
University of A lberta

A p p l y i n g M a c h i n e L e a r n i n g a n d S e l e c t i v e S a m p l i n g T e c h n i q u e s t o G a m e

S o f t w a r e T e s t i n g

by

Gang Xiao

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of M aster of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
A rch ives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-30042-8
Our file Notre reference
ISBN: 978-0-494-30042-8

Direction du
Patrim oine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Although commercial computer games usually undergo intensive testing before release,

many bugs and sweet spots still exist and make games less attractive than expected. In this

thesis, a Semi-Automated Gameplay Analysis (SAGA-ML) system is developed to sum­

marize game behaviors as human readable rules, which can be presented to game designers

to check if those behaviors are as intended. Unexpected game behaviors can be found this

way. Machine learning and selective sampling techniques are incorporated into automated

software testing. Machine learning is used to create a summary of the gameplay log that

is comprehensible by humans. Selective sampling is used to sample instance space intel­

ligently to build a good model. Four existing selective sampling algorithms (Uncertainty

Sampling, Bagging, Boosting and BootStrapLV), and a new rule-based selective sampling

method, are implemented and compared. SAGA-ML has been tested on Electronic Arts’

FIFA99 soccer game and shown to be a practical game behavior testing solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would first like to thank my supervisor, Dr. Robert Holte, for his guidance in this project.

He is the designer of the whole system and all important components. He is also the one

who kept this project on the right track. Whenever I ran out of ideas on how to proceed or

was frustrated because of bad experimental results, Rob always helped me come up with

new ways of solving the problem. Rob also gave me tremendous help with my career.

I would like to thank Finnegan Southey, who has also provided a great deal of insight

into this research. Finnegan was involved in this project in many ways. He contributed

many good ideas like Blur, gave many good suggestions about the experiments and he was

the key person to put our system into publications.

I would also like to thank Mark Trommelen who finished SocerViz, a key component

of our system. Whenever we proposed a new requirement, he would work it out quickly.

Thank you Mom, you are always encouraging me and trusting me. Thank you my sister,

you take care of our mom for me. I also want to thank all my other family members for

their support throughout my studies.

Finally, I would like to thank Electronic Art Inc.(especially John Buchanan) for provid­

ing us the source code of FIFA’s 99. I would also like to thank IRIS/PRECARN, Alberta

Ingenuity Center for Machine Learning (AICML), and the University of Alberta for their

financial support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Problem Description and M o tiv a tio n .. 1
1.2 The Solution... 3
1.3 Challenges and Contributions... 4
1.4 Organization... 5

2 Selective Sam pling 6
2.1 Selective Sampling - What and W h y .. 6

2.1.1 What is Selective Sampling .. 6
2.1.2 Why Selective S am p lin g ... 7
2.1.3 Creating New Examples vs. Selecting From an Example Pool . . . 7

2.2 Comparison of Different Selective Sampling M ethods....................................... 7
2.2.1 The existing selective sampling methods used in this th e s is 8
2.2.2 A new rule-based selective sampling m e th o d 13

2.3 E xperim ents... 19
2.3.1 Classification T hresholds... 20
2.3.2 Two-dimensional ex p e rim en ts... 20
2.3.3 High-dimensional artificial t e s t s ... 28
2.3.4 Conclusion and D iscussion... 46

3 Scenario Testing for (Sports) Games 48
3.1 Background — Software T e s tin g .. 48

3.1.1 Commercial Tools for Software T e s t in g .. 52
3.1.2 Test-case Generation for Software T estin g .. 52
3.1.3 A.I. for Software t e s t i n g ... 55

3.2 Gameplay Analysis and Automated Game Scenario T esting 56
3.2.1 Gameplay A na lysis ... 56
3.2.2 Using Automated Testing for Gameplay A n a ly sis............................... 57

3.3 Semi-automated Gameplay Analysis System (S A G A -M L)............................ 59
3.3.1 The Corner Kick Scenario in Electronic Arts’s F IF A 9 9 59
3.3.2 Feature D e s ig n ... 61
3.3.3 Sample G enerator.. 64
3.3.4 Game Scenario Automation .. 64
3.3.5 Game Hooks and Modifications to the Original G am e.......................... 65
3.3.6 SoccerViz: Visualization T o o l ... 66

4 Game scenario testing in FIFA99 69
4.1 Evaluation m e th o d s .. 69

4.1.1 The Generation of Target Concepts ... 70
4.2 Corner Kick Scenario E xperim ents.. 73
4.3 Breakaway scenario .. 85

4.3.1 Scenario d e sc r ip tio n ... 85
4.3.2 State Machine and Game Hooks for the Breakaway Scenario 85
4.3.3 Experimental set up and results ... 87
4.3.4 Scenario A nalysis.. 92
4.3.5 Higher Dimensional E x p e r im e n ts .. 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Dribble-dribble-shoot s c e n a r io .. 96
4.4.1 Retrograde analysis... 96
4.4.2 State Machine and Game Hooks for the Dribble-dribble-shoot Sce­

nario 98
4.4.3 Experimental s e tu p ... 99
4.4.4 Experimental r e s u l t s .. 99

4.5 Conclusion ...108

5 Conclusion and Future Work 109
5.1 S u m m a ry .. 109
5.2 Limitations ...110
5.3 Future W o rk ...110

5.3.1 Initial training data s iz e .. 110
5.3.2 How many new points are added in each ite ra tio n 110

5.4 Final Word ...I l l

Bibliography 112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 A Sweet Spot In FIFA99 Corner Kick S c e n a r io .. 2
1.2 CFS defined ac tio n s .. 3
1.3 Brief A rchitecture... 4

2.1 Uncertainty sampling e x a m p le .. 9
2.2 Query by Committee example .. 11
2.3 BootstrapLV sample selection exam ple... 13
2.4 An example rule set (FIFA99 corner kick s c e n a r io) 14
2.5 Rule split ... 16
2.6 Sampling Rule B o u n d a rie s ... 17
2.7 Sampling the neighborhood of counterexam ples.. 19
2.8 2-D artificial scenario for sampling preference co m p ariso n 21
2.9 Sampling preference comparison: data points — part 1 22
2.10 Sampling preference comparison: data points— part 2 24
2.11 Sampling preference comparison: generated rules — part 1 25
2.12 Sampling preference comparison: generated rules — part 2 26
2.13 Example of a Bezier fu n c tio n ... 27
2.14 Sampling methods: TP and FP rates comparison’.. 29
2.15 2-D TP rate: smoothed vs. unsmoothed ... 30
2.16 2-D FP rate: smoothed vs. unsm oothed... 31
2.17 Evaluation by comparing the learned rule with the target c o n c e p t................ 32
2.18 TP and FP rates comparison in a 4-D space ... 33
2.19 4-D TP rate: smoothed vs. unsmoothed ... 34
2.20 4-D FP rate: smoothed v.v. unsm oothed... 35
2.21 TP and FP rates comparison in a 6-D space ... 36
2.22 6-D TP rate: smoothed vs. unsmoothed ... 37
2.23 6-D FP rate: smoothed vs. unsm oothed... 38
2.24 TP and FP rates comparison in a 8-D space ... 39
2.25 8-D TP rate: smoothed v.v. unsmoothed .. 40
2.26 8-D FPrate: smoothed vs. unsm oothed... 41
2.27 TP and FP rates comparison in a 10-D s p a c e ... 42
2.28 10-D TP rate: smoothed vs. unsm oothed.. 43
2.29 10-D FP rate: smoothed vs. unsm oothed .. 44

3.1 Waterfall Model of Software Development Process 49
3.2 The gameplay development process in in d u s t ry .. 57
3.3 SAGA-ML architecture.. 60
3.4 Corner kick scenario ... 62
3.5 Different but mathematically equivalent feature m easu res 63
3.6 S o cce rV iz ... 68

4.1 Corner kick real classification d is trib u tio n .. 71
4.2 The Algorithm For Generating Blurred Target C oncep ts................................. 72
4.3 Corner kick: generated target co n cep ts ... 74
4.4 Corner kick scenario, data points distribution co m p ariso n ^ 75
4.5 Corner kick scenario, data points distribution co m p ariso n ^ 76
4.6 Corner kick: standard ev a lu a tio n ... 77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7 Corner kick, standard evaluation, TP rate: smoothed vs. unsmoothed 79
4.8 Corner kick, standard evaluation, FP rate: smoothed vs. unsmoothed 80
4.9 Corner kick: evaluation on blurred target concepts.. 81
4.10 Corner kick, evaluation on blurred target concepts, TP rate: smoothed v.v.

unsm oothed ... 82
4.11 Corner kick, evaluation on blurred target concepts, FP rate: smoothed v.v.

unsm oo thed ... 83
4.12 Corner kick summarized r u l e s ... 84
4.13 Features used in the breakaway sc e n a r io .. 86
4.14 Breakaway scenario screen shot .. 86
4.15 Breakaway: standard evaluation .. 88
4.16 Breakaway, standard evaluation, TP rate: smoothed vs. unsmoothed 89
4.17 Breakaway, standard evaluation, FP rate: smoothed vs. unsmoothed 90
4.18 Breakaway: evaluation on blurred target c o n c e p ts .. 91
4.19 Breakaway, evaluation on blurred target concepts, TP rate: smoothed v.v.

unsm oothed ... 93
4.20 Breakaway, evaluation on blurred target concepts, FP rate: smoothed v.v.

unsm oothed ... 94
4.21 A visualized rule for the breakaway scenario .. 95
4.22 SoccerViz screen shot for 10-D breakaway sc e n a rio .. 95
4.23 Dribble-dribble-shoot s c e n a r io ... 97
4.24 Dribble-dribble-shoot: standard evaluation.. 100
4.25 Dribble-dribble-shoot, standard evaluation, TP rate: smoothed v.v. unsmoothed 101
4.26 Dribble-dribble-shoot, standard evaluation, FP rate: smoothed vs. unsmoothed 102
4.27 Dribble-dribble-shoot: evaluation on blurred target concepts103
4.28 Dribble-dribble-shoot, evaluation on blurred target concepts, TP rate: smoothed

vs. u n sm o o th ed ... 104
4.29 Dribble-dribble-shoot, evaluation on blurred target concepts, FPrate: smoothed

vs. u n sm o o th ed ... 105
4.30 Interesting rule learned for the dribble-dribble-shoot scenari'o106
4.31 Goalie behaviour in the dribble-dribble-shoot scenario107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

The gaming industry is a multi-billion dollar market, bigger than the traditional movie mar­

ket. In the early days of the game industry, game design was a small-scale development

process, relying on individual contributors. Now, gaming has become a large-scale indus­

try. Current game design involves many different areas such as: graphics, audio, A I and

system etc.

Graphics usually is one of the most important parts of game design. However, gameplay

is also very important. According to www.webopedia.com’s definition, gameplay is a term

most commonly used to rate, or score the quality o f the experience had by a gamer while

playing a particular game. The term gameplay is often found in game reviews where a

score is given based on player experiences during the interaction with the game. Unlike

the visible factors of a game (e.g. the graphics and frontend), gameplay usually refers to

the game behaviour such as the game’s logic, difficulty, goals and constraints. Gameplay

contributes much to the enjoyability of a game. Like other game elements, gameplay will

be designed to specifications.

As games get bigger and bigger, game testing becomes very challenging. Like other

types of software, game testing also includes Unit Testing, Integration Testing, System

Testing and Performance Testing. However, some testing areas are unique to game devel­

opment. Gameplay testing is one of them.

1.1 Problem Description and Motivation

In the current game industry, the common method of doing gameplay evaluation is a process

of play-and-feel, which totally relies on a human’s sensitivity and experience. This play-

and-feel method is not efficient, and sometimes not effective. That is why so many “sweet

spots” exist, even when a game goes through intensive testing before it is released. In

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Player always scores when
the ball is kicked here.

Figure 1.1: A Sweet Spot In FIFA99 Comer Kick Scenario

the context of a computer game, sweet spots are unexpected (from the view of the game

designers) game behaviors. Many gameplay sweet spots are exploited by human players

to decrease the difficulty level of the game, which will impact the playability of the game

eventually. For instance, in the comer kick scenario of Electronic Arts (EA) FIFA’99, there

are some spots where the attackers can score easily when the ball lands there.

Finding sweet spots is currently mainly done by human testers. In practice, game com­

panies hire many QA testers or take clients’ feedback (e.g. based on demo or Beta versions)

to find bugs. However, due to the huge state space for a game, it is impossible to exhaus­

tively check all the possible behaviors.

Previously, a Cheat Finding System (CFS)[8], developed at the University of Calgary,

used genetic algorithms to find specific action sequences that lead to a goal in the FIFA99

soccer game. Firstly, CFS will define the set of control actions for the game (Figure 1.2 is

the example for FIFA99). Then, the game will be played by CFS. Every certain amount of

time, a new action will be applied to the game from the action list and added to an action

sequence. Genetic algorithms are used to evaluate and populate those action sequences

until some interesting action sequences are generated. The CFS system as able to find some

action sequences that lead to a goal in FIFA99.

However, reporting such action sequences is not all that game designers want. Firstly,

some action sequences that lead to a goal found by CFS might be very hard to be repro­

duced by human players due to the complexity of the sequence. Secondly, game companies

like general summarization of games’ behaviors more than individual action sequences.

Therefore, the research in this thesis aims to develop an automated software testing system

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ActionO NO-OP

A ctionl PASS

Action2 SHOOT

Action3 SWITCH

Action4 MOVE.UP

Action5 MOVEJDOWN

Action6 MOVE-RIGHT

Action7 MOVE_LEFT

Action8 MOVE_UP-LEFT

Action9 MOVE_UP_RIGHT

ActionlO MOVE-DOWN .LEFT

A c tio n ll MOVE-DOWN_RIGHT

Figure 1.2: CFS defined actions

to summarize games’ behaviors. Game designers will check those summarized behaviors

according to design specifications.

1.2 The Solution

Figure 1.3 is the basic architecture of our solution. The Sampler module generates initial

conditions and action sequences defining samples of the game’s behaviour. The Game

Engine module takes the sample data, transforms the initial conditions into game variables

and executes the given sequence of actions. The output of the Game Engine is labelled

sample data, with the label depending on the testing purpose. The Learner module uses

the labelled samples to create models of behaviour. The learned model can be used by

the Sampler to generate more samples. The Visualizer module displays the learned models

to the game designer and allows interaction with the Game Engine to help understand the

learned behaviour model.

This system is a kind of automated software testing. Machine learning is used to create

a summary of the gameplay log that is comprehensible by humans. Ideally, the behavior

testing should exhaust all the possible behaviors, which is impossible for a big game. We

therefore propose to apply our testing method to small, well-defined portions of the game,

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Outcome

Initial Conditions &
Actions

SamplesQueriesSamples

Learned Models
learnerVisual izer

Game Engine Sampler

Figure 1.3: Brief Architecture

which we call scenarios. Usually, a game scenario is triggered under certain circumstances.

For example, the com er kick scenario in a soccer game is triggered when the ball is kicked

over the kicker’s own end line. Thus, the huge sample space for the full game is broken

down into relatively small game scenario spaces. From the game player’s point of view,

gameplay consists of many different game scenarios. Even restricted to scenarios, some

types of behaviors cannot be enumerated exhaustively, e.g., behaviors involving continuous

values. Therefore, in this thesis, selective sampling is used to sample instance space intel­

ligently to build a good model. Four existing selective sampling algorithms (uncertainty

sampling, bagging, boosting and BootstrapLV) are implemented, and a new rule-based se­

lective sampling method is introduced.

1.3 Challenges and Contributions

There are quite a few challenges in this work. In order to summarize game scenarios’ behav­

iors, we have to simulate those scenarios and automatically test them. Game environments

are usually very complex and dynamic. The realistic automation of game scenarios is the

first challenge. The state space of a game (or even a game scenario) can be huge and im­

possible to be exhaustively analyzed. Choosing efficient methods to sample such big state

spaces is another challenge. How to evaluate the summarized game behaviors we got is the

third challenge.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The first major contribution of this thesis is the development of a Semi-Automated

Gameplay Analysis (SAGA-ML) system. This framework is a whole set of solutions that

can be used to analyze game behaviors.

A second major contribution is that machine learning techniques are used to summarize

game behaviors. Gaming testing is a quite new area to apply machine learning techniques.

Experiments show that machine learning can help game designers by providing accurate

and concise summaries of game behaviors.

A third major contribution is that selective sampling techniques are used for efficient

sampling. Five selective sampling methods are implemented and compared with random

sampling in both artificial environments and real games.

The fourth contribution of this thesis is a new, rule-based selective sampling method.

This new sampling method analyzes the rules that make up the behaviour model. Experi­

ments show that this sampling method has very good performance.

The last contribution is the introduction of an evaluation method for gameplay analysis

based on “blurred” target concepts. Blurring generates larger regions in in its concept def­

initions by eliminating small regions and merging neighbouring regions. Evaluation based

on blurred target concepts is more useful for game designers because only large regions are

important to game developers and human players. Game developers can easily get a global

view of their system instead of being distracted by many small summaries.

Four publications have been generated by this thesis work. “Machine Learning for

Semi-Automated Gameplay Analysis”[7], “Semi-Automated Gameplay Analysis by Ma­

chine Learning”[37] and “Semi-Automated Gameplay Analysis”[36] focus on the use of

the SAGA-ML system for gameplay analysis. “Software Testing by Active Learning for

Commercial Games”[47] focuses on active learning and experimentally compares different

sampling methods.

1.4 Organization

Chapter 2 overviews selective sampling and explains the 5 selective sampling methods that

are used in this research. Chapter 3 presents the game application and the framework of our

solution. Chapter 4 shows the experimental results when our solution is applied on a real

commercial game: Electronic Arts’s FIFA99. Conclusions are drawn in Chapter 5.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Selective Sampling

In this chapter, selective sampling is reviewed and studied experimentally. Section 2.1

gives the explanations of what selective sampling is and why selective sampling is expected

to be superior to random sampling. The four existing selective sampling studied in this

thesis are described in Section 2.2.1: uncertainty sampling, QBC: bagging, QBC: boosting,

and BootstrapLV. A new rule-based sampling method is presented in Section 2.2.2. In

Section 2.3, these five selective sampling methods and random sampling are compared

experimentally.

2.1 Selective Sampling - What and Why

2.1.1 What is Selective Sampling

Normally, the training data for learning is provided by an external source entirely inde­

pendent of the learning algorithm. In selective sampling (also called active learning), the

algorithm starts from an initial training set which is usually small in size and randomly

generated. After a model is learned by the learner, a strategy is used to evaluate potential

additional training data. The most informative examples (as defined by the selection cri­

teria) are picked for labelling and added to the training set. Then, the model is updated

based on the new training set. This process is continued until the stopping criteria are met

(e.g., the model becomes stable). Selective sampling is a methodology and a framework.

There are three key components in a selective sampling algorithm. The first one is the basic

learning algorithm which is in charge of building models from training data. The second

one is the strategy for picking new training data. The third one is the stopping criterion,

which usually is defined by the convergence of certain criteria. Learning algorithms have

been very well studied in machine learning community and there are many excellent learn­

ers available. Therefore, the biggest concern in selective sampling is the second issue - how

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to effectively and efficiently select the most informative examples as new training data.

2.1.2 W hy Selective Sam pling

Selective sampling is attractive for the following types of applications:

• Training data is expensive

Training data for some applications such as astronomy and biology can be very ex­

pensive. For example, the satellite images in [17] cost hundreds, sometimes thou­

sands of dollars each.

• Labelling is expensive

Sometimes, unlabelled data is abundant and cheap but labelling is very expensive. For

example, manually classifying a single protein shape requires months of expensive

analysis by expert crystallographers[48],

• Too much training data

In some applications, large quantities of unlabelled examples are very cheap. For

example, web pages are abundant[22]. The task of classifying large quantities of web

pages is not possible for most memory-based classifiers.

2.1.3 Creating New Examples vs. Selecting From an Example Pool

New examples in a selective sampling algorithm can come from two sources: created in

instance space or selected from an example pool. The algorithms based on an unlabelled

example pool are called pool-based. Many database applications (e.g., [38]) fall into this

category. On the other hand, some applications have continuous instance spaces and an

oracle that can classify on the fly any new examples created.

2.2 Comparison of Different Selective Sampling Methods

This thesis focuses on the methods for selecting new training data in each iteration. There­

fore, the comparison of different selective sampling methods in this thesis means the com­

parison of different new training example selection methods. Other topics about selective

sampling such as the size of the initial training set, the number of new examples on each

iteration, and the stopping criteria, are avoided by using fixed definitions, as follows.

• The size of initial training set

Fixed size initial training set is given for each comparison.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The number of new examples on each iteration

Fixed number of new points on each iteration are taken for each comparison.

• Stopping criteria

Fixed number of iterations is used for each comparison.

2.2.1 The existing selective sampling methods used in this thesis

Saar-Tsechansky and Provost[32] provide a good review on the area of selective sampling.

Region o f Uncertainty [9], Query By Committee (QBC)[34] and Uncertainty Sampling[2\]

are explained in that paper. They also presented a new selective sampling method boosting

with local weighting (BootstrapLV) and compared it with uncertainty sampling. In this

thesis, uncertainty sampling, bagging-based QBC, boosting-based QBC and BootstrapLV

are implemented and are compared with random sampling and a new rule-based sampling

method. They are all pool-based sampling methods.

• Uncertainty Sampling

Uncertainty Sampling[21] aims to select those examples whose classification is least

certain. In this thesis, a C4.5[29] decision tree is used to measure the certainty of an

example. After training, each leaf node has a label, which is determined by the ma­

jority class of all examples in this leaf. When a prediction query comes and reaches

a leaf node in the tree, the probability of belonging to each class is calculated by the

example class distribution of this leaf node, e.g., if a leaf node (labelled as positive)

is supported by 12 examples and contradicted by 4 examples, the prediction class

probability of an incoming query example is 75% positive and 25% negative.

Pseudocode of the implementation of uncertainty sampling in this thesis is as follows:

1. Classify each example, e*, in the example pool using C4.5’s tree, and record the

probability, pi, of it being in the positive class.

2. Sort all examples in the pool by the absolute value of (p* — 0.5)

3. Pick the top n examples from the sorted list

Figure 2.1 shows how uncertainty sampling works. The upper part of Figure 2.1 is a

decision tree generated by C4.5. A and B are two features. The numbers inside each

leaf node are the number of positive examples and negative examples respectively

in the training set. The lower part of Figure 2.1 is a table which shows 3 examples

(ei, e2, and e f) from an example pool, e i goes to the leftmost leaf, whose positive

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

probability is 0.1; t i goes to the middle leaf, whose positive probability is 0 .6; e 3 goes

to the rightmost leaf, whose positive probability is 0.5. The ranking scores of e i, e2,

and e3 are |0.1 - 0.5| = 0.4, |0.6 - 0.5| = 0.1 and |0.5 - 0.5| = 0. Those scores are

sorted in ascending order. Therefore, the selection order of those 3 examples is e 3, e2

and e\. The number of examples to be picked in each selective sampling iteration is

a parameter of the implementation.

negative

4 : 6 5:5
positive negative

ei e2 e3

A -10 10 1

B 50 -5 2

Figure 2.1: Uncertainty sampling example

• Query by Committee (QBC) methods

Query by Committee[34] originally was used to build a strong classifier from a group

of very weak simple classifiers. This is not simply an algorithm, but a methodology.

In selective sampling contexts, instead of using a single classifier (e.g., as uncer­

tainty sampling does), a Query by Committee algorithm will construct a collection

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of individual classifiers that are diverse and yet accurate. After such a committee is

generated, the potential training data is evaluated by the voting of this committee.

The examples with the most classification disagreement among the committee are

selected to be added to the training set. A new committee will then be built from the

new training set, and so on. Because Query by Committee algorithms do not evalu­

ate the uncertainty by directly checking the classification probability value for single

examples (as uncertainty sampling does), they overcome the problem that uncertain

sampling has: oversampling examples with a real classification probability close to

0.5. If most committee member agree that a region’s real classification probability is

0.5, the examples there will not be chosen. In Figure 2.2, there is a 2-member com­

mittee, which are two similar C4.5 trees (treel and tree2), and 3 pool examples (e i,

e2, and 63) are sent to the committee to calculate their disagreement scores. For exam­

ple the disagreement score of e.; is S t = Y.JL 1 \p%j — Pi\, where m is the number

of members of the committee; pij is the probability of a positive label for example

e* by committee member j ; and p i is the average positive probability for ei from all

committee members. The disagreement score of e i is 0.2 = |0.2 — 0.3| + |0.4 — 0.3|;

the disagreement score of e2 is 0.1 = |0.7 — 0.65| + |0.6 — 0.65|; the disagreement

score of e3 is 0.5 = |0.1 — 0.35| + |0.6 — 0.35|. Those scores are sorted in descending

order. Therefore, the selection order of those 3 examples is e 3, e\ and C2- The number

of examples to be picked in each selective sampling iteration is a parameter of the im­

plementation. This sample selection strategy works for general Query by Committee

(QBC) selective sampling algorithms. Bagging-[6] and boosting-\ 14] based selective

sampling methods implemented in this thesis follow this sample selection strategy. In

the actual implementation, there are 10 C4.5 trees in the committee. Boosting With

Local Variance (BootstrapLV, a variant of QBC-boosting) is implemented as well but

its sampling selection method, which will be described later, is slightly different from

the general one described here.

- Bagging

In bagging, a classifier is built from a modified training set, which comes from

the original training set by random selection with replacement. Pseudocode of

the implementation is as follows:

1. Build committee (m members),

for each member j , 1 < j < m

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A < 0

Negative: (B c 0) Negative:
Positive Positive
(0.8:0.2) (0.6:0.4)

Negative Negative Negative Negative:
Positive Positive Positive Positive
(0.3:0.7) (0 . 9:0.1) (0.4:0.6) (0.7:0.3)

e.i e2 Ci
t ree l tree2

e i e z e3

A -10 3 3

B 50 -1 2

Average Positive Probability 0.3 0.65 0.35

Disagreement score 0 .2 0 . 1 0.5

Figure 2.2: Query by Committee example

* build a training set T S j by randomly selecting n examples from the

original training set with replacement

* generate a decision tree D T j by applying C4.5 to T S j

2. calculate the disagreement score for each example in the pool,

for each example e* in the pool

* for each committee member j , classify example e, using D Tj and

record the probability of the positive class pij

* calculate the disagreement score Si — t \Pij ~ P l> where p is the

average positive probability for et from all committee members

3. Pick the k examples with the highest disagreement scores

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Boosting

Boosting algorithms maintain a set of weights for the examples in the original

training set. The weights will be adjusted after each classifier is learned. The

weight for an example will be increased if it is misclassified by the classifier, and

decreased on the other hand. The training set for each classifier of the committee

is built based on the original training set and the current set of weights. The

version implemented in our system is AdaBoost.Ml[14], Pseudocode of the

implementation is as follows:

1. create a weight vector W for all n examples in the pool (E = {eu 1 < i <

n}) and initialize those weights as W,t = 1 /n , 1 < i < n

2. create a weight vector D T W for m committee members

3. Build the committee.

for each committee member (decision tree D T j , 1 < j < m)

* generate D T j with C4.5 using Training Set T S and current W

* let (3j = e / (l — e) , where e is the error of D Tj

* for each example e.(. 1 < i < n ,W i — Wj * (3j, if e(is correctly

classified by D T j

* normalize W so that YL\<i<n Wi = 1

* D T W j = log(1/Pj)

4. normalize D T W so that Y.\<j<m D T W j = 1

5. calculate the disagreement score for each example in E

for each example e,, 1 < i < n in the pool

* for each committee member j , 1 < j < m , classify e; using D Tj and

record the probability of positive class

* calculate the disagreement score Si = Y^jLi (\Pij ~ p \ * D T W j) , where

p is the average positive probability for e* from all committee members

6. Pick the k examples with the highest disagreement scores

- Boosting with local variance (BootstrapLV)

This sampling method is proposed in [32] as a selective sampling method that

can be applied to applications requiring estimations of the probability of class

membership, or scores that can be used to rank new cases. The paper claims

BootstrapLV is more powerful because existing empirical selective sampling

approaches have focused on learning classifiers (note: all the selective sampling

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

methods are implemented to be capable of estimating the probability of class

membership). The sample selection method of BootstrapLV differs from other

general QBC based algorithms (e.g., bagging- and boosting-based) in that after

the disagreement scores of all examples in the pool are calculated, BootstrapLV

does not select the examples with the highest disagreement scores. Instead,

each example (except those whose disagreement score = 0) has a chance to be

chosen, with a probability proportional to its disagreement score. Figure 2.3

shows 8 examples and their scores. The scores are calculated in the same way

as bagging. Unlike bagging and boosting, which will pick the top examples,

BootstrapLV can pick any example according to its probability (proportional

to its score). In Figure 2.3, ei has the highest score, but it only has a 30%

probability of being selected.

sc o re

ei 0.3

e2 0.2

e3 0.1

e4 0.1

es 0.1

ee 0.1

e i 0.05

es 0.05

Figure 2.3: BootstrapLV sample selection example

2.2.2 A new rule-based selective sampling method

A new selective rule based sampling method is proposed in this section. There are two

motivations to introduce this new method:

• Specific to rule learning

We use a rule-based classifier in our system. Existing selective sampling methods

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are general-purpose, not specific to a particular type of classifier. We hope the new

method specific to rule learning will be more powerful.

• Specific to our summarization task

Existing selective sampling methods are mainly score based, which places more at­

tention on individual examples. The new rule-based sampling method is distinct from

other selective sampling methods in that it works directly on the rules themselves,

not on examples. Therefore, the new sampling method is expected to work better in

terms of refining rules during the active learning process compared to other selective

sampling methods.

The rule inducer used in this thesis is C4.5’s rule learner. A rule is in conjunctive form,

such as “if A and B then C”, where A and B are the rule’s antecedents and C is the rule’s

consequence. From a C4.5 decision tree, every path from the root to a leaf can be converted

into a rule. From that initial set of rules will be removed unnecessary rule antecedents using

a greedy algorithm; then the rules are grouped according to classes; the rules of each group

are polished: some unnecessary rules are filtered; groups are sorted by their false positive

error rates; finally, the default rule is generated.

The rules generated by C4.5 are ordered and can overlap. Our rule-based method re­

quires unordered, non-overlapping rules, hence it starts by converting the rule set into an

exclusive rule set. A rule set (generated by C4.5) for the FIFA99 corner kick scenario is

shown on the right side of Figure 2.4. The corresponding exclusive rule set is visualized on

the left side of Figure 2.4 (individual rules are marked as 1, 2, 3 and 4). The algorithm for

converting an ordered and overlapping rule set into an exclusive rule set is as follows:

Rulel C lass: Not score
target.x <= -336

Rule2 C lass: Not score
target.y <= 2082

Rule3 Class: Score
target.y <= 2105

Rule4 Class: Score
target.x > 552
target.x <= 641
target.y > 2234

Default class: Not score

Figure 2.4: An example rule set (FIFA99 corner kick scenario)

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm: Convert An Ordered and Overlapping Rule Set into An Exclusive Rule

Set

Notation:

Original rule set S a

Exclusive rule set S e

Sub-rule set R s

Number of rules in original rule set N

a single rule r

Input: S 0

Output :Se

Initialization: set S e = empty

Algorithm:

For i = 1 , N

For j = 1 , M , M is the current size of S e

1. calculate the intersection r c of r j and S ej

2. If r l intersects S ej , r ,• needs to be divided into a set (Rs) non-intersecting

hyperrectangles whose union is all of n except for the part that intersects

with Se j (in Figure 2.5, r t is split into R s\, and R s2).

3. S e = S e i J R s

This conversion process is not free, it can be very expensive. In terms of the number

of rules, the exclusive rule set can be a hundred times larger than its ordered but overlap­

ping counterpart. Imagining a worst case: in a two-dimensional space, with 10 distinct

attribute values for each dimension, the total number of exclusive rules is 100 (10 by 10).

Therefore, in the worst case, the number of exclusive rules in a n-dimensional space can

be N totai = v\ * v2 * ... * vn , where Vi is the number of attribute values of dimension i

and 1 < i < n. Usually, in the active learning process, the learned rule set will become

more and more complex as the iteration number grows. Therefore, the process of convert­

ing the learned rule set into its exclusive counterpart will become correspondingly more

and more expensive. This is a limitation of our current rule-based sampling method. Future

improvements can be made by refining the conversion algorithm.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n

R s2

Figure 2.5: Rule split

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Based on exclusive rule sets, rule-based selective sampling consists of four methods:

sampling rule boundaries, sampling rules with low support, sampling the neighbourhood of

counterexamples, and sampling the default rule. The weights (in proportion to the number

of new generated examples) of each method are input parameters of SAGA-ML system.

These 4 methods are described in the following subsections.

• Sampling rule boundaries

Given enough training data, the rule boundaries could be very accurate. Selective

learned true
boundary boundary

noise

(a) Two rules (+ represents a positive example, - represents a negative example)
sharing a rule boundary

original updated
boundary boundary

true
boundarymove

(b) After adding more examples (small + and small -) in the rule boundary area,
the rule boundary moves to be more accurate

Figure 2.6: Sampling Rule Boundaries

sampling algorithms usually start from a small set training data, which means the rule

boundaries at the beginning could be (very) inaccurate. Figure 2.6(a) shows a rule

that roughly separates two groups of examples. The idea is to sample the boundary

area of the rules so that the rule boundaries move towards the “correct” location.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.6(b) shows that after sampling the rule boundary area (non-bold examples),

the rule boundary moves in the correct direction. One potential problem is that the

same (or similar) rule boundaries could be sampled again and again during the active

learning process, even though some rule boundaries might already be very accurate.

In our system, we keep track of which rule boundaries have been sampled and avoid

repeatedly sampling the same boundary areas.

Algorithm: Sampling rule boundaries

Notation:

A set of mutually exclusive rules for an active learning iteration: R

Rule boundaries generated by R: B

Rule boundaries that have been sampled in the past: B ône

Rule boundaries to be sampled: Ba

Examples to be labelled: E

Input: R

Output: E

Initialization: set B = empty, set B0 = empty, set E = empty

Algorithm:

1. for i = 1 , ..., nr, where n r is the number of rules in R

B = B U Bi, where Bi is the rule boundaries generated by rule i

2. for i = 1 ,..., rib, where rib is the number of boundaries in B

if the boundary bi B rj0ne and bi is the shared boundary of multiple (> 1)

classes

then Ba = B0 U {&*}

3- Bfione = Bfione U B0

4. for i = 1,..., nD, where n0 is the number of boundaries in B0

E - EU Ei,

where Ei is the example set generated from boundary bi. In our imple­

mentation, a fixed number of examples (3) are sampled randomly from

the boundary space.

• Sampling rules with low support

Some rules might have low support - very low example density compared with the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

average example density of the whole instance space. In an extreme case, a rule

might have 100% accuracy supported by only a few examples. Such rules have high

accuracy but low confidence. In our system, we put more new training data into the

areas covered by such low support rules. A threshold is used to determined if a rule

has low support or not. For each low support rule, a fixed number of samples are

randomly generated from the space covered by the rule.

• Sampling the neighborhood of counterexamples

Each learned rule will be supported by some training examples, but also could cover

counterexamples - examples in the opposite class. The technique of sampling the

neighborhood of counterexamples is not new, many selective sampling methods (e.g.,

the Windowing technique for C4.5) have already used this idea. Counterexamples

represent two possible situations: positively, new concepts could be found around

such data points; negatively, such data points could be just noise. In our implementa­

tion, the 3 nearest neighbors of a counterexample are selected and 3 new samples are

generated by calculating the middle points between the counterexample and these 3

neighbors. Figure 2.7 shows two counterexamples and their neighbor area.

+ Neighbor
area

+

+ Counter
example

Figure 2.7: Sampling the neighborhood of counterexamples

• Sampling Default Rule areas

The C4.5 rule learner will include all accurate enough (the default minimum accuracy

is 50%) rules sorted by class. There is always a default rule which covers the rest of

instance space. We found those default areas are just the Uncertainty Regions, which

can have high information value.

2.3 Experiments

Experiments have been done to answer the following questions:

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. is selective sampling better than random sampling, as is often claimed?

2. which selective sampling method is best?

An artificial test environment is built for initially investigating these questions. The key

benefit of an artificial environment is that the real target concepts are known in advance

because we have generated them. This enables accurate evaluations. Artificial test environ­

ments are not real domains, but are designed to resemble real problems. Ideally, artificial

environments will share as many properties as possible with their real counterparts, e.g., the

nature and amount of noise. Artificial environments have some advantages over real ones:

• it is impossible to know exactly the true concepts of a real problem, but it is possible

for an artificial environment because we generate those target concepts.

• the number and size of dimensions can be controlled.

• arbitrary noise can be added.

2.3.1 Classification Thresholds

To avoid the effects of randomness and noise, the same instance will be labelled multiple

times (10 in this experiment). The final class for the example will be decided by a threshold

on the ratio of positive vs negative examples. Suppose, for example, the threshold is 4 out

of 10; this means an instance will be classified as positive if the number of positive labels it

receives is greater than or equal to 4 (out of 10).

2.3.2 Two-dimensional experiments

Two dimensional artificial environment setup

To allow results to be visualized easily, we begin with an artificial environment with two

continuous dimensions. 9 rectangles are put into the two dimensional space. Examples

outside those rectangles will always be classified as negative. Examples falling into those

rectangles will be classified as positive with a probability. Those probabilities vary from 0.1

to 0.9. Figure 2.8 is the visualized scenario. To simulate real applications, small transition

areas between each positive box and the negative background are set up. For example,

the positive class probability of the transition areas surrounding the 0.9 box will decrease

gradually from 0.9 down to 0. All selective sampling methods start with 675 uniformly

sampled initial examples. In each iteration, 50 more examples are added to the training set.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transition
area

Figure 2.8: 2-D artificial scenario for sampling preference comparison

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Uncertainty (b) Bagging

(c) Boosting

Figure 2.9: Sampling preference comparison: data points — part 1

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sampling Preference of different methods

Figure 2.9 and Figure 2.10 show the visualized raw data distribution for the 5 selective

sampling algorithms after 100 iterations. Each dot in these figures (and later similar fig­

ures) is a data point selected by the selective sampling algorithm; a white dot indicates a

positive example; a black dot indicates a negative example. In these figures, some areas

are marked by a colored “X”, which means those area are impure regions whose shade

indicates the ratio of positive to negative examples. Uncertainty sampling (Figure 2.9(a))

shows a preference for sampling areas in which the number of positive examples is simi­

lar to the number of negative examples, especially the box with probability 0.5. It prefers

sampling inside of those boxes. Bagging (Figure 2.9(b)) and boosting (Figure 2.9(c)) prefer

sampling the boundaries of boxes, rather than the interior of the boxes (in Figure 2.9(b),

boxes 0.5, 0.6, 0.8 and 0.9 are sampled mainly around their boundaries; in Figure 2.9(c),

boxes 0.4, 0.5, 0.6, 0.7, and 0.9 are sampled mainly around their boundaries). BootstrapLV

(Figure 2.10(a)) looks just like random sampling. Rule-based sampling (Figure 2.10(b)) has

a very good sampling behavior, concentrating on the boundaries of boxes. Figures 2.11 and

2.12 show the visualized rules (solid white boxes) that were learned with the data points

in Figures 2.9 and 2.10. Almost all boxes whose probability is greater- than or equal to 0.5

are discovered by the learning methods. One noticeable thing is that uncertainty sampling

(Figure 2.11(a)) does not mark the box 0.5 as positive because negative and positive data

points inside this box have equal representation.

Evaluation

Classification accuracy is the most commonly used criterion to evaluate a learning algo­

rithm: induce a model using training data, and measure the classification accuracy on test

data. Accuracy is computed as follows: accuracy = correct/to ta l, where correct is the

number of correctly classified examples and total is the number of all examples.

Accuracy has been proved to be unacceptable for many real applications[ll]. There­

fore, in our studies we will use TP rate = TP / (TP + FN) and FP rate = FP / (FP + TN),

where TP is the number of true positives (examples classified correctly as positive), FP is

the number of false positives (examples misclassified as positive), TN is the number of true

negatives (examples classified correctly as negative), and FN is the number of false nega­

tives (examples misclassified as negative). For the 2-D artificial experiments, the TP rates

and FP rates are calculated by testing on a large test set.

To present clear results, a Bezier function is used to smooth all FP rate and TP rate plots

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) BootstrapLV (b) Rule-based

Figure 2.10: Sampling preference comparison: data points — part 2

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

(c) Boosting

Figure 2.11: Sampling preference comparison: generated rules — part 1

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) BootstrapLV (b) Rule-based

Figure 2.12: Sampling preference comparison: generated rules — part 2

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in this thesis. According to Paul Bourke's review([4]), the formula for a Bezier function is:

N An
B {u) = f 0 P t S (F = l)!“ '‘(1 ■ u)" " ‘ fo r 0 5 “ £ 1

where u is a continuous variable ranging from 0 to 1. A curve B (u) is built based on the

Bezier function with B(0) = Po, B (l) = P/v, where N + 1 is the number of total examples,

and F \ is the data point with index k. Figure 2.13 (by Paul Bourke[4]) is an example of

Bezier function: the original input points are Po, P i, P2, P3 and P4; a continuous Bezier

curve smooths the connections of those points.

N = 4

p 4
BCu)

Figure 2.13: Example of a Bezier function

A one-sided t-test will be used to test the statistical significance test of the sampling

methods at specific training set sizes. This is done as follows. At training set size x , methods

A has 5 experimental numbers {a^, 1 < i < 5} representing 5 runs. Methods B also has

5 numbers {bi, 1 < i < 5}. The 5 paired numbers {c* = cn — bi, 1 < * < 5} represent

the difference of methods A and B at training set size x. A one-sided t-test (a = 0.1) is

applied to {cj, 1 < i < 5} to test the null hypothesis that the difference is equal to 0. If the

statistical value is greater than 1.53 (t. 90, degrees o f freedom = 4), the null hypothesis will be

rejected and we can claim that methods A and B have a significant (a = 0.1) performance

difference at training set size x. In this thesis, if we claim that Method A is significantly

(a = 0 .1) better than all other methods at training set size x, we actually mean in individual

pairwise comparisons with the other 5 sampling methods in these experiments, Methods

A is significantly better than the others at training set size x. If we claim that Method A

and B are significantly (a = 0.1) better than Method C and D at training set size x, we

actually mean that all four pairwise tests indicate a significiant difference (M ethod A is

significantly(a = 0.1) better than Method C and Method A is significantly (a = 0.1) better

than Method D and Method B is significantly (a = 0.1) better than Method C and Method

B is significantly (a = 0.1) better than Method D) at training set size x.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.14 compares the TP rates of the 5 selective sampling methods in this artifi­

cial test. Random sampling is also included for comparison. The TP rates and FP rates

shown are the average of 5 repetitions of the experiment. Figure 2.15 and figure 2.16 show

the comparison of smoothed curve(average of 5 runs) and unsmoothed curve(average of 5

runs) for every sampling method. Throughout the whole thesis, each TP/FP rate figures

will be followed by such a figure comparing the smoothed curve(average of 5 runs) and

unsmoothed curve)average of 5 runs) for every sampling method.

Uncertainty sampling has the worst performance in terms of TP rate (the performance

difference is significant [a = 0.10] at training set size 2500), mostly because it concentrates

on the region where the real positive class probability is equal to 0.5. Bagging and boosting

are better than uncertainty sampling (the performance difference is significant [a = 0 .10]

at training set size 2500, in individual pairwise comparisons). Bagging and boosting both

are concentrating on boundary sampling. Random sampling has a good TP rate curve (e.g,

it significantly [a = 0 .10] beats all other methods except for rule-based sampling at train­

ing set size 1500), but its overall FP rate is the highest of all the 6 sampling methods (the

performance difference is significant [a = 0.10] at training set size 2500). The rule-based

sampling method performs best in this artificial test environment. It is the fastest sampling

method to reach a high and stable TP rate (e.g., it significantly [a = 0.10] beats all other

methods at training set size 2000), and it keeps a relatively low FP rate (but the differ­

ence is not shown to be significant [a = 0.10] at training set size 2500 given our sample

size). In Figure 2.14, the rule-based sampling method stopped before other sampling meth­

ods because the exclusive rule conversion algorithm cannot handle such a large number of

rules. This is a limitation of the current implementation of the rule-based sampling method.

In summary, in terms of TP rates, rule-based sampling is the best (e.g., it significantly

[a = 0 .10] beats all other methods at training set size 2000), uncertainty is the worst (the

performance difference is significant [a = 0.10] at training set size 2500). In terms of FP

rates, random is the worst (the performance difference is significant [a = 0 .10] at training

set size 2500), the FP rates difference of all other sampling methods are not shown to be

significant (a = 0.10) at training set size 2500 given our sample size.

2.3.3 H igh-dim ensional artificial tests

Figure 2.14 shows that random sampling is not bad compared with selective sampling meth­

ods in terms of TP rates in the 2-D artificial environment. We hypothesize that selective

sampling methods will be better than random when the number of dimensions increases

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa
lse

po

sit
ive

rat

e
tru

e
po

si
tiv

e
ra

te

0 .8

){ *>00000<x>0<)0ooo<k0.75

0.7

0.65

0 .6

0.55
boosting

bootstrapLV
random

rule-based
uncertainty sampling

0.5

0.45
1000 2500 3000 35001500 2000

number of training data
(a) TP rate

0.035

boosting
bootstrapLV

random
rule-based

uncertainty sampling

0.03

0.025

0.02

0.015
jjp’ fp ffi

0.01

0.005

0
2500 35001000 1500 2000 3000

number of training data
(b) FP rate

Figure 2.14: Sampling methods: TP and FP rates comparison

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tru
e

po
si

tiv
e

ra
te

tru
e

po
si

tiv
e

ra
te

tru
e

po
si

tiv
e

ra
te

0.8 0.8

0.7

0.65

0.6
sm o o th e d random

ran d o m
0.55

0.5

1000 1500 2000 2500 3000 3500
n u m b e r of train ing d a ta

(a) Random

0.75

0,7
<D

0.65

Wn 0 6
cn

0.55

0.5

0.45

bagg ing
s m o o th e d b a g g in g -

1500 2000 2500 3000 3500
n u m b er of train ing d a ta

(b) Bagging

0.75

0.7

0.65

0.6
bo o stin g —

sm o o th e d bo o stin g —
0.55

0.5

0.45
2000 2500 3000 35001000 1500

n u m b e r of train ing d a ta

(c) Boosting

0.75

0.70)2
a) 0.65 >
I 0-6
©

bootstrapL V
sm o o th e d bootstrapL V

0.55

0.5

0.45
3000 35001500 2000 25001000

n u m b er of train ing d a ta

(d) BootstrapLV

0.75

0.7

0.65

s m o o th e d ru le b a se d
ru le b a se d

0.55

0.5

0.45
2500 3000 35001000 1500 2000

n u m b e r of train ing d a ta

(e) Rulebased

0.8
0.75

0.7

© 0.65 >
a o.e
<D , .
J2 0.55

0.5

’ 5tlTb'0rilWiTrT5ertai nty
u ncerta in ly

0.45
3000 35001500 2000 25001000

n u m b er of train ing d a ta

(f) Uncertainty

Figure 2.15: 2-D TP rate: smoothed vs. unsmoothed

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.035
sm o o th e d random

random0.03

» 0.025 <0
CD> 0.02

§■ 0.015«
- 0.01

0.005

1000 1500 2000 2500 3000 3500
n u m b e r of train ing d a ta

(a) Random

0.035

sm o o th e d bag g in g —0.03

2 0.025(U
to> 0.02
8- 0.015<0«
•2 0.01

0.005

1500 2000 2500 3000 35001000
n u m b er of train ing d a ta

(b) Bagging

0.035
boosting

s m o o th e d bo o stin g0.03

15 0.025
0)•| 0.02
V)

0.015d>«
■2 0.01

d>

0.005

1500 2000 2500 3000 35001000
n u m b e r of train ing d a ta

(c) Boosting

0.035
b ootstrapL V

sm o o th e d bootstrapL V0.03

§ 0.025
o_> 0.02'</>

0.015o>
CO<0 0.01

0.005

1500 2000 2500 3000 35001000
n u m b er of train ing d a ta

(d) BootstrapLV

0.035
sm o o th e d u n certa in ty

u n ce rta in ty0.03

to
.a 0.02

§■ 0.015<Dw
>2 0.01

0.005

1500 2000 2500 3000 35001000

0.035
s m o o th e d ru le b a se d

ru le b a se d0.03

0.025

0.02

Q- 0.015

0.01

0.005

1500 2000 2500 3000 35001000
n u m b e r of training d a ta n u m b er of train ing d a ta

(e) Rulebased (f) Uncertainty

Figure 2.16: 2-D FP rate: smoothed vs. unsmoothed

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because random sampling must sample sparsely. For each higher dimensional space, target

concepts will be generated, each of which is a region with a certain width in each dimen­

sion; the total volume of all disjoint regions is fixed to be 40% of the whole instance space.

The positive probability of each target concept region is equal to 1.0 and each region is

surrounded by a very thin transition area.

Evaluation

TP and FP rates will be calculated exactly by comparing the geometry of the learned rules

with the target concepts. Figure 2.17 shows how to get TP, TN, FP and FN by comparing a

learned rule with the target concept.

Instance Space

Learned ruleTarget'concept

Figure 2.17: Evaluation by comparing the learned rule with the target concept

Experiment setup and results

The initial training set is 50 examples and 10 more examples are added to the training set

on each iteration.

• 4-D

- TP rate (Figure 2.18(a))

Bagging and rule-based sampling are the best two methods (e.g., bagging sig­

nificantly beats all others [a = 0.10] except for boosting at training set size 400;

boosting significantly beats all others [a = 0 .10] except for bagging at training

set size 400 as well). The TP rates difference of all other sampling methods are

not shown to be significant (a = 0.10) at training set size 400 given our sample

size.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa
lse

po

sit
iv

e
rat

e
tru

e
po

si
tiv

e
ra

te

•••<> *>.. ®

0.9

0 .8

0.7

0 .6 bagging
boosting

bootstrapLV
random

rulebased
uncertainty

0.5

0.4

100 200 300 400 500 600 700 800 900 1000
number of training data

(a) TP rate

bagging

random —
rulebased — *

uncertainty —̂
0.08

0.06

0.04

0 .0 2

''N»

100 200 300 400 500 600 700 800 900 1000
number of training data

(b) FP rate

Figure 2.18: TP and FP rates comparison in a 4-D space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tru
e

po
si

tiv
e

ra
te

tru
e

po
si

tiv
e

ra
te

tru
e

po
si

tiv
e

ra
te

0.9

0.7

sm o o th e d ra n d o m ------
ra n d o m —*—

0.6

0.5

0.4

100 200 300 400 500 600 700 800 900 1000
n u m b er of train ing d a ta

(a) Random

0.9

©

.1 07
o 0.6

s m o o th e d bagg ing©3
0.5

0.4

100 200 300 400 500 600 700 800 900 1000
n u m b er of train ing d a ta

(b) Bagging

0.9

0.7

bo o stin g
sm o o th e d bo o stin g

0.6

0.5

0.4

100 200 300 400 500 600 700 800 900 1000
n u m b er of train ing d a ta

(c) Boosting

0.9

o 0.8 IB
© 0.7
<o
a bootstrapL V

s m o o th e d bootstrapL V —©
3

0.5

0.4

100 200 300 400 500 600 700 800 900 1000
n u m b er of train ing d a ta

(d) BootstrapLV

0.9

0.7

s m o o th e d r u l e b a s e d ------
r u le b a s e d —

0.6
0.5

0.4

100 200 300 400 500 600 700 800 900 1000
n u m b er of train ing d a ta

(e) Rulebased

0.9

0.8©
jo

> 0.7
't/i
o 0.6 sm o o th e d u n ce rta in ty ------

u n ce rta in ty -■*—©3
0.5

0.4

100 200 300 400 500 600 700 800 900 1000
n u m b er of train ing d a ta

(f) Uncertainty

Figure 2.19: 4-D TP rate: smoothed vs. unsmoothed

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa
lse

po

si
tiv

e
ra

te
fa

ls
e

po
si

tiv
e

ra
te

fa

lse

po
si

tiv
e

ra
te

0.2

0.15

ran d o m
sm o o th e d ran d o m

0.05

100 200 300 400 500 600 700 800 900 1000
n u m b e r of training d a ta

(a) Random

! I

• ; !j i m n b a g g in g ...*...
A ̂ f \ [; 1 h s m o o th e d b a g g in g ------

* 1 H
‘ V* 1

100 200 300 400 500 600 700 800 900 1000
n u m b er of train ing d a ta

(b) Bagging

0.2

0.15

boosting
sm o o th e d boosting

0.1

0.05

100 200 300 400 500 600 700 800 900 1000
n u m b e r of train ing d a ta

(c) Boosting

0.2

0.15
o(0
<D>
w 0.1 b o o ts trap l

sm o o th e d b o o ts tra p la
m

0.05

100 200 300 400 500 600 700 800 900 1000
n u m b er of train ing d a ta

(d) BootstrapLV

0.2

0.15

sm o o th e d ru le b a se d
ru le b a se d

0.1

0.05

100 200 300 400 500 600 700 800 900 1000
n u m b e r of train ing d a ta

(e) Rulebased

0.2

0.15
4>m
.>

sm o o th e d uncertainty

a
CD

0.05

100 200 300 400 500 600 700 800 900 1000
n u m b e r of train ing d a ta

(f) Uncertainty

Figure 2.20: 4-D FP rate: smoothed v.v. unsmoothed

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa
lse

po

sit
ive

rat

e
tru

e
po

si
tiv

e
ra

te
0.9

0 .8

bagging
boosting

bootstrapLV
random

rulebased
uncertainty

0 .6

0.5

0.4

700500 600300 4001 0 0 2 0 0

number of training data
(a) TP rate

0.14
bagging

0 .1 2

random
rulebased

uncertainty

0.08

0.06

0.04

0 .0 2

600 7005004001 0 0 2 0 0 300
number of training data

(b) FP rate

Figure 2.21: TP and FP rates comparison in a 6-D space

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9

a>re
> 07'c/5oQ- 0.6 s m o o th e d ra n d o m —

ran d o m —<0)
=3

0.5

0.4

100 200 300 400 500 600 700
n u m b er of train ing d a ta

(a) Random

0.9

.1 0.7
’woa- 0.6 bag g in g

sm o o th e d bag g in g

0.5

0.4

400 500 600 700100 200 300
n u m b er of train ing d a ta

(b) Bagging

0.9

> 07v>o 0.6 bo o stin g -
s m o o th e d bo o stin g -©

0.5

0.4

100 200 300 400 500 600 700
num ber of training data

(c) Boosting

0.9

©
13
© 0.7

o
CL(D

boo tstrapL V «
s m o o th e d boo tstrapL V -

0.5

0.4

500 600 700100 200 300 400
n u m b er of train ing d a ta

(d) BootstrapLV

0.9

0.8rere
.1 °-7
oQ_ s m o o th e d ru le b a se d

ru le b a se d

0.5

0.4

200 300 400 500 600 700100

0.9

re
13
| 0.7

o
Cl S m oothed u n ce rta in ty —re

0.5

0.4

500 600 700100 200 300 400
n u m b e r of train ing d a ta n u m b er of train ing d a ta

(e) Rulebased (f) Uncertainty

Figure 2.22: 6-D TP rate: smoothed vs. unsmoothed

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa
ls

e
po

si
tiv

e
ra

te

fa
ls

e
po

si
tiv

e
ra

te
fa

ls
e

po
si

tiv
e

ra
te

0.14
sm o o th e d random

random0.12'

0.06

0.04

0.02

600 700300 400 500100 200
n u m b e r of training d a ta

(a) Random

0.14

0.12
B 0.15
Q>•I 0.08w
2. 0.06 0)
Vi

B 0.04

0.02
0

bag g in g *
. sm o o th e d bag g in g —h

i
 ̂*V. ̂ * ’

„ 1 * *

200 300 400 500 600
n u m b er of train ing d a ta

(b) Bagging

0.14
boosting

sm o o th e d boosting0.12
0.1

0.06

0.04

0.02

100 200 300 400 500 600 700
n u m b er of train ing d a ta

(c) Boosting

0.14
bootstrapL V --**■

sm o o th e d boo tstrapL V —0.12
B 0.1 2
> 0.08

§■ 0.06 <1)
V)

■2 0.04

O

0.02

100 200 300 400 500 600 700
n u m b er of train ing d a ta

(d) BootstrapLV

0.14
s m o o th e d ru le b a se d -

ru le b a se d -0.12

0.08

0.06

0.04

0.02

300 400 500 600 700100 200
n u m b e r of train ing d a ta

(e) Rulebased

0.14
sm o o th e d u n ce rta in ty ■

u n certa in ty0.12

o>
73

.1 0.08

8. 0.06Ow
B 0.04

0.02

700400 500 600100 200 300
n u m b er of train ing d a ta

(f) Uncertainty

Figure 2.23: 6-D FP rate: smoothed v.v. unsmoothed

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa
lse

po

sit
ive

rat

e
tru

e
po

si
tiv

e
ra

te

0.9

0 .8

0.7

0 .6

0.5
bagging
boosting —•-

bootstrapLV —
random —

rulebased —*■
uncertainty —̂

0.4

0.3

0 .2

500300 4001 0 0 2 0 0

number of training data
(a) TP rate

bagging «-
boosting —<-

bootstrapLV —&
random—

rulebased —5*
uncertainty —^

0.08

0.06

0.04

0.02

500300 4002 0 01 0 0

number of training data
(b) FPrate

Figure 2.24: TP and FP rates comparison in a 8-D space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.7
0)re
Q)
g 0.5

^ 0.4
sm o o th e d random

random

0.3

0.2
300 400 500100 200

n u m b er of train ing d a ta

(a) Random

0.9

0.7

0.6
0.5

bag g in g
sm o o th e d bagg ing0.4

0.3

0.2
200 300 400 500100
n u m b er of train ing d a ta

(b) Bagging

0.9

0.7
a)
2 0.6a>.>
'55 0.5oa.
§ 0.4

boosting
sm o o th e d boosting

0.3

0.2
200 300 400 500100
n u m b e r of train ing d a ta

(c) Boosting

0.8

0.7
o
<D
« 0.5 o
Q .

0.4
boo tstrapL V

sm o o th e d boo tstrapL V<d
3

0.3

0.2
500100 200 300 400

n u m b er of train ing d a ta

(d) BootstrapLV

0.9

0.8
0.7©

13 0.60}_>
0.5

a fm oothed u n c e r ta in ty ------
u n ce rta in ty —©

3 0.4

0.3

0.2
300 400 500100 200

0.9

0.7©
2
>
'55 0.5oQ.

0.4
sm o o th e d ru le b a se d ------

ru le b a se d —̂*—<o3
0.3

0.2
500100 200 300 400

n u m b e r of train ing d a ta n u m b er of train ing d a ta

(e) Rulebased (f) Uncertainty

Figure 2.25: 8-D TP rate: smoothed vj. unsmoothed

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa
lse

po

si
tiv

e
ra

te
fa

ls
e

po
si

tiv
e

ra
te

fa

ls
e

po
si

tiv
e

ra
te

0.14

0.12

sm o o th e d random
ran d o m

0.08

0.06

0.04

0.02

100 200 300 400 500
n u m b e r of train ing d a ta

(a) Random

0.14

0.12

CD bag g in g
sm o o th e d bag g in g20)

• | 0.08 'w
8- 0.06

•2 0.04

0.02

100 200 300 400 500
n u m b er of train ing d a ta

(b) Bagging

0.14

0,12

b oosting
s m o o th e d boosting

0.06

0.04

0.02

100 200 300 400 500
n u m b e r of train ing d a ta

(c) Boosting

0.14

0.12

<D boo tstrapL V
sm o o th e d boo tstrapL V —

.1 0.08

§- 0.06

0.04

0.02

100 200 300 400 500
n u m b er of train ing d a ta

(d) BootstrapLV

0.14

0.12

s m o o th e d ru le b a se d
ru le b a se d

0.1

0.06

0.04=

0.02

100 200 300 400 500
n u m b e r of train ing d a ta

(e) Rulebased

0.14

0.12

<3 0.1 sm o o th e d u n ce rta in ty - —

Q)
0.08

‘55
8 0.06
CD

<2 0.04'

0.02

100 200 300 400 500
n u m b er of train ing d a ta

(f) Uncertainty

Figure 2.26: 8-D FP rate: smoothed vs. unsmoothed

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

fa
lse

po

sit
ive

rat

e
tru

e
po

sit
ive

ra

te

0.7

bagging *
boosting —

bootstrapLV —b—
random------

rulebased —
u n c e r t a i n j ^ f | ^

0.6

0.5

0.4

0.3

0.2

200 250 30050 1 0 0 150
number of training data

(a) TP rate

0.12 boosting
bootstrapLV

random
rulebased

uncertainty

0.08

0.06

0.04

0.02

250 300150 20050 1 0 0

number of training data
(b) FP rate

Figure 2.27: TP and FP rates comparison in a 10-D space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tru
e

po
si

tiv
e

ra
te

tru
e

po
si

tiv
e

ra
te

tru

e
po

si
tiv

e
ra

te
0 .7

s m o o th e d random
ran d o m

0.6

0 .5

0 .4

0 .3

0.2

150
n u m b e r of train ing d a ta

200 250 30 0100

bagg ing
sm o o th e d bag g in g

100 150 2 00 250
n u m b er of train ing d a ta

(a) Random (b) Bagging

0.7

boosting
sm o o th e d bo o stin g

0.6

0.5

0 .4

0 .3

0.2

250 3 00100 150
n u m b e r of train ing d a ta

200

0.7

boo tstrapL V -
s m o o th e d boo tstrapL V —

0.6

0.5

0.4a>>

o 0 .3 a.
a>
3 0.2

0.1

250 300100 150 2 00
n u m b er of train ing d a ta

(c) Boosting (d) BootstrapLV

0.7

0 .6 sm oothed ru le b a s e d —
ru le b a s e d —1

0 .5

0 .4

0 .3

0.2

150
n u m b e r of train ing d a ta

200 250 3 00100

0 .7

s m o o th e d uncertainty0.6

0.5
Q)(0

0.4©>

I 0-3
CD3 0.2

0.1

250 300100 150 200
n u m b er of train ing d a ta

(e) Rulebased (f) Uncertainty

Figure 2.28: 10-D TP rate: smoothed v.v. unsmoothed

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa
ls

e
po

si
tiv

e
ra

te
fa

ls
e

po
si

tiv
e

ra
te

fa
lse

po

si
tiv

e
ra

te
0 .16

lo o th ed ran d o m0.12

0.08

0 .0 6

0 .0 4

0.02

250 300150
n u m b e r of train ing d a ta

200100

(a) Random

0 .1 6

0 .1 4

0.12
<d
Is 0.1 0)

0 .0 8

I 0 .0 6_w
“ 0 .0 4

0.02

0
5 0 100 150 2 00 2 50 3 00

n u m b er of train ing d a ta

(b) Bagging

bagging
sm o o th e d bagging

0 .1 6

0 .1 4

| boosting
s m o o th e d boosting0.12

0.08

0.06

0 .0 4

0.02

3 00100 150
n u m b e r of train ing d a ta

200 2 50

0 .1 6

0 .1 4

v 1 \ bootstrapLV
v \ J t s m o o th e d bootstrapL V0.12

2

i 0 08O
o, 0 .0 6tn

0 .0 4

0.02

150 200
n u m b er of train ing d a ta

2 5 0 3 00100

(c) Boosting (d) BootstrapLV

0 .1 4

sm o o th e d ru le b a se d
ru le b a se d0.12

0 .0 8

0 .0 6

0 .0 4

0.02

3 00200 2 50100 150
n u m b e r of train ing d a ta

(e) Rulebased

Figure 2.29: 10-D FP rate:

0 .1 6

0 .1 4

sm o o th e d uncertainty
uncertain?0.12

0)
0.1(0

CD

1 008
©
® 0 .0 6

3 0 .0 4

0.02

2 50 3 00200100 150
n u m b er of train ing d a ta

(f) Uncertainty

smoothed vs. unsmoothed

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- FP rate (Figure 2.18(b))

Bagging is not stable in the early stages, but achieves the lowest FP rate even­

tually (the performance difference is significant [a = 0.10] at training set

size 1030); rule-based sampling beats random after training set size is bigger

than 400 (e.g., it significantly [a = 0.10] beats random at training set size

500); random sampling, uncertainty sampling and boosting has no significant

(a = 0.10) FP rates difference at training set size 600 given our sample size.

BootstrapLV is the worst in terms of FP rates (the performance difference is

significant [a = 0.10] at training set size 700).

- Overall

Bagging and rule-based sampling are the overall winners.

• 6-D

- TP rate (Figure 2.21(a))

Boosting, bagging and rule-based sampling are similar (no significant [a =

0.10] difference at training set size 600 given our sample size); but each of them

is better than random sampling (the performance difference is significant [a =

0.10] at training set size 600); BootstrapLV is the overall worst (the performance

difference is significant [a = 0.10] at training set size 400).

- FP rate (Figure 2.21(b))

There is no significant (a = 0.10) difference between the different sampling

methods, e.g, at training set size 700.

- Overall

Selective sampling methods (except for Uncertainty and BootstrapLV) begin

to be superior to random sampling (the performance difference is significant

(a = 0.10) at training set size 600).

• 8-D

- TP rate (Figure 2.24(a))

Two groups are formed and the sampling methods within each group have sim ­

ilar TP rates. The first group consists of boosting, bagging and rule-based sam­

pling. The second group has lower TP rates than the first group; it consists of

uncertainty sampling, random and BootstrapLV.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- FP rate (Figure 2.24(b))

Random sampling is the worst (the performance difference is significant [a =

0.10] at training set size 200).

- Overall

Boosting, bagging and rule-based sampling are better than random sampling

(the performance difference is significant [alpha = 0.1] at training set size 300).

• 10-D

- TP rate (Figure 2.27(a))

Bagging, boosting, rule-based and uncertainty sampling all beat random sam­

pling (the performance difference is significant [a = 0.10] at training set size

200).

- FP rate (Figure 2.27(b))

Bagging and rule-based sampling seem to be better than other sampling meth­

ods, due to limited number of samples and iterations, above claim is not signif­

icant (a = 0.10), e.g., at at training set size 200.

- Overall

All selective sampling methods except BootstrapLV beat random sampling in

terms of TP rates (the performance difference is significant [a = 0.10] at train­

ing set size 200).

Some experimental results (Figures 2.18-2.27) confirm the hypothesis that selective sam­

pling methods are superior to random sampling when dimensionality increases.

2.3.4 Conclusion and Discussion

Experimental results (especially when dimensionality is high) proved that selective sam­

pling algorithms are more efficient than random sampling. Given the same accuracy target,

less training data is needed by selective sampling algorithms. The performance of the five

implemented selective sampling methods is different with different dimensionality. There­

fore, one conclusion is that the different sampling methods behave differently in different

problems. Experiments must be done to get the most suitable sampling method for a given

problem. In the artificial test environments, bagging and rule-based sampling are always

among the best methods for all spaces.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A comment on Bootstrap-LV

Experiments indicate that the behavior of Bootstrap-LV is much different than the other

selective sampling techniques. In Figure 2.10(a), Bootstrap-LV wastes many of its samples

in areas already known to be negative. This is because the Bootstrap-LV algorithm uses

example scores as probabilities and samples from this distribution instead of picking the

top N examples. The problem is the following: if data points with high scores are greatly

outweighed by data points with low scores, Bootstrap-LV will tend to select low scoring

data points. For example, suppose there are 4 examples in a 100-example pool having very

high scores (x each), and the other 96 examples all have the score of x /1 0 each. A low

scoring example is 2.4 times more likely to be chosen than a high scoring example.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Scenario Testing for (Sports) Games

In this chapter, the Semi-Automated Gameplay Analysis (SAGA-ML) system is presented.

SAGA-ML will automatically play against real games to collect information used for game­

play analysis and this process actually is the functional test in the context of software test­

ing. Therefore, the background of software testing is introduced in 3.1. The relationship

between automated testing and gameplay analysis is discussed in 3.2. Then the details of

SAGA-ML are described and illustrated with the example of the corner kick scenario in

Electronic Arts’s FIFA99 soccer game.

3.1 Background — Software Testing

Software testing is an important part of the software development cycle. Figure 3.1 shows

the waterfall model[31] that separates the software development process into several phases,

each of which only interacts with adjacent phases. First, requirements are analyzed and de­

fined. Then, the system and software are designed based on the requirements. Testing

involves in two phases: during the implementation phase, unit testing will be used to test

individual modules; more testing will be done for integration and at the system level. Fi­

nally, the software will be delivered to customers and maintenance work will be done as

needed. Software testing is playing a more and more important role, and accounts for 50%

of the total cost of software development^]. A study[27] by National Institute of Standards

& Technology showed that “the national annual costs of an inadequate infrastructure for

software testing is estimated to range from $22.2 to $59.5 billion” or about 0.6 percent of

the US gross domestic product.

In 1991, the International Organization for Standardization (ISO) adopted ISO 9126[13]

as the standard for software quality. It is structured around six main attributes listed below:

Functionality (suitability, accurateness, interoperability, compliance, security)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R equirem ents Analysis
and

Definition

Im plem entation and Unit
Testing

Integration and System
Testing

Operation and
M aintenance

System and Software
Design

Figure 3.1: Waterfall Model of Software Development Process

Reliability (maturity, fault tolerance, recoverability)

Usability (understandability, learnability, operability)

Efficiency (time behavior, resource behavior)

Maintainability (analyzability, changeability, stability, testability)

Portability (adaptability, installability, conformance, replaceability)

Although above 6 categories are well defined software testing categories, there are no stan­

dard testing metrics and processes. Publications[26] by IEEE have presented numerous

potential metrics that can be used to test each attribute.

Fault density

Defect density

Cumulative failure profile

Fault-days number

Functional or modular test coverage

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Data or information flow complexity

Cause and effect graphing

Requirements traceability

Defect indices

Error distribution (s)

Software maturity index

Person-hours per major defect detected

Number of conflicting requirements

Number of entries and exits per module

Software science measures

Graph-theoretic complexity for architecture

Cyclomatic complexity

Minimal unit test case determination

Run reliability

Design structure

Mean time to discover the next K-faults

Software purity level

Estimated number of faults remaining (by seeding)

Requirements compliance

Test coverage

Reliability growth function

Residual fault count

Failure analysis elapsed time

Testing sufficiently

Mean time to failure

Failure rate

Software documentation and source listing

Rely-required software reliability

Software release readiness

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Completeness

Test accuracy

System performance reliability

Independent process reliability

Combined hardware and software (system) availability

In practice, software testing usually uses the following categories.

U nit testing this type of testing will test a basic unit of the software (e.g. a method

in object-oriented software).

Integration testing this type of testing is the module level testing. The integration

of several objects or methods will be tested.

System testing this type of testing is the application level testing. The integration of

modules will be tested.

Regression testing this type of testing will verify that new code does not introduce

any additional bugs into the previously tested code.

Stress testing the purpose of stress testing is to make sure the software works prop­

erly beyond normal load conditions (e.g., testing the program in a system where

all physical memory has been consumed).

Perform ance testing performance testing will test performance issues such as re­

sponse time, efficiency etc.

Each testing category will consider at least one metric from IEEE’s list. A general process

for a software testing task can be divided into 4 phases[45]:

Modelling the software’s environment

Selecting test scenarios

Running and evaluating test scenarios

Measuring testing progress

Firstly, the tester should model the software’s environment to simulate realistic software

usage. All interactions between users and software should be considered. Given the com­

plexity of current software, the second testing phase is to select test cases (a test case is

a choice of input testing data) to satisfy certain, criteria, such as execution path coverage

and input domain coverage. Then, those test cases are run and evaluated according to the

software’s specifications. Finally, evaluation should be done to measure the whole testing

progress to see if enough testing has been done.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.1 Commercial Tools for Software Testing

The worldwide market for software testing tools was $931 million in 1999 and at that time

was projected to grow to more than $2.6 billion by 2004[35]. Testing tools can be catego­

rized into general purpose tools, application specific tools, and management tools. General

purpose tools including tools for functional testing and performance testing, which can

be applied to all software. On the other hand, many test tools are designed for specific

software types such as databases, embedded systems, Java-based systems and web applica­

tions. Management tools include the tools for test management, bug tracking, requirement

management, etc. There are a large number of test automation tools and venders in the

market. Among them, Rational (Robot, Visual Test), Mercury Interactive (WinRunner),

Segue (SilkTest) and Compuware (QA Run) are the more well-known test tool companies

(products). Each product has its own strength and weakness. For example, Rational Robot

is good at data creation facilities and Segue SilkTest has better text facilities. Reference

[30] compares main functional test tools in the market.

3.1.2 Test-case Generation for Software Testing

Among the 4 phases of a software testing process, test-case selection and evaluation are the

two phases that cost testers the most time. Although program-based (automatic) test data

generation and verification has been believed to be effective at reducing software testing

cost for many years, in real industry software development, those two tasks are still done

manually and heavily rely on testers’ expertise. In this section, some research on test-case

automatic generation will be discussed.

Test cases are selected to simulate real software usage. Ideally, it will be best if all

possible usage is tested, which is not practical due to the complexity of current software.

The input domain of software usually is infinite. There are two criteria to evaluate a test

case selection process: if selected test cases are enough to satisfy criteria (e.g., coverage)

for execution paths and input domains, and the number of test cases. The best case is that

minimal test cases are selected to achieve the testing goals.

There are two categories of automatic test-case generation techniques: structural (white-

box) testing and functional (black-box) testing. If the structure of tested program itself is

used for testing, the testing method is called white-box; otherwise, it is called black-box.

Reference [41] indicates that modern software is too large to be tested by the white-box

approach as a single entity. In practice, white-box testing approaches are usually used for

subsystem levels. Black-box approaches are more commonly used for complex systems.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Structural (White-box) test-case generation techniques

Basic Concept Many studies in the literature use the concept of Control Flow Graph

(CFG) to analyze structur-based testing methods. The following definitions are

mostly taken from [23]:

Control Flow Graph (CFG) CFG is the control flow graph of the program

under test. Most structure-based testing methods rely on a CFG. A CFG

is a directed graph G = (TV, E , s, e), where N is the set of nodes; E is the

set of edges, s and e the entry/exit nodes of the program F . Each node

n <£ N is a statement in F. Each edge e — (n*, n j) £ E is a transfer of

control from node ?i, to n3. Nodes corresponding to decision statements

(e.g., if...then, while loop) are called branching nodes.

Path a path P is a sequence P —< n \ , 712,..., n m > , such that for all i, 1 <

i < m , (« ,, n t+t) G E. A path is feasible if there exists a program input

for which the path is traversed, otherwise it is infeasible.

Static structural test-case generation The methods in this category analyze the static

program structure without executing the program. The general framework of

such methods is this: given a goal node g, a path leading to g will be found by

analyzing the static program structure solely. Inputs (test cases) are then gener­

ated from this path. If no inputs can be generated from this path, another path

leading to node g will be chosen until inputs can be generated. Symbolic ex­

ecution]^ is a representative approach in this category of test-case generation

techniques. For any path p, all constraints involving the input variables used

by p are generated. The task of selecting inputs is converted to solving those

constraints. The main shortcoming of this method is that the symbols it uses do

not include dynamic elements like dynamic data structures and arrays.

Dynamic structural test-case generation The test-case generation techniques in this

category execute the software being tested.

Random approach The random approach is the simplest method: test cases

are generated randomly from the input domain when the software is exe­

cuted. However, this method is not efficient and effective. Many program

paths can not be tested due to the very low probability of generating inputs

that exercise these paths.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The goal-oriented approach This approach[16] starts the software with arbi­

trary inputs. When program runs into any code node, a procedure will be

executed to decide if this node should be run or not. The criteria is the

relationship between this node and the target node. If executing the current

node does not lead towards the execution of target node, this node should

be avoided.

The chaining approach Symbolic execution and the goal-oriented approach

only use a program’s control flow graph. In the chaining approach[12],

data dependence is used as well to evaluate if a program node should be

included into the path.

Assertion testing Assertion testing[15] inserts many assert statements into the

code to test boolean conditions. If the boolean conditions are false, a fail­

ure will be detected. There are two tasks in these testing methods: the first

one is to write the boolean conditions, which means the tester must fully

understand the meaning of the program under test. This could be a limi­

tation of this method. The second task of this testing method is to run the

softw.are and enumerate all paths containing assert statements.

• Functional (Black-box) test-case generation techniques

Black-box testing methods are usually used to test the functionalities of a system

without knowing the implementation details. In the context of test-case generation,

the main idea is to use a function description (e.g., function specifications) to generate

test cases.

In [39], formal function specifications are used to generate test data. First, function

specifications must be converted into a formal format: conditions on the inputs of the

function are the pre-condition and the outputs of the function is the post-condition.

A failure will be detected if inputs satisfy the pre-condition but the outputs violate

the post-condition. Given an input of the function, an objective function is used to

evaluate its closeness score to get a fault output. This score is then used to guide the

generation of next input supposed to be closer to cause a failure.

Many black-box test-case generation techniques are A.I. based, which will be dis­

cussed in more details in following section.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.3 A .I. for Softw are testing

Artificial Intelligence techniques have been applied to all software testing phases. Many

A.I. techniques, like Artificial Neural Networks (ANN) and Info Fuzzy Networks (IFN),

have been successfully used for test-case generation and test-oracle creation. Some data

mining techniques[10] have been used to discover knowledge from software metrics. Be­

cause statistics is one of the most important foundations of A.I., some statistics-based test­

ing techniques are also included in this section.

Statistic Software Testing Techniques

Markov chain A Markov chain is used to model software usage in [46]. A Markov

chain will be built based on software usage. Test cases then can be generated

from this model and multiple probability distributions. A second Markov chain

will be built from the generated test cases with the results of their having been

run (failed or not). This second Markov chain can be used to analyze the failure

distribution and evaluate the software. The quality of building the first Markov

chain (how to simulate the realistic software usage before this software is re­

leased?) is the key of this technique.

Hill climbing Hill climbing has been used for test-case generation[24], Starting

from a seed test case, a hill climbing algorithm explores the neighborhood of the

input domain of this seed. Depending on testing purpose, a objective function

is used to evaluate test cases. This search process will continue until a locally

optimal test case is found.

Simulated annealing Simulated annealing[39][40] is used to overcome the prob­

lems of hill climbing. By probabilistically accepting poorer solutions, simu­

lated annealing can explore more of the input space than hill-climbing, which

means higher quality test cases might be found.

Heuristic Search

Many test-case generation approaches discussed above use a heuristic method to search the

target program node. The goal-oriented approach[16] and the chaining approach[12] will

evaluate current program branch to decide if search should start from this branch. Reference

[20] used heuristic search techniques to generate test program automatically based on test

cases and closed algebraic specifications of the classes.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Evolutionary Algorithm

Some applications (e.g., [43], [18], [44]) applied evolutionary algorithms to software test­

ing. Evolutionary algorithm based test-case generation methods start from a initial test case

population, usually randomly generated. Depending on the testing purpose, a fitness func­

tion will be used to generate a real value for each test case. Test cases with high scores have

higher probabilities to be selected to mate and mutate to generate the next generation —

new test cases. In the end, high quality test cases are generated.

Artificial Neural Networks (ANN) and Info Fuzzy Networks (IFN)

Artificial Neural Networks (ANN) and Info Fuzzy Networks (IFN) are two important data

mining approaches. The reason to discuss ANN and IFN together is that they are almost

playing same roles in software testing. Both ANN and IFN are used on test-case generation

and test-oracle generation. In [2], a neural network uses test case metrics as inputs and the

error classification as outputs for training. Once such as a network is trained, test cases

generated by random or from some generation tools will be fed into this network to predict

the fault exposure. Only test cases classified as certain classes will be used as real test cases.

In [19], an IFN is built as a simulated system of the system under test. Randomly generated

test cases with corresponding system outputs are sent to the IFN. The IFN algorithm is

run repeatedly to find a subset of input variables relevant to each output. Once the IFN is

trained, a set of non-redundant test case covering the most common functional relationships

existing in software will be automatically produced. In [1], the performance of ANN and

IFN as test oracles is compared.

3.2 Gameplay Analysis and Automated Game Scenario Testing

As it is defined in Chapter 1, gameplay usually refers to the game behaviour as defined by

the game’s rules, logic, difficulty, goals, and constraints. Gameplay contributes much to the

enjoyability of a game.

3.2.1 Gameplay Analysis

Figure 3.2 shows the current industry process for gam eplay design, implementation, testing,

and refinement. A box with a human icon means that that phase needs human involvement.

Usually, the producers design the game’s properties. Game developers implement those

game properties according to the design specifications. Producers and testers will examine

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Producer Game Developer Producer & Tester

Game Play
Properties

Game Developer

Validation

Parameter
Tunning

Fix B ugs

Implementtation

Figure 3.2: The gameplay development process in industry

the implementations and ask developers to fix related bugs and tune parameters. Game eval­

uation will be done during the validation phase. The common method of doing gameplay

evaluation is a process of play-and-feel, which totally relies on a human’s sensitivity and ex­

perience. The play-and-feel method has its benefits: it is simple, it just involves playing the

game, and human feeling could be very sensitive if trained properly. That is why comput­

ers cannot replace artists. However, the play-and-feel method has some major drawbacks.

First, it can be very slow. For instance, if a developer wants to test the game behaviour of

the corner kick scenario in the FIFA99 game (defined below), he has to drive the game into

a corner kick situation, which is a rare scenario during a game. Therefore, it might take at

least 10 seconds to enter a corner kick. However, many repetitions of the same corner kick

are needed for good testing, which is a slow process. Another drawback of play-and-feel is

that this process can be human resource-consuming for producers, developers and testers.

3.2.2 U sing A utom ated Testing for G am eplay A nalysis

Given the fact of inefficient gameplay analysis in industry (the play-and-feel method), a

new gameplay analysis method, which integrates automated testing into gameplay analysis,

is proposed in this thesis. We will have a testing program that generates a wide variety of

inputs to the game and measures a specific outcome, such as whether a goal is scored or

not. This will generate a large file of gameplay examples, where each example records the

sequence of actions taken by the testing program and the final outcome.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Challenges and Solutions in Using Automated Testing for Gameplay Analysis

Challenge 1: Normally, automated testing is used for testing tasks such as functionality

testing, where the output of a test case will be known explicitly by referring to design

specifications. It is also possible to apply the automated testing process when the design

specifications do not provide explicit criteria for judging the result of testing: a test case

will generate an output but it can’t be evaluated automatically as being right or wrong, or

good or bad. In this situation, there won’t be any testing statistics directly coming from

automated testing. Gameplay analysis is just such a case. Putting many game modules

together, even game developers themselves are not sure of the exact behavior to expect.

There is no formal definition of correct gameplay because gameplay is a kind of feeling.

For example, in assessing the difficulty of a game, some people might say the beginner level

is too easy, while someone else will say it is too hard. Therefore, a human is needed to

make subjective judgements. But the huge gameplay log is incomprehensible to humans.

If automated testing is to be used for gameplay analysis, the first challenge is - how to

generate human-friendly testing output?

Solution to Challenge 1: In this thesis, machine learning is used to create a summary

of the gameplay log that is comprehensible by humans. The learning task is defined as a

classification task because we are trying to predict a class label (e.g., whether or not a goal

was scored) given a game situation. The features in each training example are the game

variables related to the outcome being investigated. After the game is played by using a

vector of feature values as input, the desired class will be collected from the game. The

feature value inputs and their corresponding class make up one training example. Training

examples are fed into a machine learning algorithm (C4.5 here) to produce a model (a set

of rules here) summarizing game behavior, which could be further visualized and presented

to game designers.

Challenge 2: The set of possible inputs for the full game is far too large. How to

efficiently guide automated testing is the second challenge.

Solutions to Challenge 2: Automated testing programs in this thesis are not designed

for the whole game, but for an individual game scenario. Even restricted to a single sce­

nario, sample spaces can be too large to exhaustively enumerate because they might be high

dimensional, and dimensions can be continuous. Time and computation restrictions do not

allow sampling a huge number of examples. Therefore, selective sampling (discussed in

Chapter 2) is used to sample instance space intelligently to build a good model.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Game Analyzer: A Similar Gameplay Analysis Tool for Role-Playing Games

Game Analyzer[25] is a semi-automated tool to analyze gameplay for Role-Playing games.

Game Analyzer transforms a user-defined game scenario into a state-transition model, and

then samples and evaluates policies (like the action sequences in our system). Although

Game Analyzer shares the same goal as this thesis, there are three main differences between

the two systems. Firstly, Game Analyzer applies to Role-Playing Games, not sports games.

Secondly, Game Analyzer does not use machine learning to summarize game behaviour.

It just samples the space of possible “policies” and displays the particular outcomes of the

policies it tried. Lastly, Game Analyzer does not use active learning.

3.3 Semi-automated Gameplay Analysis System (SAGA-ML)

Instead of traditional, totally manual gameplay analysis, the preceding section has outlined

a method for gameplay analysis that involves automated testing, with human involvement

only once machine learning has created a summary of the gameplay behaviour. The spe­

cific definition of gameplay used in the proposed method is the game behavior under the

constraints defining a game scenario. Figure 3.3 is the architecture of the whole SAGA-ML

system, which plays the role of the Validation box in Figure 3.2. Because of the human

involvement, this system is not totally automated, therefore it is called the Semi-automated

Gameplay Analysis System (SAGA-ML). Modules “Sample Generator” (selective sam­

pling) and “C4.5” have been covered in the last chapter. The present chapter will give the

details for the rest of the modules in Figure 3.3. To better explain SAGA-ML, a concrete

application, the comer kick scenario in Electronic Arts’s FIFA99, is used in this chapter.

3.3.1 T he C orner K ick Scenario in E lectronic A rts’s FIFA99

A corner kick in a soccer game is a direct free kick from a corner of the field awarded

to the attacking team when the ball has been driven out of bounds over the goal line by a

defender (from the American Heritage Dictionary). FIFA99 corner kick scenario is well

known because many human players take advantage of this scenario to score. There are

some corner kicks in which the attackers almost always score. Therefore, this scenario

actually is o f great value to test for EA. This scenario is the sim plest one in this thesis

because it only has two features: the X and Y coordinates of the ball’s landing position.

This is because in FIFA99 this scenario has a fixed setup, which means given the same

game configurations (teams, players etc.), the initial state (e.g. the position of each player)

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fe
at

ur
e

CT>

2 Q
o 03-a

o .

Q .

3 1— Q_

P E

Figure 3.3: SAGA-ML architecture

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ga
m

e
D

es
ig

ne
r

of this scenario is always the same, there are no player-controlled aspects of the initial state.

In Figure 3.4(a), the soccer ball is placed at the near corner (it is obscured by the nearest

player); the nearest player is the kick taker from the attacking team; every other player (on

both the attacking and the defending team) in the figure is in his predetermined corner kick

position. After the ball is kicked from the corner, the attacker who receives the ball will

make a shot (with his head or feet) at his first touch. The end of this scenario is one of

following 3 events: (1) the ball goes out of bounds or into the goal, (2) the defenders get

control of the ball, or (3) a time limit is exceeded. In Figure 3.4(b), the ball is in the air

and each player in the picture is responding to the kick. The outcome of this scenario is

that a goal is scored (score) or not. As discussed in 2.3.1, each action sequence will be run

10 times and assigned to class score if the number of times it produces a goal exceeds a

threshold. Therefore, score actually means “score with high probability”.

3.3.2 Feature D esign

Given a game scenario, a sample is a feature vector describing the scenario’s initial condi­

tions and the actions (if any) that will be taken by the user as the scenario plays out. The

task offeature design is to define features representing the game scenario that are relevant to

the testing goal being considered. In the comer kick scenario, the testing goal is to summa­

rize the ways of scoring (with high probability) in terms of different ball landing positions.

Therefore, the features are the ball’s landing position (X and Y coordinates). The outcome

of the scenario is added as the the sample’s class label, which is a boolean value indicating

if a goal is scored or not. The sample feature vectors are produced by the Sample Gener­

ator. Some features could exactly correspond to variables inside the game. For example,

in the corner kick scenario, the inputs generated by the Sample Generator are the ball’s

landing position pair (X and Y co-ordinates). This pair of features directly corresponds to

two game variables in FIFA99. However, in some more complicated cases, the variables

inside the game might be different than the variables we want for machine learning. Two

sets of features might be equivalent mathematically but very different in terms of how eas­

ily a concept can be expressed by machine learning algorithms. For instance, suppose that

there are only two players (a shooter and an opponent goalie) standing on a soccer field. To

measure their positions, two Cartesian co-ordinate pairs (Figure 3.5(a)) can be used. From

the pure mathematics perspective, the Cartesian co-ordinates are equivalent to another set

of measures: the distance and the angle between the two players, and the angles between

the shooter and the two goal posts (Figure 3.5(b)). But from a machine learning algorithms’

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) prepare

1 F9e £FtS SCEMT C am eras Options:

I Help

Cbpreo ConMan fettrib. I

■ ib h
(b) shoot

Figure 3.4: Corner kick scenario

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Y

Goalie (Xg, Yg)

Shooter(Xs, Ys)

----- ►

X
(a) Cartesian co-ordinates measure

Shooter

(b) distance and 3 angles measure

Figure 3.5: Different but mathematically equivalent feature measures

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

point of view, the distance and angles might be preferred because they are more informative.

3.3.3 Sam ple G enerator

The new training examples (without their labels) are generated by the Sample Generator,

which implements the selective sampling algorithms covered by Chapter 2.

3.3.4 G am e Scenario A utom ation

To get the output values needed by the machine learning algorithm, an automated testing

program is run to execute the game scenario. The testing program will take the inputs

generated by the Sample Generator to initialize itself, with data conversion, if necessary, to

convert the features to values for actual game variables. Then a series of actions is executed

to simulate playing the game scenario. Finally, the result of this test is collected from the

game and converted into the form needed by the machine learning algorithm. In this thesis,

a state machine is built for each game scenario to guide the testing process. The automated

testing program will collect the required game information and transit between the states.

For example, there are four states defined for the corner kick scenario:

CORNERKICK_PREPARING

CORNERKICK_BEGIN

CORNERKICKJTRSTTOUCH

CORNERKICK-SECONDTOUCH

The corner kick scenario begins from the state CORNERKICK_PREPARING. In this

state, a corner kick event is triggered; the ball is placed in a corner, every player in the field

goes to his position, and the kick-taker stands in front of the ball. After the game state is

stable, the automated testing program will go to the next state: CORNERKICK_BEGIN.

In this state, the kick-taker kicks the ball so that it will land at the position specified by

the Sample Generator. As soon as the ball is touched by a player after being kicked, the

scenario goes to the third state: CORNERKICKJFIRSTTOUCH. If the first toucher is an

attacker, he will make a shot at the goal. If the ball is out of bounds, is touched a second

time, or a predetermined time limit is exceeded, the scenario goes to the last state: COR­

NERKICK-SECONDTOUCH. In this state, the result of this run (score or not) is collected

and the corresponding output for the machine learning algorithm is written to a data file.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The above state transitions rely on some internal game variables, such as the game state,

the ball’s position and velocity, etc. The testing program tracks the values of these variables

with hooks that are put into the game for this purpose. The testing process could be run

thousands of times, but the game running environment has to be reset after each run.

3.3.5 Game Hooks and Modifications to the Original Game

To run a game scenario automation, the game must be modified. There are two types of

interactions between the testing program and the original game. The first type are Game

Hooks, which are the entry points from the original game to the automated testing program.

The second type are Modifications to the original game specifically for testing a given game

scenario. The following are the hooks and modifications for the corner kick scenario.

void GAME_updateFrame()

This is a standard FIFA99 function that is called once every game frame. Our code is added

here to update the game scenario testing state machine. The scenario testing state machine

then inspects specific variables to determine if a state transition has been made. If the final

state is reached, the final output will be printed to a file for this run and the state machine

reset to begin the next run. This function is the main entrance of the state machines for each

game scenario.

void REFEREE_process_ballout()

Originally, this function call will be followed by a sequence of game video (e.g., the goalie

picks up the ball or players cheer for a goal). To prevent those game videos in the corner

kick scenario, this function is changed to do nothing when the ball is out of bounds.

void FIELD_get_corner.position(COORD *pos, COORD *newpos)

Originally, this function will calculate which corner should be used to do the corner kick

based on the position where the ball went out of bounds. To get identical initial states, this

function is changed to return a fixed comer position when the corner kick scenario is being

tested.

void PLAYERTASK_free_kick(PLAYER_DEF *this)

Originally, the game has its own strategy to choose the ball’s landing position. This function

is changed to use the landing position generated by the Sample Generator.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void TACTIC _doBestKick()

Originally, this function will select a best action (e.g., dribbling, passing, or shooting) for

the attacker. It is changed to force the ball’s receiver (on the attacking side) to make a shot

in the corner kick scenario.

3.3.6 SoccerV iz: V isualization Tool

A single IF...THEN... rule is easy to read, but a large set of rules is not that easy for humans

to read. Moreover, if the rule set is ordered and the rules can overlap (as is the case with

the rules produced by C4.5), it will be very hard to understand. Therefore, for some game

scenarios, Mark Trommelen at the University of Alberta implemented a visualization tool

called SoccerViz to display the rule sets in a way more natural to the designer. Three

scenarios have been visualized: a 2-d artificial test scenario, the corner kick scenario, and

the breakaway scenario.

Figure 3.6 is a screen shot of SoccerViz for the corner kick scenario. There are 4 main

areas in the screen shot: the visualization area (central middle), the rule selection area

(right), the rule details area (bottom), and the control buttons area (top).

Visualization Area

The visualization area is the graphic part of SoccerViz. Visualized components (soccer

field, rules, data points etc.) for a game scenario will be drawn here. In Figure 3.6, the

background of the visualized corner kick scenario is a soccer field and it is zoomed in to

one side of the penalty area. There are many dots, each of which represents an example,

mostly inside the penalty area. The color of a dot indicates the class of the corresponding

example: black is negative (not a score) and white is positive (score). Because each action

sequence will be executed multiple times (10 in this study) to get a probabilistic outcome,

there are overlapping data points which can have different labels (colors in the visualization

tool). If they are drawn directly in the tool, they will be on top of one another and so people

won’t be able to see what proportion of them are black and what proportion are white. To

clearly visualize these data points, a grid color is introduced, as follows. The soccer field is

divided into small rectangles, and the color (shade of grey) of a rectangle is determined by

the ratio of the number of black dots inside this grid v.s. the number of white dots. If there

are too many data points inside a single grid, a cross (X) is used to represent all data points

inside the rectangle. The color of the cross (X) indicates the overall grey color of the data

points inside this grid.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rule Selection area

The rule set for the current selective sampling iteration is listed in this area. Rules are

grouped by their rule class and sorted by their accuracy. The default rule is placed last. The

user can select or unselect a rule. If a rule is selected, a visualized rule area is drawn in

Visualization area. In Figure 3.6, rulel is selected, and the rectangle representing rulel is

drawn roughly in the middle of penalty area.

Rule Details Area

The rule details area gives the detailed description of the selected rules. In Figure 3.6, the

details of rulel are shown.

Command Buttons Area

The top area of Figure 3.6 is the command buttons area. These buttons give users controls

such as: the user can choose to see individual rules, or a rule set; the user can choose to see

the data points covered by the selected rules, or all the data points; the user can feed a data

point back to the game to watch it being played out.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
So

cc
er

 V
iz

-V
er

sio
n

3,
1.

5
-

C
om

er

K
ic

k
G
O

- r-f

4J
O

Figure 3.6: SoccerViz

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Game scenario testing in FIFA99

Electronic Arts’s FIFA Soccer is a complex sports game. There are 22 players on the field.

Many rules are implemented in the gameplay system of FIFA to coordinate all the players

to simulate real soccer games. The complexity of FIFA’s gameplay system causes difficulty

in developing and testing. Many gameplay sweet spots are utilized by human players to

decrease the difficulty level of the game, which will impact the playability of the FIFA game

eventually. In Chapter 3, the Semi-Automated Gameplay Analysis (SAGA-ML) system was

introduced. In this chapter, SAGA-ML will be tested on FIFA99. It will summarize FIFA99

behaviors as human readable rules, which can be presented to game designers to check if

those behaviors are as intended. Unexpected game behaviors can be found this way.

Unlike the evaluation methods used in the artificial testing environment, FIFA99 game

scenarios will also be evaluated using “blurred” target concepts; this will be explained in

Section 4.1. Then, the experimental results for three FIFA99 scenarios - corner kick, break­

away, and dribble-dribble-shoot - are presented.

4.1 Evaluation methods

In Chapter 2, an artificial experiment environment was set up. The target concepts are ex­

actly known in advance, so experimental results can be evaluated by directly comparing the

geometry of the learned concepts with the target concepts. However, there are no target con­

cepts known in advance for a real application like FIFA99. In this chapter, all experiments

are evaluated by two methods: the first one is the standard machine learning evaluation

method, which estimates TP rates and FP rates by using a large test set. For an application

like FIFA99, we believe another evaluation method is more informative: get the approxi­

mate target concepts first; blur the approximate target concept; and then evaluate learned

concepts by comparing their geometry with the blurred target concepts. The blurring-based

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

evaluation method will generate larger regions in its concept definition by eliminating small

regions and merging neighbouring regions. The motivation for preferring large regions is

driven from the real demands of gameplay evaluation. Only large regions are important to

game developers and human players. For example, in the cornerkick scenario of FIFA99,

suppose there is a rule saying that if the attacker gets the ball and makes a shot right on the

penalty kick spot, he will score. It is true that that rule can be considered as a sweet spot

of FIFA99. However, the chance of meeting the requirement of that rule is very unlikely

in the real play of FIFA99. Such small rules will be removed by the blurring-based evalua­

tion method. Therefore, this method might be more meaningful for real gameplay analysis.

Bezier smoothing is done to all the TP and FP plots in this chapter, as was done in Chapter

2.

4.1.1 The Generation of Target Concepts

To generate target concepts as accurate as possible, a large set of training examples are

generated by uniform sampling (for the corner kick scenario and breakaway scenario) or

random sampling (for the dribble-dribble-shoot scenario because the sample space is too

big to do uniform sampling). Each example is sent to the real game 10 times and gets

labelled according to the classification threshold (as described in Section 2.3.1). Figure 4.1

is the visualized data point distribution for FIFA99 corner kick scenario. In Figure 4.1(a),

the classification threshold = 4 and in Figure 4.1(b), the classification threshold = 7. White

datapoints are examples labelled as score with high probability and black ones are examples

labelled as does not score with high probability.

The algorithm for creating a target concept from data points is given in Figure 4.2. This

figure also defines the thresholds used in the algorithm. Instance space is divided into grid

cells (Step 1). The size of each cell is determined by a user-controlled threshold Tceiuize,

which essentially depends on the sample density of the game scenario. Then all data points

are put into those cells and the label of each cell is the majority class of the cell (Steps 2

and 3). The connected cell chains are the approximation of the target concept regions.

Target Concept Blurring

Blurring is used to refine the target concepts generated in Step 3 of Figure 4.2. Simply

setting Tjninimaisize for a minimal target concept size, some potential useful target concepts

might be filtered out. For example, if a block of connected cells has a hole, which might be

due to noise, the whole block might be eliminated because the number of connected cells

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) classification threshold = 4

(b) classification threshold = 7

Figure 4.1: Corner kick real classification distribution

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Divide the sample space into grid cells (the granularity of the cell is a threshold relying
on the application, T ceusize)

2 Put each example into its corresponding cell.

3 Label each cell with the majority class of the examples in the cell.

4 Scan all labelled cells and group them according to their connectivity

5 Sort the connected cell groups (from step 4) by the number of cells each contains.

6 For each group g whose size is less than a threshold (TbiUt Candidate), check its neighbors.
If it is mostly -(another threshold TBlur Surround) surrounded by groups whose size
is bigger than TsiurCandidate with a label different than g, then the label of g is
converted into the opposite class (we assume there are just two classes).

7 For those groups which have the same label, if they are close enough (threshold Tc;ose),
connect them into one group.

8 Remove those groups whose size is less than a threshold (Tminimaisize).

9 Save the cells and group information into a file as target concepts.

Figure 4.2: The Algorithm For Generating Blurred Target Concepts

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is just below the threshold. Another example is if there are two close but not connected

blocks of cells, each of which is just below the threshold. Both of them will be filtered

out, but actually they might be joined together to become a big region. A technique called

blurring is implemented in this thesis. The idea of blurring is to fill those small holes

and connect nearby blocks. The connected cell groups whose number of cells is less than

TBiurCandidate are the candidates for the blurring process (the value of T BiUrCandidate is

30 in all the experiments in this chapter). For each blurring candidate, its neighbor groups

are checked (Step 6 in Figure 4.2). If this candidate is surrounded mostly (determined by

threshold TsiurSurround, which is 0.75 in our experiments) by cell groups whose size is

bigger than TsiurCandidate and which have a label different than the candidate, then the

label of all cells in the candidate will be reversed. The next step of blurring looks at small

groups with the same label; if they are close enough (determined by threshold T ciose, which

is 2 cells in our studies), those groups will be merged into one group. Once this is done, all

concepts will be filtered one more time using another threshold, T minimaiSize, the minimal

size of a region, which is measured as the number of cells inside the region (Tmjnjma/Sjze

= 30 in our implementation). Regions with too few cells in them will be removed by this

step.

Figure 4.3(a) and (b) compares the same target concept without and with blurring.

4.2 Corner Kick Scenario Experiments

Experimental results for the corner kick scenario are presented in this section. The initial

training data set for all experiments contains 100 uniformly sampled examples. On each

iteration 30 more examples are selected and added to the training set. The classification

threshold = 4 (also used in the rest of the game scenarios).

Figure 4.4 and Figure 4.5 show the data points after 100 iterations of the selective

sampling methods. Figure 4.4(a) is the same as Figure 4.1(a) - it is redrawn here for clear

comparison. Uncertainty sampling (Figure 4.4(b)) concentrates its sampling on the central

area; bagging (Figure 4.4(c)) has a tight sampling behavior surrounding positive areas;

boosting (Figure 4.5(a)) also explored all positive areas but it explored slightly more areas

than necessary; rule-based sampling (Figure 4.5(b)) put sampling points mostly around

positive areas. Note: BootstrapLV is excluded from Figure 4.4 and Figure 4.5 because its

behavior is much like random sampling.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) classification threshold = 4, not blurred, Tminimaisize = 30

(b) classification threshold = 4, blurred, Tminimaisize = 30

Figure 4.3: Corner kick: generated target concepts

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) real data distribution (classification threshold = 4)

(b) uncertainty

(c) bagging

Figure 4.4: Corner kick scenario, data points distribution comparison: 1

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) boosting

(b) rule-based

Figure 4.5: Corner kick scenario, data points distribution comparison^

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa
lse

po

sit
ive

rat

e
tru

e
po

sit
ive

ra

te

0.5

0.45

0.4

0.35

0.3 X bagging
' boostina

bootstrapLv
random

rule-based
uncertainty sampling

0.25

0 .2

0.15
500 1000 1500 2000 2500 30000

number of training data
(a) TP rate

0.08

0.07 bagging
boostina

bootstrapLv
random

rule-based
uncertainty sampling

0.06

0.05

0.04

0.03

500 1000 1500 2000 2500 30000
number of training data

(b) FP rate

Figure 4.6: Corner kick: standard evaluation

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Standard evaluation

Figure 4.6 shows the results using the standard evaluation method. Before about 500 exam­

ples, the FP rates are not stable. After 500 examples, random sampling have consistently

higher FP rates than bagging, uncertainty and the rule-based sampling methods (the perfor­

mance difference is significant [a = 0.1] at training set size 1500). As for TP rates, each

TP rate increases very quickly before about 500 examples, and increases slowly afterwards.

Uncertainty sampling has the worst TP rate than the others (the performance difference is

significant [a = 0.1] at training set size 2000). Boosting, rule-based sampling and ran­

dom sampling do not show significant (a = 0.1) TP rates difference at training set size

2000 given our sample size. BootstrapLV has the best TP rate after 1000 examples (the

performance difference is significant [a = 0.1] at training set size 2000).

Evaluation on blurred target concepts

The cell size threshold T ceusize used in this scenario is 0.005, which means each edge of the

cell is 0.005 of the whole range of a dimension. Figure 4.9 shows the evaluation on blurred

target concepts (the threshold of the minimal size of connected cells = 30). Compared with

the standard evaluation (Figure 4.6), the FP rates in this figure are decreased by around

40% and the TP rates are increased by around 40%; in addition, the curves are more stable.

Thus, the evaluation using the blurred target concepts in the corner kick scenario is much

better than the standard evaluation method. More importantly, evaluation with blurred target

concepts focuses on the regions big enough to be of interest to game developers, which

means the results of this evaluation method will make more sense; the same conclusion will

apply other FIFA99 game scenarios in this thesis.

Evaluation on blurred target concepts gives the following results for the corner kick

scenario. Random sampling has the worst FP rates than the other methods (the performance

difference is significant [a = 0.1] at training set size 1500). The rule-based method has

lowest FP rates between 1000 examples to 2000 examples (the performance difference is

significant [a = 0.1] at training set size 1500). Uncertainty sampling still has the worst TP

rate (the performance difference is significant [a = 0.1] at training set size 1500). After

1000 examples, BootstrapLV and random sampling have better TP rates than other sampling

methods (the performance difference is significant [a — 0.1] at training set size 1500).

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tru
e

po
si

tiv
e

ra
te

tru
e

po
si

tiv
e

ra
te

tru

e
po

si
tiv

e
ra

te
0 .5 0 .5

0 .45 0 .4 5

0 .4 0 .4
i if 0)
ft 2!

0 .35 Irk 0 .3 5
if ^ >

0 .3 ff s m o o th e d ra n d o m I 0 .3
/ ra n d o m —*— Cl

©
0 .2 5 f * 0 .2 5

0 .2 * 0 .2

0 .15 0 .1 5
5 0 0 1000 150 0 200 0 2 5 0 0 3 0 0 0

n u m b e r of train ing d a ta

bagg ing
s m o o th e d bagg ing

5 00 100 0 1500 2 0 0 0 2 5 0 0 300 0
n u m b er of train ing d a ta

(a) Random (b) Bagging

0.5

0 .45

0 .4

0 .35

b o o stin g
sm o o th e d boosting

0 .3

0 .25

0.2
0 .1 5

50 0 100 0 1500 2 0 0 0 2 5 0 0 3 000
n u m b e r of train ing d a ta

0 .5

0 .4 5

0 .4

0 .3 5

b ootstrapL V
s m o o th e d b o o ts tra p L v —

0 .2 5

0.2
0 .1 5

5 0 0 1000 1500 2 0 0 0 2 5 0 0 3 000
n u m b er of train ing d a ta

(c) Boosting (d) BootstrapLV

0 .5

0 .45

0 .4

0 .35

s m o o th e d ru le b a se d
ru le b a se d

0 .3

0 .25

0.2
0.15

5 0 0 100 0 1500 2 0 0 0 2 5 0 0 3 000
n u m b e r of train ing d a ta

(e) Rulebased

0.5

0 .4 5

0 .4
©

to o th ed uncertainty
u n ce rta in !

0 .2 5

0.2
0 .1 5

5 0 0 1000 1500 2 0 0 0 2 5 0 0 3 000
n u m b er of train ing d a ta

(f) Uncertainty

Figure 4.7: Corner kick, standard evaluation, TP rate: smoothed vs. unsmoothed

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa
lse

po

si
tiv

e
ra

te
fa

ls
e

po
si

tiv
e

ra
te

0.08

0.07 s m o o th e d ra n d o m —
ra n d o m —

ro 0.06

0.05

0.04

0.03

0 500 1000 1500 2000 2500 3000
n u m b e r of train ing d a ta

(a) Random

0.08

0.07 *u “sm o o th e d b a g g i n g ------

f5 0.06

0.05

0.04

0.03

0 500 1000 1500 2000 2500 3000
n u m b er of train ing d a ta

(b) Bagging

0.08

0.07 bo o stin g
s m o o th e d boosting

0.06

0.05

0.04

0.03

0 5 0 0 100 0 1500 2 0 0 0 2 5 0 0 3 000
n u m b er of train ing d a ta

(c) Boosting

0 .0 8

0 .0 7 b o o ts tra p L v
s m o o th e d boo tstrapL V

0.06

0.05

3 0.04

0.03

5 00 1 0 0 0 1 5 00 2 0 0 0 2 5 0 0 300 00
n u m b er of train ing d a ta

(d) BootstrapLV

0.08

sm o o th e d ru le b a se d
ru le b a se d

0.07

0.06

0.05

0.04

0.03

0 500 1000 1500 2000 2500 3000
n u m b e r of training d a ta

(e) Rulebased

0 .0 8

0.07 s m o o th e d uncertainty
u n ce rta in f

to 0.06

0 .0 5

0.04

0.03

500 1000 1500 2000 2500 30000
n u m b er of train ing d a ta

(f) Uncertainty

Figure 4.8: Corner kick, standard evaluation, FP rate: smoothed vs. unsmoothed

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fal
se

po

sit
ive

rat

e
tru

e
po

sit
ive

ra

te

0 .8

0.7

0 .6

0.4

0.3 bagging
boosting

bootstrapLv
random

rule-based
uncertainty sampling

0 .2

500 1000 1500 2000 2500 30000

number of training data
(a) TP rate

0.05 bagging
boosting

bootstrapLv
random

rule-based
uncertainty sampling

0.04

0.03

0 .0 2

0.01

0
0 500 1000 1500 2000 2500 3000

number of training data
(b) FP rate

Figure 4.9: Corner kick: evaluation on blurred target concepts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.7

0.60)
2
aj 0.5
>

2 0-4 Cl<d3
sm o o th e d random

ran d o m
B 0.3

0.2

500 1000 1500 2000 2500 30000
n u m b er of training d a ta

(a) Random

0.8
0.7

<o
0.5a

£ 04a>n
b o o s tin g -

s m o o th e d b o o s tin g --
0.3

0.2
0.1

500 1000 1500 2000 2500 3000
n u m b er of train ing d a ta

(c) Boosting

0.7

0.60)
CO
o> 0.5
>

o 0.4Q.
©3

bagg ing0.3
sm o o th e d

0.2

500 1000 1500 2000 2500 3000
n u m b e r of train ing d a ta

(b) Bagging

0.7

<u 0.5
>

o 0.4Q .
CD3

bootstrapL V
s m o o th e d b o o ts trap L v

0.3

0.2
0.1

500 1000 1500 2000 2500 3000
n u m b e r of train ing d a ta

(d) BootstrapLV

0.7

0.60)To
<d 0.5

i. 0 4<D3
s m o o th e d ru le b a s e d -

r u le b a s e d --
0.3

0.2

500 1000 1500 2000 2500 30000
n u m b e r of train ing d a ta

(e) Rulebased

0.8
0.7

0.6o(0
O 0.5

o 0.4Cl

u n certa in ty
uncertain ty

0.3

0.2
0.1

500 1000 1500 2000 2500 3000
n u m b er of train ing d a ta

(f) Uncertainty

Figure 4.10: Corner kick, evaluation on blurred target concepts, TP rate: smoothed vs.
unsmoothed

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sm o o th e d random
random -

0 .05

0 .0 4

5o 0 .03
wo
Q_

0.02
<T3

0.01

5 0 0 1 000 1500 2 0 0 0 2 5 0 0 300 0
n u m b e r of train ing d a ta

0 .0 5
sm o o th e d bag g in g --

0 .0 4®re
.1 003
oCL

0.02®
re

0.01

5 0 0 100 0 1500 2 0 0 0 2 5 0 0 3 0 0 0
n u m b er of train ing d a ta

(a) Random (b) Bagging

bo o stin g --
sm o o th e d boosting -

0 .05

0 .0 4

.1 0 .0 3

0.02

0.01

5 0 0 1 0 0 0 1 500 2 0 0 0 2 5 0 0 3 000
n u m b e r of train ing d a ta

boo tstrapL V c-0 .0 5
sm o o th e d bootstrap

0 .0 4

| 0 .0 3

0.02

0.01

100 0 1 500 2 0 0 0 2 5 0 0 3 0 0 0
n u m b e r of train ing d a ta

50 0

(c) Boosting (d) BootstrapLV

sm o o th e d ru le b a se d --
ru le b a se d -

0 .0 5

0 .0 4

re
re 0 .0 3

8.
0.02rewre
0.01

5 0 0 100 0 150 0 2 0 0 0 2 5 0 0 3 000
n u m b e r of train ing d a ta

s m o o th e d uncertainty0 .0 5

0 .0 4

0 .0 3

re 0.02

0.01

5 0 0 1 000 1500 2 0 0 0 2 5 0 0 300 0
n u m b er of train ing d a ta

(e) Rulebased (f) Uncertainty

Figure 4.11: Corner kick, evaluation on blurred target concepts, FP rate: smoothed vs.
unsmoothed

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.12: Corner kick summarized rules

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scenario Analysis

Figure 4.12 (based on the result after 100 iterations of bagging) shows the positive (score

with high probability) rules learned for the corner kick scenario (the kicker is placed in the

top right corner of the field). The areas covered by rules summarize the real data point

distribution (Figure 4.4 (a)) very well. There is a very large black region in the middle of

Figure 4.12.

By loading the data points of that area back into FIFA99 cornerkick scenario, a defender

in that black area is observed to react poorly to the incoming ball, running away from the

ball instead of intercepting it. This might be a sweet spot of this game scenario.

4.3 Breakaway scenario

4.3.1 Scenario description

The breakaway scenario in FIFA99 is defined as: one attacker is on a breakaway, there is

only the opponent goalie between him and the goal, and the attacker shoots immediately

from his location when the scenario is initialized. The classes of this scenario are the same

as for the corner kick scenario: score with high probability, or not. The feature set used

for this scenario is: the distance between the shooter and the goalie; the angle between

the shooter and the goalie (Figure 4 .13 :ai); the angle between the shooter and the right

goalpost (Figure 4.13:a2); and, the angle between the shooter and the left goalpost (Figure

4.13:0:3). Figure 4.14 illustrates this scenario.

4.3.2 State M achine and G am e H ooks for the B reakaw ay Scenario

The breakaway state machine has 3 states:

PREPARE

SHOOT

END

Before the state machine starts, the feature vector from the sample generator is read and

the feature values are converted to internal game variables.The automatic testing program

then enters the first state: PREPARE. In this state, the shooter and the goalie will run to

their initial locations, and the other players will be sent off the field. After everybody is in

their designated positions, the SHOOT state is triggered: the shooter makes a best kick (the

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Shooter

Figure 4.13: Features used in the breakaway scenario

i \
/ . . . \

l -..:..... ■ ■ \

\

<p&: 26 J flf 161621/ . \ Tele Cam

Figure 4.14: Breakaway scenario screen shot

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

game will decide what kick is best based on the current situation, such as the shooter and

goalie’s positions). Several events will trigger the END state: the ball is out of bounds; the

goalie has the ball; the ball is moving in the opposite direction or is still; time out.

The running of this state machine relies on some game hooks and modifications in the

FIFA99 game, as follows.

• void GAME_updateFrame()

This function has been described in 3.3.5. For the breakaway scenario, the breakaway

state machine manager will be triggered here every game frame.

• void REFEREE_process_ballout(void)

As described in 3.3.5, this function is modified here as well to prevent unnecessary

game videos.

4.3.3 E xperim ental set up and results

There are 100 randomly sampled initial training examples. 30 more new examples will be

added into the training set at each iteration.

Standard evaluation

Figure 4.15 shows the results of the standard evaluation method. Before around 500 exam­

ples, TP and FP rates are not stable. In terms of FP rates, boosting is worse than the others

(the performance difference is significant [o- = 0.1] at training set size 1500); uncertainty

sampling has the best FP rates (the performance difference is significant [a = 0.1] at train­

ing set size 1500); the others do not show significant (a = 0.1) FP rate difference at training

set size 2000 given our sample size. In terms of TP rates, before around 500 examples, the

rule-based sampling method increases the fastest of all sampling methods (the performance

difference is significant fa = 0.1] at training set size 400). After 500 examples, bagging,

boosting and rule-based sampling methods show better TP rates than random sampling

(the performance difference is significant [a = 0.1] at training set size 1500).Overall, the

rule-based method is best, with a low FP rate and a high TP rate (especially before 500

examples).

Evaluation on blurred target concepts

The cell size threshold Tren size used in this scenario is 0.01, which means each edge of the

cell is 0.01 of the whole range of a dimension. Figure 4.18 shows the results using blurred

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0)
c3

9> 0.35
0 5
O
Q.

® 0.25
boosting ■

bootstrapLv -
random-

rule-based -
uncertainty sampling ■

1000 1500 2000
number of training data

(a) TP rates

2500 3000

0 .2 2
boosting

bootstrapLv
random

X . rule-based
uncertainty sampling

0 .2

0.18
a)

0.16
CD

| 0.14
CO

8 . 0.12
CD

_C/5
CO

s —

0.08

0.06

0.04
5000 1000 1500 2000 2500 3000

number of training data
(b) FP rates

Figure 4.15: Breakaway: standard evaluation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tru
e

po
si

tiv
e

ra
te

tru
e

po
si

tiv
e

ra
te

tru
e

po
si

tiv
e

ra
te

0.55

0.5

0.45

0.4

0.35

0.3

0.25 s m o o th e d ra n d o m ------
ra n d o m —**—0.2

0.15

500 1000 1500 2000
n u m b e r of train ing d a ta

2500 3000

0.55

0.5

0.45

0.4d)
73

0.35a>
8 0.3
a
§ 0.25

sm o o th e d bag g in g
0.2

0.15

0.1
500 1000 1500 2000 2500 3000

n u m b er of train ing d a ta

(a) Random (b) Bagging

0.55

0.5

0.45

0.4

0.35

0.25 b oosting
sm o o th e d boosting

0.2
0.15

0.1
500 1000 1500 2000 2500 3000

n u m b e r of train ing d a ta

0.55

0.5

0.45

0.4<D
£O> 0.35

0.3oQ.a>
Z3 0.25 b o o ts trap L v

s m o o th e d bootstrapL V
0.2

0.15

0.1
500 1000 1500 2000 2500

n u m b er of train ing d a ta
3000

(c) Boosting (d) BootstrapLV

0.55

0.5

0.45

0.4

0.35

0.3

0.25 sm o o th e d ru le b a se d —
ru le b a se d —

0.2
0.15

500 1000 1500 2000 2500 3000
n u m b e r of train ing d a ta

0.55

0.5

0.45

0.4v
73
® 0.35

'5 0.3oa.
<D
Z3 s m o o th e d uncertainty0.25

0.2
0.15

0.1
500 1000 1500 2000 2500 3000

n u m b er of train ing d a ta

(e) Rulebased (f) Uncertainty

Figure 4.16: Breakaway, standard evaluation, TP rate: smoothed vs. unsmoothed

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa
lse

po

si
tiv

e
ra

te
fa

ls
e

po
si

tiv
e

ra
te

fa

lse

po
si

tiv
e

ra
te

5 0 0

s m o o th e d ra n d o m -
random --

1 00 0 1500 200 0
n u m b e r of training d a ta

(a) Random

25 0 0 3 000

0.22 .b a g g in g
s m o o th e d bag g in g0.2

0 .1 8
CD
2 0 .1 6o>

0 .1 4'm
o . 0 .12
CD

0 .0 6

0 .0 4
5 00 1000 1500 2 0 0 0 2 5 0 0 300 0

n u m b er of train ing d a ta

(b) Bagging

0.22 bo o stin g ——
srr to o th ed b o o s tin g —0.2

0 .1 8

0 .1 6

0 .1 4

0.12

0.08

0.06

0 .0 4
500 1 000 1 500 2 0 0 0 2 5 0 0 300 0

n u m b e r of train ing d a ta

bootstrapL V
s m o o th e d b o o ts tr a p L V ------

0.22
0.2

0 .1 8

CD
• | 0 .1 4 '</)
8. 0.12
CD«
CD 0.1

0 .0 8

0 .0 6

0 .0 4
5 0 0 100 0 1500 2 0 0 0 2 5 0 0 3 0 0 0

n u m b er of train ing d a ta

(c) Boosting (d) BootstrapLV

0.22 s m o o th e d r u l e b a s e d ------
ru le b a se d —0.2

0 .1 8

0 .16

0 .1 4

0.12
0.1

0 .08

0 .0 6

0 .0 4
5 00 1000 1 500 2 0 0 0 2 5 0 0 300 0

n u m b e r of train ing d a ta

0.22 s m o o th e d u n ce rta in ^

0.2
0 .1 8

CD
5 0 .1 6
o>

0 .1 4
<o& 0.12
CDv>
eg

0 .0 8

0 .0 6

0 .0 4
5 00 1 000 150 0 2 0 0 0 2 5 0 0 300 0

n u m b e r of training d a ta

(e) Rulebased (f) Uncertainty

Figure 4.17: Breakaway, standard evaluation, FP rate: smoothed v.t. unsmoothed

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.7

0.65

0.6

g 0.55

0.5
Cl)

:i 0.45c/)
o
Q.
CD

2 0.35

0.4 bagging
boosting

bootstrapLv
random

rule-based
uncertainty sampling

0.3

0.25

0.2
0 500 1000 1500 2000 2500

number of training data
(a) TP rates

0.9

boosting
bootstrapLv

random
rule-based

uncertainty sampling

0.8

0.7

0.6

£ 0.5

o 0.4
Q .

CD
_W
a)

H—

0.3

0.2

0 500 1000 1500 2000 2500
number of training data

(b) FP rates

Figure 4.18: Breakaway: evaluation on blurred target concepts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

target concepts, where the classification threshold = 4 , number of cells > = 30. In terms

of FP rates, the rule-based method has the lowest FP rate all the time (the performance

difference is significant [a — 0.1] at training set size 2500); boosting is not stable. In terms

of TP rates, before the rapidly increasing phase at around 500 examples, the rule-based

method has better TP rates than the others (the performance difference is significant [alpha

= 0.1] at training set size 250) except for random sampling).

Evaluation summary

Evaluation results show that some selective sampling methods are better than random sam­

pling (e.g., rule-based), but some are not (e.g., uncertainty). Before the stable phase (around

500 examples), the rule-based method always has the best overall performance. The game

environment includes many dynamic and random factors, which might create noise for the

active learning. Therefore, the result of breakaway scenario is not as good as its counterpart

(4-d) in the artificial tests (Figure 2.18).

4.3.4 Scenario A nalysis

There are some interesting results found by SAGA-ML for the breakaway scenario. Figure

4.21 shows one of the rules learned. The white triangle in the top left corner is the shooter

area defined by the rule. By left-clicking with SoccerViz at a point in this area, a specific

shooter position is selected and the corresponding goalie area is then drawn on the fly.

Usually, scoring from sharp angles such as the one shown in Figure 4.21 is not easy. But if

the goalie’s position is constrained as shown, scoring from this position is not unreasonable.

Game designers will examine a visualized rule such as this to decide if they are correct.

4.3.5 H igher D im ensional E xperim ents

There is an alternative, higher dimensional setup for the breakaway scenario. Six more

dimensions are added (making 10 in total): the velocities of the ball (2-D, assuming the ball

is on the ground), the shooter (2-D) and the goalie (2-D). Figure 4.22 shows a visualized

rule by SoccerViz for this 10-D breakaway scenario. Without considering the ball’s velocity

constraints, the rule in Figure 4.22 can be explained as: the probability of scoring will be

very high if the shooter makes a chip shot when the shooter and goalie are in the positions

indicated. In the same rule, the ball’s y-velocity (vertical direction) actually is constrained

to be below the about 4/5 of its maximal limit. This constraint is very reasonable for a real

soccer game: if the ball is moving too quickly away from the shooter, it will be hard to

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.41
sm o o th e d ran d o m

random0.4

0.39

o) 0.38
73
" 0.37<D
'to 0.36 o
0 0.35
3
" 0.34

0.33

0.32

100 150 200 250 300
n u m b e r of train ing d a ta

(a) Random

0.41

0.4

0.39

o 0.38

0.37
>

0.36

0.3b

0.34

0.33

0.32

b agging
s m o o th e d bagging

i r f i

150 200 250
n u m b e r of train ing d a ta

(b) Bagging

0.41
boosting

sm o o th e d boosting0.4

0.39

at 0.38"5
a, 0.37
>
’u) 0.36 o

0.35

~ 0.34

0.33

0.32

100 150 200 250 300
n u m b e r of train ing d a ta

(c) Boosting

0.41
bootstrapL V

s m o o th e d bootstrapL V0.4

0.39

a) 0.38
as

0.37Q>
■55 0.36 o
S’ 0.35

0.34 m
0.33

0.32

100 150 200 250 300
n u m b e r of training d a ta

(d) BootstrapLV

0.41
s m o o th e d ru le b a s e d —

ru le b a s e d ——0.4

0.39

0.38Q)
73
o 0.37 >
'55 0.36 o
® 0.35
3
~ 0.34

0.33

0.32

100 150 200 250 300

0.41
s m o o th e d u ncerta in ty -

u n certa in ty -0.4

0.39

© 0.38
73
© 0.37
>

0.36

S' 0.353
~ 0.34

s

0.33

0.32

100 150 200 250 300
n u m b e r of train ing d a ta n u m b e r of train ing d a ta

(e) Rulebased (f) Uncertainty

Figure 4.19: Breakaway, evaluation on blurred target concepts, TP rate: smoothed vs. un­
smoothed

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 .2 6

0.25

2 0 .2 4

1 0 .2 3
o iQ.

0.22
ffl

s m o o th e d r a n d o m ------
ran d o m —*•—0.21

0.2100 150 200 2 50 300
n u m b e r of train ing d a ta

(a) Random

0 .26

0 .25

2 0 .24 <u
I 0 .2 3

$ 0.22 (0
0.21

0.2L

bag g in g
s m o o th e d bag g in g

150 2 0 0 250
n u m b e r of train ing d a ta

(b) Bagging

0 .9
bo o stin g —*—

sm o o th e d bo o stin g —

0.7

2 0.6£
CD> 0.5

o 0 .4

I . ,
0.2

5 00 1000
n u m b e r of train ing d a ta

1500 2000 2500

0 .2 6

0 .2 5

2 0 .2 4 2 0
: | 0 .23
o <
CL
CDw 0.22nj

TjOofetrkpLV
m o o th e d b o o ts tr a b lV0.21'

0.2
150100 200 25 0 3 0 0

(c) Boosting

n u m b e r of train ing d a ta

(d) BootstrapLV

0.26

0 .2 5

©
to 0 .2 4

0
| 0 .23

8.
8 0.222 sm o o th e d ru le b a se d

ru le b a se d0.21

0.2100 150 200 250 300

0 .2 6

0 .2 5

2 0 .2 4 co
0
1 0 .2 3
aOinea 0.22

sm o o th e d uncertainty
uncertain?0.21

0.2100 150 200 2 50 300
n u m b er of train ing d a ta n u m b e r of train ing d a ta

(e) Rulebased (f) Uncertainty

Figure 4.20: Breakaway, evaluation on blurred target concepts, FP rate: smoothed vs. un­
smoothed

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.21: A visualized rule for the breakaway scenario

, <’« o Zoom factor: C

*■ Limit Data Points v.

Show Negated Buie Areas

1, 'i - b hrf fAlrt
Current ffl E: MrssJ-xtendJtesanipJeRules.txt
teratlon23
Class: HIGH Probability of Scoring (White data point)

File Edit

Load j 17 18 1Q 20 21 22 23 « -- i Zoom in

Shorter Area Data Points Velocity Data Points

Enable AH i

%rte16 (09.0^3 Enable —
Rufe17 (100.0%) ■ Enable H i
2ule18f 100.0W ' Enable m
*Ule19 (100.0%) ' ' Enable HI
^utezo f iiMJ.0%) Enable HH

m ii%) O Enable HI
4uls22 (93.0%) • Enable Colour (

luterj riou.o%) ' Enable Mlmm
Class: LOW Probability of Scoring (Black data point)

Enable All

(baWelocity::? <» 634312), (shoutcrftlfihtGoalPcileAngle:: <*882927), {shooterLeftGoafPoleAriQlu:: <» 794087), (shoolorteftGoalPoleAngle:: > 740138), (shooterGoafleDtstanco:: <« 1041)

Figure 4.22: SoccerViz screen shot for 10-D breakaway scenario

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

make a chip shot.

4.4 Dribble-dribble-shoot scenario

The dribble-dribble-shoot scenario (Figure 4.23) is defined as: there is just one attacker

with the ball, and no defenders except the goalie; the attacker dribbles the ball from a

starting position and moves forward at a certain angle for a certain distance; then he changes

his running direction and runs with the ball along the new direction until he gets a good

opportunity to score, or until he runs out of bounds without getting a good opportunity

to score. There are 7 dimensions in this scenario: this first 4 are for the initial positions

of the attacker and the goalie (the distance between those two players and 3 angles as in

the breakaway scenario); the fifth dimension is the direction of the attacker’s first dribble

action; the sixth dimension is the dribble distance the attacker will make along the first

dribble direction; the last dimension is the direction (relative to the first dribble direction)

of the attacker’s second dribble action. The testing program will not control the goalie’s

movement. The main goal of this scenario is to test the applicability of retrograde analysis

in this setting.

4.4.1 Retrograde analysis

Retrograde analysis means working back from simpler situations to more complex ones that

depend on the simpler ones. For example, Jonathan Schaeffer used retrograde analysis to

build a endgame database for his checkers program[33]. One of the benefits of retrograde

analysis is that it can keep the number of dimensions fairly low. The retrograde analysis

technique is used in this experiment in the following way: start by learning rules for simple

game scenarios; the summarized rules for simple game scenarios are stored as retrograde

analysis databases; the behavior of higher level game scenarios based on one or more low-

level game scenarios will be summarized without repeating the same work that has already

been done in the simpler game scenarios; instead, the results of the low-level game scenarios

will be used directly.

Dribble-dribble-shoot is built on the top of the breakaway scenario. In the dribble-

dribble-shoot scenario, the attacker w ill not actually try a shot; instead, after he has changed

the dribble direction, the program will check his position and the goalie’s position contin­

uously and send that information to the decision tree learned for the breakaway scenario.

If that decision tree says there is a high probability of scoring at any point, the label for

this example is positive (meaning that there is a high probability of scoring for this dribble-

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) the first dribble direction

|E*> £FS SCEMT; Cameras. Qpttor* L*«l fiudo Iods Qebug game 2&*t Jet Plays Qjorao 1 Qe|p CohMan ftttrlb. I

M g m

M

I

1

(b) change the dribble direction

| Efe 0S SOESlT' .fludte Tods Qebug gams 2Ed* 5«Plays etjbtoo'tohMan ytrfc, 1

(c) the second dribble direction

Figure 4.23: Dribble-dribble-shoot scenario

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dribble-shoot example); otherwise - if the shooter dribbles all the way to the field boundary

without getting a good chance of scoring according to the breakaway decision tree - this

example will be labelled as negative. Without retrograde analysis, the 4 (or 10) dimensions

of the breakaway scenario would be added to dribble-dribble-shoot scenario. Therefore, at

least 4 dimensions are saved by using retrograde analysis technique.

4.4.2 State M achine and G am e H ooks for the D ribble-dribble-shoot Scenario

The dribble-dribble-shoot state machine has 4 states:

PREPARE

FIRST -DRIBBLE

SECOND_DRIBBLE

END

Before the state machine starts, the feature vector from the sample generator is read

and the feature values are converted to internal game variables. Then the automatic testing

program enters the first state: PREPARE. In this state, the attacker and the goalie will run

to their initial positions, and the other players will be sent off the field. After everybody is

in their designated positions, the FIRST JDRIBBLE state is triggered. The attacker dribbles

the ball in the first direction. When the designated first dribble distance is reached, the state

SECOND_DRIBBLE starts. The attacker will change the dribble direction and run with the

ball along the new direction. The END state can be triggered by 4 events: the ball is out

of bounds; the goalie has the ball; the breakaway retrograde analysis decision tree reports

that the probability of scoring is high in the current situation; time out. The running of

above state machine relies on some game hooks and modifications in the FIFA99 game, as

follows.

• void GAME_updateFrame()

This function has been described in 3.3.5. For this game scenario, the dribble-dribble-

shoot state machine manager will be triggered here every game frame.

• int TACTIC_doBestAction(PLAYER_DEF *this)

The original function will decide the current best kick action from the options of

dribbling, passing and shooting etc. In the dribble-dribble-shoot scenario, we want

the attacker to dribble twice along two designed directions. Therefore, this function

is modified to serve the testing program by enabling dribbling only.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.3 E xperim ental setup

There are 100 random sampled initial training examples, and 30 more examples will be

added to the training set at each iteration. The model of the breakaway scenario is saved in

files and will be loaded on the fly. Because the classification of each example is quite stable

in this scenario, we do not run each example 10 times.

4.4.4 E xperim ental results

Figure 4.24 shows the standard evaluation results. In terms of FP rates, the rule-based

method is worse than the others (the performance difference is significant [a = 0.1] at

training set size 250). In terms of TP rates, uncertainty is better than the others before

200 examples (the performance difference is significant [a = 0.1] at training set size 150).

Figure 4.27 shows the evaluation results on blurred target concepts. The cell size threshold

Tceiisize used in this scenario is 0.05, which means each edge of the cell is 0.05 of the

whole range of a dimension. The minimum size for a group of cells to be kept is 30 cells.

Surprisingly, the performance of all the sampling methods (including random sampling) is

much worse than expected (compare to the results in the 10-D artificial tests): the TP rates

are low; the improvements (for all sampling methods) are small even after 100 iterations;

and the selective sampling methods do not behave better than random sampling as they did

in the 8-D and 10-D artificial tests. It could be because this scenario is a complicated one

and the number of samples is still too small to learn an accurate classifier. It also could

be because of the retrograde analysis technique. The breakaway decision tree used in this

scenario is not perfect (it cannot be perfect) for the real breakaway game scenario. The

errors coming from this decision tree will be passed into the dribble-dribble-shoot analysis

and these errors might be magnified. The investigation of these problems are left for future

work.

Scenario Analysis

The dribble-dribble-shoot scenario is not visualized in SoccerViz. But manual analysis

revealed some interesting rules. Figure 4.30 is a manually drawn picture of an interesting

rule in this scenario. The exact rule definition is as follows:

Class: Positive, 7 conditions, 96.7% accuracy supported by 30 data points

attackerRightGoalPoleAngle(ai) > 65.13°

attackerFirstDribbleAngle(«2) > 182.2°

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fal
se

po

sit
ive

rat

e
tru

e
po

sit
ive

ra

te

0.41
bagging
boosting

bootstrapLV
random

rule-based
uncertainty sampling

0.4

0.39

0.38

0.37

0.36

0.35

0.34

0.33

0.32
1 0 0 150 2 0 0 250 300

number of training data
(a) TP rates

0.25

0.245

0.24

0.235

0.225
0 .2 2

0.215 bagging
boosting

bootstrapLV
random

rule-based
uncertainty sampling

0 .2 1

0.205

150 2 0 0 250 300
number of training data

(b) FP rates

Figure 4.24: Dribble-dribble-shoot: standard evaluation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tru
e

po
si

tiv
e

ra
te

tru

e
po

si
tiv

e
ra

te
tru

e
po

si
tiv

e
ra

te
0 .41

s m o o th e d ran d o m
ran d o m0 .4

0 .3 8

0 .37

0 .3 6

0 .3 5

0 .3 4

0.33

0.32

100 150 200 250 30 0
n u m b e r of train ing d a ta

(a) Random

bagg ing
sm o o th e d bagg ing

1 50 20 0 2 50
n u m b er of train ing d a ta

(b) Bagging

0.41
b o o s tin g —•—

sm o o th e d b o o s t in g ------0 .4

0 .3 9

0 .3 8

0 .3 7

0 .3 6

0 .3 5

0 .3 4

0.33

0 .3 2

100 150 200 2 50 3 00
n u m b e r of train ing d a ta

(c) Boosting

0.41
bootstrapL V

sm o o th e d bootstrapL V0 .4

0 .3 9

<u 0 .3 8
73
© 0 .3 7 >
% 0 .3 6

^ 0 .3 5®3
0 .3 4

0 .3 3

0.32

100 150 200 2 50 3 00
n u m b er of train ing d a ta

(d) BootstrapLV

0.41
sm o o th e d r u l e b a s e d ------

ru le b a se d —0 .4

0 .3 9

0 .3 8

0 .3 7

0 .3 6

0 .3 5

0 .3 4

0 .3 3

0 .3 2

100 150 2 50200 300
n u m b e r of training d a ta

(e) Rulebased

0.41
sm o o th e d uncertainty

uncerta in f0 .4

0 .3 9

© 0 .3 8
73
© 0 .3 7
>

0 .3 6'</>
o
Q .

0 .3 5

0 .3 4

0 .3 3

0 .3 2

150100 200 3002 50
n u m b e r of train ing d a ta

(0 Uncertainty

Figure 4.25: Dribble-dribble-shoot, standard evaluation, TP rate: smoothed vs. unsmoothed

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa
ls

e
po

si
tiv

e
ra

te
fa

ls
e

po
si

tiv
e

ra
te

fa
ls

e
po

si
tiv

e
ra

te
0 .2 6

0 .2 5

0 .2 4

0 .2 3

0.22
sm o o th e d random

random0.21

0.2
100 150 200 25 0 30 0

n u m b e r of train ing d a ta

(a) Random

0.26

0 .2 5

$ 0 24
a>

| 0 .23
o

W 0.22

0.21

0.2

*U ^ bag g in g -
sm o o th e d bag g in g ------

150 2 0 0 2 50
n u m b e r of train ing d a ta

(b) Bagging

0.26

0.25

0 .2 4

0.23

0.22

boosting
sm o o th e d bo o stin g0.21

0.2
100 150 200 250 300

n u m b e r of train ing d a ta

(c) Boosting

0 .2 6

0 .2 5

0 .2 4

0.23

w 0.22

m o o th ed bootstrapL V
0.21

0.2100 150 200 250 3 00
n u m b e r of train ing d a ta

(d) BootstrapLV

0.26

0.25

0.24

0.22
sm o o th e d ru le b a se d

ru le b a se d0.21

0.2
100 150 200 250 3 00

n u m b e r of train ing d a ta

(e) Rulebased

0.26

0.25

& 0 .2 4

<D
I 0-23
8. '
1 0.22 (Q

sm o o th e d uncertain ty
un certa in ty0.21

0.2100 150 200 250 3 00
n u m b e r of train ing d a ta

(f) Uncertainty

Figure 4.26: Dribble-dribble-shoot, standard evaluation, FP rate: smoothed vs. unsmoothed

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fal
se

po

sit
ive

rat

e
tru

e
po

sit
ive

ra

te

0.4

0.35

0.3

0.25

0.2 bagging -
boosting -

bootstrapLV -
random -

rule-based -
uncertainty sampling -

0.15

1 0 0 150 200 250 300
number of training data

(a) TP rates

0.25

paggi.ng
boosting

bootstrapLV
random

rule-based
uncertainty sampling

0.2

0.15

0.05

100 150 200 250 300
number of training data

(b) FP rates

Figure 4.27: Dribble-dribble-shoot: evaluation on blurred target concepts

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.5

0.45

0.4
a>f5 0.35
0)>

0.3
o
S’ 0 253

0.2 s m o o th e d ra n d o m — -
r a n d o m - —

0.15

100 150 200 250 300
n u m b e r of train ing d a ta

(a) Random

0.5

0.45

0.4
co
2 0.35
CD

: i 0.3
o
£ 0.25
3
~ 0.2

0.15

0.1

! t I f > •:'

t r

t . ;! £ i> L ? V

\ 3. *
'

t k<- I
b ag g in g *

sm o o th e d bagg ing

150 200 250
n u m b e r of train ing d a ta

(b) Bagging

0.5

0.45

0.4
<D
2 0.35
CD

: i 0.3wO
0.25CD3

0.2 boostij
s m o o th e d boostiij

0.15

100 150 200 250 300
n u m b e r of train ing d a ta

(c) Boosting

0.5

0.45

0.4
o
E 0.35
<o

■ s 0.3
V)o

0.25CD3
0.2 * \ bootstrapL V

s m o o th e d bootstrapL V
0.15

100 150 200 250 300
n u m b e r of train ing d a ta

(d) BootstrapLV

0.5

0.45

0.4
CD
2 0.35:

: | 0.3

I 0.25
3
~ 0.2 s m o o th e d ru le b a s e d —

ru le b a s e d —•
0.15

100 150 200 250 300
n u m b e r of train ing d a ta

(e) Rulebased

0.5

0.45

0.4
CD
(3 0.35
>

0.3

£ 0.25
E
~ 0.2 u n ce rta in ty ------

u n ce rta in ty —
0.15

100 150 200 250 300
n u m b er of train ing d a ta

(f) Uncertainty

Figure 4.28: Dribble-dribble-shoot, evaluation on blurred target concepts, TP rate:
smoothed v.v. unsmoothed

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.4

0.35

0.3
CD
2 0.25<D
:i 0.2COOS' 0.15

s m o o th e d random
random

0.05.

100 150 200 250 300
n u m b e r of train ing d a ta

(a) Random

0.4

0.35

0.3

5 0.25
CD

I 0.2

0.15

0.1

0.05

bagg ing
sm o o th e d bagg ing

150 200 250
n u m b e r of train ing d a ta

(b) Bagging

0.4

0.35

0.3
Q
2 0.25a>>
“ 0.2 o
® 0.15

bo o stin g
s m o o th e d bo o stin g

w

0.05

100 150 200 250 300
n u m b e r of train ing d a ta

(c) Boosting

0.4

0.35

0.3

2 0.25

bootstrapL V
sm o o th e d b o o ts tr a p L V ------0.2

0.15

0.1

0.05'

100 150 200 250 300
n u m b e r of train ing d a ta

(d) BootstrapLV

0.4

0.35

0.3
CD
2 0.25g>
1 02
I 0.15
«

sm o o th e d ru le b a se d
ru le b a se d

0.05

100 150 200 250 300
n u m b e r of tra in in g d a ta

(e) Rulebased

0.4

0.35

0.3
a>
2 0.25
<D

l/>
sm o o th e d0.2

8.
0.15a>v>

0.1

0.05

100 150 200 250 300
n u m b e r of train ing d a ta

(f) Uncertainty

Figure 4.29: Dribble-dribble-shoot, evaluation on blurred target concepts, FP rate:
smoothed vr. unsmoothed

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

jght post

G o a lie

S h o o te r

Figure 4.30: Interesting rule learned for the dribble-dribble-shoot scenario

attackerFirstDribbleAngle(a2) < = 210.57°

attackerFirstDribbleDistance(dfsfance) > 226

attackerFirstDribbleDistance(ci?'.s/ance) < = 748

attackerSecondDribbleAngle(a3) > 42.95°

attackerSecondDribbleAngle(a3) > 114.46°

where a \ is the angle between the attacker and the right goalpost for the shooter’s starting

position; a.2 is the first dribble direction; distance is the first dribble distance; Q3 is the

second dribble direction (relative to 0:2)-

An English paraphrase of this rule is: if the the attacker starts from the right of the right

goalpost, runs roughly horizontally across the goal for a certain range of distances and then

cuts sharply toward the goal, he will have an opportunity to score with high probability.

A game designer might want to know what happened to cause this pattern of attack to

have a high scoring rate. When the 30 training examples supporting this rule are put back

into FIFA99, some interesting goalie behaviors are found. When the attacker runs with the

ball nearly horizontally along the field, the goalie sometimes starts out from the goal to

challenge the attacker; but when the goalie gets far from the goal, he will stop the chase

and run back to the goal; at the moment when the goalie is running back, if the attacker

changes the dribble direction (towards the goal approximately), then the attacker will get

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mih\ -jft noo
lM*V .

(a)

jfps: 1'J‘j I ek: to m

(b)

B H
H H

(c)

Figure 4.31: Goalie behaviour in the dribble-dribble-shoot scenario

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the scoring chance. Figure 4.31 shows some FIFA99 game screen shots for one of the

training examples supporting this rule. In Figure 4.31(a) and Figure 4.31(b), the goalie

is coming out to challenge the attacker. In Figure 4.31(c), the goalie is running back to

the goal and the attacker changes the dribble direction towards the goal, leading to a good

scoring opportunity.

4.5 Conclusion

SAGA-ML and SoccerViz have been used to analyze three different FIFA99 game scenarios

(corner kick, breakaway and dribble-dribble-shoot). The rules generated from SAGA-ML

summarize the game’s behavior in terms of relationships between various distances and

angles and the probability of scoring. Some sweet spots have been identified. In addition

to the standard evaluation method (measure FP and TP using a large test set), an evalu­

ation method based on blurred target concepts has been introduced and used for F1FA99

scenarios. The use of blurred target concepts has two advantages over the standard eval­

uation method: (1) in most game scenarios (e.g. comer kick and breakaway), it produces

better TP rates; and (2) the TP and FP rates generated using blurred target concepts are

more meaningful because it only evaluates large regions, which are of the greatest interest

to game developers and human players. Random sampling performs well in the corner kick

scenario, just as it did in 2-D artificial testing. Bagging, boosting and rule-based selec­

tive sampling methods are better than random sampling overall, just as they were in 4-D

artificial testing. In the beginning stages of all 3 game scenarios, the rule-based sampling

method always has the best TP rates while having FP rates similar to the other sampling

methods. Thus, given a limited number of examples, the rule-based sampling method is the

best one among the 6 sampling methods tested.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusion and Future Work

5.1 Summary

A game scenario testing framework, Semi-Automated Gameplay Analysis (SAGA-ML) is

presented in this thesis. SAGA-ML summarizes game behaviors as human readable rules,

which can be presented to game designers to check if those behaviors are as intended.

SAGA-ML has been tested on Electronic Arts’ FIFA99 soccer game and shown to be a

practical game behavior testing solution.

Three Fifa99 game scenarios — comerkick, breakaway and dribble-dribble-shoot —

were tested by the SAGA-ML system. Some interesting rules were found by SAGA-ML.

Among those findings, some of them are sweet spots of the game (e.g., the easy scoring

area in the corner kick scenario).

Four existing selective sampling algorithms (Uncertainty Sampling, Bagging, Boosting

and BootStrapLV) were implemented, and a new rule-based selective sampling method was

introduced. Those 5 selective sampling methods and random sampling were compared. Ex­

perimental results (especially when dimensionality is high) proved that selective sampling

algorithms are more efficient than random sampling. Given a limited number of examples,

the rule-based sampling method is the best one among these 6 sampling methods.

A new evaluation method based on blurring the target concept was introduced and used

for FIFA99 game scenario. Blurring generates larger regions in its concept definitions by

eliminating small regions and merging neighbouring regions. Compared to the standard

evaluation method, the use of blurred target concepts produces better TP rates in most game

scenarios (e.g. corner kick and breakaway), and this evaluation method is more meaningful

because it only evaluates large regions, which are of the greatest interest to game developers

and human players.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Limitations

SAGA-ML was proposed as a general gameplay analysis framework. However, it is not a

perfect solution to the entire problem of gameplay analysis for all possible games. After

all, the cost of the whole process of learning and sampling is not cheap. Extra design

and programming will be added to game development if SAGA-ML is used. The second

limitation is about thresholds. As we have seen in this thesis, there are many thresholds

used throughout SAGA-ML system. Currently, those thresholds are tuned manually for

each game scenario. When a new game scenario is implemented, some thresholds must be

adjusted based on experiments.

5.3 Future Work

5.3.1 Initial train ing data size

An issue that was not addressed in this thesis is how to get the best initial training data

size for active learning. The following initial idea has been briefly explored. A pre-defined

threshold is used to indicate the minimum size of target concepts, and the number of initial

training samples is set proportional to this threshold. Ideally, in this way the learner will

find the rough locations of the target regions whose sizes are bigger than the given threshold

with the initial training data. Then, the active learning process will refine the initial concepts

iteratively. One problem with this method is that it can be hard to determine a reasonable

threshold for real applications. Therefore, this method is not used in this thesis. More work

should be done on this topic in the future.

5.3.2 H ow m any new points are added in each iteration

Anther issue that was not addressed in this thesis is how many new data points should be

picked in each iteration. Selective sampling is a sort of sequential sampling, which can

be traced back to 1940s when Wald [42] introduced the concepts Sequential Testing and

Sampling to the statistics community. In the database community, a branch of sequential

sampling was investigated by some researchers, e.g., [28]. They believed there exists a

learning curve (exponential curves are a common assumption) during the sequential learn­

ing process. Suppose there is a set of sequential example sets, denoted as S \ , S 2 — .Sn,

where S) is the new example set for iteration i. The focus of this branch of research is to

determine the proper size for each Si, until stopping conditions are met. For example, a

power law curve can be assumed for the learning curve, which is denoted as y = a + b * x c.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Many methods are used to get the parameters a, b and c. The first solution to this task is

using nonlinear regression techniques. Once the learning curve is determined, the value

of each S t can be drawn from a power law formula. In this thesis, the fixed size of new

examples is generated in each iteration. The future work is to apply more complex methods

(e.g., the learning curve method) to determine the new example size for each iteration.

5.4 Final Word

Gameplay testing in the current development cycle of commercial games is a kind of play-

and-feel method, which relies on developers’ experience. This thesis has presented a Semi-

Automated Gameplay Analysis (SAGA-ML) system to help game developers to summa­

rize and analyze gameplay behaviors. SAGA-ML is a system which incorporates machine

learning techniques and the active learning framework into gameplay testing. The game­

play behaviors of real game scenarios are summarized, iteratively refined, and visualized

by SAGA-ML. As a new system, SAGA-ML needs to be improved and tuned by applying

it to additional commercial games.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Deepam Agarwal. A comparative study of artificial neural networks and info fuzzy

networks on their use in software testing. In M aster’s thesis. Department of Comput­

ing Science and Engineering, University of South Florida, 2004.

[2] C. Anderson, A. von Mayrhauser, and Rick Mraz. On the use of neural networks to

guide software testing activities. Procs. International Test Conference., 1995.

[3] B. Beizer. Software testing techniques, 2nd edition. Van Nostrand Reinhold, 1990.

[4] Paul Bourke. Bezier curves, reviewed by Paul Bourke.

http://astronomy.swin.edu.au/ pbourke/curves/bezier, 1989.

[5] R. S. Boyer, B. Elspas, and K. N. Levitt. Select — a formal system for testing and

debugging programs by symbolic execution. ACM SIGPLANNotices, 10(6):234-245,

1975.

[6] Leo Breiman. Bagging predictors. Machine Learning, 24(2): 123-140, 1996.

[7] John Buchanan, Finnegan Southey, Gang Xiao, Robert C. Holte, and Mark Trom-

melen. Machine learning for semi-automated gameplay analysis. Game Developers

Conference (GDC), 2005.

[8] Ben Chan, Jorg Denzinger, Darryl Gates, Kevin Loose, and John Buchanan. Evo­

lutionary behavior testing of commercial computer games. Proceedings o f the 2004

Congress on Evolutionary Computation (CEC), pages 125-132, 2004.

[9] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with

statistical models. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in

Neural Information Processing Systems, volume 7, pages 705-712. The MIT Press,

1995.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://astronomy.swin.edu.au/

[10] Scott Dick, Aleksandra Meeks, Mark Last, Horst Bunke, and Abraham Kandel. Data

mining in software metrics databases. Fuzzy Sets and Systems, 145(1):81-110, 2004.

[11] Chris Drummond and Robert C. Holte. Exploiting the cost of (in)sensitivity of de­

cision tree splitting criteria. In Proc. 17th International Conf. on Machine Learning,

pages 239-246. Morgan Kaufmann, San Francisco, CA, 2000.

[12] Roger Ferguson and Bogdan Korel. The chaining approach for software test data

generation. ACM Trans. Softw. Eng. Methodol., 5(1):63—86, 1996.

[13] International Organization for Standardisation. (iso)(1991). iso/iec: 9126 information

technology-software product evaluation-quality characteristics and guidelines for their

use. 1991. [verified 10 Oct 2004].

[14] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In

International Conference on Machine Learning, pages 148-156, 1996.

[15] Bogdan Korel and Ali M. Al-Yami. Assertion-oriented automated test data generation.

In ICSE, pages 71-80, 1996.

» »

[16] Bogdan Korel and Janusz W. Laski. Dynamic slicing of computer programs. Journal

o f Systems and Software, 13(3): 187-195, 1990.

[17] Miroslav Kubat, Robert C. Holte, and Stan Matwin. Machine learning for the detec­

tion of oil spills in satellite radar images. Machine Learning, 30:195-215, 1998.

[18] Frank Lammermann, Andre Baresel, and Joachim Wegener. Evaluating evolutionary

testability with software-measurements. In GECCO (2), pages 1350-1362, 2004.

[19] Mark Last, Menahem Friedman, and Abraham Kandel. The data mining approach to

automated software testing. In KDD, pages 388-396, 2003.

[20] Wee Kheng Leow, Siau-Cheng Khoo, Tiong Hoe Loh, and Vivy Suhendra. Heuristic

search with reachability tests for automated generation of test programs. In ASE, pages

282-285, 2004.

[21] David D. Lewis and William A. Gale. A sequential algorithm for training text clas­

sifiers. In W. Bruce Croft and Cornelis J. van Rijsbergen, editors, Proceedings o f

SIGIR-94, 17th ACM International Conference on Research and Development in In­

formation Retrieval, pages 3-12, Dublin, IE, 1994. Springer Verlag, Heidelberg, DE.

113

with permission of the copyright owner. Further reproduction prohibited without permission.

[22] Andrew K. McCallum and Kamal Nigam. Employing EM in pool-based active learn­

ing for text classification. In Jude W. Shavlik, editor, Proceedings o f ICML-98, 15th

International Conference on Machine Learning, pages 350-358, Madison, US, 1998.

Morgan Kaufmann Publishers, San Francisco, US.

[23] P. McMinn. Search-based software test data generation: A survey. Software Testing,

Verification and Reliability, 14(2): 105-156, 2004.

[24] Webb Miller and David L. Spooner. Automatic generation of floating-point test data.

IEEE Trans. Software Eng., 2(3):223-226, 1976.

[25] Jonathan Newton. Semi-automated gameplay analysis for role-playing games. In

M aster’s thesis. Department of Computing Science, University of Alberta, 2005.

[26] Institute of Electrical and Electronics Engineers. Dictionary of measures to produce

reliable software. In IEEE, New York, 1988. IEEE Standard 982.1-1988.

[27] National Institute of Standards & Technology. The economic impacts of inadequate

infrastructure for software testing. Planning Report 02-3, May 2002.

[28] Foster J. Provost, David Jensen, and Tim Oates. Efficient progressive sampling. In

Knowledge Discovery and Data Mining, pages 23-32, 1999.

[29] J. Ross Quinlan. C4.5: Programs fo r machine learning. Morgan Kaufmann, 1993.

[30] Ray Robinson. Automation test tools, http://www.vcaa.com/tools, 2001.

[31] W. W. Royce. Managing the development of large software systems: concepts and

techniques. In ICSE ’87: Proceedings o f the 9th international conference on Software

Engineering, pages 328-338, Los Alamitos, CA, USA, 1987. IEEE Computer Society

Press.

[32] Maytal Saar-Tsechansky and Foster Provost. Active learning for class probability

estimation and ranking. IJCAI, pages 911-920, 2001.

[33] Jonathan Schaeffer, Joseph C. Culberson, Norman Treloar, Brent Knight, Paul Lu, and

Duane Szafron. A world championship caliber checkers program. Artificial Intelli­

gence, 53(2-3):273-289, 1992.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.vcaa.com/tools

[34] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings o f

the Fifth Annual ACM Workshop on Computational Learning Theory, pages 287-294,

1992.

[35] Billie Shea. Software testing gets new respect.

http://www.informationweek.com/793/testing.htm, 25.10.2004.

[36] Finnegan Southey and Robert C. Holte. Semi-automated gameplay analysis. AAAI-04

Challenges in Games Workshop, 2004.

[37] Finnegan Southey, Gang Xiao, Robert C. Holte, Mark Trommelen, and John

Buchanan. Semi-automated gameplay analysis by machine learning. Proceedings

o f the 2005 Conference on Artificial Intelligence in Interactive Digital Entertainment

(AIIDE-05), pages 123-128, 2005.

[38] F. Souvannavong, B. Merialdo, and B. Huet. Partition sampling: an active learning

selection strategy for large database annotation. IEE Proceedings - Vision, Image, and

Signal Processing, 152:347-355, 2004.

[39] Nigel Tracey, John A. Clark, and Keith Mander. Automated program flaw finding

using simulated annealing. In ISSTA, pages 73-81, 1998.

[40] Nigel Tracey, John A. Clark, Keith Mander, and John A. McDermid. An automated

framework for structural test-data generation. In ASE, pages 285-288, 1998.

[41] Jeffrey M. Voas and Gary McGraw. Software fault injection: Inoculating programs

against errors. Wiley, 1998.

[42] Abraham Wald. Sequential Analysis. John Wiley and Sons, 1947.

[43] Joachim Wegener, Andre Baresel, and Harmen Sthamer. Suitability of evolutionary

algorithms for evolutionary testing. In COMPSAC, pages 287-289, 2002.

[44] Joachim Wegener and Oliver Biihler. Evaluation of different fitness functions for the

evolutionary testing of an autonomous parking system. In GECCO (2), pages MOO-

1412, 2004.

[45] J. Whittaker. What is software testing? and why is it so hard? IEEE Software, 17(1),

January/February 2000.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.informationweek.com/793/testing.htm

[46] J. A. Whittaker and M. G. Thomason. A markov chain model for statistical software

testing. In IEEE Transactions on Software Engineering, pages 812-824, 1994.

[47] Gang Xiao, Finnegan Southey, Robert C. Holte, and Dana Wilkinson. Software testing

by active learning for commercial games. AAAI, pages 898-903, 2005.

[48] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using

gaussian fields and harmonic functions. The Twentieth International Conference on

Machine Learning (ICML), pages 912-919, 2003.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

