests, hazard assessment of earth structure and reservoir

monitoring during hydraulic fracturing treatments (De Meersman et al., 2009;

Harris, 2006). The main objective in monitoring is to record the occurrence of

earthquakes and obtain spatial coordinates of its hypocenter and/or its origin

time in order to obtain geological information about subsurface structure and

stratigraphy.
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1.2 Event Detection

Usually, numerous seismic events tend to occur annually (natural and induced)

and require considerable human investment if processed manually (Withers

et al., 1998). To improve processing efficiency, computer algorithms are the

standard means for robust detection of these events in the presence of noise

(Withers et al., 1998). The earliest attempts to automatically detect seismic

events used time domain methods. Some of these methods assumed that the sig-

nals to be detected were Gaussian, superimposed on Gaussian noise (Freiberger,

1963). They worked on the principle that signal differed from the noise in terms

of characteristics such as energy and character. Methods such as the short time

average over long time average (STA/LTA) (Vanderkulk et al., 1965; Trnkoczy,

1999), envelope detector (Allen, 1978) and the Z-detector (Swindell and Snell,

1977) were developed to this effect. However, for low magnitude signals or

signals buried in noise, these methods are typically not as effective since they

cannot differentiate between signal and noise. Nevertheless, these techniques

remain the modern standard for event detection since they require very little

in terms of parameter selection and are easy to set up. In fact, the STA/LTA

detector is the primary detector of choice in most seismological monitoring net-

works.

Further improvements were made in event detection via the introduction of

frequency domain methods (Withers et al., 1996). These techniques involved

the calculation of power spectral density estimates of windowed data under the

assumption that noise and signal both differed in frequency content. These

methods therefore include some information on the signal to be detected to

improve performance and tend to better highlight weak signals over a broad

range of frequencies. Unfortunately, performance decreases if the spectral char-

acteristics of the signals to be detected are similar to noise or for very narrow

bandwidth signals. Like the time domain methods, these detectors also cannot

differentiate between seismic events and some incoherent signals, and in some

cases incoherent noise (spikes, bursts) (Vaezi and Van der Baan, 2015). Like

the time domain methods, they also require some study of the target area to

determine optimal processing parameters.
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Nevertheless, the success of the frequency domain methods allowed for the

use of other detection techniques which targeted signal properties to boost

detection probability. For three component data, the direction of signal polar-

ization can be obtained from the eigenvectors of its covariance matrix (Nguyen

et al., 1989; Jurkevics, 1988; Montalbetti and Kanasewich, 1970). The direc-

tion of polarization can be used to define a filter to attenuate noise and boost

signal information based on the direction of phase polarization. Noise may be

polarized, but the direction tends to be random allowing it to be attenuated. A

shortcoming of this method is its strict application to multi-component data,

and the presence of noise tends to degrade the estimates of signal polarization,

making this method ineffective in noisy areas (Aster et al., 1990; Montalbetti

and Kanasewich, 1970).

Recently, template based detectors have been growing in popularity due to

their ability to detect weak signals at fairly low detection thresholds (Gibbons

and Ringdal, 2006; Harris, 2006). The matched filter technique involves the

cross-correlation of a waveform template with a time series to find instances

where there is a high degree of similarity to the template. Complex source

mechanisms can sometimes produce varying waveforms, and this variation may

not be captured by a single template. To account for this, the subspace detector

expands the single template idea of the matched filter to multiple templates

(Scharf and Friedlander, 1994; Harris, 2006). It utilizes a singular value de-

composition on a set of templates assumed to characterize a source region to

find an orthonormal representation that captures the common characteristics

of the waveforms (Barrett and Beroza, 2014). This allows it to better han-

dle waveform variation compared to the single template of the matched filter.

The use of a cross-correlation approach allows for a greater probability of sig-

nal detection at a very low false alarm rate even for highly noisy conditions,

but only applies to very similar sources or repeating earthquakes in the case

of the matched filter. The performance of both template based methods are

constrained by the availability and quality of template waveforms.
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1.3 Event Location

Accurate hypocenter locations of the detected events are vital to better under-

stand subsurface processes and reveal fracture networks and zones of mechani-

cal instability (De Meersman et al., 2009). Arrival times of P- and/or S-waves

(seismic phases) at each geophone are usually used to estimate a hypocenter

location and origin time. Additional constraints such as the wavefront propa-

gation direction obtained from three-component sensors can also be included

in the location process, especially for restricted receiver distributions (Eisner

et al., 2010). The accuracy of the arrival time picks have direct consequences

on the accuracy of a determined hypocenter, as errors distort the image of seis-

micity.

Traditionally, manual picking of seismic phases has been the most reliable

method of phase arrival time picking, but the ever-increasing amount of data

available in recent times makes this task very difficult. Automated routines

have been developed to handle this task, a majority of which are based on

similar principles used in event detection. Algorithms like the short time av-

erage over long time average ratio (STA/LTA), modified Baer and Kradolfer’s

method and modified energy ratio (MER) utilize the difference in energy be-

tween signal and background noise to define the onset time or first break (Allen,

1978; Baer and Kradolfer, 1987; Earle and Shearer, 1994; Han, 2010). These

methods tend to provide decent estimates of phase onset times but suffer from

the presence of noise and the use of less than optimal parameters. The progres-

sion from energy based methods to techniques specific to signal properties was

evident with the advent of cross-correlation based arrival time picking (Gib-

bons and Ringdal, 2006; De Meersman et al., 2009). Highly similar events tend

to have onset times at the same position within the phase coda (Castellanos

and van der Baan, 2013). This similarity can be used to provide high precision

relative arrival time estimates.

Other approaches include autoregressive techniques which were developed

on the assumption that a seismogram can be divided into segments, where

the intervals before and after the onset of a signal are two different station-
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ary processes (Sleeman and Van Eck, 1999; Leonard and Kennett, 1999). One

of the segments is assumed to contain noise while the other has the signal of

interest. An autoregressive model can be used to describe a representation of

each segment, allowing for the filtering out of noise based on an autoregres-

sive representation of the signal and noise segments, and the estimation of the

phase onset position. However, when the signal-to-noise ratio (S/N) is low and

arrivals are not evident, performance is poor. This method works best when

a prior estimate of the signal window is known. The idea of predicting signal

information via modeling was taken further, resulting in the use of neural net-

works (Gentili and Michelini, 2006). It is slowly becoming a means of phase

onset determination via signal classification in data-driven learning schemes.

Performance is constrained by the quality and quantity of data provided. In

theory, it is most likely not possible to account for every signal type and noise

contribution and is therefore not widely used. Nevertheless, it is currently an

area of active research.

Travel time is a non-linear function of the model parameters, making it

difficult to solve the event location problem easily using analytical methods.

The simplest means to obtaining an optimal location and origin time for a seis-

mic event involves a grid search. Travel times are computed from all possible

hypocenters and origin times within a grid to receivers, and the point with

the best agreement between the observed and predicted values is regarded as

the highest probability hypocenter of the seismic event. The quality of the pre-

dicted times is dependent on the knowledge of the velocity structure of the area.

Ideally, three-dimensional (3D) velocity models provide more accurate travel

times but can be expensive to utilize in routine processing or not available. In

most cases, a one-dimensional (1D) velocity is employed for estimating event

locations. Several attempts have been made to account for the limits imposed

by a 1D model. Velocity variations were partially accounted by inverting for

station and/or source terms and corrections in the location procedure (Shearer,

1997; Douglas, 1967), or by simultaneously inverting the travel time data for

both hypocenters and velocity structure (Crosson, 1976; Ellsworth, 1978), but

these methods contributed additional computational expenses and did not al-
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ways yield suitable results.

To minimize error due to an incomplete knowledge of the velocity struc-

ture, highly similar events were utilized to locate events in a relative sense.

For co-located events, the ray paths between the source region and common

stations are very similar. The difference in travel time can thus be attributed

to the spatial offset in the region between the events, and will not be affected

by unmodeled velocity structure for the parts of the propagation path common

to both events (Waldhauser and Ellsworth, 2000). A common relative location

method is the master event approach in which events are relocated relative to a

single well located master event (Frémont and Malone, 1987). A disadvantage

of this technique lies in the possible error propagation through the entire cluster

and restriction on the maximum spatial extension of the cluster (Waldhauser

and Ellsworth, 2000). To make the relocation procedure more robust, the joint

hypocenter determination approach (JHD) was developed to jointly determine

the hypocenters, origin times and station corrections for all events to be lo-

cated (Douglas, 1967; Frohlich, 1979; Herrmann et al., 1981; Got et al., 1994).

Waldhauser and Ellsworth (2000) further extended this idea by making use of

both relative travel times (cross-correlation) and catalog travel times without

the use of station corrections. Their method involves minimizing the residual

between observed and calculated differential travel time for event pairs instead

of a single master event. This method has been shown to improve the seismic

image by collapsing locations into sharper clusters, leading to clearer identifi-

cation of faults. The system of equations can become quite large for numerous

events, and usually requires a large number of well distributed stations to be

effective.

1.4 Motivation and contributions

Robust event detection and location plays a major role in both the completeness

of a seismic event catalog, and the quality of analysis into seismicity. Template

based approaches to detection have been shown to greatly improve the proba-

bility of detection at very low false alarm rates. Subspace detection techniques
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can better handle waveform variation present in a data set and therefore im-

prove detection capabilities but it is not widely used.

In this study, subspace detection will be examined and implemented on

microseismic data in an attempt to characterize seismicity. It represents a set

of template signals as a linear combination of orthogonal basis waveforms and

spans the gap between a correlation and energy detector. It has the advantage

over the standard waveform correlation of greater tolerance for source-location

variations. I implement this method to characterize seismicity from a hydraulic

fracturing treatment in western Canada monitored via a single vertical down-

hole array. The performance of the detector is compared to those of the con-

ventional STA/LTA detector and the matched filter in terms of the number

of detections, false alarms and missed detections. In addition, an approach to

event location is introduced in the form of a master event relocation using the

subspace detector. The singular vectors of the subspace detector tend to have

higher signal-to-noise ratios than their template events and are assumed to

represent the average signal properties in the design set. We therefore propose

to use these waveforms to obtain more accurate relative data measurements by

treating them as master events in a relocation procedure. This method will

be applied to the microseismic data set and the validity and accuracy of the

relocations will be compared with locations obtained using conventional meth-

ods. Finally, the performance of the method will be discussed in an attempt

to establish its potential benefits and shortcomings.
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Chapter 2

Subspace detection

2.1 Introduction

Microseismic monitoring has been a widely used tool to observe reservoir changes

in order to optimize hydraulic fracturing stimulations (Van Der Baan et al.,

2013). Typically the induced seismicity forms an elongated cloud of small

earthquakes known as microseismic events, and their source locations can re-

veal fractures and faults, which highlight directions of increased permeability

and/or porosity (De Meersman et al., 2009; Rutledge and Phillips, 2003). De-

tection of these microseismic events is not always straightforward. In most

cases, microseismic events tend to have low magnitudes (about -2 to 3) and are

usually immersed in high amplitude noise, making signal identification difficult

(Van Der Baan et al., 2013). Furthermore, the low signal-to-noise ratio (SNR)

limits our ability to detect low-amplitude events (Song et al., 2014).

Several algorithms have been developed to tackle this issue. Time domain

techniques such as the short-time average over long-time average (STA/LTA)

detector (Frémont and Malone, 1987; Vanderkulk et al., 1965) and analytic

envelopes like the Hilbert transform (Earle and Shearer, 1994) are examples of

commonly used techniques. They involve calculating the ratio of energy in two

moving windows: a short time window which gives a measure of signal energy

and a long time window which gives a measure of the background noise. These
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methods suffer when phases are buried in noise due to lack of adequate signal

information (Trnkoczy, 1999). Swindell and Snell (1977) developed a statistic

computed by subtracting the mean from the data and then normalizing it by

its standard deviation. It is advantageous because it automatically adjusts to

the variance of noise, but fails to properly enhance secondary arrivals (Withers

et al., 1998). Frequency domain methods such as the power spectral density

technique have been shown to be superior at highlighting weak signals over

a broad range of frequencies (Withers et al., 1998). Much like the time do-

main methods, short and long-time windows are utilized to estimate the power

spectra. Vaezi and Van der Baan (2015) utilized the difference in strength

of spectral content between events and background noise to find events. The

average seismic background noise PSD is calculated and subtracted from the

PSD estimate of the windowed data. These differences are then normalized by

the standard deviations at each frequency, and segments which differ from the

background noise PSD are considered events. This method breaks down when

signals and noise have very similar spectra and noise is not stationary (Withers

et al., 1998; Vaezi and Van der Baan, 2015).

To mitigate the effects of high amplitude noise, waveform cross-correlation,

also known as the matched filter, is often employed in detection (Gibbons and

Ringdal, 2006; Van Trees, 2004). A known signal is cross-correlated with suc-

cessive time segments of incoming data; segments displaying a high degree of

similarity to the template (master) waveform results in a high correlation coef-

ficient. It exploits waveform similarity as a means to detect events in noisy con-

ditions (low signal-to-noise ratio), or when there is waveform overlap (Barrett

and Beroza, 2014). Occasionally repeating sources produce variable waveforms

not well represented by a single template signal. This is usually due to the

events being spread out over a region larger than one or two wavelengths of the

dominant frequency of the repeating waveforms (Harris, 2006). This results in a

poor performance of the matched filter when waveform variability is high. The

subspace detector extends the matched filter concept from a single template to

several templates. The template signals are modeled as a linear combination

of orthogonal basis waveforms and it offers a trade-off between flexibility and
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sensitivity in terms of the number of basis waveforms employed in the signal

subspace; the larger the number of basis waveforms used, the closer the per-

formance to an energy detector while a single waveform basis representation is

analogous to using a single matched filter. Optimal results are usually obtained

when a low-order basis representation is used to define the subspace (Jin and

Friedlander, 2005; Kirsteins and Tufts, 1994; Harris, 2006).

In this chapter, several common detection techniques are introduced, and

the detection problem is described in terms of a probability model for describing

both noise and signal with noise, and the structure of the subspace detector is

explained. The work flow for construction of the subspace detector will be out-

lined. Parameter selection will be discussed and analyzed and some synthetic

examples will be used to demonstrate the functionality of this technique.

2.2 Event detection algorithms

2.2.1 Short time average over long time average

Most microseismic events are characterized by impulsive onsets and exponential

envelopes with decreasing signal frequency over time (Lee et al., 1981). Seismic

events and background noise usually differ in frequency content and character

and can often be distinguished on a seismogram. This is taken advantage of

by the short time average over long time average (STA/LTA) detector. The

algorithm requires little to no signal information and involves the use of two

windows: a short time window (STA window) which is sensitive to seismic

events, and a long time window (LTA window) which gives some information

on the temporal amplitudes of seismic noise (Trnkoczy, 1999). In each window,

the absolute amplitude of each data sample of an incoming signal is calculated.

The average of these values is calculated and the STA/LTA ratio is calculated

as

STA(q) =
1

ns

q+ns−1∑
i=q

|si|2, (2.1a)
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LTA(p) =
1

nl

p+nl−1∑
i=p

|si|2, (2.1b)

where |si| represents the absolute value of the windowed data on the ith time

sample, ns and nl correspond to the number of samples within the STA and

LTA time windows respectively. q and p are the starting positions of both the

STA and LTA windows, with q being dependent on nl. It can be implemented

symmetrically (STA window centered within the LTA window) or asymmetri-

cally (STA leading the LTA window with the LTA window ending right behind

the start of the STA window). This determines the relative values of the STA

and LTA starting values p and q respectively.

The STA time window is usually longer than a few periods of typical seismic

signals, while the LTA time window is usually an integer multiple of the STA

window, commonly 5-10 times the STA window length (Wong et al., 2009).

A detection is declared when the ratio exceeds a threshold value across the

seismic network

STA(q)

LTA(p)
≥ τSL, (2.2)

where τSL is the threshold. Optimal parameter settings for this technique vary

and do require some study by an analyst for the location of interest. In this

work, a multiplexed form of the STA/LTA detector is used (Song et al., 2014).

Windowed data inNc individual components can be analyzed independently

or combined into single channel-sequential multiplexed form

x[n] = [x1(n) x2(n) ......xNC
(n) x1(n+ 1) x2(n+ 1)

......xNC
(n+m− 1)]T ,

(2.3)

where x[n] is the Z × 1 time window for the nth sample position from the

continuous stream (Z = NC × m), xi[n] is the nth time sample from the ith

channel of windowed data xi, andm represents the length of the ith channel time

window in samples. The STA/LTA detection statistic can then be computed

on the data using the equation
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r(n) =
[xT

STA(n)xSTA(n)]/ns

[xT
LTA(n)xLTA(n)]/nl

, (2.4)

where xT
STA(n) and xT

LTA(n) correspond to the multiplexed data in the STA

and LTA windows respectively, beginning on the nth sample.

2.2.2 Matched filter

The matched filter operation can be described as an inner product between

vector wN,�t(t0) containing N consecutive samples of a non-zero time series

w(t), and vector vN,�t(t0), where t0 is the time of the first sample and �t is

the temporal sampling interval (Gibbons and Ringdal, 2006)

〈
v(tv),w(tw)

〉
N,�t

=
〈
v(tv)N,�t,w(tw)N,�t

〉
=

N−1∑
i=0

v(tv + i�t)w(tw + i�t).
(2.5)

The fully normalized cross-correlation coefficient is given by

CC[v(tv),w(tw)]N,�t =

〈
v(tv),w(tw)

〉
N,�t√〈

v(tv), v(tv)
〉
N,�t

〈
w(tw),w(tw)

〉
N,�t

.

(2.6)

The template signal w(t) may also be multiplexed and Eq. 2.6 applied to the

multiplexed data stream to obtain a correlation coefficient at the nth sample

position.

In terms of seismic data, if w(t) represents recorded data and tM repre-

sents the starting time of a data window containing a signal of interest (tem-

plate/master), we can express the correlation coefficient as follows

CCw(t)N,�t = CC[w(t),w(tM)]N,�t, (2.7)

where w(tM) corresponds to the template event with zero mean. The correla-
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tion coefficient CC is a function of time that measures the similarity between a

template waveform and the waveform beginning at time t. It lies in the range

[−1, 1] with the extreme value occurring when an exact copy of the template

occurs (Gibbons and Ringdal, 2006). A detection is declared if the absolute

correlation coefficient exceeds a threshold

|CC(t)| ≥ τCC. (2.8)

High signal-to-noise ratio templates characterizing the source to be detected

are needed to apply the matched filter. These can be obtained using either

an STA/LTA algorithm, visual inspection of the data stream by an analyst for

suitable waveforms or from a pre-existing catalogue of events.

2.2.3 Subspace detector

The subspace detector as proposed by Scharf and Friedlander (1994) projects a

sliding window of continuous data onto a vector subspace spanning a collection

of source signals. The method implements a binary hypothesis test within each

data window. It assumes the windowed signal contains only noise ν under the

null hypothesis (Ho) or consists of a combination of signal s and noise ν under

the alternate hypothesis (H1). The noise ν is assumed to be zero-mean, as

well as being temporally and spatially uncorrelated with unknown variance σ2

(Harris, 2006). The signal is also assumed to be deterministic but dependent

upon a vector of unknown parameters a, and expressed as a linear combination

of basis waveforms

s = Uda, (2.9)

where Ud is an m × d column matrix containing the basis waveforms, with d

corresponding to the number of basis waveforms, andm the number of observed

time samples. The windowed data inNc individual components can be analyzed

independently or combined into a single channel-sequential multiplexed form,

following the convention of eq. 2.3. The observed data when no signal is present
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(H0) is assumed to follow the probability density function p(x) given by

p(x|H0) = [
1

2πσ2
]m/2 exp(− 1

2σ2
xTx). (2.10)

The alternate hypothesis (H1) follows the probability density function given by

p(x|H1) = [
1

2πσ2
]m/2

× exp(− 1

2σ2
(x−Uda)

T (x−Uda)).
(2.11)

In both Eqs. 2.10 & 2.11, σ2 represents the unknown noise variance, a is a

vector of unknown coefficients and m is the number of samples within the

signal window. The presence of unknown parameters (a, σ2) in the probability

density functions (eqs. 2.10 & 2.11) makes it convenient to utilize the maximum

likelihood estimates with the available data. Hence, the Generalized Likelihood

Ratio Test (GLRT) (Van Trees, 2004) is used to obtain the ratio test

∧(x) =
max
a,σ

p(x|H1)

max
σ

p(x|H0)
, (2.12)

where ∧ represents the generalized likelihood ratio. Taking the natural loga-

rithm of Eq. 2.12 eliminates the unknown variance σ2. This leads to

l(x) = −m

2
(
xTx− xT

p xp

xTx
)

= −m

2
(1− c),

(2.13)

where

xp = UdU
T
d x, (2.14)

and

c(n) =
xT
p xp

xTx
. (2.15)

In eq. 2.13, l represents the log generalized ratio. The projected data xp is a
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least-squares estimate of the windowed data x obtained after projecting the

data onto the subspace defined by matrix Ud. c is a scalar value and corre-

sponds to the subspace detection statistic. It is a positive quantity ranging

between 0 to 1, and it gives a measure of the linear dependence between the

windowed data x and the vectors representing the subspace. A detection is

declared when c exceeds a threshold value γ, i.e. c ≥ γ.

The matrix of basis waveforms Ud is obtained via singular value decompo-

sition (SVD). The m× t matrix S containing the t template waveforms ordered

in column form can be decomposed into the product of three unitary matrices

S = UΣVT , (2.16)

where U corresponds to an m ×m matrix of the left singular vectors of S, Σ

is an m× t diagonal matrix of singular values, and VT is a t× t matrix of right

singular vectors (Wall et al., 2003). An orthonormal representation is obtained

from the matrix of left singular values U, with each column representing a

basis waveform. A rank reduction can be applied to the unitary matrices by

truncating the first d values of each matrix

S =
[
Ud Ut−d

]⎡⎣Σd 0

0 Σt−d

⎤
⎦
⎡
⎣ VT

d

VT
t−d

⎤
⎦ . (2.17)

In the above equation, Ud corresponds to the matrix of d left singular vectors

which provides an orthogonal basis for the subspace representation,
∑∑∑

d corre-

sponds to the truncated diagonal matrix of singular values and Vd represents

the truncated unitary matrix of right singular vectors.
∑∑∑

d V
T
d contains the

coefficients for each of the first d largest singular values in
∑∑∑

d and provides

an expression of the energy captured in the signal subspace Ud for the t events

in the design set (Harris, 2006). It corresponds to matrix Ad. The truncation

accounts for the fact that a perfect representation of the signals to be detected

is not possible or even desired with the chosen design set. Some noise exists and

is assumed to be in the orthogonal complement to the subspace spanned by the

representation Ut−d. Omitting the t − d smaller singular value approximates
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the collection of t templates in a least-squares sense (Harris, 2006).

The fractional energy capture fc for the i
th event in Ud can be described as

f i
c = (ad

i )
T (ad

i ), (2.18)

where ad
i corresponds to the ith column of matrix Ad. The fractional energy

capture describes how well the individual signals are represented by the sub-

space representation, and ultimately the amount of linear dependence between

the original data and projected data in eq 2.15. Of more interest is the average

fraction of energy captured f
d

c from all t events as a function of the dimension

of subspace representation d, which can thus be given as

f
d

c =
1

d

d∑
i=1

f i
c =

trace(
∑T

d

∑
d)

trace(
∑T ∑

)
. (2.19)

Both the fractional energy (f i
c) and the average fraction of energy captured (f

d

c)

from all t events may be plotted against the subspace dimension d, and they

ranges from 0 to 1. This criterion is helpful in finding an optimal dimension

of representation for the subspace. It is recommended to select a dimension of

representation d that captures a sufficient amount of energy (e.g. ≥ 80%). The

captured energy includes both signal and noise so an examination of the basis

waveforms in Ud is recommended. Comparison of Eq. 2.16 and eq. 2.9 shows

that the alternate hypothesis H1 (eq 2.11) seeks to find the best fit between

observed data x and possible combinations of the basis waveforms contained

in the truncated left singular matrix Ud. A high fit indicates the presence of a

signal of interest is very likely which in turn produces a large similarity between

the projected data xp (eq. 2.14) and the observed data x. Consequently, their

energy ratio becomes close to 1 (eq. 2.15) yielding a large detection statistic c.

The detection statistic c (eq. 2.15) for the subspace detector is a ratio of

sums of squares of normal random variables under the assumption of normally

distributed background noise. Under this assumption, c follows a beta distri-

bution (Harris, 2006). Normalization of both the denominator and numerator
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by the noise variance σ2 allows c to be modeled as an F distributed variable.

It follows a doubly non-central F distribution when signal is present and a

central F-distribution when only noise is present (Urkowitz, 1967). Therefore,

theoretical detection threshold values γ can be estimated as a function of the

dimension of representation d for a given false alarm rate (PF ). In a detection

window of length N , the signal subspace will reside in an embedding space

with degrees of freedom N under the assumption of uncorrelated noise within

the data window. However, background seismic noise tends to be correlated,

and the degrees of freedom in the data window decreases if data is bandpass

filtered prior to detection (Wiechecki-Vergara et al., 2001). For a signal win-

dow of length N , the number of samples within the window for which noise

is statistically uncorrelated across all components and the array can be esti-

mated. This value N̂ corresponds to the effective degrees of freedom of the

signal embedding space and can be calculated by

N̂ = 1 +
1

σ2
ĉ

≤ N, (2.20)

where σ2
ĉ corresponds to the variance of the correlation coefficients between

template events and noise (Harris, 2006; Song et al., 2014). For a given fixed

false alarm rate PF , the detection threshold γ for the detector can then be

inverted for from the cumulative central F-distribution

PF = 1− Fd,N̂−d(
γ

1− γ

N̂ − d

d
), (2.21)

where Fd,N̂−d refers to the F distribution with d and N̂ − d degrees of freedom

for the captured signal and signals assumed to have been missed by the sub-

space representation respectively.

This technique relies heavily on prior assumptions about the noise distri-

bution. It is also particularly useful if short detection windows are used, since

estimation variances for correlation coefficients are inversely proportional to the

number of samples in a time series. Random sequences are increasingly likely to

display coherent structure for a decreasing number of samples (Mendel, 1991;

Oprsal and Eisner, 2014). However, noise is rarely statistically predictable. In
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this study, the noise is assumed to be a white Gaussian process. Computed

false alarm rates using eq. 2.21 are thus rarely honored in practice. A prefer-

able approach to estimating the threshold value involves running the subspace

detector on noise files and estimating the threshold γ from the upper limit of

the histogram of detection statistics.

One dimensional subspace detector

If we consider the case where the dimensions of representation d = 1, Eq. 2.14

becomes

xp = u1u
T
1 x, (2.22)

with u1 corresponding to a column vector with a single basis vector. The

calculation involved in eq. 2.22 is essentially a dot product between the single

basis vector u1 and the windowed data x. Eq. 2.15 for a single subspace

dimension can be written as

c =
xT
p xp

xTx
=

xTu1u
T
1 u1u

T
1 x

xTx
. (2.23)

since u1 is orthonormal, Eq. 2.23 can be expressed as

c =
xTu1u

T
1 x

xTx
. (2.24)

The fully normalized absolute cross-correlation coefficient between the template

vector u1 and windowed data x is given by

CC[u1,x] =

∣∣∣∣∣ (uT
1 x)√

(uT
1 u1)(xTx)

∣∣∣∣∣ , (2.25)

Again, since u1 is orthonormal and uT
1 x = xTu1, Eq. 2.25 becomes

CC[u,x] =

∣∣∣∣∣ (uT
1 x)√
(xTx)

∣∣∣∣∣ =
∣∣∣∣∣
√

uT
1 xu

T
1 x

(xTx)

∣∣∣∣∣ =
∣∣∣∣∣
√

xTu1u
T
1 x

(xTx)

∣∣∣∣∣ (2.26)
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If we compare eq. 2.26 and eq. 2.24, we see the detection statistic c amounts

to the square of the normalized cross-correlation coefficient CC[u1,x] (eq. 2.6).

Thus the subspace detector becomes a correlation detector when a single di-

mension is used to define the subspace.

2.3 Design of the subspace detector

There are several steps involved in the construction and design of the subspace

detector which will be elaborated on in the following subsections.

2.3.1 Obtaining template events

The subspace detector requires a suite of waveforms representing the source(s)

of interest, and these could be obtained from a previously collected catalogue

of detected events or by using any conventional detection technique such as the

short time average over long time average (STA/LTA) detector. The subspace

detector is sensitive to noise contained within the template waveforms so it is

recommended to use high quality template events only.

2.3.2 Clustering template events

The advantage of subspace detection is that (1) it allows for waveform vari-

ability within the signals of interest and (2) rank reduction suppresses random

noise, improving the signal-to-noise ratio of the basis waveforms contained in

Ud. Waveform variability can refer to different types of source signals (events

from different locations) or diversity within a single source type (e.g. events

from a similar location). The subspace detector can handle both situations but

it is sometimes preferable to create expert detection systems that specialize in

finding waveforms from a single source type only. These expert systems are

advantageous since they allow for the use of small values of d. If the set of tem-

plate events is selected automatically, without manual scrutiny of waveform

similarity, it is recommended that a cluster analysis on the waveforms is per-

formed first to group similar source signals together (Arrowsmith and Eisner,

2006; De Meersman et al., 2009). For multiple component data, the signals
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can be concatenated into a single vector before clustering (eq. 2.3), or ana-

lyzed as individual traces. Given multiple channels of data, a weighted average

cross-correlation can be used to group events into clusters based on similarity

(Arrowsmith and Eisner, 2006). The maximum absolute amplitudes on each

component can be used to weight the normalized cross-correlation functions.

This helps reduce the effect of noise by down-weighting components with poor

SNR.

2.3.3 Alignment of event clusters

It is strongly recommended that all events are aligned prior to applying a

rank reduction. This reduces instantaneous waveform variability and leads to

a smaller dimension of representation d and an overall improved performance.

In this study, the iterative stacking procedure of De Meersman et al. (2009) is

utilized to optimize alignment between the waveforms belonging to the clus-

ter(s) of interest. The waveforms are first multiplexed into a single vector and

stacked to get a reference waveform. This reference waveform is then correlated

with the waveforms and optimal lag corrections are obtained from the maxi-

mum of the cross-correlation function. These lag corrections are applied to the

template waveforms and a new reference waveform is obtained. The process

is repeated till the lag correction converge to zero. The stack is the preferred

choice for alignment as opposed to using a reference waveform due to the
√
n

increase in signal-to-noise ratio (SNR) associated with the stack compared to

reference, where n represents the number of waveforms in the design set.

2.4 Information retrieval

The performances of the detectors can be described in terms of their precision,

recall and accuracy. Precision is a measure of the exactness or quality of the

detections made i.e. the percentage of the results which are relevant, while

recall is a measure of completeness or quantity of the total number of detections

made i.e. the percentage of total relevant events correctly identified by the

detector (Powers, 2011). Precision and recall can be described with eqs 2.27a

20



and 2.27b:

precision =
tp

tp + fp
, (2.27a)

recall =
tp

tp + fn
. (2.27b)

In the above equations, tp, fp & fn correspond to the number of true positives

(seismic events), false positives (false alarms/type I error) and false negatives

(missed events/type II error) respectively. A trade off usually exists between

precision and recall since 100% recall may result in the generation of irrelevant

detections (false alarms), while 100% precision may come at the risk of fewer

detections. The goal in event detection is to maximum both precision and

recall, and a metric that takes into account both terms is the F1 score (Powers,

2011; Sasaki et al., 2007). This score corresponds to the harmonic mean of a

detector’s precision and recall and is denoted by

F1 = (
recall−1 + precision−1

2
)−1 = 2 ∗ ( precision ∗ recall

precision+ recall
) (2.28)

The F1 score is a scalar that ranges in value from 0 (worst accuracy) to 1

(perfect precision and recall) and can be used as a means to quantify overall

performance.
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2.5 Synthetic Examples

2.5.1 Waveform variation

To assess the effects of signal variation on template-based detection, subspace

detection and matched filtering are applied to waveform data. Six three-

component template signals with zero mean from a microseismic data set

(Eaton et al., 2014) are selected for analysis and shown in figure 2.1. Their av-

erage signal length is about 0.4s, with an average correlation coefficient among

the events of 0.50, highlighting the presence of some modest signal variation.

The waveforms are first multiplexed and then aligned in time using an iterative

stacking procedure. Finally, a 0.375s data window is extracted which encom-

passes both the P- and S-waves as shown in figure 2.2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (secs)

Figure 2.1: Three-component (3C) template waveforms from a microseismic
data set. Signals 1 to 6 from the bottom. Vertical, north and east components
shown by red, blue and black colors respectively.
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Figure 2.2: a) Multiplexed template waveforms before time alignment. b) Mul-
tiplexed template waveforms after time alignment. Red box indicates selected
data window.
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For the matched filter test, each template is selected as a master waveform

and eq 2.6 is applied to every other template in the design set to obtain a

correlation coefficient value CC. For the subspace detector, a singular value

decomposition (SVD) is applied to the aligned waveforms. The dimension of the

subspace representation is then varied and the detection statistic c is computed

for every dimension using eqs. 2.15. The results are shown in table 2.1 & 2.2.

Template

number

1 2 3 4 5 6

1 1.00 0.83 0.78 0.79 0.81 0.51

2 0.83 1.00 0.95 0.80 0.97 0.65

3 0.78 0.95 1.00 0.77 0.95 0.61

4 0.79 0.80 0.77 1.00 0.77 0.48

5 0.81 0.97 0.95 0.77 1.00 0.64

6 0.51 0.65 0.61 0.48 0.64 1.00

Table 2.1: Correlation coefficient values between template signals

Dimension Template number

1 2 3 4 5 6

1 0.71 0.96 0.95 0.73 0.95 0.42

2 0.74 0.96 0.96 0.99 0.97 0.56

3 0.74 0.97 0.98 1.00 0.97 0.99

4 0.82 0.97 1.00 1.00 0.98 1.00

5 0.99 0.97 1.00 1.00 0.99 1.00

6 1.00 1.00 1.00 1.00 1.00 1.00

Table 2.2: Detection statistics c as a function of subspace dimension of repre-
sentation

We found the detection statistics c for the subspace detector are higher than

the individual matched filter correlation coefficients CC between the template

signals. The correlation coefficients were reasonably high for most of the tem-
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plates except for template 6, which was only adequately captured by itself. Al-

though signal 2 had the highest correlation coefficients with the other signals,

its values were smaller than the detection statistics obtained using a subspace

representation of 4. Overall, the subspace detector appears more sensitive to all

templates present after a higher number of dimensions is used in the detection

procedure.

2.5.2 Improvement in signal-to-noise ratio

Stacking is a robust operation commonly used in improving signal-to-noise

ratio in seismic data processing (Yilmaz, 2001). It amplifies coherent signal

and suppresses incoherent noise. Barrett and Beroza (2014) found the 1st left

singular vector closely approximates the stack of the template events to be

represented. We investigate this relationship by comparing the similarity of

the 1st singular vector with the stack of the selected template waveforms. 50

iterations of Gaussian noise scaled to represent selected signal-to-noise ratios

(SNR) are added to the aligned templates in figure 2.2. At each iteration, both

the stack and 1st left singular vector of the templates are obtained and the

correlation coefficient between both calculated. In this test, the signal-to-noise

ratio is defined as the ratio of the standard deviation between signal and noise.

The standard deviations of the correlation coefficients and their mean value are

then calculated after all 50 iterations at each SNR. To prevent errors implying

correlation coefficients in excess of ±1, a Fisher transform is applied to the

correlation values. The Fisher transform is a variance-stabilizing technique

which changes the distribution of the correlation coefficients to approximate a

Gaussian distribution (Ehlers, 2002). The results are shown in figure 2.3. For

the range of SNRs used, the average correlation values between the stack and

1st left singular value were consistently high. In fact, it is almost 1 over the

range of SNRs used signifying marginal differences between both waveforms.

This phenomenon serves as evidence of the apparent noise suppression in the

left singular vectors derived via the SVD.
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Figure 2.3: Correlation coefficient (CC) of stack and 1st left singular vector
as a function of SNR. The number of significant figures on the correlation
coefficients has been modified to highlight the negligible differences across the
different SNRs.

2.5.3 Detection threshold

Selecting an optimal detection threshold is an important processing step in

event detection as it allows for the capture of as many events as possible at

reasonable false alarm rates. Under the assumption of uncorrelated white noise,

theoretical detection threshold values for template based detectors can be deter-

mined using Eq. 2.21. Due to the often unpredictable nature of noise, detection

threshold may be directly estimated from noise data. This can be achieved by

cross-correlating microseismic events with noise data, and observing the distri-

bution of the correlation coefficients. This allows for the determination of an

upper bound which would minimize false detections.

These methods of estimating the detection thresholds were applied to a mi-
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croseismic data set, obtained during a hydraulic fracturing treatment (Eaton

et al., 2014). Ten minutes of noise from different stages of treatment were se-

lected in order to get fairly robust estimates of the noise levels present in the

data, and values of 10−15 and 10−6 were selected as trial probabilities of false

alarms PF . Ten three-component microseismic events were selected from the

data as templates, multiplexed and correlated with the noise files using 0.441s

data windows N . The average variance σ2
ĉ of the resulting noise correlation

coefficients was estimated to be 0.0014, and the embedding dimension N̂ was

calculated to be 0.064s using Eq. 2.20. The detection threshold value γ for the

subspace detector was then inverted for from Eq. 2.21 for d = 1. To obtain

a theoretical detection threshold for the matched filter, the subspace detector

with a single dimension has coefficients which are the square of the matched

filter (Eqs 2.25 & 2.26). The square root of the calculated subspace threshold

value corresponded to the matched filter threshold. The theoretical thresholds

are shown in table 2.3.

Detector Predicted Threshold Predicted Threshold

(PF = 10−6) (PF = 10−15)

Subspace detector 0.0324 0.0841

Matched filter 0.18 0.29

Table 2.3: Theoretical detection thresholds for the subspace detector and
matched filter for d = 1.

Direct estimates for the detection thresholds can also be made by observing

the distribution of the noise correlation coefficients. Since the noise is assumed

to be uncorrelated white noise, a Gaussian fit was made to the correlation co-

efficient population and shown in figure 2.4.
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Figure 2.4: Distribution of the noise correlation coefficients for a matched filter
template. A Gaussian fit is applied to the noise population, shown as the red
curve.

The statistical fit to the noise population does a reasonable job in describing

the data, and the threshold estimates in 2.3 roughly agree with the upper bound

around the tail end of the fit. Although the fits do not completely describe

the noise correlation coefficient population, they do serve as a decent guide

for setting reasonable detection thresholds. We considered the case where d

= 1, but higher dimensions may be used in subspace detection. Taking the

waveforms in 2.2, a subspace of dimension 3 was constructed, and Eqs 2.14 &

2.15 were directly applied to the noise data. Since the detection statistic c was

assumed to follow a beta distribution, a beta fit was applied to the population

of noise detection statistics and shown in figure 2.5. We also estimated the

theoretical threshold for d = 3, and these are shown in table 2.4.
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Figure 2.5: Distribution of the detection statistics on noise data for a subspace
of dimension 3. A beta fit is applied to the noise population, shown as the red
curve.

Detector Predicted Threshold Predicted Threshold

(PF = 10−6) (PF = 10−15)

Subspace detector 0.0421 0.0973

Table 2.4: Theoretical detection thresholds for the subspace detector with d =
3.

Based on this plot, the theoretical predication again roughly agree with

directly estimated values. This phenomena suggests it is possible to estimate

a wide range of detection thresholds for different dimensions of representations

by performing correlation of noise data with the events. This can increase

efficiency since individual subspaces do not have to be constructed each time

to get estimates for detection thresholds. Based on this plot, a threshold value

γ = 0.2 would be ideal for minimizing false detections. The noise files are
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only a sample of the total noise population and may not account for sporadic

bursts of high amplitude noise or different types of noise that may occur within

the data. Therefore it is imperative that the estimated threshold be high

enough to account for those instances. The square root relationship between

the coefficient of a matched filter and a single dimension subspace detector was

used to set a comparable detection threshold for the matched filter, and τCC =

0.45 was set for the matched filter.

2.6 Summary

Subspace detection has been shown to be a generalization of standard template

detection to multiple dimensions. The underlying mathematical principles be-

hind the detector have been described and its design outlined in a series of steps.

Through synthetic examples, the subspace detector is shown to adequately cap-

ture variations present within a set of waveforms as well as having improved

signal-to-noise ratios especially in the 1st left singular vector. Finally, theoreti-

cally estimating detection thresholds were shown to have reasonable agreement

with estimates determined directly from the data, and may allow for efficient

determination of detection thresholds for a range of subspace dimensions.
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Chapter 3

Location methods in

microseismic monitoring

3.1 Introduction

Microseismic events can occur anywhere in a reservoir or surrounding rock and

are sometimes indicative of the re-rupturing of pre-existing faults (Arrowsmith

and Eisner, 2006). Anthropogenic activities such as fluid injection and wastewa-

ter disposal can increase pore pressure in the subsurface, allowing faults to slide

under pre-existing shear stresses (Van der Elst et al., 2013). The resulting stress

perturbations can reactivate faults and open or close new fracture sets, which

in turn generates microseismic events (De Meersman et al., 2009). Location of

these microseismic events is of paramount importance in monitoring reservoir

changes as precise hypocenter estimates better outline fracture geometry and

the progress of fluid fronts during production, providing important constraints

on fracture distribution and development (Oye and Roth, 2003; Chen et al.,

2017). Earthquake locations, also known as hypocenters generally fall into two

categories; absolute and relative locations. Absolute locations describe earth-

quake hypocenters that are specified within a fixed geographic system and time

frame, while relative earthquake locations are determined with respect to an-

other spatio-temporal object (e.g earthquake or seismic source) which may have

an unknown or uncertain absolute location (Husen and Hardebeck, 2011).
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Earthquake locations can be obtained using a variety of methods, and they

range from linearized techniques to direct searches of a solution space. Some

of these methods involve finding earthquake locations independently of other

earthquakes, while other methods simultaneously determine the locations of

several earthquakes at once. Each technique relies on certain assumptions

which determine its relative strengths and weakness in a location procedure.

Seismic data tend to have uncertainties such as random errors due to noise, and

systematic errors due to un-modeled earth structure. Having a good knowledge

of these limitations and strengths can be beneficial in terms of selecting the

best location strategy for a given dataset or acquisition geometry (Husen and

Hardebeck, 2011).

In this chapter, the location problem is described in terms of the relation-

ship between earthquake arrival times at a given station and its hypocentral

characteristics. The mathematical principles behind different location tech-

niques are introduced and their implementation described. The benefits and

disadvantages of each method are also be outlined.

3.2 Theory

Most earthquakes occur beneath the earth’s surface and their source locations

must be determined using observations from recording stations. The primary

observations are usually the time it takes for the seismic energy to reach the

receiver, referred to as arrival times. The arrival time T for an earthquake i to

a seismic station k can be expressed as a path integral along the ray

T i
k = τ i +

k∫
i

uds, (3.1)

where τ represents the origin time of event i, u is the slowness field and ds

is an element of path length. The travel time is a function of the known

station’s spatial coordinates (xk, yk and zk), an assumed hypocenter location

of the earthquake (xi, yi, zi) including its origin time τ , and the velocity model
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used to model the sub-surface. It is a function of the known station’s spatial

coordinates and velocity model and can be described as

tik =

√
(xi − xk)2 + (yi − yk)2 + (zi − zk)2

v
, (3.2)

with v representing the velocity of the medium, while the spatial coordinates

of the event and receivers are given by xi, yi, zi and xk, yk, zk respectively. The

equation shows travel time to be a nonlinear function of the model parame-

ters. Eq. 3.2 can be applied to a 1D layered velocity model or 3D velocity

model, where the velocity v becomes a function of either depth or spatial coor-

dinates. In most cases the velocity model is kept fixed during the computation

of the earthquake location, but can also be simultaneously determined using a

set of well-constrained earthquakes (Husen and Hardebeck, 2011). With four

unknowns (spatial coordinates and origin time), earthquake location can be

described as an inverse problem. Usually four arrival time observations from

at least three stations are needed to determine an earthquake’s hypocenter and

origin time (Waldhauser and Ellsworth, 2000; Havskov and Ottemöller, 2010).

A solution is usually sought that minimizes the sum of the difference between

the observed and calculated earthquake travel times i.e minimizes the residuals.

The residual for station k are expressed as

rik = (tobsi − ttheoi )k, (3.3)

where tobsi and ttheoi are the observed and calculated travel times at station k

for earthquake i.

For a single vertical receiver array, source locations can only be determined

if the P-wave polarizations are included in the location procedure to constrain

the source back azimuth (Phillips et al., 1998). The inclination of the ray from

a source (xi, yi, zi), at a distance d to a receiver k (xk, yk, zk) may also be

included as an additional constraint. The azimuths θik and inclinations γi
k (Oye

and Roth, 2003) are given by

θik = arctan(
xi − xk

yi − yk
), (3.4)
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γi
k = arccos(−zi − zk

d
). (3.5)

3.2.1 Phase arrival time picking

The standard method for obtaining arrival time picks requires visual inspection

of the traces to accurately determine onset times. Due to the availability of

large data volumes and the subjectivity involved, this method is fairly ineffi-

cient especially in real time monitoring. Accurate determination of the onset

times of phase arrivals is necessary for precise event location and source mech-

anism analysis. To deal with the large data volumes, automatic procedures

are necessary which provide similar to equivalent accuracy relative to man-

ual processed arrival times. Numerous algorithms exist for picking purposes,

such as the short time average over long time average (STA/LTA) detector

(Allen, 1978; Trnkoczy, 1999), autoregressive modeling (Sleeman and Van Eck,

1999; Leonard and Kennett, 1999) and correlation techniques (De Meersman

et al., 2009; Molyneux and Schmitt, 1999). In this thesis, cross correlation and

autoregressive methods are employed for phase arrival time picking.

Cross-correlation

Cross correlation is an especially useful tool for correcting time picking inconsis-

tencies between seismic multiplets since it provides very high precision arrival

time measurements. If two events are highly similar, their time picks must be

at the same position (Geller and Mueller, 1980). The time lag corresponding to

the maximum peak of the cross correlation function between both events can

be used to correct inconsistencies in arrival time picks. A time window around

the phase of interest is selected, with the window starting around the initial

arrival time pick of the phase. The windowed phase data is then correlated

with the time series (Eq. 2.6) and the time at which the correlation function is

maximum is considered the phase onset time. For multi-component data, the

component with the maximum correlation is selected for time picking or the

data may be multiplexed and a single estimate obtained. To avoid instances

of noise correlation, a strict correlation threshold is usually required before an
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arrival time pick is declared.

Autoregressive modeling & Akaike Information Criteria (AIC)

Seismic data are often modeled using an autoregressive (AR) process, where

the value at a particular time depends on a linear combination of past values

Leonard and Kennett (1999). For a time series containing a seismic signal

( xn = x1....., xN ) where N is the length of the time series, it is assumed the

intervals before and after the onset time are two different stationary time series.

A model of order M can be fit to the data in both intervals as

xt =
M∑

m=1

aimxt−m + eit, (3.6)

where t = 1, ...M in the interval before the current time sample, and t = N −
M +1, ...M for the interval after the current time sample (i = 1, 2 corresponds

to the intervals), aim are the autoregressive coefficients for order M (m = 1...M)

and eit represents the noise or non-deterministic part of the time-series (Sleeman

and Van Eck, 1999). At each division point, the maximum likelihood function

for both models as a function of the order of representation is derived and used

to define the Akaike information criteria (AIC) (Sleeman and Van Eck, 1999).

The AIC is used to determine the optimal order for the AR process since it

gives a measure of the unreliability of the model fit (Zhang et al., 2003). For a

fixed model order, the AIC for both models as a function of the merging point

K of both intervals is expressed as

AIC(K) = (K −M)log(σ2
1,max) + (N −M −K)log(σ2

2,max) + C2, (3.7)

where σ corresponds to the maximum variance on the specified intervals at

merging point K, M is the order of the model, N corresponds to the length

of the time series and C2 is an arbitrary constant. The point at which the

AIC function is a minimum corresponds to the optimal separation of the two

stationary time series, and is denoted the onset time (Sleeman and Van Eck,

1999). Usually the order of the autoregressive process is obtained by trial and
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error before estimation of the AR coefficients and AIC calculations. However,

the AIC function can also be calculated without the need for computing AR

coefficients. For a time-series x of length N , the AIC is a function of the

variance var in the two data segments and is given as

AIC(K) = Klog(var(x1, ....xK)) + (N −K − 1)log(var(xk + 1, ...xN)). (3.8)

It is important to ensure that the data window on which the AIC is computed

contains the onset of the phase in question. This is due to the fact the AIC de-

fines the onset as the global minimum, and thus will always provide a minimum

even if the onset of the signal is not contained within the analysis window. In

situations where there are large amounts of noise or multiple phases, the un-

certainty in the onset determination increases. Therefore it is important to

fine-tune the picker in terms of the appropriate position of the time window

used for onset time determination (Zhang et al., 2003).

3.2.2 P-wave polarization

P-wave polarizations generally provide estimates of the back-azimuths between

a seismic event and a station, and are an especially useful parameter for con-

straining earthquake locations (De Meersman et al., 2006). Hodogram analysis

and eigenvalue decomposition (EVD) are examples of techniques used to esti-

mate polarization properties of a signal (Han, 2010; De Meersman et al., 2006;

Vidale, 1986).

For three-component data uj, where j corresponds to the component (from

1 to 3) in a Cartesian frame of reference arranged as [e(t),n(t),z(t)], the co-

variance matrix S in a time window around the signal is expressed as

Sjk =
1

N

N∑
i=1

uj
iu

k
i , (3.9)

where N represents the number of samples in the time window (Bokelmann,

1995). Time-domain analysis tends to be restricted to linearly polarized phases
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and suffers from stability problems in short time windows around zero crossings

(De Meersman et al., 2006). The time domain signal can be converted to an

analytic signal by introducing a complex component to it. The use of analytic

signals is useful if signals with elliptical polarizations are analyzed (Vidale,

1986). It also tends to be less sensitive to the length of the signal window

used (Chen et al., 2005). The analytic signal of the windowed is obtained

by adding their Hilbert transform as the complex component. An eigenvalue

decomposition of the resulting Hermitian covariance matrix S yields

S = V∗ ∧V∗T =
3∑

i=1

viλiv
T
i , (3.10)

where V∗ and ∧ correspond to our matrices of complex eigenvectors and real

eigenvalues respectively. The eigenvector a1 associated with the largest eigen-

value points in the direction of the largest amount of polarization. It corre-

sponds to a 3 × 1 orthonormal vector (a1 = [a1(1), a1(2), a1(3)]
T ). From this

eigenvector both the incidence angle and back-azimuth of the signal from the

source to a receiver can be estimated. The incidence angle φ can be expressed

as

φ =

√
Re(a2

1(1)) +Re(a2
1(2))

Re(a1(3))
, (3.11)

where we denote the real part of the vector as Re. The back-azimuth θ is

derived by

θ = tan−1(
Re(a1(1))

Re(a1(2))
). (3.12)

The back-azimuths and incidence angles obtained using eqs 3.12 & 3.11 range

from −90o to 90o.

3.3 Absolute location

3.3.1 Grid search

A simple approach to hypocenter location involves calculating the travel times

and origin times in a given model space from all possible locations to each
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station based on a given velocity model (Lomax et al., 2007). The point in the

model producing the best agreement between observed and calculated arrival

times is selected as the preferred hypocentral location and origin time. This

location is obtained from the minimum of the sum of the squared residuals e

from the N observations

e =

√√√√√ N∑
j=1

(rj)
2

N
, (3.13)

where e is the root mean square (RMS) error of the travel time residuals. The

RMS error value is usually calculated at all grid points in the model, and the

position with the lowest RMS error is selected as the solution. Sometimes it

is possible within the model to have several locations with similar RMS error

values. A measure of the uncertainty of the solution can then be obtained in

the form of a contour map of rms values around the vicinity of the selected

hypocenter location (Havskov and Ottemöller, 2010). Similarly we can calcu-

late probability density functions of the derived hypocenters by assuming the

azimuths and arrival times are normally distributed around the true locations

(Eisner et al., 2010). The probability density of a hypocenter due to a single

receiver and uncertain measurement is

p(x) =
1

σ
√
2π

exp−(x−xm−xo)2/2σ2

, (3.14)

where x is the measured variable (P-, S-phase arrival times, azimuths or in-

cidence angles), xm is the predicted value obtained with a velocity model, xo

represents the origin time for the phase arrivals (xo = 0 for azimuthal and

inclination measurements), and σ is the standard deviation of the measured

variable x. Under the assumption that each receiver and measured quantity is

mutually independent, the probability density functions (PDFs) can be com-

bined by multiplying the individual probabilities. For N receivers this can be

expressed as

p(tP , tS, A) = Re
−∑

N
(tP−tmP−to)2/2σ2

P
e
−∑

N
(ts−tmS−to)2/2σ2

S
e
−∑

N
(θ−θm)2/2σ2

θ
. (3.15)
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In Eq. 3.15, tP and tS are the measured P- and S-wave arrival times, while θ

denotes the measured azimuths. tmP , tmS and θm are the calculated P-, S-wave

travel times and back-azimuths from a given model. to is the origin time and

σP , σS and σθ are the standard deviations of the observed P- and S-wave ar-

rival times and azimuths. The normalization constant R ensures the integral

of eq. 3.15 over all possible locations is equal to one. The standard deviations

here give a measure of the data quality, with smaller values highlighting more

focused event locations. They are usually derived from the data. Eq. 3.15 may

also use data from a single seismic phase and may not require the azimuthal

values if the acquisition geometry has several boreholes and provide good az-

imuthal coverage of the events. However, using the arrival times from a single

phase leads to a trade-off between the origin time and distance for a vertical

receiver array since its poorly constrained (Eisner et al., 2010). By utilizing

both P- and S- phase arrival times, this trade-off is minimized. Using eq. 3.15,

hypocenter locations correspond to positions in the grid where the joint PDF

has the maximum value.

Eq. 3.15 is based on least squares and produces good results if the misfits

correspond to a Gaussian distribution. However, large outliers have fairly large

impacts on the misfit since everything is squared. Minimizing the sum of

absolute residuals could minimize the effects of outliers in this case and is

considered more robust (Menke, 1999). The RMS error will thus be represented

as

e =

√√√√√ N∑
j=1

|rj|
N

. (3.16)

This is known as the L1 norm solution. In this case, the probability density

functions are given as

p(tP , tS, A) = Re
−∑

N
|(tP−tmP−to)|/2σ2

P
e
−∑

N
|(ts−tmS−to)|/2σ2

S
e
−∑

N
|(θ)−(θm)|/2σ2

θ
.

(3.17)

This technique is not widely used since residuals with large outliers can be
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down-weighted using the L2 norm approach (Waldhauser and Ellsworth, 2000).

The L2 and L1 approaches described provide the maximum likelihood hypocen-

ter and origin time for an earthquake. Usually, a priori information may exist

about the spatial location of an earthquake, but it is generally impossible to

have a priori information about the origin time that is independent from the

data (Tarantola & Valette, 1982). If the observed and predicted times are

uncorrelated, a probabilitiy density function can be derived which involves

minimizing the difference of arrival and travel times (Lomax et al., 2007)

p(tP , tS, A) = Re
−∑

N
((tP−tPavg )−(tmP−tmPavg ))

2/2σ2
P

e
−∑

N
((tS−tSavg )−(tmS−tmSavg ))

2/2σ2
S

e
−∑

N
(θ−θm)2/2σ2

θ
.

(3.18)

In the above equation, tPavg and tSavg refer to the average P- and S-wave arrival

times recorded across the receivers, while tmPavg and tmSavg are the average

calculated P- and S-wave travel times. Subtracting the average values from

both time measurements standardizes them, and eliminates the origin time in-

formation from the arrival times.

Grid search methods take non-linearity of travel times into account by not

utilizing partial derivatives. The searches utilized with these techniques may

be exhaustive or directed (Lomax et al., 2007; Husen and Hardebeck, 2011),

but usually results in complete location PDFs containing global and local max-

imums as they often sample a wide area. However, exhaustive grid searches

within a volume can be expensive, especially if the search region is large, and

can be up to 1000 times slower than location by iterative means (Havskov and

Ottemöller, 2010). This could be mediated by running the computation once

and saving the resulting grid into memory via a lookup table, avoiding the

need for repeated calculations. However, depending on the size of the area

being investigated this may not always be a feasible option. This technique is
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mainly applicable to single events at a time since each earthquake location is

done independently of other earthquakes.

3.3.2 Iterative methods

Iterative methods do not involve large-scale searchs and are predominantly

computationally faster than direct search methods. The location problem can

be linearized via a truncated Taylor series expansion of eq 3.1 around an initial

guess of a hypocenter and origin time (x0, y0, z0, t0) (Geiger, 1912). It can be

assumed that the resulting residuals are due to the error in the initial guess, and

the guess was close enough to the true hypocenter location that the corrections

needed to the initial estimates are small. In this case, the travel time residuals

r at station k for earthquake i can be expressed as

rik =
∂tik
∂m

�mi. (3.19)

In eq 3.19, �mi = (�xi
0,�yi0,�zi0,�ti0) are the perturbations to the four

hypocentral parameters, while
∂tik
∂m

is the partial derivative of the travel time

at the kth station with respect to the four hypocentral parameters evaluated at

the initial guess. Eq 3.19 can be written in matrix notation as:

r = G�m, (3.20)

where G is the N × 4 matrix of partial derivatives at N stations, r is the

N × 1 vector of travel time residuals and �m is the 4 × 1 vector with the

adjustments to the hypocentral parameters. The solution to the linear system

of equations is obtained iteratively using standard least squares techniques.

After each iteration, �m is used to update the location and origin time, and

the process continues until convergence is reached or a stopping criterion is met

(Jones et al., 2008; Havskov and Ottemöller, 2010; Waldhauser and Ellsworth,

2000). P-wave polarization estimates may also be included in the system of

equations if azimuthal coverage is poor. The back-azumuth residuals can also

be expressed in terms of perturbation to the hypocentral parameters
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riθk =
∂θik
∂m

�mi. (3.21)

Eq3.21 can be expressed in the form of eq 3.20 and added to the system of

equations to be solved

rθ = Gθ�m, (3.22)

Convergence is usually rapid using this method but breaks down if the initial

guess is far away from the optimal solution. The solutions can also become

unstable when the complete solution is irregular or multiple solutions exist due

to insufficient data or the presence of outliers (Husen and Hardebeck, 2011;

Lomax et al., 2007). The solutions obtained this way may be poor representa-

tions of the complete solution since it could converge to a local minimum which

may not be known unless the residuals are very bad. Usually a test with a grid

search program could highlight if the solution is a local minimum or not or

tests could be made with several starting locations (Havskov and Ottemöller,

2010).

3.4 Relative location

Relative location techniques are commonly used techniques to precisely relo-

cate earthquake clusters containing highly similar waveforms. Repeating source

mechanisms tend to produce highly similar waveforms and the precisions of

their locations can be improved especially if waveform cross-correlation is uti-

lized to improve arrival time estimates and determine high-precision relative

arrival times. There are several techniques which utilize this principle, two of

which are most common and examined in this chapter.

3.4.1 Master event relocation

The master event technique has been a widely used tool in the relative location

of seismic events (Stoddard and Woods, 1990; Bouchaala et al., 2013; Frémont

and Malone, 1987). In this method, events are relocated relative to a single well
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located master event under the assumption that the events are highly similar,

and thus co-located spatially. If the master event and child event are in close

proximity, the ray paths for both events to a common receiver can be assumed

to be similar, and the travel time differences between them can be attributed

to the velocity heterogeneity in the source region between both events (Jones

et al., 2008; Waldhauser and Ellsworth, 2000). These assumptions hold pro-

vided the separation distance between the events is small compared to their

distance to the receiver.

The master event relocation method is illustrated by considering a seismic

event i recorded at station k. The arrival time T i
k can be written as

T i
k = ti0 + tik +Δtik + εik, (3.23)

where ti0 is the origin time, tik is the predicted travel time obtained from a

reference velocity model, Δtik is the unknown travel time anomaly caused by

differences between the true unknown velocity model and the reference velocity

model, and εik is the arrival time reading error. The arrival time for the master

event ME is given by

TME
k = tME

0 + tME
k +ΔtME

k + εME
k . (3.24)

We can rewrite Eq.3.23 in terms of the master event

T i
k = tME

0 +Δt0+ tME
k +

∂tME
k

∂x0

Δx0+
∂tME

k

∂y0
Δy0+

∂tME
k

∂z0
Δz0+Δtik+ εik, (3.25)

where Δt0, Δx0, Δy0, Δy0 and Δz0 are perturbations to the hypocentral param-

eters and origin time of the master event to obtain arrival time of the seismic

event. Since the events are assumed to be in close proximity with similar ray

paths, then the errors due to velocity are roughly equal i.e. Δtik � ΔtME
k .

Subtracting eq 3.24 from eq 3.25 then gives
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T i
k − TME

k = Δt0 +
∂TME

k

∂x0

Δx0 +
∂TME

k

∂y0
Δy0 +

∂TME
k

∂z0
Δz0. (3.26)

The error in the arrival time difference can further be significantly reduced via

the use of cross-correlation to correct arrival picking inconsistencies. Thus, for

a seismic phase at station k, the relative hypocentral parameters between a

master event ME and a child event i can be expressed as

riME
k =

∂tiME
k

∂m
�miME, (3.27)

where riME
k = (T i − TME)k corresponds to the difference in arrival times be-

tween the child event and the master event at the kth station, and �miME

= (�dtiME
o ,�dxiME

o ,�dyiME
o ,�dziME

o ) corresponds to the relative changes in

hypocentral parameters between the child event and master event (Jones et al.,

2008). The observables may also correspond to either absolute travel time dif-

ferences, or cross-correlation relative travel time differences. Eq 3.27 may be

written in matrix notation and is given by Eq 3.28:

Δrm = AmΔm, (3.28)

where Δrm is the N × 1 vector of the arrival time differences at N stations,

and �m is the 4 × 1 vector of unknown deviations from the master event

hypocentral coordinates and origin time. The observables in Eq 3.27 can also

be travel time differences between the master event and child event if origin

time estimates are available. The elements of the N × 4 partial derivatives

matrix Am are computed at the master event location. Similarly, the system

of equations can be extended to include azimuth information, especially in the

case of restricted acquisition geometries. Noise as well as small deviations of

the borehole could result in large errors in determining the azimuthal distribu-

tion of the fractures (Bulant et al., 2007). If the ray paths are similar between

the master event and the child event, then it is reasonable to expect the az-

imuthal values to contain common errors. Therefore, the differential azimuth

values should be more accurate than the absolute values. The resulting set of

44



equations is given by

θik − θME
k =

∂θME
k

∂x0

Δx0 +
∂θME

k

∂y0
Δy0 (3.29)

riME
θk =

∂θiME
k

∂m
�miME, (3.30)

In matrix form, it corresponds to

Δrθm = AθmΔm, (3.31)

whereAθ is the N × 4 matrix containing the partial derivatives of the azimuths

at the master event location and Δθ is the N × 1 vector of the azimuthal dif-

ferences between the master and child events.

The combined system of equations is given by

⎛
⎝ WtAm

WθAθm

⎞
⎠Δm =

⎛
⎝ WΔrm

WΔrθm

⎞
⎠ (3.32)

Wt andWθ are diagonal matrices to weight each equation with a priori weights.

No iteration is required in solving eq 3.28 and 3.32 since the location of the

master event is already known.

Using this technique, systematic errors due to an incorrect velocity model

are the same for all events since the ray paths are similar and this has no

effect on the accuracy of the relative event locations (Deichmann and Garcia-

Fernandez, 1992). The absolute location of the cluster is thus dependent on

the errors in the arrival time estimates of the master. A disadvantage of this

technique lies in the possible error propagation through the entire event cluster

due to correlation of noise that may be present in the master. The maximum

spatial extension of the cluster that can be relocated using this method is

restricted since all events must correlate with the master event, and location

error increases with distance away from the master (Waldhauser and Ellsworth,

2000). Its application is therefore limited to groups of highly similar events.
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3.4.2 Double difference relocation

Like the master event technique, the double difference method of Waldhauser

and Ellsworth (2000) takes advantage of the close proximity of seismic events

in its relocation procedure due to the assumed similarity of the ray paths. The

difference between observed and predicted travel time differences for event pairs

are minimized as opposed to minimizing the residual for single events. For a

pair of seismic events i and j recorded at station k, the difference in eq 3.19

for both events is taken and given by

drijk =
∂tik
∂m

Δmi − ∂tjk
∂m

Δmj, (3.33)

where drijk is the residual between the observed and calculated differential travel

times between the two events. drijk is defined as the double difference and

corresponds to

drijk = (tik − tjk)
obs − (tik − tjk)

pred (3.34)

The observables in eq 3.33 could be absolute travel times t or cross-correlation

relative travel-time differences. Eq 3.33 can be written out in full as

drijk =
∂tik
∂x

Δxi +
∂tik
∂y

Δyi +
∂tik
∂x

Δzi +Δti0 −
∂tji
∂x

Δxj − ∂tji
∂y

Δyj − ∂tji
∂x

Δzj −Δtj0

(3.35)

The partial derivatives of the travel times at the kth stations for events i and j

in eq 3.33 are evaluated at the event hypocenters. Δmi and Δmj correspond to

the changes in the hypocentral parameters for both events to make the model

better fit the data. For a set of N events, eq 3.35 can be combined for all event

pairs over all stations to form a system of linear equations of the form

Em = dr, (3.36)

where E is theM × 4N matrix of partial derivatives with respect to travel time,

dr is the M × 1 data vector containing the double differences and m is the 4N

× 1 vector containing the changes in hypocentral parameters. In this system
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of equations, M represents the number of double-difference observations. Eq.

3.36 may be extended by 4 equations to ensure the mean shift of all earthquakes

during relocation is zero. This is represented by

N∑
i=1

Δmi = 0 (3.37)

for each coordinate and travel time (Waldhauser and Ellsworth, 2000). An

initial solution to eq 3.36 is obtained from the starting hypocenter location

and a priori weights. The locations are updated and a new partial derivative

matrix E is calculated based on the updated locations. This process continues

until a stable solution is obtained. Matrix E can be obtained by applying a

differencing operatorQDD to matrixG from eq 3.20 i.e. E =QDDG. Azimuths

can also be included in the procedure

drijθk =
∂θik
∂m

Δmi − ∂θjk
∂m

Δmj, (3.38)

written in full this become

drijθk =
∂θik
∂x

Δxi +
∂θik
∂y

Δyi − ∂θji
∂x

Δxj − ∂θji
∂y

Δyj, (3.39)

where drijθk is defined as

drijθk = (θik − θjk)
obs − (θik − θjk)

pred. (3.40)

Eq. 3.39 can also be expressed in matrix form

Eθm = dθ, (3.41)

where Eθ is the M × 4N matrix of back-azimuth partial derivatives, dθ is the

M × 1 data vector containing the back-azimuth double differences and m is

the 4N × 1 vector containing the changes in hypocentral parameters. In this

case Eθ = QDDGθ.

The resulting system of equations using both arrival times and back-azimuths

is expressed as
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⎛
⎜⎜⎜⎜⎜⎜⎝

WtE

wG

WθEθ

uGθ

⎞
⎟⎟⎟⎟⎟⎟⎠

m =

⎛
⎜⎜⎜⎜⎜⎜⎝

WtQDD

wI

WθQDD

uI

⎞
⎟⎟⎟⎟⎟⎟⎠

d, (3.42)

where w and u are scalar values which give the relative weighting between

the absolute and differential arrival times and azimuths, I is the identity matrix

and d is the data vector containing both travel time and azimuth observations

(d = [dr Δr dθ Δrθ]
T ).

In this technique, interevent distances between correlated events are de-

termined to the accuracy of the cross-correlation data while simultaneously

determining the relative locations of other multiplets and uncorrelated events

to the accuracy of the catalogue data. This method has been shown to improve

the image of seismicity by collapsing locations into sharper clusters, leading to

clearer identification of faults. Like the master event technique, similar ray

paths for highly similar events help reduce systematic errors due to erroneous

velocity models. A drawback to using cross-correlation techniques is the fact

that they usually provide relative locations if only correlation data are used.

Furthermore, the system of equations can become quite large for numerous

events and screening of the data is necessary to optimize the linkage between

the events and minimize redundancy in the data set (Waldhauser and Ellsworth,

2000). The system of equations may also become ill-conditioned especially if

one event is poorly linked to other events, poor azimuthal coverage and er-

rors in data measurements. This is usually reduced by damping which helps

stabilize the system of equationss. Further stabilization can be achieved by

applying preconditioning to the system via normalization of the columns of the

derivative matrices, usually by its L2 norm.
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3.5 Summary

We have described earthquake location in terms of a minimization between

observed and predicted variables. Different earthquake location methods were

introduced and the underlying principles governing each method described.

Finally, their relative strengths and weaknesses were outlined in terms of their

efficiency, accuracy and applicability.
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Chapter 4

Relative location using the

subspace detector

4.1 Introduction

Automated detection and location of seismic events is an important tool in the

operation of global and local seismic networks (Lee et al., 1981; Oye and Roth,

2003). Microseismic events tend to be more abundant than larger magnitude

earthquakes, and require precise detection and location to provide a clear pic-

ture of actively deforming regions over short observation periods (Hansen and

Schmandt, 2015). With an increasing number of recording stations and higher

sampling rates, robust and efficient techniques are required to keep up with

the amount of active seismicity occurring and provide real-time images of a

reservoir. This is especially valuable in hydraulic fracturing which is associated

with high microseismic activity (Oye and Roth, 2003).

Most microseismic events are low magnitude (M ≤ 2) and contaminated by

high amplitude noise, which poses challenges in terms of event detection and

accurate hypocenter localization due to difficulties in picking precise arrival

time readings and inaccurate back-azimuth estimates (Hansen and Schmandt,

2015; Song et al., 2014). Furthermore, other factors such as restricted network

geometries and ambiguous arrival time readings negatively impact the ability to
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resolve the fine structure of seismicity (Waldhauser and Ellsworth, 2000). Even

when the earthquake data have good signal-to-noise ratios, errors in the veloc-

ity model introduce systematic biases in the location estimates (Li et al., 2013).

Several techniques are used in tackling the detection problem, one of which

is subspace detection (Harris, 2006; Song et al., 2014; Barrett and Beroza,

2014). It involves the construction of a library of waveform templates which

are used to detect other weaker events using waveform similarity. The library of

waveforms can be constructed using a family of similar waveforms or a diverse

group of waveforms, making it fairly robust in handling waveform variation.

The algorithm assumes that the undetected events can be represented as a

linear combination of the largest singular vectors, formed from the library of

template events (Barrett and Beroza, 2014). The first few singular vectors tend

to have improved signal-to-noise ratios relative to the templates since they pre-

dominantly represent the signal energy of the design set. This definition implies

that the singular vectors may contain some information on the source mech-

anism(s) within the design set, and may have similar characteristics to the

template events in terms of their frequency content and waveform character.

Two events are considered highly similar if their maximum event separation is

not greater than a quarter wavelength of the dominant frequency; i.e they are

co-located (Geller and Mueller, 1980). This similarity suggests the left singular

vectors may contain hypocentral characteristics similar to the template events

and could be used for location in a relative sense. If the singular vectors are

representations of the source mechanism(s) contained in the design set, they

could potentially be used as master events.

This chapter aims to introduce the subspace detector as a means of per-

forming relative location of microseismic events. Unlike other relative location

routines, the subspace detector offers the potential for an efficient means of si-

multaneous detection and location of seismic events. The higher signal-to-noise

ratio (SNR) of the 1st singular vector compared to the raw templates may im-

prove the accuracy and precision of earthquake locations. In the first part of

this chapter, the processing steps involved in obtaining the 1st singular vec-

51



tor representation at each recording station will be outlined, and a procedure

for obtaining its hypocenter location will be described and explained. Then

the relative location methodology using the subspace detector will be intro-

duced. In the second part of this chapter, the properties of the singular vectors

will be examined in terms of their waveform characteristics in relation to the

templates forming its subspace, and their hypocenter location. Finally, the

relative location capabilities of the subspace detector will be compared to that

of the conventional double difference and master event methods via synthetic

examples.

4.2 Absolute location of the first singular vec-

tor

Locating an earthquake usually involves the use of a velocity model and phase

arrival times at different receivers. In situations where a restricted acquisition

geometry is employed, P-wave polarizations are needed to constrain the source

back-azimuth. The first singular vector for a given subspace describes the main

characteristics of the design set waveforms, and this may include hypocenter

information. Obtaining an absolute location for this vector requires the same

parameters necessary for locating routine earthquakes, and these are dependent

on the processing steps involved in constructing the subspace.

4.2.1 Methodology

Singular vector representation

The processing steps involved in constructing the signal subspace are explained

in more detail in section 2.3. Template events are obtained either using con-

ventional detection methods, or from a previously collected catalog. These

are then clustered together into groups based on their similarity using cross-

correlation. A group of interest is selected, the waveforms are multiplexed and

aligned in time at each receiver using cross-correlation. After alignment, a

data window is defined around the phase(s) of interest. The window should be
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wide enough to include the onset of the phase, and its position is kept fixed

across all receivers. Fixing the window position is important as it allows for

the capture of the relative time moveout of the singular vector arrival times

across the receivers. An SVD is applied to the aligned waveforms within the

chosen temporal window, and the matrix of left singular vectors is obtained.

P- and S-wave arrival times

After application of the SVD, the first singular vector is demultiplexed back into

3C form, and its arrival times are picked at each receiver. Since the singular

vectors are not physical events, the picked arrival times are arbitrary with

unknown origin times. However, the relative arrival time differences across the

receivers allow for the estimation of the most likely hypocenter for this vector.

P-wave polarizations

If a single vertical borehole acquisition is used, P-wave polarization estimates

are required to constrain the source back-azimuth. A time window encom-

passing the P-wave on the first singular vector is defined, and its covariance

matrix computed. An eigenvalue decomposition is applied to the matrix, and

polarization estimates at each receiver are obtained using eq 3.11.

Hypocenter location

With the arrival times and polarization estimates, a hypocenter location can

be obtained for the first singular vector using a grid search approach. Due to

the arbitrary nature of the arrival times, the issue of the origin times can be

bypassed by utilizing eq 3.18. The average arrival time and predicted travel

time are subtracted from the observed arrival times and predicted travel times

respectively before the minimization procedure. Once a location is determined,

an origin time may be obtained by subtracting the predicted travel times from

the observed arrival times. This origin time is then subtracted from the arrival

times to obtain a set of observed travel time measurements.
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4.3 Relative location

The relative locations between events can often be obtained with greater ac-

curacy than the absolute locations since they minimize the influence of travel

time errors and velocity model uncertainties on the accuracy of earthquake

locations. Several techniques such as the double difference algorithm and the

master event method are used to obtain these locations. In this section, the

main relative location methods considered in this study are introduced, and

their methodology outlined.

4.3.1 Double difference relocation

The double difference relocation method utilizes all the child events in a pair-

wise sense. The processing steps involved in this process are as follows:

1. For each detected event, obtain arrival time and P-wave polarization es-

timates at each receiver. With these values, obtain initial hypocenter locations

for the events.

2. Using cross correlation, either obtain relative travel time differences

between event pairs, or absolute travel time differences. In the case of the single

vertical borehole, the relative back azimuths may be computed by differencing

the back azimuths, or analytically obtained using the method described in

Appendix B.

4. With the relative travel times and back-azimuth measurements, eq 3.42

is solved to obtain the vector of relative changes in hypocentral parameters

between the event pairs.

4.3.2 Master event relocation

In this method, an event is chosen from a set of detected events and used as a

master. This event is usually closest to all the other events and has the best

signal-to-noise ratio. The processing steps involved in this process are as follows

1. Select the master event from the set of detected events, obtain ar-
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rival time and back-azimuth estimates across the receiver array and estimate a

hypocenter location for this event.

2. For each detected event, get arrival time and P-wave polarization esti-

mates at each receiver.

3. Obtain cross correlation relative travel time differences between the

master and detected events, or absolute travel time differences. In the case

of the single vertical borehole, the relative back azimuths may be computed

by differencing the absolute back-azimuths, or obtained analytically using the

method described in Appendix B. The 1800 ambiguity associated with these

estimates is normally solved by constraining the events to the quadrant con-

taining the treatment well or source.

4. With the relative travel times and back-azimuth measurements, eq 3.32

is solved to obtain the vector of relative changes in hypocentral parameters

between the detected events and master event.

4.3.3 Subspace relocation

Assuming the location of the first singular vector is in close proximity to the

events forming the subspace, this vector can be used as a master event in a

relocation procedure. The higher signal-to-noise ratios of this singular vector

relative to the detected events may offer the possibility of improved absolute

locations due to more accurate arrival time readings, which in turn will lead to

more accurate relocations. The processing steps involved in this process are as

follows:

1. Obtain the first singular vector representation across the receiver ar-

ray, and get its arrival time and P-wave polarization estimates. With those

parameters, obtain its hypocenter location.

2. For each event detected by the subspace detector, obtain arrival time

and P-wave polarization estimates at each receiver.

3. Obtain cross correlation relative travel time differences between the

singular vectors and detected events, or absolute travel time differences. In
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the case of the single vertical borehole, the relative back-azimuths may be

computed by differencing the absolute back-azimuths, or obtained analytically

using the method described in Appendix B.

4. With the relative travel times and back-azimuth measurements, eq 3.32

is solved to obtain the vector of relative changes in hypocentral parameters

between the child event and singular vector.

4.4 Tests and applications

4.4.1 Effects of waveform variation

In most seismic operations, seismic events may be due to different source mech-

anisms, or could be the result of highly similar sources. Depending on the

application, all detected events may be used at once in the construction of the

signal subspace, or detailed analysis of waveform multiplet groups may be un-

dertaken. The behavior of the left singular vectors might change depending on

the chosen application so an understanding of how waveform character influ-

ences the left singular vector representation is important if a relative location

procedure is to be employed. In this test, the influence of waveform similarity

on the first singular vector will be examined.

Methodology

Four synthetic microseismic events were generated in a homogeneous velocity

medium, with P-wave and S-wave velocities of Vp = 4000m/s and Vs = 2300m/s

respectively. The sampling rate (dt) was set to 0.001s, and the events were

recorded at a single receiver station with no attenuation in the medium. The

origin time of the events t0 was set to 0. No noise was added to the system. In

this experiment, two cases were considered; the case where the events were due

to the same source mechanism, and the case where they were from different

sources. In the case where the events are similar, the source mechanism was

assumed to be double couple (DC), and a Ricker wavelet was used as the source

wavelet. Two of the events were assumed to be the result of slight variations
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in the source mechanism. Figure 4.1 shows the location of the events relative

to the receiver.
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Figure 4.1: Location of synthetic seismic events relative to single receiver show-
ing in 2D plots. Event cluster shown as red dot and receiver shown as blue
triangle in the Top row. A close up view of the events is shown in the Bottom
row and corresponds to the region highlighted by the black box. Events are
labeled. Red dots indicate the original DC source, while green dots correspond
to slight variations within the DC source.

In the next case, two of the events were assumed to be due to a DC source

represented by a Ricker wavelet, while the other two originated from a com-

pensated linear vector dipole (CLVD) source represented by a Meyr wavelet.

The locations of the CLVD source events were also moved slightly further away

from the DC source. The source locations are shown in figure 4.2.
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Figure 4.2: Location of synthetic seismic events relative to single receiver show-
ing in 2D plots. Event cluster shown as red dot and receiver shown as blue
triangle in the Top row. A close up view of the events is shown in the Bottom
row and corresponds to the region highlighted by the black box. Events are
labeled. Red dots indicate the original DC source, while green dots correspond
to the CLVD source.

The 3C waveforms were multiplexed and aligned in time using an iterative

stacking procedure (De Meersman et al., 2006), and are shown in figures 4.3

and 4.4.
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Figure 4.3: Three component synthetic signals and their time aligned multi-
plexed forms. East, north and vertical components shown in red, blue and
black colors respectively. Events are due to a DC source mechanism.
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(b) Aligned waveforms

Figure 4.4: Three component synthetic signals and their time aligned multi-
plexed forms. East, north and vertical components are shown in red, blue and
black colors respectively. Events are due to DC and CLVD source mechanisms.

A singular value decomposition was then applied to the aligned waveforms

to obtain the left singular vectors. To quantify the similarity between the singu-

lar vectors and template events, correlation coefficients between the synthetic

waveforms and singular vectors were calculated on the P- and S-waves sepa-

rately. The P-wave polarizations were also used as an additional constraint to

define similarity. Eq 3.12 was applied on a 60msec window centered around the

P-wave of the singular vector to obtain polarization estimates, and these were

compared to the true back-azimuths of the templates.
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Results

The average energy capture as a function of the subspace dimension of repre-

sentation was calculated for both cases and shown in figure 4.5a.
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Figure 4.5: Average energy capture as a function of the dimension of represen-
tation.

The majority of the signal energy was described by the first two singular

vectors in both cases. When the events were very similar, the first singular

vector described a significant amount of the total signal energy (≈ 80%), with a

minor contribution from the second singular vector (≈ 18% of the total energy).

The contribution of the second singular vector in the energy capture increased

when the waveforms differed from each other, jumping to ≈ 35% of the total

signal energy, while the influence of the first singular vector diminished, as

it only managed to describe ≈ 60% of the signal energy in that case. The

implications of the different energy capture trends on the singular vectors may
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be understood by observing the singular vectors themselves in relation to their

templates. Figures 4.6 and 4.7 show the 3C templates and their first two

singular vectors.
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Figure 4.6: Template events and their 1st and 2nd left singular vectors in three-
component form. The singular vectors correspond to event number 5 (top
waveform) in both figures. East, north and vertical components are shown in
red, blue and black colors respectively.
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Figure 4.7: Template events and their 1st and 2nd left singular vectors in three-
component form. The singular vectors correspond to event number 5 (top
waveform) in both figures. East, north and vertical components are shown in
red, blue and black colors respectively.

Both singular vectors were very similar to their templates when the source

mechanism was similar, with the main differences seen in the waveform ampli-

tudes. When waveform variability became more pronounced, as was the case

with the two different source mechanisms, the singular vectors appeared to con-

tain characteristics of the waveforms in the design set to varying degrees, with

none of the singular vectors describing any of the waveforms uniquely. These

differences between the singular vectors and their templates were quantified

by examining their similarity. Tables 4.1 and 4.2 show the correlations and

back-azimuth values.
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Waveform Back-azimuth (θ) CC1

(P)

CC1

(S)

CC2

(P)

CC2

(S)

1 (Red) 26.31 0.99 0.98 0.99 0.92

2 (Red) 26.36 0.99 0.98 0.99 0.92

3 (Green) 26.41 0.99 0.98 0.99 0.79

4 (Green) 26.46 0.99 0.98 0.99 0.79

Vector 1 26.35 - - - -

Vector 2 26.33 - - - -

Table 4.1: Back-azimuths and correlation coefficients between the P-waves (P)
and S-waves (S) of the events and their first two left singular vector. CC1
and CC2 correspond to correlations with the 1st and 2nd left singular vectors
respectively. The events are all due to a DC source mechanism.

Waveform Back-azimuth (θ) CC1

(P)

CC1

(S)

CC2

(P)

CC2

(S)

1 (Red) 26.31 0.87 0.85 0.84 0.57

2 (Red) 26.36 0.87 0.85 0.84 0.57

3 (Green) 27.06 0.67 0.85 0.68 0.58

4 (Green) 27.11 0.67 0.85 0.68 0.58

Vector 1 33.10 - - - -

Vector 2 38.18 - - - -

Table 4.2: Back-azimuths and correlation coefficients between the P-waves (P)
and S-waves (S) of the events and their first two left singular vector. CC1
and CC2 correspond to correlations with the 1st and 2nd left singular vectors
respectively. The events are due to DC and CLVD source mechanisms.

For the very similar events, the overall correlations with their singular vec-

tors were high, with back-azimuth estimates that were fairly similar between

the templates and singular vectors. Both singular vectors in this case had back-

azimuth estimates that were fairly close to the average value of the templates

(θavg = 26.390). The S-waves correlations were where the main differences ap-

peared. Their correlations with the first singular vector were consistently high
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across all the templates, whereas there was a dip in similarity between the sec-

ond singular vector and the events representing the variation of the DC source.

Nevertheless, the overall correlations were still good.

The correlations between the singular vectors and templates displayed mod-

erate variability when the waveforms differed from each other. The first singu-

lar vector still maintained fairly high correlations with the templates overall,

the exception being on the P-wave of the CLVD events. The second singular

vector displayed poor correlations with all the templates, most notably on the

S-waves. The back-azimuth estimates also differed between the singular vec-

tors and their events, with estimates for both singular vectors lying outside

the range of the template values. The results suggest the first singular vector

adequately captures the dominant characteristics of the design set, as long as

the templates are very similar to each other. Variability of the templates re-

sults in waveform distortion of the singular vectors, which leads to errors in the

back-azimuth estimates.

4.4.2 Proximity of singular vectors to their templates

The success of any relocation technique is dependent on the relative distances of

the events being relocated to each other or the master event. If the ray paths

between the pair of events to a common receiver are assumed to be similar,

then differences in travel time can be attributed to velocity variation in the

source region between the events. If subspace relocation is to be successful,

the hypocenter location of the singular vectors must be fairly close to the

events being relocated to achieve accurate results. In this test, the location

of the singular vector relative to the templates in the design set for different

acquisition geometries is examined.

Methodology

Ten synthetic microseismic events were generated in a homogeneous velocity

medium and used as templates in the subspace construction. The acquisition

geometries utilized in these tests were a down-hole array consisting of five
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boreholes, with each borehole containing four receivers, and a vertical twelve

receiver array. The sampling rate (dt) was set to 1ms and the source mechanism

of the events was a double couple (DC) with no attenuation. A Ricker wavelet

was used as the source wavelet. We assumed P-wave and S-wave velocities of

Vp = 4000m/s and Vs = 2300m/s respectively. The origin time t0 was set to

0, the source locations, arrival times and back-azimuths of the templates to

the receiver stations are perfectly known. No noise was added to the system.

The events were assumed to be highly similar to each other, with some events

occurring at the same location. The array configurations are shown in figure

4.8.
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Figure 4.8: Location of synthetic microseismic events relative to receiver arrays.
Left column: Array configuration for five boreholes setup. Right column: Array
configuration for single vertical borehole. Receivers shown as black triangles
and events shown as red dots. The source locations are the same in both cases.

For each acquisition geometry, the left singular vector representations were
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obtained at each receiver using the procedure outlined in sections 2.3 and 4.2,

and the first left singular vector was selected as a master event. Arrival times

were then picked on the singular vector at each receiver, as shown in figure 4.9.
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(d) 1st singular vector (Single borehole)

Figure 4.9: A template event and the corresponding 1st left singular vector
representation. The travel time picks for the P and S-waves are indicated by
red and green dots. The true travel time estimates are shown for the template
event while the picked estimates are shown for the singular vectors. East, north
and vertical components are shown in red, blue and black colors respectively

For the five borehole array, only the arrival times were used in the loca-

tion procedure, while the P-wave polarizations were included to constrain the

horizontal location for the single vertical array. The polarization estimates for

the singular vector were obtained by extracting 60ms windows centered around

the P-waves, starting from the picked arrival time estimates at each receiver.

The absolute locations of the singular vectors were then estimated using a grid
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search approach. The grid volume was defined as 100m × 100m × 100m cube

in x, y and z respectively, with a 1m spacing between grid nodes. The max-

imum likelihood hypocenter for the 1st singular vector was then obtained via

eq 3.18.

Results

Figure 4.10 shows a close up view of the microseismic source locations of the

templates in relation to their 1st left singular vector.
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Figure 4.10: Location of synthetic microseismic events relative to their 1st left
singular vector for two acquisition geometries. Left column: Five boreholes.
Right column: Single vertical borehole. Source locations shown as red dots,
while the singular vector location is denoted by a blue circle. The cluster
centroid is highlighted by a black cross.

In both cases the singular vectors were proximal to the template events,

with a maximum observed separation distance between the events and singular

68



vector of 25m across both setups. Its location was situated close to the cluster

centroid in the five borehole steps, with a slightly larger offset in the case of the

single vertical borehole. The depth estimates from both acquisition styles were

both fairly close to the cluster centroid, with the main deviations seen in the

epicentral estimates. These observations may be understood by observing the

distribution of the travel times and back-azimuth estimates, shown in figures

4.11 and 4.12.
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Figure 4.11: Distribution of observed travel times for template events and their
1st singular vector for two acquisition geometries. Left column: Five boreholes.
Right column: Single vertical borehole. The travel times of the template events
are shown as stars while black circles denote the singular vector travel times.
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Figure 4.12: Distribution of the back-azimuths for template events and their
1st singular vector. The back-azimuths of the template events are shown as
stars while black circles denote the singular vector back-azimuths.

The travel time estimates for the singular vectors were very similar to the

templates in both acquisition setups. The back-azimuth estimates of the sin-

gular vector were also within the range of the template values, and very closely

approximated the average azimuth for all the templates. The high similarity of

the travel time and polarization estimates imply the hypocenter location of the

events should lie close to the cluster, which was the case in this example. Based

on these results, the differences in the singular vector location between both

acquisition could be attributed to the parameters used in location. Only travel

times were used when the azimuthal coverage was decent, but polarization es-

timates had to be included when constraints were needed on the horizontal

position of the vector for the single vertical borehole.

4.4.3 Comparison to other relative location techniques

The relative relocation capabilities of the subspace detector may be analyzed by

comparing it to established relative location routines. In this test, the subspace

relocation method was compared to both the conventional double difference and

master event relocation techniques.
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Methodology

The ten synthetic microseismic events generated in section 4.4.2 were used as

templates in this experiment, with the same source locations and seismic ve-

locities used in both acquisition geometries. The events were also assumed to

occur at varying times i.e have different origin times. The left singular vector

representations were obtained at each receiver using the procedure outlined in

sections 2.3 and 4.2, and the 1st singular vector was selected as a master event

for subspace relocation. For the master event relocation technique, a template

event closest to all the other events was selected as a master event. Next, ran-

dom Gaussian noise with zero mean and standard deviations of 6 ms and 50

respectively were added to the synthetic event arrival times and back-azimuths

for the events. No noise was added to the singular vector absolute arrival times

and back-azimuths since it was assumed these values were more accurate rel-

ative to the events. The same noise was added to the absolute data across all

three methods to ensure the initial source locations were the same.

Initial source locations for the events and singular vector were obtained us-

ing a grid search, with the same grid spacing outlined in section 4.4.2. With

these source locations, initial origin time estimates were obtained by subtract-

ing the predicted travel times from the observed arrival times and averaging the

vector of origin times. The relative travel times were also contaminated with

random zero mean Gaussian noise. To simulate a real world scenario where

these relative times were obtained from waveform cross-correlation which are

usually an order of magnitude more accurate than absolute data, the standard

deviation of the noise added was set to 1 ms. The relative back-azimuth data

are usually more accurate than absolute back-azimuths as common path er-

rors and errors due to deviation of the borehole are minimized. Therefore, the

standard deviation of the added random zero mean Gaussian noise was set to 10.

The initial source locations from the grid search, absolute data and differ-

ential data were used as inputs to the double difference algorithm. Eq. 3.42

was solved iteratively using least squares, and the solution vector was used

to update the initial source locations. The absolute data was given a relative
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weight of 0.1 in the relocation procedure for the double difference relocation.

For the master event relocation technique, the initial source location of the

master event was obtained from the grid search, and was used as an input to

the algorithm in addition to the differential data. The same process was ap-

plied to subspace relocation, using the singular vector location and differential

data as inputs to the algorithm. The location of the singular vector was used

to obtained predicted travel times, which were subtracted from the observed

arrival times to obtain an estimate for its origin time. For both the master

event and subspace relocation techniques, eq 3.32 was solved, and the solution

vector of hypocentral deviations was added to the location of the master event

and singular vector respectively.

Results

Initial source locations for the synthetic events recorded by the five borehole

receiver array are shown in figure 4.13.
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Figure 4.13: Source locations of the synthetic events recorded by a five borehole
array. Red and blue open circles indicate true and initial source locations from
grid search respectively. Blue and magenta closed circles highlight the location
of the selected master event and singular vector respectively.

The origin time estimates obtained for these events are also shown in table

4.3
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Event True (s) Initial

(s)

1 10 9.2

2 5 4.4

3 2 0.8

4 20 20.3

5 30 29.1

6 40 38.6

7 6 6.6

8 100 98.9

9 3 2

10 4 5.1

Table 4.3: Table of origin times for the synthetic microseismic events before
relocation for the five boreholes setup.

The estimated origin time for the singular vector in this case was ≈ 0 so

no constant was added to the singular vector arrival times. The initial source

locations were fairly spread out, with a major distortion in the shape of the

cluster apparent. In particular, the errors appear to be more pronounced in

depth. Relocation was performed using all three relative location techniques,

and the results are shown in figure 4.14.
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Figure 4.14: Source locations of the synthetic events recorded by a five borehole
array. Top Row: Double difference relocations. Middle Row: Master event
relocations. Bottom Row: Subspace relocations. Red open circles indicate true
source locations, while black closed circles represent the relocations. Blue and
magenta closed circles highlight the location of the master event and singular
vector respectively.

Overall, the relocations were a lot closer to their true positions compared to

the initial grid search locations, with the relative distances between the events

somewhat similar across the methods. The double difference relocations were

the closest in absolute location to the true source locations, and had smaller rel-

ative distances between the events relative to the other techniques. In both the

master event and subspace relocation techniques, the events were pulled closer

to their respective masters. The relocations were also very similar between the
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master event technique and subspace relocation, with the main differences seen

in the absolute location of the clusters. Overall, the cluster shapes were better

approximated after relocation compared to the grid search locations. The true

cluster shape is decently captured by the relocations, but some stretching and

rotation is apparent in the relocations, leading to a distortion of the seismic

image. The origin time estimates after relocation are shown in table 4.4.

Event True (s) Initial (s) DD (s) MER (s) SR (s)

1 10 9.2 10 9.4 10

2 5 4.4 5 4.4 5

3 2 0.8 2 1.4 2

4 20 20.3 20 19.4 20

5 30 29.1 30 29.4 30

6 40 38.6 40 39.4 40

7 6 6.6 6 5.4 6

8 100 98.9 100 99.4 100

9 3 2 3 2.4 3

10 4 5.1 4 3.4 4

Table 4.4: Table of origin times for the synthetic microseismic events after
relocation for the five borehole setup. All initial origin times for the events
were used in the double difference technique. The initial origin time of event
2 was selected as the master event origin time for the MER technique while
the origin time estimated for the singular vector (≈ 0) was used in the SR
technique.

The true origin time estimates were recovered using the double difference

technique, further highlighting this method’s robustness. The origin times

obtained using the master event relocation technique were all systematically

shifted from their true values by 0.6s, the same shift observed between the

true and initial estimates for the master event (event 2). Subspace relocation

captured the true origin times, suggesting the use of accurate absolute data

minimizes the error in the origin time estimates after relocation in this method.
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Application of the relocation techniques to the single vertical borehole array

also displayed similar results. Figure 4.15 shows the initial source locations for

the synthetic events for this acquisition geometry.
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Figure 4.15: Source locations of the synthetic events recorded by a single bore-
hole array. Red and blue open circles indicate true and initial source locations
from grid search respectively. Blue and magenta closed circles highlight the
location of the selected master event and singular vector respectively.

Event True (s) Initial

(s)

1 10 9.4

2 5 4.6

3 2 1.1

4 20 19.7

5 30 29.7

6 40 39.9

7 6 5.8

8 100 99.5

9 3 2.2

10 4 4.6

Table 4.5: Table of origin times for the synthetic microseismic events before
relocation for the single borehole setup.

The inclusion of azimuthal data increased the uncertainty in the system,

leading to an increase in the location error. The relocation results for this
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scenario are shown in figure 4.16.
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Figure 4.16: Source locations of the synthetic events recorded by a single bore-
hole array. Top Row: Double difference relocations. Middle Row: Master event
relocations. Bottom Row: Subspace relocations. Red open circles indicate true
source locations, while black closed circles represent the relocations. Blue and
magenta closed circles highlight the location of the master event and singular
vector respectively.

Again, the absolute locations of the relocated cluster were closer to the

true locations compared to the initial source locations across the different tech-

niques. The distortion of the cluster shape is more pronounced for this acqui-

sition geometry compared to the five bore hole setup. The double difference

relocations were the closest approximations to the cluster shape compared to

77



the techniques, but there wasn’t a significant difference in the relative distances

between the events after relocation. The master event and subspace relocation

results were more rotated and stretched compared to the double difference,

but still retained elements of the original cluster orientation. The origin time

estimates after relocation for this acquisition setup displayed the same trends

observed in the five borehole setup, and are shown in table 4.6.

Event True (s) Initial (s) DD (s) MER (s) SR (s)

1 10 9.4 10 9.7 10

2 5 4.6 5 4.7 5

3 2 1.1 2 1.7 2

4 20 19.7 20 19.7 20

5 30 29.7 30 29.7 30

6 40 39.9 40 39.7 40

7 6 5.8 6 5.7 6

8 100 99.5 100 99.7 100

9 3 2.2 3 2.7 3

10 4 4.6 4 3.7 4

Table 4.6: Table of origin times for the synthetic microseismic events after
relocation for the single borehole setup. All initial origin times for the events
were used in the double difference technique. The initial origin time of event
4 was selected as the master event origin time for the MER technique while
the origin time estimated for the singular vector (≈ 0) was used in the SR
technique.

Again the double difference and subspace relocation techniques accurately

recovered the true origin times, while the master event results showed a sys-

tematic shift equal to the shift between the true value and utilized value of the

master event.
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4.5 Discussion

The dominant characteristics of a design set are represented adequately by a

small number of singular vectors, but the relative importance of each vector

depend on the extent of waveform similarity. In the situation where waveform

similarity was quite high, the 1st singular vector represented the majority of

the signal energy, with minor contributions from the subsequent vectors. It

also exhibited large similarity to its templates in waveform character, which

was reflected in travel time and polarization information. A look at figure 4.6

shows no discernible lags between the singular vector and its template, sug-

gesting proximal locations, and the similarity of the back-azimuth estimates

further support this argument. The 2nd singular vector in this experiment also

exhibited the same traits as the 1st singular vector, but its relatively minor

contribution to the description of the signal energy implies its more likely to

contain noise energy, which will lead to less than optimal results. The 1st sin-

gular vector still described the dominant characteristics of the design set when

waveform variability becomes more significant, but the approximations do not

describe the waveform types uniquely. These lead to waveform characteristics

of the singular vectors that did not appear to have any physical meaning since

they represented a blend of different waveform types. This phenomenon trans-

lates to errors in travel times, a fact that is illustrated in figure 4.17, where

only the P-wave components of one of the DC and CLVD events are shown, as

well as their 1st singular vector.
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Figure 4.17: DC source (event 1), CLVD source (event 2) and their first left
singular vector (event 3) after alignment. The arrival time of the DC source is
shown as a blue line while the arrival time of the CLVD source is shown as a
red line. Only the vertical component is shown.

The CLVD event had a slightly longer duration than the DC event and after

alignment, the earliest arrival time was seen on the CLVD event in figures 4.4

and 4.4. The singular vector had an identical arrival time to the CLVD event,

suggesting the singular vectors are sensitive to the earliest arriving waveform.

The back-azimuth estimates of the singular vectors were also erroneous, lying

outside the range of the template events. The similarity of the relative moveout

times across the receiver array between the singular vectors and templates

in both acquisition geometries suggests the methodology employed to get the

singular vector representation is accurate. Using a fixed window during the

alignment of the waveforms allows for consistency across the receiver array.

This is illustrated in figure 4.18 which shows multiplexed waveforms before

and after alignment for two different receivers.
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(a) Receiver 1 (Unaligned)
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(c) Receiver 12 (Unaligned)
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Figure 4.18: Multiplexed synthetic waveforms before and after alignment from
two different receivers. Red box indicates fixed temporal window used for
obtaining singular vector representation.

Before alignment there are relative time differences observed between the

receivers since the travel times to the receivers differ between events. This rel-

ative time difference was roughly maintained after alignment. The waveforms

are shifted predominantly around the average position of the events, and the

use of a combined window including P- and S-waves has a negligible effect on

the alignments due to the very similar S-P differential times. This is further

supported by figure 4.11 which shows the observed travel times of the singular

vectors roughly follow those of the templates, and lie within the template val-

ues. The location of the singular vectors were fairly similar, especially in the

depth estimates. Azimuthal information was included for the single vertical
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borehole which is the main constraint on the horizontal position of an event,

and that explains why the main differences are seen in the epicenter estimates

between both setups. Nevertheless, the differences were fairly minor and the

estimated hypocenters were still within the general vicinity of the templates.

Application of the relocation techniques to uncertain arrival time measure-

ments showed an improvement in absolute locations of the relocated cluster rel-

ative to the initial grid search locations. In all three cases, the cluster shape was

fairly well estimated, but some stretching and rotation was evident, leading to

a distortion of the cluster shape. The double difference technique produced the

most robust results, as their relocations were not only closer to the true source

locations, but were subject to less distortion compared to both the master

event relocation technique and subspace relocation. In both the master event

and subspace relocation techniques, the relocated events were pulled closer to

the position of the master event and singular vector respectively. These two

techniques displayed very similar relative distances amongst the event, with

the main difference seen in the absolute location of the clusters. The singular

vector was assumed to be more accurately located since it had higher signal-to-

noise ratios relative to the other events. Subsequently, its location was much

closer to the true source locations. The origin time information were overall

fairly close to the true value, but the master event method showed some sys-

tematic bias due to error in the estimate for the master. The double difference

technique was robust enough to accurately obtain the true values.

Computational costs are an important factor to consider since they de-

termine the relative practicality of the relocation techniques. For N events

recorded at k receivers, the differential data needed by the double difference

algorithm will be greater than both the master event and subspace relocation

methods by a factor of 0.5k(N − 1). The inclusion of absolute data further

increase the number of data measurements by Nk. Coupled with the iterative

method through which a solution is obtained, and the need for data damping

due to ill conditioned systems, the double difference approach method may in-

cur some significantly processing costs due to the large system of observations
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to be solved. Therefore, it is important to quantify just how successful the

relocation results are relative to each other. The accuracy of the relative event

locations may be quantified by comparing the distances of the events from their

centroid. Figures 4.19 and 4.20 show the observed centroid-event separation

distances for both acquisition setups.
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(b) Double difference relocation
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(c) Master event relocation

2 4 6 8 10
Event number

0

5

10

15

20

25

S
ep

ar
at

io
n

 d
is

ta
n

ce
 (

m
)

(d) Subspace relocation

Figure 4.19: Separation distance between the events and their cluster centroid
for the five borehole acquisition geometry.
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(a) True locations
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(b) Double difference relocation
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(c) Master event relocation
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(d) Subspace relocation

Figure 4.20: Separation distance between the events and their cluster centroid
for the single vertical borehole acquisition geometry.

The overall cluster centroid separation distances between the events were

similar for both the true locations and the relocations, with the double differ-

ence centroid distances displaying more consistency across both setups. How-

ever, these differences are fairly small, which imply similar accuracy in reloca-

tions across the relocation techniques.

4.6 Summary

The subspace detector has been examined in terms of the hypocentral char-

acteristics of the left singular vectors in relation to the templates constituting

the subspace. The results suggest the 1st left singular vector sufficiently rep-
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resents the hypocentral characteristics of the design set in terms of waveform

character, polarization and arrival time. This representation is highly depen-

dent on high similarity amongst the templates, and becomes erroneous when

the source mechanisms become more diverse. The methodology for performing

subspace relocation was described and validated by comparing the similarity

of arrival time and back-azimuth measurements between singular vectors and

their templates. The hypocenters of the singular vectors were fairly consistent

between both acquisition geometries, and were fairly close to their respective

templates positions. The main differences were due to the inclusion of polar-

ization information in the single vertical borehole case.

Application of the relocation techniques to noisy data showed the double-

difference approach provided the most robust results. The subspace relocation

method had very similar results to the master event technique, with the main

difference occurring in the absolute location of the cluster. Unlike the standard

master event relocation procedure which utilizes the template with the best

signal-to-noise ratio (SNR), the 1st left singular vectors represent a
√
n increase

in SNR (n = number of templates ) since it closely approximates the stack of

the templates. This implies an increase in location accuracy of the cluster

due to both more accurate hypocenter locations for the singular vector, and

higher correlations with the templates. The overall differences in the relative

event distances were not too significant, suggesting subspace relocation may

be a practical means to determine accurate relative locations at reasonable

processing costs.
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Chapter 5

Microseismic monitoring of a

hydraulic fracture treatment

5.1 Introduction

The matched filter is a useful technique for detecting highly similar events, and

offers increased sensitivity to waveforms at low false alarm rates (Gibbons and

Ringdal, 2006). This method of event detection could often lead to increased

processing times especially if a large number of template events are used, and

may result in redundancy due to similar templates providing identical results.

Energy detectors on the other hand, require no signal information and strictly

detect events based on thresholds related to the ratio of signal to noise energy.

This lack of signal sensitivity often leads to the omission of low magnitude

events, and an increased false alarm rate when aggressive detection thresholds

are set (Trnkoczy, 1999).

The redundancy in using similar matched filter templates may be alleviated

by using low rank approximations of waveform groups in the detection proce-

dure. The subspace detector provides an orthonormal representation of a set

of waveforms using singular value decomposition, which highlight the common

characteristics present amongst a set of waveforms (Harris, 2006; Barrett and

Beroza, 2014; Freiberger, 1963). This representation offers increased sensitiv-
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ity to waveform variation compared to the use of a single template and may

increase detection capability at a lower processing cost. This enhanced sensi-

tivity to waveform could also increase detection capability if template coverage

is sufficient, leading to performances comparable to energy detectors at much

lower false alarm rates.

The main aim of this chapter is to demonstrate the functionality of the

subspace method, using data from a microseismic monitoring operation during

a hydraulic fracturing treatment. First, the subspace detector is compared to

the matched filter in terms of its efficiency and sensitivity to waveform. Next,

the effects of the subspace design on its performance are investigated, and

finally, its ability to increase catalog information compared to the conventional

STA/LTA detector at low false alarm rates is analyzed and discussed.

5.2 Geological setting and field layout

The Hoadley field was discovered in 1977, and is predominantly a gas conden-

sate field hosted by the Glauconite member of the Lower Cretaceous Mannville

Group (Eaton et al., 2014; Newbert et al., 1987). The Mannville group com-

prise the oldest Cretaceous rocks for most of the Western Canada Sedimentary

Basin (WCSB) and are indicative of a major episode of subsidence and sedi-

mentation, which preceded a long period of uplift, exposure and erosion (Eaton

et al., 2014; Hayes et al., 1994). Gas is produced from the lower Cretaceous

Glauconite sand, which represents a southwest to northeast trending marine

barrier bar system known as the Hoadley barrier complex (Newbert et al.,

1987; Hayes et al., 1994; Eaton et al., 2014). It marks the northern limit of a

continental to marginal-marine depositional environment (Hayes et al., 1994;

Eaton et al., 2014). The lithology of the barrier bar varies from porous sand fa-

cies to interbar lagoon facies and tidal channel facies and the system contains

progradational marine sandstone bodies up to 32km in length, each hosting

several distinct reservoirs (Newbert et al., 1987). The hydraulic fracturing ex-

periment occurred 58.6km northwest of Red deer in the Hoadley gas field of

central Alberta, Canada (Eaton et al., 2014). The treatment zone consists

87



of interbedded tight sandstone reservoirs deposited in a wide range of near-

shore environments (Reynolds et al., 2012). The site location and treatment

configuration are shown in figure 5.1.

Figure 5.1: Top: Plan and depth view of treatment configuration. Treatment
well and sensor array denoted by arrows. Bottom: Site of treatment: Treatment
wells located approximately 58.6km northwest of Red Deer, AB and highlighted
by yellow star.

5.3 Methodology

5.3.1 Pre-processing

Processing of data commenced with an analysis of the frequency content of the

microseismic signals to suppress noise and improve the signal-to-noise ratio.

Figure 5.2 displays a section of data containing a raw microseismic signal, its
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spectrogram, and the resulting filtered signal. The spectrogram was obtained

by computing discrete Fourier transforms on 0.0625s time windows of the mi-

croseismic signal, with 80% overlap (0.05s) between them. Most of the signal

energy for the event is present within the 40-130Hz frequency band. Based on

this information, a trapezoidal bandpass filter with corner frequencies [20 40

145 160] Hz was applied to the signal to suppress as much noise as possible.

A notch filter was also applied to remove 60Hz frequencies corresponding to

possible power lines in the area.
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Figure 5.2: Time-frequency analysis of microseismic event. Signal energy is
predominantly within the 40-130Hz frequency range. Top left to bottom: 1) Un-
filtered microseismic signal. 2) Time-frequency representation (spectrogram).
A blocky color scale has been used to emphasize the frequency band corre-
sponding to signal energy. 3) Filtered microseismic event. Vertical, north and
east components shown by red, blue and black colors respectively.

5.3.2 Construction of template library

Template waveforms used for both correlation based detectors were obtained

with an STA/LTA detector. A conservative threshold value τSL of 10 was used

to declare a detection at a receiver, and 8 out of 12 receivers were required

to trigger before a global detection was declared to ensure good quality detec-
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tions. STA and LTA windows were selected to be 4 (0.06s) and 9 times (0.15s)

the dominant period of the microseismic signals respectively. Those window

sizes were deemed large enough to adequately capture both signal and noise

information, and short enough to avoid averaging signal energy. The detector

was then run over the entire first day of data which corresponded to 7 hours

of data, leading to a total of 517 detections made. The detection results were

then inspected visually to determine good quality microseismic events. In this

study, a microseismic event is defined as having visible and coherent seismic

phases ( P- and/or S-waves) and reasonably small S-P differential times. Af-

ter inspection, incoherent signals and non-microseismic events were removed,

leaving 506 templates for analysis.

5.3.3 Multiplet analysis

A multiplet is defined as a group of n events (n ≥ 2) where each event is very

similar with at least one other event in the group (Arrowsmith and Eisner,

2006). The idea is events of similar origin will be grouped together as they

tend to be very similar up to a distance of a quarter of their dominant wave-

length, according to Geller and Mueller (1980). In this study, the multiplets

are defined as groups for which the average cross-correlation coefficients is ≥
0.8 i.e. every member of a group must have a correlation coefficient greater

or equal to this value with at least one other member of the group. Due to

the large number of template events obtained with the STA/LTA detector, this

value is deemed sufficient as it is high enough to ensure high similarity between

events in multiplet groups, but low enough to allow for some signal variability

within multiplet groups, allowing for differentiation between multiplet groups.

This similarity is measured by array-averaged time domain cross correlation

functions between the events.

Starting 50ms before the P-wave arrival time estimates, a 500ms window

encompassing both P- and S-waves was used to extract waveform data before

calculating the peak correlation coefficient value between event pairs. Both

phases were utilized in a combined window since similar waveforms have sim-
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ilar P- and S-waves, making it more efficient to process both phases at once.

Events were then linked together in a chainlike fashion as a function of the

array-averaged weighted correlation coefficient known as single link clustering

(Arrowsmith and Eisner, 2006). The weighting was done by calculating the

correlation coefficient on each component of a geophone, then weighting it by

the maximum data amplitude for the receiver before taking the average to

emphasize components with higher signal-to-noise ratios. This procedure was

applied to every event pair, and the correlation coefficient values were stored

in a symmetric matrix (figure 5.3).
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Figure 5.3: Matrix of correlation coefficient (CC) between 506 template micro-
seismic events sorted into their respective multiplet groups. Every cell corre-
sponds to the maximum correlation coefficient event between event pairs.

Separation of events into multiplet groups resulted in the formation of 201

groups, 35 of which contained multiple events. The multiplet groups comprised

340 events, with the remaining 166 groups forming single event clusters. In this

study, 4 multiplet groups containing events from the target data section (one

hour) were selected for analysis. For each multiplet group, a subspace detector

was constructed. A summary of the selected multiplet groups is shown table

5.1. The templates contained in these multiplet groups predominantly spanned

the mid to late stages of the chosen data segment.
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Multiplet # of events

group in group

1 14

2 15

3 2

4 8

Table 5.1: Table of multiplet groups.

5.3.4 Subspace construction

After sorting the events into multiplet groups, waveforms in each of the selected

multiplet groups were multiplexed and aligned in time using the iterative stack-

ing procedure of (De Meersman et al., 2009). Starting 50ms before the P-wave

arrival time estimates at each receiver, 330ms data windows encompassing the

aligned multiplexed P- and S-waves were extracted for use in construction of

the signal subspace. The data windows were kept as short as possible to mini-

mize the amount of noise present in the subspace representation. The matrix

of aligned events was then be decomposed into three unitary matrices via a sin-

gular value decomposition (SVD) (eq 2.16), and an orthonormal representation

of the aligned events U was obtained from the matrix of left singular values.

Dimension of representation

Determining the optimal dimension of representation for the subspace is cru-

cial in the detection procedure. A sufficient amount of signal energy must be

captured by the subspace to adequately represent the signals in a group. A

measure of the average energy capture in each multiplet group as a function of

the subspace dimension of representation d was obtained by applying eq 2.19 to

the aligned waveforms. Ideally, the dimension of representation selected should

capture a reasonably high percentage of the average signal energy in order to

be effective. The average energy capture in this case represents both signal

and noise energy, so an inspection of the basis vectors was necessary to ensure
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limited noise capture in the subspace representation.

5.3.5 Matched filter analysis

Individual templates may also be selected for analysis in a matched filter rou-

tine. The three-component templates were first multiplexed and a time window

extracted around the phases is extracted, starting 50ms before the P-wave ar-

rival. Eq 2.6 was then applied to the data. The length of the data windows

used for the templates was 330ms.

5.4 Tests and application

5.4.1 Processing efficiency of template based detectors

Using all multiplet group templates in a detection routine provides the most

complete detection picture for the group. However, redundancy becomes a fac-

tor with an increasing number of templates, especially if most of the templates

are fairly similar to each other. The rank reduction offered by the subspace

detector may provide processing gains in terms of efficiency since it represents

the multiplet group with a smaller number of templates. Furthermore, the use

of multiple dimensions in the subspace representation could increase sensitiv-

ity to waveform variation compared to the use of a single template, and may

be similar or better in performance to using all templates. We investigated

this hypothesis by comparing the detections made by the subspace detector to

those made using all templates in a multiplet group. The performances were

further evaluated by comparing their precision, recall and F1-score, which were

described in detail in section 2.4. In this test, multiplet group 1 was selected

for analysis.

Methodology

The processing steps outlined in the construction of the signal subspace (section

2.3) and matched filter were followed in this test. Data windows encompassing

the aligned waveforms were extracted, as shown in figure 5.4.
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Figure 5.4: Three component waveforms from multiplet group 1. a) Before time
alignment. b) After time alignment. Red box indicates selected data window
used in construction of signal subspace. Vertical, north and east components
shown by red, blue and black colors respectively.

After extraction of the data window, a subspace representation was con-

structed using the methodology described in section 2.3.4. The average energy

capture as a function of subspace dimension was computed in order to deter-

mine the optimal value of d, after which subspace detection was applied to the

data. The energy capture curve for multiplet group 1 is shown in figure 5.5.
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Figure 5.5: Average energy capture for multiplet group #1 as a function of the
dimension of representation d. The chosen optimal dimension of representation
is highlighted by a red circle.

The dimension d was selected to be 2 since after that dimension, the in-

creases in the energy capture were marginal. An analysis was also carried out

to see how the 1D subspace detector performed relative to the higher dimension

detector, and the individual multiplet templates. Therefore, subspace detec-

tion was also applied to the data using a dimension d = 1. Each template

in the multiplet group was also selected for use in a matched filter operation.

The detection threshold for the subspace detector γ was set to 0.2 based on

results from section 1.4.3, while an equivalent detection threshold τCC for the

matched filter of 0.45 was set. A minimum of 8 receivers across the 12 re-

ceiver array were required to exceed the detection threshold before a detection

was declared. These were then inspected visually to differentiate microseismic

events from false alarms.

Results

The alignment procedure resulted in no discernible lag differences between the

events on both the P- and S-waves as seen in figure 5.4. Removal of the inter-

event lags is important as it allows for a low rank approximation of the wave-

forms in the subspace representation. The detection results from the matched
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filters and subspace detectors were tallied and shown in table 5.2

Detector type Events False

alarms

Missed

events

Subspace detector 170 2 50

(d = 1)

Subspace detector 208 7 12

(d = 2)

Matched filter 184 7 36

(all templates)

Table 5.2: Table showing results after application of subspace detection and
matched filtering to a segment of data using a multiplet group. A total of 220
events were detected by both detectors.

Based on these results, the detector performances were evaluated in terms

of their precision, recall and F1 score, and the results are shown in table 5.3.

Detector type Precision Recall F1-score

Subspace detector 0.99 0.77 0.87

(d = 1)

Subspace detector 0.97 0.95 0.96

(d = 2)

Matched filter 0.96 0.84 0.90

(all templates)

Table 5.3: Precision, recall and accuracy (F1-score) of the subspace detectors
and matched filters constructed from multiplet group 1

Across both detectors, precision was very high which is an indication of

high quality detections. The recall of the detectors was where the major dif-

ferences lay. Using the 2D subspace detector resulted in the most number of

detections relative to the other detectors, with an identical number of false
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alarms to the results obtained using all 14 templates in matched filtering. This

was reflected in its recall, which was the highest of all the detectors. The 1D

subspace detector captured less events relative to the combined matched filter.

This distinction was not very significant, as seen in the fairly small difference

in recall between both results. It did have the highest precision, recording only

2 false alarms compared to the 7 detected by both the matched filter templates

and 2D subspace detector.

The times taken to apply each detector to a single receiver are shown in

table 5.4.

Detector type Run time (s)

Subspace detector ≈ 826

(d = 1)

Subspace detector ≈ 1004

(d = 2)

Matched filter ≈ 826

(1 template)

Matched filter ≈ 11,564

(14 template)

Table 5.4: Processing times for both detectors after application to one hour of
data on a single receiver.

The single matched filter template and 1D subspace detector both had

similar run times when applied to the data, with the 2D detector taking a bit

more time. In relative terms, the 2D detector represent a processing gain of

about 12x the speed of running all 14 templates, and a further 14x gain if the

1D detector was employed.
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5.4.2 Effects of subspace design on waveform sensitivity

The correlation level at which the waveforms are separated into multiplet

groups is dependent on the goals of the study. A high threshold may be more

useful if diversity within a specific source is of interest, and a low threshold

groups different source signals together. Applying subspace detection to indi-

vidual multiplet groups is a means of increasing processing efficiency due to

the rank reduction offered by the SVD at the heart of the detector. However,

utilizing all the templates without performing multiplet analysis may be an

even more efficient means of performing detection since it bypasses the pro-

cessing step of grouping events. Examining the advantages and disadvantages

of both methods of subspace construction is important in determining an opti-

mal detection routine. In this test, multiplet groups 1 and 2 were selected for

analysis.

Methodology

A subspace representation was constructed for each group using 330ms data

windows centered around the aligned waveforms, encompassing both phases.

Next, the waveforms from both groups were merged into a single group and

also aligned in time. The waveform alignments are shown in figures 5.6 and

5.7.
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(a) Multiplet group 1
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(b) Multiplet group 2

Figure 5.6: Three component waveforms after alignment a) Multiplet group 1 b)
Multiplet group 2. Red box indicates selected data window used in construction
of signal subspace. Vertical, north and east components shown by red, blue
and black colors respectively.
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Figure 5.7: Three component waveforms from both multiplet groups 1 and 2
after alignment. Red box indicates selected data window used in construction
of signal subspace. Vertical, north and east components shown by red, blue
and black colors respectively.

In each case, the subspace dimension d was set to 2, the detection threshold

γ was set to 0.2, and a minimum of 8 receivers across the 12 receiver array

were required to exceed this threshold before a detection was detected. The

detections were then visually inspected to differentiate microseismic events from

false alarms.

Results

The detection results using both the individual and combined multiplet groups

were tallied, and the results are shown in table 5.5.
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Detector type Events False

alarms

Missed

events

Subspace detector 302 12 0

(Groups 1 + 2)

Subspace detector 286 5 16

(Merged)

Table 5.5: Detection results from subspace detection applied to both individual
multiplets and combined multiplet groups. A total of 302 events were detected
across both detectors.

The detections using the individual groups exceeded those of the subspace

detector constructed from the combined group, displaying greater sensitivity

to waveform. This came at an increased number of false alarms relative to

the merged group. However, the difference in the number of events detected

exceeded the differences in false alarms.

5.4.3 Detection optimization

Detecting as many events as possible at low false alarm rates is the main objec-

tive of any event detection routine. An increase in false alarms puts a burden

on system resources, as well as processing time due to the increased screening

required. The subspace detector displays sensitivity to events corresponding

to the particular multiplet group of interest, but its performance may be con-

strained by the availability of templates. The STA/LTA detector on the other

hand requires no signal information in its detection routine, making it a fairy

straight forward and cost-effective technique. This lack of signal information

can also be a draw back especially in cases where signal and noise informa-

tion don’t differ by a great deal, or overlapping events are present. This test

aims to demonstrate how the subspace detector compares to the conventional

STA/LTA detector in terms of detection performance, and how the number of

templates used in subspace detection influences the results.
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Methodology

The STA and LTA windows used in obtaining templates for the waveform

library were retained (0.06s and 0.15s respectively), and the detection threshold

τSL was lowered to a value of 3. This value was deemed equivalent to the

subspace detector threshold γ of 0.2 since it minimized the number of false

alarms. For each multiplet group, the waveforms were aligned and 330ms data

windows extracted. Average energy capture curves were then used to obtain

optimal dimension of representation d for each group, as shown in table 5.6.

Multiplet # of events Dimension

group in group of representation

1 14 2

2 15 2

3 2 1

4 8 2

Table 5.6: Multiplet group and the dimension of representation for the subspace
representation

For each multiplet group, eq 2.19 was applied to the aligned waveforms to

determine the average energy capture. In this study, the minimum energy cap-

ture required for each group was 80%. The dimensions were further selected

after physical examination of the left singular vectors. For both detectors, a

minimum of 8 receivers across the 12 receiver array were required to exceed

the specified detection threshold before a detection was declared. The detec-

tions were then visually inspected to differentiate microseismic events from false

alarms.

Results

All four multiplet groups were used in subspace detection, while the STA/LTA

detection algorithm was applied to the data segment. The results are shown in

table 5.7.
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Detector type Events False

alarms

Missed

events

STA/LTA 268 10 125

Subspace detector 351 15 42

(Total)

Table 5.7: Detection results from subspace detection and STA/LTA applied to
one hour of data. A total of 393 events were detected across both the detectors.

The performance of the detectors were further evaluated by looking at their

precision, recall and accuracy via the F1 score. Table 5.8 shows these metrics.

Detector type Precision Recall F1-score

STA/LTA 0.96 0.68 0.80

Subspace detector 0.96 0.89 0.92

(Total)

Table 5.8: Precision, recall and harmonic mean of the subspace detector and
STA/LTA detector after application to microseismic data.

The individual subspace detectors had identical precision rates to the STA/LTA

detector, validating the chosen detection thresholds. The difference in the num-

ber of events detector by the subspace detector was substantial, with a recall of

0.89 compared to the 0.68 of the STA/LTA. Both detectors displayed low alarm

rates, with slightly more false alarms detected by the subspace detector. How-

ever, the differences were very marginal between both methods. Overall, the

subspace detector displayed better efficiency, showing great balance between

precision and recall with an F1 score of 0.92.

5.5 Discussion

Comparison of the subspace method to the matched filter revealed the di-

mension of the subspace detector (i.e the number of singular vectors) plays
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an important role in its waveform sensitivity. Figure 5.8 shows the first two

singular vectors of multiplet group 1 in multiplexed form.
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Figure 5.8: First two singular vectors of multiplet group 1

The 1st singular vector exhibited good signal-to-noise (SNR) ratio, with very

visible P- and S-waves. The 2nd singular vector displayed a lower SNR, with

only the S-waves visible above the noise. Nevertheless, the use of both singular

vectors supplied extra waveform information, which increases sensitivity to

waveform variation. This is substantiated in figure 5.9 which shows an event

missed by both the 1D subspace detector and matched filter templates but

captured by the 2D subspace detector.
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(b) Matched filter
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(c) 1D subspace detector
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(d) 2D subspace detector

Figure 5.9: Detection results applied on data stream. Vertical, north and east
components shown in red, blue and black colors respectively. (a) Data interval
contains an event of interest around 82s (b) Matched filter template has a peak
lower than the detection threshold. (c) 1D subspace detector has a peak smaller
than the detection threshold (d) 2D subspace detector shows the same peak
as the 1D subspace detector, but with a larger amplitude which exceeds the
threshold.

Here, the detection statistic is higher on the 2D detector relative to the

1D detector for the event. This increased waveform sensitivity comes at the

cost of a higher probability of false alarms, since the use of higher dimensions

increases the noise content in the subspace representation. This explains the

detection made by the subspace detector around the 1888s mark in figure 5.10,

where there is no apparent waveform information present.
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(b) Matched filter
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(c) 1D subspace detector
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(d) 2D subspace detector

Figure 5.10: Detection results applied on data stream. Vertical, north and east
components shown in red, blue and black colors respectively. (a) Data interval
contains no discernible signal (b) Matched filter registers no detections. (c) 1D
subspace detector registers no detection (d) 2D subspace detector has a peak
which exceeds the threshold at about 1888s.

Computationally, the use of a subspace detector offers benefits both in terms

of waveform sensitivity and speed. The 2D subspace detector not only detects

more events relative to using all the templates in a matched filter operation,

but it runs approximately twelve times as fast, which implies significant boosts

in processing. The instances of multiple detection of the same event are also

minimized or eliminated for multiplet groups since the detector captures the

performance of all the templates in a single run. The 1D subspace detector

detected less compared to the combined matched filter results with a lower

false alarm rate. It would be expected that the use of a single dimension has a
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lower probability of producing false alarms relative to the individual templates

since the 1st singular vector is very similar to the stack of the waveforms, and

thus would have an increased SNR. However, there is a loss in sensitivity to

waveform variation since only the average waveform is used. Nevertheless, the

number of events recovered were still fairly similar, with a recall of 0.77 com-

pared to the 0.84 obtained using all the templates. Depending on the goals of

the study, if only highly similar events to the waveform group are required for

analysis, then the potential processing efficiency may be increased even further

if a 1D detector is used. In this example, the speedup is roughly 14 times that

of using all the templates. Overall, the template based detectors had high pre-

cision results, with the highest precision seen on the single templates and 1D

subspace detector. The trade off between precision and recall dictates that the

less precise detectors had better recall, which was the case with all 14 templates

and 2D subspace detector. In terms of overall performance on both metrics,

the 2D detector was superior with an F1 score of 0.97.

The design of the subspace detector also appears to play a major role in its

sensitivity to waveform. A look at figures 5.6 and 5.7 showed optimal alignment

when the waveforms came from the same multiplet group, and a relative shift

in the alignment when multiple groups were combined into the same subspace

representation. The lack of proper alignment increases the rank of the subspace

representation since the lags become a characteristic of the design set. This is

reflected in figure 5.11 which shows at the same dimension of representation, the

energy capture for the merged group is less than those of the individual groups.

At d = 1, the energy capture of the merged group is below 80%, compared to

the individual multiplet groups are both above 80%. This suggests a reduction

in waveform sensitivity of the singular vectors for the merged group as they

become more representative of the averaged waveforms between the multiplet

groups. The consequences of these observations can be seen after application

to the microseismic data, in which the merged multiplet group detected less

events than the individual subspaces. If the variability increases in the subspace

representation due to the inclusion of waveforms from different sources or with

varying waveform character, the distortion in the singular vectors would be
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expected to increase further, minimizing waveform sensitivity.

2 4 6 8 10 12 14
Dimension of representation (d)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
F

ra
ct

io
n

 o
f 

en
er

g
y 

ca
p

tu
re

d

(a) Multiplet group 1
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(b) Multiplet group 2
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(c) Merged group

Figure 5.11: Average energy capture for multiplet groups 1 and 2, as well the
merged group as a function of the dimension of representation d. The selected
dimension of representation is highlighted by a red circle and corresponds to 2.

The overall detections across the subspace detectors exceeded those of the

STA/LTA detector, with an overall F1 score greater than the energy detector.

The performance of the subspace method is directly related to availability and

diversity of the templates from a given data section. Having a large number of

templates from different parts of the data increases the probability of detecting

more events compared to having a lot of templates from the same period since

there’s less redundancy. The processing costs were also very reasonable, with

a total of 7 dimensions needed to detect more than the energy detector at a

comparable false alarm. The caveat to the increased sensitivity of the sub-

space detector to waveform variation lies in the fact that it strictly applies to

waveforms that are either identical, or very similar to its subspace representa-

tion. This is in stark contrast to the STA/LTA detector which does not rely on

waveform information. This explain why some waveforms present in the data
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segment shown in figure 5.12 were missed by the subspace detector, but picked

up by the STA/LTA detector.
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(b) STA/LTA detector
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(c) 2D subspace detector (Group 2)

Figure 5.12: Detection results applied on data stream. Vertical, north and
east components shown in red, blue and black colors respectively. (a) Data
interval contains several events (b) STA/LTA detector registers four detections
(c) Subspace detector only picks up two events.

This insensitivity of this detector to waveform also implies it cannot dif-

ferentiate signal from noise, leading to greater probability of missed events if

they are low magnitude, buried in noise or overlapping events. The subspace

detector on the other hand displays high sensitivity to events represented by

its subspace, especially with higher dimensions. This is substantiated in fig-

ures 5.13 and 5.14 which shows a section of data containing waveforms that is

missed by the STA/LTA detector but picked up by the subspace detector, and

a data section highlighting the STA/LTA’s lack of waveform sensitivity.
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Figure 5.13: Detection results applied on data stream. Vertical, north and
east components shown in red, blue and black colors respectively. (a) Data
interval contains several events (b) STA/LTA detector registers no detections
(c) Subspace detector only picks up three events.
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(b) STA/LTA detector
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Figure 5.14: Detection results applied on data stream. Vertical, north and
east components shown in red, blue and black colors respectively. (a) Data
interval contains a regional high amplitude seismic event and a low magnitude
microseismic signal (b) STA/LTA detector detects both the seismic events and
a false alarm around 2982s (c) Subspace detector registers no detections

5.6 Summary

The subspace detector is a robust technique that can handle waveform variabil-

ity even in adverse noise conditions. Matched filters are very sensitive to events

generated by specific sources, with very low false alarm rates and high detection

probability. However, they cannot capture waveform variations and a degra-

dation in performance occurs with increasing change in waveform character,

resulting in fewer detections. The use of multiplet groups in subspace detec-

tion increases processing efficiency and speed relative to the standard matched
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filter, while increasing sensitivity to waveform compared to utilizing different

waveform groups at once. The STA/LTA trigger’s insensitivity to waveform

allows for more capturing of signals, but at the cost of an increased number

of false alarms if a relaxed detection threshold is used. Unlike the template

based detectors, its detection ability is heavily influenced by the noise levels

present in the data. The use of several subspace detectors has been shown to

increase event detection capabilities without incurring heavy processing costs

at reasonable false alarm rates.
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Chapter 6

Microseismic imaging of fracture

complexity in a tight sand

reservoir

6.1 Introduction

The double difference algorithm is an efficient technique for collapsing diffuse

catalog locations into sharp images of seismicity and outlining the narrow re-

gion of faults (Waldhauser and Ellsworth, 2000). The use of catalog and cross-

correlation data in a combined system of equations allows for simultaneous

relocations between multiplet groups and uncorrelated events in a robust man-

ner. However, the system of equations to be solved can become substantially

large for numerous events which increases processing times, and may become

difficult to solve if the system is ill-conditioned. The master event technique on

the other hand offers the advantage of faster processing times, but the signal-

to-noise ratio of the selected master event and its location relative to the events

to be relocated place constraints on its accuracy (Stoddard and Woods, 1990;

Bouchaala et al., 2013; Jones et al., 2008). A drawback to this technique lies in

the use of a single event in the relocation technique, which is less robust than

using all event pairs.
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The subspace detector offers the potential for precise detection of events of

interest at low false alarm rates, and can increase the number of events related

to specific sources via multiplet groups. Additionally, the 1st singular vector

obtained from application of singular value decomposition (SVD) to a group of

very similar events is assumed to represent their general hypocenter character-

istics, and its high signal-to-noise ratio offers the potential for more accurate

relative event locations.

In this work, the ability of the subspace detector to simultaneously improve

event detection and location capabilities is demonstrated on microseismic data

from treatment of an unconventional tight sand reservoir, which occurred over

a two day period in the Hoadley field, Alberta. A total of 506 events were

detected and separated into multiplet groups based on waveform similarity. Six

multiplet groups from different periods, spanning the entire treatment were

selected for analysis. First, the methodology for detection and location of

the microseismic events is outlined. Next, absolute and relative locations are

obtained for these events, and their accuracy compared. Finally, the seismic

images obtained will be analyzed and discussed.

6.2 Methodology

6.2.1 Pre-processing

The dataset analyzed comes from the Hoadley field, which is described in more

detail in chapter 5 (figure 5.1). The processing steps described in section 5.3.1

were applied to the data. A trapezoidal bandpass filter with corner frequencies

[20 40 145 160] Hz was applied to the data to suppress as much noise as possible.

A notch filter was also applied to remove 60Hz frequencies corresponding to

possible power lines in the area. Next, an STA/LTA detector was applied

to all 7 hours of data to obtain templates for use in the subspace detector.

STA and LTA windows were selected to be 0.06s and 0.15s respectively, and

a conservative threshold value τSL of 10 was used to declare a detection at a

receiver. 8 out of 12 receivers were also required to trigger before a global

114



detection was declared to ensure good quality detections. After application of

the detection routine and data screening, a total of 506 templates were selected

for analysis.

6.2.2 Multiplet analysis

In this study, multiplet groups were defined as groups for which the average

cross-correlation coefficients is ≥ 0.8 i.e. every member of a group must have

a correlation coefficient greater or equal to this value with at least one other

member of the group. Starting 50ms before the P-wave arrival time estimates, a

500ms window encompassing both P- and S-waves was used to extract waveform

data before calculating the peak correlation coefficient value between event

pairs. This process is described in more detail in section 5.3.3. A total of 201

multiplet groups were formed, 35 of which contained multiple events. In this

study, 6 multiplet groups were selected for analysis. The events contained in

these groups spanned the entire treatment period and are shown in table 6.1.

Multiplet

group

Number

of events

1 6

2 7

3 30

4 77

5 6

6 15

Table 6.1: Number of events contained within the multiplet groups.

6.2.3 Subspace detection

With the selected multiplet groups, the events were multiplexed and aligned

in time using the iterative stacking procedure of (De Meersman et al., 2009).

Starting 50ms before the P-wave arrival time estimates at each receiver, 330ms
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data windows encompassing the aligned multiplexed P- and S-waves were ex-

tracted for use in construction of the signal subspace for each group. The

matrix of aligned events was then decomposed into three unitary matrices via

a singular value decomposition (SVD) (eq 2.16), and an orthonormal represen-

tation of the aligned events U was obtained from the matrix of left singular

values. The subspace dimension of representation d was then determined by

applying eq 2.19 to the aligned waveforms. Figure 6.1 shows an energy capture

curve for a multiplet group at a receiver.
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Figure 6.1: Average energy capture as a function of subspace dimension of
representation d for multiplet group 4. The selected dimension of representation
is highlighted by red circle.

Based on the curves and visual inspection of the singular vectors, dimensions

of representation were chosen for each multiplet group. Finally, the detection

threshold for the subspace detector γ was set to 0.4 to limit bad quality events.

In this study, usable events were defined as events that had P- and S-waves

which were distinct from noise.

6.2.4 Absolute data

In order to obtain hypocenter estimates for the microseismic events, arrival

time and polarization estimates were required. However, noisy conditions make

arrival time picking more difficult, and can also have an adverse effect on po-
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larization estimates. The left singular vectors are assumed to represent higher

signal-to-noise ratio generalized descriptions of the detected waveforms. In this

study, the 1st singular vector was used to obtain initial arrival time estimates

for the child events. The process involved can be outlined in a series of steps:

1. The singular vector representation was obtained at each receiver using

the methodology described in sections 4.2.1.

2. Arrival time estimates were then obtained for this vector at each re-

ceiver. Since this vector is our assumed master event, the estimated arrival

time picks at each receiver must be as accurate as possible to minimize errors

in the absolute location.

3. 75ms data windows around the initial arrival time estimates for both

the P and S-wave on the singular vectors were then extracted. For each event,

a sample-by-sample correlation (Eq. 2.25) was applied to the data stream using

the P- and S-waves from the singular vector. This operation is applied starting

around the initial time pick estimate for the child event at each receiver. The

position with the maximum correlation coefficient is selected as the arrival

time pick for that receiver. Due to poor data quality, a minimum correlation

coefficient of 0.7 was required to register an arrival time pick at a receiver.

4. Receivers which did not meet this minimum correlation requirement

were not assigned any time picks. After the initial time picks were obtained,

the median of all the nonzero time picks was calculated and the AIC function

(eq 3.8) was computed using a 12.5ms data window on either side of the median

to obtain arrival time picks on receivers with no initial time picks (Zhang et al.,

2003).

5. After obtaining arrival time estimates at all receivers, a new median

time pick was computed, and the AIC process was repeated again on receivers

with arrival time estimates greater than 2.5 times the standard deviation of

the new picks. The picks were then manually adjusted if necessary.

6. P-wave polarizations were obtained using the final arrival time picks.

Eq. 3.9 and 3.12 were applied to a 50ms data window beginning 12.5ms before

the P-wave arrival time picks to estimate their back-azimuth.
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6.2.5 Differential data

The presence of arrival time inconsistencies in the data can have negative effects

on the quality of the event locations since random errors in arrival time esti-

mates or noisy back-azimuth estimates translate to location uncertainties. The

high degree of similarity between similar events offers the potential for obtain-

ing high precision relative times using cross-correlation. The relative times can

help minimize common errors from both the velocity model and travel times

since the events are assumed to be closely spaced and path errors cancel out.

The small separation distances also imply common errors in the back-azimuth

errors which could be minimized by using the relative polarization estimates.

A procedure for estimating both differential travel times and back-azimuths

between the 1st singular vector and child events is introduced which does not

involve computing covariance matrices. The steps are as follows:

1. Extract a time window around both the singular vector and child

events for both phases. We utilized a 50ms window around both P- and S-

waves. For both phases, the window began 10ms before the estimated arrival

time estimates.

2. Next, the windowed waveforms are multiplexed following the conven-

tion of eq 2.3 and cross-correlation is performed between the multiplexed child

events and singular vectors.

3. The maximum correlation value is obtained and its corresponding

lag is applied to align the phases. This lag is divided by three to account for

multiplexing.

4. After alignment, the relative azimuth between the child events and

singular vector is analytically estimated using the horizontal components of

both signals. This procedure is described in more detail in Appendix B.

A master event was also selected from each cluster, and the above steps

were applied to obtain differential data for master event relocation.
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6.2.6 Event location

A calibrated 1D velocity model was provided for this dataset and is shown in

figure 6.2. In this work, a grid search approach was used to determine initial

absolute event locations. The grid volume was defined as a 2000m × 2000m ×
280m cube in x, y and z respectively, with a 10m spacing between grid nodes,

and it covered the area of interest. Hypocenter locations for the child events

and 1st singular vector were then obtained by minimizing the squared difference

between observed and predicted arrival times and azimuths using Eq. 3.18.

Figure 6.2: Schematic of the velocity model used to compute hypocenter loca-
tions. Geophones at their respective depths are indicated by black dots. For-
mation boundaries are also shown. Treatment occurred within the Glauconite
formation around a depth of 1890m. Taken from (Eaton et al., 2014).

With the hypocenter locations, travel times were predicted to the receiver

stations and subtracted from the arrival times to get origin time estimates.

These were then removed from the arrival times to obtain the observed travel

times. The child events were then relocated relative to the singular vector

hypocenter. Only the differential data were used as observables in the relocation

scheme i.e the cross-correlation derived lags and relative azimuths. An event
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from each cluster was chosen as a master event and used in a master event

relocation procedure, and the results were compared to those from subspace

relocation.

6.3 Results

6.3.1 Detections

A total of 365 events were obtained by the 6 subspace detectors. The events

spanned all 7 hours of treatment, having the greatest concentration of events in

the early stages. Due to the poor horizontal constraints of the acquisition ge-

ometry and high noise levels, only events with reasonably clear P-wave arrivals

were selected for further processing. Events contaminated by high amplitude

noise were also excluded from the study. Screening of the data resulted in 296

events left for analysis. The dimensions of representation, multiplet size and

number of detected events made by the groups are shown in table 6.2

Multiplet Number of Dimension of Detected

group events representation events in cluster

1 6 2 30

2 7 2 12

3 30 3 76

4 77 3 134

5 6 2 10

6 15 2 34

Table 6.2: Dimension of representation and number of detected events in each
cluster.

6.3.2 Hypocenter locations

With the arrival time and polarization estimates, the absolute locations of the

events and singular vector were resolved by minimizing the squared difference

between the observed and predicted arrival times and azimuths using eq 3.18,

120



based on the 1D velocity model. Next, using the differential data, the events

were relocated using subspace relocation, using the absolute locations of the

singular vector obtained from the grid search. These locations are shown in

figure 6.3.
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Figure 6.3: Event locations shown as 2D illustrations. Receiver array shown as
black triangles while treatment well shown as solid black line. The events are
highlighted as red blocks. Column 1 : Absolute locations. Column 2 : Subspace
relocations.
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The seismic image obtained from the grid search was fairly blocky, as most

events appeared in narrow bands, especially in depth. This is a consequence of

the grid spacing used to define the grid. If the average model P-wave velocity

of 3643m/s is considered, then a minimum time difference δt of 2.7ms between

events will result in a distance change equal to the selected grid spacing of

10m. Time differences lower than this will all locate on the closest grid point.

Using a grid spacing of 5m reduces δt to 1.37ms which would allow for better

resolution of location differences, but increases the grid size by a factor of ≈
8, which is computationally expensive in terms of speed and processing costs.

After relocation, the majority of the events have been pulled closer to each

other, with more defined strike and dip directions observed in the seismic im-

age. Additionally, the events have been separated into more distinct bands in

the horizontal plane, suggesting the existence of multiple sub-structures within

the larger structure. However, some events were pushed further away and con-

stituted outliers in the relocation procedure. Overall, more detail was evident

in the seismic image.
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6.3.3 Quality of the absolute data

Figure 6.4 shows arrival time picks on some singular vectors and events from

their corresponding cluster.

(a) 1st left singular vector (b) Child event

(c) 1st left singular vector (d) Child event

Figure 6.4: 1st left singular vector representation and child events from two
clusters. (a): 1st left singular vector representation for cluster 4. (b): Child
event from cluster 4. (c): 1st left singular vector representation for cluster 6.
(d): Child event from cluster 6. P and S-phase arrival time picks are shown as
red and blue dots respectively.

Visually, the singular vectors display high similarity to their respective child

events in terms of the waveform character and time moveout across the receiver

array. The P-wave and S-waves are also very evident relative to the noise on

this signal. The use of the singular vector to estimate the arrival times served

as a guide in terms of identifying the phase arrivals in the data, especially in
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cases where the noise levels made it difficult to identify the signal onset. The

success of the relative location procedure is very dependent on the accuracy of

the absolute location of the chosen master event for both subspace and master

event relocation. The more accurate the master event location, the closer the

events are pulled to their true positions for highly similar events. Figure 6.5

shows the positions of the singular events and the selected master events from

each cluster.
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Figure 6.5: Absolute locations from grid search shown as 2D illustrations.
Receiver array shown as black triangles while treatment well shown as solid
black line. The colours correspond to the different clusters and are denoted by:
Red (1), Magenta (2), Green (3), Blue (4), Orange (5) and Cyan (6). Column
1 : Locations of the detected events. Column 2 : Locations of the singular
vectors (crosses) and master events (circles).

Both the singular vectors and master events located within the vicinity of

their respective clusters, which implies realistic relative locations. The validity

of the absolute locations were further examined by observing the event locations

relative to the stages during which they occurred. Figure 6.6 shows the absolute

locations of the events groups based on the stage at which they occurred.
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Figure 6.6: Absolute locations of the detected events grouped by the treatment
stage during which they occurred. Receiver array shown as black triangles
while treatment well shown as solid black line. The injection points are shown
as stars. The colours correspond to the different stages and are denoted by:
Red (1), Magenta (4), Green (5), Orange (8) and Purple (post pumping). Only
stages containing more than 5 events are shown

At each stage, the events appear to locate reasonably close to the stage spe-

cific injection point which suggests the absolute locations are realistic. However,
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the most important determinant of absolute location accuracy is how reliable

the predicted travel times are in terms of explaining the waveform. Most of

the master events were close to the respective singular vector for their clusters.

It is therefore reasonable to use the results of the master event relocation to

validate the subspace relocation results. The master events were picked based

on a good signal to noise ratio, as well as the reliability of their predicted travel

times. Figure 6.7 shows master events and child events from clusters 1 and 3

with their observed and predicted travel times.

(a) Master event (b) Child event

(c) Master event (d) Child event

Figure 6.7: Master event and child events from two clusters, with their observed
and predicted arrival times. (a): Master event (cluster 1). (b) Child event
(cluster 1). (c): Master event (cluster 3). (d): Child event (cluster 3). The
red and blue dots correspond to the picked observed P-wave and S-wave arrival
times, while the green and magenta dots denote the predicted P-wave and
S-wave arrival times.
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The signal-to-noise ratio of the master events were higher relative to the

child events and this allowed for more precise picking of the arrival times, with

the lower noise content having less of an influence on the polarization estimates

relative to the child events. The high signal-to-noise ratio is especially impor-

tant since cross-correlation lags are utilized in the relocation procedure, and

higher correlations correspond to higher quality lag estimates. Furthermore,

the predicted arrival times were close to the expected onset times on the mas-

ter, which is a good indicator of accuracy since it means the predicted location

explains the event reasonably well. This is also suggests that the grid spacing

used in the location procedure was reasonable.

6.3.4 Quality of the differential data

The inconsistencies in the arrival time picks may be minimized by using cross-

correlation. Figure 6.8 shows waveform data for the 1st singular vector from

cluster 4 and a child event at a common receiver.

0 0.01 0.02 0.03 0.04 0.05

S
in

g
u

la
r 

ve
ct

o
r

0 0.01 0.02 0.03 0.04 0.05
Time (s)

C
h

ild
 e

ve
n

t

0 0.01 0.02 0.03 0.04 0.05

S
in

g
u

la
r 

ve
ct

o
r

0 0.01 0.02 0.03 0.04 0.05
Time (s)

C
h

ild
 e

ve
n

t

Figure 6.8: Windowed P-wave from a microseismic event and 1st left singular
vector from cluster 4 recorded at a common receiver. Inaccuracy in arrival
time picking resulted in a misalignment between both waveforms. Left column:
P-waves before alignment. Right column: P-waves after alignment. The 1st left
singular is shown as the top figure in both columns while the child event is the
bottom figure. The red box highlights a section of the waveforms to illustrate
the lag correction.

The high similarity of these two events suggests their corresponding arrival

time picks should be in the same position, a fact that is addressed by cross-

128



correlation. The relative arrival time inconsistencies between both waveforms is

corrected using the peak time lag from the cross-correlation function. This op-

eration helps minimize the effects of random errors in the arrival time estimates.

Figure 6.9 shows the resulting time lags after cross-correlation correction using

the singular vectors.

Figure 6.9: Histogram of lag corrections between the events and their first
singular vector. Top panel : P-wave correlations. Bottom panel : S-wave corre-
lations.

The distribution suggests most of the possible picking errors fall within 10

msecs, with some extending as far as 40 msecs as seen on the P-wave lags. If

the average P-wave velocity of 3643m/s is considered, this translates to location

errors as large ≈ 150m from the travel time data alone. With the inclusion of

noisy back-azimuth estimates, this error estimate increase.

The horizontal locations of the microseismic events are mainly constrained

by back-azimuth estimates for a single vertical borehole, and these parame-

ters are highly sensitive to noise. Although taking the difference of the back-
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azimuths derived using eqs. 3.10 and 3.12 can minimize common error due to

similar ray paths, a large degree of uncertainty may remain since the absolute

back-azimuths are estimated independently, and noise effects on the estimates

may not be similar. Additionally, the computation of covariance matrices for

individual events at each receiver can increase processing time. Obtaining rel-

ative estimates between the singular vectors and child events analytically may

be advantageous in terms of speed and consistency. We compared the relative

azimuths obtained using the difference between the absolute back-azimuths to

those analytically determined using cross correlation. Highly similar waveforms

are assumed to have small separation distances suggesting their angular differ-

ences should also be relatively small. We therefore used that assumption as a

quality control measure by observing how the relative azimuths varied with the

correlation coefficients between the events and singular vector. The results are

shown in figure 6.10.
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(a) Difference of absolute azimuths
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(b) Cross-correlation derived relative az-
imuths

Figure 6.10: Relative back-azimuths between the events and their first singular
vector as a function of the correlation coefficient across all receivers. a) Esti-
mates obtained by differencing absolute back-azimuths. b) Estimates obtained
analytically through cross-correlation.

There is greater uncertainty in the relative azimuths obtained from the

difference of two independently estimated absolute azimuths compared to an-

alytically determined estimates. In fact, for correlation coefficients of 0.8 and

greater, the analytically determined relative azimuths do not exceed 300 as

shown in figure 6.11, compared to the differencing approach which had differ-

ences as large as 1800 at those correlation levels.

131



-30 -20 -10 0 10 20 30
Relative azimuth ( )

0.8

0.85

0.9

0.95

1

C
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
t

Figure 6.11: Relative azimuths obtained analytically for events with correla-
tions of 0.8 and greater across all receivers. The variance in the relative azimuth
estimates decreases with increasing values of the correlation coefficients. Most
of the differential azimuths lie around 100.

By aligning the waveforms using cross-correlation, the signal-to-noise ratio

is maximized resulting in more accurately determined relative back-azimuths.

With the differential data, both subspace relocation and master event relocation

were applied to the events. The resulting locations from subspace relocation

and master event relocation are shown in figure 6.12.

132



0 100 200 300 400 500 600 700 800
Easting (m)

-800

-600

-400

-200

0

200

400

600

N
o

rt
h

in
g

 (
m

)

0 100 200 300 400 500 600 700 800
Easting (m)

-800

-600

-400

-200

0

200

400

600

N
o

rt
h

in
g

 (
m

)

0 100 200 300 400 500 600 700 800
Easting (m)

1700

1750

1800

1850

1900

1950

2000

D
ep

th
 (

m
)

0 100 200 300 400 500 600 700 800
Easting (m)

1700

1750

1800

1850

1900

1950

2000
D

ep
th

 (
m

)

-800 -600 -400 -200 0 200 400 600
Northing (m)

1700

1750

1800

1850

1900

1950

2000

D
ep

th
 (

m
)

-800 -600 -400 -200 0 200 400 600
Northing (m)

1700

1750

1800

1850

1900

1950

2000

D
ep

th
 (

m
)

Figure 6.12: Relocated events shown as 2D illustrations. Receiver array shown
as black triangles while treatment well shown as solid black line. The colours
correspond to the different event clusters and are denoted by: Red (1), Magenta
(2), Green (3), Blue (4), Orange (5) and Cyan (6). Column 1 : Subspace
relocation Column 2 : Master event relocation.

In both relocation procedures the resulting seismic images are very similar,

with the absolute locations of the clusters locating close to their respective

master event positions. However, tighter clustering of the events is evident

in the subspace relocation results, which led to more defined orientation of

fault structures. The strike directions especially are better defined in subspace

relocation compared to the master event results. The events were also plotted
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by stage after relocation and are shown in figure 6.13.
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Figure 6.13: Locations of the detected events grouped by the treatment stage
during which they occurred after subspace relocation. Receiver array shown as
black triangles while treatment well shown as solid black line. The injection
points are shown as stars. The colours correspond to the different stages and
are denoted by: Red (1), Magenta (4), Green (5), Orange (8) and Purple (post
pumping). Only stages containing more than 5 events are shown

The majority of the different clusters appear to be constrained to the stages
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during which they occurred. However, some events from the same stages occur

at different locations. This is especially evident in stage 5 (green) which has a

few events occurring around the same location as stage 4 (magenta). A small

number events from stage 8 (orange) also occur around the location of the stage

4 (magenta) events.

6.4 Discussion

The use of the 6 multiplet groups containing a total of 141 events resulted in

a three-fold increase in the number of events. However, poor azimuthal cover-

age of the acquisition geometry, as well as high amplitude noise restricted the

number of events available for processing, especially waveforms with no evident

P-wave energy. Nevertheless, the events left for processing amounted to a two-

fold increase in the event catalogue, which allows for increased resolution of the

seismic image. The distribution of the detected microseismic events from the

absolute locations suggest the presence of two main fault structures at different

locations across the treatment well. At each treatment stage, the microseismic

events migrated up the well bore as seen in figure 6.6. However, the resolution

of the seismic image is poor from the grid search locations. Only one of the

structures had a well defined strike, and very poor resolution on the dip of the

structures. The use of wider grid spacing means events which are closer than

the limits of the grid locate on the same position in space. This did not appear

to have a significant negative impact on the absolute locations as the predicted

travel times were fairly close to the observed times. Additionally, the locations

of the events were consistent with the location of the stage specific injection

points.

After relocation, tighter clustering of the events was evident, especially in

the horizontal direction. In both subspace relocation and master event reloca-

tion, the events were pulled closer to their respective masters. Concentrated

regions of seismicity were more evident in the relocated image and details on

the fault orientations were sharper. The detected events which occurred during

the early stages of treatment were aligned in the SW-NE directions, while the
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microseismic events which occurred towards the end of the treatment and post

pumping were aligned in the opposite direction. Eaton et al. (2014) interpreted

the misaligned clusters to represent reactivation of pre-existing fractures, and

the SW-NE direction to correspond to the present-day maximum horizontal

stress direction. The variability in the fracture orientations was interpreted to

be due to variations in reservoir facies within the barrier bar depositional envi-

ronment. The occurrence of events from the same stage at different locations

suggest more than one multiplet group was active in some stages. In figure

6.13, some events from stage 5 occur around the location of stage 4 events. A

few stage 8 events also occurred around the vicinity of stage 4 events. This

suggests that the cluster occurring during stage 4 may have been reactivated

several times during the course of the treatment. This cluster also had the

most events detected by the subspace detector, which may imply it was the

most dominant source mechanisms present during the treatment.

To verify the accuracy of the subspace relocation procedure, travel times

from the new locations obtained via subspace relocation were calculated to

the receiver stations and compared to the original travel times. The cross-

correlation derived lags were added to the observed travel times to see how

consistent they were with the predictions. Figure 6.14 shows the observed P-

wave travel times from clusters 4 and 5, as well as their corrected travel times

using cross correlation lags.
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(b) Observed travel times + lag corrections
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(d) Observed travel times + lag corrections

Figure 6.14: Observed P-wave travel times and the lag corrected P-wave ob-
served times. Top row : Cluster 4. Bottom row : Cluster 5.

In both cases, the added lags have resulted in a slight upwards shifts in the

observed travel times. Figure 6.15 shows the resulting predicted travel times

for both the grid search locations and relocations.
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Figure 6.15: Predicted travel times for clusters 4 and 5. Top row : Cluster 4.
Bottom row : Cluster 5.

The new predicted times have also been shifted upwards relative to the

initial predictions, which highlight the consistency between the lag corrected

observed times and new locations obtained via relocation. To further validate

the reliability of the relative locations, the predicted travel times were compared

to the original arrival time estimates and predictions from the grid search.

Figure 6.16 shows events from three clusters with the predicted travel times

from the grid search and after subspace relocation.
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(a) Grid (b) Subspace relocation

(c) Grid (d) Subspace relocation

(e) Grid (f) Subspace relocation

Figure 6.16: Events from clusters 3 (top panel), 4 (middle panel) and 6 (bottom
panel), with their observed and predicted arrival times. The red and blue dots
correspond to the picked observed P-wave and S-wave arrival times, while the
green and magenta dots denote the predicted P-wave and S-wave arrival times.
left column: Grid search. Right column: Subspace relocation.
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The predicted travel times from the relocated positions appear to be ex-

plaining the events pretty well, and lie reasonably close to the onset time po-

sition of the waveforms on each receiver. A measure of the accuracy of the

relative locations can be obtained by looking at the separation distances be-

tween events before and after relocation. For a group of highly similar events,

the expectation would be for similar events to locate close to each other. Figure

6.17 shows the inter-event distances between events from the grid search loca-

tions, subspace relocation and master event relocation as a function of their

correlation coefficients, using a 330ms window which encompassed both P- and

S-waves.
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(a) Grid search
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(b) Master event relocation
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(c) Subspace relocation

Figure 6.17: Separation distances as a function of correlation coefficient be-
tween events. The correlation level at which events are considered similar is
shown as dashed red line and corresponds to 0.8

The initial grid search locations had separation distances as large as 350m
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for highly similar events. After relocation, this dropped down to about 250m

for master event relocation and about 150m for subspace relocation. In the re-

located images, although a large majority of events from specific clusters were

pulled together, some outliers were still evident. To understand these results,

the distribution of correlation coefficients is examined for both the master and

singular vectors. The quality of both the arrival time lag corrections and es-

timated relative back-azimuths are dependent on the correlation coefficients,

and the distribution is shown in figures 6.18

(a) First singular vector

(b) Master event

Figure 6.18: Histogram of correlation coefficients across all the receivers be-
tween events and a: 1st left singular vectors b: Master events. In both figures,
the top panel shows the P-wave correlations while the bottom panel shows the
S-wave correlations.
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The distribution of correlation coefficients between the events and singular

vectors is more right skewed compared to the master events, which suggests the

singular vectors had higher signal-to-noise ratios. This in turn implies higher

quality lag corrections and thus more reliable relocations. However, there is

a prevalence of low correlation coefficients especially on the P-wave data in

this data set, which may have introduced errors in the relocation procedure

via less accurate lag estimates. Additionally, figure 6.11 reveals that even for

high correlation coefficients, relative azimuths were as high as 25o, which may

have added additional error in the relative distances. In this experiment the

detection window included both P- and S-waves, which may have allowed for

one phase to dominant the detection procedure.

Nevertheless, the use of differential measurements allowed for more precise

estimation of relative distances compared to absolute data. In this study, the

lags were obtained between the multiplexed waveforms which implies they can-

not be more precise than the sampling interval of the data. This limitation

may be remedied by interpolation to increase the sampling rate, which allows

for more precise lag corrections. The quality of the lags is also dependent on

the quality of the correlation coefficients. Due to the restricted nature of this

acquisition geometry, the P-wave data had to be included and this may have

reduced the resolution of the relative locations. More accurate results will also

be obtained with an increase in the number of recording stations as they pro-

vide additional constraints and may increase the amount of good quality data

in the system.
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6.5 Summary

Waveform similarity is useful for detecting similar events at low false alarm

rates, as well as relocating microseismic events which originate in the same

source region. The subspace detector has been shown to be a useful tool for

simultaneous detection and relocation of microseismic events. The use of low-

rank approximations for multiplet groups substantially increases catalog in-

formation during detection, and the improvements in the signal-to-noise ratio

offered by the singular vectors was shown to minimize location uncertainty

compared to regular grid search locations and the conventional master event

relocation method.
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Chapter 7

Conclusions

Microseismic monitoring is a useful tool in delineating fracture networks and

highlighting stress fields. It has been widely applied in real-time imaging dur-

ing hydraulic fracturing of unconventional hydrocarbon reservoirs, as well as in

underground mining operations where it can reveal excavation damaged zones.

The geometry of the fracture networks are outlined by the locations of the

microseismic earthquakes and allows for interpretation of subsurface processes

occurring. The level of detail possible from such an analysis is directly related

to the volume of microseismic events since larger numbers reveal more infor-

mation. Additionally, accurate locations provide sharper images of seismic and

can allow for more precise identification of zones of interest.

Our objective in this thesis was to examine the subspace detector as a

tool for enhancing detection capabilities of microseismic events and improving

their hypocenter location. This objective was met with major challenges in the

form of low signal-to-noise ratio of the microseismic data, restricted acquisi-

tion geometry with poor receiver coverage and large uncertainties in both the

estimated arrival times of the seismic phases and back-azimuths of the events

from their source to the receiver locations.

The subspace technique was successfully applied to microseismic data from

a hydraulic fracturing treatment in the Hoadley gas field of central Alberta.

The steps involved in constructing a subspace detector were described and we
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demonstrated the ability of the detector to utilize either groups of highly similar

events as templates or entire waveform libraries. Through synthetic tests, the

left singular vectors were shown to have higher signal-to-noise ratios relative

to the templates used in its construction. We then compared this technique

to some standard detection techniques using real data and showed its ability

to improve the number of detections relative to these techniques at reasonably

low false alarm rates while saving on computational costs.

A novel approach to event location was also introduced which involved using

the left singular vectors of the subspace detector as master events in a reloca-

tion procedure.The left singular vectors of the subspace detector describe the

characteristics of the templates used in the construction of the detector and

were assumed to also contain information on the hypocentral properties, a fact

which we explored. We examined how the templates used in the construction of

the subspace detector influenced the hypocenter location of the singular vector

and discovered hypocentral information on the templates used in the subspace

design were mainly contained in the 1st singular vector. This phenomenon was

seen to be limited to only templates with a high degree of similarity between

them. We then described how this could be used in a master event relocation

procedure and outlined the steps involved. This methodology was validated

by performing a location of the singular vector via synthetic test, and they

were foud to be close to their design set events. A comparison to the standard

double difference algorithm and the master event relocation technique via syn-

thetic examples showed fairly similar results in terms of the relative location

accuracy with lower processing costs.

Application of this master event relocation technique independently for mul-

tiplet groups significantly reduced errors in the relative event locations by col-

lapsing the clusters into more defined zones of seismicity. We outlined how

accurate absolute arrival times, relative travel times and back-azimuths could

be simultaneously obtained using cross-correlation as well as the waveform

signal directly without the need for a covariance matrix. Additionally, we

demonstrated the usefulness of weighting schemes in the inversion for our data
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acquisition set up which was fairly restricted and corrupted by noise.

The travel time residuals, histograms of time-lags and correlations as well

as cross-plots of event correlations versus separation distances were used as

quality control measures to validate the accuracy of the event locations. The

increased detail in the fault orientation after relocation allowed for some in-

ferences regarding the temporal pattern of the fault orientation during the

treatment.

7.1 Suggested future research

1. The data utilized in this work was obtained from a single vertical

borehole which had poor data constraints in terms of its azimuthal coverage,

limited number of receivers and high noise levels. In the case where the re-

ceivers provide good azimuthal coverage, only a single phase may be used to

limit the influence of velocity uncertainty on the data with the inclusion of

back-azimuths which tend to contain a lot of errors.

2. The double difference relocations have more accurate absolute loca-

tions compared to the master event since it utilizes all event pairs as opposed

to a single link with the master. However, the left singular vectors have higher

signal-to-noise ratios and describe the dominant hypocentral characteristics of

its templates if there is high similarity of the events. It may be possible to

include the left singular vectors as additional events in the double difference

relocation algorithm to improve the linkage between the events and increase

information in the system.
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Bouchaala, F., V. Vavryčuk, and T. Fischer, 2013, Accuracy of the master-event

and double-difference locations: synthetic tests and application to seismicity

in West Bohemia, Czech Republic: Journal of seismology, 17, 841–859.
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Got, J.-L., J. Fréchet, and F. W. Klein, 1994, Deep fault plane geometry in-

ferred from multiplet relative relocation beneath the south flank of Kilauea:

Journal of Geophysical Research: Solid Earth, 99, 15375–15386.

Han, L., 2010, Microseismic monitoring and hypocenter location: PhD thesis,

University of Calgary.

Hansen, S. M., and B. Schmandt, 2015, Automated detection and location of

microseismicity at Mount St. Helens with a large-N geophone array: Geo-

physical Research Letters, 42, 7390–7397.

Harris, D. B., 2006, Subspace detectors: theory: Technical report, Lawrence

Livermore National Lab.(LLNL), Livermore, CA (United States).

Havskov, J., and G. Alguacil, 2004, Instrumentation in earthquake seismology.

Havskov, J., and L. Ottemöller, 2010, in Routine data processing in earthquake

seismology: Springer, 101–149.

Hayes, B., J. Christopher, L. Rosenthal, G. Los, B. McKercher, D. Minken, Y.

Tremblay, J. Fennell, and D. Smith, 1994, Cretaceous Mannville Group of

149



the western Canada sedimentary basin, in Geological Atlas of the Western

Canada sedimentary basin: Canadian Society of Petroleum Geologists and

Alberta Research Council . . . , 4, 317–334.

Herrmann, R. B., S.-K. Park, and C.-Y. Wang, 1981, The Denver earthquakes

of 1967-1968: Bulletin of the Seismological Society of America, 71, 731–745.

Husen, S., and J. Hardebeck, 2011, Understanding seismicity catalogs and their

problems: Community Online Resource for Statistical Seismicity Analysis.

Jin, Y., and B. Friedlander, 2005, A CFAR adaptive subspace detector for

second-order Gaussian signals: IEEE Transactions on Signal Processing, 53,

871–884.

Jones, G., S. Nippress, A. Rietbrock, and J. Reyes-Montes, 2008, Accurate

location of synthetic acoustic emissions and location sensitivity to relocation

methods, velocity perturbations, and seismic anisotropy: Pure and Applied

Geophysics, 165, 235–254.

Jurkevics, A., 1988, Polarization analysis of three-component array data: Bul-

letin of the seismological society of America, 78, 1725–1743.

Kirsteins, I. P., and D. W. Tufts, 1994, Adaptive detection using low rank

approximation to a data matrix: IEEE Transactions on Aerospace and Elec-

tronic Systems, 30, 55–67.

Lee, W. H. K., W. H. K. Lee, X. Lee, and S. Stewart, 1981, Principles and

applications of microearthquake networks: Academic press, 2.

Leonard, M., and B. Kennett, 1999, Multi-component autoregressive techniques

for the analysis of seismograms: Physics of the Earth and Planetary Interiors,

113, 247–263.

Li, J., H. Zhang, W. L. Rodi, and M. N. Toksoz, 2013, Joint microseismic

location and anisotropic tomography using differential arrival times and dif-

ferential backazimuths: Geophysical Journal International, 195, 1917–1931.

Lomax, A., A. Michelini, A. Curtis, et al., 2007, Earthquake location, direct,

global-search, in Encyclopedia of Complexity and System Science: Springer.

Mendel, J. M., 1991, Tutorial on higher-order statistics (spectra) in signal

processing and system theory: Theoretical results and some applications:

Proceedings of the IEEE, 79, 278–305.

Menke, W., 1999, Using waveform similarity to constrain earthquake locations:

150



Bulletin of the Seismological Society of America, 89, 1143–1146.

Molyneux, J. B., and D. R. Schmitt, 1999, First-break timing: Arrival onset

times by direct correlation: Geophysics, 64, 1492–1501.

Montalbetti, J. F., and E. R. Kanasewich, 1970, Enhancement of teleseismic

body phases with a polarization filter: Geophysical Journal International,

21, 119–129.

Newbert, J., M. Trick, et al., 1987, A systematic deliverability analysis for

the Hoadley gas condensate field: Presented at the SPE Annual Technical

Conference and Exhibition, Society of Petroleum Engineers.

Nguyen, D., R. Brown, and D. Lawton, 1989, Polarization filter for multi-

component seismic data: CREWES Research Report, 7, 93.

Oprsal, I., and L. Eisner, 2014, Cross-correlation—An objective tool to indicate

induced seismicity: Geophysical Journal International, 196, 1536–1543.

Oye, V., and M. Roth, 2003, Automated seismic event location for hydrocarbon

reservoirs: Computers & Geosciences, 29, 851–863.

Phillips, W., T. Fairbanks, J. Rutledge, and D. Anderson, 1998, Induced mi-

croearthquake patterns and oil-producing fracture systems in the Austin

chalk: Tectonophysics, 289, 153–169.

Powers, D. M., 2011, Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation.

Reynolds, M. M., S. Thomson, D. J. Quirk, M. B. Dannish, F. Peyman, A.

Hung, et al., 2012, A direct comparison of hydraulic fracture geometry and

well performance between cemented liner and openhole packer completed

horizontal wells in a tight gas reservoir: Presented at the SPE Hydraulic

Fracturing Technology Conference, Society of Petroleum Engineers.

Rutledge, J. T., and W. S. Phillips, 2003, Hydraulic stimulation of natural

fractures as revealed by induced microearthquakes, Carthage Cotton Valley

gas field, east Texas Hydraulic Stimulation of Natural Fractures: Geophysics,

68, 441–452.

Ry, R. V., T. Septyana, S. Widiyantoro, A. Nugraha, and A. Ardjuna, 2017,

Improved location of microseismic events in borehole monitoring by inclu-

sion of particle motion analysis: a case study at a CBM field in Indonesia:

IOP Conference Series: Earth and Environmental Science, IOP Publishing,

151



012025.

Sasaki, Y., et al., 2007, The truth of the F-measure: Teach Tutor mater, 1,

1–5.

Scharf, L. L., and B. Friedlander, 1994, Matched subspace detectors: IEEE

Transactions on signal processing, 42, 2146–2157.

Shearer, P. M., 1997, Improving local earthquake locations using the L1 norm

and waveform cross correlation: Application to the Whittier Narrows, Cal-

ifornia, aftershock sequence: Journal of Geophysical Research: Solid Earth,

102, 8269–8283.

Sleeman, R., and T. Van Eck, 1999, Robust automatic P-phase picking: an

on-line implementation in the analysis of broadband seismogram recordings:

Physics of the earth and planetary interiors, 113, 265–275.
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Appendix A

Description of partial derivatives

In this section, the partial derivatives with respect to the earthquake model

parameters are shown. Eq. 3.2 corresponds to the travel time equation of a

ray from an earthquake i at a given source location (xi,yi,zi) and origin time

τ , to station k. Its partial derivatives with respect to the model parameters

are given by the following equations

∂tik
∂x

=
1

v

(xi − xk)

di
(A.1)

∂tik
∂y

=
1

v

(yi − yk)

di
(A.2)

∂tik
∂z

=
1

v

(zi − zk)

di
(A.3)

∂tik
∂τ

= 1 (A.4)

In the above equations, v can become a function of depth or spatial co-

ordinates depending on the velocity model used, while di corresponds to the

distance between the assumed source location and receiver coordinates. The

back-azimuth of a ray from a source to a receiver location is described by eq.

3.4, and its partial derivatives are given by
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∂θik
∂x

=
(yi − yk)

(xi − xk)2 + (yi − yk)2
(A.5)

∂θik
∂y

= − (xi − xk)

(xi − xk)2 + (yi − yk)2
(A.6)

∂θi

∂z
= 0 (A.7)
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Appendix B

Determination of relative

back-azimuths

This chapter describes how the differential back-azimuths between two events

are analytical calculated, based on the method of Li et al. (2013). The az-

imuthal angles are defined in this work as increasing clockwise from the positive

y-axis, which corresponds to the true north direction. Let w1(t) correspond to

a data vector containing a waveform of interest, beginning on the arrival time

estimate of the phase. If w1(t) has a back-azimuth of θ1 from its source to a

reference receiver, then its north and east components can be given as

wn1(t) = w1(t)cos(θ1) (B.1)

we1(t) = w1(t)sin(θ1) (B.2)

The same expressions can be derived for a waveform w2(t) with a back-

azimuth of θ2

wn2(t) = w2(t)cos(θ2) (B.3)

we2(t) = w2(t)sin(θ2) (B.4)

We can then derive expressions for the differential azimuths in terms of

cosines and sines using double angle identities
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wT
e1
(t)wn2(t) +wT

n1
(t)we2(t) = wT

1 (t)w2(t)[sin(θ1)cos(θ2)− cos(θ1)sin(θ2)]

wT
1 (t)w2(t)[sin(θ1 − θ2)]

(B.5)

wT
n1
(t)wn2(t) +wT

e1
(t)we2(t) = wT

1 (t)w2(t)[cos(θ1)cos(θ2) + sin(θ1)sin(θ2)]

= wT
1 (t)w2(t)[cos(θ1 − θ2)]

(B.6)

The differential azimuth can then be obtained by taking the arc-tangent of

the expression below

tan(θ1−θ2) =
wT

1 (t)w2(t)[sin(θ1 − θ2)]

wT
1 (t)w2(t)[cos(θ1 − θ2)]

=
wT

e1
(t)wn2(t) +wT

n1
(t)we2(t)

wT
n1
(t)wn2(t) +wT

e1
(t)we2(t)

(B.7)

The waveforms in w1(t) and w2(t) should be aligned using waveform cross-

correlation to maximize the signal-to-noise ratio in the dot products and im-

prove the accuracy of the relative azimuth estimates.
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