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Abstract

Although commercial computer games usually undergo intensive testing before release, 

many bugs and sweet spots still exist and make games less attractive than expected. In this 

thesis, a Semi-Automated Gameplay Analysis (SAGA-ML) system is developed to sum­

marize game behaviors as human readable rules, which can be presented to game designers 

to check if those behaviors are as intended. Unexpected game behaviors can be found this 

way. Machine learning and selective sampling techniques are incorporated into automated 

software testing. Machine learning is used to create a summary of the gameplay log that 

is comprehensible by humans. Selective sampling is used to sample instance space intel­

ligently to build a good model. Four existing selective sampling algorithms (Uncertainty 

Sampling, Bagging, Boosting and BootStrapLV), and a new rule-based selective sampling 

method, are implemented and compared. SAGA-ML has been tested on Electronic Arts’ 

FIFA99 soccer game and shown to be a practical game behavior testing solution.
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Chapter 1

Introduction

The gaming industry is a multi-billion dollar market, bigger than the traditional movie mar­

ket. In the early days of the game industry, game design was a small-scale development 

process, relying on individual contributors. Now, gaming has become a large-scale indus­

try. Current game design involves many different areas such as: graphics, audio, A I  and 

system etc.

Graphics usually is one of the most important parts of game design. However, gameplay 

is also very important. According to www.webopedia.com’s definition, gameplay is a term 

most commonly used to rate, or score the quality o f  the experience had by a gamer while 

playing a particular game. The term gameplay is often found in game reviews where a 

score is given based on player experiences during the interaction with the game. Unlike 

the visible factors of a game (e.g. the graphics and frontend), gameplay usually refers to 

the game behaviour such as the game’s logic, difficulty, goals and constraints. Gameplay 

contributes much to the enjoyability of a game. Like other game elements, gameplay will 

be designed to specifications.

As games get bigger and bigger, game testing becomes very challenging. Like other 

types of software, game testing also includes Unit Testing, Integration Testing, System 

Testing and Performance Testing. However, some testing areas are unique to game devel­

opment. Gameplay testing is one of them.

1.1 Problem Description and Motivation

In the current game industry, the common method of doing gameplay evaluation is a process 

of play-and-feel, which totally relies on a human’s sensitivity and experience. This play- 

and-feel method is not efficient, and sometimes not effective. That is why so many “sweet 

spots” exist, even when a game goes through intensive testing before it is released. In

1
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Player always scores when 
the ball is kicked here.

Figure 1.1: A Sweet Spot In FIFA99 Comer Kick Scenario

the context of a computer game, sweet spots are unexpected (from the view of the game 

designers) game behaviors. Many gameplay sweet spots are exploited by human players 

to decrease the difficulty level of the game, which will impact the playability of the game 

eventually. For instance, in the comer kick scenario of Electronic Arts (EA) FIFA’99, there 

are some spots where the attackers can score easily when the ball lands there.

Finding sweet spots is currently mainly done by human testers. In practice, game com­

panies hire many QA testers or take clients’ feedback (e.g. based on demo or Beta versions) 

to find bugs. However, due to the huge state space for a game, it is impossible to exhaus­

tively check all the possible behaviors.

Previously, a Cheat Finding System (CFS)[8], developed at the University of Calgary, 

used genetic algorithms to find specific action sequences that lead to a goal in the FIFA99 

soccer game. Firstly, CFS will define the set of control actions for the game (Figure 1.2 is 

the example for FIFA99). Then, the game will be played by CFS. Every certain amount of 

time, a new action will be applied to the game from the action list and added to an action 

sequence. Genetic algorithms are used to evaluate and populate those action sequences 

until some interesting action sequences are generated. The CFS system as able to find some 

action sequences that lead to a goal in FIFA99.

However, reporting such action sequences is not all that game designers want. Firstly, 

some action sequences that lead to a goal found by CFS might be very hard to be repro­

duced by human players due to the complexity of the sequence. Secondly, game companies 

like general summarization of games’ behaviors more than individual action sequences. 

Therefore, the research in this thesis aims to develop an automated software testing system

2
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ActionO NO-OP 

A ctionl PASS 

Action2 SHOOT 

Action3 SWITCH 

Action4 MOVE.UP 

Action5 MOVEJDOWN 

Action6 MOVE-RIGHT 

Action7 MOVE_LEFT 

Action8 MOVE_UP-LEFT 

Action9 MOVE_UP_RIGHT 

ActionlO MOVE-DOWN .LEFT 

A c tio n ll MOVE-DOWN_RIGHT

Figure 1.2: CFS defined actions

to summarize games’ behaviors. Game designers will check those summarized behaviors 

according to design specifications.

1.2 The Solution

Figure 1.3 is the basic architecture of our solution. The Sampler module generates initial 

conditions and action sequences defining samples of the game’s behaviour. The Game 

Engine module takes the sample data, transforms the initial conditions into game variables 

and executes the given sequence of actions. The output of the Game Engine is labelled 

sample data, with the label depending on the testing purpose. The Learner module uses 

the labelled samples to create models of behaviour. The learned model can be used by 

the Sampler to generate more samples. The Visualizer module displays the learned models 

to the game designer and allows interaction with the Game Engine to help understand the 

learned behaviour model.

This system is a kind of automated software testing. Machine learning is used to create 

a summary of the gameplay log that is comprehensible by humans. Ideally, the behavior 

testing should exhaust all the possible behaviors, which is impossible for a big game. We 

therefore propose to apply our testing method to small, well-defined portions of the game,

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Outcome

Initial Conditions & 
Actions

SamplesQueriesSamples

Learned Models
learnerVisual izer

Game Engine Sampler

Figure 1.3: Brief Architecture

which we call scenarios. Usually, a game scenario is triggered under certain circumstances. 

For example, the com er kick scenario in a soccer game is triggered when the ball is kicked 

over the kicker’s own end line. Thus, the huge sample space for the full game is broken 

down into relatively small game scenario spaces. From the game player’s point of view, 

gameplay consists of many different game scenarios. Even restricted to scenarios, some 

types of behaviors cannot be enumerated exhaustively, e.g., behaviors involving continuous 

values. Therefore, in this thesis, selective sampling is used to sample instance space intel­

ligently to build a good model. Four existing selective sampling algorithms (uncertainty 

sampling, bagging, boosting and BootstrapLV) are implemented, and a new rule-based se­

lective sampling method is introduced.

1.3 Challenges and Contributions

There are quite a few challenges in this work. In order to summarize game scenarios’ behav­

iors, we have to simulate those scenarios and automatically test them. Game environments 

are usually very complex and dynamic. The realistic automation of game scenarios is the 

first challenge. The state space of a game (or even a game scenario) can be huge and im­

possible to be exhaustively analyzed. Choosing efficient methods to sample such big state 

spaces is another challenge. How to evaluate the summarized game behaviors we got is the 

third challenge.

4
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The first major contribution of this thesis is the development of a Semi-Automated 

Gameplay Analysis (SAGA-ML) system. This framework is a whole set of solutions that 

can be used to analyze game behaviors.

A second major contribution is that machine learning techniques are used to summarize 

game behaviors. Gaming testing is a quite new area to apply machine learning techniques. 

Experiments show that machine learning can help game designers by providing accurate 

and concise summaries of game behaviors.

A third major contribution is that selective sampling techniques are used for efficient 

sampling. Five selective sampling methods are implemented and compared with random 

sampling in both artificial environments and real games.

The fourth contribution of this thesis is a new, rule-based selective sampling method. 

This new sampling method analyzes the rules that make up the behaviour model. Experi­

ments show that this sampling method has very good performance.

The last contribution is the introduction of an evaluation method for gameplay analysis 

based on “blurred” target concepts. Blurring generates larger regions in in its concept def­

initions by eliminating small regions and merging neighbouring regions. Evaluation based 

on blurred target concepts is more useful for game designers because only large regions are 

important to game developers and human players. Game developers can easily get a global 

view of their system instead of being distracted by many small summaries.

Four publications have been generated by this thesis work. “Machine Learning for 

Semi-Automated Gameplay Analysis”[7], “Semi-Automated Gameplay Analysis by Ma­

chine Learning”[37] and “Semi-Automated Gameplay Analysis”[36] focus on the use of 

the SAGA-ML system for gameplay analysis. “Software Testing by Active Learning for 

Commercial Games”[47] focuses on active learning and experimentally compares different 

sampling methods.

1.4 Organization

Chapter 2 overviews selective sampling and explains the 5 selective sampling methods that 

are used in this research. Chapter 3 presents the game application and the framework of our 

solution. Chapter 4 shows the experimental results when our solution is applied on a real 

commercial game: Electronic Arts’s FIFA99. Conclusions are drawn in Chapter 5.

5
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Chapter 2

Selective Sampling

In this chapter, selective sampling is reviewed and studied experimentally. Section 2.1 

gives the explanations of what selective sampling is and why selective sampling is expected 

to be superior to random sampling. The four existing selective sampling studied in this 

thesis are described in Section 2.2.1: uncertainty sampling, QBC: bagging, QBC: boosting, 

and BootstrapLV. A new rule-based sampling method is presented in Section 2.2.2. In 

Section 2.3, these five selective sampling methods and random sampling are compared 

experimentally.

2.1 Selective Sampling -  What and Why

2.1.1 What is Selective Sampling

Normally, the training data for learning is provided by an external source entirely inde­

pendent of the learning algorithm. In selective sampling (also called active learning), the 

algorithm starts from an initial training set which is usually small in size and randomly 

generated. After a model is learned by the learner, a strategy is used to evaluate potential 

additional training data. The most informative examples (as defined by the selection cri­

teria) are picked for labelling and added to the training set. Then, the model is updated 

based on the new training set. This process is continued until the stopping criteria are met 

(e.g., the model becomes stable). Selective sampling is a methodology and a framework. 

There are three key components in a selective sampling algorithm. The first one is the basic 

learning algorithm which is in charge of building models from training data. The second 

one is the strategy for picking new training data. The third one is the stopping criterion, 

which usually is defined by the convergence of certain criteria. Learning algorithms have 

been very well studied in machine learning community and there are many excellent learn­

ers available. Therefore, the biggest concern in selective sampling is the second issue -  how

6
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to effectively and efficiently select the most informative examples as new training data.

2.1.2 W hy Selective Sam pling

Selective sampling is attractive for the following types of applications:

•  Training data is expensive

Training data for some applications such as astronomy and biology can be very ex­

pensive. For example, the satellite images in [17] cost hundreds, sometimes thou­

sands of dollars each.

•  Labelling is expensive

Sometimes, unlabelled data is abundant and cheap but labelling is very expensive. For 

example, manually classifying a single protein shape requires months of expensive 

analysis by expert crystallographers[48],

•  Too much training data

In some applications, large quantities of unlabelled examples are very cheap. For 

example, web pages are abundant[22]. The task of classifying large quantities of web 

pages is not possible for most memory-based classifiers.

2.1.3 Creating New Examples vs. Selecting From an Example Pool

New examples in a selective sampling algorithm can come from two sources: created in 

instance space or selected from an example pool. The algorithms based on an unlabelled 

example pool are called pool-based. Many database applications (e.g., [38]) fall into this 

category. On the other hand, some applications have continuous instance spaces and an 

oracle that can classify on the fly any new examples created.

2.2 Comparison of Different Selective Sampling Methods

This thesis focuses on the methods for selecting new training data in each iteration. There­

fore, the comparison of different selective sampling methods in this thesis means the com­

parison of different new training example selection methods. Other topics about selective 

sampling such as the size of the initial training set, the number of new examples on each 

iteration, and the stopping criteria, are avoided by using fixed definitions, as follows.

•  The size of initial training set

Fixed size initial training set is given for each comparison.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  The number of new examples on each iteration

Fixed number of new points on each iteration are taken for each comparison.

• Stopping criteria

Fixed number of iterations is used for each comparison.

2.2.1 The existing selective sampling methods used in this thesis

Saar-Tsechansky and Provost[32] provide a good review on the area of selective sampling. 

Region o f  Uncertainty [9], Query By Committee (QBC)[34] and Uncertainty Sampling[2\ ] 

are explained in that paper. They also presented a new selective sampling method boosting 

with local weighting (BootstrapLV) and compared it with uncertainty sampling. In this 

thesis, uncertainty sampling, bagging-based QBC, boosting-based QBC and BootstrapLV 

are implemented and are compared with random sampling and a new rule-based sampling 

method. They are all pool-based sampling methods.

•  Uncertainty Sampling

Uncertainty Sampling[21] aims to select those examples whose classification is least 

certain. In this thesis, a C4.5[29] decision tree is used to measure the certainty of an 

example. After training, each leaf node has a label, which is determined by the ma­

jority class of all examples in this leaf. When a prediction query comes and reaches 

a leaf node in the tree, the probability of belonging to each class is calculated by the 

example class distribution of this leaf node, e.g., if a leaf node (labelled as positive) 

is supported by 12 examples and contradicted by 4 examples, the prediction class 

probability of an incoming query example is 75% positive and 25% negative.

Pseudocode of the implementation of uncertainty sampling in this thesis is as follows:

1. Classify each example, e*, in the example pool using C4.5’s tree, and record the 

probability, pi, of it being in the positive class.

2. Sort all examples in the pool by the absolute value of (p* — 0.5)

3. Pick the top n examples from the sorted list

Figure 2.1 shows how uncertainty sampling works. The upper part of Figure 2.1 is a 

decision tree generated by C4.5. A and B are two features. The numbers inside each 

leaf node are the number of positive examples and negative examples respectively 

in the training set. The lower part of Figure 2.1 is a table which shows 3 examples 

(ei, e2, and e f)  from an example pool, e i goes to the leftmost leaf, whose positive

8
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probability is 0.1; t i  goes to the middle leaf, whose positive probability is 0 .6; e 3 goes 

to the rightmost leaf, whose positive probability is 0.5. The ranking scores of e i, e2, 

and e3 are |0.1 -  0.5| =  0.4, |0.6 -  0.5| =  0.1 and |0.5 -  0.5| =  0. Those scores are 

sorted in ascending order. Therefore, the selection order of those 3 examples is e 3, e2 

and e\. The number of examples to be picked in each selective sampling iteration is 

a parameter of the implementation.

negative

4 : 6 5:5
positive negative

ei e2 e3

A -10 10 1

B 50 -5 2

Figure 2.1: Uncertainty sampling example

• Query by Committee (QBC) methods

Query by Committee[34] originally was used to build a strong classifier from a group 

of very weak simple classifiers. This is not simply an algorithm, but a methodology. 

In selective sampling contexts, instead of using a single classifier (e.g., as uncer­

tainty sampling does), a Query by Committee algorithm will construct a collection

9
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of individual classifiers that are diverse and yet accurate. After such a committee is 

generated, the potential training data is evaluated by the voting of this committee. 

The examples with the most classification disagreement among the committee are 

selected to be added to the training set. A new committee will then be built from the 

new training set, and so on. Because Query by Committee algorithms do not evalu­

ate the uncertainty by directly checking the classification probability value for single 

examples (as uncertainty sampling does), they overcome the problem that uncertain 

sampling has: oversampling examples with a real classification probability close to

0.5. If most committee member agree that a region’s real classification probability is

0.5, the examples there will not be chosen. In Figure 2.2, there is a 2-member com­

mittee, which are two similar C4.5 trees (treel and tree2), and 3 pool examples (e i, 

e2, and 63) are sent to the committee to calculate their disagreement scores. For exam­

ple the disagreement score of e.; is S t =  Y.JL 1 \p%j — Pi\, where m  is the number 

of members of the committee; pij is the probability of a positive label for example 

e* by committee member j ;  and p i is the average positive probability for ei from all 

committee members. The disagreement score of e i is 0.2 =  |0.2 — 0.3| +  |0.4 — 0.3|; 

the disagreement score of e2 is 0.1 =  |0.7 — 0.65| +  |0.6 — 0.65|; the disagreement 

score of e3 is 0.5 =  |0.1 — 0.35| +  |0.6 — 0.35|. Those scores are sorted in descending 

order. Therefore, the selection order of those 3 examples is e 3, e\ and C2- The number 

of examples to be picked in each selective sampling iteration is a parameter of the im­

plementation. This sample selection strategy works for general Query by Committee 

(QBC) selective sampling algorithms. Bagging-[6] and boosting-\ 14] based selective 

sampling methods implemented in this thesis follow this sample selection strategy. In 

the actual implementation, there are 10 C4.5 trees in the committee. Boosting With 

Local Variance (BootstrapLV, a variant of QBC-boosting) is implemented as well but 

its sampling selection method, which will be described later, is slightly different from 

the general one described here.

-  Bagging

In bagging, a classifier is built from a modified training set, which comes from 

the original training set by random selection with replacement. Pseudocode of 

the implementation is as follows:

1. Build committee (m members), 

for each member j ,  1 <  j  < m

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A < 0

Negative: ( B c 0 ) Negative:
Positive Positive
(0.8:0.2) (0.6:0.4)

Negative Negative Negative Negative:
Positive Positive Positive Positive
(0.3:0.7) (0 . 9:0.1) (0.4:0.6) (0.7:0.3)

e.i e2 Ci
t ree l tree2

e i e z e3

A -10 3 3

B 50 -1 2

Average Positive Probability 0.3 0.65 0.35

Disagreement score 0 .2 0 .  1 0.5

Figure 2.2: Query by Committee example

* build a training set T S j  by randomly selecting n  examples from the 

original training set with replacement

* generate a decision tree D T j by applying C4.5 to T S j

2. calculate the disagreement score for each example in the pool, 

for each example e* in the pool

* for each committee member j ,  classify example e, using D Tj and 

record the probability of the positive class pij

* calculate the disagreement score Si — t \Pij ~  P l> where p  is the 

average positive probability for et from all committee members

3. Pick the k  examples with the highest disagreement scores

11
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-  Boosting

Boosting algorithms maintain a set of weights for the examples in the original 

training set. The weights will be adjusted after each classifier is learned. The 

weight for an example will be increased if it is misclassified by the classifier, and 

decreased on the other hand. The training set for each classifier of the committee 

is built based on the original training set and the current set of weights. The 

version implemented in our system is AdaBoost.Ml[14], Pseudocode of the 

implementation is as follows:

1. create a weight vector W  for all n examples in the pool (E  =  {eu 1 < i <

n})  and initialize those weights as W,t = 1 /n , 1 < i < n

2. create a weight vector D T W  for m  committee members

3. Build the committee.

for each committee member (decision tree D T j , 1 <  j  < m )

* generate D T j with C4.5 using Training Set T S  and current W

* let (3j =  e / ( l  — e) , where e is the error of D Tj

* for each example e.(. 1 <  i < n ,W i  —  Wj * (3j, if e( is correctly

classified by D T j

* normalize W  so that YL\<i<n Wi = 1

* D T W j = log(1/Pj)

4. normalize D T W  so that Y.\<j<m D T W j  =  1

5. calculate the disagreement score for each example in E  

for each example e,, 1 < i < n  in the pool

* for each committee member j ,  1 <  j  < m , classify e; using D Tj and 

record the probability of positive class

* calculate the disagreement score Si =  Y^jLi ( \Pij ~ p \ *  D T W j ) ,  where 

p  is the average positive probability for e* from all committee members

6. Pick the k  examples with the highest disagreement scores

-  Boosting with local variance (BootstrapLV)

This sampling method is proposed in [32] as a selective sampling method that 

can be applied to applications requiring estimations of the probability of class 

membership, or scores that can be used to rank new cases. The paper claims 

BootstrapLV is more powerful because existing empirical selective sampling 

approaches have focused on learning classifiers (note: all the selective sampling

12
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methods are implemented to be capable of estimating the probability of class 

membership). The sample selection method of BootstrapLV differs from other 

general QBC based algorithms (e.g., bagging- and boosting-based) in that after 

the disagreement scores of all examples in the pool are calculated, BootstrapLV 

does not select the examples with the highest disagreement scores. Instead, 

each example (except those whose disagreement score = 0) has a chance to be 

chosen, with a probability proportional to its disagreement score. Figure 2.3 

shows 8 examples and their scores. The scores are calculated in the same way 

as bagging. Unlike bagging and boosting, which will pick the top examples, 

BootstrapLV can pick any example according to its probability (proportional 

to its score). In Figure 2.3, ei has the highest score, but it only has a 30% 

probability of being selected.

sc o re

ei 0.3

e2 0.2

e3 0.1

e4 0.1

es 0.1

ee 0.1

e i 0.05

es 0.05

Figure 2.3: BootstrapLV sample selection example

2.2.2 A new rule-based selective sampling method

A new selective rule based sampling method is proposed in this section. There are two 

motivations to introduce this new method:

• Specific to rule learning 

We use a rule-based classifier in our system. Existing selective sampling methods

13
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are general-purpose, not specific to a particular type of classifier. We hope the new 

method specific to rule learning will be more powerful.

• Specific to our summarization task 

Existing selective sampling methods are mainly score based, which places more at­

tention on individual examples. The new rule-based sampling method is distinct from 

other selective sampling methods in that it works directly on the rules themselves, 

not on examples. Therefore, the new sampling method is expected to work better in 

terms of refining rules during the active learning process compared to other selective 

sampling methods.

The rule inducer used in this thesis is C4.5’s rule learner. A rule is in conjunctive form, 

such as “if A and B then C”, where A and B are the rule’s antecedents and C is the rule’s 

consequence. From a C4.5 decision tree, every path from the root to a leaf can be converted 

into a rule. From that initial set of rules will be removed unnecessary rule antecedents using 

a greedy algorithm; then the rules are grouped according to classes; the rules of each group 

are polished: some unnecessary rules are filtered; groups are sorted by their false positive 

error rates; finally, the default rule is generated.

The rules generated by C4.5 are ordered and can overlap. Our rule-based method re­

quires unordered, non-overlapping rules, hence it starts by converting the rule set into an 

exclusive rule set. A rule set (generated by C4.5) for the FIFA99 corner kick scenario is 

shown on the right side of Figure 2.4. The corresponding exclusive rule set is visualized on 

the left side of Figure 2.4 (individual rules are marked as 1, 2, 3 and 4). The algorithm for 

converting an ordered and overlapping rule set into an exclusive rule set is as follows:

Rulel C lass: Not score 
target.x <= -336 

Rule2 C lass: Not score 
target.y <= 2082 

Rule3 Class: Score 
target.y <= 2105 

Rule4 Class: Score 
target.x > 552 
target.x <= 641 
target.y > 2234

Default class: Not score

Figure 2.4: An example rule set (FIFA99 corner kick scenario)

14
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Algorithm: Convert An Ordered and Overlapping Rule Set into An Exclusive Rule

Set

Notation:

Original rule set S a 

Exclusive rule set S e 

Sub-rule set R s

Number of rules in original rule set N  

a single rule r

Input: S 0

Output :Se

Initialization: set S e = empty

Algorithm:

For i =  1 , N

For j  =  1 , M , M is the current size of S e

1. calculate the intersection r c of r j and S ej

2. If r l intersects S ej ,  r ,• needs to be divided into a set ( Rs) non-intersecting 

hyperrectangles whose union is all of n  except for the part that intersects 

with Se j  (in Figure 2.5, r t is split into R s\, and R s2).

3. S e = S e i J R s

This conversion process is not free, it can be very expensive. In terms of the number 

of rules, the exclusive rule set can be a hundred times larger than its ordered but overlap­

ping counterpart. Imagining a worst case: in a two-dimensional space, with 10 distinct 

attribute values for each dimension, the total number of exclusive rules is 100 (10 by 10). 

Therefore, in the worst case, the number of exclusive rules in a n-dimensional space can 

be N totai = v\ * v2 * ... * vn , where Vi is the number of attribute values of dimension i 

and 1 <  i < n. Usually, in the active learning process, the learned rule set will become 

more and more complex as the iteration number grows. Therefore, the process of convert­

ing the learned rule set into its exclusive counterpart will become correspondingly more

and more expensive. This is a limitation of our current rule-based sampling method. Future

improvements can be made by refining the conversion algorithm.

15
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n

R s2

Figure 2.5: Rule split
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Based on exclusive rule sets, rule-based selective sampling consists of four methods: 

sampling rule boundaries, sampling rules with low support, sampling the neighbourhood of 

counterexamples, and sampling the default rule. The weights (in proportion to the number 

of new generated examples) of each method are input parameters of SAGA-ML system. 

These 4 methods are described in the following subsections.

• Sampling rule boundaries

Given enough training data, the rule boundaries could be very accurate. Selective

learned true
boundary boundary

noise

(a) Two rules (+ represents a positive example, - represents a negative example) 
sharing a rule boundary

original updated
boundary boundary

true
boundarymove

(b) After adding more examples (small + and small -) in the rule boundary area, 
the rule boundary moves to be more accurate

Figure 2.6: Sampling Rule Boundaries

sampling algorithms usually start from a small set training data, which means the rule 

boundaries at the beginning could be (very) inaccurate. Figure 2.6(a) shows a rule 

that roughly separates two groups of examples. The idea is to sample the boundary 

area of the rules so that the rule boundaries move towards the “correct” location.

17
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Figure 2.6(b) shows that after sampling the rule boundary area (non-bold examples), 

the rule boundary moves in the correct direction. One potential problem is that the 

same (or similar) rule boundaries could be sampled again and again during the active 

learning process, even though some rule boundaries might already be very accurate. 

In our system, we keep track of which rule boundaries have been sampled and avoid 

repeatedly sampling the same boundary areas.

Algorithm: Sampling rule boundaries 

Notation:

A set of mutually exclusive rules for an active learning iteration: R

Rule boundaries generated by R: B

Rule boundaries that have been sampled in the past: B ône

Rule boundaries to be sampled: Ba

Examples to be labelled: E

Input: R

Output: E

Initialization: set B = empty, set B0 = empty, set E = empty 

Algorithm:

1. for i =  1 , ..., nr, where n r is the number of rules in R

B  = B  U Bi, where Bi is the rule boundaries generated by rule i

2. for i =  1 ,..., rib, where rib is the number of boundaries in B

if the boundary bi B rj0ne and bi is the shared boundary of multiple (>  1) 

classes 

then Ba = B0 U {&*}

3- Bfione = Bfione U B0

4. for i =  1,..., nD, where n0 is the number of boundaries in B0

E -  EU  Ei,

where Ei is the example set generated from boundary bi. In our imple­

mentation, a fixed number of examples (3) are sampled randomly from 

the boundary space.

• Sampling rules with low support

Some rules might have low support -  very low example density compared with the

18
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average example density of the whole instance space. In an extreme case, a rule 

might have 100% accuracy supported by only a few examples. Such rules have high 

accuracy but low confidence. In our system, we put more new training data into the 

areas covered by such low support rules. A threshold is used to determined if a rule 

has low support or not. For each low support rule, a fixed number of samples are 

randomly generated from the space covered by the rule.

• Sampling the neighborhood of counterexamples

Each learned rule will be supported by some training examples, but also could cover 

counterexamples -  examples in the opposite class. The technique of sampling the 

neighborhood of counterexamples is not new, many selective sampling methods (e.g., 

the Windowing technique for C4.5) have already used this idea. Counterexamples 

represent two possible situations: positively, new concepts could be found around 

such data points; negatively, such data points could be just noise. In our implementa­

tion, the 3 nearest neighbors of a counterexample are selected and 3 new samples are 

generated by calculating the middle points between the counterexample and these 3 

neighbors. Figure 2.7 shows two counterexamples and their neighbor area.

+ Neighbor
area

+

+ Counter
example

Figure 2.7: Sampling the neighborhood of counterexamples

•  Sampling Default Rule areas

The C4.5 rule learner will include all accurate enough (the default minimum accuracy 

is 50%) rules sorted by class. There is always a default rule which covers the rest of 

instance space. We found those default areas are just the Uncertainty Regions, which 

can have high information value.

2.3 Experiments

Experiments have been done to answer the following questions:
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1. is selective sampling better than random sampling, as is often claimed?

2. which selective sampling method is best?

An artificial test environment is built for initially investigating these questions. The key 

benefit of an artificial environment is that the real target concepts are known in advance 

because we have generated them. This enables accurate evaluations. Artificial test environ­

ments are not real domains, but are designed to resemble real problems. Ideally, artificial 

environments will share as many properties as possible with their real counterparts, e.g., the 

nature and amount of noise. Artificial environments have some advantages over real ones:

• it is impossible to know exactly the true concepts of a real problem, but it is possible 

for an artificial environment because we generate those target concepts.

•  the number and size of dimensions can be controlled.

• arbitrary noise can be added.

2.3.1 Classification Thresholds

To avoid the effects of randomness and noise, the same instance will be labelled multiple 

times (10 in this experiment). The final class for the example will be decided by a threshold 

on the ratio of positive vs negative examples. Suppose, for example, the threshold is 4 out 

of 10; this means an instance will be classified as positive if the number of positive labels it 

receives is greater than or equal to 4 (out of 10).

2.3.2 Two-dimensional experiments 

Two dimensional artificial environment setup

To allow results to be visualized easily, we begin with an artificial environment with two 

continuous dimensions. 9 rectangles are put into the two dimensional space. Examples 

outside those rectangles will always be classified as negative. Examples falling into those 

rectangles will be classified as positive with a probability. Those probabilities vary from 0.1 

to 0.9. Figure 2.8 is the visualized scenario. To simulate real applications, small transition 

areas between each positive box and the negative background are set up. For example, 

the positive class probability of the transition areas surrounding the 0.9 box will decrease 

gradually from 0.9 down to 0. All selective sampling methods start with 675 uniformly 

sampled initial examples. In each iteration, 50 more examples are added to the training set.
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Transition
area

Figure 2.8: 2-D artificial scenario for sampling preference comparison
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(a) Uncertainty (b) Bagging

(c) Boosting

Figure 2.9: Sampling preference comparison: data points —  part 1
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Sampling Preference of different methods

Figure 2.9 and Figure 2.10 show the visualized raw data distribution for the 5 selective 

sampling algorithms after 100 iterations. Each dot in these figures (and later similar fig­

ures) is a data point selected by the selective sampling algorithm; a white dot indicates a 

positive example; a black dot indicates a negative example. In these figures, some areas 

are marked by a colored “X”, which means those area are impure regions whose shade 

indicates the ratio of positive to negative examples. Uncertainty sampling (Figure 2.9(a)) 

shows a preference for sampling areas in which the number of positive examples is simi­

lar to the number of negative examples, especially the box with probability 0.5. It prefers 

sampling inside of those boxes. Bagging (Figure 2.9(b)) and boosting (Figure 2.9(c)) prefer 

sampling the boundaries of boxes, rather than the interior of the boxes (in Figure 2.9(b), 

boxes 0.5, 0.6, 0.8 and 0.9 are sampled mainly around their boundaries; in Figure 2.9(c), 

boxes 0.4, 0.5, 0.6, 0.7, and 0.9 are sampled mainly around their boundaries). BootstrapLV 

(Figure 2.10(a)) looks just like random sampling. Rule-based sampling (Figure 2.10(b)) has 

a very good sampling behavior, concentrating on the boundaries of boxes. Figures 2.11 and 

2.12 show the visualized rules (solid white boxes) that were learned with the data points 

in Figures 2.9 and 2.10. Almost all boxes whose probability is greater- than or equal to 0.5 

are discovered by the learning methods. One noticeable thing is that uncertainty sampling 

(Figure 2.11(a)) does not mark the box 0.5 as positive because negative and positive data 

points inside this box have equal representation.

Evaluation

Classification accuracy is the most commonly used criterion to evaluate a learning algo­

rithm: induce a model using training data, and measure the classification accuracy on test 

data. Accuracy is computed as follows: accuracy  =  correct/to ta l, where correct is the 

number of correctly classified examples and total is the number of all examples.

Accuracy has been proved to be unacceptable for many real applications[ll]. There­

fore, in our studies we will use TP rate = TP / (TP + FN) and FP rate = FP / (FP + TN), 

where TP is the number of true positives (examples classified correctly as positive), FP is 

the number of false positives (examples misclassified as positive), TN is the number of true 

negatives (examples classified correctly as negative), and FN is the number of false nega­

tives (examples misclassified as negative). For the 2-D artificial experiments, the TP rates 

and FP rates are calculated by testing on a large test set.

To present clear results, a Bezier function is used to smooth all FP rate and TP rate plots
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(a) BootstrapLV (b) Rule-based

Figure 2.10: Sampling preference comparison: data points —  part 2
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(c) Boosting

Figure 2.11: Sampling preference comparison: generated rules —  part 1
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(a) BootstrapLV (b) Rule-based

Figure 2.12: Sampling preference comparison: generated rules —  part 2
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in this thesis. According to Paul Bourke's review([4]), the formula for a Bezier function is:

N An
B {u) = f 0 P t S ( F = l )!“ '‘(1 ■ u )" " ‘ fo r  0 5  “  £  1

where u  is a continuous variable ranging from 0 to 1. A curve B (u )  is built based on the 

Bezier function with B(0) = Po, B (l) = P/v, where N  +  1 is the number of total examples, 

and F \ is the data point with index k. Figure 2.13 (by Paul Bourke[4]) is an example of 

Bezier function: the original input points are Po, P i, P2, P3 and P4; a continuous Bezier 

curve smooths the connections of those points.

N = 4

p 4
BCu)

Figure 2.13: Example of a Bezier function

A one-sided t-test will be used to test the statistical significance test of the sampling 

methods at specific training set sizes. This is done as follows. At training set size x , methods 

A has 5 experimental numbers {a^, 1 <  i <  5} representing 5 runs. Methods B also has 

5 numbers {bi, 1 <  i <  5}. The 5 paired numbers {c* =  cn — bi, 1 <  * <  5} represent 

the difference of methods A and B at training set size x. A one-sided t-test (a  =  0.1) is 

applied to {cj, 1 <  i < 5} to test the null hypothesis that the difference is equal to 0. If the 

statistical value is greater than 1.53 (t. 90, degrees o f  freedom  = 4), the null hypothesis will be 

rejected and we can claim that methods A and B have a significant (a  =  0.1) performance 

difference at training set size x. In this thesis, if we claim that Method A is significantly 

(a  =  0 .1) better than all other methods at training set size x, we actually mean in individual 

pairwise comparisons with the other 5 sampling methods in these experiments, Methods 

A is significantly better than the others at training set size x. If we claim that Method A 

and B are significantly (a  =  0.1) better than Method C and D at training set size x, we 

actually mean that all four pairwise tests indicate a significiant difference (M ethod A  is

significantly(a =  0.1) better than Method C and Method A is significantly ( a  =  0.1) better 

than Method D and Method B is significantly (a  =  0.1) better than Method C and Method 

B is significantly (a  =  0.1) better than Method D) at training set size x.
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Figure 2.14 compares the TP rates of the 5 selective sampling methods in this artifi­

cial test. Random sampling is also included for comparison. The TP rates and FP rates 

shown are the average of 5 repetitions of the experiment. Figure 2.15 and figure 2.16 show 

the comparison of smoothed curve(average of 5 runs) and unsmoothed curve(average of 5 

runs) for every sampling method. Throughout the whole thesis, each TP/FP rate figures 

will be followed by such a figure comparing the smoothed curve(average of 5 runs) and 

unsmoothed curve)average of 5 runs) for every sampling method.

Uncertainty sampling has the worst performance in terms of TP rate (the performance 

difference is significant [a  =  0.10] at training set size 2500), mostly because it concentrates 

on the region where the real positive class probability is equal to 0.5. Bagging and boosting 

are better than uncertainty sampling (the performance difference is significant [a =  0 .10] 

at training set size 2500, in individual pairwise comparisons). Bagging and boosting both 

are concentrating on boundary sampling. Random sampling has a good TP rate curve (e.g, 

it significantly [a =  0 .10] beats all other methods except for rule-based sampling at train­

ing set size 1500), but its overall FP rate is the highest of all the 6 sampling methods (the 

performance difference is significant [a  =  0.10] at training set size 2500). The rule-based 

sampling method performs best in this artificial test environment. It is the fastest sampling 

method to reach a high and stable TP rate (e.g., it significantly [a =  0.10] beats all other 

methods at training set size 2000), and it keeps a relatively low FP rate (but the differ­

ence is not shown to be significant [a  =  0.10] at training set size 2500 given our sample 

size). In Figure 2.14, the rule-based sampling method stopped before other sampling meth­

ods because the exclusive rule conversion algorithm cannot handle such a large number of 

rules. This is a limitation of the current implementation of the rule-based sampling method. 

In summary, in terms of TP rates, rule-based sampling is the best (e.g., it significantly 

[a =  0 .10] beats all other methods at training set size 2000), uncertainty is the worst (the 

performance difference is significant [a =  0.10] at training set size 2500). In terms of FP 

rates, random is the worst (the performance difference is significant [a =  0 .10] at training 

set size 2500), the FP rates difference of all other sampling methods are not shown to be 

significant (a  =  0.10) at training set size 2500 given our sample size.

2.3.3 H igh-dim ensional artificial tests

Figure 2.14 shows that random sampling is not bad compared with selective sampling meth­

ods in terms of TP rates in the 2-D artificial environment. We hypothesize that selective 

sampling methods will be better than random when the number of dimensions increases
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Figure 2.14: Sampling methods: TP and FP rates comparison
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Figure 2.15: 2-D TP rate: smoothed vs. unsmoothed
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Figure 2.16: 2-D FP rate: smoothed vs. unsmoothed
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because random sampling must sample sparsely. For each higher dimensional space, target 

concepts will be generated, each of which is a region with a certain width in each dimen­

sion; the total volume of all disjoint regions is fixed to be 40% of the whole instance space. 

The positive probability of each target concept region is equal to 1.0 and each region is 

surrounded by a very thin transition area.

Evaluation

TP and FP rates will be calculated exactly by comparing the geometry of the learned rules 

with the target concepts. Figure 2.17 shows how to get TP, TN, FP and FN by comparing a 

learned rule with the target concept.

Instance Space

Learned ruleTarget'concept

Figure 2.17: Evaluation by comparing the learned rule with the target concept 

Experiment setup and results

The initial training set is 50 examples and 10 more examples are added to the training set 

on each iteration.

• 4-D

-  TP rate (Figure 2.18(a))

Bagging and rule-based sampling are the best two methods (e.g., bagging sig­

nificantly beats all others [a =  0.10] except for boosting at training set size 400; 

boosting significantly beats all others [a  =  0 .10] except for bagging at training 

set size 400 as well). The TP rates difference of all other sampling methods are 

not shown to be significant (a  =  0.10) at training set size 400 given our sample 

size.
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Figure 2.22: 6-D TP rate: smoothed vs. unsmoothed
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Figure 2.26: 8-D FP rate: smoothed vs. unsmoothed

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



fa
lse

 
po

sit
ive

 
rat

e 
tru

e 
po

sit
ive

 
ra

te

0.7

bagging * 
boosting — 

bootstrapLV —b—
random------

rulebased — 
u n c e r t a i n j ^ f | ^

0.6

0.5

0.4

0.3

0.2

200 250 30050 1 0 0 150
number of training data

(a) TP rate

0.12 boosting
bootstrapLV

random
rulebased

uncertainty

0.08

0.06

0.04

0.02

250 300150 20050 1 0 0

number of training data
(b) FP rate

Figure 2.27: TP and FP rates comparison in a 10-D space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tru
e 

po
si

tiv
e 

ra
te 

tru
e 

po
si

tiv
e 

ra
te

 
tru

e 
po

si
tiv

e 
ra

te
0 .7

s m o o th e d  random  
ran d o m

0.6

0 .5

0 .4

0 .3

0.2

150
n u m b e r of train ing  d a ta

200 250 30 0100

bagg ing
sm o o th e d  bag g in g

100 150 2 00  250
n u m b er of train ing  d a ta

(a) Random (b) Bagging

0.7

boosting  
sm o o th e d  bo o stin g

0.6

0.5

0 .4

0 .3

0.2

250 3 00100 150
n u m b e r of train ing  d a ta

200

0.7

boo tstrapL V  -  
s m o o th e d  boo tstrapL V  —

0.6

0.5

0.4a>>

o  0 .3  a.
a>
3 0.2

0.1

250 300100 150 2 00
n u m b er of train ing  d a ta

(c) Boosting (d) BootstrapLV

0.7

0 .6  sm oothed  ru le b a s e d  — 
ru le b a s e d  —1

0 .5

0 .4

0 .3

0.2

150
n u m b e r of train ing  d a ta

200 250 3 00100

0 .7

s m o o th e d  uncertainty0.6

0.5
Q)(0

0.4©>

I  0-3
CD3 0.2

0.1

250 300100 150 200
n u m b er of train ing  d a ta

(e) Rulebased (f) Uncertainty

Figure 2.28: 10-D TP rate: smoothed v.v. unsmoothed
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-  FP rate (Figure 2.18(b))

Bagging is not stable in the early stages, but achieves the lowest FP rate even­

tually (the performance difference is significant [a = 0.10] at training set 

size 1030); rule-based sampling beats random after training set size is bigger 

than 400 (e.g., it significantly [a  =  0.10] beats random at training set size 

500); random sampling, uncertainty sampling and boosting has no significant 

(a  =  0.10) FP rates difference at training set size 600 given our sample size. 

BootstrapLV is the worst in terms of FP rates (the performance difference is 

significant [a =  0.10] at training set size 700).

-  Overall

Bagging and rule-based sampling are the overall winners.

•  6-D

-  TP rate (Figure 2.21(a))

Boosting, bagging and rule-based sampling are similar (no significant [a =  

0.10] difference at training set size 600 given our sample size); but each of them 

is better than random sampling (the performance difference is significant [a =  

0.10] at training set size 600); BootstrapLV is the overall worst (the performance 

difference is significant [a =  0.10] at training set size 400).

-  FP rate (Figure 2.21(b))

There is no significant (a  =  0.10) difference between the different sampling 

methods, e.g, at training set size 700.

-  Overall

Selective sampling methods (except for Uncertainty and BootstrapLV) begin 

to be superior to random sampling (the performance difference is significant 

(a  =  0.10) at training set size 600).

•  8-D

-  TP rate (Figure 2.24(a))

Two groups are formed and the sampling methods within each group have sim ­

ilar TP rates. The first group consists of boosting, bagging and rule-based sam­

pling. The second group has lower TP rates than the first group; it consists of 

uncertainty sampling, random and BootstrapLV.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-  FP rate (Figure 2.24(b))

Random sampling is the worst (the performance difference is significant [a  =  

0.10] at training set size 200).

-  Overall

Boosting, bagging and rule-based sampling are better than random sampling 

(the performance difference is significant [alpha = 0.1] at training set size 300).

• 10-D

-  TP rate (Figure 2.27(a))

Bagging, boosting, rule-based and uncertainty sampling all beat random sam­

pling (the performance difference is significant [a  =  0.10] at training set size 

200).

-  FP rate (Figure 2.27(b))

Bagging and rule-based sampling seem to be better than other sampling meth­

ods, due to limited number of samples and iterations, above claim is not signif­

icant (a  =  0.10), e.g., at at training set size 200.

-  Overall

All selective sampling methods except BootstrapLV beat random sampling in 

terms of TP rates (the performance difference is significant [a =  0.10] at train­

ing set size 200).

Some experimental results (Figures 2.18-2.27) confirm the hypothesis that selective sam­

pling methods are superior to random sampling when dimensionality increases.

2.3.4 Conclusion and Discussion

Experimental results (especially when dimensionality is high) proved that selective sam­

pling algorithms are more efficient than random sampling. Given the same accuracy target, 

less training data is needed by selective sampling algorithms. The performance of the five 

implemented selective sampling methods is different with different dimensionality. There­

fore, one conclusion is that the different sampling methods behave differently in different 

problems. Experiments must be done to get the most suitable sampling method for a given 

problem. In the artificial test environments, bagging and rule-based sampling are always 

among the best methods for all spaces.
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A comment on Bootstrap-LV

Experiments indicate that the behavior of Bootstrap-LV is much different than the other 

selective sampling techniques. In Figure 2.10(a), Bootstrap-LV wastes many of its samples 

in areas already known to be negative. This is because the Bootstrap-LV algorithm uses 

example scores as probabilities and samples from this distribution instead of picking the 

top N examples. The problem is the following: if data points with high scores are greatly 

outweighed by data points with low scores, Bootstrap-LV will tend to select low scoring 

data points. For example, suppose there are 4 examples in a 100-example pool having very 

high scores (x each), and the other 96 examples all have the score of x /1 0  each. A low 

scoring example is 2.4 times more likely to be chosen than a high scoring example.
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Chapter 3

Scenario Testing for (Sports) Games

In this chapter, the Semi-Automated Gameplay Analysis (SAGA-ML) system is presented. 

SAGA-ML will automatically play against real games to collect information used for game­

play analysis and this process actually is the functional test in the context of software test­

ing. Therefore, the background of software testing is introduced in 3.1. The relationship 

between automated testing and gameplay analysis is discussed in 3.2. Then the details of 

SAGA-ML are described and illustrated with the example of the corner kick scenario in 

Electronic Arts’s FIFA99 soccer game.

3.1 Background — Software Testing

Software testing is an important part of the software development cycle. Figure 3.1 shows 

the waterfall model[31] that separates the software development process into several phases, 

each of which only interacts with adjacent phases. First, requirements are analyzed and de­

fined. Then, the system and software are designed based on the requirements. Testing 

involves in two phases: during the implementation phase, unit testing will be used to test 

individual modules; more testing will be done for integration and at the system level. Fi­

nally, the software will be delivered to customers and maintenance work will be done as 

needed. Software testing is playing a more and more important role, and accounts for 50% 

of the total cost of software development^]. A study[27] by National Institute of Standards 

& Technology showed that “the national annual costs of an inadequate infrastructure for 

software testing is estimated to range from $22.2 to $59.5 billion” or about 0.6 percent of 

the US gross domestic product.

In 1991, the International Organization for Standardization (ISO) adopted ISO 9126[13] 

as the standard for software quality. It is structured around six main attributes listed below:

Functionality (suitability, accurateness, interoperability, compliance, security)
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Figure 3.1: Waterfall Model of Software Development Process

Reliability (maturity, fault tolerance, recoverability)

Usability (understandability, learnability, operability)

Efficiency (time behavior, resource behavior)

Maintainability (analyzability, changeability, stability, testability)

Portability (adaptability, installability, conformance, replaceability)

Although above 6 categories are well defined software testing categories, there are no stan­

dard testing metrics and processes. Publications[26] by IEEE have presented numerous 

potential metrics that can be used to test each attribute.

Fault density

Defect density

Cumulative failure profile

Fault-days number

Functional or modular test coverage
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Data or information flow complexity 

Cause and effect graphing 

Requirements traceability 

Defect indices 

Error distribution (s)

Software maturity index 

Person-hours per major defect detected 

Number of conflicting requirements 

Number of entries and exits per module 

Software science measures 

Graph-theoretic complexity for architecture 

Cyclomatic complexity 

Minimal unit test case determination 

Run reliability 

Design structure

Mean time to discover the next K-faults 

Software purity level

Estimated number of faults remaining (by seeding)

Requirements compliance

Test coverage

Reliability growth function

Residual fault count

Failure analysis elapsed time

Testing sufficiently

Mean time to failure

Failure rate

Software documentation and source listing 

Rely-required software reliability 

Software release readiness
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Completeness 

Test accuracy

System performance reliability 

Independent process reliability 

Combined hardware and software (system) availability 

In practice, software testing usually uses the following categories.

U nit testing this type of testing will test a basic unit of the software (e.g. a method 

in object-oriented software).

Integration testing this type of testing is the module level testing. The integration 

of several objects or methods will be tested.

System testing this type of testing is the application level testing. The integration of 

modules will be tested.

Regression testing this type of testing will verify that new code does not introduce

any additional bugs into the previously tested code.

Stress testing the purpose of stress testing is to make sure the software works prop­

erly beyond normal load conditions (e.g., testing the program in a system where 

all physical memory has been consumed).

Perform ance testing performance testing will test performance issues such as re­

sponse time, efficiency etc.

Each testing category will consider at least one metric from IEEE’s list. A general process

for a software testing task can be divided into 4 phases[45]:

Modelling the software’s environment 

Selecting test scenarios 

Running and evaluating test scenarios 

Measuring testing progress

Firstly, the tester should model the software’s environment to simulate realistic software 

usage. All interactions between users and software should be considered. Given the com­

plexity of current software, the second testing phase is to select test cases (a test case is 

a choice of input testing data) to satisfy certain, criteria, such as execution path coverage 

and input domain coverage. Then, those test cases are run and evaluated according to the 

software’s specifications. Finally, evaluation should be done to measure the whole testing 

progress to see if enough testing has been done.
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3.1.1 Commercial Tools for Software Testing

The worldwide market for software testing tools was $931 million in 1999 and at that time 

was projected to grow to more than $2.6 billion by 2004[35]. Testing tools can be catego­

rized into general purpose tools, application specific tools, and management tools. General 

purpose tools including tools for functional testing and performance testing, which can 

be applied to all software. On the other hand, many test tools are designed for specific 

software types such as databases, embedded systems, Java-based systems and web applica­

tions. Management tools include the tools for test management, bug tracking, requirement 

management, etc. There are a large number of test automation tools and venders in the 

market. Among them, Rational (Robot, Visual Test), Mercury Interactive (WinRunner), 

Segue (SilkTest) and Compuware (QA Run) are the more well-known test tool companies 

(products). Each product has its own strength and weakness. For example, Rational Robot 

is good at data creation facilities and Segue SilkTest has better text facilities. Reference 

[30] compares main functional test tools in the market.

3.1.2 Test-case Generation for Software Testing

Among the 4 phases of a software testing process, test-case selection and evaluation are the 

two phases that cost testers the most time. Although program-based (automatic) test data 

generation and verification has been believed to be effective at reducing software testing 

cost for many years, in real industry software development, those two tasks are still done 

manually and heavily rely on testers’ expertise. In this section, some research on test-case 

automatic generation will be discussed.

Test cases are selected to simulate real software usage. Ideally, it will be best if all 

possible usage is tested, which is not practical due to the complexity of current software. 

The input domain of software usually is infinite. There are two criteria to evaluate a test 

case selection process: if selected test cases are enough to satisfy criteria (e.g., coverage) 

for execution paths and input domains, and the number of test cases. The best case is that 

minimal test cases are selected to achieve the testing goals.

There are two categories of automatic test-case generation techniques: structural (white- 

box) testing and functional (black-box) testing. If the structure of tested program itself is 

used for testing, the testing method is called white-box; otherwise, it is called black-box. 

Reference [41] indicates that modern software is too large to be tested by the white-box 

approach as a single entity. In practice, white-box testing approaches are usually used for 

subsystem levels. Black-box approaches are more commonly used for complex systems.
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• Structural (White-box) test-case generation techniques

Basic Concept Many studies in the literature use the concept of Control Flow Graph 

(CFG) to analyze structur-based testing methods. The following definitions are 

mostly taken from [23]:

Control Flow Graph (CFG) CFG is the control flow graph of the program 

under test. Most structure-based testing methods rely on a CFG. A CFG 

is a directed graph G =  (TV, E , s, e), where N is the set of nodes; E is the 

set of edges, s and e the entry/exit nodes of the program F . Each node 

n  <£ N  is a statement in F. Each edge e — (n*, n j)  £  E  is a transfer of 

control from node ?i, to n3. Nodes corresponding to decision statements 

(e.g., if...then, while loop) are called branching nodes.

Path a path P  is a sequence P  —< n \ , 712,..., n m > , such that for all i, 1 < 

i < m , (« ,, n t+t) G E. A  path is feasible if there exists a program input 

for which the path is traversed, otherwise it is infeasible.

Static structural test-case generation The methods in this category analyze the static 

program structure without executing the program. The general framework of 

such methods is this: given a goal node g, a path leading to g will be found by 

analyzing the static program structure solely. Inputs (test cases) are then gener­

ated from this path. If no inputs can be generated from this path, another path 

leading to node g will be chosen until inputs can be generated. Symbolic ex­

ecution]^  is a representative approach in this category of test-case generation 

techniques. For any path p, all constraints involving the input variables used 

by p  are generated. The task of selecting inputs is converted to solving those 

constraints. The main shortcoming of this method is that the symbols it uses do 

not include dynamic elements like dynamic data structures and arrays.

Dynamic structural test-case generation The test-case generation techniques in this 

category execute the software being tested.

Random approach The random approach is the simplest method: test cases 

are generated randomly from the input domain when the software is exe­

cuted. However, this method is not efficient and effective. Many program 

paths can not be tested due to the very low probability of generating inputs 

that exercise these paths.
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The goal-oriented approach This approach[16] starts the software with arbi­

trary inputs. When program runs into any code node, a procedure will be 

executed to decide if this node should be run or not. The criteria is the 

relationship between this node and the target node. If executing the current 

node does not lead towards the execution of target node, this node should 

be avoided.

The chaining approach Symbolic execution and the goal-oriented approach 

only use a program’s control flow graph. In the chaining approach[12], 

data dependence is used as well to evaluate if a program node should be 

included into the path.

Assertion testing Assertion testing[15] inserts many assert statements into the 

code to test boolean conditions. If the boolean conditions are false, a fail­

ure will be detected. There are two tasks in these testing methods: the first 

one is to write the boolean conditions, which means the tester must fully 

understand the meaning of the program under test. This could be a limi­

tation of this method. The second task of this testing method is to run the 

softw.are and enumerate all paths containing assert statements.

• Functional (Black-box) test-case generation techniques

Black-box testing methods are usually used to test the functionalities of a system 

without knowing the implementation details. In the context of test-case generation, 

the main idea is to use a function description (e.g., function specifications) to generate 

test cases.

In [39], formal function specifications are used to generate test data. First, function 

specifications must be converted into a formal format: conditions on the inputs of the 

function are the pre-condition and the outputs of the function is the post-condition. 

A failure will be detected if inputs satisfy the pre-condition but the outputs violate 

the post-condition. Given an input of the function, an objective function is used to 

evaluate its closeness score to get a fault output. This score is then used to guide the 

generation of next input supposed to be closer to cause a failure.

Many black-box test-case generation techniques are A.I. based, which will be dis­

cussed in more details in following section.
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3.1.3 A .I. for Softw are testing

Artificial Intelligence techniques have been applied to all software testing phases. Many 

A.I. techniques, like Artificial Neural Networks (ANN) and Info Fuzzy Networks (IFN), 

have been successfully used for test-case generation and test-oracle creation. Some data 

mining techniques[10] have been used to discover knowledge from software metrics. Be­

cause statistics is one of the most important foundations of A.I., some statistics-based test­

ing techniques are also included in this section.

Statistic Software Testing Techniques

Markov chain A Markov chain is used to model software usage in [46]. A Markov 

chain will be built based on software usage. Test cases then can be generated 

from this model and multiple probability distributions. A second Markov chain 

will be built from the generated test cases with the results of their having been 

run (failed or not). This second Markov chain can be used to analyze the failure 

distribution and evaluate the software. The quality of building the first Markov 

chain (how to simulate the realistic software usage before this software is re­

leased?) is the key of this technique.

Hill climbing Hill climbing has been used for test-case generation[24], Starting 

from a seed test case, a hill climbing algorithm explores the neighborhood of the 

input domain of this seed. Depending on testing purpose, a objective function 

is used to evaluate test cases. This search process will continue until a locally 

optimal test case is found.

Simulated annealing Simulated annealing[39][40] is used to overcome the prob­

lems of hill climbing. By probabilistically accepting poorer solutions, simu­

lated annealing can explore more of the input space than hill-climbing, which 

means higher quality test cases might be found.

Heuristic Search

Many test-case generation approaches discussed above use a heuristic method to search the 

target program node. The goal-oriented approach[16] and the chaining approach[12] will 

evaluate current program branch to decide if search should start from this branch. Reference 

[20] used heuristic search techniques to generate test program automatically based on test 

cases and closed algebraic specifications of the classes.
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Evolutionary Algorithm

Some applications (e.g., [43], [18], [44]) applied evolutionary algorithms to software test­

ing. Evolutionary algorithm based test-case generation methods start from a initial test case 

population, usually randomly generated. Depending on the testing purpose, a fitness func­

tion will be used to generate a real value for each test case. Test cases with high scores have 

higher probabilities to be selected to mate and mutate to generate the next generation — 

new test cases. In the end, high quality test cases are generated.

Artificial Neural Networks (ANN) and Info Fuzzy Networks (IFN)

Artificial Neural Networks (ANN) and Info Fuzzy Networks (IFN) are two important data 

mining approaches. The reason to discuss ANN and IFN together is that they are almost 

playing same roles in software testing. Both ANN and IFN are used on test-case generation 

and test-oracle generation. In [2], a neural network uses test case metrics as inputs and the 

error classification as outputs for training. Once such as a network is trained, test cases 

generated by random or from some generation tools will be fed into this network to predict 

the fault exposure. Only test cases classified as certain classes will be used as real test cases. 

In [19], an IFN is built as a simulated system of the system under test. Randomly generated 

test cases with corresponding system outputs are sent to the IFN. The IFN algorithm is 

run repeatedly to find a subset of input variables relevant to each output. Once the IFN is 

trained, a set of non-redundant test case covering the most common functional relationships 

existing in software will be automatically produced. In [1], the performance of ANN and 

IFN as test oracles is compared.

3.2 Gameplay Analysis and Automated Game Scenario Testing

As it is defined in Chapter 1, gameplay usually refers to the game behaviour as defined by 

the game’s rules, logic, difficulty, goals, and constraints. Gameplay contributes much to the 

enjoyability of a game.

3.2.1 Gameplay Analysis

Figure 3.2 shows the current industry process for gam eplay design, implementation, testing, 

and refinement. A box with a human icon means that that phase needs human involvement. 

Usually, the producers design the game’s properties. Game developers implement those 

game properties according to the design specifications. Producers and testers will examine
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Figure 3.2: The gameplay development process in industry

the implementations and ask developers to fix related bugs and tune parameters. Game eval­

uation will be done during the validation phase. The common method of doing gameplay 

evaluation is a process of play-and-feel, which totally relies on a human’s sensitivity and ex­

perience. The play-and-feel method has its benefits: it is simple, it just involves playing the 

game, and human feeling could be very sensitive if trained properly. That is why comput­

ers cannot replace artists. However, the play-and-feel method has some major drawbacks. 

First, it can be very slow. For instance, if a developer wants to test the game behaviour of 

the corner kick scenario in the FIFA99 game (defined below), he has to drive the game into 

a corner kick situation, which is a rare scenario during a game. Therefore, it might take at 

least 10 seconds to enter a corner kick. However, many repetitions of the same corner kick 

are needed for good testing, which is a slow process. Another drawback of play-and-feel is 

that this process can be human resource-consuming for producers, developers and testers.

3.2.2 U sing A utom ated Testing for G am eplay A nalysis

Given the fact of inefficient gameplay analysis in industry (the play-and-feel method), a 

new gameplay analysis method, which integrates automated testing into gameplay analysis, 

is proposed in this thesis. We will have a testing program that generates a wide variety of 

inputs to the game and measures a specific outcome, such as whether a goal is scored or 

not. This will generate a large file of gameplay examples, where each example records the 

sequence of actions taken by the testing program and the final outcome.
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Challenges and Solutions in Using Automated Testing for Gameplay Analysis

Challenge 1: Normally, automated testing is used for testing tasks such as functionality 

testing, where the output of a test case will be known explicitly by referring to design 

specifications. It is also possible to apply the automated testing process when the design 

specifications do not provide explicit criteria for judging the result of testing: a test case 

will generate an output but it can’t be evaluated automatically as being right or wrong, or 

good or bad. In this situation, there won’t be any testing statistics directly coming from 

automated testing. Gameplay analysis is just such a case. Putting many game modules 

together, even game developers themselves are not sure of the exact behavior to expect. 

There is no formal definition of correct gameplay because gameplay is a kind of feeling. 

For example, in assessing the difficulty of a game, some people might say the beginner level 

is too easy, while someone else will say it is too hard. Therefore, a human is needed to 

make subjective judgements. But the huge gameplay log is incomprehensible to humans. 

If automated testing is to be used for gameplay analysis, the first challenge is -  how to 

generate human-friendly testing output?

Solution to Challenge 1: In this thesis, machine learning is used to create a summary 

of the gameplay log that is comprehensible by humans. The learning task is defined as a 

classification task because we are trying to predict a class label (e.g., whether or not a goal 

was scored) given a game situation. The features in each training example are the game 

variables related to the outcome being investigated. After the game is played by using a 

vector of feature values as input, the desired class will be collected from the game. The 

feature value inputs and their corresponding class make up one training example. Training 

examples are fed into a machine learning algorithm (C4.5 here) to produce a model (a set 

of rules here) summarizing game behavior, which could be further visualized and presented 

to game designers.

Challenge 2: The set of possible inputs for the full game is far too large. How to 

efficiently guide automated testing is the second challenge.

Solutions to Challenge 2: Automated testing programs in this thesis are not designed 

for the whole game, but for an individual game scenario. Even restricted to a single sce­

nario, sample spaces can be too large to exhaustively enumerate because they might be high 

dimensional, and dimensions can be continuous. Time and computation restrictions do not 

allow sampling a huge number of examples. Therefore, selective sampling (discussed in 

Chapter 2) is used to sample instance space intelligently to build a good model.
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Game Analyzer: A Similar Gameplay Analysis Tool for Role-Playing Games

Game Analyzer[25] is a semi-automated tool to analyze gameplay for Role-Playing games. 

Game Analyzer transforms a user-defined game scenario into a state-transition model, and 

then samples and evaluates policies (like the action sequences in our system). Although 

Game Analyzer shares the same goal as this thesis, there are three main differences between 

the two systems. Firstly, Game Analyzer applies to Role-Playing Games, not sports games. 

Secondly, Game Analyzer does not use machine learning to summarize game behaviour. 

It just samples the space of possible “policies” and displays the particular outcomes of the 

policies it tried. Lastly, Game Analyzer does not use active learning.

3.3 Semi-automated Gameplay Analysis System (SAGA-ML)

Instead of traditional, totally manual gameplay analysis, the preceding section has outlined 

a method for gameplay analysis that involves automated testing, with human involvement 

only once machine learning has created a summary of the gameplay behaviour. The spe­

cific definition of gameplay used in the proposed method is the game behavior under the 

constraints defining a game scenario. Figure 3.3 is the architecture of the whole SAGA-ML 

system, which plays the role of the Validation box in Figure 3.2. Because of the human 

involvement, this system is not totally automated, therefore it is called the Semi-automated 

Gameplay Analysis System (SAGA-ML). Modules “Sample Generator” (selective sam­

pling) and “C4.5” have been covered in the last chapter. The present chapter will give the 

details for the rest of the modules in Figure 3.3. To better explain SAGA-ML, a concrete 

application, the comer kick scenario in Electronic Arts’s FIFA99, is used in this chapter.

3.3.1 T he C orner K ick  Scenario in  E lectronic A rts’s FIFA99

A corner kick in a soccer game is a direct free kick from a corner of the field awarded 

to the attacking team when the ball has been driven out of bounds over the goal line by a 

defender (from the American Heritage Dictionary). FIFA99 corner kick scenario is well 

known because many human players take advantage of this scenario to score. There are 

some corner kicks in which the attackers almost always score. Therefore, this scenario 

actually is o f  great value to test for EA. This scenario is the sim plest one in this thesis 

because it only has two features: the X and Y coordinates of the ball’s landing position. 

This is because in FIFA99 this scenario has a fixed setup, which means given the same 

game configurations (teams, players etc.), the initial state (e.g. the position of each player)
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of this scenario is always the same, there are no player-controlled aspects of the initial state. 

In Figure 3.4(a), the soccer ball is placed at the near corner (it is obscured by the nearest 

player); the nearest player is the kick taker from the attacking team; every other player (on 

both the attacking and the defending team) in the figure is in his predetermined corner kick 

position. After the ball is kicked from the corner, the attacker who receives the ball will 

make a shot (with his head or feet) at his first touch. The end of this scenario is one of 

following 3 events: (1) the ball goes out of bounds or into the goal, (2) the defenders get 

control of the ball, or (3) a time limit is exceeded. In Figure 3.4(b), the ball is in the air 

and each player in the picture is responding to the kick. The outcome of this scenario is 

that a goal is scored (score) or not. As discussed in 2.3.1, each action sequence will be run 

10 times and assigned to class score if the number of times it produces a goal exceeds a 

threshold. Therefore, score actually means “score with high probability”.

3.3.2 Feature D esign

Given a game scenario, a sample is a feature vector describing the scenario’s initial condi­

tions and the actions (if any) that will be taken by the user as the scenario plays out. The 

task offeature design is to define features representing the game scenario that are relevant to 

the testing goal being considered. In the comer kick scenario, the testing goal is to summa­

rize the ways of scoring (with high probability) in terms of different ball landing positions. 

Therefore, the features are the ball’s landing position (X and Y coordinates). The outcome 

of the scenario is added as the the sample’s class label, which is a boolean value indicating 

if a goal is scored or not. The sample feature vectors are produced by the Sample Gener­

ator. Some features could exactly correspond to variables inside the game. For example, 

in the corner kick scenario, the inputs generated by the Sample Generator are the ball’s 

landing position pair (X and Y co-ordinates). This pair of features directly corresponds to 

two game variables in FIFA99. However, in some more complicated cases, the variables 

inside the game might be different than the variables we want for machine learning. Two 

sets of features might be equivalent mathematically but very different in terms of how eas­

ily a concept can be expressed by machine learning algorithms. For instance, suppose that 

there are only two players (a shooter and an opponent goalie) standing on a soccer field. To 

measure their positions, two Cartesian co-ordinate pairs (Figure 3.5(a)) can be used. From 

the pure mathematics perspective, the Cartesian co-ordinates are equivalent to another set 

of measures: the distance and the angle between the two players, and the angles between 

the shooter and the two goal posts (Figure 3.5(b)). But from a machine learning algorithms’

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) prepare

1 F9e £FtS  SCEMT C am eras Options: 

I Help

Cbpreo ConMan fettrib. I

■ ib h
(b) shoot

Figure 3.4: Corner kick scenario

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 Y

Goalie (Xg, Yg)

Shooter(Xs, Ys)

----- ►

X
(a) Cartesian co-ordinates measure

Shooter

(b) distance and 3 angles measure

Figure 3.5: Different but mathematically equivalent feature measures

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



point of view, the distance and angles might be preferred because they are more informative.

3.3.3 Sam ple G enerator

The new training examples (without their labels) are generated by the Sample Generator, 

which implements the selective sampling algorithms covered by Chapter 2.

3.3.4 G am e Scenario A utom ation

To get the output values needed by the machine learning algorithm, an automated testing 

program is run to execute the game scenario. The testing program will take the inputs 

generated by the Sample Generator to initialize itself, with data conversion, if necessary, to 

convert the features to values for actual game variables. Then a series of actions is executed 

to simulate playing the game scenario. Finally, the result of this test is collected from the 

game and converted into the form needed by the machine learning algorithm. In this thesis, 

a state machine is built for each game scenario to guide the testing process. The automated 

testing program will collect the required game information and transit between the states. 

For example, there are four states defined for the corner kick scenario:

CORNERKICK_PREPARING 

CORNERKICK_BEGIN 

CORNERKICKJTRSTTOUCH  

CORNERKICK-SECONDTOUCH

The corner kick scenario begins from the state CORNERKICK_PREPARING. In this 

state, a corner kick event is triggered; the ball is placed in a corner, every player in the field 

goes to his position, and the kick-taker stands in front of the ball. After the game state is 

stable, the automated testing program will go to the next state: CORNERKICK_BEGIN. 

In this state, the kick-taker kicks the ball so that it will land at the position specified by 

the Sample Generator. As soon as the ball is touched by a player after being kicked, the 

scenario goes to the third state: CORNERKICKJFIRSTTOUCH. If the first toucher is an 

attacker, he will make a shot at the goal. If the ball is out of bounds, is touched a second 

time, or a predetermined time limit is exceeded, the scenario goes to the last state: COR­

NERKICK-SECONDTOUCH. In this state, the result of this run (score or not) is collected 

and the corresponding output for the machine learning algorithm is written to a data file.
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The above state transitions rely on some internal game variables, such as the game state, 

the ball’s position and velocity, etc. The testing program tracks the values of these variables 

with hooks that are put into the game for this purpose. The testing process could be run 

thousands of times, but the game running environment has to be reset after each run.

3.3.5 Game Hooks and Modifications to the Original Game

To run a game scenario automation, the game must be modified. There are two types of 

interactions between the testing program and the original game. The first type are Game 

Hooks, which are the entry points from the original game to the automated testing program. 

The second type are Modifications to the original game specifically for testing a given game 

scenario. The following are the hooks and modifications for the corner kick scenario.

void GAME_updateFrame()

This is a standard FIFA99 function that is called once every game frame. Our code is added 

here to update the game scenario testing state machine. The scenario testing state machine 

then inspects specific variables to determine if a state transition has been made. If  the final 

state is reached, the final output will be printed to a file for this run and the state machine 

reset to begin the next run. This function is the main entrance of the state machines for each 

game scenario.

void REFEREE_process_ballout()

Originally, this function call will be followed by a sequence of game video (e.g., the goalie 

picks up the ball or players cheer for a goal). To prevent those game videos in the corner 

kick scenario, this function is changed to do nothing when the ball is out of bounds.

void FIELD_get_corner.position(COORD *pos, COORD *newpos)

Originally, this function will calculate which corner should be used to do the corner kick 

based on the position where the ball went out of bounds. To get identical initial states, this 

function is changed to return a fixed comer position when the corner kick scenario is being 

tested.

void PLAYERTASK_free_kick(PLAYER_DEF *this)

Originally, the game has its own strategy to choose the ball’s landing position. This function 

is changed to use the landing position generated by the Sample Generator.
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void TACTIC _doBestKick()

Originally, this function will select a best action (e.g., dribbling, passing, or shooting) for 

the attacker. It is changed to force the ball’s receiver (on the attacking side) to make a shot 

in the corner kick scenario.

3.3.6 SoccerV iz: V isualization  Tool

A single IF...THEN... rule is easy to read, but a large set of rules is not that easy for humans 

to read. Moreover, if the rule set is ordered and the rules can overlap (as is the case with 

the rules produced by C4.5), it will be very hard to understand. Therefore, for some game 

scenarios, Mark Trommelen at the University of Alberta implemented a visualization tool 

called SoccerViz to display the rule sets in a way more natural to the designer. Three 

scenarios have been visualized: a 2-d artificial test scenario, the corner kick scenario, and 

the breakaway scenario.

Figure 3.6 is a screen shot of SoccerViz for the corner kick scenario. There are 4 main 

areas in the screen shot: the visualization area (central middle), the rule selection area 

(right), the rule details area (bottom), and the control buttons area (top).

Visualization Area

The visualization area is the graphic part of SoccerViz. Visualized components (soccer 

field, rules, data points etc.) for a game scenario will be drawn here. In Figure 3.6, the 

background of the visualized corner kick scenario is a soccer field and it is zoomed in to 

one side of the penalty area. There are many dots, each of which represents an example, 

mostly inside the penalty area. The color of a dot indicates the class of the corresponding 

example: black is negative (not a score) and white is positive (score). Because each action 

sequence will be executed multiple times (10 in this study) to get a probabilistic outcome, 

there are overlapping data points which can have different labels (colors in the visualization 

tool). If they are drawn directly in the tool, they will be on top of one another and so people 

won’t be able to see what proportion of them are black and what proportion are white. To 

clearly visualize these data points, a grid color is introduced, as follows. The soccer field is 

divided into small rectangles, and the color (shade of grey) of a rectangle is determined by 

the ratio of the number of black dots inside this grid v.s. the number of white dots. If there 

are too many data points inside a single grid, a cross (X) is used to represent all data points 

inside the rectangle. The color of the cross (X) indicates the overall grey color of the data 

points inside this grid.
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Rule Selection area

The rule set for the current selective sampling iteration is listed in this area. Rules are 

grouped by their rule class and sorted by their accuracy. The default rule is placed last. The 

user can select or unselect a rule. If a rule is selected, a visualized rule area is drawn in 

Visualization area. In Figure 3.6, rulel is selected, and the rectangle representing rulel is 

drawn roughly in the middle of penalty area.

Rule Details Area

The rule details area gives the detailed description of the selected rules. In Figure 3.6, the 

details of rulel are shown.

Command Buttons Area

The top area of Figure 3.6 is the command buttons area. These buttons give users controls 

such as: the user can choose to see individual rules, or a rule set; the user can choose to see 

the data points covered by the selected rules, or all the data points; the user can feed a data 

point back to the game to watch it being played out.
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Chapter 4

Game scenario testing in FIFA99

Electronic Arts’s FIFA Soccer is a complex sports game. There are 22 players on the field. 

Many rules are implemented in the gameplay system of FIFA to coordinate all the players 

to simulate real soccer games. The complexity of FIFA’s gameplay system causes difficulty 

in developing and testing. Many gameplay sweet spots are utilized by human players to 

decrease the difficulty level of the game, which will impact the playability of the FIFA game 

eventually. In Chapter 3, the Semi-Automated Gameplay Analysis (SAGA-ML) system was 

introduced. In this chapter, SAGA-ML will be tested on FIFA99. It will summarize FIFA99 

behaviors as human readable rules, which can be presented to game designers to check if 

those behaviors are as intended. Unexpected game behaviors can be found this way.

Unlike the evaluation methods used in the artificial testing environment, FIFA99 game 

scenarios will also be evaluated using “blurred” target concepts; this will be explained in 

Section 4.1. Then, the experimental results for three FIFA99 scenarios -  corner kick, break­

away, and dribble-dribble-shoot -  are presented.

4.1 Evaluation methods

In Chapter 2, an artificial experiment environment was set up. The target concepts are ex­

actly known in advance, so experimental results can be evaluated by directly comparing the 

geometry of the learned concepts with the target concepts. However, there are no target con­

cepts known in advance for a real application like FIFA99. In this chapter, all experiments 

are evaluated by two methods: the first one is the standard machine learning evaluation 

method, which estimates TP rates and FP rates by using a large test set. For an application 

like FIFA99, we believe another evaluation method is more informative: get the approxi­

mate target concepts first; blur the approximate target concept; and then evaluate learned 

concepts by comparing their geometry with the blurred target concepts. The blurring-based
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evaluation method will generate larger regions in its concept definition by eliminating small 

regions and merging neighbouring regions. The motivation for preferring large regions is 

driven from the real demands of gameplay evaluation. Only large regions are important to 

game developers and human players. For example, in the cornerkick scenario of FIFA99, 

suppose there is a rule saying that if the attacker gets the ball and makes a shot right on the 

penalty kick spot, he will score. It is true that that rule can be considered as a sweet spot 

of FIFA99. However, the chance of meeting the requirement of that rule is very unlikely 

in the real play of FIFA99. Such small rules will be removed by the blurring-based evalua­

tion method. Therefore, this method might be more meaningful for real gameplay analysis. 

Bezier smoothing is done to all the TP and FP plots in this chapter, as was done in Chapter 

2.

4.1.1 The Generation of Target Concepts

To generate target concepts as accurate as possible, a large set of training examples are 

generated by uniform sampling (for the corner kick scenario and breakaway scenario) or 

random sampling (for the dribble-dribble-shoot scenario because the sample space is too 

big to do uniform sampling). Each example is sent to the real game 10 times and gets 

labelled according to the classification threshold (as described in Section 2.3.1). Figure 4.1 

is the visualized data point distribution for FIFA99 corner kick scenario. In Figure 4.1(a), 

the classification threshold = 4 and in Figure 4.1(b), the classification threshold = 7. White 

datapoints are examples labelled as score with high probability and black ones are examples 

labelled as does not score with high probability.

The algorithm for creating a target concept from data points is given in Figure 4.2. This 

figure also defines the thresholds used in the algorithm. Instance space is divided into grid 

cells (Step 1). The size of each cell is determined by a user-controlled threshold Tceiuize, 

which essentially depends on the sample density of the game scenario. Then all data points 

are put into those cells and the label of each cell is the majority class of the cell (Steps 2 

and 3). The connected cell chains are the approximation of the target concept regions.

Target Concept Blurring

Blurring is used to refine the target concepts generated in Step 3 of Figure 4.2. Simply 

setting Tjninimaisize for a minimal target concept size, some potential useful target concepts 

might be filtered out. For example, if a block of connected cells has a hole, which might be 

due to noise, the whole block might be eliminated because the number of connected cells
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(a) classification threshold = 4

(b) classification threshold = 7 

Figure 4.1: Corner kick real classification distribution

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 Divide the sample space into grid cells (the granularity of the cell is a threshold relying
on the application, T ceusize)

2 Put each example into its corresponding cell.

3 Label each cell with the majority class of the examples in the cell.

4 Scan all labelled cells and group them according to their connectivity

5 Sort the connected cell groups (from step 4) by the number of cells each contains.

6 For each group g whose size is less than a threshold (TbiUt Candidate), check its neighbors.
If it is mostly -(another threshold TBlur Surround) surrounded by groups whose size 
is bigger than TsiurCandidate with a label different than g, then the label of g is 
converted into the opposite class (we assume there are just two classes).

7 For those groups which have the same label, if they are close enough (threshold Tc;ose),
connect them into one group.

8 Remove those groups whose size is less than a threshold (Tminimaisize).

9 Save the cells and group information into a file as target concepts.

Figure 4.2: The Algorithm For Generating Blurred Target Concepts
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is just below the threshold. Another example is if there are two close but not connected 

blocks of cells, each of which is just below the threshold. Both of them will be filtered 

out, but actually they might be joined together to become a big region. A technique called 

blurring is implemented in this thesis. The idea of blurring is to fill those small holes 

and connect nearby blocks. The connected cell groups whose number of cells is less than 

TBiurCandidate are the candidates for the blurring process (the value of T BiUrCandidate is 

30 in all the experiments in this chapter). For each blurring candidate, its neighbor groups 

are checked (Step 6 in Figure 4.2). If this candidate is surrounded mostly (determined by 

threshold TsiurSurround, which is 0.75 in our experiments) by cell groups whose size is 

bigger than TsiurCandidate and which have a label different than the candidate, then the 

label of all cells in the candidate will be reversed. The next step of blurring looks at small 

groups with the same label; if they are close enough (determined by threshold T ciose, which 

is 2 cells in our studies), those groups will be merged into one group. Once this is done, all 

concepts will be filtered one more time using another threshold, T minimaiSize, the minimal 

size of a region, which is measured as the number of cells inside the region (Tmjnjma/Sjze 

= 30 in our implementation). Regions with too few cells in them will be removed by this 

step.

Figure 4.3(a) and (b) compares the same target concept without and with blurring.

4.2 Corner Kick Scenario Experiments

Experimental results for the corner kick scenario are presented in this section. The initial 

training data set for all experiments contains 100 uniformly sampled examples. On each 

iteration 30 more examples are selected and added to the training set. The classification 

threshold = 4 (also used in the rest of the game scenarios).

Figure 4.4 and Figure 4.5 show the data points after 100 iterations of the selective 

sampling methods. Figure 4.4(a) is the same as Figure 4.1(a) -  it is redrawn here for clear 

comparison. Uncertainty sampling (Figure 4.4(b)) concentrates its sampling on the central 

area; bagging (Figure 4.4(c)) has a tight sampling behavior surrounding positive areas; 

boosting (Figure 4.5(a)) also explored all positive areas but it explored slightly more areas 

than necessary; rule-based sampling (Figure 4.5(b)) put sampling points mostly around 

positive areas. Note: BootstrapLV is excluded from Figure 4.4 and Figure 4.5 because its 

behavior is much like random sampling.
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(a) classification threshold = 4, not blurred, Tminimaisize =  30

(b) classification threshold = 4, blurred, Tminimaisize =  30

Figure 4.3: Corner kick: generated target concepts
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(a) real data distribution (classification threshold = 4)

(b) uncertainty

(c) bagging

Figure 4.4: Corner kick scenario, data points distribution comparison: 1
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(a) boosting

(b) rule-based

Figure 4.5: Corner kick scenario, data points distribution comparison^
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Standard evaluation

Figure 4.6 shows the results using the standard evaluation method. Before about 500 exam­

ples, the FP rates are not stable. After 500 examples, random sampling have consistently 

higher FP rates than bagging, uncertainty and the rule-based sampling methods (the perfor­

mance difference is significant [a =  0.1] at training set size 1500). As for TP rates, each 

TP rate increases very quickly before about 500 examples, and increases slowly afterwards. 

Uncertainty sampling has the worst TP rate than the others (the performance difference is 

significant [a =  0.1] at training set size 2000). Boosting, rule-based sampling and ran­

dom sampling do not show significant (a  =  0.1) TP rates difference at training set size 

2000 given our sample size. BootstrapLV has the best TP rate after 1000 examples (the 

performance difference is significant [a =  0.1] at training set size 2000).

Evaluation on blurred target concepts

The cell size threshold T ceusize used in this scenario is 0.005, which means each edge of the 

cell is 0.005 of the whole range of a dimension. Figure 4.9 shows the evaluation on blurred 

target concepts (the threshold of the minimal size of connected cells = 30). Compared with 

the standard evaluation (Figure 4.6), the FP rates in this figure are decreased by around 

40% and the TP rates are increased by around 40%; in addition, the curves are more stable. 

Thus, the evaluation using the blurred target concepts in the corner kick scenario is much 

better than the standard evaluation method. More importantly, evaluation with blurred target 

concepts focuses on the regions big enough to be of interest to game developers, which 

means the results of this evaluation method will make more sense; the same conclusion will 

apply other FIFA99 game scenarios in this thesis.

Evaluation on blurred target concepts gives the following results for the corner kick 

scenario. Random sampling has the worst FP rates than the other methods (the performance 

difference is significant [a  =  0.1] at training set size 1500). The rule-based method has 

lowest FP rates between 1000 examples to 2000 examples (the performance difference is 

significant [a =  0.1] at training set size 1500). Uncertainty sampling still has the worst TP 

rate (the performance difference is significant [a =  0.1] at training set size 1500). After 

1000 examples, BootstrapLV and random sampling have better TP rates than other sampling 

methods (the performance difference is significant [a — 0.1] at training set size 1500).
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Figure 4.12: Corner kick summarized rules
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Scenario Analysis

Figure 4.12 (based on the result after 100 iterations of bagging) shows the positive (score 

with high probability) rules learned for the corner kick scenario (the kicker is placed in the 

top right corner of the field). The areas covered by rules summarize the real data point 

distribution (Figure 4.4 (a)) very well. There is a very large black region in the middle of 

Figure 4.12.

By loading the data points of that area back into FIFA99 cornerkick scenario, a defender 

in that black area is observed to react poorly to the incoming ball, running away from the 

ball instead of intercepting it. This might be a sweet spot of this game scenario.

4.3 Breakaway scenario

4.3.1 Scenario description

The breakaway scenario in FIFA99 is defined as: one attacker is on a breakaway, there is 

only the opponent goalie between him and the goal, and the attacker shoots immediately 

from his location when the scenario is initialized. The classes of this scenario are the same 

as for the corner kick scenario: score with high probability, or not. The feature set used 

for this scenario is: the distance between the shooter and the goalie; the angle between 

the shooter and the goalie (Figure 4 .13 :ai); the angle between the shooter and the right 

goalpost (Figure 4.13:a2); and, the angle between the shooter and the left goalpost (Figure 

4.13:0:3). Figure 4.14 illustrates this scenario.

4.3.2 State M achine and G am e H ooks for the B reakaw ay Scenario

The breakaway state machine has 3 states:

PREPARE 

SHOOT 

END

Before the state machine starts, the feature vector from the sample generator is read and 

the feature values are converted to internal game variables.The automatic testing program 

then enters the first state: PREPARE. In this state, the shooter and the goalie will run to 

their initial locations, and the other players will be sent off the field. After everybody is in 

their designated positions, the SHOOT state is triggered: the shooter makes a best kick (the
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Figure 4.13: Features used in the breakaway scenario

i \
/ . . . \

l  -..:.....  ■ ■ \

\

<p&: 26 J flf 161621/ . \  Tele Cam

Figure 4.14: Breakaway scenario screen shot
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game will decide what kick is best based on the current situation, such as the shooter and 

goalie’s positions). Several events will trigger the END state: the ball is out of bounds; the 

goalie has the ball; the ball is moving in the opposite direction or is still; time out.

The running of this state machine relies on some game hooks and modifications in the 

FIFA99 game, as follows.

• void GAME_updateFrame()

This function has been described in 3.3.5. For the breakaway scenario, the breakaway 

state machine manager will be triggered here every game frame.

• void REFEREE_process_ballout(void)

As described in 3.3.5, this function is modified here as well to prevent unnecessary 

game videos.

4.3.3 E xperim ental set up and results

There are 100 randomly sampled initial training examples. 30 more new examples will be 

added into the training set at each iteration.

Standard evaluation

Figure 4.15 shows the results of the standard evaluation method. Before around 500 exam­

ples, TP and FP rates are not stable. In terms of FP rates, boosting is worse than the others 

(the performance difference is significant [o- =  0.1] at training set size 1500); uncertainty 

sampling has the best FP rates (the performance difference is significant [a =  0.1] at train­

ing set size 1500); the others do not show significant (a  =  0.1) FP rate difference at training 

set size 2000 given our sample size. In terms of TP rates, before around 500 examples, the 

rule-based sampling method increases the fastest of all sampling methods (the performance 

difference is significant fa  =  0.1] at training set size 400). After 500 examples, bagging, 

boosting and rule-based sampling methods show better TP rates than random sampling 

(the performance difference is significant [a  =  0.1] at training set size 1500).Overall, the 

rule-based method is best, with a low FP rate and a high TP rate (especially before 500 

examples).

Evaluation on blurred target concepts

The cell size threshold Tren size used in this scenario is 0.01, which means each edge of the 

cell is 0.01 of the whole range of a dimension. Figure 4.18 shows the results using blurred
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target concepts, where the classification threshold = 4 , number of cells > =  30. In terms 

of FP rates, the rule-based method has the lowest FP rate all the time (the performance 

difference is significant [a — 0.1] at training set size 2500); boosting is not stable. In terms 

of TP rates, before the rapidly increasing phase at around 500 examples, the rule-based 

method has better TP rates than the others (the performance difference is significant [alpha 

= 0.1] at training set size 250) except for random sampling).

Evaluation summary

Evaluation results show that some selective sampling methods are better than random sam­

pling (e.g., rule-based), but some are not (e.g., uncertainty). Before the stable phase (around 

500 examples), the rule-based method always has the best overall performance. The game 

environment includes many dynamic and random factors, which might create noise for the 

active learning. Therefore, the result of breakaway scenario is not as good as its counterpart 

(4-d) in the artificial tests (Figure 2.18).

4.3.4 Scenario A nalysis

There are some interesting results found by SAGA-ML for the breakaway scenario. Figure 

4.21 shows one of the rules learned. The white triangle in the top left corner is the shooter 

area defined by the rule. By left-clicking with SoccerViz at a point in this area, a specific 

shooter position is selected and the corresponding goalie area is then drawn on the fly. 

Usually, scoring from sharp angles such as the one shown in Figure 4.21 is not easy. But if 

the goalie’s position is constrained as shown, scoring from this position is not unreasonable. 

Game designers will examine a visualized rule such as this to decide if they are correct.

4.3.5 H igher D im ensional E xperim ents

There is an alternative, higher dimensional setup for the breakaway scenario. Six more 

dimensions are added (making 10 in total): the velocities of the ball (2-D, assuming the ball 

is on the ground), the shooter (2-D) and the goalie (2-D). Figure 4.22 shows a visualized 

rule by SoccerViz for this 10-D breakaway scenario. Without considering the ball’s velocity 

constraints, the rule in Figure 4.22 can be explained as: the probability of scoring will be 

very high if the shooter makes a chip shot when the shooter and goalie are in the positions 

indicated. In the same rule, the ball’s y-velocity (vertical direction) actually is constrained 

to be below the about 4/5 of its maximal limit. This constraint is very reasonable for a real 

soccer game: if the ball is moving too quickly away from the shooter, it will be hard to
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smoothed

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0 .2 6

0.25

2  0 .2 4

1  0 .2 3
o  iQ.

0.22
ffl

s m o o th e d  r a n d o m ------
ran d o m  —*•—0.21

0.2100 150 200 2 50 300
n u m b e r of train ing  d a ta

(a) Random

0 .26

0 .25

2  0 .24  <u
I  0 .2 3

$ 0.22 (0
0.21

0.2L

bag g in g  
s m o o th e d  bag g in g

150 2 0 0  250
n u m b e r of train ing  d a ta

(b) Bagging

0 .9
bo o stin g  —*— 

sm o o th e d  bo o stin g  —

0.7

2 0.6£
CD> 0.5

o  0 .4

I . ,
0.2

5 00 1000
n u m b e r of train ing  d a ta

1500 2000 2500

0 .2 6

0 .2 5

2  0 .2 4  2 0
: |  0 .23  
o  <
CL
CDw 0.22nj

TjOofetrkpLV 
m o o th e d  b o o ts tr a b lV0.21'

0.2
150100 200 25 0 3 0 0

(c) Boosting

n u m b e r of train ing  d a ta

(d) BootstrapLV

0.26

0 .2 5

©
to 0 .2 4

0
|  0 .23  

8.
8 0.222 sm o o th e d  ru le b a se d  

ru le b a se d0.21

0.2100 150 200 250 300

0 .2 6

0 .2 5

2  0 .2 4  co
0
1  0 .2 3
aOinea 0.22

sm o o th e d  uncertainty 
uncertain?0.21

0.2100 150 200 2 50 300
n u m b er of train ing  d a ta  n u m b e r of train ing  d a ta

(e) Rulebased (f) Uncertainty

Figure 4.20: Breakaway, evaluation on blurred target concepts, FP rate: smoothed vs. un­
smoothed

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.21: A  visualized rule for the breakaway scenario
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Figure 4.22: SoccerViz screen shot for 10-D breakaway scenario
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make a chip shot.

4.4 Dribble-dribble-shoot scenario

The dribble-dribble-shoot scenario (Figure 4.23) is defined as: there is just one attacker 

with the ball, and no defenders except the goalie; the attacker dribbles the ball from a 

starting position and moves forward at a certain angle for a certain distance; then he changes 

his running direction and runs with the ball along the new direction until he gets a good 

opportunity to score, or until he runs out of bounds without getting a good opportunity 

to score. There are 7 dimensions in this scenario: this first 4 are for the initial positions 

of the attacker and the goalie (the distance between those two players and 3 angles as in 

the breakaway scenario); the fifth dimension is the direction of the attacker’s first dribble 

action; the sixth dimension is the dribble distance the attacker will make along the first 

dribble direction; the last dimension is the direction (relative to the first dribble direction) 

of the attacker’s second dribble action. The testing program will not control the goalie’s 

movement. The main goal of this scenario is to test the applicability of retrograde analysis 

in this setting.

4.4.1 Retrograde analysis

Retrograde analysis means working back from simpler situations to more complex ones that 

depend on the simpler ones. For example, Jonathan Schaeffer used retrograde analysis to 

build a endgame database for his checkers program[33]. One of the benefits of retrograde 

analysis is that it can keep the number of dimensions fairly low. The retrograde analysis 

technique is used in this experiment in the following way: start by learning rules for simple 

game scenarios; the summarized rules for simple game scenarios are stored as retrograde 

analysis databases; the behavior of higher level game scenarios based on one or more low- 

level game scenarios will be summarized without repeating the same work that has already 

been done in the simpler game scenarios; instead, the results of the low-level game scenarios 

will be used directly.

Dribble-dribble-shoot is built on the top of the breakaway scenario. In the dribble- 

dribble-shoot scenario, the attacker w ill not actually try a shot; instead, after he has changed  

the dribble direction, the program will check his position and the goalie’s position contin­

uously and send that information to the decision tree learned for the breakaway scenario. 

If that decision tree says there is a high probability of scoring at any point, the label for 

this example is positive (meaning that there is a high probability of scoring for this dribble-

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) the first dribble direction

|E*> £FS SCEMT; Cameras. Qpttor* L*«l fiudo Iods Qebug game 2&*t Jet Plays Qjorao 1 Qe|p CohMan ftttrlb. I

M g m

M

I

1

(b) change the dribble direction

| Efe 0S SOESlT' .fludte Tods Qebug gams 2Ed* 5«Plays etjbtoo'tohMan ytrfc, 1

(c) the second dribble direction
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dribble-shoot example); otherwise -  if the shooter dribbles all the way to the field boundary 

without getting a good chance of scoring according to the breakaway decision tree -  this 

example will be labelled as negative. Without retrograde analysis, the 4 (or 10) dimensions 

of the breakaway scenario would be added to dribble-dribble-shoot scenario. Therefore, at 

least 4 dimensions are saved by using retrograde analysis technique.

4.4.2 State M achine and G am e H ooks for the D ribble-dribble-shoot Scenario

The dribble-dribble-shoot state machine has 4 states:

PREPARE 

FIRST -DRIBBLE 

SECOND_DRIBBLE 

END

Before the state machine starts, the feature vector from the sample generator is read 

and the feature values are converted to internal game variables. Then the automatic testing 

program enters the first state: PREPARE. In this state, the attacker and the goalie will run 

to their initial positions, and the other players will be sent off the field. After everybody is 

in their designated positions, the FIRST JDRIBBLE state is triggered. The attacker dribbles 

the ball in the first direction. When the designated first dribble distance is reached, the state 

SECOND_DRIBBLE starts. The attacker will change the dribble direction and run with the 

ball along the new direction. The END state can be triggered by 4 events: the ball is out 

of bounds; the goalie has the ball; the breakaway retrograde analysis decision tree reports 

that the probability of scoring is high in the current situation; time out. The running of 

above state machine relies on some game hooks and modifications in the FIFA99 game, as 

follows.

•  void GAME_updateFrame()

This function has been described in 3.3.5. For this game scenario, the dribble-dribble- 

shoot state machine manager will be triggered here every game frame.

•  int TACTIC_doBestAction( PLAYER_DEF *this )

The original function will decide the current best kick action from the options of 

dribbling, passing and shooting etc. In the dribble-dribble-shoot scenario, we want 

the attacker to dribble twice along two designed directions. Therefore, this function 

is modified to serve the testing program by enabling dribbling only.
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4.4.3 E xperim ental setup

There are 100 random sampled initial training examples, and 30 more examples will be 

added to the training set at each iteration. The model of the breakaway scenario is saved in 

files and will be loaded on the fly. Because the classification of each example is quite stable 

in this scenario, we do not run each example 10 times.

4.4.4 E xperim ental results

Figure 4.24 shows the standard evaluation results. In terms of FP rates, the rule-based 

method is worse than the others (the performance difference is significant [a =  0.1] at 

training set size 250). In terms of TP rates, uncertainty is better than the others before 

200 examples (the performance difference is significant [a =  0.1] at training set size 150). 

Figure 4.27 shows the evaluation results on blurred target concepts. The cell size threshold 

Tceiisize used in this scenario is 0.05, which means each edge of the cell is 0.05 of the 

whole range of a dimension. The minimum size for a group of cells to be kept is 30 cells. 

Surprisingly, the performance of all the sampling methods (including random sampling) is 

much worse than expected (compare to the results in the 10-D artificial tests): the TP rates 

are low; the improvements (for all sampling methods) are small even after 100 iterations; 

and the selective sampling methods do not behave better than random sampling as they did 

in the 8-D and 10-D artificial tests. It could be because this scenario is a complicated one 

and the number of samples is still too small to learn an accurate classifier. It also could 

be because of the retrograde analysis technique. The breakaway decision tree used in this 

scenario is not perfect (it cannot be perfect) for the real breakaway game scenario. The 

errors coming from this decision tree will be passed into the dribble-dribble-shoot analysis 

and these errors might be magnified. The investigation of these problems are left for future 

work.

Scenario Analysis

The dribble-dribble-shoot scenario is not visualized in SoccerViz. But manual analysis 

revealed some interesting rules. Figure 4.30 is a manually drawn picture of an interesting 

rule in this scenario. The exact rule definition is as follows:

Class: Positive, 7 conditions, 96.7% accuracy supported by 30 data points

attackerRightGoalPoleAngle(ai) >  65.13°

attackerFirstDribbleAngle(«2) >  182.2°
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Figure 4.26: Dribble-dribble-shoot, standard evaluation, FP rate: smoothed vs. unsmoothed
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jght post

G o a lie

S h o o te r

Figure 4.30: Interesting rule learned for the dribble-dribble-shoot scenario

attackerFirstDribbleAngle(a2 ) < =  210.57°

attackerFirstDribbleDistance(dfsfance) >  226 

attackerFirstDribbleDistance(ci?'.s/ance) < =  748 

attackerSecondDribbleAngle(a3) >  42.95° 

attackerSecondDribbleAngle(a3) >  114.46°

where a \  is the angle between the attacker and the right goalpost for the shooter’s starting 

position; a.2 is the first dribble direction; distance  is the first dribble distance; Q3 is the 

second dribble direction (relative to 0:2)-

An English paraphrase of this rule is: if the the attacker starts from the right of the right 

goalpost, runs roughly horizontally across the goal for a certain range of distances and then 

cuts sharply toward the goal, he will have an opportunity to score with high probability.

A game designer might want to know what happened to cause this pattern of attack to 

have a high scoring rate. When the 30 training examples supporting this rule are put back 

into FIFA99, some interesting goalie behaviors are found. When the attacker runs with the 

ball nearly horizontally along the field, the goalie sometimes starts out from the goal to 

challenge the attacker; but when the goalie gets far from the goal, he will stop the chase 

and run back to the goal; at the moment when the goalie is running back, if the attacker 

changes the dribble direction (towards the goal approximately), then the attacker will get
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Figure 4.31: Goalie behaviour in the dribble-dribble-shoot scenario
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the scoring chance. Figure 4.31 shows some FIFA99 game screen shots for one of the 

training examples supporting this rule. In Figure 4.31(a) and Figure 4.31(b), the goalie 

is coming out to challenge the attacker. In Figure 4.31(c), the goalie is running back to 

the goal and the attacker changes the dribble direction towards the goal, leading to a good 

scoring opportunity.

4.5 Conclusion

SAGA-ML and SoccerViz have been used to analyze three different FIFA99 game scenarios 

(corner kick, breakaway and dribble-dribble-shoot). The rules generated from SAGA-ML 

summarize the game’s behavior in terms of relationships between various distances and 

angles and the probability of scoring. Some sweet spots have been identified. In addition 

to the standard evaluation method (measure FP and TP using a large test set), an evalu­

ation method based on blurred target concepts has been introduced and used for F1FA99 

scenarios. The use of blurred target concepts has two advantages over the standard eval­

uation method: (1) in most game scenarios (e.g. comer kick and breakaway), it produces 

better TP rates; and (2) the TP and FP rates generated using blurred target concepts are 

more meaningful because it only evaluates large regions, which are of the greatest interest 

to game developers and human players. Random sampling performs well in the corner kick 

scenario, just as it did in 2-D artificial testing. Bagging, boosting and rule-based selec­

tive sampling methods are better than random sampling overall, just as they were in 4-D 

artificial testing. In the beginning stages of all 3 game scenarios, the rule-based sampling 

method always has the best TP rates while having FP rates similar to the other sampling 

methods. Thus, given a limited number of examples, the rule-based sampling method is the 

best one among the 6 sampling methods tested.
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Chapter 5

Conclusion and Future Work

5.1 Summary

A game scenario testing framework, Semi-Automated Gameplay Analysis (SAGA-ML) is 

presented in this thesis. SAGA-ML summarizes game behaviors as human readable rules, 

which can be presented to game designers to check if those behaviors are as intended. 

SAGA-ML has been tested on Electronic Arts’ FIFA99 soccer game and shown to be a 

practical game behavior testing solution.

Three Fifa99 game scenarios —  comerkick, breakaway and dribble-dribble-shoot — 

were tested by the SAGA-ML system. Some interesting rules were found by SAGA-ML. 

Among those findings, some of them are sweet spots of the game (e.g., the easy scoring 

area in the corner kick scenario).

Four existing selective sampling algorithms (Uncertainty Sampling, Bagging, Boosting 

and BootStrapLV) were implemented, and a new rule-based selective sampling method was 

introduced. Those 5 selective sampling methods and random sampling were compared. Ex­

perimental results (especially when dimensionality is high) proved that selective sampling 

algorithms are more efficient than random sampling. Given a limited number of examples, 

the rule-based sampling method is the best one among these 6 sampling methods.

A new evaluation method based on blurring the target concept was introduced and used 

for FIFA99 game scenario. Blurring generates larger regions in its concept definitions by 

eliminating small regions and merging neighbouring regions. Compared to the standard 

evaluation method, the use of blurred target concepts produces better TP rates in most game 

scenarios (e.g. corner kick and breakaway), and this evaluation method is more meaningful 

because it only evaluates large regions, which are of the greatest interest to game developers 

and human players.
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5.2 Limitations

SAGA-ML was proposed as a general gameplay analysis framework. However, it is not a 

perfect solution to the entire problem of gameplay analysis for all possible games. After 

all, the cost of the whole process of learning and sampling is not cheap. Extra design 

and programming will be added to game development if SAGA-ML is used. The second 

limitation is about thresholds. As we have seen in this thesis, there are many thresholds 

used throughout SAGA-ML system. Currently, those thresholds are tuned manually for 

each game scenario. When a new game scenario is implemented, some thresholds must be 

adjusted based on experiments.

5.3 Future Work

5.3.1 Initial train ing data size

An issue that was not addressed in this thesis is how to get the best initial training data 

size for active learning. The following initial idea has been briefly explored. A pre-defined 

threshold is used to indicate the minimum size of target concepts, and the number of initial 

training samples is set proportional to this threshold. Ideally, in this way the learner will 

find the rough locations of the target regions whose sizes are bigger than the given threshold 

with the initial training data. Then, the active learning process will refine the initial concepts 

iteratively. One problem with this method is that it can be hard to determine a reasonable 

threshold for real applications. Therefore, this method is not used in this thesis. More work 

should be done on this topic in the future.

5.3.2 H ow  m any new  points are added in  each iteration

Anther issue that was not addressed in this thesis is how many new data points should be 

picked in each iteration. Selective sampling is a sort of sequential sampling, which can 

be traced back to 1940s when Wald [42] introduced the concepts Sequential Testing and 

Sampling to the statistics community. In the database community, a branch of sequential 

sampling was investigated by some researchers, e.g., [28]. They believed there exists a 

learning curve (exponential curves are a common assumption) during the sequential learn­

ing process. Suppose there is a set of sequential example sets, denoted as S \ , S 2 — .Sn, 

where S) is the new example set for iteration i. The focus of this branch of research is to 

determine the proper size for each Si, until stopping conditions are met. For example, a 

power law curve can be assumed for the learning curve, which is denoted as y =  a + b * x c.
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Many methods are used to get the parameters a, b and c. The first solution to this task is 

using nonlinear regression techniques. Once the learning curve is determined, the value 

of each S t can be drawn from a power law formula. In this thesis, the fixed size of new 

examples is generated in each iteration. The future work is to apply more complex methods 

(e.g., the learning curve method) to determine the new example size for each iteration.

5.4 Final Word

Gameplay testing in the current development cycle of commercial games is a kind of play- 

and-feel method, which relies on developers’ experience. This thesis has presented a Semi- 

Automated Gameplay Analysis (SAGA-ML) system to help game developers to summa­

rize and analyze gameplay behaviors. SAGA-ML is a system which incorporates machine 

learning techniques and the active learning framework into gameplay testing. The game­

play behaviors of real game scenarios are summarized, iteratively refined, and visualized 

by SAGA-ML. As a new system, SAGA-ML needs to be improved and tuned by applying 

it to additional commercial games.
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