University of Alberta Department of Civil & Environmental Engineering

Structural Engineering Report No. 48

Solid and Hollow Rectangular Prestressed Concrete Beams Under Combined Loading

by
J. Misic
and
J. Warwaruk

September, 1974

ABSTRACT

1

Tests on eighty-four solid and hollow prestressed concrete beams under various ratios of torsion, bending and shear are reported in this investigation. All beams had nominally the same length of 10' - 9'' and were divided into three series according their cross-sections:

- (i) Series A*, 6 x 12 inches (52 beams)
- (ii) Series B, 8 x 12 inches (20 beams)
- (iii) Serie C, 12 x 12 inches (12 beams)

Primary variables in Series A included eccentricity of prestress, amount of transverse steel, and torsion, bending and shear ratios, while in Series B and C the effect of a longitudinal opening was studied in conjunction with different loading ratios.

Available theories for cracking analysis of beams were examined and two procedures are proposed. One is based on the biaxial stress criteria and includes such effects as stirrup contribution and partial plastification at cracking, and the other utilizes an equivalent elliptical cross-section for solid and hollow sections. Some shortcomings of the commonly used theories for the ultimate analysis are pointed out and a new iterative method based on a biaxial strain

^{*} Twenty beams of Series A were tested and reported by Mr. E.B. Jacobsen (see list of references) in his M.Sc. study. Since these beams constitute an integral part of Series A they are also included here in chapters on cracking and ultimate analysis.

criteria is presented. Comparison of theoretical and experimental results was made and a very good correlation was observed.

Original contributions contained herein are: (i) utilization of a biaxial stress criteria in the cracking analysis, (ii) use of the equivalent elliptical cross-sections for predictions of cracking strength and precracking stiffness for solid and hollow beams, and (iii) utilization of a biaxial strain criteria in the ultimate strength analysis.

ACKNOWLEDGEMENTS

This investigation was made possible through the financial assistance provided by the National Research Council of Canada. The testing facilities were provided at the Structural Engineering Laboratory of the University of Alberta. The Associated Engineering Services Ltd. Scholarship and the National Research Council of Canada Postgraduate Scholarship have been awarded to the author during his postgraduate study.

The investigation was guided by Dr. J. Warwaruk, Professor in the department of Civil Engineering. His assistance in planning the investigation, constructive criticism and helpful comments during the preparation of the manuscript are gratefully acknowledged.

Discussions with Dr. J.G. MacGregor, Professor in Civil Engineering and Dr. J.B. Haddow, Professor in Mechanical Engineering are sincerely appreciated.

Helpful discussions with former and present fellow graduate students, Dr. D.L.N. Rao, Mr. B. Slight, Mr. R. Linder and Dr. S. Hamada are acknowledged with thanks. The technical staff of the laboratory under supervision of Messrs. H. Panse and L. Burden helped in the test program.

Miss Julie Melville typed the manuscript with great care and her cooperation is appreciated.

My wife, Milica, deserves special mention for her patience during many hours when postgraduate study took precedence over family attentions.

TABLE OF CONTENTS

	Page
Abstract	111
Acknowledgement	v
Table of Contents	v1
List of Tables	ix
List of Figures	x
List of Symbols	xiii
List of Symbols	
CHAPTER I - INTRODUCTION	1
1.1 General Remarks	11
1.2 Object and Scope	2
CHAPTER II - CURRENT STATE OF KNOWLEDGE	3
2.1 Introduction ······	3
2.2 Cracking Strength	5
2.3 Ultimate Strength	8
CHAPTER III - EXPERIMENTAL PROGRAM	11
3-1 Test Specimens	11
3.2 Fabrication of Specimens	16
3.3 Instrumentation of Specimens	21
3.3.1 Reinforcement Strains	21
3.3.2 Angle of Twist	· 28.
3.3.3 Deflections	23

			Page
3	.4 Test 1	Equipment	29
3	.5 Tesing	Procedure	31
CHAPTER IV -	- PRESENT	TATION AND DISCUSSION OF TEST RESULTS	37
4.	.1 Genera	1	37
4.	.2 Princi	pal Test Results	39
4.	3 Precra	cking Behavior and Cracking Strength	47
4.		pment of Cracks, Postcracking or, and Ultimate Strength	53
4.	5 Intera at Ult	ction of Torsion, Bending and Shear imate	57
CHAPTER V -	CRACKIN	G STRENGTH, THEORIES AND COMPARISONS	64
5.	1 Introd	uction	64
5.	2 Availa	ble Theories	67
	5.2.1	Elastic Analysis	67
	5.2.2	Plastic Analysis	72
•	5.2.3	Skew Bending Theory	74
	5.2.4	Statistical and Numerical Procedures	77
5.	3 Propose	ed Theories	79
	5.3.1	Elasto-Plastic Analysis	79 .
		5.3.1.1 General Remarks and Assumptions	79
		5.3.1.2 Biaxial Stress Failure Criteria	82
		5.3.1.3 Contribution of Stirrups	87
	5.3.2	Analysis Based on an Equivalent Elliptical Cross-Section	•
		5.3.2.1 General	91 91
		5 3 2 2 Wallow Cross Cooking	3 T

				Page
			5.3.2.3 Solid Cross-Section	. 96
	5.4	Compar	ative Study	. 97
	5.5	Precra	cking Stiffness	. 106
CHAPTER VI	<u> </u>	ULTIMAT COMPARI	E STRENGTH - THEORY, EXPERIMENTA AND SON	. 113
	6.1	Introd	uction	. 113
	6.2	Remark	s on the Skew Bending Theory	
	6.3	Propos	ed Analysis	. 125
		6.3.1	General Remarks	. 125
		6.3.2	Torsion to Bending Ratio, ψ_{R}	. 125
		6.3.3	Failure Criteria and Stress-Strain Characteristics of Concrete	1. a w 1. mm
•		6.3.4	Assumptions of the Analysis	. 133
• 2		6.3.5	Bending and Torsion Transfer on β-Plane	. 135
		6.3.6	Summary of the Proposed Analysis	143
		6.3.7	Concluding Remarks on the Proposed Analysis	148
	6.4	Compar: Results	ison of Experimental and Theoretical	149
	_		3	
CHAPTER VI	1 -	SUMMARY	AND CONCLUSIONS	159
	7.1	Summary	y	159
·	7.2	Conclus	sions	159
REFERENCES	• •	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	164
APPENDIX A	-	TEST RES	SULTS FOR SERIES B AND C	171
APPENDIX B	_	STRAIN G	GAUGE READINGS	188
APPENDIX C	_	PHOTOGRA	APHS OF TESTED BEAMS	220
ת עדתאשטט	_	COMDITTED	DDOCDAM	227

	LIST OF TABLES
Table	Day 1
3.1	Sieve analysis of sand
3.2	Sieve analysis of coarse aggregate
4.1	Parameters considered in this study 38
4.2	Series A, group identification
4.3	Test results 40
5.1	Torsional constants for rectangular cross-
5.2	Cracking torques for solid cross-sections by different theories
5.3	Summary of T /T values for solid
5.4	Cracking torques of hollow beams
5.5	Torsional stiffness of solid cross-section 109
5.6	Torsional stiffness of hollow cross-section 110
6.1	Ultimate strength, comparison of experimental and theoretical results, Series A
6.2	Ultimate strength, comparison of experimental and theoretical results, Series B
6.3	Ultimate strength, comparison of experimental and theoretical results, Series C
6.4	Average test/theory values
A-1 to A-32	Test results, observed data for beams of Series B and C
B-1 to B-59	Strain gauge readings for Series B and C 188

LIST OF FIGURES

Figure		Pag
3.1	Beam series identification	13
3.2	Cross-sectional properties and group identification	14
3.3	Portion of stress-strain diagram for transverse steel (stirrups)	15
3.4	Idealized stress-strain curve and manu-facturer's data for 1/2" dia. strand	17
3.5	Idealized stress-strain curve and manu- facturer's data for 3/4" dia. strand	18
3.6	Reinforcement cage for a hollow beam	20
3.7	Elevation view and instrumentation of BS group of beams	22
3.8	Elevation view and instrumentation of BlS group of beams	23
3.9	Elevation view and instrumentation of BH group of beams	24
3.10	Elevation view and instrumentation of CS group thems	25
3.11	Elevation tem and instrumentation of CH group of beams	26
3.12	Equipment arrangement viewed from north side	30
3.13	Fixed head	32
3.14	Twisting head	33
3.15	Detailed view of test setup for combined loading	34
3.16	Torsional loading equipment	35

Figure		Page
4.1	Torque-twist curves, Series B	48
4.2	Torque-twist curves, Series C	49
4.3	Moment-deflection curves, Series B	51
4.4	Moment-deflection curves, Series C	5 2
4.5	Typical crack pattern of a beam under combined loading	54
4.6	Interaction between torsion and bending at ultimate, Series A	59
4.7	Interaction between torsion and bending at ultimate, Series B and C	60
4.8	Interaction between torsion and shear at ultimate, Series A	61
4.9	Interaction between torsion and shear at ultimate, Series B and C	62
5.1	Influence of structural shapes on the ratio of warping to Saint-Venant torsion	66
5.2	Stress components under combined loading	68
5.3	Comparison of torsional coefficient by different theories	75
5.4	Shearing stress distribution in a rectangular cross-section subjected to torque	81
5.5	Membrane analogy for square and slender cross- section	81
5.6	Strength of concrete under combined tension and compression	85
5.7	Stirrup strains before cracking	88
5.8	Cracking strength-contribution of stirrups	93
5.9	Equivalent elliptical cross-sections for solid and hollow rectangle	93

Figure		4 Page
5.10	Precracking torsional stiffness, solid cross-sections	111
5.11	Precracking torsional stiffness, hollow cross-sections	112
•	•	•
6.1	Three approaches to the problem of combined loading	.114
6.2	Failure modes according to skew bending theory	116
6.3	Mode 1 - free body diagram	110
6.4	Crack opening under combined loading	123
6.5	Crack opening under combined loading (Beam BlS-6a)	124
6.6	Torsion to bending ratio on β -plane	126
6.7	Relationship between ψ , ψ_{β} and β	129
6.8	Biaxial strain of concrete	130
6.9	Stress-strain characteristics of concrete	132
6.10	Relationship between inclination of spiral crack θ and angle of uncracked zone β	137
6.11	Bending on the inclined β -plane	139
6.12	Mechanism of torsion transfer on β -plane	139
6.13	Schematical concept of proposed procedure	145
6.14	Typical iteration paths for different modes	146
6.15	Alternate procedure	147
C-1 to C-32	Photographs of crack patterns at failure for beams of B and C series	220
D-1	General flow diagram and subroutine identification	242
	xii	•

LIST OF SYMBOLS

Most of the symbols are defined in the text where they first appear; however, commonly used symbols are listed here for convenient reference.

Nomenclature used in the computer program is listed in Appendix D.

Dimensions and Section Properties

	depth of neutral axis measured from the compression face of the beam
b ,	width of a rectangular section
b _h	width of a void in a rectangular cross-section
	centerline width of a closed stirrup
е	eccentricity of prestress force with respect to centroid of cross-section
h	height of a rectangular cross-section
h _h	ne 3ht of a void in a rectangular cross-section
h*	centerline height of a closed stirrup
I	oment of inertia of an uncracked beam
Ih	moment of inertia of an uncracked hollow beam
Q	statical moment of the cross-section
8	longitudinal spacing of transverse reinforcement

Material Properties

E _c	modulus	of	elasticity	of	concrete	
E	modulus	of	elasticity	of	prestressing	steel

modulus of elasticity of transverse reinforcement
ultimate strain in concrete in pure bending
compressive strength of concrete cylinder
yield stress of prestressing steel
modulus of rupture of concrete
tensile strength of concrete
split cylinder tensile strength of concrete
yield stress of stirrup
shear modulus of concrete

Forces and Moments

C, T	compressive and tensile force
М	bending moment
Mcr	bending moment at cracking
Mu	ultimate bending moment in combined loading
Muo	ultimate shear-bending or pure bending moment
M _β	bending moment on β -plane
T	twisting moment (torque)
$\mathtt{T}_{\boldsymbol{\beta}}$	twisting moment (torque) on β -plane
Tcr	cracking torque
Tec	cracking torque based on elastic concept of concrete behavior
трс	cracking torque based on plastic concept of concrete behavior
T sb	cracking torque based on skew bending theory

T _u	ultimate torque in combined loading
Tup	ultimate torque of plain concrete members
Tuo	ultimate strength in pure torsion
V	shear force
V _c	shear force taken by concrete compression zone
v _{cr}	shear force at cracking
$\mathbf{v}_{\mathbf{u}}^{\cdot}$	ultimate shear in combined loading
v _B	shear force on inclined β -plane

Stresses and Strains

€ c	compressive strain of concrete in a biaxial state of strain
ε _{ce}	strain in concrete due to effective prestress
$\epsilon_{m{\ell}}$	strain in longitudinal direction
ε _t	tensile strain of concrete in a biaxial state of strain
€ sa	increase in strain in prestressing steel between initial and ultimate loading
€ se	strain in prestressing strand due to effective prestress
$\epsilon_{ t t h}$	strain in horizontal leg of stirrup
ε _{tr}	strain in transverse steel
ε _{tv}	strain in vertical leg of stirrup
εβ	strain perpendicular to β -plane
$\sigma_{\mathbf{B}}$	stress at bottom face of section due to prestress
omax,min	principal stresses of concrete in a two-dimensional state

σ P	average stress due to prestress
σ s	stress in a middle of side face of section due to prestress
$\sigma_{_{{f T}}}$	stress at top face of section due to prestress
['] φ _{cr}	angle of twist at cracking
$\phi_{f u}$	angle of twist at ultimate
$^{ au}$ c	shear stress due to $^{ extsf{V}}_{ extsf{c}}$
τ _t	torsional shear stress
$^{ au}\mathbf{v}$	flexural shear stress
τ_{x}, τ_{y}	torsional shear stress in two perpendicular directions

Miscellaneous

c _h	a constant defined by Equation 5.41
k	a constant defined in the text
k _s	torsion constant according to statistical procedure
m	ratio of volume of longitudinal steel to volume of transverse reinforcement
α, γ	torsion factors in St. Venant theory
αep	torsion constant according to elasto-plastic theory
β	inclination of the compression zone to the longitu- dinal axis of the beam
β _{ep}	torsion constant according to elasto-plastic theory
δ	loading ratio defined as 2T/bV
ψ	loading ratio defined as T/M
$\Psi_{oldsymbol{eta}}$	loading ratio defined as T_{β}/M_{β}
θ	inclination of the tensile crack to the longitudi- nal axis of the beam

CHAPTER I

INTRODUCTION

1.1 General Remarks

With the trend in recent years towards more sophisticated use of concrete in bridge girders and in edge beams of shells and slabs interest in research on torsion in prestressed concrete has significantly increased. Continuous refinements of design specifications with reduced factors of safety require an explicit recognition and understanding of torsional effects; in the past large safety factors for flexure and shear indirectly accounted for "secondary" effects, including torsion.

Considerable progress in research in this area resulted in the provisions of ACI 318-71¹* for design of reinforced concrete members subjected to torsion. At the time it was felt that a similar recommendation for the design of prestressed concrete could not be included, because of inadequate research and test data. It is intended that the experimental data and theoretical findings presented in this report will complement other current research programs being carried out elsewhere and in this way assist towards the formulation of design procedures.

^{*} Numbers refer to entries in the list of references.

1.2 Object and Scope

The primary objectives of this investigation were: (i) to observe the behavior, the cracking and ultimate strengths of solid and hollow prestressed concrete beams subjected to combined loading, (ii) to examine commonly used theories for cracking and ultimate strength, and the assumptions on which these theories are founded, and, (iii) to develop analyses for predicting the cracking and ultimate strength of solid and hollow prestressed concrete beams.

The experimental portion of this investigation consisted of tests on eighty-four solid and hollow prestressed concrete beams under various ratios of torsion, bending and shear. The main variables included magnitude and eccentricity of prestress, amount of transverse steel, torsion to bending ratio, torsion to shear ratio and size of longitudinal opening. The experimental data obtained in this study includes cracking strength, ultimate strength, strains in the prestressing steel and transverse reinforcement, torque-twist and load-deflection characteristics, and crack patterns.

Using the analysis developed in this study, theoretical capacities at cracking and ultimate have been compared with test values.

Expressions for the initial torsional stiffness of solid and hollow beams have been developed and compared with test results.

CHAPTER II

17.00

CURRENT STATE OF KNOWLEDGE

2.1 Introduction

Research on torsion in structural concrete has an interesting history dating back to 1929 when E. Rausch¹⁸ presented the truss analogy for torsion in reinforced concrete members. According to this analogy transverse reinforcement acts as tension members while cracked concrete provides the compression struts. Another break-through in research activities in this area came in 1958 when N.N. Lessig^{51, 52} proposed the skew bending theory, where equilibrium conditions based on the observed failure mode are considered. More recently investigators such as Lampert⁴⁹, Hsu³⁶, and Collins¹¹, introduced the equivalent thin tube theory where a solid beam is treated as a rectangular thin walled tube. This approach is based on the space truss model first developed by Lampert⁴⁹ and is essentially a generalization of the original truss theory.

The first table of general torsion theory (which dates back to the eighteenth of when Coulomb found the solution for a cylindrical bar of circula section) are available in most textbooks on strength of raterial above of elacticity 19, or theory of plasticity 19, and consequence in not be presented here. Research on torsion in structural or use has seen live mainly in the last two decades and is currently can ded out in over thirty institutions

throughout the world, resulting in numerous publications. An extensive literature review dealing with torsion in structural concrete has been presented by Zia⁸², Johnston and Zia⁴⁰, Woodhead and McMullen⁷⁵ and Rao and Warwaruk⁶⁵. Only research that has a close relevance to the material presented in this report is reviewed here. In the introductory sections of Chapters 5 and 6, where cracking and ultimate analyses are presented, reference is made also to the most pertinent publications dealing with these two areas.

It is not surprizing that research on torsion in prestressed concrete members gained momentum only after the problem was better defined and understood for plain and reinforced concrete. For that reason many authors, when conducting their literature review, approached the problem by dividing the whole area into (i) plain concrete, (ii) reinforced concrete, and (iii) prestressed concrete. Others preferred to make a distinction between (i) pure torsion, (ii) torsion and bending, and (iii) torsion bending and shear. Both treatments are justified since the problem of combined loading was historically approached in both these manners. However, it should be mentioned that all these cases represent special cases of a fully reinforced and prestressed beam under combined torsion, bending and shear. Such a beam exhibits two distinct behavioral regions; one between initial load and the cracking load and another between cracking and ultimate. For that reason available theories for cracking analysis are discussed first and then theories for ultimate analysis are reviewed.

2.2 Cracking Strength

The major concern of a torsional cracking analysis is the determination of a stress distribution and a failure criteria. Several theories have been used in the past regarding torsional shear stress distribution at cracking. Three common approaches are those from the Elastic theory⁶⁹, the Plastic theory⁵⁹, and the Skew bending approach³¹.

In the elastic theory a material is assumed to be perfectly elastic and failure occurs when the limiting stress is reached at the maximum shearing stress location. On the other hand, the plastic theory assumes perfectly plastic behavior implying that the shear stresses due to torsion are constant over the whole cross-section. According to both theories, shearing stress can be expressed as follows:

$$\tau = \frac{T}{kb^2h}$$
 (2.1)

where k is the torsion constant and is a function of the crosssectional aspect ratio. For the same cross-section this factor is always larger for plastic theory as compared to elastic theory.

Torsional shearing stresses determined by Equation 2.1 must be superimposed on the stresses caused by prestress, bending, and flexural shear. To such a generalized state of stress a failure criteria is applied. Unfortunately, no agreement exists among researchers as to which failure criteria should be used for concrete at cracking.

For the case of combined loading, generally the maximum stress criteria has proved to be more popular. However, the tensile strength of concrete must be known, regardless of the adopted failure criteria; it can be determined from the uniaxial tensile test or the splitting tensile test. The disadvantage of the former is that it is difficult to perform, while in the latter case a pure tensile state of stress cannot be attained; tensile stress is always associated with a compressive stress amounting to approximately 0.25 f.

It should be noted that Equation 2.1 is applicable only to solid rectangular cross-sections. For cross-sections with re-entrant corners such as T, L, U, I or hollow box sections a numerical solution of the following partial differential equation is required:

$$\frac{\partial^2 F(x,y)}{\partial^2 x} + \frac{\partial^2 F(x,y)}{\partial^2 y} = -2K_T \phi \qquad (2.2)$$

where $F_{(x,y)}$ denotes the stress function in cartesian coordinates, K_T the torsional rigidity, and ϕ the angle of twist per unit length.

Based on experimental observations, Hsu³¹ concluded that the stress distribution due torsion at cracking can be interpreted as a skew bending phenomenon. This approach has been extended by Gangarao and Zia²⁴ to include bending and torsion and by Henry and Zia²⁹ to include the general case of combined bending, torsion, and shear. While it was observed that this approach gives good correlation with

test results for beams with aspect ratios close to 2:1, it was not satisfactory for beams having a square or nearly square cross-section.

Swamy 68 conducted tests on twenty prestressed beams without web reinforcement. He concluded that both maximum stress criterion and maximum strain criterion do not give satisfactory results for the entire range of torsion to bending ratios. Johnston and Zia applied elastic theory using a finite difference technique for the determination of the torsional shear stresses in prestressed hollow beams subjected to combined loading. They based tensile strength of concrete on the splitting test for the reason that the biaxial state of stress in the splitting tensile test is similar to the state of stress resulting from combined loading. The same beams were analysed by the skew bending approach; comparison shows that the elastic theory correlates better with test results than the skew bending approach. Subsequently, Woodhead and McMullen 75 analysed 177 rectangular prestressed beams using elastic theory with f_t equal $7\sqrt{f_c^*}$. Since the main values of experimental to theoretical ratios ranged from 1.035 to 1.330 they pointed out that their conservative predictions resulted from some plastic action at cracking and contribution of web reinforcement to the cracking strength. In a recent study, Rao and Warwaruk 66 investigated the cracking strength and precracking behavior of prestressed I-beams under combined loading. Forty-one beams were analysed according to both plastic theory with f equal to 6/f and elastic theory, where a finite element technique was employed, with f_t equal to $7.5\sqrt{f_c^T}$. It is interesting to note that the

average test to theory ratios according to both theories were the same, that is 1.26. Although it may appear somewhat surprising that the plastic theory also underestimates cracking capacity this probably resulted from the smaller value of f_t adopted in this theory as compared to elastic theory.

2.3 Ultimate Strength

Three approaches are most commonly used for the determination of ultimate strength of reinforced or prestressed concrete beams under combined loading; truss analogy18, skew bending theory51, and space truss theory47. All three approaches are applicable only to underreinforced members. While it is relatively easy to establish limits of longitudinal reinforcement in a member subjected to bending only, no clear theoretical definition has been given in the literature as to what amount of web and longitudinal reinforcement would correspond to "balanced condition" for a member subjected to combined torsion, bending and shear. It has been recognized that a reinforced or prestressed beam without web reinforcement fails at first cracking if subjected to pure torsion or combined loading; this implies that the analysis for cracking torque would also apply for the determination of ultimate capacities. Researchers also agree that the relative amounts of web and longitudinal reinforcement and initial prestress not only contribute to the ultimate strength but may significantly influence the postcracking behavior.

A very limited number of investigations dealing with the problem of combined loading in hollow beams have been published. Hsu³⁵ reported tests on four reinforced hollow, and corresponding solid beams subjected to pure torsion. Capacities were similar for similarly reinforced solid and hollow beams plying that the beam core did not contribute to the ultimate strength. Swamy⁶⁸ applied a skew bending analysis to twenty hollow prestressed beams subjected to combined bending and torsion. Probably the most complete experimental and theoretical investigation has been done by Johnston and Zia⁸⁰ who reported tests on thirty-seven eccentrically prestressed hollow beams under various ratios of torsion, bending and shear. As mentioned earlier, an elastic analysis in conjunction with a finite difference technique was used for the cracking analysis, while the ultimate analysis was based on the skew bending approach.

has been mostly used in the past, equally for reinforced and prestressed concrete. Most recent works on rectangular prestressed concrete beams under combined loading include those by Gangarao and Zia²⁴, Henry and Zia²⁹, Johnston and Zia⁴⁰, and Woodhead and McMullen⁷⁵. Rao and Warwaruk⁶⁵ used this theory to predict ultimate capacities of prestressed I-beams under combined loading. It should be mentioned, however, that certain assumptions of this theory have been questioned. As compared to the truss analogy, skew bending theory results in a more complex solution. Recently, Elfgren¹⁸ showed that no significant dif-

ference exists between these two theories if both are based on the same assumptions and simplifications.

The space truss theory is the most recent appraoch and has been introduced by Lampert⁴⁷. Although some of its assumptions are controversial^{11, 36} it appears that this approach provides a sound tool for the study of beam behavior at postcracking stages. Using this approach, Collins¹¹ found that complete torque-twist curves can be predicted in a symmetrically reinforced beam subjected to torsion only.

CHAPTER III

EXPERIMENTAL PROGRAM

3.1 Test Specimens

The results of tests made on eighty four beams, divided in three series according to their overall cross-sectional dimensions as shown in Figure 3.1, are reported in this investigation. Each of the three series is further divided into groups having the following variables: eccentricity of prestressing force, amounts of longitudinal and transverse steel and whether the beam is of solid or hollow cross-section. Figure 3.2 illustrates the group identification. The nominal compressive strength of concrete was 5000 psi with the same concrete mix for all beams. The following mix proportions were used:

1. Cement (type III) 150 lbs

2. Sand 310 lbs

Coarse aggregate 500 lbs

4. Water 85 lbs/batch

This mix yielded seven cubic feet of concrete with a slump of approximately 3 inches. The sieve analysis of sand and coarse aggregate is given in Tables 3.1 and 3.2, respectively.

The details of the stress-strain characteristics for the transverse steel are given in Figure 3.3. Representative samples of the #2 plain bars and the #3 deformed bars were subjected to a tension

TABLE 3.1 SIEVE ANALYSIS OF SAND

Sieve Size	Weight Retained (gms.)	% Retained	Cumulative % Retained	A.S.T.M. Standard
# 4	17.5	3.0	3.0	0 - 5
# 8 ===	85.2	14.7	17.7	
# 16	54.6	9.5	27.2	20 - 55
# 30	60.0	10.3	37.5	
# 20	208.4	35.8	73.3	70 - 90
# 100	122.9	21.1	94.4	90 - 98
Pan	17.8	3.1	-	
Silt	14.4	2.5	_	
Total	580.8	100.0	253.1	
Fineness Modulus = 2.53				

TABLE 3.2 SIEVE ANALYSIS OF COARSE AGGREGATE

Sieve Size	Weight Retained (1bs.)	% Retained	Cumulative % Retained
3/4"	0.30	1.1	1.1
3/8"	15.63	58.4	59.5
# 4	10.03	37.5	.97.0
Pan	0.80	3.0	100.0
Total	26.76	100.0	

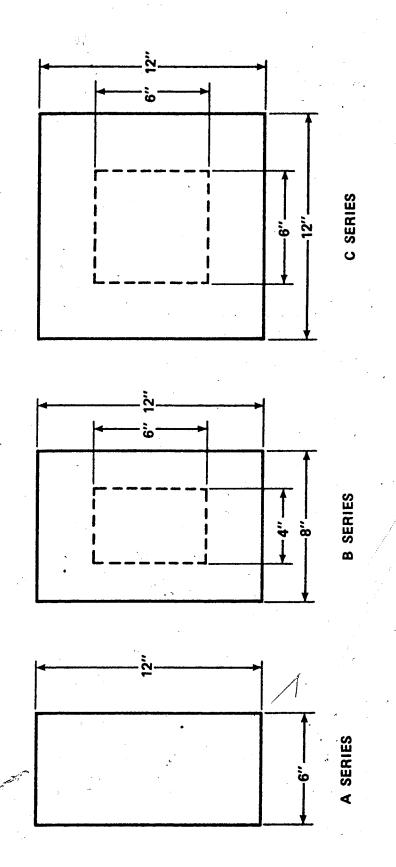


FIG. 3,1 BEAM SERIES IDENTIFICATION

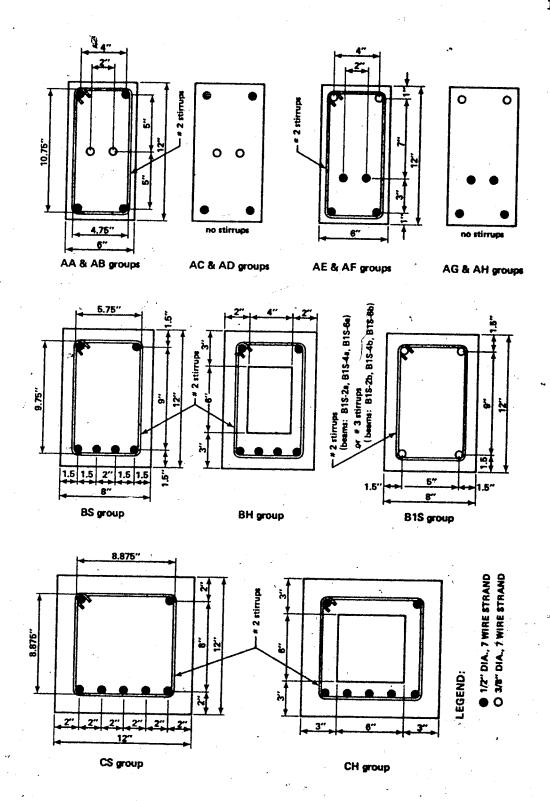


FIG. 3.2 CROSS-SECTIONAL PROPERTIES AND GROUP IDENTIFICATION

0

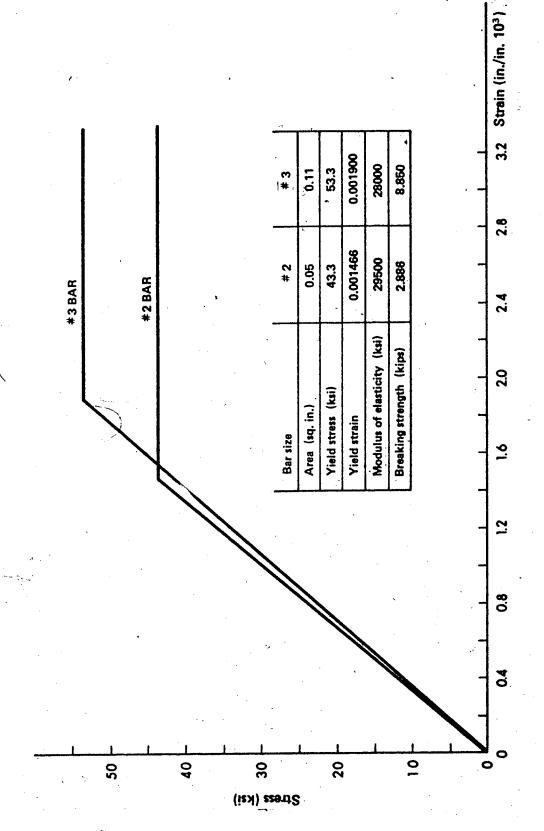


FIG. 3.3 PORTION OF STRESS - STRAIN DIAGRAM FOR TRANSVERSE STEEL (STIRRUPS)

test in order to obtain their stress-strain curves. Only the initial portions of stress-strain curves are shown in Figure 3.3 since the strain hardening region was not utilized. The prestressing cables for the test specimens were 3/8 and 1/2 inches in diameter, both being seven wire strand with a guaranteed minimum yield strength of 250 ks1. Data supplied by the manufacturer was used to prepare the idealized stress-strain curves for prestressing cables as shown in Figures 3.4 and 3.5. Equations representing the stress-strain relationship for the prestressing strands are used in the theoretical analysis of this investigation.

3.2 Fabrication of Specimens

Prior to the fabrication of the beams prestressing cables were cut and placed between two concrete bulkheads, which were fastened to the laboratory floor by eight large high strength bolts. At both bulkheads wedge grip and anchorages were installed on the ends of the cables. One end served as a point of force application and at the other load cells provided data needed for the determination of prestressing force. When the cables were aligned, each strand was individually stressed using a Simplex center-hole hydraulic jack operated by an electric pump. Although an attempt was made to stress the cables to the designated level of prestress, small variations in anchorage losses made this virtually impossible. After prestressing, the transverse reinforcement was positioned and fixed by wiring the

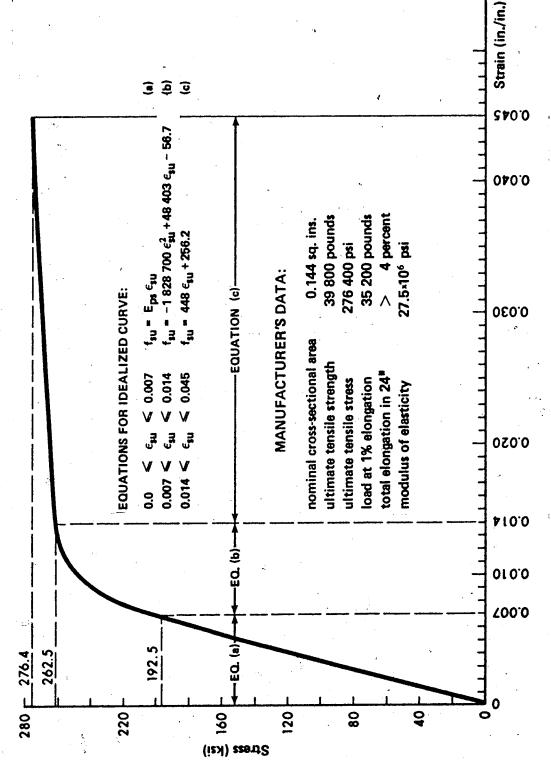


FIG. 3.4 IDEALIZED STRESS - STRAIN CURVE AND MANUFACTURER'S DATA FOR 14" DIA. STRAND

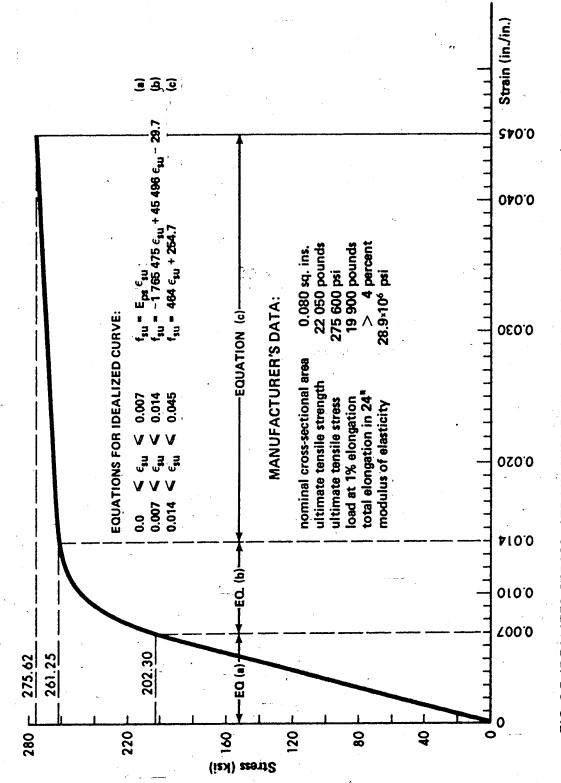
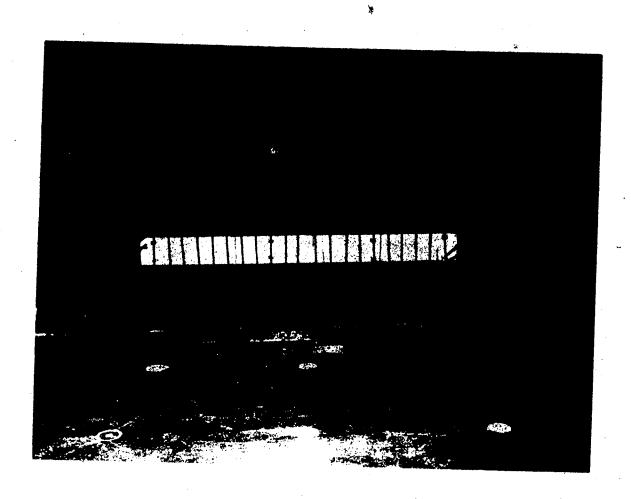



FIG. 3.5 IDEALIZED STRESS - STRAIN CURVE AND MANUFACTURER'S DATA FOR 3/8" DIA. STRAND

stirrups to the prestressing cables as shown in Figure 3.6. To ensure that failure occurred in the test zone, additional transverse and longitudinal reinforcement was provided outside the test zone. Prior to positioning and fastening of the steel forms they were cleaned and oiled. The 26 ft. long prestressing bed permitted fabrication of two beams at the same time.

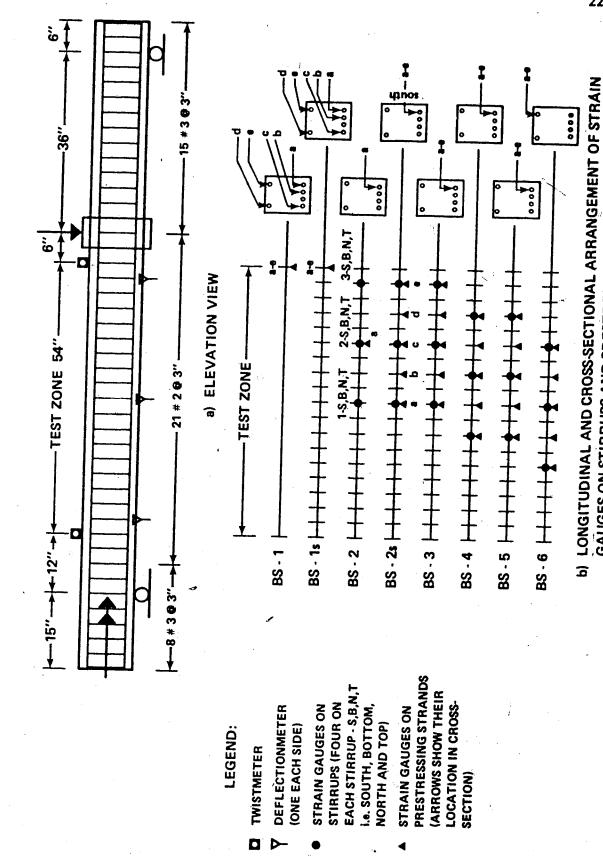
Concrete mixing was performed in the laboratory using inequality of the cubic foot capacity mixer. Concrete was placed in the forms with aid of a linch diameter internal vibrator. Five six-by-twelve incontrol cylinders were made with each specimen and cured under the same conditions as the beams. The steel forms were removed the day after casting and the beams together with test cylinders were covered with moist burlap and plastic sheets. After six days the burlap and plastic sheets were removed and final load cell readings were taken in order to determine prestress relaxation and anchorage losses.

The opening in the hollow beams was made using a styrofoam block of the same cross-section as the opening and a length of one foot longer than the test zone to avoid possible effects of stress concentration in this region. Although the contribution of styrofoam, if left inside the beam, would be insignificant in bending, it was felt that its contribution may be much higher in resisting torsion and shear due to confinement. To nullify its possible contribution to the beam torsional and shear strength, after curing of a beam was completed, the styrofoam was completely dissolved using an organic

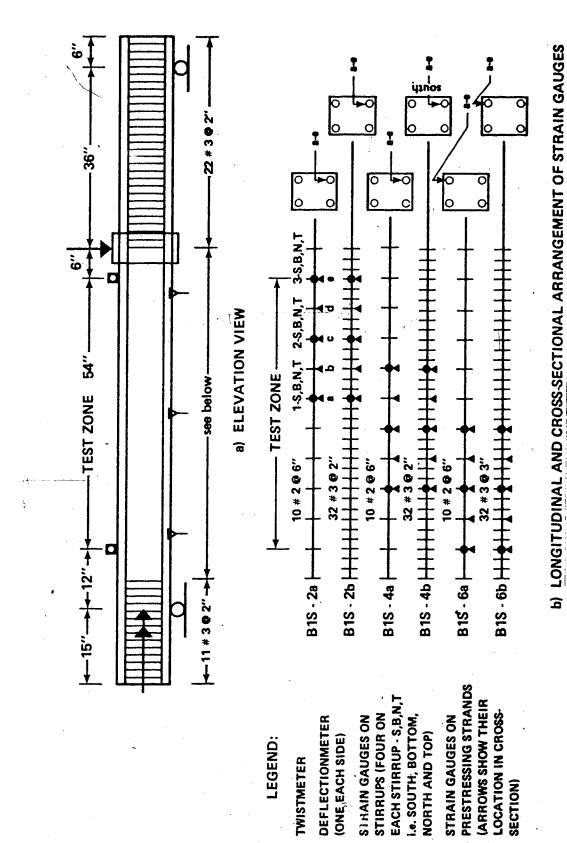
REINFORCEMENT CAGE FOR A HOLLOW BEAM

solvent, acetone. To insure accessibility to the styrofoam, two plastic tubes of 3/4 in. in diameter were cast in the solid portions of the beam as shown in Figure 3.6.

For both solid and hollow beams, five pairs of mechanical gauge points were positioned on both vertical sides of the beam and initial readings were taken using an 8 inch Demec deformation gauge.

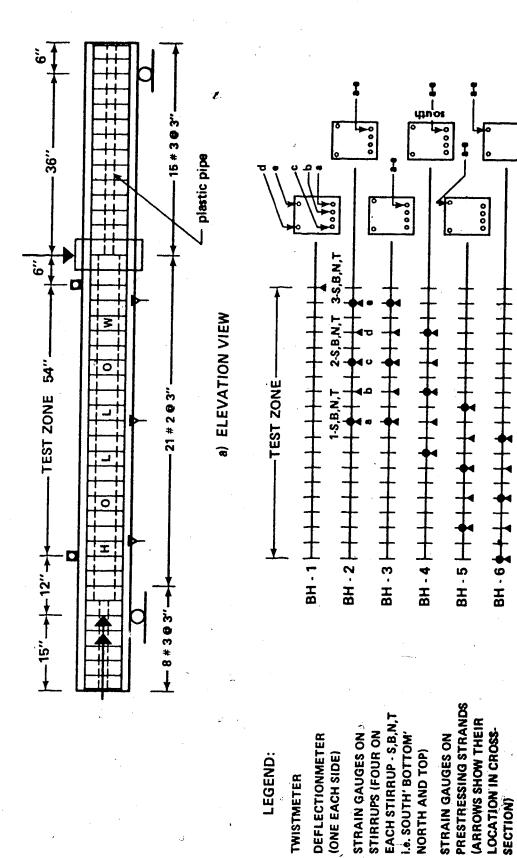

Readings were taken immediately after release of prestress providing data required for the calculation of prestress losses due to elastic shortening of the beam. The same procedure was repeated prior to test to determine losses due to creep, shrinkage and relaxation.

Three cylinders were tested in compression and the remaining two in tension the same day as the beam test. Compressive and tensile strengths of the concrete are reported in the following chapter.


3.3 Instrumentation of Specimens

3.3.1 Reinforcement Strains

In contrast to the beams of Series A where only four strain gauges were mounted on the vertical legs of stirrups, Series B and C were more extensively instrumented. Generally, seventeen strain gauges were used for each beam; five on the prestressing strands and twelve on the stirrups. Location and designation of these strain gauges is shown in Figures 3.7 through 3.11 and strain gauge readings for each load increment are given in Appendix B.



ELEVATION VIEW AND INSTRUMENTATION OF AS GROUP BEAMS GAUGES ON STIRRUPS AND PRESTRESSING STRANDS FIG. 3.7

ELEVATION VIEW AND INSTRUMENTATION OF B1S GROUP BEAMS FIG. 3.8

ON STIRRUPS AND PRESTRESSING STRANDS

TWISTMETER

D

ELEVATION VIEW AND INSTRUMENTATION OF BH GROUP BEAMS FIG. 3.9

b) LONGITUDINAL AND CROSS-SECTIONAL ARRANGEMENT OF STRAIN GAUGES ON STIRRUPS AND PRESTRESSING STRANDS

SECTION)

0000

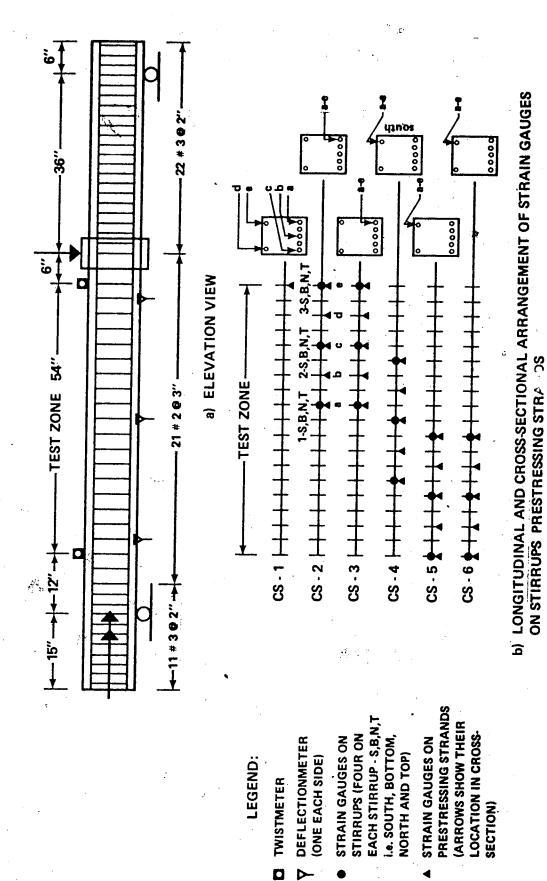


FIG. 3.10 ELEVATION VIEW AND INSTRUMENTATION OF CS GROUP BEAMS

SECTION)

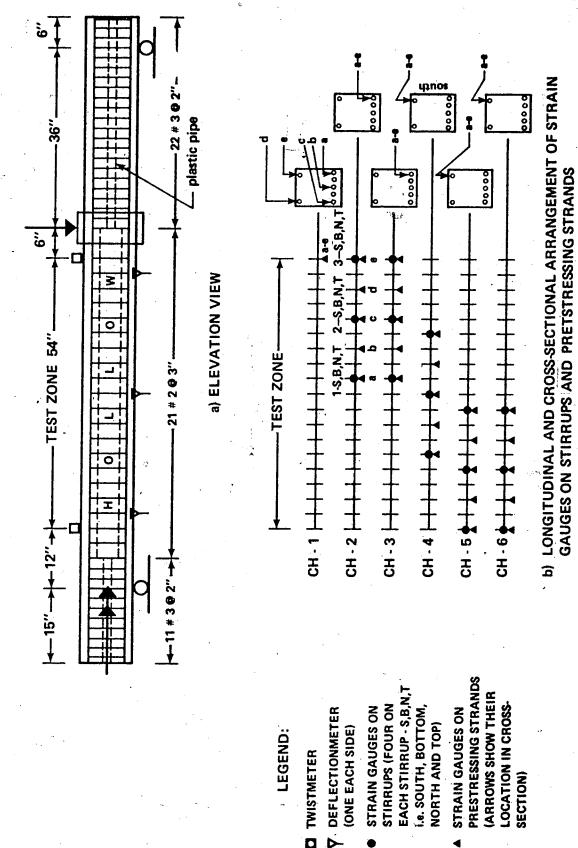


FIG. 3.11 ELEVATION VIEW AND INSTRUMENTATION OF CH GROUP BEAMS

NORTH AND TOP)

SECTION)

(ONE EACH SIDE)

LEGEND:

TWISTMETER

Kyowa type KFC-5-C1-11 electrical resistance strain gauges were used for both prestressing steel and stirrups. While the installation of strain gauges on stirrups can be performed by standardized procedure, caution must be exercised in installing strain gauges on prestressing strands. Since each strand is composed of one straight and six twisted wires, "channels" between these wires make waterproofing virtually impossible. To eliminate this problem many researchers24, 40,65 used styrofoam plugs during casting of concrete which insured access to prestressing strands after concrete Mad hardened. These plugs were then removed and strain gauges placed on strands in the cavities. Although the problem of waterproofing is eliminated one of the main disadvantages of this procedure is that the gauge cannot be properly aligned in a 1 or 2 inch deep cavity. Since they are located on the outside boundaries of a cross-section these hollows, even though they are relatively small, reduce the moment of inertia of a cross-section by 10 to 15 percent thereby directly reducing the cracking strength by about the same amount. For these two reasons such a procedure was not used in this investigation. Instead, a new procedure described below, was developed.

After prestressing was completed at designated locations the outer portion of one single wire of prestressing strand was thoroughly cleaned after which a gauge was cemented with M-line Accessories' M-bond 200 and waterproofed with a coat of a Budd GW-2 compound. Lead wires were connected to the strain gauge and a small area where strain gauge was located was covered with an epoxy

compound. This step is very important since it ensured that moisture or water leaking during casting would be prevented. After curing the entire strand at strain gauge location was wrapped with tape. For additional protection against possible damage of a strain gauge during casting, the entire strand at this location was covered with the epoxy compound.

The main advantages of the above procedure are that, (1) gauge can be properly aligned and, (ii) no reduction of effective cross-sectional area occurs. Total loss of strain gauges is significantly reduced as compared to the first described procedure; it is interesting to note that in more than 500 strain gauges installed using this procedure only 3 strain gauges were lost.

3.3.2 Angle of Twist

Rotation of a member subjected to a torque was measured by two twistmeters. The location of these twistmeters is shown in Figures 3.7 through 3.11. Each twistmeter consisted of an elbow-type aluminum bracket with a spirit level, pin joined at one end and supported at the other by a micrometer screw with the smallest division of 0.001 inches. This assembly was attached to the top face of a beam by means of a rubber belt. The rotation of each twistmeter was computed from the difference in micrometer readings between two successive load increments, the total angle of twist over the test zone was the difference between twistmeter rotations. These angles are tabulated for each load increment in Appendix A.

3.3.3 Deflections

Figures 3.7 through 3.11 show locations of three pairs of deflection gauges for each group of beams. Essentially the deflection gauge consisted of a metal ruler with division of 0.01 inches hung on a small hook which was cemented on the beam face. Readings were taken using two precise levels located on either side of a specimen. The average value of a corresponding pair of readings, which was obtained in this manner, resulted in the determination of the deflection of the longitudinal beam axis. Deflection data for each load increment for beams of B and C series are tabulated in Appendix A.

3.4 Test Equipment

The loading apparatus which permits independent application of torsion and flexure or torsion and shear-flexure was first designed and used by McMullen and Warwaruk⁵⁵. Only minor alterations, such as the enlargement of the torsionally fixed head were made in the course of this experimental investigation. Detailed description and illustration of loading apparatus is available elsewhere^{55, 58}; only a brief description is presented here.

The loading arrangement used for testing of the beams under combined loading is illustrated in Figure 3.12. Transverse load was applied by means of an Amsler jack having a capacity of 100 kips.

Load was transferred to the beam by a heavy plate laterally supported and resting on a pipe collar which was fastened to the specimen at the

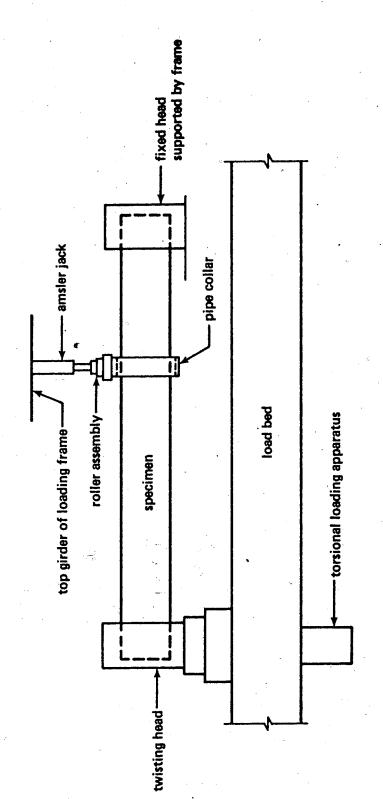


FIG. 3.12 EQUIPMENT ARRANGEMENT VIEWED FROM NORTH SIDE

point of loading. This system permitted transfer of a twisting moment along beam length and ensured that the transverse load remained in a vertical direction. The west end of the specimen was supported by a fixed head shown in Figure 3.13, while the east end was supported by a twisting head (Figure 3.14) where torque was applied. The east head allowed a beam to rotate about its longitudinal axis and also in the vertical plane. On the other hand, the west head restricted torsional rotation of a beam, while it permitted bending rotations and small movements in the longitudinal direction. Detailed view of complete test set-up for combined loading is shown in Figure 3.15.

The torque applied to a beam resulted from two loads applied by cables in opposite direction to the twisting head as shown in Figure 3.16. The cables, in turn, were attached to an assembly, located below the test floor, which was operated by a hand pump. Forces in the cables were measured using load cell and strain indicator.

3.5 <u>Testing Procedure</u>

Before a specimen was placed into the loading frame readings were taken on the mechanical demec points and electrical resistance strain gauges on the prestressing strand. These readings provided data required for prestress loss calculations. The dead weight of the pipe collar and plate assembly used for application of transverse load was calculated beforehand and allowance was made due to this weight in applying transverse load. Both transverse load and twisting moment

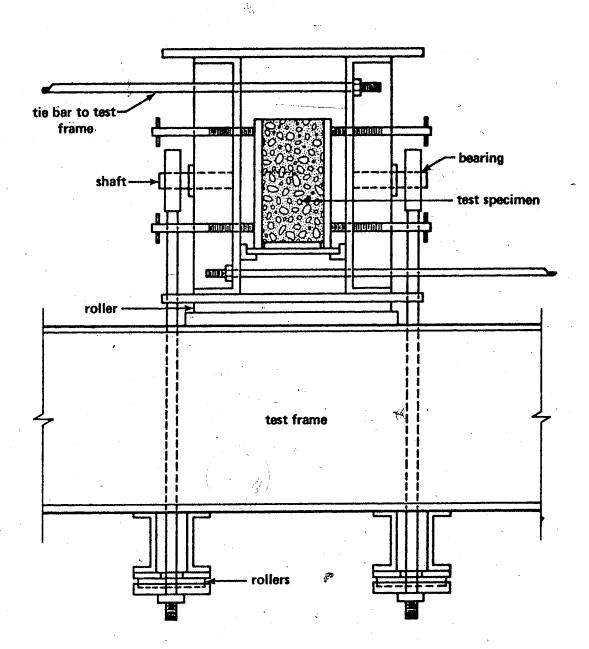


FIG. 3.13 FIXED HEAD

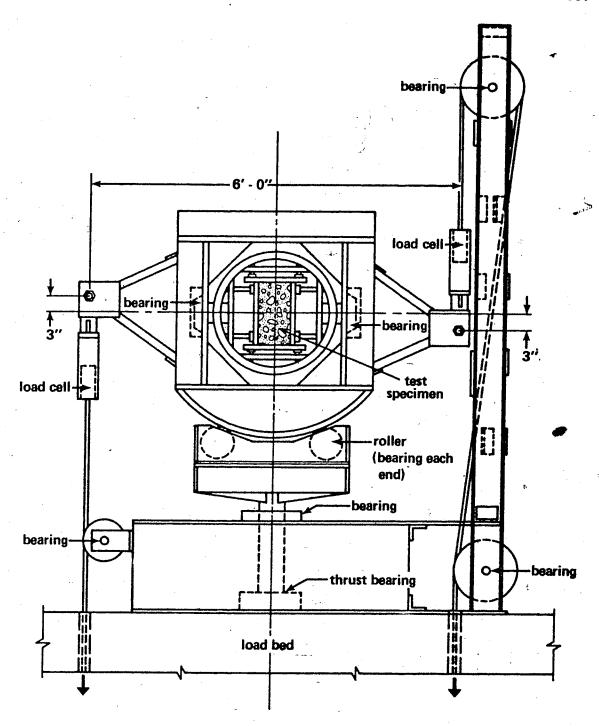
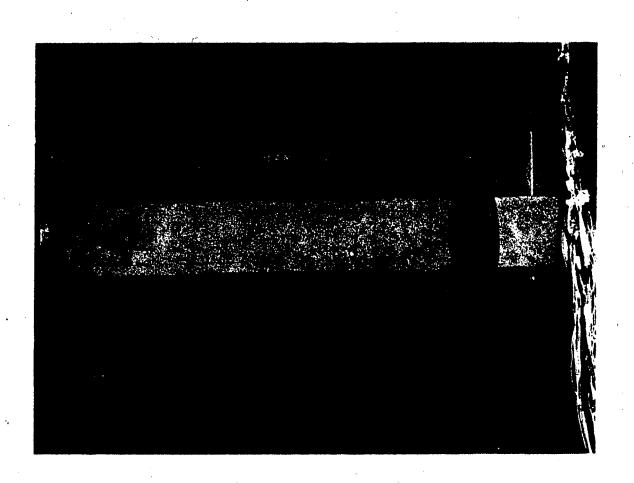



FIG. 3.14 TWISTING HEAD

DETAILED VIEW OF TEST SETUP FOR COMBINED LOADING

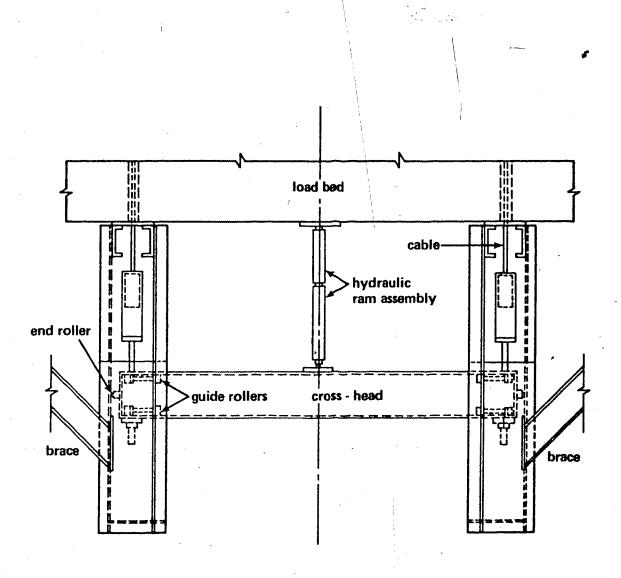


FIG. 3.16 TORSIONAL LOADING EQUIPMENT

were applied in a series of simultaneous increments of predetermined magnitude depending upon the ratio of torsional to bending moment. As cracking or ultimate load was approached loading increments were reduced in order to improve accuracy in determining these capacities. For each load increment all instrumentation was read and the crack patterns were marked. The number of increments for each test varied between 15 and 30. Test data for beams of series B and C is tabulated in Appendicies A and B, and crack patterns are shown in Appendix C.

CHAPTER IV

PRESENTATION AND DISCUSSION OF TEST RESULTS

4.1 General

· () In this chapter principal test results are presented and behavior of beams under combined loading is discussed. Additional information for each beam of Series B and C including loading, deformation and strain data for each load increment and crack pattern is presented in Appendices A, B and C. Data for beams of Series A is available elsewhere 39, 74. The parameters studied in this investigation are listed in Table 4.1. Numerical values of these variables for each beam are presented in the following section. Variables included in Series A and the group identification of this series is shown in Table 4.2. The primary objective of Series B and C was to study the effect of a longitudinal opening. Each of these two series has been divided into two g ups BS, BH and CS, CH; the second letter in each group refers to solid and hollow cross-section, respectively. Additionally, Series B contained group BIS in which the amount of transverse steel and the initial prestress were varied.

Each of the thirteen groups of beams reported in this investigation consisted of 6 to 8 beams. The first beam in each group was tested in pure bending and with the exception of groups AB, AD, AF and AH, the last beam of each group was subjected to pure torsion. The remaining beams were tested under various loading ratios in combined

TABLE 4.1 PARAMETERS CONSIDERED IN THIS STUDY

Hollow beam		X	X
masd bilo2	×	X	X
Amount of Trans- verse Steel	×	Х	
Eccentricity of Prestressing Force, e	X	X	
Effective Pre- stress o _o		X	
Torston to Shear Ratto, 6	X	X	X
Torsion to Bend- ung Ratio, u	X	×	×
Torston, Bending and Shear	X	×	×
Torsion and Bending only	×		-
Series	A 6" x 12"	B 8" x 12"	C 12" x 12"

TABLE 4.2 SERIES A, GROUP IDENTIFICATION

	Beams with transve	erse reinforcement	Beams without frans	Beams with transverse reinforcement Beams without fransverse reinforcement
	torsion, bending	orsion, bending torsion, bending, shear	torsion, bending	torsion, bending torsion, bending, shear
Concentric Prestress	Group AA	AB	Y OY	QV
Eccentric Prestress	AE	. VE	9V	¥¥

bending and torsion or bending, torsion and shear.

4.2 Principal Test Results

The principal test results for all three series of beams are presented in Table 4.3. They include compressive and splitting strengths of concrete, effective prestress, eccentricity of prestressing force, cracking and ultimate capacities, loading ratios, failure mode, angle of twist and centerline deflection. Geometric properties of beams are not included here, since they have been presented in Chapter 3. It should be noted that the effect of dead load for Series A was neglected, while because of larger dimensions it has been included for Series B and C. The effective prestressing force in each cable is not reported here since it can be easily generated from the effective prestress and eccentricity of prestressing force shown in Table 4.3.

The cracking and ultimate strengths, and loading ratios ψ and δ , are calculated with respect to the centroid of compression zone of the failure surface. For combined torsion, bending and shear ratios ψ and δ differ somewhat from the initial predetermined ratios used in the load application because the location of the actual failure cross-section usually did not coincide with the assumed failure cross-section. The maximum twist and deflection at the centerline of the test zone correspond to values recorded at the end of the load increment immediately preceding failure. It should be noted that failure is defined herein as a state when the beam could no longer sustain increases in loads to which it was subjected.

Ö

ESIT.TS	
TEST	
۳.	
ABLE A	

έş

		Concrete		Effective	Eccentricity			Applie	Applied Load							
		(pag)		Peff	(positive downward)	At	Cracking		VE	Ultimate		Loading	Loading Ratios			Centerline
Group no.	9	. , o	4	(pst)	(411)	T _c (in.kips)	M c (in,kipe)	V (kips)	T (in.kipe)	K (in.kips)	(ktps)	HIX B	6 - 2T	, pod	Angle of luist delistration A A A A A A A A A A A A A A A A A A A	Δer 1ect 10m Δ (fn)
	1	5148	969	1408	0.006	0.0	445.5	0.0	0	797	┥	8	•	:		
	7	4950	495	1418	0.012	55.9	389.5	0.0	56	662		9,144	•	-	9 4	66.0
	~	4310	380	1410	-0.035	99.0	297.3	0.0	159	478		0.333	•		£ 7.	6.6
\$	4	3896	394	1423	0.002	111.4	148.1	0.0	155	50 2		0.752			970	3 3
	5	4255	433	1410	-0.030	126.0	94.7	0:0	157	118		1.331	•	۰.۰	276	7 6
	9	9677	380	1418	0000.	129.6	43.5	0:0	164	\$		2, 987		4, 6	/877	5 6
	7	4883	494	1415	0.008	133.0	0.0	0.0	178	0				, ~	632	5 6
	7	\$115	51.7	1413	0.016	0.0	312	5.00	0	747	11.67	8	8	:		
	7	\$056	531	1402	0.021	33.4	290.4	4.76	82	712	11.67	0.115	2.342	-	136	7 5
2	n		486	1301	0.022	65.0	294.1	4.98	120	543	9.20	0,221	4.348	۰ ،	\$36	1 5
	4	5092	. 486	1417	0.026	117.0	100.2	10.4	146	123	5.00	1.168	9.733	. ~	633	0.15
	'n	8005	433	1417	-0.018	104.0	32.0	2.00	156	. 84	3.8	3,250	17,333	~	3	5 6
	9	4620	429	1422	-0.020	85.8	16.2	0.73	148	28	1.27	5.286	38.845	~	694	0.03
-	Indet	Indeterminate	4] ,											

* Indeterminate ** Indeterminate ** ** Pure bending or shear-bending

TABLE 4.3 (Cont'd) TEST RESULTS

0.0 426.6 6.64 22.3 265.5 4.02 108.0 320.5 6.97 117.9 112.5 4.02 117.8 49.7 2.27

or Indeterminate

** Pure bending or shear-bending

TABLE 4.3 (Cont'd) TEST RESULTS

Deam Strength Prestress Eccentricity A Strength Gest, and Constitute (psi)	Effective Eccentricity Prestress (positive downward) At Cracking	Prestress Eccentricity (positive downward) At Cracking	Eccentificity (positive downward) At Cracking	- 1		~]	Applied Load		At Ultimate		Loadin	Loading Ratios	Fa11-		Centeriine
had	T L L L L L L L L L L L L L L L L L L L	n L	٠,	_ u	L	×°	۰	H ₃	x	>2	HIX P	\$ 13 \$ 13	Wode.	Angle of Twist deflection	deflection
(1n.K1ps)	(1n.K1ps)	(In.Kips)	(in.kips)	in.kips) (ر ر	(in.kips)	(kfps)	(in.kips)	(in.kips)	(ktps)				(rad/in x 10 ⁶)	" (E)
486 1428 1.664	4791 486 1428 1.664	1428 1.664		0.0		486.0	0.0	0	906	٥	9];		1
1.650	451 1423 1.650	1423 1.650	1.650	67.5		468.8	0.0	721	798	•	3	•	;	0	98.0
1.680	394 1427 1.680	1427 1,680	1.680	0.66		372.7			5	>	0.144	•	-	123	1.26
1.700	471 1415 1.700	1415 1.700	1.700	121		1636	3 6	124	ĝ	•	0.266		~	1330	0.46
394 1629 1 700 02 2	394 1629 1 700 02 2	1629 1 709 0# #	1 200		•	* 701	0	172 '	230	•	0.748		7	1160	0.10
438 3428 4.00 95.5	4.18 14.08 4.00 4.00 95.5	34.0	1,100			71.9	0.0	. 162	122	٥	1.328	•	~	624	0.03
772 770 7450 7750	125.6	125.6	1.009 125.6	-		41.6	0.0	172	23	۰	3.018		~	1305	3 5
704 /004	1.668	1409 I.668		143.7		0.0	0.0	154	0		8	80	~	932	•
429 1396 1.630 0.0	429 1396 1.630 0.0	1396 1.630 0.0	0.0		_	0.009	10.00	0	88	1, 63	9		1		
1.662 42.7	520 1427 1.662 42.7	1427 1.662 42.7	2 42.7		-	422.8	7.55			; ;	3	3	<u>.</u>	0	0.57
1.627	482 1355 1.627	1355 1.627		7 4		1076	} ;	3	170	74.0/	0.101	1.886	-	200	%;
1462 1 684	420 1462 1 684 112 0	1462 1 684					۲. ز	134	351	10.33	0.382	4.324	~	635	0.44
438 1427 1 480 48 5	438 1427 1 480 48 5	1627	77.0			72.7	10.	146	8	2.8	1.622	9.733	~	493	0.14
1991	5110 447 1461	1991	·			31.4	1.50	149	\$	2.87	2.48	17.306	: ~	693	. 6.03
7.678	4,000	4.6.20	\dashv	2.607		17.0	0.93	160	ສ	1.37	6.400	38.929	~	701	-0.02

** Pure bending or shear--ending . Indeterminate

TABLE 4.3 (Cont'd) TEST RESULTS

	Γ	!	_													
		Concrete		Effective Eccentr	Eccentricity			Applied Load	Load			Loadin	Loadine Bartos			
Been		(bed)		Peff	(positive downward)	YE	Cracking	,	Ą¢	At Ultimate			,	Fail-		Centerline
			j°	_~ '		L	×	A	-	,		~ 2 	8 = 4F	er's	Angle of Twist deflection	deflection
Group no.	90	 		u ((25)	υ :	U.	. ن	, .	c ³	, s			ğ	•	
T		,]	-	,	(an)	(an.kips)	(in.kips)	(Kips)	(in.kips)	(in.kipe)	(ktps)				(red/in x 10°)	(1a)
	-		453	1111	1.664	0.0	610.7	0.0	0	1026	٥	0.000	*	:	c	80,7
•	7		471	1411	1.663	58.8	376.9	0.0	118	756	•	0.156		_	247	60:0
9	n	5370 \$	295	1409	1.673	112.5	123.2	0.0	136	604	-	0.913	•			3
3	4	52n5 4	455	1413	1.685	126.5	186.7	0.0	150	200	0	0.750	•	. ~	232	3 6
	2	2494 4	435	1409	1.647	95.5	71.3	0.0	146	109	· c	1 339		, ,	100	
	9	5 5955	533	1402	1.673	129.5	43.2	0.0	150	20	· c	3.000	•	۰.۰	123	
,	~	5924 5	208	1412	1.671	122.8	0.0	0.0	144	0				. ~	,7T	
	1	5240 3	391	1414	1.676	0.0	574.8	7.58	0	910	1, 8	5	8	:	·	
	. 7	5441 4	455	1422	1.688	9.44.	299.3	4.99	101	720	12.00	0.149	2,972	-	0 0	9 4
HV.	6	4 4494	498	1418	1.676	82.4	355.2	6.34	111	305	8.6	0.232	4.333	. ~	261	6.33
	4		367	1414	1.671	97.5	0.09	3.33	111	72	8.4	1.625	9.750	. ~	133	0.17
	S			1425	1.675	4.88	33.1	1.57	131	64	2.33	2.674	18,741	7	801	70.0
	•	4792 4	480	1408	1.671	105.2	15.4	0.71	143	17	0.97		49.141	7	123	0.0

A Indeterminate
the Pure bending or shear-bending

			•		. •	TABLE	TABLE 4.3 (Cont'd)	/	TEST RESULTS						
-		Concrete		Promoted									ï		
Bean	2	Strength					DBOT Darrddw	1080			Loading	Loading Ration			
	1	\downarrow			¥	5	المر	A¢	Ultimate	`		7	Fa11-		Conterline
Group no.	8	f. fap	(pst)	(u)	Tc (fn.kips)	H _c (in.kips)	آر خ	t 2	x ³	-	HIZ I	17 A	Hode.	Angle of Twist deflection	deflection
	~	5747 493	1402	1.167	0	537		(adia.m.)	(10.kipe)	-/				(red/in x 10 ⁶)	, (1a)
	~	6325 533	1396	1.268	88	\$20	20.	-	933	25.53	3	00000	:	0	44.0
=	~	5447 340	1448	1.207	102	1 19	06.7	3 3	941	14.29	0.111	1.820	-	198	0.45
<u>.</u>	•	6071 458	1404	1.193	105	3	; ;	67	589	9.66	0.278	4.244	-	260	0.26
	S	5895 515	1358	1.349	114	. =	70.4	697	117	4.29	1.581	10.781	<u> </u>	097	0.0
	•	6325 482	1352	1.395	104	9	0.10	183	98			21.188	n .	403	-0.02
	-	5588 389	1399	1.181	6			707	٥	0.19	30,333 2	239.474	m	7 09	8.0
	13	6160 400	1412	1.225	· ·	7/0	16.6	0	1067	15.91	000.0	0.00	:	0	34.0
	~	6036 500	1388	1.202	, <u>1</u> 2	8 5	10.23	۰ ;	1052	15.67	0.000	0.00	:	0	
2	28		1386	1.240	85	238	2 80		0,11	17.06	0.074	1.275	~	79	0.52
	n .		1411	1.210	147	480	8.67	£ 5	1001	14.90	0.109	1.829	~	06	0.45
	• •		1336	1.131	165	. 26		3 5	8/0	12.34		4.255	~	222	0.47
-	^		1364	1.178	184	7	1,73	7 2		5.43		10.681	7	570	6
	•	5818 435	1365	1.117	821	σ.	0.27	3 5	a .		9.440 2	27.830	~	221	8
2	Pure	Pure bending or shear-bending	bear-bendi	=				3	\$	0.27 2	22.556 187.963	7.963	~	509	0.0

2

TABLE 4.3 (Cont'd) TEST RESULTS

		Concrete		Effective Eccentric	Eccentricity		,	Applied Load	Load			Loadin	Loading Ratios			
Beam	_	Strength (ps1)		JJo.	(positive downward)		At Cracking	Ž.	YE	At Ultimate		1		7411- ure	Angle of Twist deflection	Centeriine
			T.	\ \ \ \ \		T	y:"	>"	F-3	x ³	> =	×	3		·	ν"
Group no.	ġ	ű	f.p	(pst)	(1n)	(in.kips)	(in.kips)	(kips)	(in.kips)	(in.kips)	(kips)				(rad/in x 10 ⁶)	(10)
	28	5836	473	844	0.758	23	212	2.90	05	944	05.9	0.112	1.953	7	84	0.47
	2 P	5464	444	458	0.765	23	212	2.90	S	446	6.40	0.112	1.953	-	88	0.43
118	3	5783	453	461	0.825	96	172	2.63	132	74	3,63	0.569	9.091	-	. 154	0.10
	ş	2806	458	194	0.896	102	173	2.81	174	287	4.81	0.606	9.044	-	315	0.24
	39	5435	453	470	0.778	117	∞	0.25	144	6 0	0.25	18.000	18.000 144.000	~	764	%.
	3	5411	495	084	0.790	128	5	0.25	208	~	0.25	41.600 208.000	208.000	м_	999	8.8
	-	\$058	416	1102	1.334	0	809	891	0	1180	17.58	0.000	0.000	:	0	0.56
	2	4610	132	1030	1.279	S	563	8.24	131	1138	16.91	0.115	1.291	н	133	0.46
ő	•	4474	376	1051	1.302	138	474	7.64	282	356	15.64	0.296	3.005	~	323	0.47
<u> </u>	•	4893	8	1058	1.319	143	. 112	4.41	318	109	9.07	0.529	5.843	~	302	0.14
	\$	4521	325	1048	1.228	192	ž	3.09	336	9	5.09	5.600	11.002	6	310	0.02
	٠	5476	287	1086	1,353	ន្ទ	•	0.31	286	•	0.31	31.444	31.444 152.151	6	365	-0.10
:	,															

Pure bending or shear-bending

TABLE 4.3 (Cont'd) TEST RESULTS

	-		_											
	Concrete	Effective	<u>~</u>			Applied Load	Load			Loading	Loadine Berios			
	311	^	(posicive	-							_			
	(ps1)	o . eft	downward)	¥	AC CERCKING		¥¢	At Ultimate		F		-111	Annal of Market	Centerline
ou di	T, E	۳ (ع	• 3	T _c	X of	ر د د	L ^D		>	- X	A	, od	Augre of Avist deriection	deriection ^Δ
1.					(adra mr)	(Kips)	(1n.kips)	(in.kips)	(kips)				(rad/in x 10°)	(1n)
-	2800 211	978	1.158	0	753	10.85	0	1222	17.85	17.85 0.000 0.000	2	:		
~	5629 559	963	1.182	980	698	10.19	110	1304	17 80			•	> ;	χ 5
6	5288 451	997	1.107	174	629		ì :		3		705.1	-4	6	0.50
4	5199 360		1 1 20	7 6		8 :	/67	8	16.31		2.998	~	223	0.4
1			63111	200	S	1.1	380	189	10.46	2.063	6.214	m -	430	0.15
•			666.	3 3	8	3.79	360	6	5.46	3.636	10.989	m	343	0.02
		4	4:003	767	•	0.53	352	•	0.53	0.53 58.667 110.692	10.692	•	267	60.0

Pure bending or shear-handing

4.3 Precracking Behavior and Cracking Strength

Torque-twist relationships for typical beams of Series B and C are shown in Figures 4.1 and 4.2, respectively. Beams BS-2 and BH-2 shown in Figure 4.1a were both subjected to predominant bending. With the exception that one beam was of solid (BS-2) and the other of hollow (BH-2) cross-section both beams were similar in every other respect, i.e., overall dimensions, level of prestress, amount of transverse steel, and concrete strength. Curves for two other beams of the same series which were subjected to predominant torsion are shown in Figure 4.1b. Similarly, torque-twist relationships for four beams of Series C are illustrated in Figure 4.2.

Examination of these curves reveals that the load-deformation relationship deviates from a linear function at about 50% of the cracking torque T indicating that some stress redistribution takes place before cracking. However, it should be pointed out that no significant loss of torsional stiffness occurs at the precracking stages and, therefore, for all practical purposes a linear relationship can be used. Since stresses are distributed almost elastically throughout the cross-section it is not surprising that the hollow beams yielded a reduced stiffness as compared to solid beams, but this reduction is not very significant since the opening is located around the centroid of the cross-section where both stress resultants and lever arms are relatively small. While torsional stiffness differs from one series of beams to another owing to different cross-sectional properties, it is observed

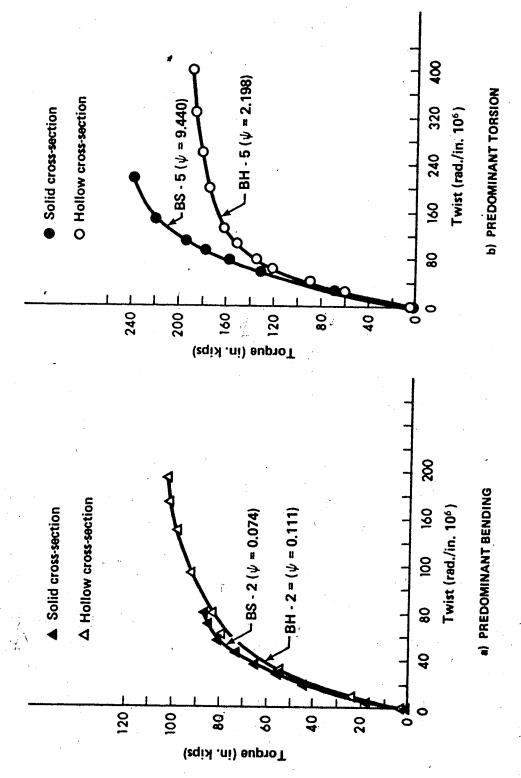
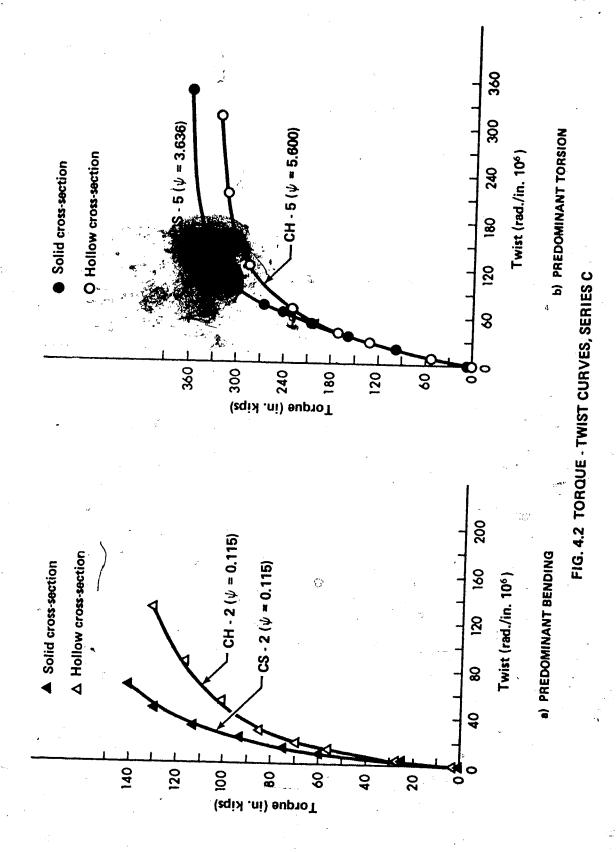



FIG. 4.1 TORQUE - TWIST CURVES, SERIES B

that stiffness is independent of loading ratios ψ and δ . In comparing the curves in Figure 4.1 and 4.2, it should be noted that they are plotted using different scales. A detailed study of the influence of the other parameters on the torsional precracking stiffness is presented in Chapter 5.

The observations made regarding the torque-twist relationship before cracking apply also to the moment-deflection curves shown in Figures 4.3 and 4.4. Similar to torsional stiffness, flexural stiffness before cracking is directly influenced by the cross-sectional dimensions of the beams, therefore, comparisons can be made only within each series of beams. It is interesting to observe the upward deflection of beams BS-5 and BH-5 (Figure 4.3b). Such a behavior resulted from a positive (downward) eccentricity of the prestressing force and is associated with a high torsion to bending ratio, ψ . In this case the first crack appears on the top face and /consequently the compression zone is adjacent to the bottom face. Data reported in Table 4.3 clearly shows that the major factors influencing cracking torque and cracking mode are the loading ratios ψ and δ . Other effects such as eccentricity of prestressing force and amount of transverse steel should be studied in conjunction with the above two loading ratios. For example, eccentric prestress increased cracking torques only for lower values of ψ where bending nullified the eccentricity of prestressing force. On the other hand, presence of stirrups increased torque only for beams subjected to high torsion to bending ratios,

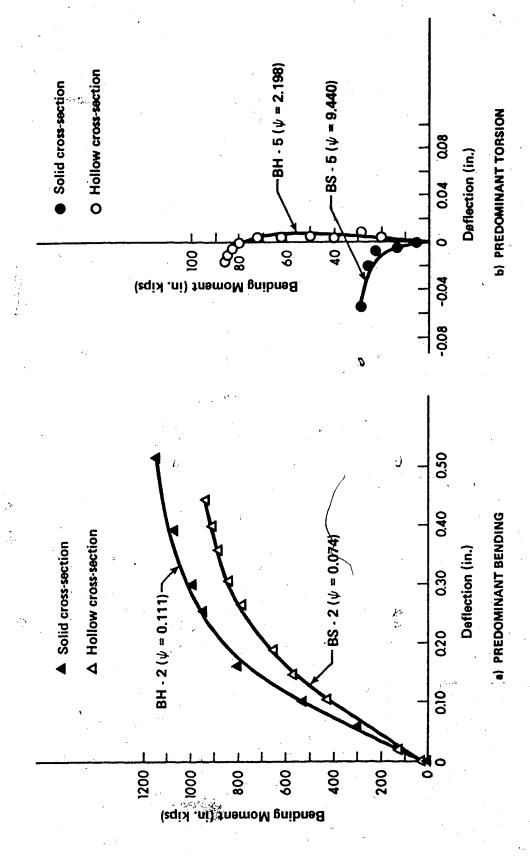


FIG. 4.3 MOMENT - DEFLECTION CURVES, SERIES B

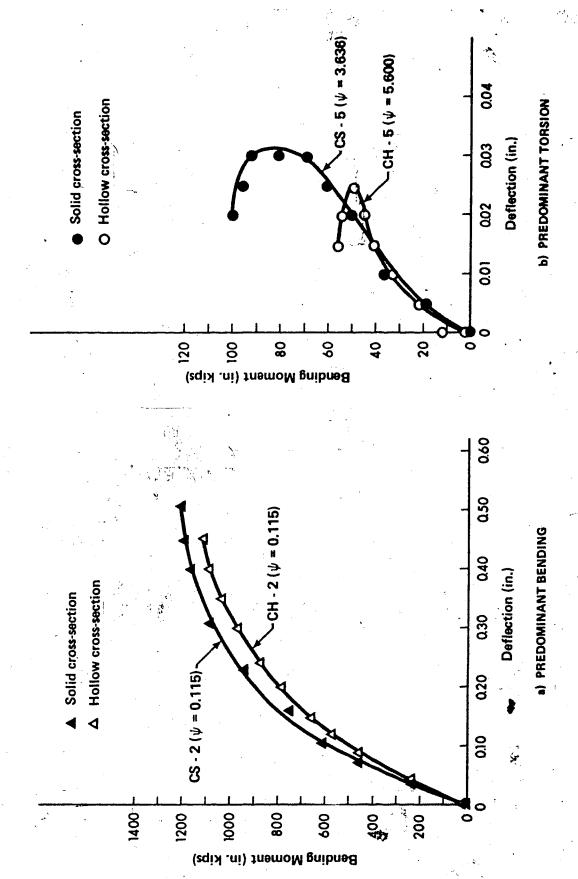


FIG. 4.4 MOMENT - DEFLECTION CURVES, SERIES C

1

since the number of stirrups "intersected" by a potential crack increased as ψ increased. Comparison of corresponding groups of beams in Séries A subjected to combined torsion and bending only and torsion, bending and shear reveals that the presence of shear reduced cracking strength. When examining all the above effects on the cracking strength it is also important to note variations in tensile and compressive strengths of concrete.

Strain data shown in Appendix B indicate that increase in stirrup strains becomes significant after about 50% of T and is associated only with predominant torsion. This observation is compatible with the stirrup contribution to the tracking strength noted above.

Development of Cracks, Postcracking Behavior, and Ultimate Strength

A typical crack pattern for a prestressed concrete beam under combined loading is shown in Figure 4.5. Appearance and crack formation is similar to that for reinforced concrete beams⁵⁵, except that the inclination of the cracks with respect to the longitudinal axis is generally smaller for prestressed than for reinforced concrete. Using a Mohr's circle approach⁶¹, it can be shown that this angle in prestressed concrete can assume a value less than 30 degrees, while in reinforced concrete it always exceeds 45 degrees. For beams subjected to predominant bending the first crack started at the middle of the bottom face being almost perpendicular to the beam axis and as the load

 $\langle \cdot \rangle$

TYPICAL CRACK PATTERN OF A BEAM UNDER COMBINED LODING

was increased this crack extended to the vertical faces. Further increases in loading caused formation of new cracks on the bottom and the two vertical sides. For moderate torsion to bending ratios a crack an on the vertical face, on the south face where the diagonal tension stresses due to flexural shear and torsional shear were additive. Finally, when torsion was predominant and eccentricity of prestressing force large, the first crack appeared on the top face. It should also be noted that the beam cross-sectional aspect ratio plays a significant role in the location of the first crack; contrary to the Series A (aspect ratio 2:1) where the first crack never appeared on the top face, for Series C (aspect ratio 1:1) cracking on the top face became common. Thus is not surprising since in an elongated crosssection torsional stresses are relatively much higher on the vertical than on the horizontal faces while for a square cross-section stresses due to torsion are of equal magnitude on all four faces. crac' location, angle of cracks with respect to the longitudinal axis is p_{\perp} imarily influenced by the loading ratios ψ and δ and the beam geometry.

Both torsional and flexural stiffness gradually decreased after the initial cracking had been reached. Generally, as shown in Figures 4.1 and 4.4, the loss in these stiffnesses was more pronounced for the hollow beams as compared to the solid beams. Comparisons of load-deformation curves show that the torsional stiffness increases as the torque to bending ratio decreases, while the torsional ductility

decreases as the torque to bending ratio decreases. On the other hand, both flexural stiffness and flexural ductility increase as \(^\psi\) decreases. This implies that torsional and flexural stiffness and torsional and flexural ductility in the postcracking range are interdependent; this is in contrast to the precracking behavior. Data shown in Table 4.3 for beams of group BIS suggest that both the torsional and flexural stiffnesses increased as the amount of web reinforcement was increased; the increase being much higher for beams subjected to predominant torsion.

After extending across the tension face the crack propagated to the adjacent two faces at approximately the same angle as it began. As the ultimate load was approached the depth of the uncracked zone, which was located adjacent to the fourth face, decreases. In the case of predominant bending the uncracked zone was located adjacent to the top face and at ultimate, crushing of concrete in this zone was observed. However, if torsion was dominant this zone was located adjacent to the vertical north face or the bottom face. No crushing of concrete was observed but instead cracks appeared in this zone in the same direction as tension cracking described above resulting most likely from tension failure of the concrete subjected to a combined state of stress. This contradicts observations of many researchers, who reported crushing of concrete for all three modes on one hand, and on the other, supports the findings of those investigators who could not observe any significant compressive strain in the "compression" zone. In this investiga-

tion an attempt was also made to measure concrete strains using mechanical Demec points but no measurable compressive strain was observed even at the loading stage immediately preceding failure. It is reasonable to believe that crushing of the concrete in the case of moderate or predominant torsion, as reported by some researchers, is not a failure but is a postfailure phenomenon occurring only after significant loss of capacity and redistribution of internal forces carried by concrete and reinforcement. For this reason, some of the fundamental assumptions involved in the skew bending analysis for ultimate strength of beams under combined loading will be re-examined in detail in Chapter 6. Photographs of beams at failure presented in Appendix C also reinforce the above discussion.

4.5 Interaction of Torsion, Bending and Shear at Ultimate

The interaction between torsion, bending and shear at ultimate is a three-dimensional problem and as such can be represented only with a surface in a three-dimensional rectangular coordinate system. The major axes of such a coordinate system define three perpendicular planes; torsion-bending, torsion-shear and bending-shear, and for convenience, only intersections of the interaction surface with these planes is often studied. Thus the problem of a three-dimensional surface is reduced to a series of two-dimensional diagrams. Intersection of these diagrams with the coordinate axis represents the strength of a beam in pure torsion Tuo, pure bending Muo, or

pure shear V. While it is easy to subject a beam to pure torsion or pure bending, it is impossible to obtain shear in a beam over a finite length in the absence of a bending moment. This implies that the interaction between torsion and shear, and bending and shear, cannot be obtained experimentally. For this reason the flexural shear capacity has been usually defined as:

- The theoretical shear strength calculated according to ACI equations, or
- ii. The shear force acting when the ultimate flexural capacity is reached.

Although both definitions tend to distort interaction diagrams near the shear axis, the second definition is adopted here since it is based on tests.

Torsion-bending and torsion-shear diagrams in the nondimensionalized form for all groups of beams reported in this investigation are shown in Figures 4.6 through 4.9. With the exception of a few beams in Series A, it can be observed that the interaction between torsion and bending, and torsion and shear can be conservatively represented by the following expressions:

$$(T_u/T_{uo})^2 + (M_u/M_{uo})^2 = 1$$
 (4.1)

$$(T_u/T_{uo})^2 + (V_u/V_{uo})^2 = 1$$
 (4.2)

The above equations are identical to that proposed by Woodhead and McMullen⁷⁵. Torque-bending interaction represented by Equation 4.1 has

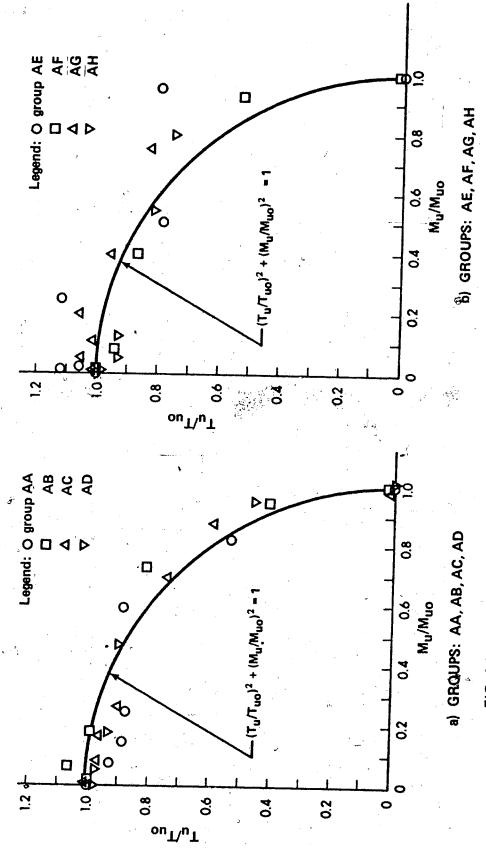


FIG. 4.6 INTERACTION BETWEEN TORSION AND BENDING AT ULTIMATE, SERIES A

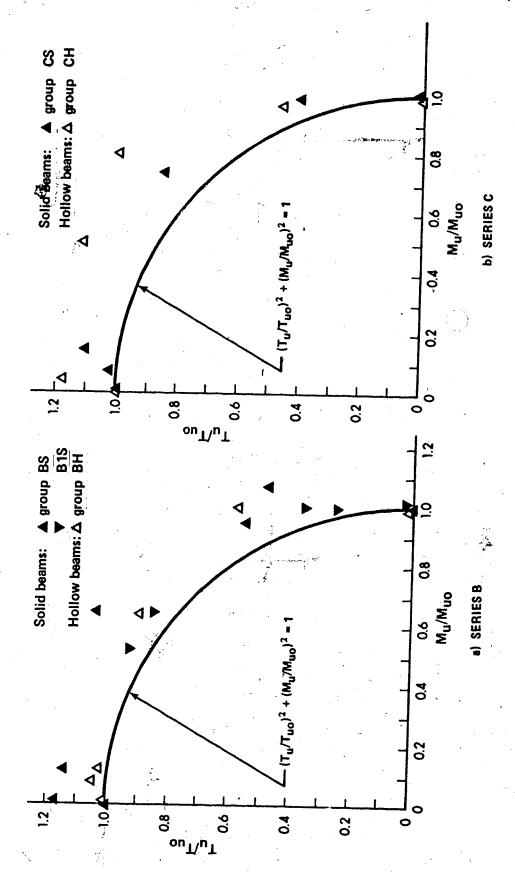


FIG. 4.7 INTERACTION BETWEEN TORSION AND BENDING AT ULTIMATE, SERIES B AND C

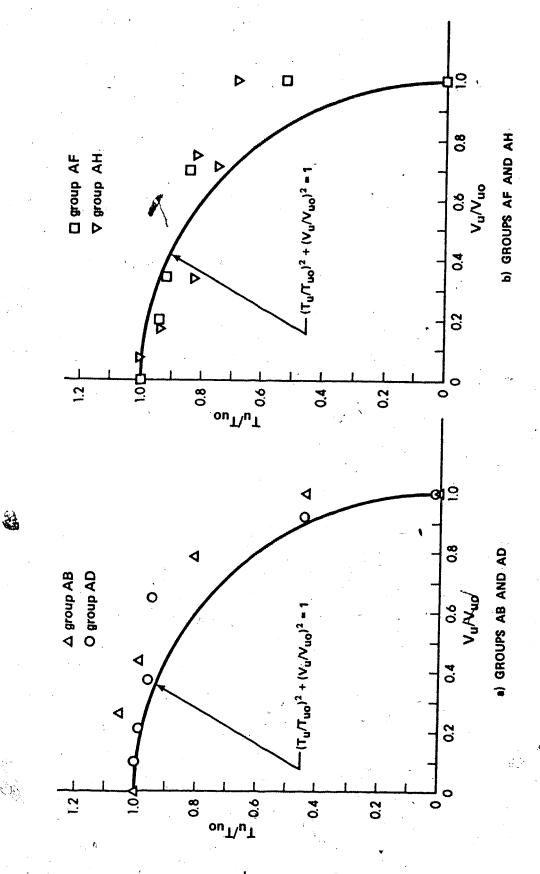


FIG. 4.8 INTERACTION BETWEEN TOR. IN AND SHEAR AT ULTIMATE, SERIES A

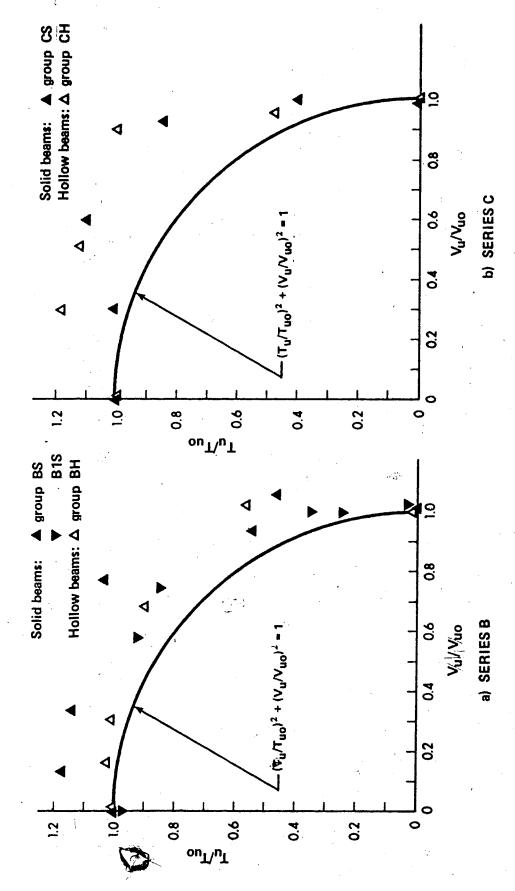


FIG. 4.9 INTERACTION BETWEEN TORSION AND SHEAR AT ULTIMATE, SERIES B AND C

been suggested by Henry and Zia²⁹, while they proposed the following relationship for the torque-shear interaction:

$$T_{u}/T_{uo} + V_{u}/V_{uo} = 1$$
 (4.3)

It should, however, be noted that the value for pure shear V_{uo} in Equation 4.3 has been defined according to ACI¹.

Probably the most complete study dealing with interaction of torsion, bending and shear has been done by Mukherjee and Warwaruk⁵⁸. Although somewhat complex, their equation for the curved interaction surface includes explicitly such effects as leve o prestress, concrete strength and the eccentricity of prestressing force.

CHAPTER V

CRACKING STRENGTH, THEORIES AND COMPARISONS

5.1 Introduction

Although recent design approaches have been concerned mainly with the determination of ultimate loads that structures or structural members can sustain, in some cases the determination of the cracking load may be of equal importance. For example, structures expected to atmospheric conditions that may cause corrosion must be designed to be crack free; serviceability rather than strength requirements. The necessity for a cracking analysis is even more pronounced in the area of prestressed concrete for two reasons: first, any corrosion is more dangerous here than in reinforced concrete, and second, the margin between the cracking load and the ultimate load could be very small. For example, in the case of beams that are lightly reinforced in a transverse direction, in which torsion dominates, the cracking and the ultimate load are almost identical.

While a cracking analysis is straightforward in the case of bending, the presence of torsion makes it quite complex, since the Navier hypothesis of a planar cross-section is not valid. It was not realized until the turn of this century that the shear stresses in a member subjected to torsion can not be solely interpreted by circular shear flow (Saint Venant torsion) but also may be caused by a change

in the axial stresses (warping torsion). If both of these effects are of the same order of magnitude, the interaction between Saint Venant torsion⁴³ and warping torsion⁷² must be considered:

$$T = T_{sv} + T_{w}$$
 (5.1)

where T_{sv} denotes Saint Venant torsion and T_w denotes warping torsion. A rigorous analysis of warping torsion is complex; fortunately the effect of this component does not dominate the behavior of most reinforced or prestressed concrete members, particularly in the case of rectangular solid and hollow box sections (Figure 5.1). Therefore, its contribution will be neglected in this study.

reviewed and two procedures are proposed. One is based on the elastoplastic behavior of concrete and includes the effects of principal stress interaction and recognizes stirrup contribution. In the other procedure rectangular cross-sections are treated as equivalent elliptical cross-sections and in the case of hollow box sections, as elliptical tubes. In all cases only combined loading (bending, torsion, shear, eccentric prestress) is considered; pure torsion, torsion and bending and concentric prestress alone constitute only special cases and can be easily deduced from the derived formulas. With the exception of Section 5.3.1 where principal stress interaction is taken into account, the tensile strength of concrete is taken as that obtained from the cylinder splitting test.

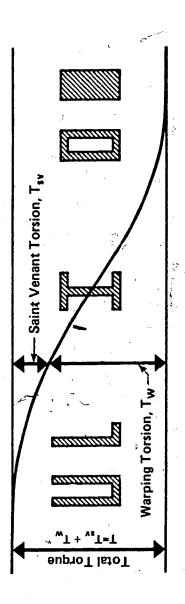


FIG. 5.1 INFLUENCE OF STRUCTURAL SHAPES ON THE RATIO OF WARPING TO SAINT VENANT TORSION (AFTER KOLLBRUNNER AND BASLER⁴³)

5.2 Available Theories

5.2.1 Elastic Analysis

According to this analysis concrete is assumed to be an ideally elastic material, therefore, the effects of combined loading can be superimposed. In the following discussion reference is made to the plane-stress transformation formulas 61 shown below:

$$\sigma_{\text{max, min}} = \sigma/2 \pm \sqrt{(\sigma/2)^2 + \tau^2}$$
 (5.2)

$$tan (2\theta) = \tau/(\sigma/2)$$
 (5.3)

For a general case of loading a crack son either the vertical, bottom or top face; therefore all tocations must be examined, as discussed below, and the smallest value of presents cracking strength.

Bottom face: Assuming that the maximum principal stress at failure is equal to the cylinder splitting stress ($\sigma_{max} = f_{sp}$) and substituting the superimposed values of normal and shear stresses from Figure 5.2a into Equation 5.2, cracking torque can elobtained as follows:

$$f_{\rm sp} = \frac{1}{2} \left[\frac{M}{S_{\rm x}} - \sigma_{\rm o} (1 + \frac{6e}{h}) \right] + \sqrt{\frac{1}{4} \left[\frac{M}{S_{\rm x}} - \sigma_{\rm o} (1 + \frac{6e}{h}) \right]^2 + \left[\frac{T}{\beta bh^2} \right]^2}$$

After transposing the first term from the right hand side to the left, squaring both sides and simplifying, this yields:

$$f_{sp}^2 - f_{sp} \left[\frac{M}{S_x} - \sigma_o \left(1 + \frac{6e}{h} \right) \right] = \left(\frac{T}{\beta bh^2} \right)^2$$

FIG. 5.2 STRESS COMPONENTS UNDER COMBINED LOADING

		-						7	• j.					مه										
h	.	RESS	top	T/(8bh²)		\$1.0 m		3		SESS.#	top	16T/(πbh²)		0 5	7 . V. V. V.			LESS.	top	16T/(π bh² c _h)		0		
t		SHEARING STRESS	E tottom	4.4/(Bbh ²)		0		F 21	1. 1.	SHEARING STRESS:	bottom	16T/(mbh ²)		0				SHEARING STRESS	bottom	16T/(# bh² ch)		0		
ં નાં		S	side	¥. Τ/(αb²h)		3V/(2bh)	-				side	16T/(πb²h)		3V/(2bh)		TORSION			side	16T/(π b² hc _h)	3	VQh/(1h tw)	4.	.
. , ,	• .	SS	top		S/W -		σ ₀ (1-6•/ _h)	ý.		SS	top		\S@\—	3	00(1-6e/h)	CTION FOR	4	in the second	o top	<i>y</i>	[™] -M/S _h	·	$\sigma_h(1-\theta A_h/S_h)$	R TORSION
	3	NORMAL STRESS	- bottom		S/W 😤 🤋		σ ₀ (1+6•/ _h)	SECTION	••	NORMAL STRESS	bottom		W/S		00(1+60/h)	AL CROSS-SE		NORMAL STRESS	bottom 😤		M/S _h	J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Oh(1+eAh/Sh)	AL TUBE FOI
.	x 201		side				$\sigma_o = -P_{eff}/K$	NGULAR CROSS-SECTION		.3	side		% 0		Oo=-Peff/A	b) EQUIVALENT ELLIPTICAL CROSS-SECTION FOR TRANSION			side	•	0		Oh=-Peff/Ah	c) EQUIVALENT ELLIPTICAL TUBE FOR TORSION
•	•			TORSION	BENDING	SHEAR	PRESTRESS	a) RECTAN	,	•.		TORSION	BENDING	SHEAR	PRESTRESS	b) EQUIVAL		3	g	TORSION	BENDING	SHEAR	PRESTRESS	c) EQUIVAL
		-				· .			-	1 p							, 1	+ p ⁺ + q			↓. 不	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		40
	<u>+</u>	_ 			<u></u>		- 3		• -	<u>+ </u>	→	<u></u>		<u>-</u> 	→		•		_	- - 4	£	<u> </u>	/	

s s

Substituting $M = T/\psi$ and solving the quadratic equation for positive root gives:

$$T_{cr}^{B} = bh^{2}\beta f_{sp} \left[-\frac{3}{\psi} \beta + \sqrt{(\frac{3}{\psi} \beta)^{2} + \frac{\sigma_{o}}{f_{sp}} (1 + \frac{6e}{h}) + 1} \right]$$
 (5.4)

where superscript B refers to bottom face. Having obtained Ter, shear and bending at cracking can be found:

$$M_{cr} = T_{cr}^{B} / \psi$$
 and $V_{cr}^{B} = 2 T_{cr}^{B} / (b\delta)$

When the resulting normal and she are substituted in Equation 5.3 the inclination of the initial crack with respect to longitudinal axis is:

$$\theta_{\rm cr}^{\rm B} = \frac{1}{2} \tan^{-1} \frac{2^{-} T_{\rm cr}^{\rm B} \psi}{\beta \left[6 T_{\rm cr}^{\rm B} - \sigma_{\rm o} bh^{2} \psi \left(1 + \frac{6e}{h} \right) \right]}$$
 (5.5)

Side face: No normal stresses due to bending exist in this case, however shear stresses due to flexural shear will be present, as indicated in Figure 5.2a. Substituting resulting stresses into Equa-

$$f_{sp} = -\frac{\sigma_o}{2} + \sqrt{(\frac{\sigma_o}{2})^2 + (\frac{T}{ghb^2} + \frac{3V}{2bh})^2}$$

or:

$$(f_{sp} + \frac{\sigma_o}{2})^2 = (\frac{\sigma_o}{2})^2 + (\frac{T}{\alpha hb^2} + \frac{3V}{2bh})^2$$

Using $V = \frac{2T}{\delta b}$ and solving above equation for T, the following equation is obtained:

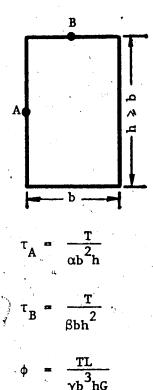
$$T' = \frac{hb^2 f}{sp} \frac{\sqrt{1 + \sigma/f}}{(1/\alpha + 3/\delta)}$$
 (5.6)

where uperscript S refers to lide face. The inclination of the in al crack is obtained in a similar way to that described above:

$$\theta_{\rm cr}^{\rm S} = \frac{1}{2} \tan^{-1} \frac{2 \sqrt{1 + \sigma_{\rm o}/f_{\rm sp}}}{\sigma_{\rm o}/f_{\rm sp}}$$
 (5.7)

Top face: A similar procedure, to that described for the bottom face applies here, except that the bending stresses are of opposite sign, as noted in Figure 5.2a. The following equations can be directly deduced from Equations 5.4 and 5.5:

$$T_{cr}^{T} = bh^{2}\beta f_{sp} \left[\frac{3}{\psi} \beta + \sqrt{(\frac{3}{\psi} \beta)^{2} + \frac{\sigma_{o}}{f_{sp}} (1 - \frac{6e}{h}) + 1} \right]$$
 (5.8)


$$\theta_{\rm cr} = \frac{1}{2} \tan^{-1} \frac{2 \, T_{\rm cr}^{\rm T} \psi}{\beta [6 \, T_{\rm cr}^{\rm T} + \sigma_{\rm o}^{\rm bh}^{\rm 2} \psi \, (1 - \frac{6e}{h})]}$$
 (5.9)

Essentially the same formulas in implicit form for cracking analysis of prestressed concrete rectangular beams under combined loading, were first derived by Woodhead and McMullen, who used the Mohr's circle approach rather than stress transformation formulas. Torsional constants α and β for a rectangular cross-section are shown in Table 5.1. Theoretical predictions, using the above derived equations, for beams reported in this investigation are listed in Table 5.2 and a detailed discussion is given in Section 5.4.

A similar procedure can be used for any cross-section. Gen-

TABLE 5.1 TORSIONAL CONSTANTS FOR RECTANGULAR CROSS-SECTION

-	h/b	α 5	β	Υ
	1.0	0.208	0.208	0.141
	1.2	0.219	0.196	0.166
	1.4	0.227	0.184	0.187
	1.6	0.234	0.174	0.208
	1.8	0.240	0.169	0.217
	2.0	0.246	0.155	0.229
	2.5	0.258	9.135	0.249
	.3.0	္ ° 0.267	0.120	0.264
	5.0	0.292	0.079	0.291
	10.0	0.312	0.042	0.312
	, · · · · · · · · · · · · · · · · · · ·	0.333	0 ,	0.333
1	,	1	. •	5 1

erally, for shear stress distribution due to torsion, the solution of the following differential equation is required:

$$\frac{\partial^2 F(x,y)}{\partial^2 x} + \frac{\partial^2 F(x,y)}{\partial^2 y} = -2 R_T \phi \qquad (5.10)$$

where F(x,y) denotes the stress function in Cartesian coordinates,

K_T the torsional rigidity, and \$\phi\$ the angle of twist per unit length.

Unfortunately, this differential equation has been solved only for relatively few shapes; circle, rectangle (solid cross-section), ellipse, equilateral triangle and a segment of circle. For other shapes, numerical procedures in conjunction with a physical model, such as that from the membrane analogy, must be utilized. This analogy is credited to Prandtl⁵⁹ and is based on the similarity between the differential equations for torsion and pressurized membrane over an opening having the same cross-sectional shape at the cross-section subjected to torsion. In this analogy torque is proportional to the volume under raised membrane and, at a given location shear stress is proportional to the slope of membrane.

5.2.2 Plastic Analysis

According to this theory concrete is assumed to be an ideally plastic material and, in the case of a rectangular cross-section shear stress is given by the following equation:

$$\tau_{\text{max}} = \frac{T}{k_b^2 h} \tag{5.11}$$

where:

$$k_p = \frac{1}{2} \left(1 - \frac{1}{3} \frac{b}{h} \right)$$
 (5.12)

Equation 5.11 has the same form as the one based on elastic theory, the only difference being in the magnitude of torsional coefficients. In Figure 5.3 these coefficients are plotted as a function of aspect ratios h/b. Comparison of values of $\tau_{\rm max}$ would reveal that the plastic theory predicts approximately 50% higher values of $\tau_{\rm max}$ (and therefore $T_{\rm cr}$) over elastic theory. Nevertheless, a literature review shows that these two theories are equally used. To recapitulate, according to both theories torque can be expressed as:

$$T = f_t kb^2 h \tag{5.13}$$

re the torsional coefficient k is given by Equation 5.12 in the e of plastic theory or in Table 5.1 (denoted as α) in the case of elastic theory. Since concrete is neither an elastic or a plastic material it is not surprising that test results always fall between values predicted by the elastic and plastic theories. Tensile strength of concrete f used in Equation 5.13, is usually expressed as a function of compressive stress f as:

$$f_{t} = \operatorname{coef} \sqrt{f_{c}^{t}}$$
 (5.14)

To fit experimental results, those researchers who used plastic theory have taken the coefficient in Equation 5.14 as low as 4 (Collins¹¹) or 5 (Barton and Kirk⁴), whereas those who believed that the elastic behavior is more appropriate used, for the same coefficient, a value of 7.5 (Woodhead and McMullen⁷⁵). The tensile strength of concrete is influenced by numerous factors including mix variables, size of speci-

men (strain gradient), type of loading (tension-compression interaction), etc., but is least dependent on the theory used. For the reasons mentioned above and because plastic theory represents an upper bound solution (which is not on the side of safety) it is not used herein for predicting cracking strength of beams subjected to combined loading.

5.2.3 Skew Bending Theory

Based on the hypothesis proposed by Lessig^{51, 52}, Hsu³¹ derived the following equation for torsional strength of a rectangular longitudinally reinforced beam:

$$T = \frac{1}{3} bh^2 (0.85 f_r)$$
 (5.15)

Assuming that the factor 0.85 f represents tensile strength under combined loading, Equation .15 can be directly compared with both the elastic and the plastic theories (Equation 5.13). Figure 5.3 shows that Hsu's solution is bounded by the two classical theories.

The same approach has been extended by Gangarao and Zia²⁴ to include torsion and bending. The general case of torsion, bending and shear in prestressed concrete rectangular beams has been presented by Henry and Zia²⁹. For comparison, the final governing equations derived by anny and Zia²⁹ are shown below:

Bending mode (crack starts at the bottom)

$$T_{cr} = \frac{bh^3}{3} \frac{f_{sp} + \frac{\sigma_o}{2} (1 + \frac{6e}{h}) (1 - \cos 2\theta)}{\sin 2\theta + \frac{1}{\psi} (1 - \cos 2\theta)}$$
 (5.16)

The value for θ corresponding to minimum cracking torque is

Q

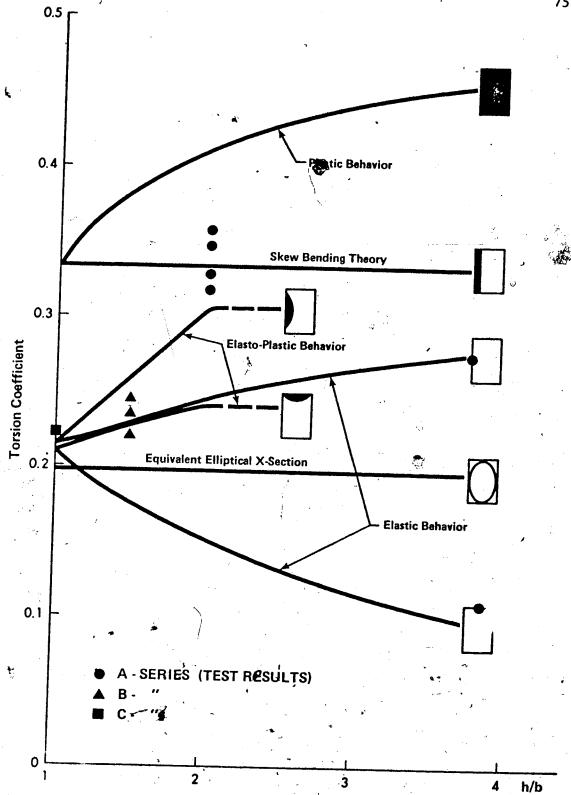


FIG. 7 COMPARISON OF TORSIONAL COEFFICIENT BY DIFFERENT THEORIES

found by differentiating Equation 5.16 with respect to θ and equating zero, yielding:

$$\frac{\cos 2\theta + \frac{1}{\psi} \sin 2\theta}{1 - \cos 2\theta} = \frac{f_{sp} (1 + \frac{6e}{h})}{2 f_{sp}}$$
 (5.17)

Crack inclination θ is then substituted back into Equation 5.16 and cracking torque is determined:

Torsion mode (crack starts at the side)

$$\frac{f_{t} + \sigma_{o} \left[1 + \frac{6e}{h} (sgn)\right] \sin^{2}\theta}{\frac{3}{b^{2}h} \sin^{2}\theta + \frac{3\left[1 - (sgn)\right]}{2 b^{2}h\delta} \sin^{2}\theta + \frac{12 z (sgn)}{b^{2}h^{2}\delta} \sin^{2}\theta} \qquad (5.18)$$

where sgn can take a value of +1 (crack starts at the bottom of front side) or 0 (crack starts at the center of front side), and z denotes the distance between the failure cross-section and the support in a simply supported beam. Inditation of the initial crack θ is given by the following transcendental equation:

$$\frac{\sigma_{0}[1 + \frac{6e}{h} (sgn)](1-\cos 2\theta) - 2 f_{t}\cos 2\theta}{\sin 2\theta} = \frac{f_{t} \frac{12 z (sgn)}{b^{2}h^{2}\delta}}{\frac{3}{b^{2}h} + \frac{3[1-(sgn)]}{2 b^{2}h\delta}} (5.19)$$

By solving Equations 5.18 and 5.19 for (sgn) = 1 and (sgn).

O, and choosing the smaller of the two values the cracking torque is determined. For an aspect ratio of 1:2 good correlation between test results and skew bending theory has been reported in the literature, but for a cross-section that approaches a square, this theory over estimates cracking capacity significantly. Comparison of test results

in this investigation with skew bending theory also supports the above statement. This indicates that one of the fundamental assumptions on which this theory is based can be questioned: formation of a bending mechanism on an inclined plane, prior to cracking. Essentially, this implies that a crack will form across the whole tension face as soon as ensile strength is reached. On the contrary, experimental observations of beams subjected to combined loading clearly show (see photographs of crack patterns in the Appendix C) that cracks start at the center of either the bottom, top or side face and propagate towards the edges as loading is increased.

5.2.4 Statistical and Numerical Procedures

For the determination of factor k, shown in Bonation 5.13, a statistical approach based on test data was first used at the University of West Virginia 10, 57. Mukherjee and Kemp 57 proposed the equation for the torsional coefficient as:

$$k_s = 0.4124(1 - 0.2333 b/h)$$
 (5.20)

and, subsequently, Chander, Kemp and Wilhelm derived the following quadratic polynomial:

$$k_s = 0.4731(1 - 0.5924 b/h + 0.2763 b^2/h^2)$$
 (5.21)

It is interesting to note that both equations shown above result in values for torsional coefficient which are closer to the plastic solution for the entire range of practical aspect ratios. In both cases, a rather low value, $5\sqrt{f_c'}$, was used for the tensile

strength of concrete.

differential equation for torsion cannot be solved for shapes having re-entrant corners such as T, L, I, H, or hollow box. Recourse is often made to numerical procedures such as finite difference or finite element methods in conjunction with physical models such as membrane analogy (elastic analysis) and sand heap analogy (plastic analysis). Wyss, Gerland and Mattock⁷⁶ employed a two dimensional finite element method in order to predict the cracking strength of I-girders. The finite difference technique has been used by Johnston and Zia⁴⁰ for hollow cross-sections. More recently Rao and Warwaruk⁶⁶ utilized three-dimensional hexadron finite elements in their analysis of prestressed I-girders under combined loading.

It should be mentioned that shear stresses due to torsion found by any of the above methods are superimposed with those caused by flexural shear, bending and prestress to yield the general state of stress to which a failure criteria is then applied.

In summary, it should be noted that the statistical analysis does not offer physical interpretation of the phenomenon. On the other hand, numerical approaches require solution of a large number of simultaneous equations and, therefore, cannot be conveniently used in everyday design practice.

5.3 Proposed Theories

5.3.1 Elasto-Plastic Analysis

an attempt is made to include partial plastification of a cross-section subjected to torsion. Although this effect has been recognized in the case of bending, it also needs to be recognized in the presence of torsion and shear. However, if flexural shear does not govern cracking strength it is reasonable to assume that the shear stresses are distributed elastically. Similarly the effect of partial plastification in bending can be included indirectly using modulus of tupture rather than the direct tensile strength of concrete.

result. do not correspond to purely elastic or purely plastic behavior but always fall between these two solutions. This implies occurrence of some plastic regions. Figure 5.4 shows shearing stress distribution according to the elastic, the plastic and, the elasto-plastic solutions. According to both classical theories and the statistical analysis cracking torque for prestressed concrete beams can be expressed in the following form:

$$T_{cr} = k b^2 h f_t \sqrt{1 + \sigma_0/f_t}$$
 (5.22)

where the coefficient k depends on the analysis used and the crosssectional aspect ratio, h/b. The term under the square root in Equation 5422 denotes effect of prestress. In order to study the

degree of plastification, Equation 5.22 has been solved for k and test results of this parameter are plotted in Figure 5.3. It can be observed that the test results are close to the plastic solution if the aspect ratio, h/b, is equal to 2; those beams having aspect ratio of 1.5 and 1 are closer to the elastic solution. This may appear contrary to the expected behavior since in the case of a square crosssection the maximum stress is attained simultaneously at the centers of all beam faces, whereas in an elongated cross-section "yielding" will start first at the centers of longer sides. In order to explain this phenomenon, one can make use of the membrane analogy, Figure 5.5 shows a schematic wiew of membranes stretched over a square crosssection (Figure 5.5a) and over a slender rectangular cross-section (Figure 5.5b). At this point it should be recalled that shear stresses are proportional to the slope of a membrane at a given location. Proceeding from the middle to the corners along the edge, it can be visualized that the slope of the "dome" (Figure 5.5a) decreases at a faster rate than the slope of the "cylindrical shell" (Figure 5.5b) since the slope in the case of the cylindrical shell is nearly constant along this edge. This indicates that in the case of a rectangular crosssection yielding will be attained on a relatively longer length and consequently, this cross-section will be relatively more plastified at cracking than a square cross-section.

٤

Artheoretical analysis of a beam cross-section subjected to torsion in a transition between elastic to plastic state is extremely

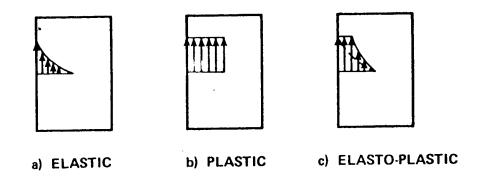


FIG. 5.4 SHEARING STRESS DISTRIBUTION IN A RECTANGULAR CROSS-SECTION SUBJECTED TO TORQUE

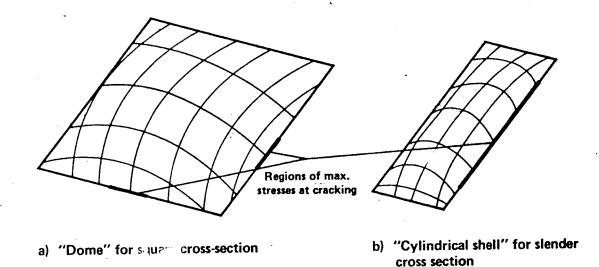


FIG. 5.5 MEMBRANE ANALOGY FOR SQUARE AND SLENDER CROSS SECTION

difficult for all cross-sections except the circular cross-section where the boundaries between the elastic and picatic regions remain always circular. On the basis of experimental data shown in Figure 5.3, the following equations for torsional coeffic ents α and β are proposed to account for the effects of partial plastification:

$$\alpha_{ep} = 0.215 + 0.09 \text{ (h/b} - 1)$$
 (5.23)

$$\beta_{\rm ep} = 0.215 + 0.03 \, (h/b - 1)$$
 (5.24)

where α_{ep} is used for the determination of shear stresses on the longer side and β_{ep} on the shorter side of the cross-section as noted on the sketch in Table 5.1. Plotted points corresponding to elastoplastic behavior in Figure 5.3 are calculated using measured strengths for beams subjected to pure torsion. Since Equations 5.23 and 5.24 are based on limited test data they should be applied only within the following limits of aspect ratios:

$$1 \leq h/b \leq 2 \tag{5.25}$$

It should be noted that most of the practical aspect ratios for a rectangular cross-section do fall within above limits, being close to 1 in the case of predominant torsion and close to 2 only if bending and shear are present.

5.3.1.2 <u>Biaxial Stress Failure Criteria</u>: A considerable amount of discussion is available in the literature as to which tensile strength should govern the crack_ng of a beam subjected to combined loading. Hsu³¹ suggested the use of a reduced modulus of rupture, while Johnston and Zia⁴⁰ used splitting strength on the basis of simi-

larity between states of stress in a cylinder under splitting test and beam subjected to combined loading. However, most of the investigators (Woodhead and McMullen⁷⁵, Mukherjee and Kemp⁵⁷, Barton and Kirk, Rao and Warwaruk⁶⁵) have expressed tensile strength as a function of cylinder compressive strength as shown in Equation 5.14. None of these approaches include the effect of loading ratios since in the case of predominant bending the use of the modulus of rupture would be more appropriate, whereas in the case of combined loading or torsion alone, interaction between principal stresses must be taken 1 of account as no unique tensile stress can be used for the entire range of loading ratios.

Kupfer, Hilsdorf and Rusch^{4,4} observed, in their experimental investigation, that the presence of compression in an orthogonal direction would reduce tensile strength and vice versa. Figure 5.6 shows their experimental results in the form of nondimensionalized (with f'_c) interaction diagrams, where σ_{max} and σ_{min} denote, respectively, tensile and compressive stresses. Since the proposed analysis uses a continuous biaxial interaction curve, the following interaction equation based on the experimental data by Kupfer, Hilsdorf and Rusch^{4,4}, is suggested:

$$(\sigma_{\text{max}}/f_c^*)^2 = m(1 - \sigma_{\text{min}}/f_c^*)$$
 (5.26)

Equation 5.26 represents a family of second-degree parabolas since parameter m is not yet defined. As mentioned earlier, one of the characteristics of the splitting test is that concrete is under a

biaxial state of stress with compression being approximately 0.25 f_c^{\prime} at failure, or:

when,
$$\sigma_{\text{max}} = f_{\text{sp}}$$
 then, $\sigma_{\text{min}} = 0.25 f_{\text{c}}'$

Substituting these boundary conditions into Equation 5.26, parameter m can now be determined:

$$m = \frac{(f_{sp}/f_c^{\dagger})^2}{1 - 0.25 f_c^{\dagger}/f_c^{\dagger}}$$

or:
$$m = \frac{4}{3} \left(\frac{f_{sp}}{f_c^!}\right)^2$$
 (5.27)

Substituting Equation 5.27 into Equation 5.26 yields (Figure 5.6):

$$\left(\frac{\sigma_{\text{max}}}{f_{c}^{'}}\right)^{2} = \frac{4}{3} \left(\frac{f_{\text{sp}}}{f_{c}^{'}}\right)^{2} \left(1 - \frac{\sigma_{\text{min}}}{f_{c}^{'}}\right)$$
 (5.28)

If f_{sp} is replaced with σ_{max} in Equations 5.4, 5.6 and 5.8, and torsional constants α_{ep} and β_{ep} , determined in the preceding section, substituted for elastic constants α and β , the following equations for cracking torques for prestressed concrete beams under combined loading are obtained:

$$T_{cr}^{B} = bh^{2}\beta_{ep}\sigma_{max}\left[-\frac{3}{\psi}\beta_{ep} + \sqrt{(\frac{3}{\mu}\beta_{ep})^{2} + \frac{\sigma}{\sigma_{max}}(1 + \frac{6e}{h}) + 1}\right]$$
 (5.29)

$$T_{cr}^{S} = \frac{hb^{2}\sigma_{max}}{(\frac{1}{\alpha_{ep}} + \frac{3}{\delta})}$$
 (5.30)

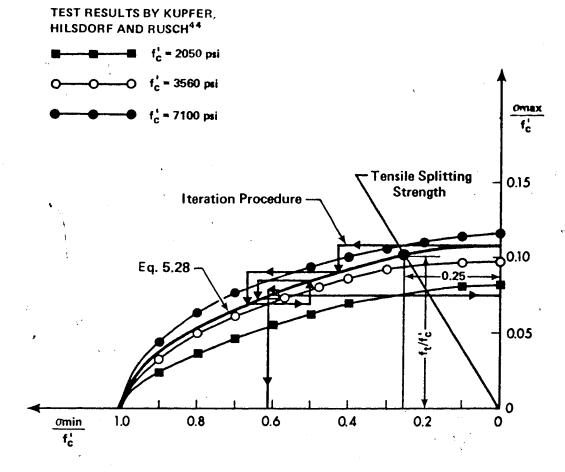


FIG. 5.6 STRENGTH OF CONCRETE UNDER COMBINED TENSION AND COMPRESSION

$$T_{cr}^{T} = bh^{2}\beta_{ep}\sigma_{max}\left[\frac{3}{\psi}\beta_{ep} + \sqrt{(\frac{3}{\psi}\beta_{ep})^{2} + \frac{\sigma_{o}}{\sigma_{max}}(1 - \frac{6e}{h}) + 1}\right]$$
 (5.31)

Essentially, Equations 5.29, 5.30 and 5.31 are deduced from those derived in Section 5.2.1 dealing with elastic analysis. However they include the effect of partial plastification of cross-section since torsional constants are determined according to Equations 5.23 and 5.24. More important they include the effects of principal stress interaction at cracking. Since tensile stress $\sigma_{\rm max}$, is unknown in these equations, an iterative procedure as outline below, is used to determine $\sigma_{\rm max}$:

- 1. Assume no compression stress exists ($\sigma_{\min} = 0$) and calculate σ_{\max} from Equation 5.28.
- 2. Calculate cracking capacities according to Equations 5.29, 5.30 and 5.31.
- 3. With the known cracking torque and loading ratios $(\psi \text{ and } \delta)$ determine bending moment and flexural shear at cracking.
- 4. Find stress components due to torsion, bending, shear and prestress and calculate principal stresses according to Equation 5.2.
- 5. Substitute principal stresses from 4 into Equation 5.28. Generally, this equation will not be satisfied after the first iteration because two principal stresses exist (from step 4), whereas in the beginning (step 1) omin was assumed as zero.
- 6. Reduce omax by an increment, go to step 2 and repeat the procedure until Equation 5.28 is satisfied to the desired level of accuracy.

The iterative procedure, outlined in the above steps, is graphically illustrated in Figure 5.6. It is noted that the process of determination of the state of stress which satisfies Equation 5.26, converges rapidly.

Results of this analysis are presented in Table 5.2 in columns 8 through 14. It is interesting to compare the actual tensile stresses (column 13) at cracking with the tensile stresses obtained from the splitting test, presented in Chapter 4. This procedure was computerized and only 10 to 15 iterations were necessary to obtain the desired level of accuracy.

5.3.1.3 Contribution of Stirrups: Although some investigators have noted that the contribution of stirrups to the cracking strength may be significant, no attempt has been made so far to include this effect. If an element is considered on the side of the beam at the level of neutral axis, according to rigorous theory, no strains in the vertical direction should be recorded under bending torsion and shear. However, experimental data (see strain data in Appendix B) does not support the above statement, implying that stress redistribution occurs prior to cracking. Figure 5.7 shows that stirrup strains are negligible only if the torque is less than about 50% of T_{cr}. On the basis of experimental data shown in Figure 5.7, it is assumed that the following relationship exists between concrete tensile strain in the inclined plane and strains in the vertical stirrups:

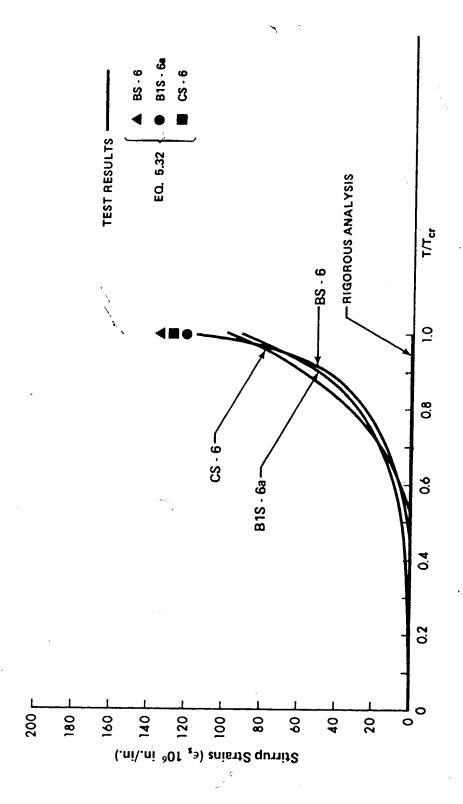


FIG. 5.7 STIRRUP STRAINS BEFORE CRACKING

$$\varepsilon_{\mathbf{v}} = \varepsilon_{\mathbf{t}} \cos \theta$$
 (5.32)

where $\epsilon_{_{\mathbf{V}}}$ denotes strain in vertical leg of stirrup and $\epsilon_{_{\mathbf{t}}}$ tensile strain of concrete. Using an average value of 0.00015 Johnston⁴¹) for $\epsilon_{_{\mathbf{t}}}$, values of strains in vertical legs $\epsilon_{_{\mathbf{V}}}$ are found from Equation 5.32 and then plotted in Figure 5.7. Measured strains in the stirrups for three beams subjected to torsion are also shown in Figure 5.7 and a comparison can be made between these strains and those given by Equation 5.32. In order to determine contribution of stirrups to the cracking strength, the number of stirrups intersected by a potential crack has to be found. From the beam geometry following relationship is established:

$$n_{V} = \frac{h'}{s \tan \theta}$$
 (5.32a)

$$n_{h} = \frac{b'}{s \tan \theta}$$
 (5.32b)

where n_{v} and n_{h} denote, respectively, number of stirrups intersected by a potential crack on vertical and horizontal side of a beam. Taking moments with respect to the longitudinal axis of a beam, the torque due to presence of stirrups is:

$$T_{cr,st} = \sum_{i=1}^{n} E_{st} \epsilon_{v,i}^{A} \epsilon_{st}^{b'} + \sum_{i=1}^{n} E_{st} \epsilon_{h,i}^{A} \epsilon_{st}^{h'}$$
 (5.33)

where $\epsilon_{\mathbf{v,i}}$ and $\epsilon_{\mathbf{h,i}}$ are, respectively, strain in vertical and horizontal i-th stirrup leg intersected by a potential crack. Assuming that the strain distribution is parabolic along the potential crack

(Figure 5.8), which is in conformance with the elastic theory, Equation 5.33 can be written as:

$$T_{cr,st} = \frac{2}{3} E_{st}^{A}_{st} (n_v \varepsilon_v b' + n_h \varepsilon_h h')$$
 (5.34)

where ε_{v} and ε_{h} now denote the maximum stirrup strains found at the mill height and mid width of a stirrup, respectively. With the exception of a square cross-section subjected to pure torsion, ε_{v} and ε_{h} in Equation 5.34 will not be equal. In close accordance with the elastic theory the following relationship is assumed between ε_{h} and ε_{v} :

$$\varepsilon_{h}^{\prime} \varepsilon_{v} = b'/h' \tag{5.35}$$

If Equations 5.32a, 5.32b and 5.35 are substituted in Equation 5.34, the contribution of stirrups to the cracking torque is obtained as:

$$T_{cr,st} = \frac{2}{3} \frac{E_{st} A_{st}}{s \tan \theta} \varepsilon_{v} (h' + b')$$
 (5.36)

Using stirrup strain $\epsilon_{_{_{\bf V}}}$ given by Equation 5.32 together with the following simplifications:

= 0.8 h

the resulting equation is:

$$T_{cr,st} = 0.43 E_{st}^{\Lambda} \epsilon_t^{b(b+h)} \cos \theta / \tan \theta$$
 (5.37)

If a crack starts on the shorter side, an identical equation can be

derive providing that stirrup strain on the uncracked, longer side is taken as the stirrup strain on the shorter side multiplied by b'/h'.

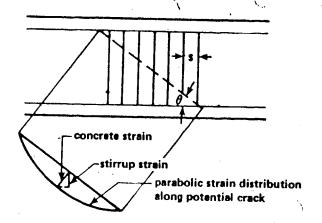
The total cracking torque can now be taken as the sum of the torques carried by the concrete and the stirrups:

$$T_{cr,tot} = T_{cr,concr} + T_{cr,st}$$
 (5.38)

where the first term on the right hand side of Equation 5.38 is given by Equations 5.29, 5.30 or 5.31 and the second by Equation 5.37.

Columns 8 and 9 in Table 5.2, respectively list the values for cracking torque as predicted by this theory and test to theory ratios. Columns 10 through 14 show some additional data obtained in this analysis; contribution of stirrups to the cracking strength, angle of inclination of tensile crack, crack location and the values of the principal stresses at cracking. A detailed discussion is given in Section 5.4.

5.3.2 Analysis Based on an Equivalent Elliptical coss Section


5.3.2.1 General: From the proceeding sections it is observed that the formulas based on elastic theory are simpler in form than those based on skew bending theory. However, in order to use the elastic theory torsional constants α and β must be known. Evaluation of these coefficients even for a rectangular cross-section represents voluminous work since the solution involves infinite series of hyperbolic functions. In the usual strength of materials approach

these values are tabulated for particular aspect ratios and interpolation is used for non-tabulated ratios. For a hollow box section no exact solution exists. A few researchers have suggested a "shear flow" approach which makes use of a uniform shear stress distribution across the wall section, which in turn implies complete plastification of a cross-section with uniform wall thicknesses, or plastification of the thinnest wall in the case of cross-section with non-equal wall thicknesses. Since reinforced and prestressed concrete members usually have geometric proportions in excess of those to which thin-wall theory applies, assumption of a shear flow state for them may not be justified.

The proposed elasto-plastic solution for cracking strength under combined loading includes nonelastic behavior of concrete and interaction of principal stresses at cracking, but because it is an iterative procedure it may be more of academic than practical importance.

For reasons mentioned above it is proposed that the solid rectangular beam cross-section be replaced by an equivalent elliptical section as shown in Figure 5.9a, and the hollow box section by an elliptical tube shown in Figure 5.9b. Shear stress distribution due to torsion can now be evaluated using the elastic theory and does not require the use of torsional constants α and β . Referring to Figure 5.9a and according to theory of elasticity, shear stresses for a solid elliptical cross-section are given as:

$$\tau_{A} = \frac{16T}{\pi h^{2}h}$$
 (5.39)

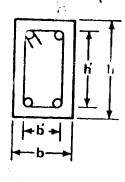


FIG. 5.8 CRACKING STRENGTH au CONTRIBUTION OF STIRRUPS

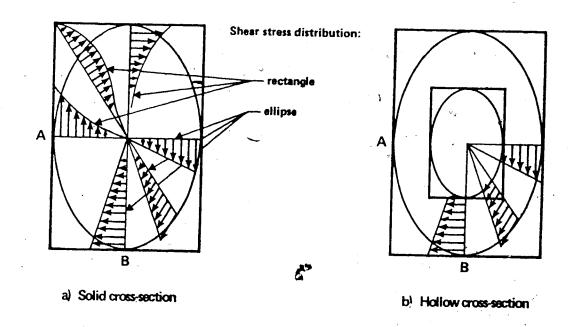


FIG. 5.9 EQUIVALENT ELLIPTICAL CROSS SECTIONS FOR SOLID AND HOLLOW RECTANGLE.

 \cap

$$\tau_{\rm B} = \frac{16T}{\pi b h^2} \tag{5.39a}$$

or for elliptical tube:

$$\tau_{A} = \frac{16T}{\pi b^{2}_{hc}}$$
 (5.40)

$$\tau_{\rm B} = \frac{16T}{\pi b h^2 c_{\rm h}}$$
 (5.40a)

where:

$$c_h = 1 - \left[\frac{b_h}{b}\right]^4$$
 or $c_h = 1 - \left[\frac{h_h}{h}\right]^4$ (5.41)

whichever is greater. From Figure 5.9 it can be observed that the contribution of the corners in the case of the rectangular cross-section is not significant and an approximation of it with an ellipse is on the conservative side.

In the following sections equations are derived for a hollow cross-section and then equations are deduced for a solid cross-section. It should be that the shear stress distribution due to flexural shear, and normal stresses due to bending moment, for both the solid and hollow cross-sections, are based on the original cross-section and not on the elliptical cross-sections.

5.3.2.2 Hollow Cross-Section: First, the shear and normal stresses are found at the centers of the bottom, top and vertical sides.

Shear stresses due to torsion:

side face
$$\tau = \frac{16T}{\pi b^2 hc_h}$$

bottom or top face
$$\tau = \frac{16T}{\pi bh^2 c_h}$$

Shear stresses due to flexural shear:

side face
$$\tau = \frac{v_{0_h}}{I_h t_w}$$

bottom or top face T =

Normal stresses due to bending:

side face
$$\sigma = 0$$
bottom face
$$\sigma = \frac{M}{S_h}$$
top face
$$\sigma = -\frac{M}{S_h}$$

Normal stresses due to prestress:

side face
$$\sigma = \frac{P_{eff}}{A_h}$$
top face
$$\sigma = -\frac{P_{eff}}{A_h}(1 - \frac{A_h e}{S_h})$$
bottom face
$$\sigma = -\frac{P_{eff}}{A_h}(1 + \frac{A_h e}{S_h})$$

Next, these stresses are superimposed and the resulting normal and shear stresses are substituted in Equation 5.2. If the bending moment and shear force are expressed in terms of torques, the following equations for cracking torques are obtained:

Bottom face

$$T_{cr} = \frac{3}{8} \pi \frac{c_h}{r_h} S_h f_{sp} \left[-\frac{3\pi}{16\psi} \frac{c_h}{r_h} + \sqrt{\frac{3\pi}{16\psi} \frac{c_h}{r_h}^2 + \frac{\sigma_h}{f_{sp}} (1 + \frac{eA_h}{S_h}) + 1} \right] (5.42)$$

Side face

$$T_{cr} = \frac{f_{sp} \sqrt{1 + \frac{\sigma_{h}}{f_{sp}}}}{\frac{16}{\pi h b^{2} c_{h}} + \frac{2Q_{h}}{b I_{h} t_{w}^{\delta}}}$$
(5.43)

Top face

$$T_{cr} = \frac{3}{8} \pi \frac{c_h}{r_h} S_h f_{sp} \left[\frac{3\pi}{16\psi} \frac{c_h}{r_h} + \sqrt{\left(\frac{3\pi}{16\psi} \frac{c_h}{r_h}\right)^2 + \frac{\sigma_h}{f_{sp}} \left(1 - \frac{eA_h}{S_h}\right) + 1} \right] (5.44)$$

where:

$$r_{h} = 1 - \left[\frac{b_{h}}{b}\right] \left[\frac{h_{h}}{h}\right]^{3} \tag{5.45}$$

and:

$$\sigma_{h} = \frac{P_{eff}}{A_{h}}$$

The smallest of three torques found by Equations 5.42, 5.43 and 5.44 governs the cracking strength of an eccentrically prestressed beam subjected to combined loading. Theoretical predictions according to this analysis and comparisons between test and theoretical values are given in Table 5.4. In Section 5.4 a detailed discussion is presented.

5.3.2.3 Solid Cross-Section: Equations derived in the preceding section can be easily transformed for solid cross-section if appropriate geometric constants (A, S, I, etc.) are taken for a solid, instead of a hollow cross-section. According to Equations 5.41 and 5.45 values for c_h and r_h for solid cross-section become equal to 1 and three equations for cracking torque, corresponding to first crack

at the bottom, side and top face of a beam, can be directly deduced from Equations 5.42, 5.43 and 5.44 as shown below:

Bottom face

$$T_{cr} = \frac{3}{8} \pi S f_{sp} \left[-\frac{3\pi}{16\psi} + \sqrt{\left(\frac{3\pi}{16\psi}\right)^2 + \frac{\sigma}{f_{sp}}} \left(1 + \frac{6e}{h}\right) + 1 \right]$$
 (5.46)

Side face

$$T_{\rm cr} = \frac{b^2 h f_{\rm sp}}{16/\pi + 3/\delta} \sqrt{1 + \sigma_{\rm o}/f_{\rm sp}}$$
 (5.47)

Top face

$$T_{cr} = \frac{3}{8} \pi S f_{sp} \left[\frac{3\pi}{16\psi} + \sqrt{\left(\frac{3\pi}{16\psi}\right)^2 + \frac{\sigma_o}{f_{sp}}} \left(1 - \frac{6e}{h}\right) + 1 \right]$$
 (5.48)

The smallest torque governs cracking strength of a beam. Predicted values according to this analysis are listed in Table 5.2. A discussion of these predictions is presented in the next section.

5.4 Comparative Study

Cracking torques for solid cross-sections as predicted by four different theories, namely skew bending theory, elastic analysis, elasto-plastic analysis and the procedure based on equivalent elliptical cross-sections are presented in Table 5.2. Average values of the test/theory ratios for each of three series of beams, according to each of the above theories are shown in Table 5.3. For rectangular hollow cross-sections the equivalent elliptical tube has been utilized

TABLE 5.2 CRACKING TORQUES FOR SOLID CROSS-SECTIONS BY DIFFERENT THEORIES

1 test		Skew bending theory		Elastic behavi rectangular cross-sectio	c behavior, tangular s-section	,		Elasto	o-Plastí	Elasto-Plastic Behavior			Equivalent elifotical cross-section	ical right
 									Supple	Supplemental Information	ormetion			
£	(in.kips)	Tsb (in.kips)	Trest	Te (in.kips)	T test	Tep (in.kips)	T	Tatirrup (in.kips)	9 cr (deg)	Crack Location	Principal state at cracking	Principal stresses at cracking (psi)	Tee (in.kips)	T test
			3		Ų.		ਰ		.~		tension	compression		*
7	E .	4	S	9	7	8	6	10	11	12	13	14	13	16
_	55.9	38.8	1,441	36.5	1.532	1.04	1.394	0.3	71.7	B.	568	62	37.5	1.491
	99.0	75.9	1.304	59.6	1.661	74.8	1.323	1.5	50.8	Ø	424	282	65.7	1.507
_	111.4	112.8	0.988	85.3	1.306	107.5	1.036	6.1	23.6	v	337	1760	71.8	1.552
	126.0	117.9	1.069	94.9	1.328	114.6	1.099	5.9	24.7	ß	380	1790	75.8	1.662
	129.6	110.2	1.176	87.8	1.476	108.3	1.197	6.1	23.8	S	342	1760	70.1	1.848
. 1	. 133.0	124.0	1.073	99.2	1.341	122.1	1.089	5.5	25.7	v	425	1841	79.2	1.679
	33.4	25.3	1.320	24.7	1.352	26.3	1.270	0.1	78.5	æ	611	, 25	25.0	1.336
_	65.0	57.7	1.130	50.9	1.277	58.7	1.107	9.0	63.6	A	553	136	53.7	1.210
	117.0	118.8	0.985	95.0	1.232	115.3	1.015	5.4	26.1	S	447	1864	6.92	1.521
0	104.0	119.7	0.869	91.2	1.140	112.2	0.927	44	25.1	တ	399	1816	73.4	1.417
_	85.8	123.0	0.698	92.9	0.924	113.4	0.757	5.7	24.8	ø	386	1808	74.5	1.152

* B - bottom, S - side, T - top.

† Tep includes stirrup contribution (column 10)

TABLE 5.2 (Cont'd) CRACKING TORQUES FOR SOLID CROSS-SECTIONS BY DIFFERENT THEORIES

ħ

Γ	T			T-	T						T =				
lent ical		T CE BT	: .	97	1.83	1.434	1.681	1.800	1.560	1.233	0.970	1.656	1.566	1.594	I.399
Equivalent elliptical cross-section		Tee (in, kips)	•	21	38.5	75.3	77.1	79.0	83.1	86.2	23.0	65.2	75.3	73.9	80.8
	ı	Principal stresses at cracking (psi)	compression	14	09	263	1842	1843	1878	1902	22	211	1872	1834	1887
	formation	Principal str at cracking	tension	13	620	595	416	435	194	485	909	544	450	405	457
Elasto-Plastic Behavior	Supplemental Information	Crack Location		12	W.	ø	s	ß	S	တ	В	pQ.	Ø	S	ss.
-Plastí	Supple	θ cr (deg)		=	72.76	56.4	25.4	25.9	26.5	26.8	79.4	58.1	26.1	25.2	26.2
Elasto		Tstirrup (in.kips)		01	0.0**	-	-								
		T	•	٥	0.946	1.289	1.123	1.205	1.050	0.840	0.925	1.506	1.067	1.093	0.945
- 10 mg/s		Tep (in.kips)		80	8.93	83.8	145.4	118.0	123.4	126.6	24.1	71.7	110.5	107.8	119.6
behavior, angular -section		T		7	1.032	1.563	1.430	1.436	1.245	0.985	0.982	1.785	1.268	1.283	1.120
Elastic behavi rectangular cross-sectio		Te (in.kips)		9	37.4	69.1	9.06	99.0	104.1	107.9	22.7	60.5	93:0	91.8	100.9
ding		T test		5	0.972	1.266	1.072	1.113	0.998	0,782	0.961	1.492	1.025	0.989	0.837
Skew bending theory		Tab (in.kips)		4	39.7	85.3	120.9	127.8	129.9	139.5	23.2	72.4	115.0	119,1	135.0
Ttest	-	(in.kips)		9	38.6	108.0	129.6	142.2	129.6	106.3	22.3	108.0	117.9	117.8	113.0
		Mo.		7	,7		⋖	'n	· ·	-	N	m	•	·n	•
Bean	,	Group				(,,'2	z x	9		,	(";	T ?) (77

* B - bettom, S - side, T - top.

TABLE 5.2 (Cont'd) CRACKING TORQUES FOR SOLID CROSS-SECTIONS BY DIFFERENT THEORIES

Bean	<u> </u>	\$ 6 €	 -		rastic be rectang	c behavior, tangular s-section			Elastí	c-Plast	Elastic-Plastic Behavior			Equivalent elliptical cross-section	lent [cal ction
	<u> </u>	1	-							Suppl	Supplemental Information	ormation			,
Gr up	:	(8d, ')	Tsb (in.kips)	test	Te (in.kips)	T test	T + ep (in.kips)	T test	Tstfrrup (in.kips)	θ cr (deg)	Crack Location	Principa at crack	Principal stresses at cracking (psi)	Tee (in.kips)	Teat
				6		0	• ,	d				tension	compression		
-	2	9	4	2	9	7	æ	6	10	11	12	13	14	215	16
	2	67.5	60.7	1.112	55.0	1.227	61.5	1,098	8.0.	60.7	3*	512	191	57.5	1.174
(,,21	٣	ગ .6 6	122.2	0.810	.89.7	1.104	110.9	. 0.893	.0.9	24.1	S	355	1783	71.9	1.377
7	্ব	121.5	152.8	0.795	1001	1.214	123.7	0.982	5.4	25.9	ß	436	1850	6.62	1.521
.,9)	'n	95.5	140.0	0.682	86.2	1.108	108.5	0.880	6.1	23.7	တ	342	1771	71.9	1.328
av	ø	125.6	147.2	0.853	82.4	1.524	116.4	1.079	5.7	24.8	ß	389	1814	9.92	1.640
	^	143.7	150.6	0.954	75.9	1.893	120.4	1.194	5.6	25.5	w	416	1825	78.9	1.821
("7	2	42.7	44.9	0.951	42.7	1,000	45.9	0.930	0.3	70.1	Æ	595	11	43.7	0.977
τ×	m	95.4	107.8	0.885	85.5	1.116	98.9	0.965	5.4	25.9	83	417	2772	70.2	1.359
9	4	117.0	133.1	0.879	87.8	1,333	107.7	1.086	5.9	24.6	s	387	1848	71.1	1.646
) 4	'n	78.0	141.5	0.551	83.8	0.931	111.9	0.697	5.7	25.0	w	395	1822	74.1	1.053
Υ .	9	109.2	151.9	0.719	79.2	1.379	118.6	0.921	5.7	25.1	 ∞	7,	1872	77.2	1.415

* B - bottom, S - side, T - top

T includes stirrup contribution (column 10)

TABLE 5.2 (Cont'd) CRACKING TORQUES FOR SOLID CROSS-SECTIONS BY DIFFERENT THEORIES

Beam	,	Ttest	Skew bending theory	nding ry	Elastic behavi rectangular cross-sectio	behavior, angular -section			Elastí	ic-Plast	Elastic-Plastic Behavior			Equivalent elliptical cross-section	lent [ca]
										Suppl	Supplemental Information	ormation			
Sroup	×.	(in.kips)	Tsb (in.kips)	T test	Te (in.kips)	T teat	Tep (in.kips)	T test	Tstirup (in.kips)	θ _{cr} (deg)	Crack Location	Principal st at cracking	Principal stresses at cracking (psi)	Tes (in.kips)	"; ":
							;					tension	compression		
7	7	.3	4	5	9	7	80	6	10	11	12	13	14	15	16
(7	58.8	6.03	196.0	55.4	1,061	61.0	0.964	0.0**	61.7	ā	535	155	57.8	1.012
	m	112.5	132.9	0.847	101.8	1.105	125.9	0.894		45.9	M	613	577	89.3	1.260
x	4	126.5	149.8	0.844	98.0	1.291	116.1	1.090		25.6	တ	423	1836	78.2	1.618
"9)	5	35.5	145.6	0.656	95.2	1.003	113.9	0.838		25.4	· v	411	1820	76.0	1.257
YC	•	129.5	162.3	0.798	97.2	1.332	128.4	1.009		27.1	υs	664	1902	86.1	1.504
	7	122.8	158.6	0.774	82.1	1.496	126.2	0.973		26.8	89	484	1896	83.8	1.465
(,,	~	9.44	40.6	1.099	38.8	1.149	41.1	1.085		69.6	g	522	72	39.6	1.126
75	m	82.4	96.2	0.857	79.9	1.031	93.7	0.879		51.3	M	553	355	72.9	1.130
× "	*	97.5	122.0	0.799	78.5	1.242	89.3	1.092		23.2	د	318	1732	64.7	1.507
9)	•^	88.4	141.3	0.626	84.4	1.047	107.3	0.824		25.1	v	402	1827	74.1	1.193
HV	9	105.2	154.5	0.681	84.1	1.251	115.2	0.913		25.9	Ø	435	1843	79.5	1.323

* B - bottom, S - side, T - top

Deams of AG and AH groups are without stirrups

Ġ

TABLE 5.2 (Cont'd) CRACKING TORQUES FOR SOLID CROSS-SECTIONS BY DIFFERENT THEORIES

	Ttest	Skew bending theory	nding	Elastic behavio rectangular cross-section	behavior, ingular section		•	Elasti	c-Plast	Elastic-Plastic Behavior	t.		Equivalent elliptical cross-section	lent ical ction
				·					Suppl	Supplemental Information	formation			
Š	(in.kips)	T _{sb} (in.kips)	T test	Te (in.kips)	T	T t ep (in.kips)	Trest	Tacirrup (in.kips)	θ cr (deg)	Crack Location	Principal st at cracking	Principal stresses at cracking (psi)	T	100
		<u>.</u>			,		בי ני				tension	compression	•	:
~	3	9	5	9	7	8	6	10	11	12	13	14	15	16
2a	23.0	23.3	1.000	23.0	1.000	24.8	0.927	0.0	80.3	*#	548	16	23.0	1,000
2p	23.0	23.0	1.000	22.6	1.018	24.8	0.927	9.0	79.9	m	512	16	22.7	1.013
4.0	96.0	103.2	0.930	82.3	1.166	98.9	0.971	j.0	54.1	æ	511	266	85.9	1.118
4.0	102.0	110.1	0.926	86.4	1.181	110.9	076.0	7.6	52.9	ρΩ	515	295	4.06	1.128
99	117.0	169.5	0.690	114.2	1.025	136.2	0.859	3.0	35.3	S	475	946	97.1	1.205
9	128.0	182.3	0.702	122.7	1.043	161.4	0.793	18.9	35.8	ø	516	966	104.4	1.226
	54.0	38.4	1.406	37.7	1.432	39.5	1.367	0.3	75.6	g	576	æ	37.9	1.425
28	58.0	54.9	1.056	52.7	1.101	56.2	1.032	6.0	6.99	M	489	88	53.2	1.090
	147.0	146.7	1.002	122.1	1.204	141.1	1.042	3.3	46.4	•	546	496	126.6	1.161
	165.0	230.5	0.715	156.0	1.058	179.4	0.920	8.9	26.9	ဟ	995	1802	133.8	1,233
	184.0	251.5	0.732	145.2	1.267	181.4	1.014	9.3	2.92	S	436	1801	134.0	1.373
9	158.0	252.5	0.626	140.7	1.123	181.2	0.872	4.6	25.8	80	419	1784	133.0	1.188

* B - bottom, S - side, T - top † T_{ep} includes stirrup contribution (column 10)

TABLE 5.2 (Cont'd) CRACKING TORQUES FOR SOLID CROSS-SECTIONS BY DIFFERENT THEORIES

	test	Skew nding	nding ry	Elastic behavior, rectangular cross-section	c behavior, tangular s-section		,	Elasti	ic-Plast	Elastic-Plastic Behavior			Equivalent elliptical cross-section	lent [ca]
			-						Suppl	Supplemental Information	ormation			
£	Group No. (in.kips)	Tsb (in.kips)	Test	Te (in.kips)	Test	r t ep (in.kips)	Ttest	Tetirrup (in.kips)		9 cr Crack (deg) Location	Principa at craci	Principal stresses at cracking (psi)	Tee (in.kips)	test
		-	3		3). B		-		tenston	compression		
2	. 3.	4	5.	9	7	80	6	707	11	12	13	14	21	16
~	80.0		1.170	67.2	1.190	70.9	1.128	6.0	73.6	B¥	642	\$2	6.99	1.196
<u> </u>	174.0	170.2	1.022	151.4	1.149	163.2	1.066	8.4	49.6	m	503	364	148.4	1.173
•	260.0		0.698	227.5	1.143	249.3	1.043	15.0	27.2	w	357	1356	212.7	1.222
'n	240.0		0.622	218.9	1.096	245.0	0.980	12.9	29.9	H	360	1086	205.4	1.168
•	192.0	418.7	0.459	181.8	1.056	207.8	0.924	11.3	33.0	H	346	814	171.6	1.119

w bottom, S - side, T - top

† T includes stirrup contribution (column 10)

in developing cracking strength equations. Theoretical predictions according to this analysis together with test values are shown in Table 5.4. A brief critical examination of these theories and a comparative study is given in this section. No values for flexural shear and bending moments at cracking are listed since they can be easily generated knowing the torsion to bending ratio (ψ) and the torsion to shear ratio (δ) .

The skew bending theory is in good agreement with test results only for beams of series A (6" x 12"), while the difference between test and theory is greater for beams of series B (8" x 12") and for some cases of beams of series C (12" x 12"). For beams of series C skew bending theory predicts as much as 100% higher capacities. For this reason the skew bending theory can be regarded as unsafe and its use, particularly for cross-sections that approach a square, can not be recommended. It would appear that the assumption of an instantaneously extended crack, discussed previously, compensates properly for plastic action only for beams having an aspect ratio approximately 2:1. Excluding the case of pure torsion (Equation 5.15) formulas based on this theory are rather complex and require the simultaneous solution of two equations, one for cracking torque and another for crack inclination.

Contrary to the skew bending theory, elastic analysis always underestimates cracking strength. This can be expected since concrete is not an elastic material and some portions of a cross-section become

TABLE 5.3 SUMMARY OF T_{test} /Theory VALUES FOR SOLID X-SECTIONS

Series	Skew Bending Theory	Elastic Behavior	Elasto- Plastic Behavior	Equivalent elliptical cross-section
A 44 beams 6" x 12"	0.948	1.262	1.034	1.409
B 12 beams 8" x 12"	0.899	1.135	0.970	1.180
C 5 beams 12" x 12"	0.794	1.127	1.028	1.176

TABLE 5.4 CRACKING TORQUES OF HOLLOW BEAMS

Ве	eam	Test Results	Theory Equivalent	
Group	number	T _t (in.kips)	elliptical cross-section ^T eq (in.kips)	T _t /T _{eq}
	2	58.0	47.1	1.231
	3	102.0	92.1	1.107
вн	4	105.0	111.9	0.938
	5	114.0	112.2	1.016
	6	104.0	112.2	0.924
			Ave.	1.043
	2	50.0	56.3	0.888
	3	138.0	122.9	1.123
СН	4	143.0	175.9	0.813
	5	192.0	194.0	0.990
	6	150.0	166.5	0.901
			Ave.	0.943

plastified (Figure 5.4c) and thereby additionally contribute to the cracking strength of a member. Higher discrepancies between this theory and test results are observed for beams of series A than for B and C series, as noted in Table 5.3. The formulas for cracking torques are simpler, but they involve torsional constants α and β .

The effects of nonelastic action and interaction between principal stresses are taken into account in the analysis described in Section 5.3.1. It can be observed from Table 5.3 that this analysis is in very good agreement with the test values for all ranges of aspect ratios.

If solid or hollow rectangular cross-sections are replaced by elliptical cross-sections defined by inscribed ellipses the need for torsional constants α and β is eliminated. This procedure is based on elastic behavior; however, yields more conservative results than elastic analysis for recursular cross-sections since the effect of corners is neglected. Test to theory ratio is highest for a 2:1 aspect ratio and lowest for a square cross-section. In the case of hollow cross-sections (Table 5.4) agreement between tests and theory is much better than for solid cross-sections. In this case the effect of neglecting the contribution of outside corners is compensated by rounding of inside corners as shown in Figure 5.9b.

5.5 Precracking Stiffness

The precracking torsional stiffness of a member can be ex-

pressed in several ways similar to that for bending where an initial, tangent or secant modulus is used. Of these the secant modulus is most commonly used and accordingly, in this study, the experimental value of torsional stiffness is taken as:

$$K_{\text{test}} = \frac{T_{\text{cr}}}{\phi_{\text{cr}}}$$
 (5.49)

where T_{cr} and ϕ_{cr} are those values of torque-twist curves which correspond to the appearance of first crack.

The theoretical stiffness for a solid rectangular crosssection in accordance with St. Venant theory is given by:

$$K_{\text{rectangle}} = \gamma G_{c} hb^{3}$$
 (5.50)

where y is given in Table 5.1 and:

$$G_{c} = \frac{E_{c}}{2(1+\mu)}$$

the modulus of elasticity for concrete E_c , as defined in ACI 318-71¹

$$E_{c} = 57000 \sqrt{f_{c}^{\dagger}}$$

and Poisson's ratio μ is taken as 0 16.

Consistent with the analysis given in Section 5.3.2, use of elliptical cross-sections for stiffness evaluation is suggested. Based on theory of elasticity⁶⁹ the stiffness for an elliptical tube is:

$$K_{el,tube} = \frac{\pi}{16} c_h \frac{b^3 h^3}{b^2 + h^2} c_e$$
 (5.51)

where c_h has been defined previously (Equation 5.41). Equation 5.51 can be easily modified for a solid cross-section since c_h becomes 1:

$$K_{el,solid} = \frac{\pi}{16} \frac{b^3 h^3}{b^2 + h^2} G_c$$
 (5.52)

Theoretical (Equations 5.50 and 5.51) and test (Equation 5.49) values for the torsional stiffnesses of solid cross-sections are listed in Table 5.5. Generally, the analysis based on use of a rectangle overestimates test values while that based on an ellipse yields smaller values as compared to test results. Experimental torque-twist curves in the range up to cracking and theoretical values of stiffnesses of solid beams of three groups are shown in Figure 5.10. Theoretical values are taken as average values for each group shown in Table 5.5. This essentially implies that the concrete compressive strength is averaged since it was the only variable in each group of beams.

A similar comparison can be made for hollow beams. Table
5.6 shows that Equation 5.51 underestimates the experimental stiffnesses by about 2% for the CH group. Graphical illustration of these
comparisons is given in Figure 5.11.

TABLE 5.5 TORSIONAL STIFFNESS OF SOLID CROSS-SECTIONS

	test ellipse	1.489	1.318	26	59	84	41	67	17	82	52	04	25	93	54	38	30	12	30	2 2
, M	K Rellipse	7.1	-	1,156	1,459	1.284	1.341	1.467	1.517	1.282	1.052	1.104	1,325	1.293	1.254	0.938	1.030	1.012	1.180	1 082
Kellipse	k-in x 10 ⁻⁶	0,683	0.635	0.713	0.685	0.715	0.686	1.568	1.517	1.560	1.564	1.513	1.509	1.539	3,753	3.637	3.606	3.649	3.699	3.669
×	K rectangle	1.022	0.904	0.793	1.001	0.881	0.920	1.018	1.052	0.889	0.730	0.766	0.919	0.896	0,873	0.653	0.717	0.704	0.821	0.754
Krectangle (Eq. 4.50)		0.995	0.926	1.073	0.999	1.042	1.000	2.260	2.187	2.250	2.254	2.181	2.176	2.218	5,389	5.224	5.180	5.241	5.313	5.269
Ktest	k-in x 10-6	1.017	0.873	0.824	1.000	0.918	0.919	2,300	2.300	2.000	1.645	1.671	2.000	1,986	4.706	3,412	3.714	3,692	4.364	3.978
ф cr	k-1n x 10-6 rad x 10-6	42	114	142	78	119		10	10	48	62	70	99		H	51	70	. . .	77	
		42.7	95.4	117.0	78.0	109.2		23.0	23.0			117.0	128.0		20.08	174.0	260.0	240.0	192.0	
Веаш по.		AF-2	AF-3	AF-4	AF-5	AF-6	Average	BIS-2a	B1S-2b	B1S-4a	B1S-4b	B1S-6a	B1S-6b	Average	7-83	CS-3	CS-4	CS-5	9-S2	Average

TABLE 5.6 TORSIONAL STIFFNESS OF HOLLOW CROSS-SECTIONS

	Test	values (fro	m T-φ curves)	Theory (E	q. 4.51)
Beam no.	T _{cr}	φ _{cr} rad in x 10 ⁶	$\frac{K_{\text{tes}}}{\frac{k-in}{rad}} \times 10^{-6}$	Ktheory k-in x 10 ⁻⁶	Ktest Ktheory
BH-2	58	31	1.871	1.530	1.223
ВН-3	102	70	1.457	1.420	1.026
ВН-4	105	60	1.750	1.499	1.167
BH-5	114	62	1.839	1.477	1.245
вн-6	104	65	1.600	1.530	1.046
Average			1.703	1.491	1.141

CH-2 50 20 2,500 3.184 0.785 CH-3 32 138 4.313 3.136 1.375 CH-4. 143 41 3.488 3.280 1.063 CH-5 192 78 2.462 3.153 0.781 CH-6 150 49 3.061 3.470 0.882 Average 3.164 3.225 0.977

1

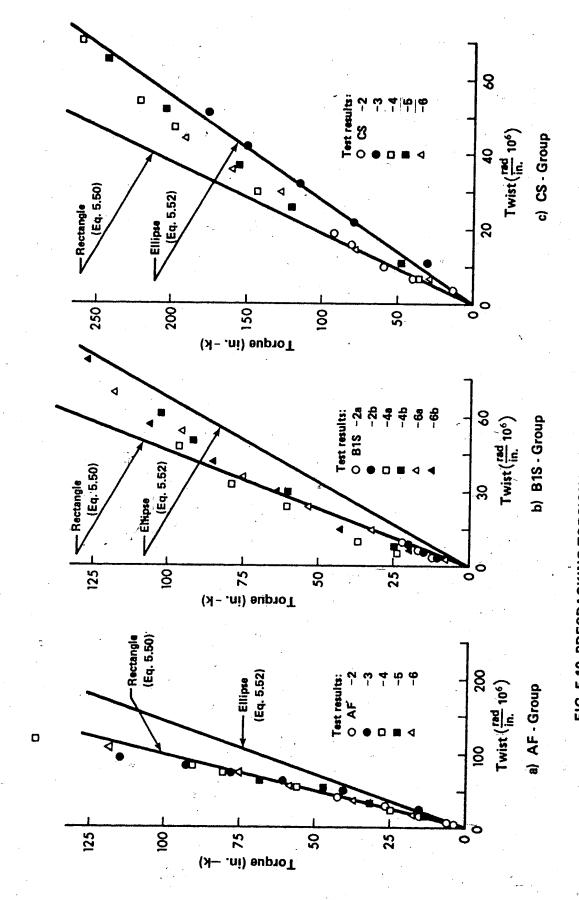


FIG. 5.10 PRECRACKING TORSIONAL STIFFNESS, SOLID CROSS - SECTIONS

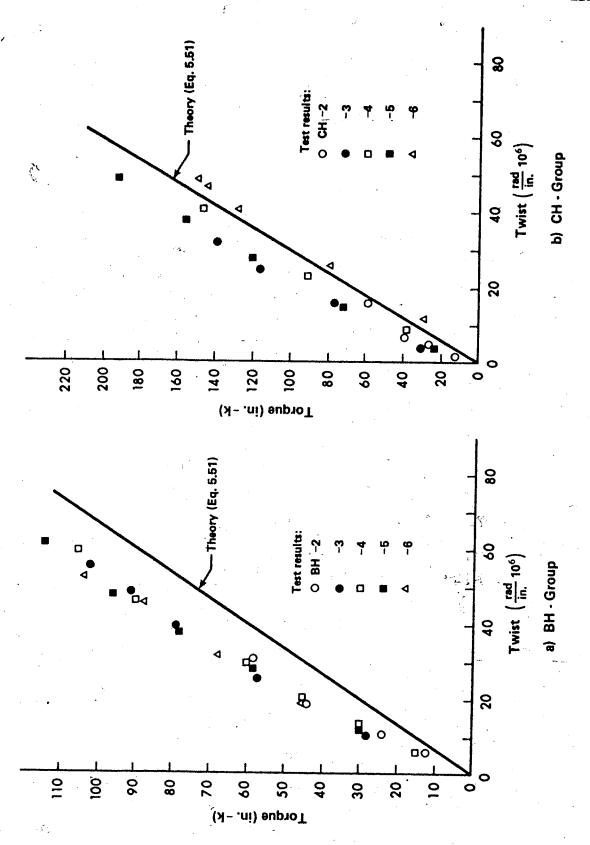
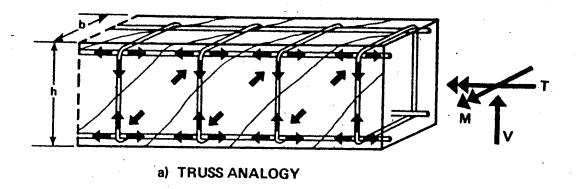
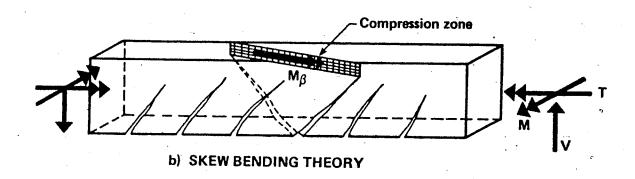


FIG. 5.11 PRECRACKING TORSIONAL STIFFNESS, HOLLOW CROSS - SECTION


CHAPTER VI


ULTIMATE STRENGTH - THEORY, EXPERIMENTS AND COMPARISON

6.1 Introduction

From the discussion in Chapter 2, available theories for the ultimate strength of beams subjected to combined loading include the Truss analogy, the Skew bending theory and the Equivalent thin tube theory. These three approaches are schematically shown in Figure 6.1. It should be noted that the thin tube approach has been used for the case of pure torsion only and attempts at predicting postcracking torsional stiffness have been based on this model^{11, 36}. Elfgren¹⁸ showed that Truss theory and skew bending analysis yield the same results, providing the same assumptions and simplifications are made in both cases. He used the method of virtual work in deducing this important conclusion.

In this chapter the skew bending theory is reviewed with the emphasis on failure mechanism and failure criteria. Some shortcomings and limitations of this theory are pointed out and a new approach which considers the torsional component on the inclined uncracked zone in addition to bending component is presented. A failure criteria for concrete based on a biaxial state of strain is suggested and equations for the ultimate torsional strength of prestressed rectangular concrete solid and hollow beams subjected to combined torsion, bending and shear, are developed. Finally, comparison between experimental results and

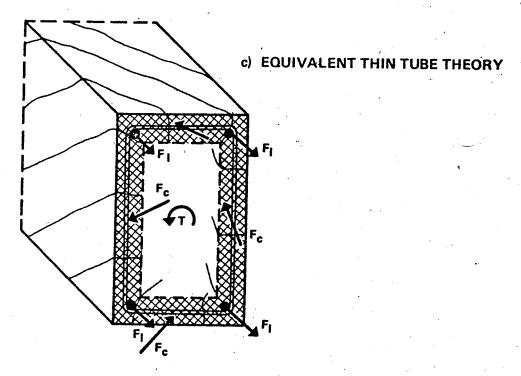


FIG. 6.1 THREE APPROACHES TO THE PROBLEM OF COMBINED LOADING

theoretical predictions is given.

6.2 Remarks on the Skew Bending Theory

A skew bending mechanism is defined as one in which a spiral crack develops on three faces of a beam, the ends of which are joined by an inclined compression zone on the fourth face as shown in Figure 6.1b. Failure is reached when the strain in the compression zone ϵ_{β} , due to bending M_{β} , reaches a limiting value. Depending on beam geometry, amounts of transverse and longitudinal reinforcements, ψ and δ ratios, the compression zone can be located adjacent to the top, side or bottom of a beam. These three cases shown in Figure 6.2 are commonly referred to in the literature as mode 1, mode 2 and mode 3. That mode which results in the least torque governs the strength of a beam. Torsional capacities, corresponding to each mode can be obtained if the total moment of the external forces about the compression hinge is equated to M_{β} :

mode 1:
$$T = \frac{\psi M_{\beta}}{\psi \cos \beta + \sin \beta}$$
 (6.1)

mode 2:
$$T = \frac{M_{\beta}}{\cos \beta (1 + 1/\delta - 2a/b\delta)}$$
 (6.2)

mode 3:
$$T = \frac{\psi M_{\beta}}{\psi \cos \beta - \sin \beta}$$
 (6.3)

where T = theoretical ultimate torque

 β = angle of inclination of compression zone with respect to the longitudinal axis

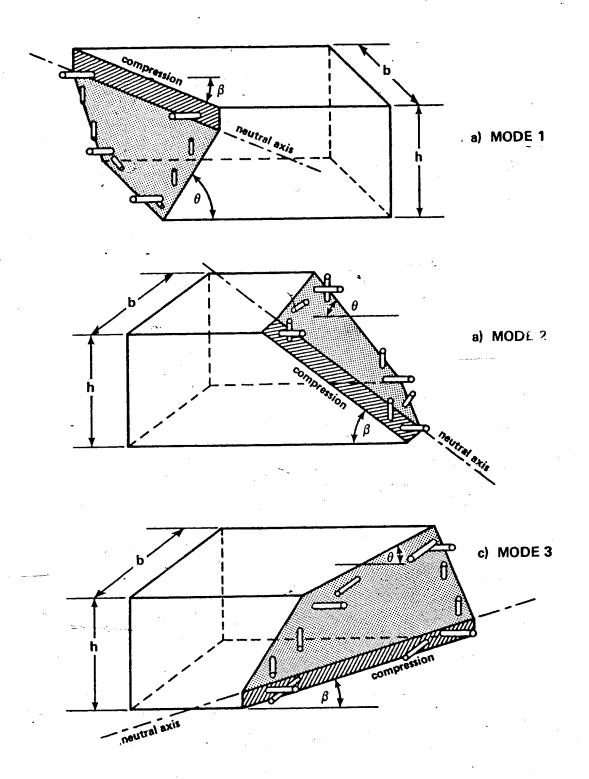


FIG. 6.2 FAILURE MODES ACCORDING TO SKEW BENDING THEORY

 M_{β} = bending capacity in the inclined direction

 Ψ = torque to bending ratio, T/M

 δ = torque to shear ratio, 2T/bV

Once the torque is determined, bending and shear can be calculated as follows:

$$M = \frac{T}{\psi} \tag{6.4}$$

$$V = \frac{2T}{h\delta} \tag{6.5}$$

The above analysis, usually referred to as Lessig's theory, is applicable only for under-reinforced beams in which both longitudinal and transverse steel yield prior to failure. In addition, for a skew bending analysis, the following assumptions are normally introduced:

- (i) tension of concrete is neglected
- (ii) no local loads are present within length of compression zone
- (iii) stirrups are uniformly spaced along the length of the beam
- (iv) dowel action of the longitudinal and transverse reinforcement is neglected

One of the crucial assumptions in Lessig's theory is that concrete in the inclined compression zone reaches full flexural strength. This assumption, however, can be true only for the pure bending case.

When a beam is subjected to a combined loading, the uncracked zone is

subjected to a complex state of stress. The term "uncracked zone" is used here purposely since the term "compression zone" can be somewhat misleading, because concrete in this zone is subjected to tension as well as compression. This biaxial state of stress, which is actually a simplification of a more general triaxial state of stress, results from forces acting on the skewed surface which consist of not only the bending component M_{β} , but also the torque T_{β} and shear V_{β} shown in Figure 6.3. Large numbers of reinforced concrete beams tested and reported in the literature suggest that torque $T_{\mathcal{R}}$ can be neglected. However, it has been noted by some researchers that this assumption overestimates beam capacities. Hsu³⁴ modified this analysis by assuming a planar, not a warped failure surface, or in other words, he assumed that the tension crack on the two sides of a beam is perpendicular to the beam corners. This implies that no stirrups are intercepted by the tension crack on two sides of a beam, resulting in no contribution from these stirrups to the beam strength. Hsu noticed that beams having square or nearly square cross-sections did not obey this assumption. The experimental findings reported here do not support Hsu's assumption, both for rectangular (series A and B) and square (series C) cross-sections. Crack patterns shown in the photographs in Appendix C clearly confirm this. It is justified to examine other reasons for the reduction of beam capacities:

In the late sixties, when research shifted from reinforced to prestressed concrete, assumptions applicable to reinforced concrete when extended to prestressed cor rete resulted in unrealistic predic-

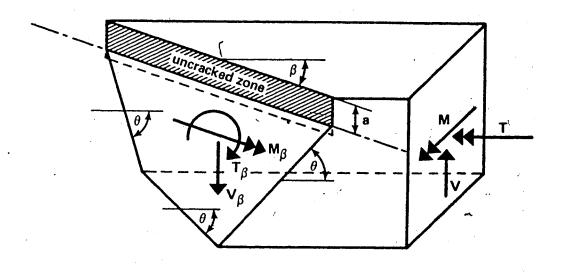


FIG. 6.3 MODE 1 - FREE BODY DIAGRAM

according to the original skew bending theory, in some cases the strength was overestimated by more than 250 percent. Faced with the above problem, researchers in North Carolina^{24, 29, 40} in their analysis assumed that failure of a beam corresponded to yielding of the stirrups or longitudinal steel, whichever came first. Therefore, for each mode, two cases were examined; the smallest torque governed the strength for each mode. While this analysis represents a step ahead in the solution to this problem, it is difficult to justify one of its main assumptions, i.e., steel strains at failure correspond to first yielding strains; recorded strains in longitudinal or transverse steel have been measured much higher.

Evans and Khalil²² pursued the problem in a somewhat different direction. They proposed a reduction of concrete compressive strain at ultimate as follows:

$$\varepsilon_{c} = \varepsilon_{cu} \left(\frac{M_{u}}{M_{ub}} \right)^{2}$$
 (6.6)

where ϵ_{c} = compressive strain in concrete in combined state of stress

cu = compressive strain in concrete in pure bending

M = ultimate bending in combined loading

M = pure bending capacity

Woodhead and McMullen⁷⁵ further reduced strain given by Equation 6.6 by assuming:

$$\varepsilon_{\beta} = \varepsilon_{c} \sin^{2} \beta$$

where ϵ_{β} concrete strain in the inclined compression zone

- $\epsilon_{\rm c}$ = reduced strain, given by Equation 6.6
- β = angle of inclination of compression zone with respect to longitudinal beam axis

Rao and Warwaruk⁶⁵ in the proposed analysis of I-beams used the following expression for concrete strain:

$$\epsilon_{\rm c} = \epsilon_{\rm cu} \sin^2 \beta$$
 (6.8)

It should be noted that Equation 6.6, 6.7 and 6.8 are of an empirical nature. More important, these expressions have been proposed for mode 1 only. For modes 2 and 3, the stress block for pure flexure was suggested. In the discussion that follows it will be shown that the torsion component on the inclined zone is more pronounced for mode 2 and mode 3 than for mode 1. Consequently, the necessity for concrete strain reduction in the case of these two modes is more justified than for mode 1.

havior of a beam under test. Prior to test a grid of horizontal and vertical lines is plotted on the tension face of the beam. The tension face is defined here as that face which lies opposite to the side where the compression zone is located, or, one where first cracking commences. Figure 6.4a illustrates such a grid on the side of a beam, corresponding to mode 2. For simplicity, consider that the angle of the tension crack with respect to the longitudinal axis is 45 degrees.

Of primary interest is the direction of the crack opening in the postcracking stage. If the bending component above is present in the inclined zone, and steel stiffnesses in both longitudinal and transverse directions are the same, the opening will take place perpendicular to the crack as shown in Figure 6.4b. Because the crack angle is 45 degrees, "shifts" between lines on the two uncracked sides will be the same in longitudinal and transversé directions. It is important to note that this phenomenon corresponds to the original skew bending concept. Because of the presence of torsion in the inclined zone and possible differences in the stiffnesses of transve steel and longitudinal steel, the opening of the crack may take place in a manner shown in Figure 6.4c. No discontinuity of the lines in the transverse direction is observed here. On the other hand, a large amount of stirrups as compared to longitudinal steel would result in a shift in the longitudinal direction shown in Figure 6.4d. To verify these hypothetical assumptions a square grid of 1 centimeter was made on beam BIS-6a, on the south face of the beam, since mode 2 was expected. Three postcracking stages of loading are shown in Figure 6.5. This figure clearly indicates that a sideway shift took place, rather than one corresponding to skew bending. It should be remembered that this beam had light stirrups and moderate longitudinal reinforcement. From the above discussion a very important qualitative conclusion can be drawn: the bending component on the inclined zone does not necessarily dominate the behavior of the beam subjected to combined loadings.

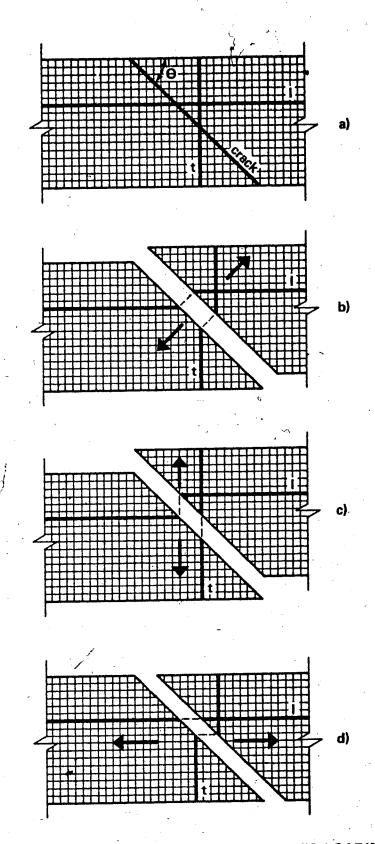
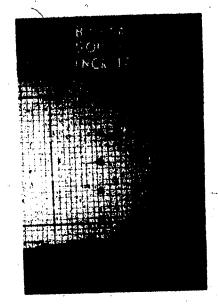



FIG. 6.4 CRACK OPENING UNDER COMBINED LOADING

a.

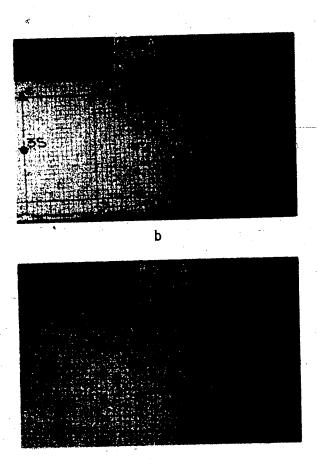


FIG. 6.5 CRACK OPENING UNDER COMBINED LODING (BEAM BIS-6a)

6.3 Proposed Analysis

6.3.1 General Remarks

In the preceding sections of this chapter the principles of skew bending theory were examined and some inconsistencies were pointed out. Examination of equilibrium equations on the plane containing the uncracked zone (β -plane) would give not only the bending component M_{β} , but also the torsional component T_{β} , and the shear V_{β} . Traditionally, the latter two components have been neglected, implying that the concrete in the compression zone reaches its full flexural strength. In the proposed analysis, it is suggested that the torsional component T_{β} be taken into account. It should be emphasized that this component is not only of academic, but also of practical importance, since it can dominate both strength and behavior of a beam under combined loading. In the following section its magnitude is examined.

6.3.2 Torsion to Bending Ratio, ψ_{β}

The resolution of the external force and couples into the β -plane result in the following expressions:

mode 1 (Figure 6.6a)

$$M_{\beta} = T \cos \beta + M \sin \beta$$
 (6.9)

$$T_{\beta} = T \sin \beta - M \cos \beta$$
 (6.10)

$$v_{\beta} = v$$
 (6.11)

Using the torsion to bending ratio ψ , Equations 6.9 and 6.10 can be

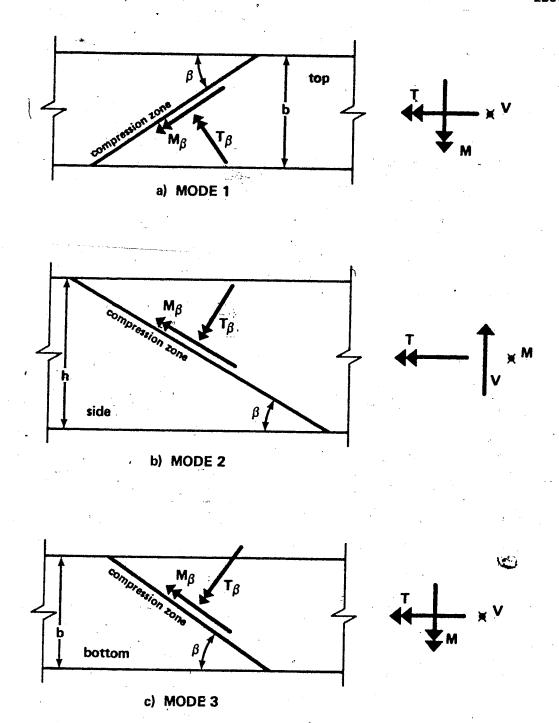


FIG. 6.6 TORSION TO BENDING RATIO ON β – PLANE

rewritten:

$$^{M}_{\beta} = M \psi \cos \beta + M \sin \beta \tag{6.12}$$

$$T_{\beta} = M \psi \sin \beta - M \cos \beta \qquad (6.13)$$

Dividing Equation 6.13 by Equation 6.12 gives:

$$\frac{T_{\beta}}{M_{\beta}} = \frac{\psi \tan \beta - 1}{\psi + \tan \beta}$$
 (6.14)

Let:

$$\frac{T_{\beta}}{M_{\beta}} = \psi_{\beta} \tag{6.15}$$

then:

$$\psi_{\beta} = \frac{\psi \tan \beta - 1}{\psi + \tan \beta} \tag{6.16}$$

In a similar manner this ratio can be found for mode 2 (Figure 6.6b):

$$\psi_{\beta} = \tan \beta$$
 (6.17)

and for mode 3 (Figure 6.6c):

$$\psi_{\beta} = \frac{\psi \tan \beta + 1}{\psi - \tan \beta} \tag{6.18}$$

It is interesting to note that ψ_{β} for mode 2 is never zero, while for mode 1 it can have a zero value. From Equation 6.16 it follows:

$$\psi_{\beta} = \frac{\psi \tan \beta - 1}{\psi + \tan \beta} = 0$$

or:

$$\psi \tan \beta = 1$$

Ψ = cot β ♥

(6.19)

This supports the idea that the reduction of strain is more important for mode 2 than for mode 1. To illustrate the relationship between ψ , ψ_{β} and β , Equations 6.16, 6.17 and 6.18 are plotted in Figure 6.7. It is shown in Figure 6.7b that ψ_{β} can reach values higher than 1, meaning that the torsion will be higher than bending on the β -plane. Negative values of ψ_{β} signify that one of the couples (bending moment or torque) has an opposite sign of that assumed in Figure 6.6. This corresponds to mode 3 failure or, for example, failure that occurs in the regions of applied negative bending moments.

6.3.3 <u>Failure Criteria and Stress-Strain Characteristics</u> for Concrete

Presence of bending, torsion and shear in the β-plane implies the existence of a multiaxial state of stress in the uncracked concrete zone. Similar to the cracking analysis, where a biaxial state of stress was used, it is proposed here that a biaxial state of strain exists at failure. Figure 6.8 illustrates the assumed principal strain interaction relationship. Limiting values for compressive and tensile strains are taken as 0.0038 and 0.00015, respectively. The first represents the maximum strain in Hognestad's stress-strain curve³⁰, while the second (tensile strain) is based on the study done by Johnston⁵¹. If these values are joined by a second degree parabola, the resulting equation is:

$$\varepsilon_{\rm t}^2 = 5.921 \times 10^{-6} (0.0038 - \varepsilon_{\rm c})$$
 (6.20)

where ϵ_{t} = principal tensile strain

 $\epsilon_{_{_{\mathbf{C}}}}$ = principal compressive strain

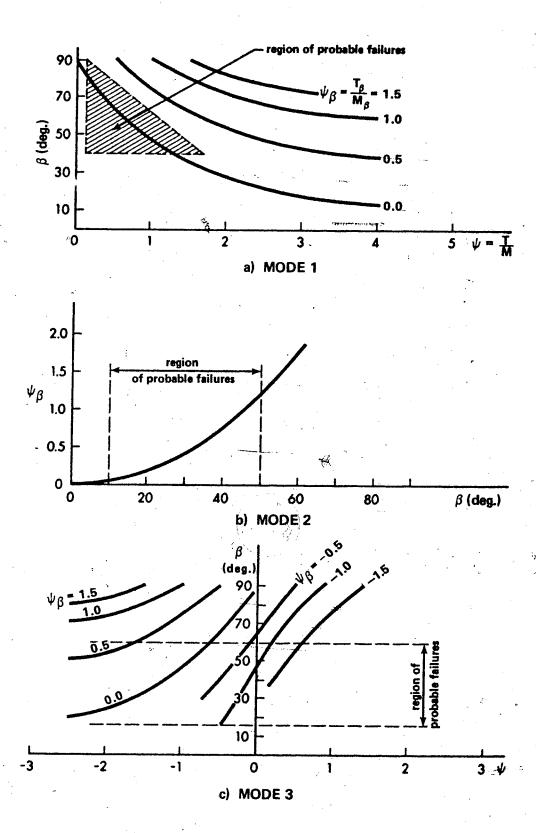


FIG. 6.7 RELATIONSHIP BETWEEN ψ , $\psi_{oldsymbol{eta}}$, and eta

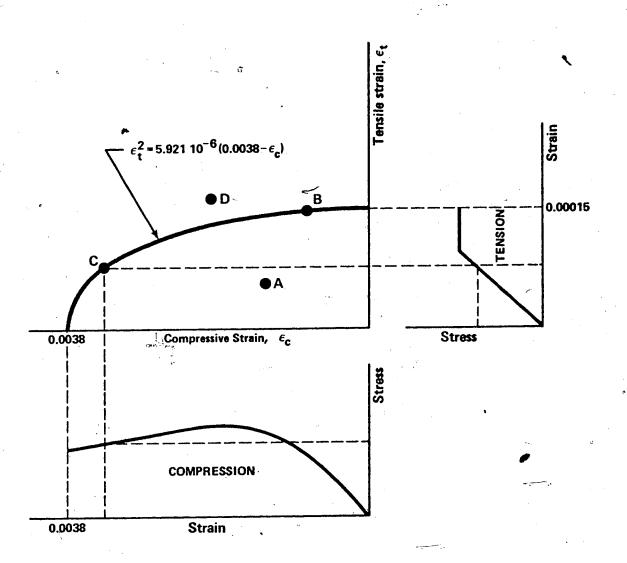
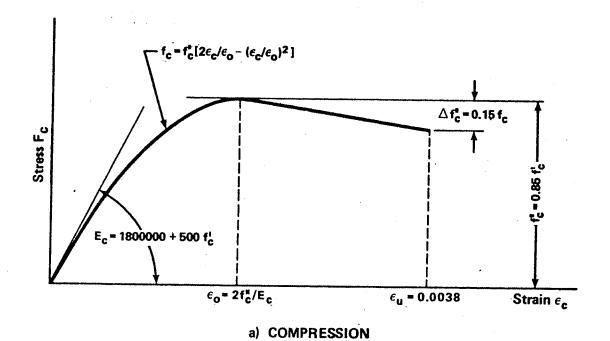


FIG. 6.8 BIAXIAL STRAIN OF CONCRETE


Failure occurs when any combination of principal strains satisfies Equation 6.20.

In Figure 6.8 stress-strain curves for compression and tension are also shown. They are given only to supplement the biaxial strain diagram. Figure 6.9 defines in detail the stress-strain characteristics of concrete, adopted in this study. While a number of stress-strain curves for concrete in compression have been suggested in the literature, probably Hognestad's curve30 is most realistic. On the other hand little has been reported in the literature regarding the stress-strain relationship of concrete in tension. It has been recognized, however, that the maximum tensile strain, in most cases, is between 0.0001 and 0.0002. Researchers also agree that the concrete in tension is more brittle than in compression. Although a nonlinear stress-strain relationship probably exists for concrete in tension, a simplified relationship, shown in Figure 6.9b, is suggested. It should be recalled from Chapter 5 that the maximum uniaxial stress does not correspond to tensile strength from the splitting test, but has a somewhat higher value:

$$f_t = 2 f_{sp} / \sqrt{3}$$
 (6.21)

where f_t = tensile stress in a uniaxial state of stress f_{sp} = tensile stress obtained from splitting test

Equation 6.21 can be derived from Equation 5.28 if f_t is substituted for σ_{max} and σ_{min} taken as zero.

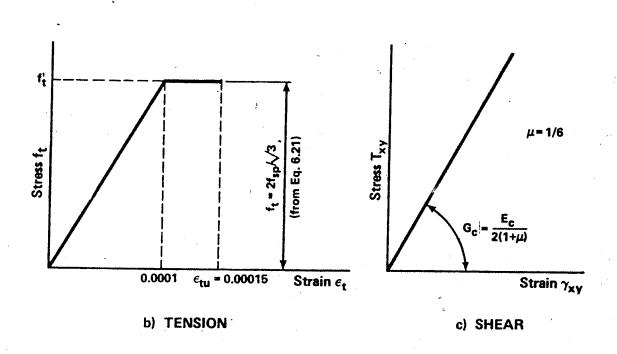


FIG. 6.9 STRESS - STRAIN CHARACTERISTICS OF CONCRETE

Since shear stresses are present in the uncracked zone, a shear stress-strain relationship needs to be defined. No research is available in this area. It is known that pure shear strength approaches compressive strength. However, in all practical cases actual shear stress reaches only a fraction of maximum pure shear stress since failure of concrete in tension would precede a pure shear failure. Consequently, a linear stress-strain relationship, shown in Figure 6.9c is suggested.

6.3.4 Assumptions of the Analysis

The following assumptions are made in the development of equations for the ultimate torque of rectangular prestressed concrete solid and hollow beams subjected to combined torsion bending and shear:

- Failure occurs on a warped surface, whose boundaries are defined on three sides of the beam by a spiral crack, and on the fourth side by an uncracked zone which joins the ends of the spiral crack.
- 2. The crack defining the failure surface on three sides is composed of three straight lines spiralling around the beam at a constant angle with respect to the longitudinal beam axis.
- 3. The crack inclination θ can be found using one of the procedures described in Chapter 5.
- 4. The uncracked zone is rectangular, perpendicular to the uncracked face of a beam, and is inclined at an angle β with respect to the longitudinal beam axis.

- 5. Failure occurs when the combination of principal strains in the uncracked concrete zone satisfies Equation 6.20.
- The contribution of concrete subjected to tension is neglected.
- The contribution of transverse reinforcement in the compression zone is neglected.
- 8. The contribution of shearing stresses in the compression zone is considered.
- Dowel action of longitudinal and transverse reinforcement in the tension zone is taken into account.
- 10. The stress-strain characteristics of longitudinal and transverse reinforcements are known. The nonlinear portion of the stress-strain curve for prestressing steel is utilized. Transverse reinforcement has a well defined yield plateau.
- 11. The stress-strain characteristics of the concrete in compression, tension, and shear are known.
- 12. The strain perpendicular to the β-plane is proportional to its stance from the neutral axis. Components of this strain (at various steel levels) in both longitudinal and transverse directions represent, respectively, strains in the longitudinal and transverse reinforcement:

$$\varepsilon_{\ell} = \varepsilon_{\beta} \sin \beta$$
 (6.22)

$$\varepsilon_{\rm tr} = \varepsilon_{\beta} \cos \beta$$
 (6.23)

Assumptions 1 through 4 define the failure surface. They are similar to the assumptions made in skew bending theory and are strongly supported by experimental observations.

Assumption 5 defines the failure criteria adopted in this analysis. Although additional research may be required in this area it is felt that the parabolic strain interaction relationship is most appropriate for the case of combined loading. This assumption parallels the assumed stress interaction used in the cracking analysis.

Essentially it represents an extension of the maximum compressive strain concept used in pure flexure or combined flexure and axial load.

Assumptions 6 and 7 are introduced to simplify the analysis.

Assumptions 8 and 9 relate to the resisting torque T_{β} and will be discussed in detail later in this chapter.

Equations for reinforcement stress-strain curves (assumption 10) are given in Chapter 3.

Stress-strain characteristics of concrete (assumption 11) are based on the work of Hognestad 90, and Johnston 11.

Finally, assumption 12 is supported by work done by Johnston and Zia⁴⁰, and Woodhead and McMullen⁷⁵. It should be, however, observed that no simple relationship exists between strains in longitudinal and transverse reinforcement (see discussion in Section 6.2); linear relationship is assumed in order to simplify analysis.

6.3.5 Bending and Torsion Transfer on β-Plane

It was mentioned previously that the tensile crack propagates in a spiral manner as loading is increased. The ends of the crack define the uncracked zone, which may be located adjacent to the top,

side or bottom face of the beam depending on whether mode 1, 2 or 3 dominates beam behavior. For every assumed depth of the neutral axis the inclination of the compression zone β can be found directly from geometry. From Figure 6.10 the following relationships can be deduced:

mode 1:
$$\cot \beta = \frac{b+2(h-a)}{b} \cot \theta$$
 (6.24)

mode 2:
$$\cot \beta = \frac{h+2(b-a)}{h} \cot \beta$$
 (6.25)

mode 3:
$$\cot \beta = \frac{b+2(h-a)}{h} \cot \beta$$
 (6.26)

where a = depth of neutral axis

b = beam width

h = beam height

The analysis in Section 6.3.2 shows that a definite relationship exists between ψ_{β} , ψ and β . This means, if ψ and β are known, ψ_{β} can be calculated for each mode, which in turn, defines torsion to bending ratio on the β -plane (T_{β}/M_{β}) .

The problem of bending transfer (Figure 6.11) does not require special attention since the rules of flexural theory apply: for any position of the neutral axis, forces perpendicular to the β -plane can be equilibrated and the corresponding bending moment M_{β} can be found. These steps are analogous to those for the determination of moment-curvature for pure flexure. However, there is a difference

F. G. 6. LELATIONSHIP BETWEEN INCLINATION OF SPIRAL CRACK θ , AND ANGLE OF UNCRACKED ZONE β

since for every position of the neutral axis the angle β changes, implying a different width of compression zone. It should be noted that strains in both longitudinal and transverse steel are taken as rectangular components of the corresponding strain in the β -plane (assumption 12).

Figure 6.12 shows the torque T_{β} on the β -plane with the unknowns being the shear force taken by concrete V_{c} and component of dowel force F_{d} , which is parallel to β -plane. It is assumed that the dowel force F_{d} is located at the intersection of longitudinal and transverse steel on the tension face of the beam. Other dowel forces due to stirrups on the sides are neglected since their magnitudes and lever arms are smaller. To find V_{c} and F_{d} , two equations can be established; one is the summation of forces in β -plane, in the direction parallel to neutral axis, the other is the summation of moments about the axis perpendicular to β -plane. Of course, the right hand side of the first equation will be equal to zero, since no external loads exist in the direction in which the summation is taken; however, in the moment equation the right hand side will be equal to T_{β} which itself is related to external loads as given by the equations in Section 6.3.2:

$$V_{c}^{-F_{d}} - \sum_{i=1}^{n} F_{\ell,i} \cos \beta - F_{t} \sin \beta = 0$$
 (6.27)

$$V_{c} \stackrel{a}{=} - F_{d}^{d}_{d} + \sum_{i=1}^{n} F_{\ell,i} \cos \beta d_{\ell,i} + F_{t}^{d}_{v} \sin \beta + F_{v}^{d}_{v} \sin \beta = T_{\beta}$$
(6.28)

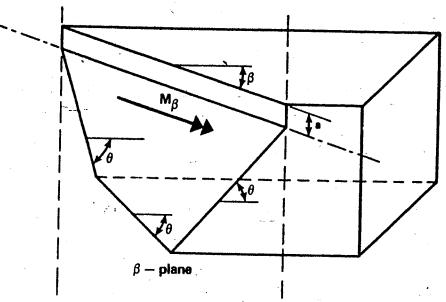


FIG. 6.11 BENDING ON THE INCLINED β — PLANE

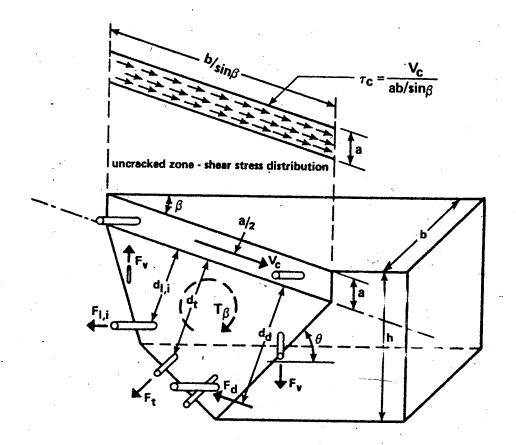


FIG. 6.12 MECHANISM OF TORSION TRANSFER ON β – PLANE

where V = shear force carried by concrete compression zone

F = component of dowel force in the direction of neutral axis

F = force in longitudinal steel

n = number of longitudinal bars or prestressing cables

d. - distance from longitudinal steel to neutral axis

F total tensile force in stirrups adjacent to tension face of the beam

d = lever arm of F

(-)

d, = dowel force lever arm

F = total force in stirrups on one side of the spiral crack

d = distance between stirrups on two sides of the
 spiral crack, equal to h' for mode 1 and mode 3,
 and h' for mode 2

b',h' = centerline width and height of a closed stirrup, respectively

Multiplying Equation 6.27 by dd and adding to Equation 6.28 gives:

$$V_{c}(a/2 + d_{d}) - \cos \beta \sum_{i=1}^{n} F_{\ell,i}(d_{d}' - d_{\ell,i})$$

$$- F_{t} \sin \beta (d_{t} - d_{d}) + F_{v}d_{v} \sin \beta = T_{\beta}$$
(6.29)

In the second term of Equation 6.29 a summation has to be carried out since forces and lever arms are not the same for every longitudinal bar or prestressing strand. If this summation is started from the bar located in the tension corner, then $d_{\ell,1}$ denotes distance between

this bar and the neutral axis. Consequently, the following simplification can be made without any significant loss of accuracy:

$$d_{\ell,1} = d_{t} = d_{d}$$
 (6.30)

and the third term of the left hand side of the Equation 6.29 will cancel out. For i=1 the second term will be equal to zero. Equation 6.29 can then be written as:

$$V_{c}(a/2 + d_{\ell,1}) - \cos \beta \sum_{i=2}^{n} F_{\ell,i}(d_{\ell,1} - d_{\ell,i})$$

$$+ F_{v}d_{v} \sin \beta = T_{\beta}$$
and:
$$V_{c} = (T_{\beta} + \cos \beta \sum_{i=2}^{n} F_{\ell,i} (d_{\ell,1} - d_{\ell,i})$$

$$- F_{v}d_{v} \sin \beta)/(a/2 + d_{\ell,1})$$
(6.32)

Equation 6.32 is completely general and, therefore, is valid for any of the three modes. It should be mentioned that forces, lever arms, depth of neutral axis and angle β in Equation 6.32 are those determined during the solution of M_g .

The final assumption in this analysis is related to distribution of shear force V in the concrete compression zone. For simplicity, a uniform distribution is assumed as shown in Figure 6.12:

$$\tau_{c} = V_{c}/(ab/\sin \beta) \tag{6.33}$$

for modes 1 and 3. For mode 2, b has to be replaced with h, i.e.:

$$\tau_{c} = V_{c}/(ah/\sin \beta) \tag{6.34}$$

where a = depth of uncracked zone

b = width of a rectangular cross-section

h = depth of a rectangular cross-section

β = angle of inclination of compression zone with respect to longitudinal beam axis

The corresponding shearing strain γ_{β} can be found as:

$$\gamma_{\beta} = \tau_{c}/G_{c} \tag{6.35}$$

where G denotes shear modulus of concrete. The normal strain ε_{β} in the concrete is available from the steps involved in the evaluation of M_{β} . Principal strains can now be calculated:

$$\varepsilon_{\text{max,min}} = \varepsilon_{\beta}/2 \pm \sqrt{(\varepsilon_{\beta}/2)^2 + (\gamma_{\beta}/2)^2}$$
 (6.36)

Finally, these strains can be compared with the proposed strain interaction equation (Equation 6.20) and checked as to whether or not the element is in the failure state. Details of the interaction steps are included in the following sections.

6.3.6 Summary of the Proposed Analysis

The proposed analysis is summarized in the following steps:

- 1. Obtain inclination of first crack θ , using one of the methods described under cracking analysis.
- 2. Assume depth of neutral axis, a.
- 3. Calculate inclination of compression zone β (formulas 6.24, 6.25 and 6.26).
- 4. By varying "curvature" equilibrate forces perpendicular to β -plane and find bending moment, M_{β} .
- 5. Using formulas 6.16, 6.17 and 6.18 find torsion to bending ratio on the inclined plane, $\psi_{\rm g}$.
- 5. Find torsion on β -plane using Equation 6.15, $T_{\beta} = \psi_{\beta}M_{\beta}$.
- 7. Find shear force carried by concrete, V_c (Equation 6.32), then shearing stress (Equation 6.33 and Equation 6.34) and shearing strain (Equation 6.35).
- 8. Calculate principal strains (Equation 6.36) and compare state of strain with the parabolic strain diagram (Figure 6.8, Equation 6.20). Any combination of strains which fall inside the interaction diagram (e.g., point A in Figure 6.8) indicates that the ultimate state has not been reached; depth of compression one should be decreased and all steps from 3 onwards repeated. Any state of stress falling outside of the interaction diagram (point D, Figure 6.8) indicates that the solution is approached from the upper bound; depth of compression zone should be increased and all steps repeated. These iteration steps are to be continued until the desired accuracy is reached.
- 9. Calculate torsional capacity using formulas 6.1, 6.2 and 6.3,

then bending and shear capacity using Equations 6.4 and 6.5, respectively.

The major steps of the proposed procedure are illustrated in Figure 6.13, where the solution has been approached from the lower bound. Figure 6.14 shows typical iteration paths for different modes. If the iteration is started using a deep compression zone, small principal strains in the concrete will result. As the depth of compression zone is decreased principal strains will become larger until Equation 6.20 is satisfied. It is interesting to note that mode 1 would always result in larger compressive strains than mode 2 or 3. On the other hand, modes 2 and 3 yield higher tensile strains than mode 1, as shown in Figure 6.14. This is not surprising since mode 1 is usually associated with higher bending as compared to torque and shear.

A slightly different approach is given in Figure 6.15 where the maximum compressive strain (0.0038) is assumed first and depth of neutral axis is varied until the forces perpendicular to β -plane are in equilibrium. It should be remembered again that, for every position of neutral axis angle β changes. In this approach, only steps 2, 3 and 4 described in the preceding paragraph need to be altered. With the assumed maximum principal compressive strain, completion of all steps in the first iteration will result in a state of strain which does not satisfy Equation 6.20 (Figure 6.12, iteration 1) since shearing strains are also present in the compression zone. Consequently, the depth of compression zone has to be decremented and the process

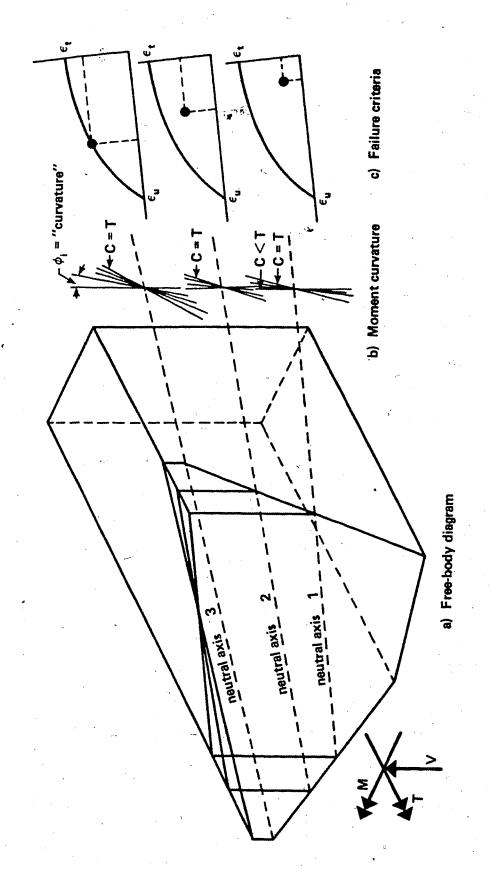


FIG. 8.13 SCHEMATICAL CONCEPT OF PROPOSED PROCEDURE

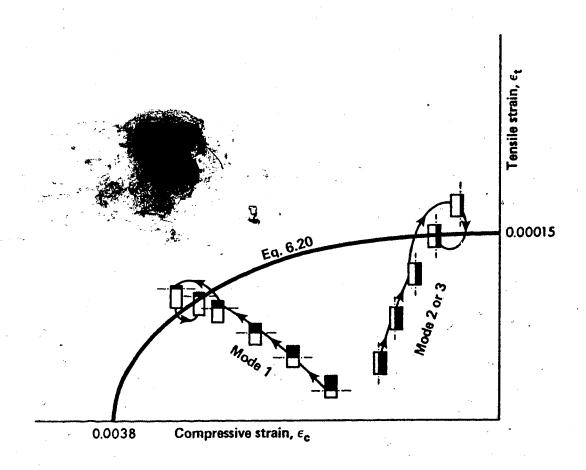
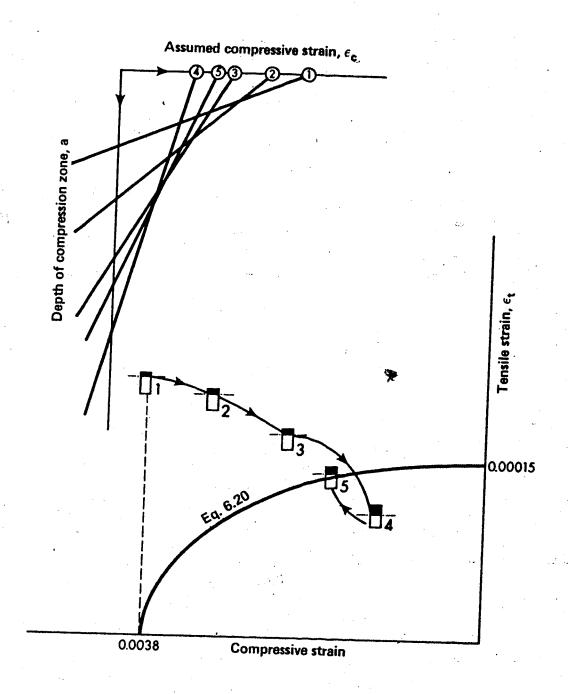



FIG. 6.14 TYPICAL ITERATION PATHS FOR DIFFERENT MODES

Q

FIG. 6.15 ALTERNATE PROCEDURE

repeated.

Both approaches yield the same result. Generally, the second is somewhat more efficient since convergence is faster. Modes 1 and 3 in the computer program, presented in Appendix D utilize the second approach, while mode 2 is based on the first approach.

6.3.7 Concluding Remarks on the Proposed Analysis

The proposed biaxial strain failure criteria for the beams under combined loading is a logical extension of uniaxial strain criteria used in pure flexure or compression. To account for the biaxial state of strain two equations are utilized: first, summation of torsional moments about the axis perpendicular to the β -plane and second, summation of forces in the β -plane in the direction of the neutral axis. It should be noted that consideration of these two equations is supplemented by another two equilibrium conditions; bending moments about neutral axis and forces perpendicular to the β -plane. Therefore, four equilibrium conditions are satisfied. For hollow beams reported here, no separate procedure is necessary since the compression zone was always located in a wall. However, for thin-walled beams where the neutral axis may be located outside compression flange (wall) it is suggested that the contribution of shearing stresses, in the outstanding flanges of a channel-shaped uncracked zone, be neglected.

The assumed uniform shearing stress distribution in the uncracked zone is not correct for the loading stages immediately after cracking, since circulatory (torsional) shear may be predominant.

However, as failure is approached a state of shear flow will be reached.

The proposed theory would considerably overestimate capacities of beams BIS-4b and BIS-6b. Theoretical values for these beams are given in brackets in Table 6.2. Beams BIS-2b, BIS-4b, and BIs-6b contain excessive amounts of transverse steel (Chapter 3). Studies by Hsu³⁴ and McGee and Zia⁵⁴ suggest that strength cannot be increased with an excessive increase of transverse or longitudinal steel. They suggested the following limitation:

where:

$$\frac{A_{\ell \cdot s}}{A_{t}(b^{\dagger} + h^{\dagger})}$$

A₀ = total area of longitudinal steel

A = area of one leg of a closed stirrup

s = stirrup spacing

b' = centerline width of a closed stirrup

h' = centerline height of a closed stirrup

The actual value of m for above three beams is 0.4. For this reason an equivalent stirrup spacing has been obtained based on m = 0.7 and theory then applied.

6.4 Comparison of Experimental and Theoretical Results

In order to verify accuracy of the theory presented in this

chapter, this analysis was applied to eighty-four beams reported in the experimental phase of this investigation. Tables 6.1, 6.2 and 6.3 summarize experimental and theoretical results for series A, B and C, respectively. Since torsion to bending ratio (\$\psi\$), and torsion to shear ratio (\$\psi\$) are known, theoretical values for bending and shear are not reported here for the case of combined loading, as they can be easily calculated from torques and loading ratios. Theoretical values for pure bending are, however, reported in column 7. Test/theory values for bending and torsion are tabulated in column and 10, respectively. In columns 12 through 14 principal strains and stresses of concrete in the compression zone at failure are reported. It is interesting to observe higher tensile strains and stresses for modes 2 and 3 than for mode 1.

Test/theory values are in a range of 1 ± 0.20 for all beams, indicating good correlation between experimental and theoretical results. Table 6.4 gives a summary of average test/theory values for all three series. It is important to note a very good correlation, not only between experimental and theoretical results, but also from two other aspects. Table 6.4 shows that an average test/theory value for beams subjected to bending is 0.996 while in the case of combined loading is 1.008. This table also shows that a uniform accuracy is obtained for all three modes in the case of combined loading. It is strongly felt that the excellent correlation in all aspects resulted from the use of a uniform failure criteria over the entire range of loading ratios.

ULTIMATE STRENGTH, COMPARISON OF EXPERIMENTAL AND THRORETICAL RESULTS, SERIES A TABLE 6.1

-											•	\$	Ē		
		田	xperime	Experimental Results	sults	-	·			Theo	Theoretical	Results			
Ų,.	Beam no.	Mtest	T	V	∍	9	×	Mear	Ę-	1	Fail-	Princ	. strains	رد ا	stresses
 -		In.k.	in.k.	İ	-	. 3	in.k.	×	In.k.	T	ure mode ^b	comp x 100	Etens × 100	comp psi	otens psi
<u>-</u>	1	2	3	7	5	9	7	æ	6	10	11 ,	12	13	14	15
	AA-1	797	0	0	000.0		. 661	1.206	0			0.3800	0.0000	3719	0
,	-5	662	95	٥	0.144	<u>:</u>			114	0.833	: H	0.3791	0.0011	3654	65
	را ال	478	159.	0	0.333	8			133	1.195	7	0.0432	0.6140	1402	39
	7-	206	155	0	0.752	8		,	132	1.174	. 7	0.0440	0.0140	1347	455
	ئ.	118	157	0	1.331	8		•	136	1.154	2	0.0454	0.0139	1453	200
	9	55	497	0	2.982	8		-1	141	1.163	2	0.0447	0.0142	1478	439
	-7	0	178	0	8	8			149	1.195	7	0.0479	0.0141	1991	536
	AB-1	747	0	11.67	00000	00000	629	1.134	0	9) E		0.3800	0.0.0	3696	0
	-5	712	82	11.67	0.115	2,342	7		89	1.206	-	0.3786	0.0007	3650	44
	-3	543	120	9.20	0.221	4.348			123	926.0	7	0.0474	0.0138	1622	561
	7-	125	146	5.00	1.168	9.733		350	137	1.066	. 7	0.0475	0.0140	1677	561
	ر ا	87	156	3.00	3.250	17.333	1	,	139	1.122	7	0.0458	0.0139	1609	200
	6	28	. 148	1.27	5.286	38.845			139	1,065	2	0.0456	0.0140	1528	495

, 4 B

TABLE 6.1 (Cont'd) ULTIMATE STRENGTH, COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS, SERIES A

<u> </u>	1	T	·			,	<i>p</i>			o.								
	stresses	tens	15		> ¦	2 / 	610	777	955	580	770	0	49	557	6775	1 6	200	200
	حد	Comp	14	300	מאל א	3630	1619	1705	7100	1720		4630	4263	1601	1836	2774	1763	7
	. strains	ω ⁺ ,.	1	0000	00000	0.0011	0.0140	0.0130	0.01	0.0138		0.0000	0.0008	6,0139	C.0120	Name of	0.0141	1112
Theoretical Results	Princ.	сошр х 100	12	0 3800	0.0000	76,000	0.0457	0.0469	2870 0	0.0487		0.3800	0.3798	0.0472	0.0458		0.0469	-
retical	Fail-	ure	11		y-	1 6	1 0	. 0		, 2				'n	7	~		,
Theo	E +	T	10		0.906	0.922	1.014	1.128	1,113	1.148			0.955	1.016	0.909	0.964	0.938	
City City	E	Ħ.	6		117	153	148	148	151	149		,	99	127	143	140	146	
	M	X	8	1.065				 		•	1 061	100:1			,		. 	
,	Œ	fn.k.	7	723		•	, in				7.47	-						7
	۵.		9		8	8	8	8	8	8	0.00	3	+co.1-	5.167	9.782	17.308	46.837	
Results	-		5	0.000	0,160	0.372	0.750	1.325	3.000	8	0.000		100.0	0.33/	1.048	2.368	7.211	
Experimental Results	V	, *	. 4	0	0	0	0	0	0	0	12.30	11 33	1	00.0	4.43	2.60	1.17	
Expert	Ttest		m	0	106	141	150	167	168	171	0	63	12%	, T	T30	135	137	
	Mtest	fn.k.	7	770	662	379	200	126	26	0	787	- 748	368		577	57	19	
	Beam no.	,	н	AC-1	-7	۳	7-	<u>.</u>	9	-7	AD-1	-2	,	` `	†	ئ.	-6	

TABLE 6.1 (Cont'd) ULTIMATE STRENGTH, COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS, SERIES A

Experimental Results	Experimental Results	mental Results	Results		1									
				- Income			26		The	Theoretical	1 Results	89		
F. 4.5	Mtest In.k.	T test In.k.	Vtest	÷	· 60	Σ.	Mtest	F	Ttest			Princ. stra	strains & st	stresses
j					ø	in.k.	Σ	fn.k.		mode	сопр ж 100	tens	Comp	tens
1	7	3	4	2	9	7	80	6	27	17	13	2	Tod.	psi
O1	904	0	0	0.000		789	1 1/1				31	2	14	15
w	864	124	0	0.144	8	8	1.14/			łą.	0:3800	0.0000	3462	0
4	995	124	. 0	0.266	8			125	0.992		0.1400	0.0120	3550	521
$^{\sim}$	230	172	_0	0.748	8			144	0.861	7	0.0454	0.0142	1513	455
_	122	162	0	1.328	. 8	:		120	1.147	7	0.0495	0.0140	1694	544
	57	172	0	3,018	8	77		134	1.209	7	0.0439	0.0142	1374	455
	0	154	0	8	. 8			137	1.256	7	0:0452	0.0139	1480	206
m	880	0	14.67	000	000	1		141	1.092	2	0.0454	0.0137	1480	204
~	821	83		0.101	1 886		• 17 °T -	,		•	0.3800	0.0000	3516	0
	351	134		0.382	4.324	× ,	· · · · ·	101	0.822		0.2371	0.0092	3263	550
•	 06	146	5.00	1.622	0 733			1	1.145	~	0.0480	0.0139	1478	557
~	09	149			17.306	, `		134	1.090		0.0452	0.0142	1603	485
• •	25	160	1.37		38.929			134 134	1.112	~ ~_; 	0.0455	0.0140	1540	206
1	1	1						139	1.151		0.0450	0.0140	1603	515

TABLE 6.1 (Cont'd) ULTIMATE STRENGTH, COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS, SERIES A

		Experim	Experimental Results	esults					Theo	retical	Theoretical Results			
	M	T	V		40	×	X Teat	F	T.	Fail-	Princ.	. strains	ઝ	stresses
. 8	In. k.	In.k.	'n.		`	ز	W	in.k.		ure mode	comp x 100	Etens x 100	comp psi	otens psi
1	2	3	. 4	5	9	7	8	6	10	11	12	13	14	15
AG-1	1026	0	0	00000		668	1,141				082800	0.0000	4331	0
-2	756	118	٥	0.156	. 8			124	0.952	-1	0:1359	0.0119	3676	544
-3	409	136	0	0.913	8			150	0.907	2	00,0493	0.0140	1792	649
7-	200	150	0	0.750	8			147	1.020	. 2	0.0464	0.0140	1667	525
-5	109	146	0	1.339	8			152	0.961	2	0.0463	0.0139	1719	502
9-	50	150	0	3.000	8			153	0.980	7	0.0493	0.0142	1830	615
-7	0	144	0	8	8			153	0.941	. 2	0.0475	0.0141	1842	587
AH-1	910	0	12.00	000.0	000.0	833	1.092				0.3800	0.0000	3786	0
-2	720	107	12.00	0.149	2.972			91,	1.176	H	0.1847	0.0107	4477	525
.	204	117	9.00	0.232	4.333			120	0.975	2	0.0472	0.0139	1581	575
4-	72	117	4.00	1.625	9.750			122	0.959	2	0.0429	0.0140	1327	424
5-	64	131	2.33	2.674	18.741	₩-		136	0.963	7	0.0453	0.0142	1587	206
9-	21	143	0.97	6.810	49.141		·	140	1.021	7	0.0470	0.0140	1603	554
													,	_

ULTIMATE STRENGTH, COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS, SERIES B

TABLE 6.2

	6 0	otens psi	15	0	0	275	493	572	557	523	502	0	443	418	477	457	428
	stresses	p				_											
	rs.	comp ps1	14	4037	4451	4152	4896	1728	1831	1752	1690	4159	3658	2080	1399	1589	1828
	strains	ctens x 100	13	0.0000	0,000	0.0048	0.0106	0.0139	0.0140	0.0139	0.0141	0.0000	0.0129	0.0138	0.0143	0.0142	0.0141
Theoretical Results	Princ.	сощр х 100	12	0.3800	0.3800	0.3448	0.1880	0.0458	0.0467	0.0450	0.0437	0.3800	0.1041	0.0578	0.0344	0.0404	0.0449
etical	Fail-	ure	11	>		н	7	7	2	7	3		H	e	e,	က	3
Theor	EH		10			0.936	0.845	1.040	1,000	1.000	1.041		1.030	0.916	0.959	1.080	1.071
		In.k.	6			93	129	202	232	236	195		101	179	193	175	170
	×	W W	8	0.995	0.928	ġ)	4					0.912					
į	;	fn. k	7	1072	1134		20		·			1023					4
		o /	9	000.0	00000	1.275	1.829	4.255	10.681	27.830	187,963	0.000	1.820	4.244	10.781	21.188	239.474
Results	•	€	2	0.000	0.000	0.074	0.109	0.310	1.758	9.440	22.556	000.0	0.111	0.278	1.581	2.198	30,333
	Δ	test k.	4	15.91	15.67	17.06	14.90	12,34	5.43	2.12	0.27	13.95	14.29	99.6	4.29	2.23	0.19
Experimental	E	test in.k.	3	0	0	87	109	210	232	236	203	0	104	164	185	189	182
		test in.k.	2	1067	1052	1170	1001	8/9	132	25	6	933	941	589	111	88	,
	Beam		1	BS-1	-1s	-2	-2s	-3	7-	-5	9	BH-1	-2	<u>ကို</u>	-4.	ر ا	9

(A)

TABLE 6.2 (Cont'd) ULTIMATE STRENGTH, COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS, SERIES B

	*									
	sses	otens ps1	15	4 7	26	523	99	523	572	
	s & stre	Ccomp psi	14	4222	3961	2850	4209	1835	2057	. :
	Princ. strains & stresses	Etens x 100	13	600000	ال00.00 ج	0.0135	0.0012	0.0139	0.0139	
Theoretical Results	Princ	сош р х 100	12	0.3789	0.3771	0.0718	0.3772	0.0503	0.0575	
retical	Fa11-	ure mode	11	1	H	·	<u> </u>	8	m	
Theo	T	T	10	1.064	1.042	1,065	0.888	0.941	0.929	
	E	In.k.	6	17	(20) 48*	124	(253) 196*	153	(351) 2 24 *	
	W	W.	8			-	ઇચ્છ			
	>	٠ .	7							
			9	1.953	1.953	9.091	9.044	144,000	208.000	
esults	. ÷	→	5	6.40 0.112	0.112	0.569	4.81 0.606	0.25 18.000 1	0.25 41.600 2	
ental R	Λ	k.	7	6.40	07.9	3.63	4.81	0.25	0,25	\$ *
Experimental Results		in.k.	က	50	50	132	174	144	208	
	×	fn.k.	2	977	977	232	287	∞	ıΩ	
	Beam no.	7	T	B1S-2a	-2b	-48	-4P	-6a	9-	

* Based on stirrup spacing s = 3.37"

(values in brackets correspond to actual s = 2")

ULTIMATE STRENGTH, COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS, SERIES C

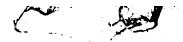
		Experim	Experimental Results	esults					Theo	retical	Theoretical Results		2	
Beam no.	M toot	T.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	y = 14 .ee	-	*	X	£-	T	Fail-	Prine	Pring. strains &		stresses
	in.k.	77	k,	<i>≱</i> .	>	j.	M	٠	EL L	ure mode	c _{cmp}	Etens x 100	C comp	otens psi
H	5	3	4	۶ :	9	7	8	6	10	11	12	13	14	ÌS
CS-1	1222	0	17.85	000.0	00000	1369	0.893				0.3800	00000	9707	0
-2	1204	139	17,80	0.115	1,302			172	0.808	н	ÿ.3635	0.0035	3654	226
۳	806	297	16.51	0.327	2.998			234	1.010	2	0.0340	0.0141	1103	521
4-	189	390	10.46	2.063	6.214			332	1,175	m	0.0479	0.0141	1710	415
	66	360	5.46	3.636	10.989	$\left\langle \cdot \right\rangle$		329	1.094	m	0.0493	0.0140	1782	403
9-	9	352	0.53	58.667	110.692			327	1.077	ю	0.0596	0.0138	2132	373
CH-1	1180	0	17.58	000.0	00000	1242	0.950				0.0380	0.000	3654	0
2	1136	131	16.91	0.115	1.291		,	137	0.956		0.1635	0.0115	3763	405
۴-	954	282	15.64	0.296	3.005			273	1.033	m	0.0988	0.0128	2591	413
7-	109	318	9.07	0.529	5.843			312	1.019	m	0.0355	0.0143	1263	350
ئ.	09	336	5.09	5.600	11.002			306	1.098	m	0.0573	0.0139	1836	419
9	6	286	0.31	0.31 31.444	152.151			312	0.917	m	0.0621	0.0137	2211	375

TABLES 6.4 AVERAGE TEST/THEORY VALUES

	Mtest/Mtheory Bending		Cor	test/ ^T the	ory ding
·			1	0.980	
Series A	1.120	MODES	2	1.057	1.018
	,	2	3		
			1	0.977	
Series B	0.945	MODES	2	0.995	1.004
		Z	3	1.041	
	,		. 1	0.932	
Series C	0.922	MODES	· ₋ 2	1.010	1.001
,-			3 .	1.061	
	0.996	2			1.008

CHAPTER VII

SUMMARY AND CONCLUSIONS


7.1 Summary

The behavior, cracking and ultimate capacities of solid and hollow prestressed concrete beams subjected to combined torsion, bending and shear have been studied in this investigation. In the experimental phase of this study, tests on eighty-four prestressed beams were performed in order to examine the effects of level of prestress, torsion-bending and torsion-shear loading ratios, amount of longitudinal and transverse reinforcement, longitudinal opening, and the size of cross-section. The analytical phase of this investigation includes an examination of available theories for cracking and ultimate strengths. Two methods for cracking analysis are proposed; the first method is based on the biaxial stress criteria for concrete, and the second which is more straight forward, utilizes equivalent elliptical cross-sections for the determination of torsional shear stresses. Some shortcomings of the commonly used theories for ultimate analysis are pointed out and a new iterative procedure, based on the biaxial strain criteria is presented.

7.2 Conclusions

The following conclusions and recommendations are based on the results of this investigation:

- 1. Prestressed concrete beams without web reinforcement fail immediately after occurrence of the initial crack, while beams with web reinforcement have considerable strength and ductility beyond cracking.
- 2. Depending upon the cross-sectional aspect ratio, magnitude and eccentricity of prestress, and the loading ratios, the initial crack can develop on either bottom, side or top face of the beam. Cracking at the bottom generally resulted from predominant bending, at the side, from moderate values of torsion to bending ratios, and at the top, from predominant torsion and high eccentricity of prestressing force.
- 3. The precracking torsional and flexural stiffnesses were not significantly influenced by localing ratios, ψ and δ nor by the amount of web reinforcement.
- 4. No stirrup strain was observed up to approximately 50% of the cracking strength, however, beyond this level the increase in stirrup strain occurred at an increasing rate. The contribution of stirrups to the cracking strength can be assessed if a parabolic strain distribution along the potential crack is assumed and the tensile strain of concrete is related to the strain in stirrups. Since an elastic stress-strain relationship exists in the reinforcement at the cracking stage, the stirrup contribution to the cracking strength is directly proportional to the amount of web reinforcement.
- 5. A very good correlation between experimental and theoretical results for cracking strength can be obtained if the failure criteria for concrete is based on a biaxial stress interaction. This criteria was used in conjunction with the modified elastic theory to include partial "yielding" of the cross-section at cracking. The extent of the yielded regions is larger for

elongated cross-sections than for square or nearly square cross-sections. More data is needed in order to determine α_{ep} and β_{ep} for a greater range of cross-section aspect ratios.

6. Torsional shear stress distribution in a rectangular or hollow box cross-section can be determined using elliptical cross-sections; thus the use of torsion constants α , β , and γ is avoided. This approach is particularly useful for hollow box sections where the only available shear flow theory can not be applied since geometry of reinforced or estressed beams does not conform to the assume ions of thin-wall theory.

85

- 7. The cracking strength and pre-crack, stiffness of a hollow beam is reduced as compared to a similarly reinforced solid beam implying a contribution of the core to the cracking strength and pre-cracking stiffness. However, this reduction is not very significant, indicating an excellent efficiency of hollow beams in torsion and flexure. On the other hand, the use of hollow cross-sections cannot be recommended in the presence of high flexural shear.
- 8. Experimental torque-moment and torque-shear interaction relationships for hollow and solid cross-sections have been presented. A conservative relationship can be represented by a circular arc providing that the ultimate shear is defined as shear force acting when ultimate flexural capacity is reached. It should be stressed, however, that this is only true for slender beams where shear does not dominate behavior and strength of a beam.
- 9. The eccentricity of prestressing force, in the case of predominant bending, is beneficial for the ultimate capacity and ductility of a beam, in comparison to a concentrically prestressed beam.

- 10. The effect of flexural shear in a member is to reduce ultimate strength and ductility of a member subjected to combined loading.
- and hollow beams exhibited the skew bending mechanism at failure. The failure surface was formed by a tensile crack extending across three faces at approximately the same angle, and the uncracked zone was located adjacent to the fourth face. Depending on loading ratios, beam geometry and relative amounts of transverse and longitudinal reinforcement, the uncracked zone can be located adjacent to top, side or bottom face of the beam.
- 12. Proposed biaxial strain failure criteria in the ultimate analysis is a logical extension of the uniaxial strain criteria used for flexure and compression. An assumed uniform shear stress distribution in the uncracked zone, though not correct at the pre-cracking or at the stages immediately after cracking can be justified at failure since the depth of the uncracked zone at failure is reduced and hence circulatory stresses are also reduced. This parallels usual assumptions of shear stress distribution in a steel wide flange cross-section subjected to torsion; concrete in the uncracked zone acts as the top flange while the components of tensile forces in reinforcement and dowels act as the bottom flange.
- 13. No significant difference between ultimate strengths of solid and similarly reinforced hollow cross-sections was observed implying that the neutral axis at ultimate was located in a wall of a hollow cross-section. However, the proposed method can handle also those cases where the neutral axis falls outside the wall thickness; for the determination of shear stresses it is suggested that the outstanding flanges of

channel-shaped uncracked zone be neglected.

- 14. The developed equations apply to underreinforced and L arately overreinforced beams, however, an excessive amount of reinforcement limits their use. More research is needed to establish the limits of long tudinal and web reinforcement for beams subjected to combined loading.
- 15. If flexural shear sominates beam behavior, vertical shear stresses in the uncracked zone must be taken into account in the analysis. Depending on the ratio of these vertical shear stresses to the shear-flow stresses (parallel to neutral axis, those considered in the analysis) and normal stresses, use of a three dimensional failure criteria may be appropriate. This would, however, require detailed study of the complex mechanism of shear transfer in a cracked concrete.

REFERENCES

- American Concrete Institute, "Building Code Requirements for Reinforced Concrete (ACI 318-71)", Detroit, Michigan, 1971.
- American Concrete Institute, "Commentary on Building Code Requirements for Reinforced Concrete (ACI 318-71)", Detroit, Michigan, 1971.
- ASCE-ACI, Joint Task Committee 426, "The Shear Strength of Reinforced Concrete Members", Journal of the Structural Division, ASCE 99 (ST6), 1973.
- 4. Barton, T.G., and Kirk, D.W., "Concrete T-Beams Subjected to Combined Loading", Journal of the Structural Division, ASCE 99 (ST4), 1973.

ij

- 5. Behera, U., Rajagopalan, K.S., and Fermison, P.M., "Reinforcement for Torque in Spandrel, L-B Journal of the Structural Division, ASCE 96 (ST2), 1
- 6. Behera, U., and Ferguson, P.M., "Tors, Shear and Bending on Stirruped L-Beams", Journal of the Structural Division, ASCE 96 (ST7), 1970.
- 7. Birkeland, C.J., Hamilton, M.E., and Mattock, E.H., "Strength of Reinforced Concrete Beams Without Web Reinforcement in Combined Torsion, Shear and Bending", The Trend in Engineering 19(4), University of Washington, Seattle, 1967.
- 8. Bishara, A., "Prestressed Concrete Beams Under Combined Torsion,
 Bending, and Shear", Journal of the American Concrete
 Institute, 66 (7), 1969.
- 9. Bresler, B., and Pister, K., "Strength of Concrete Under Combined Stresses", Journal of the American Concrete Institute, 30 (3), 1958.
- 10. Chander, H., Kemp, E.L., and Wilhelm, W.J., "Prestressed Concrete
 Rectangular Members Subjected to Pure Torsion", Civil
 Engineering Studies Report No. 2007, West Virginia University, Morgantown, West Virginia, 1970.
- 11. Collins, M.P., "Torque-Twist Characteristics of Reinforced Concrete Beams", University of Waterloo Press, SM Study No. 8, 1972.
- 12. Collins, M.P., and Lampert, P., "Redistribution of Moments at Cracking The Key to Simplex Torsion Design", American Concrete Institute, SP-35, Detroit, Michigan, 1973.

l I

- 13. Collins, M.P., and Lampert, P., "Designing for Tonsion", Structural Concrete Symposium, Department of Engineering, University of Toronto, 1971.
- 14. Collins, M.P., Walsh, P.F., Archer, F.E., and Hall, A.S., "Ultimate Strongth of Reinforced Concrete Beams Subjected to Combined Torsion and Bending", American Concrete Institute, SP-18, Detroit, Michigan, 1968.
- 15. Coward, H.J., "Reinforced and Prestressed Concrete in Torsion", Edward Arnold (Publishers) Limited, London, 1950.
- 16 Cowan, H.J., "An Elastic Theory for the Torsional Strength of Rectangular Reinforced Concrete Beams", Magazine of Concrete Research, 2 (4), 1950.
 - 17. Cowan, H.J., and Armstrong, S. Experiments on the Strength of Reinforced and Prestressed Concrete Beams and of Concrete-Encased Steel Joists in Combined Bending and Torsion", Magazine of Concrete Research 7 (19), 1955.
 - 18. Elfgren, L., "Reinforced Concrete Beams" Loaded in Combined Torsion, Bending and Shear", Publication 71:3, Division of Concrete Structures, Chalmers University of Technology, Göteborg, 1972.
 - 19. Elfgren, L., Karlsson, I., and Losberg, A., "Forsion-Bending-Shear Interaction for Reinforced Concrete Beams", Private Communication, 1973.
 - 20. Elfgren, L., Karlsson, I., and Losberg, A., "Nodal Forces in the Analysis of the Ultimate Torsion Moment for Rectangular Reinforced Concrete Beams", Private Communication, 1973.
 - Ersoy, U., and Ferguson, P.M., "Concrete Berns Subjected to Combined Torsion and Shear - Experimental Trends", American Concrete Institute, SP No. 18, Detroit, Michigan, 1968.
- 22. Evans, R.H., and Khalil, M.G.A., "The Behavior and Strength of Prestressed Concrete and Rectangular Beams Subjected to Combined Bending and Torsion", The Structural Engineer, 48 (2); 1970.
- 23. Evans, P.R., Kemp, E.L., and Wilhelm, W.J., "The Behavior of T- and L-Shaped Plain and Reinforced Concrete Beams Loaded in Torsion", Civil Engineering Studies Report No. 2006, West Virginia University, Morgantown, West Virginia, 1970.
- 24. Gangarao, H.V.S., and Zia, P., "Rectangular Prestressed Concrete
 Beams Under Combined Bending and Tors on", Department of
 Civil Engineering, N. Carolina State Diversity at Raleigh,
 1970.

- 25. Gesund, H., and Boston, L.A., "Ultimate Strength in Combined Bending and Torsion of Concrete Beams Containing Only Longitudinal Reinforcement", Journal of the American Concrete Institute, 61 (11), 1964.
- 26. Gesund, H., Schuette, F.J., Buchanan, G.R., and Gray, G.A., "Ultimate Strength in Combined Bending and Torsion of Concrete Beams Containing Both Longitudinal and Transverse Reinforcement", Journal of the American Concrete Institute, 61, 1964.
- 27. Goode, C.D., and Helmy, M.A., "Ultimate Strength of Reinforced Concrete Beams in Combined Bending and Torsion", American Concrete Institute, SP-18, 1968.

Ç,

- 28. Gvozdev, A.A., Lessian and Rulle, L.K., "Research on Reinforced Concrete Beams Under Combined Bending and Torsion in the Soviet Union", American Concrete Institute, SP-18, 1968.
- 29. Henry, R.L., and Zia, P., "Behavior of Rectangular Prestressed Concrete Beams Under Combined Torsion, Bending and Shear", Department of Civil Engineering, North Carolina State University at Raleigh, 1971.
- 30. Hognestad, E., "A Study of Combined Bending and Axial Load in Reinforced Concrete Members", University of Illinois Engineering Experiment Station, Bulletin Series No. 399, Urbana, Illinois, 1951.
- 31. Hsu, T.T.C., "Torsion of Structural Concrete Plain Concrete Rectangular Section American Concrete Institute, SP-18, 1968.
- 32. Isu, T.T.G., "Torsion of Structural Concrete A Summary on Pure Torsion", American Concrete Institute, SP-18, 1968.
- 33. Hsu, T.T.C., "Torsion of Structural Concrete Uniformly Prestressed Rectangular Members Without Web Reinforcement", Journal of Prestressed Concrete Institute, 13 (2), 1968.
- 34. Hsu, T.T.C., "Ultimate Torque of Reinforced Rectangular Beams", Journal of Structural Division, ASCE, 94 (ST2), 1968.
- 35. Hsu, T.T.C., "Torsion of Structural Concrete Behavior of Reinforced Concrete Rectangular Members", American Concrete Institute, SP-18, 1968.
- 36. Hsu, T.T.C., "Post-Cracking Torsional Rigidity of Reinforced Concrete Sections", Journal of the American Concrete Institute, 70 (5), 1973.

- 37. Hsu, T.T.C., and Kemp, E.L., "Background and Practical Application of Tentative Design Criteria for Torsion", Journal of the American Concrete Institute, 66 (1), 1969.
- 38 Humphreys, R., "Torsional poperties of Prestressed Concrete", The Structural Engineer 35 (6), 1957.
 - Jacobsen, E.B., "Torsion, Bending and Shear in Prestressed Concrete Beams", M.Sc. Thesis, University of Alberta, Edmonton, 1970.
- 40. Johnston, D.W., and Zia, P., "Hollow Prestressed Concrete Beams Under Combined Torsion, Bending, and Shear", Department of Civil Engineering, North Carolina State University at Raleigh, 1971.
- 44. Johnston, C.D., "Strength and Deformation of Concrete in Uniaxial Tension and Compression", Magazine of Concrete Research, Volume 22, No. 70, March 1970.
- 42. Kemp, E.L., Sozen, M.A., and Siess, C.P., "Torsion in Reinforced Concrete", Structural Research Series No. 226, Department of Civil Engineering, University of Illinois, Urbana, Illinois, 1961.
- 43. Kollbrunner, C.F., and Basler, K., "Torsion in Structures An Engineering Approach", (Translated from the German Edition by E.C. Glauser), Springler-Verlag, Berlin, 1969.
- 44. Kupfer, H., Hilsdorf, H.K., and Rusch, H., "Behavior of Concrete ..."

 Under Biaxial Stresses", Journal of the American Concrete

 Institute, 66 (8), 1969.
- 45. Kuyt, B., "A Theoretical Investigation of Ultimate Torque as Calculated by the Truss Theory and by the Russian Equilibrium Method", Magazine of Concrete Research, 23 (77), 1971.
- 46. Kuyt, B., "A Method for Ultimate Strength Design of Rectangular Reinforced Concrete Beams in Combined Torsion, Bending and Shear", Magazine of Concrete Research, 23 (78), 1972.
- 47. Lampert, P., "Torsion and Bending in Reinforced and Prestressed Concrete Members", Proceedings of the Institution of Civil Engineers, Volume 50, 1971.
- 48. Lampert, P., and Collins, M.P., "Torsion, Bending and Confusion."

 An Attempt to Establish the Facts", Journal of the American

 Concrete Institute, 69 (8), 1972.

49. Lampert, P., "Postcracking Stiffness of Reinforced Concrete Beams in Torsion and Bending", American Concrete Institute, SP-35, 1973.

- W. 5:16

POST POR

- 50. Leonhardt, F., "Shear and Torsion in Prestressed Concrete",
 Lecture, Session IV, VI FIP Congress, Prague, Czechoslovakia, 1970.
- 51. Lessig, N.N., "Theoretical and Experimental Investigation of Reinforced Concrete Members Subjected to Combined Bending and Torsion", (in Russian), Theory of Design and Construction of Reinforced Concrete Structures, Moscow, Russia, 1958.
- Reinforced Concrete Elements with Rectangular Cross Section Subjected to Flexure and Torsion", (in Russian),
 Trudy No. 5, Concrete and Reinforced Concrete Institute,
 Moscow, Russia, 1959.
- 53. Liao, H., and Ferguson, P.M., "Combined Torsion in Reinforced Concrete L-Beams with Stirrups", Journal of the American Concrete Institute, 66 (12), 1969.
- 54. McGee, W.D., and Zia, P., "Piestressed Concrete Members Under Torsion, Shear and Bending", Department of Civil Engineering, North Carolina State University at Raleigh, 1977.
- 55. McMullen, A.E., and Warwaruk, J., "The Torsional Strength Rectangular Reinforced Concrete Beams Subjected to termined Loading", Report No. 2, Department of Civil Engineering, University of Alberta, Edmonton, 1967.
- 56. Mitchell, D., Lampert, P., and Collins, M.P., "The Effects of Stirrup Spacing and Longitudinal Restraint on the Behavior of Reinforced Concrete Beams Subjected to Torsion", Publication 71-22, Department of Civil Engineering, University of Toronto, Toronto, 1971.
- 57. Mukherjee, P.R., and Kemp, E.L., "Ultimate Torsional Strength of Plain, Prestressed," and Reinforced Concrete Members of Rectangular Cross Section", Civil Engineerin Studies No. 2003, Department of Civil Engineering, University of West Virginia, Morgantown, 1970.
- 58. Mukherjee, P., and Warwaruk, J., "Prestressed Concrete Beams with Web Reinforcement Under Combined Loading", Structural Engineering Report No. 24, University of Alberta, Edmonton, 1970.
- 59. Nadai, A., "Theory of Flow and Fracture of Solids", McGraw Hill Book Company, Inc., New York, 1950.

- 60. Pandit, G.S., and Warwaruk, J., "Reinforced Concrete Beams in Combined Bending and Torsion", American Concrete Institute, SP-18, Detroit, Michigan, 1968.
- 61. Popov, E.P., "Introduction to Mechanics of Solids", Prentice-Hall, Inc., New Jersey, 1968.
- 62. Rajagopalan, R.S., Behera, U., and Ferguson, P.M., "Partially Over-Reinforced Beams Under Pure Torsion", Journal of the American Concrete Institute, 68 (10), 1971.
- 63. Rajagopalan, K.S., Behera, U., and Ferguson, P.M., "Total Interaction Method for Torsion Design", Journal of the Structural Division, ASCE 98 (ST9), 1972.
- 64. Rangan, B.V., and Hall, A.S., "Strength of Rectangular Prestressed Concrete Beams in Combined Torsion, Bending and Shear", Journal of the merican Concrete Institute, 70 (4), 1973.
- 65. Rao, D.L.N. and Warwaruk, J., "Prestressed Concrete 1-Beams Subjected to Combined Loadings", Structural Engineering Report No. 46, University of Alberta, Edmonton, 1973.
- 66. Rao, D.L.N., and Warwaruk, J., "Finite Element Analysis for Combined Loadings with Improved Hexahedrons", Structural Engageering Report No. 47, University of Alberta, Edmonton, 1973.
- 67. Shaw, F.S., "Torsion of Solid and Hollow Prisms in the Elastic and Plastic Range by Relaxation Methods", Report ACA-11, Australian Council for Aeronautics, Melbourne, Australia, 1944.
- 68. Swamy, N., "The Behavior and Ultimate Strength of Prestressed Concrete Hollow Beams Under Combined Bending and Torsion", Magazine of Concrete Research, 14 (40), 1962.
- 69. Timoshenko, S.P., and Goodier, J.N., "Theory of Elasticity", McGraw Hill Book Company, Inc., New York, 1970.
- 70. Turner, L. and Davies, V.C., "Plain and Reinforced Concrete in Torsion, with Particular Reference to Reinforced Concrete Beams", Selected Engineering Papers No. 165, The Institute of Civil Engineers, London, England, 1934.
- 71. Victor, D.J., and Ferguson, P.M., "Reinforced Concrete T-Beams Without Stirrups Under Combined Moment and Torsion",

 Journal of the Emerican Concrete Institute, 65 (1), 1968.
 - 72. Vlasov, V.Z., "Thin-Walled Elastic Beams", (Translated from Russian), 2nd Edition, Israel Program for Scientific Translations, Jerusalem, 1961.

- 73. Victor, D.J, and Ferguson, P.M., "Beams Under Distributed Load Creating Moment, Shear, and Torsion", Journal of the American Concrete Institute, 65 (4), 1968
- 74. Warwaruk, J., and Misic, J., "Prestressed Concrete Beams Subjected to Combined Bending, Torsion and Shear An Experimental Study (In Serbo-Croatian)", Civil Engineer VI, Zagreb, Yugoslavia, 1971.
- 75. Woodhead, H.R., and McMullen, A.E., "A Study of Prestressed Concrete Under Combined Loading", Research Report No. CE 72-43, University of Calgary, Calgary, 1972.
- 76. Wyss, A.N., Garland, J.B., and Mattock, A.H., "A Study of the Behavior of I-Section Prestressed Concrete Girders Subject to Torsion", Structures and Mechanics Report SM 9-1, University of Washington, Seattle, 1969.
- 77. Wyss, A.N., and Mattock, A.H., "A Study of I-Section Prestressed Concrete Girders Subject to Torsion, Shear and Bending", Structures and Mechanics Report SM 71-1, University of Washington, Seattle, 1971.
- 78. Mudin, V.K., "Determination of Load-Bearing Capacity of Reinforced Concrete Members of Rectangular Cross Section Under Combined Torsion and Bending", (in Russian), Beton and Zhelezobeton 6, Moscow, Russia, 1962.
- 79. Zia, P., "Torsional Strength of Prestressed Concrete Members",
 Ph.D. Thesis, Department of Civil Engineering, University
 of Florida, Gainsville, 1960.
- 80. Zia, P., "Torsional Strength of Prestressed Concrete Members",
 Journal of the American Concrete Institute, 57 (10), 1961.
- 81. Zia, P., "Torsion Theories for Concrete Members", American Concrete Institute, SP-18, 1968.
- 82. Zia, A., "What do We Know About Torsion in Concrete Members",
 Journal of the Structural Division, ASCE 96 (ST6), 1970.

APPENDIX A

TEST RESULTS FOR SERIES B AND C

Complete test results for each beam of series B and C are presented in this appendix. Tables A-1 to A-32 contain torques, bending moments, shears, twists and deflections for each increment obtained in the experimental phase of this investigation. In essence, this chapter represents detailed information for series B and C as compared to that in Chapter 4 where only final results are given. Series A is not included here for two reasons: first as mentioned previously, beams of this series were not instrumented well, and second, some data for this series is available elsewhere 39, 74.

The locations of twisting meters and deflection guages are presented in Chapter 3.

In some cases, collapse of a beam occurred as final readings were being taken; therefore some information is missing for the last increment for several beams. Increments corresponding to first cracking and ultimate are designated in these tables for each beam using a single and double asterisk, respectively. With the exception of beam CH-G, no deflections were taken for beams tested in pure torsion; this was done for beam CH-G primarily to observe upward deflection, since a mode 3 was expected. Similarly, for beams tested in pure, bending no stirrup strains were taken.

TABLE A-1 THE TEST RESULTS - ORSERVED DATA FOR BEAM BS-1

					Dellocti	ons (inch	s x 10 ¹)
Load Stage	Torque (in,kips)	Rend.M. (in.kip≠)	Shear (kips)	Twist (rai/in x 10 ⁴)	Eant	Center	Wat
0		19	0.02		0	0	0
1		121	1.57		10	15	20
2		231	3.23		25	` 35	50
3		342	4.91		45	65	90
4	·	A 451	6.57		60	95	125
5	i .	517	7.57		70	120	150
6		583	8.57		80	140	175
7		627.	9.24		95	150	185
84		671	-9.91		95	160	205
•	1	715	10.57	-	110	180	225
10		759	11.24		120	195	250
11		803	11.91		135	225 g	280
1.2	1	847	12.57		145	245	315.
13		891	13.24	,	165	280	360
14		935	13.91		180	315	405
15		979	14.57		200	350	J 455
16	[1023	15.24		210	380	520
1744		1067	15.91		240	455	610

^{*} First Crack

TABLE A-2
TEST RESULTS - OBSERVED DATA FOR BEAM BS-1S

	_				Deflect	lons (inche	s x 10 ¹)
Load Stage	Torque (in.kips)	Bend.M. (in.kips)	Shear (kips)	Twist (rad/in x 10 ⁶)	Zast	Center	West
0		19	0.02	,	0	0	0
1		121	1.59	• •	15	25	25
2	ί.	231	3.23	·	35	55	60
3	1	341	4.90		50	80	90
4		407	5.90		55	100	/110
5		473	6.90		70	120	130
6		517	7.57		75	130	150
7		561	8.25		65	140	160
		605	8.90		90	155	180
,		627	9.23		95	16	190
10 =		649	9.57		95	170	200
11	!	671	9.90	•	100	175	-205
120		693	10.23	•	100	180	215
13	,	7,05	10.57		110	200	220
14		759	11.23		125	220	245
15 .	,	803.	11.90		135	235	270
76 🕱] .	847	12.57	. · ·	145	260	305
17]	891-	13.23	* ্ৰ	155	290	350
18		935	13.90		175	325	395
19 3		979	14.57		195	365	465
20	1	1023 '	15.23		285	. 550	540
2144		1052	15.67	. •	_	:	-

^{*} First Crack

TABLE A-3

TEST RESULTS - ORSERVISION TO POR FEAR RS-

load Stage	Torque (in.kips)	Bend, M, (in.kips)	Shear	Mat	Deflect	ions (inche	a x 10 ³
	(111,2196)	(in.kips)	(kips)	(he)/18/2 10°)	East	Center	West
0	0	19	0.01	.0	0	0	0
1		124	1.56	5	15	15	25
2	17	235	3.21	6	25	40	50
3	25	348	4.88	,	40	60	85
4	34	461	6.36	14	50	85	115
3	39	528	7.56	15	65	105	135
6	44	596	8.56	20	70	125	160
7	48	⁰ 641	9.23	22	80	140	125
	51	686	9.92	22	85	145	190
94	54	731	10.56	25	90	165	. 205
10	59	798	11.56	28	70	165	220
11	65	866	12.56	- 36	85	190	260
12	70	933	13.56	38	110	255	335
23	73	998	14.23	48	145	305	395
14	76	1024	14.90	56	165	340	460
15	. 80	1068	15.56	59	195	390	525
16	82	1102	16.06	72.	205	430	600
17	84	1125	16.36	73	220	470	640
18	86	1147	16.73	79	235	520	-
1944	87	1170	17.06		***	520	710

A First Crack

TABLUTE - OBSES ATA FOR BEAM BS-2

Load	Torque	Date A	hear	Twist	Deflect	ions (inch	es x 10 ³)
Stage	(in.kips)	(in kon)	(Kips)	(rad/in x 10 ⁶)	East	Center	West
0	0	19	0.02	0	0	0	a
1	12	134	1.77	-1	10	20	25
·2	24	231	3.23	9	25	40	50
3	34	319	4.57	~ 14	35	65	75
4	44	407	5.90	21	45	85	100
5	49	451	6.57	23	55	95	120
6	53 .	495	7.23	23	55	110	130
74	58	539	7.90	27)	60	120	140
	63	.·· 583	8.57	33	.s. 65	130~	160
•	66	605	8.90	35	80	, 140	1,90
10	68	627	9.23	16 X	80	150	180
11	70	649	9.57	36	80	155	¥ 185
12	A73	671	9.90	_{ել} 37	85	165	200
13	76	715	10.57	42	90	175	210
14	83	759	11.23	48	100	190	240
15	87	· 803	11.90	53	110	225	285
16	° 92	847	12.57	57	. 125	240.	295
17	97	891	13.23	65	135	275	330
	a 200	913	13.57	68	145	305	380
- 1	102 برتم	935	13.90	78 -	155	ഷ്ഠ	420
20	104	957	14.23	- 84	175	365	. 455
24 .	107	979	14.57	° 90	180.	190	500
22**	109	1001	14.90	٠	- ľ	445	570

A Piret Crack

TAME A-S
TEST RESULTS - ORSERVED DATA FOR BEAM RS-3

				<u> </u>			
losd	Torque	Bend . H.	Shear	Twist	Deflect	iona (inche	4 x 10 ³)
Stage	(in.kipa)	(in.kips)	(kipe)	(rad/in x 10 ⁴)	East	Center	West
0	- 0	18	0.12	0	0	0	
1	28	102	1.67	10	-10	3	25
2	57	192	3.34	22	20	45	55
3	79	264	4.67	33	40	45	75
4	91	300	5.34	42	45	- 75	95
5	102	336	6.01	46	45	85	110
6	113	- 372	6.67	54	50	100.	120
7	125	- 408	7.34	58	55	105	130
	136	444 . ,	8.01	73	60	115	140
94	147	480	8.67	76	60	125	145
10	159	. 516	9.34	88	63	135	170
11	170	552	10.01	99	75	160	195
.12	176	570	10.34	109	95	180	223
13	181	588	10.67	119	100	205	255
14	187	606	11.01	140	105	215	280
15	2 - 193	624	11.34	· 151	105	235	310
16	198	642	11.67	168	√/125	265	340
17	201	651	11.84	185	140	295	405
18	204	660	12.01	202	145	320	435
19	207	669	12.17	225	155	345	-485
2048	210	678	12.34		_	465	_

[#] Pirst Crack ## Ditimate

TABLE A-6

TEST RESULTS - OBSERVED DATA FOR THE BEAT

		1			Deflect	ions (inche	- 103)
Load	Torque	Bend.M.	Shear	Tvist :	Dellect	TOUR (INCHE	- x 10)
Stage	(in.kips)	(in.kips)	(kips)	(rad/in x 10 ⁴)	East	Center	Vest
.0	0	10	0.38	0	0	0	0
1	30	"r、 23	0.93	.7	-55	es 255	-50
2	45	32	1.27	15	-60 🐧	355	-50
3	60 .	. 40	1.60	20	-60	-55	-45
4	75	47	1.93	27	-60	-40	-40
5	90	′ 56	2.27	37 🗓	-60	-45	-40
6	105	64	2.60	44	-60	-40 ·	-30 .
7	135	71	2.93	53	-60	-35	-25
8	1356-7	80	3.27	62	-65	-30	-20 _E
•	150	88	3.60	1 70	60	-25	-15
104	165	95	3.93	80	-55	, -20 s	-10
11	180	104	4.27	92	-55	-15	y-5
12	195	112 ,	4.60	105	-45	-10	,
13	210	119	4.93	122	-50	- 5.	່ ຸນ5
14	J 215	122	5.03	.133	-50	0.0	20
15	219	124	300	143	-50	5	25
16 -	225	~ 128	3.27 -	153 🐣	-45	5	25
17	229	. 130	5.37	194	-45	. 0	25
18	231	131	5.40	480	-15	20	35
19**	232	132	5.43	570	+15	40	55

^{*} First Crack

TABLE A-7
TEST RESULTS - OBSERVED DATA FOR BEAM HS-5

Loed	Torque	Bend.N.	Shear	Twist	Peflect	loas (Inche	× 103
Stage	(in.kips)	(in.kipa)	(kips)	(rad/in x 10 ⁴)	Fast	Center	Vest
0	ō	6	0.48	0	0	` 0	0
1	45	8 5	0.70	16		. 0	5
2	68	10	0.87	30	0	3	, 0
3	90	11.12	1.03	37	-10	5	5
4	104	14	1.13	44	-10	- 5	10
5	117 .	15	1,23	52	-20	- 5	3
6	130	16	1.33	60	-20	~10	,
7	140	. 17	1.40	67	-25	-10	1 1
	149	18	1.47	74	-20	-10	!
•	154	18	1.53	. 79	-25	-10	!
10	167	19	1.60	- 84	-20	-10	!
11	- 176	- 20	1,67	90	-25	-10	! !
120	184	21	1.73	101	-25	-10	•
13	194	22	1.80	110	-25	15	
14	203	22	1.87	119	-30	-15	
15 .	212	23	1.93	128	÷35.	-15	
16	221	· 24	2.00	, 147	-35	-20	(
17	225	24	2.03	165	-35	-15	. (
18	230	25	2.07	186	-40	-20	. :
19 `	234	25	2.10	221	-40	-20	
20**	236	25	2.12	- 11.	-40	-55	-23

[#] First Crack

TABLE A-

TEST RESULTS - OBSERVED DATA FOR BEAM BS-6

Load	Torque	· Bend. N.	Shear	Twist	Deflect	ions (inche	s x 103
Stage	(in.kips)	(in.kips)	(kips)	(rad/in x 10 ⁶)	Eest	Center	Vest
0	, 0	9	0.27	0			,
1	45	9	0.27	22	1		
2	68		0.27	- 46		1	
3.	90	9	0,27	64	·è'	İ	1 .
4	104		0.27	: 72			
5	117	,	0.27	88			
6	130	,	0.27	105	1	ŀ	'
7	140	, ,	0.27	` 125		.	1
8 .	149	,	0.27	135	1	1	
94	158	,	0.27	151			
10	167	,	0.27	153	1		
11	168	. 9	0.27	164			١.
12	170 🗇	,	0.27	160	1	, ' , '	^
13	176	9.	0.27	179			
14	176	•	0.27	184			
15	184	,	0.27	191		1	
16	194	,	0.27	217	1-	1.	
17	197	,	0.27	264	+	1	
18	202	4 9 ′	0.27	253 _K	1	1	
1944	203	,	0.27	326	1	ا	ŀ
20	185	,	0,27	509	1	1	ĺ

[#] First Crack

load	Torque	Bend.N.	Shear	Trist	Deflect	ions (inche	a 10 ³
Stage	(im.kipa)	(in.kips)	(kips)	(rad/in x 10 ⁶)	East	Center	West
0		17	0.07		4 / O	0	0
1		119	1.62		10	25	20
2	1 .	- 22 9	3.28		30	55	35
3		339	4.95	اهِ ا	50	90	85
4	1	405	5.95	· ·	. 60	100	110
5 - 1		449	6.62	ere i	60	120	120
6		493	7.28		70	130	140
7*	[537	7.95	ł	75	145	160
		581	8.62		85	155	180
•		625	9.28		90	180	205
10eb	l	669	9.95	ę	100	200	240
11		713	10.62		115	230	260
12		474	11.28		130	260	320
13		. 167 9	11.95	1	150	295	365
14		845	12.62	· (165	- 335 '	430
15		867	12.95] ,	180	380	470
16		889	13.28		190	395	500
17		911	13.62		210	440	570
18**		935	13.95			l: -	615

^{*} First Crack

Load	Torque	Bend.M.	Shear	Twist	Deflect	ions (inche	s x 10 ³
Stage	(in.kips),	(in.kips)	(kips)	(rad/in x 10 ⁶)	Zast	Center	West
0	0	17	0.08	0	0	0	0
í°	12	118	1.63	6	10	25	25
2	. 24	226	3,29	11	25	50	55
3	34	√313 Å	4.63	17	40 €	70	85
. 4	44 -	399	3.96	19	45	90	110
, \$	49 +	443	6.63	- 23 °	50	110,	. 130
6	53	486	7.29	27	60	120	140
2 7 4	* 58	529	7.96	31 0-	~ 70 <i>~</i>	135	160
	63	573	8.63	. 36	75	145	175
9	28	616	9.29	40	80	170	· 200
10	73	659	9.96	47	90	190	230
11	78	703	10.63	57 ∉	100	210	260
12	83	746	11.29	\$1	115	24G	300
13	87	789	11.96	93 ~-	120	270	345
14	92	-633	12.63	117	145	310	° 385
15	95	854	12.96	133	150	325	415
16	97	876	13.29	157	165	360	455
17	99	887	13.46	167	175	380	485
18	100	898	13.63	175	180		505
19	101	908	13.79	182	190	410	525
20	102	919	13.96	191	195	425	545
21	103	930	14.13	198	200	445	570
2244	104	941	14.29	- ;	- %		590

A First Crack

TABLE A-11

TEST RESULTS - ORSERVED DATA FOR BEAM BU-3

Losd	Torque	Bend.H.	Shear	Twist	Deflect	ions (inche	e x 10 ³)
Stage	(in.kips)	(in.kips)	(kips)	(rad/in x 10 ⁴)	East	Center	West
0	0	16	0.11	b	0	0	0
1	28	109	1.66	11	10	20	25
2	57	209	3.32	26	30	50	55
3	79.	389	4.66	40	40	75	85
4	91	329	5.32	49	40	90	- 90
54	102	369	5.99	36	45	95	110
6	ື 113	409	6,66	70	55	110	125
, 7	125	449	7.32	104"	63	135	150
	130	469	7.66	125	70	145	165
•	136	489	7.99	142	80	155	190
10	142	509	8.32	167	85	170	205
11	147	529	8.66	198	90	195	235
12	153	549	. 8.99	235	105	225	270
13	159	569	9.32	301	- 115	260	270
144	164	. 589	9.66	-	-	-	-

Proc Colck

TABLE A-12
TEST RESULTS - OSSERVED DATA FOR BEAM BH-4

Load	Torque	Bend.M.	Shear	Twist	Deflect	lons (Inche	x 10 ³)
Stage	(in.kips)	(in.kips)	(kips)	(re#/in x 10 ⁶)	East	Center	Vest
0	0	ტ . 10	0.31	ő ^K		0	0
1	15	15	0.52	٠. ٠	5	15	5,
2	30	25	0.86	143	10	15	, S
3	45	33	1.19	21	A 10	10	9,25
3 4	60	42	1.52	30 🐇	15	15	25
5	75	52	1.86	37	20	20	30
6	90	60	2.19	47	20	20	. 35
7	97	65	2.36	56	20 -	25	. 35
84	.105	69	2.52	60	15	25	40
9	112	74	2.69	69	20	30	40
1 0	120	79	2.86	81	15	35	50
11	128	83	3.02	95	~ 20	35	. 50
12	135	87	3.19	105	15	40	ຶ 55
24	142	92	3,36	117	20	40	- 60
14	150	96	3.52	127	15	40	60
15	157	101	3,69	146	15	45	65
16	165	106	3.86	157	20	45	70
17	173	110	4.02	180	. 20	45	75
18	177	111	4.12	262	3	50	75
19	#180	114	4.19	299	20	45	75
20	183	116	4.26	354	30	45	75
2144	185	117	4.29	460	25	50	75
22	179	118	4.31	• 1	1		

* First Crack

TAME A-11 TEST BEGINTS - DASPEYED BATA FOR BEAR RE-S

							
land	101944	⊫ ≈4.4.	Shear	Total	Beilecti	das (lachri	4 10')
Store	(in.hipa)	(in.kipa)	(kipa)	(cm//1m x 10 ⁴)	FARE	Center	Wet
•	•	12	0,25	ė	•	•	•
1	>0	20	8.44	12 .	- 3	,	,
2	44	28	8.64	22	•	10	, ,
,	40	33	0.80	>>	- 3	3	10
4	72	34	0.93	37	- 3	3	10
5	78	40	1.00	38	•	3	15
4		42	1.04	42	- 5	•	10
7	90,	45	1.13	44	- 5	3	5
	*	44	1.20	48	-10	5	10
•	102	30	1.26	53	-10	3	10
10	104	52	1.33	34	-10	3	10
114	114	:5	1.40	62	- 5	3	15
12	120	57	1.44	65	- 5	5	15
13	126	59	1.53	69	- 5	5	10
14	132	62	1.60	80	- 5	5	10
15	130	65	1.66	96	- 5	3	10
16	144	67	1.73	107	-10	3	13
17	150	70	1.50	116	-15	5	15
18	156	n	1.86	125	-10	3	19
19	162	75	1.93	126	-13	3	15
20	168	77	2.00	141	-20	3	13
21	174	77	2.06	201	-25	• .	10
22	177	\$1	2.10	231	-25	- 3	15
23	179	82	2.13	262	-25	- 5	1.0
24	182	83	2.16	286	-25	-10	10
25	186	85	2.20	331	-25	-10	10
2644	189	86	2.23	405	-25	15	,

* First Crack

TABLE A-14 FEST RESULTS - OBSPRIVED DATA FOR BEAN BH-6

Lood	Torque	Bend.N.	Shear	Twist	Deflect	ions (inche	x 10 ³)
Stage	(in.kips)	(in.kips)	(kips)	(rad/im x 10°)	Last	Center	Vest
0	•	•	0.19	•			1
1	45	6	0.19	19	ł	i	ì
2	63	6	0.19	12	1		1
3	90	6	0.19	47	1	i	l
4.	104	6	0.19	53	1.	į.	Ì
5	117	6	0.19	65	1		İ
6	130	6	0.19	85	1		ĺ
7	140	6	0.19	102	ł	1	1
	149	•	0.19	137	i	i	1
•	152	6	0.19	154	l	ł	ł
10	155	6	0.19	163	l	į.	1
11	157	•	0.19	174			l
12	160	•	0.19	196	l	ı	1
13		6	6.19	193	l	· I	
14	4	•	0.19	267	l	i	
15	147	•	0.19	236	ł .	1 .	l
16	174	6.	6.19	31	l	1	
17	176	•	0.19	302	1	1	i
18	179	•	0.19	367			1
19	181	6	9.19	438	ł	1	1
2044	182		6.19	604	l	İ	1

* First Crack ** Vitimate

TANLE A-15 TEST RESULTS - OBSERVED DATA FOR BEAM BIS-24

Load	Torque	Rend. H.	Shear	Tylat	Deflect	ione (Inche	× 103)
Stage	(in.kipe)	(in.kips)	(kips)	(rad/in = 10 ⁴)	fast	Center	Vest
0	0	19	0.02	0	0	0	0
1	5	54	0.57	-	•	15	15
2	•	76	0.90	-	0	15	25
3	10	100	1.23	4	,	1.5	30
4	14	123	1.57	5	10	25	35
5	15	145	1.90	-6	10)0	40
6	18	167	2.23	,	•	35	50
7	21	190	2.57	7	د ن	40	50
84	23	212	2.90	10	20	¹ 45 ,	60
9	26	234	3.23	11	->	50	75
10	31	279	3.90	15	35	85	105
11	33	301	4.23	19	45	100	135
12	36	324	4.57	22	50	125	155
13	39	346	4.90	27	65	145	195
14	41	368	5.23	33	85	190	255
15	42	379	5.40	38	90	210	290
16	44	391	5.57	46	100	235	335
17	45	401	5.73	54	115	270	380
18	46	413	5.90	58	125	295	415
19	48	424	6.07	69	140	340	475
20	49	435	6.23	78	155	385	-540
2144	50	446	6.40	<u> -</u>	195	470	675

^{*} First Crack

TABLE A-16 TEST RESULTS - OBSERVED DATA FOR BEAM B15-26

Load	Totque	Bend.N.	Shear	Twist	Deflect	ions (inche	s x 10 ³)
Stage	(in.kips)	(in.kips)	(kips)	(rad/in x 10 ⁶)	Zast	Center	Vest
0	0	19	0.02	0	0	0	0
1	5	56	0.57	- .	5	10	10
2		78	0.90	-	5	10	15
3	10	100	1.23	-	10	20	25
4	14	123	1.57	4	10	20	35
5	15	145	1.90	5	10	30	35
6	18	167	2.23	7	15	35	45
7	21	. 190	2.57	7	15	40	55
. 84	23	212	2.90	10	25	45	60
,	26	234	3.23	10	25	55	70
10	21	279	3.90	14	35	85	100
11	36	324	4.57	14	60	130	175
12	39	346	4.90	23	65	, 165	21.5
13	41	368	5.23	31	90	200	270
14	44	391	5.57	35	110	250	335
15	45	401	5.73	42	125	290	350
16	46	413	5.90	51	140	J25	435
17	48	424	6.07	53	160	365	495
18	49	435	6.23	59	185	425	590
1944	50	146	6.40	-	-		-

^{*} First Crack

TABLE A-17 TEST RESULTS - OBSERVED DATA FOR BEAN BIS-44

Load	Torque	Bend.H.	Shear	Trist	Deflect	ions (inche	= x 103)
Stage	(in.klps)	(in.klps)	(kips)	(rad/in × 10 ⁶)	East	Criter	Vent
. 0	0	19	0.08	0	0	0	0
1	12	31	0.29	0	0	5	0
2	24	32	0.63	4	•	5	5
3	36	71	0.96	10	3	15	10
4	48	91	1.29	16	3	25	20
3	54	101	1.46	17	5	25	20
6	60	112	1.63	23	5	25	30
7	66	121	1.79	28	10	25	30
	72	131	1.96	30	10	30	30
•	78	145	2.13	33	15	35	35
10	84	151	2.29	40	15	40	45
21	90	1634	2.46	46	15	45	50
12*	96	172	2.63	48	13	45	50
13	102	181	2.79	54	15	50	P . 55
14	108	191	2.96	. 4	20	60	65
15	114	202	3.13	75	20	65	75
16	120	211	3.29	98	25	75	95
17	126	221	3.46	154	35	100	125
18**	132	232	3.63	-	-	-	-

^{*} First Crack

TABLE A-18 TEST RESULTS - OBSERVED DATA FOR BEAN BIS-46

Load	Torque	Bend.H.	Shear	Tvist	Deflect	ions (inche	15 x 10 ³)
Stage	(in.kips)	(in.kips)	(kips)	(red/in x 10 ⁶)	East	Center	West
0	0	18	0.10	. 0	0	0	0
1	24	50	0.65	19	5	3	10
2	34	68	0.98	16	5	10	15
3	48	87	1.31	22	5	15	25
4	60	107	1.65	` 30	10	25	35
5	72 '	125	1.98	37	10	25	40
6	84	144	2.31	46	15	. 30	45
7	90	154	2.48	· 51	10	35	50
	96	164	2.65	57	15	40	55
94	102	173	2.81	62	15	40	60
10	108	182	2.98	68	20	45	65
11	114	192	3.15	73	20	50	75
,12	120	201	3.31	8 0	25	60	85
13	126	211	3.48	93	30	65	100
14	132	221	3.65	106	30	80	.105
15	138	230	3.81	125	40	90	130
16	144	239	3.98	148	45	115	160
17	150	249	4.15	172	55	135	190
18	156	258	4.31	211	60	160	225
19	162	268	4.48	256	75	185	270
20	168	278	4.65	315	85	235	325
21**	174	287	4.81	-	-	•	-

⁴ First Grack

THEY PROMITS - ORCHARD MATA FOR REAR RES-BA

lani	7	Bormal . M.	The of	Tulet	Hellect	long (Inche	ч л 10 ¹)
Stage	(in.kipn)	(In.hips)	(k1p4)	(rel/In a 10 ^t)	tast	Contur	Wel
•	•	•	0.25	•			
L	11		9.25	4			
2 -	22		0.25	6			
3) 32		0.25	15			ļ
14	45		0.25	19			
5	5)	4,	0.25	n		1	
4	64		0.25	31	!		
,	75	٠	0.25	361	!		l
	15	•	0.25	46	İ		1
,	, × ,		0.25	53	1	İ	l
10	101		0.25	59	ļ	ł	1
n	107		0.25	62	ł	} ·	
12	112		0.25	4	İ	İ	[
130	117	1	0.25	70	1	1	
14	122	• 1	0.25	78		ł	l
15	128		0.25	83	1	1	İ
16	133		0.25	91	i	i	l
17	138		0.25	99	1	l]
18**	144		0.25	220	l	i	
19	115		0.23	311	l	I	l
20	101		0.25	764	1	1	1

TAPLE A-20 TEST RESULTS - OBSERVED DATA FOR BRAN BIS-65

Load	Torque	Bend . N.	Sheer	Telst	Deflect	lone (inche	s = 10')
Stage	(in.kips)	(im.kips)	(kips)	(rad/in x 10 ⁴)	East	Center	West
•	•	5	0.25	0			سمادي:
1	22	5	0.25	7	l		l
2 .	32	3	0.25	11	1	1	1
,	45	5	0.25	15	1		
4	53	3	0.23	n	1		
3	4	3	0.25	30	l		
6	75	3	0.25	33	l		l
,	85	5	0.25	42			
	96	5	0.25	47	[Į.
,	107	5	0.25	57]		
10	117	5	0.25	4			
11*	128	5	0.25	74			
12	133	5	0.25	80			
13	138	5	0.25	84			
14	144	5	0.25	20			
15	149	5	0.25	95	e i		l.
16	155	5	0.25	102		` '	
17	160	5	0.25	109			
18	164	5	0.23	114			
19	171	5	0.25	128	,		
20	174	5	0.25	144			
21	182	5	0.25	175	~:*		
22	187	5	0.25	228			
23	190	5	0.25	280			٠,
24	192	5	0.3 5	323			
25	195	5	0.23	343			
26	197	5	0.25	410			
27	200	3	0.25	448 ,			
28	20)	3	₩.25	520			
29	206	5	0,23	600			
3,744	204	3	0.25	44			-
31	197	5	0.25	-		1	

TANLE A-21 TEST PECULTS - ORGENVED DATA FOR BEAN CS-1

Load	Torque	Bend.N.	Shear	Totat	Deflect	lone (inche	x 10')
Stage	(in.kips)	(in.kips)	(kips)	(rad/in x 10 ⁴)	Fast	Center	Veec
0		24	0.02		0	0	0
1		128	1.52	:	5	10	15
2		239	3.18		20	35	40
3		351	4.85		30	60	70
4		463	6.52		45	85	95
5		552	7.85		55	105	115
6 -		641	9.18		65	125	150
7		708	10.18		75	145	180
8*		753	10.85		80	155	190
,		798	11.52		90	175	210
10		842	12.18		100	185	225
11		887	12.85		105	200	250
12		932	13.52		110	220	270
13		976	14.18		120	235	300
14		1021	14.85		130	260	325
15		1066	15.52		140	290	- 365
16		1110	16.18		160	320	410
17		1155	16.85		175	360	465
18	i l	1200	17.52		205	380	560
19**		1222	17.85		-	-	-

^{*} First Crack ** Ultimate

TABLE A-22 TEST RESULTS - OBSERVED DATA FOR BEAM CS-2

Load	Torque	Bend.M.	Shear	Tvist	Deflect	ions (inch	es x 10 ³
Stage	(in.kips)	(in.kips)	(kips)	(rad/in x 10 ⁶)	East	Center	West
0	0	28	0.03	0	0	0	0
1	12	127	1.53	•	10	15	20
2	26	236	3.19	4	25	35	40
3	39	346	4.86	7	35	55	70
4	51	457	6.53	,	45	75	90
5	59	523	7.53	10	55	90	110
6	64	566	8.19	11	60	100	125
7	69	610	8.86	12	65	110	140
8	75	655	9.53	14	^c 70	120	150
94	80	698	10.19	16	75	130	165
10	85	742	10.86	17	80	160	190
11	93	808	11.86	22	90	180	215
12	100	874	12.86	23	100	200	240
13	106	940	13.86	26	115	230	280
14	113	925	14.53	32	125	255	325
15	118	1028	15.19	37	135	280	350
16	123	1072	15.86	37	145)10°	385
17.	129	1316	16,53	48	165	350	445
18	134	1160	17.19	53	185	400	515
19	136	1183	17.53	58	205	455	590
2044	139	1204	17.80	67	230	. 500	1165

A First Crack

TAME A-23 TEST RESULTS - ORDERTON DATA FOR REAS CS-

···					Deflect!	lana finche	• = 10°)
Land Stage	Torque (in,kips)	Brnd.H. ([a,>[pn]	Shear (kipa)	Tulat (rui/in x 14 ⁴)	East	Center	Ment
-	Φ.	74	0.18	•	•	•	. •
i i	30	101	1.64	at	10	20	10
	60	197	3.34	19 ()	15	25	25
,	78	251	4.34	22	25.	50	35
	96	305	5.34	27	>0	60	45
,	114	359	6.34	32	40	75	55
	126	393	7.01	35	45	85	65
,	134	431	7.68	40	50	95	75
	150	467	8.34	42	55	105	•
,	162	503	9.0l	47	45	110	73
10•	174	539	9.68	51	50	115	••
11	186	575	10.34	54	55	125	**
12	194	611	11.01	59	65	133	105
13	210	647	11.68	68	70	150	120
24	222	413	12.34	76	80	165	130
15	234	719	13.01	72	90	190	145
16	246	755	13.68	ຶ 23	100	215	176
17	254	791	14.34	111	110	245	190
18	264	809	14.68	126	120	265	210
19	<i>₿</i> 270	627	15.01	138	130	285	223
20	276	845	15.34	153	135	310	240
21	282	963	15.64	169	145	335	265
22	284	281	16.01	184	160	370	295
23	291	890	16.18	205	180	405	330
24	294	899	16.34	223	185	423	355
25**	297	909	16.51	-	-	-	400
	at Crack	es Ulcimate	<u> </u>			A	

a First Crack as Ulcimate

TARE A-76
TEST RESULTS - OBSERVED DATA FOR BEAN CS-4

	_	Bend.N.	Shear	Tvist	Deflect	lous (Inche	z 10°)
Load Stage	Torque (in.kips)	(in.kips)	(kips)	(rad/in x 10 ⁴)	East	Center	West
•	•	12	0.63	•	•	0	•
1	39	27	1.46	7	35	35	45.
2	63	39	2.13	15	30	45	40
,	91	51	2.79	19	33	30	45
4	117	63	3.46	26	40	50	. 30
3	143	75	4.13	30	45	55	60
	169	87	4.79	41	45	70	60
٠,	195	99	5.44	47	50	75	76
	209	105	5.79	· 31	50	80	75
,	221	- 111	6.13	54	55	90	75
10	234	117	6.46	59	50	85	75
11	247	12)	6.79	65	55	90	75
120	260	129	7.13	70 '	60	95	
13	273	135	7.46	74	60	100	25
14	284	141	7.79	80	60	105	85
15	299	147	8.13	26	65	115	**
16	312	153	8.46	91	63	115	95
17	325	159	8.79	99 5	63	120	93
18	334	165	9.13	109	65	125	100
19	351	171	9.46	123	70	135	110
20	364	177	9.79	147	70	- 145	113
21	377	2 1	~10.13	221	80	145	120
22	363	136	10.24	430	90	145	105
2744	290	184	10.46			! .	

First Crack ** Vitinute

TABLE A-23 TEST RECILIES - HANFPUFD BATA PIR REAR CS-5

land	Torque	lead.S.	Shear	Tylet	bellect	lana (Inchr	· = 10')
Stage	(1m, 11pm)	(in.hipo)	() (pq)	(re4/in = 10 ⁴)	PARE	Center	Vent
•	•	12	0.43	•	•	•	•
1	44	21	1.11	11	5	,	5
2	*	33	1.79	23	,	10	10
,	120	39	2.13	24	5	10	15
4	144	45	2.46	35	5	15	20
3	154	44	2.43	37.	3	25	20
•	144	,51	2.79	40	10	20	20
7	100	54	2.96	47	10	25	25
	192	Ş7	3,13	49	10	25	25
,	204	in	3.29	52	10	23	25
10	216	63	7.46	56	,	20	30
11	228	64	3.63	39 ,	10	25	30
12*	240	69	3.79	63	10	>0	35
13	252	72	3.96	48	3	25	40
14	264	75	4.13	74	3	>0	40
15	276	78	4.29	78	10	>0	45
16	281	en l	4.46	6 5	5	30	40
17	200	84	4.63	n	10	35	45
18 5	312	67	4.79	96	3	>0	30
19	324	90	4.96	110	5	30	45
20	326	93	3.13	140		30	50
		*	5.29	189	,	25	. 12
			5.46	343	135	20	45
21. 2244	348 360	96 99			i	1 1	

Wirst Crack ** Vitimete

TABLE A-26 TEST RESULTS - OBSERVED DATA FOR BYAN CS-6

Load	Terque	Bend. N.	Shear	Trist	Deflecti	ons (Inche	n x 10*)
Stage	(in.kips)	(in.kips)	(kips)	(rad/in x 10*)	East	Center	West
•	•	6	0.53	•		•	•
1	27	6	0.53	7	•	3	•
2	53	6	0.53	10	- 5	•	•
)	80 7	6	0.53	15	- 5	• .	•
4	107	6	0.53	22	-10	- 3	- 5
5	117	6	0.53	25	- 5	•	5
6	129	6 、	0.53	39	-10	- 3	10
7	138	6	0.53	32	-15	- 3	-10
	149	6	0.53	. 33	-15	- 3	- 3
,	160	6	0.53	36	-10	- 3	- 5
10	. 171	6	0.53	33	-10	- 5	- 5
11	182	6	0.53	41	-15	-10	-10
124	192	6	0.53	44	-15	- 3	-10
IJ	208	6	0.53	52	-15	-10	-15
14	225	6	0,53	54	-20	-15	-15
15	241	6	0.53	62	-20	-15	-20
16	254		0.53	67	-20	-15	-13
17	272	,	0.53	73	-25	-20	-20
18	288	6	0.53	78	-25	-25	-25
19	304 ,,	6	0.53	91	-30	-30	-35
20	315 .	6	0,5)	107	-35	-40	-40
21	326	•	0.53	135	-40	-30	-45
22	221	6	0.53	154	-50	-40.	-50
23	342	4	0.53	189	-43	-45	-40
2644	252	6	0.53	- 267	-50	-45	-45
25	329	` .	0,52	-		l -	-

TANLE A-27 TEST RESULTS - ORSERVED DATA FOR REAM CH-L

Load	orque	Bend.M.	Shear	Tulet	Dellect	lone (Inch	es x 103
SLARE	(in.kipe)	(in.kips)	(kips)	(rad/in x 104)	Kant	Center	West
0	1	25	0.08		` 0	0	
1	ļ	124	1.50		0	10	20
2	1	233	3.24		20	40	55
3	1	344	4.91		40	- 65	80
4		410	5.91		50	80	100
5		476	6.91		60	100	120
6		520	7.85	4	65	105	130
7		÷ 563	8.24	1	70	115	145
8*		, 608	8.91	1	75	130	165
,		652	9.58]	85	145	175
10		695	10.24	i	85	155	190
11		740	10,91	Ī	90	175	205
12	i	784	11.58	[100	190	230
13]	827	12.24		110	210	260
14		872	12.91		120	225	285
15	ł	916	13458	1	130	250	310
16		959	14.24	1	140	270	345
17	;	1004	14.91	ŀ	155	295	385
18	\	1048	15.58	1	170	335	435
19		1091	16.24	1	185	375	490
20	*.	1114	16.58	1	200	405	525
21		1136	16.91		215	435	580
22	ļ	1157	17.24	į	240	490	653
23**	. }	1180	17.58	j	260	555	750

* First Crack ** Ultimate

TABLE A-28

TEST RESULTS - OBSERVED DATA FOR BEAM CH-2

		<u> </u>	T	T	T:		
Load	Torque (in.kips)	Bend.M. (in.kipe)	Shear	Tvist	Deflect	tions (incl	103)
	(14.27)	(Id. Kipe)	(kipe)	(rad/in x 10 ⁸)	East	Center	Vest
0	0	25	0.08	0	0	0	0
1	12	124	1.58	2	10	20	25
2	26	233	3.24	5	25	40	53
3	39	344	4.91	7	35	65	80
4	41	454	6.58*	. 15	50	90	110
5	49	520	7.58	16	55	105	130
6*	50	563	8.24	. 17	60	120	140
7	69	608	8.91	20	65	130	160
8	75,	652	9.58	21	65	145	180
,	80	695	10.24	· 26	85	165	200
1ó	85	740	10.91	28	90	180	215
11	90	. 784	11.58	35	100	200	250
12	95	827	12.24	46	110	215	275
13	100	\$72	12.91	53	125	245	305
14	105	916	13.58	62	.135	275	340
15.	111	959	14.24	72	145	300	380
16	116	1004	14.91	89	160	330	425
17	121	1048	15.58	101	175	370	475
18	126	1091	16.24	115	190	400	515
19	129	1114 -	16.58	126	195	425	550
20**	131	1136	16.91	133	210	455	580

* First Crack

. :

TARI. 4-27 TEST PESULTS -, ORSEPVED BATA FOR BEAM CH-1

x 10')	ons (Inche	Deflecti	TVIAL	Shear	Rend.H.	Torque	load.
Vent	Center	441	(rad/in x 10 ⁴)	(klp4)	(in.kipa)	(in.kipa)	Stage
0	0	, 0	0	0.14	24	0	0
15	15	1 5	4	1.64	114	30	ı
4,0	35	20	12	3,30	214	60	2
60	50	25	16	4.30	274	78	3
75	60	30	20	5.30	334	96	4
85	70	40	27	5.97	374	108	5
.00	85	45	28	6.64	414	120	6
110	95	45	33	7.30	454	132	7
115	100	50	32	7.64	474	138	84
130	110	55	38	8.30	514	150	•
145	125	65	44	8.97	554	162	10
160	140	70	52	9,64	. 594	174	11
185	160	75	62	10.30	634	186	12
215	175	85	79	10.97	674	198	13
245	205	100	101	11.64	714	210	14
290	235	110	120	12.30	754	222	15
330	270	125	157	12.97	794	234	16
375	305	135	186	13.64	834	246	17
415	335	150	211	13.97	854	252	18
445	355	155	236	14.30	874	258	19
485	390	170	258	14.64	894	264	20
525	420	180	290	14.97	913	270	21
590	470	195	323	15.30	934	276	22
· · · -	-	-	-	15.64	954	282	23**

* First Crack ** Ultimate

TABLE A-30 . TEST RESULTS - OBSERVED DATA FOR BEAN CH-4

	T	Bend. M.	Shear	Tviet	Deflect	ions (inche	s x 10 ³)
Load Stage	Torque (in.kips)	(in.kips)	(kips)	(rad/in x 10 ⁶)	East	Center	Vest
0	•	25	0.91	0	0	0	0
1	. 39	85	1.74	•	5	5	10
2	65	133	2.41 .	16	10	10	25
3	91	181	3.07	23	10	25	30
4	117	229	3.74	32	10	30	40
5*	143	277	4.41	41	5	35	45
6	169	325	5.07	48	5	35	55
7	195	373	5.74	60	10	50	70
	221	421	6.45	74	15	55	80
,	247	469	7.07	93	20	70	95
10	260	493	7.41	110	20	80	110
11	267	517	7.74	128	25	90	125
12	286	541	8.07	147	30	100	135
13	299	565	8.41	177	35	110	150
14	312	389	8.74	232	40	130	175
1500	318	601	8.91	302	40	140	195
16	284	613	9,07		<u> </u>	<u> </u>	<u> </u>

* First Crack ** Ultimate

-13

TARLE A-31 TEST RESULTS - OBSERVED DATA FOR BEAM CH-5

Loed	Torque	Bend.N.	Shear	Tvint	beflect.	ione (inche	a x 10 ³)
Stage	(in.kipa)	(in. Fipm)	√k (pa)	(red/in x 10 ⁴)	Faet	Center	West
·	0	6	0.59	0 \	0	. · · •	. •
i	24		0.75	7.4	. \$. *	۰ ∯ د د لای	' , s
2	40	12	1.09	9 🔌	- \$	0	0
3	72	16	1.42	15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. // 0 //	5
4	>6) 20	1.75	ر ایس و 20		```	. 5
5	108	22	1.92	<i>></i> ~ 22 €	11.0	5	10
6	120	24	2.09	28	7.2	. 5	10
7	132	26	2.25	>> 30	-18	5	10
. 8	144	28	2.42	32	, - S'	, 5	10
•	156	30	2.59	38	-10	5	15
10	164	32	2.75	41	- 5	10	20
11	180	34	2.92	43	- 5	10	25
120	192	36	3.09	49	0	15	25
13	216	40	3.42	78	0	15	30
14	240	44	3.75	83	0	20	-35
15	264	48	4.09	104	0	25	35
16	288	52	4.42	131	0	20	40
17	300	54	4.59	162	- 5	15	40
18	312	56	4.75	223	0	15	40
19	324	54	4.92	310	10	20	40
2000	336	60	5.09		-] - [-

^{*} First Crack

TABLE A-32 TEST RESULTS - OBSERVED DATA FOR BEAN CH-6

Load	Torque	Bend. N.	Shear	Tvist	Deflect	lons (inche	s x 10 ³)
Stage	(in.klps)	(in.kips)	(kips)	(rad/in x 10 ⁶)	East	Center	West
0	0	,	0.31	0	0	0	0
1	27	,	0.31	12	0	0	0
. 2	53	,	0.31	17	- 5	- 5	- 5
3	80	,	0.31	26	-20	- 5	- 5
. 4	107	,	0.31	31 \	-25	-10	- 3
5	116	,	0.31	37	-20	-15	- 5
6	128	,	0.31 .	41	-25	-15	-10
7	133	. ,	0.31	43	-25	-20	-10
	139	,	0.31	46	-25	-20	-10
,	144	9	0.31	47	-20	-20	-10
104	150	, ,	0.31	49	-20	-20	-10
11	155	,	0.31	52	-20	-20	-10
12	160	,	0.31	54	-20	-20	-10
13	171	,	0.31	, 40	-25	-20	-15
14	150	,	0.31	45	-25	-20	-10
15	198	,	0.31	73	-25	-25	-15
16	214	,	0.31	122	-30	-30	-15
17	230	,	0.31	148	-35	-40	-25
18	240	,	0.31	186	-40	-45	-25
19	251	,	0.31	217	-30	-55	-40
20	262	,	0.31	253	-55	-60	-45
21	272	,	0.31	317	-55	-63	-53
2200	283	,	0.31	363	-60	-80	-60
23	244	,	0.31	•	-45	-100	-63

^{*} First Crack

APPENDIX B

STRAIN GAUGE READINGS

Strain gauge readings, recorded during the test of each beam of series B and C, are presented in Tables B-1 through B-59 of this appendix. Generally, each beam was instrumented with seventeen strain gauges; five on the longitudinal prestressing steel, and twelve on stirrups. All gauges were placed at the probable failure region. If a beam was tested in pure bending, no strain gauges were mounted on the stirrups, however, for pure torsion all seventeen strain gauges were used. Detailed location of strain gauges is presented in Chapter 3.

With the exception of beams tested in pure bending, two tables are given for each beam on one page; the first presents strain data for prestressing steel, and the second strain data for transverse steel. It should be remembered that the strain in the prestressing steel, recorded in her tables represents only the increase in strain between zero and us image stage of loading. This has to be distinguished from the total strain which includes, in addition, the prestrain.

Increments corresponding to first cracking and ultimate are designated in these tables using a single and double asterisk, respectively.

TABLE 8-1
PRESTRESSING STEEL STRAINS (MICRO INCHES PER INCH), REAM BS-1

losd		Strain	Gauge Loca	tion	
Stage		, •	c	4	•
0	0	0	0	0	0
/ 1	75	40	70	-80	-73
, s	160	75	155	-180	-160
3	250	115	240	-280	-260
4	355	160	340	-390	-340
5	420	185	405	-470	-425
6	550	225	480	-555	-520
7	645	255	530	-625	-370
84	720	290	675	-685	-635
•	600	330	820	-770	-770
10	885	380	990	-830	-790
11 °	995	435	1160	-1040	-870
12	1135	520	1380	-1090	-1020
13	1310	610	1610	-1270	-1120
14	1480	′ 700	1820	-1440	-1320
15	1530	835	1935	-1580	-1465
16	1780	990	2045	-1845	-1580
17##	1970	1220	2070	-2140	-1500

^{*} First Crack

TABLE 8-2
PRESTRESSING STEEL STRAINS (MICRO INCHES PER INCH), BEAM 35-15

Ded		Strain	Gauge Loca	tion	
tage)	c	4 ,	•
0	0	0	0	0	0
1	70	65	70	-25	-90
2	155	135	150	-185	-190
3	240	210	240	-295	-300
4	300	260	295	-360	-370
5	360	310	360	-440	-450
6	405	345	405	-495	-505
,	450	380	455	-550	-560
	505	430	510	-615	620
,	540	455	550	-650	-655
10	570	445	610	-690	-690
11	670	545	680	-730	-730
124	720	575	735	-765	-765
13	795	620	795	-815	-\$10
14	890	720	905	-890	-890
15	1040	790	1030	-990	-975
16	1140	860	1130	-1090	-1060
17	1210	895	1225	-1210	-1190
18	1320	850	1320	-1350	-1335
19	1300	830	1415	-1530	-1515
20	1330	825	1575	-1750	-1770
21**	1130	860	6300	-5000	-6600

^{*} First Creck ** Ultimate

TARLE 8-3 PRESTREUSING STREET, STREETING CHICKO THUMES PER THEM), BRAN BS-2

Load		Strain	Cauge Loc	cation	
Stage	4	•	•	•	•
0	0			,	
1	50				
2	115				
,	175				
4	245		,		
,	290				
•	340				**,
7	375			*	
	415				
94	460				
10	545				
11	615				
12	860				
13	1055	-		•	
14	1285			•	
15	1550				
16	1780				
17	1985				
18	2100				
19**	2900	,			

* First Crack

STIRRUP STRAINS (MICRO INCHES PER INCH), BEAN BS-2

						·						
Load	ر				Stra	in Gar	uge Lo	catio	<u> </u>			÷
Stage	1-7	1-5	1-8	1-H	2-T	2-5	2-3	2-X	3-T	3-8	3-8	3-#
0	0	0	0	. 0	0	Ō	0	0	0	0	0	. 0
1	10	5	- ,5	0	10	0	0	. 0	10	5	,. - 5	0
2	20	10	-15	5	25	,- S	- 5	0	20	5	-20	- 5
-3	35	15	-25	0	35	- 5	-10	- 5	35,	5	-35	- 5
. 4	45	15	-35	0	50	-10	-15	- 5	45	0	-50	-10
5	55	15	-40	٥	රේ	-15	₋₁ -15	- 5	50	- 5	-55	-15
6	60	15	-45	0	70	-15	~15	- 5	60	-15	-65	-20
7	65	20	-50	0	75	-20	-15	- 5	65	-20	-65	-25
	75	20	-55	0	85	-35	-15	- 5	75	-35	-60	-30
90	75	25	-55	0	90	-25	+ 5	- 5	80	-45	-45	-35
10	85	25 '	-60	~ 5	105	-40	+20	- 5	90	-35	-15	-40
11	95	25	-65	- 5	120	-55°	+15	- 5	100	95	115	-25
12	105	15	-70	- 5	140	-50	0	-10	115	210	240	50
13	115	13	-75	-10	155	-15	- 5	-20	125	285	330	120
14	125	10	-75	-15	170	+40	~ 5	-30	140	355	405	140
15	135	5	-75	15	185	+160	15	-55	155	475	425	175
16	140	0	-75	-15	200	+250	-15	-70	160	353	525	190
17	145	- 5	-70	-20	214	+320	-20	-80	170	560	613	195
18	155	-10	-70	-20	225	+405	-25	-90	190	625	. 565	203
19**	•	-	_		-		•	-	-	-	•	• .

* First Crack

TANK 8-3

PRESTRESSION STEEL STRAINS (MICRO INCHES PER INCH), BEAN RG-28

Ined	Strain Cauge Location							
Stage	4	.	e	4	•			
0	0	0	0	0 .	0			
1	50	55	60	60	45			
2	100	110	115	95	85			
3	140	155	165	105	115			
4	1.00	200	210	165	155			
5	200	225	235	150	175			
6	225	250	265	240	195			
74	245	275	295	305	230			
	270	305	325	430	263			
•	280	320	340	530	280			
10	295	100	360	520	295			
11]	305		375	360	315			
12	320	30	395	585	335			
23	345	400	~ 440	600	370			
14	370	440	500	620	435			
15	400	480	570	680	525			
16	425	535	660	965	640			
17	460	595	780	1155	745			
18	480	640	855	1045	800			
19	500	700	915	950	860			
20	320	780	1005	860	935			
21	540	850	1105	730	1000			
2244	555	-	1250	- '	_			

TABLE B-6
STIRRUP STRAINS (MICRO INCHES PER INCH), BEAN BS-28

Load			Strain Gauge Location										
Stage	1-T	1-5	1-8	1-X	2-T	2-5	2-3	2-3	3-T	3-8	3-8	3-8	
0	0	0	0	0	0	0	0	0	0	0	0	0	
1	10	0	0	10	10	10	0	. 5	10	5	0	5	
2	15	0	0	10	25	10	-10	10	25	10	0	10	
3	30	5	-10	- 10	45	15	-20	10	45	10	- 5	10	
- 7	:	.0	-20	15	55	15	-30	10	60	10	- 5	10	
	4.5	0	-20	15	60	20	-30	10	65	10	- 5	10	
;	50	0	-25	15	70	20	-35	10	70	.0	0	10	
3	50	0	-25	20	80	- 20	-40	10	80	•	1.0	5	
ن	55	0	-30.	15	85	20	-40	10	90	0	40	5	
• ,	60	0	~30 °	20	90	20	-40	10	95	0	60	5	
10	لإق	0	-30	20	. 95	25	-40	10	105	- 5	75	5	
11	63	0	-30	20	100	25	-40	10	110	-10	90	5	
12	70	0	-30	20	105	25	-40	10	115	-15	95	5	
13	75	0	-30	20	115	25	-40	10	130	-30	95	10	
14	80	0	-30	20	125	25	-30	/;* 0	140	-45	95	10	
15	90	0	-25	25	140	30	-20	0	155	-50	80	15	
16	95	` 0 .	-20	ee 25	150	35	-15	- 5	175	. 0	70	30	
17	100	0	-20 }	25	165	45	-10	-10	195	60	70	35	
18	105	0	-10	30	170	45	ره	-15	210	110	70	20	
19	110	- 5	-10	30	180	45	s	-20	225	143	70	15	
20	115	-10	-10	. 30	190	50	15	-30	250	175	· 70	0	
21	120	-10	-10	35	195	45	20	-40	270	200	75	-15	
2244	125	-15	0	35	205	55	20-	-40	390	310	90	-33	

TARLE 8-7

PRESTRESSING STEEL STRAIMS (MILEO DENIES PER 198H), BEAN 85-3

Load	Strain Gauge Location								
Stage	4	b	•	4					
0	0	0	0	0	0				
1 1	40	50	40	55	60				
1 2	85	110	85	115	135				
3	125	155	n 115	165	f 195				
1 4 1	145	185	135	195	230				
5	165	210	155 -	225	265				
6	185	235	170	255	305				
7	205	265	190	290	345				
	230	295	215	330	385				
,	255	325	235	∘360	450				
10	275	365	265	415	575				
u	300	435	295	515	690				
12	330	485	315	720	815				
13	* 445	515	320	840	905				
24	595	575	340	980	1010				
15	705	665	370	1090	1100				
16	780	765	395	1195	1190				
17	830	845	- 505	1250	1245				
18	790	940	560	1325	1325				
19	640	1050	600	1480	1580				
20**	- .	-	-	- /	2400				

TABLE 8-8
STIRRUP STRAINS (NICRO INCHES PER INCH), BEAM BS-3

Losd					Stra	in Gau	ge Lo	cation	1			
Stage	1-7	1-5	1-1	1-#	2-T	2-5	2-3	2-3	` 3-T	3-5	3-8	3-1
0	0	0	0	0	0	0	0	0	0	0	0	. 0
1	10	0	0	0	. 10	•	-10	0	-35	0	, 0	0
2	20	- 5	0	10	25	- 5	-15	5	-105	0	- 5	Q
3	35	-10	0	10	35	-10	-25	10	85	0	- 5	5
4	40	-10	0	15	45	- 5	-25 /	10	-175	` S	- 5	5
5	45	-10	0	15	50	-10	-30	10	-165	5	- 5	5
6	50	-10	0	15	55	-10	-35	15	-165	5	- 5	5
7	55	-10	0	20	65	- 5	-35	15	-155	5	. 0	. 5
	55	- 5	. 0	20	70	5	-35	15	-150	- 5	20	q
90	60	10	0	20	80	35	-25	15	-135	-25	55	- 5
10	65	15	10	20	90	. 50	-20	10	-125	-35	115	-20
11	70	25	20	20	100%	្ធ 115	-25	5	-105	15	125	-30
12	75	40	25	20	110	ê 205	-25	0	-45	210	120	-80
13	80	45	~40	20	115	405	-35	-15	. 45	370	130	-95
14	85	45	145	25	120	655	-45	-30	-70	580	150	-85
15	90	45 .	345	40	130	940	-45	-15	-55	680	185	-110
16	90	75	395	45	140	1230	-25	20	-40	715	. 225	-140
17	95	140	440	55	145	1540	•	65	-15	770	250	-165
18	95	225	515	70	155	1825	20	125	70	800	295	-530
19	100	310	690	140	165	2050	35	243	320	905	460	-2730
20**		•	•	-	-	-	-	-	-		_	

* First Creck ** Ultimate

TABLE 8-9
PRESTRESSING STEEL STRAIGS (MICRO DIGHES PER INCH), BEAR 85-4

Lood		Strain	Gauge Locati	OR .	
Stage	,	•			•
0	0	0	0	0	0
1	15	15	20	25	20
2	25	25	30	40	35
3	40	40	45	55	45
4	45	50	55	65 ·	55
5	60	60	65	. 80	65
6	75	75	80	100	75
7	90	90 -	100	120	95
8.	95	105	110	130	105
,	110	•	125	150	120
104	125	130	140	170	135
11	140	150	160	190	155
12	160	170	175	210	190
13	170	190	195	235	740
14	180	200	205	240	875
15	190	205	210 -	250	900
16	195	215	220	260	900
17	165	190	z . 215	255	895
18	150	135	180	245	885
19**	110	125	165	230	875

* First Crack ** Ultimate

TABLE 8-10
STIERUP STRAINS (MICRO INCHES PER INCH), BEAN 85-4

Load		·.	,		Strain	Gau	ge L	ocatio	.			
Stage	1-7	1-5	1-B	J-n	2-T	2~5	2~B	2-W	3-T	3-\$	3-1	3-#
0	0	0	0	0	0	0	. 0	0	0	0	0	0
1	5	5	. 0	5	5	~ 5	5	0	5	0	5	0
ź	10	5	0	5	5	- 5	10	0	10	- 5	5	- 5
3	15	5	0	5	10	- 5	15	0	15	- 5	10	~ 5
	15	5	- 5	5	10	- 5	15	0	15	- 5	10	- 5
5	15	10	- 5	5	15	- 5	20	0	20	- ,5	15	- 5
6	20	20	0	10	ſs	5	25	Š	30	(a	20	•
,	25	40	0	20	20	10	40	10	40	O	25	. (
	30	50	5	35	30	25	40	20	40	5	30	- :
,	30	75	5	25	25	40	50	20	45	15	1 35	- :
104	30	110	10	30	30	90	55	25	50	30	40	
11	30	175	10	30	30	135	60	30	50	50 .	50	(
12	35	245	10	35		200	65	35	60	65	60	. (
13	40	340	15	40	40	310	75	55	65	75	75	-1
14	40	. 390	15	40	35	360	80	55	65	90	85	-1
		430	15	45	35	400	85	60	70	100	105	-1
15	40			50	40	445	90	60	70	115	120	-2
16	45	475	15	•			90	60	70	130	125	-2
17	30	505	10	420	40	450			70	140	135	-2
18	#30	1030	25	1475	50	525	95	70				-2
19**	1265	1085	70	1415	45	470	105	95	65	145	120	-

* First Crack ** Ultimate

19

TABLE 8-11
PRESTRESSING STEEL STRAIRS (MICRO INCHES PER INCH), REAR 85-5

Load		Strain Gauge Location							
Stage	•	•	c	4	•				
0	0	0	0	0	0				
1	10	10	10	10	10				
2	25	20	20	15	15				
3	25	25	20	15	· 20				
4	30	30	25	20	25				
5	35	35	25	20	25				
6	35	35	25	25	30				
7	40	40	30	25	35				
	45	43	30	25	35				
,	45	45	35	30	35				
10	so	50	35	35	40				
11		55	• 35	35	45				
124	- 60	55	40	35	45				
13	70	60	40	40	50				
14	70	65	45	45	50				
15	75	63	50	45	53				
16	75	70	55	50	60				
17	75	70	55	35	60				
18	75	70	60	55	65				
19	T 55	50	55	55	65				
2044	150	-55	15	40	60				

* First Crack

** Vicimate

TABLE B-12
STIRRUP STRAINS (NICRO INCHES PER INCH), BEAN BS-5

Load					Strain	a Gair	e Loc	cation				
Stage	1-7	1-5	1-B	1-N	2-T	2-5	2-B	2-N	3-T	3-5	3-8	3~X
0	0	0	0	0	0	0	0	0	0	0	0	
1	0	٥	10	- 5	5	Š	5	0	0	0	10	0
2	0	- 5	20	- 5	5	10	10	5	5	0	20	Ċ
3	0	- 5	25	0	10	10	10	5	5	5	25	0
4	Ö	- 5	30	0	10	15	10	5	5	5	25	C
5	0	- 5	35	10	10	20	15	10	. 10	5~	30	0
6	0 "	0	40	15	10	25	15	10	10	10	35	0
,	0	5	40	25	15	30	15	15	10	15	40	. 5
	0	5	45	/ 30	15	35	15	15	10	15	45	5
,	0	10	45 /	25	15	45	20	. 15	10	25	45	10
10	0	15	50	45	15	55	20	15	10	30	50	1.5
11	0	20	55	55	20	75	30	25	10	35	50	1:
124	0	20	55	60	20	90	30	40	10	45	55	20
13	0	15	60	70	20	105	30	50	15	50	55	25
14	30	10	65	80	20	135	30	65	15	70	60	ж
15	45	10	65	90	20	175	30	70	15	80	- 60	40
16	50	0	70	105	20	230	30	75	20	95	60	. 50
17	55	- 5	70	105	20	270	30	25	25	100	65	5:
18	60	0	70	115	20	300	30	90	35	110	65	64
19	60	, 5	90	115	20	310	25	90	45	115	65	6
2044	60	575	470	855	20	260	20	63	45	110	50	5

* First Crack

" Vicimate

PRESTARSSING STEEL STRAINS (HIGH) INCHES PER INCH), BEAR BS-6

Load		Strain	auge Locat	tos ,	
Stage	4	•	c	4	•
	0	0	. 0		
· 1	- 5	- 5	- 5	•	
2	0	•	- \$	- 5	
	0	0	-10	-10	
· 4	0	5	-10	- 5	
5	10	0	-10	- 5	
6	15	0	-15	- 5	
7	20	0	-15	- 5	
	5	5 .	-15	- Š	
94	10	5	-15	- 5	
10	5	10	-15	-10	
11	10	10	-15	- 5	
12	10	15	-15	- 5	
13	10	15	-15	- 5	
14	15	15	-10	σ	
15	15	20	-10	0	
16	20	25	- 5	0	
17	20	35	15	-10	1 ,
18	25	45	15	-10	• /
1944	75	70	35	-10	
20	105	70	30	- 5	
* First Cra	ck **	Ultimate		•	. /

Load					Straig	Gaus	e Loc	ation				
Stage	1-1	1-5	1-8	1-3	2-T	2-5	2-8	2-N	3-T	3-\$	3-1	3-11
0	0	. 0	0	0	0	0	0	0	0	9	. • .	٥
1	5	0	5	0	- 5	5	15	- 5	10	Ö	0	٥
2	10	- 5	15	0	-10	5	25	0	15	5	5	١٩
3	10	- 5	25	0	-10	5	40	- 5	15	5	, 5	5
4	15	-10	25	0	-10	5	- 55	0	20	15	10	5
*	20	-10	30	5	-10	10	50	-10	20	15	10	10
` •	40	-10	35	10	-15-	19	, 60	0	25	15	10	15
,	\$ 5	- 5	40	20	-10	5	65	0	30	20	10	25
8	90	- 5	40	55	5	20	75	10	. 35	25	10	25
90	95	-20	45.	130	0	20	85	15	40	30	10	30
10	100	-35	40	205	ຶ 0	20	85	15	45	30	10	35
11	100	-45	40	255	0	25	95	25	55	30	15	35
12	105	-60	35	325	5	20	105	25	75	30	15	40
13	105	-70	35	390	10	25	115	. 25	85	30	15	45
14	105	-85	30	455	10	25	115	25	90	35	15	45
13	105	-100	25	560	10	20	120	25	100	35	15	∞` 50
16	110	-110	- 5	720.	15	5	125	40	110	40	15	60
17	160	-10	-20	715	15	0	145	45	115	40	15	85
18	185	105	-20	690	15	- 5	165	45	115	40	15	110
1900	235	385	150	960	20	15	460	45	110	40	15	135
20	255	630	410	1060	20	150	· 760	45	110	40	20	1.35
	Crack		14 .	Itimat								

Prirat Crack

TABLE 8-15
PRESTREUSING STEEL STRAINS (NICRO INCHES PER INCH), BEAM BH-1

Load		Strain	Gauge Locatio	M	
Stage	4	•	c	* 4	•
0	0	0	0	0	0
1	70	65	-90	. 65	-70
2	150	150	-195	150	-170
,	235	240	-315	240	-265
4	290	300	-400	305	-335
5	335	340	-455	350	-380
6	390	385	-515	430	425
70	460	440	-585	520	-480
.	560	500	-660	610	-530
,	720	690	-735	730	-595
10	870	920	-830	815	-665
11	1010	1120	-930	890	-735
12	1215	1370	-1055	970	-825
13	1410	1600	-1185	1125	-920
14	1620	1830	-1360	1290	-1030
15	1770	1970	-1530	1400	-1130
16	1880	2065	-1610	1505	-1180
17	2025	2205	-2235	1585	-1700
18**	2205	2450			

* First Crack ** Ultimate

0

j

TABLE 8-14

PRESTRESSING STEEL STEATES (MICHO INCHES PER INCH), BEAN BR-2

Load		Strain	Gauge Loca	tion	
Stage	•	•	¢	4	•
0	0	0	. 0	0	0
1	40	50	60 "	60	65
2	85	105	120	120	125
3	125	155	170	175	225
4	160	200	230	235	- 315
5	105	225	260	270	365
6	205	255	295	305	430
7*	225	285	330	345	520
	250	315	370	440	620
	270	/ 350	410	600	760
10	300	390	500	785	955
11]	335	- 445	705	950	1060
12	370	610	875	1100	1510
13	435	845	1060	1325	-
14	720	1080	1190	1520	-
15	795	1185	1275	1620	-
. 16	895	1305	1370	1475	-
17	960	1395	1440	1210	-
18	995	1465	1500	1160	, -
19	1030	1520	1550	1135	- 1
20	1060	1595	1620	1130	
21	1100	1680	1705	1150	-
22**	-	-	1760	1245	-

. * First Crack

** Ultimate

TABLE 8-17
STIRRUP STRAINS (NICRO INCHES PER INCH), BEAN BH-2

Load		Strain Gauge Location												
Stage	1-7	1-5	1-B	1-N	2-T	2-5	2-B	2-X	3-T	3-5	3-8	2-H		
0	0	0	0	0	0	. 0	0	0	0	0	0	0		
-1	10	5	0	10	15	- 5	0	5	15	0	- 5	.5		
2	15	10	` o	10	25	- 5	-10	5	30	3	-15	. 5		
3	15	15	- 5	10	40	- 5	-15	5	45	20	-20	5		
4	20	20	- 5	10	50	5	-15	10	55	35	-25	/ 5		
5	25	25	- 5	15	60	15	-15	10	65	40	-30(10		
6	25	30	- 5	15	65	25	-20	10	70	45	-35	15		
2	2*	35	- 5	15	75	35	-20	10	80	50	-45	15		
. '	9	40	- 5	15	85	50	-20	5	90	40	-45 (10		
ý		70	-10	10	90	50	- 5	0	100	15	-50	15		
. 0		, ^	- 5	10	100	60	30	0	110	95	-35	40		
			- 5	15	110	55	220	- 5	125.	290	- 5	90		
i			- 5	10	125	35	.355	-15	150	335	350	170		
اند			- 5	15	140	25	420	-30	185	340	615	190		
14			20	30	155	185	460	-35	225	365	815	105		
:5			.30	40	:60	510	495-	40	260	400	905	70		
16	4.	* * *	*	55	175	695 -	205	-40	315	435	965	35		
17	45	22.		55	183	750	525	-35	350	460	1000	20		
18	45	:40		J.	. 90	785	540	-35	390	475	1040	5		
19	45	240		65	190	815		-35	420	490	1060	0		
20	45	25 c	.8.	65	200	850	565	-35	460	500	1120	-10		
21	45	255	240	•	205	900	585	-40	520	510	1165	-20		
22**	50	260	580	•	-	_	-	-	-	-	-	-		

· First Crack

U21 TRATE

TARLE 8-18

PRESTRESSING STEEL STRAINS (NICHO LICHES PER 1909), REAM 84-3

Load		Strain	Gauge Loca	tion	
Stage	•	•	c	4	•
0	0	0	0	0	0
1	45	60	60	65	65
2	100	120	125	135	135
3	150	170	165	210	195
4	175	200	200	250	230
5a	205	235	270	295	263
6	240	390	330	340	305
7	255	735	440	395	355
	270	830	510	625	575
,	295	925	615	745	653
10	340	1005	710	760	640
11	425	1130	835	790	645
12	610	1235	1030	1010	730
13	880	1345	1280	1190	860
14**	-	-	1940	-	-

* First Crack ** Ultimate

TABLE 8-19
STIRRUP STRAINS (HICRO INCHES PER INCH), BEAM BR-3

Load		Strain Gauge Location													
Stage	1-T	1-s	1-8	1-#	2-T	2-5	2-8-	2-#	3-7	3-s	3-8	3-N			
0	0	0	0	0	. 0	0	0	0	0	. 0	0	0			
1	10	5	- 5	10	15	0	- 5	5	10	0	-10	0			
2	25	0	-15	15	25	5	-10	10	30	5	-25	0			
3	35	0	-20	20	35	10	-10	10	45	20	^e -35	0			
4	40	15	-25	35	,A5	15	-10	10	50	60	-35	.0			
. 5*	45	220	-40	35	50	10	- 5	5	60	240	-35	0			
6	60	590	-45	35	58	70	30	5	65	693	-20	0			
7	55	855	-40	10	60	270	60	- 5	75	1090	110	-25			
	60	920	-30	20	70	360	110	- 5	90	1105	420	-35			
•	45	1015	-25	45	75	440	135	15	100	1175	520	-40			
10	145	1105	-15	15	80	480	165	. 100	120	1250	595	165			
u	70	1210	-15	35	90	530	245	210	165	1540	655	325			
12	75	1285	-10	. 5	115	560	365	530	- 220	2600	675	440			
13	85	1320	270	10	176	775	695	720	380	5000	690	660			
1400	-	-	-	-	_	-	-	-,	-	<u>.</u> :	-	-			

First Crack #9 Ultimate

74M4 4-20 PRESTRESSING REPPL REMAINS (NICHO HICROS PER INCH), BEAN AN-4

land		Strain	Conge Loca	tion	
Mege	•	•	•	•	•
•	•	•	•	•	•
1	•	10	1 ó	10	30
2	15	20	20	20	20
,	25	30	>0	>0	30
	, m	25	40	40	40
,	44	45	3.5	50	50
•	40	60	43	33	60
,	65	45	70	64	65
84	79	70	20	43	76
•	95	90	63	70	90
20	113	100	95	75	93
11	235	115	105	83	113
12	130	1.25	115	95	130
10	195	135	125	105	340
14	385	150	130	115	150
15	390	. 165	140	130	163
16	400	195	150	150	195
ม	445	225	150	.180	275
14	490	240	145	205	300
19	500	255	143	223	325
20	495	263	143	255	253
3100	490	205	155	273	255
22	•	-	•	•	-

STIRRY STRAINS CHICRO INCRES PER INCH), SEAN SE-4

Lood				Strain Cauge Location											
Stage	1-T	1-5	1-8	1-#	2-7	2-5	2-8	2-X	3- T	3-8	3-B)-1			
•			•	•			•	•	•	•	•	•			
1	•	•	•	•	•		•	•	•	10	•	•			
2		•	10	5	1,6	•	•	5	5	10	•	•			
3	3	•	10	10	. 15	•	•	10	10	13	•	•			
4	10	•	15	10	20	•	•	15	15	25	- 5	•			
5	10	3	20	10	20	10	•	` 15	15	. 35	-10	•			
. 6	10	15.	20	13	25	145	- 5	20	20	70	-10	- 5			
7	10	ຸ 55	25	13	ะร์	195	- 5	25	20	85	-10	- 3			
80	10	105	25	13	25	340	-10	25	26	105	-10	- 5			
•	15	155	30	20	30	385	-15	30	29	165	-10	- 3			
10	5	205	25	20	36	735	-15	30	20	360	-13	- 3			
11	5	213	35	25	35	835	-15	30	25	493	-LŞ	- 5			
12	5	225	40	25	40	895	-15	23	23	560	-13	- 5			
13	5	230	55	25	45	955	-13	25	23	620	-15	- 5			
14	10	235	85	25	30	1000	-10	40	23	475	-10	- 3			
13	10	240	110	30	65	1030	- 5	40	30	735	•	- 3			
26	15	250	180	· 30	75	1075	•	40	30	795	25	•			
17	39	260	245	30 °	120	1,090	10	50	20	875	20	•			
18	39	270	243	160	140	1100	•	55	33	915	*	•			
19	20	295	365	255	135	1135	- 5	70	40	950	93	5			
20	35	348	400	340	165	1160	-10	20	40	954	105	10			
3100	730	480	#15	440	173	1130	-20	300	40	933	215	•			
22	-	-	• .	-		-	•	•	_	•	•	-			

PARTERUSIUS, ETTEL STRAINS, CHICAGO LINEAUS, PER 110:03, AFAN 100-2

land		Strain	Googe Lorat	lua	
Stage	•		•	4	•
				•	-
	•	•	•	•	•
	•	•	• "	- 3	- 5
\ <u>```</u>	•	•	•	- 5	-10
	•	•	•	-10	-20
,	•	•	•	-10	-20
.	•	5	•	-10	85
,	•	5	•	-10	-25
	•	5	•	-10	-30
,	•	5	•	-10	-30
10	•	5	•	-15	-35
11*	•	10	•	-15	-35
12		15	- 5	-15	-45
1)	•	25	- 5	-20	-45
14	15	30	5	-10	-45
15	25	33	10	- 3	-30
16	35	40	15	- 5 ,	-30
17	40	40	25	- 5	-30
18	35	45	35	•	-25
19	45	70	50	•	-20
20	-160	79	44	5	- 5
n	-210	160	65	- 5	- 5
12	-230	160	. 70	- 5	-10
1 0	-260	125	73	- 5	10
N	-260	100	75	- 5	45
25	-290	90	85	- 3	125
25.4	-260	75	ns	- 5	140

TABLE 8-23
STIRRUP STRAIKS (NICRO INCHES PER INCH), BEAM BM-5

Lood	Strain Gauge Location											
Stage	1-7	1-\$	1-9	1-7	2-7	2-5	2-3	2-¥	3-T	3-5	3-8)-H
•	•	•	•	* 0	•	•	•	•	•	•	•	•
1	10	•	10	•	5	. •	5	3	•	•	10	10
2	15	•	15	•	10	0	10	5	•	• .	15	10
,	15	5	13	•	10		10	10	•	•	20	10
	15	5	20	•	10	•	10	10	•	•	29	10
5	20	10	20	•	10	•	15	10	•	•	20	10
6	20	10	25	•	23	5	20	10	•	•	25	15
,	20	10	25	•	15	5	20	10	•	•	25	15
	20	15	30	•	15	. 5	20	15	•	•	30	15
,	25	15	30	•	20	10	20	15	•	•	30	15
10	25	15	30	•	20	10	∴ 20	15	•	•	30	20
11*	25	20	35	•	20	20	25	20	•	•	35	20
12	25	25	35	•	20	. 35	25	20	•	5	35	′ 25
13	20) 0	40	5	20	45	25	20	•	10	33	25
14	:0	33	40	5	20	,65	20	20	•	20	35	25
เร	30	60	55	•	20	265	25	15	•	90	43	20
16		70	65	•	25	325	25	10	•	105	30	20
17	د	10	75	3	23	360	30	10	0	130	35	20
18	30	90	100	13	30	436	40	10	٠, ١	150	, 60	29
19	4	90	170	305	30	463	55	•	10	185	63	20
20	63	10	765	500	190	190	180	•	10	220	. 73	20
21	80	1220	5 30	845	1330	500	200	26	35	230	110	755
22	90	14.20	613	1030	1470	\$35	233	60	55	250	130	845
23	125	1565	234	1140	1565	570	290	260	70	290	160	974
24	160	1540	1905	1305	1840	600	313	373	75	348	200	1070
		1370	1340	1440	1765	643	330	630	85	420	295	1000
25	220	1545	31 10	1430	1725	670	365	905	• •0	415	334	1074
:644	1690			iii.								

a Flest Crack 40 Dicimote

TABLE R-24

PRESTRESSING STEEL STRAINS (HIGHO DENES PER INCH), REAR BH-6

Load		Strain Gauge Location								
Stage	•	•	¢	4	•					
0	0	0	0	0	0					
1	10	10	- 5	_ 0	10					
2	10	15	- 5	10	10					
3	15	20	, - 5	10	15					
4.	15	20	- 5	15	25					
5	15	30	•	20	45					
6	10	30	5	30	130					
7	15	35	25	65	225					
8	20	35	30	220	375					
9	25	40	45	245	430					
10	30	45	- 55	260	455					
11	30	50	60	280	495					
12	30	50	70	295	520					
23	30	55	80	. 310	550					
14	30	60	110	330	565					
15	30	75	150	345	595					
16	35	65	160	360	610					
17	85	85	175	380	650					
18	100	270	420	410	585					
19	115	460	585	530	660					
2044	130	420	580	795	655					

First Crack ** Ultimate

TABLE 8-25
STIRRUP STRAINS (NICRO INCHES PER INCH), BEAM 88-6

Load					Strai	n Gau	ge Lo	cation	l			
Stage	1-T	1-5	1-B	1-¥	2-T	2-5	2-8	2-W	3-1	3-5	3-8	3- H
0	0	0	0	0	, 0	0	0	0	0	0	0	0
1	0	0	20	10	5	0	15	5	10	-10	15	0
2	0.	5	25	10	5	0	20	10	10	-10	20	.0
3	-10	10	30	230	5	0	30	25	15	-20	30	0
4.	-10	20	35	275	10	· 0	35	50	20	20	35	10
5	-15	150	35	335	5	220	35	110	25	35	40	15
6	-15	280	40	395	^ 5	605	45	120	60	50	45	15
7	-15	635	50	540	10	740	50	125	275	140	55	10
	-15	820	60	620	15	955	60	120	730	185	65	0
•	-15	900	70	730	15	1090	65	120	805	225	70	0
10	-15	940	80	865	15	1150	70	120	840	265	80	0
11	-15	960	90	930	20	1200	75	125	880	375	80	٥
12	-15	995	100	980	20	1255	80	130	905	440	85	0
13	10	1010	115	1015	20	1300	90	145	930	490	90	- 5
14	30	1055	140	1080	i 30	1355	105	225	965	540	105	- 5
15	510	1045	205	1045	95	1230	180	920	970	570	110	-10
16	720	1060	305	1175	105	1295	. 470	1190	995	625	115	. 2
17	790	1050	350	1220	125	1350	660	1285	1020	670	110	20
18	830	1105	390	1190	825	1370	1010	1310	1025	690	120	785
19	875	1180	570	1380	1010	1740	1295	1530	1180	780	135	1030
2044	1120	1090	970	1420	1140	1735	1300	1460	1375	825	. 400	1030

* First Crack ** Ultimate

TABLE 8-25

PRESTRUCSING STREET STRAINS (NICHO INCHES PER LIEIH), BEAM RES-24

14

Load .					
SCARO	•	<u> </u>	c	4	
•	0	0	0	0	•
1	40	30	30	, 30	35
	45	40	. 45	30	50
,	60	` 50	60	40	70
4	75	⁻ 70	75	50	95
5	15	80	95	35	125
	100	95	120	65	180
,	120	115	140	75	250
	135	130	160	90	320
,	155	150	190	110	500
10	230	220	260	180	1210
11	270	240	350	215	1610
12	330	260	530 /	270	2010
13	395	320	715	390	2490
14	530	525	1280	610	3220
15	660	670	1590	660	3650
16	855	950	1915	780	4290
17	980	1275	2180	630	4990
18	,1130	1530	-	-	5770
19	1300	1780	-	-	-
20	1450	2050	•	-	÷
21**	1590	, 2230	-	-	-

TABLE B-27

STIRRUP STRAINS (MICRO INCHES PER INCH), BEAM B15-2a

								<u> </u>				
Load					Strai	n Gau	ge Lo	catio	<u> </u>			
Stage	1-T	1-5	1-8	1-X	2-T	2-5	2-3	2-3	3-T	3-5	3-3	3-X
•	0	0	0	0	0	0	0	0	0	0	0	0
1	10	0	10	10	10	5	. 0	5	10	10	0	10
2	10	0	0	10	10	0	0	5	10	5	- 5	5
3	10	0 .	. 0	10	10	0	- 5	5	10	10	- 5	5
4	10	0	0	10	15	0	- 5	. 5	20	10	- 5	5
5	15	0	0	10	. 15	0	- 5	. 5	20	5	- 5	5
6	15	. 0	0	10	. 50	0	- 5	5	30	. 10	10	5
7	20	0	0	10	20	0	- 5	10	40	10	35	3
84	20	0	0	10	20	0	- ,5	5	50	10	65	5
,	20	0	0	10	25	G	- 5	5	90	10	75	15
10	25	- 5	20	10	30	0	- 5	0	-90	-10	80	210
11	30	- 5	40	15	. 35	30	0	-10	-415	15	. 85	340
12	30	-10	55	15	40	145	10	-30	-500	100	110	430
13	35	-10	80	15	40	220	10	-60	-535	170	150	550
14	40	-15	135	20	40	260	10	-80	-550	180	210	490
15	40	-20	190	25	40	260	10	-75	-550	170	240	470
16	40	-30	270	45	45	290	15	-75	-550	170	290	470
17	45	-40	330	60	50	300	15	-75	-540	170	3,20	480
18	45	-40	3:0	85	50	320	20	-75	-490	190	340	530
19	45	-40	420	160	50	330	20	-80	-155	190	370	590
20	30	-30	450	210	50	370	20	-65	-320	190	410	660
21**	50	-50	440	250	30	455	20	-10	-600	140	453	570

First Crack . . Ultimate

TABLE 8-28

RESTRESSING STREET, STREETING (HIGHO LINCHES PER LINCH), REAR BIS-28

Lond Stage		SCENTE	Cauge Loca	Clos	
20484	•	.	\e	4	•
0	0	0	0	0	0
I	25	25	. 25	25	30
2	40	40	40	. 45	45
3	50	50	55	60	60
4	65	₹	70	80	80
5	80	80	90 J	100	100
6	95	95	110	125	130
7	110	110	135	140	175
8*	125	125	155	160	220
9	145	145	185	185	300
10	185	195	275	245	770
11	220	265	663	1095	1360
12	255	420	1000	1580	1855
13	425	745	1270	2040	2145
14	790	1170	1690	2740	2230
15	940	1380	1930	3150	_
16	1070 -	1560	2130	3600	-
17	1205	1795	2385	3770	•
18	1340	2020	2670	-	-
19**	-	-	3380	_	_

TABLE 8-29
STIRRUP STRAINS (MICRO INCHES PER INCH), BRAM BIS-76

Load					Stra	in G	uge L	ocatio	t.			
Stage	1-T	1-5	1-3	1-N	2-T	2-5	2-3	2-¥	4 -	3-5	3-3	3-1
0	0	0	0	0	0	0	0	0	0	0	0	0
1	5	0	0	0	5	10	0	0	5	5	0	0
	5	0	- 5	5	10	0	- 5	5	10	0	- 5	0
3	10	0	- 5	5	15	0	- 5	5	10	0	- 5	0
4	10	0	- 5	5	15	0	-10	5	15	٥	-10	0
5	10	0	- 5	5	20	0	-10	5	20	0	-10	. 0
6	15	.0	-10	. 5	20	0	-10	5	. 20	0	- 5	0
7	15	0	-10	5	25	0	-15	- 5	[°] 25	· 5	10	10
8*	. 15	0	-10	5	25	0	-15	5	30	5	20	10
,	20	0	-10	5	30	. 0	-15	5	35	10	30	15
10	25	- 5	-10	5	35	-15	-15	5	55	65	40	65
11	25	0	0	10	50	-50	-25	33	70	205	55	215
12	30	, 5	10	10	50	-65	-30	65	90	215	105	245
13	35	10	15	10	55	-80	-30	75	115	200	200	265
14	35	5	15	0	65	-90	-35	75	170	180	. J é 0	295
15	40	20	15	0	70	~90	-35	75	220	170	470	320
16	40	40	25	. 0	70	-95	-35	75	260	170	530	345
17	45	75	45	,0;	75	-95	-30	70	345	170	565	365
18	45	120	50	0	80	-95	-30	65	465	135	650	380
1944	-	-	-	- '-	-	•	•	•		•		

First Grack An Ultimate

TABLE 8-30
PRESTRESSING STEEL STRAINS (HIGPO LIBCHES PER LIBER), REAM 818-40

Load		Strain	Cauge Locat	los	
Stage	4	ь	•	4	•
•	0	0	0	0	•
i	10	. 5	10	•	•
	20	15	20	10	15
3	25	25	35	20 -	25
•	35	35	45	30	40
,	40	40	55	35	45
	45	45	60	45	55
,	50	55	70	50	65
	55	60	75	55	70
•	60	65	85	45	80
9	70	75	95	75	95
	75	80	105	80	105
11 12*	80	90	115	90	115
	90	100	125	95	145
13	100	110	135	105	220
14	110	115	165	110	265
15	120	125	195	120	300
16	125	135	215	125	325
17 18**	125	4,55		•	-

TABLE B-31
STIRRUP STRAINS (HICRO INCHES PER INCH), BEAM BIS-4a

					Stra	in Cau	ige Lo	cation	1		·	لد
Load Stage	1-T	1-5	1-3	1-N	2-T	2-8	2-1	2-X	3-T	3-5	3-1-	3-1
0	0	0	0	0	0	0	0	0	0	0	0	0
1	5	0	0	5	10	0	0	0	હું •	_/ S	0	10
<u>.</u> 2	5	0	0	5	10	0	0	0	5	5	. 6	10
3	5	0	5	5	15	- 5	0	0	5	5	0	10
4	•	- 5	5	5	15	٥	0	0	10	5	0	15
5	5	- 5	. s	5	15	. 0	0	0	10	5	0	15
6	5	- 5	10	10	20	10	5	5	15	10	0	15
7	5	- 5	10	10	20	10	5	5	15	10	0	15
-	,	0	10	10	20	15	10	5	15	15	5	15
- !	5	. 5	15	10	20	25	25	5	15	25	5	15
,	3	10	15	AS	725	35	35	5	20	30	10	20
10	,	15	15	15	25	45	ر 40	5	20	33	20	20
11	I -		20	25	25	7 55	45	5	20	45	30	20
124	3	25	20	30	25) 60	50	5	20	45	55	20
13	3	35		40	23	/ 70	60	5	25	ວຣູ້	110	30
14	3	40	25	45	25/	80	80	5	, 25	20	135	35
15	5	45	25		- 1	95	90	•	25	0	150	100
16	5	80	25	45	**************************************	105	95	- 5	25	-10	170	125
17	3	100	20	45	-79	100	7)			_	•	-
18**	-	-	-	-	-	<u> </u>						

* First Crack ** Ultimate

TABLE 8-12
PARSTPESSING STREE STRAINS (HIGH) INCHES PER LINUI), BEAN BIS-66

Lead		Strain	Gauge Loca	tion	
Store	4	•	g c	d	•
0	0	0	0	0	0
1	5	30	25	15	20
2	10	40	25	25	35
3	16	50	50	35	50
4	15	60	65	45	65
5	20	75	80	60	- 85
. 6	20	90	95	75	105
7	25	95	105	85	115
	25	105	115	100 .	125
90	: 30	110	125	110	135
10	35	120	135	125	160
u	40	135	145	140	220
12	45	150	155	145	415
13	45	170	170	155	625
14	55	190	180	170	760
15	70	205	190	185	885
16	85	225	205	210 .	1120
17	100	245	240	255	1330
18	115	255	855	480	1510
19	135	280	1110	730	1740
20	180	350	1280	1175	1930
2100	-	-	-	-	- ,

· First Crack

se Ultimate

TABLE 8-33
STIRRUP STRAINS (HICRO INCHES PER INCH), BEAN BIS-46

1004	L				Stra	in Ga	uge L	ocatio	<u> </u>			
52480	1-7	1-5	1-8	1-X	2-1	2-5	2-3	2-W	3-T	3-5	3-8	3-N
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	10	•	- 5	0
- 2	0	0	5	0	0	0	0	0	10	0	-10	5
3	0	5	5	0	5	0	0	0	15	0	-15	10
4	0	10	5	°o	0	- 5	5	5	20	•	-20	15
5	0	20	10	0	0	- 5	5	5	25	5	-30	20
6	- 5	30	10	5	• 0	-10	5	10	30	20	-35	30
7	- 5	35	10	5	0	-10	10	15	30	20	-35	35
	- 5	40	10	. 10	0	-10	10	20	35	30	-35	40
94	- 3	45	15	10	0	-10	10	20	40	30	-25	. 45
10	- 5	55	15	10	0	-10	10	30	40	40	5	50
11	- 5	65	20	10	0	- 5	10	35	45	45	60	55
12	. 0	80	. 20	15		5	10	50	50	20	235	50
130	0	90	20	20	•	15	10	60	55	0	425	35
14	0	105	20	25	- 5	40	10	. 70	60	-15	545	30
15	0	125	20	35	- 5	. 55	5	80	60	-30	610	30
16	0	165	15	40	÷10	75	10	95	70	-35	760	35
17	0	210	15	45	-15	90	10	110	75	-45	905	50
18	0	240	10	55 %	-15	- 55	100	193	85	-45	1060	65
-19	0	205	10	63	-15	45	330	295	100	-15	1150	75
20	3	355	15	75	-10	100	470	400	110	35 ·	1280	85
2144		-	-	-	-	-	_	_		-	S -	-

Firet Crack ** Ultimate

TABLE 8-34
PRESTRESSING STEEL STRAINS (NIGRO LINURS PER LINUR), REAM 818-64

Lond	1	Strain	Gauge Loca	tion	
Stage	•	•	e	đ	•
0	0	0	0	0	0
1	•	•	0	0	0
2 1	5	•	5	5	5
3	5	•	5	- 5	5
4	10	. •	10	- 5	5
5	10	5	10	- 5	10
6 .	10	5	10	- 5	0
7	15	5	10	- 5	S È
8	15	10	10	- 5	0 .
9	20	10	15	, 0	5
10	20	15	20	0	. 5
11	20	20	20	0	5
12	20	20	., 20	•	, 5
134	20	20	25	´ 5	10
14	- 25	25	25	15	10
15	25	25	- 20	20	10
16	30	25	25	50	10
17	, 30	25	20	160	10
1844	- 5	-10	180	255	150
19	-15	-30	-170	-2340	-340
20	+10	-20	-1265	-3330	-955

TABLE 8-35
STIRRUP STRAINS (MICRO INCHES PER INCH), BEAM B18-6a

Load					Stra	in Ga	iga L	ocstio	N'			
Stage	1-T	1-S	1-B	1-3	2-T	2-5	2-B	2-16	3-T	3-5	3-1	2-#
0	0	0	0	Ò	0	0	. 0	0	0	0	0	0
1	0	0	0	0	0	. 0	0	0	0	0	0	0
2	5	0	0	0	5	0	5	0	5	0	5	- 5
3	5	0	5	. – 5	5	, 0	5	- 5	10	- 5	5	<u> - 5</u>
4	5	0	5	- 5	5	0	10	- 5	10	- 5	5	` '0
· 5	5	. 0	10	- 5	5	5	10	^ - 5	15	- 5	10	0
6	5	. 0	10	- 5	• 3	5	15	- 5	20	- 5	5	C
7	5	0	z 15	- 5	5	5	15	0	20	5	10	5
	5	0	15	10	. 5	10	20	5	25	· - 5	10	5
•	5	0	20	15	5	15	20	10	30	0	5	10
10	5	3	20	25	5	35	20	10	35	10	10	10
11	0	5	20	35	S	45	25	15	35	10	10	15
12	0	10	20	50	0	70	25	20	40	15	10	15
130	0	10	20	70	0	115	25	30	40	15	10	20
14	0	15	20	100	0	200	25	35	40	20	· 10	30
15	0	15	20_	_130	-10	270	20	40	45	25	10	25
16	5	15	13	JAD	-15	400	10	35	45	30	10	. 30
17	-10	15	15	230	-20	610	10	20	45	30	10	35
18**	-15	- 5		\$50	-10	4485	55	505	660	40	0	390
19	. 80	-10	-	900	100	4070	205	1890	-	10	-10	280
20	80	0		675	125		230	4510	-	0	-20	260

* First Crack 48 Witigate

Lord	T	Strain	Cougo Loss	et les	
Stage	•	•		4	•
1					<u>`</u>
		- 5	- 3	ě	10
	10	•		- 5	30
1	10	•	·	- 1	10
	1 10	5	5	• 5	10
	13	10	,	- \$	IJ
	25	30	10	- 3	15
,	*	15	30	- 3	*
	20	. 15	34	-10	20
,	1 25	. 26	H	-40	. 20
10	>>	8	15	-30	26
110	25	30	29	-10	20
12	25	35	20	- 3	25
B	35	44	20	- 5	39
14	40	44	25	· - \$	25
13		30	30	*	40
14	43	33	36-	• .	43
ע	>>	· 60	>	9 .	50
14	, ×	70	40	10	44
19	-	99	50	, pm	70
20	- 70	143	43	30	- 70
n	75	240	96	. 110	120
22	73	276	125	200	2200
n	*	385	130	300	200
×	105	400	170	439	340
25	130	430	200	300	405
26	170	1 480	233	610	443
27	315	493	270	610	520
28	335	330	31.0	770	599
29	940	. 490	353	848	679
30~4	1500	1750	946	910 .	690
ILIAL CEM	· k 44	Vicinate			

Load		Strain Grage Location										
Stage	1-	r 1-	6 1~	1-1	2-1	2-6	2-1	2-K	3-1	3-8	3-1	3-8
•			• 1	•	•	•	-	•	•	•	•	•
1	1 4		• .1	•	•	5	•	•	•	•	5	•
2	•	• •	• :	5	- 5	. 2	5	9	5	•	. 2	10
1	1	• :	3 1	•	•	5	14	3	3	•	•	5
4	•) :	5. H	•	- 5	5	16	10	10	•	3	10
5	1	M	24	•	- 5	•	10	10	20		•	10
6	1 •	u	• ж	•	-10	•	10	LS.	19		. •	15
,	•	2.5	į H	•	-10	3	1.0	15	10	•	•	20
•	•	3 4		•	-10	3	10	20	20	•	•	- 20
•	•	. 34				10	15	30	15	10	•	30
18	- 3	-			~20	10	15	45	15	20	•	30
110	-10				-20	30	20	10	20	15	10	40
12	-10	-			-20	40	20	- 76	23	- / 20 -	13	40
13	-10				-15	45	20	75	30	20	13	45
14	-10	44			-10	66	20	90	45	23	20	60
B	-15	45		60	11	85	20	100	33	30	20	79
16	-20	50		73	45	110	20	103	44	35	26	85
17	-26	45		150	76	130	20	110	73	45	33	1.00
18	->	40		240	100	153	36	120	100	- 50	36	100
19 26	->=	45		300	150	205	83	120	125	65	40	110
21	-30	1.20 21.0		. 154	260	310	58	113	140	75	75	105
22	-35 -23	- 110	100	430	478	440	130	206	360	210	170	85
23	-25	300	125	495 540	670	320	176	360	644	329	310	110
		430	340		760	560	240	530	130	338	410	230
24.	78	750	476	700	810	398	290	390	790	260	480	205
25					905	630	213	633	830	300	336	370
	190	244	370	160	940	670	355	673	900	400	610	***
27	343	720	673	923	990	690	293	750	930	450	640	470
28	900	930	808	1010	lu)a	730		. 80 0	976	425	470	363
77	1055	740	140	1070	1036	763	140		1910 2	430	700	440
20**	1153	1280	1330	1035	940	576	733	1005	410	420	600	540

TABLE 8-18
PRESTRESSING STEEL STRAING (MIGEO INCHES PER 1171H), BEAM CS-1

Load	, 	Strata	Gauge Loca	tion	
Stage	•	b	c	4	• .
0	0	0	0	0	
1	45	50	50	55	-50
2	95	100	100	-115	-125
. 3	155	150	160	-185	-195
_ , •	215	220	225	-255	-270
5	270	280	280	-315	-335
\ •	340	360	355	-385	-410
7	460	465	480	-440	-470
8*	565	5,55	575	-485	-525
,	675	645	685	-530	-570
10	805	775	810 .	-570	-615
11	940	910	930	-610	-670
12	1085	1055	1075	-660	-720
13	1230	1210	1225	705	-775
14	1370	1355	1360	-745	-825
15	1490	1560	1330	-7 95	-895
16	1560	1805	1250	850	-960
17	1480	2050	1190	-905	-1035
18	1520	2280	1035	-99 0 :	-1165
19**	-	3100	•	-	

Œ

PRESTHESSING STEEL STRAINS (HICKO LINING PER THEIL), BEAM CS-2

Load		Strain	Gauge Local	Lion	
Stage		ь	c	d	•
0	•	•	0	0	
1	30	35	40	40	40 :
2	,70	75	80	85	90
3	105	120	120	130	120
4	140	160	· 165	180	195
5	170	190	195	210	225
6	185	210	220	235	265
7	260	235	243	265	300
	220	255	265	300	350
90	240	280	290	340	400
10	265	315	335	395	505
ıı l	295	355	415	470	600
12	340	420	500	610	935
13	400	500	635	835	1245
14	440	585	780	1025	3400
15	490	² 700	1000	1235	•
. 16	550	835	1200	1450	
17	630	1020	1405	1675	
18	740	1240	1635	1810	•
19	820	[∞] 1360	1720	1895	-
2044	-	-	-	-	

* First Crack

TABLE B-40 STIRRUP STRAINS (HICRO INCHES PER INCH), BEAM CS-2

Load					Strain	Cauge	Loca	Lion				
Stage	1-7	1- S	1-B	1-x	2-T	2-S	2-8	2-W	3-7	3-5 0)]-B	3-W
0	0	0	0	0	0	0	0	0	0	0	0	0
1	25	0	0	5	5	5	0	0	10	0	. 0	0
2	35	0	-10	5	15	10	-10	S	25	0	-19	-0
,	45	0	-15	5	20	10	-15	5	40	5	-20	5
4	50	0	-20	5	30	15	-25	5	50	5	-30	0
	55	0	-20	5	35	15	-30	, . 5	60	5	-40	0
6	65	0	-25	10	40	15	-30	5	65	0	-40	0
,	60	. 0	-25	10	40	15	-30	5	70	0	-45	0
	60	. 0	-25	10	45	15	-35	5	75	0	-45	- 5
94	60	. 0	-25	10	50	15	-35	0	85	- 5	-50	-10
10	70	0	-30	10	55	15	-30	0	95	-15	-40	-10
11	70	- 5	-30	10	60	10	20	10	100	-40/	-20	-25
12	75	-10	-25	5	65	5	55	5 *	110	-65	15	-40
נו	85	-15	-10	. 5	50	- 5	110	10	125	-90	75	-70
14	85	-20	20	. 0	75	-13	150	10	135	-100	115	-85
15	90	-25	. 55	- 5	75	-20	220	15	150	-100	170	-105
16	95	-35	90	-10	80	-20	290	30	155	-85	220	~120
-17	100	-40	135	-15	85	-20	375	65	180	-80	275	-135
18	145	-50	205	-25	90	70	470	125	235	-95	390	-40
19	100	-50	255	-30	95	110	535	155	340	-90	550	+145
2044	-00	-	•	•	•	-	•	-	• ,	_	••	-

PRECINCISING SINN. STRAIG: (SUDO PERIS PER 1938), BEAR CE-3

load		Strata	Cango Loro	t lun	
Stage	•	•	•		
0				•	•
1	, 10	35	35	40	44
2	70		30	90	125
,	95	110	110	.120	145
4	126	135	133	*150	205
	144	165	143	185	240
	160	165	190	210	270
,	175	205	210	235	305
	193	230	235	260	355
•	215	255	260	290	415
104	235	280	245	330	495
11 .	255	310	315	343	630
12	275	335	340	450	815
23	300	370	375	535	960
24	320	410	410	670	1150
15	340	455	515	895	1300
16	360	525	645	1045	1435
17	1 380	695	875	1265	1670
10	400	895	1025	1400	1840
19	415	1050	1145	1520	1990
20	463	1230	1320	1690	-2170
21	543	1360	1455	1830	2325
22	740	1485	1600	1970	2510
25	1670	1555	1680	2078	2675
24	1150	1635	1760	2175	2830
2544	-	•		-	3050

TABLE 3-42 STIRRUP STRAINS (MICRO LUCHES PER EXCH), BEAM CS-3

		31(10		wr.5						····		
Laud				<u> </u>	Strai	a Cau	to Lo	tat lon				بر
Stage	1-T	1-5	1-8	1-3	2-T	2-5	2-B	2-¥	J-T	3-8	3-8	
-	0	0	0	0	0	0	- 0	.0	. 0	. 0	-8	
1	5	5	•	5	10.	5	•	5	15	·, 9	- 5	. 1
2	15	5	0.	10	20	3	-10	5	30	•	-15	4
3	20	0	•	10	25	10	-10	10	40	0	-25	
4	25	0	•	10	30	10	-15	10	43	- 5	-30	,
5	30	•	•	10	35	· 10	-15	10	55	-10	-35	٩
6	30	•	•	15	46	10	-20	10	65	-10	-35	
7	30	0	•	13	45	15	-20	10	70	-10	-40	١
	25	٥		15	50	15	-20	10	80	-10	-40	•
•	35	•	10	15	55	25.	-35	5	90	-10	-45	- 1
100	35	٥	30.	15	60	, 30	-25	0	100	-15	-55	-10
'n	Ę0	•	60	15	65	30	-15	. 0	105	-25	-60	-21
12	40	10	58	15	70	15	•	- 3	110	-50	-70	ہمہ
13	40	10	110	15	. 70	40	20	-15	120	-70	-60	-3
14	45	10	136	15	75	35	35	-20	123	-85	-20	-2
15	45	10	155	15	75	25	65	-10	135	-85	45	-7
16	45	10	165	15	70	25	100	- 5	150	-43	105	اعمد
17	45	•	223	20	65	95	165	•	155	-50	123	22
18	40	- 5	255	30	65	255	220	5	240	-35	140	20
19	40	-10	260	60	65	390	270	10,	290	-20	155	24
20	35	-10	265	100	70	545	415	25	375	- 5	.170	p ∙l;
21	25	-10	275	145	90	725	545	45	450	10	145	**
22	23	-15	205	220	120	870	760	90	570	20	203	12.4
23	15	-13	443	310	140	950	#70	120	585	`30	239	132
14	15	-40	345	340	140	101-0	935	145	583	45	260	12-11
25**					•	•	•	•	-		•	
• , , ,		<u> </u>										_

TABLE 8-41
PRESENTESSING STREET, STRAIGE, (SUGNO LUZINGS PER LINCH), BEAM CX-4

Lood		Strain	Carryo Laca	t lan	
Stage	٠	•	•	4	•
•	•	•	•	•	•
1	-10	-15	-15	-20	-20
2	-20	-30	-30	-40	-40
•	-30	-40	-50	-60	-40
	-40	-55	-45	-60	-45
3	-50	-70	-80	-105	-115
- 4	-70	85	-107	-125	-140
,	-90	-103	-1 70	-145	-165
	-105	-115	-130	-160	-186
,	-110	-125	-133	-170	-190
10	-120	-140	-143	180	-203
11	-130	-160	-155	-190	-215
17*	-140	-175	-163	-200	-230
13	-150	-209	-175	~215	-245
14	-165	-215	-165	-235	-255
15	-130	-230	-200	-240	-270
16	-190	-245	-210	-250	-200
17	_200	-250	-220	-260	-300
. 10	-210	-260	-230	-270	-310
19	-215	-265	-240	-265	-330
20	-230	-280	-255	-300	-350
21	-260	-340	-300	-130	-375
22	-315	-425	-365	-380	-410
23**/					

Pirat Crack ** Diticat

TABLE 3-44
STIRRUP STRAIXS (NICRO LIXES PER INCR), BEAN CS-4

Lead					Strai	e Gju	ge Lo	cation				
Stage	1-T	1-5	1-3	1-M	, 2-T	2-5	2-B	2-3	3-t	3-5	3-1	3-1
•	0	0	0	•	٥	. 0	0	0	0	•	•	
1	•	0	•	. •	•	•	•	•	٥	•	, •	•
2	•	0	0	0	•	•	•	•	10	•	•	•
•	•	0	0	•	. 0	•	0	•	15	•	•	. (
4	•	•	•	5	5.	•	•	•	20	3	-10	- 5
3	0	. 0		5	5	٠	•	3	25	10	-10	- 1
6	10	5	•	10	10	5	•	5	30	10	-10	- 5
,	25	10	٥	15	10	15	0	10	40	20	-10	- 1
•	25	20	0	20	. 10	20		10	45	35	- 5	- :
•	30	30	0	20	10	25	0	15	- 50	45	5	-10
10	40	40	•	23	10	30	•	15	50	50	15	-16
11	50	55	•	30	10	30	•	15	35	60	30	-14
124	30	70	- 3	35	10	35	•	20	60	45	45	-10
13	105	85	- 5	40	10	40	5	20	60	100	60	-10
14	130	100	- 5	50	-10	45	5	20	65	113	70	-10
15	145	113	-10	55	15	30	5	20	65	125	75	-16
16	155	140	-10	65	15	60	5	25	70	140	80	-10
17	160	170	-15	75	15	65	10	25	70	145	75	- 5
10	170	200	-20	85	15	60	5	23	70	145	90	-25
19	195	220	-20	100	20	75	10	30	65	1 20	140	~30
20	260	220	-30	mo	25	90	15	33	45	135-	213	-25
21	340	235	25	420	15	95	lS	35	65	145	235	-20
22	. 540	750	545	240	; 5	80	10	20	70	153	290	-16
2344			•		7.			•	-	-	-	-

First Crack 44 Vit

PRESTRUCTION STREET STRAINS (SHOWN (LINES FOR THOSE), BEAN CH-5

Lood	Strain Couge Location									
Stage	4	ŀ	4	đ	•					
•	•	. •	•	•	•					
	- 5	- 5	- 5	-10	-10					
2	-15	-10	-15	-20	-25					
,	40	. 20	20	30	. 40					
	130	75	35	35	50					
,	180	110	60	40	53					
	230	154	90	50×	60					
,	270	190	135	43	65					
•	305	220	165	85	. 70					
,	330	255	200	100	10					
10	235	280	225	115	- 90					
11	300	300	250 _	. 130	100					
124	400	320	270	143	105					
13	425	345	- 300	175	125					
и	465	370	340	220	150					
15	525	413	393	280	190					
16	365	445	450	360	255					
17	590	520	505	410	295					
18	600	560	550	455	330					
19	490	595	380	510	385					
20	360	600	590	553	410					
n	-245	-425	-635	-545	-430					
22**	-160	- 20	-605	-585	-475					

A First Crack An Ultimate

TABLE 8-46
STIRRET STRAINS (MICRO INCHES PER INCH), BEAN CS-5

				· ·								
load					Strafi	Cam	ia Los	ation				
Stage	1-T	1-6	1-3	1-3	2-T	2-5	2-8	2-16	3-T	3-5	3-8	3-X
•	•	. 0	•	•	•	•	0	•	.0.		. •	٥
1		. 0	5	- 5	•	3	- 5	- 5	5	•	•	•
,	•	10	10	-10	•	10	-10	-10	10	•	- 5	5
٠, ا	•	15	10	-10	•	10	-10	-10	10	0	-10	3
	٥	20 '	15	-15	5	15	-15	-10	15	•	-10	5
,	•	25	15	-15	10	15	-15	- 5	15	•	-10	5
6	•	35	15	-15	10	15	-20	- 5	20		-14.	. 5
7	. •	-40	15	-15	10	15	-20	- 5	20	5	-19	5
	•	50	15	-20	10	20	-20	- 5	20	16	-10	10
,	•	55	20	-20	15	20	-20	•	25	10	-10	15
10	. 10	65	20	-20	13	25	-20	5	25	15	- 5	15
11	10	70	20	-20	15	25	-20	10	30	20	•	15
12*	10	75	20	-20	20	30	-20	26	33	30	•	10
13	10	80	20	-25	20	35	-20	30	40	25	•	25
14	15	80	10	-45	15	40	-20	45	. 40	45	0	25
15	35	*75	•	-55	10	40	-70	45	43	60	5	25
16	65	80	-10	-60	. 10	50	-20	10	50	70	10	30
17	90	93	-25	-55	10	60	-20	90	55	85	10	30
18	125	200	-40	-50	10	70	-20	100	60	105	20	35
19	240	350	65	5	30	- 40	-45	130	70	120	25	35
20	340	- 850	355.	1030	40	65	-10	180	80	145	· 35	33
21	620	1115	740	1345	1	85	160	250	90	163,	45	44
2740	1416	1430	-	1690	950	445	345	450	45	140	25	40

6 Virot Crack 64 Bitfaule

PRESTRESSIME STEPL STRAINS (NICHO INDES PER INCH), BRAN CH-6

Lead ·		Strata	Gruge Loca	eles '	
Stage	•	•	•	4	•
•				-	
1	!	•	•	•	10
. 2	l	•	•	•	10
3	1	•	•		10
4		•	•	- 5	. 10
3	1	- 3	•	- 3	30
•	g Mill	-30	- 5	- 3	3
7	(A)	-33	-13	- 5	5
8		-43	-35	-10	3
•	٠.,	-80	-30	-43	3
10		-105	-70	-43	- 3
11		-125	-90	-45	-15
124		-140	-185	-65	-35
13		-160	-120	-113	-33
24		-183	-132	-143	-65
15		-220	~170	-783	-145
16		-253	-220	~235	-235
17		-295	-245	-265	-290
14		-203	-245	-293	-373
19		-290	-290	-340	-448
20		-310	-330	-420	-515
21		-200	-329	~430	-543
22		-100	-365	-420	-530
23		10	-293	-415	-535
3400		125	-290	-430	-570
25			•	•	•

First Crock as Mitimate

TABLE 8-48
STIRROP STRAINS (MICRO INCHES PER INCH), BEAM CE-4

Load	i				Strai	n Gev	ga la	cation				
Stage	1-1	1-5	1-8	1-3	2-T	2-8	2-8	2-H	3-T	3-8	3-8	″ 3-#
•	0	0	-	0	,0	0	0	0	0	. 6	6	
1		. •	-	•	ė	•	•	•	•		•	•
2	•	•	-	•	•	•	•	•	•	•	•	•
3	•	•	-	•	•	•	5	•	•	•	· S	•
4	- 3	0	- '	5		•	10	•	•	- 5 ,	5	10
5	- 3	•	-	10	•	•	10	3	5	-10	- 5	10
6	- 5	•	-	15	•	•	10	5	3	-10	- 3	10
7	- 5	•	•	25	3		15	5	5	-13	- 3	15
	- 5	- 5	-	35	30	-10	15	10	10	-15	- 5	15
,	9	- 5	-	50	45	-10	15	ŤΟ	10	-15	- 3	15
10		- 5	-	60	55	-10	15	10	10	-10	- 5	20
11	3	- 5	-	75	. 65	-15	15	15	15	-20	- 5	20
170	10	- 5		. 95	75	-15	15	15	15	-20	- 3	20
13	10	-10	-	150	100	-20	20	25	20	-25	-10	25
14	3	-15	-	260	125	-20	20	30	25	->0	-10	30
15	•	-25	-	365	155	-20	20	25	35	-35	-10	30
16	-10	-35	•	530	215	-25	20	35	30	-43	-10	33
17	-10	-50	-	390	273	-33	20	. 35	75	-3 0	-10	44
18		-40	-	640	390	-45	13	25	113	-45	-15	50
19	20	-70	-	690	645	-70	. 5	5	140	-45	-30	70
20 -	790	265	• "	773	745	-45	-15	•	140	-93	-25	90
21	1050	700		905	905	-90	-30	90	175	-105	-35	115
22	1270	1065	-	1060	1955	-100	40	360	185	-115	-45	160
23	1420	1790		1220	1170	-45	220	455	200	-125	-55	220
34.4	1474	1495	٠.	1445	1220	275	540	1160	205	-139	-70	240

Blent Fresh 800111mm

TABLE 8-49

PRESTRESSING STEEL STRAINS (HIGHO DIGHES PER LINCH), BEAR CH-1

		Strain C	auge Locati	l un	
Load Stage	4	b	E	4	•
	0	0	0	0	هر.
i	45	50	50	-60	-55
2	100	110	115	-140	-125
1	165	175	185	-225	-205
:	200	220	230	-275	-260
,	250	270	280	-330	-315
1	280	310	315	-370	-350
,	315	345	350	-415	-390
8.	155	390	390	-455 *	-430
,	400	450	450	-515	-480
10	475	535	545	-565	-530
11	570	625	640	-620	-580
12	715	765	805	-680	-635
13	875	935	980	-745	~690
14	1055	1085	1160	-800	-730
15	1240	1275	1385	-865	-785
16	1425	1465	1620	-9 20	~830
17	1625	1660	1795	-99 0	-890
18	1830	1900	1855	-1050	-9 50
19	2040	2240	1910	-1100	-1005
20	2145	2445	1910	-1150	-1055
21	2175	2520	1930	-1170	-1065
22	2200 -	2440	1935	-1205	-1080
22 . 23**	2280	2460	1970	-1240	-1130

TABLE 8-50
PRESTRESSING STEEL STRAIG (MIGPO INCHES PER INCH), BEAM CH-2

Load		Strain	Gauge Locat	108	
Stage		•	¢	4	•
	0	0	0	. 0	0
il	30	30	40	45	45
2	65	70	90	. 100	115
,	105	115	145	160	199
	150	160	205	225	280
š	175	190	245	265	340
60	195	215	270	310	400
,	220	240	300	250	490
	240	265	335	475	610
,	265	295	385	565	780
10	290	310	585	740	1010
11	315	335	830	950	1210
12	355	365	1145	1200	·§ 1425
13	460	405	1300	1430	1615
14	710	515	1460	1665	1890
15	850	740	1640	1915	2160
16	975	1185	1825	2160	2440
17	1150	1365	2055	2450	2735
18	1270	1520	2250	2735	3025
19	1355	1620	2355	2880	3180
20**	1430	1700	2450	3025	3320

TABLE 8-51
STIRRUP STRAINS (MICRO INCHES PER INCH), BEAM CR-2

Load	<u> </u>				Strain	Gau	e Loc	ation				
Stage	1-1	1-5	1-8	1-N	2-T	2-5	2-B	2-M	3-T	3-\$.	3-1	3-X
0	0	0	0	0	0	0	0	0	0	0	0	0
1		. 0	٥	. 0	10	10	0	0	10	0	0	0
2	5	0	-10	10	20	15	-10	10	35	0	-15	. 0
3	15	5	-20	70	30	20	-15	15	50	0	-30	0
4	25	15	-25	- 10	35	25	-25	15	60	0	-45	- 5
5	25	30	-30	15	40	35	-25	15	65	- 5	-60	-15
60	30	35	-35	15	45	40	-25	15	70	- 5	-65	-15
7	35	45	-35	15	50	45	-30	15	75	- 5	-70	-20
8	40	50	-40	15	55	50	-25	15	85	25	- 5	-15
,	45	65	-40	15	60	60	(o	15	95	125	5	.0
10	50	70	-45	20	65	70	135	-20	110	220	110	15
11	65	80	-50	20	70	70	275	25	125	310	185	20
12	55	95	-45	25	80	75	475	20.	140	435	235	40
13	63	105	-10	25	90	60	605	20	155	515	270	80
14	70	105	170	15	105	90	700	20	175	600	315	95
1 -	75	110	285	15	115	115	805	30	200-	680	355	95
15	85	105	380	30	135	275	870	45	240	760	395	85
16	95	103	475	40	150	370	955	60	280	893	435	85
17		100	570	50	165	435	1025	80	300	985	. 470	80
18	105		600	60	180	500	1065	90	325	1030	500	85
19	115	180			190	550	1080	100	325	1050	500	85
20**	120	215	625	70	190	730	1400					

a First Crack as Ultimate

PRESTRESSING STREE STRAIRS (NICHE INCHES PER INCH), MAN CH-)

		Strola	Cauge Local	i lea	
Lood Stage		•	•	4	•
	-			•	,
1	25	25	43	· 25	85
2	70	73	95	73	156
,	90	100	230	105	190
4	110	130	160	2.25	225
	125	150	185	135	360
	us	176	210	190	300
,	133	190	205	205	335
-	160	200	230	21.5	360
,	190	225	275	243	425
10	193	245	295	265	343
11	210	270	325	410	715
11	225	293	390	500	933
13	235	310	745	835	1043
' и	310	630	1030	11,00	1176
נו	370	925	1180	1410	1320
16	410	1043	1325	1625	1505
17	455	1150	1485	1818	2445
10	475	1243	1610	1910	1630
19	510	1340	1730	2030	1640
20	550	1440	1850	2160	1740
n	590	1560	1965	2315	1925
22	620	1655	2115	2473	2140
2344	•	•	-	2700	-

First Crack

TABLE 1-53 STIRRUP STRAINS (MICRO INCRES PER INCR), DEAN CR-3

lead				_	Strai	a Cau	go Lo	cation				
Stage	1-7	1-5	1-8	7-2	2-T	2-5	2-3	2-#	3-7	3-6	3-8	3-8
•	•	•	•	•	•	•	•	0	•	•	•	•
1	10	•	•	10	1,0	10	-10	5	13	10	-10	•
2	20	•	-10	10	20	15	-15	5	39	10	-20	
3	25	•	-20	10	25	20	-20	5	40	10	-30	•
~ 4	30	•	-25	10	30	20	-25	5	50	15	-40	•
5	40	5	-30	1.0	25	25	-30	10	53	13	-50	•
6	45	5	-30	. 10	40	30	-35	10	60	15	-40	0
7	50	10	-35	10	45	35	-35	10	78	20	-44	. •
80	50	15	-35	10	43	40	-35	10	75	20	-45	•
. 9	55	20	-40	1.0	50	50	-40	10	80	60	-15	- 3
20	60	50	-40	10	53	50	-48	10	90	190	-30	- 5
11	65	126	-45	20	60	55	-40	10	100	300	-20	- 3
12	75	180	-43	10	45	80	-40	20	120	310	740)0
ນ	80	260	-30	10	80	530	-20	50	140	640	830	199
14	85	790	•	•	105	710	360	160	170	780	935	355
15	100	925	510	10	125	840	675	275	205	800	1010	535
16	110	1113	670	30	145	965	850	390	250	940	1040	445
27	120	1320	775	70	170	1050	995	490	309	770	1000	765
18	135	1380	840	105	190	1043	1090	560	335	1035	1130	. 835
19	140	1440	915	135	200	1105	1145	610	345	1075	1160	845
20	130	1540	963	180	215	1130	1235	475	415	1070	1205	885
21	160	1600	1020	210	230	1155	1310.	725	475	1040	1385	900
22	110	1470	1070	259	245	1180	1375	770	535	1074	1455	975
2700	•,	•	•	-	-	•	` -	•	•	-	•	•

* First Crack ** Witimbte

TABLE 8-54
PRESTRESSING STEEL STRAING (HIGHO INCHES PER INCH), REAN CH-4

load		Strala	Cauge local	tion	
Stage	•	•	c	4	•
•		0	0	0	•
	٠.٠	-15	-20	-30	20
2	-	-30	-30	-55	10
3	-	-40	-40	~80 ,	- 5
	-	-55	-55	-130	-30
50	-	-70	-75	-130	-35
6	-	-80	- -9 0	-155	-50
,	-	-45	-95	-175	-60
		-95	-110	-180	-70
,		-110	-130	-190	-55
10	-	-120	-140	-200	-50
11	-	-125	-135	-205	-40
12	-	-120	-130	-205	-30
13		-105	-110	-200	5
14	•	-55	-105	-205	65
15**	_	20	-25	-210	35

Same Corp. 44 III store

₹Ç

TABLE 8-55
STIRRUP STRAINS (MICRO INCHES PER INCH), BEAM CH-4

Load					Strai	n Gau	te Lo	cation				
Stage	1-7	1-5	1-3	1-x	2-T	2-5	2-8	2-H	3-T	3-5	3-8	3-H
0	0	•	0	0	0	0	0	o	o	0	0	. 0
1	.5	5	0	. 0	0	10	0	0	5	5	0	10
2	10	10	0	0	5	15	-10	0	5	10	0	10
3	15	15	-10	٥	10	25.	-10	٥	10	15	0	10
4	25	35	-15	0	15	40	-15	. 0	10	30	- 5	10
5*	30	50	-25	0	20	80	-25	0	10	160	-15	10
6	35	85	-30	0	25	145	-35	0	15	305	-20	10
,	55	145	-40	ò	30	240	40	. 0	20	480	-20	10
	65	185	-50	0	35	340	-45	0	20	660	-25	10
,	75	260	-55	0	40	490	-45	0	20	720	-20	25
10	80	315	-55	٥	40	600	-45	0	25	760	-25	60
11	95	150	-55	٥	45	675	-35	0	25	835	-25	110
12	110	365	-45	5	50	730	-30	0	30	875	-30	210
13	125	400	25	10	50	850	-35	•	40	930	-10	360
14	185	450	80	90	75	1075	-45	0	70	955	70	580
15**	630	510	155	605	170	1175	170	45	485	1030	210	725

First Crack 64 Ultima

TABLE 8-56
PRESTRESSING STEEL STRAINS (SIGNO INCHES PER INCH), BEAM CH-5

load		Stealn G	ange location	\ 	4
Stage		•	¢		
•	0	0	0	0	0
1	0	. 0	• •	•	10
2	- 5	- 5	-10	10	10
3	- 5	- 5	-10	20	5
• •	-10	-10	-15	25	- 5
5	-10	-10	-20	30	. 0
	-15	-15	-20	15	0
,	-25	-15	-20	35	-10
	-30	-20	-25	40	-10
,	-50	~20	-25	45	-10
10	-65	-25	-, 30	50	-20
11	-95	-40	-30	55	-20
120	-135	-45	-35	60	-25
13	-500	-655	-215	75	-30
14	-520	-730	-315	ý0	-35
15	-475	-860	-480	130	-30
16	-390	-875	-590	210	-20
17	-335	-550	-540	310	-55
10	-190	-540	-540	343	-60
19	-75	-400	-510	375	-60
2044	_	-	•.	-	٠ ـ

WARTER R-57

STIRRUP STRAINS (MICRO INCHES PER INCH), BEAM CH-5

			·									
					Stral	Gaus	a Loc	ation				
Load Stage	1-7	1-5	1-8	1-3	2-T	2-5	2-3	2-W	3-T ·	3-5 '	3-8	3-X
		0	0	0	0	. 0	0	0	0	0	0	٥
0	. 0	-	Ö	٥	ō	0	0	0	0	Q	0	0
1	0	0	5	٥	5	ā	o	0	5	10		5
2	0	5		_	, , s	- S	0	0	10	10	- 5	•
3	0	5	,5	•	· 5	10	0	ō	10	- 15	-10	•
4	0	10	5	- 5		10	0.	0	10	20	-10	(
5	0	15	10	-			0	0	15	20	-10	(
6	0	20	10	- 5	5	10	_	0	20	20	-10	. (
7	0	35	10	0	10	15	. 0	-	20	25	-10	
8	0	45	10	0	10	20	0	0		30	-15	
, 9	5	70	10	0	10	25	0	0	25	_	-15	
10	10	90	10	0	10	. 30	0	5	25	35		
11	10	120	10	5	10	35	0	. 5	30	40	-15	
12*	40	135	, 10	10	10	60	- 5	10	30	50	-20	
13	585	175	5	-10	35	190	-10	195	50	85	-20	1
14	625	190	5	-15	40	220	-15	205	50	90	-25	1
	720	230	10	-15	45	295	-20	210	60	100	-30	3
15	1	465	.*	- 5	60	380	-15	240	65	125	-35;	4
16	820		750	63	375	735	55	275	105	125	40	•
17	890	650	1040	510	•	940	480	385	120	125	-50	•
18	1000	1020		-	1405	1330	1115	555	195	463	-50	7
19	1330	1360	1310	730	740)	.,,,,		•	-	•	•	
2044	1 -	-	·, =	•								

PRESTRUCTING STREET STRAINS SHICAN DELICE FOR JUCH), BEAN CH-6

Road		Strain	Cough Local	t Son	
Stage	6	6	•	4	•
•	•	•	•	•	•
1	- 5	- 5	•	• •	20
2	- 5	- 5 .	•	- 5	20
,	5	- 3	· •	- 5	-30
4	- 5	-10	•	-10	- 5
5	•	-10	•	-13	•
•	•	-15	- 5	-15	•
,	•	-20	- 3	-15	. 10
	5	-25	- 3	-20	. 15
,	10	-40	-10	-20	15
100	10	-80	-30	-25	20
11	10	-105	-40	-34	20
12	5	-125	-50 °	-30	20
13	- 5	-160	-80	-40	25
14	-10	-145	-195	-43	. 30
15	-45	-245 .	-145	-40	45
16	-165	-355	-275	⊘ -105	125
17	-135	-370	-420	/ -250	175
18	-130	-350	-450 💉	-275	210
19	-120	-335	-450	-295	215
20	1920	-420	-450	-290	225
n	1920	-440	-430	-255	250
2244	1920	435	-415	-250	250
23	1950	-70	-425	-370	95

* First Crack ** Uliteate

STERRIP STRAINS CTICRO INCHES PER INCH), BEAN CH-6

												
Local					Strai	C Car	ge Lo	cation				
Stage	1-1	1-5	1-3	1-2	2-T	2-5	2-1	2-3	3-T	3-\$	3-3	3-#
•	•	0	0.	- 0	•	.0	•	•	0	•	٥	. 0
1	•	0	•	•	•	•	•	•	, •	. 0	•	0
2	•	•	•	•.	•	•	•	•	•	•	•	•
3	•		•	•	•	0	•	•	•	•	•	0
4	•	5	- 3		•	•		•	10	•	•	•
5	3.	10	•	•	5	•	0	•	10	5	•	5
6	15	10	- 5	5	S.	5	•	•	10	3		5
7	35	15	- 5	5	10	5	•	5	13	3	•	. 5
	50	15	- 5	5	25	\$	•	5	15	5	•	3
•	70	15	- 5	. 5	35	Š	0	10	20	. 10	•	10
104	90	20	-10	5	60			10	20	10	•	10
12	90	20	-10	5	70	1	•	10	20	10	- \$, 5
12	95	30	-10	3	85	5	•	10	25	15	•	- 10
เง	105	40	-10	3	110	5	- 5	10	30	29	- 5	10
14	120	50	-10	20	140	10	- 5	10	4.0	30	- 5	10
15	180	80	-10	40	230	10	•	15	65	40	- 5	10
16	315	115	-15	110	376	3	- 5	15	105	80	- 5	. 10
17	430	. 120	-20	170	395	3	- 3	15	195	.70	-20	115
18	845	190	-25	220	650	-10	-15	110	240	60	-20	163
19	960	315	-20	235	1205	-30	-10	270	295	40	•	240
20	1040	720	SÒ	276	1370	-40	-10	310	340	60	20	280
21	1216	910	135	450	1380	-35	10	350	400	73	215	325
2244	1370	1065	410	140	1993	3	650	8.30	440	85	390	385
23	1440	1240	710	920	•	940	1320	1375	350	140 -	790	620

4. First Crack

APPENDIX C

PHOTOGRAPHS OF TESTED BEAMS

Photographs of the tested beams are presented in Figures C-1 through C-31 of this appendix. Each figure is composed of four views representing the south, north, top and bottom face of a beam. Continuity of cracks on three sides can be observed; it was not possible to match them since photographs of the different sides were taken at variable distances and angles.

In addition to crack patterns, the following details are also marked: projection of longitudinal and transverse steel on all four faces, location and designation of strain gauges, and projection of an opening in a hollow beam. This appendix, together with the preceding two, gives a complete picture of experimental data required for the study of beam behavior under combined loading throughout the entire loading history.

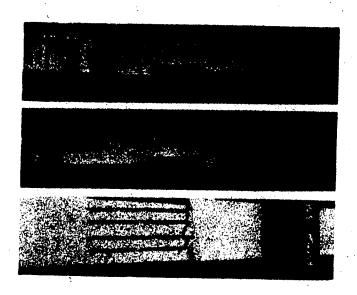


FIG. C-1 CRACK PATTERN AT FAILURE, BEAM BS-1

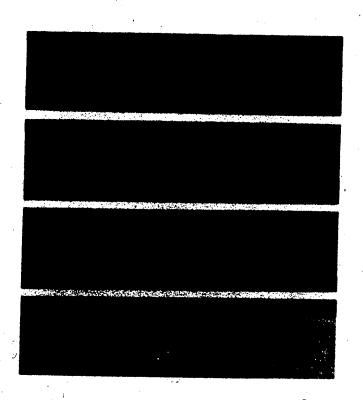


FIG. C-2 CRACK PATTERN AT FAILURE, BEAM BS-1S

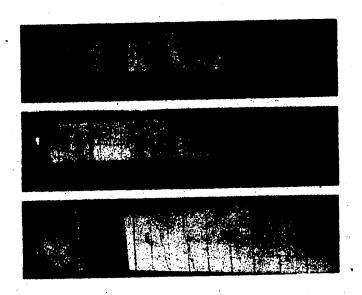


FIG. C-3 CRACK PATTERN AT FAILURE, BEAM BS-2

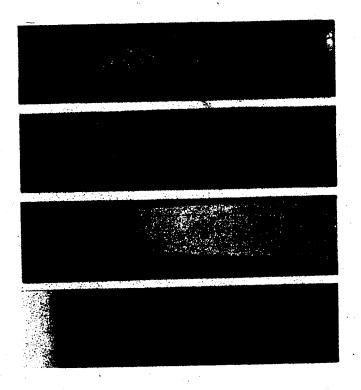


FIG. C-4 CRACK PATTERN AT FAILURE, BEAM BS-2S

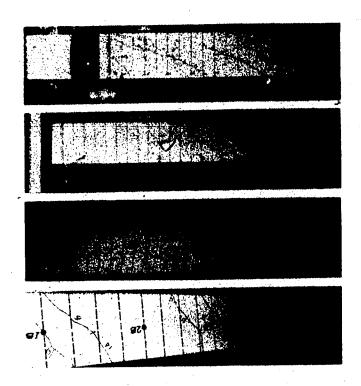
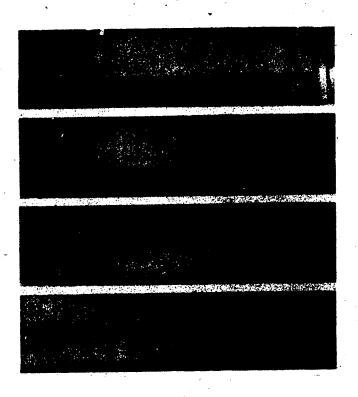



FIG. C-5 CRACK PATTERN AT FAILURE, BEAM BS-3

. FIG. C-6 CRACK PATTERN AT FAILURE, BEAM BS-4

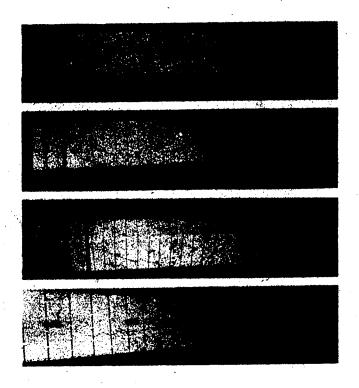


FIG. C-7 CRACK PATTERN AT FAILURE, BEAM BS-5

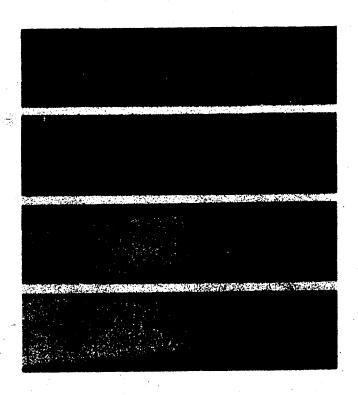


FIG. C-8 CRACK PATTERN AT FAILURE, BEAM BS-6

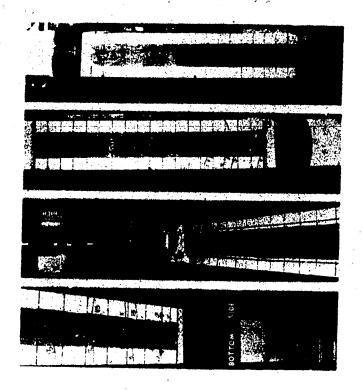


FIG. C-9 CRACK PATTERN AT FAILURE, BEAM BH-1

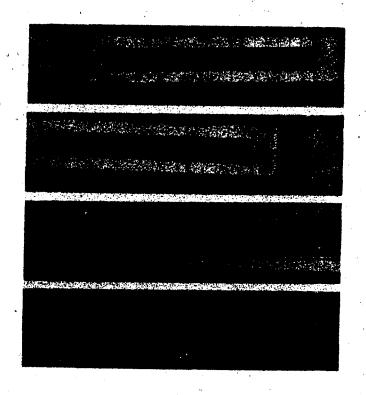


FIG. C-10 CRACK PATTERN AT FAILURE, BEAM BH-2

٦



FIG. C-11 CRACK PATTERN AT FAILURE, BEAM BH-3

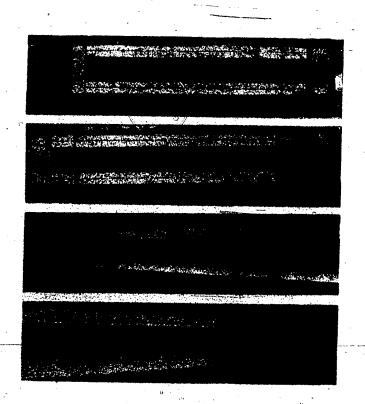


FIG. C-12 CRACK PATTERN AT FAILURE, BEAM BH-4

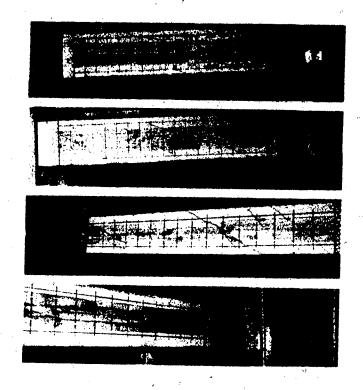


FIG. C-13 CRACK PATTERN AT FAILURE, BEAM. BH-5

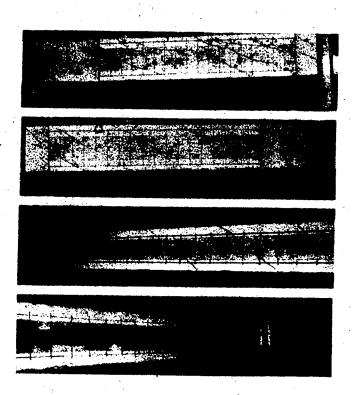


FIG. C-14 CRACK PATTERN AT FAILURE, BEAM BH-6

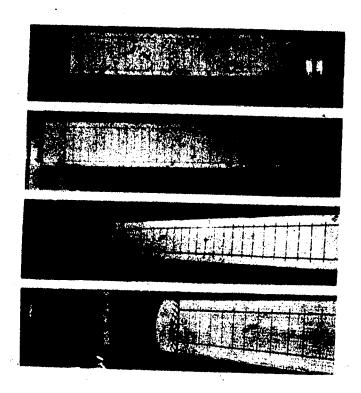


FIG. C-15 CRACK PATTERN AT FAILURE; BEAM B1S-2b

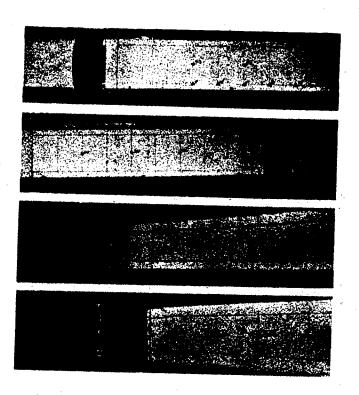


FIG. C-16 CRACK PATTERN AT FAILURE, BEAM BIS-4a

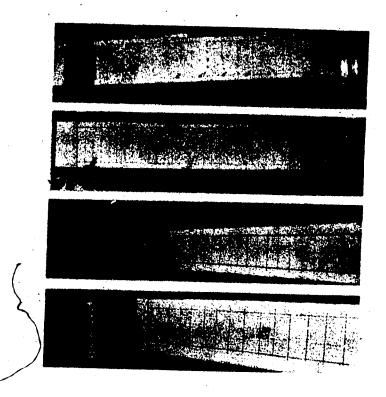


FIG. C-17 CRACK PATTERN AT FAILURE, BEAM B1S-4b

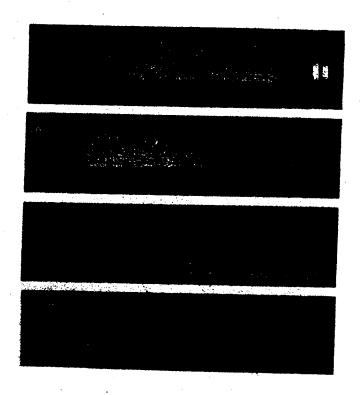


FIG. C-18 CRACK PATTERN AT FAILURE, BEAM B1S-6a

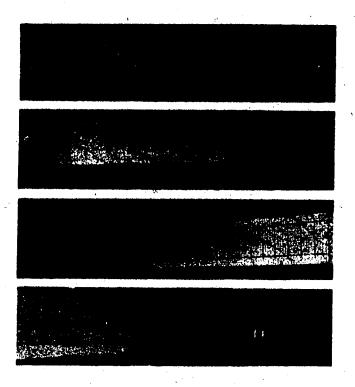


FIG. C-19 CRACK PATTERN AT FAILURE, BEAM B1S-6b

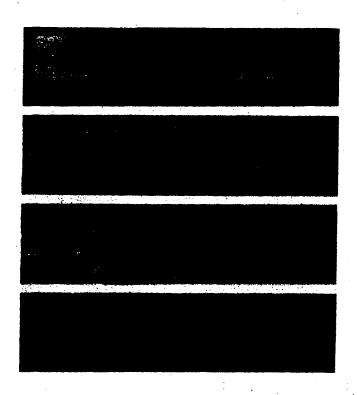


FIG. C-20 CRACK PATTERN AT FAILURE, BEAM CS-1

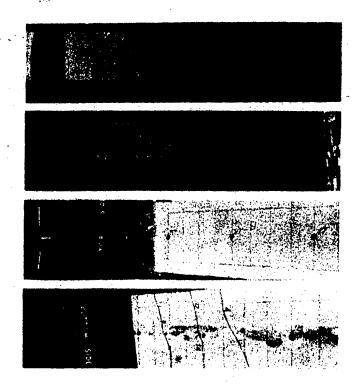


FIG. C-21 CRACK PATTERN AT FAILURE, BEAM CS-2

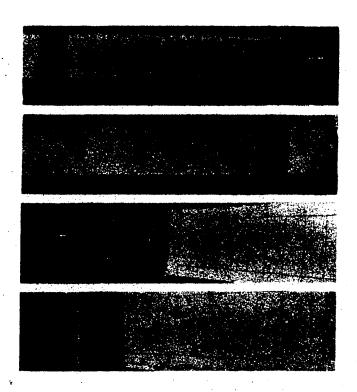


FIG. C-22 CRACK PATTERN AT FAILURE, BEAM CS-3

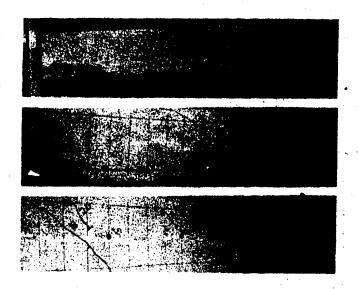


FIG. C-23 CRACK PATTERN AT FAILURE, BEAM CS-4

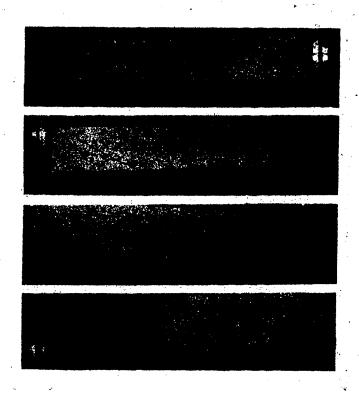


FIG. C-24 CRACK PATTERN AT FAILURE, BEAM CS-5



FIG. C-25 CRACK PATTERN AT FAILURE, BEAM CS-6

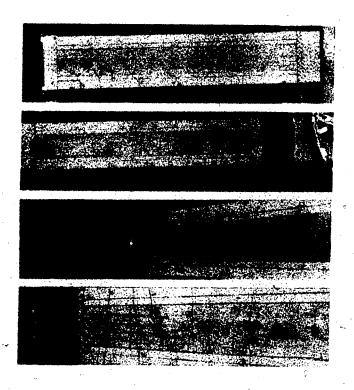


FIG. C-26 CRACK PATTERN AT FAILURE, BEAM CH-1

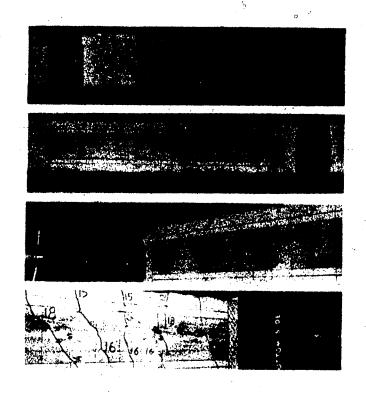
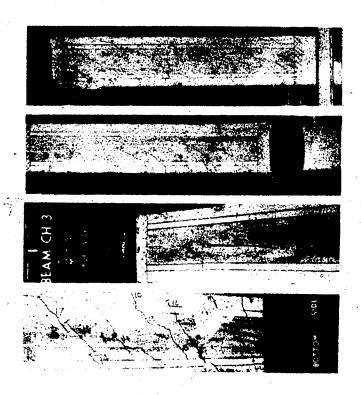



FIG. C-27 CRACK PATTERN AT FAILURE, BEAM CH-2

TIE C-28 CRACK PATTERN AT FAILURE, BEAM CH-3

.

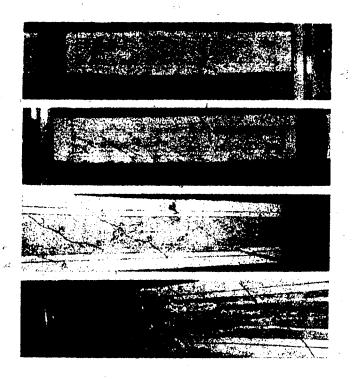


FIG. C-29 CRACK PATTERN AT FAILURE, BEAM CH-4

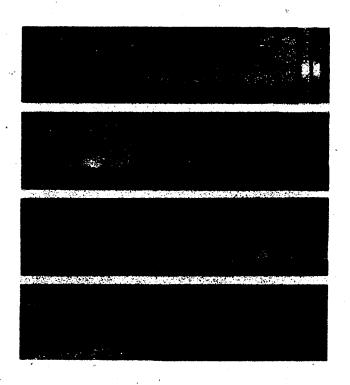


FIG. C-30 CRACK PATTERN AT FAILURE, BEAM CH-5

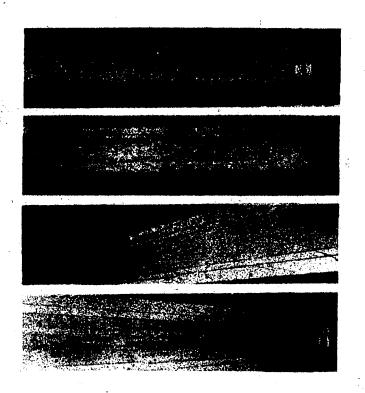


FIG. C-31 CRACK PATTERN AT FAILURE, BEAM CH-6

APPENDIX D

COMPUTER PROGRAM

In this appendix a complete listing of the computer program with examples of output for each mode is presented. Nomenclature used in the program is given in Section D.1. Figure D.1 presents a general flow chart and identifies subroutines. Within the program numerous comment cards are included to describe subroutines and major statements; therefore no detailed flow chart is presented.

The author and the University of Alberta disclaim responsibility for missuse of the following program, nor will they be responsible for errors in the listing.

(-)

D.1 NOMENCLATURE FOR COMPUTER PROGRAM

A DEPTH OF NEUTRAL AXIS

A1,A2,A3,A4 CONCRETE COVER ON EACH OF FOUR STIRRUP LEGS

ALFAE1 TORSION FACTOR IN ST. VENANT THEORY

ALFAE2 TORSION FACTOR IN ST. VENANT THEORY

AP AREA OF A PRESTRESSING STRAND

ARCCOM AREA OF AN ELEMENT IN COMPRESSION ZONE

AST AREA OF A STIRRUP LEG

B WIDTH OF A BEAM CROSS-SECTION

BETA INCLINATION OF COMPRESSION ZONE W.R.T.

LONGITUDINAL BEAM AXIS

BH WIDTH OF AN OPENING IN A HOLLOW BEAM

BM BENDING MOMENT

C TOTAL COMPRESSIVE FORCE

D DISTANCES FROM THE BOTTOM FACE OF A BEAM TO

PRESTRESSING STRAND

DELTA LOADING RATIO

DFMOD1 DISTANCE FROM EAST SUPPORT TO THE FAILURE

CROSS-SECTION FOR MODE 1

DFMOD2 DISTANCE FROM EAST SUPPORT TO THE FAILURE

CROSS-SECTION FOR MODE 2

DFMOD3 DISTANCE FROM EAST SUPPORT TO THE FAILURE

CROSS-SECTION FOR MODE 3

DS LOCATION OF PRESTRESSING STRANDS W.R.T. SIDE

FACE OF A BEAM

DST1 DISTANCE FROM TOP FACE OF A BEAM TO THE UPPER

STIRRUP LEG

DST2 DISTANCE FROM THE TOP FACE OF A BEAM TO THE

LOWER STIRRUP LEG

DST3 DISTANCE FROM THE SIDE FACE OF A BEAM TO STIRRUP

LEG LOCATED ADJACENT TO THAT FACE

DST4 DISTANCE FROM THE SIDE FACE OF A BEAM TO THE

STIRRUP LEG LOCATED FURTHEST FROM THAT FACE

ECCN ECCENTRICITY OF PRESTRESSING FORCE

ECON MODULUS OF ELASTICITY OF CONCRETE

EPSCOM COMPRESSIVE STRAIN IN STIRRUPS

EPSCE STRAIN AT THE LEVEL OF THE REINFORCEMENT DUE TO

EFFECTIVE PRESTRESS

EPSCU CONCRETE STRAIN AT FAILURE

EPSSA INCREASE IN STRAIN IN THE PRESTRESSING REIN-

FORCEMENT BETWEEN PRESTRESS AND FAILURE

EPSSE EFFECTIVE PRESTRAIN CORRESPONDING TO

EFFECTIVE PRESTRESS

EPSSU- STRAIN IN THE PRESTRESSING REINFORCEMENT AT

FAILURE

EPSTEN TENSILE STRAIN IN STIRRUPS

ER ERROR IN SUM OF FORCES PERPENDICULAR A CROSS-

SECTION

ES MODULUS OF ELASTICITY OF PRESTRESSING STEEL

ESTIR MODULUS OF ELASTICITY OF TRANSVERSE REINFORCEMENT

FC CYLINDER STRENGTH OF CONCRETE

FCELEM ELEMENT STRESS IN COMPRESSION ZONE

FCOM COMPRESSIVE STRESS IN STIRRUPS

FPULT ULTIMATE STRENGTH OF PRESTRESSING STEEL

FSU STRESS IN PRESTRESSING STEEL AT ULTIMATE

FTEN TENSILE STRESS IN STIRRUPS

FYSTIR ULTIMATE STRENGTH OF STIRRUPS

H HEIGHT OF A BEAM CROSS-SECTION

HH HEIGHT OF AN OPENING IN A HOLLOW BEAM

PHI CURVATURE -

S STIRRUP SPACING

SIGMA PRESTRESSING FORCE PER UNIT AREA

SMAXB CONCRETE MAXIMUM PRINCIPAL STRESS

(CRACK LOCATED ON BOTTOM FACE)

SMINB CONCRETE MINIMUM PRINCIPAL STRESS

(CRACK LOCATED ON BOTTOM FACE)

SMAXS CONCRETE MAXIMUM PRINCIPAL STRESS

(CRACK LOCATED ON SIDE FACE) **SMINS**

CONCRETE MINIMUM PRINCIPAL STRESS

(CRACK LOCATED ON SIDE FACE)

SMAXT CONCRETE MAXIMUM PRINCIPAL STRESS

(CRACK LOCATED ON TOP FACE)

SMINT CONCRETE MINIMUM PRINCIPAL STRESS

(CRACK LOCATED ON TOP FACE)

T TOTAL TENSILE FORCE

TC TENSILE FORCE DUE TO CONCRETE UNCRACKED ZONE

TCOM TOTAL COMPRESSIVE FORCE DUE TO STIRRUPS

TCR CRACKING TORQUE

TF FLANGE THICKNESS IN A HOLLOW BEAM

THETA ANGLE OF INITIAL CRACK

TTEN TOTAL TENSILE FORCE DUE TO STIRRUPS

TW DOUBLE WALL THICKNESS IN A HOLLOW BEAM

SHEAR FORCE

XCR DEPTH OF THE TENSILE UNCRACKED ZONE

XINC INCREMENT OF DEPTH OF NEUTRAL AXIS XIX MOMENT OF INERTIA ABOUT X-AXIS

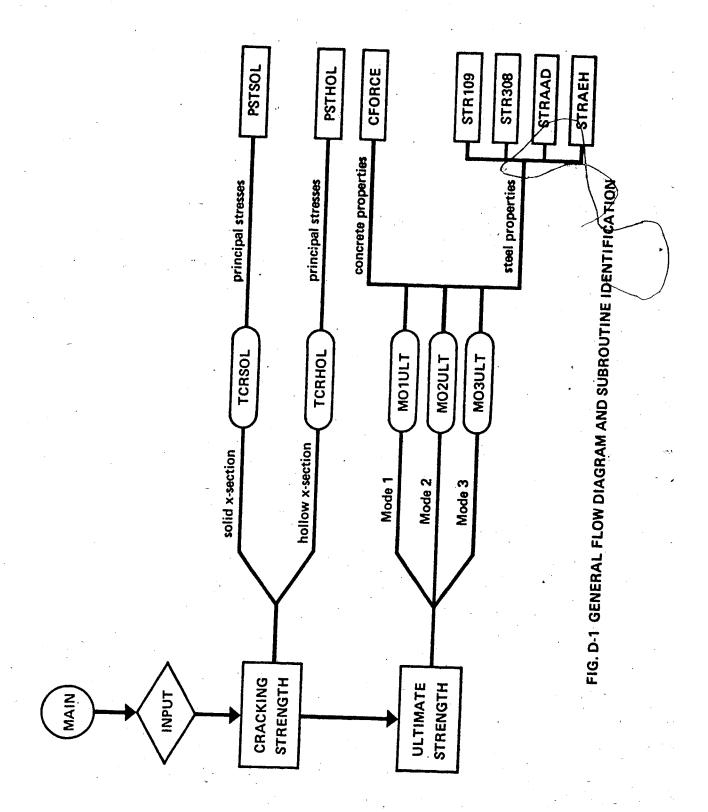
XIY MOMENT OF INERTIA ABOUT Y-AXIS

XKSI LOADING RATIO

XKSIBT TORSION TO BENDING RATIO ON BETA PLANE

XL TOTAL LENGTH OF A BEAM

XMODR MODULUS OF RUPTURE OF CONCRETE


XNCOM NUMBER OF STIRRUPS INTERSECTED IN COMPRESSION

ZONE

XNTEN NUMBER OF STIRRUPS INTERSECTED IN TENSION ZONE

YC DISTANCES FROM NEUTRAL AXIS TO CENTROIDS OF

ELEMENTS IN COMPRESSION ZONE


```
BAIR LINE
                                                                                            IMPLICIT $EAL-4(4-8,6-2)
                                                                          COMMON AP, AST, B, PE, PSW, TSW, ES, ESTIP, TPOUT, EPSSE, EPSSA, ETSIG, B, B, BME, BME, PC, EMGRA, LPICE, ROW, PCCW, A, SIPC, T, C, CB, JASIA, EELTA, BAST, BMIT, B, TZ, BMIT, B, TZ, BMIT, B, TZ, BMIT, B, TZ, BMIT, B, TZ, BMIT, B, TZ, TE, TW, TF, TS, TS, CCC, TCCC, BMIT, TW, TF, SCHLOTA, BMIT, TAMES, BMIT, TAMES, TRANS, SATED, SER, BMIT, SEE TAMES, SATED, SER, BMIT, SEE TAMES, SATED, SEE, ES, ST, OR, OF P, ALPAEL, ALPAEZ, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPPS, TOPP
                        e
                                                                                            CORMON N. M. MODE. MELINS, METERL, MARETY, MECOMP
                                                                             SINTESION AP(10),5(10),FE(10),FIN(10),TSN(10),ES(10),

1 APSCE(10),EPSEC(10),FPSEA(10),EPSEN(10),DE(10),FPNLT(10)

2,AS(20),TS(20),ASEA(5-0),FC(500),T(500),T(500),ELLT(500),EAS(20),

3 FCLL(500),FS(20),FCELEN(500),ASCOM(500),ELFORC(500)
                                                                             CALL IMPOT
                                                                                         IF(SM.LT. 1.CC)CALL TCESOL

IF(SM.CL 1.06)CALL TCESOL

#62ULT) AND POS #0SE 3 CCAL
                                                                                         L EDJULE)
CALL BOTHLE
CO TO 15 "
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3
                                                                                  SERBOGETHE IMPUT
. .
                                                                                  IMPLICIT BEAL-WIA-M.O-E)
                                                                   CORROR AP, AST, D, FE, FSU, TSU, ES, FRTIP, EPSCF, EPSSE, EPSSA, EPSSU, B, R, 284, M, AL, FC, INOBP, LPSCG, ECOM, ECOM, A, NIMC, T, C, ER, ERSI, DELTA, 1851, 57:72, 65:73, 67:74, 65:74, 75:74, 77:75:78

SEPICUM, FPSTEM, FCOP, FIEW, ERCOM, ENTRY, TCOM, TIER, A1, A2, A3, A4

A, TCM, BM, Y, INAILS, SAINSCHART SAINT, STANK, SHIEW, RE, RIY, SE, SI, OI, QY

T, ALFREY, ALFAEZ, TUPMS, IMPSC, TMPST

8, MA, TS, PRESC, K, F, DSTMA, RITALL, FSURC, EMARKA, TROB, ET IELD, ESM, 98 TELT, FILLD, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FULL, FU
              c
            e
                                                                               CORRCE H, H, HODE, HELLES, HSTEEL, BABREP, HECORP
                                                                     PIRRETING AP(10), B(10), PR(10), PSU(10), TSU(10), ES(10),

1 EFACE(16), EFASE(16), EFASE(10), EFASE(10), US(10), PFULT(10)

2.AS(20), FS(20), APEA(560), FC(500), E(500), ELER(500), ELER(500), EAS(20),

3 PECL(560), FS(20), FGLER(560), ARCCON(500), ELFORC(500)

BIRERSION TITLE(5), STAR(6)
                                                                   3 PERLESCO, FS (29), FSCHER(SCO), ARCCOR(SOO), ELPORC(SOO)
BREESSION TITLE(S), STAR(6)

BREASSION TITLE(S), STAR(6)

BRAIS, GL, ATRIVECTO, TITLE

SEAR SIGNIS, LOTA-GEORG)

BRAIS, GL, ATRIVECTO, TITLE

SEAR SIGNIS, GL, ATRIVECTO, TITLE

SEAR SIGNIS, GL, ATRIVECTO, TITLE

SEAR SIGNIS, GL, ATRIVECTO, TO THE STARDS AND HODE: STRESS-STRAIN CHARACTER

STARTAN, HODE-1 COPPLETPING TO THE STARNS AND HOME-2 TO A/S INC

STREATH, HODE-1 COPPLETPING TO THE STARNS AND HOME-2 TO A/S INC

STREATH, HOURS, HOUSE, STREET APLAS (SO, ISS)

BRAS(S, HO) R, HOLE, THELE, APLAS (SO, ISS)

BRAS(S, C), SIGNIS, THELE, APLAS (SO, ISS)

BRAS(S, C), SIGNIS, THELE, APLAS (SO, ISS)

BRAS(S, C), SIGNIS, THELE, APLAS (SO, ISS)

BRAS(S, C), SIGNIS, THELE, APLAS (SO, ISS)

BRASCO, SIGNIS, THELE, APLAS (SO, ISS)

PRAS(S, S), SIGNIS, THELE, APLAS (SO, ISS)

PRAS(S, S), SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGNIS, SIGN
            e
            c
              ¢
            5
            c
            c
         c
            c
         c
         c
         ç
         ¢
            c
```

· ź ...

```
PRINCE, WO (PR(E), 1-1, B)

CONCEPTE CHAPPISTURE STREETE (PSI), MODELES OF PROPERS ADD
ULTIMATE GUNDATTSTURE STREETE
SEAD(5, M) PC, EMODE, PROCE
GUNDATE PATICE SELL AND DEETE
PRINCE, M) ENSI, DELTA
LOCATION OF MAILENE SHAPACE MEASURE FROM EAST SUPPORT (ED.)
BERO(1, M) DEMOND, BYRONE, DEMOND

BYRO(1, M) DEMOND, BYRONE, DEMOND

OF POPRATICATO)

OF POPRATICATO)

OF POPRATICATO)

MODELUS OF ELESTICITY OF CONCRETE (A C I PORSULA) ~ PRE
ACTORNO (CO. STREETE OF THE OFFIN OF M.A.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO) HE TO S.
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0,00.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF (FC.LT.-0.CO)
IF
c
c
c
    ¢
                                         WHITE (6,140) AST
WHITE (6,140) AST
WHITE (6,140) AST
WHITE (6,140) AST
WHITE (6,140) AST
WHITE (6,170) AST, BST2, BST3, BST0
WHITE (6,170) AST, BST2, BST3, BST0
WHITE (6,170) AST, BST2, BST3, BST0
WHITE (6,170) AST, BST2, BST3, BST0
WHITE (6,170) AST, BST3, BST3, BST0
WHITE (6,170) AST, BST2, BST3, BST0
WHITE (6,170) AST, BST2, BST3, BST0
WHITE (6,170) AST, BST3, BST3, BST0
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170) AST
WHITE (6,170
                                                                220 FORRAT(SI, "BLIANTE STRESS OF SILD STEEL 1"./SI,8710.3.//)
230 FORRAT(SI, "SULTIMATE STRESS OF SILD STEEL 1"./SI,8710.3.//)
230 FORRAT(SI, "CONCRETE COMPRESSIVE STRENGTH (PSI) 1"/SI,"FC-",F19.2.//)
230 FORRAT(SI, "CONCRETE SILTIMATE COMPRESSIVE STRAIS 1"./SI,"219208 o",
360 FORRAT(SI, "CONCRETE SILTIMATE COMPRESSIVE STRAIS 1"./SI,"219208 o",
```

 \Diamond

\$

×

```
EGROUTINE STRIMS
THIS SUPPORTINE SOLULS FOR STRICKE AND POOCES TO PRESTREEZING
STRAMES CONSTRIPTING ACTO MORETURAR MINISTERS OF STREES-STREET CORVE
FOR 3/4 IS, BIA, STREET
                                                                                                                               IMPLICIT PEAL-S(A-M, 0-2)
                                                                                                   REPLICIT DEALPS (A-m, 0-m)

CORROR APJACT, D. FZ. 12m, THM, EL, EUTIM, EPSCY, FPASE, EPSNA, EPSTA, B.

JAM, BAJLL FC. KPJ. D., EPSCU, ECHS, ECCHS, I. I. MC. T. C., EA, ESST, BELTA,

JOSTI, LOTZ, LOTZ N. LATA, S. JIAM, TAME, PPSLY, MSTILE

A. DERUUN, PFENIZ, BERGOD, BU, REN, TG. ECC., BEEG., TETTA, TUTP,

S.P.: CGM., EPITH, FCUM, FIDE, TEMPA, TOOM, TITH, AT, AZ, AD, AB

4, TCP, BN., SHARD, SHIMS, SHART, SHIMT, JHARDS, SHIDB, KIR, ST. SR., ET,

7, ALPAZY, ALFAZY, THEFF, TUTPS, THEFT

8, AS, TS, AFFA, TG, EF, F. F. FETEL, MITELL, PSBC, KRARER, TROB, ETIELD, ESM,

42ULT, FFILD, FULT, THM, FAIFAC, ALEM, TOTALF, TOTALP,

1 TOTALE, FAS, FF. SHAP, GAMPF, SANFE, COUNT, PUT, DEP, ABCCOM, PCSLES

2, HCUM, ICLAP, FUCHP, ALORP, ELFORC, FCCC, ERSENT, FCEL

3, THETAD, THETIB, THETIB
,, c
                                                                                                                               CORNOR W. M. ACRE, WILLIAM, WETERL, MADER, MECOMP
                              c
                                                                                                          BIREMSTON BP(10), D(10), PE(10), PSU(10), PSU(10), ES(10), ES(10), PS(10), PSUE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), ESSE(10), E
                                                             ) FC1L(500), FS(20), FCELIR(500), ABCCOR(500), ELFORC(500)

FC7L(301), GT.5. IR SSI - FORCES IN SIPS

D0 50 In1, a

If (APDINGI), GT.5. IR AND. EPSEM(I), IT.0.0070) GO TO 20

If (APDINGI), GT.5. 0.0070, AND. EFSEM(I), IT.0.0070) GO TO 20

If (APDINGI), GT.0.0070, AND. EFSEM(I), IT.0.0070) GO TO 20

If (APDINGI), GT.0.0070, AND. EFSEM(I), IT.0.0070) GO TO 30

IF (APDINGI), GT.0.0070, AND. EFSEM(I), -22-85496, 08-FP2SEM(I)-29.7

CO TO 50

AD FINITION

CONTINUE

CHECK MRETHER STREETSES ENCIRD WIT, STREETS

D0 70 In1, a

TO If (CD. GT. FPULT(I)) FRM(I)-FPENC(I)
FREETS IN PRESTRESSING STREETS

LO 40 In1, a

G TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)
BETWEET

ED0

TO TS((1)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-APP(I)-FSM(I)-AP
```

```
SUBPOUTING STRAND

THIS SUBPOUTING SOLVES FOR STRESSES AND PORCES IN PRESENTING THIS SUBPOUTING ALSO MONLINGAR PORTION OF STRESS-STRAID CHAVE STRANDS CONSIDERING ALSO MONLINGAR PORTION OF STRESS-STRAID CHAVE STRANDS CONSIDERING ALSO MONLINGAR PORTION OF STRESS-STRAID CHAVE FOR THE FOLLOWING EROUSE OF BEARS AA, AR, AC, AB

INFLICIT REAL-9(A-M,O-S)

CCCTOOR AP,ASI,F,FE,FED,TED,CON,FCCW,A,RIBC,TC,GER,ERSI,DELTA,

JOSI,DETZ,DSTJ,DUTH,S,SIGRA,TAND,FULL,FTSTIR

1,DTTD3,FTSTD3,FTST,SSIGRA,TAND,FULL,FTSTIR

1,DTTD3,FTSTD3,FTST,SSIGRA,TAND,FULL,FTSTIR

1,DTTD3,FTSTTA,FTST,STRES,SHART,STRET,STARE,STRET,RTARE,TW,TET,FT,CE,CET,

1,CTALE,ASI,ASI,SIGRA,STRET,STRET,STARE,STRET,STARE,ASIRE,TRA,TET,GE,GET

1,ANCE,FTLE,FYLL,TUS,FTHFDC,ELLET,TOTALF,TOTALF,TOTALF,

1 TOTALE,ASI,TS,SEDF,SUMFT,SUMFT,STRET,STREOR,REAL,FROD,FTELER

2,MCOR,TCCOP,FCOFF,ACCOP,FLOTOC,FCCC,XESIT,FCEL

3,TMITPE,TRITTA,ITTETE

COMPTO, EX,MSDL,SELTES,BUTTEL,RADETP,MECOMP

BIRTYSICK AP(10),D(10),FF(10),FSU(10),TSU(10),BS(10),FPDT(10)

2,AS(2C),TS(2C),AFASICO,FCEC,FSUFT,SSU(10),TSSU(10),BS(10),FPDT(10)

2,AS(2C),TS(2C),AFASICO,FCE,BEDG,FSSU(1),FSSU(10),BS(10),FPDT(10)

3,TCTL(**OC),FS(2C),AFASICO,FCEC,XESIT,FCEL

DO SO 11,B

IF (17,3),CALL-EQ,0)GO TO AS

17 THE STRAND

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 20

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 20

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 120

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 120

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 120

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 120

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 120

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 120

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 120

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 120

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 120

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 120

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 120

17 (TTCSSU(1),ATTO.OC,AND,TPSSU(1),LT.O.OFF()CO TO 120

17 (TTCSSU(1),ATTO.OC,AND
      د
د
د
c
c
                   CO TO 5.5

130 FSU (1) =-1765675.000 (EPSSU (1)) =-2045696.000 EPSSU (1) =-29.7 GO TO 50

160 FSU (1) =-64.000 EPSSU (1) >-254.70

50 CONTRUST

CRECK WHYTHER STRESSES EXCEED WIT. STRESS

DO 70 L=1.0

70 IF (FRE(1).CT.FPULT(1)) FSU (1) =-FPULT(1) FORCES IN FRESSESS EXCEED FOR AS TO A 1=1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        カ
                                   PO (0 [-1,8]

86 TSU([)-FSB([]-AP([)

857488

858
```

c

```
c
                                         CONTINUE
CRICK UNTIME STRESSES RICHER BLT. STRESS
DO TO T-1,R
If (CDU(T), CT., FPGLT (1)) FEG (1)-FFGLT (1)
FOCCES IN PRESTRESSING STRANGS
DO RO T-1,R
TSU(1)-FSG(2)-RP(E)
RETRUE
REA
    è
      c
                                          SUBROUTIVE TORSOL
THIS SUPPORTING SOLVES FOR CHACKING TOROUT AND ARGLE OF SPECIFICATIO S
N OF FIRST CRACK W.W.T. LONGITUDINAL AXIS OF BEAR - SOLID X-SECT.
                                          IMPLICIT BEAL+8(4-8,0-1)
                                 •
                                       CORROR M. M. ECCE, MELERS, METTEL, MADREP, MECORP
                               EINFRSICY AC(10),8(10),PE(10),FSM(10),TSM(10),XSS(10),

1. FPSCE(10),ENYSE(10),ENSSE(10),EPSSU(10),8SS(10),FPCLE(18)

2.45(20),TSS(20),APER(5C0),TC(5C0),ISS(0),ESCO),ELTR(5C0),ELTR(5C0),

3.FCCL(5C0),FS(20),FCCLER(5C0),AFCCM(5C0),ENSCOC(5C0),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(20),ENS(
                                  CRECK FOR POPE STEDING CASE
IF(AKSI.LI.0.005) RETERN
SIGNA-SIGNA/ICGO.00
CCFFP-10-06/J.10-159
SI-1-4-2/J.00
SI-1-4-2/J.00
FC-FC/1020.08
FC-FC/1020.00
                                 FC-FC/1010-00

ECTERS-0.00010

AR-MyS

IF(4R/LT1.05.AFD.AR.CT.0.05) ALFREY-0.215

IF(4R/LT1.105.AFD.AR.CT.0.05) ALFREY-0.215

IF(4R/LT1.155.AFD.AR.CT.1.05) ALFREY-0.206

IF(4R/LT1.155.AFD.AR.CT.1.05) ALFREY-0.210

IF(4R/LT1.2.CT.ARD.AR.CT.1.05) ALFREY-0.210

IF(4R/LT2.CT.ARD.AR.CT.1.05) ALFREY-0.205

IF(4R/LT2.CT.ARD.AR.CT.1.05) ALFREY-0.205

IF(4R/LT2.CT.ARD.AR.CT.1.05) ALFREY-0.205

IF(4R/LT2.CT.ARD.AR.CT.1.05) ALFREY-0.205

IF(4R/LT2.CT.ARD.AR.CT.1.05) ALFREY-0.205

IF(4R/LT2.CT.ARD.AR.CT.1.05) ALFREY-0.205

IF(4R/LT2.CT.ARD.AR.CT.1.05) ALFREY-0.205
```

CIACY STAFFS AT THE BOTTOM

(NO-1
(C-0.00/3.C0+(Ff/FC)+0-2
5-12F+2.00+Ff/95087(1.0089)
LINC-SARIAP/10.00
ANAIN-SARIAP/10.00
ANAIN-SARIAP/10.00
CTRN-6.00-NLTAF2-SARIM-SI+(-3.00+NLPAF2/XXXI-D308F1(3.00+NLPAF2/XX
CTRN-6.00-NLTAF2-SARIM-SI+(-3.00+NLPAF2/XXXI-D308F1(3.00+NLPAF2/XX
72S1) -02-SICTA/SARIM-(1.00+6.00+NLPAF2/XX
TAFTX-1.C0/(1.00+16.TA)+0-CCB-XXII/(-SICHA-XXXI-SI+6.00+16

N. T.

```
THITTP-1, 1911-7/2,00-THETMA
CRUTE DALBRIST OF PRINCIPAL STREES
IP(14-174, LT. G. 03) THETAP-THETM2-1, 1915-72,00
THETAL-THETAP-CORFS
TCP-TCS
C CANTO DALDRIET PROPRIETAL STREET

IP(1ANTEL-TRAIN-CORP)

TOPICAS

IP(1ANTEL-TRAIN-CORP)

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TOPICAS

TO
                                                                                                    WHILL(S,S) ICES, KRITH, TRETOS, TCRES, TCRETO, RRAES, SHIRS, THPRS, 28, 80
CRACK STARTS AT THE TOP

RC-1
SHATT-7.0C-PT/BSORT (3.0800)
IINC-3-ART/10.00
SHATT-SHATT-REC

10 SHATT-SHATT-REC

11 (CHART.LT.O.CO) CO TO 310
ICCT-0.CC-RLFALZ-START-SIX-(-).00-ALPARZ/RKSI-DEGRT (3.0-ALPARZ/RKS

21) -2.SIG-2A/SHART-(1.00-6.00-RCCE/M) -1.00)
THE ZTH-1.CO/(3.00-ALFARZ) -CCRT-RESI/(-SIGHA-RESI-SIX-(1.00-6.00-
THE ZTH-TATH (TRETTH-/2.30
THETAT-TATH (TRETTH-/2.30
THETAT-THETAT-CORPS

TC-ICH

TC-ICH

TC-ICH

RE-TC-RESSI
CALL PURSOL

ROCCOLD
                                                                    300
            PATTCHARSI

CALL PRISC

ROTO-1

If (PO.GT.200) MRITE(6 -)

If (PO.GT.200) MRITE(6 -)

If (PO.GT.200) MRITE(6 -)

If (PO.GT.200) MRITE(6 -)

If (PO.GT.200) MRITE(6 -)

If (PO.GT.200) MRITE(6 -)

If (PO.GT.200) MRITE(6 -)

If (PORTCHARS) MRITE(8 -)

If (PORTCHARS) MRITE(8 -)

IF (PORTCHARS) MRITE(8 -)

SARRI-SHRETHER

TOTAL MRITE-REFERENCE MRITE(8 -)

ICETIC-TOPT-TORS

STACT GMETCHING ANGLE ( RADIANS )

MRITE(8 -) MRITE, THETO, THETO, TORS, TORTO, SHANT, SRINT, IMPRE, RADIANS )

MRITE(8 -) MRITE(8 -)

ICETIC-TOPT-TORS MRITE(8 -)

ICETIC-TOPT-TORS MRITE(8 -)

ICETIC-TOPT-TORS MRITE(8 -)

ICETIC-TOPT-TORS MRITE(8 -)

ICETIC-TOPT-TORS MRITE(8 -)

ICETIC-TOPT-TORS MRITE(8 -)

ICETIC-TOPT-TORS MRITE(8 -)

ICETIC-TORS MRITE(8 -)

ICETIC-TORS MRITE(8 -)

ICETIC-TORS MRITE(8 -)

ICETIC-TORS MRITE(8 -)

ICETIC-TORS MRITE(8 -)

ICETIC-TORS MRITE(8 -)

ICETIC-TORS MRITE(8 -)

INDEED MRITE(8 -)

ICETIC-TORS MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED MRITE(8 -)

INDEED
```

" . "·**U**c:

```
SOMEOUTHER POTTONE THE PROPERTY OF PROPERTY OF AND A STREET WHERE CORN. LOADISC
  ç
                                               IMPLICIT PEALPS(A-B,0-E)
PCR SOLID E-SECTION
CO-TON AP,AST, B,PER,FUB,TSD, ES, ESTIP, PPSCR, FPSSR, FPSSR, EPSSR, B, EBM, M, EL, C, EB, EMST, B, ELTA,
JUSTI, DSTY, DSTY, DSTY, S, SIGNA, TAND, PPEAT, PSYNE
A, LPPOND, LPPOND, D, HOND, BU, LST, TC, ECR, HETT, THE FAT, TE, TF,
FPSCGR, PPSTP, FCOR, FTPS, NECKH, BSTER, TCO, TTTE, A1, A2, A1, A6
A, TCM, DS, Y, LNAAD, LSTUDURATE, UNITE, LABASE, UNIBH, NIE, RIF, A8, SF, GK, GY
7, ALFAEL, ALFAEL, THPPE, THPPS, TRPPI
8, A3, TL, A3 FA, TC, Y, T, DEPTH, AR FALL, PSWC, REAREA, NOB, LTIELD, ESM,
SELIT, FFILD, FULT, TCM, PHIFAC, CPLER, TUTALP, TOTALP,
1 TOTALK, FAS, LK, SUNT, SOFF, SWATH, COURT, PRI, DEP, ARCCOM, PCELEB
2, KLGA, ECORN, FCGAR, EGARE, ZLFOBC, FCCC, NESSIST, PCEL
3, THFIRD, THETCE, THETCE
  c
¢
                                                         CORROR E, R. RODE, BELERS, RSTEEL, BASEL
c
                                                 2,ac(23),vs(29),abta(50),r(503),(500),f(

3,cct(566),F2(20),abta(50),ac(50),(500),f(

3,cct(566),F2(20),abta(50),ac(50),ac(50),f(

3,cct(566),F2(20),acta(50),acc(50),acc(50),f(

3,cct(566),F2(20),acta(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),acc(50),a
ç
c
c
c
```

"ë

. . . . K

سرح

```
SCANOSTINE TOPHOL
                                                                                                               BERNOTTINE TERMEL SOLETS FOR CRACKING TORONE AND RUGLE OF INCLINATION OF FIRST CPACE W.B.T. LONGITUDINAL ARIS OF REAR - BOLLOW 1-8ECT.
C
C
                                                                                                               IMPLICIT BEAL-0 (A-B, 0-E)
                                                                                       CORRER AP, ALT, B, PE, PTG, TGE, RS, ESTIR, PPTCE, FPSSE, RPSSE, EPSSE, B, 28R, MH, 21, FC, RMDP, FPSCU, ECON, FCCP, A, SINC, TC, ES, ESSI, EPSSE, BELTA, 33ST1, LST2, LST3, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, LST4, L
   ¢
   Ç,
                                                                                                               COSMON N. A. MODE, NELEKS, ESTEEL, HADEEP, MECOMP
   c
                                                                                       DIRTHSICS AP(10), D(10), FE(16), FEU(10), TSU(10), ES(10), ES(10), TSU(10), ES(10), FULT(10), TSSE(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(10), ESSEU(
                                                                                               Treation, retrop, retra 550

CHICK POD' FUR REMBING CASE
IF (18.51.17.0,005) RETURN
$10ma.15ma/1600.00

COZD-110.00/1.10135

III. (18.19.0-18.00)
III. (18.19.0-18.00)
III. (18.19.0-18.00)
III. (18.19.0-18.00)
III. (18.19.0-18.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18.19.00)
III. (18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          13
                                                                   | HTT-N-W-N-W-TE
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
| IXI-N-M-N
|
                       SETUSS
```

c

c

c

```
SURPOSETIVE FORMAL THE SOLVES FOR PRINCIPAL STRESSES WHERE CORD. LOCATION FOR ROLLIGH E-SPECIAL
                             C
C
C
                                                                                                                           IMPLICIT BEAL-6 (4-8,0-E)
                         c
                                                                                                  CORROW AP,ACT, B,PE,PSH,TSU,ES,FSTIB, EPSCE, EPSSE, EPSSE, EPSSE, B, B, 3BM, HM, SI, PC,FRODE, BECKE, ECUS, PCCB, A, SIMC,T,C, EG, RESSI, BELTA, BBSI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI, BUTI,
                                                                                                  CORPOR B, B, KODE, BELERS, BSTREL, RADREP, BECORD
DIRECTION AP(10), D(10), FE(10), PSC(10), TSU(10), BSC(10),
I RPSCY(10), FFSE(10), LPSSA(10), LPSSA(10), BSC(10), FFBLE(10)
2,AS((25), FS(23), AERA(250), TC(550), E(50), TC(50), ELER(500), BAS(20),
I PCEL(500), FS(20), FCELER(500), ARCCOR(500), ELPORC(500)
                                                                     1 APSCY (IC), PTSSE(IC), PTSSE(IC), EPSSE(IC),      c
c
c
```

\

+1.

```
ENDPOSTINE CIUPCE
                                                                                 THIS SUPPORTINE SOLVES FOR STREETS OF THE CONCRETE ELEMENTS BRICK ARE SUPLICIES TO COMPRESSIVE MODIFICATION STREET-STRANG CUPYS AS THE STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET 
                                                                                       IMPLICIT: BEAL . G(A-M, 0-E)
                                                                   CORROR 1P.AST.B.FE.FIN.TSN.ES.ESTID.EPSCE.EPSSE.EPSSA.EPSSG.B.G.
281.M.EL.FC.EROB.EPSCU.LCON.ECCS.A.EINC.T.C.ER.MESI.BELTA.
3UST1.EST2.BST1.DSTA.C.SICRA.TANN.FPULT.FPSTE
6.PAGGAL.FPCU2.PRODD.BS.J.ET.T.ESC.BSTA.TMETA.TU.TF.
SEPSCCA.EPSTEN.FCOM.FTEN.AUCOM.EUTEN.TCOM.TTEN.A1.A7.A1.A4
6.FCP.DM.G.SRAIS.ANTRNS.SARIT.SAIET.SARBA.SHIBA.MIS.MIS.SIS.ST.GE.GT
7.LFAEL.ALFAEZ.TWPPB.IMPBS.THERY
8.A.IS.BAIL.GC.H.F.LETPB.ATALL.FSUMC.ENARPA.TROB.ETIELB.ESS,
9EULT.FFFLD.FULT.FSM.PHIFAC.ECLEM.TUTALF.TCTALP,
1 TOTALM.LAI.FJ.SUMS.COMP.LIFORC.FCCC.MESENF.FCEL
3.HCCA.FCONP.COMP.LCOMP.LIFORC.FCCC.MESENF.FCEL
3.HTRIFF.TMETIS.TRETTS
        c
     ¢
                                                                                    CORROR N. H. HODE, HELEAD, ARTEEL, SABEEP, HECOMP
                                                                      DIMENSION AP(10),D(10),PE(10),F38(10),T38(10),E5(10),E5(10),

1 PSCCE(10),EPSSE(10),EPSSE(10),EPSSE(10),EPSSE(10),FFBLE(10),

2.AS(70),TA(20),ABE(500),T(500),T(500),T(500),EEF(500),EBE(300),

3 PCEL(500),BS(20),FCELER(500),ABCCOR(500),ELFOBC(500)
                    BYCKL(500), PS(20), PCELER(530), ABCCON(500), RLPORC(500)

BETCHT OF THE SLEERET

BELLA-N/FILES

RUNTE OF THE WHOLE SLEERENTS THAT ARE IN COMPRESSION

A-1.000104

BECONP-A/RELEN

A-2/1.0001

BEGOT OF THE POSTION OF THE RESERVE WHICH IS SUBJECTED TO COMPS.

AND IS BOUNCED AT WRETAL ARE

BOTANCE, FROM N. A. TO CRETROIDS OF COMPRESSION ELEMENTS

IF(FFCOPP.LT.) GO TO 111

DO 150 I-1, RLCOMP

100 FCFL(1) - HICOM-RELEN (2.900Z-1.00)/2.00

SITAINS AT THA CENTROIDS OF THE ELEMENTS

DO 110 I-1, RLCOMP

110 EXIMA(1)-FCEL(1)-FRE

111 CONTINUE

STRAIN AT THE TOP OF THE POSTION OF ELEMENT BOUNDED BY N. 4.

ECOMP-PRESSES

FCPP-0.65-FC

IC-1803COJ.CO-500.00-FCPP

IO-2.00-FCPP/IC

EU-G.0034

IF(SECONP.LT.1)-CO TO 123

DO 130 IN THEORY
     ¢
  c
     c
  c
        TOPPOCASSIVE

CO-1000CCCCCCCCC

TOTAL CONFERENCE

TOTAL OF THE ELERGIA SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL
  c
c
```

c ¢

40

Ð

```
418POUTISE - 00 18LT
                                   THIS SUPPOSTIVE SOLVES FOR ULTIRATE CAPACITIES YARING INTO . ACCOUNT TORSICHAL CONFUNENT ON THE INCLINES PLANE
                                    IMPLICIT MEAL-B(A-M, N-E)
                            CORROR AP, ALT, B, FF, PLH, TYB, ELL, METTA, LPSUE, FPHSE, EPHSA, EPSSA, B, 284, HR, IL, IC, FROD, FROU, ECON, ECUM, ALIREC, T, C, ER, ERSI, PELFA, 19071, 0072, 2871, 00740, ELL, LICHA, TARB, FPHIT, FFST18

A, PRIDI, DFPODD, DF, ER, JECON, META, LCON, TER, A1, A2, A3, A4

A, TCP, PH, JSHAES, SARIES, SARIET, SARIET, FRANCE, SHIBB, AIR, LIF, SE, EF, GE, GF

7, ALFAET, ALFAEZ, THOPB, THOPB, THOPB, TROPE,
8, S, UL, PFFA, CC, L, T, DLPTH, ARIALL, FUNCC, MADEA, THO., EFIELD, ESE,
92021, FFILD, JULY, THAP, PHIFAC, EXELE, TOTALP, TOTALP,
1 TOTALE, FAC, PS, SERT, SUMFF, SUMFF, COUNT, PHE, DYP, ADCCOM, PCELER
2, MCCH, ECOP, FCORP, ACORP, ALCOME, ELCOM, FCELER
2, THETBA, THITSA, THEMEN
                                   CORROR F.R. HODE, RELENS, RETEEL, BADEEP, ESCORP
 ¢
                              BINTWISTOR AP(10),D(10),PE(10),PSU(10),TSU(10),ES(10),

1 LTCCK(10),EPSSK(10),LRSSA(10),EPSSA(10),BS(10),PPSTF(10)

2,LS(20),SS(20),ABRA(560),FC(500),RSC60),FCLA(500),EBAB(20),

3 PCLL(5C),FS(20),FCELTA(500),APCCON(500),ELFORC(500)
             c
           ICEPATION FOR POSITION OF NEUTRAL ANIS STARTS
 c
 c
 c
 C
c
Ç
                               IF (FOOT.GT. PISTIP) FPOT-PYSTIR

FOOCES IN STIPPUPS

TOOT-FOOT-AST

TROT- POT-AST

TROT- POT-AST

TROT- POT-AST

AP-DST)

AP-DST)

AP-CSTA

ENCT- (2-A3-A4) / DTAR (THETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

ENCT- (2-A3-A4) / DTAR (BETA) /3

                                   TOTAL PORCE IN STIRRUPS FIRE. TO BETA PLANE
```

c

c

c s è

```
TETTA- (TTOP-TBOT) -BCOS (BETA)
                                                                            TOTAL TENSILE POPCE IN E-SECTION PEPP. TO BETA PLANE (RIPM) THIS-TO-TSTIP.
                                    ccc
                                                                            COMPRESSIVE PORCE IN CONCRETE (RIPS)
                                                                            CALL CPORCE
                                    ccc
                                                                              EPANR IN SER OF BERTTORTAL PORCES (IN PERCENTAGES)
                                                                            TA-T-C
                                  ç
                                                                            ....
                                                                         AIRCHAIRCHGE GE

GO TO TO

110 CONTINE

PAIA1-META-170.08/7.74159

TOPSION TO BENETIS BATTO ON THE INCLINES (BETA) PLANS

SELIST- (EFSI-META) (DETA) -1.00]/(EKSI-STAN (BETA))
()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ميواه وبالمحاورة والمراجع والمراجع والمجارين
                                                        CALCULATE SERVING MOMENT OF THE INCLINED (STEA) PLANE
SOMPHIS ARE TAKEN AMONT W. N.

CONCRETE CONPRESSION TOWN CONTRIBUTION
RETACHOLO.

1/ (RECOPP.LI.)) NOTICED

20 ARTACHARTIC-CELE([]) "ELPONC ([])

21 IV (RECOPP.LI.)) NOTICE-0.00

ARTACHARTIC-CCC2.(60).80

22 INFECTION CONTRIBUTION
RETACHARTIC-CCC2.(60).80

23 INFECTION TOWN CONTRIBUTION
RETACHARTIC-CC2.(60).80

24 INFECTION TOWN CONTRIBUTION
RETACHARTIC-CO.00

REGICT CONTRIBUTION OF THIS CONTRIBUTION
CONCRETE TENSION ZONE CONTRIBUTION
RECICT CONTRIBUTION - MONITOWING LEGS
REGICT CONTRIBUTION - MONITOWING LEGS
REGICT CONTRIBUTION - FIRTICAL LEGS
REGICT CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL REGION
RETACH (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LEGS
REGICT (CONTRIBUTION - FIRTICAL LE
                                                                         CALCULATE SENDING MOMENT ON THE INCLINED (SETA) PLANE SOMPHIC ARE TAKEN ABOUT N. N.
                             c
                                           1,30
                             c
                            c
                          c
                          c
                         c
                       c
                       c
                       č
                 - c
                       c
                                                     c
                     c
                    Ç
                    c
                  c
c
c
                                                             POISSON'S BATTO
                                                      PRISON'S BATIO
PRICA 16
PRICA 16
PRICA 16
PRICA 16
PRICA 16
PRICA 16
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 17
PRICA 
                  c
                  c
                 c
                 c
               c
                                                          COLFEL-ELLER (BECOMP) /2.00
```

1/2

```
185 IP (NFCCOP.LT. NCOLEGI-ECONY/2.06
COFFGA-GAPARY/2.06
COFFGA-GAPARY/2.06
COFFGA-GAPARY/2.06
COFFGA-GAPARY/2.06

PALES-INCOPERCOPERC
EPAC-MICROPAL-PARENS
EPAC-MICROPAL-CACHERS
EPAC-MICROPAL-CACHERS
EPAC-MICROPAL-CACHERS
EPAC-MICROPAL-CACHERS
EPAC-MICROPAL-CACHERS

17 (LASS(EPAA).LT. SPECIAL OF 8 22
17 (LASS, MPSCAS-LEVENC
27 (17 MALTICA.CO).GO TO 40
12 (CONTINUE
CALCULATE PRINCIPAL STRESSES
CALCULATE PRINCIPAL STRESSES
CALCULATE PRINCIPAL STRESSES
CALCULATE PRINCIPAL STRESSES
CALCULATE PRINCIPAL STRESSES
CALCULATE PRINCIPAL STRESSES
CALCULATE PRINCIPAL STRESSES
TOPOG. NS-FC
EC-1200(0.03-500.08-PCPP
EP-1.00-FCPP/C
ET-1200(0.03-500.08-PCPP
EP-1.00-FCPP/C
ET-1200(0.03-500.08-PCPP
ET-1200(0.03-500.08-PCPP
ET-1200(0.03-500.08-PCPP
ET-1200(0.03-500.08-PCPP-6.15-PCPP/(EP-KO) * (EPSC-EO)
IT (EFSC.CO.00.000.PSC.LT.CO.0001) STREST-PT1/*0.0001*EPST
IF (EPSC.CO.0001) STREST-PT1

WRITE INCLINATION OF COMPRESSION 2008 W.B.T. LONGITHDIMAL AXIS
                  ¢
         c
                                                                                              FIGURES, CR. CO. A.B. PRILIT. (D. CO.D.) STREST-FIL/O. CO.D. PETER IP(IPST.CR. C. CO.D.) A.B. PRILIT. (D. CO.D.) STREST-FIL/O. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D. CO.D.
         ç
         ¢
         c
         c
         c
         c
         c
         c
c
         c
         c
         c
         ¢
         c
             FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FITE(6, 100)

FI
    ç
c
c
```

3

```
SETTE (A. 593) STREEC

WPITE (A. 594) EPAC

BPITE (A. 594) EPAC

BPITE (A. 594) EPAC

BPITE (A. 594) EPAC

BPITE (A. 594) EPAC

BPITE (A. 594) EPAC

BPITE (A. 594)

BETTE (A. 594)

20 FORPATION, S., "INCLIDATION OF COMPRESSION EORI", SE-BETA (BAD) --, F6

2. 2. / A. 21. ***LICIA (ERC) --, F4. 2. //)

210 FORPATION, S. 18 CHINATE STRAIN IN STREEL SETWER ESITIAL AND SETEMATE

211 FORMAT (SI. **BURNERS IN STRAIN IN STREEL (IN PINCESS) :-, /)

210 FORMAT (SI. **BURNERS OF STREEMING SEVEN. FOR CHRWATERE --, 10 ///)

210 FORMAT (SI. **BURNERS OF STREEMING SEVEN. FOR CHRWATERE --, 10 ///)

210 FORMAT (SI. **CHYMATORE (PADJAMS/IN), PCI-**, P10. 7. ///)

210 FORMAT (SI. **CHYMATORE (PADJAMS/IN), PCI-**, P10. 7. ///)

210 FORMAT (SI. **STREEMING STREEMING STRANDS AT ULTIMATE (ESS) :-/)

210 FORMAT (SI. **STREEMING STREEMING STRANDS AT ULTIMATE (ESS) :-/)

210 FORMAT (SI. **STREEMING STREEMING STRANDS AT ULTIMATE (ESS) :-/)

210 FORMAT (SI. **STREEMING STREEMING STRANDS AT ULTIMATE (ESS) :-/)

210 FORMAT (SI. **STREEMING STREEMING STRANDS AT ULTIMATE (ESS) :-/)

210 FORMAT (SI. **STREEMING STREEMING 
               eat Podrai(Si, SERDING HORIPIS (IN.RIPS.) ON INCLINID (UNIA) FEBRUAR FEBRUAR (IN.RIPS.) ON INCLINID (UNIA) FEBRUAR FEBRUAR (II. P. 10.8)

sof Podrai(Si, Properties of Interesting Lord in, P10.8)

sof Podrai(Si, Stireope (Robitoatal Legs) in, P10.8)

sof Podrai(Si, Stireope (Robitoatal Legs) in, P10.8)

sof Podrai(Si, Stireope (Robitoatal Legs) in, P10.8/)

sof Podrai(Si, Total Projec (IN.RIPS) on Dita Plane in, P10.8//)

sof Podrai(Si, Total Total of Interesting Robits in, P10.8//)

sof Podrai(Si, Total Total BI STIRROPS (UNRIL LEGS) in, P10.8//)

sof Podrai(Si, Total Total Si STIRROPS (UNRIL LEGS) in, P10.8//)

sof Podrai(Si, Total Total Si STIRROPS (UNRIL LEGS) in, P10.8//)

sof Podrai(Si, Total Total Si STIRROPS (UNRIL LEGS) in, P10.8//)

sof Podrai(Si, Total Control Control Si STIRROPS (UNRIL LEGS) in, P10.8//)
350 FORMAT(SI, TORGUE TAKES BY CORCE. COMPR. ZONE AND BONELS I', FID. W.
2/)
350 FORMAT(SI, 'SHEAR FORCE (KIPS) IN COMPR. ZONE I', FID. W/)
550 FORMAT(SI, 'SHEAR FORCE (KIPS) IN COMPR. ZONE I', FID. W/)
550 FORMAT(SI, 'SHEAR STRESS (PSI) IN COMPRESSION ZONE I', FID. W/)
551 FORMAT(SI, 'SHEAR FOR CT ITERATIONS FOR N.A. POSITIO I', JIV/)
552 FORMAT(SI, 'NAKINUM (TEXSILE) PRINCIPAL STRESS (PSI) ON BETA PLANE
2 '', FID. Z//)
553 FORMAT(SI, 'TANINUM (TEXSILE) PRINCIPAL STRESS (PSI) ON BETA PLANE
2 '', FID. Z//)
554 FORMAT(SI, 'TANINUM (TEXSILE) PRINCIPAL STRESS (PSI) ON BETA PLANE
2 '', FID. Z//)
555 FORMAT(SI, 'TANINUM (TEXSILE) PRINCIPAL STRESS (PSI) ON BETA PLANE
2 '', FID. Z//)
566 FORMAT(SI, 'CHRICOM (COMPRESSIVE) PRINCIPAL STRAIN (IN/IN) ON BETA PLANE
2 PLANE '', FID. Z//)
600 FORMAT(SI, 'CHRICOM (COMPRESSIVE) PRINCIPAL STRAIN (IN/IN) ON BETA PLANE
2 PLANE '', FID. Z//)
610 FORMAT(SI, 'COMPRESSIVE) PRINCIPAL STRAIN (IN/IN) AND RIPS) I',
2 // S., 'TORSION I', FR. Z/SL, 'BERDING I', Z'. Z./SJ, 'SHEAR I', FR. Z//)
610 FORMAT(SI, 'COMPRESSIVE) PRINCIPAL STRAIN (IN/IN)
610 FORMAT(SI, 'COMPRESSIVE) PRINCIPAL STRAIN (IN/IN)
610 FORMAT(SI, 'COMPRESSIVE)
610 FORMAT(SI, 'COMPRESSIVE)
610 FORMAT(SI, 'COMPRESSIVE)
610 FORMAT(SI, 'COMPRESSIVE)
611 FORMAT (SI, 'COMPRESSIVE)
612 FORMAT (SI, 'COMPRESSIVE)
613 FORMAT (SI, 'COMPRESSIVE)
614 FORMAT (SI, 'COMPRESSIVE)
615 FORMAT (SI, 'COMPRESSIVE)
616 FORMAT (SI, 'COMPRESSIVE)
617 FORMAT (SI, 'COMPRESSIVE)
618 FORMAT (SI, 'COMPRESSIVE)
619 FORMAT (SI, 'COMPRESSIVE)
610 FORMAT (SI, 'COMPRESSIVE)
610 FORMAT (SI, 'COMPRESSIVE)
611 FORMAT (SI, 'COMPRESSIVE)
612 FORMAT (SI, 'COMPRESSIVE)
613 FORMAT (SI, 'COMPRESSIVE)
614 FORMAT (SI, 'COMPRESSIVE)
615 FORMAT (SI, 'COMPRESSIVE)
616 FORMAT (SI, 'COMPRESSIVE)
617 FORMAT (SI, 'COMPRESSIVE)
618 FORMAT (SI, 'COMPRESSIVE)
618 FORMAT (SI, 'COMPRESSIVE)
619 FORMAT (SI, 'COMPRESSIVE)
619 FORMAT (SI, 'COMPRESSIVE)
610 FORMAT (SI, 'COMPRESSIVE)
610 FORMAT (SI, 'COMPRESSIVE)
617 FORMAT (SI, 'COMPRESSIVE)
618 FORMAT (SI, 'COMPRESSIVE)
618 FORMAT (SI
```

Ë

O


```
SERBOUTISE BARBET
                                                                                                               THIS SUBSOUTING SOLVES POP BLTERATE CAPACITIES THEIRG ESTS ACCORDE TORSIONAL COMPONENT OR THE INCLUMES PLANS
                                                                                                               IMPLICIT PEAL-M(4-M,0-1)
                                                                                     CORPOR AP, ACT, B, PE, PSB, TSB, ES, RETTB, EPICE, PPXSE, EPISA, EPSSE, B, 3AM, BM, ELLIC, EPASE, 16CC, ECOM, 1CCM, A, EINC, T, C, EP, ESSI, BETTA, DETT, SETJ, SETJ, SETJ, SETG, TSB, PFBLT, PFSTE A, DFNOD, DJ, SET, TC, ECOM, BTEX, TENTA, TW, TF, SEP, COM, PISTI, SECOM, ASTEX, TCOM, TIE, A1, A2, A3, A6, TCD, DM, Y, JRANS, SAIRCA, MARY, CARF, SARBA, SAIRB, SET, SET, SE, SF, QE, QY J, ALFAEL, ALFAEZ, TWPP, THPPS, TWPPT

8,A5, TS, A1 EA, TC, TT, DETTB, ASIALL, PSUBC, FRABEA, TWOD, EVIELD, ESE, PULLT, FSLOF, FSLOF, SCOTALF, TOTALF, TOTALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, TCALF, 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Ĭ
                   c
                                                                                                        CORMON N. H. EDBE, MELERS, METERL, MADEEP, MECOMP
                                                                                        DIMERSION AP(10), D(10), PE(10), FEU(10), TEU(10), EE(10), E

1 PECEE(10), PECEE(10), PECEE(10), RECENT(10), DE(10), POLT(10)

2.12 (20), 175(20), PELETCO), TC (500), T(500), T(500), EELEM(500), EAS(20),

3 PCAL (500), PE(20), PCLLEM(500), ABECOM(500), ELFORC(500)
                   c
                                                 PERL REPTAC, ESETAP, RETAN, RESTAY, RESTAY

PERL REPTAC, ESETAP, RESTAN, RESTAY, RESTAY

PETTE (4,16)

10 FORAT(///,5%,*SECONS NODE - SUTISATE CAPACITY, STRAINS AND SOUTLES

2010A CHICK*)

2010A CHICK*)

CRICK POD PURE SUNDING CASE

1P(18051.LT.3.005) RETA*1.366437

1P(18051.LT.3.005) RETA*1.366437

21 CONTINUE

21 CONTINUE

21 CONTINUE

22 CONTINUE

31 PORAT(54,*SECLINATION OF INITIAL CRACK: THETA(RAB.) **,F8.4/

3 3)X,* TRITA (97G.) **,F8.4//

ASSUME OFFIS GF REUTAAL ANIS AND ITS INCREMENT

4517C-PYRELASS
                                WHITE [6, 16] BRITA, THETAB

10 FORFATISK, "SECLIARION OF ISITIAL CHACKE THETA[SAD.] **, FB. 4//

2 3 314." INTRASPEC.] **, FB. 4//

ASSUME OFFER OF BUTBAL ARES AND ITS EMERHER

ALCOPPELESS

PALADAGO

TEDATION FOR POSITION OF DEUTBAL ARES STARTS

ALD

1-0, 8-9

1-0, 8-9

1-0, 8-9

1-0, 8-9

1-0, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1, 8-9

1-1,
             c
             c
             c
             c
         c
             c
      c
   c
   c
c
                                                                              AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPER
```

c c

c c

```
STILECT CONTRIBUTION OF STIRBURS IN COMPRISSION
TCCH-0.00
TOTAL POPCE IN STIRBURS PERF. TO SETA PLANE
TSTIP-(TCOR-TTEN)-DCOS(BITA)
TCTAL TRISILE PORCE IN E-SICTION PERF. TO BETA PLANE (SIPM
T-TS-TC-TSTIR
                 c
                 c ,
                                                                                   COMPRESSIVE PORCE IN CONCERN (KIPS)
                    c
                                                                                   CALL CROSCE
                                                                                   ERROR IS SUR OF BORIZONTAL POPCES (IS PROCESTABLES)
          SHAPER OF ALLEGANDS

SHAPE

17(3.52.500) OF TO 100

17(3.52.500) PETERS

17(1.62.500) PETERS

17(1.62.501) PETERS

17(1.62.501) PETERS

18(1.62.501) PETERS

                                                                                        BEARER OF ITERATIONS
                                                                         CALCULATE SPRING ROREST ON THE INCLINES (BETA) PLANE
ROPETS ARE TAREN ADOLT 8, A.

CONCRITE CONTRESSION LONG COSTRIBUTION
REITACHO.00
IP(HECOMPLIT. 1) GO TO 121
10 120 12 18, SECOND
IP(HECOMPLIT. 1) GO TO 121
IP(NECOMPLIT. 1) REITACHO.80
METIACHNITACHCEL(1) PERFORC(1)
IP(HECOMPLIT. 1) REITACHO.80
METIACHNITACHCECC'2.(6/2.00-MCOM
METIACHNITACHCEC'2.(6/2.00-MCOM
METIACHNITACHCEC'2.(6/2.00-MCOM
METIACHNITACHCEC'2.(6/2.00-MCOM
METIACHNITACHCEC'2.(6/2.00-MCOM
METIACHCEC'2.(6/2.00-MCOM
METIACHCEC'2.(6/2.00-MCOM
METIACHCEC'3.(6/2.00-MCOM
METIACHCC'3.(6/2.00-MCOM
            c
                                                130
                    c
                    c
                    c
                    c
                    c
                 c
                 c
                 ç '
                                                                  TOTTACHTEFATTOTAM
TOTACHTEFATTATOTAM
TOTACHTEFATTATABLE CONFIDENTS OF LONGITUDINAL STEEL AND BOWEL PORCES
TLODI-0.00
PO 135 Inl, R
3 TLONI-CLORISTS(1) + (05 (2) + 02 (1)) + 0203 (NETA)
SHEAR FORCE (RIPS) IN COMPRESSION HOSE
WEIGH-(TARTAT-TLONG)/(05 (1) - 1/2.00)
CHICK FOR THE CASE OF ROLLOW R-SECTION (N.A. BELOW PLANCE SEPTE)
THISTATY-0.00
If (NETATA-1.00.AND.THI2.LT.A) METHAC (TOTTAT-TLONG)/(D3 (1) -THI2/2.0)
SHIMA STIPSS IN COMPRESSION HOME (MAI)
TACCEMPATAL/(A-MICHAUCHTA)
CHICK FOR THE CASE OF HOLLOW R-SECTION (N.A. BELOW PLANCE SEPTE)
IF AND TAKE (A-MICHAUCHTA)
SHIMA STIPSS IN COMPRESSION HOME (PSI)
TRUCTING-(10)(A0)
CONSISTO CAPACITIES AT UNITHATE
THE CHICK (100 (00) (DITA) - (1.00-1.00-MILTA-A/(0-MILTA)))
BSOR-TORDINALISI
SHIMA-PROPA/DECDI
ITEFAL-TISSON'
IF (ITERAL-TISSON')
IF (ITERAL-TISSON')
FORMER (CHICK)
POISSON'S NATIO
                 c
                 c
<sup>©</sup>c
                 c
               c
c
c
                                                                              POISSON'S BATIO
PETC. 16
RODBLUS: OF ELASTICITY AS PER A.C.T. COOR
ELROS FORDUSS
SWELF RODBLUS
C-TLRCD/(2.00*(1.00*PS))
            ¢
               c
```

.

×

```
SHEAD CTRAID

GARATISTANC/S

GARATISTANC/S

GARATISTANC/S

GARATISTANC/S

GARATISTANC/S

GARATISTANCH

CECCPP-0.6019

CARLIGUA TESSILE STRAIN

EPCTPPP-0.60015

SPECIFIC ENPOP IN STRAIN INTERACTION EQUATION (TENSILE STRAIN)

SPECIFICOSP.LE. 1] CO TO 185

COFFEL-TAIRGECHP/2.00

185 17(NECCP.LE. 1) COEPEL-ECONP/2.60

COFFEL-TAIRGECHP/2.00

PADISTANDSONT(COEPEL-S)-COEPEL-02)

PESC-COFFEL-SAREDS
                     c
                     ¢
                              CGIFGA-CAPAILYA-SU
PADITA-DOSMICCOFFIL-20-CORFCA-**)

FYSCA-COLFIL-PARELYS

FYSTEC-SCOPT-L-PARELYS

FYSTEC-SCOPT-L-PARELYS

FYSTEC-SCOPT-L-PARELYS

FYSTEC-SCOPT-L-PARELYS

FYSTEC-SCOPT-L-PARELYS

FYSTEC-SCOPT-L-PARELYS

FYSTEC-SCOPT-L-PARELYS

FYSTEC-SCOPT-L-PARELYS

CALCULATE PARELYSAL STRESSES

CONPASSIVE STRESS

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

FCC-SCOPT-L-PARELYSAL STRESSES

F
                ç
              c
              ¢
           c
              c
           c_2
           c
           ¢
           c
         ¢
WITTE [6,270] (I, FCEL (I), F=1, SECOMP)

399 CONTINUE

WITT RECERT OF THE PORTION OF THE ELERENT IN COMPRESSION BOWNSTO

FF N. A.

WITTE (K, 400) MCOR

C WRITE SIDELM AT THE TOP OF THE PORTION OF ELEMENT BOWNSTO BY W. R.

WRITE (K, 400) MCOR

C WRITE SIDELM AT THE TOP OF THE PORTION OF ELEMENT BOWNSTO BY W. R.

WRITE (K, 400)

WRITE (K, 400)

WRITE SIDELM REPORTION OF THE ELEMENT BOWNSED BY W. R.

WRITE SIDELM REPORTION OF THE ELEMENT BOWNSED BY W. R.

WRITE ANTAS OF THE COMPRESSION ELEMENTS

IP (MCONT.L.T.) (CO TO 441

WRITE (K, 400)

WRITE (K, 400)

WRITE AREA OF THE PORTION OF THE COMPRESSION ELEM. BOOKNSED BY W. R.

WRITE (K, 400)

WRITE (K, 400)

WRITE (K, 400)

WRITE (K, 400)

WRITE (K, 400)

WRITE (K, 400) MRITAN

WRITE (K, 500) RRITAN

WRITE (K, 500) RRITAN

WRITE (K, 500) RRITAN

WRITE (K, 500) RRITAN

WRITE (K, 500) WRITEN
```

WRITE (6.520) MBETAV WRITE (6.520) MBETAT

```
WRITE (6.5%) TPRITE

WRITE (6.5%) TPRITE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

INCICOUPLE, 10 GO 962

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

WRITE (6.5%) TRACE

W
** (*,**IO-*///
*** CORPAT(51,**SERSING MORRETS (IS.HEFS.) OF .PCLIFED (BETA) PLANE **/
*** TERRIOR EOST : ',**IO-$)
*** TORAID EOST : ',**IO-$)
*** TORAID EOST : ',**IO-$)
*** TORAID EOST : ',**IO-$)
*** TORAID EOST : ',**IO-$)
*** TORAID EOST : ',**IO-$)
*** TORAID EOST : ',**IO-$)
*** TORAID EOST : ',**IO-$)
*** TORAID EOST : ',**IO-$)
*** TORAID EOST : ',**IO-$)
*** TORAID EOST : ',**IO-$)
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
*** TORAID EOST : ',**IO-$
**
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               £.,
```

.

ŝ

J

```
THIS COMPONITY SOLVES FOR WITINATE CAPACITIES TAKENG INTO ACCOUNT TORUTHURAL COMPONENT ON THE INCLINER PLANE
                                                                    IMPLICAT PEAL+8 (A-#,0-E)
                                                         B.THETAP, THETES, THETTH
        c
                                                                  CONNON B. M. HODE, MELERS, MSTERL, MADERP, MECOMP
        c
                                                         DIPERSICH AP(15),D(10),FE(10),FSU(10),TSU(10),EE(10),

1 EPSCE(10),EPSSE(10),EPSSE(16),EPSSU(16),DS(10),FFULT(10),

2.AS(20),YS(20),EPSE(500),YC(500),X(500),Y(500),EELEN(5500),EAS(20),

3 FCLL(1005),FS(20),FCLLEN(530),DECCON(500),EEFORC(500),
      ASS(23), TS(20), FRA(SCC), IC(SCC), I(SCC), T(SCC), TELEN(SJO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON(SCO), TACCON
    c
                                                       A-AINC

A-AINC

A-AINC

FIND INCLINATION OF CORPRESSION HOME, BETA

TANELT-B/(3-2.0-(8-4))-DIAM(TREIA)

BILA-DIAM(TANELT)

CALCULATE CURVATURE

MILEN-APRICAS/(A-WELER/2.00)

FARNITISSING SIEFL STRAIMS

DO 60 1-1.8
                         PAYSTATISTING STEPL STRAIDS

On 60 1-1,0

60 17-1,0

10 10 1-1,0

60 17-1,0

10 70 1-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0

70 17-1,0
  c
                                                     TATURITE (P) ()

TOTAL TRUSTLE PORCE IN PRESTRESSING STEEL PERP. TO SETA PLANE

TATTOTOMIN(PTTA)

THYSILE FORCE IS CONCRETE
EDICATIONORY/COS

ECH-CIPSCRYPHI

TOTAL PROBRESSING

CONTRIBUTION OF TRANSPERS STEEL (STIRAUPS - MORITORIAL LEGS ORLY)

PERSONSTRUME (RATI-A)

STRAIN IN THE DIFFICTION OF THE PROBRESS STEEL

STRAIN IN THE DIFFICTION OF THE PROBRESS STEEL

ETSOCY-ETSOCY-COS(ESTA)

ETSOCY-ETSOCY-COS(ESTA)

ETSOCY-ETSOCY-COS(ESTA)

FORCE STEEN STEESSING RECERS PT

IN(FIGO.U.T. (-FISTIS)) FOOP-PISTIR

IN(FOOT.U.T. (-FISTIS)) FOOP-PISTIR

IN(FOOT.U.T. (-FISTIS)) FOOP-PISTIR

IN(FOOT.U.T. (-FISTIS)) FOOP-PISTIR

FOOCES IN STIRBURS INTERCEPTED BY BETA AND THETA PLANE

A)-DSTA

AND-DSTA

AND-DSTA

AND-DSTA
  c
Ċ.
                                                         AN-H-DETS
THOSE (A-A3-AN)/STAN(THETA)/S
```

. 57

¥

3.

A Section

```
THEORY (H-A)-BA) COTAN (ARTA) /S
TOTAL FULCE IS STINGED (BUTTON AND THE)
TITLE-TYPE-SERVE
TROC--TOOT-REBOT
BYSICET CONTRIBUTION OF STINGED IN COMPRESSION
TOTAL FORCE IN STINGERS PERP. TO BETA PLANE
TSTIN-(TICH-TROT)-DOOS(BETA)
                                    TOTAL TIRSTLE POPCE IN N-SECTION PLAN. TO BETA PLANE (SIPE)
                                       CONTRESSIVE PORCE IS CONCRETE (EXPE)
                                        CALL CRODGE
                                        ERROR IN SUR OF MODILIONTAL PORCES (IN PRACESTAGES)
                                                                                                                                                                                                                500
                                          ERIT-C STERRISONS
                   CLEULATE STREET AGENTS ON THE INCLINES (SETA) PLANE

CLEULATE STREET AGENTS ON THE INCLINES (SETA)

CLEULATE STREET AGENTS ON THE INCLINES (SETA) PLANE

COLLECTION OF AGENT ON THE INCLINES (SETA) PLANE

COLLECTION OF AGENT ON THE INCLINES (SETA) PLANE

FOR THE CONTRIBUTION OF THE STREET ON THE SETA PLANE

100 ARTICLORISATION OF THE STREET ON THE SETA PLANE

PRINTED AGENT ON THE STREET ON THE STREET ON THE SETA PLANE

110 ARTICLORISATION OF THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE STREET ON THE ST
. (
                                                                          POISSON'S BATIO

PR-C. 16

RODULUS OF PLASTICITY AS PER A.C.Y. CORR
PLACE-STOCK.OC-DEGET(PC)

SHEAR RODULUS

GETAINO (1.00-PH)

SHEIR STRAIR

GRANTI-THOU/A

BAILBUR CONVRESSIVE STRAIR
                                          c
                                           c
                                           ¢
```

K. Wall

```
PRICEP-0.0010

RAIZARA TERRIO STRAIN

PRITEP-0.00015

SPECIFIED TO THE STRAIN INTERACTION EQUATION (TERRIES STRAIN)

SPECIFIED TO THE STRAIN INTERACTION EQUATION (TERRIES STRAIN)

SPECIFICALLIANCE IN STRAIN INTERACTION EQUATION (TERRIES STRAIN)

SPECIFICALLIANCE INTERACTORY 2.00

PRICE CONTRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE STRAINCE ST
                                                                                                                                IPPA-ONDECTY-TESE
IF (LANG (LFFA) LT. SPECTE) GO TO 112
IF (LANG (LFFA) LT. SPECTE) GO TO 112
IF (LFFA) LT. G. GG/GO TO 40
IF (LFFA) C- IFFE INC/10.00
COSTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTI
                                                                                                                                       IF (IPSC,G2.0.06.ANB.EPSC, LT.EQ) STRESC- (2.00-2PSC/E0- (EPSC/E0) **2) *
                                                                                                                                    TIP (EPSC. CT. EU) STRESC-PCPP-G. 15-PCPP/ (EU-20) · (EPSC-ED)
TIPSILE STRESS
                                                                                                                                    Travile STRESS
PT1-2.00/DSGaP[3.0000] *EROD8
PF1:PST.GE.0.00.ARD.PST.LT.0.8003) STREST-PT1/0.8061*EPST
PF(IPST.GE.0.0001) STREST-PT1
                                                                                                                                PYIDSTICE.8.0001) STREST-PT1

6.ITE INCLINATION OF COMPRESSION MORE W.R.T. LONGITHDIGAL ANIA
DELTY (6.,CO) SETA, BITA1

REIT INCLINATION OF COMPRESSION MORE W.R.T. LONGITHDIGAL ANIA
BUTTU (6.,CO) (8. EVESL (8.), X-1.8)
BUTTU (6.,270)
BUTTU (6.,270)
PATTI (7.700)
PATTI (7.700)
PATTI (7.700)
PATTI (6.,270)
PATTI (6.,270)
PATTI (6.,270)
PATTI (6.,270)
PATTI (6.,270)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)
PATTI (7.,250)

                                        c
                                        c
                                            c
(<u>%</u>c
                                                                                                                             PRITE (6,276) PRI PRIST IN SERIL

USITE (6,276) (1,FSD(1),I=1,R)

WRITE (6,276) (1,FSD(1),I=1,R)

WRITE (7,276) (1,FSD(1),I=1,R)

WRITE (7,276) (1,FSD(1),I=1,R)

WRITE (7,276) (1,FSD(1),I=1,R)

WRITE (7,276) (1,FSD(1),I=1,R)

WRITE (7,176) PRICE IN TRADSVERSE STEEL

WRITE (7,176) PRICE IN TRADSVERSE STEEL

WRITE (7,176) PRICE IN TRADSVERSE STEEL

WRITE (7,176) PRICE IN TRADSVERSE STEEL

WRITE (7,176) PRICE CHICK (TOTAL TEPRILE AND COMPRESSIVE FORCE

WRITE (7,176) PRICE TO RESPING BATTO ON THE INCLISED (BITA) PLASE

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176) PRICES

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)

WRITE (7,176)
                                            c
                                            'c
                                                                                                                                    WITT (A, JAC)
WHITE (A, JAC)
WHITE (A, JAC)
WHITE (A, JAC)
WHITE STAIR AT THE TOP OF THE PORTION OF ELEMENT BOURDED BY W. S.
WHITE (LA, WICK LORDP

ENITE ELEMENT STRESSES
If (MICCORD, LT. 1) GO TO 624
WHITE (A, JAC)
WHITE (A, JAC)
WHITE (A, JAC)
WHITE (A, JAC)
WHITE (A, JAC)
                                                                                                                             VAITE (4,220) (1, PCELER (1), I-1, SECORP)

CONTISTS

WATTY STREETS IN THE PORTION OF THE ELERENT BORNDED BY (8.4.

VAITABLE SAS OF THE CONFRESSION ELEMENTS

IF (STOUT, AT. 1) GO TO WE!

WATTY (4, WAY)

WATTY (4, WAY)

CONTINUE

WATTY (4, SO) ACCORP

WATTY (4, SO) ACCORP

WATTY (4, SO) ACCORP

WATTY (4, SO) ACCORP

WATTY (5, SO)

WATTY (6, SO) ACCORP

WATTY (6, SO) ACCORP

WATTY (6, SO) ACCORP

WATTY (6, SO) ACCORP

WATTY (6, SO) ACCORP

WATTY (6, SO) ACCORP

WATTY (6, SO) ACCORP

WATTY (6, SO) ACCORPTAN

WATTY (6, SO) AND WATTY

WATTY (6, SO) AND WATTY

WATTY (6, SO) AND WATTY

WATTY (6, SO) AND WATTY

WATTY (6, SO) AND WATTY

WATTY (6, SO) AND WATTY

WATTY (6, SO) AND WATTY
                                                                                                                                    NATICE (-, 510) REFTAR

WHITE (-, 520) RETAT

WHITE (-, 520) REFTAT

WHITE (-, 540) TRETAT

WHITE (-, 540) TRETAC

WHITE (-, 540) TRETAC

WHITE (-, 540) TRETAC

WHITE (-, 540) FOR TAC

WHITE (-, 540) FCELER (MECOMP)

CONTINES

WHITE (-, 590) WIERDA

WHITE (-, 592) MIREST
```

🚱 🏲 :

.

- --

4 45

<u>Ž</u>'n

```
WRITE (6.545) EPST

BEIL (1.77) LIFFSC

LATT (4.547) PSSC

LATT (4.547) PSSC

LATT (4.547) PSSC

LATT (4.547) PSSC

LATT (4.547) LATT (4.547) LATT (4.547)

WITTE (4.647)

20C POPRAT (7.181 SCLIBATION OF COMPRESSION LONE: *, SE'NETA (EARS) -*, FA

2.2/22; FETA (ESC -*, F6.2, FF)

21C POPRAT (5.181 LATT, 18.57) LATT (18.57) LATT (18.57)

21C POPRAT (5.181 LATT, 18.57) LATT (18.57) LATT (18.57)

22C POPRAT (5.181 LATT, 18.57) LATT (18.57) LATT (18.57)

22C POPRAT (5.181 LATT (18.57) LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (5.181 LATT (18.57)

22C POPRAT (18.57)

22C POPRAT (18.57)

22C POPRAT (18.57)

22C POPRAT (18.57)

22C POPRAT (18.57)

22C POPRAT (18.57)

22C POPRAT (18.57)

22C POPRAT (18.57)

22C POPRAT (18.57)

22C
            253 POJETAT($1,") TALL HIS LOCATION (LINE", FIG. 7, ///)
267 PODEAT($1,") PARTORE (PAULANS/IS), PHIS", FIG. 7, ///)
267 PODEAT($1,") PARTORE (PAULANS/IS), PHIS", FIG. 7, ///)
276 PODEAT($1,") TRISSIS IN PRESTRESSING STRANDS AT ULTIMATE (RESI) 18/2
286 PODEAT($1,") TALE 18 PRESTRESSING STRANDS AT ULTIMATE(RIPS) 18/2
287 ATTAIN IN TOP LEG =*, FIG. 6, /SI, *SIRIE IN METTOR 18/2
287 ATTAIN IN TOP LEG =*, FIG. 6, /SI, *SIRIE IN METTOR 18/2
287 ATTAIN IN TOP LEG =*, FIG. 2, /SI, *SIRIE IN METTOR 18/2
287 ATTAIN IN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, /SI, *SIRIES EN TOP LEG =*, FIG. 2, 
                                                                                                                                                                                                                                                                                           CIPESS IN TOP LEG **, FIG. 2, /52, 'STRESS EN
                310 77
                    210 PT CIPESS IN TOP LEG **, FIG. 2, FIRESS EX ...

120 PC ...**(0. OF STIPZOPS INTERCEPTED 1*, /SE*AT THE TOP ...

130 PC ...**(1. TERROTTO **, FS. 2.//)

130 PC ...**(1. TERROTTO **, FS. 2.//)

130 PC ...**(1. TERROTTO PERCE (RIPS), C **, FIG. 5, //)

130 PC ...**(1. TERROTTO PERCE (RIPS), C **, FIG. 5, //)

130 PC ...**(1. TERROTTO PERCE (RIPS), C **, FIG. 5, //)

130 PC ...**(1. TERROTTO PERCETTAGE (RIPS), C **, FIG. 5, //)

131 PC ...**(1. TERROTTO PERCETTAGE (RIPS), C **, FIG. 5, //)

132 PC ...**(1. TERROTTO THE PERCETTAGE OF CURPASSION ELERAPTS IS **, //)

134 PC ...**(1. TERROTTO THE PERCETTAGE OF CURPASSION ELERAPTS IS **, //)

134 PC ...**(1. TERROTTO THE PERCETTAGE OF CURPASSION ELERAPTS IS **, //)

134 PC ...**(1. TERROTTO THE TOP OF THE PORTION OF ELERAPT BOURDED BY CHARACT.**(1. TERROTTO THE TOP OF THE PORTION OF ELERAPT BOURDED BY CHARACT.**(1. TERROTTO THE TOP OF THE PORTION OF ELERAPT BOURDED BY CHARACT.**(1. TERROTTO THE TOP OF THE PORTION OF ELERAPT BOURDED BY CHARACT.**(1. TERROTTO THE TOP OF THE PORTION OF ELERAPT BOURDED BY CHARACT.**(1. TERROTTO THE TOP OF THE PORTION OF ELERAPT BOURDED BY CHARACT.**(1. TERROTTO THE TOP OF THE PORTION OF ELERAPT BOURDED BY CHARACT.**(1. TERROTTO THE TOP OF THE PORTION OF ELERAPT BOURDED BY CHARACT.**(1. TERROTTO THE TOP OF THE PORTION OF ELERAPT BOURDED BY CHARACT.**(1. TERROTTO THE TOP OF THE PORTION OF ELERAPT BOURDED BY CHARACT.**(1. TERROTTO THE TOP OF THE PORTION OF ELERAPT BOURDED BY CHARACT.**(1. TERROTTO THE TOP OF THE PORTION OF ELERAPT BOURDED BY CHARACT.**(1. TERROTTO THE TOP OF THE PORTION OF THE TOP OF THE PORTOTTO THE TOP OF THE PORTOTTO THE TOP OF THE PORTOTTO THE TOP OF THE PORTOTTO THE TOP OF THE PORTOTTO THE TOP OF THE PORTOTTO THE TOP OF THE PORTOTTO THE TOP OF THE PORTOTTO THE TOP OF THE PORTOTTO THE TOP OF THE TOP OF THE TOP OF THE PORTOTTO THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP OF THE TOP O
                        REO FORRAT(SI, DEECING MORENTS (IN.RIPS.) ON APLLEADS (REALLY STATES)

870 FORRAT(SI, DEE TO CONCRETE CORPRESSION SOME 1*,F10.8)

871 FORRAT(SI, TANNERS STATES)

872 FORRAT(SI, STIRRUPS (RONICONTAL LEGS) 1*,F10.8)

573 FORRAT(SI, STIRRUPS (RONICONTAL LEGS) 1*,F10.8)

574 FORRAT(SI, TOTAL RESDING MORENT ON BUTA PLANE 1*,F10.8//

574 FORRAT(SI, TOTAL SEDING MORENT ON BUTA PLANE 1*,F10.8//

575 FORRAT(SI, TORGUE TAXIN SY STIRRUPS (VERT, LIGS) 1*,F10.8//

576 FORRAT(SI, TORGUE TAXIN SY STIRRUPS (VERT, LIGS) 1*,F10.8//

2//
                                    See Format(SI, 'Torque Tarin's) Conce. Comps. Note and Bowels i", Fig. 4/7

500 Format(SI, 'Sprar Depte (KIPS) IN COMPS. 2008 1', F10.4/7)

501 Format(SI, 'Sprar Depte (FIS) IN COMPS. 2008 1', F10.4/7)

502 Format(SI, 'Sprar Depte (FIS) IN COMPSESSION ZONE 1', F10.4/7)

503 FORMAT(SI, 'SDRUE OR ITITATIONS FOR N.A. FOSITIO 1', IM/7)

504 FORMAT(SI, 'SDRUE OR ITITATIONS FOR N.A. FOSITIO 1', IM/7)

505 FORMAT(SI, 'SINGUE (COMPSESSIVE) PRINCIPAL STRAIN (FSI) OR SETA PLANE

2045 (, F10.2/7)

504 FORMAT(SI, 'ERSOR IN STRESS INTENACTION SQUATICS 1', F10.6/7)

505 FORMAT(SI, 'STRESS IN STRESS INTENACTION SQUATICS 1', F10.6/7)

505 FORMAT(SI, 'ATRIMUM (COMPSESSIVE) PRINCIPAL STRAIN (IN/IN) OR BETA

21 ', F12.6/7)

206 FORMAT(SI, 'ATRIMUM (COMPSESSIVE) PRINCIPAL STRAIN (IN/IN) OR BETA

27 IN FORMAT(SI, 'GROUND OR PRINCIPAL STRAIN (IN/IN) OR BETA

27 IN FIRST (SI, 'F12.8/7)

507 FORMAT(SI, 'GROUND OR PRINCIPAL STRAIN (IN/IN) OR BETA

27 IN FORMAT(SI, 'GROUND OR PRINCIPAL STRAIN (IN/IN) OR BETA

27 IN FORMAT(SI, 'GROUND OR PRINCIPAL STRAIN (IN/IN) OR BETA

27 IN FORMAT (SI, 'STRAIN (COMPSESSIVE) PRINCIPAL STRAIN (IN/IN) OR BETA

27 IN FIRST (SI, 'F12.8/7)

28 OF CUMRAT(SI, 'GROUND OR PRINCIPAL STRAIN (IN/IN) OR BETA

27 IN FIRST (SI, 'F12.8/7)

28 OF CUMRAT(SI, 'GROUND OR PRINCIPAL STRAIN (IN/IN) OR BETA

28 OF CUMRAT(SI, 'GROUND OR PRINCIPAL STRAIN (IN/IN) OR BETA

28 OF CUMRAT(SI, 'STRAIN (IN/IN)

29 OF CUMRAT(SI, 'STRAIN (IN/IN)

20 OF CUMRAT(SI, 'STRAIN (IN/IN)

20 OF CUMRAT(SI, 'STRAIN (IN/IN)

20 OF CUMRAT(SI, 'STRAIN (IN/IN)

20 OF CUMRAT(SI, 'STRAIN (IN/IN)

21 OF CUMRAT(SI, 'STRAIN (IN/IN)

21 OF CUMRAT(SI, 'STRAIN (IN/IN)

21 OF CUMRATOR (IN/IN)

21 OF CUMRATOR (IN/IN)

21 OF CUMRATOR (IN/IN)

21 OF CUMRATOR (IN/IN)

22 OF CUMRATOR (IN/IN)

23 OF CUMRATOR (IN/IN)

24 OF CUMRATOR (IN/IN)

25 OF CUMRATOR (IN/IN)

26 OF CUMRATOR (IN/IN)

27 OF CUMRATOR (IN/IN)

28 OF CUMRATOR (IN/IN)

29 OF CUMRATOR (IN/IN)

20 OF CUMRATOR (IN/IN)

20 OF CUMRATOR (IN/IN)

21 OF CUMRATOR (IN/IN)

21 OF CUMRATOR (IN/IN)

21 OF CUMRATO
```

```
------
MEN DIMENSIONS

OUTSIDE:

WINTH ([N.] + A.38

WINTH ([N.] + 17-08

LENGTH ([N.] + 164-08
HOL OF PHESTHESIANG STRANGS PROVIDED (H) . AND THEIR SIZE (ROBE)S H G GOOD = 3
APPA1 --PTSTRESSING STRANDS (ED.IN.):
* 8. 4 8.1447 G.8008 8.0486 8.1448 8.1448
AREA OF TRANSVERSE STEEL - ONE LEG (50.1%.)1
                                                   ION THE BOTTON IN INCHESE S
 PARSTHESSING STREE LOCATIONS (DISTANCES FI
PHISTHESSING STREE LOCATIONS (DISTANCES PHON THE SIDE IN INCHES)
 STIMMO LOCATION IN COUSS-SECTIONS
 VEST. 0.6250 11.3750
HORIZ. 6.6250 5.3756
 STIRBUP SPACING EINLE ST
                                      3.58
 ENFECTIVE PRESTRESSING POWERS (KIPS) :
 MODULE OF CLASTICITY OF PHESTRESSING ATCCL (KRIST 27500.00 27500.00 28900.00 25900.00 27500.00
  MODULE OF PLASTICITY OF HILD STREET & SHAPE 29930-400
 ULTIWATE STOCESES OF PRESTPESSING STEEL 1-
274-380 274-390 275-625 275-625
  ULTIMATE STRESS OF HILD STEEL S
47,337
  CONCRETE COMMETSIVE STRENGTH (#51):
FC= 6524.087
  . کم
  COPPRESENT OF DEPTH OF MEUTRAL ARES & ATC & FORMULAS
  TOUSION TO BENDING SATED . TOM
  LOCATION OF FAILUME SUMFACE (IN.) FROM LEFT SUM
  05-073 -
05-073 -
05-073 -
  INITIAL PECENTRICITY (IN.I. ECCH ...
  AVERAGE PRESTRESS LPSIJ P/A
 INITIAL STRAINS IN CONCRETE LEON, STALL LEVELS AND MOTTONIS
   TATION STREEMS IN COMCRITE STORE STREE LEVELS AND DOTTOMIS

-0.222219

-0.222219

-0.222220 -0.22220 -0.000221 -0.000221 -9.000219 -0.000319

-0.222220
```

الح والإهواء

. . 1)

\$150 B

```
9.4447
15tal.0
 INCPEASE IN STRAIN IN STEEL BETWEEN INIFIAL AND ULTIMATE COMBI
                                                  0.000031
~0.036422
 STRESSES IN PRESIDENCE STRANGS AT ULTINATE INSIS &
                                                 1+6-45+667
183-752549
143-4+6638
 POPCES IN PRESTACISING STRANGS AT ULTIMATERIERS &
STRAIN IN COUPE, LEG . C.02100
NO. OF STITUTES INTERCEPTED I
AT THE C. SIDE-11.17
AT THE T. SIDEN A.ZP
FOUTLIPAIUS CHECKE
TYMELE FORCE (MIPS). T = 43.22673
COMPRESSIVE FORCE (MIPS). C = 43.20104
                         10
```

```
STRESS AT THE TOP OF PORTION OF THE COMPRESSION CLEMENT BOUNDED
 NUMBER OF STIRRUPTINGS. LEGS ON ONE SIDES! INTERCEPTOS 2.37935
AVERAGE STWAIN IN WINIZONS LEGS OF STIRRUPS 1 19.8228
AVERAGE STREES IN WORLZON, LEGS OF STIRRUPS 1 19.8228
 BENDING HOMENTS (IN. KIPS.) ON INCLINED (BETA) PL
         B CONCRETE COMPRESSION ZEME S
TRASICM ZONE S
PRESTURISSING STEEL S
STIMMUPS (WINIZONTAL LEGS) S
STIMMUPS LYEMTICAL LEGS) S
  TOTAL TOFQUE CINARIPS) ON META PLANE E
  SHEAR FORCE CEIPS) IN COMPR. BONE !
  SHEAR STRESS (PSE) IN COMP. ZONE 8 976.5627
          OF ITERATIONS FOR M.A. POSITIO 3 23
   MARINUM CTENESLES PRINCIPAL STRAIN IN INC COM
    WINDOWS (COMPRESSIVE) PRINCIPAL STREST IN THE COMPRESSION ZONE I
    ERROR IN STRESS INTERACTION COUNTION : 6.00009020
    COMMINER CAMACITIES AT ULTIMATE (INLESS AND REPS):
```

Ţ

```
Horish
                               NC, OF PRESTRESSING STRANGS PROVIDED EN) . AND THEIR SIZE ENDO
ANEAS OF PRESIDENTING STRANGS ESS.IN.28
ANEA OF TRANSVERSE STEEL - BNC LCG (SQ.IN.); 0.1100
PRESTRESSING STEEL LOCATIONS (DISTANCES PROM THE BOTTOM EN ENCHESS S
1.58 1.50 10.50 10.56
STIPRUP LOCATION IN CROSS-SECTIONS

VERT.

1.0750

1.0750

1.0750

1.0750

1.0750

1.0750

1.0750
STIPPUP SPACING (IN.). Se
EFFECTIVE PLESTACESTING PEACES (4198) 1
13.12 12.57 9.65 9.00
MCOULT OF ELASTICITY OF PALSTNE MINETSTEEL (RESSE
2000, 00 2000, 00 2000 gr epheros
MCOULT OF ELASTICITY OF PILE
2000, 03
 ULTIMATE STRESSES OF PRESTRESSING STERL T
275.025 275.025 275.025 275.025
 ULTERATE STORES OF HILD STEEL S
43,333
 CONCUSTS COMMESSIVE STRENGTH SPESSE
FCH SAGA-88
              14
 CONCRETE ULTIMATE COMMESSIVE STRAIN S
EPSCU *: -0.40300
                                                    0.11E
 LCCATICATOR PARLUME SURFACE SEN.) FROM LEFT SUPPORT E
DAMES : 07.0
DAMES : 07.0
DAMES : 07.0
 INITIAL ECCENTRICITY (IN.I. ECCH ...
```

-6-23334

```
CP4C41% STAEMSTM
               TORGET CONC. THEFED?
                                             THE CORGE THE STEW THE TORKS
                                1,1%177
4.61780
4.67779
                                                          0.50415 Se.67616
7.59769 101.41915
64.73419 259.04653
                                             77.05700
                                                                                      -4.60040
     FIRST WORD - ULTIMATE CAMPETY, STRAIRS AND COULLIMIUM CHECK
     INCLINATION OF INITIAL COACCI THETALOGO, 3 = 1.3978
THATALOGO, = 79.0571
                                                                       DETAINABL . 1.00
BATAIDIGS . ST.00
    INCOCASE IN STRAIN IN STEEL RETYEFN INITIAL ARR ULTIRATE LOADS
    ULTIMATE STRAIN IN STEEL CON PERCENT) I
                                                        0.024472
0.004409
   MUMBER OF STERESTONS REDD. FOR CURVATURE & SO
   NEUTPAL AXIS LOCATION (IN INCHES, PROM THE TOPS, AM 1.500008
   CURVATURE IRADIANSFIRE, PHIR 6.6025277
  STHESSES IN PHESTORSSING STRINGS AT ULTERATE EXSES &
 PERCES IN PRESTAESSING STRANDS AT ULTIMATERRIPS) 1 21.300382 2 21.201802 3 9.209162
                                                     115.060526
  STRAINS AND STRESSES IN MENICUNTAL LEGS OF STIMUMS AT ULTIMATE 2
 STRAIN IN TOP LEG # -0.000516
STRAIN IN POTTOP LEG # 0.012004
 STRESS IN TOP LEG =
STRESS IN BOTTOW LEG =
 MC. OF STIRRUPS SHITERCEPTED E
AT THE BOTTO 0.35
EQUILIBRIUM CHECKI
TENSILE FONCE (AIPS). T = $2,21947
STORETHE FONCE (AIPS). C = $3,20036
ERROW IN PERCENTAGE (T-C)/T-188 . 0.99910
MUMER OF THE ELEMENTS IN COMPRESSION . . . . . .
```

STRAINS IN THE CENTROLOS OF COMPRESSION ELEMENTS & 0.000032 0.000150 0.000244 0.00057 0.00057 0.20064 0.20064 0.00041 0.00021 0.00034 0.000474 0.000479 0.000779 11 0.001928 0.001928 0.001948 0.001948 0.001948 0.001948 0.001948 10 20 21 24 26 28 30 32 0.00122 0.001350 0.001465 0.001465 0.001461

-0

۲

31 0.001ALA 0.001091 0.002054 0.002193 0.002377 0.002633 0.002590 0.0025918 35 38 30 01 43 34 36 34 40 42 44 0.062117 0.002117 0.002243 0.002370 0.002490 0.002673

0.0424/2

-0.42513

```
.,
                                         #:3C#136
                                                                                                                                          0.00 18 an
6.00 7470
6.00 7470
4.00 7707
6.00 34 54
                                         0.063355
        49
51
63
55
57
59
                                        0.003349
0.003310
6.003310
0.0035W[!
0.0035W[!
                                                                                                                                                                                                                        (Alle
                                                                                                                        THE COMPULESION FLENCHTS
                                       0.012570
0.072520
0.072520
0.172520
0.272520
0.372520
                                                                                                                                          0.01740
0.66750
0.13740
0.14750
0.23750
0.34750
0.34750
         11
12
16
                                                                                                                                       0,437500
0,417500
0,587500
0,587500
0,037500
0,487500
0,737500
                                          0.412576
        17
10
21
23
25
27
27
                                        0.4/2520
0.512540
0.512500
0.612503
0.612503
0.712500
0.712500
                                                                                                          20
24
26
70
30
32
                                        6.A12026
0.wr2300
0.W12300
0.W12300
1.017730
1.022300
1.112303
                                                                                                                                          6,437566
0,487576
0,917560
0,91756
1,037466
1,047660
1,137576
        33
35
37
30
41
43
48
                                                                                                          34
36
38
48
48
44
44
                                                                                                                                           1.237500
1.247526
1.337500
1.347526
1.437500
                                          1.217300 ,
                                                                                                          54
62
54
54
54
         49
51
53
55
57
                                          1.242500
                                          1.347593
  HEIGHT OF THE PORTION, OF ELEMENT IN COMPRESSION
                                                                                                                                                                                                                                                                                                                                                       ٠.)
                PERSON CLEMENT STRESSES S
                               1 20.720521
027.079278
8 LASWS.7701
1530.86403
        11 13
                               1990.305712
2332.49412
2979.472993
3009.209135
                                                                                                          10
12
14
14
                                                                                                                                                                                                                                                                                                                                                      Ų.
        17
                              3303,734350
                                                                                                         1.0
                                                                                                                               3440.01P968
                            3703,73436
2703,77722
2723,172727
4011,401072
4174,071000
0737,000016
4477,277157
4547,277157
                                                                                                        20
22
24
26
28
30
32
       10
21
23
29
27
20
31
                            4+67, 0+7218

4+19,510713

4+20,42429

4547,51094

4547,51094

4547,773777

4235,744813
                                                                                                        20
30
30
40
47
44
40
40
       33
35
37
39
41
47
43
                                                                                                                               4427.300384
                                                                                                                              4427,390396
4544,474779
4545,945429
4545,945429
4474,119291
4421,119291
4544,254342
4307,334483
       49
51
23
55
57
57
                              4278. 000093
                                                                                                                               4730.401424
                                                                                                       50
52
54
56
56
60
                            4778, marces
4721, 4371, 44
4103, 674179
4104, 074476
4731, 177616
3944, 221757
                                                                                                                               4750,401624
4130,472764
4130,263905
4079,615046
4027,646147
3465,737327
                                                                                          4
STATES AT THE TEP-OF BORTION OF
                                                                                                        THE COMPRESSION ELEMENT BOL
                   OF THE CLEHENTS IN CO-
                                                                                             MESSION I
                                 0.23/376

%6/22/23/6

0.23/3/6

0.23/3/6

0.23/3/6

0.23/3/6

0.23/3/6
                                                                                                                                      6.230376
6.230376
6.230376
6.230376
6.230376
6.230376
6.230376
                                                                                                        10 12 14 16
     7
7
11
13
17
                                                                       رزي
                                                                       يوطئو
                                    0.227376
0.237176
0.23717A
0.23717A
0.237176
     17
10
21
23
28
                                                                                                                                 0.234376
0.234376
0.234376
0.234376
0.234376
                                                                                                     1 A
20
22
24
24
```

```
C. P *P +F**
6..? 1017A
4..? 2017A
6..? 2017A
C. 2 1017A
6.. 2 2017A
8. 2 3017A
6.. 2 3017A
                                             0,234374
0,234374
0,234376
0,234376
0,234376
                                                           0.234376
MUMBER OF STIRMINGLYFFT, LCGS ON ONE SIDES ENTERCEPTERS 8,49749
AVERAGE STREES IN VESTICAL LCGS OF STIRMINGS 8 43,33338
      TO CONCRETE COMMISSION FORE E
TENSION FORE E
STIPMUMS IMPOSSION FORES E
STIPMUMS EMPRISSION LEGES E
STIPMUMS EMPRISSION LEGES E
TOTAL BENDING MEMAT ON BETA PLANE 1 344.9897
TOTAL TOPQUE (SMIKEPS) ON BETA PLANE 1 -193.5525
-TORQUE TAKEN BY STIRRUPS (VERT. LEGS) &
SHEAR FORCE (KIPS) IN COMPR. ZONE 1 10.5100 .
SHEAR STRESS (PSI) IN COMPR. ZONE 1 734.85865
MERHAL STRESS LASTI IN COMPRESSION LONG 1 3948,7573 .
 MAXIMUM (TENSILE) PRINCIPAL STRESS (PSI) ON BETA PLANE | 1
                                                                                       33,65
MARIMUM (TENSILE) PRINCIPAL STRAIN CINZEN) ON BETA PLANE S
MINIMUM PROMMERSIVES PRINCIPAL STRESS IMBIS ON BETA PLANE S
ERROR IN STRESS INTERACTION EQUATION : 0.888888
                                                                                                        1
```

(

å

3

```
• BEAR CH-4 •
```

TOPOT VAPITOLES

DIMENSIONS | MOLLOWS |

FO. OF PRESTRESSING STRANDS PROVIDED (M) , AND THERE SIRE (MORD):

ARELS OF PRESTRESSING STRANDS (SO.IN.): 0.1440 0.1446 0.1446 0.1440 0.1440 0.1440 0.1440

ABEA OF TRANSPERSE STEEL - ONE LEG (SQ.IN.): 8.0508

PRESENCE STEEL LOCATIONS (DISTANCES FROM THE BOTTOM IN INCHES) 8 2.00 2.00 2.00 2.00 2.00 10.00 10.00

PRESTRESSIVE ST. EL LOCATIONS (RISTANCES FROM THE SIDE IN INCRES) 8
16.00 8.06 6.00 4.60 2.00 10.00 2464

EXTPPOR LOCATION IN CROSS-SECTIONS VERT. 175425 10.4375 HGDIE. 1.5625 10.4375

STIBBOP SPACTURE (IN.), 84 3.66

EPPECTIVE PRESTRESSING PORCES (EIPS) : 16.06 15.75 15.02 15.25 15.77 19.12 19.69

HOLDLY OF ELASTICITY OF PRESTRESSING STREE (RSI): 27500.00 27500.0

ULTIMATE STRESSES OF PRESTRESSIDE STREE : 276.389 276.389 276.389 276.389 276.389 276.389 276.389

PLTIMETE STPESS OF MILD STEEL # 53.333

CONCRETE CORPRESSIVE STREETS (PSE) e FC= 5476.00

POPULOS OF ROPTUSE (PSI):

CCFCRTTE ULTIMATE COMPRESSIVE STRAIR E PPSCU - -0.00386

CONTRICTENT OF DEPTH OF SESTEND AND (& C I FORMULA) - ET - 6.78

SALIE - BYT , OTTAR DRICKES OF ROISEOF

TORSTOR TO SERVE RATIO (201/(807)) - 152.1510

LOCATION OF PATIENT SUSPACE (XS.) PROS LEFT SUSPENT S DESCRIPT 12.0 DESCRIPT 12.0 DESCRIPT 12.0

INITIAL ECCENTRICITY (IN.), ECCH - 1.3533 AVERAGE PRESTRESS (PSI) P/A - 1086.2037

INITIAL STRAIN IN PRESTRESSING STREE :
0.000-256 0.000-038 0.003896 0.003851 0.003982 0.004028 0.004972

THITIAL STRIPS IN CONCRITE (TOP, STEEL LEVELS AND NOTION):
-0.000150
-0.000150
-0.000150
-0.000150

~ ę

```
TH. (886) TOS STEE TOT. TOPO. SPECHERAL SPRINGHER THEFE (88G)
TRIPD ACON - BITIRET CAPACITY, STREETS AND EQUILIBRING CHECK
THELIPATION OF INITIAL CRACK! INSTA (DR.) = 0.5557
THETA (DEG.) = 33.4396
INCLINATION OF CORPRESSION SOME:
 INCREASE IN STRAIGHT STEEL SCINNER INSTIAL AND ULTIMATE LOADS
                                                              0.030155
0.000155
0.001153
                  0.000155
 1 0.003155 4 5 0.003155 5 6 7 0.003155 6 7 0.003155 6 7 0.003193 ULTINATE STREET (IN PROCEST) B
            0.0(4561
 SURBER OF ITEFATIOUS REQD. FOR GURVATURE - 33
 SESTRAL ATTS LOCATION (IN INCHES, PROS THE TOP), A- 0.802500
                                                   1 a w
  CONTATURE (RADIAMS/IN), PRI- 0.0086127
  STRESSES IN PRESTRESSING STRANGS AT GLTINATE (ESS) a
                125. 437165
121.062165
                                                             170.115031
               123. 023276
                                          T 7 170.073360

CZS ZW PRISTRESSING STBANDS AT SLTIMATR(RIPS) & ...

LU 18.162952 2 17.992952

17.432952 0 17.252952

5 17.7727952 6 20.096560

7 25.066560
                        150
  STRAITS RESISTANCES IN HORIZONTAL LEGS OF STRAIGHTS AT SETURATE &
STRAITS IN TO LEG - 0.005749
STRAITS IN HOTION LEG - 0.008055
  STRESS IN TOP: LEG * STRESS IN BUTTON LIA *
   NO. OF STIRRUPS INTERCOPTED BY
AT THE THE W 4.76
ATJUE BOTTOM - 13.65
   ECTILIBRIES CHICAL
TYSTILE POSCE (RIPS). T = 82.81066
COTTRESSIVE FORCE (RIPS). C # 42.79291
   22102 IN PERCENTAGE (T-C)(7-100 - 0.01775
   · ATSERER , SEEDING RATIO OF THE ENCIRED (BETA), PLANE , ESTRETA .
   BURNES OF THE ELEMENTS IN COMPRESSION = 32
         The second second
   STRAIRS IN THE CENTROIPS OF COMPRESSION SLEMENTS :
                                                                0.003025
0.000055
0.000066
0.030316
0.030370
0.030370
                    0.000009
0.000009
0.000009
0.000192
0.000192
0.000193
      3
7
9
11
13
15
                     0.000228
      15
47
19
21
21
22
27
27
27
                    0.000259
6.000285
0.000316
0.000316
0.000377
                                                                 0.030278
0.030300
0.030311
                                                  10
20
22
```

0.000361 0.000392 0.000421 0.000453 0.000484

11:

```
COMPRESSION PLEMENT STREETS &
                                                                                                                                               105.543635
224.74626
347.276849
464.01465
547.089452
704.423432
420.014063
                                  77. R72154
762. 907479
286. 25076
657. 874236
527. 746487
645. 967747
742. 441486
877. 156964
                                                                                                                   10
12
10
16
       15
    37
19
21
23
25
27
29
31
                                                                                                                 16
20
22
24
26
26
20
32
                                    990.234433
                               1101.5(4795
1211.159548
1319.946154
1425.215732
```

STRESS AT THE TOP OF PORTION OF THE COMPRESSION ELEMENT BOWNES AT M. A.

ABEAS OF THE ELEMENTS IN COMPRESSION &

7

ر **ن**

1, 416836 1, 414416 1, 414436 1, 416436 1, 416436 1, 416436 1.416836 1.416836 1.416836 1.416836 2.416836 1 5 7 4 11 13 15 16 18 20 22 24 26 28 30 32 17 19 21 23 25 27 29

ABIL OF THE PORTION OF COMPRESSION STREET BORNDES BY W.Th. (SQ. THE.)

SUBSIDE OF STEEDS STREET, LICS OF OUR SIDE:) INTERCEPTED: 5.17195 AVERAGE STREET IN VERTICAL LICS OF STEEDINGS : 0.00042

BERDING SCHERTS (IN. RIPS.) OR INCLINED (BETA) PLANE :

DUE TO CONCRETE COMPRESSION ZONE 2

TENSION ZONE 3

O.0000

PRESTRESSION STEPL 1

STIRATORS (MODILLOCAL LEGS) 1

STIRATORS (MEDILLOCAL LEGS) 2

STIRATORS (MEDILLOCAL LEGS) 1

39.2493

TOTAL BERDING SCHENT ON BETA PLANE : 303.2838

14

TOTAL TORQUE (IN.EIPS) ON BETA PLANE : 75.8787

TCHORE TAKES OF STERBORS (VERT. LEGS) E . 4.5636

TORCUE TAKER BY CONCS. CORPS. ZONE AND DOWNES & 67, 1713

SHEAR PORCE (RIPS) IN CORPR. BONE 1 48.2760

SETAR STRESS (PSI) IN CORPE. ZORE 1 1061.4677

BOREAL STRESS (PAI) IN COMPRESSION TONE 1,1703-2069

BURBER OF ITERATIONS FOR H.A. POSITIO # 32

BARINON (TRESTLE) PRINCIPAL STRESS (PSI) ON NETA PLANE 2

BAXINGS (TERSILE) PRINCIPAL STRAIR (INVIN) ON SETA PLANE : 0.00013718

MINISON (CONFERSSIAT) SMINCISTP RIBERS (SRI) ON MELT, SITHE & RISINUR (COMPRESSIVE) PRINCIPAL STRAIS (IN/IN) ON RETA PLANE : 0.00062718

TRROP IN STRESS INCENCTION EQUATION'S. 0.000001

CONSTRED CAPACITIES AT SITUATE (IN. KIPS AND KIPS) t

TOPSION : 312.87 BINDING : 9.94 SHEAR : 0.83