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Abstract

The microelectronic industry has been a driving force in thin film process evolution. The
requirements of physical process optimization are becoming more stringent due to more
demanding topographies and larger wafers. A common cost-effective solution to process

optimization has been. and will continue to be, computer simulation.

One key process for the microelectronic and other coatings industries is physical vapor
deposition. In an attempt to increase the flexibility of reactor scale physical vapor
deposition simulators. a framework has been developed to address this problem domain.
This thesis presents a framework that not only encompasses a more powerful version of
the industry renowned product siMsPUD, but also provides future developers with an

extensible architecture for future enhancement.
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1. Introduction

1.1 Background

At the end of June in 1948, an announcement was made that has irrevocabiy changed the
world we live in. Bell Labs announced the invention of a device that they called a
'transistor’. Although the announcement did not create a unanimous 'Eureka!' from the
world. this device touches the lives of every person in industrialized countries. In 1948
the pages of Scientific American showed a picture of a device just smaller than a paper

clip that would some day replace all the tubes at the heart of the radios of the day'.

In 1965 Gordon E. Moore (now chairman Emeritus of Intel) made an easily dismissible
claim in the anniversary edition of Electronics magazine. Up to the time of the article.
Moore recognized that a pattern was emerging in the manufacturing of integrated circuits;
complexity was doubling every year (50 transistors per chip at the time). Moore predicted
that this trend would probably continue and that some day integrated circuits would lead

.. . 2
to such wonders as home computers, personal communications equipment, etc".

Moore's statement enunciated the driving force for the microelectronics industry and is
now known as Moore's Law: transistor counts will double every 18 months. It has been
argued that Moore's Law has produced a vision for the industry. Today Intel produces
processors with 42,000,000 transistors: almost a million times more than seen in 1965.

We now have the computers and personal communicators that Moore predicted. Today's



personal data assistants (PDA's) are more powerful than the desktop computers of five
years ago. One could question if the current trend of the unprecedented miniaturization of
integrated circuits is due to the world's insatiable thirst for electronic devices, or if the
relationship is the other way around. With increases in the transistor densities, decreases
in the cost per transistor have also followed. Incredible computing power at reasonable

prices has been a tremendous benefit to society.

The success of Moore's Law can be attributed to the advances in process technology.
Many barriers and stumbling blocks have been predicted for the industry, but each time
process engineers have been able to develop a new approach to circumvent the challenge.
However. the price of this success has been an inexorable increase in process complexity
and ever more exacting equipment specifications. The result is that those process
sequences. which formerly involved a dozen steps, now require hundreds; fabrication
plants. which used to cost millions of dollars, now cost billions. The industry's ability to
increase transistor densities is a direct result of research pushing the physical limits of the
chip manufacturing process. In some cases, progress has emerged from engineering
ingenuity that has been explained theoretically later, or progress has been a result of
theoretical predictions that have enabled new processes. Not only are new materials and
techniques regularly used in creating devices. but also new configurations of existing

technologies often increase transistor densities.

In order to address the challenge of meeting very exacting requirements during process

development without tying up expensive capital equipment, process engineers are



resorting to extensive use of simulators. However, there are many complex and
interacting physical and chemical processes, which must be accounted for before these
simulators can deliver on their full promise. In particular, the ability to account for the
coupling of variables. both at the sub-micron feature scale and the multi-centimeter
reactor scale. is essential to gain an adequate understanding of the key mechanisms

involved and achieve even semi-quantitative simulation results.

1.2 Magnetron Sputter Deposition

One of the key steps in microelectronic device manufacturing is the process of depositing
layers of thin films. Depending on the particular layer composition, various film growth
processes are utilized. One film deposition technique that has been central to the growth
of metallization layers is known as magnetron sputter deposition. Magnetron sputter
deposition is categorized with evaporation deposition, both are known as Physical Vapor
Deposition (PVD) processes. Although evaporation is classified as a PVD process.
typically when one refers to PVD. one usually refers to magnetron sputter deposition.

This convention will be followed for the rest of this thesis.

PVD films are grown via a process of collecting physically ejected (sputtered) particles
from a solid target onto a substrate. The process is driven by a self-sustaining low-
pressure (1-50 mTorr argon) plasma that forms at the target and is contained by magnets
placed behind the target. A negative bias is applied to the target to attract argon ions from

the plasma. Particles are physically ejected from the target as a result of momentum



transfer from the bombarding ions. These ejected particles make their way through a
sequence of collisions with the background argon gas until they collect as a film layer
upon the substrate (Figure 1-1). A variation on this process is achieved by introducing a

reactive gas species into the vacuum chamber (reactive sputtering).
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Figure 1-1: Sputter deposition process

This diagram outlines the basics of the magnetron sputtering process. The chamber is filled with a low-
pressure argon gas. A glow discharge plasma is created from a potential on the metal target. Target
material is ejected as a result of accelerated ion bombardment. Magnets confine the plasma near the target
Jor greater efficiency™.

The attraction to sputter deposition is the process's ability to deposit a variety of film
materials onto a variety of receptor materials. This ability, combined with the multitude

of control variables that can be ‘tweaked' in the sputter process, greatly affect the

deposited film properties. Sputtered films are known to have good uniformity and



acceptable coverage over non-planar features. Due to the recent interest in the use of
copper metallization layers. the use of sputter deposition processes for seed layer
deposition over very high aspect ratio topography has kept the interest in this PVD

process technology high.
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Figure 1-2: PVD industry financial projections

The PVD industry has been a good market performer in the past and is predicted 1o be growing’,

PVD is used not only in the microelectronic fabrication industry, but also extensively in
coatings for hard drives and other magnetic storage media. optical coatings, hardness
coatings. textile treatments and packaging. According to a study by Business
Communications Co.. Inc., the PVD market is expanding. They argue that PVD
equipment sales will see an average annual growth rate (AAGR) of 11.3% to reach $6.7
billion in sales by 2005, PVD deposited materials will see an AAGR of 11.9% to reach

$943.9 million by 2003, and that PVD services will see an AAGR of 9.3% to reach $1.3



billion in sales by 2005° (see Figure 1-2). One can infer that an increase in the customer

market will translate into an increase in the production market.

1.3 The Problem

This thesis focuses on the creation of a framework for developing modules that simulate
reactor-scale aspects of magnetron sputtering processes. This framework will enable
future engineers and scientists to develop independently and to integrate easily the
process specific modules within this framework. Ultimately, the framework would enable
rapid prototyping of physical process modeling simulations. This framework will be

named SIMSPUDII.

SIMSPUDII will address the academic and commercial need for a comprehensive PVD
simulation package. This package will provide a framework for developing a reactor
scale simulator. and eventually combine with a feature scale simulator, to create a
comprehensive sputter deposition simulator. In particular, the industry lacks a simulator
capable of simulating the plasma. the target, and transport through the gas with
rarefaction and heating. as well as the film growth while considering the effects of all of
these. sSIMSPUDII will be designed to be flexible, extensible and sufficiently efficient to
execute on a desktop workstation. The overall project will consist of several phases of
development: each will focus on a different aspect of the process, but all aspects will
couple together and ultimately give a self-consistent and comprehensive picture of sputter

deposition. Each module will be designed to stand alone in certain appropriate regimes.



However. the integration of all current and future development will give the proposed

model its unique and greatest capability.

1.4 Simulations, Commercial and Academic

In response to the need to better understand the sputtering process, a variety of simulators
have been developed by both industry and academia. With the multitude of variables in
the PVD process to tweak and the wide range of possible film variance that can occur
given unique simulation parameters. the industry has become reliant on detailed computer
modeling of PVD processes. Several products have entered the market to help service the
demand for PVD process simulation. For example, SIMBAD (a feature scale simulator)
and SIMSPUD (a reactor scale simulator) are two products developed and commercialized
by research engineers at the University of Alberta. The commercialization and research
successes of SIMSPUD/SIMBAD in the mid to late 90's are well-documented® * ¢ ¥ The
software reached over $2M in sales in fifteen countries. The software package’s success
could be attributed to the fact that sSiIMBAD integrated both a feature scale simulator and a
reactor scale simulator. enabling the effects of reactor variables on feature-scale
properties to be evaluated. Feature scale simulations are typically conducted using
simplified models of reactor scale environments. SIMSPUD has the ability to create more
realistic representations of the reactor scale variables. This enables SIMBAD to simulate
more accurately the feature scale phenomenon. It could be argued that most feature scale

simulations would benefit from a versatile reactor scale simulator.



The main customer of SIMSPUD/SIMBAD was the PVD industry. With customer
applications becoming more demanding, there is a need for more sophisticated modeling

capabilities.

SIMSPUD/SIMBAD were designed as research tools; commercialization happened after the
fact. The software began to outgrow its research roots. The code, although valid, was
originally designed to model specific processes. Once the software was commercialized,
the need to extend the software to encompass various customers’ unique apparatus and
processes became overwhelming. The software rapidly became an unmanageable mess of
complex interdependent code. By the late 90°s the proprietors decided that it was no
longer financially viable to continue to struggle with the software; the technology was
thus licensed to a third party: Reaction Design Incorporated. In hindsight, the software
packages could have been designed for extensibility and commercialization. One might

argue that the life span for SIMSPUD/SIMBAD could have been extended considerably.

Reaction Design Incorporated has encompassed the SIMSPUD model in their PVD PRO
suite. This suite is a replacement of the SIMSPUD/SIMBAD product set. It is graphical user
interface (GUI) driven and provides reactor-to-feature scale simulations. Due to the
commercial nature of the product, the proprietary enhancements to the reactor scale
model are not clearly identified in their literature. One could argue that with the
complexity of the reactor scale simulation space, their model is not all encompassing.
Their feature scale product can only utilize the output of user-defined reactor scale

output.



When Reaction Design licensed the SIMSPUD/SIMBAD products. they did not hire the
support or research staff that created the product. Thus one could argue that the life span
of their products will fall behind technologically without key research talent. It should be
noted that the author of SIMSPUD leads the research group working on this project. The
author of this thesis was one of the support and enhancement engineers on

SIMSPUD/SIMBAD during its time at the University of Alberta.

EVOLVE. another feature scale simulator, developed in part by Thomas Cale and marketed
by Process Evolution Ltd. has received some recent commercial interest. This simulator
relies on the user to provide the reactor scale information in order for it to compute the
feature scale results. This simulator has been used to simulate low-pressure deposition
and etch processes. low-pressure chemical vapor deposition (LPCVD), plasma enhanced
CVD (PECVD). and plasma etching.” This is another example of a product that would

benefit from an encompassing reactor-scale simulator.

Many other research groups have also spent time simulating PVD processes. Typically
these simulations. like the classic siMSPUD model. involve some form of Monte Carlo
process. A great deal of work has been invested at the feature-scale level compared to the
reactor-scale. For example, O'Sulliven, Baumann and Gilmer have performed feature
scale simulations®. They correctly identify the need for investigation into high aspect

ratio trenches and vias. Although they also mention the need for more realistic and



encompassing models of reactor scale simulation. their work focuses on topographic

evolution.

McCoy and Deng present a parallel simulation of sputter deposition.” Although McCoy
and Deng present a novel approach to feature scale sputter simulation. they do not clearly
indicate how they obtained or created their reactor scale derived angular distributions.
McCoy and Deng mention that they use randomly generated angular and energy
distributions. or distributions 'from a file'. Clearly, their work would benefit from a

detailed reactor scale simulation model.

This was not the only academic instance of PVD simulation. Suzuki and Hoshi explore
the effect that varying gas pressure has on the counts of various species traveling from
the target to the substrate by using a reactor-scale simulator'®. They assumed a
homogeneous gas pressure for their calculations. Their work could benefit from a more
detailed representation of the background gas. Lu, Wang and Wu explore the effects of
reactive sputtering with constant voltage as opposed to constant current power supplies'".
However, details of the extensibility or reusability of their simulation product are not
evident in the paper. Pyka. Selberherr and Sukharev have studied the effects of reactor
scale variables on feature scale simulations'2. Arguments have been made for the need of

advanced manufacturing processes that involve sputter deposited thin films'>.

As shown, there is considerable PVD research conducted on both the feature scale and

some on the reactor scale. Simulators are available that model some aspects of the reactor

10



scale PVD process. yet none that exist (nor soon to exist) encompass the complete reactor
scale picture. Feature scale simulations rely on reactor scale simulation results. Research
into reactor scale effects on the PVD process will continue into the future. Due to the
complexity of the sputtering process. one could argue that no simulator will provide the
complete reactor scale PVD picture. There seems to be a need for a range of applications,
or an application framework. to address the research and commercial needs of PVD

process investigation.

For this reason, the first goal of this thesis is to develop and present an application
framework for the development of the SIMSPUDII simulator. This framework will employ
current software engineering methodologies to ensure its flexibility and extensibility to

ensure the long-term viability of SIMSPUDII.

The second goal of this thesis is to apply this framework to develop two key modules
within the SIMSPUDII framework, namely the module responsible for accounting for
generic and user specifiable chamber configuration and a module for tracking sputtered
particles and other energetic neutrals within that chamber. While the full siMsSPUDII
functionality will not be complete until several other modules are added (an area which is
beyond the scope of this thesis), this subset is sufficient to provide useful new
information on the spatial energy deposition distribution by neutrals within the sputter

gas and onto the film substrate during deposition.



One development requirement, however. is that the product must be highly extensible.
This was a major limitation of the earlier SIMSPUD/SIMBAD, which became progressively
less manageable as each new feature was added to help it address new technical

challenges.

1.5 Frameworks

A prominent goal of software development is reuse, and by association, extensibility.
Reuse can be observed on many levels of abstraction. from a single method
implementation. to complete modules. all the way up to abstract system designs.
Software is difficult to design and harder to maintain. The more code that can be reused.
the less that needs to be re-designed and maintained. A brief introduction of the concept

and utility of an application framework is necessary here.

Lajoie and Keller define three levels of reuse:'*

e Reuse in the large

¢ Reuse in the medium

¢ Reuse in the small
This describes the range of software reuse that range from application reuse down to
class/method reuse. Reuse in the large is the fundamental goal of the siMsPuDII design.
This type of reuse can be achieved through the development of an application framework.

Froehlich, Hoover. Liu and Sorenson state that “ [a]n application framework provides a

12



generic design with a given domain and a reusable implementation of that design™"’.
They also mention that the primary reason for building a framework, as opposed to an
application. is reuse: reusing not just the implementation of the system, but the design as

6
well'®.

Before building a framework. one must consider if an application framework is more
appropriate than just creating an application. Froehlich et el'> have mentioned that
framework design is considerably more costly than that of an application. They also

mention the possibility of the domain shifting. thus making the framework obsolete.

The domain for this proposed framework is not only clearly defined (reactor scale PVD
simulators); it has been a relatively stable field of study for the past few decades.
Although the apparatus used in production have been evolving. the fundamental physical
processes have not changed. The motivation for a framework as opposed to an
application for this domain is not the shifting of the problem domain; it is the domain's
complexity. The number of variables in a PVD simulation makes the physical process
extremely attractive to the microelectronics industry, and makes the number of unknowns

worthy of continued research.

13



1.6 Existing Frameworks

Before setting out to design and implement a new domain specific framework. it is
important to consider what frameworks are presently available. There are several
frameworks in development for the use of simulating physical phenomenon. The one

framework that is most relevant to the work discussed in this document is POOMA ‘2.

The Advanced Computing Laboratory at Los Alamos has designed a framework to
address the need for high performance parallel computing and numerical simulation. This
Framework is known as The Parallel Object Oriented Methods and Applications (POOMA)
framework. With the halting of nuclear weapons testing, there has been a need to provide
highly detailed particle simulations in order for the US to fulfill its mission of Science-

based Stockpile Stewardship; POOMA was constructed to address this and related needs'’.

POOMA utilizes the strengths of the C++ language (generic programming, Object Oriented
design) to provide a rapid development environment for scientific programming. It
provides many of the commonly used scientific algorithms (Fourier transforms.
interpolators, etc.). as well as some data structures common to scientific programming

(Fields. Particles. Mesh types. etc).

The main goals of the POOMA project are clearly stated on their web site'®:
e Code portability across serial, distributed, and parallel architectures with no

change to source code



¢ Development of reusable. cross-problem- domain components to enable rapid
application development

e Code efficiency for kernels and components relevant to scientific simulation

e Framework design and development driven by applications from a diverse set of
scientific problem domains

¢ Shorter time from problem inception to working parallel simulations

One of the key strengths of the PoOMA framework is its use of generic programming and
data-parallel expressions using expression templates. The developers of POOMA were able
to leverage the strengths of generic programming and C++’s template facility to create an

intuitive abstraction of data parallelism.

If the algorithms used for scientific programming exhibit parallelizable characteristics,
clearly PoOMA would be worth investigating. If parallelism is not easily achieved. one
may argue that the overhead and added complexity of a framework such as POOMA may
be too high. Another issue to be addressed would be the licensing of POOMA. If the
project developed within the POOMA framework were to be commercialized, one would
need to know what the costs and limitations associated with utilizing the POOMA

framework would be.
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1.7 siMspuDIl Framework Features

The ideal framework would require several key features that would enable future research
scientists to develop and test physical processes. The ideal framework would allow a
scientist to seamlessly integrate a module that models a specific, reactor-scale physical

process related to magnetron sputtering.

Proprietary Technology

Commercialization of research results is increasingly an expectation at Canadian
universities. Following the success of SIMSPUD/SIMBAD. one of the fundamental goals of
this project is to produce a technology that can be commercialized with all intellectual
rights maintained within the research group. If the framework can be developed using
little to no externally owned intellectual property, the product can be commercialized

with no external licensing constraints.

Grids

This thesis proposes to utilize adaptable grids to discretize the chamber volume. This
discretization of the problem space approach is not new. The use of a grid encapsulates
changing physical properties into cells that can be individually treated as homogeneous.
Properties such as magnetic fields or gas density can be computed and represented by
these grid structures. Higher resolution can be obtained by decreasing the volume of each

grid cell. Thus increasing the number of grid cells can obtain a more accurate picture of a

16



grid-represented physical property. However, this increases the memory and execution

time requirements of the application.

This approach works well for simulation properties where the property evolution
throughout the simulation space changes gradually; however, for properties that have a
few dramatic shifts in value in localized spaces, a coarse granularity grid cannot capture
the details of the shift. A fine granularity grid would be an extreme waste of resources if
the majority of the discretized property were well behaved throughout the rest of the
simulation’s space. We propose using an adaptable grid for simulation discretization.
Thus. for example. a magnetic field in a portion of the simulation volume that has few
field lines can be represented by large cells, and the portions of the simulation volume
that have many field lines can be subdivided. Adaptable grids have been used in
mathematical differential equation solvers'®, but use of this type of structure is not
widespread in the PVD simulation field. The proposed simulation framework would

benefit greatly if such a data structure could be incorporated.

Documentation

The amount of time for an engineer to learn to develop within this proposed framework
must be considerably shorter than the time to re-develop this framework. This implies
that the framework must provide a human interface to the framework that allows for rapid
comprehension of its facilities. The framework must offer several levels of
documentation that provide the engineer with the means to interact quickly with the

framework and utilize the desired subset of the entire framework.



Extensibility

The framework must be extensible. If the current feature set provided by the tool is
considered incomplete by some future standards. the framework must be easily
modifiable to encapsulate the desired feature set. The time required to extend the feature
set must be considerably shorter than the time required to rebuild the product. This
implies the tool must be designed with loosely coupled. highly cohesive, replaceable
modules. The ultimate design would provide engineers with not only a framework to
build and extend, but also a set of reusable modules that encapsulate specific attributes of

the magnetron sputter process.

By observing the software life cycle of SIMSPUD/SIMBAD, one can see that, initially,
graduate students interested in exploring some aspects of the sputter deposition process
will utilize the proposed framework. One could argue that most graduate students
working in this field will not be trained in large-scale software development. Thus the

framework must be easily extendable with little software development skills.

Later on in the life cycle, the framework could conceivably be commercialized. This
prospect implies that the extensions made by graduate students must not restrict the end
product. The framework should provide a ‘sand-box' for the beginning developer and a

fully extensible framework for the more advanced developer.



Optimized and Efficient Runtime Behavior

The framework will inevitably be used to develop numerically intensive algorithms that
could potentially run for millions of iterations before converging on a solution space.
This characteristic implies that the framework must provide all services with as little

overhead as efficiently as possible.

Input/Output Facilities

The proposed framework would have to provide the research engineer with an abstraction
of the many attributes of a complex software package. A system for abstracting some of
the frequent tasks. such as file opening, default directory specification, information
forwarding etc.. would benefit a research developer. This system would standardize the

message-routing facilities for the entire framework.

Obstruction Processor
For full flexibility in modeling physical processes, the proposed framework will need a
dedicated module for handling the physical structures necessary for unique sputtering

apparatus.

The minimum solution would require basic modeling of a cylindrical chamber and a
physical representation of a target and substrate, similar to SIMSPUD’s physical model.
The ultimate model would have the capability of specifying complex 3-D structures,
easily allowing the user to set up location specific data collectors. The ultimate model

would also allow the user to easily specify surface specific runtime parameters, allowing



for specification of multiple targets. positioned within the chamber to provide the
ultimate flexibility. The ultimate model would also provide the ability to visualize the

physical layout of the configured structures.

User Interface (not necessarily graphical)
If the ultimate model were to be successfully implemented. a creative user interface
would be required to enable the end user to configure intuitively the physical parameters

of the simulation.

For physical structures (targets, substrates. clamps etc.) to be properly modeled in the
simulation environment, the structures must be able to interact physically with moving
particles. Due to the nature of a Monte Carlo simulation. millions of particle-surface

interactions take place. The efficient handling of these interactions is imperative.

Extended SIMSPUD model (verification and validation)

One of the goals. as mentioned. is to provide an extended version of the SIMSPUD
product’s functionality. Completing this phase of the project will not only provide future
research scientists with the first part of an extensible reactor scale PVD simulator, but
will also provide an application development cycle that will test the viability and

extensibility of the proposed framework.

SIMSPUD is a reactor scale PVD simulator that provides distribution data that could be

used in feature scale modeling. The product incorporated several assumptions, as all



simulations must. Some assumptions that the original sStMsPUD model made are as
follows:
I) The particle transport occurs through a homogeneous gas medium (significant
inhomogeneities in gas temperature and pressure have been observed)*
2) There are limited physical shadowing effects due to the physical chamber
apparatus
3) There is no gas heating by particle collisions
4) Particle scattering is based on a hard sphere collision model with an empirical

(not physically based) energy dependence

These assumptions are just a few of the total assumption set that SIMSPUD used to create
sputter distributions. Like any simulation, if any members of the assumption set can be
replaced with more accurate or realistic models, the simulation comes closer to modeling

real world phenomenon.

If the subset of assumptions that has been listed could be improved, the framework would
have to complete the first phase of a prospective encompassing framework of PVD

simulation models and applications.
The proposed model will thus require:

1) Inhomogeneous gas population: 1f a runtime configurable set of gas species could

be introduced and redistribute as a result of the physical process, the overall
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particle transport model would benefit from a more realistic representation of the
physical phenomenon.

More realistic physical shadowing effects due to chamber apparatus: This
requirement is fulfilled if the Obstruction Processor (as mentioned) can be
successfully implemented.

Gas species tracking: The gas particles that interact with the target species during
a collision event often arrive at the substrate. After a collision event, energy
transfer effects should be considered. The heating effects on the background gas
could affect the progression of the transport model. This extension to the sIMSPUD

model would. as well, create a more realistic simulation.

4) A more flexible and physically realistic particle interaction model. Although the

hard-sphere model provided reasonable results, the effects of long-range particle

interactions would provide a more realistic picture.

This enhanced siMspuD model will be called Thermspud]1.
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1.8 Thesis Organization

The remainder of this work will be organized as follows: Chapters 2 and 3 deal with the
software architectural domain of the work, a high-level view independent of the problem
domain. Chapter 2 will provide a discussion of frameworks and the central enabling
technologies used in the development of this work. It will provide the necessary
background to explain the basis of the rest of the work. Chapter 3 examines the design
and implementation of the developed framework. It provides a guide for the future
framework developer to understand the fundamentals of the product as a software system.
Chapters 4 and 5 deal with the ways that the work addresses the problem domain.
Specifically, Chapter 4 addresses the low-level implementation details of the problem
domain aspects of the software package. Chapter 5 presents tabulated results directly
related to the problem domain using the software package. Chapter 6 summarizes the

conclusions and provides some forward-looking statements regarding the overall project.
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2. Architectural Domain: Frameworks and Technologies

2.1 Frameworks

Simulation 1

Simulation 5

Simulation 2

Simulation 4

Simulation 3

Figure 2-1: Problem domain coverage

Several independent simulations have been built. One could argue that there are common aspects and
approaches within some applications built within the problem domain of "Reactor Scale PVD Simulations ™

SIMSPUD/SIMBAD were initially built as research tools and later evolved to commercial
applications. During their lifetime as commercial applications, several extensions were
created either to increase the scope of the simulations or to create proprietary versions
that depicted a specific customer’s apparatus. A core of the applications remained
untouched and common to all of the extensions. For many of the extensions. it was
required, by design. to recompile the source code conditionally to “enable’ or build a
specific version of the product. This was inconvenient, very difficult to maintain, and was

almost impossible to provide a client with all functionality of the product.



It would be beneficial to learn from the mistakes or miscalculations in the design process
of SIMSPUD/SIMBAD. Re-use and extensibility are key design pillars that must be carefully
scrutinized in order to extend the application life cycle. Looking at SIMSPUD/SIMBAD, we

see that several applications were created. all in an attempt to cover the problem domain.

The problem domain addressed in this project is the reactor scale portion of the PVD
simulation spectrum. Looking at Figure 2-1 we can see that each of the siMSPUD
iterations. or even other academic or commercial applications. is an attempt to cover the
entire problem domain. One could surmise that several applications have common
aspects that have been re-used or could have been re-used across the spectrum to create
an all-encompassing solution for the problem domain. Although the application would
never fully cover the problem domain. with proper design the application would be
extensible and the process increasing the scope of the application would be less than
rebuilding each smaller version. Thus this paper argues for creating an application

framework.
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Framework

Application

Figure 2-2: siMsPUDII framework

Applications are created by utilizing a core architecture, a subset of the Jframework components, and
possibly external framework extensions.

Froehlich et al'’ state that a framework provides a generic solution to a set of similar or
related problems, but that an application provides a specific solution to one problem
within the problem domain. This second distinction typifies the solution for the
extensibility and re-use issue that this project seeks to provide for reactor-scale PVD
simulations. It could be argued that the problem domain has an infinite solution set of
applications. Conceivably, a robust, well-designed framework would cover a large subset

of the solution set of applications in both the commercial and academic circles. The

framework will never be a finished product, but always a product in development.

The first step of framework design is the clear definition of the problem domain and the

set of applications that the end framework will encompass. This project, as mentioned,
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has a clear problem domain specification: reactor scale PVD simulators. The domain is

non-shifting. and thus a reliable candidate for a framework.

The ideal framework architecture for this problem domain would have a core reusable
foundation that would bind together the problem specific application. This core would
enable the end user of the framework to customize the application by choosing a set of
pre-made framework specific components. The expert user may even be in a position to
provide some framework extensions that may solve the user’s specific simulation needs
(see Figure 2-2). This type of architecture has been referred to as a “plug-in" or “hooked”

architecture.

Froehlich et al have discussed some attributes of a hook framework>'. Their discussion
introduced the notion of a hook as a means of easing the understanding and use of a
framework. By this they mean that a framework could provide a means of easily adding
new functionality through a series of well defined and documented “insertion locations".
These hooks would inform the end user how and where the design could be extended.
There has been much discussion on design patterns and their relationship with the
creation and description of frameworks. Martin provides an excellent discussion of

framework design guidelines and patterns™.

There are several promising attributes of the proposed siMsPUDII framework. First there
are many academic discussions promoting the desirable attributes of a successful

framework. The study of framework development has been the focus of computing



scientists for over a decade with some of the research conducted here at the University of
Alberta'”. Second, the problem domain has been the focus of study for decades at the
University of Alberta. A requirement of framework development is access to a domain
expert. The University of Alberta is renowned for its internationally leading thin film
research. Finally. the post-mortem analysis of siMSPuD has provided invaluable

information about the creation of applications for the stated problem domain.

2.2 Key Enabling Technologies

C++

Choosing a language for a software problem is a very important aspect of the design
process. To meet software design goals. extensibility is an important aspect of the project.
Most scientific simulation applications have been developed in Fortran or C. SIMBAD was
originally written in FORTRAN (late 80's). eventually ported to C (90°s). and

subsequently ported back to FORTRAN (2000).

It has been argued that on large-scale projects, an object-oriented (00) approach to
software development can offer extensibility benefits>2. The three tenets of 00 design are
encapsulation. inheritance. and polymorphism; all three are pillars of code re-use.
Encapsulation is a “modeling and implementation technique that separates external
aspects of the object from the internal, implementation details.”> Encapsulation enables
extensibility by enforcing locality of change to the scope of the changed objects.

Inheritance allows existing objects to be extended without changing the original working
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code or the context. Polymorphism (dynamic binding) allows tested algorithms. used
with the object. to be reused with the child class implementations without retesting the
algorithm. These features combine to provide programming constructs that are aligned

with framework design and code extensibility.

OO techniques represent entities in the problem domain with objects in code. This
abstraction can aid in program conceptualization and design communication between
developers. One of the benefits of choosing QO is the ability to use computer-aided
software engineering (CASE) in the design and extension process. Many books and
papers have been written extolling the virtues of OO design methodologies. **2% <3
SIMBAD/SIMSPUD had a reduced lifecycle due to extensibility issues that could be related.
in part. by procedural based programming. For these reasons. an object-oriented approach

was adopted for this siMsPUDII development.

The only languages that offered the necessary speed to develop numerically intensive
scientific applications and object technologies were C++ and Fortran 90. Fortran 90.
although a language with OO features, lacked templates and the standard template library
(STL). features that are predominant in generic programming. Fortran 90 has been used
in supercomputing applications. but does not have the extensive user base of C++°.
Choosing C++ had some major disadvantages. Not everyone developing on the product
was a strong C++ programmer. It was argued early on (1999) that the overhead for using

C++ would be a major hurdle. In the end. the research group chose C++. It was felt that



the trend in the scientific computing community was moving away from Fortran and

towards C++,

XML

One of the big issues to be addressed in the initial design was the large body of
simulation parameters required to run a product such as this. SIMSPUD/SIMBAD used text
files to input the simulation parameters. In early drafis of the software. the author
considered a regular expression engine such as FLEX. Text-based parameter input using
FLEX had advantages. To begin with. the parsing could be done with minimal coding
effort. FLEX has a very simple programming model and. for those familiar with regular
expressions. is easy to use. However. some questions need to be answered for text file
parameter input. What files would contain which variables? What is a good naming

convention? How extensible is this form of parameter input?

One problem for SIMSPUD/SIMBAD was most developers' concerns that work on the two
products to add new parameters to the list of control data were very cumbersome. Often.
input variables were 're-used' to avoid the labor of adding new variables to the input
system. This recycling led to instances where variables were inadvertently not set in the

intended manner. which was extremely undesirable.
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Figure 2-3: Simulation parameter space

The simulation requires the input of many parameters and the output of log and collected data.

One aspect to be addressed is how easy would it be to extend the parameter solution to a
graphical user interface. If this tool’s commercialization were to be considered, a GUI

environment would be inevitable.

XML seemed to be the best choice. XML (extensible markup language) is a text-based
data storage file standard. This standard is rapidly growing in popularity. Tools are being
developed. as well as many libraries for handling XML documents. Extensible graphical

user interfaces are available for handling the XML files.

XML allows for a very organized tree-like data storage within a text file. This permits
module specific data parameters to be grouped intuitively. Particle species information is
grouped in a ParticleSpecies node. Surface-Specific data can be attached directly to the

surface node related to the data. The software system provides the ability for the user to
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specify complex chamber geometries. Each surface in the chamber can have data
collection regions attached and oriented. With XML. a very complex simulation

parameter space can be defined and modified easily.

<?xml version="1.0" encoding="UTF-8"7>
<'DOCTYPE Simulation SYSTEM "detd/Simulation.dcd”>
<Simulation Version="0.3">
<ExecutionQueue>
<ExecutionTag IDREF="thermi"/>
</ExecutionQueue>
</SimulationRuntime>
<SimulationPhysicalProperties initialTemperature="275m;
<GridDimensions k="72" j=m2m j=npem/s
<VolumeParticleManager ID="volumeParticleBucket”/>
<VolumeParticleNanager ID="hotChargedBucket”/>
<SheathEntry ID="sheath”/>
</Slmulat10nPhys1calP:operc1es>
</Simulation>

Figure 2-4: Example of XML format

This is a very simple example of the format in which XML is stored within a Sile.

There are open-source parser libraries for XML. The regular expression specification of
text-file parsing is abstracted away from the problem using these libraries. Adding new

parameters to the simulation is very simple. For the developer adding new parameters to
the simulation space. a guide for working with XML was developed. There are also open

source editors that provide for easily modifying the XML files.

The XML specification provides a mechanism for validation of XML files. Two files are
required for the system parameters. One is a 'DTD' file that specifies a template for
validation of the syntax of the actual XML simulation parameter file. The DTD file
provides a rule set that the parameter file must follow to be considered 'valid'. The XML
parsing library used with this project provides detailed feedback when an invalid XML

file process is attempted. This is an excellent mechanism for ensuring valid input



parameters. It should be noted that the DTD only specifies the syntax of XML file; the

parameter ranges and combinations of variables are left up to the developer to verify.

Various open source XML editing tools exist. These provide a GUI for editing the XML

file that is very intuitive and easy to understand. The tool chosen for editing the XML
files is named Merlot. Having a 'free’ GUI with no extra development resources saved a

great deal of time. The tool could be extended in the future to provide siMspuDII specific

features.
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9 atomicNumber: he

CanBeProjectile: |hue 'l

9§ inaiPressure: hs

Location |

9 name: Frgor]

pressureUnits: |[mTorr *

9 mass: pass

9 chage: b

Cancel I Save I

Figure 2-5: Merlot, an open source XML editor

The availability of open-source XML editors greatly simplifies the manipulation of XML files.
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For the actual design. it was decided that a single developer or team of developers would
develop each module. The XML library parses the XML file and creates a memory
representation of the data called a DOM_Document. Instead of localizing the parameter
parsing to one module. the individual modules are to be responsible for extracting the
information from the DOM_Document. The process of 'building’ a simulation module
from an XML file would require an intimate knowledge of the details of the module
under construction. Thus each module would have its own DOM_Document processor.
During the initialization phase of the simulation (discussed later) the parsed
DOM_Document is passed to each module. The module's DOM_Document processor

would then extract the parameters and 'build’ itself (see F igure 2-6 and Figure 3-2).

In practice this has proven very useful. Due to the ease of adding new simulation
parameters in an organized fashion. the number of parameters that can be adjusted for a
given simulation has grown rapidly. Instead of a lengthy process. a few lines of code and
a modification to the DTD file is all that is required to add a new process parameter. This
has sped up the development process a great deal. For a large software package. compile
time is a big issue. If it was difficult to add a new simulation parameter, the developer
would often just ‘hard-code' a value. This requires a rebuild for each change in this hard-
coded value. Not only is this time-consuming, it leads to unexplained 'magic-numbers'

spread throughout the code.
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Figure 2-6: Module creation using XML

This depicts the sequence of events that occur as the simulation interacts with the XML Sile.
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3. Architectural Domain: Framework Analysis

3.1 The siMspuDH Framework

The goal of this project was to create an extensible framework for future research. The

services that such a framework must perform have been encapsulated within a Simulation

object. The Simulation object creates an architecture within which all modules can

operate. Basic services that this framework provide are as follows:

¢ Module Initialization

® Simulation object classification and management
¢ Runtime message logging and output

¢ Module Execution

e Data Output and Visualization

¢ Module Destruction

The project goals were to produce a set of loosely coupled modules tied together by this
single Simulation object. This top-level Simulation object handles all actions of adding,
removing and referencing simulation-created objects and simulation properties. The
Simulation object provides the separate execution class modules with a snapshot of the
current state of the system. as well as a database of system specific properties and

objects.
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The original design was to have individual modules having little to no interaction with
each other. All interactions could be considered as acting on the system or extracting data
from the current system status. This design would aid in an overall parallel development
process. as well as provide a common extendable framework for future work. The
definition of the simulation framework could be extended for future development with no
side effects to the previously developed modules. Individual “execution class’ modules
are developed as completely independent specialized processes that act upon the
Simulation object. Any object that needs to be accessed by multiple modules would be

built and destroyed by the Simulation object.

The author adhered to this initial design for the simulation for the most part. Some
modules required specific communication with other modules. To maintain the original
design premise. the author devised an object classification system. Three levels of object

classification were employed:

e ExecutionModule
e ProcessModule

e Low level objects

ExecutionModule is the most significant object, next to the Simulation object. Any
module that inherits SpudlIModule is considered an “execution class’ module. This
module will have the ability to control an execution phase in the simulation. An

ExecutionModule has some ownership responsibilities of non-ExecutionModule objects.
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It is assumed that an ExecutionModule will need a DOM_Document for initialization.
and have some form of output routines. The abstract base class SpudIIModule is extended
to make a module an ExecutionModule. SpudiIModule is an abstract base class that

forces children classes to implement Initialization, Execution. and Output methods.

The next level of object classification is the ProcessModule classification. These objects
provide a service to ExecutionModules. ProcessModules do not have an execution phase.
They provide the service of processing data upon request to any client object (usually an
ExecutionModule). The Simulation. if more than one ExecutionModule requires access to
one of the ProcessModule interfaces, creates these ProcessModules. If a designer deems
that only one ExecutionModule will access a ProcessModule, the module would typically
be created. initialized. and destroyed by that ExecutionModule. The object responsible
for creating. initializing. and destroying a ProcessModule is responsible for extracting the

XML details required for initializing the ProcessModule.

The ownership concept is mirrored in the XML structure. If an ExecutionModule has sole
access to a ProcessModule. then that ExecutionModule is responsible for initialization of
the ProcessModule. Thus the ExecutionModule node would appear above an owned
ProcessModule node in the XML structure. If in the future other ExecutionModules need
the encapsulated ProcessModule, either through an external reduced interface or as a full-
featured object. the initialization phase will be moved from the ExecutionModule. where

it currently resides. up to the Simulation initialization method (see Figure 3-2). This goal
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is achieved by moving the relevant section of the XML DTD file into the appropriate

place thus reorganizing the XML structure.

All ExecutionModules and ProcessModules have a unigue identifier. They all must
implement the [lUnknown interface to enable this requirement. The [Unknown interface
provides the services of ID tracking and interface management. The author has labeled
this design the *T-COM ' (Tagged Component Object Model). The XML DTD
specification file guarantees the unique identifier property. This guarantee played a big

role in the final design (as will be discussed).
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Figure 3-1: StMSPUDII framework basics using the T-COM

SIMSPUDII is an assembly of execution modules and process modules. All interaction is done via collections
of methods grouped by interfuce definitions. The IUnknown interface manages module ownership.

An example of this concept is the ObstructionProcessor, which is a ProcessModule. All
ExecutionModules require its services. The Simulation creates, initializes, and destroys

the ObstructionProcessor. Alternatively, the ZBLCalculator is a ProcessModule that is
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only needed by Thermspud|l. Thus Thermspud! creates. initializes, and destroys the

ZBLCalculator. All ProcessModules can be referenced through their unique identifier.

Looking at Figure 3-1. we see the basics of the two module classifications discussed so
far. Note in the Figure that all objects. as mentioned. implement the IUnknown interface.
The Simulation object collects a mapping of all IUnknown objects that it has ownership
responsibility for. This mapping is used for memory management and interface
referencing. The Simulation *owns" all ExecutionModules and any "global®
ProcessModules. The ExecutionModules own *private’ ProcessModules. which. similar
to the Simulation. are bound to the ExecutionModule through the I[Unknown interface

and used with a series of one or more behavioral interfaces (Interface 2 in the diagram).

Note in the diagram that the Simulation requires an interface (Interface 1 in the diagram)
in order to function properly. This interface is attached during initialization. All dashed
links in the diagram are set up via the XML file and the unique id references. All solid

links refer to “ownership’ of the IUnknown interface.
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Figure 3-2: Module initialization using XML
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This ﬁgure maps a detailed view of the sequence of events that occur during initialization of an
ExecutionModule. The ExecutionModule owned ProcessModules are created using the XML specified
parameter lists (see XML discussion on page 34)
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The true power of the implemented design lies in the combination of object oriented
programming and XML. As mentioned, a framework is an embodiment of a problem
domain set of applications. By shifting the scope of a problem-specific framework. the
end user can create different applications. Typically. one assembles a set of objects and
libraries together to create an application that covers a subset of the problem domain.
Using XML and the aforementioned T-COM. one can fully specify an application within
the framework developed for this project at run time. One builds an application by
specifying in the XML file the modules to be created and the interaction needs between
the modules. The Simulation application is built at run time without the need for
recompilation. Only those modules that are specified in the XML file are loaded into
memory. Thus a user can build a problem-specific application just by customizing the
XML file. Module interactions/dependencies are specified through the unique identifier

assigned to each ExecutionModule and ProcessModule.

For example. Thermspud| currently needs particle sources to generate particles. A typical
source is a Simulation-owned particle container. In the XML file. each Simulation-owned
particle container would have a unique id. In the XML file. particle source nodes are
added to the Thermspud 1 node. Each added particle source node would contain an
IDREF (a reference in XML to a declared unique ID) that will indicate to Thermspud1’s
DOM_Document_Processor that the Simulation object is the location of the specified

particle container.
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The next two examples use generic names for demonstration purposes only. Assume an

interface is a collection of related methods that the underlying object guarantees to have

implemented.

Figure 3-3 depicts a more detailed example of the framework design principles. This
framework example has 2 ExecutionModules and several ProcessModules. This example
depicts a typical runtime configured application using the siMspUDII framework. Note that
the Simulation requires Interfaces 5 and 6. One can assume that these interfaces provide
some specific services to the Simulation object. These interfaces are implemented
uniquely (different implementations of the same services) by two independent versions of
ProcessModulel (1A and 1B). The application builder must choose between the two
interfaces for the current run of the application. The Simulation can have multiple
versions of all ProcessModules; the only requirement is that each version has its own

unique runtime identifier (ID): this is guaranteed by the DTD.

No ExecutionModule can access a ProcessModule "owned" by another ExecutionModule.
ExectionModulel cannot access any interface on ExecutionModule2 owned
ProcessModuled (see Figure 3-3). Thus an ExecutionModule has only two sources of
interface implementations: the ExecutionModule’s ProcessModules or the Simulation's
ProcessModules. This design was adhered to in an attempt to keep the true tree-like

structure of the XML file mirrored in the application.
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Note also in Figure 3-3 that there is no aggregation (association through instantiation).
All objects are connected via interfaces. This keeps coupling very loose and relationships
can be determined at runtime. Due to this feature. ID tracking is important. The module
(ExecutionModule or Simulation) that has the [Unknown interface of a ProcessModule is

responsible for removing the ProcessModule from memory when the application is

complete.
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Figure 3-3: XML specified application 1 using the T-COM

In this example, two ExecutionModules have their interface requirements met by internally owned
ProcessModules, as well as Simulation owned ProcessModules. The Simulation also requires specific
ProcessModule provided interfaces.



Look in Figure 3-4; we see a new application constructed. This time the Simulation
object is satistying its interface needs with ProcessModule1A. Thus ProcessModulel B
was not created. With the XML file. the ProcessModules created are those that are
specified in the XML file. If a module is not needed. it is not created. Again, all dashed
links in Figure 3-3 and Figure 3-4 are created using IDREFs in the XML file. The
application is thus dynamically created each time it is run. The framework embodies all

developed applications. but it only creates those specified.

Finally. any objects that are shared anonymously as non-singleton (more than one
occurrence in memory) objects by the ExecutionModules are classified as low level
objects or utility objects. This category consists of Particles. Vectors. Points. etc. All
ExecutionModules. ProcessModules. and the Simulation use these objects anonymously
(no id). Many of these objects are created. destroyed. passed from module to module. etc.
Quite often the role of these objects is to contain messages that are passed between

ExecutionModules.

This design has kept circular dependencies (file *a’ depends on file *b’. and file *b’
depends on file "a’) to a minimum and helped keep the project file organization under

control.
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Figure 3-4: XML specified application 2 using the T-COM

This example demonstrates that the two ExecutionModules and the Simulation module have all of their

interface needs satisfied without the need of ProcessModule I B of Figure 3-3. Thus ProcessModulelB was

not created for this application.
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Figure 3-5: Basic application using the T-COM
This diagram depicts a simple application using the T-COM. Thermspud|l is the only ExecutionModule.



3.2 The SIMPUDII Process

The Simulation object provides the service of IO (input-output) for all
ExecutionModules. The Simulation only requires a valid XML file and a MessageRouter
object (see page 55). The initial design has no user interaction during runtime. It is
assumed that the user will specify the runtime parameters. the simulation will run. and the
results will be output. Extending the simulation from this batch-type environment to one

that has more interaction would not require a great deal of work.

From a very high level view. the typical Simulation phases of execution are the
following:

I Simulation Construction

2 Simulation Initialization

3 Simulation Execution

4 Simulation Output

W

(optional) Simulation Visualization

6 Simulation Destruction

Initialization Phases

The initialization phase is important. The order and manner in which all
ExecutionModules and ProcessModules are constructed and initialized need to be
addressed. The initialization had to be designed in a manner, which, if followed. would

enable future extensibility and reduce confusion over module responsibilities.
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The initialization phases appear below:

1.Simulation Object Initialization: In this phase the Simulation object creates the
DOM_Document from the XML file. The parameters for the Simulation and the
Simulation owned ProcessModules are extracted from the DOM_Document.
Typically. ProcessModules require specific parameters before they can be created.
These parameters are stored in the Simulation object.

Contract: DOM_Document exists. Simulation framework and message routing facilities

are loaded into memory.

2.Simulation-owned ProcessModule and ExecutionModule Creation: In this phase the
Simulation creates all of its ProcessModules and the ExecutionModules that are
specified in the XML file. This phase is completely dynamic. Only those
ProcessModules and ExecutionModules specified in the XML file are created and
added to the framework. Each ProcessModule and ExecutionModule has a unique
identifier. No initialization occurs at this phase; only module creation is undertaken
(Figure 2-6).

Contract: All Simulation-owned ProcessModules are created: all ExecutionModules are

created. All Simulation-owned interface classification is complete. All created modules

have a unique identifier.

3.Simulation ProcessModule Initialization: In this phase, all simulation owned

ProcessModules are initialized. Either the setting of the stored parameters or the
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passing of the DOM_Document to the ProcessModule’s initialization method
completes this task (Figure 3-2).
Contract: All ProcessModules are ready to be used. The modules’ services can be

accessed after this phase.

4.ExecutionModule Initialization: In this phase. all ExecutionModules are initialized.
Calling the ExecutionModules initialize method completes this phase. Each
ExecutionModule extracts the pertinent parameters from the DOM_Document and
creates the ProcessModules that are subordinate to the ExecutionModule. In this phase
each ExecutionModule also initializes its own ProcessModules by passing the
DOM_Document. During this phase the ExecutionModules connect with the specified
services provided by the Simulation. All interactions are specified in the XML file via
the module unique identifiers. No connections between modules are established unless
the connection is specified in the XML file. All relationships and links are created at
run time.

Contract: All ExecutionModules are ready to have Executef() called. No further

initialization is undertaken by any module after this point. All module interconnects are

created.

5.Input/Output (10) subsystem Initialization: In this final initialization phase. the
ExecutionModule IO subsystem is initialized. This is engaged last in an attempt to
simplify the responsibilities of the ExecutionModules. This removes the requirement

that the ExecutionModule must have 10 systems initialized.
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Contract: Entire product is ready to run. All initialization is complete.

It during any of the phases an exception is thrown, the initialization stops. and the
program exits. If the contract has been fulfilled at the end of an initialization phase, the

next phase is attempted.

Execution Phase

Every ExecutionModule has an execution phase. The setting of the appropriate XML flag
can disable this phase on a per module basis. During execution a queue of
ExecutionModule identifiers is built. This queue defines the order and number of times
each module is executed. Each module is expected to execute until some statistically
significant event occurs. This will signal the end of a module's execution phase at which

time the next module in the queue will be executed.

The Output Phase

This phase calls each ExecutionModule's output routine. The Simulation will also call
Simulation owned ProcessModule's output routines. Typically. any ProcessModule that
needs to output data will implement the ICollectData interface. All Simulation-owned
ProcessModules that collect data are appended to an ICollectData data structure that is

processed during the output phase.
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The Visualization Phase
Any module that has the means to visualize collected data will be called upon to process
this visual data. These modules implement the [Visualize interface. Currently. only

systems with gnuplot®” will use this feature.
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4. Problem Domain: Implementation of Design

This section will detail the implementation of the software package and the software
support systems. SIMSPUDII is essentially a software package that was designed to

simulate the sputter deposition process. This chapter will outline the problem domain
specifics of the framework presented thus far and some of the design decisions during
implementation. Only ExecutionModule objects. ProcessModules, and low level objects
that have been designed and implemented by the author will be discussed in this section.
The reader should have a good understanding not only of what the siMspUDII development
framework provides for the problem domain. but also of how to use the facilities after
reading this section. A discussion of the Simulation object and its facilities will be
followed by a discussion of the ObstructionProcessor. F inally. the design and

implementation of Thermspud1 will be explained.

Throughout these discussions. certain naming conventions will be used. Capitalized
names refer to C++ classes. A commonly used naming convention in C++ is that each
word in a name is capitalized. with no spaces or underscores. For example, the
ObstructionProcessor is a class that provides the services of obstruction (physical

chamber objects) processing (containing. maintaining. visualizing. etc).
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4.1 Simulation

The Sim

ulation object binds all aspects of the framework together. This object is the

container that provides global interaction subsystems between ExecutionModules. as well

as contai

ns all globally accessible ProcessModules.

® Ssim
o

® Sim

® Sim

| Elemem
© Simulation |

uiationRuntime
ExecutionQueue .
ulationPhysicalPropernies
GndDimensions
VolumePartcleManager
VolumeParticleManager
SheathEntry

® ParticlePropertyDataBase

SpeciesDBENtry Argon
SpeciesDBENry Aluminum
utationProcessModules
DensinGrid

EFieldCalculator

BFteldCalculator

Pltaschem

TargetManager

Plaspua2

Thermspud?2

©- OpstructionProcessor
© Thermspudl
©- Plaspudl

Figure 4-1: Simulation XML tree

This is a view of the simulation nodes as they appear in an XML editor.

The first

issue addressed in the framework design was the concept of data I0. When the

author examined the architecture of SIMBAD/SIMSPUD these things were noted:

1.

o

Many files are required as input (histograms. physical structure specifications
etc.)

Many parameters are required for simulation initialization

The product will need to provide progress information. during runtime. to the
user

A large amount of data is generated by the program
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It was imperative to devise a system that allowed the user to create the specifications of
both the simulation being run and the output data storage location. The specifications of

all parameters are handled by the previously discussed XML solution.

MessageRouter
The study of SIMSPUD/SIMBAD revealed some abstraction for output messaging and file
movement. A more robust system would be beneficial if the framework being designed

were to have a longer lifecycle.

Some requirements of the message routing module were defined:

®  Must have the ability to direct formatted input to specific. runtime-defined locations.
Initially the framework would be a console application that used "standard out” to
communicate with the end user. This, of course. would eventually evolve into some type
of graphical interface. The design would have to be such that no clients of the module
would need to be modified in order to move the interface to a graphical environment or

from a batch to a runtime framework.

®  Must have the ability to open, close. and verify all directional lines of output

Instead of forcing the clients to open files. check for success. etc., this module would
need to encapsulate all file input-output (I0) completely. This would reduce the need for
future developers to be concerned with the platform the simulation ran on (file

permissions is an issue in Linux, but not Win9x). This encapsulation also would ensure
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that the framework would not be susceptible to 'lazy’ programmers who extend the

framework at a later time.

®  Must have the ability to direct single data streams to multiple, pre-runtime defined,
locations

The location of the input and output files is a pre-runtime defined parameter. thus hard

coding file was not a solution. It was necessary to abstract all file IO and have the routing

defined by the user (information going to standard out. or to a unique output file).

o Must be able to provide a mechanism that was useable and transparent so future
developers would not feel hindered by the use of the system

No matter how clever the module’s design or its features. if the task of utilizing this

feature set is not completely intuitive. the system will be ignored. The solution must

abstract all message passing so that the encapsulation provides natural and easy to use

interfaces for the developer.
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Figure 4-2: Message routing

The MessageRouter manages communications from all modules. The routing is configured at runtime.
The solution devised addressed the issues mentioned. The MessageRouter module is one
of the most ambitious module designs in the project. It has the ability to route single data
streams into multiple file streams. all runtime defined. It allows the user to create files by
only passing a file name. and to be guaranteed that the file will be created in the pre-
runtime (or runtime if the system evolves to an interactive system) default directory. If
files cannot be opened. streams are routed to standard error. With a single flag. all output

can be echoed to standard out (a feature effective for debugging).

The MessageRouter is essentially a Standard Template Library (STL) map of string-
keyed ostream pointers. combined with a custom designed ostream object that routes
messages (STL string) to multiple output streams. The MessageRouter associates streams
to identifiers (‘'stream tags'). Sets of identifiers can be created and associated with a set
identifier ('route tag') so that a single message can be sent to a group of previously

created streams.
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Text
Message

Figure 4-3: Routed streams

A text message is directed, simultaneously. to several run-time configured streams.

The MessageRouter has two preset stream tags that represent standard out and standard
error:

MessageRouter::COUT

MessageRouter::CERR
Any other created streams will have the default path appended to the stream name (file
name) before opening the stream. This feature ensures that any client (developer) needs
only to create a file by using a single path independent name. and thus the default (and
runtime modifiable) path is abstracted. This solves the post-runtime output data
organization issue as well. All output is directed to the specific location defined by the
user (usually as an XML parameter). Log data can be collected in a specific file and

output to the screen to provide run time user feedback.

By default. all created stream identifiers (stream tags/filenames) also become set
identifiers. Thus a set with the one stream is always created. Other stream tags can be

appended to this set to create multiple route streams.
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Interfaces

As mentioned earlier. Interfaces were used to reduce the software complexity and
strengthen the notion of object ownership and access privileges. Aggregation was
avoided wherever possible. All inter-module communication is achieved through thin
(concise) interfaces. Martin refers to this design concept as the Dependency Inversion
Principle™. He states that every dependency should target an interface rather than an
object. There should be no dependencies on concrete classes. only on interfaces or
abstract base classes. This provides what he calls *hinge points’ that create locations
where the architecture can “bend” or be extended. As mentioned. these hinge points can
be bent during run time using the XML/T-COM specification (see XML discussion

earlier).

High isvel
Policy
) v
Abstract Abetract Abetract
Interface interface interface

Figure 4-4: Dependency structure of an Object Oriented Framework®

This diagram depicts the concept of abstraction through interfaces. Implementing the required interfaces
creates the detailed and replaceable implementation of a framework.

ParticlePropertyDatabase

One object common to all modules, and the basis for all aspects of simulation data
generation and collection. is the Particle object. The Particle object and the

ParticlePropertyDatabase (PPD) handle particle representation within the simulation. The
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PPD is a singleton object that maintains particle attributes that are common to all

particles.

® Simulation
@ SimulationRuntime
© SimulationPhysicalPraperties

@ ParticlePropertyDataBase !
SpeciesDBENtry Argon
SpeciesDBEntry Aluminum

© ObstructionProcessor

© Thermspud1l

@ Plaspudl

Figure 4-5: PPD XML Node
One can add multiple particle species to the PPD node of the YML Jile.

The PPD was implemented by extending a Standard Template Library (STL) vector.
Utilizing the STL vector allows the database fast associative lookups. as well as low

penalties for end insertion.

A static pointer to the PPD is provided to the Particle object during initialization. Thus all
Particles have direct access to the per species properties. All attributes of an argon
particle can be accessed directly from the Particle without having to maintain a separate
pointer to the PPD. This reduces the total amount of information a Particle must contain
(typically millions of Particle instantiations per phase of execution), yet full access to all

per species data is maintained in all areas of the simulation.

ParticleBuckets

ParticleBuckets are containers that hold and maintain Particles. Again, a STL vector was

extended to give the vector's desirable features to this container. The ParticleBucket class
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implements the [SourceParticles interface to abstract the principle of particle generation.

ParticleBuckets can be added and scaled.

Grids

One key goal of this project was to provide the ability to simulate magnetron-sputtering
processes using a discretized chamber volume. Thus a discussion of the Grids that are
part of this project is relevant. The Grid class. designed and implemented by Dr. Loran
Friedrich. Dr. Steven K. Dew. and the author of this thesis, provides the simulation with a
data structure that can. not only hold unique data that describes a cell based view of the
simulation. but also refine its structure to more accurately describe a physical attribute of
the simulation. For any given cell. if the client determines that the change in value from
one cell to the next is too extreme. the cell can be divided to allow for further refinement
of the physical property description. Each cell can be divided into 8 smaller cells. and the
data is distributed amongst the newly created cells. With interpolation routines. the inter-
cell transition can be refined. The only limit to the cell division process is the host

system’s amount of memory.

These adaptable Grids give the framework the ability to describe properties such as a
spatially varying magnetic field more efficiently. Large cells can describe places where
the magnetic field is slowly varying. Where magnetic field lines are closer together. the
grid can be refined. This reduces the total memory and computation load on the

simulation.
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The Grid object was designed as a C++ template to allow flexibility in the data structures
appearing in each cell. If a developer implements the IGridData interface. the ability to

output postscript slices is made available.

Currently the framework has three grids in use:
¢ Density grid (maintains density and temperature information)
¢ BField grid (represents the magnetic field)
¢ EField grid (represents the electric field)
Each of these three grids can be accessed through the Simulation object. A fourth grid is

used by the ObstructionProcessor (discussed later) to optimize the hit calculation process.

4.2 ObstructionProcessor

The Obstruction Processor module represents all physical obstructions within the
simulation. The set of physical obstructions contains all objects that will not change
position within the chamber as a direct result of particle bombardment. Typical
obstructions are targets. substrates. chamber walls, etc. This module is responsible for
maintaining a representation of all properties. static or dynamic, of the internal
obstructions throughout the simulation. All processes involved in updating the state of an
obstruction. collecting location specific statistics upon an obstruction, obstruction

modification. obstruction removal. obstruction adding. physical modification of an



obstruction. and obstruction movement will be contained within this module. This

module will give obstruction-specific data to any module upon demand.

The bulk of the work done on the simulation product so far has been focused on the

Obstruction Processor. Some key features of this module include the following:

¢ Full representation and specification of complex 3-D structures
* Visualization of internal structures using gnuplot™ output
e Detailed per surface collection facilities:
o Histogram generation
o User-specified collection regions
o Default data collection facilities
* Particle Generation using collected histogram data or run-time histogram
specification
® Particle-Surface stopping using grid optimization for efficiency

e Extensibility

The ObstructionProcessor module is classified as a ProcessModule (mentioned earlier).
All modules in the simulation environment have access to the ObstructionProcessor
module. Thus the Simulation object is responsible for constructing the
ObstructionProcessor. The majority of all simulation-physical structure interactions is
conducted through some interface with this module. This module is responsible for

collecting and outputting data collected during process-physical structure interactions.
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During construction. the ObstructionProcessor requires a pointer to the Simulation

environment.

For initialization. this module has its own DOM_Document processor. Using the XML

file. the user can quickly create unique physical parameters.

® Simulation
© SimulationRuntime
© simutationPhysicalProperties
©- ParticlePropertyDataBase
@ ObstructionProcessor

©- CanObstruction Chamber
® CvinderObstruction Target
® Onentatian larget onientation
Transiation
Rotation
® PlanarSurtace {top cap
statistics
ParticleGenerator e
© PlanarSurface bottom cap
® CunedSurface outer_shell
@ C\viinderObstruction substrate
© Thermspud 1
@ Plaspudl

Figure 4-6: ObstructionProcessor XML node

The ObstructionProcessor is fully configurable via the XML Sile. Manipulating sub nodes of the
ObstructionProcessor in the XML file configures CollectionRegions, geometry, particle generation, and
orientation.

The details of the Obstruction Processor will be discussed from a bottom up approach.
The discussion will focus on the small elements then examine the elements that can be

combined to represent the physical obstructions in the simulation.

Orientation

The orientation object abstracts all positional data for the Obstruction Processor. The

orientation object maintains all translation and rotational data. The orientation object has



a sense of 'local’ and 'global’ coordinate frames. The origin location of the orientatijon is
considered 'local’ coordinate frame and where it currently resides is considered the
‘'global’ coordinate frame. The orientation can move particles, points. and vectors to and
from local and global coordinate frames. Particles are tracked in the * global’ coordinate
frame. whereas data is collected in the ‘local’ coordinate frame. With this method of
position abstraction. any object can have a sense of position in the simulation. Orientation

is used for surfaces. obstructions. and collection regions.

CollectionRegion

The CollectionRegion object is a user-specified masked 2-D histogram. The shape of the
mask is determined by the collection region's subclass. The collection region’s origin is
the position of the Histograms (0.0). relative to the external coordinate frame. The
Collection region has two orientations. one for the physical orientation of the region and
one for the orientation of the histogram with respect to the collection region's hit mask.
Thus it is possible to have collection regions that have uniquely situated masks and

independently positioned histograms within the mask.
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CollectionRegion 1

CollecionRegion 2
[ ]

Figure 4-7: CollectionRegio

CollectionRegion | is a rotated and translated region with a synced coordinate frame. CollectionRegion 2
is a rotated and translated region with an independent coordinate frame.

Currently there are circular and rectangular hit masks. The user can specify positional

data or directional data to be collected.
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Figure 4-8: LinearProfile XML node

A LinearProfile is specified in XML by two points. It collects data along the specified line.
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A special form of collection region known as a LinearProfile can be used to collect data
along a line. A LinearProfile is a Histogram that collects along a line specified by two

endpoints and a width.

Statistics

Statistics is a grouping of statistical data that can be collected as one or two-dimensional
Histograms or CollectionRegions. All statistical data collection is conducted through a
Statistics object. This objects maintains several default histograms and collection
parameters. All data collected and maintained by the statistics module are related to
particle interaction in some way. The data collected by a Statistics object by default is as

follows:

® Particle hit data (as a function of position)
¢ Directional particle hit data

¢ Energy particle hit data

All data are collected per species.

Any number of Collection regions or LinearProfiles can be attached to a Statistics object.

This is usually done in the XML file on a per-Surface basis.
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Surface:

The basic building block of any structure is the Surface. A Surface has an Orientation
object (as mentioned) to keep track of its position and to transform all incoming particles
to and from a local coordinate frame. All Surfaces begin life in a specific orientation in
the global coordinate frame. then are rotated and translated into position to create
Obstructions. This approach was selected to keep the data collection manageable. Using
this design. the user can add CollectionRegions at arbitrary positions on a surface and
determine the reference frame with which the results are aligned. All Surface objects thus
have a local 'origin’ from which all data collection is referenced. The user must consult
the documentation to know the specific surface origin and rotation in relation to a specific

Obstruction for correct data interpretation (see discussion on page 73).

Each Surface has a two Statistics objects. The first allows collection of all hit-specific
data. For an entire simulation. the first Statistics object collects data of all particles that
hit a surface. All user defined CollectionRegion objects are maintained by this Statistics
object.

The second Statistics object is used for particle generation. One of the features of a
surface is its ability to generate particles (see discussion on page 70). This second
Statistics object collects data on all particles that hit a surface with enough energy to
create a sputter event. This Statistics object is referred to as the genStatistics object. This

object maintains no collection regions at this time.
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The Simulation framework is designed to use a discretized chamber volume. There is
need for Cell-based data to be extracted from a Surface. Currently. all Surface objects

have the ability to calculate the area of the Surface bounded by a Cell.

Each Surface also has the ability to stop particles and has gnuplot visualization routines.

The visualization routines give the user important data as to how the Surfaces are aligned

in 3-D space.

Surfaces are divided into two basic categories: planar surfaces and curved surfaces.

Planar Surfaces

The planar surface group is further sub-classed into basic shapes:

® Multilateral (squares. rectangles. convex polygons)
e Circles and rings

e Ellipses and elliptical rings

It is important to note that all planar surfaces can only be hit from one side. It is assumed
that each surface will be a part of a set of surfaces that will create an enclosed object,
with the outer face having the ability to stop particles and collect data. This design
decision was an optimization technique employed to reduce the total number of floating

point calculations during hit processing.
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Curved Surfaces
The only curved surface is the cylinder shell. This is a basic cylinder surface. As an
artifact of the impact calculations. the cylinder shell surface is the only surface that can

be hit from either the inside or the outside.

ParticleGenerator

Instead of storing millions of sputtered particles during a specific phase of a simulation, a
statistical representation of the sputtered particles is collected to reduce the memory load
and allow for independent module runs using previously collected data. A
ParticleGenerator is a ProcessModule object that can generate particles using previously
generated histograms. This object is attached to a specific Surface. thus creating a sputter
target. A ParticleGenerator is responsible for generating only one specific species type.
Thus if a multiple species target is to be constructed. several ParticleGenerators are

required.

The ParticleGenerator has an XML node that allows the user to specify the attributes of
each ParticleGenerator. Currently. the ObstructionProcessor handles the

ParticleGenerator's XML data extraction.
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Figure 4-9: ParticleGenerator XML node

A target is merelv a surface with one or more ParticleGenerators. The required distributions are specified
under the ParticleGenerator node of the XML Jile. This node can be added to any PlanarSurface.

For each particle generated. the ParticleGenerator generates the subsequent information:
¢ Position
¢ Trajectory
¢ Energy

The specified attributes are generated for a spectfic Particle species.

Position generation is calculated using a random number generator that is capable of
generating x. y coordinates by utilizing a two-dimensional (x. y. probability) Histogram.
The random number generator was designed and implemented by Dr. Steven Dew and his
associates and thus will not be discussed in this document. The Histogram can either be
passed as a file parameter during initialization or can be generated by collecting sputtered
particles through other simulation phases. This Histogram is usually an erosion profile

that describes a specific target.
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A ParticleGenerator is tightly coupled to a single Surface object. The ParticleGenerator
uses a pointer to the host Surface to transform particles into the global coordinate frame.
Although this can be viewed as poor software engineering design, the decision was made

to reduce total communications. and thus tie the ParticleGenerator to a specific surface.

The trajectory is generated in one of two ways. First. a 2-D distribution can be supplied
(via a file or a Histogram created during a separate phase of execution) that describes the
angular distribution. With a random number generator. the in-plane angle (beta) and
azimuth angle (phi) are generated in the local coordinate frame. These angles are later

transformed into the global (lab) coordinate frame.

Alternatively a cosine distribution can be used. This was one of the models employed by
SIMSPUD for emitting particles. The user can select a particular model by modifying the

appropriate node in the XML file.

The energy at which the particle leaves the Surface is determined by a random number
generated using a 1D Histogram that describes the probability of a specific energy
occurring. This Histogram is either created from a user supplied file or a Histogram

generated during a previous execution phase.

The ParticleGenerator does not maintain physical surface geometry (size, extents. etc); it
assumes that all histograms used to generate particles have this data represented

correctly.



Obstructions

Figure 4-10: Chamber wire-frame representation

This depicts a chamber setup with a target on the top and a substrate on the bottom.

An Obstruction object is essentially a collection of surfaces rotated into the global
coordinate frame. As was mentioned, each Surface begins in a local coordinate frame and
then is rotated and translated into the global coordinate frame. To reduce the complexity
of data collection specification, basic Obstruction objects that depict various geometric

shapes are provided.

The basic shapes that are provided are the following:

e Cylinder

e Can

e Hollow Pipe

e Cube

e Box
It is important to note that due to the inaccuracy of PI approximations, all obstructions
may NOT be sealed units. There will be small gaps at the boundaries of the surfaces. This

can be fixed at a later time; it was a design decision to keep the orientation consistent
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with the surface placement. Surface 'fuzziness' has been employed to reduce the margin
of error and the possibility of particles escaping. The only exception is the Can
Obstruction. This exception ensured that no particles would leave a chamber object. It
will not reduce overall performance if one bounds a non-cylindrically shaped chamber

with a Can Obstruction.

Each Obstruction is a container of Surface objects. The specific ordering of the shapes is
important. as is the rotations and translations to get the surface into 3-D space. The end
user needs to be aware of these details in order to make sense of the data collected during
execution. as well as for meaningful orientation of CollectionRegion objects on specific
Surfaces. The details of each Obstruction's Surface ordering and orientation follow. For

the most part. the selected ordering for Obstruction creation is somewhat arbitrary.
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CylinderObstruction

16

I.axis T T ¥

14

T

10

o
AWM O N
T

Figure 4-11: Cylinder Obstruction wire-frame representation

This depicts a side and front view of a cylinder with a tilted cap.

The CylinderObstruction is the basic Cylinder object. It can be hit from the outside only.
it has an EllipticalPlanarSurface for a top cap (allows rotation and tilting), one
CylinderShellCurvedSurface, and a CircularPlanarSurface bottom. If a cap must be
rotated and tilted, this must occur on the top cap. The top cap can only be tilted so that it

does NOT touch the bottom cap.

The Origin is at the center of the base cap; the normal points up towards the top cap from
the origin. Surfaces are constructed at the origin in this order:

0: top cap,

1: cylinder shell.

2: bottom cap

75



The top cap is built on the origin and translated into place. The cylinder shell is not
translated or rotated. The bottom cap is built at the origin and then rotated PI around the

X-axis.

CanObstruction

The CanObstruction is the basic canister obstruction. This is one of the few obstructions
built to be hit from the INSIDE only. A common use for this obstruction is the chamber
obstruction. The top cap is pointing down; the bottom cap is facing up. The ordering of
the surfaces is identical to the Cylinder object. Rotation of the top cap to put it into place

is achieved by a rotation about the x-axis. The top cap cannot be tilted or rotated.

PipeObstruction
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Figure 4-12: PipeObstruction wire-frame representation

The PipeObstruction is another of the basic building blocs available.

The PipeObstruction is the basic hollow pipe object. It can be hit from the outside only. It

has a RingEllipticalPlanarSurface for a top cap (allows rotation and tilting), two
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CylinderSheliCurvedSurfaces (inner and outer), and a RingCircularPlanarSurface bottom.
If a cap must be rotated (an operation that is valid for a PipeObstruction), the top cap only

is able to be rotated and only around the x-axis.

The Origin is at the center of the base cap. the normal is pointing up towards the top cap
from the origin. This class adds a second radius to the CylinderObstruction base class.
This new radius is the inner radius of the obstruction.

0: top cap.

1: outer cylinder shell.

2: bottom cap

3: inner cylinder shell.
The Surface construction order and rotations are the same as the other cylinder based

objects discussed earlier.

CubeObstruction

The cube obstruction is the basic cube. All surfaces are constructed at the origin. in the
positive xy quadrant (<000>...<0L0>). and then rotated and translated into their final

placement.

The surface ordering is as follows:
0: xy(+Length in z direction)
l: -xy

2: yz(+Length in x direction)
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3:-yz
4: xz(+Length in x direction)
5: -xz

At construction. if the cube is not rotated, the origin of each surface is defined as

follows:
0: (0.0,Length),
1: (0. Length,0),
2: (Length,0,0),
3: (0. Length.0).
4: (Length, Length.0).
5: (0.0.0).
BoxObstruction
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Figure 4-13: Box Obstruction wire-frame representation
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The BoxObstruction is the basic box. All surfaces are constructed at the origin. in the
positive xy quadrant (<000>...<0WO0>), and then rotated and translated into their final

placement.

The surface order is
0: xy (+Length in z direction)
l: -xy
2: yz (+Length in x direction)
3:-yz
4: xz (+Length in y direction)

J: =Xz

At construction. if the box is not rotated, the origin of each surface is defined as follows:

0: (0.0.H).
1: (0.W.0).
2: (L.0.0).
3:(0.W.0),
4. (L.W.0).

5:(0.0.0).

4.3 Thermspud|

This module is responsible for the transport of neutral species particles within the

chamber. This module encompasses a more sophisticated version of SIMspUD.
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Thermspud] is a three-dimensional Monte Carlo model that follows the life cycle of
energetic neutral species particles generated from a set of particle sources to a set of
particle sinks. Particle sources can be any particle-generating surface (target) or particle
bucket that has collected particles energized through other processes in the simulation.
Particle sinks are typically any surface that obstructs the path of a particle. Another
particle sink is the thermalization module (Thermspud2). Any particle that falls below an
externally specified energy threshold is deposited into the thermalization module. Particle
processing progresses until all externally attached completion modules (discussed later in

this section) have reached statistical convergence.

Although Thermspud1 requires communication and information from Simulation-owned
ProcessModules and ExecutionModules. Thermspudl was designed to have no direct
dependence on any external module. All connections are made through interfaces via
externally instantiated 'set’ methods. This design aids in extensibility of the Thermspud1
module. For example. in an attempt to parallelize Thermspud1's algorithm. one could
abstract dependencies through interfaces and the externally instantiated 'set’ methods.
Thus all external modules could be replaced with proxy modules. For example. instead of
connecting directly to Thermspud?2 for thermal data collection, the Simulation. during
initialization. sets a pointer to one of Thermspud?2's interfaces: [Collect ThermalData.
Thus Thermspud1 will not need to 'know-a' Thermspud2, but only to 'know-a’

[CollectThermalData.
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Thermspud] follows the classic siMspup model in most respects. Key differences
between SiMSPUD and Thermspud] are:

® A more physically based collision cross-section model

e A soft potential scattering model

e Multiple gas species support

® An improved apparatus shadowing model

¢ Inhomogeneous gas density and temperature
SiMSPUD calculates the free path of a particle in motion using a Poisson distribution based
on the mean free path between collisions®. sIMSPUD uses a binary hard sphere model that
ignores long-range particle interactions. Thermspud] uses the Ziegler-Biersack-
Littermark (ZBL) universal potential and the so-called Magic Formula® to determine the
collision behavior and the mean free path of a particle in motion (see later discussion).
SIMSPUD calculates neutral particle - gas particle collisions assuming that the entire gas
volume is homogeneous with respect to gas density and a single gas species population.
Thermspud|1 uses a discretized chamber volume to represent inhomogeneous densities of
multiple species varying on a cell-by-cell basis. Multi-gas species densities are contained
in an adaptable grid that can evolve to represent important structural features at higher

resolution.

SIMSPUD does not take into consideration either gas heating or rarefaction and has limited
support of shadowing by physical structures in the chamber. Although Thermspud| does
not directly calculate gas heating, it deposits particle energy throughout the volume. This

energy data can be used by other modules (Thermspud2) to dynamically evolve the gas
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properties. By using the ObstructionProcessor, Thermspud| accounts for shadowing
effects of the chamber apparatus. Any surface that obstructs the path of an in-transit
particle will stop the particle and collect the spatial. angular. and energy data due to the

impact.

The basic algorithm starts with a particle that is generated by one of the particle sources
(typically a target). As soon as the particle is generated (see discussion on
ParticleGenerators). its length of trajectory. or free path. is calculated. The particle
follows a straight-line trajectory until one of the following contingencies occurs:

1. The particle collides with another particle (typically a gas species)

9

The particle collides with a surface

The particle energy. due to collisions with gas species and interaction with the

L)

simulation environment. falls below a predetermined threshold.

The details of each step will be discussed later in this section.
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Figure 4-14: Thermspud] algorithm

Thermspud| uses a 3-D Monte Carlo algorithm to track neutral particle movements within a discretized
chamber volume. Each 3-D cell represents a homogeneous gas density Sor the cell-contained volume. As a
particle moves from cell to cell, the path length is recalculated. All particles are tracked until they deposit
on a physical structure or fall below an externally set energy threshold and deposit into the chamber
volume. The grid is actually a 3-D grid of much higher resolution than depicted in the Figure. The 2x2 size
is for demonstration purposes only.

@ Simulation
©- SimulationRuntime
©~ SimulationPhysicalProperties
©®- PanticlePropertyDataBase
®- ObstructionProcessor
® Thermspudl
@ 2BLCalculator
ZBLTableProperties
@ ThermlRuntimeDependencies
CompletionModule
TargetManagerRef
ParticleSource
®- Plaspudl

Figure 4-15: Thermspudl XML node

The Thermspud! XML node contains a runtime dependencies sub-node that allows for the user to specify
which simulation modules will provide services. As shown, this configuration has Thermspud| referencing
a CompletionModule, a TargetManager, and only one external ParticleSource
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Particle Sources

Since Thermspud1 begins its execution algorithm by generating a particle. this process
will be discussed first. Thermspud| has been designed to know as little about the particle
sources as possible. During initialization. references to all particle sources are added. one
at a time. to Thermspud1. These sources can be any object that implements the
ISourceParticles interface. Each particle source has a relative weighting that determines
which particle source is more likely to generate a particle. This abstracts the particle
source selection away from Thermspud|1. Thermspud! creates a normalized weighted
map of the particle sources that have a weight greater than zero. The particle source

selection is then made based upon a random number.

During particle generation. the source is checked to see if it is still capable of generating
a particle. If a particle source has a weight of zero. or can no longer generate a particle.
the source is removed from the local data structure and thus will not be called upon to
generate particles. This abstracts the responsibility maintaining the particle source

lifecycle away from Thermspud].

Particle Transport Model

After a particle has been generated. the straight-line distance the particle can travel before
a collision with a gas particle has to be calculated. The distance a particle can travel
before a collision is a function of the gas species densities. SIMSPUD assumes a
homogeneous gas density. Thermspud| assumes a pseudo inhomogeneous gas density

model by assuming a homogeneous gas density and temperature on a per-cell basis,
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which is updated whenever a new cell is entered. The Simulation uses a density grid that

maintains the per-species gas densities.

The distance a particle can travel between collisions is referred to as the free path. The
mean free path is the average distance a particle can travel before a collision occurs. The
free path, intuitively, is related to the population densities of the particles, a measure that
is quantified in gas particle species densities. The free path between collisions. 1. is

randomly generated from a Poisson distribution®.

f.(/?.)=g—e 7 Pm Equation 4-1
* A

where 4, is the mean free path. The mean free path is calculated using the subsequent
information:

1

R —— Equation 4-2
m GasSpecies,

h,o;
i=GasSpecies,
This equation takes into account the local densities. n, of each gas species / and the

energy-dependent collision cross section o (see ZBL discussion) of the particle in the gas

species i.

The particle travel distance is thus calculated and assumed to be valid as long as the

particle remains within the current cell. If it has been determined that the particle is able
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to traverse the entire cell without hitting an obstruction or colliding with another particle,
the free path distance is recalculated using the gas species densities that the new cell
represents. If a neutral species particle enters a new cell that is more densely populated
with gas particles than that of the previous cell, one could surmise that the in-transit
neutral species would not be able to travel the full allotted distance calculated in the
previous cell. Looking at Figure 4-16, we see a reduction in the total calculated path

length once the particle moves into the right hand cell.
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Figure 4-16: Particle path length calculations

A newtral species particle ravels from a low gas density cell | to a high gas density cell 2. The total travel
distance before collision calculated in cell | cannot be achieved in cell 2, so the path length is reduced.

As an optimization technique. each cell also contains a flag that states whether or not an
obstruction is within the cell. This reduces the computationally intensive task of checking

for collisions with surfaces if no surfaces are within the current cell.
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Gas Particle Generation

Once a particle has traveled the computed distance before a collision (free path). the
particle will collide with a gas species. Thus a gas particle must be generated to “take part
in the collision’. The weighted average density data structure extracted from the current

cell is used to determine randomly the appropriate species of the gas particle.

To give the generated gas particle a trajectory. one assumes that the gas particle will have
a uniform probability of any direction being generated. thus the trajectory is generated
randomly. To calculate the energy of the gas species. one assumes that the gas particle
will have a monochromatic speed. Speed is thus calculated using the temperature in the

current cell:

= 2.
Gas speed= /- k% Equation 4-3
pUZARY

Other approaches such as using a maxwellian speed distribution are possible.

ZBLCalculator

Collision cross-section calculation and collision event processing are two services that
Thermspud| requires external modules to provide. The modules that provide these
services are attached using the Thermspud! XML node. If no Simulation-owned
ProcessModules are referenced in Thermspud!'s XML node that provide these services,

Thermspud] defaults to using the ZBLCalculator to provide the collision-cross section
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calculation and collision event processing. The inter-related models that are used by the
ZBLCalculator are based upon the work presented by Ziegler. Biersack and Littermark®.
Ziegler. Biersack and Littermark developed a formula, the ZBL universal potential,
known for its ability to accurately describe interatomic potentials for a very wide range of

atoms (see Figure 4-18):

Vg (r)=

272, ¢ r

=2 c exp(—d, —) Equation 4-4
I3 I

drne,r ‘S a

where: ¢;=0.2817. d,=0.20162.
¢>=0.2802. d>=0.40290.
C3= 0.50986. d3=0.94229.
cy=0.18175. d4=3.19980
and

- 0'88?4 *.529 Equation 4-5
z iz

Taking the classical approach of treating the two-body collision as a central-force field

scattering in the center-of-mass coordinate frame. one can give the scattering angle”

b=rx-2 ]‘ p-dr Equation 4-6
’ 2
\/' Vi _p
E r

where p is the impact parameter which defines whether the collision is head-on or merely

glancing.



The difficulty of using the universal potential directly in this calculation arises from the

lack of an analytic solution to the integral. Ziegler et al present an empirical formula
called the "Magic Formula® that produces acceptable results to the integration of the

universal potential formula®®.

COS(F—)) = m Equation 4-7
2 R +R

where R, is the distance of closest approach defined as the solution of the scattering

equation integrand denominator:
[(ﬁj- + V(r, )J 1=0 Equation 4-8
';) EC
where:

p is the impact parameter.
E. is the center-of-mass energy.

B==
a

Equation 4-9

=
I
SRR

ais the screening length.
A is a correction term

p is the radius of curvature of the two particle trajectories at the point of closest

approach and is calculated from:

E -V(r)
d
;V('b)

p=-2
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A&—B
1+G

A=2-a-¢-B”
G=y/N1+4 -4
a=l+CJJE

ﬂ—C2+JE
_C3+J;

= C,+¢ Equation 4-10
C,+¢

with C; to Cs being fitting coefTicients to the interatomic potential selected:

C,=0.9923
C,=0.01162
C; =0.007122
Cys=9.307

Cs = 14.81

. .. 2,2,¢*
and ¢ is the center-of-mass energy E. divided by “' _e[ .

This Magic Formula's strength is that it can be used to calculate the scattering angle for a
wide range of interacting species with acceptable results. The magic formula provides the

basis for Thermspud| °s scattering model.



The concept of a collision cross section, or effective collision area, captures the
probability density of an in-transit particle colliding with a gas species. The collision
cross section is given by:

c=4-7-r’ Equation 4-11

where 2-r is the distance at which a meaningful interaction occurs between two

particles.
140 v v v v v
“SimspudXsection” ——
“ZBLTable_Aluminum_Argon.1DZBLTable"
120 b 4
Collision 100
cross section L . ]
(Angstrom-) simspud
go } 4
80 \ ZBL 1
40 P \\\ L
\“\\
20 TTTe—— |
0 A 2 2 2 A
0 20 40 60 80 100 120

Energy (eV)

Figure 4-17: ZBL sigma vs. energy

This figure shows the dependence of collision cross-section on energy in the regime of interest to sputtering
according to the ZBL model, in comparison to the experimentally calibrated SIMSPUD model.
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Image removed due to copyright restrictions. The image depicts the
correlation between the magic formula and the integral of the universal
potential formula. (see **)

Figure 4-13 Magic formula fit with integrated universal potential*®

“The scattering of two atoms can be reduced 10 a Sunction of the [reduced] collision energy [ € | and the
impact parameter. The final scattering angle [® ] can be calculated with the integral orbit equation [ ...] A
greatly simplified analytic formula [is] called the Magic Formula for scattering. Shown above with small
circles are the solutions of the complete orbit equation evaluated using the universal screening function
[-.] Also shown as solid lines are the results of fitting the detailed scattering points with the Magic
Formula []" %

The Magic Formula can thus be used to calculate the collision cross-sectional area. If we
define a meaningful interaction between particles as one in which a scattering deflection
greater than 2° results. one can calculate the cross-sectional area by solving the Magic
Formula for this value. By solving this value for all interaction sets at various energies.
one can produce lookup tables of collision cross-section as a function of energy. This
model incorporates the effects of long-range interactions that are ignored by the hard-
sphere model currently employed in siMspuD. In Figure 4-17 one sees the dependence of

the relative cross section on energy.
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Completion Modules

It is assumed that during Thermspud!'s execution phase. other external modules are
collecting data as a side effect of particle interaction with the simulation environment. To
keep the coupling with these modules to a minimum, Thermspud! will continue iterating
until one of these external modules notifies Thermspud| that some completion criteria or
convergence has occurred. This architectural pattern can be referred to as the Observer
design pattern. This feature abstracts the total number and knowledge of the completion

modules away from Thermspud! and thus reduces inter-module coupling.

4.4 Software Support Systems

Regression Testing

In the code tree. each module directory has a tests subdirectory. To provide some manner
of regression testing. most classes have a test driver. To aid the future developer. a
template for test drivers is provided. This driver template driver.cpp has the class name
“XXXX to be tested. The driver compares result files token by token with doubles being
equal if they are within Constants::EPS of each other. Thus if the developer creates tests
from which output results, the driver file will compare the results of a current test with
the results of a previous test (if the results exist) or else put the results in the results
directory. This provides a test hamess for all files created. If a developer chooses to
modify existing classes. the test driver for this class is run to see if any functionality has

been broken. Once it has been deemed that the original functionality is still valid, the
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developer can add new tests to verify the changes made. This method of test/validation is
called regression testing. For example. if a developer were to work on Plaspud]l. the
Plaspudi/Plaspudl.cpp would be edited: the Plaspud1/tests/Plaspud 1 Test.cpp would be
used to test the modifications to the Plaspud|.cpp file. This driver file ( Plaspud 1 Test.cpp)
is currently in the Plaspud1/tests directory. and any output should be in the current
Plaspud|/tests/results directory. Any class that is “owned’ by Plaspud! would also reside
in the Plaspud1/ directory. These "owned" classes would have regression tests in the
Plaspud1/tests directory. Makefiles have been supplied in the tests directories to make

this possible.

The Automated Code Build System

To ensure timely feedback to the developer. an automated build system was developed.
The entire framework is built and tested nightly with the automated code build system.
This system consists of a series of Perl and bash scripts that keep the state of the code
base visible at all times. The scripts 'cvs checkout' the code from the repository each
night. This check is always conducted from a clean directory. so the state of a clean build
is tested each night. The scripts then proceed to build the module libraries and a specific
XML-specified application binary. The output of the build process is captured. If an error
occurs. the error text is stored on an html document. If the tree builds successfully and the
binary runs without problems. the entire set of regression tests is run. Each regression test
has specific output that indicates successful execution or which tests fail. A Perl script is
used to parse out just the errors of the regressions tests. These errors are stored in an html

document.
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After the build scripts are run. the code. binaries. and libraries are deleted. The error
documents are then checked into the documentation repository. The documentation
repository is mirrored nightly on the development web site. A detailed account of the
build process is always displayed on the development web site. A sample of the web

output is as follows:

Figure 4-19: Build results

Results of the nightly build are displayed on the project web page. The code is buill, tested and backed up
to CDrom by an automated system.

Bug Tracking

To give the developer a sense of the state of the software system. a bug-tracking package
was set up on the development web site. This bug-tracking package uses an SQL
database to store bug data. This allows for assigning responsibility to software problems,
as well as for keeping software problems from being forgotten. When a person finds a
new bug, he/she logs it into the database. An Email is then sent to every developer on the
developer mailing list. Once the bug has been resolved, appropriate emails are sent to the

people involved. This keeps all developers current on the state of the software package.
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The package also provides a front end for storing and presenting news items to the

development group. This provides a record of the communications and development of

the software.
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S. Problem Domain: Results

5.1 ObstructionProcessor

On of the key services of the ObstructionProcessor is to provide physical stopping of
particles. Figure 5-1 and Figure 5-2 demonstrate a pipe obstruction that has collected

particle impacts.

Figure 5-1: Particle stopping of a pipe with a tilted cap (side view)

This side view of a pipe obstruction shows particles collecting upon the surfaces. This pipe shows the cap
tilted. This demonstrates not only the functionality of the pipe obstruction, but its ability to stop particles.

The ObstructionProcessor is able to output visual data to aid in the interpretation of the
collected results. Although the curved surfaces appear to be created out of several planar
surfaces in the visualizations, this is only an artifact of the visualization algorithm. The
surfaces actually stop particles and collect data as true curved surfaces. Looking at the
top view of the pipe obstruction in Figure 5-2, one can see the particles actually stop on
the curve of the surface. In Figure 5-3, we see that the particle stopping stays consistent

with translated and rotated obstruction geometry.
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Figure 5-2: Particle stopping of a pipe with a tilted cap (oblique and top view)

This oblique and top view of a pipe obstruction shows particles collecting upon the surfaces. It is important
to note that the segmenting of the curved surfaces as shown in the diagram is only an artifact of the
visualization algorithm. As one can see from the top view, the segmentation on the pipe is not replicated in
the particle collections.
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Figure 5-3: Particle stopping of a box

This top view of a rotated and tilted box demonstrates that translated and rotated obstructions accurately
stop particles in relation to their geomeltry.
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5.2 Thermspud1

The Thermspud| algorithm entails tracking the life of a particle, from a particle source to
surface or volume deposition. Typically. the particle source will be a target. Currently
the target is merely a Surface that has an attached ParticleGenerator, which is capable of
generating particles either by using an externally provided Histogram or by building a
Histogram from an ion bombardment phase. Figure 5-4 and Figure 5-5 give views of a
chamber. target. and substrate structure, as well as a view of a tracking of generated
particles. One can see that the particles emanate from the top of the lower internal

cylinder.
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Figure 5-4: Particle paths (oblique view)

This is a visualization of a chamber setup. The lower, inner cylinder is a target object. The upper inner
c¥linder is a substrate object. The outer cylinder represents the chamber that bounds the simulation.
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Figure 5-5: Particle paths (side and top view)

This is a side and top view of Figure 5-4. The particles originate from the lower cylinder (the target) and
proceed until they deposit thermal energy into the gas or deposit onto a surface.
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Figure 5-6: Particle generation from a histogram

The picture on the right is a distribution of all particles generated from a 20 cm target surface. The target
surface’s ParticleGenerator generated particle positions using the erosion profile on the left.

The left hand graph in Figure 5-6 shows the histogram used as an erosion profile to
govern the random position generation on the target surface. The right hand graph of
Figure 5-6 depicts the positions of generated particles using the erosion profile. The

pattern, as expected, follows the outline of the erosion profile very closely.
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Figure 5-7: Thermal data slice

As particles fall below a predetermined energy threshold, the particles deposit thermal energy into a
thermal grid. Slices of this grid can be output in postscript form for analysis. The thermal grid depicted
here shows extreme heating above the target region (shown as dark cells). One can also see the shadowing
effects of the substrate and the target objects. The grid image has been cropped to include only the cells

that are within the chamber volume.
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Figure 5-8: Thermal slice with obstruction overlay

This shows the positioning of the obstructions with respect to the energy deposit of Figure 3-7. This
demonstrates the shadowing effects of energy deposition. Note the target and substrate partially fill cells.
Thus there appears to be heat collected within the target and substrate (which is not the case).
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In the Thermspud1 algorithm. when a particle falls below an externally set energy
thermalization threshold (typically 1 eV), the particle’s remaining energy is deposited
into a thermal grid (this information is required by the Thermspud?2 continuum
thermalized transport model for further calculation). Figure 5-7 is a profile of the thermal
deposition that results from slicing the thermal grid of a chamber setup similarly to that in
Figure 4-10. through the XZ plane at y=0. Figure 5-8 adds the outline of the target and
substrate to the image of Figure 5-7 to demonstrate effects of shadowing. This diagram
was created as a result of thermalizing 30.000.000 energetic and gas particles into the
chamber volume. Looking at the darker cells. which represent higher energy deposition.
one can see the high number of particles that deposit energy into the thermal grid just
below the target. This result is reasonable considering the higher probability of particles
leaving the target at low energies (see Figure 5-9). Thermspud1°s path algorithm follows
a Poisson process. which. by definition. indicates that a particle has an exponentially
decreasing probability of a long path length. This translates to a low number of high-
energy particles that are able to travel out of the target area. and either deposit into the
volume or onto a surface. The dependence of the collision-cross sectional area on energy,
as depicted in Figure 4-17. also lends support to low energy particles having a lower
probability of traveling a great distance. The probability of a particle colliding with a gas
molecule is significantly high. Most collisions involve an energy transfer from the
energetic particle: thus there will be a tendency for the gas to be heated near the target

region. as observed.
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Figure 5-9: Energy distribution

This energy distribution (hased upon the Thompson model) was used for particle generation at the target.

The deposition rate affects throughput as well as film quality (see F igure 5-10). Using
Thermspud!. one examines the relationship between deposition rate and target-substrate
distance. Using a 5 mTorr initial argon pressure. a cosine angular distribution for particle
trajectories. the annular erosion profile depicted in Figure 5-11, and an energy
distribution based upon the Thompson model*' (see Figure 5-9). it was possible to
tabulate relative flux results. The 20 cm aluminum target and 15 cm substrate used in the
simulation depicted in Figure 4-10. The flux rate results were collected on a 2 cm radius
circular CollectionRegion at the center of the substrate. These results are compared with
the results from the same experiment conducted using simMspuD, Although Thermspud1
is capable of calculations using energetic gas particles. tests were conducted using
stationary gas particles. SIMSPUD assumes gas particles are stationary, thus the same

conditions must be used to compare the output of SIMSPUD and Thermspud]1.
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Figure 5-10: The effects of target-substrate distance on relative deposition rate

The ¢ffects of target-substrate distance are examined using Thermspud! and SIMSPUD.

Initially. one observes an increase in relative rate with distance due to the little flux that
makes it to the center of the substrate from the erosion ring at close distances. As the
substrate-target separation is increased further, a non-linear decrease in deposition flux
density is observed. As the substrate moves away from the target. more particles are lost
to the chamber walls or lose energy due to collisions with the background gas and thus do
not make it to the substrate. One can see that Thermspud| output correlates closely to the
SIMSPUD output. Some differences can be attributed to the physical chamber setup, but
the different scattering model is an important factor. The hard-sphere model sIMSPUD
uses tends to overestimate the likelihood of large scattering. Also, Thermspudl, as
mentioned, uses a model that represents a target and substrate as physical three-
dimensional entities as opposed to SIMSPUD’s two-dimensional region on the chamber
ends. Particles that cross the chamber elevations that correspond to either the target or

substrate are removed from the simulation in SIMSPUD. These particles continue being
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processed in Thermspud1. As the target-substrate separation becomes greater, these

contributions become more pronounced.

Target-substrate separation also has an effect on the substrate coverage uniformity.
Uniformity is a concern in microelectronics fabrication because deviations in thickness
can reduce yield and reliability. Looking at Figure 5-12, one sees as the target-substrate
separation is increased, the predicted uniformity initially increases, but then starts to fall
off. It appears that. for the stated specifications. the optimal target-substrate separation is

near 60 mm. This result is also predicted by SIMSPUD (see Figure 5-1 3).
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Figure 5-11: Erosion profile

This erosion profile was converted from a SIMSPUD 2D profile in order to do comparisons with
Thermspud|.
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Figure 5-12: Radial profiles

This figure depicts the radial film thickness profiles Jor a 20 cm magnetron source at 5 mTorr for three
different target-substrate separations across a 15 cm wafer, in relation to the target erosion profile. The
values are normalized to the wafer center.
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Figure 5-13: SIMSPUD radial profiles®®

In regards to substrate coverage uniformity, SIMSPUD predicts the ideal target-substrate separation is near
60 mm.
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Another quantity that varies with target-substrate separation is the average energy of
incident atoms. Using the assumptions and specifications of the previous tests, the
average energy deposited on the substrate using Thermspud! was compared to output
using SIMSPUD. Figure 5-14 shows similar trends between the siMspPUD and Thermspudl
results. However. Thermspud1°s use of the ZBL scatter model, as mentioned, results in

less energy lost during collisions, thus resulting in a higher average energy being

retained.
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Figure 5-14: The effects of target-substrate distance on average deposited energy.

The average energy decreases with distance as the average number of collisions with gas molecules
increases.
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Figure 5-15: Energy deposition profiles

This figure compares Thermspud| and SIMSPUD'S energy deposition praofiles. As a result of particle-gas
collisions, energy is transferred from particles into the background gas.

An important difference between SIMSPUD and Thermspud]. as mentioned. is SIMSPUD's
use of the hard-sphere model. The overstatement of scattering angles by this model has
an effect on the energy transferred during collisions. More energy is lost per collision in
the SIMSPUD algorithm, thus particles have less energy to deposit further away from the

target. This accounts for the differences observed in Figure 5-15.
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5.3 Grids

Figure 5-16: Refined grid

The grids that are part of the framework core have the ability to adapt to the problem domain. This grid
has the lower right cell refined into + additional cells. The lower left cell of the refined quadrant has also
been refined. There is no algorithmic limit on the level of refinement any cell can have.

One of the key facilities of the framework is the adaptable grid. These template
containers provide the user with a very flexible solution to physical property
discretization. Looking at Figure 5-16, we see an example of this type of container. All
cells have the ability to divide into 8 sub-cells. Figure 5-16 depicts a 2-D view of a 3-D
grid: thus each refined cell appears to only divide into 4. but is actually refined into 8

cells. Each of these. in turn. can be further divided.
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6. Conclusions and Recommendations

6.1 Summary

This thesis presented an argument for creating a framework for reactor scale PVD
simulation. This led to the development of SIMSPUDII. a product that not only is a study in
framework creation and design. but also provides the PVD research community with a

core foundation for future simulation development in this problem domain.

The encompassing framework was built using object technologies to ensure long-term
growth and evolution of the product. A system of runtime application specification and
creation using XML was presented and demonstrated. As well. this study presents a
feature-rich message routing facility that introduced a method for utilizing multiple-
mapped iostreams. This framework combined with detailed documentation and software
support systems. provides the future developer with a strong foundation upon which to

build.

After presenting a case for the creation of a framework for this problem domain. a test of
the viability and extensibility of the framework was conducted by implementing two key
modules in the problem domain: Thermspudl, a module that encompasses a more
sophisticated simulator than the industry standard reactor scale simulator simspuD, and
the ObstructionProcessor, a highly configurable physical modeling and data collection

module. Through implementation of these two modules, the framework has proven to be
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a robust solution that provides the necessary abstractions and facilities to make extension

of this framework straightforward.

In the simulations that were presented for this thesis. Thermspud! produced results
comparable to siMsPUD. The predicted relationships between target-substrate separations
were quite similar. Although Thermspudi stops processing particles below a
thermalization threshold. the difference can be removed for comparison by setting the
thermalization threshold to zero. One can argue that when Thermspud2 (the
thermalization ProcessModule) is implemented. the effects of particle thermalization will
produce a more realistic Thermspud|! output. Although Thermspud! currently takes into
account the per-cell variances in gas density and temperature, the lack of a
thermalization-processing module (Thermspud2) leaves this dimension unexploited.
Results presented in this thesis show that Thermspud| is capable of depositing thermal
energy within a discretized chamber volume. a capability that is not present in SIMSPUD.
Thermspud|1’s more realistic particle-particle interaction system (ZBL based). combined
with the ObstructionProcessor for complex physical chamber geometry. provides the

basis for a highly configurable neutral particle transport model.

The intended use of this framework is as a tool for exploring the effects of reactor scale
variables on feature scale properties of PVD processes. The long-term vision for this
product is to become a feature-rich simulator capable of simulating the plasma, the target,
and the transport through the gas with rarefaction and heating, and film growth

considering the effects of all of these. The modules presented and the software systems in



place are the first steps along this long path to this vision's fulfillment. A framework, by
definition. is a work in progress. Despite this. the sofiware is already capable of
producing results that can be combined with feature scale simulators like SIMBAD to
explore feature scale film phenomenon. SIMSPUDII has the capability of simulating target
particle generation. and neutral particle transport through a background gas that is
dynamically heated. as well as possessing the facilities to collect energy. positional. and

angular distributions on any surface through a sophisticated obstruction module.

At the time this thesis was written. the framework consists of roughly 150 classes, 300
files. over 40.000 lines of code. and 30.000 lines of comments. The code is built and
tested nightly by an automated build system. The software package has a revision control
system. a regression test harness. a detailed Application Programming Interface (API),
and a defect tracking system. A comprehensive web site provides future developers with
extensive design and coding aids. reference manuals. development guides. and a history
of the framework development process. Specifically. the web site offers tutorials on how
to add new ProcessModules. ExecutionModules. and how to extend the XML parameter

space. The software is automatically backed up to compact disk weekly.

6.2 Future Work

One of the goals stated in the introduction addressed program efficiency. Throughout the

development of the framework of this work, extensibility and form received higher
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priority than computational efficiency. It was felt that if program correctness could be
achieved. efficiency could be attained with a code optimization process. It is a less
involved task to optimize a well-designed product than to redesign an efficient product.
More use of C++ inline functions and computational shortcuts could have made the
current code run faster. The use of profiling tools to identify code bottlenecks would
probably be prudent. Now that the framework foundation has been created. with a solid
test hamess to validate program state, a developer could spend time focusing on

optimizing runtime behavior.

Another issue that could be streamlined is the concept of module “ownership™ discussed
earlier. The current solution places the responsibility of memory management on the
developer who adds modules to a DOM_DocumentProcessor. Instead of the assignment
of ownership to the module that has the [Unknown interface. a more robust method of
"smart pointers’ could be implemented. Microsoft’s COM assigns memory management
responsibility to the dynamically linked library. When the last reference to the object is
deleted. the object removes itself from memory. This solution would simplify the
memory management issues. but may add a level of complexity in the overall framework.
The current solution works well. only requiring that the framework developer be aware of

the memory management issues.
The framework. at the time this thesis was written. contains an extensive API

documentation system. All code is well documented and a tool is currently used to extract

the documentation and place it on the web page. Some software templates, *howtos’, and
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a FAQ are provided for future developers. Although a great deal of documentation is
provided. not enough documentation exists that describes how to interact with and extend
the framework. This thesis provides a starting point for future developers. but the
package would benefit from a well-written development guidebook. A user’s manual on

how to use the software is also an essential addition.

Although the use of XML has greatly simplified the framework design and offers great
flexibility in future extensions to the framework. the amount of data in the XML file is
very large and will definitely grow. A graphical user interface (GUI) to hide the

complexities of the large XML file would be a great asset to the product.

A dedicated graphical application-building tool would aid the end user in creating a
tailored application. As mentioned. the framework employs a runtime application
specification system using XML. It would not be difficult to create a visual application
builder. Relationships between modules could be achieved by dragging links. Removing

the ID management from the user would simplify the application creation procedure.

Another application of a GUI that would benefit the project would be a visual chamber
specification tool. All objects are currently specified via XML. A simple graphical tool
that allows visualization and modification of the obstructions would aid the end user in
verifying whether the simulation is indeed set up correctly. The tool could create the

ObstructionProcessor node in the XML document.
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Finally, as mentioned. Thermspudl's full potential is currently untapped. A proposed
thermalization module (currently referred to as Thermspud2) will have an effect on the
results of Thermspudl. Although Thermspud| takes into account all per-cell differences
in gas temperature and density. calculating these dependencies relies on modules being
developed by others (i.e. Thermspud2). All tests in this thesis use a homogeneous gas
density and temperature. When a thermalization module is completed. one will be able to

observe what effect this has on Thermspud1°s results.

115



Bibliography

' Michael Riordan. Lillian Hoddeson. Birth of an Fra, Scientific American. Solid-State
Century. pp. 10

* Gordon E. Moore, C ramming more components onto integrated circuits, Electronics,
Vol. 38. No. 8

3 http://www.bccresearch.com/editors/RGB-1 86F.html

¥ Loran J. Friedrich. Steven K. Dew. Michael J. Brett. and Tom Smy. 4 Simulation Study
of Copper Reflow Characteristics in Vias, IEEE Transactions on Semiconductor
Manufacturing. Vol. 12. No. 3. August 1999

" Tom Smy. Liang Tan. K. Chan. R. N. Tait. James N. Broughton. Steven K. Dew. and
Michael J. Brett. 4 Simulation Study of Long Throw Sputtering for Diffusion Barrier
Deposition into High Aspect Vias and Contacts. IEEE Transactions on Electron Devices,
Vol. 45, No. 7. July 1998

6 Ouyang. M.X.. Kinney. L.D., Onyiriuka, E.C. Computer simulation of Nb205/Si02
spultering process for narrow band optical filter, Fourth International Conference on
Thin Film Physics and Applications. Vol. 4086. pp. 458-61

7 http://banvan.cie.rpi.edu/~evolve/

¥ Peter L. O'Sullivan. Frieder H. Buamann. Geourge H. Gilmer. Simulation of Physical
vapor deposition into trenches and vias: Validation and comparison with experiment.
Journal of Applied physics. Vol. 88. No.7. October 2000

’R. Alan McCoy. Yuefan Deng. Parallel Particle Simulations of Thin-Film Deposition.
International Journal of High Performance Computing Applications. Vol. 13, No.]1.
Spring 1999, pp. 16-32

" E. Suzuki. Y. Hoshi, Mechanism of Composition C. hange in Sputter Deposition of
Barium Ferrite Films with Sputtering Gas Pressure, Journal of Applied Physics, Vol. 83.
No. 11, June 1998

H Shenglong Zhu. Fuhui Wang, and Weitao Wu, Simulations of reactive sputtering with
constant voltage power supply, Journal of Applied Physics, Vol. 84, No. 1 1, December
1998

2w, Pyka. S. Selberherr, V. Sukharev, Incorporation of Equipment Simulation into
Integrated Feature Scale Profile Evolution,
http://www.iue.tuwien.ac.at/pd/2001/V378 Pvka.pdf

116



' Michael A. Vyvoda. Cameron F. Abrams, David B. Graves. Feature Evolution
Simulation of I-PVD Copper Films

" Richard Lajoie. Rudolf K. Keller. Design and Reuse of Object Oriented Frameworks:
Patterns. Contracts and Motifs in Concer1, Centre de recherché informatique de Montreal

'* Garry Froehlich. H. James Hoover, Ling Liu. Paul G. Sorenson. Reusing Application
Frameworks through Hooks, Froehlich/Reusing Application Frameworks Through Hooks
AF1051-1

16 Garry Froehlich. H. James Hoover. Ling Liu. Paul G. Sorenson. Designing Object-
Oriented Frameworks. CRC Handbook of Object Technology. CRC Press. 1998. in press.

'7 Julian C. C ummings. James A. Crotinger. Scott W. Haney. William F. Humphrey.
Steve R.. Karmesin. John V.W. Reynders, Stephen A. Smith. Timothy J. Williams, Rapid
Application Development and Enhanced Code Interoperability using the POOMA
Framework. SIAM Workshop on Object-Oriented Methods and Code Inter-operability in
Scientific and Engineering Computing: 0098

'8 http://www.acl.lanl.gov/pooma/index.himl

"*M. Griebel. G. Zumbusch, Parallel multigrid in an adaptive PDE solver based on
hashing. , Proceedings of ParCo '97, 1998, pp. 589-599.

SM. Rossnagel. "Sputtered Atom Transport Processes”. IEEE Transactions on Plasma
Science” . Vol. 16. No. 6. 1990. p. 878.

*! Garry Froehlich, H. James Hoover. Ling Liu. Paul G. Sorenson. Hooking into Object-
Oriented Application Frameworks

*John V. W. Reynders. David W. Forslund. Paul J. Hinker, Marydel Throuburn, David
G. Kilman. William F. Humpfrey. OOPS, An Object-Oreinted Particle Simulation Class
Library for Distributed Architectures

3. Rumbaugh, M. Blaha. W. Premerlani. F. Eddy. and W. Lorensen. Object-Oriented
Modeling and Design. Prentice-Hall. Inc, Englewood Cliffs. NJ (1990)

** A. A. R. Cockburn. The Impact of Object Orientation on Application Development,
IBM Systems Journal. Vol. 38. Nos. 2&3. 1999

% Robert C. Martin, Design Principles and Design Patterns, www.objectmentor.com

* John R. Cary. Svetlana G. Shasharina, Julian C. Cummings, John V. W. Reynders,
Palu J. Hinker, Comparison of C++ and Fortran 90 Jor Object-Oriented Scientific
Programming,

http://www.amath.washington.edw/~lt/software/CompCPP F90SciOOP.html

17



7 http://www.gnuplot.info/
* Steven K. Dew. Processes and Simulation for Advanced Integrated Circuit
Metallization, Doctoral Thesis., 1992

*®JF. Ziegler, J.P. Biersack, U. Littermark, The Stopping and Range of lons in Solids,
Vol. I. New York: Pergamon Press. 1985

O JF. Ziegler. J.P. Biersack. U. Littermark. The Stopping and Range of lons in Solids,
Vol. 1. New York: Pergamon Press. 1985, pp. 59

' M.A. Vidal. R. Asomoza. Monte Carlo Simulations of the Transport Process in the
Growth of a-Si:H Prepared by Cathodic Sputtering. Journal of Applied Physics. Vol. 67.
No. 1. 1990. p. 477.



