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Abstract

A significant source of signal degradation in wireless systems is multipath fading. Fad

ing can be described stochastically, most often as a Rayleigh process. The multivariate 

Rayleigh is unknown or intractable, a fact which has motivated research into modeling the 

multipath fading process with Markov chains. The amplitude-based finite state Markov 

chain has been explored as a fading channel model in a wide number of papers in the liter

ature. It has been found to accurately model the first-order statistics of the fading channel, 

but not the autocorrelation function. In order to improve on the limitations of the amplitude- 

based Markov chain model, a new state-space is studied in detail, one that is based on both 

the amplitude and rate-of-change of the fading process. This new state-space is used as the 

basis for Markov chain models of the Rayleigh fading process, as well as the underlying 

complex Gaussian process. It is found that Markov chains based on the new state-space 

offer significant improvements over the amplitude-based state-space of previous models.
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Chapter 1

Introduction

1.1 Introduction

People don’t like being tethered down by their communications devices. This desire for 

freedom of movement has resulted in the increasing popularity of wireless communications 

products, from older cordless telephones through to the current cellular technology and 

wireless internet revolution. Because of wireless technology, people are communicating in 

ways that they could only have dreamed of in the past.

The increasing usage of wireless products creates interesting problems for wireless en

gineers. Wireless spectrum is a limited resource, so as the demand for wireless products 

increases, engineers must find ways to allow for more products to use the available spec

trum without causing any degradation in the quality of communications offered. Along 

with the increasing number of devices making use of the wireless spectrum, users are de

manding more in the types of wireless services offered, such as wireless internet access 

and multimedia capable cell phones, both of which involve considerably more data than 

traditional voice communications. All of this means that engineers must continually work 

to make wireless communications as fast and efficient as possible.

An important step towards efficient use of the wireless spectrum is to accurately com

pensate for wireless noise. There are many sources of noise in the wireless spectrum, but

1
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one of the most significant noise sources is what is called multipath fading. Fading is the 

result of a signal arriving at a receiver via many different paths. This is possible because a 

wireless signal can be “scattered” by reflecting off of solid objects, like buildings, cars, or 

even other people. Thus, the process is also sometimes referred to as multipath scattering. 

This multipath scattering process is demonstrated in Fig. 1.1

The result of this signal scattering is that the same signal arrives at the receiver with 

different angles of arrival, time delays, and phase shifts. At the receiver, the signal can 

undergo constructive or destructive combination. When destructive combination occurs, 

the signal arrives at the receiver with low power, and is said to be in a fade. This fading 

cannot be predicted, making it a random process, which can only be described statistically.

There are two classes used to describe the type of fading experienced over a particular 

wireless channel [3]. The first is due to the time delays of the multipath signal. This 

leads to time dispersion, which causes frequency selective fading. This means that signal 

components at different frequencies will experience different fading values at the same 

point in time. If the time dispersion is small enough, then we can say that all frequencies 

experience the same fading value. This is referred to as flat fading. Throughout this thesis, 

we will be assuming a flat fading channel.

The second fading class is due to the Doppler spread, which is the broadening in fre

quency a signal can experience. This is called frequency dispersion and it leads to time 

selective fading, meaning the fading value changes over time. Time selective fading can be 

split into fast or slow fading, depending on the speed of the fading compared to the duration 

of a transmitted symbol. In this thesis, we make no assumptions about whether the fading 

is fast or slow.

Because the fading on a wireless channel can only be described statistically, mathe

matical analysis can often be difficult, or even impossible. This has lead researchers to 

propose alternative models of the fading channel. One such model is based on Markov 

chains. Mathematically, Markov chains are very simple to use, since they are completely 

defined by only one matrix and two vectors. Virtually all previous research on the subject 

has employed amplitude-based finite-state Markov chains (AFSMCs) to model the fad-

2
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ing channel, typically with little success, although some positive results have been found 

using them in automatic repeat request (ARQ) analyses. In general, though, AFSMC mod

els have failed to adequately capture the statistics of the fading channel over anything but 

short time frames. Recently, however, Bergamo, et.al. [4] proposed a new state-space for 

Markov chain modeling of the fading channel, one that includes both the amplitude and 

the rate-of-change of the fading process. They presented only a limited analysis of the 

new state-space, but their results suggest that the new state-space might be able to capture 

the fading channel statistics that the AFSMCs were unable to. In this thesis, we will be 

examining Markov chains based on this new state-space in much greater detail, studying 

whether they can improve on previous Markov chain models of the fading channel.

1.2 Thesis Outline

1.2.1 Summary of Chapter 2

Chapter 2 presents the background topics for this thesis. The background is split into 

three sections. Section 2.2 presents some basic but important statistical theory. It begins 

by discussing a series of probability distributions that will be used throughout the thesis, 

specifically, the single and multivariate Gaussian, and the single and bivariate Rayleigh dis

tributions. As we discussed in the Introduction, the goal of this thesis is to study a Markov 

chain model that includes a state-space based on the amplitude and rate-of-change of the 

fading channel. Thus, we proceed to present joint Gaussian and Rayleigh distributions that 

include the random variables and their derivatives. We conclude the first topic by presenting 

some important information about stochastic processes.

In Section 2.3 we discuss stochastic models of the fading channel. We focus particular 

attention on the commonly used isotropic scattering, omnidirectional receiving antenna 

(ISORA) fading channel model with fading amplitude modeled as a Rayleigh distribution. 

The ISORA model assumes 2-dimensional isotropic scattering, which is not aways a valid 

assumption, so we continue and present a variation of the ISORA model more appropriate

4
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for 3-dimensional isotropic scattering environments. We also briefly discuss the Ricean and 

Nakagami-m fading channel amplitude models, although they are not really considered in 

the Markov chain analysis to come.

The final background topic, Markov chains, is discussed in Section 2.4. We start by 

presenting the three elements needed to fully define a Markov chain model; the transition 

matrix P, the initial occupancy vector </>0, and the output vector f. We then discuss the 

important concept of Markov chain invariance. Statistical models of the fading channel are 

stationary, meaning their statistics only depend on the time difference between points, not 

the specific times themselves. In terms of Markov chain models, an invariant Markov chain 

will be stationary. Finally, we derive an expression for the autocorrelation of a Markov 

chain model, needed because the autocorrelation function is an important tool in analyzing 

the suitability of a Markov chain in modeling the fading channel.

1.2.2 Summary of Chapter 3

In Chapter 3, we present a survey of important literature on the topic of Markov chain 

modeling of the fading channel. As we alluded to in the Introduction, this has been a topic 

of active research by a number of researchers over the past 13 years, although the number of 

successes has been small. We start in Section 3.2 by presenting some pivotal early Markov 

chain models of communications channels, in particular, the well-known Gilbert-Elliott 

model. Though not proposed for fading channel modeling, they offer a crucial starting 

point in the development of this topic as a research area.

In Section 3.3, we present literature on the development of the Markov chain model 

of the fading channel, starting with Swarts and Ferreira [5], who were the first to propose 

a Markov chain fading channel model, through to Tan and Beaulieu [6 ], who presented 

the first real statistical analysis of the Markov chain fading channel model, and beyond. 

Though we can’t discuss every single paper in the literature that has considered this topic, 

we do discuss all the major developmental papers on the topic.

In Section 3.4, we present some papers that have made use of the Markov chain model

5
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of the fading channel in practical analyses. The applications are all in the area of data 

packet analysis, and ARQ applications appear to have the best success at achieving useful 

results using the Markov chain model.

1.2.3 Summary of Chapter 4

In Chapter 4, we begin our analysis of Markov chain models of the ISORA Rayleigh fading 

channel using the new amplitude/rate-of-change state-space. In this chapter, we propose a 

Markov chain model of the Rayleigh fading channel that is derived by first modeling the 

underlying complex Gaussian process, then transforming that model into a Markov chain 

model of the fading envelope.

In Section 4.2, we examine a Markov chain model of the ISORA Rayleigh fading chan

nel based on a first-order Markov chain model of the underlying Gaussian process. In 

Section 4.2.2, we present a method to calculate the elements of a Markov chain model 

based on the statistics of the ISORA Gaussian fading process, and in Section 4.2.3, we 

analyze the resulting model by comparing its first-order distribution and autocorrelation 

function to those of the theoretical ISORA Gaussian fading process. Based on some of the 

observations we make in this analysis, in Section 4.2.4, we present and analyze a first-order 

Markov chain model of the 3-D isotropic scattering fading model, focusing particularly on 

changes in the Markov chain model autocorrelation function when we alter the theoretical 

model under consideration. Finally, in Section 4.2.5, we present a method to transform a 

Markov chain model of the complex Gaussian fading process into a Markov chain model 

of the envelope Rayleigh fading process, and analyze the resulting model in terms of its 

first-order distribution and autocorrelation function, as before.

In Section 4.3, we examine a Markov chain model of the ISORA Rayleigh fading chan

nel based on a second-order Markov chain model of the underlying Gaussian process. In 

Section 4.3.2, we expand on the methods of Section 4.2.2 to calculate the elements of a 

second-order Markov chain model of the Gaussian fading process. In Section 4.3.3, we an

alyze the resulting Markov chain model, focusing particularly on the effects of increasing

6
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the Markov chain order, in terms of both the Gaussian model and the transformed Rayleigh 

model.

1.2.4 Summary of Chapter 5

In Chapter 5, we study a Markov chain model of the ISORA Rayleigh fading channel with 

the expanded amplitude/rate-of-change state-space, in which the Markov chain model ele

ments are calculated based directly on the statistics of the ISORA Rayleigh fading process, 

as opposed to the underlying Gaussian process, as considered in Chapter 4.

In Section 5.2, we consider a first-order Markov chain model of the ISORA Rayleigh 

fading process. In Section 5.2.2, we present a method to calculate the elements of a Markov 

chain model based directly on the statistics of the Rayleigh fading process. In Section 

5.2.3, we analyze the resulting Markov chain model in terms of its first-order distribution 

and autocorrelation function, focusing particularly on the differences between this model 

and the Gaussian envelope model analyzed in Chapter 4.

In Section 5.3, we consider a second-order Markov chain model of the ISORA Rayleigh 

fading process. In Section 5.3.2, we extend the methods presented in Section 5.2.2 to 

calculate the elements of a second-order Markov chain directly from the Rayleigh fading 

statistics. In Section 5.3.3, we analyze the resulting Markov chain model, considering the 

effects of increasing the Markov chain order on the autocorrelation function, as well as 

comparing the results to those obtained when studying the Gaussian envelope model in 

Chapter 4.

1.3 Contributions

The contributions of this thesis are as follows:

• In Chapter 2, we derive an expression for the joint distribution of two correlated 

Rayleigh random variables and their derivatives, r 2, r[, r'2).

7
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• In Chapter 3, we present a survey of important papers in the literature on the develop

ment of Markov chain models of the fading channel, as well is their use in practice.

• In Chapter 4, we propose and analyze a Markov chain model of the ISORA Rayleigh 

fading process based on a Markov chain model of the underlying Gaussian fading 

process, with an amplitude/rate-of-change state-space, using both first- and second- 

order Markov chains.

• In Chapter 5, we give precise analytical expressions for the transition probabilities of 

a Markov chain model of the ISORA Rayleigh fading process with an amplitude/rate- 

of-change state-space, in which the Markov chain model elements are calculated 

directly from the ISORA Rayleigh fading statistics.

• In Chapter 5, we perform a detailed analysis of a first-order Markov chain model of 

the ISORA Rayleigh fading process, with an amplitude/rate-of-change state-space, 

in which the Markov chain model elements are calculated directly from the ISORA 

Rayleigh fading statistics, including considering the effects of varying the number of 

rate states, as well as varying the sample spacing.

• In Chapter 5, we propose and analyze a second-order Markov chain model of the 

ISORA Rayleigh fading process, with an amplitude/rate-of-change state-space, in 

which the Markov chain model elements are calculated directly from the ISORA 

Rayleigh fading statistics, including determining which calculation method gives the 

best model for different sample spacing values.

1.4 Notation

Throughout this thesis, the probability of event A  is denoted Pr[A], and the expectation is 

E[A], Occasionally, the expectation is also denoted as (A). In general, a random variable is 

identified by a capital letter, for example X ,  while a specific value of that random variable

8
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is identified by the equivalent lowercase letter x. A probability density function (PDF) will 

be denoted by f ( x )  while the equivalent distribution function is the uppercase F(x).

A matrix will be identified by a capital letter, for example transition matrix P. It should 

be clear from the context whether a capital letter is referring to a random variable or a 

matrix. Vectors are identified in bold, like output vector f . They will usually be lowercase, 

although occasionally uppercase will be used. A scalar is denoted by a regular lowercase 

letter, such as mean signal power bo- Indices of a vector are denoted in two ways; fd and 

f [d] will both denote the d-th element of vector f. The exception to this rule is the initial 

occupancy vector </>0, where, in this case, the subscript represents time. The d-th element 

of the initial occupancy vector is denoted <j>o[d].

Throughout the literature, fading is often discussed in terms of its normalized Doppler 

frequency fo T ,  where f o  is the Doppler frequency in Hz, and T  is the sample spacing in 

seconds. In this thesis, it is more convenient to consider variations in sample spacing T,  so 

we always take the Doppler frequency to have the constant value f o  =  100 Hz. Note that 

this is simply a conceptual convenience, the results in this thesis are valid for any Doppler 

frequency. For example, if we express results for T  — 0.5e-3 and f o  =  100 Hz, these same 

results would be valid for T  — 1.0e-3 and f o  — 50 Hz.

It should also be noted that the ISORA model refers specifically to the 2-dimensional 

isotropic scattering model with an omnidirectional receiving antenna proposed by Clarke 

[7] and presented in detail in Section 2.3.2. The 3-dimensional isotropic scattering model 

with an omnidirectional antenna will be referred to as the 3-DISORA model.

9
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Chapter 2 

Background

2.1 Introduction

In this chapter, We present the background topics of this thesis. In Section 2.2, we review 

some important statistical concepts. We first discuss some useful Gaussian and Rayleigh 

distributions, then review some basic theory of stochastic processes. In Section 2.3, we 

discuss the development of some common stochastic models of the wireless fading channel, 

focusing particularly on the commonly used ISORA Rayleigh model. Section 2.4 discusses 

the use of Markov chains as statistical models, and Section 2.5 concludes the chapter.

2.2 Statistical Theory

2.2.1 Introduction

In this section, we present some statistical concepts of particular use in this thesis. Section

2.2.2 presents the Gaussian and multivariate Gaussian distributions, while Section 2.2.3 

discusses the Rayleigh and bivariate Rayleigh distributions. In Section 2.2.4, we extend all 

these distributions to include the derivatives of the Gaussian or Rayleigh random variables. 

Section 2.2.5 reviews some important concepts of stochastic processes, and Section 2.2.6 

concludes this section.

10
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2.2.2 Gaussian Distributions

One of the most frequently used statistical distributions is the Gaussian (or Normal) distri

bution. It takes is name from Carl Friedrich Gauss, a German mathematician in the early 

19th century. Random variable X  is called Gaussian if it has the probability distribution [8]

Sa{x) =  (2 .1)

where f ix  is the mean of X ,  and o \  is its variance. Sometimes, o x  is referred to as the 

standard deviation.

This definition can be easily extended to the multivariate case. Define random vector

X  =  [X1; X2, . . . ,  X n]T. It is Gaussian if it has joint distribution

/c ( x )  =  1 (2.2)
vW ’-Ae

where fi is the mean vector with ^  equal to the mean of X t, E is the covariance matrix, 

and A s =  Det[E], the determinant of matrix E. Note that covariance matrix E is made 

up of elements E^ =  Cl} — where matrix C  is the correlation matrix with elements

defined as C{j = E [XiXj].

2.2.3 Rayleigh Distributions

Another important distribution to be familiar with is the Rayleigh distribution, which takes 

its name from Lord Rayleigh, a Nobel prize winning physicist at the turn of the 20th century. 

If we define X \  and X 2 to be independent, zero-mean, equal variance Gaussian random

variables, then the envelope of the quadrature addition of them, R  =  \ /X'{  +  X f, will 

have the distribution
[ ^ -e " r2/2(Tx r  >  0

f R( r ) = \  ^  -  (2.3)
 ̂ 0 , r  < 0

where a2x  is the variance of the Gaussian random variables X x and X 2. This is the Rayleigh 

distribution.

11
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We will quickly sketch the derivation of this distribution. First, we use (2.2) to write 

the joint distribution of X \  and X 2 as

X xl+x2

' x

We then use the transformation of variables

X\ — r cos 9 

x 2 = r sin 9

fo { x " X2) = 2 ^ l e ” x ■ (2'4)

with Jacobian r  to write

_ (r cos 0)̂ ~Kr s*n 0)̂
r2/fl(r ; 6) = X -~ T e 2<Tx x r 2nax

27xo\
- r2/2a\

Finally, we get the distribution of R  by integrating out 9, which gives us

=  _ L e- r V  2a*x9 c

Clearly, R  can only take positive values, so this distribution is only valid for R  > 0.

Also of interest is the distribution of R 2. We sketch that derivation here as well. Define 

random variable 7  — R 2. Since R  must be positive, there is no ambiguity in rewriting this 

as R  — with ^  =  ^ = . Substituting this transform into (2.3), we get

/ r (7 ) =  ( v ^ > e -(V7)! / 2<4 x 1

-*■ =-7/2<t2.
2 a 2x

e

Thus, R 2 has an exponential distribution, with parameter \ j 2 a \ .

A more-or-less identical process to the Rayleigh derivation above can give us the bi- 

variate Rayleigh distribution. Define four zero-mean Gaussian random variables X \ ,  X 2,

X 3, X 4, and the envelope transformations R\ = X 2 +  X 2 and R 2 =  ■yJX2 + X 2. We

12
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require Ri  and R 2 to have marginal distributions equal to the Rayleigh distribution above, 

so it must be true that X \  and X 2 are independent and have equal variance, and X 3 and X 4 

must also be independent and have equal variance. In general, all other correlation values 

can be arbitrary, but, since this joint distribution will be used in the context of describ

ing the fading channel, Jakes [9] reports that the physical channel imposes the following

correlation constraints,

(Xl)  =  (X 2) =  (Xi)  =  (X 2) =  At (2.5a)

( X !X 2) =  (X3X4) =  0 (2.5b)

{ X iX 3) =  (X2X4) = (2.5c)

(X tX t)  = ~ ( X 2X 3) = I*. (2.5d)

By using (2.2) to write the joint distribution of X \ ,  X2, X3, and X 4, the envelope transfor

mation of variables brings us to the joint distribution

r .  fr, _  ’~ ?+ r 2 ~ 2t,1 r 2 A co s (e2 - 8 1  -$)

M r i ' r i A ’ $ 2 ) =  (2^ ( 1 W ' A >  ( 2 ' 6 )

where tan 0 =  (f  and A2 =  — . After integrating out 0\ and 02, we arrive at the bivariate^i+ " 2
Hi h

Rayleigh distribution

where / 0( ) is the modified Bessel function of the first kind of order zero given by [10, eq. 

9.6.12]
(±z2)q/oW = S^ i]T- <2-8>

2.2.4 Joint Distributions with Derivatives

Of more importance to the upcoming analysis than the distributions in the previous two 

sections are the joint distributions of Gaussian and Rayleigh random variables and their 

derivatives. In this section, we will find expressions for the joint distribution of a single

13
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Gaussian or Rayleigh random variable and its derivative, as well as two correlated Gaus

sian or Rayleigh random variables and their derivatives. The final derivation of the joint 

distribution of two correlated Rayleigh random variables and their derivatives is, to the best 

of the author’s knowledge, new.

Because assuming a general correlation structure leads to unnecessarily complex ex

pressions, the distributions derived here are derived specifically for the ISORA Rayleigh 

fading channel. As we will justify in Section 2.3.2, the ISORA Rayleigh fading process 

models fading as the envelope of a complex Gaussian process. Define Tc and Ts as the 

quadrature components of this complex Gaussian process. Allow subscripts 1 and 2 to re

fer to the components at times t and t + r, respectively. Rice [11] gives the correlation 

structure of the quadrature Gaussian components as

and Jo(') is the Bessel function of the first kind of order zero given by [10, eq. 9.1.12]

(TC1TC2) =  (TS1TS2) =g(r)  

(TC1TS2) = - ( T S1TC2) =  h(r) (2.9b)

(2.9a)

(TcX 2) = (TsX 2) =  -(T'ClTC2) =  ~{T'sxTS2) = g \ r )  

(Tcx 2) -  < t ; t C2) =  - ( t ; t S2) =  —(TsxT'c2) = h'(r) 

CK X i ) = K T 's2) =  -9"{r)

K T ' si) =  - ( T ' s X i )  =  - t i ' i r )

(2.9d)

(2.9c)

(2.9e)

(2.9f)

where

g(r) = R g (t ) =  boJo(2irfDT) 

h(r) = 0

(2 .10)

(2 .11)

(2 .12)

Expressions for g'{r) and g"{r) can be found by using [10, eq. 9.1.27] to get

g'(r) — -27TfDb0Ji(2nfDT)

g"{r) = 2n2f l b 0 (J2(2tt} d t )  -  J o ^ n f o r ) ) .

(2.13)

(2.14)

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The moments can be found by evaluating (2.9) at r  =  0 to obtain

<T2> =  (T?) = g( 0) =  b0 

(TCTS) = h( 0) =  0

(Ter e) = {TST') =  g’( 0) =  0 

(Tcr s) = ~{T'CTS) = h'( 0 ) =  0

<T'2) =  (T f) =  -g " ( 0 ) =  b2

X X )  = ~h"{ 0) =  0

(2.15a) 

(2.15b) 

(2.15c) 

(2.15d) 

(2.15e) 

(2.15f)

where 62 =  27r2 fpbo-

Since the derivative of a Gaussian random variable is itself Gaussian [12], we can 

use moments (2.15a), (2.15c), and (2.15e) in (2.2) to immediately write joint distributions

f G(Tc,T>) f a (TsX )  as

1 - T 2/2fc0 . 1f a { T X ) - T ,2/2b2 (2.16)
V27r5o v 2irb2

Thus, in terms of the correlation structure of the fading channel, a Gaussian random vari

able and its derivative are independent.

The extension to two Gaussian random variables and their derivatives is also simple. 

Define T c =  {TCl,T'Ci,TC2,T'C2\r  and T s =  [T'sl,Ts'1,TS2,T5'2]r  to be two independent 

Gaussian random vectors, each having the correlation structure given by (2.9), which also 

establishes the independence of these two vectors. Joint distributions f G{T c) and f G(T s) 

will be given by (2 .2 ), with n  = 0 , where 0  is the zero vector, and with covariance matrix

/

E =

bo

0

9(r)

0

b2

\ 9'{r) -9"{r)

9{r)

~9'{r)

bo

0

9 \r )

- f i r )

0

bo,

\

(2.17)

To find the joint distribution of a Rayleigh random variable and its derivative, we refer 

to Jakes [9], By forming f a (Tc, T', TS,T'S) = f c J X  T ' ^ f o X X s ) ,  which is true because
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of the independence of Tc and Ts, and applying the transformation of variables

Tc = r cos 9 (2.18a)

T'c = r' cos 9 — r9' sin 9 (2.18b)

Ts = r sin 9 (2.18c)

T's = r' sin 9 +  r9' cos 9 (2.18d)

we can integrate out 9 and 9' to get

/ B(r,r ')  =  (2  , 9)
00 V27T02

As in the Gaussian case, a Rayleigh random variable and its derivative are independent.

In a basically similar pattern, we can derive the expression for two correlated Rayleigh 

random variables and their derivatives. Since T c and T s are independent, we can write

fG(Tn X „ T „ X 2,Tn , Z „ T , 2X , )  =  /c (T „ )/g (T ,) . (2.20)

We apply envelope transformations

TJ - C l = 7*1 COS 9i (2 .2 1 a)

TCl =  r[ cos 9\ — ri9[ sin 9\ (2 .2 1 b)

Tx C2 = r 2 cos 92 (2 .2 1 c)

TC2 = r'2 cos 92 — r29'2 sin 92 (2 .2 1 d)

T± S 1 = r\ sin 9i (2 .2  le)

T81 — r'j sin 9\ + ri9[ cos 9\ (2 .2 1 f)

T 2 = r 2 sin 92 (2 .2 1 g)

T'
S 2 =  r2 sin 02 +  r 2f?2 cos 92 (2 .2 1h)

with Jacobian ry ^  to (2.20). After integrating out the four 9 variables, considerable algebra 

brings us to the result

M r u M )  -  ^  f EXP l~ ^ D l \ : f D 2 V )] ^  <2.224
( 2 t t )  J o  V M | 2 - c 2 M | 4
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(2 .2 2 b)
M \2  —M 14C M 22 M 2AC

y  M u c —M \2 M 24C  M 22 j  

M 1 4 M 2 2  —  M 1 4 M 2 2 M 2 4 M u M?u c N 

M 14M 22M 24 

M ^ c° 2 1wf2 -  c r n i M 14M 22M 24 —M 14M 24C M22M | 4

y  M14M24C —M14M22M24 M |4 C M 2 2 M 2 4  j

(2 .2 2 c)

where v  =  [rl5 r 2, r^. r 2]T, c =  cos 4>, s = sin <f>, M  — Det[E], and the ’s are cofactors 

of covariance matrix E (2.17) for row i and column j . This notation and derivation ap

proach is due to Rice [13], but the result in (2.22) is, to the best of the author’s knowledge, 

new.

2.2.5 Stochastic Processes

A good reference on the topic of probability and stochastic processes is the textbook by Pa- 

poulis and Pillai [8]. In traditional probability, random variable X  takes values depending 

on distribution F x(x ) =  Pr[X < x\. Stochastic processes simply introduce an element of 

time variation to this definition. Thus, a stochastic process is identified as X(t) ,  which can 

be considered a traditional random variable for specific values of time t, where the value of 

X  (t ) depends on the distribution

This is called the first-order distribution of the stochastic process and it can vary with t .

We can also consider the joint distribution of the stochastic process at two different 

times. This is called the second-order distribution and is defined as

Fx {x ' , t )=Pr[X( t )<x) . (2.23)

F x ( x i , x 2;t1, t2) =  Pr[X(fi) <  x 1 , X ( t 2) < x 2]. (2 .24)
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As in the first-order expression, this distribution can vary with and t2. These defini

tions can be extended to the n-th-order distribution, which would be defined as the joint 

distribution of the stochastic process at n different times.

To completely define a stochastic process, we need to know the n-th-order distribution 

for all values of n, x t, and t.u however, this can’t reasonably be done, in general. Thus, a 

stochastic process is usually specified in terms of its mean and autocorrelation function.

The mean fix (t) depends only on the first-order distribution of the stochastic process 

and is defined as the expected value of X  (t) via

/ OO

x f x (x;t)dx (2.25)
• O O

where /x (x ; t )  is the first-order density of X  (t) defined as

/* (« ; ,)  =  (2.26)

The autocorrelation function R x { t \ , h)  depends on the second-order distribution of the 

stochastic process and is defined as the expected value of the product X { t x)X ( t2) using

/ OO p o o

/  x xx 2f x (,xx, x 2\ t x, t2)dxxdx2 (2.27)
•OO J — OO

where f x ( x i , x 2, is the second-order density of X ( t )  defined as

t  d2Fx (x i ,x 2;t1, t 2)
Jx  (si , x 2\ tu t2) = ------- 5— ----------- . (2.28)

U X \ O X  2

A  property of stochastic processes that is important to the work presented throughout 

the remainder of this thesis is the concept of stationarity. While there are many differ

ent categories of stationarity (first-order, second-order, n-th-order), there are two types of 

particular importance, strict sense stationarity and wide sense stationarity.

A stochastic process X  ( t ) is strict sense stationary if all its statistical properties are 

invariant to a time shift of the origin. To put it another way, for any value of c it must be 

true that f x (x; t )  = f x {x\ t +  c), f x (xi ,x 2; ti, t2) = f x {xi ,x 2; t x + c , t2 + c), and so on 

for all n-th-order distributions.

Since the n-th-order distribution of a stochastic process is hard or impossible to know in 

general, strict sense stationarity can be difficult to prove. In those cases, a relaxed condition,
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called wide sense stationarity, can be used. For a stochastic process to be wide sense 

stationary, it must have a constant mean

l*x{t) — Vx (2.29)

and its autocorrelation function must only depend on the time difference r  =  t 2—ti, giving

R x ( t i , t 2) =  R x { t \ M  + t )  =  R x {r). (2.30)

Thus, a wide sense stationary process will have stationary first- and second-order distribu

tions, but may not be stationary at higher-order distributions. Any strict sense stationary 

process is also wide sense stationary, but the converse is not generally true.

2.2.6 Conclusion

In this section, we have presented some important statistical theory. In particular, Section

2.2.2 presented some useful Gaussian distributions, and Section 2.2.3 presented the deriva

tion of some important Rayleigh distributions. In Section 2.2.4, we derived expressions, 

one of them new, for the joint distributions of Gaussian or Rayleigh random variables and 

their derivatives, and Section 2.2.5 reviewed some information about stochastic processes.

2.3 Modeling the Wireless Channel

2.3.1 Introduction

Wireless spectrum is a limited resource. As the number of devices making use of the wire

less spectrum to communicate increases, it becomes crucial that these devices be designed 

to make the most efficient use of the available spectrum. An important tool in the de

sign of efficient devices is to have an accurate method of modeling the noise experienced 

over wireless channels. Wireless channel noise is random, so it is frequently modeled as a 

stochastic process.
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In Section 2.3.2, we present the ISORA model for Rayleigh amplitude fading, which 

is the fading model of primary interest in this thesis. Section 2.3.3 discusses an alternate 

model that is more appropriate for 3-D isotropic scattering environments, and Sections 

2.3.4 and 2.3.5 discuss the Ricean and Nakagami-ra amplitude fading models respectively.

2.3.2 Deriving the Fading Model

A frequently used model of the wireless channel is the model originally proposed by 

Clarke [7]. It models the wireless channel as a wide sense stationary stochastic process, 

and thus, the model is specified by stationary first- and second-order distributions. The 

first-order distribution of this model is the Rayleigh distribution, while the second-order 

distribution is the bivariate Rayleigh. In determining the autocorrelation function of the 

second-order distribution, this model assumes a 2 -dimensional isotropic scattering envi

ronment, along with an omnidirectional receiving antenna, so we refer to it as the ISORA 

model for Rayleigh amplitude fading.

Based on field recordings of the amplitude variation of the envelope of a signal propa

gated over the wireless channel, Jakes [9] makes the assumption that at any point a received 

signal consists of a number of horizontally traveling plane waves, where both amplitude and 

angle of arrival are random, and the phases of the waves are independent of the amplitude 

and uniformly distributed from 0 to 2tt. Under this assumption, for a vertically polarized 

transmitted signal, the electric field component can be written as

N

(2.31)
n = l

or as

E z =  Tc{t) cosu>ct — Ts(t) sino;cf (2.32)

where
N

(2.33)
71—1

N

Ts(t) =  Eo ^ 2  Cn sm(ujnt + (j)n). (2 .34)
n =  1
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For large N, the central limit theorem can be used to state that at any value of t, Tc(t) 

and Ts(t) are approximately uncorrelated, zero-mean Gaussian random variables with equal 

variance bo = 3E q/4, assuming an omnidirectional receiving antenna. So, Tc(t) and Ts(t) 

have distributions fa{Tc) and f c (T s) respectively, where fo ix)  is the Gaussian distribution 

(2.1) with variance a \  — bo, the mean signal power. Specifically,

f G{x) =  - 7L = e - x2/2bo. (2.35)
K J V2^E>

The envelope of Ez is R  — \ /T }  +  Ts2. We saw in Section 2.2.3 that the envelope of 

the quadrature addition of two independent zero-mean, equal variance Gaussian random 

variables has the Rayleigh distribution (2.3). Since the variance of Tc and Ts is bo, R  has 

the distribution /
. e - r 2/2b0 r > Q

/ rW  = 60 ' “  (2.36)
0 , r  <  0

which has mean /j,r — ^7ib0/2 and is plotted in Fig. 2.1. Thus, for a sufficiently large 

N (i.e. high scattering environment), the amplitude of a received signal undergoes fading 

with a first-order Rayleigh distribution. This distribution doesn’t depend on time t, so the 

first-order model of the fading channel is stationary.

Next, we find an expression for the autocorrelation of the wireless channel. In [7] 

and [9], under the assumption that the transmitted signal is vertically polarized, undergoes

2-D isotropic scattering, and is received by an omnidirectional antenna, the power spectra 

of Ez is found to be

\  j f o  ; , , 3 ’ f c ~  S d <  !  <  f c  +  I d

Se,U) = I  E V r t )  (2.37)
( 0 , otherwise

where f c is the carrier frequency and f n  is the maximum Doppler frequency, both in Hz. 

This spectrum is plotted in Fig. 2.2.

We previously saw the complex Gaussian correlation structure for the fading channel, 

due to Rice [11], as (2.9) in Section 2.2.4. The specific expressions for the autocorrelation, 

g(r), and cross-correlation, h(r), of the quadrature components of the complex Gaussian
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Fig. 2.1. Rayleigh PDF.
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Fig. 2.2. Power spectra of the electric field component.
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process are calculated in terms of the power spectrum using equations

r f c + fnr j c ~ r j D

9 ( T) — /  S Ez( f )  COS2 n ( f  -  f c j r d f  (2.38)
J f c - f D

r f c + f D

h ( r ) =  S Ez( f ) s m 2 T v ( f  -  f c) r d f .  (2.39)
J f c - f D

From these, the autocorrelation and cross-correlation can be found to be

g(r) = R g (t )  =  £>0Jo(27t/d t)  (2.40)

h(r) = 0 (2.41)

where J0(-) is the Bessel function of the first kind of order zero (2.12).

In [14], it is shown that these correlation values can be used to find the autocorrelation

of the envelope R  to be

R r (r )  = ^ 2-Fi ( - 5 , - i ;  1 ; ( 2 . 4 2 )  

where 2^1  (•, •; S •) is the Gaussian Hypergeometric function defined as [10, eq. 15.1.1]

p  (3 h. -■ -A r (c) r (a +  g)r (& +  g) zq (2 at.)
2 i( ’ ’ ’ ) r ( a ) r ( 6 ) ^  r (c  +  9) q\ ( }

and the gamma function T(z) is given by [10 , eq. 6 .1.1]

P O O

r(z )  =  / t ^ e ^ d t ,  Re[z} > 0. (2.44)
Jo

Since (2.42) only depends on time difference r , the ISORA model of the second-order 

distribution of the fading channel is stationary.

So, the ISORA Rayleigh fading model of the wireless channel is specified in two ways. 

First, in terms of the independent Gaussian quadrature components Tc(t) and Ts(t) via 

first-order distribution (2.35) and autocorrelation (2.40), or in terms of the Rayleigh fading 

envelope R(t)  with first-order distribution (2.36) and autocorrelation (2.42). Both specifi

cations will be used throughout this thesis.
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2.3.3 3-D Scattering Model

The ISORA model discussed in the previous section assumes 2-dimensional isotropic scat

tering with no line of sight (LOS) between the transmitter and receiver. This model is 

most appropriate for outdoor urban environments, for example, modeling the fading expe

rienced by a receiver in a car driving down a city street or a by person walking down a 

sidewalk. However, in some environments, particularly indoor, a 3-dimensional scattering 

assumption is much more appropriate.

Like the ISORA model, the received signal is modeled as a complex Gaussian process 

with independent, zero-mean, equal variance quadrature components. Clarke and Khoo 

[15] derive the Doppler spectrum and autocorrelation function in the case of 3-D isotropic 

scattering, assuming an omnidirectional receiving antenna. They find that the Doppler 

spectrum is flat for f c — f o  <  /  <  fc + I d and zero outside this range. This leads to the 

3-D isotropic scattering model autocorrelation expression

g(r) = fe0sinc(27r/Dr)  (2.45)

where the sine function is defined as

. . f  1 , x  =  0 
sine (re) =  < . (2.46)

I , otherwise^ X  '

This model of the second-order distribution of the fading channel will be referred to as the

3-DISORA model.

Fig. 2.3 shows the 3-DISORA autocorrelation and the traditional ISORA autocorrela

tion. While similar in shape, the 3-DISORA model’s oscillations lag behind those of the 

ISORA autocorrelation. It also decays faster than the ISORA model.

2.3.4 Ricean Fading Model

When the signal received by an antenna is made up of a high number of uniformly scattered 

signals, the first-order distribution of the fading envelope can be modeled as a Rayleigh 

distribution, as we saw in Section 2.3.2. The Rayleigh fading model is no longer valid
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Fig. 2.3. 3-DISORA model autocorrelation compared to ISORA model autocorrelation.

when the received signal has a significant LOS component. Intuitively, we would expect 

that a dominant LOS component in the received signal would result in fades that are less 

deep than those seen in the Rayleigh fading model, since the scattering makes up a smaller 

component of the received signal.

Parsons [16] gives the joint density function of the envelope and phase of a scattered 

signal with dominant component rs as

f(r,  6)
2 2j* r -i-rg —2rrs cos 9

27r bn
(2.47)

(2.48)

By integrating out 9, we get the density of the envelope expressed as

where I0(-) is the modified Bessel function of the first kind of order zero (2.8). This prob

lem is equivalent to the sinusoidal wave plus random noise examined by Rice [17], so 

(2.48) is referred to as the Ricean distribution, making this the Ricean model of the first- 

order amplitude fading distribution.
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Fig. 2.4. First-order distribution of the Ricean channel model as parameter K  increases.

In the literature, the Ricean model is typically described in terms of the K  parameter, 

defined as

K  =  (2.49)
zoo

which can be interpreted as the ratio of the power in the dominant LOS component to 

the power in the scattering component. Note that the Rayleigh distribution is a particular 

instance of the Ricean distribution, when K  =  0. Fig. 2.4 shows the Ricean density 

function for different values of K.  As expected, as K  is increased, the probability that the 

envelope amplitude r is large increases, so there is less chance of a fade occurring, and the 

fades that do occur aren’t as deep.

When used in practice, a value for the K  parameter must be estimated to give the best 

match to the fading channel being modeled. The subject of K  parameter estimation has 

been studied in [18], [19], [20], and [21] among others.
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Fig. 2.5. First-order distribution of the Nakagami-m fading channel model for different 

values of parameter m.

2.3.5 Nakagami-m Fading Channel

The Rayleigh amplitude fading model is only appropriate when the received signal is made 

up of a large number of uniform scatters. A distribution that can model a wider range of 

fading conditions is the Nakagami-m distribution. Empirical studies have shown that this 

distribution is appropriate for modeling the fading channel [22], [23]. The density function 

of the Nakagami-m distribution is [22]

2 _  2 m - \ p - r a r 2/Q  r  >  f)
m) I n ) r e > r — u

r  < 0

where 0  is the second moment, fl = E[i?2], m is the fading figure, defined as

f) 2 1

171 ~  E [{B? -  ft)2] ’ m ~ 2

(2.50)

(2.51)

and T( ) is the Gamma function, defined by (2.44). A plot of the Nakagami-m distribution 

for various values of parameter m is shown in Fig. 2.5. Note that when m  =  1, the
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Nakagami-m distribution is the same as the Rayleigh distribution, and when m  =  it is a 

one-sided Gaussian distribution. As m is increased, the probability of envelope r  being in 

a fade decreases, so the Nakagami-m model is appropriate for fading environments where 

the fade depth isn’t as deep as predicted by the Rayleigh model.

Like the Ricean channel model, when the Nakagami-m model is used in practice, a 

value for the m parameter must be estimated. The subject of m parameter estimation has 

been studied in such papers as [24] and [25].

2.4 Markov Chains

2.4.1 Introduction

A Markov process is a simple stochastic process where the outcome at any instant in time 

depends only on the outcome in the preceding time instant. In other words, if we know 

the present state of a Markov process, the past will have no influence on the state it will 

be in at the next time period. The Markov process takes its name from Andrej Andreevic 

Markov, who introduced the discrete-time, finite state version, called a Markov chain, at 

the turn of the 20th century. Though later extended to include countably infinite states, we 

will be focusing on the traditional finite-state Markov chain in this section and throughout 

the remainder of this thesis.

In Section 2.4.2, we identify the elements necessary to fully define a Markov chain 

model. Section 2.4.3 discusses the important concept of invariant probabilities of a Markov 

chain, and Section 2.4.4 presents the derivation of an expression for the autocorrelation of 

a Markov chain, which will be an important tool in the analysis of Markov chain models of 

the fading channel to come in later chapters.

2.4.2 Markov Chain Model Elements

In this section, we present some basic discussion of the elements needed to define a Markov 

chain model of a random process. Detailed treatments of Markov chains and their applica-

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tions can be found in such sources as [8], [26], [27], [28], and [29].

By definition [26], the stochastic process X k is a Markov chain if, for any discrete time

k,

Pr[Xfc =  ik\Xk-i = ik-i, ■ • • ,X i  = %i , X q =  io) =  Pr[X*. =  ik\Xk- i  = ik-i] (2.52)

where ik is the state at time k. So, the probability of entering state i k at time k depends 

only on the state at time k — 1. The history of the Markov chain prior to that point has no 

influence.

Assume that state-space S  is made up of N  states, S  = { s i , . . . ,  s^}-  As a notational 

convention, we will interpret X k =  j  to mean the same as X k = Sj. Allowing the index to 

represent the state will simplify the notation. Define a time homogeneous Markov chain to 

be one in which

Pr[Xfc =  =  i] =  p{i,j)  (2.53)

where the transition probability does not depend on k. All Markov chains considered here 

are of this type.

The first Markov chain model element we define is the N  x N  transition matrix P, 

where the element at row i and column j ,  Pij, is defined by (2.53). Transition matrix P  

identifies the probabilities of all possible transitions the Markov chain can make. Since the 

elements of the transition matrix are probabilities, it must be true that 0 < Pl3 < 1. Also, 

all row sums of P  must equal 1 , since

N  N

=  E  p r [ x * = j p a - i  =  i]
jz= 1 j= i

_  y > Pr[Xk = j , X k_1 = i]
Pr[Xfc_i =  i]

=  Pr[Xfc_i =  i) _
Pr[Xfc_! =  i]

using the Total Probability Theorem [8 ], since the sum from j  — 1 , . . .  , N  represents a 

complete partition of the state-space.
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The second element needed to define a Markov chain model is called the initial occu

pancy vector, and is denoted by (f>0. This vector represents the distribution of the Markov 

chain at time 0. Accordingly, we set

<Md] =  Pr[X0 =  d] (2 .5 4 )

where d is the vector index. Since it represents a probability distribution, the sum of all 

elements of <fr0 must equal 1.

By initializing the Markov chain with probability vector <j>o, the distribution at any time 

k can be expressed as

c/>kT = (f>oTP k. (2.55)

To prove this, we first prove that Pr[Afc =  j \Xo — i\ = P k, which can be proven by 

induction. To do this, we first find that

N

Pr[X2 =  j \ X Q = i} = J 2  PrtX 2  =  =  *1
9=1
N

=  5 > r[X L  =  q\X0 = i]Pr[X2 =  j \ X x = q ,X 0 = i]
9=1
N

= ^ P r [ A x -  q\X0 = i]Pr[X2 =  j \ X ,  =  q]
9=1
N

= \ ' P P/  j 1 qj 
9=1

=  P.2..U
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Now, assume the expression is true for k — 1. Then,

N

Pr[Xk = j \ X 0 = i] = '$2 Pr£X* =  •?’ Xk~l =  = *1
9=1
N

=  J > r [ X fc_! -  q\X0 =  i]Pr[X* =  j \ X k^  = q ,X 0
9=1
N

= ^ P r [ X fc_! -  q\X0 =  i]Pr[Xfc =  j \ X k—\ = q]
9=1
N

— p k~l p  .
/  j *9 9.7
9=1

_  p k
n"

Now, we can examine (2.55). The d-th element of 4>qTP k can be written as

N  N

=  £ > [ * < )  =  *1̂  =  d\Xa =  S1
i= 1 
N

=  ^ pr[^o = i , X k = d]

i = 1 i = l
N

i= 1

=  Pr[Xfc =  d] =  0 fc[d]. (2.56)

Thus, given 0 O and P , the distribution of the Markov chain at any time k can be found 

using (2.55).

The final element needed to define a Markov chain model is vector f , which we call the 

output vector. The output vector defines the value of the Markov chain in each state of the 

state-space S. Specifically, f [d] will represent the value of state sri-

By computing values for the transition matrix P , initial occupancy vector <fiQ, and out

put vector f , a Markov chain model of a stochastic process will be completely defined.

2.4.3 Invariant Probability

An important property of Markov chains for the present work is the invariant probability 

property. In simple terms, a probability vector 7r is called invariant over transition matrix
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p  if

7Tr  -  7tt P. (2.57)

The invariant vector 7r represents a probability distribution that doesn’t change after one 

time period. Mathematically, it can also be viewed as the left eigenvector of matrix P  

corresponding to an eigenvalue of 1 .

If the initial occupancy vector <po is chosen equal to the invariant vector, then the first- 

order distribution of the Markov process will remain unchanged at all time instants. In this 

case, the Markov process is referred to as stationary.

2.4.4 Autocorrelation

In this section, we derive an expression for the autocorrelation of a Markov chain model. 

This is a necessary tool in the analysis of fading channel models performed in later chapters.

Recall from Section 2.2.5 that the autocorrelation of a stochastic process is the expected 

value of the product X { t \ ) X { t 2) at times t \  and t 2. In the case of a Markov process, 

the times are discrete values ki and fc2. Also, random variables and X ka represent 

states, not values of the states, so output vector f  must also be included, resulting in the 

autocorrelation of a Markov chain being expressed as

N  N

f  [■£&! ] f  [*t'fc2 ] ^ t -[ A ) ; i  Xj t l , X ^  *r£2 ]

x k l =0 Xfc2 = 0

N  N

= E E f[,]f[®]pr[x*. = *>**=«]
1=0 7= 0

N  N

1=0 7=0 

N  N

1=0 7=0

If we assume that <f>o is invariant over transition matrix P,  this can be further simplified to

E[f(**,)f(jrte)] = EEWtoWW'l
1=0 7 = 0
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where k =  k2 — k\. If we define a  =  f . * <f>0 to be the element-by-element multiplication 

of f  and (j>o, and set b  =  f, then we can write the final expression for the autocorrelation 

of a Markov chain as

E[f(Xkl) f ( X k2)} =  R(k)  =  aTP fcb. (2.58)

This expression is similar to the autocorrelation expression used by Tan and Beaulieu [6 ], 

but generalized to be valid for any invariant <j>0, not just equiprobable ones.

2.5 Conclusion

In this chapter, we presented the background material necessary for the remainder of the 

thesis. In Section 2.2, we discussed some useful statistical theory concepts. Single and 

multivariate Gaussian distribution expressions were shown in Section 2.2.2, and the single 

and bivariate Rayleigh distributions were derived in Section 2.2.3. All these expressions 

were expanded to the joint distributions of Gaussian or Rayleigh random variables and their 

derivatives in Section 2.2.4. Section 2.2.5 then discussed some important information on 

stochastic processes.

In Section 2.3, we presented the development of some of the common statistical models 

of the wireless fading channel. Section 2.3.2 discussed the development of the frequently 

used ISORA Rayleigh fading model, and Section 2.3.3 expanded this model to be more 

appropriate for 3-D isotropic scattering environments. Section 2.3.4 detailed the Ricean 

fading channel model, which models wireless channels with a dominant LOS component, 

and Section 2.3.5 discussed the Nakagami-m channel model, which can model a wider 

range of fading conditions.

The final important background topic was Markov chains, presented in Section 2.4. 

Section 2.4.2 presented the three elements necessary to define a Markov chain model. Sec

tion 2.4.3 discussed the important concept of invariance, and an expression for the autocor

relation of a Markov chain was derived in Section 2.4.4.
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Chapter 3

The History of Markov Modeling for 

Fading Channels

3.1 Introduction

The modeling of communications channels with Markov chains is an idea that has been 

studied in the literature for many years. As far back as the 1960’s, researchers such as 

Gilbert [30] and Elliott [31] were proposing Markov chains as models for burst-noise over 

wireline and fixed radio channels. Research into modeling general wireless channels with 

Markov chains is more contemporary, with the first papers on the subject appearing in the 

literature in the early 1990’s.

This chapter presents a survey of the literature on the subject of Markov chain modeling 

of wireless channels. In Section 3.2, we discuss some of the earliest papers on the subject, 

in particular the well-known Gilbert-Elliot model and extensions by Fritchman [32]. Sec

tion 3.3 surveys the literature on Markov chain modeling of the fading channel, and Sec

tion 3.4 discusses some papers that have employed Markov chain fading channel models in 

practice. Section 3.5 concludes this chapter.
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3.2 Early Markov Chain Models

3.2.1 Gilbert-Elliott Model

Gilbert [30] first proposed the use of a Markov chain to model a burst-noise binary channel. 

His model consisted of two states, an error-free transmission state, and a state where the 

probability of error-free transmission was h.

Gilbert considered the symmetric binary channel, which is the classical model of a 

noisy binary channel in information theory. If the input digit at time n  is x n, then the 

output of the noisy channel is yn =  xn + zn, where zn is the random noise digit, which 

is added (modulo 2) to the input digit. Thus, zn takes either the value 0 or 1. In the two 

state channel model, state G is the error-free state, where zn — 0. In state B, zn =  0 with 

probability h and zn = 1 with probability 1 — h. Gilbert always takes h — 0.5.

Gilbert proposed two methods to determine the Markov chain model parameters, both 

based on channel noise measurements. The first method involved studying the trigram 

statistics of the measured channel. For the second method, Gilbert noted that the run lengths 

of the Markov chain states will have a geometric distribution. Under the assumption that the 

various noises on a real channel are unrelated, the times between noise events will also have 

a geometric distribution. Thus, the proposed method consisted of fitting the expression

u(K) = A J k  +  (1 -  A)L k  (3.1)

to the zero run length distribution of the channel measurements. The model parameters 

were determined from the fitted values for A, J, and L.

Elliott [31] used Gilbert’s Markov chain model to study the error probabilities of error 

correcting codes, and the probability of retransmission of error detecting codes. Since the 

complex error structure with memory on communication channels makes accurate predic

tion of code performance difficult, codes had previously been evaluated in terms of discrete, 

memory-less channels. This was an analytically simple method of evaluation, but gave little 

information about the performance of the codes in real channels, where statistical depen

dencies exist. Thus, Gilbert’s simple channel model allowed for the code performance to
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be estimated for a channel with error dependencies. Elliott generalized Gilbert’s model by 

replacing the error-free state G with a state where the probability of correct transmission 

was k and the probability of error was 1 — k. This new state still represented the “good” 

state in the two state model, so k > h.

As an example of the performance analysis method, Elliott studied the Bose-Chaudhuri 

code on a telephone network. By comparing the error rate analysis results to simulated 

results, he found that the analysis method generally agreed to within an order of magnitude 

in all but a few extreme circumstances.

3.2.2 Fritchman

Fritchman [32], like Elliott, considered the problem of evaluation of error-detecting and 

correcting codes. He recognized, however, that the two-state Gilbert-Elliott model lacked 

the flexibility to be applied to a broad class of channels. So, Fritchman proposed an N-  

state Markov chain model. Like the Gilbert-Elliott model, Fritchman restricted the model 

to a binary channel, where the transmitted signal was either received correctly, or in error. 

However, he generalized the Gilbert-Elliott model by including k error-free states and N —k 

error states. A diagram of this scheme can be seen in Fig. 3.1. The Gilbert model can be 

considered a special case of this model. Fritchman also proposed a method to determine the 

transition matrix for this model based on the error-free-run and error-cluster distributions 

of a channel.

As examples of the proposed model, Fritchman determined parameters for two sample 

radio links. In both cases, only a single error state was used, meaning that the transition 

probabilities were fully specified by the error-free-run distribution. A transition diagram of 

this single error scheme can be found in Fig. 3.2. In one of the sample radio links, three 

error-free states were used, and the model was seen to fit the error-free-run distribution 

very well. In the second case, only two error-free states were used, but the model still 

fit the error-free-run distribution well. The error cluster distribution, however, was not 

modeled as well.
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Error StatesError-Free States

Fig. 3.1. Diagram of the Fritchman state-space partitioning scheme.

N -l

Error-Free Error

Fig. 3.2. Transition diagram of the Fritchman model with one error state.
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3.3 Markov Chain Models of the Fading Channel

3.3.1 Introduction

Since the early 1990’s, many researchers have studied the use of Markov chains as a way 

of modeling the wireless fading channel. As it was for Gilbert, Elliott, and Fritchman, 

the motivation behind using Markov chains is to find a simple model for mathematically 

complex problems. In Section 2.3.2, we saw that the fading channel is commonly modeled 

as a Rayleigh process. This can lead to complicated analyses, particularly in multivariate 

problems, because multivariate Rayleigh distributions are not well known. A Markov chain 

is a mathematically simple tool, and could lead to reduced complexity in many problems.

In this section, we review works in the literature that have proposed Markov chain 

models specifically for use in modeling the wireless fading channel. The models discussed 

in this section include many different approaches to the subject. Some expand on the 

Gilbert-Elliott symmetric binary channel model, some are based on the envelope amplitude 

of the received signal, while others are based on the received signal-to-noise ratio (SNR). 

Some approaches model the fading signal itself, while others seek to model some function 

of the fading, such as the bit-error rate (BER). In each case, we present the model used, and 

discuss its benefits and short-comings.

3.3.2 Swarts and Ferreira

The first report to propose a Markov chain model of the fading channel amplitude was 

Swarts and Ferreira [5]. They proposed a hidden Markov model [33] in which the under

lying Markov process was the fading amplitude and the visible process was soft-decision 

decoder output. They validated their model by computing the soft burst and soft burst in

terval distributions of the model and comparing them to simulator results. We focus our 

discussion here on the underlying fading model.

To define the state-space, the fading amplitude was linearly quantized into N  intervals, 

making this an amplitude-based model. This resulted in N  states, each consisting of an
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equal amplitude range, up to some maximum amplitude value. An example of this type of 

state-space partitioning scheme is shown in Fig. 3.3, for N  = 8 states.

Because the fading channel model was the hidden portion of a hidden Markov model, 

the output vector f was not addressed in the model. Swarts and Ferreira also made the 

claim that the initial occupancy vector <j>o is not important. An accurate Markov chain 

model of the fading channel will necessarily have to be stationary, and we saw in Section

2.4.3 that correctly choosing 4>0 plays a crucial role in creating a stationary Markov chain 

model, so Swarts and Ferreira were wrong on this point. They were, however, correct when 

they stated that in the long-term, the starting point will have no effect, since the Markov 

chain will approach stationarity. This renders any observations made before stationarity is 

achieved as useless, though, which isn’t considered in the model at all.

To determine the transition matrix, Swarts and Ferreira calculated the average transition 

statistics of a fading channel simulator. To simulate the fading channel, two Gaussian pro

cesses were generated using the Polar method [34], then filtered using identical first-order 

low-pass Butterworth filters and combined in quadrature to produce a Rayleigh process. 

They presented a figure that claimed to relate the filter cut-off frequency to the fading 

rate, but no source for this relation was given. This filtering method results in a compu

tationally simple fading simulator, but there are limitations to this method, as discussed 

by Stiiber [35]. The autocorrelation of the Gaussian components after low-pass filtering 

is exponential, much different than the desired Bessel function (2.40). The low-pass filter 

has the effect of basically modeling the fading as a Markov process. Thus, the good fit of 

model and simulation results given by Swarts and Ferreira is no surprise, since they were 

essentially using a Markov chain to model a Markov process.

3.3.3 Wang and Moayeri

Wang and Moayeri [36] attempted to extend the Gilbert-Elliott model of a symmetric binary 

channel to include a higher number of states, as well as provide a more analytically sound 

Markov chain channel model than Swarts and Ferreira. They proposed an AFSMC model
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Fig. 3.3. Example of uniform partitioning of the amplitude of the Rayleigh fading channel 

for N  =  8 states.
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with N  states, where each state represented a crossover probability of a symmetric binary 

channel. After identifying a set of constraints on the Markov chain channel model, they 

attempted to determine the model parameters by optimizing the channel, first in terms of 

maximizing capacity, and then in terms of minimizing distortion. They achieved some 

unreasonable results using this method, and instead tried to choose the model parameters 

to represent a real channel.

Wang and Moayeri thus chose to model the traditional ISORA Rayleigh fading channel. 

Like Swarts and Ferreira, the state-space was chosen to represent a partitioning of the 

fading signal amplitude, however, they selected the thresholds between states in such a 

way as to result in an equiprobable state-space. This meant that all elements of the initial 

occupancy vector (j>0 were equal to 1 /N .  A diagram of this partitioning can be seen in Fig. 

3.4 for N  =  8 states. Since each state represented the crossover probability of a symmetric 

binary channel, output vector f  was instead replaced with crossover probability vector e, 

which served a similar purpose.

To determine the transition probabilities, they first made the assumption that transitions 

only occur between neighboring states, that is,

^ •  =  0, V|i — j\ > 1. (3.2)

The remaining values were calculated based on the level crossing rate of the ISORA 

Rayleigh fading model, which is expressed in [9]. To verify the model, Wang and Moayeri 

determined the transition probabilities of a sum-of-sinusoids simulator [37] and compared 

them to the transition probabilities found using the level crossing rate. They found an 

excellent match between the two.

Wang and Moayeri’s model validation is a problem. By comparing the transition proba

bilities of a sum-of-sinusoids simulator to the model transition probabilities, all they really 

confirmed is that the sum-of-sinusoids simulator accurately models the level crossing rate 

of the ISORA Rayleigh fading channel. No other validation is offered that would verify 

whether or not the model is accurately modeling the fading channel. In fact, the sum-of- 

sinusoids simulator itself is known to have limitations in accurately simulating the fading
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Fig. 3.4. Example of equiprobable partitioning of the amplitude of the Rayleigh fading 

channel for N  = 8 states.
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channel, in particular, it is not stationary [38].

3.3.4 Wang and Chang

Wang and Chang [39] attempted to verify the first-order Markovian assumption for the 

Rayleigh fading channel. To do this, they developed a metric based on the mutual infor

mation between states in the Markov chain. They used this metric to show that, given the 

information corresponding to the previous symbol, the amount of uncertainty remaining 

in the current symbol should be negligible. Thus, a second-order AFSMC would not pro

vide any more meaningful information than a first-order AFSMC does and, they claim, the 

first-order Markovian assumption would be verified.

Wang and Chang did not consider any particular Markov chain model, and instead 

chose to attempt to verify the Markovian assumption based on the statistics of the ISORA 

Rayleigh fading channel model. They first gave an expression for the joint trivariate 

Rayleigh distribution, where the underlying Gaussian branches are independent with au

tocorrelation (2.40). This distribution was used in their metric.

They define R t to be the received signal amplitude at time i. Then the information 

about Ri provided by the previous symbols R,^i  and R , -2 can be quantified by the average 

mutual information I (R i ; which can be decomposed as [40]

So, Wang and Chang express the significance of 2, given R t-\  , as the ratio of the aver

age conditional mutual information I(Ri] R ^ R i - i )  and the average mutual information 

I (R i ; Based on the joint trivariate Rayleigh distribution, these two mutual in

formation values are expressed as

I(Ri\ R i - iR i - 2 ) — I (R i ; R i - 1) +  I{Ri’., Ri-2\Ri- i)■ (3.3)

I ( R 3;R 1\R2) = I I I  / ( r i , r 2, r 3)log / ( n | r 2) / ( r 3|r2)

and

I ( R 3]R2R i ) =  J J J / ( r i , r 2, r 3)log
f { r z ) f { r i , r2)

(3.5)
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where r i , r 2 , r 3 are Rayleigh random variables at three consecutive time periods, correlated 

as in the ISORA Rayleigh fading channel model. Wang and Chang numerically evalu

ated these integrals and compared the results to approximations of the mutual information 

ratio based on sum-of-sinusoids simulator results, for very slowly fading channels with 

normalized Doppler frequency f ^ T  < 0.002. They concluded that for the current channel 

symbol, the effect of symbols beyond the immediately previous one was negligible, thus, 

the Markovian assumption was validated.

Tan and Beaulieu [6 ] found problems with this mutual information metric. In particular, 

the average conditional mutual information I(Rf,  R ^ R i - i )  approaches zero when the 

first and third samples are independent, as discussed by Wang and Chang, but also when 

the first, second, and third samples are highly correlated. This second case is the situation 

encountered by Wang and Chang in their modeling of very slowly fading channels.

Tan and Beaulieu also pointed out that the consideration of I(Ri,  R i - i R ^ ) ,  as Wang 

and Chang did, can only be used to justify whether a second-order Markov chain will offer 

improvements over a first-order Markov chain. To really verify the Markovian assumption, 

the analysis would have to be performed on I{Ri\ R i - iR i - 2  ■ ■ ■ R-oo), which is, in general, 

a much more difficult problem.

3.3.5 Zorzi, Rao, and Milstein

Zorzi, Rao, and Milstein [41] made use of an AFSMC model of the fading channel to study 

the throughput performance of the Go-back-N (GBN) and selective-repeat (SR) ARQ pro

tocols [42], [43]. Like the Gilbert-Elliot model, the channel was divided into two states, 

an error-free state and an error-guaranteed state. The two states were defined by using a 

threshold value to partition the fading amplitude of the received signal. Signal amplitudes 

above the threshold represented the error-free, or transmission success, state, while ampli

tudes below the threshold represented the error, or transmission failure, state. The channel 

sample spacing was chosen large enough that each state in the Markov chain represented 

successful/failed transmission of a data block.
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Zorzi, Rao, and Milstein began by using the mutual information metric of Wang and 

Chang [39] to show that the Markovian assumption continued to be true when applied to 

their data block success/failure state space, as opposed to the fading amplitude state-space 

studied by Wang and Chang. They found that the metric suggested that the Markovian 

assumption was true for slow fading, but not for fast fading.

The transition matrix for this model was a simple 2 x 2  matrix

<3-6)

where the marginal probability that a packet is in error is

r
(3.7)

1 — p + r

Zorzi, Rao, and Milstein proposed a method to compute the elements of the transition 

matrix based on the average block error rate, e, and the average length of an error burst, 

1 /r, of the Rayleigh fading channel. In particular, they found that

and

£ =  1 -  e"‘ (3.8)

_ Q ( e , p e ) - Q ( p e , e )
r -  - — - (d.y;

where p is the usual fading channel correlation, p =  J0(2ttfoT) ,  b is the fading amplitude 

threshold value dividing the data block success/failure states,

$ =  i r ^  (3 -10)

and Q(-, •) is the Marcum Q function [44] defined as

r ° °  x2+a2
Q(a,b) = xe i I0(ax)dx (3.11)

Jb

where / 0( ) is the modified Bessel function of the first kind of order zero (2.8). They 

also considered calculating the transition probabilities based on simulator output, using the 

sum-of-sinusoids simulator.
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Zorzi, Rao and Milstein then studied the performance of the GBN protocol in slow 

fading, and compared the throughput results using the Markov chain model to simulation 

results. The throughput analysis involved five consecutive time slots of the Markov chain, 

and they found that a first-order Markov chain well matched the simulation results. They 

continued and used the Markov chain to study the performance of GBN and SR ARQ 

protocols under a number of fading scenarios. They claimed good agreement between the 

Markov chain analyses and simulation results, but did not include the simulation results in 

any of the plots.

The use of the Wang and Chang mutual information metric not withstanding, this 

model, though simple, was the first instance of a first-order Markov chain model success

fully being used in a fading channel analysis. The limitation of this work is that the GBN 

and SR ARQ analyses only involved a small number of sample points, which immediately 

casts the applicability of this model to a wider range of problems in doubt. Also, because it 

is modeling the effect of the fading channel on successful packet delivery, and not the fad

ing channel itself, it is still unclear from this work whether a Markov chain can accurately 

model the amplitude of the ISORA Rayleigh fading channel.

3.3.6 Zhang and Kassam

Zhang and Kassam [45] directly followed up the work of Wang and Moayeri [36] and pro

posed an AFSMC model of the Rayleigh fading channel where the state-space partitioning 

was performed on the received SNR. Each state represented a BER. They determined the 

number of states, as well as the partition values between the states, based on the fading rate 

of the channel. The model was verified using computer simulations.

To define the state-space, Zhang and Kassam partitioned the received SNR into K  

states, denoted Si, i = 1 ,K .  The state thresholds were denoted T i,T 2, . . . , IV +i, 

where Ti =  0 and T k+i =  oo. They proposed a method of choosing the threshold values
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based on the average time duration of each state. In particular, they derived

1Ck
Exp

70
-  Exp Tfc+i

70 1

v^ e* p [ 70 + \ T ( r ‘Exp
Tfc+i

70
f o T

k (3.12)

where 70 is the average SNR and <7 is the average time duration of state k. By requiring 

that Ck — c for all k, solving this set of equations for a particular value of K  gave the state 

thresholds and the average state time duration c.

To define the initial occupancy vector, Zhang and Kassam recognized that in a Rayleigh 

fading environment, the received instantaneous SNR, 7 , has an exponential distribution 

with density
1 7

(3.13)A ( 7 )  =  —  e  7  >  0
7o

which we saw in Section 2.2.3. Thus, <p0 was found via

r-rfc+ir h
<f>o[k] =  /

J  r fc
A (7 )^7 - (3-14)

Instead of modeling the Rayleigh fading channel amplitude, each state in Zhang and 

Kassam’s model represented the average BER for that state. Thus, the specific output 

vector values were dependant on the modulation scheme. Assuming the probability of 

symbol error as a function of SNR is given by Pe(7 ), the average probability of symbol 

error for each state was computed as

m
/ r ? +1

<£0 [k]
(3.15)

To determine the transition matrix, Zhang and Kassam first made the same assumption 

as Wang and Moayeri, namely that

Pij = 0, V|i — j |  > 1 (3.16)

i.e. transitions only occur between neighboring states. Also like Wang and Moayeri, they 

determined the remaining transition probabilities based on the level-crossing rate of the 

Rayleigh fading process.
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Verification of the model was performed more-or-less the same as was done by Wang 

and Moayeri. Transition probabilities were measured based on sum-of-sinusoids simulator 

output and compared to transition probabilities based on the model calculations. They 

found that the agreement between the two was very good.

Zhang and Kassam proposed an interesting method to determine the number of states 

and the threshold values based on the channel statistics, as opposed to the somewhat ar

bitrary choices of other models. However, since this work follows the work of Wang and 

Moayeri so closely, it succumbs to all the same limitations of that work. The assumption 

that transitions only occur between neighboring states doesn’t really seem necessary, al

though the Doppler frequency was always chosen low enough that this assumption was still 

reasonable. Basing the transition matrix on the level crossing rate has the same problems 

recounted in Section 3.3.3, plus, no real performance comparison is performed between the 

model and a real or simulated fading channel.

3.3.7 Tan and Beaulieu

Tan and Beaulieu [6 ] performed a detailed analysis of the stochastic properties of a first- 

order AFSMC model of the fading channel. Motivated by the successful results of Zorzi, 

Rao, and Milstein [41], they studied the suitability of a Markov chain model in the cases 

of analysis of a short time frame application, and analysis of a longer time frame applica

tion. Unlike Zorzi, Rao, and Milstein, however, they modeled the amplitude of the fading 

channel itself, not a channel property dependant on the fading.

The state-space of Tan and Beaulieu’s model was defined as follows. The received 

signal amplitude up to a finite maximum value M  was partitioned into N  states. The 

threshold values defining the states were denoted r*, where tq — 0 and rjv =  M.  The 

partitioning was equiprobable, like that used by Wang and Moayeri [36] and shown in Fig. 

3.4. This resulted in an initial occupancy vector where all entries had the same value. In 

order to compensate for the fact that the partitioning was performed only up to finite value
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M,  they found the threshold values by solving

P  f R (r )dr  =  i = l , . . . , N  (3.17)
7  T j_ l

where / i ? ( r )  is the usual Rayleigh density (2.3), and F r ( M )  is the Rayleigh distribution
pM

F r ( M )  = /  f i i ( r ) d r  < 1 . (3.18)
J  o

The initial occupancy vector 4>o was found by solving

M A = F W ) L U r ) d r - < 3 ' 1 9 )

The scaling by F r ( M )  has the effect that, despite the amplitude partitioning only being 

performed up to a finite value, the sum of the initial occupancy vector will still be 1, as 

required.

The output vector f was chosen so that each state represented its midpoint amplitude 

value. Specifically,

m  = n - 1  + (3-20)

Unlike previous work, where the transition matrix was generally found by simulation

analysis or with a simple fading channel statistic, Tan and Beaulieu followed Wang and

Chang [39] in using the joint bivariate Rayleigh distribution, which gives a direct rela

tionship between two consecutive fading channel points. The correlation between the two 

points was based on the traditional ISORA Rayleigh fading channel model. More specifi

cally, if Rn is the Markov chain state at time n, then the probability of transition from state 

% to state j  was found using the conditional distribution

Pij =  Pr[i?n =  j \R n- i  =  i] 
r r j  r n

=  / fR2\Ri(r2\ri)dridr2
J  Tj  —i  J  _ 1

J t L  S r L  fR iR 2 ( n , r 2) d r 1dr2
(3.21)

I n - i  f R ( r ) d r

where fR1R2(ri,r 2 ) is the joint bivariate Rayleigh distribution. Like the initial occupancy 

vector, each row was scaled by its row-sum in order to compensate for the finite maximum 

amplitude M.
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To analyze the model, Tan and Beaulieu performed a stochastic analysis on the Markov 

chain, comparing its first-order distribution and autocorrelation function to those of the 

ISORA Rayleigh fading channel model. To confirm the first-order distribution, they numer

ically compared the limiting probability distribution to the initial distribution to establish 

stationarity. Though no specific values were reported, they claimed that the Markov chain 

models were stationary. This confirmed the first-order distribution because the initial oc

cupancy vector was calculated based on the first-order distribution of the ISORA Rayleigh 

channel model.

Plots were shown comparing the autocorrelation function of the Markov chain to that 

of the ISORA Rayleigh fading channel, for both slow and medium fading scenarios and 

various numbers of amplitude states N.  In all cases, they found that the shape was very 

different, exhibiting an exponential-like decay, as opposed to the oscillatory-like decay of 

the theoretical function (2.42).

Tan and Beaulieu concluded by applying the first-order Markov chain model to two ap

plications, a short duration application and a long duration application. The short duration 

application consisted of the study of the block-error rates of error correcting codes over the 

Rayleigh fading channel. They found that a first-order Markov chain can be appropriate for 

these types of applications in slow fading environments, which validates the good results 

found by Zorzi, Rao, and Milstein [41], since they were studying a short duration applica

tion in slow fading. Tan and Beaulieu also suggested that an uncorrelated Markov chain 

may be more appropriate to model fast fading applications over a short duration. For a 

long duration application, they studied the fade duration distribution of the fading channel. 

They found that a first-order Markov chain does not adequately model the ISORA Rayleigh 

fading channel in these types of applications.

This model and subsequent analysis represents the most thorough study of the stochas

tic properties of a Markov chain model of the Rayleigh fading channel to date. The main 

limitations of the study are the fact that partitioning the fading amplitude up to some max

imum value M  introduces unnecessary error into the model. The error is compensated for 

to some extent, and M  is chosen large enough that Fr (M) is close to 1, so that the error
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introduced is small, but there is still no apparent reason not to use M  — oo. Also, the 

stationarity of the model is not established in a clear way. It was verified numerically, but 

no validation is actually presented in the paper. It is very important that a Markov chain 

model of the fading channel be stationary, and proper validation of this property warrants 

deeper consideration than given in this analysis.

3.3.8 Bergamo, Maniezzo, Giavanardi, Mazzini, and Zorzi

Due to the significant mismatch of the AFSMC model’s autocorrelation function to that 

of the ISORA Rayleigh fading channel, as reported by Tan and Beaulieu [6 ], Bergamo 

et.al. [4] proposed a new state-space for use in Markov chain models of the fading channel. 

Whereas virtually all previous models employed a state-space defined by the amplitude of 

the fading channel (or an ulterior metric, such as block-error, based on the amplitude), the 

new state-space proposed by Bergamo, et.al. consisted of both the amplitude and the rate- 

of-change of the fading envelope. They used the new Markov chain model to investigate the 

throughput of a simple GBN ARQ protocol, and compared the results to simulated results, 

as well as traditional AFSMC model results. They found that the new state-space resulted 

in a Markov chain model that agreed much better with simulated results than the AFSMC 

did.

To define the state-space, Bergamo, et.al. partitioned the envelope amplitude into M  

states, defined by the threshold values e*, where e0 =  0, and eM — oo. By setting an 

infinite upper threshold, they avoided the need to scale the resulting Markov chain elements 

like Tan and Beaulieu did. Likewise, the envelope rate-of-change was partitioned into 

S  states, defined by the thresholds e .̂ The amplitude thresholds were chosen to result 

in equiprobable amplitude states, as in [6 ] and [36] and shown in Fig. 3.4. This was 

accomplished by solving

To choose the rate state thresholds, they claimed that numerical results indicated that S  = 3 

gave good results with thresholds —e\ = e2 = e. Note that each Markov chain state would

(3.22)
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consist of an amplitude state and a rate state, so there were M 2S 2 states in the state-space.

Bergamo, et.al. did not explicitly address the issue of computing the initial occupancy 

vector <j>o, but they did address the output vector f. Unlike Tan and Beaulieu, where the 

state output value was set to the median value of each partitioned amplitude range, Berg

amo, et.al. used the conditional average of each amplitude interval. Specifically,

No output values were associated with the rate states.

Bergamo, et.al. determined the transition probabilities via numerical analysis of a sum- 

of-sinusoids simulator. Since fading simulator results only consist of samples of the ampli

tude of the fading envelope, the rate-of-change of the envelope at time t was approximated 

by the difference of simulator amplitude samples, j t — jt-i-

To analyze the suitability of the new Markov chain model, Bergamo, et.al. first plotted 

the autocorrelation of the new model for increasing values of rate threshold e and compared 

them to the sum-of-sinusoids simulator autocorrelation, as well as the autocorrelation of a 

traditional AFSMC model. They found that the new Markov chain model autocorrelation 

lay much closer to the simulator autocorrelation than that of the AFSMC. More interest

ingly, at small values of e, the Markov chain possessed a decaying-oscillatory autocorrela

tion function.

Bergamo, et.al. then investigated the throughput of a GBN ARQ protocol using the 

new Markov chain model. As in the autocorrelation plot, they compared the throughput 

results to simulator throughput results, as well as those of a tradition AFSMC model. They 

found that the AFSMC model only matched the simulator results for very small window 

sizes, consistent with the results of Zorzi, Rao, and Milstein [41]. By contrast, the new 

Markov chain model predicted the simulator results with reasonably high accuracy for 

larger window sizes up to N  =  150, the largest size on the plot. Note that the GBN 

protocol was studied with e =  0 .0 1 , which corresponded to the oscillatory autocorrelation 

mentioned in the previous paragraph.

This paper makes a strong case for using the new expanded state-space. In the case

(3.23)
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of a GBN throughput analysis, the new Markov chain performs far better than an AFSMC 

model. However, the stochastic analysis of the new Markov chain is extremely limited. 

The first-order and stationary properties are not considered, and the initial occupancy vec

tor is not explicitly considered either. Basing the transition matrix on sum-of-sinusoids 

simulator output is also a limitation, since it has known issues in accurately simulating 

the ISORA Rayleigh fading channel [38]. Despite these limitations, the good application 

results suggest that a more substantial stochastic analysis of this state-space is warranted.

3.3.9 Hueda and Rodriguez

In light of the problems with the Wang and Chang metric [36] pointed out by Tan and 

Beaulieu [6 ], Hueda and Rodriguez [46] proposed a new information theoretic test of the 

Markov property. The Markov chain state-space under consideration was the same as in 

Zorzi, Rao, and Milstein [41], where a state represents either a successful block trans

mission, or a failed block transmission. They used the new test to verify the first-order 

Markovian assumption for block error processes on Rayleigh fading channels.

Hueda and Rodriguez began by proposing the new information theoretic metric in terms 

of the block errors. They define A to be a binary process where A =  1 if received data 

block i is in error, and A =  0 otherwise. Based on the observations made by Tan and 

Beaulieu, they defined

J (A ;A -iA -2  • • • A-oo) =  # (A ) -  (A IA -1A -2  • • • A-oo) (3.24)

where H(-) and H(-1-) are the entropy and conditional entropy, respectively [47]. Then, 

they defined

\ = J (A; A -i)
/(A ; A -1  • • • A-oo)

=  H(Pi) — jf(A lA -i)
(A) -  # (A lA -i • • • A-oo) ’

When the process is exactly a Markov process, A =  1, but when A < 1 and A —> 1, it cannot 

be concluded that the process is Markov for the same reasons Tan and Beaulieu described
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earlier. Thus, the proposed criterion for a first-order Markov chain model to adequately 

model the block error process is

*  =  - f ( A ;  A - i  ■ • - f t - c o )  *  A  <  * '  ( 3 ' 2 6 )

Since /(/%; /3,_i • • • /3*_oc) <  1 and gets smaller as the correlation value of /?» with the 

past samples decreases, the authors claim it is reasonable to assume that the process is 

approximately Markov when ip is sufficiently large.

Hueda and Rodriguez compared the performance of the new metric with that of Wang 

and Chang’s metric in the analysis of the suitability of a first-order Markov chain in mod

eling the Rayleigh fading channel, as well as a Rayleigh fading channel with maximal 

ratio combining (MRC) diversity. In the traditional case with no diversity, they found 

that their metric outperformed that of Wang and Chang, and that it suggested that a first- 

order Markov chain may be sufficient to model the block errors in slow-to-medium fading 

(0.01 < f p T  < 0.1) in cases where the block error rate is small enough. In the case of 

Rayleigh fading with MRC diversity, the metric suggested that the accuracy of the first- 

order Markovian assumption decreases as the diversity order increases.

Although the new metric outperforms that of Wang and Chang, its general accuracy 

is not established. No actual Markov chain models are considered for any of the scenar

ios discussed. This doesn’t necessarily discount the results, but additional justification is 

needed to verify the new metric.

3.3.10 Lin and Tseng

Lin and Tseng [1] proposed a two-layer Markov chain model of the fading channel. The 

upper layer was used to model the small-scale Rayleigh fading, while the lower layer was 

used to model the large-scale log-normal shadowing. The Markov chain parameters were 

determined from propagation measurement data. The two-layer Markov chain model was 

verified by comparing some statistics of the model to those of the measurements. Results 

were also compared to those of traditional single-layer Markov chains.
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Lin and Tseng defined the state-space by partitioning the shadowing envelope into J  

states and the fading envelope into K  states. Threshold values Ik partitioned the shadowing 

envelope, and values partitioned the fading envelope, where Iq =  r'o = 0  and l j  = t'k  = 

oo. At each time period, the Markov chain state was specified by one shadowing state and 

one fading state.

The transition matrix structure of this model is more complicated than the usual Markov 

chain model. One transition matrix was used the describe the transition probabilities be

tween shadowing states. For each of these shadowing states, a different transition matrix 

was used to describe the transition probabilities of the fading. The particular model com

puted by Lin and Tseng used a 9 x 9 shadowing transition matrix, and nine 5 x 5  fading 

transition matrices. The specific transition probabilities were determined via numerical 

analysis of propagation measurement data taken near the campus of National Taipei Uni

versity of Technology in urban Taipei. A transmission antenna was placed on a floor of 

one of the buildings, and measurements were taken over a drive of approximately 1.5 km 

around the campus.

To verify the model, Lin and Tseng compared the PDF, level-crossing rate, and BER 

of the two-layer model to those of the measurements. They also compared a single

layer Markov chain model using the same statistics. They found that the two-layer model 

performed better than the single-layer model, and matched the measured statistics quite 

closely.

While the idea of modeling the fading and shadowing in separate Markov chain pro

cesses may have merit, there are a number of limitations to the work of Lin and Tseng. 

Verifying the two-layer model by saying it outperforms a single-layer model is somewhat 

disingenuous. The traditional single-layer Markov chains were never meant to model the 

shadowing process; they have historically been studied in terms of modeling the stationary 

Rayleigh fading process. The two-layer model was also verified by comparing its PDF and 

level-crossing rate to that of the measured process. We have already seen that Markov chain 

models are able to accurately model the first-order distribution of the channel, as well as 

the level crossing rate. Where Markov chain models currently struggle is in modeling the
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fading channel autocorrelation function, which Lin and Tseng do not consider. However, 

based on a qualitative comparison of a two-layer Markov chain simulated signal amplitude 

and the measured signal, as plotted in their paper and reproduced in Fig. 3.5, we would 

guess that the autocorrelation structure is being modeled poorly, since the shadowing struc

tures look very different.

3.3.11 Conclusion

In this section, we surveyed the literature on the subject of Markov chain modeling of the 

Rayleigh fading channel. Despite many different approaches to the subject, as well as dif

fering goals in many cases, a uniform theory begins to emerge. An AFSMC can adequately 

model the first-order statistics of the ISORA Rayleigh fading channel, but higher-order 

statistics, in particular, the autocorrelation function, cannot be modeled well. Despite this 

apparently significant limitation, there is evidence that Markov chain models may still be 

appropriate in some applications, especially data packet level analysis over a short time 

frame in slow fading scenarios. There is also evidence that an expanded state-space that 

involves both the amplitude and rate-of-change of the fading envelope, proposed by Berg

amo, et.al. [4], may improve on the Markov chain model’s ability to approximate the fading 

channel autocorrelation function. It is this new state-space that will be studied in detail 

throughout subsequent chapters of this thesis.

3.4 Markov Chain Models in Practice

3.4.1 Introduction

Despite the limitations of Markov chain models of the fading channel identified in Section 

3.3, AFSMCs have found practical use in a number of applications. The most successful 

uses have primarily been in data packet analysis, and in this section, we review some of 

the papers in the literature that have employed Markov chains as models for the Rayleigh 

fading channel. We focus on the particular model used, and consider the validity of the
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layer Markov chain simulated signal envelopes from Lin and Tseng [1].
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results obtained.

3.4.2 Liu and El Zarki

Liu and El Zarki [48] proposed a hybrid ARQ error control scheme based on the concatena

tion of a Reed-Solomon (RS) code and a rate-compatible punctured convolutional (RCPC) 

code for low-bit-rate video transmission over wireless channels. To study the performance 

of this scheme, they made use of a Markov chain model of the wireless fading channel.

The Markov chain model used was essentially the same as that of Wang and Moayeri 

[36], except that the partitioning of the states was based on the received SNR, like that of 

Zhang and Kassam [45], as opposed to the fading envelope amplitude. Also like Zhang and 

Kassam, each state represented the average BER over the partitioned SNR range.

The received signal was partitioned into <3> states, where the SNR values defining the 

state thresholds were denoted 0 =  xi < < • ■ ■ < x i>+i = oo. Liu and El Zarki

proposed a method to select the thresholds in order to minimize the mean-squared error 

(MSE) between the BER value for the Markov model and the BER for the Rayleigh fading 

channel. They defined the MSE as

where ek is the BER value in state k, Pe(7 ) is the probability of error for SNR 7 , and 

/ 7 (7 ) is the probability distribution of the SNR. For the Rayleigh fading channel, / 7 (7 ) 

is exponential (3.13). The result of the MSE minimization is that the state thresholds and 

BER values were defined by iteratively solving

This expression for ek happens to be the conditional mean of the BER over each state, which 

is the expression used by Zhang and Kassam, although the partitioning resulting from this

'x k + 1

M S E
k= 1 Jxk

(3.27)

(3.28)

and

(3.29)
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method would likely be different. The initial occupancy vector (f>o and the transition matrix 

P  were both defined like Zhang and Kassam, which in turn were defined like Wang and 

Moayeri.

Liu and El Zarki used this channel model to study the performance of their proposed 

concatenated hybrid ARQ (CH-ARQ) scheme. They compared the results to simulations 

and found that the analysis based on the Markov chain fading channel model agreed rea

sonably well with the simulated results.

The limitations of the level-crossing rate approach to calculating the Markov chain 

transition probabilities have been discussed already. However, it is interesting that, despite 

these limitations, the results found by Liu and El Zarki agree reasonably well with the sim

ulated results. We note, however, that simulation results were only presented for the cases 

when the mobile speed is 2 km/h, which results in a very low Doppler frequency value. 

For the cases when the mobile speed is 100 km/h, which gives a much higher Doppler fre

quency, no simulation results were presented. We’ve seen previously that Markov chains 

model slow fading environments acceptably over limited time frames, which the results 

here validate, but the validity of the higher Doppler frequency analysis is questionable.

3.4.3 Babich

Babich [49] made use of a Markov chain model of the fading channel while studying the 

performance of hybrid ARQ schemes. He proposed a theoretical method, based on the 

sphere-packing bound, to evaluate and compare the achievable performance of different 

schemes.

Babich offered no details on the Markov model used in this work, which makes it 

difficult to draw any conclusions on the applicability of Markov chain models in the context 

of this type of analysis. His throughput efficiency plots, which include simulation results, 

show that the analytic and simulation results agree reasonably closely, although the analytic 

results, which are based on a Markov model of the fading channel, consistently over-predict 

the throughput efficiency. The relative data trends are reasonably consistent, though, even
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if the values aren’t exact.

The results of this work seem to suggest that an AFSMC is an appropriate fading chan

nel model for this type of application. However, due to the lack of details about the channel 

model chosen, it is impossible to tell whether the differences between analytic and simula

tion results are due to channel model limitations, or due to looseness in the sphere-packing 

bound used in the analysis.

3.4.4 Galluccio, Licandro, Morabito, and Schembra

Galluccio, et.al. [50] studied adaptive rate video encoding over wireless links. In situations 

where adaptive forward error correction (FEC) schemes are used, the available bandwidth 

can vary as the FEC redundancy is changed. The authors studied an analytical framework 

for adapting video encoding rates to changing channel conditions.

Since the video source can be modeled as a Markov chain, it is convenient to model the 

wireless channel as a Markov chain as well. The authors did not derive a particular model 

themselves, instead referring to the literature, particularly Tan and Beaulieu [6 ] and Wang 

and Moayeri [36]. Because of this, their channel model suffers all the limitations discussed 

previously. Although there have been some successes in modeling packet-level applica

tions using AFSMCs, there are no simulation results among the many results presented in 

this paper, which makes the validity of the Markov chain channel model for this type of 

application impossible to judge.

3.4.5 Rossi, Badia, and Zorzi

Rossi, Badia, and Zorzi [2] used an N-state Markov chain model of the fading channel to 

study SR ARQ delay statistics. They derived an exact expression for the ARQ packet delay 

statistics in a Markov channel. The analysis results were compared to simulation results to 

verify their accuracy.

A similar study was performed by these authors in [51], where they presented an an

alytical framework to obtain the delivery delay statistics. However, that work assumed a
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two-state Markov model of the fading channel, like Zorzi, Rao, and Milstein [41], which 

may limit the validity. Thus, the authors generalized the problem by expanding the model 

to arbitrary N  states.

Like Zhang and Kassam [45], the authors partitioned the Markov chain in terms of the 

SNR instead of the fading envelope amplitude. As opposed to the equiprobable partition

ing frequently performed in the literature, Rossi, Badia, and Zorzi proposed a partitioning 

scheme based on the packet error probability function. Since each state of the Markov chain 

model represented a BER, which is dependant on the SNR of that state, basing the partition

ing on the packet error probability function gave the state partitioning that best quantized 

that function. To specify the SNR threshold values To, T i , . . . ,  Fk  for a K  state Markov 

chain, the authors first selected two numbers, l\ and Ik - i, such that l\ was close to 1 and 

Ik - i was close to zero. Then, two threshold values were specified using =  P~l (h) and 

rV_! =  P~1(Ik - i ), where Pe(-) is the packet error probability function. After that, <£0 [1] 

and <f>o [K] were found via

where / 7 (7 ) is the exponential distribution (3.13) with parameter 7 0 , the average SNR of 

the channel. Finally, the remaining threshold values were found by solving

An example of this partitioning scheme is shown in Fig. 3.6 for k =  6 .

Once the partition thresholds were defined, the initial occupancy vector 4>0 was found 

using (3.30) and the transition matrix was calculated using the correlated bivariate Rayleigh 

distribution as in Tan and Beaulieu [6 ]. The output vector, which in this case is a packet 

error vector, was found, as in Zhang and Kassam, with

Rossi, Badia, and Zorzi proceeded to examine the delivery delay statistics of a SR 

ARQ protocol using the Markov chain model and compared the results with simulations.

(3.30)

(3.31)
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Fig. 3.6. Example of the partitioning scheme from Rossi, Badia, and Zorzi [2], for k = 6 .

Two Markov chain models were included, one using the new partitioning scheme discussed 

above, and one using the more common equiprobable partitioning scheme. They found that 

the new partitioning scheme greatly outperformed the traditional equiprobable scheme, and 

that the agreement with simulated results was quite good. The match of the Markov model 

delivery delay statistics to the simulated statistics was not perfect, but it was reasonably 

close.

An important discovery of this paper is that the partitioning of the state-space can have 

a significant effect on the goodness of the resulting Markov chain model. The partition

ing scheme should be chosen to best reflect the process the Markov chain is being used to 

model. This paper also demonstrated that, despite the limitations of the AFSMC in mod

eling the higher-order statistics of the fading channel, good results can still be achieved in 

packet delay problems.

0.9

state 0 state 5 (K -1^
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3.4.6 Conclusion

In this section, we discussed some works from the literature that made use of Markov chains 

to model the fading channel. We found that, in some cases, too much faith is placed on the 

previous research and model specifics are not given, nor is the applicability of the Markov 

chain fading channel model to a given application established or verified. In those cases, 

the validity of the results obtained is questionable. In other cases, the model specifics are 

dealt with in some detail. In the situations where simulation results are presented to vali

date the Markov chain model, agreement is typically reasonable. It would appear that an 

AFSMC model of the fading channel can give good results in data packet analysis prob

lems, particularly ARQ problems, provided they are not applied naively.

3.5 Conclusion

This chapter presented a survey of much of the literature on the subject of Markov chain 

modeling of communications channels. In Section 3.2, we discussed some early models 

proposed for wireline and fixed wireless communications. Section 3.3 presented models 

proposed especially for the fading channel, focusing particularly on first-order AFSMCs. 

Section 3.4 presented some work from the literature that made use of Markov chain models 

of the fading channel in practice.

In general, we saw that most of the Markov chain models proposed previously in the 

literature can successfully model the first-order statistics of the fading channel, but fail to 

correctly capture the higher-order statistics. However, there have still been some successful 

applications of Markov chain fading channel models, particularly for ARQ analyses over 

short time periods in slow fading.

In virtually all models proposed in the literature, the state-space is based on the enve

lope amplitude of the fading signal, or the SNR. An expanded state-space, proposed by 

Bergamo, et.al. [4], is based on the amplitude and the rate-of-change of the fading enve

lope. Results suggest that this state-space may improve the Markov chain models ability to
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capture the higher-order statistics of the fading model, but a more detailed study is required. 

It is this state-space that will be analyzed in the remaining chapters of this thesis.
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Chapter 4

Markov Chain Modeling of the Complex 

Gaussian Fading Process

4.1 Introduction

As we discussed in Section 2.3.2, the ISORA model of the Rayleigh fading channel is speci

fied in two ways, as a complex Gaussian process, and as a Rayleigh process. In this chapter, 

we propose a Markov chain model of the ISORA Rayleigh fading channel, formed by first 

modeling the underlying complex Gaussian fading process, based on an amplitude/rate-of- 

change state-space. A Markov chain model of the Rayleigh fading envelope process can 

then be formed from the Gaussian model. Unlike many of the models we discussed in 

Chapter 3, the models we derive here will model the amplitude of the fading process.

In Section 4.2, we examine the suitability of a first-order Markov chain in modeling the 

fading process. We first find and analyze a first-order Markov chain model of the ISORA 

Gaussian fading process. Then, we propose a method to transform this Gaussian model 

into a model of the fading envelope, and analyze the resulting model.

In Section 4.3, we examine the suitability of a second-order Markov chain in modeling 

the fading process. The methods of Section 4.2 are extended to find and analyze a second- 

order Markov chain model of the ISORA Gaussian fading process, as well as the associated
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model of the fading envelope process. Section 4.4 concludes the chapter.

4.2 First-Order Markov Chain Model

4.2.1 Introduction

In this section, we examine the ability of a first-order Markov chain to model the complex 

Gaussian components of the ISORA Rayleigh fading channel, when the state-space is based 

on the amplitude and rate-of-change of the Gaussian process. In Section 4.2.2, we present 

a method to calculate the three elements of a Markov chain model, based on the statistics 

of the ISORA Gaussian fading process, and in Section 4.2.3, we analyze the resulting 

Markov chain model. Based on the observations made in this analysis, in Section 4.2.4, 

we consider a Markov chain model of the 3-DISORA Gaussian fading process. In Section 

4.2.5, we present a method to create a Markov chain model of the ISORA Rayleigh fading 

envelope process, based on the Markov chain model of the underlying Gaussian process, 

and analyze the resulting model. Section 4.2.6 concludes this section.

4.2.2 Computing the Markov Chain Model

In Section 2.4.2, we identified the three elements necessary to define a Markov chain model, 

namely, the transition matrix P, initial occupancy vector </>0, and output vector f. In this 

section, we present a method of calculating these three elements in order to model the 

underlying complex Gaussian process of the ISORA Rayleigh fading channel.

Recall from Section 2.3.2 that the ISORA Rayleigh fading model is the envelope of 

a complex Gaussian process with quadrature components Tc(t) and Ts(t). Both of these 

components have first-order distributions /g(2c) and / g ( T s ) ,  where (2.35) gives

-  v m e~xV2l°
which is a zero-mean Gaussian distribution with variance b0. Each quadrature component
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has autocorrelation (2.40)

g(r) = R g (t ) =  bQJo{2nfDT) 

and the cross-correlation between the two components is (2.41)

h(r) =  0

thus, the quadrature components are independent and identically distributed. We will focus 

on modeling Gaussian process Tc(t), with the understanding that the resulting Markov 

chain also models Ts(t). Since the state-space of the Markov chain models we consider 

is based on the amplitude and rate-of-change of the Gaussian process, we will be making 

use of the joint distributions of Gaussian random variables are their derivatives, which we 

presented in Section 2.2.4.

4.2.2.1 Defining the State-Space

Before finding expressions for the Markov chain model elements, we must define the state- 

space of the Markov chain, which is based on both the amplitude and rate-of-change of the 

Gaussian fading component Tc(t). Since a Gaussian random variable and its derivative are 

independent, as we saw in (2.16), the amplitude space and rate space can be partitioned 

independently.

Let the state-space be divided into n amplitude states and m  rate states. The n amplitude 

states are defined by the length n + 1 vector <5 =  [50, of threshold values, where

5o =  — oo, 5n =  oo, and <5i,. . .  , 5n_i can be any ascending sequence of real numbers. 

Likewise, the m  rate states are defined by a length m  + 1 vector of threshold values 7  =  

[70, • ■ • ,  7m ], where 70 =  —00, 7m =  00, and 71, . . . ,  7m - i  is also any ascending sequence 

of real numbers.

The result of this partitioning is nm  states, labeled {s i , . . . ,  snrn}, where the thresh

old values defining the border of state Sd are {5id- i  in the amplitude domain and 

{ j jd- i ,7 jd} in the rate domain, with

d -  1
id =  Quotient(d, m, 1) +  1 =  
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jd — Mod(d, m,  1) =  d — m
m

(4.2)

where \_x\ is the floor function, or the largest integer less than or equal to x. Thus, the 

state-space of the Markov chain model is fully specified by the threshold vectors 6 and 7 .

4.2.2.2 Output Vector f

Vector f  represents the output of the Markov chain at each state. Since this Markov chain 

will be modeling the amplitude of the Gaussian fading process, we employ a method similar 

to Liu and El Zarki [48] and choose the elements of f  to minimize the MSE between 

the amplitude value of the Markov chain model and the amplitude of the Gaussian fading 

process over each state.

The MSE is defined as

where id and jd specify the thresholds of the amplitude and rate of state Sd and are found us

ing (4.1) and (4.2), and joint distribution / g ( T c , T'c) (2.16) can be decomposed into f c (T c) 

and fc{Tc) because of the independence of Tc and T'c. To minimize the MSE with respect 

to fd, we find the derivatives of the MSE and set them to zero:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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H i d  f S*d
/  /  2(id -  Tc)fo(Tc) fa (Z )dT c.
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By rearranging this expression, we get

/ £ _ ,  T J a (Tc) f G(T')dTcdTc 

M%)fa(TSdT„dTi

T J 0 (%)dTc

! £ ,  fo(Tc)dTc

(4.3)

where / g (Tc) is given by (2.35) and Erf[•] is the error function [10, eq. 7.1.1] defined as

To verify that (4.3) minimizes the MSE, we must ensure that the second derivative of 

the MSE is positive. We find that

because the integral over any range of a Gaussian PDF will always be positive. Thus, the 

MSE minimizing solution for f is the conditional mean of a Gaussian random variable over 

each state. Note that, although each Markov chain state consists of an amplitude state and 

a rate state, no output value is associated with the rate.

4.2.2.3 Initial Occupancy Vector (j>0

As we discussed in Section 2.4.2, the initial occupancy vector represents the distribution of 

the Markov chain at its starting point. When used in conjunction with the transition matrix, 

it also specifies the distribution of the Markov chain at any point in time. To model the 

Gaussian fading process over the amplitude/rate state-space, the initial occupancy vector 

will be calculated to represent a quantized version of /g (T c, T 'c), which is given in (2.16).

(4.4)

a 2 n u  f*<d
/  /  fa(Tc) fa(Z)dTed Z  > 0

A jj- i 7<5i ,_i
(4.5)
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Thus, to compute (f>o[d], we first find id and jd using (4.1) and (4.2), respectively. This 

identifies the amplitude and rate thresholds of state Sd■ Then, the probability of starting in 

this state is calculated as
Hid f Sid

M d ]  =  Pr[*o = sd]=  /  f G(Tc, T'c)dTcdT'c
dlid-1 d^id-l

1
=  i IErf 'Sid -  Erf 7id-i

1 ( Erf ’  K - E r f ' K - 1 "
_VZb2_ _\/2&2_) \ x/2bo_ y/2bo_

(4.6)

4.2.2.4 Transition Matrix P

The transition matrix specifies the probabilities of all the state transitions in the Markov 

chain. Specifically, Pqh is the probability that the Markov chain makes the transition to 

state Sh from state sq. We saw in Chapter 3 that there have been a number of different 

approaches to finding the transition matrix of a Markov chain model of the fading channel. 

The most direct method is to use the joint distribution of two consecutive states, as Tan 

and Beaulieu [6 ] did, so we adapt their method to the amplitude/rate state-space under 

examination here.

Let TCl and T'cx represent the amplitude and rate-of-change of the Gaussian fading pro

cess at time t, while TC2 and T'C2 represent the amplitude and rate at time t +  T,  where T  is 

the sample spacing of the model. Let Xk- i  be a random variable representing the state of 

the Markov chain at time t, and Xk be a random variable representing the state at the next 

time instant, t + T. Then, the transition matrix will be calculated as

Pqh =
Pr[X,k - i Sqi Xf- Sfo]

P r [X fc_ ! =  s ,]

H I ,  / £ - .  f i t ,  S t . ,  f o ( T c, X „ T „ , T ^ ) d T c td T ^ d T C2d T ĉ2

J% . ,  /C - .  G - ,  K - ,  h X , r n X , X ' a )dTcldTn dTn dra

<t>o[q]
(4.7)

Joint distribution f c (T Cl, T 'Cl, TC2, T'C2) was discussed in Section 2.2.4. It is a multivariate 

Gaussian (2.2) with mean vector /x =  0, and covariance matrix, assuming sample spacing
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T  between consecutive points, given by

'  bo 0 g(T) g \T )

E =  0 b2 ~g‘(T) -g"(T)

g(T) -g ' (T )  b0 0

v j '(T )  —g"{T) 0 b2

There is no closed-form for the numerator of (4.7), so the transition matrix must be 

calculated numerically. We make use of the algorithm proposed by Genz [52] to perform 

numerical computation of multivariate Gaussian integrals with arbitrary covariance matrix 

E. Details of this algorithm are discussed in Appendix A.

(4.8)

4.2.3 Model Analysis

To analyze how well a first-order Markov chain models the ISORA Gaussian fading pro

cess, we compare the statistics of the Markov chain model to those of the ISORA Gaussian 

fading model on the basis of three important properties. First, the first-order distribution 

of the Markov chain should approximate the first-order Gaussian distribution with variance 

b0. Second, the Markov chain model must be stationary. Finally, the autocorrelation of the 

Markov chain model should approximate the ISORA autocorrelation function.

We focus our study on threshold vectors 5 and 7  that result in equiprobable state-space 

definitions, meaning all values of the initial occupancy vector are equal to 1/nm.  Because 

of the independence of the amplitude and rate, which can be seen in joint distribution (2.16), 

the amplitude state-space and rate state-space can be partitioned separately. Specifically, 

we can find S[d] by solving

f Sd 1 ll.
/ . e 2bodTc

A d_i v 2 tt(>o

P d 1

J-yA

K Erf 1- 
1

1̂ 
^

0 | 1 
1

- E r f f id -i

_ \ / 2 6 o _

found by solving

H "
7 d 

_ \ / 262_

- E r f 7 d - l  ’ 
_ 1/ 262 .

1

n
(4.9)

m' 7d-i

for d =  1 , . . . ,  m  — 1. Note that, without loss of generality, we always take 60 =  1-

(4.10)
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4.2.3.1 First-Order Distribution

Fig. 4.1 shows the first-order distribution of the Markov chain model compared to the 

Gaussian distribution, for various values of n. We can see that the modeling is accurate 

for all values of n, although at n =  5 ,  the model is quite coarse. For n  > 10, the Markov 

chain models the first-order Gaussian distribution, in general, excellently. However, even 

at n = 20, there remains some coarseness in the modeling of the tails of the Gaussian 

distribution. This is inherent in the equiprobable state-space definition, as the Gaussian 

tails have very low probability.

Thus, we see that a Markov chain model with an equiprobable state-space can effec

tively model the amplitude of the Gaussian fading process. Note that m  is not considered 

here because the number of rate states has no effect on the amplitude distribution of the 

Markov chain, since output vector f has no dependence on the rate states.

4.2.3.2 Invariance

The figures shown in the first-order distribution analysis are based on the output vector f 

and the initial occupancy vector <f)0, thus, on their own, they only confirm that the Markov 

chain model starts with a Gaussian distribution. In order to verify that the Markov chain 

has a Gaussian distribution at all time points, i.e. is stationary, we must verify that (f>0 is 

invariant over transition matrix P.

We described the concept of Markov chain invariance in Section 2.4.3. In order to prove 

invariance, we must prove that <p0T =  <t>oTP, or, to put it another way, we must prove that 

4>k-i =  <t>k- Recall from Section 4.2.2 that, when defining the transition matrix for this 

Markov chain model, we made the substitution

nih r5ih n h  r5i<,
Pr[Xt _i = s „ X k = s>]= /  /  / f a ^ X c ^ . r j d T ^ d T ^

Jljh - 1 J8ih _ i J'jjq _ i J5iq _ i

where / g(TCi , T'  , TC2, T'  ) is the multivariate Gaussian distribution (2.2) with covariance
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Fig. 4.1. The first-order distribution of the Markov chain model of the Gaussian fading 

process, for various values of n.
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TABLE 4.1

Numerical verification of the stationarity of the first-order Markov chain model of the

ISORA Gaussian fading process.

ll^i —0 0 II

n m f o T —0 .1 0 f u T = 0.05 f o T = 0 .01

10 5 5.49 X 1 0 ~ 6 4.73 X 1 0 ~ 6 3.12 X 1 0 ~ 6

10 10 8.60 X 1 0~ 6 6.89 X io - 6 4.70 X 10 ~ 6

15 5 6.42 X 1 0 ~ 6 5.07 X 1 0 ~ 6 4.46 X 1 0 ~ 6

15 10 9.59 X 1 0 “ 6 7.38 X 1 0 “ 6 7.23 X 10 ~ 6

matrix (4.8). If we consider the marginal distributions of this expression, we get 

Pr[Xb-i =  »,] =  r  f  ! o ( T c„ T a W „ d T 'CI
J l j q - 1 «/<$«,-1

Hih c K
? r \X k =  s „ ) =  /  f a { T „ , T J d T „ d r a .

J j jh -1  J&ih- 1

Based on covariance matrix (4.8), we can immediately see that f c (T Cl, T 'CI) and / G(TC2, T'C2) 

are identical and are, in fact, given by (2.16), the distribution used to calculate <j>0. Thus,

0 fc_![d] =  Pr[Xk^  = sd] =  Pr[X0 =  sd] = Pr[Xk = sd} = <j>k[d] (4.11)

so, the Markov chain is invariant, making the Markov chain model stationary.

Unfortunately, this proof assumes the multivariate Gaussian integral is known exactly, 

which is not true. We can only approximate the integral values through numerical methods. 

To verify that this does not significantly affect the stationarity of the Markov chain model, 

we numerically compute \\4>i — </>o||, the norm of the difference of the Markov chain dis

tribution at two consecutive points, for a number of different model parameters. Table 4.1 

displays the results of these calculations. We can see that the difference between 0 O and <p± 

is small for all parameters. The differences are on the order of the error in the numerical 

integration values, which is not a surprising result. Thus, even considering the approx

imations in the transition probabilities, the Markov chain model can still be considered 

stationary.
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4.2.3.3 Autocorrelation

Figs. 4.2-4.5 show the autocorrelation of the Markov chain model of the ISORA Gaussian 

fading process compared to the theoretical ISORA autocorrelation function (2.40). In Figs.

4.2 and 4.3, we see the autocorrelation of the Markov chain model for increasing m and 

constant n, with f p T  =  0.10. We can see that the Markov chain model has a decaying- 

oscillatory autocorrelation function of very similar shape to that of the theoretical function. 

However, the Markov chain autocorrelation has a slower oscillation frequency than the the

oretical, and decays faster. This oscillatory behavior was reported by Bergamo, et.al. [4], 

although they were modeling the ISORA Rayleigh process, not the underlying Gaussian 

process as we are here. Their results showed quite small oscillations, while the autocor

relation functions we see here have large oscillation magnitudes, at least for the first few 

extrema. In both Figs. 4.2 and 4.3, we can see that increasing m  increases the magnitude of 

the oscillations, but doesn’t have any significant effect on the oscillation frequency or decay 

rate. Figs. 4.4 and 4.5 contain the same data, but reorganized to show the autocorrelation of 

the Markov chain model for increasing n and constant m. We can see that increasing n has 

only a minimal effect on the autocorrelation of the Markov chain model, slightly increasing 

the magnitude of the oscillations, but, like m, has no significant effect on the oscillation 

frequency or decay rate.

Figs. 4.6-4.9 show the effects of variations in the sample spacing T  on the autocorre

lation of the Markov chain model of the ISORA Gaussian fading process. We can see that 

the shape of the Markov chain autocorrelation remains basically the same at all values of 

T  tested. As the sample spacing is increased, there is a slight slowing in the oscillation fre

quency. More significant is the effect the sample spacing has on the oscillation magnitudes. 

In Figs. 4.6 and 4.7, where the Markov chain model has a larger number of rate states, we 

can see that decreasing the sample spacing from the large sample spacing T  = 2.0e-3 to the 

medium sample spacing T  = 0.5e-3 causes the oscillation magnitudes to increase. Inter

estingly, decreasing the sample spacing beyond this point causes the oscillation magnitudes 

to decrease, to the point where the extrema of the autocorrelation function for T  =  O.le-
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Fig. 4.2. Autocorrelation of the Markov chain model of the ISORA Gaussian fading 

process for increasing values of m , n  = 1 0 , and f o T  = 0 .10 .
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Fig. 4.3. Autocorrelation of the Markov chain model of the ISORA Gaussian fading 

process for increasing values of m , n  = 15, and f p T  =  0.10.
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Fig. 4.4. Autocorrelation of the Markov chain model of the ISORA Gaussian fading 

process for increasing values of n, m  — 5, and f o T  = 0.10.

-  b - n  =  1 0

0.8 Theoretical

0.6

0.4
co
"5 0.2o>
8o
13<

-0.2

-0 .4

-0.6

-0.8
50

k

Fig. 4.5. Autocorrelation of the Markov chain model of the ISORA Gaussian fading 

process for increasing values of n, m  — 1 0 , and f o T  = 0 .1 0 .
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Fig. 4.6. ISORA Gaussian Markov chain model autocorrelation for various values of 

sample spacing T  (sec), n  =  10, m  =  10, and f D = 100 Hz.
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Fig. 4.7. ISORA Gaussian Markov chain model autocorrelation for various values of 

sample spacing T  (sec), n  =  15, m  — 10, and f o  = 100 Hz.
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Fig. 4.8. ISORA Gaussian Markov chain model autocorrelation for various values of 

sample spacing T  (sec), n = 15, m  =  5, and f D =  100 Hz.
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Fig. 4.9. ISORA Gaussian Markov chain model autocorrelation for various values of 

sample spacing T  (sec), n  =  10, m  = 5, and f D =  100 Hz.
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3 are roughly the same as those for T  = 2.0e-3. Figs. 4.8 and 4.9 show the effect of 

the sample spacing on the Markov chain model autocorrelation function for models with a 

smaller number of rate states. It remains true that decreasing the sample spacing causes a 

slight slowing in the oscillation frequency. However, with a smaller number of rate states, 

the sample spacing has much less of an effect on the oscillation magnitudes. In fact, the 

extrema for the large to medium sample spacings are all very close together. Decreasing 

the sample spacing to T  = 0.1e-3 continues to cause a notable decrease in the oscillation 

magnitudes, though.

4.2.4 3-DISORA Markov Chain Model

During the analysis of the Markov chain model of the ISORA Gaussian fading process, we 

saw that the Markov chain model had an autocorrelation function that exhibited a slower 

oscillation frequency than that of the ISORA model, while decaying faster. In Section 

2.3.3, we discussed the 3-DISORA model, which is a fading channel model appropriate 

for use in 3-dimensional isotropic scattering environments when the receiving antenna is 

omnidirectional. We saw that the autocorrelation function of that model, given by (2.45), 

has oscillations that lag behind those of the ISORA model, and decay faster. Thus, there 

is reason to think that a Markov chain model with an amplitude/rate-of-change state-space 

may be able to model the 3-DISORA fading channel more closely than the ISORA fading 

channel.

The Markov chain model of the 3-DISORA fading process is computed exactly as dis

cussed in Section 4.2.2, with the exception that g(T) and its derivatives, used in the cal

culation of covariance matrix E (4.8), are found using (2.45) instead of (2.40). Thus, the 

first-order distribution of this model will be identical to the Gaussian model analyzed in 

Section 4.2.3, and the invariance proof will also still apply. So, we focus on the autocorre

lation of the model.

Figs. 4.10-4.13 show the autocorrelation of the Markov chain model of the 3-DISORA 

Gaussian fading process, compared to the theoretical 3-DISORA autocorrelation function.
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Fig. 4.10. Autocorrelation of the Markov chain model of the 3-DISORA Gaussian fading 

channel, compared to the autocorrelation of the ISORA Markov chain model, for 

n = 10, m  =  3, and f o T  =  0.10.
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Fig. 4.11. Autocorrelation of the Markov chain model of the 3-DISORA Gaussian fading 

channel, compared to the autocorrelation of the ISORA Markov chain model, for 

n  =  10, m  — 5, and f o T  =  0.10.
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Fig. 4.12. Autocorrelation of the Markov chain model of the 3-DISORA Gaussian fading 

channel, compared to the autocorrelation of the ISORA Markov chain model, for 

n  =  15, m  =  3, and f p T  =  0.10.
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Fig. 4.13. Autocorrelation of the Markov chain model of the 3-DISORA Gaussian fading 

channel, compared to the autocorrelation of the ISORA Markov chain model, for 

n  =  15, m  =  5, and f p T  =  0.10.
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An equivalent ISORA Gaussian fading process Markov chain model autocorrelation func

tion is also included for comparison. We can see that in all cases, the autocorrelation of the 

Markov chain model of the 3-DISORA process oscillates slower than the theoretical func

tion, and decays faster. In fact, it appears to decay at the same rate as the autocorrelation 

of the Markov chain model of the ISORA process. When comparing the autocorrelation of 

the Markov chain models of the 3-DISORA and ISORA channels, we see that the oscilla

tions of the 3-DISORA Markov chain model lag behind those of the ISORA Markov chain 

model, much like the oscillations of the theoretical 3-DISORA autocorrelation lag behind 

those of the theoretical ISORA model. A first-order Markov chain with an amplitude/rate- 

of-change state-space appears to model the 3-DISORA Gaussian fading process as well 

as it did the ISORA Gaussian fading process. No improvement in the goodness of the 

model is evident upon switching to a fading channel model that oscillates differently than 

the ISORA model.

4.2.5 Modeling the Complex Gaussian Fading Envelope

In Section 2.3.2, we found that the amplitude of a fading signal can be modeled as the enve

lope of a complex Gaussian process, making the amplitude of the fading signal a Rayleigh 

process. We developed and analyzed first-order Markov chain models of the ISORA Gaus

sian fading process in Sections 4.2.2 and 4.2.3. In this section, we show how to form a 

Markov chain model of the ISORA Rayleigh fading envelope process based on a Markov 

chain model of the underlying Gaussian process, and we study its first-order distribution 

and autocorrelation function.

4.2.5.1 Computing the Markov Chain Model

To form a Markov chain model of the ISORA Rayleigh fading envelope process based on 

a Markov chain model of the underlying Gaussian process, we will form a new Markov 

chain that essentially represents two Markov chains operating concurrently. This method 

is appropriate because the fading amplitude is modeled as the envelope of two indepen-
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dent, identically distributed quadrature Gaussian processes. It is the independence of the 

quadrature components that permits this envelope combining method. If the quadrature 

components were dependent in any way, this method would not be suitable.

Define A ®  B  to be the Kronecker product,

/

A ® B

A \ \B  A 12B  

A 21B  A 22B

Y Aq\B A„2B

A\hB

A2hB

AnhB

\

(4.12)

i92-D ' • • SLqhO y

where A  and B  can be matrices or vectors. Thus, we can define the initial occupancy vector 

of the Markov chain model of the ISORA Rayleigh fading envelope process as

(4.13)

where 0o is the initial occupancy vector of the Markov chain model of the ISORA Gaussian 

fading process studied previously. Likewise, the transition matrix of the Markov chain 

model of the ISORA Rayleigh fading envelope process can be defined as

PR = P ® P (4.14)

where P  is the transition matrix of the Markov chain model of the ISORA Gaussian fading 

process.

The amplitude of the Rayleigh fading process is the envelope of the quadrature addition 

of the Gaussian fading processes, so, to find the output vector of the Markov chain model of 

the ISORA Rayleigh fading envelope process, we must first define the following algebraic
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expression. If x  =  [xi, . . . , X jY  andy =  [y1?. . . , yk]T, define x O y a s

V x i + y\

Vxi + vl
VX2 +v!

x © y  =
V X2 + vl

(4.15)

y/1x) + V\

which is a variation on the Kronecker product. Thus, the output vector of the Markov chain 

model of the ISORA Rayleigh fading envelope process can be defined as

process. So, a Markov chain model of the envelope fading process can be defined based on 

a Markov chain model of the complex Gaussian fading process by applying transformations 

(4.13), (4.14), and (4.16).

4.2.5.2 Model Analysis

To begin, we look at the first-order distribution of the Markov chain model of the ISORA 

Rayleigh fading envelope process. Note that when we refer to n  and m, we are referring 

to the number of amplitude and rate states in the Markov chain model of the underlying 

Gaussian process, not the number of states in the Markov chain model of the envelope 

process. Fig. 4.14 shows the first-order distribution of the Markov chain model compared 

to the first-order distribution of the fading envelope, which we saw in Section 2.3.2 to be 

the Rayleigh distribution (2.36). We can see that the modeling of the first-order Rayleigh

fR =  f © f (4.16)

where f  is the output vector of the Markov chain model of the ISORA Gaussian fading
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Fig. 4.14. The first-order distribution of the Markov chain model of the envelope fading

process, based on the Markov chain model of the Gaussian fading process, for various

values of n.
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distribution is not as good as the modeling of the underlying Gaussian distribution, seen 

in Fig. 4.1. In general, the modeling of the lower range of the distribution is very good, 

except for n  =  5, but for the upper range of the distribution, the modeling is quite poor, 

even at n = 2 0 .

This poor modeling of the upper range of the Rayleigh distribution can be explained 

by considering the first-order Gaussian distributions in Fig. 4.1. As we pointed out before, 

although the modeling over most of the support of the distribution is excellent, the use 

of equiprobable threshold values means that the tails of the Gaussian distribution are not 

captured well, even for high values of n. This leads to poor modeling of the upper range of 

the Rayleigh distribution because the large amplitude values represented by the tails of the 

Gaussian distribution translate to large values of the envelope amplitude.

The Markov chain model of the envelope process will necessarily be invariant if the 

underlying Gaussian Markov chain model is invariant, which it is, so we will proceed di

rectly to the autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

envelope process. Figs. 4.15-4.18 show the autocorrelation of the Markov chain model of 

the ISORA Rayleigh fading envelope process, compared to the theoretical ISORA auto

correlation (2.42). Note that we focus on smaller state-space sizes here than we did in the 

ISORA Gaussian model analysis earlier, because the envelope transformation causes these 

models to grow as (n m )2, which means that the transition matrix quickly gets too large for 

the matrix-power portion of the autocorrelation expression to be practically calculated.

We can immediately see that the oscillatory shape of the Markov chain model auto

correlation has been maintained by the envelope transformation, as has the fact that the 

oscillation frequency is slower than that of the theoretical function, and it decays faster. 

Unlike the Markov chain model of the ISORA Gaussian fading, however, we can see that 

there is a noticeable downward shift in the autocorrelation values as compared to the the

oretical. The Markov chain model converges to a value lower than the convergence value 

of the theoretical. In fact, the value that the autocorrelation function settles at is the square 

of the mean of the first-order distribution, so this shift in the autocorrelation is actually a 

consequence of the poor first-order modeling we discussed earlier.
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Fig. 4.15. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

envelope process, based on the Markov chain model of the complex Gaussian fading 

process, for increasing values of m, n — 10, and f DT  =  0.10.
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Fig. 4.16. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

envelope process, based on the Markov chain model of the complex Gaussian fading 

process, for increasing values of m , n  = 15, and f jyT — 0.10.
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Fig. 4.17. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

envelope process, based on the Markov chain model of the complex Gaussian fading 

process, for increasing values of n , m  = 5, and f o T  =  0.10.
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Fig. 4.18. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

envelope process, based on the Markov chain model of the complex Gaussian fading 

process, for increasing values of n, m  =  1 0 , and f o T  =  0 .1 0 .
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Figs. 4.15 and 4.16 show the autocorrelation of the Markov chain model for increasing 

m  and constant n. We can see that, like the Markov chain model of the ISORA Gaussian 

process, increasing m  causes an increase in the magnitude of the maxima of the oscilla

tions, but has no significant effect on the oscillation frequency. Increasing m  also causes 

the minima of the oscillations to draw closer to the theoretical, particularly the first minima. 

Figs. 4.17 and 4.18 show the autocorrelation of the Markov chain model for increasing n 

and constant m. Unlike the ISORA Gaussian model, where changes to n  had no signifi

cant effect, the effect of changing n  on the Markov chain model of the envelope is more 

pronounced. In fact, we can see that n  affects the amount of downward shift in the Markov 

chain autocorrelation values. Increasing n  causes the autocorrelation function to settle to 

a value closer to the theoretical. This should be expected because increasing n  improves 

the first-order distribution modeling, which directly effects the mean-squared value that the 

autocorrelation settles to.

Figs. 4.19-4.21 show the effects of variations in the sample spacing T  on the auto

correlation of the Markov chain model of the ISORA Rayleigh fading envelope process. 

Changes to the sample spacing have basically the same effect on the Markov chain enve

lope model as they did on the ISORA Gaussian Markov chain model. For larger m, the 

oscillation maxima increase with decreasing sample spacing, up to the medium sample 

spacing T  — 0.5e-3. Beyond that point, the oscillation maxima decreases with decreasing 

sample spacing. Alternately, with smaller m, the sample spacing does not have any signif

icant effect on the oscillation maxima for large to medium values of T, but as the sample 

spacing decreases from medium to small values, the oscillation maxima decreases.

One point that becomes clear from Figs. 4.19-4.21 that was not evident from the ISORA 

Gaussian Markov chain model analysis is that there is an upper limit to the sample spacing 

beyond which the sampling of the fading envelope becomes too coarse. By examining the 

autocorrelation figures, we can see that T  =  1.8e-3 appears to be the upper limit on the 

sample spacing while still maintaining a reasonably smooth sampling of the autocorrelation 

function. This assertion is supported by Fig. 4.22, which shows a sample fading profile, 

along with the sampling at JdT  — 0.18. Qualitatively, one would expect that a larger

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-  *  - T  » 2 .0 e -3
-  v  -  T = 1,8 e-3
-  b  -  T  = 1 .Oe-3 
- e  -  T = 0 .5 e-3

1.95

 Theoretical
1.85

co

1.75

3 1J
1.65

1.55

0.020.01 0.03
Time x (sec)

Fig. 4.19. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

envelope process, based on the Markov chain model of the complex Gaussian fading 

process, for various values of sample spacing T  (sec), n =  10, m  — 10, and f p  =  100 

Hz.
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Fig. 4.20. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

envelope process, based on the Markov chain model of the complex Gaussian fading 

process, for various values of sample spacing T  (sec), n = 15, m  — 5, and f o  =  100 

Hz.
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Fig. 4.21. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

envelope process, based on the Markov chain model of the complex Gaussian fading 

process, for various values of sample spacing T  (sec), n = 10, m  = 5, and f D =  100 

Hz.
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Fig. 4.22. Fading profile showing the sample spacing resulting at f p T  = 0.18.
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spacing of the samples would miss some fades and crests in the fading amplitude profile.

4.2.6 Conclusion

In this section, we examined a first-order Markov chain model of the ISORA Rayleigh 

fading channel, based on a state-space made up of the amplitude and rate-of-change of the 

fading process. This model was defined by first finding a first-order Markov chain model of 

the underlying complex Gaussian fading process. We found that a first-order Markov chain 

can effectively model the first-order Gaussian distribution, but has less success with the 

ISORA autocorrelation function. The new amplitude/rate-of-change state-space resulted in 

a Markov chain autocorrelation function that exhibited a decaying-oscillatory shape that is 

much closer to the theoretical function than previous models, however, the Markov chain 

model autocorrelation decays faster than the theoretical, and has a slower oscillation fre

quency. Changes to the number of states in the state-space affected the magnitude of the 

oscillations, but not the decay rate or oscillation frequency.

A method was then described to use this ISORA Gaussian Markov chain model as the 

basis for a Markov chain model of the ISORA Rayleigh fading envelope process. We saw 

that the first-order distribution of the envelope Markov chain model was not as good as the 

Gaussian model, particularly in the upper range of the distribution. The autocorrelation 

function of the Markov chain model of the ISORA Rayleigh fading envelope was a con

siderable improvement over previous AFSMC models, displaying a decaying-oscillatory 

shape that was much closer to the theoretical than the exponential autocorrelation reported 

by Tan and Beaulieu [6 ]. However, the limitations of the Gaussian model autocorrelation 

were maintained during the envelope transformation, specifically, the decay rate was faster 

than the theoretical and the oscillation frequency was slower. There was also a downward 

shift in the model autocorrelation values, a result of the errors in the modeling of the first- 

order distribution.
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4.3 Second-Order Markov Chain Model

4.3.1 Introduction

The results of Section 4.2 showed that a Markov chain based on an amplitude/rate-of- 

change state-space is able to capture the decaying-oscillatory nature of the ISORA autocor

relation function when used to model the Gaussian fading process and then transformed to 

model the Rayleigh fading envelope process. However, the oscillation frequency is slower 

than that of the ISORA model, and it decays faster. In this section, we explore a second- 

order Markov chain model of the ISORA Gaussian fading process, and examine the effects 

increasing the Markov chain order has on the model.

4.3.2 Computing the Markov Chain Model

Recall that for a first-order Markov chain, the probability of being in a particular state at 

time k depended only on the state of the chain at time k — 1. A similar definition applies 

to second-order Markov chains, except that the probability of being in a particular state 

at time k depends on the state of the chain at times k — 1 and k — 2. Thus, a second-

order Markov chain is specified by the same three elements we presented in Section 2.4.2,

transition matrix P, initial occupancy vector </>0, and output vector f, but defined over a 

second-order state-space.

4.3.2.1 Defining the Second-Order State-Space

The definition of a second-order state-space is based on the combination of an underlying 

first-order state-space at two consecutive time instants. So, the second-order Markov chain 

state-space is made up of (nm)2 states, labeled {u>i,. . . ,  W(nrnp) ,  where Wd =  {sXd, syd}, 

syd being the current first-order state, sXd being the previous first-order state, with

Xd — Mod(rf, nm,  1) (4.17)

yd =  Quotient(c?, nm,  1) +  1 (4.18)
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where Mod(-, •, 1) and Quotient^, •, 1) are defined by (4.2) and (4.1), respectively. The 

underlying first-order states are defined exactly as in Section 4.2.2, so, the second-order 

state-space, like the first-order state-space, is completely defined by threshold vectors S 

and 7 .

4.3.2.2 Output Vector f

Since a second-order state is made up of both the current first-order state and the previous 

first-order state, the output value of a second-order state will be set to the output value of 

the equivalent current first-order state. Thus, to compute f [d\, we first find the equivalent 

current first-order state sm via (4.18), then find iyd using (4.1). The output value is found 

using (4.3), with iyd replacing id.

4.3.2.3 Initial Occupancy Vector 4>q

In the case of a first-order Markov chain, </>0 was found by integrating the joint distribu

tion of Tc, T'c over each state in the state-space. For a second-order Markov chain, the 

state-space consists of two consecutive points, so we will calculate the initial occupancy 

probabilities by integrating over the joint distribution of two consecutive points, namely 

Tcl,T ; ,T C2, andT'2.

To find 4>0 [d\, we first find x d and yd with (4.17) and (4.18), which defines the equivalent 

current and previous first-order states, then find iXd, j Xd, iyd, j yd using (4.1) and (4.2), which 

defines the amplitude and rate thresholds for the states. If we let T c =  [TC1, T 'Cl, TC2, T '2], 

then

(f>o[d\ = P r[n  =  wd\

=  Pr[2ffc =  syd, Xk - i  = Sxd|

This expression is identical to the numerator of (4.7), and will be similarly computed using 

the Genz [52] algorithm discussed in Appendix A.
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4.3.2.4 Transition Matrix P

The transition matrix for a second-order Markov chain must be computed with some cau

tion, as not all transitions are possible. Consider, for example, that a Markov chain is 

currently in second-order state Wd, which consists of equivalent current first-order state syd 

and previous first-order state sXd. We wish to find the probability of the Markov chain 

making the transition to state Wk, which has equivalent current first-order state syk and pre

vious first-order state sXk. We note that the current first order state of Wd is the previous 

first-order state of Wk, thus, the transition from Wd to Wk is only possible if syd — sXd. So, 

a second-order transition matrix will have a large number of 0  entries because of the many 

transitions that are not possible.

Let Yk be a random variable representing the second-order state of the Markov chain at 

time k .  Then, transition matrix P  will be calculated as

Pqh PrjT^ wh\Yk- i  w<j,]

Pr[Xfc Syhi Xk—l SXh\Xk — l Syq, Xk — 2 —

Pr [Afc =  syh\Xk-l — Syq, Xk - 2 =  SxJ, %h — Uq
t4.ZU/)

0 , otherwise

where xh, Vh, x q, yq are found using (4.17) and (4.18). As was our convention for the first- 

order Markov chain model, let TC1 and T'C1 represent the amplitude and rate-of-change of 

the Gaussian fading process at time t, TC2 and T'C2 represent the amplitude and rate at time 

t +  T, and Tca and T'C3 represent the amplitude and rate at time t +  2T. If we let T c =  

[TC1, T 'Cl, TC2, T ’C2, Tca, T 'J , then the conditional probability of (4.20) can be computed as

Pt[-̂ Cfc ^yh\^k — 1 SyqlXk — 2
  Pt[A"fc Syh, Xk—1 Syq)Xk — 2

Pr[Afc_i =  Syq,Xk —2 —
njyh r5*yh rijyq rsiyq n jXq

_ ‘3yk ~ 1 JSiyh-l Pjyq- 1 JSiyq~̂
4>o[q]

By extending the discussion of / g(TCi , T 'ci, TC2, T'C2) in Section 2.2.4 to include a third time 

point, it is clear that /g (T c) is a multivariate Gaussian distribution (2 .2 ) where the fading
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channel correlation structure (2.9), assuming sample spacing T  between consecutive points, 

gives the covariance matrix as

bo 0 9(T) g'm am g'm
0 ~</(T) -g"(T) -g'm -g"m

9(T) ~f / (T) bo 0 a(T) g'm
s'cn -9"{T) 0 (>2 -g'm - g"(T)

am -g'm a(T) g'm bo 0

s/m -g"m 9'(T) 0 &2

Like the 4-dimensional version of this joint distribution, there is no closed-form for the 

numerator of (4.21), but it can be calculated numerically using the Genz [52] algorithm 

discussed in Appendix A.

4.3.3 Model Analysis

As in the first-order Markov chain model analysis, we focus on threshold vectors 6 and 7  

that result in equiprobable first-order state-spaces. The resulting second-order state-space 

will not be equiprobable, but this represents no difficulties. The equiprobable state-spaces 

are used primarily to give a consistent method of calculating values for 6 and 7 , not because 

of any model necessity.

There is one state-space calculation issue here that did not merit consideration in the 

first-order Markov chain model. Because the initial occupancy vector of this model is 

based on the joint distribution of two consecutive points, some values of </>0 will be ex

tremely small. In fact, because of numerical integration limitations, some values will be 0. 

Clearly, this is going to cause problems in (4.21), where (f>o[q\ is the denominator of the 

transition probability expression. To correct this issue, we recognize that, since the Markov 

chain model is stationary, the initial occupancy vector not only represents the probability 

of starting in a particular state, but also the probability of being in a particular state at any 

point in time. Thus, if the initial occupancy probability of a particular state is extremely 

small, or 0 , that state will be visited extremely rarely, or never, and can be removed from
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TABLE 4.2

Numerical verification of the stationarity of the second-order Markov chain model of the

ISORA Gaussian fading process.

1 o

n m f o T = 0 .1 0 f DT  = 0.05 f o T = 0 .01

5 3 9.77 X io - 6 5.06 x IO' 6 4.07 X 10 ~ 6

5 5 17.09 X 1 0 ~ 6 18.66 x IO' 6 6.96 X 10 ~ 6

6 3 11.90 X 1 0 “ 6 10.51 x 10~ 6 5.62 X IO" 6

6 5 17.06 X 1 0 “ 6 9.92 x 10~ 6 5.08 X 10 ~ 6

the state-space without significantly affecting the statistics of the model. Since the error in 

the numerical integration calculations is 10-6, as we mention in Appendix A, we remove 

any state from the state-space that has an initial occupancy value below this error, due to 

the unreliability of values in this range.

Because the output of a second-order state is the same as the output of the equivalent 

current first-order state, the first-order distribution of this second-order Markov chain model 

will be identical to that of the first-order Markov chain model. Also, it is clear from the ex

pression for covariance matrix E (4.22) that the marginal distributions / g (T c1 , T 'Cl, TC2, T'C2) 

and / g (T ’C2, T 'C2, TC3, T'C3) of / g ( T c ) are identical to each other as well as to the distribution 

used to calculate the initial occupancy vector, so the invariance proof we presented in Sec

tion 4.2.3.2 is still valid here. In Table 4.2, we show the norm of the difference </>x — <fio for 

a number of model parameters, as we did in Table 4.1 for the first-order analysis. We can 

see that the differences are, in general, larger than the ones we calculated in the first-order 

analysis, a consequence of the removal of the low probability states, but the values are 

still very small, so the second-order Markov chain model can still be considered stationary. 

Thus, we proceed directly to the autocorrelation analysis.

Because the second-order Markov chain is defined in such a way that it looks like a first- 

order Markov chain, the autocorrelation expression we derived in Section 2.4.4 can also be
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used to calculate the autocorrelation function of a second-order Markov chain. Because the 

second-order Markov chain size increases as (nm)2, we will focus our analysis on smaller 

values of n and m  than in the first-order Markov chain analysis. Figs. 4.23-4.25 show the 

autocorrelation of the second-order Markov chain model of the ISORA Gaussian fading 

process for various values of sample spacing T. We also include the autocorrelation of an 

equivalent first-order Markov chain model to judge the improvement gained by increasing 

the order of the model. Recall from Figs. 4.8 and 4.9 that for smaller state-space sizes, vari

ations in the sample spacing don’t have a significant effect on the first-order Markov chain 

model autocorrelation function, thus, we only include one first-order comparison plot, for 

T  =  1.0e-3. We can see that increasing the Markov chain model order does improve 

the modeling of the ISORA Gaussian fading process, with the exception of Markov chain 

models at small sample spacing T  = 0.Ole-3, which appear unaffected. For medium to 

large sample spacings, increasing the model order increases the autocorrelation oscillation 

frequency closer to that of the theoretical. The amount by which the oscillation frequency 

improves appears to depend on the size of the state-space. In Fig. 4.23, which has the 

smallest state-space size, the oscillation frequency increase is fairly insignificant, with the 

exception of the largest sample spacing, T  — 1.8e-3, which is noticeably improved. We 

saw previously that changes to n  do not have much impact on the model autocorrelation 

function, and Fig. 4.25, which has a state-space in which n is increased by 1, does not 

appear notably different than Fig. 4.23. In Fig. 4.24, however, in which the model has a 

larger value of m, the oscillation frequency is noticeably improved for both T  =  1.8e-3 and 

T  =  1.0e-3. In fact, at the largest sample spacing, the Markov chain model autocorrelation 

well matches the theoretical up to the first maxima, a considerable improvement over the 

first-order Markov chain models.

The method we presented in Section 4.2.5.1 can be used to find a Markov chain model 

of the ISORA Rayleigh fading envelope process, based on the second-order Markov chain 

models of the complex Gaussian fading process we discussed above. Note, however, that 

the use of this transformation results in a Markov chain whose size increases as (nm)4, 

which, even for small values of n and m, is impractically large. Fig. 4.26 shows the
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Fig. 4.23. Autocorrelation of the second-order Markov chain model of the ISORA Gaus

sian fading process for various values of T  (sec), n  =  5, m  = 3, and f o  = 100 

Hz.
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Fig. 4.24. Autocorrelation of the second-order Markov chain model of the ISORA Gaus

sian fading process for various values of T  (sec), n  =  5, rn =  5, and f u  — 100 

Hz.
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Fig. 4.25. Autocorrelation of the second-order Markov chain model of the ISORA Gaus

sian fading process for various values of T  (sec), n =  6 , m  = 3, and f n  — 100 

Hz.
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Fig. 4.26. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading enve

lope process, based on a second-order Markov chain model of the complex Gaussian 

fading process, for various values of sample spacing T  (sec), n = 5, m  =  3, and 

f D = 100 Hz.
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autocorrelation of the second-order Markov chain model of the ISORA Rayleigh fading 

envelope process for n  =  5, m  =  3, which is the largest state-space for which the autocor

relation can be evaluated within a reasonable time frame on an IBM workstation with two 

2.2 GHz Intel Xeon processors and 2GB of RAM. We can see that the increase in Markov 

chain order does improve the autocorrelation slightly, as it did in the ISORA Gaussian fad

ing process model, but n =  5 results in a very poor modeling of the first-order distribution 

of the fading envelope, as we saw in Fig. 4.14(a), which causes the very large downward 

shift in the autocorrelation values we observe here.

4.3.4 Conclusion

In this section, we studied Markov chain models of the ISORA Rayleigh fading channel, 

based on second-order Markov chain models of the underlying Gaussian fading process. 

The elements that specified the second-order Markov chain model were defined much like 

the elements that specified the first-order model, but with simple extensions.

Though a second-order Markov chain will not model the first-order distribution of the 

fading channel any better than the first-order Markov chain does, we saw that a second- 

order Markov chain can noticeably improve the modeling of the ISORA autocorrelation, 

particularly for larger sample spacings. However, due to the size of a second-order Markov 

chain, creating a Markov chain model of the ISORA Rayleigh fading process based on a 

second-order Markov chain model of the underlying Gaussian processes is not practical, 

since, even for small state-space sizes, the Markov chain envelope model is too large to be 

analyzed.

4.4 Conclusion

In this chapter, we studied a Markov chain model of the ISORA Rayleigh fading chan

nel based on a Markov chain model of the underlying complex Gaussian process, using a 

state-space consisting of both the amplitude and rate-of-change of the fading process. In
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Section 4.2, we studied first-order Markov chain models. We saw that a first-order Markov 

chain can well model the first-order Gaussian distribution. By basing the transition matrix 

on the joint distribution of two consecutive points of the fading process, we also saw that 

the Markov chain model will necessarily be stationary. When studying the autocorrela

tion of the Markov chain model, we saw that the amplitude/rate state-space resulted in a 

decaying-oscillatory autocorrelation function much closer to the theoretical than previous 

AFSMC models. However, the decay rate of the autocorrelation was faster than that of the 

theoretical, and the oscillation frequency was slower. Changes to the size of the state-space 

had no significant effect on either of these observations.

In Section 4.3, we expanded this model to a second-order Markov chain. We saw 

that increasing the order of the Markov chain can improve its ability to model the ISORA 

autocorrelation, particularly for larger sample spacings. Though the results suggest that 

a Markov chain model of the ISORA Rayleigh fading process based on a second-order 

Markov chain model of the underlying complex Gaussian process could improve on the 

first-order envelope model, the size of the Markov chain in this case would be impractically 

large.

Overall, creating a Markov chain model of the ISORA Rayleigh fading process by first 

modeling the underlying Gaussian process, with a state-space made up of the amplitude 

and rate-of-change of the process, results in a model that is a considerable improvement 

over previous Markov chain models. The shape of the autocorrelation function of the new 

model is much closer to the shape of the ISORA autocorrelation. However, by basing the 

Rayleigh fading model on a Markov chain model of the underlying Gaussian process, the 

resulting model of the Rayleigh fading envelope process is impractically large. There are 

also limitations in the first-order distribution of the Markov chain envelope model. Thus, 

we are motivated to explore Markov chain models of the ISORA Rayleigh fading process 

calculated based on the Rayleigh fading envelope statistics directly, which we will examine 

in the next chapter.
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Chapter 5

Markov Chain Modeling of the Rayleigh 

Fading Envelope Process

5.1 Introduction

In Chapter 4, we proposed and analyzed a Markov chain model of the ISORA Rayleigh 

fading channel based on a Markov chain model of the underlying complex Gaussian fading 

process. We observed that the use of a state-space based on the amplitude and rate-of- 

change of the fading process resulted in a Markov chain model that possessed a decaying- 

oscillatory autocorrelation function, a considerable improvement over the exponential auto

correlation of previous AFSMC models. However, the process of transforming a Gaussian 

model into a fading envelope model often resulted in impractically large Markov chain 

models, especially for second-order Markov chains.

In this chapter, we propose a Markov chain model of the ISORA Rayleigh fading chan

nel, based on a state-space consisting of the amplitude and rate-of-change of the fading pro

cess. The model will be calculated based directly on the statistics of the ISORA Rayleigh 

fading process. In Section 5.2, we examine a first-order Markov chain model of the ISORA 

Rayleigh fading channel. In particular, we compare its first-order distribution and autocor

relation function to those of the models examined in Chapter 4. In Section 5.3, we ex-
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tend this model to a second-order Markov chain, and examine the effect of increasing the 

Markov chain order on the modeling of the ISORA Rayleigh fading channel. Section 5.4 

concludes the chapter.

In this section, we study a first-order Markov chain model of the ISORA Rayleigh fading 

channel, based on an amplitude/rate-of-change state-space. In Section 5.2.2, we present 

a method to calculate the three elements of a Markov chain model based directly on the 

statistics of the ISORA Rayleigh fading process. In Section 5.2.3, we analyze the resulting 

Markov chain model, in particular, we compare its first-order distribution and autocorrela

tion function to those of the Markov chain model of the ISORA complex Gaussian envelope 

fading process, discussed in Chapter 4. Section 5.2.4 concludes this section.

5.2.2 Computing the Markov Chain Model

In this section, we present a method of calculating the three elements of a Markov chain 

model, namely, transition matrix P, initial occupancy vector <p0, and output vector f , in 

order to model the ISORA Rayleigh fading process. The method used will be identical to 

the method employed in Section 4.2, except that the specific statistical distributions used 

in the calculations will be based directly on the statistics of the fading envelope process, as 

opposed to the underlying complex Gaussian process.

Recall from Section 2.3.2 that the ISORA Rayleigh fading model has first-order distri

bution (2.36)

5.2 First-Order Markov Chain Model

5.2.1 Introduction

r e- r2/2h0 r >  0 
oo ’ —
0 , r <  0

and autocorrelation function (2.42)

1; Jo{2nfDT)

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where 2^i(-, •; •; •) is the Gaussian Hypergeometric function (2.43). Due to the fact that 

the state-space under consideration consists of the amplitude and rate-of-change of the 

Rayleigh fading process, we will be making use of the joint distributions of Rayleigh ran

dom variables and their derivatives, which we derived in Section 2.2.4.

5.2.2.1 Defining the State-Space

Since a Rayleigh random variable and its derivative are independent, which we saw in 

(2.19), the amplitude space and rate space can be partitioned independently, like the state- 

space of the Gaussian Markov chain model defined in Section 4.2.2.1. In fact, the state- 

space of this model will be defined in a virtually identical fashion to the previously dis

cussed Gaussian model.

Let the state-space be divided into n  amplitude states and m  rate states. The n amplitude 

states are defined by the length n + 1 vector 8 =  [<50, ■ ■ ■, <5n] of threshold values, where 

=  0 , 8n = oo, and <J|, . . . ,  5n_i can be any ascending sequence of real positive numbers. 

Likewise, the m  rate states are defined by a length m  +  1 vector of threshold values 7  =  

[7 0 , • • • , l m ) ,  where 70 =  - 0 0 , 7 m =  0 0 , and 7 1 , . . . ,  7 m-i is any ascending sequence of 

real numbers.

Thus, the state-space of this model consists of nm  states, where the amplitude and 

rate thresholds for state sa are specified by id and jd, calculated using (4.1) and (4.2), 

respectively. Like the Gaussian Markov chain model of Chapter 4, the state-space of the 

Markov chain model of the Rayleigh fading process is fully defined by 8 and 7 . The only 

difference between this state-space definition and that of Section 4.2.2.1 is that here, 80 =  0, 

because the Rayleigh fading amplitude only takes positive values.

5.2.22  Output Vector f

Vector f  represents the output of the Markov chain at each state. As in Section 4.2.2.2, 

we will choose the elements of f  to minimize the MSE between the amplitude value of the 

Markov chain model and the amplitude of the Rayleigh fading process over each state. We
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saw in Section 4.2.2.2 that the MSE minimizing solution of f is the conditional mean of the 

fading amplitude over each state. Thus, to compute f  [d], we first find id using (4.1), which 

specifies the amplitude thresholds of state sj, then, the conditional mean for that state can 

be calculated as

m  =
I s r f R ( r) dr

j f *  fR{r)dr

<5id_ ie v >

*1-1
-«?d_l/26o

2

u*d’ Side
7T~

^Erf V " 1
\/2i>o

+ \/^E rf

e id_1

where Erf[ ] is the error function (4.4).

62 /2 b n  -6 '2  /2 6 nlJ- ’/ U -e M 0
V̂ O

did 00

otherwise

(5.1)

5.2.2.3 Initial Occupancy Vector 4> o

The initial occupancy vector defines the distribution of the Markov chain at its starting 

point. To model the Rayleigh fading process over an amplitude/rate state-space, the initial 

occupancy vector will be calculated to represent a quantized version of f R(r, r'), which is 

given in (2.19).

Thus, using (4.1) and (4.2) to find id and jd, <f>o[d] can be computed as

H id  f S*d
<j>o[d] =  Pr[X0 = sd}=  / f R(r,r')drdr’

=  — | e  2bo 
2

e 2bo Erf ’ lid ' - E r f lid — 1
_\/2 i>2 . V 262.

(5.2)

5.2.2.4 Transition Matrix P

The transition matrix for the first-order Markov chain model of the ISORA Rayleigh fading 

process will be found using the joint distribution of two consecutive states, as done in Sec

tion 4.2.2.4. If we let r\ and r[ represent the amplitude and rate-of-change of the Rayleigh 

fading process at time t, and let r 2 and r'2 represent the amplitude and rate at time t + T,
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where T  is the sample spacing of the model, then we can compute the transition matrix as 

Pqh ~  Pr[.X fc — =  Sq]

  1 Sqi Afc Sfi]
Pr[Xfc_! =  s q ] P  '

where iq, j q, ih, j h are found using (4.1) and (4.2).

Joint distribution /^ (r i ,  r^, r{, r'2) is the joint distribution of two correlated Rayleigh 

random variables and their derivatives. We derived an expression for this distribution in 

Section 2.2.4, where we found that it can be expressed as (2.22). There is no closed-form 

expression for the numerator of (5.4), so it must be calculated using numerical integration 

techniques. In this case, we make use of the Monte Carlo method [53] to approximate the 

integral values, the details of which are given in Appendix B.l.

5.2.3 Model Analysis

To analyze the suitability of a first-order Markov chain in modeling the ISORA Rayleigh 

fading channel, we compare the statistics of the Markov chain model to those of the ISORA 

Rayleigh fading model on the basis of the same three properties considered in Chapter 

4. These consist of the first-order distribution, model stationarity, and the autocorrelation 

function.

We continue to focus our analysis on threshold vectors 6 and 7  that result in equiprob- 

able state-space definitions. Because the amplitude and rate-of-change remain independent 

when considering the Rayleigh fading process, as we can see from joint distribution (2.19), 

the amplitude state-space and rate state-space for this model can still be partitioned sepa

rately. In particular, we can find S[d] by solving

for d = 1 , . . . ,  n  — 1. Since r' has a Gaussian distribution with variance 62, 7  [d\ can be 

found by solving (4.10).

(5.4)
4 > o [q ]

(5.5)
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5.2.3.1 First-Order Distribution

Fig. 5.1 shows the first-order distribution of the Markov chain model compared to the 

Rayleigh distribution function for increasing values of n. The model is quite coarse for 

smaller values of n, but for n > 10, the Markov chain model approximates the Rayleigh 

distribution excellently. Contrast this with the first-order distribution of the Markov chain 

model of the complex Gaussian envelope fading process, seen in Fig. 4.14. We can see 

that the modeling of the first-order distribution is vastly improved when the Markov chain 

is calculated directly from the Rayleigh fading statistics. It is much smoother overall, and 

does not experience the modeling problems in the upper range of the distribution. Also, 

considering that the Markov chains examined in Fig. 5.1 have n  amplitude states, while 

the Markov chains examined in Fig. 4.14 have n 2 amplitude states, calculating the Markov 

chain model directly from the Rayleigh fading statistics not only improves on the modeling 

of the first-order distribution, but does so with fewer states.

5.2.3.2 Invariance

In Section 4.2.3.2, we proved that a Markov chain model with a transition matrix calculated 

based on the joint distribution of two consecutive states will be stationary provided that the 

marginal distributions of the two consecutive states are the same as the distribution used to 

calculate the initial occupancy vector. The joint distribution of two consecutive states used 

to calculate the transition matrix of this Markov chain model, fn (r ] , r 2, r[, r'2), is given by 

(2.22). By construction, its marginal distributions /i?(ri, rj) and /i?(r2 , r2) will be identical 

to each other, as well as to (2.19), which is the distribution used to calculate <pQ- Thus, this 

Markov chain model is stationary.

As we considered in the ISORA Gaussian Markov chain model analysis of Section 

4.2.3.2, this proof assumes that the integrals used in the transition matrix calculations are 

known exactly, which is not true. Thus, to verify the stationarity of the Markov chain 

model, we numerically compute 1 1 — <t>o 11, the norm of the difference between the Markov 

chain distributions at two consecutive points, for a number of different model parameters.
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Fig. 5.1. The first-order distribution of the Markov chain model of the Rayleigh fading

process, for various values of n.
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TABLE 5.1

Numerical verification of the stationarity of the first-order Markov chain model of the

ISORA Rayleigh fading process.

0■©-11—1

n m

or*HoII f DT  =  0.05
ooII•3

10 5 3.88 x 10~ 5 3.70 x 10" 5 3.79 x 10~ 5

10 10 4.12 x 10- 5 4.36 x 10~ 5 3.80 x 10- 5

10 15 3.87 x 10~ 5 4.20 x 10~ 5 3.93 x 10~ 5

15 5 4.16 x 10~ 5 4.04 x 10~ 5 3.67 x 10“ 5

15 10 3.61 x 10~ 5 3.58 x 10" 5 3.90 x 10~ 5

15 15 3.88 x 10~ 5 3.88 x 10~ 5 3.79 x 10“ 5

2 0 5 3.82 x 10~ 5 4.16 x 10~ 5 3.55 x 10~ 5

2 0 10 4.18 x 10~ 5 3.79 x 10~ 5 3.96 x 10~ 5

2 0 15 3.86 x 10~ 5 3.93 x 10~ 5 3.76 x 10“ 5

Table 5.1 shows the results of these calculations. As we saw in Table 4.1, the differences 

are on the order of the error in the numerical integration values, which, for the case of this 

model, is lCn5, as we mention in Appendix B.l. Thus, even though the transition matrix 

for this Markov chain model is calculated with lower accuracy than the models in Chapter 

4, it can still be considered stationary.

5.2.3.3 Autocorrelation

Figs. 5.2-5.7 show the autocorrelation of the first-order Markov chain model of the ISORA 

Rayleigh fading process compared to the theoretical ISORA autocorrelation function (2.42). 

In Figs. 5.2-5.4, we see the autocorrelation of the Markov chain model for increasing m  

and constant n, with f DT  = 0.10. As with the Markov chain model of the ISORA Gaus

sian fading process of Chapter 4, we can see that the use of an amplitude/rate-of-change 

state-space results in a decaying-oscillatory autocorrelation function of similar shape to
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Fig. 5.2. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

process for increasing values of m, n  =  1 0 , and f ^ T  — 0 .1 0 .

- b - m = 5
- e - m = 10
-  *  -  m = 15
  Theoretical

1

1
c
o

1

3<
1

1

1

X

Fig. 5.3. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

process for increasing values of m, n  =  15, and fr>T =  0.10.
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Fig. 5.4. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

process for increasing values of m , n  = 20, and f DT  =  0.10.
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Fig. 5.5. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

process for increasing values of n , m  = 5, and f ^ T  =  0.10.
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Fig. 5.6. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

process for increasing values of n , m  = 1 0 , and f u T  =  0 .1 0 .
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Fig. 5.7. Autocorrelation of the Markov chain model of the ISORA Rayleigh fading 

process for increasing values of n , m  = 15, and f p T  =  0.10.
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the theoretical. Also like the previous Gaussian model, we can see that the Markov chain 

model autocorrelation function decays faster than the theoretical, and has a slower oscil

lation frequency. Increasing m  has no significant effect on the oscillation frequency or 

decay rate, but does cause an increase in the extrema of the autocorrelation function, with 

the exception of the first minima, which remains generally unchanged. We observed this 

increase in the autocorrelation extrema with increasing m  when examining the Gaussian 

Markov chain model in Figs. 4.2 and 4.3, however, the increases we see here are not as 

large as the increases we saw for the Gaussian model. Figs. 5.5-5.7 show the same data, 

but reorganized to show the autocorrelation of the Markov chain model for increasing n 

and constant m. We can see that n  has no significant effect on the autocorrelation, again, 

like the previous Gaussian Markov chain model.

When contrasting the results in Figs. 5.2-5.7 with the autocorrelation of the Markov 

chain model of the ISORA complex Gaussian envelope fading process, seen in Figs. 4.15- 

4.18, some significant differences are evident. First, the autocorrelation of the direct 

ISORA Rayleigh Markov chain model does not have the downward shift in the autocor

relation values that was seen in the Gaussian envelope model. This can be attributed to 

the fact that the first-order distribution of the direct Rayleigh Markov chain model is sig

nificantly improved over that of the Gaussian envelope model, as we discussed above, so 

the mean-squared value that the autocorrelation settles to is much closer to the theoreti

cal. Secondly, the value of the first minima of the direct Rayleigh Markov chain model is 

considerably lower than the theoretical, much more so than the value of the first minima 

of the Gaussian envelope model. Finally, the fact that the first minima of the Gaussian 

envelope Markov chain model autocorrelation function is closer to the theoretical than the 

first minima of the direct Rayleigh model autocorrelation function means that the oscilla

tions of the Gaussian envelope model lag behind the theoretical by a smaller amount than 

the oscillations of the direct Rayleigh model. Thus, the autocorrelation function of the 

Gaussian envelope model is closer to the theoretical than the autocorrelation function of 

the direct Rayleigh model, particularly for larger state-space sizes, despite the downward 

shift in autocorrelation values.
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Figs. 5.8-5.16 show the autocorrelation of the Markov chain model of the ISORA 

Rayleigh fading process for various values of sample spacing T. As was the case with the 

autocorrelation of the Markov chain model of the ISORA Gaussian fading process, seen in 

Figs. 4.6-4.9, the oscillation frequency increases as T  is increased, although the increase 

is much more significant in this case. In the case of the Gaussian Markov chain model, 

decreasing T  from a large sample spacing down to a medium sample spacing caused the 

oscillation magnitudes to increase. As T  was decreased beyond that point, however, the 

oscillation magnitudes decreased. In the case of the direct ISORA Rayleigh fading Markov 

chain model, as T  is decreased, the oscillation magnitudes increase, for the entire range 

of T. There is no point where the oscillation magnitudes begin to decrease. The amount 

by which the magnitudes increase depends on m. As m  gets larger, so do the increases in 

oscillation magnitudes as T  decreases. This is most noticeable for the small sample spacing 

T  = 0.1e-3, but it is true for all sample spacings.

When contrasting the results of Figs. 5.8-5.16 with the autocorrelation results for the 

Markov chain model of the ISORA complex Gaussian fading envelope in Figs. 4.19-4.21, 

we can see that changes to sample spacing T  affect the autocorrelation of the direct Markov 

chain model of the ISORA Rayleigh fading process much more than they do the Markov 

chain model of the ISORA complex Gaussian envelope fading process. We previously ob

served from Figs. 4.19-4.21 that sample spacing T  — 1.8e-3 was the largest sample spacing 

that still resulted in a reasonably smooth sampling of the autocorrelation function, an as

sertion that was illustrated by the sample fading profile in Fig. 4.22. This same observation 

can be made from Figs. 5.8-5.16. We can also observe that the autocorrelation that is clos

est to the theoretical for a first-order Markov chain model of the ISORA Rayleigh fading 

channel occurs when T  — 1.8e-3, for all state-spaces considered. However, it is clear from 

Figs. 4.19-4.21 that the autocorrelation of a Markov chain model of the ISORA Rayleigh 

fading channel based on a first-order Markov chain model of the underlying Gaussian pro

cess is closer to the theoretical autocorrelation than even the best direct first-order Markov 

chain model of the ISORA Rayleigh fading channel.
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Fig. 5.8. ISORA Rayleigh Markov chain model autocorrelation for various values of 

sample spacing T  (sec), n = 10, m  — 5, and f n  =  100 Hz.
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Fig. 5.9. ISORA Rayleigh Markov chain model autocorrelation for various values of 

sample spacing T  (sec), n =  10, m  = 10, and f p  = 100 Hz.
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Fig. 5.10. ISORA Rayleigh Markov chain model autocorrelation for various values of 

sample spacing T  (sec), n  =  10, m  = 15, and f D = 100 Hz.
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Fig. 5.11. ISORA Rayleigh Markov chain model autocorrelation for various values of 

sample spacing T  (sec), n = 15, m  =  5, and f u  = 100 Hz.
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Fig. 5.12. ISORA Rayleigh Markov chain model autocorrelation for various values of 

sample spacing T  (sec), n =  15, m  =  10, and f o  — 100 Hz.
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Fig. 5.13. ISORA Rayleigh Markov chain model autocorrelation for various values of 

sample spacing T  (sec), n = 15, m  =  15, and f o  =  100 Hz.
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Fig. 5.14. ISORA Rayleigh Markov chain model autocorrelation for various values of 

sample spacing T  (sec), n = 20, m  = 5, and f o  — 100 Hz.
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Fig. 5.15. ISORA Rayleigh Markov chain model autocorrelation for various values of 

sample spacing T  (sec), n  =  20, m  =  10, and f o  =  100 Hz.
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Fig. 5.16. ISORA Rayleigh Markov chain model autocorrelation for various values of 

sample spacing T  (sec), n = 20, m  =  15, and f D =  100 Hz.

5.2.4 Conclusion

In this section, we studied a first-order Markov chain model of the ISORA Rayleigh fad

ing channel, based on an amplitude/rate-of-change state-space, in which the Markov chain 

model elements were calculated directly from the statistics of the Rayleigh fading pro

cess. We found that this direct method resulted in a Markov chain that modeled the first- 

order distribution of the Rayleigh fading channel better than the Markov chain model of 

the complex Gaussian envelope fading process studied in Chapter 4. We saw that the 

amplitude/rate-of-change state-space continued to result in a Markov chain model that dis

played a decaying-oscillatory autocorrelation function that was similar in shape to that of 

the theoretical, though with a slower oscillation frequency and faster decay rate, and we 

determined that sample spacing T  = 1.8e-3 resulted in the first-order Markov chain model 

whose autocorrelation function was closest to that of the theoretical.

It is tempting to claim that a Markov chain model of the ISORA Rayleigh fading chan-
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nel based on a Markov chain model of the underlying complex Gaussian process is better 

than a Markov chain model based directly on the ISORA Rayleigh fading statistics, since 

the Gaussian envelope model’s autocorrelation function is closer to the theoretical than the 

autocorrelation of even the best first-order direct Rayleigh model. However, this is not a 

fair comparison, since the Gaussian envelope model has size (n m )2, while the first-order 

direct Rayleigh model has size nm.  We would expect that a larger Markov chain would 

model the fading channel statistics better. In the next section, we will examine a second- 

order Markov chain model of the ISORA Rayleigh fading channel, based directly on the 

envelope statistics, to see what improvement an increase in Markov chain order will have 

on this direct Rayleigh model. Since a second-order Markov chain model will have size 

(nm)2, it will also make a more appropriate comparison to the first-order Markov chain 

model of the complex Gaussian envelope fading process from Chapter 4.

5.3 Second-Order Markov Chain Model

5.3.1 Introduction

In Section 5.2, we presented and analyzed a first-order Markov chain model of the ISORA 

Rayleigh fading channel, based on an amplitude/rate-of-change state-space, where the 

Markov chain model elements were computed directly from the statistics of the ISORA 

Rayleigh fading process. We saw that this direct Rayleigh Markov chain model improved 

on the first-order distribution of the Gaussian envelope model, studied in Chapter 4, but 

failed to improve on the autocorrelation function, where the Gaussian envelope model au

tocorrelation was closer to the theoretical than that of the direct Rayleigh model. In this 

Section, we consider a second-order Markov chain model of the ISORA Rayleigh fading 

channel, based on an amplitude/rate-of-change state-space, where the elements are com

puted directly from the Rayleigh fading statistics. We examine the effects of increasing the 

Markov chain order on the direct Rayleigh fading Markov chain model, as well as com

pare the resulting model statistics to those of the previous Gaussian envelope Markov chain
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model.

5.3.2 Computing the Markov Chain Model

In this section, we present a method to calculate the three elements that define a Markov 

chain model, namely, transition matrix P, initial occupancy vector 4>o, and output vector 

f, for a second-order Markov chain. As in Section 5.2, the Markov chain model elements 

will be calculated based directly on the statistics of the ISORA Rayleigh fading process, as 

opposed to the underlying complex Gaussian process.

5.3.2.1 Defining the Second-Order State-Space

The state-space for this second-order Markov chain model will be defined exactly as in 

Section 4.3.2.1, in which the second-order state-space consists of (nm,)2 states, labeled 

{ t c i , . . . ,  W ( n r n y } ,  where Wd —  { s Xd, s ^ } ,  s yd being the current first-order state, with yd 

given by (4.18), and s Xd being the previous first-order state, with Xd given by (4.17). The 

underlying first-order states, s yd and s Xd, are defined as in Section 5.2.2.1, thus, the second- 

order state-space is fully specified by threshold vectors <5 and 7 .

5.3.2.2 Output Vector f

As done in Section 4.3.2.2, the output of a second-order state will be set to the output 

value of the equivalent current first-order state. Thus, to compute f[d], we first find yd 

via (4.18), which specifies the equivalent current first-order state, then find iyd using (4.1), 

which specifies the amplitude thresholds of the current first-order state. The value of f [d] 

can then be computed using (5.1), with id replaced by iyd.

5.3.2.3 Initial Occupancy Vector </>0

In Section 5.2.2.3, initial occupancy vector </>0 was found by integrating fn(r,  r') over each 

state in the state-space. As we saw above, the state-space for a second-order Markov chain
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consists of two consecutive points, so in this case, 4>o will be found by integrating over the 

joint distribution of these two consecutive points, identified by r \ , r  j , r 2, r2.

To calculate <f>o[d], we first find xd and yd with (4.17) and (4.18), then find iXd, j Xd, iVd, 

j yd with (4.1) and (4.2). Then, the initial occupancy probability of state wd is

This integral is identical to the numerator of (5.4), and can be similarly approximated using 

the Monte Carlo method discussed in Appendix B.l.

5.3.2.4 Transition Matrix P

The transition matrix for the second-order Markov chain model of the ISORA Rayleigh 

fading process will be calculated using a similar method to the one used in Section 4.3.2.4 

for the second-order ISORA Gaussian Markov chain model. In that section, we explained 

that not all transitions in a second-order state-space are possible. Thus, the transition matrix 

can be expressed as (4.20)

where Yk is a random variable representing the second-order state of the Markov chain at 

time k, X k is a random variable representing the first-order state of the Markov chain at 

time k, and x h, y^, xq, yq are found using (4.17) and (4.18). Let rz and r\ represent the 

amplitude and rate-of-change of the Rayleigh fading process at time t, r 2 and r'2 represent 

the amplitude and rate at time t + T,  and r 3 and rz represent the amplitude and rate at time 

t + 2T.  If we let r  =  [rz, r[, r 2, r2, r 3, rz], then the conditional probability above can be

4>0{d] = Pr[lfc =  wd]

— Pr[A). =  syd,X k -1  =  Sa;d]
r*i:1ixd

r 2, r'^r'^dridr^dridr^. (5.6)
^ivd-1 ^ixd~1

Pqh Pr[Tfc

P t [ X k  —  S y h , X k —l  =  S X h \ X k —l  =  S y q) X k  — 2 =

I PrfA"/. Syh\Xk—\ SyqJ Xfc—2 • sXq̂ ,Xfi yq

0 otherwise
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computed as

^yhl^k—1 -^k—2
=  Syh , Xk — 1 =  Syq , Xk — 2 =  :̂c9]

Pr[J^fc_i =  Syq,X k —2 =  Sa;9]

p » fc f N  p »9 r / ^  p**
_  J 'T3y9 - i  J d ‘y q - 1  J 7 j x g - l

<t> o[<

Though we did not derive an expression for joint distribution /r(V i, r 2, r 3, r[,r'2. r() in 

Section 2.2.4, we note that the Monte Carlo method used to numerically integrate joint 

distribution r 2, r[, r^), which we discuss in Appendix B.l, does not actually make 

use of expression (2 .2 2 ), it only makes use of the transformation of variables that led to 

that expression. Thus, simple extensions of the method of Appendix B.l, which we discuss 

in Appendix B.2, can be used to approximate the integral in the numerator of (5.7), even 

without knowing an actual expression for the joint distribution being integrated.

5.3.3 Model Analysis

As we have done in all previous analyses, we focus on threshold vectors 6 and 7  that 

result in equiprobable first-order state-spaces. We also remove any state from the state- 

space that has an initial occupancy probability below 1 0 -6, for the same reasons we dis

cussed in Section 4.3.3. Since the output of a second-order state is the same as the output 

of the equivalent current first-order state, the first-order distribution of this second-order 

Markov chain model will be identical to that of the first-order Markov chain model, seen in 

Fig. 5.1. By construction, the marginal distributions of / p r i ,  r 2, rs , r\,r'2, r[,), specifically 

/ i i ( n , r 2, r j , r 0  and //?(r2, r 3, r\, r'3), are identical to each other and to the distribution 

used to calculate </>0, so the stationarity proof of Section 4.2.3.2 is valid here. In Table 5.2, 

we show the norm of the difference <p\ — <p0 for a number of model parameters. As in Table 

5.1, which tabulated values of this difference for a first-order Markov chain model, we can 

see that the differences continue to be on the order of the error in the numerical integra

tion. The values in Table 5.2 are a little larger than those in Table 5.1, a result of removing
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TABLE 5.2

Numerical verification of the stationarity of the second-order Markov chain model of the

ISORA Rayleigh fading process.

H i —0oII

n m fo T == 0.10 ! dT = 0.05 fo T = 0.01

5 4 5.38 X 10~5 4.72 X 10“5 3.20 X 10~5

5 10 5.13 X 10“5 5.68 X io -5 4.11 X 10~5

10 4 5.52 X 10~5 5.19 X 10“5 3.65 X io -5

10 10 5.77 X 10~5 5.49 X 10~5 4.32 X 10~5

the low probability states from the state-space, but they are still small, so the second-order 

Markov chain model of the ISORA Rayleigh fading channel can be considered stationary. 

Thus, we proceed to the autocorrelation analysis.

Figs. 5.17-5.20 show the autocorrelation function of the second-order Markov chain 

model of the ISORA Rayleigh fading channel for various values of sample spacing T. Be

cause the size of the second-order Markov chain increases as {nm)2, we focus our analysis 

on smaller values of n  and m  than we did in the first-order Markov chain model analysis of 

Section 5.2. For comparison purposes, each figure also includes a first-order Markov chain 

model autocorrelation plot for T  = 1.8e-3, which we determined in Section 5.2.3.3 to offer 

the closest fit to the theoretical for a direct Rayleigh first-order Markov chain model. As we 

have observed in previous models, changes to n have minimal effect on the autocorrelation 

function, which we can see here by noticing that Figs. 5.17 and 5.19 look very similar to 

each other, as do Figs. 5.18 and 5.20. In all cases, we can see that increasing the model or

der to 2 offers no noticeable benefit at the small sample spacing T  = 0. le-3, a point we also 

observed when considering the second-order Markov chain model of the ISORA Gaussian 

fading process in Section 4.3.3. However, the increase in Markov chain order causes a def

inite improvement at larger sample spacings T  > 1.0e-3. This can be attributed to the fact 

that, at small sample spacings, two points don’t span a significantly larger area of the theo-
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- 0 -  T = 1,8 e-3 ,1st Order
-  v  -  T = 1.8e-3, 2nd Order
-  e -T  = 1.0e-3, 2nd Order
-  e  -  T = 0.5e-3, 2nd Order 
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Fig. 5.17. Autocorrelation of the second-order Markov chain model of the ISORA 

Rayleigh fading channel for various values of T  (sec), n — 5, m  = 4, and f p  =  100 

Hz.

- 0 -  T = 1.8e-3, 1st Order
-  v  -  T = 1.8e-3, 2nd Order
-  b -  T = 1,0e-3, 2nd Order
-  e  -  T = 0.5e-3, 2nd Order 

• T = 0.1 e-3, 2nd Order
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Fig. 5.18. Autocorrelation of the second-order Markov chain model of the ISORA 

Rayleigh fading channel for various values of T  (sec), n = 5, rri =  10, and f o  =  100 

Hz.
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- 0 -  T = 1.8 e-3 ,1 st Order
-  v  -  T = 1.8e-3, 2nd Order
-  b  - T  = 1.0e-3, 2nd Order
-  e  -  T = 0.5e-3, 2nd Order 

• T = 0.1 e-3, 2nd Order
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Fig. 5.19. Autocorrelation of the second-order Markov chain model of the ISORA 

Rayleigh fading channel for various values of T  (sec), n  =  10, m  =  4, and fo  =  100 

Hz.

• - 0 -  T = 1.8 e-3 ,1 st Order
-  v  -  T = 1.8e-3, 2nd Order
-  b  -T  = 1.0e-3, 2nd Order
-  e  -  T = 0.5e-3, 2nd Order

T = 0.1 e-3, 2nd Order 
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Fig. 5.20. Autocorrelation of the second-order Markov chain model of the ISORA 

Rayleigh fading channel for various values of T  (sec), n  =  10, m  =  10, and 

f D = 100 Hz.
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retical function than one point does, but at larger sample spacings, two points span a much 

larger interval than one point and give much more information about the overall shape of 

the theoretical autocorrelation function. At the intermediate sample spacing T  =  0.5e-3, 

the improvement depends on m. For m =  10, there is noticeable improvement beyond the 

best first-order model, but for m  = 4, the result is about as close to the theoretical as the 

first-order model. For the second-order Markov chain models, we can observe that sample 

spacing T  =  1.8e-3 continues to result in the closest fit to the theoretical autocorrelation 

function. In fact, in Figs. 5.18 and 5.20, this sample spacing results in an autocorrelation 

function that well models the theoretical through to the second minima.

In Section 4.3.3, we saw that a Markov chain model of the ISORA Rayleigh fading 

process based on a second-order Markov chain model of the underlying complex Gaussian 

process is too large to be practically analyzed. So, we compare the results in Figs. 5.17- 

5.20 to those in Figs. 4.19-4.21, which show the autocorrelation of the Markov chain 

model of the ISORA Rayleigh fading envelope based on a first-order Markov chain model 

of the underlying complex Gaussian process. This is a fair comparison because the size 

of both of these Markov chain models grows as (nm )2. For both methods, we can see 

that, in general, a larger value of m  results in better modeling of the theoretical ISORA 

autocorrelation function than a smaller value of m. When comparing the two methods, 

we can see that for the large sample spacing T  = 1.8e-3, the direct Rayleigh second- 

order Markov chain model results in the autocorrelation function with the best fit to the 

theoretical. The direct Rayleigh second-order Markov chain model also offers the better fit 

for sample spacing T  = 1.0e-3. For medium sample spacing T  =  0.5e-3, the two methods 

result in autocorrelation functions with a similar fit to the theoretical for m =  10, but the 

Gaussian envelope model is closer to the theoretical when m  — 4. For small sample spacing 

T  =  0.1e-3, the autocorrelation function of the Gaussian envelope model is considerably 

closer to the theoretical than that of the direct Rayleigh model.
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5.3.4 Conclusion

In this section, we examined a second-order Markov chain model of the ISORA Rayleigh 

fading channel with an amplitude/rate-of-change state-space, where the Markov chain ele

ments were calculated based directly on the statistics of the ISORA Rayleigh fading pro

cess. We saw that a second-order Markov chain models the first-order distribution of the 

Rayleigh fading channel exactly as well as a first-order Markov chain does. However, 

we saw that increasing the Markov chain order can offer considerable improvement in the 

closeness of the Markov chain model autocorrelation to the theoretical ISORA autocorre

lation, particularly for large sample spacings. We saw that the second-order Markov chain 

model that most closely modeled the theoretical ISORA autocorrelation function occurred 

at sample spacing T  — 1.8e-3. We also observed that a direct Rayleigh second-order 

Markov chain model approximates the theoretical ISORA autocorrelation as well or bet

ter than a Markov chain model of the ISORA Rayleigh envelope fading process based on a 

first-order Markov chain model of the underlying complex Gaussian process, provided m  is 

chosen reasonably large, for medium to large sample spacings. At small sample spacings, 

however, we saw that the autocorrelation of the Gaussian envelope model is much closer to 

the theoretical than the direct Rayleigh model.

5.4 Conclusion

In this chapter, we studied a Markov chain model of the ISORA Rayleigh fading chan

nel, based on an amplitude/rate-of-change state-space, in which the Markov chain model 

elements were calculated based directly on the statistics of the ISORA Rayleigh fading 

process. In Section 5.2, we examined first-order Markov chain models. We saw that cal

culating the Markov chain model directly from the Rayleigh fading statistics resulted in 

significant improvement in the modeling of the first-order Rayleigh distribution over the 

Gaussian envelope model studied in Chapter 4. The direct Rayleigh Markov chain model 

had a smoother first-order distribution, and did not exhibit the errors in modeling the up-
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per range of the distribution that we saw in the Gaussian envelope model. When consid

ering the autocorrelation function of the first-order Markov chain model, we saw that the 

amplitude/rate-of-change state-space resulted in a decaying-oscillatory autocorrelation that 

was quite similar in shape to the theoretical autocorrelation function, though the decay rate 

was faster and the oscillation frequency was slower. We saw that the oscillation frequency 

varies with sample spacing T, and that T  — 1.8e-3 resulted in the first-order Markov chain 

model of the IS ORA Rayleigh fading channel whose autocorrelation function was the clos

est fit to that of the theoretical. However, when comparing the first-order direct Rayleigh 

Markov chain model to the first-order Gaussian envelope model of Section 4.2, we saw that 

the autocorrelation function of the Gaussian envelope model was closer to the theoretical 

than that of the first-order direct Rayleigh model.

In Section 5.3, we considered a second-order Markov chain model of the ISORA 

Rayleigh fading channel. We saw that increasing the Markov chain order to 2 can sig

nificantly improve the modeling of the ISORA autocorrelation, particularly at larger sam

ple spacings, where the increase in order causes a considerable increase in the oscillation 

frequency, though the decay rate remains largely unaffected. As in the direct Rayleigh 

first-order Markov chain model, sample spacing T  = 1.8e-3 resulted in the second-order 

Markov chain model whose autocorrelation function was the closest fit to the theoretical. 

When comparing the direct Rayleigh second-order Markov chain model to the first-order 

Gaussian envelope model, an appropriate comparison despite the difference in order be

cause they both have size (n m )2, we can see that at large sample spacings, the autocor

relation of the direct Rayleigh model is closer to the theoretical than that of the Gaussian 

envelope model. At medium sample spacings, the two methods are equally close to the 

theoretical autocorrelation for large m, but the Gaussian envelope model is closer for small 

m. Finally, for small sample spacings, the autocorrelation of the Gaussian envelope model 

is significantly closer to the theoretical than that of the direct Rayleigh model.
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Chapter 6

Conclusions

6.1 Introduction

In this thesis, we examined Markov chain models of the ISORA Rayleigh fading channel 

based on a state-space that consisted of both the amplitude and rate-of-change of the fading 

process. We considered two approaches to defining the Markov chain model. First, we 

obtained a Markov chain model of the ISORA Rayleigh fading process by transforming a 

Markov chain model of the underlying complex Gaussian process. Second, we obtained 

a Markov chain model of the ISORA Rayleigh fading process by calculating the Markov 

chain model elements directly from the ISORA Rayleigh fading envelope statistics. Within 

both approaches, we considered first- and second-order Markov chains.

In all cases, we observed that the use of an amplitude/rate-of-change state-space re

sulted in a Markov chain model with a decaying-oscillatory autocorrelation function of 

similar shape to the theoretical ISORA autocorrelation, a significant improvement over the 

exponential autocorrelation possessed by AFSMC models. However, the decay rate was 

faster than the theoretical, and the oscillation frequency was slower. Increasing the Markov 

chain order improved the oscillation frequency in some cases, particularly for large sample 

spacings, but the improved oscillation frequency was still too slow for the Markov chain 

model to be considered a good general model of the ISORA Rayleigh fading channel.
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6.2 Review of Contributions

1. We proposed a Markov chain model of the ISORA complex Gaussian fading pro

cess, based on an amplitude/rate-of-change state-space. We saw that a first-order 

Markov chain can effectively model the first-order distribution of the Gaussian fad

ing process, and that the use of an amplitude/rate-of-change state-space resulted in a 

decaying-oscillatory autocorrelation function of similar shape to that of the theoreti

cal ISORA autocorrelation. However, the decay rate was faster than the theoretical, 

and the oscillation frequency was slower. Changes to the number of amplitude states 

in the state-space were seen to affect the goodness of the first-order distribution of the 

Markov chain model, but had little effect on the autocorrelation function. In contrast, 

changes to the number of rate states in the state-space had no effect on the first-order 

distribution of the model, but affected the size of the extrema of the oscillations of 

the autocorrelation function. Though changes to the state-space size had no signifi

cant effect on the decay rate or oscillation frequency of the autocorrelation function, 

changes to the sample spacing of the model were seen to have a very slight effect on 

the oscillation frequency. We then observed that increasing the Markov chain order 

to 2 caused an increase in the oscillation frequency of the autocorrelation function, 

particularly for larger state-space sizes and large sample spacings.

2. We proposed a method to transform Markov chain models of the ISORA Gaussian 

fading process into Markov chain models of the ISORA Rayleigh fading process. As 

a result of this transformation, the size of the Markov chain model of the Rayleigh 

fading process was the square of the size of the model of the Gaussian process. 

This meant that the transformation could not practically be applied to second-order 

Markov chain models of the Gaussian fading process because the resulting Rayleigh 

fading models were too large to be analyzed, except for very small state-space sizes. 

When the transformation was applied to first-order Markov chain models of the Gaus

sian process, we observed that the first-order distribution of the resulting envelope 

models exhibited errors in the upper range of the distribution, a result of coarseness
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in the tails of the first-order distribution of the Markov chain model of the Gaussian 

fading process. These errors in the first-order distribution of the model resulted in 

a downward shift of the Markov chain model autocorrelation values as compared to 

the theoretical ISORA autocorrelation. The transformed Markov chain model au

tocorrelation function was seen to have a similar decaying-oscillatory shape to that 

of the theoretical, though with a faster decay rate and slower oscillation frequency. 

Changes to the sample spacing had no significant effect, but changes to the num

ber of rate states affected the lag between the Markov chain model autocorrelation 

extrema and those of the theoretical. For a large number of rate states, the Markov 

chain model autocorrelation was seen to be quite close to the theoretical up to the 

first maxima, despite the downward shift. We also determined that sample spacing 

T  — 1.8e-3 was the largest sample spacing that still resulted in a reasonably smooth 

sampling of the autocorrelation function.

3. We gave precise analytical expressions for the elements of a Markov chain model of 

the ISORA Rayleigh fading channel, with an amplitude/rate-of-change state-space, 

based directly on the statistics of the ISORA Rayleigh fading process. The analytical 

expressions cannot be found in closed-form, so we developed a numerical method to 

approximate the values.

4. We performed a detailed analysis of a first-order Markov chain model of the ISORA 

Rayleigh fading channel with an amplitude/rate-of-change state-space, in which the 

Markov chain model elements were calculated directly from the ISORA Rayleigh 

fading statistics. We saw that the direct calculation method resulted in a Markov 

chain model whose first-order distribution closely matched the theoretical Rayleigh 

distribution, without exhibiting the errors in the upper range of the distribution that 

were observed in the Gaussian envelope model. We observed that the amplitude/rate- 

of-change state-space continued to result in a decaying-oscillatory autocorrelation 

function similar in shape to the theoretical ISORA autocorrelation function, though 

with a faster decay rate and slower oscillation frequency. The direct Rayleigh cal-
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culation method also removed the downward shift in autocorrelation values that was 

seen in the Gaussian envelope model. Changes to the number of amplitude states 

in the state-space affected the goodness of the first-order distribution of the Markov 

chain model, but had no significant effect on the autocorrelation function. In con

trast, changes to the number of rate states had no effect on the first-order distribution, 

but affected the size of the extrema of the oscillations of the autocorrelation func

tion, as well as slightly affecting the oscillation frequency. Changes to the sample 

spacing were seen to have a significant effect on the oscillation frequency, as well 

as the size of the extrema. As the sample spacing was increased, the oscillation ex

trema decreased, and the oscillation frequency drew closer to that of the theoretical. 

We determined that sample spacing T  =  1.8e-3 was the largest sample spacing that 

maintained a reasonably smooth sampling of the autocorrelation function, and saw 

that it also resulted in the Markov chain model of the Rayleigh fading channel whose 

autocorrelation function was closest to that of the theoretical.

5. We proposed a second-order Markov chain model of the ISORA Rayleigh fading 

channel with an amplitude/rate-of-change state-space, in which the Markov chain 

model elements were calculated directly from the ISORA Rayleigh fading statistics. 

We observed that the increase in Markov chain order caused a definite improvement 

in the Markov chain model autocorrelation function, causing it to draw much closer to 

the theoretical ISORA autocorrelation function, particularly for larger sample spac

ings. We observed that the second-order Markov chain model whose autocorrelation 

function was closest to that of the theoretical occurred at sample spacing T  =  1.8e-3. 

Finally, we observed that, for large sample spacings T >  1.0e-3, the direct Rayleigh 

second-order Markov chain model autocorrelation function was closer to that of the 

theoretical than the autocorrelation function of the Gaussian envelope model. For 

medium sample spacing T  =  0.5e-3, we saw that the autocorrelation functions of the 

direct Rayleigh and Gaussian envelope models were similarly close to the theoreti

cal, assuming a large enough number of rate states, so the direct Rayleigh model was

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



again preferable due to the improved first-order distribution. At small sample spac

ings, however, the autocorrelation function of the Gaussian envelope model was seen 

to be considerably closer to the theoretical, in spite of the limitations in the first-order 

distribution of that model.

6. We derived an expression for the joint distribution of two correlated Rayleigh random 

variables and their derivatives, /^ (r i ,  r 2, r[, r'2).

6.3 Suggestions for Future Work

An important result obtained in this thesis is that increasing the Markov chain model order 

can improve the closeness of its autocorrelation function to that of the theoretical. This 

suggests that a high enough order Markov chain could effectively act as a general model 

of the ISORA Rayleigh fading channel. Unfortunately, we have seen that we need a rea

sonably large number of amplitude states to effectively model the first-order distribution of 

the channel, and a reasonably large number of rate states generally improves the model

ing of the autocorrelation function. Thus, even a second-order Markov chain can quickly 

become too large to practically use. High-order Markov chains have been modeled with 

the mixture transition distribution model, discussed by Berchtold and Raftery [54], and an 

autoregressive model, discussed by Pegram [55]. Both of these models approximate high- 

order Markov chains, but with a smaller number of parameters, and are worth examining 

as models of the ISORA Rayleigh fading channel that may improve on the autocorrelation 

results seen in this thesis.

In Section 4.2.5, we saw that transforming a Markov chain model of the ISORA Gaus

sian fading process into a Markov chain model of the ISORA Rayleigh fading envelope 

process resulted in a poor modeling of the first-order Rayleigh distribution, due to coarse

ness in the tails of the model of the first-order Gaussian distribution. This coarseness was 

a result of defining the amplitude thresholds to result in an equiprobable state-space, since 

the tails of the Gaussian distribution are low probability. Selecting the amplitude thresholds
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to force a better modeling of the Gaussian tails could result in improved modeling of the en

velope Rayleigh distribution. We suggest examining different methods of determining the 

amplitude thresholds and studying whether the first-order distribution of the transformed 

Gaussian Markov chain model can be improved.

In Chapter 5, we observed that the closeness of the autocorrelation function of the di

rect Markov chain model of the ISORA Rayleigh fading channel to that of the theoretical 

improved as the sample spacing was increased, for both first- and second-order Markov 

chains. It would be desirable to have a Markov chain model whose autocorrelation accu

rately approximates the theoretical autocorrelation through to the second minima, as we 

saw for the direct Rayleigh second-order Markov chain model in Figs. 5.18 and 5.20 for 

T  = 1.8e-3, but for smaller values of the sample spacing. Because the autocorrelation func

tion of the Markov chain models for smaller values of T  are accurate over only a limited 

number of samples, we suggest exploring a two-tiered Markov chain model of the ISORA 

Rayleigh fading channel. The top level of this model would consist of a Markov chain 

model for a large sample spacing, while the second level would consist of a Markov chain 

model for a smaller sample spacing that would fill in the time points between the large 

time instants. This could potentially exploit both the closeness of the large sample spacing 

model autocorrelation to the theoretical, and the accuracy of smaller sample spacing mod

els over a limited number of points. An example of this transition scheme is shown in Fig. 

6.1, where P\ indicates the Markov chain model transition matrix for large sample spacing 

T\, while P2 indicates the Markov chain model transition matrix for smaller sample spacing 

T2. It is not immediately clear whether a Markov chain model using this two-tiered system 

would be stationary, but it merits examination.
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Fig. 6.1. Example of the proposed two-tiered Markov chain model transition scheme.
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Appendix A 

Numerical Integration of Multivariate 

Gaussian Distributions

To integrate the numerator of (4.7), we make use of the algorithm proposed by Genz [52] 

to perform numerical integration of the multivariate Gaussian distribution with arbitrary 

covariance matrix £  over a hypercube. His algorithm consists of a series of three trans

formations that have the effect of placing the multivariate Gaussian distribution in a form 

better suited to typical multivariate numerical integration routines. We sketch the algorithm 

transformations here.

The multivariate Gaussian integral over a hypercube has the general form
1 r b \  r h  rb m

I  = =  / /  . . .  f  e~i dx. (A.l)
y j (27r)mA s Ja\ Jai Jam

where x  =  [x\, x2, . . . ,  xm]T, £  is the covariance matrix, and A E is the determinant of £.

The integration limits can be finite or infinite values.

The first transformation is a simple Cholesky decomposition transformation, x  =  Cy,

where CC T =  £. Thus, x r £~ 1x =  y TCTC~lTC ^ C y  = y Ty, and dx = A c dy = 
1 /2As dy, giving the transformed multivariate Gaussian integral as

1 f b[ -yJ f b'2(yi) _ yJ _ yAI  =  . / e 2 / e 2 . . .  I e * dy  (A.2)
y / ( 2 n ) m Ja'1 Ja'2(yi) Ja'm(.yi,...,ym-i)

w herea'(r/i,. . . , 2/<_i) =  and6'(yi, . . .  )yl- X) =  (6~X)5=1 cu % )/^ -
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This implies an obvious second transformation, yi — <& 1{zi), where

<%) = - ^ =  r  e~ & d x  (A.3)
v27T  J  —oo

is the Gaussian distribution function. This transformation gives the multivariate Gaussian 

integral as
r e i  r e 2 ( z i )  /•em ( z i , . . . , z m _ i )

1 =  / ••• / dz (A.4)
J d i  Jd,2(zi )  J d  m  2 m - 1 )

where
 -  1

d i(z i , . .. =  $((oi -  Y? c ^ -1^ ) ) / ^ )^—0=1

ei(2!, . . . ,Zj_i) =  $((&; -  V .  C ;^ -1^ ) ) / ^ ) .

The final transformation simplifies the integration limits. By using the transformation

Zi = di +  Wi(ei — di), the final form of the multivariate Gaussian integral is given by

f  dw  (A.5)
J o

where

di = $((aj -  +  wA ei ~ dj ))) /ca) (A-6)

ei Cii ^  (^7 “Wjipj ~  ^ i))) /cu)- (A.7)

The integral over wm can be performed immediately because dm and em don’t depend on 

wm, so these transformations have the added bonus of reducing the integration dimension 

by one.

The final version of the multivariate Gaussian integral may look much more compli

cated than the initial version, but the new expression can be numerically integrated using 

standard integration methods to much better accuracy than the original version. In [52], 

Genz finds that a simple Monte Carlo method will give reasonably accurate results in a 

short time period for reasonably small-dimensioned problems. For larger problems, an 

adaptive algorithm [56], [57] gives better results.

The particular implementation of this algorithm that we make use of in Chapter 4 is 

the QSIMVNV software package, which implements this algorithm with a quasi-random
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number-theoretic integration method [58], [59]. This package is available at Genz’s web

site (http://www.math.wsu.edu/faculty/genz/homepage). The use of QSIMVNV permits 

efficient performance of the many multivariate Gaussian integrations we need, with an er

ror of 10“6.
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Appendix B

Numerical Integration of the Joint 

Distribution of Correlated Rayleigh 

Random Variables and Their Derivatives

B.l Two Correlated Rayleigh Random Variables

We encountered the integration of the joint distribution of two correlated Rayleigh random 

variables and their derivatives, 7*2, r[, r'2), in the numerator of (5.4), as well as (5.6). 

We derived an expression for this joint distribution in Section 2.2.4, where we found that 

it can be expressed as (2.22). However, attempts to numerically integrate this expression 

using numerical cubature rules given by Stroud [60], as well as the adaptive algorithms of 

van Dooren and de Ridder [56], and Genz and Malik [57], fail to approximate the integral 

to a reasonable accuracy. In fact, the accuracy of the results is generally so poor that the 

values attained using these methods are useless. Instead, we note from the derivation of 

distribution (2.22) that it was obtained via a reasonably simple transformation of variables 

applied to a multivariate Gaussian distribution. Thus, we will approximate the integral 

of the joint distribution of two correlated Rayleigh random variables and their derivatives 

using the Monte Carlo method [53].
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The desired integral can be well approximated by the empirical average

(B.l)

where the R q are independent samples with distribution /# (r i, r 2, r[, r'2), Id (-) Is the indi

cator function

and D is the region of integration. Thus, the integration problem is reduced to one of 

generating N  independent samples with distribution / / i ( r1; r 2, r[ ,r !2).

To generate a sample with this distribution, we recall from Section 2.2.4 that (2.22) was 

derived by forming the multivariate Gaussian distribution

and applying the transformation of variables (2.21). Thus, we can generate a sample with 

distribution /j*(ri, r2, r], r 2) by generating a sample with distribution (B.3) and transform

ing it.

Section 2.2.4, we saw that these are independent Gaussian random vectors, each with co- 

variance matrix

where g(r) =  bQJo(27rfor), and T  is the spacing between the time instants indicated by 

subscripts 1 and 2. So, we can generate a sample with distribution (B.3) by generating 

samples of Gaussian vectors T c and T s. To do this, we first generate samples of random 

variables X i , . . . ,  X 8, which are all independent, unit variance Gaussian random variables. 

This can be done using the well-known Box-Muller transform [61]. First, we generate 

samples of JJ\ and U2, which are random variables uniformly distributed between 0 and 1.

1 , R e  D 

0 , R  D
(B.2)

(B.3)

Define random vectors T c =  [TCI, T'cx, TC2, T'C2]t  and T s =  [Tsi,T /s v TS2,T'S2}t . In

bo 0 g(T) g'(T) \

E =
0 b2 - g'{T) —g"(T)

g(T) —g'(T) b0 0
(B.4)

\ g K T )  - g"(T) 0 b2
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Then, we form V\ = 2U\ — 1, V2 =  2U2 — 1, and S’ =  Vj2 +  V2 . If S  > 1, then we start 

over by regenerating U\ and U2, otherwise, we form

X , =  x 2 _  (B.5)

so Xi and X 2 will be independent, unit variance Gaussian samples. This process is repeated 

until we have sample values for X i , . . . ,  X 8, then, we form Gaussian sample vectors X x =  

[Xi, X 2, X 3, X 4]t  and X 2 =  [X5, X 6,X 7, Xg]T. Finally, we can transform X x and X 2 into 

Gaussian sample vectors with covariance matrix (B.4) by first finding the matrix C  such 

that £  =  C C T. Then, samples of Gaussian vectors T c and T s are formed via the linear 

transformations [62]

T c =  C X i, T s =  C X 2. (B.6)

We can rewrite the transformation of variables (2.21) as

ri =  -v/I?1 +T ?1 (B.7a)

r 2 = V I ^ + T « (B'7b)
rp rpf , rp rpf

, _  - r i 81 i ai m

1 “  ( }
r p  r p f  , r p  r p f

r'2 = n . a . (B.7d)
x / J j + T f

By applying this transformation to the Gaussian sample vectors T c and T s, we get a single 

sample with distribution fn ( r i , r2, r[ , r '2) .

After generating a large number of these samples, we estimate the integral of joint 

distribution /^ (r i ,  r 2, r[, r'2) using (B.l), which is essentially the fraction of sample points 

that are within the integration limits. An added benefit of this method is that all integration 

values over the partitioned space can be approximated from the same data set. It should 

be noted that during actual implementation, we used N  — 6.5 x 108 points, which gives a 

confidence interval of 10-5, 99% of the time.
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B.2 Three Correlated Rayleigh Random Variables

We encountered the integration of the joint distribution of three correlated Rayleigh ran

dom variables and their derivatives, /«(?'], r2, r 3, r[ , r2, r'3), in the numerator of (5.7). This 

integral will be performed using the Monte Carlo method, in much the same way as we 

described in Appendix B.l. The integral can be well approximated by the empirical av

erage (B.l), so the integration problem reduces to one of generating independent samples 

with distribution / ^ ( r i ,  r 2 ,  r 3 ,  r[, r2, r'z). This can be done using simple extensions of the 

method described in Appendix B.l.

DefineTc =  [rci,T ; ,T (, ,T 's,Tc„ T '1]T an d T , =  [Tn ,T n , Tn X „ T „ ,T „ ) T- From 

the correlation structure of the ISORA Rayleigh fading channel (2.9), we know that these 

are independent Gaussian random vectors, each with covariance matrix

/

£  =

\

bo 0 a(T) ! f ( T ) S(2T) S'(2T)

0 b2 -9 '(T ) ~ 9 " ( T ) -S '(2  T ) -S"(2T)

S(T) ~ 9 ' ( T ) bo 0 9 ( T ) 9 ' ( T )

< f ( T ) S " ( T ) 0 -S '(T ) - g " ( T )

9(2T) -ff'(2T) S(T) s'CO bo 0

«'(2 T) - g " ( 2 T ) 9 ' ( T ) - 9 " ( T ) 0 b2

\

/
where g(r) — &oJo(27rjr>T), and T  is the spacing between the time instants indicated 

by subscripts 1, 2, and 3. We can generate samples of random vectors T c and T s using 

the Gaussian random vector generating method described in Appendix B.l. We can then 

transform these Gaussian samples to get a sample with distribution fn ( r i , r2, r3, r[ , r2, r'z) 

by applying the transformation

r3

r ,  =

J n + n ,
Ta r a + T „  r„

(B.8a)

(B.8b)
V T i + n

in addition to transformation (B.7).

After generating a large number of these samples, we estimate the integral of joint 

distribution / ^ ( r i ,  r2, r 3 ,  r[, r'2, r'z) using (B.l). As we mentioned in Appendix B.l, using
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this method allows us to approximate the values of all integrations over a partitioned space 

from the same data set.
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