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Abstract

Present-day advancements in AI, amongst other things, have often been re-

garding improving the accuracy of classification models. One lagging aspect,

however, is justifying the decisions made by those models. Recently, AI re-

searchers are paying more attention to fill this gap, leading to the introduction

of the new field of eXplainable AI (XAI). Model-independent explanations are

one class of explanation methods in XAI that aim at addressing the mentioned

problem using techniques that have no access to the internals of a learned

model.

In this work, we introduce BARBE, a model-independent method that

explains the decisions of any black-box classifier for tabular datasets with

high precision. Moreover, the black-box classifier is not required to provide

any probability score to take advantage of BARBE. Furthermore, BARBE

presents explanations in two alternative forms: 1) the importance score for

salient features, which many methods also benefit from; 2) construction of

rules, which distinguishes BARBE from other methods. Rules are regarded as

a better way to provide explanations as they align better with human intu-

ition. Furthermore, BARBE exploits association rules, a special kind of rule

that takes into consideration the associations between features, helping users

comprehend different underlying causes of a decision.

We also introduce BARBiE, an extension to BARBE that provides inter-

active explanations. This framework allows users to alter the features of an

instance for which the prediction is being explained, and observe how their
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modifications affect the explanation and the class label.
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Part of Section 2.1.2 is from [4], a publication where the author was a major
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is being considered for additional publications.
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Chapter 1

Introduction

1.1 Motivation

Recently, more and more companies are benefiting from Artificial Intelligence

(AI) in their products. As a result, societies are impacted more by intelligent

machines than ever before. The complexity of tasks involving AI varies from

simple ones like route-finding to more sophisticated ones such as self-driving

cars: Google Maps employs AI to suggest the fastest route to its users, while

Tesla Autopilot is replacing humans as the drivers of vehicles. Such advance-

ments, however, started decades ago with the introduction of Expert Systems

(ES), the first applications of AI in real-life problems, after the first AI winter,

a period of reduced interest in AI and funding cuts. Over the years, more

complex intelligent systems were introduced, which differed from ES systems

in various aspects.

1.1.1 Expert Systems

One of the early applications of AI that has been employed both in the research

community and in commercial settings is Expert Systems. Expert Systems

were the first applications of AI in real-life problems at a large scale, where

they benefited corporations and helped them save money. R1 [43], for exam-

ple, helped Digital Equipment Corporations save an estimated $40 million a

year [62].

Liao [39] defines Expert Systems as a decision-making software package

that performs like humans, if not better, in a narrow and specific problem
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area. Any Expert System has two main components: domain knowledge and

an inference engine. The domain knowledge is comprised of some general

knowledge and facts that are provided by the system users. The inference

engine uses a method to make a deduction given the facts and the knowledge

base. An Expert System, once provided with the facts, uses them together

with its knowledge base to make inferences, acts as a consultant in that specific

field, and if needed, can explain the logic behind its advice.

The first Expert System, introduced in 1965, was Dendral [23]. Its purpose

was to help chemists identify unknown organic molecules.

Another Expert System was GATES [8], which was an ES that assigned

airport gates to arriving or departing flights at JFK Airport in New York

City. It used a combination of permissive and conflict rules to assign a gate

to a flight.

Buchanan [9] defines Expert Systems along four dimensions: 1) AI method-

ology: these systems are based on AI and should reason based on some infor-

mation; 2) High Performance: systems should outperform humans or at least

be as good as humans in the task; 3) Flexibility: systems are not algorithms

and have a higher tolerance to changes in both design and run-time; 4) Un-

derstandability: they should be able to explain the rationale behind

reasoning as human experts can.

Early versions of ES met all four of these criteria. For example, GATES

used a constraint satisfaction approach to find the best gate for each flight.

It was also capable of finding the gate for each flight very quickly and as

correctly as human experts could. Users were also able to modify it according

to changes in the weekly flight schedules. Moreover, users could see the rules

used to provide a suggestion for each flight. As can be seen, GATES expert

system satisfied all the requirements of an ES defined by Buchanan [9].

1.1.2 Deep Learning Era

While intelligent systems such as Dendral or GATES were great assistants

to their users, industry and academia introduced some different AI systems

over the years that could handle more sophisticated tasks such as fraud de-
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tection [22], or were capable of outperforming humans in tasks such as games

like Go [66] or poker [51].

These newer systems process more data and also do more computation than

earlier systems, thus outperforming them while also covering more domains.

The knowledge provided to these systems was no longer in the form of

a list of rules but comprised of observations or examples with their desired

output that the system could use to learn a predictive model. Deep Neural

Networks (DNNs) is an example of such sophisticated improvements that, in

recent years, have been helping users solve more complex problems compared

to earlier methods used in systems such as Dendral.

However, despite being able to tackle complex problems even beyond hu-

man capabilities, the new approaches have some shortcomings in other aspects.

1.1.3 A Problem with Recent Systems

One of the main drawbacks in modern systems is the fact that the sophisti-

cated system’s underlying decision-making process is not evident to the users.

In essence, these systems receive some data as input (e.g., images) and in addi-

tion to the class label, they only provide, at most, some probabilities associated

with each class as output. Such systems cannot explain their decisions by any

means to their users. When a judge uses a sophisticated model for bail deci-

sions, they will not be able to understand the reasoning behind the system’s

suggestion, and as we can expect, this has caused problems such as the release

of dangerous criminals [70]. As another example, when a model is used to

recommend a cancer treatment method, neither the patient dealing with can-

cer nor the doctor would trust the system’s suggested treatment unless they

understood on what rationale that suggestion was based. This means, unlike

Dendral, where the system could explain the decision made by providing some

guiding rules used to come up with the final result, many current systems are

not capable of providing such information at all.

Black-box model is the term researchers use to refer to such complex models

to emphasise this vital shortcoming. Consequently, many users choose to stick

with more straightforward, yet more understandable models rather than move
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to more accurate but more complicated systems. This is because they can

explain the justification behind a decision using the simpler models, as that

explanation plays a vital role in their tasks.

Furthermore, laws such as The EU General Data Protection Regulation

(GDPR) [24] have come into effect since 2018. GDPR requires explanations

for some algorithmic decisions. Finally, this need also complies with the main

criteria that were set for Expert systems, one of the early applications of AI.

1.2 Explaining Black-box Systems

As mentioned in the previous section, not only is providing explanations ben-

eficial for the users (For example, in cases such as why a computer made a

specific move in the game of Go so players could learn new moves), but it is

legally mandatory in many cases because of GDPR, or necessary as in medical

domains.

1.2.1 Can we get explanation from black-box models?

To resolve this shortcoming, scientists have recently expanded their research

to find ways to provide explanations (or insights) into how models “reason”

to help humans more confidently accept the decision of a system. These ex-

planations are usually built by modifying and complementing an existing ar-

chitecture. They can vary from an image’s heat-map (showing the effect of

each pixel in the system’s final decision using gradients of different layers of a

DNN [64]) to providing a sentence describing the content of an image [30].

Despite being an excellent tool for explainability, a big issue such “model-

dependent” explainers have is that these systems are only able to explain

a specific architecture; if one slightly modifies the model’s architecture, or

decides to switch to another model for a task, they need a new explainer.

Furthermore, many existing models do not provide explanations off-the-shelf.

Given that state-of-the-art models change on a yearly -if not monthly- basis, we

need different methods that can fill the existing gap and provide explanations

regardless of the architecture of a model.
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1.2.2 Model-agnostic Explanations

To resolve this shortcoming, researchers have begun to focus on explainers

that can theoretically explain any model. This idea means one can run the

explainer on their classifier, whether it is a DNN model based on Long Short

Term Memory (LSTM) [31] or a Support Vector Machine (SVM) that uses a

specific kernel. In other words, one can train different classifiers on the same

dataset while using the same explainer to get insights into each classifier’s

decision. A secondary advantage of such explainers is that they would allow

users to adapt themselves to a specific kind of explanation, as they will not be

using a separate explainer for each different classifier. We will discuss through

this thesis that the way an explanation is framed to the user is a critical part

of understanding the decision-making process of a black-box system.

Local Interpretable Model-agnostic Explanations (LIME) [59] is a recently

published method that claims it can explain any model, regardless of its un-

derlying architecture. At the time of writing this manuscript, it has received

more than 3,700 citations since it was introduced in 2016 and is used in dif-

ferent domains. The authors of the paper use a few well-known datasets to

attempt to prove their claim in their paper. They show how their method

works on some instances of those datasets. However, a question remains: does

it work on any dataset?

1.3 Thesis Statement

In this manuscript, we first show that while LIME claims to be a fully model-

agnostic method, the reality is that it is not capable of explaining any black-

box model. Besides, we show it does not perform well on all datasets.

We later show we can come up with a real model-agnostic method that is

based on rules. That is an explanation that provides beyond a list of features,

regardless of the model it tries to explain.

Using our solution of explainability (BARBE), we can build an interac-

tive system where users are allowed to interact with the system to see how

the predictions, together with the explanations, can change when the input
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changes.

1.4 Thesis Contribution

This manuscript contains two major contributions, along with a few other

minor contributions to the field of XAI.

We introduce Black-box Association Rule-Based Explanations (BARBE)

as the main contribution. This model-agnostic explainer takes advantage of

association rules to provide explanations for any black-box model when ap-

plied to tabular datasets. This framework, as we show in our experiments,

outperforms LIME, a very popular explainer, in terms of the quality of expla-

nations. Besides, BARBE can be applied to an extended class of classifiers.

Furthermore, not only does BARBE present salient features as one way to

explain the decisions of a black-box model, but it also provides rules as an

alternative, yet a more human-understandable form of explanation. Finally,

it also utilises a specific type of rules, namely association rules, to take into

account the associations among different features.

We propose Black-box Association Rule-Based Interactive Explanations

(BARBiE), an extension to BARBE, as the other major contribution of this

manuscript. In BARBiE, we empower the user to interact with the explainer,

to enable them to gain more trust in the black-box model. Interactive expla-

nations of BARBiE allow the user to query the original instance as well as

other data points in its proximity, letting them explore and understand how

the behaviour of the black-box model varies in the vicinity of the instance.

Additionally, it provides them with similar data points yet with a different

class label.

Furthermore, we demonstrate with a few experiments that the explanations

produced by LIME are not trustworthy among all datasets. Moreover, we show

how the choice of the discretization approach affects the results. Finally, we

utilise various metrics such as Precision, Recall, and an order-based similarity

measure to evaluate and compare different explanation frameworks.
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1.5 Thesis Outline

In Chapter 2, we will first review some of the fundamental concepts in XAI,

such as why XAI has become a hot topic in AI, how we define explainability and

interpretability and distinguish them, and briefly discuss the explainability-

accuracy trade-off that has recently attracted many researcher’s attention.

Once we provided some definitions for interpretable and explainable systems,

we then review some of the fully-interpretable models in short. We do so since

they are needed for our experiments in later chapters. Explainable systems are

the next topic we discuss in this chapter where we review different explanation

approaches popular in the literature. Finally, we conclude this chapter by

discussing the evaluation challenge in XAI: how explanations and explainable

models should be evaluated.

Chapter 3 explains in detail LIME, one of the prominent explanation frame-

works popular in the literature. We also describe a few alternatives to LIME

that are model-agnostic explanation methods as well. In the final section of

this chapter, we provide some experiments we conducted to evaluate the qual-

ity of the explanations of LIME quantitatively.

In Chapter 4, we review some of the rule-base classifiers popular in the

literature. Rule-based classifiers are important to us since we take advantage

of one of them in BARBE and BARBiE, the main contributions of this thesis.

Once we reviewed prominent rule-based classifiers, we focus on a specific class

of them: association rule-based classifiers, and we look into a few of them.

Then, we discuss SigDirect, the associative classifier we picked for our work

and discuss it in detail. Later, we provide reasons why we chose to add this

classifier to BARBE and BARBiE over the others. We conclude this chapter by

the experiment we did to show how our implementation of SigDirect performs

compared to the original results reported by its authors.

We introduce BARBE in Chapter 5. Initially, we mention the shortcomings

of other methods such as LIME. Then, we introduce BARBE and elaborate on

how it differs from other methods and discuss its specifications. Afterwards, we

discuss the details and settings under which we ran experiments to evaluate
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BARBE. The next sections in this chapter contain various experiments we

conducted to first fine-tune BARBE and then compare it against competing

methods.

We propose BARBiE in Chapter 6 as an extension to BARBE. BARBiE

provides the user with interactive explanations. These interactive explana-

tions, in the form of “what-if analysis”, allow the user to further trust the

black-box model. We later show how BARBiE can help users get a better

understanding of the system with “counter-factual” examples which BARBiE

provides. Additionally, we discuss how it helps users create “editable” classi-

fiers.

We finish this work in Chapter 7 where we conclude this research, and

recommend some future work opportunities to explore.
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Chapter 2

Background

In this chapter, we focus on Explainable Artificial Intelligence (XAI). We first

look into why XAI is becoming so momentous, and then go over some defini-

tions in the field. This is an important issue since, unfortunately, there are

different viewpoints regarding concepts such as explanation. Later, we discuss

some important topics within XAI, such as the so-called accuracy and inter-

pretability trade-off. In the next section, we review some popular explainers

that have been proposed by different researchers. Finally, in the last section

we mention some of the methods researchers have used to evaluate different

explainers.

2.1 Explainable Artificial Intelligence (XAI)

2.1.1 Why XAI Matters

In many applications of AI, justification is a must, and systems that do not

have that capability are not considered for use at all. The medical domain,

for instance, is a field that has greatly benefited from AI, yet it has so far not

taken advantage of recent advancements such as deep neural networks, and

this is mainly due to the lack of explainability in such systems [10]. Moreover,

using Intelligent Systems (IS) in different domains has led to many unwanted

results, such as classifiers that are unintentionally biased toward a specific class

(because of an unbalanced train dataset). What follows are a few examples

that show how significant and consequential the lack of explanations can be.

One example is when Amazon started using a system for recruiting job
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applicants by processing their résumés using AI. After a while, they noticed

that the recommendations provided by the system were biased toward male

applicants. This critical problem in the system eventually led to disbanding the

team who had developed the product [15]. If the team had used an explanation

tool to notice the issue in the development phase rather than knowing it when

the product was being used in production, they could have avoided the issue

and built a better product. This is in addition to the damage caused to the

company for being advertised as biased toward a specific gender.

In another case, Bloomberg.com reported that a system developed to rec-

ommend regions for Amazon’s same-day Prime Delivery expansion was biased

toward neighbourhoods dominated by white residents. Eventually, after re-

ceiving criticisms from different Congress members, Amazon announced they

were adding other neighbourhoods in the cities to the program [2]. If the lead-

ership team at Amazon had requested the development team to explain why

their algorithm was suggesting these neighbourhoods, they could have avoided

this issue.

One interesting research project revealed that a system that had been

trained to detect colon cancer from patients’ medical records was using non-

medical features. While the system worked excellently, researchers soon no-

ticed that the classification was based on the fact that all such patients had

been dispatched to a specific clinic, and the name of that clinic was what was

helping the AI system to detect them correctly not their medical informa-

tion [67].

Finally, The European Union (EU) introduced a law called the General

Data Protection Regulation (GDPR), which governs privacy of users’ data.

This law was put into effect in 2018 [24]. While this law mainly deals with

data privacy and tries to force all companies dealing with EU residents’ data

to protect it, the law also requires them to provide explanations to their clients

when an automated system such as an IS1 make a decision for them that has

legal effects. This is what is referred to as the right to explanation, which

1Please note that not all automated systems are intelligent systems yet this law applies
to all such systems.
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requires justification when an automated system decides for customers. In

fact, a well-established requirement under the U.S. Equal Credit Opportunity

Act [21] requires that credit companies provide relevant and insightful reasons

when a person is denied credit. GDPR, however, extends to more categories.

The Defense Advanced Research Projects Agency (DARPA) announced a

program called Explainable Artificial Intelligence (DARPA XAI) in 2016 [17]

where the goal was to produce systems explainable to humans.

All these cases, from issues that private corporations such as Amazon have

had, to the GDPR law enacted in the EU, have caused a significant surge in

the need to provide explanations for the decisions made by IS. As we discussed

in previous chapter, explaining decisions of AI systems to users to let them

understand the rationale behind the decision is not a new concept in AI as

it was an essential requirement of Expert Systems; however, the fact that

AI currently dominates many different aspects of our lives (e.g., autonomous

vehicles, virtual assistants, recommender systems) requires researchers and IS

developers to further focus on providing explainability to users.

2.1.2 Definitions in XAI

There is no consensus on the definition of explainability and an explainable

system among researchers, and even more interestingly, there are different

views regarding interpretability and interpretable models. First, we review

some definitions suggested by different researchers and then we conclude this

section by providing our own definition.

Explainability and interpretability are alas sometimes used interchange-

ably in the literature [19], implying that any model providing some type of

explanation is also interpretable.

Biran and Cotton [7] define the interpretability of a model to be the de-

gree to which the human observer can understand the underlying causes of

its decisions. While Miller [45] adheres to the definition of interpretability

provided by Biran and Cotton, he states that he considers interpretability and

explainability equal while Biran and Cotton consider explainability as one way

to provide interpretability in addition to a system’s introspection.
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Lipton [40] defines interpretable models within two groups: transparent

models, which to some degree are comprehensible to the user, and post-hoc

interpretable models, which are systems that try to explain a black-box model

using alternative approaches. The first group (i.e., transparent models) is

categorized into three different levels:

1. Simultability: A user, given the data and parameters of the system, can

calculate the final prediction of the system in a reasonable amount of

time.

2. Decomposability: Each part or component of the system has a meaning

to users, like nodes in a decision tree

3. Algorithmic: Users only understand the algorithmic features of the sys-

tem such as shape of the error surface.

For example, a sparse linear model such as logistic regression fits into the

first category because a user, provided with the internals of the system such

as its coefficients, can compute the final output in a reasonable amount of

time and also understand the full behaviour of the system. A deep neural

network model, however, does not fit even into the third category since, for

example, the shape of the error curve is not known. Finally, the author ar-

gues for the interpretability of textual and visual explanations and considers

them among post-hoc interpretability techniques. Lipton characterizes them

as interpretable since he believes humans could provide a similar type of in-

terpretability (i.e., in a post-hoc form).

Doshi-velez and Kim [18] use a human-centred definition for interpretabil-

ity, which is “the ability to explain or to present in understandable terms to

humans”.

As we can see, in all the definitions provided above, explainability is equiv-

alent to interpretability; however, there are some authors that differentiate

these concepts.

Montavon et al. [49] define interpretation as a mapping of an abstract

concept to a domain that humans can understand such as images or text
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while they consider an explanation as a set of features of the interpretable

domain that have contributed to producing a decision.

Now that we have reviewed some definitions by different researchers, let

us discuss it from a broader point of view where we take advantage of the

definition of interpretability in logic [4].

Interpretation, explainability, and semantics are well-defined in mathemat-

ical logic (e.g., Mendelson [44]). In logic, the semantic interpretation of an

expression is obtained by interpreting each component in it. In this way, as-

suming the vocabulary of the representation is precise, the user can interpret

the expression compositionally by interpreting individual components of it. In

our view, we can take advantage of the aforementioned definition for interpre-

tation in logic and adopt it to machine learning (ML): an interpretable model

is one that a human user can read or inspect, and analyze it in terms of its

composable parts.

In this way, interpretability refers to a static property of the model, and

can vary from fully interpretable (models such as a small decision tree), to deep

neural network models in which interpretability is more complex and typically

limited. For instance, consider what each layer learns in a convolutional neural

network (CNN): early layers are responsible for extracting low-level features

such as edges and simple shapes, while later layers usually extract high-level

features whose semantics are understood with respect to a domain. In fact,

with this perspective, models such as DNNs could hardly be classified as in-

terpretable. It is important to point out that interpretability applies to the

interpretation of a learned model before considering the inference the model

can do. Note that we are against classifying models as interpretable or non-

interpretable, but rather we believe there should be a spectrum allowing an

interpretability score to be assigned to each model.

On the other hand, explainability has to deal with what kind of output the

system provides to the user, rather than how a human user directly interprets

the meaning of each model component. In other words, explanation has to deal

with clarifying the reason or reasons a prediction was made or an action was

taken. Thus, we define an explainable model as a system which is capable of
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providing explanations without requiring any extra computation. Explainabil-

ity is, thus a dynamic property of a model, in the sense that it requires run-time

information to produce explanations. Explainability is about the mechanism

of justification provided for an inference or prediction using a learned model,

regardless of whether the model is clearly interpretable or loosely interpretable.

Figure 2.1 illustrates the distinction between interpretability, which is about

understanding a predictive model learned from data during training, and ex-

plainability, which relates to the clarification and justification of a prediction

or decision made in the presence of a new observation.

Figure 2.1: Interpretability of a model vs. Explainability of a prediction.
From [4]

Based on the above definitions, models such as decision trees and rule-based

systems that are considered fully-interpretable are also explainable, while deep

models are not. For example, once we add an explanation module to the deep

neural model (e.g., Babiker and Goebel [5]), they become explainable systems

as well.

2.1.3 Accuracy-Explainability Trade-off

There is a popular belief that the explainability of models comes with a signif-

icant drop in their prediction accuracy. For example, authors of the DARPA

XAI Broad Agency Announcement (BAA) [17] have implied their support for

this in one of their figures. The figure, shown in Figure 2.2, depicts an inverse

correlation between accuracy and explainability among different classifiers so
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Figure 2.2: An imaginary figure by authors of DARPA BAA [17] that shows
their support for the accuracy-explainability trade-off. In this figure, each
red dot corresponds to one classifier while the green dots represent the same
models yet with added explainability modules. The authors of the figure want
to imply that the goal of XAI is to improve the explainability of models with
a very limited impact on their learning performance.

that on a given dataset, one can either train a classifier with high accuracy

but less meaningful explanations, or train a classifier that has effective and

useful explanations yet is not able to achieve the learning performance of the

other classifiers. Some research papers such as Ribeiro et al. [59], Lundberg et

al. [42], and Lakkaraju et al. [36] also support this belief. This concept is what

has led many to invest in explainers that try to explain black-box models so

they can get both high accuracy and good explanations.

There are, however, researchers who disagree with the point mentioned

above. Rudin [61] discusses in detail why, in her view, that belief is not solid.

Her work describes the figure as an imaginary figure in which the axes have no

units, and more importantly, such an illustrative difference between prediction

accuracies of different classifiers is not the norm in data science applications.

2.2 Interpretable Systems

We review different types of interpretable classification systems. We mainly

focus on reviewing some models considered transparent by most researchers
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(i.e., humans can fully understand how they work, and are toward the fully-

interpretable end of the interpretability spectrum). Afterwards, we take a look

at the required criteria for transparent models. The reason we are interested

in transparent models is that we are going to use them in our experiments in

Chapter 5.

2.2.1 Transparent Models

In this section, we go over transparent models and briefly describe them. Many

different models have been developed over the past few decades. These models

include, but are not limited to, linear regression, logistic regression, decision

trees, random forest, Support Vector Machine, and Deep Neural Networks.

There is, however, consensus on the transparency of only three of them [26]:

Generalised Linear Models, Decision Trees, and Rule-based models. Moreover,

even for these classifiers, some conditions must be met in order to make them

or consider them transparent.

Generalised Linear Models

Generalised linear models [53] are among the class of interpretable models.

They include classifiers such as logistic regression and regression models, like

linear regression. Linear regression builds a model in which its goal is to find

a linear relationship between the value of a dependent variable with one or

more independent variables that are provided. In logistic regression compared

to linear regression, the dependent variable becomes binary, and a logistic

function is used to map the log-odds to a probability value (as desired for the

dependent variable).

In these two forms, we can use the weights of features as the interpretation

of the system either directly or indirectly2. For linear regression, the weight

directly indicates the importance of that feature in the final score or value

generated by the system. With logistic regression models, on the other hand,

we can use the weights to calculate the odds ratio for each feature [48].

2Please note that we assume we are working with a standardised data; otherwise, we
also need to include the standard deviation of each feature when computing their respective
importance.
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Equation 2.1 represents the log odds of a logistic regression model trained

to classify banknotes as either genuine or forged3. x1, x2, x3, and x4 cor-

respond to the variance, the skewness, and the kurtosis of the wavelet trans-

formed image, and the entropy of the image, respectively. Finally, Equation 2.2

shows the final equation needed to compute the probability of the banknote

being genuine or forged. As you can see, We can easily understand how the

system is computing the final class label, and the importance of each feature

is evident.

log odds = −9.019× x1 + 0.705× x2 +−0.871× x3 + 6.1769× x4 (2.1)

p(genuine) =
blog odds

blog odds + 1
(2.2)

Decision Trees

Decision trees are another type of transparent models. A decision tree model

trained to classify breast tumours as malign or benign is depicted in Fig-

ure 2.34. While mathematical equations (e.g., Equation 2.2) could be used

to describe generalised linear models, decision trees are better understood by

visualizing them as a tree. Unlike linear models, decision trees divide the

space into multiple separate parts. Each node in the tree is used to further

split the current sub-space into smaller segments, making smaller clusters of

population. Each path in the tree corresponds to a different partition in the

domain space, as the value of at least one feature is different compared to

any other partition. Different algorithms have been proposed over the years

to achieve such a tree. One very famous and popular decision tree algorithm

is C4.5 [57], which is widely used in different domains. In order to create the

tree at training time, C4.5 uses the difference of entropy as the criterion to

decide which feature should be used when expanding a node. At test time, we

only need to see the label of the leaf node of the path applying to the instance,

3UCI banknote authentication dataset is used for this experiment.
4UCI breast cancer dataset is used in this figure.
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Figure 2.3: A decision tree for classifying breast tumours as malign or benign.

originating from the root node. The leaf node corresponds to the class of the

instance. Therefore, the path and the features used along the path can be

presented to the user, which helps them understand why and how the model

has come to the conclusion. The path is the explanation. Furthermore, the

order of the features present in internal nodes can give more insight about the

system. If a feature occurs in upper layers of a tree, we can infer that it has a

high global importance, while a feature used in a node in lower layers implies

it is locally important to that subspace.

Rule-based Models

In addition to linear models and decision trees, researchers also agree on the

transparency of rule-based models. The main idea in this type of classifiers is to

come up with a set of patterns that are frequent in the train set and then exploit

them at prediction time to classify the unseen instances. Each rule contains a

set of antecedent items (each corresponding to a feature), and a consequent,

which is a class label. Given these rules, the final class is determined using the

criteria that is unique to the method; for example, one approach for confidence-

based methods would be to use the sum of the confidence score of rules of

each class to determine the final class in a classification task. In order to

interpret such systems, a user can look at the rules that apply to the individual

instance. We take a closer look at this type of models in Chapter 4. The rule-

based models, unlike decision trees, can provide users with more than one

explanation because each rule is an explanation.
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Interpretability Criteria

Although most researchers agree on the interpretability of the previously men-

tioned types of models, there are some conditions that many believe these pre-

dictors need to have so that they can be understood by humans. Generalised

linear models should be sparse. If our dataset contains hundreds of features

and the final model has a nonzero weight for each feature, the user is not able

to interpret it correctly. In the case of tree-based models, a similar problem

exists: if the tree has many layers for most branches (meaning that there are

many features involved for inference), it would be difficult for a user to un-

derstand. Finally, for rule-based methods, if the number of generated rules is

very large, a user cannot fully comprehend which rule had more impact on the

outcome, and thus is unable to interpret the system thoroughly.

This issue has led to the development and use of some techniques or meth-

ods that try to make these models more interpretable. For example, a stronger

regularisation could be enforced to zero out the effect of some features when

training a logistic regression model, resulting in fewer features involved in the

classification task (We have used this technique in Equation 2.2 to limit present

features). In decision trees, one could easily limit the number of layers of the

tree to get fewer features involved in the decision-making process (as could

be seen in Figure 2.3 where we limited the tree depth to four). In rule-based

methods, there are pruning techniques that try to reduce the number of gen-

erated rules while maintaining the overall accuracy of the model. In fact, to

some degree such methods help avoid over-fitting the training data.

Having said that, we should also emphasise that we can still consider the

original approaches (i.e., without the modifications mentioned above) inter-

pretable to some degree, since people’s capabilities to understand and inter-

pret models are different, and it is a subjective matter. We cannot merely

specify an explicit criterion to make a method interpretable or opaque.
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2.2.2 Other Interpretable Models

As we discussed in Section 2.1.2, we believe there is a spectrum of interpretable

models. In this spectrum, in contrast with models such as small decision trees

or rule-based models, DNNs should be placed in the other end of the spectrum.

Models such as Random Forests (RF), however, may be put somewhere in the

middle of the spectrum depending on a few factors such as the number of trees

in the model, and the depth of each one. These can significantly affect where

each individual RF model should be placed. If there are hundreds of trees in

an RF model, for example, it should be placed in the less-interpretable end,

close to DNNs.

2.3 Explainable Systems

The first class of explainable systems is called model-specific explainers. All

classifiers in this class have a built-in explanation segment that provides some

explanation to the user on the whole model’s reasoning, thus making the whole

model explainable. In the second class, however, an external explainer is added

to the black-box model so that it can provide an explanation for the user.

This group of models, where the research focus is on the external explain-

ers and not the black box models—since the models lack any explainability

feature themselves—are called model-agnostic explainers. These two groups

are also called model-dependent and model-independent, respectively, as well.

We should emphasise here that this dependency or specificity is in regard to

having access to the internals of the model. There is another way to classify

explanation techniques where models are grouped based on their knowledge

of the domain [4]. Based on this classification, an application-dependent ex-

plainer assumes the user has the required knowledge about the domain thus it

employs the domain vocabulary for explanation (e.g., using medical terms in

medical applications). A generic explainer, on the other hand, does not make

that assumption and thus provides explanations that lack any knowledge from

the domain.

Finally, it is noteworthy that while training and using a transparent global
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surrogate model can be an alternative approach in order to provide explain-

ability, we do not cover them here since they basically are equivalent to trans-

parent models in terms of explainability. In fact, they usually are one type of

a transparent model, such as a decision tree or a rule-based method learned

from the black-box. For example, Craven and Shavlik developed TREPAN

in 1996, which created a decision tree that mimicked the behaviour of a neu-

ral network [14]; Núñez et al. [54] proposed a method to create rules from a

Support Vector Machine. All of the post-hoc explainers, unlike transparent

surrogate models, provide explanations for each instance (data point) and are

sometimes called Outcome Explanation in the literature [26].

2.3.1 Model-specific Explainers

In this section, we briefly discuss model-specific explainers and review a few

of them. These methods are also sometimes called model-dependent in the

literature. The main feature of these explanation methods is that they are

specifically created to work on a particular architecture. While most of these

methods are designed to explain DNNs, there are some methods that are

developed to explain other classifiers. Below, we review a method that works

on tree ensembles and then we go over few of methods developed to explain

DNNs.

Explaining Tree Ensembles

Tree ensembles are a group of classifiers that work by training and using mul-

tiple decision trees. This combination can achieve a higher accuracy score

compared to a single decision tree and is hence generally preferred. One side-

effect of this improvement in accuracy is, however, the lack of interpretability

in ensemble models. If in a task, the accuracy is the critical criterion and

understanding the way the model came to that conclusion does not play any

significant role, it is reasonable to opt-in for ensemble methods. However, if

understanding that rationale is critical, ensemble methods would not be the

best choice unless we add explainability to them.

In their paper, Moore et al. [50] provide a method to produce explanations
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for each instance in tree ensemble methods such as random forests. Initially,

they compute the change in the expected output for each node in all the trees

of the ensemble model. Afterwards, they leverage them to produce an expla-

nation for any given data point. The explanation provided by their system

contains an importance score for each feature present in the data point. This

score is the sum of the changes in the prediction output of all corresponding

nodes along the paths used to predict the instance’s class label.

Attention-based Approaches for Explaining DNNs

In recent years, most researchers have focused on explaining DNNs. This is

due to the huge popularity of these methods, that they have been applied

to various domains from sentiment analysis in Natural Language Processing

(NLP) to object localization in images.

Attention mechanism [6] is one of the recent breakthroughs that has changed

the performance of DNNs, especially in the field of NLP. Before the intro-

duction of attention mechanism, DNNs relied on Long Short-Term Memory

(LSTM) architecture to avoid the vanishing or exploding gradients problem

in sequence to sequence tasks such as Neural Machine Translation (NMT). In

NMT, a sentence in a source language is translated into a sentence in a target

language using a deep neural architecture. The decoder in an LSTM-based

NMT model has to use the information in the state vector of the last word

in the source sentence to generate the first word in the target sentence. As

one can expect, however, information corresponding to the first word in the

target language usually lies at the beginning of the source sentence. Having

to find the information in the whole sentence, rather than a few words, makes

the translation task more challenging. The attention mechanism was intro-

duced to overcome this weakness. When taking advantage of the attention

mechanism, not only does each word in the target language benefit from the

state vector of the previous word (as it is a recurrent architecture), but it also

takes advantage of the weighted sum of the state vectors of source words. The

aforementioned weights essentially specify the source words the model should

pay more attention. The introduction of this mechanism allowed researchers
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to obtain better performance in different tasks such as NMT [6].

One of the benefits of using the attention mechanism is that it can act as

another way to give a hint about the internals of the black-box system to the

user.

The method implemented in [12] is an example of using the attention

mechanism in the medical domain. In their work, Choi et al. use a DNN

model to process Electronic Health Records (EHR) in reverse time order, and

predict a future diagnosis of heart failure. Their model processes EHR as

a time series dataset and uses two attention mechanisms to process them.

Additionally, they rely on the weights in the two attention layers in the model

to provide explanations such as which visits to a physician played a more

significant rule in their decision. The record that the multiplication of the

attention weights by its embedding weights results in the maximum value, for

example, is the most important one. Although many research articles benefit

from attention mechanism to provide explanations, some researchers disagree

and argue against using attention weights as a way to explain decisions [35].

Gradient-based approaches for Explaining DNNs

In addition to attention mechanism, computing the gradients is another way

to exploit the internals of deep learned models. In this approach, the idea is

to compute a gradient with respect to the predicted class and use the back-

propagation algorithm to propagate the gradient to the input. Afterwards, one

can combine the input with the gradient to capture the salient pixels which

can be used to explain the predicted class (e.g., Grad-CAM [64]).

2.3.2 Model-agnostic Explainers

This part contains a brief overview of methods that claim they can explain

decisions made by different architectures. As we mentioned in the last chapter,

this approach has the advantage of being able to explain different architectures.

However, we also should emphasise that getting correct explanations is a big

challenge, due to the fact that the explainer has no access to the internals of

the system, while a model-specific explainer has access to every component of
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it.

Local Interpretable Model-agnostic Explanations (LIME)

LIME [59] is the most famous model-agnostic approach used to explain black-

box models. It works by creating perturbed samples and then training an

interpretable model using such samples. We discuss LIME, and a few alterna-

tive approaches similar to LIME in detail in the next chapter (Chapter 3).

SHAP

SHAP framework [42] is based on Shapley value [65]. Shapley value originates

from cooperative Game Theory. In cooperative games, the group of players

tries to maximize the prize in the game, and in the end, the reward is dis-

tributed among the players. Shapley value tries to answer the question of how

to distribute the reward between players based on their contributions, and

it has proven to be the answer to this problem of reward assignment. The

same concept could be used to explain the decisions of classifying individual

instances of a dataset. Different features of an instance correspond to the

players of the game, while the feature importance corresponds to the reward

distributed at the end of the game to a player. The formula to compute the

reward for each feature is as follows:

φi(val) =
∑

S⊆{x1,...,xp}\{xi}

|S|!(p− |S| − 1)!

p!
(val(S ∪ xi)− val(S)) (2.3)

In this formula, given an instance x containing p features, to obtain the

feature importance of feature i, we shall compute a weighted sum over all

subsets of features of x that exclude i. In this sum, we want to measure how

the addition of i to a subset affects the final prediction of the model. The

weight of each subset equates to the number of various ways that the subset

could have been generated.

While this method looks ideal to use as a way to explain instances, it is

very computationally costly as it needs to consider all subsets in the sum. As a

result, authors of SHAP suggest sampling to make it computationally efficient.
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Anchor

Another approach introduced after LIME is called Anchor [60]. In their work,

Ribeiro et al. (the same authors as of LIME) point out that a weakness of

models like LIME is that the explanation comes from a linear model. They

show that an importance score for each feature cannot work all the time.

As an example, the authors provide a text classification example (Figure 2.4)

where the word “not” can have both positive and negative influence depending

on the other words in the sentence. This dependency cannot be shown in

an approach like LIME, as it assumes feature independence and produces

individual feature importance scores. To overcome this shortcoming, they

suggest providing a set of salient features in the form of “if-then” rule as the

explanation. They call such rules Anchors since they anchor the prediction

toward the target class, and consequently, modifying the rest of the features

would not alter the class label. Each anchor, in their framework, is essentially

a set of important features such as “not” and “bad”. They argue for the high

precision of these anchors in their work. High precision means when taking

advantage of an anchor, most instances where this anchor applies to should

be classified correctly. For example, if they have an anchor such as “not” and

“bad” −→ positive sentiment, precision measures how many instances of a

given dataset are classified correctly using this rule).

They employ a greedy algorithm to construct an anchor. In their algo-

rithm, they add one feature to the anchor in each iteration, where the gener-

ated anchor provides the highest precision among candidates. They rely on

a synthetic set of instances in that vicinity to compute the precision. Unlike

LIME, however, they try to achieve the least number of calls to the black-box

model by finding the smallest required instances using a multi-armed bandit

algorithm. By taking advantage of this approach, they adaptively generate

the neighbourhood around the instance. Finally, they terminate the greedy

algorithm once the precision is above a heuristically set threshold (they set it

to 0.95 in their paper).

A shortcoming with this approach is that it does not reveal the associations
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Figure 2.4: A figure taken from [60] where the authors show different explana-
tions produced by LIME and Anchor. a: 2 instances of a sentiment analysis
task, b: what LIME outputs, c: Anchor output where the combination of
words have the influence.

among features. Additionally, in contrast to LIME, it cannot provide any

relative feature importance scores anymore.

2.4 Evaluating Explainers

In order to use or propose a new explainer, authors need to evaluate their

method and this is the norm for any proposition in ML. In XAI, however,

things work slightly differently since there is even no consensus on the defini-

tion of explanations.

This is in fact in contrast with showing the superiority of a new classifier

or a new architecture in a deep learned model which only requires showing

its performance in terms of certain metrics, such as accuracy or F-score. It

is, however, challenging to benefit from the same metrics for an explainer as

there is usually no ground truth to compare against.

2.4.1 Proposed approaches

Miller [45] discusses explainability from a social science viewpoint and em-

phasises on simplicity of the explanation, together with its generality and

coherence with prior belief. In his view, providing explanations that have
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fewer causes yet could cover more events are better than providing detailed

explanations with multiple causes altogether. He backs his view by showing

an example where respondents to a survey preferred simpler causes over more

complex ones. He also positions himself as an opponent of using statistical

relationships to explain events and argues in favour of the interest in causes

by end-users rather than associative relationships. He further claims that the

most likely cause is not always the best explanation since they may be pre-

supposed by end-users. He, however, does not provide any quantitative way

to analyze explanations and his view mainly takes causal explanations into

consideration and leaves correlation-based ML systems aside.

Another work that suggests a taxonomy for evaluating explanations is the

work done by Doshi-Velez and Kim [18]. In their work, they propose three dif-

ferent groups of evaluation approaches similar to the ones used in ML. They

propose application-grounded evaluation in the first approach where explana-

tions are evaluated in real tasks using experts. The second approach, called

human-grounded metrics, also benefits from humans in the experiments while

limiting the tasks to simplified ones (compared the actual tasks in the previ-

ous approach). Functionality-grounded evaluation is the third approach which

does not involve humans but uses automated experiments on proxy tasks.

2.4.2 Evaluation Approaches in practice

In addition to using automated experiments, many papers rely on experiments

that involve humans in the experiment. Take Grad-CAM [64] for example. In

one experiment, they measure how removing particular image patches affects

the prediction scores of the CNN model (i.e., image occlusion), and notice the

biggest change occurs when they remove patches that were part of the expla-

nation produced by their method. Another experiment involves creating class

labels and bounding boxes out of their heat-maps for images from the Ima-

geNet Localization challenge [16], and then comparing them with the ground

truth labels and bounding boxes obtained from the challenge. They rely on

humans in other experiments. In one experiment, they provide users with visu-

alizations produced by different explanation techniques and ask them to rank
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the visualizations based on their informativeness to find out about their trust-

worthiness. As you can see, the authors take advantage of various experiments

to, however, indirectly evaluate their method.

2.4.3 A Unique approach for model-independent explain-
ers

Another way to quantitatively evaluate explanations of a model-independent

explanation framework is to replace the black-box model with a fully-transparent

one. As we mentioned in Section 2.1.2, fully-transparent models are also ex-

plainable systems. In this method, we can look into the model and extract the

ground truth explanations and compare with the explanations. Take a small

decision tree as an example. Given an instance, the decision tree’s inference

algorithm determines the label based on the leaf associated with the instance.

If we take the path leading to that leaf, we can extract the features present in

that path and return them as the explanation. Such a set of features can be

considered the correct explanation as they are unquestionably the features the

model has used to label the instance. Using this approach, we can evaluate the

model-independent explainer by finding how many features it categorized as

important were present in the fully-transparent model (i.e., precision score),

or how many of those features were present in the explanation provided by the

explainer (i.e., recall score).

To check the trustworthiness of its explanations, authors of LIME use a

linear model and a decision tree to evaluate their framework on two different

datasets. The results they report on decision trees outperform the ones from

logistic regression models That is interesting since LIME framework benefits

from a linear model (linear regression) as its interpretable model and one can

expect better results when the black-box model is also a linear model. In our

work, to further investigate the performance of LIME, we use a decision tree

as we present in Chapter 3. We take advantage of the same classifier when

evaluating our own approach 5 since it is also a different classifier than what

we use in our method (an associative classifier). Besides, it allows us to have

a fair comparison against LIME.
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2.4.4 Wrap up

As the discussion shows, despite providing many different approaches to tackle

the evaluation problem in XAI, very limited approaches have been adopted in

practice. This is mainly due to the huge gap between what those conceptual

papers define as an explanation, and what current methods produce as expla-

nations. The majority of current explanation systems provide explanations in

the form of heat-maps [5], [64], feature importance scores [42], [59], or some

rules [25], [60]. In all these cases, what matters the most is the trustwor-

thiness of the explanations (i.e., is it really the rationale behind the model’s

decision?). Matters such as coherence with prior belief are yet to be incor-

porated into evaluations. This mainly has to do with the fact that current

explanations are very limited and evaluating explanations based on their co-

herence with prior belief, for example, requires richer explanations. Refer to

the work of Atakishiyev et al. [4] for a full discussion on different levels of

explanations.
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Chapter 3

Local Interpretable
Model-Agnostic Explanations

In this chapter, we review the Local Interpretable Model-agnostic Explana-

tions (LIME) method in more detail. We first discuss how it works and then

illustrate its explanations on some different tasks. We conclude this chapter

by reviewing a few alternative methods based on LIME.

3.1 What is LIME?

LIME is a framework that was published in the Knowledge Discovery and

Data Mining (KDD) 2016 conference by Marco T. Ribeiro, Sameer Singh, and

Carlos Guestrin. Their method has received a massive welcome from the re-

search community. Since it was one of the early frameworks claiming to be

model-agnostic, it was adopted by researchers in different fields. Moreover,

due to its availability as a package in Python programming language, many

people have started using it off-the-shelf to add explainability to their systems.

For example, Whitmore et al. [71] applied LIME on 2-D chemical structures.

They used it on a black-box model to understand the classification of bio-

logically produced fuel compounds. LIME can also be applied to analysing

music content [46]. Credit assessment is also a domain in which explanation is

very critical, and as a result, numerous publications in this topic benefit from

LIME in their work [47], [52]. Not only has LIME been applied to different

domains, but it also has been used in various tasks. Besides classification,
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which composes most of the literature and what the original LIME supports,

it has also been applied on the Named-Entity Recognition (NER) task, a se-

quence to sequence tagging task [68]. NER is a task in Natural Language

Processing (NLP) that when given a sequence of tokens (the sequence usually

is a sentence), the goal is to find and annotate named entities, such as names

of people (e.g., Noam Chomsky) or organizations (e.g., University of Alberta)

in the text with proper tags. Authors of [68] propose two different approaches

for using LIME. In their first method, they provide explanations for each word

in the sentence. In their second approach, however, they try to explain each

named-entity (as a phrase rather than a word) using LIME.

As we mentioned in the previous chapter, LIME should be considered as

a post-hoc explainer that can be used to explain individual decisions of a

classifier. As its name suggests, it claims to be model-agnostic and capable of

handling any black-box model.

3.2 Generated Explanations

In this part, we take a look at the output LIME generates and the way it

conveys the explanation it has generated to the user.

LIME, similar to other post-hoc model-agnostic approaches, has to rely

on the input and output of a model in order to generate explanations, since

it assumes the classifier acts as a black-box and thus, cannot provide any

further information. In other words, unlike transparent models where at least

a portion of the decision tree, if not the whole tree, could be visualised, or some

rules in a rule-based method could be presented, LIME has no information

regarding the internal structure of the model: the input space and the target

predictions are its only available sources of information. We should again

emphasise the fact that explanations are for each data point and not for the

whole model.

The input for general machine learning problems (e.g., classifying mush-

rooms based on the shape of the cap, and their odor as edible or poisonous) is

usually in the form of some categorical or numerical features. For such tasks,
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Figure 3.1: An instance of mushroom dataset

LIME’s explanations are a score assigned to each feature (either positive or

negative). For binary classification tasks where we only have two classes, posi-

tive numbers correspond to one class while negative numbers correspond to the

other class. For multi-class classification, LIME utilises a one-vs-all approach

and produces different explanations for each class. In Figure 3.1, we show an

instance from the mushroom dataset [20], which lists attributes of an edible

mushroom. In Figure 3.2, we show LIME’s output regarding that instance. As

shown in the figure, LIME explanation suggests that while having a narrow

gill size or a close gill spacing makes a mushroom look like a poisonous one,

having no odor and a smooth stalk above the ring outweigh those attributes

and make the mushroom an edible one.

For tasks that apply classification on natural text, such as sentiment anal-

ysis, individual tokens are usually transferred to a vector space (e.g., n-gram

vectors or word-embeddings). LIME explanation, however, uses the tokens

themselves and outputs some of the words as the explanation rather than just

numbers associated with them.
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Figure 3.2: Explanation provided by LIME for the instance in Fig. 3.1
The probabilities on the left side are the prediction probabilities generated by
the original model (the black-box system). In the centre, features and their
corresponding importance scores sorted based on their importance generated
by LIME, are shown. A greater absolute value in this table implies that LIME
believes it has played a bigger role in classification. Finally, the right side figure
shows the feature-values and their corresponding values, sorted based on their
ranks. In the case of categorical feature-values, they are True or False, but
for numerical features, it would show the value of that feature in the instance
(e.g., 26 for age).

3.3 How does LIME work?

In short, LIME creates a synthetic dataset in the vicinity of the original data

point, and after labelling its instances using the black-box model. It then uses

it to create an interpretable model to produce an explanation for the data

point. In this section, we look at the way LIME creates explanations in more

detail. We first discuss how it creates a neighbourhood and then see how it

builds the model. Finally, we review the way it generates the explanations

from built model.

3.3.1 Creating sample data for neighbourhood

For this first step, LIME needs to create a new dataset so that it can use it

later to train a transparent model. This new dataset contains new samples that

are perturbations of the original instance, which the system should explain to

the user. The perturbation technique is considered to be the most common

approach used in model-agnostic explainers [42].

Although perturbation is the general idea behind the creation of the sam-
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ples in this step, LIME utilises distinct approaches to generate samples among

different types of datasets. For tabular data, LIME creates 5,000 new data

points (the default value used in the Python package) unless the user sets the

parameter to a different number. To construct these new data points, LIME

creates that many values for each feature separately, and then randomly joins

them. Perturbation for categorical features takes advantage of their frequency

in the training data, where values that occur more frequently in the training

data are also more likely to be present in the synthetic data. Regarding nu-

merical features, the perturbation step relies on their proximity to the value

of the feature in the original data point. As a result, it is more likely to have

values that are similar to the original data point than different ones. It is also

worth mentioning that LIME takes into account the proximity of the original

data point and the newly created instances. This proximity is later used as

a weight when training the local model. We discuss the technical details in

Section 3.3.4.

3.3.2 Building Model for Neighbourhood

Once LIME has the generated neighbourhood, it trains a transparent model

that can be used in the next step to provide explanations to the user. In this

step, the goal is to build a learned model that mimics the behaviour of the

global model in the vicinity of the instance. LIME achieves this goal using the

sampled data points that were created in the previous step together with their

corresponding distances from the original data point. It then runs the original

black-box model on all the sampled instances and obtains their labels. Using

those labels, and taking into account their proximity to the original instance

(i.e., how many features have different values than the original data), LIME

trains a model. Here the model can be any of the transparent models, such as

decision trees or linear models; however, LIME’s authors use linear models in

their paper and the provided Python package.
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3.3.3 Generating Explanations from Local Model

Once LIME builds the local interpretable model, the next step is to extract

and provide feature-based explanations to the user. This step is, in fact, the

most straightforward step in the LIME algorithm: it only needs to extract the

weights of each feature from the linear models, but even presenting the model

(as it is) would still count as the desired explanation. The original paper only

provides an example with linear models.

3.3.4 Technical Details

Now, let us take a closer look at LIME with the mathematical details. There

is a black-box model f and an instance x that the model has classified. The

instance has d features and can be shown as x ∈ Rd. As mentioned earlier,

we are also interested in a representation understandable by humans (such

as words rather than word embeddings); as a result, LIME defines x′ to be a

human-friendly representation of x; that is x′ ∈ {0, 1}d′ where d′ is the number

of features in x′ transformed from d specially for each type of dataset. For

images, for example, this can be super-pixels obtained by running a super-

pixel segmentation algorithm on the original image. Using this binarization of

the new features, LIME can choose which features are present and which ones

are not, and hence further simplify the perturbation process.

The goal is to create a model g ∈ G (G being the class of interpretable

models) that has high fidelity to f in the neighbourhood of x. The domain of

g is {0, 1}d′ . In other words, the human-understandable form of x is used to

when creating g. The goal mentioned above is achieved by building a synthetic

dataset around x′ by perturbing it and then train an interpretable model g

using the new dataset.

The authors of LIME introduce two measures required for a good expla-

nation: 1) Local fidelity: a model faithful to the global model in the neigh-

bourhood of x; and 2) Model Interpretability: a model that is simple and easy

enough for humans to understand. While the first measure is a conventional

task of minimization of loss function in machine learning, the latter differs.
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For the second measure, the authors suggest the number of layers for decision

trees or the number of nonzero features in linear models as the measure of

interpretability: the deeper a decision tree, the less interpretable it is. Finally,

in order to train a model with these two measures in mind, they propose the

following formula:

ξ = argmin
g∈G

L (f, g, πx) + Ω(g) (3.1)

In equation 3.1, Ω(g) is the measure of interpretability discussed earlier. On

the other hand, L (f, g, πx) is a loss function that measures the faithfulness of

the learned model in relation to the global model. In other words, it calculates

how accurate g approximates f in the vicinity of x. L is based on πx, which is

the importance of each sampled data point with respect to x (which is based

on their normalized proximities).

The authors also define the loss function they use for linear models (g(z′) =

wg.z
′) in the paper:

L (f, g, πx) =
∑
z,z′∈Z

πx(z)(f(z)− g(z′))2 (3.2)

where πx is computed in this way:

πx(z) = exp(−D(x, z)2/σ2) (3.3)

In this formula, D is a distance function unique for different types of data

such as tabular or text. As an example, they suggest using L2 as the dis-

tance measure for tabular data while recommending cosine similarity for text

datasets. Finally, they apply a kernel smoother on the distance so that closer

sampled data points have a higher impact on the total loss.

There is, however, no further discussion of the appropriate width of the

kernel smoother in the paper. When we dig into the code, we find that its

default value is σ = 0.75, which shows that different widths lead to totally

different results [48].
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3.4 Submodular Pick LIME

Submodular Pick LIME or SP-LIME, for short, is a method suggested in the

LIME paper that tries to allow the user to understand the model by providing

the most explanatory data points. In other words, it is an alternative tool

to evaluate the trustworthiness of the system instead of the traditional global

surrogate models where an interpretable model such as a decision tree is trained

to mimic the behaviour of the complex model globally.

The user should provide the system with their budget, B. This budget

corresponds to the number of instances the user wants SP-LIME to explain.

Then, given some data points, SP-LIME finds the most informative ones by

first running LIME on each one of them. Once LIME has run on all of them,

it provides a feature importance score for each feature in each data point

as the explanation. Using these values, a unique global weight is assigned

to each feature, showing how important that feature is compared to other

features. Finally, using these scores, a greedy approach is applied to find the

most informative data points out of the given ones. These points are what

SP-LIME returns to explain the global model.

The most critical part in a procedure like the one described above is, of

course, the way the algorithm ranks and adds all data points to the set of

chosen data points. SP-LIME suggests the addition of new data points to the

set in a greedy way. This greedy algorithm, shown in Algorithm 11, chooses

the instance that maximizes the marginal coverage in each iteration. Coverage

(Eq. 3.4) is defined as the total importance of features that appear in at least

one of the instances of the set.

coverage(V,W, I) =
d′∑
j=1

1[∃i∈V : Wij>0]Ij (3.4)

1Based on Algorithm 2 of LIME paper, with some changes
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Algorithm 1 Submodular Pick LIME (SP-LIME)

Require: Instances X, Budget B
Ensure: Set V containing best instances

for all xi ∈ X do
Wi ← LIME(xi) . Run LIME on this instance and get the explanation

end for
for all j ∈ {1 . . . d′} do

Ij ←
√∑n

i=1 |Wij| . Compute global feature importance
end for
V ← {}
while |V | ≤ B do

V ← V ∪ argmax
xi∈X

coverage(V ∪ xi,W, I) . Pick the best instance

end while
return V

3.5 Modifications to LIME

While many people have used LIME in their systems, many people, including

the authors of LIME, have created newer models to improve certain aspects

of LIME. In this section, we first discuss KLIME [27], and LIME-SUP [33]

which are essentially using LIME under the hood. We then review LORE [25],

a method that exploits Genetic Algorithm for building the neighbourhood

around the instance.

3.5.1 KLIME

KLIME is another variation of LIME developed by Hall et al. [27] and is

available as part of the H2O Driverless AI platform.

KLIME’s goal is to build explanations for a limited number of representa-

tive points so the explanations could be used for the rest of the points. This

method, unlike LIME, segments the training data into K clusters and then

trains a Generalised Linear Model (GLM) for each of the K clusters solely

based on that cluster’s data points. It currently uses the K-means clustering

algorithm to create clusters. Moreover, it trains another GLM based on all the

training instances of the dataset. To explain a new instance, if its correspond-

ing cluster contains 20 or more training data points, the GLM for that cluster
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is used to provide the explanation. If that number is less than 20, the global

GLM is used. In this platform, K is computed in a way that the number of

training instances correctly predicted using their corresponding GLM model

is maximized.

One big issue with this approach is that clustering algorithms such as K-

means are not stable and different initialization settings result in different

clusters.

3.5.2 LIME-SUP

Another method similar to KLIME is the method developed by Hu et al. [33].

In contrast to KLIME, LIME-SUP uses supervised partitioning to split the

training data. They use the idea of model-based trees in which nodes, unlike

decision trees, are models themselves that only apply to a portion of the prob-

lem space. As a result, by splitting the space according to the training data,

the local models available in leaves are more accurate compared to KLIME

(they have less Mean Squared Error (MSE)). Additionally, the subspaces are

more stable than the ones created by K-means in KLIME. Nevertheless, this

approach requires the training labels to create the tree which may not be

available at all times.

Although LIME-SUP improves upon KLIME, both methods are alterna-

tives to speed up the explanation generation process at the expense of provid-

ing explanations from nearby data points.

3.5.3 LORE

As we mentioned earlier, rules are considered one of the most interpretable

approaches to explainability and thus can be a perfect way to provide expla-

nations to a user. In their work, Guidotti et al. [25] take advantage of rules

for providing explanations. In their method, they create a neighbourhood

around the instance using a Genetic Algorithm. Moreover, they enforce the

data point selection algorithm to choose at most half of the data points from

the class of the original data point. Note that while data points are created by

the genetic algorithm, the class labels are obtained by querying the black-box
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model. Once they have the neighbourhood, they use the synthetic data points

and train a decision tree. Finally, they take advantage of the decision tree

and produce two types of rules; a single decision rule, and a set of counter-

factual rules. A decision rule, generated from the path leading to the original

instance in the decision tree, shows which attributes contributed the most to

the decision made. Counter-factual rules, on the other hand, show alternative

ways a user can change the decision by modifying the input attributes. These

counter-factual rules are obtained by traversing all paths in subtrees originated

from nodes along the original instance’s path. Additionally, the leaf nodes in

these paths must contain different labels than the label of the original instance

to be considered among counter-factual rules.

3.6 Experiments with LIME

We conducted a few experiments on LIME to evaluate its performance with

regard to certain parameters, and show the results here. The goal of these

experiments is to see how trustworthy LIME’s explanations are.

In the first experiment, we want to evaluate the quality of the explana-

tions. As mentioned in the previous chapter (please refer to Section 2.4), we

take advantage of a transparent classifier as a pseudo-black-box in our system

to examine LIME’s explanations. In all these experiments, we use different

sample sizes to also find out more about the effect of sample size on explana-

tions.

Our second experiment consists of modifying the number of buckets created

during the discretization step. This step is needed to transform numerical data

to categorical (multiple buckets) so that LIME can create randomly sampled

data points that belong to different buckets.

3.6.1 Trustworthiness of Explanations

As we explained in the previous Chapter (Subsection 2.4) one way to evaluate

a model-independent explanation framework such as LIME is to use a fully-

transparent model instead of a black-box model in the experiments. In this
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experiment, we use a decision tree — which we limit its depth to five 2— as

our black-box model. We want to understand the quality of the explanations

produced by LIME when we increase the neighbourhood size from 1,000 to

10,000. In this experiment, we take advantage of four datasets from the UCI

repository [20]. The results are presented in Figure 3.3 3. As it can be seen,

while LIME tries to maintain a high recall score, it fails to provide analogous

results in terms of precision. Precision here measures the proportion of the

features identified as relevant by LIME, from the features actually used by the

decision tree playing the role of the black-box. Recall, is the proportion of the

features used by the black-box among the features indicated by LIME. Finally,

the results vary greatly when dealing with different datasets (this is to some

degree understandable since the number of the features varies across different

datasets).

3.6.2 Effect of Different Bucket Construction Approach

In this experiment we show how the results differ when we use alternative

bucket construction approaches. LIME uses buckets in order to convert nu-

merical features from a continuous space to a discrete space. The methods

include “quartiles”, “deciles”, and “entropy”. In “quartile”, LIME divides

each feature space into four parts while in “decile” it divides it into 10 parts.

“Entropy” exploits labels of instances to split the space according to the class

labels. LIME package uses “quartile” as the default choice for discretization.

Figure 3.4 shows the result of this experiment. It is evident that different

discretization approaches leads to different results and there is no clear best

method to use on a new dataset.

2So each explanation contains at most five important features.
3We further discuss the details of the datasets and experiments in Section 5.
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Figure 3.3: Precision, Recall, and F1-score for Glass, Wine, Hungarian, and
Hepatitis datasets. The results extend from 1,000 synthetic points in the
neighbourhood to 10,000.
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Figure 3.4: Precision, Recall, and F0.5-score for Glass, Wine, Hungarian, and
Hepatitis datasets when using different bucketing approaches in LIME. The
results extend from 1,000 synthetic points in the neighbourhood to 10,000. it
is worth mentioning that there is no clear winner among all datasets.
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Chapter 4

Association Rule-Based
Classifiers

As mentioned in previous chapters, one important type of transparent classi-

fiers is rule-based classifiers. At prediction time, these classifiers usually take

advantage of a set of rules built at train time. Association rule classification

is the product of applying pattern mining (mining frequent itemsets) in the

classification task where, in short, frequent itemsets associated with a class

label become rules representing that class label. The rules are conjunctions of

feature-values implying a class label. f1, and f2, and f3, and f4, and ..., fn →

class1

We first take a quick look at different rule-based classifiers in this chapter

and then review the concept of association rules and association rule-based

classifiers. We review one specific association rule classifier that we will use

in our experiments, SigDirect, in more detail in the third section. Finally,

we evaluate our implementation of SigDirect classifier using different datasets

and compare its output against the numbers reported in the paper it was

introduced.

4.1 Rule-based classifiers

Rule-based classifiers are, in principle, very similar to the “if” statements

in computer programming languages, where a statement is executed only if

a certain condition is met. Each rule in rule-based classifiers contains two
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essential parts: a left-hand side (LHS) set of items and an item on the right-

hand side (RHS), which should be the class label in the classification tasks.

Alternatively, they can be called antecedent and consequent, respectively. In

addition to these essential segments, different classifiers might append some

further information to each rule, such as how frequently the LHS occurs in the

dataset (support score), or how frequently the LHS co-occurs with the RHS

in the dataset (confidence score).

Many different approaches have developed over the years that try to create

rules in one way or another. In this section, we briefly review a few popular

rule-based methods. The next section explains association rule-based classi-

fiers.

4.1.1 OneR

OneR is a rule-based algorithm proposed by R. Holte [32] that essentially

creates one rule for each value of each feature comprised of one feature in the

antecedent and the label in the consequent. For each rule, the classifier stores

the number of errors it made on the training set and leverages this at test

time: the rule with the least error score among the applicable rules is chosen,

and the label associated with it is returned as the final class label.

4.1.2 FOIL

Unlike OneR where each antecedent only contained one feature, First Order

Inductive Learner (FOIL) [58] contains multiple features in the antecedent.

This classifier, based on First-Order Logic, generates rules iteratively using

the separate-and-conquer approach. In each iteration, through a top-down

approach, a new rule is built by greedily adding new feature-values (e.g.,

color=’red’) to it. The choice of the next feature-value to be added to the

rule is based on the Foil-gain metric, where the metric’s goal is to contain as

many positive examples as possible under the rule while limiting the negative

examples. Once the new rule is built, all instances that the new rule could be

applied to are removed from the current dataset, and the next iteration of the

algorithm begins.
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4.1.3 RIPPER

Another famous rule-based classifier that works on multi-class datasets is Re-

peated Incremental Pruning to Produce Error Reduction (RIPPER) [13]. The

classifier, similar to FOIL, uses the separate-and-conquer method to create

new rules iteratively. This rule learner, however, splits the data into growing

and pruning sets. Using FOIL’s gain metric, it constructs a new rule based

on the growing set and then exploits the pruning set to remove some of the

feature-value literals added during construction — as long as the deletion helps

create a better rule (using a heuristic metric that maximizes correctly classi-

fied cases while minimizing the number of incorrectly classified instances). The

algorithm terminates when a rule is created that has an error rate above 50%.

Notably, RIPPER introduces a post-processing step to further improve the

quality of the rules created.

4.2 Association Rule-Based Classifiers

Association rules are one type of rules that take advantage of the associativity

among the features. In fact, they are chiefly used in pattern mining, where

frequent itemsets are extracted from transactional datasets. The Apriori al-

gorithm [1], together with FP-Growth [29], are among the most prominent

algorithms that extract such frequent patterns from datasets. In this section,

after describing association rule mining, we review these two famous algo-

rithms first, and then describe some methods that take advantage of them in

the classification task.

4.2.1 Association Rule Mining

Association rule mining deals with finding an association between items in a

transactional dataset. Given a dataset containing transactions that represent

purchases in a grocery store, for example, the initial goal is to find frequent

itemsets such as {‘sugar’, ‘coffee’, ‘cream’, ‘milk’} and then, based on the

frequency of each, generate association rules such as ‘sugar’, ‘coffee’ → ‘milk’,

‘cream’. Unlike classification rules, there is no limit on the number and type
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of items in the RHS itemset.

Apriori

The Apriori algorithm benefits from the idea that all subsets of a frequent

itemset must also be frequent. It extends itemsets iteratively such that in

each iteration, initially, all direct children of current itemsets are created by

adding a new item to them should they be available in the train set, and

then, removing the ones that are not frequent. To achieve this objective in

a memory- and time-efficient manner, Apriori builds itemsets on a trie-like

structure where the kth layer holds all k-subsets of a feature set (except the ones

whose ancestors had been discarded in earlier layers). Using this structure,

each node in the trie represents a set of frequent items. This method allows

us to easily generate all strong association rules from each remaining nodes in

the trie.

FP-Growth

The Frequent Pattern Growth algorithm uses an extended trie-like structure

called Frequent Pattern Tree (FP Tree) to compress the database into a more

compact format. Once the FP Tree representing the dataset is built, the

algorithm then creates further FP trees for each item. Finally, the algorithm

recursively mines each of such trees to collect frequent itemsets.

4.2.2 Classifiers based on Association Rules

In this section, we review three association rule-based classifiers, and we take

a more in-depth look at another one, SigDirect.

CBA

Classification Based on Associations (CBA) [41] is a classifier that extracts

Classification Association Rules (CARs) from data in a fashion similar to the

Apriori algorithm while limiting the rules to CARs. Unlike normal association

rules where there is no limit on the number and the type of items in the

consequent of a rule, the consequent of a CAR is limited to only one item,

47



which should be the class label. Once the algorithm has generated the rules, it

first sorts the rules based on their confidence, support. Then, it uses the idea

of database coverage and only keeps rules that cover at least one instance of

the dataset if no preceding rule does so. They use the first applicable rule in

the list mentioned above to classify unseen instances. There is also a default

class (majority class) that the classifier applies if there is no applicable rule

for the instance.

CMAR

Unlike CBA, which uses Apriori to generate the rules, Classification based

on Multiple Association Rules (CMAR) [38] is another method that uses FP-

Growth to generate rules. Once the algorithm generates all the rules, it uses

an almost similar pruning approach as CBA. Finally, to classify each instance,

the learner uses a weighted χ2 measure to find the class label.

CPAR

Classification based on Predictive Association Rules (CPAR) [73] is a hybrid

method that integrates traditional rule-based methods with association rule

mining. This algorithm is based on the FOIL algorithm mentioned earlier,

and uses FOIL gain for selecting the best feature in the algorithm. One main

difference between CPAR and FOIL, however, is that CPAR assigns an im-

portance score to each instance, and instead of removing samples covered by

a generated rule, it decreases their importance by applying a weighted score.

More importantly, instead of the greedy approach employed in FOIL, it keeps

the top ones (close to the best one) when adding a new feature to a rule.

Finally, it generates these rules simultaneously using association rule-based

techniques; multiple features could be added in each iteration to the rule, thus

making a trie-like structure.

4.2.3 ARC-AC and ARC-BC

Antonie and Zaiane introduce two different text classification algorithms in [3].

Initially, they introduce Association Rule-based Classifier with All Categories
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(ARC-AC). Their method, similar to CBA, uses a constrained version of Apri-

ori algorithm to create CARs. At prediction time, the algorithm first finds all

applicable rules, but unlike CBA, ARC-AC computes the average confidence

score for all different classes. The class with the highest average confidence

score corresponds to the class label of the document.

Afterwards, they mention a shortcoming for methods such as ARC-AC that

take advantage of frequent itemset mining: they are unable to properly find

CARs in imbalanced datasets. To resolve this shortcoming, the authors pro-

pose Association Rule-based Classifier By Category (ARC-BC). This new clas-

sifier splits training documents into different categories where each category

corresponds to one class. The algorithm then runs Apriori for each category

similar to ARC-AC. This approach allows them to obtain frequent itemsets

for different categories, thus making CARs for each class independently. This

enables ARC-BC to classify imbalanced datasets very well. ARC-BC performs

similar to ARC-AC at prediction time and picks the class label that has the

highest average confidence score among all applicable rules.

4.3 SigDirect

We first review Statistically Significant Dependent Classification Association

Rules for Classification (SigDirect) introduced by Li and Zaiane [37], which is

a classifier that we use in our experiments we discuss in the next chapters.

We first explain how this classifier works by reviewing the statistical sig-

nificance concept, and then close this chapter by comparing it against other

classifiers mentioned earlier. We outline why we chose this classifier to explain

decisions made by black-box systems.

4.3.1 Statistical Significance

Unlike other methods that use minimum thresholds for support and confi-

dence values to discard unreliable rules, SigDirect benefits from the Statistical

Significance concept.

In order to show that the result produced in an experiment is not due to
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errors such as sampling error, we can apply the Statistical Significance test.

In the Statistical Significance test, assuming a null hypothesis (i.e., having no

relationship between measured variables, and an outcome occurring only due

to chance), we want to show that such a hypothesis is improbable.

More formally, given a threshold α, chosen based on the field of study, the

result of an experiment is said to be statistically significant if the p-value (the

probability value of getting results as extreme as in a null hypothesis) is less

than α. The α is usually set to 0.05 for most scientific research.

The formula to compute the p-value for a classification association rule

given in the form of X → ck can be computed using the Fisher’s exact test:

p(X → ck) =

min{σ(X,¬ck),σ(¬X,ck)}∑
i=0

(
σ(X)

σ(X,ck)+i

)(
σ(¬X)

σ(¬X,¬ck)+i

)( |D|
σ(ck)

) (4.1)

As one can see, computing such value is very expensive. However, the

author of [28] introduced a formula to efficiently compute the lower bound for

p-value when σ(ck) ≥ σ(X):

p(X → ck) ≥
σ(¬X)!σ(ck)!

|D|!(σ(ck)− σ(X))!
(4.2)

Using this formula, one can compute the lower bound for the rule, and

unless the lower bound is less than α, there is no need to compute the exact

p-value anymore since the rule cannot be statistically significant.

4.3.2 SigDirect Details

SigDirect uses an Apriori-like strategy to first generate the rules and then

leverages an instance-based approach for the pruning step to only keep rules

with the highest quality and discard the rest. Similar to Apriori, it expands

the kth level to build the k+1th level using the train set. In the kth iteration, for

example, each node is evaluated in this way: initially, Equation 4.2 is used to

compute the lower-bound of p-value and then if the lower-bound is below the

statistical significance threshold set by the user, Equation 4.1 is applied to get

the exact p-value. This method helps avoid the cost of computing the exact

p-value (which is expensive) for rules that we already know are not significant.
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Once the algorithm computes the p-value, it then evaluates the minimality

and non-redundancy of the candidate rule to determine if it could be selected.

The p-value associated with all parents of the LHS of the candid rule (i.e., all

n−1 subsets of an itemset with n features) should not be less than the p-value

of the candidate rule. Finally, to determine if a candidate rule is minimal, we

make sure all occurrences of such LHS itemsets in the train set belong to the

same class.

4.3.3 Advantages over other classifiers

One of the main advantages of using SigDirect as the transparent model over

other classifiers such as CPAR or CMAR is the fact that we do not need to tune

any hyper-parameter in SigDirect; support and confidence thresholds play a

critical role in CBA and CMAR. This advantage comes in handy especially in

explaining a black-box model where we need to train the explainer (i.e., the

transparent model such as SigDirect) for every individual decision of the black-

box (i.e., different test instances) is essential. Moreover, there is generally no

ground truth data available to evaluate the quality of the explanations created

by the explainer model. Thus, there is no easy way at all for the end-user to

tune any hyper-parameters.

Also, Li and Zaiane [37] showed that not only does SigDirect generally out-

perform other classifiers in accurately classifying instances of different datasets,

but it also creates fewer rules than them. This advantage allows the end-user

to more easily understand the explanation, hence making it an appropriate

classifier for this task.

4.4 SigDirect Implementation

Here, we provide details about our implementation of SigDirect. The imple-

mentation is in Python 3 programming language, and takes advantage of some

of the numerical libraries in Python such as Numpy and Scipy in order to do

the computation faster than pure Python code1. The reason we used Python

1You can access the code at https://github.com/mhmotallebi/sigdirect.
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— and not other programming languages such as C++ that are generally faster

— is that it allows other researchers to further improve SigDirect or modify

it according to their needs. This is important since Python has become the

leading programming language used in ML, both in academia and industry

where research has shown that 57% of the machine learning developers and

data scientists use it [72].

4.4.1 Evaluation

In the table below, we compare our implementation of SigDirect against the re-

sults provided in the paper introducing the algorithm [37]. We used 17 datasets

of the UCI repository [20] and provide the accuracy when using different rule

selection heuristics at prediction time. We also show the number of rules gen-

erated after the training time, and also the number of rules that remained

after the pruning step. All numbers are results of 10-fold cross-validation runs

2,3.

2Splits were identical to the ones used in the original paper.
3We also contacted the author of SigDirect paper to obtain their code. We received an

executable file. When we compared our results, the numbers produced by the executable
and the Python implementation were closer than that of the paper.
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Reported in Paper Python Implementation
dataset S1 S2 S3 I-Rules F-Rules S1 S2 S3 I-Rules F-Rules
Adult 84.0 83.9 84.0 136.1 50.1 83.1 82.2 82.1 121.2 77.7

Anneal 92.1 91.6 93.5 340.5 23.2 96.9 94.1 96.8 372.3 42.8
Breast 91.4 91.7 91.6 19.8 10.1 91.4 91.7 91.6 25.1 10.9
Flare 80.6 81.8 81.6 600.9 45.1 83.1 84.2 84.3 635.3 75.8
Glass 66.3 69.2 68.7 340.5 23.2 66.4 70.1 67.8 279.4 56.2
Heart 55.8 58.1 57.4 19.8 10.1 56.4 58.7 57.4 520.2 79.3

Hepatitis 83.2 85.2 82.6 185.7 19.0 84.5 85.8 84.5 196.1 33.3
HorseColic 81.0 80.2 81.0 319.9 33.3 81.3 81.3 81.3 325.1 89.1

Iris 89.3 89.3 89.3 8.1 6.0 94 94 93.3 14.1 6.2
Led7 73.5 73.4 73.6 269.0 108.7 73.5 73.7 73.4 341.2 104.9

LetRecog 48.0 58.8 52.4 19252.9 468.0 46.2 56.5 50.7 42301 2472
Mushroom 100.0 100.0 100.0 906.4 16.0 100 100 100 865.1 106.4
PageBlock 91.2 91.2 91.2 230.1 25.8 91.1 91.2 91.2 223.1 30.1
PenDigits 84.3 88.4 84.6 8406 212.0 76.5 82.4 77.8 8381.9 759.1

Pima 74.6 75.1 74.6 116.8 33.2 74.7 75.3 74.7 124 36.7
Wine 92.7 93.3 92.7 8721.7 11.1 92.7 92.1 92.7 108.9 29.8
Zoo 94.1 94.1 94.1 4597 7.8 92.1 93.1 93.1 2282.8 14.7

Table 4.1: Evaluation of Python Implementation of SigDirect classifier against
the numbers reported in the paper [37]. Each row corresponds to one dataset.
S1, S2, S3 are different heuristics used at prediction time where S1 uses p-
values of applicable rules to decide the final class label. Confidence score of
rules and the multiplication of it by p-values are used in S2 and S3 heuristics,
respectively. I-Rules refers to the initial rules generated by the classifier while
F-Rules shows the number of final rules, the remaining rules after pruning the
initial rules.
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Chapter 5

BARBE: Black-box Association
Rule-Based Explanations

In this chapter, we introduce Black-box Association-Rule Based Explanations

(BARBE). It is a method that takes advantage of association rules, more

specifically associative classification rules, to provide better and more human-

understandable explanations compared to other methods such as LIME.

The breakdown of this chapter is as follows: first, we mention a challenge

that exists in LIME and other model-agnostic explainers in Section 5.1. Then,

we introduce BARBE and explain how it overcomes that shortcoming in Sec-

tion 5.2.

Section 5.3 provides an in-depth description of the constructing compo-

nents of BARBE. In this section, we also elaborate on what the role of each

component in BARBE is and how they contribute to the framework.

We review our experiment settings in Section 5.4. We first mention the

datasets we used in our experiments and discuss the methodology and the

corresponding context.

Rank-based comparison is the topic of Section 5.5 where we mention why

it is an important part of our experiments.

In Section 5.6, we first discuss and then evaluate different settings1 available

in BARBE and the need to find the best choice for. In this section, we find

the best settings for BARBE that work best among different datasets.

1Please note that while a few of these may be considered hyper-parameters, the rest of
them are not.
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We compare the performance of BARBE against LIME in Section 5.7 where

we want to know how BARBE’s explanations contrast against a well-known

model-independent framework.

Finally in Section 5.8, we provide some future work suggestions to continue

and improve BARBE.

5.1 A Big Challenge with XAI: What Counts

as Explanation

There is, unfortunately, no agreement among researchers on what counts as an

explanation and what does not. Therefore, different researchers have consid-

ered a variety of outputs as an explanation. There are many research methods

that, for example, generate a sentence explaining the outcome of a model clas-

sifying images while some other work use heat-maps to provide explanations.

Take what LIME generates for tabular datasets as another example (see

Figure 3.2). What do the numbers in front of each feature mean to you? What

is the difference of population=solitary having the importance score of 0.12

and stalk−root=bulbous weighing at 0.10? The only conclusion we can have

is the fact that population=solitary has a higher importance in this instance

than stalk−root=bulbous. This leads us to the conclusion that only the order

among features matters to the users and not the numbers generated in the

explanations.

One may suggest that these numbers can help us understand how to alter

the class label. They may, for example, argue that if the sum of two features

is more than that of a third feature, then if we change these values, it could

lead to a change in the class label (of course this only makes sense in binary

datasets).2 While this is what the LIME authors claim, the truth is that

since they use a weighted loss function for their linear model that also benefits

from regularisation, it likely that these points which are not in the very near

proximity of the original data point would be misclassified by this linear model,

thus providing wrong explanations to the user.

2This is mentioned by LIME authors
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5.1.1 Rules: A Better Way to Explain

Ribeiro et al. [60], the same authors of LIME, also point out another shortcom-

ing of methods like LIME (please refer to the example shown in Figure 2.4).

They introduce Anchor to overcome this issue. In their new method, an ex-

planation is a set of features that whenever they co-occur, the class label is

determined with a 95% confidence. This Anchor essentially resembles a rule

(with a high confidence threshold of 95%).

The authors of LORE [25] benefit from the idea of using a rule as the

explanation in their method as well. In their method, however, Guidotti et

al. also provide a set of counter-factual rules helping the user find ways to

have a new data point which is labelled differently than the original one while

having the least different features compared to it.

Despite the fact that these methods, to some degree, overcome the problem

mentioned above, one issue still remains: is there always only one set of correl-

ative features (and hence one reason) behind the final outcome of the model?

What if there were multiple sets of correlative features that independently

derive the final conclusion of the system [45].

5.2 A Solution to the Challenge: BARBE

To overcome the shortcomings mentioned above, we introduce Black-box As-

sociation Rule-Based Explanations or BARBE.

Our method, unlike LIME, provides a set of rules as the explanation, where

not only do rules provide users with important features (what LIME does), but

also takes care of the associations among them (what LORE and Anchor do).

In addition, since we provide multiple rules as an explanation, we can hint on

multiple causes that have led to that decision by the system, something that

the aforementioned methods are unable to provide. Note that using a decision

tree which can be converted into a set of rules, the path in the tree leading to

the predicted label constitutes a one unique explanation.
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Figure 5.1: An instance of Glass dataset with nine features. The number in
front of each feature is the bucket number for the value of that feature in this
instance.

5.2.1 What does BARBE’s explanations Look Like?

In BARBE, a set of rules is returned as the Explanation. In addition, it is

capable of providing an ordered set of important features as an alternative

way to provide explanations. This allows the users to have the choice to look

at these two types and get a better understanding about the explanation.

Each rule, in addition to the items in its antecedent (or LHS) and the class

label, contains other information such as its confidence, support value, and

the p-value. These statistics can further contribute to the information the

user could infer from the black-box model. Ultimately, a set of features sorted

based on their importance is returned. This not only makes an alternative

way for the user to grasp the black-box model, but it also paves the way for

us (i.e., BARBE developers) to make comparisons against other methods such

as LIME.

Figure 5.2 contains an example of what BARBE outputs for the instance

shown in Figure 5.1. In this example, BARBE produces three rules in which

they not only provide important features to the users, but they also hint on

the associations among the features, further helping the user understand the

way the black-box model has to come to its decision.
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Figure 5.2: The explanation provided by BARBE for an instance of the Glass
dataset is shown in Figure 5.1. Here, feature numbers are shown for concise-
ness. The right side contains the important features ranked based on their
importance. The left side of the figure contains important rules. Each rule
includes LHS items together with the label. Besides, support score, confi-
dence score, and the logarithm of the p-value reported by SigDirect are also
presented to the user.

5.3 How does BARBE work?

A high-level representation of BARBE’s activity diagram is shown in Fig-

ure 5.3.

Figure 5.4 further illustrates the architecture of BARBE in more details.

BARBE contains two parts: 1) one part required for the whole dataset, and

2) another part processed for each instance of the dataset that requires expla-

nation.

Initially, BARBE takes advantage of the training data and creates multiple

buckets for each feature. This allows BARBE to discretize continuous features

and replace each value with the corresponding bucket number. Using this

approach, BARBE can replace all numerical features with ordinal ones.

Every time the user requests an explanation for an instance of interest,

BARBE initially creates random data points in the vicinity of the instance.

Once BARBE created these data points, it then “undiscretizes” them and

sends them to the black-box classifier for labelling. The “undiscretization”

step transforms features — that had a continuous space in the original data

point, but BARBE had transformed them into buckets in the discretization

step — back to their original form. To make such a transformation, it creates

58



Figure 5.3: A simplified version of how BARBE produces explanations for an
instance. Initially, BARBE creates a neighbourhood around the data point
containing synthetic data points. Afterwards, BARBE queries the black-box
to label instances in the neighbourhood. These synthetic data points and their
corresponding labels are then sent to SigDirect classifier to train a supervised
model. The outcome of training this model is a set of rules. The original data
point is then used to extract relevant rules from the trained model. Lastly,
BARBE extracts important features from these rules and reports them, to-
gether with the rules, as the explanation to the user.

Figure 5.4: BARBE’s architecture, and how it produces an explanation for the
requested instance. This figure exhibits the different constructing components
of BARBE in detail. The grey box on the left side of the figure shows the
part that needs to be created for a dataset while the one on the right side
needs to be produced for each data point in which the system is queried for
an explanation.
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a normal distribution for each bucket of a feature and then randomly samples

from the distribution.

This combination becomes a new training dataset for BARBE. Afterwards,

BARBE performs one-hot encoding on them to transform them into trans-

actions, the suitable data format for SigDirect, the interpretable classifier

BARBE uses under the hood. It next trains the associative classifier using

this dataset, which produces a set of rules.

While these association rules are all generally relevant to the data point —

since the training data is made of instances from the vicinity of the original

data point — the next step further narrows down the most relevant rules. As

mentioned in the previous section, BARBE is also capable of providing the

most important features. In the final step where it selects the most relevant

features from the important rules. Eventually, it decodes all the features in

the selected rules and features into the feature space of the black-box (i.e.,

one-hot decode them).

5.3.1 Discretization

The discretization step, which is based on the same step in LIME, splits con-

tinuous features into discrete ones. Our current implementation supports di-

viding continuous features into 1) quartiles, 2) deciles, or 3) multiple buckets

according to the entropy. When splitting according to the quartiles method,

we split the space of each feature into four equi-depth buckets. In decile mode,

the number of buckets increases to 10. There is no need to have access to the

training data in the first two, and only the distributions of values for each fea-

ture suffice. The entropy-based method, however, requires the training data,

including the labels, to break the feature space into meaningful buckets.

5.3.2 Neighbourhood Generation

One important step that many model-independent methods have in common

is the neighbourhood generation process (That is why they are sometimes

called perturbation-based methods). This step, together with the next, are

the fundamental parts of all model-independent frameworks. Most of these
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methods, have to rely on either creating data points in the vicinity of the

instance or assigning a higher weight to the points nearby. Unlike LIME that

benefits from both techniques simultaneously, BARBE only relies on the first

one. This is done for each feature by randomly creating a normal distribution

around the original bucket. For nominal features, we use the frequency of each

value in the training data to create the distribution, similar to the approach

adopted in LIME.

5.3.3 Interpretable model (SigDirect)

Once the discretized data points are created, they are first undiscretized based

on the bucket’s information (so the black-box model could be able to handle

them), and then sent to the black-box model to be labelled. By one-hot encod-

ing the discretized data, and combining it with their corresponding labels, the

synthetic training data is ready to be fed to SigDirect. At this point, SigDi-

rect is trained and a set of rules is returned. It is worth noting that this is

different than what LIME does. In LIME, the undiscretized data is fed to the

interpretable model (linear regression) while we take advantage of discretized

data in BARBE. Besides, LIME processes and relies on the probability scores

returned by the black-box model while we only benefit from labels.3

5.3.4 Rule Extraction

This is the step where given the trained interpretable model, BARBE extracts

pertinent rules from the set of rules that SigDirect had generated at train

time. This is achieved by exploiting “applied” and “applicable” rules. “Appli-

cable” rules are the rules that include the same feature-values as the original

instance while “applied” rules are a subset of applicable rules that their labels

must agree with the instance label from the black-box. Equation 5.1 shows

an instance of a toy dataset aiming at classifying cars as expensive or non-

expensive. This equation describes a white Porsche sports car built between

3This is, in fact, one of the advantages of BARBE that it only requires labels from
black-box models and, unlike LIME, can explain black-box models that do not provide such
probability scores.
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2010 and 2015.

colour=white & build=[2010−2015] & type=sport & brand=Porsche

(5.1)

What follows are a set of rules that could be created by a rule-based clas-

sifier. In these rules, Rules 5.2, 5.3, and 5.4 are considered “applicable” since

they all contain the same feature-values as the instance we showed earlier.

Rules 5.2, and 5.3 are also “applied” since they agree on the class label as

well. This is not true for Rule 5.4 since it does not agree on the class label.

Finally, the rest of the rules such as the ones in Equations 5.5, and 5.6 are

neither applied nor applicable rules for this instance because of the colour

features and the type feature in 5.6.

brand=Porsche =⇒ price ≥ $30k (5.2)

type=sport & brand=Porsche =⇒ price ≥ $30k (5.3)

colour=white & build=[2010−2015] =⇒ price < $30k (5.4)

colour=red & type=sport =⇒ price ≥ $30k (5.5)

colour=brown & type=sedan =⇒ price < $30k (5.6)

5.3.5 Feature Extraction

Lastly, BARBE exploits important rules to extract important features. In

this step, the user can optionally provide the system with a number k and the

system provides up to k important features accordingly. Otherwise, BARBE

provides all the important features it has found in the important rules. To

get these features, BARBE looks at the rules it extracted in the previous step

and ranks them according to the information provided by associative classifier

(i.e., confidence, support, and p-value scores).
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dataset # train # test # features # classes avg explanation size5

Glass 160 54 9 6 4.41
Wine 133 45 13 3 3.43

Hungarian 220 74 13 2 4.35
Poker 25,010 1,000,000 9 4 4.86
Breast 524 175 9 2 3.36
Image 210 2,100 19 7 3.45
Magic 14265 4,755 10 2 3.75
Vowel 742 248 13 11 2.86

Hepatitis 116 39 19 2 4.45
WPBC 148 50 33 2 3.6
WDBC 426 143 30 2 4.26

Table 5.1: Datasets used in the experiments, and some information regarding
them.

5.4 Experiments on BARBE

In this section, we discuss the settings under which we conduct many experi-

ments to evaluate BARBE in the later sections. We first introduce the datasets

we used and then discuss the approach we took to evaluate BARBE. Later,

we provide the metrics that we benefited from in our experiments. Finally, we

discuss how fidelity plays a vital role in BARBE.

5.4.1 Datasets

Since we are interested in creating a framework that could be used on any

tabular dataset, we need to fine-tune BARBE on multiple datasets to make

sure it would perform robustly on unseen ones. To achieve this, we leverage

the UCI repository [20]. We select various datasets from this repository to

conduct experiments. Table 5.1 lists the datasets we use in our experiments

and provides some insights concerning them. We use the train sets4 of these

datasets to train a decision tree representing the black-box in our experiments.

Also, we use the train sets of the first 9 datasets in the provided list to tune

BARBE (Section 5.6) while we take advantage of the test sets of all datasets

to compare against the other method (Section 5.7).

4If the dataset is not split, we randomly select 75% for training and 25% for test.
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5.4.2 Experiments Setup

As we mentioned in Section 2.4, evaluation is a big challenge in the XAI lit-

erature. We use the method described in Section 2.4 for model-independent

explainers where we replace the black-box model with a fully-transparent one.

This allows us to get the explanation from the black-box model which corre-

sponds to the ground truth data required for our experiments.

The interpretable model we leverage in our experiments is a Decision Tree

(DT)6,7. As we have discussed in previous chapters (see Section 2.4.3), we can

extract the explanation from a DT by retrieving the features present in the

path the inference algorithm uses to infer the instance’s class label.

We limit the depth of the DT to a specific number k at train time. In such

a way, we guarantee that the explanation comprises of at most k features.

Note that this does not mean there are exactly k features present in all paths

in the DT. This, however, is used to merely limit the depth of the DT. Hence,

we do observe trees that use as few as one feature to label some instances,

making the explanation very short.

5.4.3 Experiments’ Metrics

We used Precision, Recall, and Fβ-score as our metrics in the experiments. We

adopted Precision since it helps us understand the correctness of individual

features present in the explanations. In other words, it measures how many of

the features BARBE has said important are important. On the other hand,

Recall is critical to help us comprehend the coverage of the true explanation

by the one produced by BARBE. It informs us how many of the important

features are retrieved by BARBE. We take advantage of Fβ-score to combine

the two metrics mentioned above. In this metric, β is decided by the user and

implies the relative importance of Recall over Precision. An Fβ-score with

β = 2 means Recall is twice as important as Precision. Although F1-score

is a harmonic mean of the two metrics mentioned earlier and considers them

6Please note that based on our discussion in Section 2.2.1 the depth of the tree should
be limited to a reasonable number to be fully-interpretable.

7We use scikit-learn [55] for implementing the DT.

64



equally important, we utilised F0.5-score in our experiments. That is because

we believe Precision is more important than Recall : if an explanation provided

to the end-user suggests most features are salient (i.e., a case where Precision

is low but Recall is very high), the end-user is not able to trust the system

since that explanation is not insightful. If the explanation, however, includes

only a few of the features which are mostly tagged correctly as important (i.e.,

a case where Precision is high but Recall is low), then the end-user can trust

the system more as this case indicates the black-box model is focusing on the

right features.

In our experiments, we compared the explanation provided by BARBE

with the ground truth explanation obtained from the DT for each instance in

the dataset. We then calculated the metrics for each one. These metrics are

later averaged over all instances used in the experiment and finally reported

in the figures. The figures in each experiment only include three datasets

with the most observable differences, while the results for other datasets are

reported in the corresponding sections in Appendix A.

We restricted the number of instances we evaluated to only 100 from any

given dataset to speed up the evaluation. Although we randomly selected

these instances, they were identical in all experiments.

5.4.4 Fidelity to Global Model

We want to understand if the interpretable model in BARBE (i.e., SigDirect)

can correctly classify the instance or not. That is, we query the associative

classifier to see if its predicted class label matches the class label predicted by

the black-box model.8

BARBE provides an explanation only if the labels agree. Otherwise, it

does not produce any explanation. Besides, for tuning purposes, the numbers

we report for each instance in Section 5.6 (Precision, Recall, and F0.5-score)

are set to zero if the labels do not agree. This is because we want to tune

8Please note that the true label is what the black-box has predicted and not what the
dataset provides since BARBE is explaining the outcome of the black-box classifier and not
the real cause behind an event, which can be different than what the classifier has learned.
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BARBE to jointly maximize the metrics mentioned earlier, and the fidelity

score. In Section 5.7, however, we provide fidelity as a separate metric and

provide the average Precision, Recall, and F0.5-score for instances that have

satisfied the fidelity criterion.

5.5 Rank-based Comparison

Rank-based comparison is another metric we leverage in a few of our exper-

iments. In this section, we initially explain why we need it and then review

the proper metric for it.

5.5.1 Why Rank-based Comparison?

While using Precision, Recall, and F0.5-score helps us quantitatively assess the

explanations, they are not adequate. Many times, although having a set of

features as the explanation is significant, there is a difference between the first

and the last one in terms of their relative importance. For example, if features

A, B, and C are the important features in a data point (with the same order),

an explanation framework outputting them with the same order shall be given

more credit than another framework returning C, B, and A as the explanation.

To consider this fact, we want to investigate their rank within the important

features. In this way, an explanation framework that puts the most important

feature on top of the list would be distinguished from another one that barely

includes it in the explanation.

5.5.2 Rank-based Comparison Alternatives

One notable measure for comparing two lists based on their ranks is the Spear-

man’s Rank Correlation Coefficient (ρ measure). This measure takes into ac-

count the order of the features and then assigns a similarity score between

−1 and +1. The two extremes occur only if the two lists perfectly match.

Three main disadvantages of this measure for our task, however, are 1) this

measure does not work when we have uneven lists (i.e., the size of the expla-

nation provided by BARBE is different than the ground truth explanation),
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2) the same ranks should be present in the lists, and 3) it does not differentiate

features’ importance based on their rank in the lists (i.e., it is not a weighted

comparison). To resolve these shortcomings, we explored alternative metrics

developed in similar tasks. One particular research field that requires many

such evaluations is Information Retrieval (IR). A common task in IR com-

prises evaluating a given set of documents: when a user queries for a topic,

the search engine returns the most relevant documents. Initially, the search

engine assigns a similarity score (with respect to the topic) to each document

and then returns them according to their similarity score (the higher the simi-

larity score the earlier it is shown to the user). How do IR researchers know if

their system retrieves the relevant documents properly? Assuming they have

a ground truth order for documents, they should compare their list against

that ground truth to see if their system is working properly. A mismatch at

the beginning of the list must have a higher penalty than a mismatch at the

end of the list. This scenario is identical to our case where our explanation —

which in our case is a list of features — should mirror the ground truth.

One of the famous measures used in IR is Rank-Biased Overlap (RBO) [69].

This measure exploits the overlap between the two lists. One characteristic

that distinguishes this metric from others such as Spearman’s ρ is that this

is a weighted measure. Another characteristic is that it works even if some

features are present in only one ranking. Finally, it is capable of working on

uneven lists.

Equation 5.7 presents the RBO measure. This similarity measure assigns

a score between 0 and 1 when comparing two lists. In this equation, L and

S refer to the longer and shorter lists, respectively. Additionally, s refers to

the length of S while l refers to the length of L. X shows the length of the

overlap between the two lists, and p is a parameter set by the user to assign

the importance of top features.9

9We used the implementation provided in https://github.com/changyaochen/rbo in
our experiments.
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5.6 Tuning BARBE

We explore several BARBE settings, such as hyperparameter values, in this

section. To discover the best setting, we run experiments on different datasets

to determine the setting that outperforms the rest. This allows us to have a

robust framework in which the end-users does not need to tune hyperparame-

ters anymore, and can use BARBE off-the-shelf with almost no need to change

anything.

As mentioned in previous sections, many settings in BARBE allow us to

modify its architecture such as minor modifications to SigDirect (e.g., setting

the p-value threshold, or adding the early-stopping feature to it) or the way

we create the neighbourhood around the instance. We choose to start with

the parameters in SigDirect and find the best choice among them. We initially

explore the effect of different p-value thresholds in SigDirect and then examine

the impact adding early-stopping causes to SigDirect. Next, we evaluate the

effect of different sampling coefficients in BARBE among different datasets.

Afterwards, we review the impact of having a multi-class dataset compared

to a binarized one for multi-class datasets. The next experiment looks into

different rule selection strategies in BARBE. Another experiment we conduct is

in regards to improving the fidelity of BARBE. We conclude these experiments

by analyzing how taking advantage of different feature extraction methods

impact the outcome.

Here are the initial settings we use in our experiments: We first use early-

stopping in SigDirect in our experiment since it allows BARBE to create ex-

planations faster. We also use binary datasets as these are the settings that

were used in LIME. Furthermore, we take advantage of applied rules followed

by other applicable rules in the feature extraction step.
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As we mentioned earlier, we take advantage of the training sets in these

experiments to tune BARBE (however, when comparing to other explanation

techniques, we use test sets of the datasets as our hold-out sets).

Another crucial point we should emphasise concerning the experiments is

that BARBE outputs an explanation only if its transparent model (SigDirect)

and the black-box model agree on the class label of the instance. In other

words, BARBE respects the fidelity to the model and if the labels do not

agree, BARBE provides no explanation.

5.6.1 P-value Threshold in SigDirect

The only hyperparameter in SigDirect classifier [37] is the threshold set for

p-value so that if the p-value of a rule is less than the threshold, it would be

considered as a statistically significant rule. The authors of the paper set this

threshold to 0.05 since they claim this is the value commonly used in scientific

experiments. Nevertheless, we were interested to examine the consequence of

different thresholds in BARBE. If we decrease this threshold, rules created

by SigDirect would be more statistically significant, and also fewer of them

would be created. Since we are only interested in rules regarding one data

point, we believe these advantages can be very helpful for our explanations.

To verify this hypothesis, we conduct an experiment where the goal is to see

if decreasing the p-value threshold in SigDirect results in better explanations

from BARBE. We report the results in Figure 5.5 where we show that by

decreasing the p-value threshold, we gain more statistically significant rules

which eventually prompt a higher Precision among different datasets. A side

effect, however, is that it leads to creating fewer rules and thus having lower

Recall scores.

5.6.2 Early-Stopping in SigDirect

We noticed we could stop the SigDirect tree generation algorithm when it did

not add any rule after expanding a new layer in the tree10. We can terminate

10Note that we need a statistically significant node — together with some other conditions
met — to generate a new rule.
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Figure 5.5: The effect of having a lower p-value threshold on the overall Pre-
cision, Recall, and F0.5-scores. As it can be seen in the results, p-val = 5e− 8
results in the best performance among the select datasets.
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the tree generation algorithm at this point and begin the pruning step. This is

in contrast with the original algorithm, which terminated when it added no new

node after expanding a layer. We ran this modified version of the algorithm

on the same datasets as in Section 4.4.1, and noticed this modification did

not change the final rules the classifier created. This, however, did make

the training time shorter. To figure out whether we could utilise the same

approach in the explanation task, we conducted the same experiment and

compared the explanations BARBE produced in both cases. Interestingly,

we noticed a difference in the quality of the explanations, implying the rules

that BARBE had created were also different. This indicates SigDirect, in some

instances, creates additional rules in the tree even if there was no rule added in

at least one of the earlier layers. We further evaluated these rules to see if this

modification results in better explanations or worse. We present the results

in Figure 5.6. The figures reveal that applying the early-stopping approach

allows us to get a boost in Precision. We believe this is because the rules

created in later layers in the tree are sometimes “overfitting” the classifier.

Thus, an early-stopping approach like this can prevent it, eventually leading

to more precise explanations.

5.6.3 Sampling Density

As we mentioned in the previous chapter, the goal of the sampling step in

BARBE is to create a neighbourhood around the data point, so that BARBE

can later use it to train an interpretable model. For this matter, we create

a normal distribution around the bucket number of the original value for nu-

merical features. We manage the density of the distribution by introducing a

coefficient. We explore a few alternatives for this coefficient in this section. We

report our findings in Figure 5.7. A larger coefficient means the distribution is

denser, thus most synthetic data points in the sample belong to the proximity

of the original data point. A smaller coefficient, however, indicates we observe

data points that are farther away from the original data point more often.
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Figure 5.6: The effect of having the early-stopping on the overall Precision,
Recall, and F0.5-scores. As the results indicate, although the numbers are
identical in some datasets, a few datasets get a lower Precision when there is
no early-stopping.
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Figure 5.7: Various coefficients for sampling distribution can result in different
explanation accuracies. When the coefficient is large (e.g., c = 2.0), BARBE
can typically provide very precise explanations yet with low Recall. When the
density is lower, on the other hand, Recall increases while Precision drops. As
a trade-off, we decided to choose c = 1.0 as the default value in BARBE while
the quality of explanations when c = 0.5 was also noteworthy.
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5.6.4 Multi-class vs Binary Neighbourhoods

For multi-class datasets, since we are interested in explaining an instance that

has a unique label, we can transform the dataset into a binary one where the

new labels are 1) the label of the instance and 2) the others. This is called

“One-vs-Rest” in the ML literature where many classifiers such as logistic re-

gression have to transform multi-class datasets and build one such classifier for

each class label to be able to handle multi-class datasets. While transforming

a dataset into a binary one stems from a weakness in models such as logistic

regression, SigDirect is capable of handling multi-class datasets natively. De-

spite this capability, we intend to know how having these two different datasets

impacts the quality of the explanations produced by BARBE. We evaluate this

idea on various datasets. We report the results in Figure 5.8. As the figures

show, transforming the data into a binary dataset provides better results in

terms of different metrics. Despite this advantage, we decided to keep multi-

class datasets as they are. This is because it provides rules with proper class

labels on their RHS. This is especially useful when we take advantage of them

in BARBiE, the method we introduce in the next chapter.

5.6.5 Rule Selection

Once BARBE trains the interpretable model (SigDirect), it then selects the

appropriate rules from the ruleset created by the model. In this step, there

are multiple approaches to select the best rules. We can, for example, pick

only the applied rules (i.e., applicable rules that their labels agree with the

label of the instance). Alternatively, we can select the applied rules, followed

by the rest of the applicable rules. Besides, we try to take advantage of the

rest of the rules by selecting the ones that were very similar to the rest of

the applicable rules yet had one feature that has a different value than the

value in the original instance. This last one allows us to get a better Recall

score compared to the first two alternatives. We provide the results for three

different datasets In in Figure 5.9. Based on the figure, we can conclude that

applied rules give us the best performance, especially in circumstances where
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Figure 5.8: The effect of keeping multi-class datasets as they are against trans-
forming them into a “One-vs-Rest” dataset. While changing the dataset to a
binary dataset improves the Precision, it decreases the Recall.
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Precision has higher importance than Recall.

5.6.6 Feature Extraction from Rules

As we discussed earlier, BARBE provides important features as another way of

explaining the decisions of a black-box model. BARBE orders these features

according to their importance. To better determine the quality of different

strategies for feature ordering, we leverage the Rank-Biased Overlap (RBO)

metric we discussed in Section 5.5.

This is in addition to the previous metrics we have taken advantage of so

far. We report the results in Figure 5.10.

5.6.7 Improving Fidelity

We mentioned in Section 5.4.4 that if the class label predicted by any explana-

tion framework does not agree with the black-box prediction, the explanation

produced is not trustworthy. Based on this, BARBE does not produce any

explanation unless the labels agree. In this section, we propose a simple way

to improve fidelity by re-running BARBE should the labels disagree. This

method simply re-samples from the original synthetic data points and ensures

half of the selected data points belong to the target class while the rest do not.

These data points are the ones that had been created and used in the previous

try (i.e., original try as shown in Figure 5.11) and thus do not require the

extra effort of labelling by the black-box model. Another method is to make a

different distribution for data points and use that to train a SigDirect model.

This alternative approach, however, requires labelling by the black-box model.

We provide the results for our suggested method in Figure 5.11.

5.7 Comparison with Other Explainers

In this section, we compare our method against two competitive methods.

As we mentioned in Chapter 3, LIME is the most-cited model-independent

method that has been taken advantage of in different domains since its in-

troduction, and many extensions to it have been introduced. Additionally,
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Figure 5.9: Different rule selection criteria result in different Precision, Recall,
and F0.5-score. Applied rules are a subset of applicable rules that the class
labels agree with the class label of the instance. “Applied+Applicable” refers
to the case where applied rules are added first and are followed by the rest
of the applicable rules. Finally, the third reported results refer to the case
where, in addition to the applied and the applicable rules, another set of rules
are added. This new set of rules is very similar to applicable rules except that
one feature on their LHS has a different value than that of the instance. These
rules must have a different class label than the original instance.
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Figure 5.10: Different feature selection criteria result in different Precision,
Recall, F0.5, and RBO scores. “len” refers to the case where rules are sorted
according to their number of LHS items (ascending), followed by multiplication
of support and confidence scores. Finally, features are selected based on their
first occurrence in the rules (the sooner they occur in the rules, the more
important they are). The second and the third legends refer to a similar
approach except that rules are sorted based on confidence scores (descending)
and p-values (ascending), respectively. The fourth legend refers to the case
where for each feature, we sum the support score of any rule they are present in
their LHS. We then rank features according to these sums in descending order.
Overall, the fourth approach provides better F0.5, and RBO scores though the
difference is not significant.
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Figure 5.11: The fidelity scores for three different datasets are shown here. The
first approach is shown in blue. The second one (i.e., orange marker) refers to
the case where we reshuffle the synthetic data for instances incorrectly classified
by SigDirect and make sure exactly half the data points belong to the target
class. The figures show this approach benefits us in increasing the fidelity
score, eventually helping BARBE provide explanations for more instances.

Anchor [60] is another method that benefits from rules to explain the deci-

sions of a black-box model.

In Figure 5.12, we provide Precision, Recall, and F0.5-score for all data

points that the method has predicted the class label correctly. Besides, we

also provide the RBO and fidelity scores separately. We exploit the test sets

to conduct these experiments. We run each method with five different random

seeds and report the averaged numbers.

Since LIME uses a regression model as its interpretable model, we examine

its prediction score to verify the faithfulness of its model. If the score is below

1/n, where n is the number of the classes, that explanation is not faithful,

and thus we do not include that instance. Anchor, however, does not rely

on any interpretable model, and therefore, we are not able to determine its

fidelity. Consequently, we assume in our experiments that all its explanations

are faithful, and as a result, we include all instances in the evaluation.

We also report the F0.5 and RBO for all the datasets in Table 5.2 when

the sample size is 5, 00011.

11Please note that Anchor adaptively sets the number of samples required and thus this
number does not apply to it.
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Figure 5.12: Performance of LIME, Anchor, and BARBE in different datasets.
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F0.5-score RBO
dataset LIME Anchor BARBE LIME Anchor BARBE

Glass 0.736 0.534 0.796 0.777 0.287 0.796
Wine 0.554 0.656 0.680 0.314 0.484 0.416

Hungarian 0.483 0.508 0.570 0.776 0.264 0.427
Poker 0.666 0.331 0.637 0.353 0.713 0.368
Breast 0.633 0.497 0.715 0.300 0.246 0.332
Image 0.566 0.570 0.852 0.483 0.321 0.500
Magic 0.596 0.729 0.712 0.684 0.835 0.515
Vowel 0.526 0.683 0.840 0.671 0.444 0.675

Hepatitis 0.432 0.492 0.340 0.106 0.218 0.055
WPBC 0.489 0.536 0.642 0.543 0.594 0.606
WDBC 0.468 0.131 0.494 0.228 0.056 0.320

Table 5.2: F0.5 and RBO for different methods across all datasets when the
sample size is set to 5, 000.

5.8 Future Work

While BARBE can provide precise explanations as we showed, we believe it can

produce even better explanations if we leverage more sophisticated sampling

approaches. As we showed in Section 5.6.7, there are alternative approaches

that can improve fidelity, and possibly the quality of explanations. We leave

studying alternative sampling methods as future work.

Furthermore, Contrast Sets [63] is another interesting topic in Frequent

Itemset Mining (where association rules come from), that we believe can ben-

efit us in producing precise explanations. Contrast Sets learning takes advan-

tage of association rules to find the most discriminative features between two

classes in a dataset. If we apply this idea in the synthetic dataset we created

in BARBE, we can discover the most distinctive features, which is essentially

another way of producing explanations. The work of Jabbar et al. [34] is an

interesting one where they also exploit statistical significance tests in discov-

ering Contrast Sets in datasets. We can leverage that work to provide another

way of explaining the decisions of black-box models.
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Chapter 6

BARBiE: Black-box Association
Rule-Based Interactive
Explanations

As we showed in the previous chapter, BARBE can provide explanations for

individual data points. The explanations provided by BARBE are in the form

of association rules and important features. These two alternative types of

explanations allow the end-user to better understand the rationale behind a

system’s decision. Here, we intend to introduce an interactive system, Black-

box Association Rule-Based Interactive Explanations (BARBiE), which is an

extension to BARBE. This extended framework allows the end-user to deepen

their understanding of the decision-making process of the black-box model.

We only describe the capabilities of BARBiE and suggest some experiments

for evaluation. We leave the implementation and experiments as future work.

We commence this chapter by reviewing the concept of interactive expla-

nations in Section 6.1. Afterwards, we introduce BARBiE and review its

advantages over other explanation frameworks, and discuss what capabilities

it provides to end-users. Section 6.3 illustrates BARBiE with an example to

show how it allows users to interact with the system. Lastly, we conclude this

chapter in Section 6.4 where we recommend some experiments for considera-

tion to evaluate the performance of BRABiE in a quantitative way.
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6.1 Introduction

Atakishiyev et al. [4] propose different levels of explainability for XAI sys-

tems In their work, any system requires to have one or more attributes to

belong to one level. One attribute of a Level Four XAI system, the ultimate

level of explainability, is interactivity : the system needs to provide interactive

explanations to the end-user.

The question that arises is what are the interactive explanations. Miller [45]

discusses his viewpoint with an illustrative example where a system properly

answers the questions raised by the user in each iteration. In his example,

not only does the system base its answer on the question the user has asked,

but it also takes into consideration the past conversation. The authors in [4]

consider an explanation to be interactive if there are back-and-forth question

and answers between the end-user and the system. The purpose of these

dialogues is to build a deeper trust in the system. In other words, the goal is

basically to let the end-user gain a better understanding of the system (i.e.,

how the system made the decision) by further revealing its decision-making

process to them through interactions. In addition to building trust, in our

view, the interaction can also be a means to adjust or fix a model. In other

words, explainability is not only about providing explanations to make a model

transparent but also to “debug” a model. In the case of BARBE, we provide

rules with an explanation. The interaction can provide an opportunity to

adjust those rules.

Numerous AI systems have benefited from interaction to achieve the goal

of building trust. For example, authors of [56] introduced explainD in 2006.

The goal of explainD was to provide different types of explanations such as

feature importance. More significantly, explainD allowed end-users to modify

values of a few features of the instance the system was explaining (i.e., change

a feature like the “colour” from red to green) and ask for the impact it had on

the prediction and the explanation. At this point, the system would provide

them with the updated set of important features, and the new class label,

should it have changed. Their method, nevertheless, could only explain a few
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classifiers such as Naive Bayes, linear support vector machine (SVM), and

Logistic Regression.

Moreover, Chodos and Zaiane introduced ARC-UI [11] to additionally let

end-users modify values for attributes of rules a rule-based classifier used for

inference, thus enabling end-users to inject their domain expertise into the

system.

While the two systems mentioned above worked to some extent on inter-

pretable systems, the focus of recent work in XAI, however, is on explaining

black-box models.

6.2 BARBiE

BARBiE allows the user to not only change the values of important features

but also change the values for non-important ones. This is what many call

“what-if” analysis. Moreover, BARBiE allows them to find out about the

features in which modifying them results in different class labels. Finally, it

provides the user to have an “editable” classifier where through interaction,

the user should be able to inject domain knowledge into the model. We discuss

these capabilities in more detail in this section.

6.2.1 What-if analysis

As we mentioned earlier, one way to provide interactive explanations is by

allowing end-users to assess the implications of modifying feature values for

each data point. This means the explanation system should be able to provide

explanations for any new data point that resulted from a modification the

end-user made to the original data point.

Although rules are preferred over feature importance scores employed by

methods such as LIME, as we discussed earlier, that is not the only advantage

an association rule-based classifier has over sparse linear models. In a sparse

linear model such as linear regression, coefficients in the model are the only

pieces forming the classifier. Therefore, they are the only source of information

the explanation framework can profit from when answering questions of end-
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Figure 6.1: Different steps in BARBiE. Note that the purple box in step two
is the same as the purple box in step one, and both contain the ruleset created
by SigDirect.

users. As a result, LIME needs to produce a new explanation for nearby data

points as if they were independent data points, decreasing the usefulness of

interaction for users1. For a rule-based classifier such as SigDirect, however,

only a few of the rules (i.e., applied rules) it has created are what it utilises to

explain the decision of the black-box model. Hence, we can take advantage of

the whole ruleset and produce explanations for other data points (i.e., find the

applied rules for each data point and create the corresponding explanation).

Moreover, the synthetic dataset BARBE had generated was around the

original instance the user had requested an explanation for. Thus, there shall

be isolated data points that are far away from it. This indicates there may

not be any applied rule available for distant data points, and if any, they may

not be reliable rules especially given their low support scores. Nevertheless,

if BARBiE determines its explanation for that data point is not reliable, it

can resample and provide the appropriate explanation ultimately (i.e., run

BARBE over the new data point).

In other words, if the end-user is curious to comprehend what happens if

they alter one or more features in a data point the system has already ex-

plained, it can instantly provide the proper explanation without doing extra

1In our view, this would not count as an interactive explanation anymore.
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computations such as labelling a new synthetic dataset2. This is because the

system already has the required rules to explain the new data point provided

it is not far from the original one. Figure 6.1 illustrates these two different

situations. In the first step, BARBiE calls BARBE and provides the appro-

priate explanation. Afterwards, it exploits the same trained SigDirect model

to provide explanations for data points that are in the vicinity of the original

point to be explained. If the user requests explanation for data points that are

far, however, it would have to call BARBE again to sample another subspace

(step one).

6.2.2 Counter-factual examples

One more interesting question some meticulous users would ask a system is

regarding data points similar to the original instance yet with different class

labels. These are, basically, data points that are very similar to the original

one (most features have the same values) but the class labels are different.

Reviewing these data points would allow end-users to know what changes

they need to make to the data point to alter the class label. Moreover, it helps

them get a better insight into the black-box model. Researchers use the term

“counter-factual” for such examples.

As we mentioned in Section 5.3.2 BARBE creates synthetic data points

in the vicinity of the instance. It then “undiscretizes” them to subsequently

label them using the black-box model. The “undiscretized” data points that

have different labels than the original data point are counter-factual examples.

BABRiE calculates a distance score with respect to the original instance for

each data point and then sorts them according to the score. Consequently, the

end-user can observe the counter-factual examples in an ordered list where the

first instance is the closest one to the original data point. Besides, BARBiE

generates the appropriate explanation for that data point (according to the

way we mentioned in the previous section) as an additional piece of information

for the user, further helping them understand the new data point. The expla-

nation for such counter-factual examples, containing a set of rules, helps the

2This may not be possible in some circumstances.
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Figure 6.2: A proposed architecture for editable classifiers. In this new classi-
fier, any black-box model could be used under-the-hood.

user not only understand which features were significant in the modification

of the class label but also what associations exist among the features.

6.2.3 Editable Classifiers

With BARBE, we used rules to explain the decisions of a black-box model.

Additionally, we guaranteed the fidelity of our system by enforcing it to have

the same class label as the black-box model. We can leverage these two facts

and have a new editable classifier which is based on the current black-box

model. Unlike “readable” classifiers that we cannot change once they are

trained, we can modify the inference behaviour of editable classifiers directly

any time we desire. Note that this is different than online learning where the

user can update the model by using new data points. In editable models,

however, the user injects their knowledge into the system directly, without

requiring new data points.

The new classifier illustrated in Figure 6.2 contains a pipeline where once

the black-box model has completed its inference, BARBiE is executed to get

the corresponding explanation. At this point, the rules in the explanation are

compared with the domain knowledge that exists. If the domain knowledge

contradicts any of those rules, a modified version of rules (which are based

on the domain knowledge) are executed in SigDirect to obtain the new class

label. Note that since the SigDirect model in BARBE was faithful to the

initial model, as we had guaranteed so, the new label will also be faithful.

The domain knowledge is in the form of rules which are created by a domain
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expert. Additionally, the user can analyze the output of the classifier (which

includes an explanation) and if needed, define new rules to modify the system’s

behaviour, provided they are an expert in the domain. Consequently, the

classifier is capable of detecting complex patterns in the data (as it incorporates

a black-box model), yet domain knowledge could also be injected into it by a

domain expert should the expect want.

6.3 Example of Interaction with BARBiE

To further demonstrate how BARBiE can help users by interactively explaining

the decisions of a black-box model, we provide an example in this section. The

example, illustrated in Figure 6.3, is about a toy dataset where we want to

classify used cars as cheap or expensive according to some of their features such

as year they are built, colour, make, and model. In the beginning, there is a

black 2010 Toyota Corolla car classified by the black-box model as cheap. The

user is interested to know why the model has predicted this car as cheap. As a

result, they ask for an explanation from BARBiE. The explanation framework

explains this instance by providing the relevant explanation. In the second

and the third iterations, the user is interested to know how the class labels

and the explanations would differ if the colour or the model and the make of

the car were different. Then, BARBiE provides the appropriate explanations

for these two instances without needing to run BARBE under-the-hood as it

is sufficient to extract the relevant rules from the ruleset created earlier. The

last question the user may ask is regarding a very similar car to the black 2010

Toyota Corolla but with a different class label. BARBiE looks for cars with

minimum modifications yet with a different label. The explainer achieves this

by searching through the synthetic instances labelled by the black-box model

it had created for explaining the original car. It, thus, does not need to query

the black-box model again in this step either.
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Figure 6.3: This figure presents an example of how BARBiE interacts with
end-users. In this toy example, the user asks why the black-box has classified
the black 2010 Toyota Corolla as cheap. BARBiE provides the correspond-
ing explanation in the form of rules and important features. Then, the user
modifies the colour feature of the instance and then requests prediction and
its explanation. In the third step, the user changes the model and make of
the car. Afterwards, BARBiE provides the appropriate explanation, together
with the class label obtained from the black-box model. Finally, in case four
the user requests a similar car to the one it had queried initially in which
is not cheap anymore (i.e., counter-factual example). At this point, BAR-
BiE suggests a black 2010 Toyota Camry, which is classified expensive by the
black-box model, yet is similar to the one the user was requesting.
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6.4 Wrap up

As we discussed in the previous section, since the initial sample is created

around the original data point, BARBiE can explain the nearby data points

without requiring to run BARBE again. In other words, we can find the appro-

priate applied rules in the ruleset for data points up to a known distance while

explanations for points beyond that distance are not accurate. Furthermore,

applied rules for data points that are even closer than the distant ones may

have low support scores. BARBiE cannot explain these data points properly

with the trained SigDirect model. Determining the maximum distance BAR-

BiE can provide reliable explanations can be the objective of an experiment. In

this experiment, we begin from the original data point and gradually increase

the number of modified features (compared to the initial values), and compare

the produced explanations against the ground truth data, and observe how

the quality of the experiments deteriorates.

Another set of experiments can depend on humans to perceive how BAR-

BiE benefits them to deepen their trust in the predictions of the black-box

model. To evaluate the helpfulness of BARBiE, one can, for example, measure

the satisfaction of users when provided with BARBiE explanations, compared

to random explanations. Another experiment can examine how providing ex-

planations for an accurate black-box model can help users distinguish it from

a random classifier.
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Chapter 7

Conclusion

The field of eXplainable Artificial Intelligence (XAI) has attracted huge in-

terest in recent years. Many researchers have concentrated on introducing

different explanation frameworks that provide explanations for different Deep

Neural Network (DNN) architectures. Although these methods may be capa-

ble of performing reasonably well in terms of accuracy, they all are limited to

specific architectures in DNNs. Ribeiro et al. [59] introduced LIME as a frame-

work that provides explanations for any black-box model. While they claimed

LIME was completely model-agnostic (i.e., users could apply it on any model),

their method requires the black-box model to provide a probability score for

each class. Additionally, the quality of the explanations LIME provides and

how it performs across different datasets remained an open problem. Further-

more, they provided explanations in the form of feature importance scores,

where the scores were not necessarily useful to the users.

In this work, we reviewed LIME in Chapter 3 in details, and then conducted

a few experiments on it. We demonstrated that the quality of the explanations

produced by LIME varies across different datasets. Additionally, we showed

how selecting different discretization strategies in LIME results in different

outcomes with no single winner.

In Chapter 5, we introduced Black-box Association Rule-Based Explana-

tion (BARBE), the main contribution of this work that works on tabular

datasets. BARBE is a model-agnostic explanation framework that provides

highly precise explanations in the form of rules, in addition to an ordered set of
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important features. These rules can help users not only identify features that

played a critical role in the decision-making process of the black-box but also

notice the associations among these features. Unlike LIME, however, BARBE

can handle any black-box classifier and does not depend on the probability

scores produced by some classifiers. In contrast with LIME, we defined a

faithfulness measure for BARBE and directly verified its fidelity concerning

the black-box model. We used Precision, Recall, and F0.5-score to evaluate the

explanations produced by BARBE on multiple datasets. We showed BARBE

beats both LIME and Anchor [60] in most datasets in terms of F0.5-score.

Interestingly, BARBE outperforms Anchor in not only F0.5-score, but also

Precision in most datasets, even though Anchor depends on a high precision

rule to explain an instance.

We took advantage of Ranked-Biased Overlap (RBO) [69] to compare the

order in which features were ranked in different explanation frameworks. We

demonstrated through many experiments that BARBE bests both LIME and

Anchor in this metric as well.

Moreover, we introduced Black-box Association Rule-Based Interactive Ex-

planations (BARBiE) in Chapter 6 as an extension to BARBE. BARBiE allows

users to receive interactive explanations in the form of “what-if” analysis, in

addition to counter-factual examples. These interactive explanations allow the

user to ask BARBiE what happens if they modify the value of one or more

features. BARBiE would respond by showing how such changes would affect

the class label prediction and the explanation. These two allow the user to

grasp the underlying decision-making process of the classifier, helping them

gain a deeper trust in the system.

As we mentioned in Section 5.8, exploring the concept of Contrast Sets

and applying it to black-box models to extract explanations is an interest-

ing approach that we leave as future work. In addition to that, constructing

the appropriate sample, in our view, plays a vital role in producing the right

explanation. Although we explored one way to construct the neighbourhood

in this work, other strategies such as the Genetic Algorithm may lead to im-

proved results. Finally, modifying BARBE and BARBiE to make it capable of

92



processing other data types (e.g., text, images) is another direction that can

extend this work.
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Appendix A

Other Experiments Figures

In this appendix, we provide the results of experiments we conducted to tune

BARBE for all datasets in the next sections. Each section contains the results

for one experiment. The last section contains the results for the experiments

conducted to compare BARBE against LIME and Anchor, the two competing

approaches.
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A.1 P-value Threshold in SigDirect

Figure A.1: The effect of having a lower p-value threshold on the overall
Precision, Recall, and F0.5-scores.
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Figure A.1: The effect of having a lower p-value threshold on the overall
Precision, Recall, and F0.5-scores.
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A.2 Early-Stopping in SigDirect

Figure A.2: The effect of having the early-stopping on the overall Precision,
Recall, and F0.5-scores. Note that we did not continue the experiment for
pval=5e-2 on Hepatitis dataset as it was slow and results were not promising.
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Figure A.2: The effect of having the early-stopping on the overall Precision,
Recall, and F0.5-scores.
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A.3 Sampling Density

Figure A.3: Various coefficients for sampling distribution can result in different
explanation accuracies.
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Figure A.3: Various coefficients for sampling distribution can result in different
explanation accuracies.
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A.4 Multi-class vs Binary Neighbourhoods

Figure A.4: The effect of keeping multi-class datasets as they are against
transforming them into a “One-vs-Rest” dataset.
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Figure A.4: The effect of keeping multi-class datasets as they are against
transforming them into a “One-vs-Rest” dataset.
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A.5 Rule Selection

Figure A.5: Different rule selection criteria result in different Precision, Recall,
and F0.5-score.
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Figure A.5: Different rule selection criteria result in different Precision, Recall,
and F0.5-score.
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A.6 Feature Extraction from Rules

Figure A.6: Different feature selection criteria result in different Precision,
Recall, F0.5, and RBO scores.
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Figure A.6: Different feature selection criteria result in different Precision,
Recall, F0.5, and RBO scores.
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A.7 Comparison against other methods

Figure A.7: Performance of LIME, Anchor, and BARBE in different datasets.
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Figure A.7: Performance of LIME, Anchor, and BARBE in different datasets.
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Figure A.7: Performance of LIME, Anchor, and BARBE in different datasets.
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