National Library ,
_of Canada - 'duCanada

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
. Every effort has been made to ensure the highes! quality of

-, reproduction possib'e. o

If pages are missing, contact the university which granted
- the degree. _

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
~if the university sent us an inferior photocopy.

Reproduction in fuil or in part of this microform is governed -

by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments. .

5 NL-399 (r. 88/04) ¢

_ Bibliothéque nationale

Canadian Theses Service Service des ihéses canadiennes

~AVIS
La qualité de cette microforme dépend grandem'erit de la

tion.

Sl manque des pages, veuillez communiquer avec
I'université qui a conféré ie grade. T

La qualité d'impression de certaines pages peut laisser a

‘désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si 'université nous a fait

parvenir une photocopie de qualité inférieure.
La reproduction, méme partielle, de cette microforme est

soumise 4 la Loi canadienne -sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

i

‘qualité de la thése soumise au microfiimage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-

THE UNIVERSITY OF ALBERTA

An Interactive Classifier Programming Language

by

@ Keith Fenske

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of

the requirements for the degree of Master of Science.
Department of Computing Science

Edmonton, Alberta
Spring 1988

Permission has been granted
to the Naticnal Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

other

L'autorisation a &té accordée
4 l1la Bibliothéque nationale

‘du Canada de microfilmer
cette thése et de préter ou

de vendre des exemplaires du
film. .

L'auteur (titulaire du droit
d'auteur) se résgerve les

autres droits de publication;

ni la thése ni de
extraits de celle-ci ne
doivent &tre imprimés ou
autrement reproduits sans son .
autorisation écrite.

longs

ISBN 0-315-52767-6

THE UNIVERSITY OF ALBERTA

NAME OF AUTHOR:

TITLE OF THESIS:

DEGREE:

YEAR THIS DEGREE GRANTED:

RELEASE FORM

Keith Fenske
An Interactive Classifier Programming Language

Master of Science
1988

Permission is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY to

reproduce single copies of this thesis and to lend or sell such copies for private, scholarly, or

scientific research purposes ontly.

The author reserves other publication rights, and neither the thesis nor extensive

extracts from it may be printed or otherwise reproduced without the author's written

permission.

Tuesday, S January 1988

s —]Z ‘
7(@47/(-G/i"w/(_é
Keith Fenske
3612 - 107 Street N.W.,

Edmonton, Alberta, Canada
T6J 1B1

THE UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the ‘Faculty of
- Graduate Studies and Research for acceptance, a thesis entitled "An Interactive Classifier
Programming Language" submitted by Keith Fenske in partial fulfillment of the

requirements for the degree of Master of Science.

Dr. Jonathan Schaeffer (Supervisor):

Dr1. Duane A. Szafron:

Prof. Werner B. Joerg (External): 7 D A
— — o
‘ /," X Y
Dr. Stan Cabay (Chairman): Ao 7 P /”

Tuesday, 5 January 1988

Alstract

A classifier programming environment is developed in two parts: an interactive pro-
gramming language and a user classifier system. The programming language supports simple
data objects (numbers, strings, lists), global variables, basic control statements ("for”, "if",
"repeat”, "while"), pre—defin‘ed functions, and user—déf ined functions with local variables.
The user classifier system is any program that can communicate with the programming

language through special functions written in an application-dependent module.

Claésifier systems are artificial intelligence applications which learn by applying
genetic algorithms to bit strings. A bit string represents all possible binary numbers with a
given pattern: "0" for zero bits, "1" for one bits, and "# " for any bit ("don't cares").
Knowledge is encoded into bit strings via a message list and a rule list. Messages are the
current state of the classifier system; rules are legal transitions to ncw states. Rules are
created with genetic operators for bit inversion, bit replacement ("mutation”), and bit
exchange ("crossover"). Rules acquire strength when they lead io successful goal states.
To limit the creation of non-functional rules, stronger rules displace weaker rules ("survival

of the fittest").

The following compiler implementation issues are discussed: internal data storage,
lexical tokens in the input, design of a grammar syntax, semantic actions for creating a parse
tree, interpretation and execution of the parse tree‘('with error recovery), and construction
of a communication interface between the language and a classifier system. = Particular

attention is paid to keeping the language small while maintaining flexibility of use.

iv

Acknowledgements

I would like to thank the people who have been dedicated to helping me finish my degree:

Jonathan Schaeffer, my supervisor

Sheila and Norbert Berkowitz, my mentors

Melvin and Beth Fenske, my parents

Lingyan Shu, my friend

Much time has been spent and many words said; now the text is in your hands.

Chapter

0 00 N AW N

I
[SV =

Arpendix A.
Appendix B.
Appendix C.

Table of Contents |

Introduction

Classifier Systems
Representation of Data
Lexical Analysis

Syntax and Semantic Analysis
The Assignment:Operator
Interpretation and Execution
Functions and Local Variables
Error Recovery

Pre-Defined Functions

User Classifier Support

Final Comments
Bibliography
Language Description

Program Listings

Execution Profile

Page

16
27
33
57
67
17
85
90
94
101

104

106

145
146

1. Introduction

Classifier systems are rule-based artificial intelligence applications which use bit
strings to represent knowledge in the form of messages and rules. Learning takes place
when new rules are created from existing rules by applying genectic operators. There is no
attempt to understand the meaning of the messages or rules: any rule which leads to a suc-
cessful goal state is considered desirable and is given a high strength. (Rules which lead to
a failure state are eliminated.) The user’s control over a classifier system is restricted by the
constantly changing nature of the rule and message lists. In many ways, trying to wdrk with
a classifier is like trying to program a computer in. machine code when the instruction set

keeps changing.

Classifier systems are simple machinés which respond to simplc commands: add a
message; add a rule; show me all rules; create a new rule by genctic crossover; generate a
new message list; etc, Users want more complex operations: exccute the following sequence
of commands until a certain condition is true; save all information in a file; repeatedly
change a previously saved state in different ways and observe the results; etc. Giving the
user a direct connection to the ciassifier would be tedious, because the user would have to
type all of the commands himself (in bit string form) and manually inspect all output.to

look for conditions of interest.

Our research group into classificr systems (Robert: Andrew Chai, Keith: Fenske,
Jonathan Schaeffer, Dale Schuurmans, and Lingyan Shu) quickly developed a need for a
classifier "front end" to provide standard programming constructs such as variables, control
statements, pre—defined functions, etc. It was not clear how this front end was to’be

implemenled.

The fastest solution would have been .to write a library of subroutines that a user
could call from programs written in Pascal [Bo81] or "C" [Ke78]. This was rejected for two
reasons. Tirst, the user would be working in a language with far more rigid concépts of

syntax and data type checking than are necessary for the relatiVely simple requirements of =

1

classifier systems. Second, every time the user made a change, he would have to recompile

“his program. A more interactive solution was necessary.

The next choice would have been an interpreted language such as LISP [Wi84]. This
would have given the user the necessary amount of interaction, He would have been able to
try something, check the result, and try somcthing else -~ all within the same LISP session.
LISP's definition of recursive lists has the appropriate amount of structure for representing
data .in a classifier system. The problem with LISP is that a software designer must choose
one of two options: either the application is written in LISP and allows the user to invoke it
with LISP cxprcssions. or the application hides the fact that it is written in LISP and main-
tains complete control over its execution. The first option forces the user to learn LISP,
and LISP control "staiements" are not well-suited to casual programming. The sccond
option forces the interpreted LISP program to interpret a user’s program, resulting in a sig-
nificant loss in speed. Rejecting LISP was not easy, because having an interpreter that (at

any time) can cvaluate dynamically~created expressionsis worth some loss in performance.

A decision was made to design a new programming language. This language is called
face, is interactive, can represent the data in an arbitrary classifier system, and is close
enough to existing languages (Pascal and "C") that only minor training is necessary. The
language has been kept simple from the user’s point of view. Data follows the representa-
tions in LISP: there are numbers, strings, and lists. No data type checking is performed, as
this appeared to be unnecessary. Control flow is procedural with expressions, function
definitions, and control statements ("for”, "if", "repeat”, "while"). The resulting language

looks like the pseudo-code often used to describe the execution of algorithms.

The first major design question was the relationship between the programming
language ‘and the classmer system Should they be two parts of the same program? Or
should -they be two dlfferent programs? Combmmg them together into a single executable
'module gives the programming language better access to data in the classifier system, but
restricts how the classxfxer is wmten and works (see Chapter 11). Separating them limits
communication between the two programs, but allows the classifier to be modlfxed or

replaced without changing the programming language. The approach used here places the

programming language between the user and his classifier system:

standard user
user programming classifier
language system

The connection between the user and the programming language is the familiar terminal
with a keyboard. Of course, an opcrating system like UNIXe [Ke84] allows much more
sophisticated connections, but the standard input is assumed to be an interactive terminal,
(Throughout this document, the word "UNIX" refers (:xclusivcly to the trademarked
software product of AT&T Bell Laboratorics.) The connection between the programming

language and the classifier system is a UNIX pipe,

The second major design question was the implementation language. "C" was
chosen to make the best use of the UNIX compiler-development tools LEX [1.e78] and
YACC [Jo78].

During implementation, the person writing the programming language (Keith
Fenske) ‘and the person writing the classifier system (Robert Chai) worked at different
speeds, depending upon their other duties. Not having an exact specification of the classif -
ier system was a solid benefit for the programming language. Whencver there was some
doubt about how a feature would be implemented (or used), a generalizing assumption was
made. The result is a programming language which is fully functional by itse/fand may be
used or debugged without reference to a classifier. Attached to the language are
application-dependent functions which communicate with the classifier. The syntax of the
functions, the types of their parameters, and the results they return are all regular objects
in the programming language. Changing the classifier system involves no changes to the

language; only modifications to the communication support routines are required.

An overview of classifier systems is next. Then the representation of data is dis-
cussed.” Given data structures and the skeleton of a programming language, lexical and syn-
tactical grammars are developed. Associated with the grammars are semantic rules for

creating parse trees, which are executed by an interpreter (with traps for error conditions).

Pre-defined functions are chosen to provide the user with a complete programming environ-
ment. A communication interface to the classifier system is attached. Finally, comments

on the suceess or failure of certain features are oresented.

2. Classificr Systems

A classifier system is an artificial intclligence program bascd on bit strings and
genetic operators, There have been numerous papers published in this arca, and more than
a few conferences held, so an introduction is best served by presenting some background
material and then deferring to onc of John H, Holland's papers {F:086] which describes
applications in function optimization and robotics, Also mentioned in the Holland paper are
a classificr to play the card game of "poker” (S. Smith, 1980) and a classifier to detect leaks
in a pipeline (D. Goldberg, 1983). Sce [Ho86-2] for related work and [Ri86] for an imple- |

mentation.

2.1. Bit Strings

A bit string is a string consisting of the characters "0", "1", and "#" (don't carc).

The following are examples of legal bit strings:

ngv
n1101#n
u0#1#0n

Each bit string represents all possible binary numbers with a given pattern. The bihary
numbers must have as many digits as there are characters in the bit string.. Where the string
has a "0", the same position in the numbers must have the binary digit 0; where the string
has a "1", the numbers must have the bit 1; and where the string has a "#", then any bit is
acceptable. In the previous example, the first string rcpreécnts only one number (zero), the

second string represents two numbers, and the third string represents four numbers:

bit string binary numbers decimal equivalent
"o : 0 -0 (zero)
"w 0 1 # " 010 2
011 3

"O#14#0" 00100 4

00110 6

01100 12

01110 14

Bit strings are easy for cofnputers_ to work with because their alphabet is limited to three
characters, and they can be stored as logical masks and values. (In a "mask", significant
digits are ones and ignored digits are zeros.) The mask for "01# " would be 110 and the
value would be 010. An arbitrary binafy number matches the bit string "01# " if the logical
AND of the number and the mask 110'is equal to the value 010. Logical operations,are the

fastest instructions on a computer.

2.2, Messages and Rules

Information about a classifier system’s current state is stored in messages, which are
fixed-length bit strings. Generally, only the characters "0" and "1" are allowed. All mes-
sages héve thé same length, based on the assumption-that if everyone wdrké with objec‘t‘s of
the same size, then programming is easier. ‘Collectively, the messages-are referred to as th'e‘

“"message list".

Rules act upon the message list, Each rule has a condition bit string and an action

bit string, and is written as:
condition / action

If there is a message in the message list with the same pattern as the condition, then the

action is invoked. For example, if the message list is: .

"o0111"
"01010"

then the rule:

"01010"™ / "11111"

matches the second message, and the action "11111" is invoked. Invoking an action. posts a

new message to the message list; in this case, the message "11111".

Conditions may have "don't cares" ("#") for some of their pattern bits. Actions
may also have "don't cares”, in which case the corresponding bits from the matching mes-
sage are passed through unchanged. The previous rule could be modified to match’ both of

the original messages:
"0##1#" / l']####VV

This new rule changes the first bit in a message to a one, and passes on the other bits
unchanged. If it is applied to the first message ("00111"), then the result is "10111";
applied to the second message ("01010"); the result is "11010".

Conditions may be negated by placing a minus sign ("-") before the condition. A

negated condition is true only if there are no messages which maich the given pattern:

-"000##" / "00000"

says that if there are no messages with zeros in the first three bits, then create a new mes-

sage that is all zero.

More than one condition may be specified in the same rule. All conditions must be

satisfied bafore the rule’s action is invoked:

"O#EHE" , TREREIY / "OgEHT

looks for a message that has a zero in the first bit, checks that no message has a one in the

last bit, and then creates a new message beginning with a zero and ending with a one.

Holland is not very clear about the exact meaning of multiple conditions. Let €15 €y

up to ¢, be the conditions. Let a be the action. Then Holland says on page 603:

The condition part of the classifier C is satisfied if each condition ¢, is satis-
fied by some message M ;on the current message list. When the classifier is

satisfied, an outgoing message M* is generated as before using the message

M f satisi ving condition ¢; and the action part a.

Must the same message M f satisfy all conditions? Or can there be r possibly different mes-

sages satistying the separate conditions? If the same message must satisfy all conditions,
then it is unnecessary to identify M ; as the message satisfying condition ¢;. If different
messages can be used to riisfy the individual conditions, then Holland's exampie on page

| 605 makes more sense. Suppose that a message M is to be generated when the following

"Boolean" condition is true:

(C1 and €2) or [C3 and (not C4)]

- That is, when conditions ¢; and ¢, are jointly satisfied, or when condition ¢, is satisfied and

¢, can not be satisfied. This may be rewritten as two classifier rules:

c1t , C2 / M5
C3 , -C4 / M5

If ¢, through c, were single-valued Boolean variables (true or false), then this wouldn't
work — because classifiers have no concept of variables, Boolean or otherwise. Fortunately, k
conditions are bit string patterns representing sets of messages, and are "satisfied" when the

sets are;not empty.

Thus, the answer to the earlier quéstion is, yes, the messages may be different. 'A

multiple—condition rule is satisfied if there are messages which independently satisfy each of

the condiiions. (Multiple conditions could be replaced by single conditions and flag. bits in

the messages, if it weren't for negative conditions.)

2.3. Genetic Operators

A classifier system is given an initial set of messages and rules by the "environment"

(that is, the user). One execution cycle consists of the following steps:

— receive messages from the environment (if any),
— find all rules whose conditions are satisfied,
— generate a new set of message strings,

— send messages to the environment (if any).

While indefinite cycles are possible with this scheme, it fails to do any useful work except in
the extreme case where the rules are already perfectly developed. For the classifier to
learn, it must adapt its existing rules to new situations.. The adaptation scheme has two
Vparts: assigning a "streng.i" to each rule, and specifying a mcthod of creating and: testing

new rules.

The strength of a rule is a measure of . how often the rule has lead to a successful
goal state. Goal states are characterized by a large number called "pay-off". (Failure
states are usually characterized by a large negative number.) The more frequent the success,
the higher the strength. - Strong rules are given preference over weaker rules in the hope
that fhey will again be successful. Strength is a dynamic quantity which is constantly
updated according to the current situation. Please refer to Holland's paper for a description

of the "bucket-brigade" algorithm.

New rules are created by "genetic" operators. The "crossover" operator takes two
strong tules, swaps some of the bits at random, and creates two new rules. The "invert"
operator takes one rule, inverts some of the bits, and creates a new rule. The "mutate”
operator takes one rule and réplaces some of the bits, If thesc new rules are functional

(lead toward a goal state), then they acquire strength and may displace their parent rules.

10

If they are non-functional, or are special cascs of rules that already perform well, then they

may be eliminated by other new rules.

Genetic operators imitate the apparent changes to DNA molecules that occur during

sexual reproduction. ~ Consider the following two rules:

uooon / u##on
n001n / n##on

These rules have the same action and their conditions differ in only one position. If the
condition in either rule is mutated to have a don't care in the third position, then a more

general rule is created:
"00#" / n##on

This new rule is preferred over the first two rules because it can be applied in both situa-
tions where the first two rules apply. As the new rule gets used, it acquires strength. The
first two rules are not used, and their strength is reduced. Eventually, they become suffi-
ciently weak that they are eliminated. (This assumes, of course, that these rules are func-

tional!)

The genetic operators depend upon dynamic strengths to judge the fitness of each

rule.

2.4. User Environment

The classifier system functions as a machine. A user feeds it some initial messages

and rules. -Commands are given to apply genetic operators or to generate the next list of

messages. These messages are inspected. If a goal state is reached, then the classifier sys-

tem is rewarded with a pay-off. If a failure state is reached (as happens when the classifier

is playing 2 game and makes an illegal move), then a negative pay-off occurs. Otherwise, =

the process is repeated.

No matter whether the classifier sysiem "wins" or "loses", the rules and adjusted
strengths are an‘improved description of: the application problem. This descri'ption may- not
agree with a human description, but it still makes the classifier better prepared to solve the
same problem again. The new information should be used in further trlals or saved and

reloaded at a later time.

2.5. Classifier Example

To demonstrate how a classifier system can be used, here is a simple example which
teaches the classifier to turn on a light if two switches are in same position, and to turn off
the light otherwise. - This example is easy because only one message is exchanged between

the programming language and the classifier system at each step.

Messages need three bits: two for the switches and one for the light. Let "0" mean

that a switch (or the light) is off and let "1" mean on. Then the message string:

"010"

says that the first switch is off (left bit), the second switch is on (middle bit), and the light
is off (right bit).

The classifier is expected to Tind a set of legal rules for turning the light on and off.
At least one initial rule must be given to the classifier so. that it can' create other more
meaningful rules. Using the syntax of the pre—defined functions described in a later

chapter, we can supply a dummy tule:
I.'Ule ({ noo#n , n##on}) :

telling the classifier to turn the light off if both switches are off. This is not one of the

legal rules that we want the classifier to find!

The classifier is trained by picking random test cases until it makes at least 99 (for“

example) correct answers between failures:

11

correct := 0;
(

while (correct < 99)
do

generate and test
end;

The first part of the "generate and test" procedure is to apply genetic operators to the clas-

sifier rule list:

crossover();
invert();

mutate();

These operators create new rules which may or may not be legal. The rules are tested by
choosing switch and light settings at random and sending these setiings to the classifier as a

message. Let first be the first switch, second be the second switch, and /ight be the light:

first := random(2);
second := random(2);

light := random(2);

assigns all three variables to be non-negative random integers less than 2 (that is, 0 or 1).
A ‘message can be created by converting the numbers (above) into the characters "0" or

"1", and then concatenating the characters together into a string:

new := "01"[first+1]
+ "01"[second+1]

+ "01"[light+1];

This string new is sent to the classifier with:

message (new);

- Suppose that the switches are on and the light is off. Then the message:

12

13

message ("110");

will be sent 1o the classifier. The classifier‘is told to apply its rules to the current message

list (consisting of one message in this example):

generate();

generating one new message as the first element in the global variable messlist. . If the

resulting message has the correct setting for the light (and does not change the switches):

if (messlist[1][3] = "01"[(first=second)+1]})
and (messlist[1][1:2] = new[1:2])

then the classifier is rewarded and the number of correct answers is incremented:

then
payoff (999);

correct := correct + 1;

where "999" is just a iarge number with no special meaning. If the light has thc wrong set-

ting, then the classifier is punished:

else
payoff(-999);
correct := 0;

end:;

This random testing is repeated until the classifier gives consistently good results, at which

point it should have exactly four strong rules in the global variable rulelist:

"00#" / T#HT
014"/ "HHO"
"10#" / "HHO"
"11g" / "#g1"

14

(returning to Holland’s syntax for specifying rules), Depending upon how the classifier is
implemented, it may prefer to replace the don't cares ("#") in the actions with the literal

bits from the conditions.

2.6. Observations

Much of the description above assumes restrictions which are only necessary for

keeping the classifier system simple:

(1) Replacing fixed-length strings with variable-length strings would allow the classifier
to create longer messages and rules to encode additional information observed about

the problem domain. The cost would be in sign-extending older messages or Tules.

(2) Instead of having one or more conditions per rule, we could allow zero or more con-
ditions. A rule with zero conditions would be equivalent to a message, since the null
condition can be defined as true. A general implementation could then remove the

distinction between messages and rules!

(3) Without strong initial rules, the classifier system randomly creates and eliminates ‘a
large number of rules before it reaches a state with some pay-off (however small).
Then it randomly searches néar the first pay-off. If the state space is considered to
be a flat surface, then the system acts like a drunk sailor wandering around a lamp
post. (This is known as a "random walk" in probability theory. See [Fe68] for a
description, and for the more general case of Markov processes.) Only when the
classifier develops rules leading to a goal state does this behavior moderate. Hence,
one suggestion for improving the performance of a classifier system is to initially

train it in situations very close to a goal state.

(4) Bit strings are deceptive. Because they have only two values (zero or one), they
make the problem of coding an application look simple. This simplicity is not real,
and: can result in different performance depending upon the coding scheme, For

example, if a field in a classifier méssage has three possible values (say: yes, no,

and maybe), then two bits must be allocated. One scheme is:

00 = yes
01 = no
10 = maybe

If this field is randomly changed ("mutated"), then it should have an equal chance
of going from one value to another. The classifier system does not respect .this
desire. By mutating a bit at random, it can turn "yes" into "no" or "maybe”, "no"
into "yes", and "maybe" into "yes” — but it can never turn "no" into "maybe" or
vice versa. (Ignoring, of course, the possibility of the illegal combination 11.) Thus,

the coding of message fields affects the performance of the classifier system.

15

3. Representation of Data

The representation of data is a major decision in any programming language. The
amount of work required to implement basic operators such as addition ("+") is propor-

tional the number of different data types which may appear as operands.

3.1. Numbers

Numbers are necessary for representing the "strength" of rules in the classifier sys-
tem. FEither real numbers or integers are accepiable. (Even if the classifier wants real
numbers, integers can be scaled by the communication routines.) Numbers are also neces-
sary for general programming in the classifier language. It would be hard to loop through a

set of statements, or to count.objects, without numbers.

Stealing a trick from APL [Gi76], the user has no control over the intcrnal represen-
tation of numbers: all numbers are double-precision floating-point. The effective fange of
double-precision real numbers on most computers (17 decimal digits) is larger than the
range of long integers (10 digits), so the user will never notice that integer calculations are
being done in floating-point. Any additional overhead caused by the floating-point arith-

'metic is buried in the other actions of the compiler.

3.2. Strings’

The definition of strings is harder to decide. Should strings be arrays of characters
(as is done in APL, "C", and Pascal)? Should strings be a basic data type (completely
replacing the concept of an individual character)? Are bit strings different than ordinary

strings? These questions (and more) arose before a rather "obvious" choice was made.

Strings need to be built up from characters when it is important to manipulate indi-
vidual characters. This would happen, for example, if a string was a card iniage where each
column had a separatc meaning. In the classificr system, messages are assumed to be com-
posed of fields. Is it reasona‘ble to assume that fields will be one character long? That is,
should we assume that the user wiil want to manipulate messages by changing individual
bits? - (Remember, onc character in a message is one "bit" in a bit string.) Implied is a
further éssumption that all fields can t: encoded as one bit — which has already been con-
tradicted by a previous "yes", "no", or "maybe"” example. Hence, it is unlikely that the
user will work only with individual characters. Manipulating ficlds in a bit string will

involve groups of characters. Groups of characters are otherwise known as strings!

Now, if strings are a basic data type, is there a difference betwcen "regular” strings
used for text (as in output to the user) and "bit" strings used for binary patterns? We
could have separate definitions for text strings versus bit strings by putting text strings in

double quotes (") and bit strings in single quotes (°):

"this is a text string”
*00100#111”

Would this buy us anything? = Are the operators applied to bit strings completely, different
than the operators applied 1o normal strings? For example, will we want 10 subscript
("index") bit strings but never regular strings? ~Will we only want to write out regular
strings as text to the user, but never bit strings? Is there any situation where bit strings and
regular ‘strings will \need to be:combined? Better yet, is there any situation where we will

have a string and not know what kind of string it is?

17

Too many questions like these were asked, and too much code was duplicated,
before the obscrvation at the beginning of this chapter was formalized: doubling the number
of data types doubles the amount of work during implementation. Bit strings and text
strings arc both implemented as strings. For most operators, bit strings are treated no dif -
ferently than any other string. Only when an operator requires interpretation are bit strings
treated in special ways, (Examplc bit string opcrators arc and, or, and not. Plcase refer to

Appendix A for a complete description of the string operators,)

3.3. Lists

Numbers and strings need to be collected together for at least onc obvious reason

18

and one not-so-obvious rcason. The obvious reason 1s the representation of rules: a clas-

sifier rule has a condition part, an action part, and a strength number. We could force the
condition part to consist of exactly one bit string. Then to create a new rule, we would
need to send a condition string, an action string, and a strength. To print a rule, we could
print the condition string followed by the action string followed by the strength. However,
if we return the rule so that the user can manipulate it, then we¢ must have a data object

which is capable of holding two strings and a number.

What kind of object can hold two strings and a number? An array that allows ele-
ments to be of different types (which is not legal in Pascal or "C"). Or a record with one
string fiecld for the condition, another string field for the action, and a numeric field for the

strength.

A less obvious problem is the representation of fields within a message. ldeally, we

would like to name the fields in the Pascal style:of records. If the data in our languagé was‘

strongly typed (as in Pascal), then we would know what values were 'legal in every part of
each piece of data. Crea‘ling a message would then be a matter of declaring a variable of
the appropriate type kand assigning'values to cach field. This can be done (and is done) in
’ mény kcompiled ylangu‘ages where the user types his pfogram imo a file, compiles it with a

compiler to produce object code, and then runs the object code. This suffers from a lack

of interaction, Why should a user type:

m : message;
m.first := yes;
‘m.niddle := no;

m.end := maybe;

just to create a message which will be converted into the bit string:

"000110"

Given the choice between typihg six bits in quotes and four lines of Pascal, the user will
slowly type the bits (and swear about how obscure they are). Of course, there is no need
to use pure Pascal syntax. We could int:oduce new delimiters to create an object with an

assumed data type. For example:
< yes , no , maybe >

might be a shorthand way of creating something of type "message”. This works well if "
there are only a few data types with special syntax, such as classifier messages and rules.
Unfortunately, big messages and rules are composed from smaller less-complicated pieces
which still niay be big enough to need their own spgcial syntax. Changing the lariguage to

allow for any number of special cases gets ridiculous.

The syntax used in the previous "<>" example looks suspiciously. like LfSP lists.
The only difference is that we are assuming a fixed interpretation of ‘the data‘types. Going |
back to the more obvious aeed for collections of data, a point was ignofed which strongly
implies a list structure. The condition part of a rule consists of one or more condition bit
strings. 'Representing exactly one condition was shown to be ecasy. Having two conditioﬁs is
equally easy, with both records and arrays, because conditions: have the same "type".
Exactly three conditions causes no new problems. In fact, any exéct number of conditions
éan always be represented with either records or arrays. The same is true if a maximum
- numter of conditions can be assumed (by re‘plaéing unused conditions with some "null"

value). The phrase "one or more " does not specify a limit. IF we assume a limit, then the

- programming language will be unable to supbort general classifier systems. Hence, we must
nbt assume a maximum number of conditions. Arrays that are declared with fixed sizes can
not be used here. Records that are declared with a fixed number of fields (even "variant
récords in Pascal) can not be used. Some structure that has a variable number of emrieé

must be used.

LISP collects data together in lists. A list is either empty, or contains elements. If

it is empty, it looks like this:

If the list is not empty, then it contains one or more clements separated by spaces. Each
element is either an atom or a list. The following are examples of legal lists (with simple

values):

(3)
(dog) ;
(3 dogs (sat in) a lake)

Even programs in LISP are lists!

Data in classifier systems is represented by lists in the programming language. No
data type checking is performed on the‘list elements, because classifier data is sufficiently
simple- that type checking is unnecessary. -Without strong typing, there is no need for type

declarations. Without type declarations, variables are whatever they are assigned to be, and

20

do not need to be declared in advance. Type and variable declarations are a major part of

traditional language grammars. Thus, a non-traditional grafnmax will be required. The only '

concession is purely syntactical: "(" and ")}" are commonly used as parentheses in algebraic
expressiuns, so different characters should be used for delimiting lists. "{" and "}" have

been chosen because they are familiar as set notation.

Please refer to Appendix A for a complete description of the list operators, and for

data objects in general.

21

3.4. Internal Representation

The classifier programming language has numbers, strings, and lists. Numbers are
always double—precision floating-point. Strings consist of zero or more characters. Lists

have zero or more elements, each of which may be a number, a string, or another list.
To represent a number, we must tell "C" to declare space for the number:

NUMBER number ;

where NUMBER is #defined by the "fainc.h" module to be the "C" double type. To

represent a string, we must declare space for an array of characters:

char string[MAXSTRING]}

says that string is an array of characters indexed from zero to MAXSTRING-1. Of course,
this assumes that all strings have the same length (MAXSTRING), and that no space is
wasted by padding trivial strings to the maximum length. A more reasonable method is to
dynamically alloéate strings by some as yet unspecified means, ‘and to save the address of

the string:

char * string;

To allow strings to be signed (as in classifier conditions), we must save the sign of each

string:
int sign;
where sign is either +1 for a positive string or -1 for a negated string.

Numeric and string values are stored in a "C" structure known as ValueThing:

22

#define ValNUMBER 703
#define ValSTRING 705

typedef struct Valv .ng {
NUMBER number;
int sign;
char % string;
int type;
} valueThing;

where type identifies the data type in the structure according to the symbols VaINUMBER
and ValSTRING. These #defines are prefixed with "Val" fo avoid confusion with similar
lexical tokens which are deffned later. Although the number field is used only for numbers,
and sign only for strings (and lists), these two fields are not combined — even at the
expense of extra code — to keep the code readable and to provide a degree of internal error

checking. (See the CheckSign routine.)
Lists are represented as linked lists. A list is a value structure with a ¢ype field of:

#define ValSET 704

Lists have signs (defined as for strings). Lists also point to the first element in the list:

struct ValueThing * next;

next may be the address of a ValueThing, which is the first element, or it may be the NULL

pointer. If next is NULL, then the list is the empty list, because it has no elements:

list

next = NULL

If nextis not NULL,“then it points to a value structure of type:

23
#define ValELEMENT 702

An element has no sign, is not visible to the user, and only serves to connect value struc-

tures containing real data. Elements have next pointers along with this pointers:

struct ValueThing * this;

this is the address of ‘a value structure for a number, string, or another list:

element [— this

next

When lists and elements are linked together, data objects which look small to the user are

expanded into much larger (but very regular) structures. For example, the list:

{1, "hello", {3, 4}}

has three elements: a number, a string, and a list (whose clements are two numbers).

Internally, this is stored as:

list
clement number 1
element string %——- "hello"
element list
NULL element number 3
clement number 4
NULL

This example is a visual answer to questions such as "why does a list point to its first ele-
ment through next instead of this"? this always points to a complete data object, that is, an
object which would be legal even without the presence of the list. Lists are created recur-
sively; there is no difference between the structure of a list which appears by itself and a
list which is an element in another list. - (The next element in a list is always accessed

through next independent of whether the current value structure is an element or a liSt.)

Lists in this language are not as compact as the lists in LISP. The basic change is

the addition of a ValSET structure in front of what would be the LISP list. This places

information about the data type in the data itself, without having to reference some external
dictionafy. Further, the LISP definitions allow sublists to be rooted at cach element (see
the cdr function); here elements are not legal data objects by themselves, and hence are not

legal as sublists.” The choice is more than just a question of representation.

24

; LISP does not copy vaiues when creating a list, If the same value is used more than
once, then changing one reference to the value will change all other references. This is a
very convenicnt property for experienced users, especialiy when combined with a copy-on-~
demand function, but violates an informal principle known as the "law of least astonish-
ment" (attributed to. the University of Michigan programmers who wrote the MTS operating
system). This law states that when the user types a command, the system should do the
simplest and most obvious action which is consistent with the phrasing of the command.
The classifier language will be used in an interactive environment. The user will be typing
commands, observing the results, and then typing more commands. If he assigns a value to
a variable early in his session, then this variable should retain the same value throughout the

-session, until he explicitly changes it. LISP may turn a variable into a reference to some
other variable, print' the correct value now, but lalef indirectly change the value of the
referenced variable. The frustration of the user can be extreme, especially when the origi-

nal reference has long since vanished from the screen and the user's memory.

To keep users happy, and to reduce the author’s work, unique copies of all elements

are made when a list is created.

Why are elements forced to point to complete data objects? Elements could them-
' selves contain the value, along with a link to the next element. The reason has to do with
assignment. Lists replace arrays and records. The user will want to change values within a
list. 'If elements contained the values, then the elements would. have to be overwritten to
assign a new value (1o avoid damaging forward and backward pointers). Having a this
pointer to the element’s value allows the assignment to be done by replacing one pointer —

much faster.

Here is the full definition of a value structure, as taken from the "fainc.h” module.

Comments have been removed, due to the limited width of this formatted page:

25

#define ValDUMMY 701
#define ValELEMENT 702
#define ValNUMBER 703
#define ValSET 704
#define ValSTRING 705

typedef struct ValueThing {
struct ValueThing * next;
NUMBER number;
int sign;
char * strirng;
struct ValueThing % this;
int type;

} valueThing;

(Dummy values are explained later — much later.)

One final note: The "C" programming language allows pointers to be NULL. Inter-
nally, the classifier language must check next pointers to see if they are NULL. Checking
this pointers is not much more difficult. If we ailow NULL values for both of these
pointers, a list may have elements which point to NULL. We could hide this fact from the
user, or we can make it visible. By creating a special symbol (called "NULL"), the user
may have NULL values in his lists. Lists are recursively defined. If lists can have NULL
elements, then NULL values must be legal by themselves. NULL values hence become a
fourth type of data object. This may scem a minor point now, but having explicit NULL
values makes other parts of the language much easier. (For example, what is the value of a

global or local variable which has not been assigned a value? Answer: NULL!)

26

4. Lexical Analysis

Input from the user is structured as a small programming language. Programming
languages are parsed (understood) by recognizing pieces called "tokens", combining tokens
into statements according to syntax rules, and then executing semantic actions associated
with the rtules. The work of recognizing tokens in the input language is done by the lexical

routines.

4.1, Overview of Lexical Analysis
An example will help to explain what a token is. Consider the following expression:

(0ld + new) > 25

This expression adds the value of the variable old to the value of the variable new and com-
pares the sum against the number 25. There are seven tokens in this expression (ignoring

the spaces):

token number - token string

(
old

new

)

>

25

~ O L B W R e

iv: ormaily, tokens are input words separated by punctuation.

Different languagés place different demands upon the lexical routines. In some

languages, the recognition of tokens depends upon the current context of the parser. In-an

extreme case, the same input may be interpreted in different ways depending upon where it

appears in-a program:

elseif

might be recognized as the token "else" followed by the token "if" in a conditional state-
ment, but as the variable name "elseif" in an assignment statement. Rules like this are hard
to implement, because the same sequence of input characters can generate a variable

number of tokens.

Less extreme is the case where input is always broken into the same tokens, but the
meaning of the tokens may change. A confusing but legal example comes from the PL/I

langnage (page 87 of [Ah86]):

IF THEN THEN THEN = ELSE; ELSE ELSE = THEN;

To quote [Ah86]: "In PL/I, keywords are not reserved; thus, the rules for distinguishing
keywords from identifiers are quite complicated”. The lexical routines must have full
knowledge of the parser's context before they can break input characters into tokens. Shar-
ing this much information makes a compiler more difficult to write, because the lexical

analysis can not be cleanly separated from syntax and semantic analysis.

To avoid these problems, languages such as Pascal reserve some of the possible input
words, and force reserved words to have a fixed meéning. Examples are words like "if",
"begin", and "end" in Pascal. "if" is always the first part of a conditional statement;
"begin" always introduces a compound statement which must terminate with "end". ‘None
of these reserved words may be used as variable names. Using "if " where a variable name

is required will generate a syntax error.

Removing context sensitivity from the lexical level allows the lexical routines to run

28

- almost independently of: the syntax or semantic routines. The lexical routines are given

;completek control over the input stream. When called, they look for the next token, and

re‘turn this token to the caller.. Between calls, they do nothing. In fact, the lexical routines
act as a subroutine for the 'syntax routines. While the syntax routines are putting together
an expression, they call the lexical routines whenever the syntax rules say that there may be
another token in the expression. When the syntax routines have cnough tokens, they reduce

rules, exccute semantics, etc. The syntax routines never try to read the input themselves.

With the UNIX operating system, lexical analysis can be done by writing your own
program, or by using LEX to generate a lexical function calied yylex from a table of rules
written as regular expressions. LEX encourages you to create simple tokens via reserved
words and: operators, but allows action statements written in "C" which can potentially add

as much context sensitivity as required.

4.2. Classifier Lexical Tokens

You have already seen two of the input tokens in the classifier language: numbers
and strings. A number is a sequence of digits, possibly containing a decimal point, and
optionally followed by an exponent. A much-simplified version of the LEX rule for a

number is:
[0-9]+

which says "a character from 0 to 9 repeated one or more times". The sign of a number

("+" or "-") is not part of the token, or else expressions like:
5-3

would be treated as two number tokens, with the minus sign as part of the second number,
when it should remain as a subtraction operator. Associated with the number rule is an

action:

{ yylval.number = atof(yytext);
return(TokNUMBER); }

29

Unless you have used LEX before, or arc reading the manual now, this explanation will not
‘bc very helpful. First, yylval is a special place where information is returned to the syntax
routines (YACC). Second, number is a field within the structurc or union for the YACC
stack type. Third, atofis a "C" function to convert an ASCII character string to a double-
precision [loating-point number. Fourth, yytext is where LEX stores the current input
tokeq. Fifth, ToANUMBER is a flag returned to the syntax routines to indicate that a
number was found, (Remember VaINUMBER and the comment abdut the "Val" prefix?

Well, here is the corresponding "Tok" prefix.)

Interested readers may refer to the listing of the "falex.1" module in Appendix B.

The remainder of this discussion will avoid the technical details.

Strings are recognized when LEX finds a delimiter which may begin a string: double
quote ("), closing quotc or acute accent (°), and opening quote or grave accent (7). LEX is
not asked to find the entire string, because it is unable to properly handle "escapc®
sequences within a string. A function by the name of LexString is called instead. Lex-
String builds up the string in a static buffer using input bytes supplied by LEX. The string
ends when a matching delimiter is f‘ound. Between the starting and ending delimiters, there
may be regular text characters and escape seqdences. An escape sequence puts a special
character into the string. Backslash followed by "n" (that is, "\n" without the quotes) is
replaced by a single newline charactér; "\t" is replaced by a tab character; "\\" is replaced
by a single backslash character; and backslash followed by the string delimiter puts one del-
imiter into the string as text. Before returning the string to the syntax routines, LexString
allocates enough dynamic memory to hold the string (plus a’ null byte as a terminator) and
then copies its static buffer to the dynamic memory. The caller is given a string token

(TokSTRING) and the address of the dynamic copy.

The next most interesting tokens are comments. Comments are thrown away by the
lexical routines before they can reach the syntax routines. This makes comments invisible {0
,the syntax level. Hence, the only restriction on comments is that they must not conflict
with anything used in the syrn.ux grammar. Pascal uses "{" and "}" to delimit comments;

the classifier language has already chosen these two symbols to delimit lists. We could use

30

231

two other paired symbols: anything between these symbols would be a comment, LEX
allows tokens to specify input that extends over mﬁltiple lines. Every part of each input
line matching the token is placed fmo LLEX's token buffer (yyrext). yytext is, by default,
200 bytes long. Putting arbitrarily-sized comments into such a small buffer is almost

guaranteed 1o crash LEX.

Alternatively, we could use the same trick as for strings and call a function to "pro-
cess" the comments, The function definition would be trivial: read until a delimiter mark-
ing the end of the comment, or an end~of-file, whichever comes first. Possible delimiters
are "/*" and "*/" familiar to "C" and PL/I programmers. This would work, but there is an
even casier way used by the UNIX shells. Pick some character not found in the language,
such as "#". (Even though # is used in bit strings, there is no conflict because strings
always exist between string delimiters.) Tell the user that everything from # 1o the end of

the line is ignored. Then define the following LEX rule:
"#" . *

with no action. This rule matches # followed by any number of characters except for the
newline. (And, as an added joke, comments are introduced by a character which means

"don’t care" in bit strings!)

In order of their appearance in "falex.l", the following tokens are also recognized:
Reserved words ("and", "do", "else", etc.) are accepted in any mixture of upper— or
lower-case, supposedly as a convenience to the user, but actually to prevent the user from
writing a program which misuses a reserved word by slightly changing its appearance. Rela-
tional operators all return TokRELOP for their token number, with further information
stored in yylval, since this removes seven operators from the syntax grammar, effectively
reducing in half the size of the YACC finitc state machine.. Variable names are any letter
followed by zero or more letters or digits; upper- and lower—c. e are important in variable
names. Special symbols with unambiguous meanings are accepted. For example, all of the

"C" relational operators are supported:

i
4]
it
A
A
]
v
fl
v

as well as the Pascal relational operators:

The assignment operator is from Pascal:

"

"

"%" is accepted for the reserved word "mod"; "&" and "&&" are accepted for "and"; "]
and "| | " for "or"; etc. White space (blanks, tabs, and newlines) are ignored. Finally, all
single-characlcf tokens which do not require conversion (such as "*") are returned directly

by-a default rule,

4.3. Test for Lexiqal Routines

The lexical routines are called from deep within the YACC-generated parser. If the
information they return is bad, then YACC will produce unexpected "syntax error” mes-
sages. YACC does not tell you why there is an error, or what the offending token is, only
that the input does not agree with its rules. (You can use the YYDEBUG fla;, if you
dare.) Fighting with YACC is a needless trouble, especially when the lexical routines are

perfectly happy to run without YACC.

To test the lexical routines, a program called "telex" was written. telex allocates
space for the global variable yylval, where LEX expects to return information about the
tokens, calls yylex for a token, prints the token's name and value, and then calls for another

token. This procedure continues until you type an end-of ~file on standard input.

telex is a quick-and-dirty test routine which took less than an hour to complete,
found a number of trivial mistakes in the LEX rules, and saved numerous hours of aggrava-

tion when LEX was finally attached to the syntax routines.

32

5. Syntax and Semantic Analysis

The classificr programming language will be used in an interactive environment (that
is, will talk to a user sitting at a terminal). Intcraction is more than just typing a program
into a file, running it through a compiler, and observing output on the terminal. Inicraction
means trying many things — some right, some wrong — all during the same progiamming
session. After each attempt, somcthing is learned about the problem, and this learning
guides further attempts. The final product may well be a program saved in a file, but such

an inflexible mode should not be forced upon the user.

As tokens are read by the lexical routines, they are put together according to syntax
rules. - The syntax rujes érc defined by a compiler-compiler language known as YACC.
YACC accepts LALR/1) grammars (see [Ah86]). For our purposes, an LALR(1) grammar
- parses input starting with the leftmost token, reduces rules according to the rightmost
derivation, and allows one character of look-ahead when deciding between two rules with

the same partial derivatioyn. Pascal is an example of an LALR(1) lahguage.

5.1. Desirable Features

As stztements are read from the user’s input, how much should be compiled at each

step, and what is done with the compiled result?

Recall from' Chapter 3 that data in a list structure is not strongly typed. . Individual
elements may be 'numbers, strings, lists, or the NULL value. The type of thé data is known
‘only when phe list is put together, and may change later if the user assigns a new value to
one of the elements. In many languages, before using a vafiable, you mu‘st declare the vari-
able by specifying the varfable’s name and an existing type. Pascal programs mak‘e declara-

tions in the following order:

33

~- constants
— types
— variables

— functions or procedures

Constant declarations must precede type declarations, which must precede variable declara-
tions, etc. You are not allowed to declare a block of related constants and variables, fol-
lowed by a second block of different related constants and variables. The impression is that
the compiler will work only if all constants appear before ali types before all variables. Is

this necessary? No. Consider the legal declarations in a function or procedure:

— constants
— types
— variables

— functions. or procedures

That is, exactly the same declarations which are legal in the main program. A variable

declaration in the main program may appear before a constant declaration in a function or

‘procedure. While these new declarations are local to the function, they still demonstrate
that Pascal must be prepared to handle any declaration in the presence of all other declara-
‘tions. Why, then, do declarations have a fixed order? To make the language definition

more uniform. (The convenience of the user is not important.)

The classifier language does not have strong typing of ‘data. Without type declara-
_ tions, there is no need for variable declarations: to create a varlable assign it a value. ‘The
' type of the variable becomes the type of the value. Without type and variable declarations,
there is no need for constant declarations (1f you want a constant, assign a value to a vari-

: able and then don't change it). This leaves only function or procedure declarations..

' Declaratlons are a major part of the Pascal language by forcmg the user to say so

much about his vanables the compﬂer can perform static checking to test the va11d1ty of

34

expressmns before they are executed After the declarations come the executable state-

ments. - An ‘executable statement calls a functxon or procedure assigns a new value to a

35

variable, or is a control statenient which can execute any ﬁuinber of other statements.
‘Given that the classifief language has function declafations jand exccutable statements, ih
what order should they appear? The user is assumed to be sitting at an interactive‘terminal. '
Suppose he defines a functioh, and then tries to call it with an executable statement. The
function may work, or it may fail, If the fuhciion works, then the user is happy; if it fails,
he may redefine the function to fix a mistake. 'Then another executable statement will be
needed to test the new function. Thus, the definition of functions and the exeéutfon of

statements will be intermixed, and no specific order should be assumed.

The classifier language is an interpreter (not a true compiler). One function defini-
tion or executable statement is read at each step. Statements are converted into parse trees,
and the parse trees are executed. The results of the execution (if any) are shown to the
user. Statements can be simple expressions (such-as adding two numbers), or complex pro-
grams making full use of the conditional and looping facilities (for, if, repeai, whz‘ie).
Correctly formed function definitions do not require any action; the parse tree for the func-

tion is saved so that it can be executed later via a function call.

- The syntax grammar for the classifier language may resemble Pascal and other ¢om-
piled languages, but the semantics of the language are closer to APL or LISP where anything

and everything can be redefined at any time.

5.2. Language Grammar

Before explaining how individual parts of the language grammar were implemented,
it is helpful to summarize the grammar in a more formal notation. Backus-Naur forms
(BNF) .are commohly ’used (see [B981] for Waterloo Pascal); here it is more 'n’atural it
“extract the YACC definitions from the "fayac.y" module in ‘Appendix B. By annotating the

YACC code, the curious reader may review the more detailed grammar.

‘At each call to the patser, one production of "program " is parsed:

program

| function ’;-
| statement “;-°

says that a "program" can be empty (end-of-file), a function definition followed by a

semicolon, or a statement foilowed by a semicolon. A function definition is:

function

: TOkFUNCTION TokNAME func_head func_body TokEND

That is, a function definition consists of the token "function" (Tok FUNCTION) followed
by a name (TokNAME), a function header, a function body, and the token "end" (Tok-
END). A function header is:

func_head

| “(’ func_pars ’)’

allowing for a function header which is missing (the first rule), has only the left and right
parentheses (second rule), or has function parameters between the paremheSes. Parameters

are a list of names:

func_pars
¢ TOkNAME
| func_pars ’,’ TokNAME

Lists in YACC are defined by their first instance (first rule) along with their repeated

instances (second rule). The function body is:

37

func_body

| TokDO stmt_list

Again, the first rule allows a null body. The second rule is for the normal case when the

token "do" precedes a list of statements:

stmt_list
: statement

| stmt_list “;’ statement

which is a left-recursive production like the function parameters. Statements can be:

statement
expr

for_stmt

|

|

| if_stmt
| repeat_stmt
|

while_ stmt

null (empty), expressions, for stalements, if statements, repeat statements, or while state-

ments. Expressions are simple terms or operators applied to other expressions:

expr

expr_term
TokNOT expr
'+’ expr
‘=’ expr

exXpr ‘%’ expr

exXpr ‘+’ expr

exXpr ‘-’ expr

expr ’/’ expr

expr TokAND expr
expr TokASSIGN expr
expr TokDIV expr
expr TokMOD expr
expr TokOR expr
expr TokPOWER expr
expr TOkRELOP expr
‘(’ expr ’)’

*{’ expr_set ’}’

expr ‘[’ expr_index "1-
Lists are right-recursive productions which may be empty:

expr_set

| expr_slist
expr_slist

: expr

| expr °,” expr_slist

Index expressions are left-recursive, but allow two different forms (with or without the

~colon for a subrange):

expr_index

expr
| expr “:’ expr
| expr_index °,’ expr

| expr_index °,” expr “:’ expr
All expressions are eventually reduced to simple terms:

expr_term
: TokNAME
TokNAME ‘(’ expr_pars ‘)’
TokNULL
TokNUMBER
TokSTRING

|
!
I
|

where the second production is a function call with parameters:

expr_pars

| expr_plist
expr_plist

: expr

| expr plist ’,’ expr

Compound statements group zero or more simple statements together. In the case

of a jor statement, the syntax is:

»

for_stmt

for from

for_to

for_by

for_do

40

TokFOR TokNAME for_from for_to for_by for_do TokEND

TokFROM expr

TokTO expr

TokBY expr

TokDO stmt_list

making all parts of a for loop optional except for the name of the index variable. if state-

ments select between two different statement lists depending upon the value of a'conditional

expression:
1f_stmt
: TokIF expr if then if else TokEND
if_then
| TokTHEN stmt_list
if_else

| TokELSE stmt_list

(Both the then and the else clauses are optional in if statements.) Finally, repeat and while

statements combine a conditional expression with a statement list:

repeat_stmt

¢ TOkREPEAT stmt_list TokUNTIL expr
while_stmt

: TOKkWHILE expr while_do TokEND
while_do

| TokDO stmt_list

The justification for this grammar follows.

5.3. Simple Executable Statements

A simple statement is an assignment or an expression. An assignment computes the
value of an expression and assigns the result to a variable. An expression by itself is
evaluated, and the result is printed. (This differs from Pascal where you must explicitly

write out the value of an expression before you can see the result.) For example:
5 -3

is an expression. When evaluated, the result of this expression is the number 2. We would

like the language to immediately print the result of any simple expression:

Should the language assume that an expression ends when it sees a newline character (car-
riage return)? This would be convenient for a program pretending to be a desk calculator,
'and may be acceptable in a program with simple input‘, but is not acceptable to a user.who
is trying to assign a 100-element list to a variable. (The screens on most terminals are only
80 characters wide.) If newline characters can not be treated as special delimiters, then they
should be ignored like other white space (blanks and tabs). Some other character must be

used to terminate statements. A semicolon was chosen:

41

immediately prints the result:

The similar-looking assignment:
a := 5=~ 3;

prints nothing. Why? When you assign a value to a variable, you can always sec the result
later by printing the variable. (This makes the assignment operator different than other
operators, so that the user does not see the result of every assignment in a function.) Typ-

ing:
a;
evaluates a as an expression, printing the result:

2

Hence, a simple statement ends with a semicolon, and prints its result if the statement is

not an assignment,

Appendix A lists all of the operatbrs which are legal in an expression. The meaning
of the operators closely follows the Pascal language. The operator priorities are determined
by YACC %left and %right declaratior instead of the long unambiguous productions which
are typical in Pascal language definitions. One notable change is that assignment is done by
an operator, not as a distinct assignment statement. This is unusual because it allows
assignments to occur in the middle of an expression — the semantics of which are question-

able. The semantics are clear when an assignment is used in the traditional form:

variable = expression ;

or the multiple-assignment form:

42

43

variablel = variable? = expression -}

Inside an expression, the meaning depends upon the order of execution for the various parts

of the expression..

YACC does not care about the order of embedded assignments, nor does the classif-
ier language (that is the user's problem). What YACC does care about is ambiguity, - For
the sake of an example, assume that the only legal production on the left side of an assign-
ment operator (which is a token of type TokASSIGN) is a variable, where a variable is
defined elsewhere to be either a variable name (TokNAME) or a subscripted variable.
Assume also that an expression is defined elsewhere by a production called expression.

Then the following two rules decide if the input is an assignment or another expression:

statement : variable TokASSIGN expression
{ /¥ do assignment */ }
| expression

{ /% print expression %/ }

-e

We need an address on the left side of an assignment so that we know where to assign the
value on the right side. For the expression, we need a value.' This creates an ambiguity for
YACC. Variable names are legal expressions (otherwise, how would you add vériable ato
variable 57). When YACC sees a variable name, it must decide whether this name matches |
variable in the first rule, and is reduced as an address, or matches expression in the second
rule, and is reduced a§ a value. Being unable to decide, YACC reports a- "reduce/reduce”
conflict. To avoid the conflict, the production on the left side of an assignment operator

must be the same as the production on the left side of all other operators: an expression,

YACC has a look-ahead token which could decide between the two rules if the only
legal left side of an assignment was a variable name (TokNAME), because for all legal
assignments, Tok ASSIGN would be the next token. If the next token was not TokASSlGN,

then the ihput could not be an assignment, and must be an expression.

Pascal ‘avoids this issue by not allowing expressions as complete statements. The
convenience of an im‘mediate reply to any expression is too much to give up in an interac-
tive environment. Hence, assignments become just another operator, with an expression on
the left side and an expression on the right side. The responsibility of maintaining enough

address information to perform the assignment is postponed to the interpreter.

5.4. Creating a Parse Tree

Expressions may be executed while they are being compiled, or they may be saved in

a compiled form known as a parse tree and executed later.

Combining execution and compilation has the advantage of removing one layer of
software, but has two strong disadvantages: First, the expression must be recompiled every
time it is used, even if this occurs inside a for loop! Second, YACC does not look for a
complete expression. and then compile the individual pieces; YACC reduces pieces ("pro-
ductions") each time the right tail of the input matches one of its syntax rules. This right
derivation can be confusing to the user, especially when -there are errors-or other implicit
1/0. For example, suppose that the user wants to call the function f, which asks for a

number and returns this number as a result, and then:add one to the function’s result:
£() + 1;
If' cowpilation and execuiion are combined, then after the user types:

£()

YACC recogrizes the function call, and invokes the function:

enter a number:

where this prompt is written by the function. The user types a number:

5

which is returned as the function’s valuc. Then YACC starts looking for the rest of the

expression, and the user must type:

+ 13

and the result 6 is printed. This example may seem contrived (it is), but it demonstratcs
how confusing execution and 170 can be if compilation and execution are combined. Tech-
niques such as buffering a complete input line help alleviate the problem, but still fail to
solve truly abnormal situations where the only appropriate response is to print an error mes-
sage after only part of the input has been parsed. (Buffering the text for an entire state-
ment looks like an easy solution, but would require a very large buffer because a program
can be a single compound statement extending for hundreds or thousands of input lines,
Unless the entire statement can be parsed before any part is executed -- which would have
to be done by the method in the following paragraphs — parsing must be done in pieces,

which can cause statements inside a loop to be parsed many times.)

The alternative is to convert the user’s input into a compiled version known as a
parse tree. A parse tree has a node for each operator. The children of a node are parse

trees for computing the values of the operands. For example, the expression:
(a + b) / 2;

adds the value of a to the value of b, and divides the total by two. As a parse tree, this is

represented as:

45

/
+ 2
a b
Of course, if you forget the parentheses:
a+ b/ 2;
you get an emirely:diff erent parse tree:
+
a /
b 2

The disadvantages to parse trees are that they take time to create, and that they use extra

46

space. The advantages are that a complete statement is parsed before any part is executed

(allowing syntax errors to be handled cleanly), and when the same expression is executed

many times, a saved tree can be quickly traversed by having a section of code dedicated to

each type of operator node.

The semantic actions in the YACC grammar create parse trecs. On cach call to the
YACC function yyparse, cxactly one function definition or cxecutable statciment is parsed.
For functions, the body of the function is a parse tree, which is saved as the function's |
definition. For cxecutable statements, the address of the parse tree is returned to the caller;
it is the caller's responsibility .to execute the tree. When a syntax error occurs, a NULL

pointer is returned instead,

5.5, Compound Executable Statements

The compound statements in this language are for, if, repeat, and while. A com-
pound statement groups zero or more simple statements together. The if statement is a
parse tree node (of type OplF) with three children: an expression, a "then" clause, and an

"else" clause:

OplF

expression then clause else clause

When executed, expression must evaluate to either false (defined as the number 0) or true
(the number 1). If true, the statements in the then clause are -executed; otherwise, the
statements in the else clause are executed.: Both clauses are parse trees; their addresses are
saved in the if operator node. Either clause may be empty, in which case the NULL

pointer replaces the parse tree address.

Multiple statements are grouped together as one parse tree by an OpSTMT operator

node. Given the trivial if statement:

48

if true
then
=1
b = 2;
c = 3;
end;

the then clause is stored as a left-recursive structure:

OpSTMT

OpSTMT c:=3

OpSTMT bi=2

NULL a:=1

"(The complete ‘parse trees for the assignments are not shown.) This is known as a left—

recursive production because the leftmost child of each node must be executed first, or else

the statements will not be executed in. the same order as they were given by the user.
YACC — and all other LR parsers — encourage left recursion, as this limits the maximum

depth of .their intemal stack.

Right recursion is used to create lists.. Lists are built up in the same way as com-

pound statements; only the name of the operator node changes. When the user types:

{1, 2, 3}

for a simple list with three numbers as elements, this list can be constructed in one of two

ways:

1) Start with an empty list. - For each new element, find the end of the list, and

append the new element.

2) Start with an empty list. Working backwards, from the last element to the first, put
each element at thz front of the list. When all elements are on the list, add a list

header.

The first method is left-recursive, and involves repeatedly finding the end of the created list
(uniess extra tail: pointers are maintained). The second method is right-recursive, and

allows most of the work to be done by the structure of the parse tree:

49

OpSET

OpCONCAT

1 OpCONCAT

2 ; OpCONCAT

3 NULL

While the list is built from right-to-left, the user may have elements which need to be exe-
cuted left-to-rtight (i.e. function calls or assignments). This is handled by evaluating the
left side of a node, recursively evaluating the right side, and then joining the elements
together as the recursion unwinds. Right recursion joins elements by setting one pointer
and returning; see Chapter 3. (The interpreter has a huge stack for intermediate values, so

this doesn’t cause a problem.)

50

5.6. Tunctions and Procedures

Function definitions are nothing more than named parse trees with local variables.
Functions have zero or more parameters. Each parameter is a "local variable" in the sense
that the function may change the value of the variable, but this change does not aff ect the
caller — with one exception. The first local variable always has the same name as the func-
tion. If a value is assigned to the function’s name, then this value is returned to the caller

as the function’s result.

The names of the local variables are stored in a local symbol table, along with
offsets into the parameter list. When a variable is referenced in a function, the local sym-
bol table is searched before the global symbol table. If a local symbol is found, then a parse
tree node of type OpNAME will point to the local symbol table entry. If a global symbol is
found, then the node will point to the global entry. If no symbol is found, then a new glo-

bal symbol is created with the default value of NULL.

When a function calls another function, the number and the type of the parameters
are not checked at compile. time: there is no:way of knowihg whether the new function will
be redefined before the function call is actually executed. Similarly, a function may or may
not return a result. Pascal distinguishes (at compile time) between functions and procedures
by whether a result is returned. - Arbitrary redefinition allows what is now a function to
become a procedure, and vice versa. Mistakes allow a function to sometimes return a result
and sometimes not. Hence, functions and procedures can not be distinguished in this

language at compile time, and should be treated as the same class of objects: functions.

[5

5.7. Error Productions

There are no semantic errors in the grammar: any statement which is syntactically
correct has semantic meaning. Because almost every variable and function can be redefined
at any time, there is no point in checking the "types" in an expression against the current
values assigned to variables. This is particularly true in functions where a global variable
may be referenced (say, in an division operator) with a current value which is inappropriate
(say, a list). To generate a semantic error message would be to assume that the global vari-

able will not be changed to a more appropriate value before the f unction is executed.

‘Syntax errors are handled by YACC error production:. YACC is notoriously poor at
handling errors . in arbitrary grammars, so the secret is to design a grammar which agrees
with YACC’s limited abilities. All statements end with a semicolon (;), including function
definitions. Extra semicolons ate allowed (that is, null statements are ignored). Semicolons
are not used anywhere else in the grammar. Only one statement or function definition is
parsed on each call to yyparse. Hence, skipping past a semnicolon will lose at most one

statement. At this point, it should be safe to call the parser for the next statement.

(By making the semicolon into a unique token with only one purpose, YACC does
not need a look-ahead token to recognize the end of a statement. Further, since no other
token begins with a semicolon, LEX does not need a look-ahead character to recognize the
sernicolon as a token. Hence, at the end of each statement, neither LEX nor YACC have

buffered input. This is what makes it safe to return from YACCs yyparse after every

52

statement. Nothing can be lost before the next statement is begun. The same safety

applies to redirecting LEX's input when the load function starts reading from a new file:

LEX's input file pointer yyin is replaced by a new file pointer, and LEX never notices!)

A sample error production for the addition operator is:

| expr ‘+° expr

{ $$ = MakeParse(OpPLUS, $1, $3, NULL, NULL); }
| expr ‘+’ error err_expr_plus ;-

{ YYABORT; }

If the addition has proper syntax, then a parse tree node is created. Otherwise, after an
expression and the definite token "+" have been found, the error production
"err_expr_plus” is called, and YACC starts to look for the next semicolon. The error pro-

duction looks like this:

err_expr_plus :
{ skippy("error after ‘+’ in expression"); }

.
r

This production has a null rule, which means that it always gets reduced. Upon finding a
syntax error, YACC reduces this rule, causing the function skippy to be called with the

string "error after "+ in expression". skippy is the brand name of a peanut butter; it is

53

also the name of a function which prints a caller's error message followed by the warning

44

"skipping to next semicolon “;"". Then YACC goes back to the previous rule, which now

looks like this:

| expr '+’ error ‘;-°

{ YVYABORT: }

Whenever the special token error is followed by a character, YACC throws away all input
until it finds that character, and then reduces the production. Reducing this error produc-
tion forces the parser to abort with an error code returned to the caller (YYABORT). The
calling program must check the error code, ignore the incomplete parse tree, and then call

for the next statement.

The null rule is a clever way of printing an error message and warning the user to
type a semicolon bejfore YACC starts throwing away input. The user may find this funny,

in that the compiler is telling him how to fix a problem aiready known:to the compiler, but

4

this is a helpful way to produce YACC error messages in an interactive environment.

Syntax error productions were added to the YACC grammar as follows: First, an
error production was added to the initial production ("program") as a last chance error
recovery when the input fits no rules. Second, after a definite token (not an optional
token) is found, then all productions which use the same token in the same place afe given
the same error production. Third, no error. productions are placed after a definite token
which is followed by an optional clause (such as the then clause in an if statement) —
because YACC's default action in optional productions is to reduce the production and to

postpone recognizing errors until a required production fails.

5.8. Other Features

The YACC grammar contains some productions which are not documented for the

users, because they are mostly of interest to the author:

@) Null statements are ignored when possible (see the "stmt_list" production), since

statements are a relatively expensive node in the interpreter.

(2) Missing elements in a list are assumed to be NULL values (see "expr_slist"). For

example:
{1, , 3%
is equivalent to the list:

{1, NULL, 3}

This introduces a minor quirk into the-language where:

{, ., } eq {NULL, NULL, NULL}
{ , } eq {NULL, NULL}
{ } ne {NULL}

That is, a list consisting of two commas is equivalent to a list with threc NULL ele-
ments, a list with one comma is equivalent to a list with two NULL elements, but a

list with zero commas is still the empty list (zero NULL elementst).

(3) Missing parameters in function calls are treated in the same way as missing elements
in a list: they are assumed to be the NULL value. This mirrors the treatment of

function parameters by the interpreter.

4) The Pascal style of begin/end blocks for compouﬁd statements is not used. for
statements, while statements, and function definitions must have an explicit do
before the compound statement, and an explicit end at the end. if statements have
optional then and else clauses, but must be terminated by an explicit end. This leads
to less confusion about what a piece of code means, and forever removes the "dan-

gling else” problem common to many languages.

5.9. Test for Parse Tree Routines

The grammar for this classifier language does essentially one job: create parse trees.
Even functions are mostly defined in terms of their parse trees.. To test the grammar means
to test the creation of parse trees. Another quick-and-dirty test program called "tepar”

was written,

tepar repeatedly calls the YACC-generated {unction yyparse. The returned status is
printed (zero for YYACCEPT and one for YYABORT). If a parse tree is returned, then it
is dumped in a crude indented format. Each node in the parse tree is a structure of type
ParseThing. Pointers are shown in hexadecimal and values in decimal or as strings (where

possible). The following is an example for the list {],2,3} shown in a previous diagram:

55

calling yyparse()
{1,2,3};

yyparse() returns 0

at e9%0 STMT two = eS80
at e980 SET one = e940
at e940 CONCAT one = e800 two = e900
at e800 NUMBER number = 1
at e900 CONCAT one = e840 two = e8cl
at e840 NUMBER number = 2
at eB8c0 CONCAT one = e880
at e880 NUMBER number = 3

Here, one is the "left" child and two is the "right™ child. NULL pointers are not shown,

and must be assumed by their absence.

Like telex, tepar found mistakes in the grammar.. Many were non-trivial. Early
versions of the compound statements had more OpSTMT nodes than were necessary.
Numerous operators had their child pointers in the wrong place. Some productions were not
being reduced as expected. Many error productions didn't work, or were positioned
incorrectly. - All of these mistakes were found and corrected before the remainder of the
compiler was written. Thus, the syntax grammar was a final feasibility test for the entire

language before too much time and effort was expended on a design that was impractical.

56

6. The Assignment Operator

The design of the assignment operator comes before the design of the parse tree

interpreter, because assignment affects the structure of the execution data.

6.1. The Assignment Problem

To allow expressions as complete statements, assignment is an operator, not a state-
ment. Most operators want values for their operands (left side and right side); assignment
needs an address on the left and a value on the right. To avoid a YACC conflict, both sides
are reduced as expressions. Expressions in a compiled language usually produce values.
However, this language is not compiled: it is interpreted, and is not restricted by what most
compilers do. If therc is a way of keeping address information associated with values so

that assignment works correctly, then we can implement expressions as complete statements.

What objects are legal on the left side of an assignment? First, variable names are

legal; we always want to be able to assign a new value to a variable:
name := _expression ;

where expression may return any value (including the NULL value). Seccond, the elements
p .

in a named list are assignable:
name [index 1 := expression ;

Third, if the indexed element in a named list is another list, then its elements are also
assignable. (That is, the ‘l;ist indexing operator tecursively preserves the assignability of the
left side.) Fourth, are indexed characters in a string assignable? This would be a reasonable
definition. Unfortunately, the way strings arc stored makes substring assignments difficult:
strings ar: not sets of individual characters which can be easily changed; they are packed

sequences of bytes which must be modified in place. (This is a consequence of having

57

strings as a basic object rather than characters. Please note that strings can be modified by
subscripting the beginning of the string, concatenating a ncw middle with "+ ", and con-

catenating the old subscripted end.)
‘Thus, we have the following rules for deciding which expressions are assignable:

— named variables are assignable,

— the list indexing operator preserves assignability.

All other operators cancel the assignability of the operands. Hence, we need an assignment
strategy which allows a relatively small number of operators to explicitly create or preserve

assignability, while having a default action which prevents assignment.

6.2. General Solution

Global variables are stored ih ValueThing structures. One ValueT hing holds one
number, one pointer to a string, or one pointer to the first element in a list (see Chapter
3). Value structures are linked together to form complete lists. The names of the global
variables are stored in a global symbol table. Symbol table entries are of type SymbolThing.
Each entry points to its name, its value, and the next symboi table entry. Assume, for the

moment, that a symbol table entry points to its value via a field declared as:

ValueThing * value;

Further, assume that sym is the address of a SymbolThing and that val is the address of a
new ValueThing. Then 10 assign a new value to the global variable, the following steps are

required:
FreeValue (sym->value) ;
That is, free the space allocated‘ to the old value, and then:

‘sym->value = val ;

59

This works for all data objects, even the NULL value when it is represented by the NULL

pointer.

If all assignments were to global variables, then the assignment problem would be
solved. Expressions are evaluated on a stack (de‘cribed later, for now assume that the stack
points to the value, as compared to containing the value). Stack entries of type StackThing
could point to the current value and a symbol table entry. By dcfault, the symbol table
pointer would be NULL, meaning that the stack entry is not assignable. When a global
variable was used in an expression, its current value would be placed on the execution stack
along with the address of its symbol table entry. If the next operator in the expression was
an assignment, then it would evaluate the right side, leave this result on the stack,: and
change the symbol table entry to point to the new value. All other operators would ig‘nore

the symbot table entry.

Complications arise when trying to assign values to elements in a list. ‘A ValueThing

of type ValELEMENT is not valid data object by itself. Symbol table entries point to valid

‘ata objects. Hence, some other method must be used to assign elements.

6.3. Specific Solution #1

To assign global variables, list elements, and later local variables, one solution is as

follows:

Give each entry in the execution stack a value pointer, a flag, and an assignment
pointer. If the flag is zero, then the entry is not assignable. If the flag is marked "gloﬁal".
then the entry is assignable, and the assignment pointer is the address of a symbol table
entry. (Assignment would be done by changing the value field in the symbol table entry to
point to the new value.) If the flag is marked "local”, then the entry is assignable, and the
assignment pointer is the address of a variable local to a function call (the fields of which
have not been explained yet). If the flag is-marked "element”, then the entry is assignable,
and the assignment pointer is the address of a ValueThing of type ValELEMENT (change
the this field).

This solution looks messy, but all of the tricky code appears only once in the assign-

ment operator, -

6.4. Specific Solution #2

A Dbetter-looking solution can be found by considering changes to the data struc-

tures:

Force all stack entries, symbol table entries, and value structures. to have the same
format (say, something called ThingThing). Then no assignment flag is necessary on the
stack, If the assignment pointer is NULL, then the stack entry is not assignable. If the
assignment pointer is not- NULL, then it is the address of a ThingThing which can be

assigned a new value by changing a pointer field with a common name (say, value).

This solution works-by virtue of its brute-force approach to memory management.
Combining the fields of many structures into one common structure does one of two.things:
(a) greatly increases the amount of mcmory required; or (b) creates a confusing number of
"C" union declarations to annoy the programmer who has to type in and debug the code.

Both side effects are unacceptable. (This is the programmer speaking!)

6.5. Specific Solution #3
This solution is really a stepping stone to the final solution:

Instead of .assigning values by exchanging pointers, overwrite the contents of the
existing value structure. This appears to reduce the number of dynamic memory. allocations
and de-aliocations, and to be safe in.the sense that any list currently pointing to an element
will continue to point to the same element after assignment. (That is, there is ho assump-
tion of data being used uniquely!) Stack entries will need two ficlds: a value pointer and an
assignment flag. Assignment is legal if the flag is non-zero, and proéeeds by releasing any

memory pointed to by the current value (if a list or string), and then replacing all fields in

60

61

the value structure with fields from the new value.

The NULL value will cause problems. It is no longer acceptable to use a NULL
pointer to indicate that a value is the NULL value, because this NULL pointer would be
pushed onto the stack where a value structure pointer is required. Attempting o Teassign a
value from NULL to anything elsc would fail because there is no old value structure to
overwrite. The NULL value could be removed from the language; then some other default
value would have to be given to variables which are used before being assigned (the numbcr‘
zero is reasonable)., Keeping the NULL value means changing its definition. A new type
of ValueThing must be created called ValNULL, which does not use the information in any
of the fields, but is processed in the same way as the other data types.. This causes two new

problems:

(1) The language now has an external NULL value which differs from lhe‘

implementation’s internal ("C") NULL pointer. The confusion docs not affect the

user, but may create numerous obscure bugs in the compiler when the author forgets

which value is which., (Of course, a much different name could be chosen for thek

externnl NULL value — like "nil"!)

(2) All variables must be initfalized to point to a ValNULL value structure. This struc-

ture must be distinct, since it may get overwritten. The initialization must al‘w'ays be *

done, even if the next operand is an assignment to a new value. The same applies

to all entries on the execution stack: they must be defaulied to a Val/NULL value.

Hence, many ValNULL values will be created for the sole purpose of béing des-

troyed.

Compared to the next method, this solution confuses the programmer, uses CPU
time to move fields from one structure to another during assignment; and still manages to

create and destroy just as many dynamic value structures.

6.6. Tinal Solution #4

Solution #1 proposed that the execution stack should have a different pointer for
each type of object that can be assigned. That is, if the current value is the "child" record,

then the stack should also point to the "parent” record.

Solution #2 proposed . that all structures should have a common format. This
wasted space, but introduced an idea which will be used here: Assignments are easy if the

execution stack points to a structure which has a consistent format.

Solution # 3 proposed that the NULL value is most useful when it is the same as

the internal NULL pointer.

Consider the following idea: Put a.dummy structure between the global symbol table

entry and the global variable’s actual value:

symbol dummy value

Now make this dummy structure to be something of type ValueThing. We already know
that list elements are of type ValueThing, and point to the element’s value through the this
field. If the dummy structure points to the variable’s value through its ¢his field, then both
elements and global variables will now point to their values through the same field name in
structures of the same type. Assigning either one becomes an identical operétion (removing

at least one messy step from solution #1):

owner->this = val

where owner is the address of something of type ValueThing. This keeps the property that
assignments are done by the quick operation of ~feplécing one pointer. (after freeing any old

value, of course).

The :eXecution stack’ is basically ‘a big array of local variables. If we use the same

dummy value trick, then the stack will look like:

63

stack [1] dummy [1] value [1]

stack [2] dummy [2] value [2]

stack [3] dummy [3] value [3]
(etc)

Stack entries (the left column above) have fields for:

struct ValueThing * dummy;

struct ValueThing #* owner;

dummy is the address of the dummy structure which points to the actual value for this stack
“entry. owner is the address of the value structure which "owns" the value pointed to by this
dummy structure. Normally, owner points to another dummy structure either on the stack

or attached 10 the global symbol table.

Assigning a local variable becomes one more case of the same ‘Lhing: When a vari-
able is referenced, the address of the variable’s value is attached te the this field in the
stack’s dummy- structure, and the address of the ‘variable’s dummy structure is put in the
stack’s owner field. All operators which expect-to see a value can get the value from the
stack via the dummy field. The assignment operator ignores the value; instead it checks the
owner field. If non-zero, the assignment frees the old value pointed to by the owner's this

field and attaches a new value.

This method of assignment has three advantages: First, the operands are gencral

expressions (not special grammar productions). Second, assignment is done by replacing

pointers and not by moving data. Third, the NULL value retains its useful properties; The

‘major disadvantage ‘is that a dummy structure is inserted between many. objects and their -

64

real data, which uses more space, and also causes a lot of repeated "dummy->>this" typing

in‘the "C" code.

6.7. ‘Assignment Example
Let a be a global variable that is a list, such as the example used in Chapter 3:

{1, "hello", {3, 4}}

The parse tree for the statement:

looks like this:

I OpASSIGN

OpINDEX OpSTRING

"goodbye"

OpNAME OpNUMBER

"a" 2

To execute the assignment, the following steps are performed: The assignment operator
(OpASSIGN) is called. The first action of OpASSIGN is to. recursively evaluate the left
side. This calls the index or subscript operator (OpINDEX). OpiNDEX pushes a NULL

value onto the execution stack to reserve an entry for. its result. Assume that this is stack

entry number 24:

Stack[24]

Then stack entry #24 becomes:

Stack[24].dummy->this = NULL;
Stack[24].owner = NULL;

OpINDEX recursively evaluates its left side, which invokes the name operator. OpNAME
points to the symbol table entry for the global variable a. Let sym be the address of this
symbol table entry. A new stack entry is created (#25) and changed so that the dummy

structure for #25 points to the value of a:

Stack[25].dummy->this = sym~>dummy->this;

and sc that the owner field for #25 points to the dummy structure for a:

Stack[25].owner = sym->dummy;

This completes the execution of OpNAME. Going back to OpINDEX, the right side is now
recursively evaluated, invoking the number operator. OpNUMBER creates a new stack
entry (#26) to point to a value structure containing the number 2. OpINDEX pops this
subscript off the stack, saves it in an internal variable, and finds the address of the second
Val ELEMENT structure pointed to by #25 (the list a). Let val be the address of this ele-
ment structure. Because stack entry #25 is assignable, the result of Op/INDEX at #24 is

also assignable:

Stack[24].dummy->this = val->this;

Stack[24].owner = val;

(Remember that list elements point to their values through the this fie‘ld.) Entry #25 fora
is popped off the stack, and OpINDEX returns. OpASSIGN evaluates its right side, calling
OpSTRING 10 push a string value structure ("goodbye") onto the stack at entry #25. The

assignment operator now has a left side and a right side. The left side (#24) is checked to

66

make sure that it is assignable (it is). The old value pointed to by the owner of the left

side is released:

FreeValue (Stack[24].owner->this);

The new value (at #25) is attached to the stack at #24 — allowing the result of the assign-

ment to be used again in an expression:

Stack[24].dummy->this = Stack[25].dummy->this;

The owner cf the left side (the second ValELEMENT in a) is also given the new value:

Stack[24].owner->this = Stack[25].dummy->this;

This completes the assignment. Ti¢ new value of the global variable a is:
{1, "goodbye", {3, 4}}

A few details have been omitted here, most of which involve dynamic stack data.

7. Interpretation and Execution

Parse trees are ¢xecuted by an interpreter; nodes in the parse tree become’ execut-
able functions. The choice of the nodes, and the functions they represent, is based on an
assumed execution model. This model limits the size of the implementation, while at the

same time providing an acceptable level of service Lo the user.

7.1. The Execution Stack

Deep inside the interpreter are some thirty different operators. Each operator can
perform more than one function, depending upon the types of the operands. Individual

operators ask three questions:

— where are the operands (left and right sides)?
— how are they processed?

— where does the result go?

The first and third questions are really the same question, because the result from one

operator may. be the input 1o another operator.

Consider the case of the addition operator ("+ ") for numbers. 1t has one operand
on the left side of the "+", one operand on the right side, and returns one number as its
resuit. Before the addition can proceed, the left and right sides must be evaluated and put
in some location known to the operator, and a location must be allocated to hold the result.
We coula have the caller (parent node) perform the evaluation and allocation — but this
would require every parent node to know the number of operands for: cach child ‘node.
Thai is, all operators must know about all other operators. This is hardly reasnnable in a

language where changes should be possible without a major reprogramming effort.

If the parent of a node can not be asked to evaluate operands or allocate results,

and the children of a node are clearly in no position to do this, then the node itself must

67

take care of all operand and result related details. Allocating space for a resuit is easy: use
the same facilities that already exist for creating dynamic data objects. Returning the result
to the calling node is more difficult, since the result must be placed where the caller can

find it.

Look at the problem from the viewpoint of a node as it evaluates its operands. The
left side of an addition may be a simple number, in which case the evaluation is trivial. The
left side may also be an expression, in which case the evaluation is best done by calling the
appropriate operator to evaluate the expression. Where does this new operator node reiurn
its result? We could supply the address of a static location, if we were willing to accept that
an-addition operator could not have-‘another addition in its operands. (Otherwise, the static
location would be overwritten.) We could supply the address of a dynamic location, if we
were willing to spend a lot of time creating and destroying dynamic data (which a previous
chapter cautioned against). Not being able to supply either a static or dynamic location

leads to the interesting conclusion that we should not be supplying an address for the result!

Operator nodes must know where to find their operands and where to put their
results without being told. This rules out any sort of register or other fixed-address alloca-
tion scheme. We need something where operands have variable addresses, but still can be

accessed in a predictable manner. One such method is a stack. Consider the expiession:

(5 +7) / 2;

which has the parse tree:

68

Assume that the stack is initially empty. When the division operator ("/", alias OpSLASH)
is called, its first action s to allocate a stack entry for its result. This gives the operator a
convenient place to build up the resulting data structures, and makes sure that there is no

unattached dynamic memory in the event of an error:

"/" result

where "result” means that this part of the stack is occupied, but currently has no value.
Then the addition operator ("+ ", alias OpPLUS) is called. Like the division, space is allo-

cated for a result:

"/" result

"4 " result

Next, the left operand of "+ " is evaluated. This is trivial, because it is an explicit number:

69

"/" result

"+ " resull

Now the right operand is evaluated:

"/" result

"4 " result

The addition opcrator now has both of its operands. They are combined into a result (12),

which replaces the dummy "+ " result already on the stack:

"/" result

Control returns to the division operator, which evaluates its right side:

"/" resuit

12

Division may now be performed, and the dummy "/" result is replaced by the calculated

i

result:

While this may look simple, there are some serious considerations implied by the use of

stacks in an execution model.

First, a great benefit is achieved by allocating space for a result and then sequen-
tially (recursively) evaluating each of the operands. When an operator is called, the stack
will have a certain position. The operator does not need to know in advance what this posi-
tion will be. Its result will go into the next position (that is, at an offsct of zero frdm the
position of the stack as of when the operaior was called). Its first operand is evaluated on
the stack, and leaves a result at the next stack position (no matter how complicated this
evaluation may be). The sccond operand similarly gocs in the stack position which has an
offset of two relative to the beginning of the operator. At no time does the operator necd

to know how big the stack is, or what other results are already on the stack.

Second, all operators must conform to this stack model of exccution. The language
must be designed for recursive evaluation. The grammar must ensure that parse tree nodes
requiring values for their operands have valid expressions as the child subtrees. No attempt
should be made to avoid complete evaluation of expressions, such as in-a "short circuit”
mode where logical AND is assumed to be false if the left side is false (without looking at
the right side). Operators are not allowed to leave additional information on the stack, only
their result. Child operators may not question the actions of their parent operators; how -

ever, they may be selective in invoking their own children.

These restrictions do not appear to be too severe in an interactive programming
language where the user will be writing simple programs. They might become annoying in a
more general: case. Think about the rule: which says (paraphrased), "children must only
speak when spoken to". A child node is not allowed to change the actions of its parent
node. In the "C" language, while statements may contain break statements. The effect of
a break is to immediately exit from the enclosing while loop. This is an example of a child

(break) affecting the actions of its parent (while), and is prohibited here.

71

7.2. The Stack Entries

The stack is the basic exccution model. It was chosen so that operators do not have
+5 perform their own allocation and evaluation. The entries in the stack are assumed to be
addresscd starting from some relative stack pointer (SP). How big each entry is, and what

information it contains, has not been explained.

All values pass through the stack at some point. Each stack entry should be capable
of holding one value. Values in this language are numbers, strings, lists, and the NULL
value. Numbers have a fixed size, and are casy to accommodate, Strings vary in length,
and must be pointed 10. Lists also vary in total size, and must be pointed to. The NULL
value requires no space, only a NULL pointer. If stack entries were required to contain an
entire value, then they would have to be of variable size. This would make addressing diffi-
cult, since the second (evaluated) operand for an operator could not be accessed unless you
knew the size of the first operand. (Further, stack entries would not have the same struc-
ture as dynamic data objects, which would be messy.) Hence, stack entries have a fixed

size, and point to their values.
One stack entry is defined by a structure called StackThing:

typedef struct StackThing {
struct ValueThing * dummy;
int free;
' struct ValueThing * owner;

} stackThing;

dummy points to a dummy value structure, which in turn points to the real value for this
stack entry. free is a dynamic data flag which is either YES or NO. owner is the address
of a value structure which "owns" the value pointed to by dummy, or else NULL if there.is

no owner. dummy and owner are fully explained in the previous chaptel.

The whole stack is an array of StackThing's:

72

StackThing Stack [STACKSIZE];

where STACKSIZE is some large number (currently 999). The current entry in the stack is

indexed by a variable called "SP":
int SP;
All access to the stack should be relative to the current stack pointer.

Two common routines for stack management are PushStack and PopStack. Push-
Stack "pushes” the stack down to create a new entry. This entry is given a dummy struc-
ture which points to a NULL value, and has no owner. The stack pointer (SP) is changed

10 this entry number, so that:

Stack [SP]

refers to the new entry. PopStack "pops” the last stack entry, releasing any dynamic data,

and decrements the stack pointer to be the index of the previous stack entry.

Two other stack management routines are CneckStack and ClearStack. CheckStack

is called by PopStack and PushStack to check that the current stack pointer is within a legal

range. ClearStack is called once to initialize all stack entrics to a consistent state, which

ensures that all pointers are cither NULL or point to something legitimate.

73

7.3. ‘Dynamic Data

As entries are pushed and popped from the stack, it is necessary to allocate and

de-allocate dynamic storage.

Once again, consider the addition operator ("+"). When adding numbers, the
operands may point to value structures which are owned by another value structure (a global
variable or a list), or are dynamic (not owned). For the operands in an addition, this is not
important: OpPLUS picks out the numbers, adds them, and then returns a result. The
result is dynamic ("free"). because nobody owns it. If the result is used in a further calcu-
lation, such as another addition, then it is no longer needed, and must be de-allocated when
it is popped from the stack. If the result is assigned somewhere, then it ceases to be

"free”, and must not be de~allocated.

Stack entries contain a free ficld which is YES if the value pointed to by the stack
entry is dynamic, and NQ if the valuc is attached somewhere. PushStack defaults this field
o YES; operators which retrievc‘ nam‘ed variables (OpNAME) sct this 10 NO, operators
which produce new results reset this to YES. PopStack checks this ficld before popping a
stack entry. If it is YES, then the value pointed to by the stack dummy figld is released. In
all cases, the dummy value pointer is then set to NULL, and the stack entry ceases to have

any connection with the value.

There is a difference between the free and owner ficlds. free decides if a stack

%

entry must be de-allocated after use; owner decides if a stack entry can be assigned. The

two perform similar functions, except in the case of special user classifier variables which
are read-only: free is NO and owner is NULL. This allows the variables to be used by any

operator, except assignment.

7.4. More General Execution

The module responsible for interpreting and executing a parse tree is "faexe.c™ (see

Appendix B). The main function is ExecParse. Given a pointer to a parse tree, ExecParse

performs a few administrative details, and then passes control to the individual operators via

a "C" switch statement. (Each node in the parse tree has an operator type as one of its

fields.) Most of the code is for the operators, and they all work relative to the current stack

position. When an operator needs to evaluate one of its child nodes, it calls ExecParse

again,

Hence, ExecParse is also stack-relative, and is capable of recursively evaluating

complete pérse trecs. Eventually, all parse trees end in leaf nodes which have no children:

nodes for pushing named variables, strings, numeric constants, etc.

(1)

(2)

(4)

Operator nodes of special interest are:

The assignment operator (OpASSIGN) evaluates its left side — as a value — and
then its right side. If the stack entry for the left side still has an owner pointer,

then the assignment is performed. Otherwise, an error occurs.

The for statement (OpFOR) evaluates its loop expressions (from, to, and by
clauses), checks that they are acceptable numbers, and then performs an internal
"for" loop with this information. Moving the limits inside the interpreter saves the

overhead of re-evaluating them at each repetition of the loop.

The if statement (OplF) evaluates its conditional expression (first child). If the
result is 1, then ExecParse is called to execute the then clause (second child). If ’
the result is 0, ExecParse is called to exccute the else clause (third child). Other-

wise, an error occurs.

Unary negation (minus or OpNEGATE) tries to avoid copying its operand, since this
may be a large list. Instead, after cvaluating its right side, it checks if the operand
is “free". If not, a dynamic copy is created with the MakeDynamic toutine. Then

the sign is negated in place.

6

(5) jThe statement operator (OpSTMT) saves the current stack pointer before executing
its child. When the chiid returns, the new stack pointer is compared against the old.
If one value is left on the stack,‘ it is printed (if the child is not an assignment) and
popped from the stack. Then if the two pointers are not equal, an error is detected.
Since ahlmost all operators are descendants of a statement node, this catches opera-

tors which are using the stack incorrectiy.

(6) while statements (OpWHILE) are similar to if statements, except that the bbdy of

the loop is executed as long as the conditional expression evaluates to 1.

Finally, there is a function called ExecFile which is responsible for executing an
entire file. As complete statements ate parsed (with yyparse), they are passed to Exec-
Parse for execution, and then de-allocated. Error conditions are caught, in a way which
will be described later, and allowance is made for ExecFile to be called recursively. That is,
a -statement in ‘the current file may call the load function, which causes a new copy of
ExecFile to start : ading from a new file. When this new file is finished, the new copy of

ExecFile must restore all necessary internal variables to their previous values.

8. TFunctions and Loca! Variables

Functjons are operators with any number of children.. These children are called
"parameters", and appear in a function "parameter list". The implementation of functions
corresponds s~ closely to the regular operators that functions are in fact a trivial operator
known as OpFUNCTION.

8.1. Function Example

An example of a function call is:

-e

a =5
(

write(a, a+2, a%a, sign(a));

which calls the pre-defined write function to write out four parameters: the value of the
variable a, the value of a plus two, the square of a, and the sign of a. The sign is obtained
by calling the pre—defined sign function and using the result as a parameter to the write

function.

The child of an OpFUNCTION node is a lefi-recursive tree of parameter nodes
(OpPAR). Any expression is a legal parameter. OpFUNCTION allocates space for a func-
tion result (which defaults to the NULL value), gznerates the parameters from left o right,
calls the function,' and then pops the parameters off the stack. For the write example

above, the following steps occur. ‘A stack entry for the result is created:

"write" result

write does not return a result, but OpFUNCTION does not know this, so it still allocates an
empty stack entry. Next, the value of g is pushed onto the stack (the number 5). Ignoring

the intermediate call to the OpNAME operator, the stack now looks like this:

7

"write" result

The second parameter is an expression. The addition operator is called, allocates space for a

result, and pushes its operands onto the stack:

"write" result

+" result

After the addition is complete, only the result is lefi:

"write" result

Similarly, the multiplication operator is czlled tc produce:

"write" result

25

Calling sign involves a function call inside the incomplete function call to write. As before,

allocate space for a result and push the parameter a:

"write" result

25

"sign" result

5

sign returns 1 for the sign of a positive number. Immediately before sign returns, the stack

looks like:

"write" resuit

After returning, the paramelter to sign (@ = 5) is popped off the stack:

"write" result

w

25

80

Now the parameters to write are ready, and write is called to write the values on standard

output:

57251

which - is cryptic, since we forgot to include spaces between each number! write does not
return a result, so the stack entry for its result should really be shown as the NULL value

(which means that the dummy structure for this stack entry has a NULL value pointer):

NULL

After write returns, CpFUNCTION pops the parameters off the stack, and returns to its

parent, fcaving the NULL function result on the stack:

NULL

If you try this example, you will find that "NULL" is not printed on your terminal, because
the parent node of OpFUNCTION is a statement node (OpSTMT), waich throws away
NULL function results — even if NULL is the value you want to see! Functions without-a
result are more properly known as procedures (in the Pascal style of naming); by defaulting
the result to'NULL and then throwing NULL away, procedures are made to look like func-

tions, and the language has one less object.

8.2. Parameter Lists

Function parameters are expressions and can take on any valuec. No data type
checking is performed, because this language does not support explicit type declarations.
The called function is expected to test the validity of its paramecters, and to generate an
error message if they arc unacceptable. This testing may be done by implicitly assuming
that the parameters are legal, and letting the language force an crror condition if an ‘llegal

operation is attempted.

The language does support a minimum number of parameters. If you call a function
that has four barameters, and you supnly only three parameters in your parameter list, then
an extra NULL parameter is automatically created for the fourth parameter. No error mes-
sage is generated. The reason is as follows: The language does nol know what the function
will do with (he missing parameter. It -may be optional, in the sense that it only gets used
when certain combinations of the first three. parameters appear. It may be required, in
which case supplying a NULL value makes it safe to reference the stack at this point; how-

ever, the NULL value will probably generate an error if it is used,

Extra parameters are also legal: calling a four-parameter function with five parame-
ters is allowed. All parameters are pushed onto the stack, the function is called, and then
all parameters ¢ > popped from the stack. The extra paramelers may serve some purpose as

they are being evaluated, but the called function will have no way of referring to them:

Why should this be allowed? There are many pre~defined functions which have a
variable number of parameters. Most of these functions neced at least one or two parame-
ters (such as the format string in printf), but accept more parameters. For cxample, write
may have zero or more parameters. Hence, the parameter count stored in the definition of
a function is treated as a minimum number of parameters. No maximum is enforced. It is
the user's problem if he supplies 100 many parameters. Far from being unfriendly, this

allows the user to do pretty much as he wishes.

81

8.3. Local Variables

A local variable inside a function definition is a way of naming a parameter in the
parameter list. (All local variables or parameters are stored on the stack so that functions

may be recursive.) Consi.cr the following function definition:

tunction plus (left , right)
do
plus := left + right ;

end :

which is a named version of the addition operator ("+"). If we call plus to add the

numbers 2 and 3:

plus (2, 3) ;

then the stack will look like this after the parameters have been pushed:

"plus” result

2

We want the local variabie left to refer 10 the number 2, and the local variable right to refer
to the number 3. plus is also a local variable, and refers to the result. In this example, the
stack pointer (SP) is pointing to the entry for the number 3. We could make right

equivalent to:

Stack [SP 1]

make Jeft equivalent to:

Stack [sp-1]

and make pfus equivalent to:

82

Stack [SP-2 1

(This is the negative indexing trick used by YACC for its stack.) Unfortunately, the
language does not guarantee that there are only three values on the stack, because extra
parameters may have been pushed, and operations inside the function may be using stack
space. We need a parameter reference mechanism which does not depend upon the rela-

tively fickle value of the stack pointer.

A new stack pointer is created: the "frame pointer” (FP). A "frame” is a complete
set of function parameters. When a function is called, the frame pointer is the index of the
stack entry for the result, the frame pointer plus one is the index of the first parameter,

etc. For the previous example, the stack would look like:

—y

FP+0

i

"plus" rezuir

il

FP+1 2

Fe+2

1
w

If unnecessary parameters are pushed onto the stack, they appea at index FP+3, FP+4,
and so on. Intermediate values frcm exprecsions inside the funciidon: also appear at later
stack entries, but do not affect the frame peinters. Hence, this is a fixed way of using
- parameters inside a function, no matter where the references may appear. The symbol table

entry for a local variable contains its frame pointer of Tset.

Someﬁmes it is desirable to have local variables which are not paramecters, so that
these local variables may be used for temporary storage. Once again, this languagc does not
have variable declarations. How should local variables be declared? Remember that the
language will supply NULL values for any parameters which are omitted by the caller. The
obyious solution is to declare all temporary variables as parameters, and to not tell the caller
that they are in the parameter list. This requires absolutely no additional work in the

implementation, and removes any need for a special way of declaring local variables.

83

8.4. Passing Parameters

To this point, the classifier language is capable of passing parameters both by value
and bv address (since the stack contains the address of the value!). If passing by address is
supported, then a unction will be able to change the caller's parameters when the normal
conditions for assignment exist. The grammar does not presently have a way of identifying
which parameters should be passed by value, and which should be passed by address. If
someone finds a legitimate use for changing a caller's parameter, then the grammar can be
modified and OpFUNCTION changed so that it no longer assumes passing by value. (All
references to SymLOCAL should also be checked.) Until then, parameters to user—defined
functions are made "free" with the MakeDynamic routine. When a function changes a
parameter, it is changing the "free" copy, which gets de-allocated when the function

relurns.

Parametcrs to pre-defined functions such as write are passed in whatever form they
get pushed onto the stack. Almost all pre-defined functions return information only
through their result, and have no need to modify their parameters. Not enforcing call-by-
value saves a-lot of time, especially for the arithmetic functions (abs. random, sign, size),
and leaves enough add‘ress information on the stack so that the formatted 170 routines can
pass back data through their parameters. Of course, pre-dcfined functions are similar to

operators i that they must not violate the dvnamic allocation status of the stack entries.

84

9. Error Recovery

Errors are detected at five levels: lexical, syntax, semantic, execution, and internal.

Each level provides a different degree of explanation and recovery.

9.1. Lexical Errors

Lexical errors occur while trying to break the input stream into tokens. Most tokens
are clearly defined by LEX rules: cither the input maiches a meaningful token, or it
matches the default rule and gets returned character by character. Only one token is capa-

ble of gencrating error messages: strings.

A string is a sequence of characters enclosed in quotation marks. To prevent a sin-
gle typing mistake from swallowing up an entire program, strings are not allowed to include
explicit newline characters. (If you want a newline inside a string, use the "\n" escape

sequence.) Omitting the closing quotation mark will print the error message:
newline in guoted string (")

and the string will include only those characters appearing before the newline. The parser is
not told about this change to the input; the altered token sequence may be a perfectly legal
statement, and the user may get something other than what he was expecting. (Lexical
scanning is below the Jevel of the more sophisticated syntax or execution error recovery.
The altered input will probably cause a syntax crror. A syntax error could be forced by

returning a token not found in the grammar, such as Tok£RROR.)

Similarly, the lexical end-of-file character is not allowed in strings, and gencrates

the error message:

end-of-file in quoted string (")

85

Corrective action is the same as for newlines.

While looking for a string, a large buffer of fixed size is used to hold the characters
before they are copied into a variable-length dynamic buffer. If this buffer gets full, the

user is told:

string longer than 999 characters, begins with ",,."

where "..." is the beginning of the string. The string ends with the maximum number of

characters, and any further input is treated as text to be broken into more tokens.

Associated with the lexical routines are a global variable called LineNumber and a
function called PrintLine. For standard input (the terminal), LineNumber is negative to
signify that no line number is meaningful. For files, LineNumber is the number of .he
current line in the current input file. The LEX rule for the newlinc character increments

LineNumber:

\n { /* newline */ LineNumber++; }

The function PrintLine prints a message saying:

at line 999:

where "999" represents the current line number, if input is from a file. Every error mes-
sage generated by the compiler is preceded by a call to PrintLine. When combined with a
subversion trick in ExecParse, this is an accurate way of pointing to the cause of an error

— at any level.

86

9.2, Syntax Errors

Chapter 5 explains YACC syntax error recovery in great detail. Upon finding a syn-
tax error, a message identifying the last legal token is printed, the user is warned, and then
YACC is directed to throw away all input until the next scmiéolon. The line numbers in the
error messages are obtained from the lexical level: there is no fiddling with the LineNumber

global variable.

9.3. Semantic Errors

While reducing the YACC syntax productions, no semantic errors arc recognized. 1f
a statement has correct syntax, then a parse tree is successfully built, or a function is suc-

cessfully defined.

9.4. Execution Errors

As a parse trec is being executed by ExecParse, the user miay-ask for something that
can not be done (or is not implemented): division by zero, incompatible operands, bad
parameters to a pre-defined function, etc. The only meaningful action is to abort the

current parse tree.

One approach is to print a warning message, return an "undefined” value, and con-
tinue execution. If all operators recognized the "undefined™ value as a message to quit,
then this method would cleanly return back up the parse tree until the root was reached.
Compared with the next method, the cost would be in having every parent node check the

result of its child nodes.

Many operating systems provide a way of saving the current state of a program, and
ZnT returniug oo thiz state, Tioostate s usuaiiy defined to be the general registers, proces-
vor st aad siack peinter. In UNIX, caliing the "setjmp" routine saves the state and

“longjmp" returns to this state. A sudden jump to a previous state only makes sense when

o/

the saved state occurs in a routine which is an ancestor of the routine asking for the jump
(otherwise, the contents of the machine stack are garbage). If we want to be able to abort

“he execution of an arbitrary parse tree with a call to:

ExecAbort();

then there must be a routine which is always the eventual parent of any parse tree. Exec-
Parse is not acceplable, because it is called recursively. Saving the state upon entry to
ExecParse and then jumping back to this state would abort only the current node in the
parse tree — not the entire tree, The routine we jump to should be the same as the routine

which calls yyparse to create the parse tree. The name of this routine is ExecFile.

The basic control loop in ExecFile is this: Save the current frame and stack
pointers. Call "sctjmp" to save the current state., If "setjmp" returns a non-zero status,
then "longjmp" has been called by ExecAbort to return to this state. If "seijmp" returns a
zero status, then call yyparse for a parse tree nnd ExecParse lo execute this trec. Should
an error occur, the stack may need to be cleaned up, and the current input file may need to
be closed. Otherwise, repeat. This guarantees that control will return to a point which is
capable of correctly handling the error condition. (The same strategy could be used to trap

an interrupt signal from the ATTN, BREAK, or control-C keys.)

One final trick is played by ExecParse to improve the line numbers reported by
PrintLine. As parse tree nodes are created, the current LineNumber becomes part of each
node. Before executing a node, ExecParse saves the value of LineNumber, subverts this to
be the line number in lhé parse node, and then executes the operator for this node. After
the operator completes, the old value of LineNumber is restored. ExecFile cooperates by
adjusting LineNumber should an error occur. The effect is like having a clock which con-

stantly changes to show the correct time for events that are being discussed.

9.5. Internal Errors

An internal error in the compiler occurs when an assumed condition is checked, and
the check fails. Examples are the sigh of a data structure (CheckSign routine) or the range
of the stack pointer (CheckStack). Most internal errors are caught by "switch" statements
which test all legal values for an identifier (such as the ValXXX data types), and the
"default" case is invoked becausc of an illegal value. This happens quite frequently during

development, but should never happen in a production version,

After an internal error is detected, the usual line number message is printed fol -
lowed by "internal error”, the name of the current function, and the value which caused the
error. This may be enough information to duplicate the problem, No corrective action is
taken, as none is known. The current function returns to its caller without doing what was
requested. Some parse tree routines call ExecAbort. The compiler may continue to run,

but should be considered damaged.

10. Pre-Defined Functions

Pre-defined functions provide the user with facilities beyond the basic expression
: operators. The names of these functions, their parameters, and their actions are fully docu-
mented in Appendix A; the discussion here is limited to explaining why the functions are

included in this langunage.

New pre-defined functions are relativelv easy to add, even if they are written in
"C" and cause the compiler to be rebuilt, so the list here is a minimal collection which may
be extended from time to time. A suggestion is to first write a new function in the face
language. If the execution time is too slow, or if the function is used often enough, then

rewrite it in "C".

10.1. Control Functions
The control functions are exit (alias quit), load, save, and stop.

exit performs the rather obvious task of exiting from the face program and
returning to the parent process, which is usually the UNIX shell. While a user can achieve
the same result by typing the end-of-file character (control-D} on standard input, this is

the only way for a user—defined function to force an exit.

load statts reading statements from a named file. These statements can be assign-
ments to global variables saved with the save funciion, or they can be programs written by
the ﬁser. The file being loaded may contain further load requests. File names on the

face command line and load are both implicit calls to the ExecFile internal routine.

save creates a file with assignment statements for all global variables. Special user
classifier variables (messlist and rulelist) are saved as calls to assumed classifier functions
(message and rule). This is a quick way to save the state of a classifier system, so that it

can be restored later. Local variables are considered transient and are not saved. Functions

90

are not saved, because an external definition recreated from the internal representation
would differ too greatly from what the user originally entered. Users are advised to load

their functions from a text file.

stop is an implicit call to the ExecAbort internal routine. By calling stop, user-
defined functions can treat a program-detected condition as a fatal execution error. A mes-

sage explaining the error should be printed before calling stop.

10.2. Formatted I/0 Functions

Implicit 170 is done when a statement consists of a simple expression: the
" PrintValue internal routine is called to write out the value of the expression. If the expres-
sion contains a string, then the string is quoted. A newline is printed after the complete
expression. This differs from writing the same expression with write, since wriie does not
add quotes or newlines. (Perhaps there should be a writeg function for explicit quoted out-

put of strings.)

There is no read function for two reasoms: First, it is unnecessary with scanf.
Second, in a language without data typing, read would have to be told what kind of value to
read, which amounts to the same information given to scan fanyway. Specialized read func-

tions (getnumber, getstring, etc.) could remove the second reason, but not the first.

Formatted 170 is the ability to read and write data according to a "picture” of the
expected data. Formatted 170 can be done by creating new pre-defined functions, or by
calling existing system routines. Writing new functions ensures that the: language W111 retam
complete control during 1/0. Using existing system routines saves a lot of time by hmrtmg
the amount of new code and by using standard documentatron This language has an inter-
face to the UNIX routines:printf, scanf, sprmtf and sscanf. printf does formatted writes
onto standard output; scanf does formatted reads from standard input (or the current load
file if there is one). sprintfand sscanf manipulate strings, in. an attempt to move more of
the work. load into user—defined functicns. (If a user can implement a new feature by wrrtf

ing a function, then that is one less function which needs to be implemented in "C".) |

91

The pre-defined functions for formatted 170 do a reasonable amount of error
checking before calling the system rputines: the format parameter must be a string, other
parameters must not be NULL, etc. However, they do not look at the codes in the format
string, and do not know what the user is doing. If the user violates the guidelines laid out
in the documentation, then the system toutine may damage the compiler, the effect of

which is unpredictable. A "core dump" is likely.

10.3.' General Information Functions

Non-trivial user-defined functions occasionally need more information about an
expression other than its nominal value. abs returns the absolute value of an expression,
saving the user the trouble of checking the sign and possibly negating the value. random
returns a random integer given a modulus, allowing the user to randomly pick apart mes-
sages, rules, or other data objects. round rounds a number to the closest integer.. sign
returns the sign of an expression: -1, 0, or +1. size returns the number: of elementé ina
list or string. trunc truncates a number to its integral value (that is, throws away the frac-
tional part). type returns the type of an expression, so that most user classifier support
functions can be written in the face language (casy to change) instead of as pre—defined

pieces of "C" code (more work for the author).

10.4. String Manripulation Functions

Classifier messages and rules are composed from bit strings. These bit strings: con-
tain fields of one or more bits, where each field serves some feature in the classifier’s appli-
cation. The programming language prefers to work with lists, where each element in a list
corresponds to one "field" in a message. Converting from lists to bit strings would be tedi-
ous if nothing more was known in advance about the conversion. Fortunately, the éssign-

ment of bits to fields is generally fixed throughout an entire classifier application. Hence,

92

the same field in different messages always has the same size (both in a bit string and as an

element in a list). Messages can be created from lists by packing the elements togethér, and

93

assuming that a user will supply elements appropriate for his application. Messages can be

unpacked via a pattern list whose elements are the correct length for the bit fields.

The function for packing a list into a string is called pack; the function for unpack-
ing a string into a list is called unpack. Both routines are sufficiently general that the user
can supply a "value" parameter with NULL values for unspecified fields, along with a

standardized "pattern” parameter for missing fields. For example:
{ , va 1 " , } ;

{ "##"‘, "##" , u##n } :
pack (a , b)) ;

[o 2NN)
u

will print:
" ##0 1 ##H

since the first and third elements of @ are NULL, and get replaced from the pattern b.
Recognizing NULL elements allows the user to manipulate part of a message, then later

merge this partial message back into a complete message.

A third function called pretty is supplied as a user—defined function in the "pretty.f"
file. pretty shows how an obscure bit string can be printed in a reasonably intelligent for-
mat with names instead of bits. Being user-defined, pretty can be copied and changed to fit

another application.

The manipulation of strings in this manner is sufficient only when message and rule
strings have a fixed format. Should anything more sophisticated be necessary, then SNO-

BOL pattern matching or UNIX regular expressions may be required.

11. User Classifier Support

Large portioné of this language are designed on the principle that the language
should know very little about classifier systems. Support for user classifier éystems is no
different. The less the compiler knows about classifiers, the fewer the assumptions that are
made, the easier it is to change the classifier without changing the language. In the ideal
scenario, it should be possible to completely replace the classifier without making any
changes whatsoever to the language. If this objective can be met, then classifier systems
become "users” of the programming language, and it is appropriate to talk about "user clas-

sifier systems".

To change classifiers without changing the programming language, the classifier

should be a separate program. Otherwise:

(1) Every change to the classifier would require the combined object module to be

rebuilt.

(2) Both parts would have to be implemented in the same language, or at least in com-

patible languages.

3) Similar programming styles would be required to avoid naming conflicts or incorrect

function arguments.

4) Getting 6,000+ lines of compiler working is hard enough without having-to worry

about side effects on thousands of additional lines.

Hence, classifiers execute as separate UNIX processes and communicate with the program-

ming language through a UNIX pipe.

11.1. Open and Close

The first restriction placed on the ideal situation is that the classifier system must be
able to communicate with the programming language. With the UNIX operating system, the
best way for two cooperating processes to communicate is with a pipe. (On BSD versions
of UNIX, pipes are special cases of sockets, but that is not important here.) A pipe is'a
buffer stored in kernel memory, giving it a distinct speed advantage over file-based
methods. A pipe has a "read" end and a "write" end. One process writes into the "write”
end while the other process reads from the "read” end. This establishes a one—way com-
munication path. To form a two-way path, a second pipe is opened in the reverse direc-

tion,

Opening pipes involves a lot of system detail which is best omitted here. Suffice to
say that one process must act as the "parent”; the other process acts as the "child". The
programming language is the parent. To start talking to the classifier "child", the parent
opens two pipes. A duplicate copy of the parent is "forked". One copy remains as the
programming language, and selects a read cnd from one pipe and a write end from the
other. The second copy uses the opposite ends to replace its standard input and output, and
then executes the real classifier program. The classifier starts running with standard input
and standard output attached to the pipes from the programming language. The classifier

does not know that stdin and stdout are connected to a process instead of a terminal.

This introduces the first design restriction: user classifier programs must read their
input from standard input and write their output on standard output. Other units may be

used, but they will not be connected to the programming language.

A second design restriction is implicit here: the user classifier is executed by the
name of its executable file. At most one argument string will be supplied. ' (Both the file

name and the argument stringare options.)

Once the classifier starts running, it must tell the programming language that it is

ready by sending the string:

95

ready

following by a newline character. Since the classif jer's standard output is connected to a

pipe, the following is sufficient:

printf("ready\n");
fflush(stdout);

The call to fflush is necessary to ensure that the stdout 170 buffer is forced into the pipe.
This introduces a third design restriction: the classifier must flush "ready” onto standard

output every time it is ready for new input.

A fourth design restriction applies to the commands sent from the programming
language to the classifier. The language will send a command keyword, possibly followed by
parameters, followed by a newline character. There is no guarantee that the command key-

word will be valid, or that the paramecters are meaningful. The classifier must be able to

read complete lines from standard input (possibly with gets), process the command, print

any requested output, and then return back to the "ready"” prompt. If the input is illegal,
then error messages can be written onto standard output, and will be reported back to the
language user (assuming that they are not recognized as legitimate output). A command-
driven approach was chosen because it works equally well for input from a process or input

from a human user.

The general execution cycle of the classifier must be:

96

initialize

repeat

write "ready” on standard output
flush standard output

read command from standard input

pre-~ss command

et

until comnzss? © cicre”

Sending “ciose" followed by a newline character is a command for .the classifier to finish

whatever it is doing and exit.

11.2. Basic I’re-—Defined Functions

To support the simple protocol explained above, four pre-defined functions are
necessary: open, close, send, and receive.‘ open takes care of opening the pipe, may be
explicitly called by the user with the name of the classifier program, or will be implicitly
invoked on the first call to send or receive. close sends a "close” command, does not expect
a reply, and closes the pipe. send sends an arbitrary string of characters, and adds the trail-
ing newline. receive reads a string of characters, and throws away the trailing newline.
These four functions make minimal demands upon the style of a user classifier ‘system.
While they may dictate the method of communicating, they make no assumptions about

what the classifier is doing or how it works.

97

11.3. Message and Rule Lists

Ideally, no further assumptions should be made. The face language is powerful
enough that all other communication should be done by user-defined functions loaded for
each classifier system. As usual, there is a nccessary fcature which warrants another

assumption,

Classifier systems arc based on message and rule lists, The message list corresponds
to the current state of the classifier; the rule list corresponds to legal transitions to new
states. Both lists are owned by the classifier system, and not by the programming language.
Hence, the special language variables messlist and rulelist arc read-only copies of what
resides in the classifier system. The message or rule lists could be fetched after every com-
mand which changes them by reading back the entire list. This can be done by user-defined
functions calling send and receive. Unfortunately, both lists may be large and change fre-
quently. Hence, trying to keep complete up-to-date. copies of both lists at all times would

incur a heavy communication penalty.

It is much better to fetch the lists only upon demand: when the user references the
messlist or rulelist variables. Veriable references occur below the level of user-defined
functions. Hence, support for "fetch on demand” must be encoded into the compiler.
Encodiug forces assumptions. messlist and rufelist are assumed to be lists. Each element in
messlist is a message; each clement in rulelist is a rule. We could make further assumptions
about what messages and rules look like, but this would be unwise. During carly conversa-
tions with the eventual users of this language, no consensus was reached about the size of a
message, the rumber of conditions in a rule, or even what fields should be in a rule. (Con-
ditions and actions were obvious; strength was reasonably certain; parent and child identif-
jiers were suggested; etc.) If the programming language can not know what a message or rule

looks like, then the classifier system must supply this information.

The protocol for fetching a message or rule list is as follows: The string "messlist”
(or "rulelist") is sent to the user classifier; followed by the usual newline character. The
classifier must respond with one message (or rule) per line, ending with the "ready"

prompt. Lines become elements in the messlist (or rulelist) list. Elements appear: in the

98

same order as “hey are given by the classifier. Each line must be a valid litcral data object
in the face langurge consisting of NULL values, numbers, lists, or strings. (No cxpres-
sions are allowed because these lincs are not parsed by the regular parser. For the same
reason, escape sequences are not allowed in strings, and missing clements are not allowed in
lists.) This allows the user classificr system to completely determine the order and content
of the message and rule lists. The programming language assumcs that the lists exist as

lists, but enforces no further assumptions.

Using some examples from Chapter 2, one possible sequence for requesting the rule

list is as follows:

language sends | classifier replics

rulelist
"01010" , "11111" }

"OHEVH" , “THEER")

{ -"00044" , "00000" }

{ { "Ogpps" , ~"H##BI" Y, "O#E#AT]
ready

{
{

Here. the first element in each list is the condition; the second element is the action. The
last tule has a multiple condition. Any spacing of the elements is acceptable, since blanks

and tabs are ignored.

99

100

11.4. User-Defined Support Functions

‘ Most communication with the classifier system should be initiated by user-defined
functions written in the face language. These functions should be saved in a file (such as
"user.f") and loaded cach time face is tun. The file may contain an cxplicit call 1o open

a conncction to the classifier, and may send initialization strings.
Consider the "payoff" function defined as follows:

function payoff (number , buffer)

do
flagrule();
buffer := "payoff " + pack(number);
send(buffer);
receive("ready");
end:;

which sends a command "payoff" followed by a number te the classifier system. (Pay-off
tells the classifier how well it is performing.) The first parameter number is assumed to be
the pay-off number. The second parameter buffer is a local variable that the caller does
not know about. The first statement calls the pre-defined function flagrule to tell the pro-
gramming language that its rule list is no longer valid, and must be refetched upon demand.
(A similar function flagmess exists for messlist.) The second statement assigns buffer 10 be
the string "payoff" followed by a space followed by number packed into a string. This
buffer is sent to the user classifier with send. The response "ready” is expected by receive.

Any output before the "ready” prompt will be treated as an error message.

User-defined functions may be slower than pre—defined functions inside the com-
piler, but they remove from the programming language almost all decisions about the clas-
sifier system. This comes close to the ideal of having a language which knows very little

about classifiers.

12. Final Comments

During the design of this classifier programming language, very little has been said
about uscr classificr systems. An carly chapter talks about how the representation of clas-
sifier data affcets the rest of the language. A later chapter begins to discuss pre-defined
functions for a communication interface, bui stops after concluding that most of the work

can be done by user-defined functions. In between, classificr systems are virtually ignored.

The programming language is not the classificr system. There is no need to under-
stand the classifier, only to feed it the correct commands and to read back ihe reéults.
Given a minimal set of data requirements, and knowing that the language will be active dur-
ing all communication with the classifier, designing the language becomes a matter of find-
ing the smallest, most complete grammar which satisfies the requirements. The chosen
language looks like the pseudo-code often used to describe the cxecution of algorithms.
This is no coincidence. Pseudo-code is meant to be intuitive, once a few basic operators are
explained, This language has a limited number of operators and pre—defined functions, all

of which are implemented on the basis of what should work does work.

The user may look at this language as either the biggest desk calculator ever written
(next to APL). or as a programmable tool. The connection to a user c]assif jer system is
fully functional, but is not a necessary part of the language. All concept of classifiers could
be removed, and some new application added, by rewriting a fcw pre-defined functions.
New features are limited only by the definition of functions: their parameters and results
must be valid data objects in the language. This restriction is not too scvere, since the
representation of data has been generalized beyond the point where explicit type-checking

can be performed. (That is, data has become "polymorphic ")

A few final comments arc in order.

101

102

12.1. Representation of Data

Too much time is spent manipulating dynamic data (sec Appendix C). While there
is no obvious way of reducing this in the current version of the compiler, it is also not so
obvious that the chosen data structures arc the best possible, A close contender in the ori-
ginal design was to overwrite existing structures when doing an assignment (Chapter 6).
This may have been faster. Unfortunately, a great deal of work would be involved in
changing over to a different design, and curiosity alone was not enough motivation to inves-

tigate this alternative,

12.2. Questionable Semantics

The semantics of having assignment as an operator when combined with dynamically
allocated data (that is, no type checking) are questionable. For example, what should the

following statements mean?

Is it legitimate to index a list with an cxpression that changes the meaning of the list? “What
happens when the inner assignment rcleases the old value of s but the outer assignment
attaches a new value to a relcased element? There should be an example like this that
blows up the compiler; so far none has teen found. Some dyaamic memory becomés
attached to dead storage (freed memory), which is a f ault. but does not violate the integrity

of the compiler.

1103

12.3. Missing Features

This classifier language does many things well. The features that have been included
are carefully explained in a user’s guide (Appendix A) and an internal guide (the thesis

body). Features that were not included are explained only briefly, or not at all.

Control flow is limited to for, if, repeat, and while statemenis. Eve: though most
structured code can be phrased in terms of these statements, it is sometimes more con-
venient. to have other variations. For example, break statements in the "C" language may
disturb the recursive execution of nested code, but they are also very useful, (As proof, see

how often they are used in the compiler's code!)

I/O support is primitive. The user must read and write with units chosen by the
language. The ability to open arbitrary files is missing. To save more than just the global
variables, the UNIX script command must be used to record a terminal session, - this file

must be edited back into a suitable format, and then resubmitted to the compiler as input.

Bibliography

[Ah86] Aho, Alfred V.; Ravi Sethi; and Jeffrey D. Ullman. Compilers: Principles, Tech-
nigues, and Tools. Addison-Wesley Publishing, Reading, Massachusetts, 1986.

[Bo81l] Boswell, F. D.; T. R. Grove; and J. W. Welch. Pascal Reference Manual and
Waterloo Pascal User's Guide. WATFAC Publications Limited, Waterloo, Ontario,
1981. |

[Fe7s] Feldman, S. I. "Make — A Program for Maintaining Computer Programs”, distri-
buted in The UNIX Programmer's Manual. AT&T Bell Laboratories, Murray Hill,
New Jersey, 1978. |

[Fe68] Feller, William. An Introduction to Probability Theory and Its Applications, Volume 1
(third edition). John Wiley & Sons, New York, New York, 1968.

[Gi76] Gilman, Leonard and Allen J. Rose. APL: An Interactive Approach (second edition,
revised reprinting). John Wiley & Sons, New York, New York, 1976.

[Ho86] Holland, John H. "Escaping Brittleness: The Possibilities of General-Purpose
Learning Algorithms Applied to Parallel Rule-Based Systems" in Machine Learning:
Zn Artificial Intelligence Approach, Volume II, pages 593-623. Edited by Ryszard S.
Michalski, Jaime G. Carbonell, and Tom M. Mitchell. - Morgan Kaufmann Publish-
ers, Los Altos, California, 1986.

[Ho86-2] Holland, John H.; Keith J. Holyoak; Richard E. Nisbett; and Paul R. Thagard.
Induction: Processes of In ference, Learning, and Discovery. The MIT Press, Cam-

bridge, Massachusetts, 1986.

[Jo78] Johnson, Stephen C. "Yacc: Yet Another Compiler-Compiler”, distributed in The
UNIX Programmers Manual. AT&T Bell Laboratories, Murray Hill, New Jersey,
1978.

104

105

[Ke78) Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Prentice-Hall, Englewood Cliffs, New Jersey, 1978. '

[Ke84] Kernighan, Brian W. and Rob Pike. The UNIX Programming Environment.
Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

[Le78] Lesk, M. E. and E. Schmidt. "Lex — A Lexical Analyzer Generator", distributed in
The UNIX Programmer's Manual. AT&T Bell Laboratories, Murray Hill, New:Jer- -
sey, undated (19787).

[Ri86] Riolo, Rick L. "CFS-C: A Package of Domain Independent Subroutines for Imple-
menting Classifier Systems in Arbitrary, User-Derined Environments". Technical
Report, Logic of Computers Group, Division of Computer Science and Engineering,

University of Michigan, Ann Arbor, Michigan, January 1986.

[Wi84] Wilmnsky, Robeft. LISPcrafi. W. W. Norton & Company, New York, New York,
1984,

Appendix A: Language Description

face is a classifier programming environment in two parts: an interactive program-
ming language and a user classifier syste‘m. The programming language supports simple data
objects '(numbers, strings, lists), global variables, basic control statements ("for", "if",
"repeat", "while"), pre-defined functions, and user-defined functions with local variables.
The user classifier system is any program that can communicate with the programming

language through special functions written in an application-dependent module.

A.1. Programming Language

The face programming language consists of comments, data objects, variables,

expressions, statements, and functions.

A.1.1. Comments

A comment starts with a "# " symbol and goes to the end of a line. Comments are
treated as white space (blanks or tabs) and ignored. Comments may not occur inside a
reserved word or other token. (Please note that "#" is just a normal character when it

appears in a string.)

106

107

A.1.2. Data Objects

There are three types of simple data objects: real numbers, character strings, and

the NULL value.

Numbers consist of one or more signed decimal digits, possibly containing a decimal

point, optionally followed by an exponent. The following are examples of legal numbers:

0
42
-1987
+3,14159
6.022045e23

Spaces and punctuation marks (",") are not allowed in a number.

Strings consist of zero or more characters between quotation marks. Quotation
marks are the regular quote character ("), the closing quote or acute character ('), and the
opening quoie or grave character (*). A string may include any character except for the
newline and end-of-file characters. Inside a string, you may use the following‘ gscape

sequences for special characters:

\n newline character
\t tab character
\\ \ character

and \ followed by the quoting character gives you one quotation mark inside the string. The

following are examples of legal strings:

"

empty string
hello” "hello" with spaces

"\n" newline

n(\")n (")

Strings may have a sign. By default, strings are "positive". You may negate a string by

108

putting a minus sign in front of the string:

- "pattern'

Positive and negative strings can not be combined with any of the operators described later.

(Negative strings are used to specify negative conditions in classifier rules.)

The last simple data object is the NULL value. NULL represents the absence of a
value. NULL is not the same as an empty string. (An empty string is a string, while
NULL is nothing.) NULL values occur when you use a variable that has not been assigned

a value.

Simple data objects can be combined into lists. A list consists of zero or more ele-
ments. Each element may be a number, a string, the NULL value, or another list, The

smallest list is the empty list:

{3

The empty list has no elements, and hence has a size of zerc. Lists of size one are legal:

{ 3} first element is the number 3

{ "word" } first elemient is the string "word"

(The spaces shown above are not necessary.) Lists with more than one element have the

elements separated by commas (","):

{1, 2,31 list of three numbers
{1, "two", NULL } elements can be different types
{1, {2, 3, 4}, 5, 6} list within a list

This last list is of size four (not six), because the second element is a list of size three.

Lists in this language teplace arrays and records found in other languages. Like

strings, lists can be signed.

A.1.3. Variables

A variable is a named object. Names consist of a letter followed by zero or more

letters or digits. The following are examples of legal names:

k
Prog67

index

Upper and lower case letters are different in names: "Prog67" is not the same variable as
"prog67"”. Some of the possible names are reserved words, and may not be used as vari-

ables:

and break by div do elif else end eq eqp for from
function ge gt if le 1t mod ne nep not null or

procedure repeat return to then until while

These reserved words are recognized in any combination of upper and lower case (unlike
variable names). A few other names are assigned to pre-defined functions and variables;
you should avoid using these names, but the language won't prevent you from assigning your

own value. There are two pre-defined variables:

"f", "repeat”, and "while" statements require conditional expressions that evaluate to

either false (0) or true (1); relational operators return 0 or 1 as their result.

Variables can be assigned vaiues by naming them on the left side of an assignment

operator (":="). To give the variable a the value 27, use:
a = 27 ;
The semicolon is a required part of the syntax and marks the end of an executable state-

ment. To look at the value of a variable, type the name followed by a semicolon (followed

by a newline, of course):

110

a ; prints 27
If you use a variable that hasn't been given a value, then the value will be NULL.

These are examples of global variables. Later, local variables will be introduced

when functions are defined.

A.1.4. Expressions

ALL

An expression takes one or more data objects and returns a new objcct. Standard

operators are used.

A.1.4.1. Number Operators

For numbers, the following operators are supported:

operator lype explanation
+ binary | real addition
+ unary (no effect)
- binary | real subtraction
- unary | negate sign of number
* binary ‘| real multiplication
/ binary | real division
*x " binary | real exponentiation
div binary | integer quotient
mod % binary | integer remainder
and & binary | logical AND
not - unary | logical negation
or | binary | logical OR
eq = == binary | equal relation
ge >= => | binary gfeater than or equal relation
gt > binary | greater than relation
le <= =< | binary | less than or equal relation
1t < binary | less than relation
ne != <> | binary | not equal relation

The standard arithmetic operators ("+", "=", "*", "/") are given the usual definitions:

112

22 + =3; prints 19
11 - 4&; prints

2 x 3; prints 6
7/ 2; prints 3.5
7 div 2; prints 3
7 mod 2; prints 1

since seven divided by two has an integer quotient of three and a remainder of one.

The logical operators are functions of 0 and 1:

not 0; prints 1
0 and 1; prints O
0 or 1; prints 1

1 and 1; oprints 1

Using a value other than 0 or 1 will force an execution error. (The same applies to all

operators and functions when given an illegal value.)

Relational operators compare two numbers, and return a 1 if the specified condition

is true; and 0 otherwise:

3 eq 4; prits O
3 < 4; prints 1
3 1= 4; oprims 1

113

A.1.4.2. String Operators

For strings, the following operators are supported:

operator type explanation’
+ binary | string concatenation
+ unary | (no effect)

- unary | negate sign of string

and & binary | bit string AND

not - unary | bit string negation
or | binary | bit string OR
eq = == binary | equal rclation
egp binary | equal pattern relation

ge >= => | binary | greater than or equal relation
gt > binary | greater than relation

le <= =< | binary | less than or equal relation
1t < binary | less than relation

ne != <> | binary | not equal relation

nep binary | not equal pattern relation

[] binary | subscription (indexing)

Adding two strings with "+ " gives you a string with the two parts concatenated:

"hello" + " there"; prinis "hello there"

Bit string operations assume that a string represents all possible binary values with a
certain péttern, The pattern is specified with "0" for zero bits, "1" for one bits, "#" for
don't cares ("0" or "1"), and "?" for positions where no bi‘t,is legal. Thus, the bit string
pattern "0#1" represents all binary values with a zero followed by any digit followed by a

one. Namely, 001 and 011. The bit string AND operation combines ‘two strings (with the

114

same length and sign) into a new string which specifics all binary values that maich the first

string and the second string:

AND |0 1 # ?

0 o 7?7 0 7
1 71 1 7
o1 #» 7
9 L R B

The expression

"0" and n 1" ; prinlS "?"

because no binary value can have both "0" and "1" in the same bit position. Bit string
AND is a well-defined operation: the binary values which match the resulting string are

exactly those that match both input strings.

Bit string OR is not as well-defined:

OR| 0 1 #

0 0 # # 0
1 # 1 # 1
#
? 0 1 # ?

The resulting string can match more binary values than are strictly matched by either of the
input strings. For example, "0# " matches 00 and 01, "11" matches only 11, but (by defini-

tion)
"O#" Or "11"; pl‘intS "##"

This matches 00, 01, 11, and the unwanted value 10. Bit string OR is normally only uscd

when creating a pattern condition in a classifier rule.

115

You may find it casier to understand bit strings if you note that the "0" character
means bit 0 is legal and bit 1 is not legal; the "1" character means that 0 is illegal and 1 is

legal; "# " means that both 0 and 1 are legal: and "?" means that both arc illegal;

character | is 0 legal? is 1 legal?

"o" yes ‘no
"1 no yes
"y ‘ yes yes
e no no

The bit string operations are Boolean functions of these underlying "yes" and "no" condi-

tions. The expression
"0" and " 1 ”

is equivalent to logically AND'ing the first row (yes/no) with the second row (no/yes) to

get the last row (no/no).

Bit string negation replaces each "0" with a "1", each "1" with a "0", each "#"

with "?", and each "?" with "#":

not "0"; prints "

not -"C#1"; prints ~-"1720"

Strings are compared according to the ASCII sequence. When two strings have dif -
ferent lengths, and one string is equal to the beginning of the other string, then the shorter

strirg is less than the longer string:

" A " < ” a " ; pn‘nts 1
" k " < " ke 11 ; print_s 1

"" ne "hello"; prints 1

The "eqp” and "nez" operators do equality comparisons with pattern matching. This is not

116

much different than normal comparisons, cxcept that the don't care character ("#") is

cqual to all characters:

"00" eqp "0#"; printS 1
"11" eqp "O0#"; prims O

Pattern comparisons are useful when looking at messages generated by a classifier system.

- Sirings may be subscripted by choosing cither an individual character, or a subrange

of characters, as in the following examples:

"hello"[2]; prints "e"
"hello"[2:3]; prinis "el"

The first character in a string has index 1. It is a mistake to subscript a stiing with a start-
ing index less than 1 or greater than the size of the string. In a subrange, the final index
may be any non-ncgative integer. If the subrange final index is less than the starting index,
then an empty string is returned. If the final index is greater than the string length, then
the rest of the string is reiurned (no padding). Note that since subscripting a string returns

a string, the result can be subscripted again! The following all print the string "lo":

"hello"[2:51[3:41];
"hello"[1:2, 4:5];
"hello"[4] + "hello"[5];

When indexing a single character from a string ("[n]" form), the sign of the string is
ignored. When indexing a subrange ("[m:n]" form), the sign of the string is copied to the -
result. (This kecps indexed strings consistent with indexed lists.) ‘Subscripted strings are

never assignable,

117

A.1.4.3. List Operators

For lists, the following operators are supported:

operator type explanation
+ binary | list concatenation
+ unary | (no effect)

- unary | negate sign of list

eq binary | equal relation
eqgp binary | equal pattern relation

ge >= => | binary | greater than or equal relation
gt > binary | greater than relation

le <= =< | binary | less than or equal relation
1t < binary | less than relation

ne != <> | binary | not equal relation

nep binary | not equal pattern relation

(] binary | subscription (indexing)

You may concatenate two lists with the binary "+ " operator:

{1, {2, 3}} + {4, 5}; oprims {1, {2, 3}, 4, 5}

Comparisons between lists are recursive: both lists should have similar structures, and the

comparison terminates prematurely when a difference is found.

Lists may be subscripted in the same way as strings. Subscripting a single element in
a named list (global variable) is assignable. For example, if the global variable s has the

value:

s := {7, 5, 6};

s[1]; prints 7
s[2:3]; prints {5, 6}
s[2:2]; prints {5}
s[2:1]; prints {1

Individual elements can be reassigned. The expression

s[2] := "new";

changes the second element of s to be the string "new". The new value of s is:

{7, "new", 6}

If the result of list subscription is a list or string, then you can subscript the result.

118

A.1.4.4. Combining Expressions

When expressions are combined, operators are given the following priorities:

priority | association | operators
highest right | subscription ([1)
right exponentiation (**)
right not, unary. -+, unary -
left * /, div, mod
| left +, -
left eq, eqp, le, it, ge, gt, ne, nep
left and |
left or
lowest right assignment (:=)

119

lat 'is, subscription is performed first, then exponentiation, then unary operators, then

multiplication and division, then addition and subtraction, etc. If you want an expression to

be evaluated in a different order, then you must use parentheses:

6 + 4 / 2; prints 8
(6 + 4) / 2; prints 5

120
A.1.5. Statements

The simplest statement is an expression: the expression is evaluated and the result is
printed. Expressions include function calls (described later). Other statements are the
"for”, "if", "repeat”, and "while" control statements. Every statement must end with a
semicolon (;). Empty statements are legal, so extra semicolons are safely ignored. Com-

plete programs are created by nesting control statements.

When a statement Teturns a value (cxpression or function call), then the value is
printed — unless the statement is an assignment, or a function which returns the NULL

value.

A.1.5.1.° FOR Statement

A for statement consists of an index variable, an initial value, an increment, a final
value, and some statements. All parts are optional, except for the variable name. The syn-

tax is:

for name
from expression
to -expression
by expression
do statements

end;

name must be the name of a variable (global or local). All three expressions ("from",
"to", and "by") must evaluate to numbers. If the from clause is missing, an initial value of
1is assumed. If the to clause is missing, a final value of 1 is assumed. If the by clause is

missing, an increment of 1 is assumed. The by expression (if given) must be non-zero.

The for statement assigns the initial value to the index variable. If the index vari-
able is less than or equal to the final value (when the increment is positive), or greater than

or equal to the final value (when the increment is negative), then the statements are

121

executed, the increment is added to the index variable, and this check is performed again.

The initial, final, and increment values are computed at the beginning of the Jor
loop: changing them inside the loop will have no effect. Similarly, changing the index vari-
able inside the loop does not affect the for loop. When the loop terminates, the value
assigned to the index variable should not be used. (If you want to manipulate the index

variable yourself, then use a repeat or while statement.)
The following example computes the sum of the first nine numbers:

sum ;=03
for i from 1 to 9 do
sum := sum + i;

end;

A.1.5.2. JF Statement

An if statement has a conditional expression, an optional "then" clause, and an
optional "else" clause. The conditional expression must evaluate to either true (1) or false
(0). If true, the statements in the then clause are executed; otherwise, the statements in-the

else clause are executed. The syntax is:

if expression
then statements
else siatements

end;

Examples:

122

if (a < 0) # assume "a" is a number
then a := 0; # enforce minimum value

end;

if (sign(a) < 0) # "a" is any data object
then write("a is negative\n");
else

if (sign(a) > 0)

then write("a is positive\n");

else write("a is zero or NULL\n");

end;

end;

When an if statement has multiple disjoint conditions, it is better to use an "else-if" form.

The previous "sign” example can be rewritien as:

if (sign(a) < 0) # "a" is any data object
then write("a is negative\n");

elif (sign(a) > 0)

then write("a is positive\ﬁ");

else write("a is zero or NULL\n");

end;

In this language, "else-if" statements replace the "switch" statements found in "C" and the

"case" statements found in Pascal.

123

A.1.5.3. REPEAT and WHILE Statements

repeat and while statements have a conditional expression and some statements
inside a loop. The conditional expression must evaluate to either true (1) or false (0). For
the repeat statement, the statements in the loop are executed and the expression is checked.
If the expression is false, then the statements are executed again until the expression evalu-
ates to true. (The statements in a repeat loop are always executed at least once.) For the
while statement, the expression is checked. If the expression is true, then the statements in

the loop are executed until the expression evaluates to false.
The syntax of a repeat loop is:

repeat sratements

until expression ;

The syntax of a while:loop is:

while expression
do statements

end;

Given a number #, the following example computes the next higher power of two:

power := 1;
while (power <= n)
do
power := power ¥ 2;

end;

124

A.1.6. Functions

A function is a small program which is given a name so that it can be used later.
Functions have zero or more parameters, can exccute other statements, and may return a

result. The syntax for defining a function is:

function name (parameters)
do statements

end;

name is the name of the function (such as the infamous "f"). parameters is either empty
or a list of local variable names. If parameters is empty, then the parentheses "(" and ")
may be omitted. statements are the executable statements that make up the function. (An

empty function is legal.)

All variables named in the parameter list are local to the function. When a f unction
is called, the caller gives you values for some or all of the local variables in the parameter
list. Any parameters omitted by the caller are automatically assigned NULL values. Hence,
you can safely put more variables in the parameter list than you expect the caller to provide;
the extra variables become temporary variables that disappear when thé function returns to

the caller,

The only way for a function to return information to the caller is by changing global
variables, or by assigning a result to the function's name. (If the function is not assigned a

result, then the NULL -2 is returned.)

For example, t& {uiwg, is a verbose version of the recursive factorial function:

function f(n, temp)

do
if (n <= 1)
then temp := 1;
else
ﬁemp t= n;
femp 1=
end;
f = temp;
end;

temp * f(n-1);

125

The caller is expected to supply a small number as the first parameter; the second parameter

is just a temporary local variable. Of course, this function can be written more compactly

as.

function f(n)

do
if (n <= 1)
then £ := 1;
else £ :=n * f(n-1);
end;
end;

To call this function, you would type:

£(0); prints
£(1); prints
£(2); prints
£(3); prints
£(4); prints

6
24

Since the factorial is returned as the function’s result, it can be assigned to a variable, or

used in another expression (as is done in the function itself when it Tecurses).

126

A.2. Pre-Defined Functions

Pre-defined functions provide services that are too difficult or too awkward to do
with simple operators. One service is communication with a user classifier system
(described in the next section). Other services are control of the environment, formatted
170, general information, mathematical functions, and string manipulation. Most unctions
are invoked as statements, which means that you must include the semicolon that terminates

every statement.

A.2.1. Control Functions
Control functions start and stop £ace, or change the source of its input:

exit ()
exits from face and returns you to UNIX. This is equivalent to typing an end-

offile character (control-D) on standard input. A synonym for exit is quit.

load (file)
starts reading input from a file named by the string file. The commands in this file
are read and executed until either the end of the file is reached, or an error occurs.
Then input goes back to the previous file (or standard input). If the file contains a
formatted input scanf statement, which is also executed, then the file must contain
the appropriate data. (This does not apply if scanf appears in a function definition

which is executed later.)

save (file)
saves the value of all global variables in a file named by the string file. The special
classifier variables messlist and rulelist are saved as calls to the functions message
and rule. If file is omitted, or NULL, then the information is printed on standard
output (your terminal). After an error, this is a good way to dump everything to

see what happened. The file created by this function can be loaded with load.

127

stop ()
stops the execution of the current statement or f unction. If input is coming from a
file, then the file is closed (just like a fatal error). If input is coming from stan-

dard input (the terminal), then the next statement is read.

system (command)
calls the UNIX "sh" shell with a command string. No status is returned: if the

command fails, the shell will print an error message on your terminal.

A.2.2. Formatted 170 Functions

Formatted 1/0 comes in two flavors: easy and hard. The easy 1/0 function is

write:

write (pl, p2, «+.)
writes all of its parameters on standard output without adding spaces, newlines, or
quotes to strings. You may give any number of parameters. write always works,
because nothing can go wrong. The last parameter to write is usually a newline

string. . Example:

write("the value of a is ", a, "\n");

(There is no read function — use scanf.)

The other four formatted 170 functions are not so easy: if you make a mistake,
then you can crash the face program. The reason for this is very simple: face does
not perform the 1/0 itself. The parameters you specify are given to a system subroutine by
the same name. If the parameters are bad, or even slightly wrong, there is a good chance
that face will lose control. Should that happen, you will get a nasty "core dump” mes-

sage. The author of face will refuse to look at any "bug" that occurs during formatted

170.

128

These formatted 170 routines need information about the parameters that arc being
passed to the system subroutines. Because data in this language is not strongly typed (as in
Pascal), the type of an I/O paramcter must be guessed by looking at the current value.
That is, if you want to rcad a number, then the variable you give to receive the number
must be currently assigned to a number. Similarly, to rcad a string, the recciving variable
must be assigned to a string. (The current values are thrown away, but the type informa-
tion is still necessary.) During output, a similar restriction applies. If your format string
specifics a %g format code, then the corresponding parameter must be a number. If the
format code is %s, then the parameter must be a string. (Other codes may be used at your

own risk.)

printf (format, pl, p2, «ees p9)
prints a formatted string with up to nine parameters on standard output. The value
of the parameters must correspond: to the format codes in the string format.
Numbers should be written with the %e, %f, or %g format codes; strings should be

written with %s. Examples:

number := 42;
printf("number is %g\n", number);
string := "hello";

printf("string is “%s’°\n", string);

scanf (format, pl. p2, «eo, p9)
reads up to nine parameters according to a format string. Input is read from the
current load file, or from standard input if there is no load file. The current value
of the parameters must correspond to the format codes in the string . format.
Numbers should be read with the %le or %If format codes; strings should be read

with %c or %s. Example:

129

]

number := 0; # any number is okay
string := ""; # any string will do

scanf ("%1f %s", number, string);

Like the real “scanf" subroutine, scanf returns the number of items correctly read.

You should probably assign this count to a dummy variable and ignore it.

sprintf (string, format, pl, p2)
is like printf, but the output goes into string (which must be a variable that already

has a string value). For obscure reasons, sprintfis limited to two data parametcrs.

sscanf (string, format, pl, «+«+, p9)

is like scanf, but the input comes from string. Example:

thing := 0; # use any number here
s

count := sscanf("1234xyz", "%1f", thing);

would assign the value 1234 to the variable thing. count will be 1.

130

A.2.3. General Information Functions

General functions provide information that could be done by operators, but which

are traditionally done by simple functions:

abs (expr)
returns the absolute value of an expression. The absolute value of NULL is NULL.
The absolute value of a number is the positive part. For lists and strings, the abso-

lute value has a positive sign.

random (fimit)

returns a random integer greater than or cqual to zero and less than the positive

integer limit,

round (expr, scale)
rounds the number expr to the closest integer. If the second parameter is given,
then it must be a non-zero scale factor: 0.01 rounds to two digits after the decimal
point, 100 rounds to the necarest multiple of one hundred, etc. The default scale

factor is 1.

sign (expr)
returns the sign of an expression. The NULL value has sign NULL. Numbers have

a sign of -1, 0, or +1. Lists and strings have a sign of -lor +1.

size (expr)
returns the size of an cxpression. The NULL value has size 0. Numbers have size
1. The size of a string is the number of characters in the string. The size of a list
is the number of eclements. size is usually called in a for loop when you want to

loop throixgh all elements in a list.

trunc (expr, scale)

131

truncates the number expr to its integer part by throwing away anything after the

decimal point. If the second parameter is given, then it must be a non-zero scale

factor: 0.01 truncates to two digits after the decimal point, 100 truncates any part

less than one hundred, etc. The default scale factor is 1.

type (expr, string)

returns the type of an expression as a string: "null”, "number", "set" (for lists), or

"string". (If something goes wrong, you may also see "dummy" or "element".)

You may specify a second parameter, in which case the type is compared against

your string; a 1 is returned if they are equal, and a 0 is returned otherwise.

A.2.4. Mathematical Functions

The math functions take one or two numbers as parameters and return one number

as a result. The names of these functions and their parameters are identical to the standard

UNIX math library routines:

acos (x)
asin (x)
atan (x)
atan2 (y, x)
cbrt (x)
cos (x)
exp (x)
log (x)
log10 (x)
pow (' x, y)
sin (x)
sqrt (x)

tan (x)

arc cosine (inverse)
arc sine (inverse)

arc tangent (inverse)
arc tangent of .y over x
cube root

cosine (radians)
natural exponential e*
natural logarithm (base e)
fogarithm base ten
exponential x”

sine (radians)

square root

tangent (radians)

132

A.2.5. String Manipulafion Functions

Classifier systems work with bit strings. Bit strings are difficult for people to
understand. It is mr+ 7 easier to create lists using symbolic names for values. For example,
if your classifier machine is playing a game of tic-tac-toe, then each square can be empty,

"X" or "O". Three possible values require two encoding bits, One scheme is:

empty := "00";
X := "10";
O = "11";

Then the following list is sufficient to specify nine squares:

board := {
empty, empty, X,
empty, O, X,
empty, empty, O
b

(which is a win for "O" if "O" moves next). Once the names are evaluated, board will be

assigned the list:
board := {"00"'"00"'"10"’“00"'"11"'"10"’"00“,"00","11"};

This is no longar easy for a person to read, but still isn't readable enough for the classifier
systemn. The classifier expects bit strings (not lists). To convert board into a bit string, the

eléments need to be packed together:

"000010001110000011"

Conveniently, there are functions called pack and unpack to do this:

133

pack (value, pattern)
The first parameter value is converted into a packed character string. If the second
parameter pattern is missing or NULL, then the packed string looks like value,

except that there are no commas, spaces, list delimiters, or NULL values:

pack(3); prints "3
pack ({1, 2}); prints A
pack({"hello",{~-37,NULL}}); prints "hello-37"

If pattern is given, then it should have a list structure similar to value (but possioly
simpler). For each NULL element in value, the corresponding element in pattern is

converted into a string:
pack({"abc" ,NULL,"ghi"},"def"); prints "abcdefghi”
(This example uses the same pattern string for all value elements.) Non-NULL ele-

ments are converted into strings that look like the partern element. The sign of the

value element is preserved only if the pattern element has a negative sign. Exam-

ples:
pack(5, 1); prints "5"
pack(-5, 1); prints "5
pack(-5, —-1); prints n-g"

pack("hello", ~"thing"); prints "hello"
pack("hello", -"thi"); prints "hel"
pack("hel"™, -"thing"); prints "helng"

pack(-"he", -"thing"); prints "—heing”

Value strings packed according to a pattern string have the same length as the pat-
tern string: if the value string is shorter than the pattern string, then the remainder

is taken from the pattern; if the value is longer, then it is truncated.

134

pack is recursively defined for lists:

pack (-{-1,-2,-3},-{-5,5,-5}); prints "--12-3"

unpack (value, pattern)
unpacks value according to partern. Each string in value is replaced by something
that looks like pattern. The clements in pattern must have a negative sign if signs

are expected in the value string. Examples:

unpack(“abcd", {llxxVII "XX"}); pI'iIltS {"ab", "Cd"}

unpack("-123x", {-5, "z"3}); ‘prints {-123, "x"}

unpack is the reverse of pack for individual strings. For lists, unpack is recursively
defined to apply the same pattern 10 each string element; other elements are not

changed:

unpack({1,"abc",NULL},{"xx","y"}); pfill[S {1,{"ab","c"},NULL

pack and unpack can quickly compose and decompose classifier bit strings. Their recursive
definition makes them difficult to understand, but they can usually be convinced to do what

you want them to do.

Another string manipulation function called pretty is in the file "pretty.f" in the

same directory as face, and should be copied when you copy face:

pretty (value, picture)
prints a value in a pretty format. The first parameter may be a number, a string, a
list, or the NULL value. The second parameter should have the same: list structure
as the first parameter, but with one extra level of lists to provide a mapping from
value elements to name strings. For example, suppose there is a field in a classifier
© message that has‘the string "00" for NO, "11" for YES, arid "01 " for MAYBE.

Then a mapping picture would be:

135

picture := {"00","NO","11","YES","01","MAYBE"};

pretty first tries to find an identical picture element (no pattern matching). The

function call:

pretty("00", picture);

would print "NO" (without quotes or newlines). If an identical element can not be

found, then pretty tries again with pattern matching. The function call:

pretty("#1", picture);

would print "(YES or MAYBE)". Finally, if pattern matching fails, then the value

is printed in square brackets. The function call:
pretty("10", picture);
would print "[10]" since there is no legal mapping.

(This function is recursively defined for lists. The caller is responsible for writing
any newlines before or after the "pretty” output. Bad parameters will result in
obscure error messages. As this is a user—defined function, you may inspect the

source code and change it to suit your application.)

136

A.3. User Classifier System

The classifier system is intended to be an artificial intelligence application using
genetic bit strings for learning. None of this matters to the programming language. As long

as the classifier system satisfies the following requirements, it can be interfaced with

face:

(1) | The user classifier system must be a program which can be executed via the execl
system call. One argument string will be given on the "command” line. The classif-
ier should read from standard input ("stdin") and write on standard output
("stdout"). Other logical 1/0 units may be used, but only standard input and out-

put will be connected to face.

(2) The classifier program must be command :lriven. face will send a command to
the classifier’s standard input. The classifier must perform any necessary action,
possibly replying on standard output, and then wait for the next command. There
should be no unsolicited input or output, since face is unable to handle this, and

will Teport anything it doesn’t understand as an €rror message.

3) Support for the classifier program must be written in "C" in the "fause.c” module.
This module may define functions which are visible to the user, may have variables
which are treated in special ways, and may perform all actions that are normally
allowed in "C" programs. The function parameters and results must be standard

face data types.

(4) For most classifiers, only six "C" functions are required: close, flagmess, flagrule,
open, receive, and send. No changes to these routines should be necessary if the

following guidelines are observed:

Before reading a command, print "ready” (without the quotes) followed by

-
oM
v

a2 newline character on standard output, call fflush for stdout, and then read
a complete line from stdin into a buffer with gets. Process commands from
this buffer, so that cxtrancous input can be ignored without leaving unread

characters on stdin.

137

(b) The open and close protocols are simple enough, and should not be changed.

(©) Special variables such as messlist and rulelist require numerous hooks :into
the language. These hooks are necessary because the lists are big, change
frequently, and must only be refetched on demand (that is, when referenced
as a variable — which occurs below the level of user—defined functions). If
you have data in your classifier which you want the user to see, think care-
fully before deciding to create a new special variable. It is much - easier ‘to
write a user-defined function which manipulates global variables and talks to

the classifier system through customized send and receive strings.

(d) The protocol for fetching the message‘ and rule lists is as follows: The string
"messlist” or "rulelist" is sent to the classifier (followed by thie usual new-
line). The classifier is e.ipected to return one message (or rule; per line.
Each line should be a properly formatted number, string, list, or NULL
value. Each line will become one element in the list. This allows the clas-
sifier ‘to completely determine the siructure of the message and rule lists.

The user—defined message and rule functions should have similar definitions.

Ignoring these guidelines will create unnecessary work.

138

A.3.1. Robert Chai's Classifier System

Robert Chai's classifier is a bit-string learning system currently called robert,

A.3.1.1. Global Variables

There are two special global variables called messlist and rulelist. Both variables are
lists. messlist is a list of message strings; each element is a bit string consisting of the char-

acters "0" and "1". rulelist is a list of rules, where each rule has the list structure:
{ conditions , action , strength }

conditions is a list of message pattern strings consisting of the characters "0", "1", and "#"
(don't care). Pattern strings may have positive signs (where a message matches if it has the
same pattern), or negative signs (where a message matches if it does not have the pattern).
~All condition strings must match before the action pattern string is invoked. strength is the

rule’s strength as a number starting from zero.

You may use messlist and rulelist as normal variables: you can subscript them with
"[1", find out how big they are with the size function, etc. However, you can not change
them — both variables are read-only. The only way to create new messages is with the
message function (described later), ar: * the only way to add new rules is with the rule func-
tion. This restriction is imposed because these variables are owned by the classifier system,
not the programming language. face tries to make this transparent to the user by know-
ing which functions change messlist and rulelist, and fetching new copies from the classifier

system when necessary.

139

A.3.1.2.. Pre~Defined Functions

The following functions have been implemented. Many of these functions are writ-
ten as user-defined functions and should be loaded from the "user.f" file when you run

face,

¢1ear ()

clears all data in the user classifier system, effectively performing an initialization.

close ()
closes the connection ("pipe") to the classifier system. The string "close" is sent o
the classifier followed by a newline character. No response is expected. (close is

implicitly done before face exits.)

crossover ()

picks two rules at random and creates a new rule by swapping some of the bits.

f‘lagmess ()
flags the message list as invalid, so that a new copy will be fetched upon the next
reference to messlist. This is automatically done when a pre-defined function sends
a command to the classifier system which may affect the message list. You may

need to call flagmess if you implement a new feature.

flagrule ()

flags the rule list as invalid. See the previous explanation o ,.agmess.

generate ()
does one generation of the classifier system. Each generation applies the rule list to

the message list, produces a new message list, and updates the strength of the rules.

invert ()

picks a rule at random and creates a new rule by inverting some of the bits.

140

message (string)

sends a new message to the classifier system. string may be any expression which

evaluates to a string. The characters in string should be "0" or "1".

mutate ()

picks a rule at random and creates a new rule by replacing some of the bits.

open (file, arg)
opens a connection ("pipe”) to a user classifier system. If the first parameter file is
given, then it must be a string containing the name of the classifier's executable file.
If the second parameter arg is given, then it must be a string to be given to the
classifier as the first argument on its "command” line. If either parameter is miss-
ing, or NULL, then the defaults will be used. The classifier system is expected to
return the string "ready" followed by a newline. (open is implicitly done on the

first call to receive or send.)

payoff (number)

sends a pay-off number to the classifier system. Positive numbers usually mean a

successful result ("win"); negative numbers usually mean an error ("loss").

receive (string)
receives a line from the classifier system. A line consists of all characters except for
the newline, If string is missing or NULL, then the line is returned as' this
function's value in the form of a string. If string is given, then it is an expected
reply from the classifier system; anything else will be considered an error. (No

function value is returned in this last case.)

rule (fist)

sends a new rule to the classifier system. /list must be a list of three clements: the
first element is a list of condition strings; the second element is an action string; the

iaird element is a strength number.

141

send (string)
sends a string to the classifier system, followed by a newline character. The newline
is added by this function, and should not appear in your string. No response is
expected by this function: you may nced to call receive to read a reply from the

classifier.

Note: if you send a command that should be done by a pre-defined function, then
the classifier data in face may not be consistent with the correct data in the clas-

sifier system. Sce flagmess and flagrule.

switch (number)
switches to a new copy of the classifier system. number should be a number from 1
to 9, or it may be NULL for the default value of 1. Each copy of the classifier sys-
tem has its own message and tule lists. The current switch value is available in the

global variable switchnumber.

142

A.d. Rumning face
A copy of face is in the directory:

/ul/grad/fenske/Face

on the "pembina" machine. You should copy face to onc of your dircctories. You may

~ also want to copy the sample programs:
pretty.f prime.f user . f
and will need a copy of the user classificr system. To run face, type:
face

face will start running, and will print this introduction:
face da class: an interactive
classifier programming language
ready for input

You may now type any legal expression, statement, or function definition. Please remember

that every line must end with a semicolon (";").
To exit from face, type:
exit();

or the end-of-file character for your terminal (usually control-D).

143

Adl, Comm:md‘ Options

On the command line that invokes face, you may specify the following options:

~astring
sets the string to be given to the user classificr system as the first argument on its
command line. The default string is "~p", and may be explicitly given by "-a-p".

The "p" signifies that input and output is to a process via a pipe.

= fname
sets the file name of the user classificr system. The default name is "robert”, and

may be explicitly given by "-frobert".

traces all input from and output to the classifier system. This is normally only use-

ful when debugging the classifier. The default is no tracing.

Any other options on the command line are assumed to be file names. The named
files will be read and executed before commands are read from the terminal. This is a good

way to load variables that were previously saved with the save function.

144

A.5. Restrictions

(1) Strings should be at most 999 characters long. When a string is allocated before its
final size can be known, a maximum length of 999 bytes is assumed. The [ollowing
routines are affected: lormatted 1/0 with scanf, sprintf, and sscanf ("FioCheck"
internal routine); explicit input strings in an exccutable statement o1 function defini-
tion ("LexString"); the pre-defined pack function ("PrePack"); the pre-defined
receive function which reads from the user classifier system ("UserReccive”). This
maximum size is determined by a MAXSTRING dcfinition in the "fainc.h” file, and

may be changed when rebuilding the compiler.

(2) Parameters to the formatted input and output functions (printf, scanf, sprintf, and
sscanf) must agree with the fields specificd in the format string. Input parameters
must be assigned dummy values so that the pre-defined functions know what to use
with the real system calls. Failure to do this will result in obscure core dumps

("crashes").

(3) File line numbers in error messages tell you where the compiler vzs when it
detected the error (which may not be wlere the error is). If you mix staiciients
and data in a file, then the data lines are not counted in the line number, because

they are not read by the compiler.

Appendix B: Program Listings

The face programming language is constructed from seventeen different source
modules which are built under the control of a make command file [Fe78]. Most of the
Code is written in the "C" programming language [Ke78]; the remainder is written in either
LEX [Le78] or YACC [Jo78]. LEX and YACC are compiler—writing tools, and convert

language descriptions into "C" code.

——

File Lines = Description
makefile 110 dependencies and commands for rebuilding
face.c 102 . main program

faexe.c 2,007 parse tree execution

faglo.c 36 global variables

fainc.h 256 | includes: definitions and data types
£ alex .1 214 input lexical tokens (LEX)
famenm.c 393 - memory allocation

fapre.c 1,283 pre-defined language functions

fasub.c 1,046 support subroutines

fause.c 732 pre—defined user classifier support
fayac.y 703 language grammar syntax (YACC)
kpr.c 298 Keith's "pr" print utility
telex.c 129 test for lexical routines
tepar.c 172 . " test for parse tree routines
terob.c 111 test for Robert Chai's classifier
pretty.f 111 example user-defined function
user.f 179 user—defined classifier support functions

total lines 7,882

145

Appendix C: Execution Profile

Programs written in the face language run approximately 100 times slower than
the same program written in "C". Half of this delay can be attributed to interpreting the
parse tree instead of generating comipiled code. The remaining time is spent manipulating

dynamic data objects.

During develbpment, an execution profile was created with the UNIX gprof utility.
This profile counts how often subroutines are called and estimates how much of the total
CPU time is spent in each subroutine. Statistics are printed in descending order of CPU
time. The information can be used to improve the performance of a program by changing

sections where the most CPU time is spent.

The first working version of face had a simple approach to pushing and popping
values from the stack. The PushStack routine cleared the free and owner stack fields, and
allocated a new dummy value structure. PopStack released this dummy structure. For a
test program which found all prime numbers from 1 to 100, there were 13,225 calls to the

malloc dynamic memory allocation routine and 13,111 calls to the free de-allocation routine.

A newer version initialized all stack fields to zero or NULL at the beginning of the
program. FushStack was changed to create a dummy value structure only if the current
dummy pointer was NULL; otherwise, the old dummy struciure was used. PopStack was
changed to release the value pointed 10 by the dummy structure (but not the dummy struc-
ture itself), and to set this pointer to NULL. Calls to malloc {or the same t2st program
were reduced to 4,812: calls to free were reduced to 4,681. The ncw version used 5.06

seconds 9f CPU time cothpared to 7.88 secomds for the old version (1.56 times faster).

A comperison of some CPU times for the old and new versions follows:

146

old version new version
subroutine

seconds % total calls seconds % total calls

ExecParse 131 16.6 1.26 24.9

FreeValue 0.96 12.2 0.30 5.9

CheckStack 0.65 8.2 0.58 11.5
malloc 0.62 7.9 13,225 0.25 4.9 4,812

MakeValue 0.45 5.7 0.14 2.8

free 0.35 4.4 13,111 0.13 2.6 4,681 |

PushStack 0.35 4.4 0.36 7.1

PopStack 0.33 4.2 0.40 7.9

GetMemory 0.25 3.2 .14 2.8

FreeString 0.18 2.3 | 3.05 1.0

147

Both versions spent roughly half of their time mani‘pulating stack or dynamic data

(FreeValue to FreeString). Fifty percent is a heavy price to pay for dynamic data. Even

though no single subroutine consumes all of the time, there was room for improvement in

the oid version. The problem was to find a common area that affected all of the subrou-

tines named above. Clearly, this was memory allocation. By reducing the number of calls

to create and destroy stack dummy structures (a change to only a few lines of code), the

total CPU time was reduced by one third.

OCOB~TONUH WM —~

148

Mon 11 Jan 1988 makefile page 1
Face/makefile
Keith Fenske
Department of Computing Science
#-The University of Alberta
Edmonton, Alberta, Canada
#.T76G. 2H1
December 1887
Copyright (c) 1987 by Keith Fenske. All rights reserved.
defaults
CFLAGS=-0
copies=t

paper=default
printon=bothsides
priority=n
return=bins

file lists

OBJECT = face.o taexe.o faglo.o famem.o fapre.o fasub.o fause.o lex.yy.o y.tab.o

SOURCE = makefile face.c faexe.c faglo.c fainc.h falex.1 famem.c fapre.c \
fasub.c fause.c fayac.y kpr.c telex.c tepar.c terob.c pretty.f user.f

#-the whole thing

all : face guide.xp kpr

#

éecho "¢Face 'is ready"

individual pieces

$(0BJECT) : fainc.h

face : $(OBUJUECT)

cc ${0BJECT) ~11 -1m -o face

guide.xp : guide.ms

tb1 guide.ms | egn -Tx-r | troff -ms -Tx-r >guide.xp

kpr : kpr.c

cc kpr.c ~-o'kpr

lex.yy.c : falex.1

lex falex. 1

lex.yy.o : fainc.h lex.yy.c y.0ld.h

y.0old.h : y.tab.h

-cmp -s y.old.h y.tab.h || cp y.tab.h y.old.h

y.tab.c y.tab.h :. fayac.y

yacc -d fayac.y

test programs: (must be explicitly named to be built)

te1sg : faglo.o famem.o Jlex.yy.o telex.o

cc fagio.o famem.o lex.yy.o telex.o -11 -0 telex

.

telex;o : fainc.h telex.c y.old.h

tepar : faglo.o famem.o lex.yy .0 tepar.o y.tab.o

cc faglo.o famem.o lex.yy.o tepar.o y.tab.o -11.-0 tepar

tepar

terob

Mon- 11 Jan 1988 makef ile page 2

.0.: fainc.h tepar.c

fainc.h terob.cC
cc terob.& -o terob

4 utility functions

clean
-rm-a.out core lex.yy.c telex tepar terob y.old.h y.output y.tab. [ch]
-rm *.0 *.xp
count
wc $(SOURCE)
pembina :
rcp face pretty.f prime.f user.f pembina:Face
permit
~-chmod 644 *
-chmod 755 face kpr - telex tepar terob
print print.guide print.prime print.source
print.guide : guide.xp

print

print

mpr -i -m -p"copies=$(copies) paper=$(paper) printon=$(printon) \
priority=$(priority) return=$(return)' <guide.xp

.prime : kpr
kpr . -p269 -s prime.f prime.s prime.p >prime.xp
mpr -i -m -p"copies=$(copies) paper=${paper) printon=${printon) \
priority=$(priority) return=$(return)" <prime.xp

.source : kpr
¥ -n ~p148 -s $(SDURCE) >source.Xxp
mgr -1 -m -p'copies=$(copies) pages=200 paper=$(paper) \
printon=$(printon) priority=$(priority) return=$(return)" \
<source.xp

149

VOO RON -

/*
face.c -
Keith Fe
Departmel
The ‘Univ
Edmenton
T6G 2HA1
December
Copyrigh
This is

The foll
given on

Any othe
executed
good way

*/

#include

main{arg

150

Sun 29 ‘Nov 1987 face.c page 1

- Classifier Interface

nske

nt of Computing Science
ersity of Alberta

, Alberta, Canada

1987

t (c) 1987 by Keith Fenske. A1l rights reserved.

the main prbgram for the interactive classifier interface ("face").
owing arguments ("flags", "options®, "parameters", "switches") may be
the command -1ine:

~a<string>
sets the string which will be given to the user classifier
system as its first argument. The default "<string>" is "-p"
to indicate that commands are coming from a pipe.

-f<name>
sets the executable file name of the user classifier system.
The default "<name>" is. "robert".

traces all I/0 with the classifier system. Generally only used
for debugging. The default is no tracing.

r arguments must be file names. These fileg will be parsed and
before input is read from the terminal (standard input). This-is a
to load global variables previously saved with the "save" function.

"fainc.h" /* our standard inciudes */
c, argv)

int argc; /* number of arguments */
char * argv[]; /* argument strings */

int i /* index variabie */

/* introduction */
printf("\nface da class: an interactive classifier programming language\n");

/* pre-defined symbols */

ClearStack(); /* get execution stack ready */
PrebDefine(); /* do pre-defined:symbols */
UserDefine(); /* do user-defined symbols */

/* process command line arguments =/

for (i =1 ; i <argc ; i ++)
{
if (argv[ill{0] == ’'-")
{

switch (argviill1])
{
case (‘a’):
case (‘A’'):
_ UserArg = & argv[ill2];
break;

Sun 29 Nov 1987 face.c page 2

else

)
/* now read and

printf("\nready
ExecFile(NULL) ;

/* exit back to

PreExit(NULL);

case ('f’):
case ('F*):
UserFile = & argv[il{2];
break ;
case (‘t’):
case ('T’):
UserTrace = YES;
break;
default:
fprintf(stderr, "%s: unknown filag: %s'\n",
argv[0], argv[il);
exit(-1);
break;

/* must be a file name to load and execute */

ExecFile(argv[il):

execute from standard input */

for input\n");

UNIX (or our parent process) */

151

OO~ UIHWN -

Sat 19 Dec 1987 faexe.C page 1

/*

faexe.c -- Execute Parse Tree

Keith Fenske

Depar tment of Computing Science
The University of Alberta
Edmonton, Alberta, Canada

TG 2H1

December 1987

Copyright (c) 1987 by Keith Fenske. A11 rights reserved.

These are the routines to execute a parse tree built.up by “fayac.y". The YACC
grammar does essentially no checking while creating the parse tree. It is up

to the main routine "ExecParse" and its subroutines to verify that the actions
in the parse tree are meaningful.

*/

#include “fainc.h" /* our stancard includes ~/
#include <math.h> /* math routines */
#include <setjmp.h> /* system-long jump */

/»r

Define a type for saving "jump buffers", which are used by "setjmp" and
"long jmp®: for stack information. We make the whole buffer into a structure,
so that we can assign them easily.

*/
typedef struct { jmp_buf env; } JumpThing;
JumpThing Errordump; /* giobal jump for errors =/
JumpThing ReturnJump; /* global jump for function returns */
/*
Define some logic tables for the bit string operations AND and 0R. Each table
is for O, 1, don’t care ("#"), and illegal ("?"). The tables are:
anoj o f 1 b o} 2|
R bt bt Tt
olojl=2]l0]~2]
B T L Tttt
L R VRO T T B
B s ottt s
#lol v el 2]
J N R R g
22l 212]2]|
s s ST T
or J.o v | #] 2|
R b S
oJol#l)e# ol
B T bt ST TR
LI I TR N B B
B et ST T
I 2 O I B A
B T ST R
2ol vl
B . it

This may look funny (why is "O" AND’ed with "{v uyndefined?), until you accept
that bi- strings represent all possible binary values that match a given
pattern. No bit string can‘have both "0" and “1" in the same position.

*/

152

sat 19 Dec 1987 faexe.c page 2

chatr AndTable[4][4] = { ‘0’, BADBIT, ’'O’, BADBIT,
BADBIT, ‘1/, '1’, BADBIT,
‘Q’', '1‘, ANYBIT, BADBIT,
BADBIT, BADBIT, BADBIT, BADBIT };

char OrTablel[4]1[4] = { /O‘, ANYBIT, ANYBIT, ‘O',
ANYBIT, ‘17, ANYBIT, ‘1‘,
ANYBIT, ANYBIT. ANYBIT, ANYBIT,
‘0’, '1’, ANYBIT, BADBIT }:

*

CheckStack()

Check that the current stack pointer is valid.. Generate an interna) error
message if not.

*

Check Stack()
{
if (SP < .0)
{
printLine();
fprintf(stderr,
"internal error: CheckStack SP = %d is negative\n",
SP);
SP .= O; /> fix */
ExecAbort();
>
else if (SP >= STACKSIZE)
{
Printline();
fprintf(stderr,
*internal error: CheckStack SP = %d not less than %a\n"
SP, STACKSIZE);
SP = STACKSIZE - 1: /* £ix */
ExecAbort():
b
}
/x

ClearStack()

Clear all entries in the stack so that it is safe for PushStack() to assume
that all non-NULL "dummy" fields point to a legitimate dummy value structure.
*/
ClearStack()
{

int i; /* index variable */

for (i = O 3 i < STACKSIZE ; i ++)

{
Stack[i].dummy = NULL;
Stack[i].free = YES;
Stack[i].owner = NULL;
}
FP = SP = O; /* stack pointers */
}
/*
DumpStack()

Debugging routine tc dump the entire stack.
e

bumpStack()

-

153

141
142
143
144
145
146

154

sat 19 Dec 1987 faexe.c page 3
{
int 1; /* index variable */
printf("\nStack dump with FP = %d and SP = %d\n", FP, 5P);
for (i'= 0 ; 1 <= SPi 1 ++)
{ ;
printf("Stack %d : dummy %x free %d owner %x value ", 1,
Stack[1].dummy, Stack[il.free, Stack[i].owner):
Printvalue(stdout, Stack[i}.dummy, YES):
printf("\n");
}
}

*
ExecAbort()

Abort. this call to ExecFile() by doing a long jump back into the most recent

call to "setjmp". It may be ugly, but it works.
*/
ExecAbort()
{
iongjmp(Errordump.env, YES):
}
/*

ExecAssign()

The caller has pushed a left side onto the.stack at [sP~1] and a right side at
[SP]. and now wants us to assign-the right side to the left side. This is used
by OpASSIGN and OpFOR. The right side is popped off the stack, but we leave
the assigned left side.
*/
ExecAssign()
if (Stack[SP-1].owner != NULL)
{
/* free any old value owned by the owner */
FreevValue(Stack[SP-1].owner->this);
/* copy the new value */
Mak eDynamic(SP); /* copy right side */
Stack[SP]l.free = NO; /* but assignment kills free */
Stack[SP-1).free = NO; - /* this is not the real variable! */
Stack[SP-1).dummy->this = Stack[SP].dummy->this;
Stack[SP-1].owner->this = Stack[SP].dummy->this;

pPopStack(): /* kill right side */
/* keep new left side */

)
else
{
PrintLine{);
fprintf(stderr, "left side of ‘:=’ is not assignable\n");
ExecAbort();
}
}
/*

ExecCompare()

Compare two values, given four sign flags (equal, greater than, less than, or
not comparable) and a flag to indicate if don’t cares ("#") are acceptable in
strings.

*/

211
212
213

1565

sat 19 Dec 1987 faexe.c page 4

ExecCompare(par, egual, greater, less, noteq, pattern)

parseThing * par; /* a parse tree pointer >/
int equal; /* YES if left = right is okay */
int greater; /* YES if left > right is okay */
int less; /* YES if left < right is okay */
int noteq; /* YES 1f not comparable: is okay */
int pattern; ‘ /* YES if "#' special in strings LV
{
int compare; /* result from Comparevalue() */
NUMBER result; /* FALSE or TRUE */
ExecParse(par->one) : /* left side */
ExecParse(par->two); /* right side */
compare = Comparevalue(Stack[SP-1].dunmy->this, Stack (SP].dummy->this,
pattern);
PopStack(); /* kill right side */
popStack(): /* ki1l left side */
if (((compare == CMPEQ)’ && equal)
((compare == CMPGT) && greater)
{(compare == CMPLT) &8 1less)
((compare == . CMPNE) 8&& noteg))
result = TRUE;
eise
result = FALSE;
pushStack(); /% our. result */
Stack [SP].dummy->this .= MakeValue(VaINUMBER);
Stack [SP].dummy->this->number = result;
}

*

ExecFilte()

Read, parse, and execute the statements in a given file (or standard input if
the file name string pointer is NULL) . Return on an end-of-file or error.
Ignore errors when reading from standard input.

*/

Execfile(cp)
char * cp; /* file name.string pointer */

{
FILE * fp; /* new file pointer */
JumpThing olderror; /% oid (previous) error jump */
FILE * oldfp; /* old (previous) file pointer */
int oldframe; /* old {previous) frame pointer */
int oldline; /* old (previous) file line number */
JumpThing oldreturn; /* old (previous) function return */
int oldstack; /* oid (previous) stack pointer x/
oldframe = FP: /* must return to this frame */
oldstack = SP; /* must return to this stack */

/* open the file for reading */

oldfp = yyin; /* save LEX file pointer */
oldline = L ineNumber; /* save file line number */

if (cp == NULL)
{

fp:=-stdin; /* use standard input */
LineNumber = -8999; /* fake file 1ine number */
}
else
{

printf("loading file ‘%s’\n", cp);

281
282
283
284
285
286
287
288
289
290
291
292
293
294
285
296
287
298
298
300
301

156
Sat 19 Dec 1987 faexe.cC page 5

fp = fopen(cp, "r");
1f (fp == NULL)
{

*printf(stderr,
"load faijled: can’t open file ‘%s’ for reading\n",
cp):
return;
}
L ineNumber = 1;
}
yyin = fp; /* hopefully, re-direct LEX input */

/* parse statements, with a long jump set for errors »/

olderror = Errordump; /> save previous error jump */
oldreturn = ReturnJdump; /* save previous function return */

while (!feof(fp))
{

int status; /* status of called function */
int thisline; /* file line number */

/* save file line number, which ExecParse changes */
thisline = LineNumber;

if ((setjmp(Errordump.env
8&& (setjmp(Returndump,env

ParseTree = NULL;

status = yyparse();

thistine = LineNumber;

if (status == 0O)

{
ExecParse(ParseTree);
FreeParse(ParseTree);

}
else if (cp != NULL)

break;
}
else
{
/* fix up the stack after abort */
if (FP t= oldframe)
{ /n
printf("restoring frame pointer from %d.to %d\n .
FP, oldframe);
*/
FP = oldframe;
Y
if (SP > oldstack)
{
»
printf("restoring stack pointer: from %d to %d\n",
SP, oldstack);
*/
while (SP > oldstack)
PopStack();
Y
/* stop looking at this file, if not stdin */
if (cp '= NULL)
break ;
}

L ineNumber = thisline; /* restore file line number */

351
352
353
354

157

sat 19 Dec 1987 faexe.c page 6
}
ErrorJdump = olderror: /* restore previous error jump */
Returndump = oldreturn; /* restore previous function return */

/* print pretty messages for end-of-file */

if (cp == NULL)
printf("\nend-of-f1ile on standard input\n"):

else
{
if (feof(fp))
printf ("\nend-of-file on file ‘%s’\n", cp):
else
printf(*\nclosing file ‘%s‘\n", cp);
fclose(fp);
}
yyin = oldfp; /* hopefully, restore LEX .input */
L ineNumber = oldline; /* restore file 1ine number */
}
/*

ExecFunction()

Execute a parse tree node as a function call. This is used by OpNAME: and
DpFUNCTION. - After all of the parameters have been generated, the new function
is given a frame pointer (FP) for its parameters so that its stack looks like
this:

Stack[FP] = function result (initially NULL)
Stack[FP+1] = first parameter
] = second parameter

Stack [FP+2

For user-da:fined functions, we copy by value any parameters which have not been
declared as "passed by address" (free = NO). "Pre-defined functions must take
care of themselves.

*/

ExecFunct ion{par)
ParsaThing *. par; /* a parse tree pointer */

{
int i; /* index variable */
int newframe; : /* new frame pointer (FP) */
int oldframe; /* old (previous) frame pointer (FP) */
JumpThing oldreturn; /* old (previous) function return */
SymbolThing * . sym; /* a symbcl table pointer */
oldframe = FP; /* save previous frame pointer */
oldreturn = Returndump; /* save previous function return */

/* check that this symbol really is a function x/
if (par->symbol->type != SymFUNCTION)
{

PrintLine();
fprintf(stderr, "symbol ‘%s’ is not a function\n",
par->symbol->name) ;
ExechAbort():
b

/* make room for a result */

PushStack();
newframe = SP; /* where new frame pointer will be */

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

466
467
468

470
471
472
473

4758
476
477
478
479
480

482
483

485
486

488
488
480

Sat 19 Doc 1987

faoxe.c page 7

/* copy the caller’s parameter list to tha stack w/

/* can’t use new FP yet, because some parameters may be local

ExecParse(par->one) |

/* add NULL parameters for anything missing */

FP = newframe;
while ((SP - FP) < par=>symbol=->count)

pushstack()

/* call the function (user-defined or pre-dofincd) ./

switch (par->symboi->special)
{

case

case

case

case

case

case

case

case

(0):

/* user-def ined function */

/* check if parameters should be made dynamic {(copied) */

i = FP + 1;

/* stack entry for first parameter */

sym = par->symbol->local->next;

while (sym != NULL)
{

if (sym->free == NO)
{

/* may be passed by address */

/* must be passed by value (copied) =/

MakeDynamic(i);

/* call the vsar-defined function, with a return trap */

if (setjmp(Raturndump.env) == 0)
{

ExecParse(par->symbol->parse);

/* must be an early "return" statement */

}
else
{
}
L
sym = sym->naxt;
}
}
else
{
Y o
break ;
(SpeABS):
PreAbs(par):
break;
(SpeACO0S):

PreMath(par, acos,
break;

(SpeASIN):
PreMath(par, asin,
break;

(SpeATAN) :
PreMath(par, atan,
break;

(SpeATAN2) :
PreMath(par, atan2,
break ;

(SpeCBRT):
PreMath(par, cbrt,
break;

(SpeCLOSE) :
PreClose(par);
break;

: /* math
"acos function");

/* math
"asin function");

/* math
v"atan function");

/* math
"atan2 function®):

/* math
*cbrt function");

/* user

routine

routine

routine

routine

routine

classifier */

*/
*/
*/
*/

*/

~/

/* first parameter */

158

553

560

~ase
case
casé
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

case

case’

Sat 19 Dec 1987

(SpeC0S) :
PreMath(par, cos,
break;

(SpeEXIT):
PreExit(par);
break ;

(SpeEXP):
PreMath(par, exp,
break;

(SpeFLAGMESS):

Pref lagMess (par);
break;

(SpeFLAGRULE) :

Pref lagRule(par);
break; i

(SpeLOAD):
PrelLoad(par);
break;

(SpeL0G):
PreMath(par, log,
bireak ;

(SpelLDG10):

159

faexe.cC page 8

/* math routine */
vcos. function");

/* math routine */
vexp function");

/* user classifier */

/% user wlassifier */

/* math routine */
"log function");

/* math routine */

PreMath(par, l1ogi0, "10g10 function");

break;
(Spe0PEN) :
. PreOpen(par);
break;
(SpePACK):
PrePack(par);
break;
(SpeP0OW) :
PreMath{par, pow,
break ;
(SpePRINTF):
PrePrintf(par);
break ;
(SpeRANDOM) :
PreRandom(par) ;
break;
(SpeRECEIVE):
PreReceive(par);
break;
(SpeROUND) :
PreRound(par) ;
break;
(SpeSAVE):
PreSave(par);
break;
(SpeSCANF) :
PreScanf(par);
break;
(SpeSEND):
PreSend{par);
break;
(SpeSIGN):
PreSign(par);
break;
(SpeSIN):
PreMath(par, sin,
break;
(SpeSIZE):
PreSize(par);
break;
(SpeSPRINTF) :
PreSprintf(par);
break;
(SpeSQRT):

/* user classifier */

/* math routine */
"pow function");

/= user classifier */

/* user classifier */

/* math routine */
“sin function");

/* math routine */

PreMath{par, sqgrt, "sgrt function");

break;
{SpeSSCANF) :

/*

160

Sat 19 Dec 1887 faexe.c page 9

PreSscanf(par);
break

case (SpeSTOP):
PreStop(par);
break;

case (SpeSYSTEM):
PreSystem(par) ;
break;

case (SpeTAN): /* math routine */
PreMath(par, tan,. "tan function"):
break;

case (SpeTRUNC):
PreTrunc(par);
break;

case (SpeTYPE):
PreType(par):

: break ;

case (SpeUNPACK):
PreUnpack(par);
break;

case (SpeVALUE):
Prevalue(par);
break ;

case (SpeWRITE):
PreWrite(par);

break ;
default:
PrintLine():
fprintf(stderr,
vinternal error: Execfunction symbol special. = %d\n",
par->symbol->special);
ExecAbort():
}

/* pop everything off the stack, except for the result */

while (FP < SP)
popStack ()

FP = oldframe; /* restore previous frame pointer */
ReturnJump = oldreturn; /* restore previcus function return */

ExecName ()

Given the address of a symbol table entry, push the value of the symbol onto
the stack. This is used by OpFOR and OpNAME.

*/
ExecName(sym)

Symbol1Thing * sym; /* a symbol table pointer */
{

int n; /* stack entry number */

switch (sym->type)
{

case (SymFUNCTION):
PrintLine();
fprintf(stderr, "function ‘%s’ can not be used here\n",
sym->name) ;
ExecAbort();
break:
case (SymGLOBAL):
PushStack();
if. (sym->dummy == NULL)
sym->dummy = MakeVatue(VaiDUMMY);
if (sym->special == 0)
{

161
Sat 19 Dec 1987 faexe.c page 10
Stack[SP].dummy~>this = sym->dummy-~>this;

Stack[SP].free = ND;
Stack{SPl.owner = sym->dummy;

Yo

else

{ ;
/* must be a user classifier variable */
UserOpName(sym) ;

}

break;

case (SymLOCAL):
PushStack();
n = FP + sym->offset;
if (Stack[n].owner == NULL)
{

/* regular. local symbol not attached anywhere else */

Stack[SP].dummy=>this = Stack[n]l.dummy->this;
Stack[SP).free = NO;
Stack [SP].owner = Stack[n].dummy;

)

else

{
/* local copy of a more global symbol */
/* value may have changed; get new value from owner */
Stack [SP].dummy->this = Stack[n].owner->this;
stack[SP]l.free = NO;
Stack [SP].owner = Stack[n].owner;

}

break;

default:
PrintlLine();
fprintf(stderr, "internal error: ExecName symbol type = %d\n".
sym->type);
ExecAbort(};
break;

*

ExecParse()

Recursively execute a parse tree. This is one pig switch statement, where each
case pushes and pops the stack in. its oOwnh way. Seg OpSTMT for some error

checking. . . . E

*/

ExecParse(par) ‘
ParseThing * par; /* a parse tree pointer x/

{
int error; /* YES means bad values =/
int-j, k, m, n; /* working integers */
int oldframe; /* old (previous). frame pointer */
int oldline; /* old (previous) file 1line number */
int oldstack; /* old (previous) stack pointer */
VatueThing * val; /* a vailue structure pointer */
NUMBER w, X, Vv, Z: /* working numbers */

if. (par == NULL)
return;

/* change file 1ine number to value saved in parse tree */

oldline = LineNumber;
L ineNumber =:par->1ine;

/* check stack, before doing anything important */

162

Sat 19 Dec 1987 faexe.c page 11

78:‘ /* CheckStack(); =/ /* leave this to PopStack, PushStack */
702 A

704 /* one big, big switch statement */

706 switch (par->type)
707 {

709 /* and */
740 /* or */

712 case (Opgg?):

0 :
;12 case (pPushStack(); /: ?u:tregzlt*;/
715 ExecParse(par-sone): /* ? htS1'§e ;
716 gxecParse(par->two): /* rig s

/* assume no errors */
718 error = NO; /* assu o

if ((Stack[SP~1] qummy->this == N?%L)
|| (Stack[SP}.dummy->this == NULL
{
;gg error = YES;

} . _
725 else if ((Stack[SP-1].dummy->th1§_>$V?EUMéEg?;NUMBER)
726 8& (Stack[SP].gummy->this->type == Va
727 { .
728 X
729

Stack[SP-1].dummy->this->number
Stack[SP].dummy->this—>number;

non

731 ?Witch (par->type)

case (OpAND):
;gi if (x == FALSE)
735 if ((y ==
W
736
1se
A ¢ error = YES;
544 ; == TRUE)
f (x == T
738 else i gf G L FALsE)
740 w = FALSE;
1se if (y == TRUE)
743 © w = TRUE;

FALSE) || (y == TRUE))
= FALSE;

else
Tae error = YES:
748 else
747 error = YES:
-
;Zé break;
749 Case (0pOR):
if {x == FALSE)
A if (y == FALSE)
751 w = FALSE;
else if (y == TRUE)
7o w = TRUE;
else
755 error = YES;
756 _ G e
f (x == TR
757 else i Ty == FALSE) || (y == TRUE))
758 w = TRUE;
759
else
789 error = YES:
762 ‘ else
765 error = YES;
;gi break;
765 default:
766 PrintLine();
intf(stderr, .
Tee rerin f("interna‘l error: OpAND parse type = %a\n'
Tes par->type);
770 error = YES;
770

163

Sat 19 Dec 1987 ’ faexe.cC page 12

break ;
if (lerror)
Stack[SP-2].dummy->this = val = MakeValue(ValNUMBER) ;

val->numkber. = W;

}

}
eise if ((Stack[SP-1].dummy->this->type == Val1STRING)
&& (Stack[SP].dummy->this->type == ValSTRING))

{

char * left, * right, * result;

left. = Stack[SP-1].dummy->this->string;
right = Stack[SP]).dummy=->this->string;
result = NULL;

strlen(left);
strien(right):

J
K

CheckSign(Stack [SP-1].dummy->this):
CheckSign(Stack [SP].dummy->this};

if ((j == k)

8& (Stack[SP-1].dummy->this->sign. ==
Stack[SP].dUmmy->this->sign))

{

Stack[SP-2].dummy~>this = val = MakeValue(ValSTRING);
val->sign = Stack[SP].dummy->this->sign;
val->string = result = GetMemory(k + 1);

while (*left)

{

i ((*1eft) == Q%)
m = 0

else if ((*left) == 1)
m = 1;

else if ((*left) == ANYBIT)
m = 2;

else if ((*1eft) == BADBIT)
m = 3;

else

{
error = YES:
break;

}

if ((*right) == ‘0')
n = 0;

else if ((*right) == "1’)
n = 1;

else if ((*right) == ANYBIT)
n = 2;

else if ({(*right) == BADBIT)
n = 3; :

else

{
error = YES;:
break;

H

if (par->type == OpAND)
(*result) = AndTableim]l{n];

else

(*result) = OrTable[m]l[n];
Teft 4+
right ++;

‘result ++;

Sat 19 ‘Dec 1887 fagxe.C page 13
(*resul+) = \O';
}
else
) error = YES;
}
else
i error = YES;
if (error)
PrintLine(): , o,
fprintf(stderr, "bad values in ‘and’ or ‘or’:)
PrintValue(stderr, Stack[sP-1].dummy, YES):
fprintf(stderr, " and ");

PrintValue(stderr, Stack[SP].dummy, YES);

fprintf(stderr, "\n"):
ExecAbort();

}

PopStack() ;

PopStack();

break;

/* assignment */

case (OpPASSIGN):
ExecParse(par->one):
ExecParse(par->two);
ExecAssign():
break;

/* concatenate set elements */
case (OpCONCAT):

PushStack();
Stack[SP].dummy->this = val =

/w
/v

/nr
/a«
/*

/* generate new (left) eiement */

ExecParse(par->one):
MakeDynamic(SP):

val->this = 3tack[SP].dummy->this;

Stack[SP].free = NO:
PopStack() ;

/* generate right recursive tail */

if (par->two’ !'= NULL)
{

ExecParse(par->two);
MakeDynamic(SP);

kill right side */
kill left side */

jeft side */
right side */
do assignment =/

MakeValue{ValELEMENT);

/*ink *x/

val->next = Stack[SP].dummy->this; /* link */

Stack[SP].free = NO;
PopStack():
b4

break ;

/* division (integer guotient) »/
/* modulo (integer remainder) */

case (OpDIV):

case (OpMOD):
PushStack () :
ExecParse(par->one);
ExecParse(par->two);

error = NO;

/n:
/*
/*

/*

our result */
left side */

right side */

assume no errors. */

1f ((Stack[SP-11.dummy->this == NULL)
'' (stack[5P].Qummy~>this == NULL)
i (Stack[SP-1].dummy->this->type != ValNUMBER)

164

/*
/*
/x

1se

|
{
}
e
{

}

Sat 18 Dec 1987

error = YES;

long i, j, ki

non

X
Yy
(long) x:
(1ong) vy;

noa

o

faexe.c

1990

page 14

| (stack[SP].dummy->this=->type I= VaINUMBER))

/* use long integers here */

Stack [SP-1].dummy->this->number; /* left side */
Stack [SP].dummy=->this->number; /* right side */

iF ((x t= (NUMBER) i) || (v t= (NUMBER) k))

error = YES;

else if (k == 0)

/* truncation changes value */

/* can’t divide by zero */

error = YES;

else

switch (par->type)

{

case (DpDIV):
i=j
break ;

case (0OpMOD):
i= 3
break ;

default:

/ ki

% ki

pPrintLine();
fprintf(stderr,
winternal error: OpDIV parse type = %d\n",
par->type);

error
break ;

b
w = (NUMBER) i

Stack [SP-2].dummy->this

val->number =

if (error)

{

greater tréen
greater. than
less than or

PrintLine();

= YES;

Wi

= val = MakeValue(ValNUMBER);

fprir .f(stderr, "bad values in ‘div’ or ‘mod’: ")
PrintValue(stderr, Stack[SP-1].dummy, YES):

fprintf(stderr, " and

")

PrintValue(stderr, Stack[SP].dummy, YES);

fprintf(stderr, “\n");
ExecAbort();

n/'
reiation */
or egual relation */
relation */
equal relation */

/* kil
/* kil

right side */
left side */

Sat 19 Dec 1987 faexe.c page 15
/* less .than relation */
/* not equal relation */
/* not equal pattern relation */
case(0OpEQ):
ExecCompare(par, YES, NO, NO, NGO, NO);
break;
case(DOpEQP):
ExecCompare(par, YES, NO, NO, NO, YES);
break;
case(OpGE):
ExecCompare(par, YES, YES, NO, NO, NO);
break;
case(0OpGT):
ExecCompare(par, NO, YES, NO, NO, NO):
break;
case(OplLE):
ExecCompare(par, YES, NO, YES., NO, NO):
break;
case(0OpLT):
ExecCompare(par, NO, NO, YES, NO, NO}:
break;
case(OpNE) :
ExecCompare(par, NO, YES, YES., YES, NO):
break;
case (OpNEP) :
ExecCompare(par, NO, YES, YES, YES, YES):
break; :
/* for */
case (OpFOR):
/* get initial ("from") value */
if (par-»>one == NULL)
x- = ONE;
else
{
ExecParse(par->one);
if ((Stack[SP]).dummy->this == NULL)
|| (stack[SP].dummy->this->type != ValNUMBER))
{
PrintLine();
fprintf(stderr,
vpad ’from’ vaijue in ‘for‘ statement: ");
PrintValue(stderr, Stack[SP].dummy, YES);
fprintf(stderr, "\n");
ExecAbort():
}
x = Stack[SP].dummy->this->number;
PopStack();
}
/* get final ("to") value */
if (par->two == NULL)
y = ONE;
else
{
ExecParse(par->two);
if ((Stack[SP].dummy->this == NULL)
|| (Stack[SP].dummy->this->type != ValNUMBER))
{

PrintLine():

fprintf(stderr, "bad 'to’ value in ‘'for’ statement:

Printvalue(stderr, Stack[SP].dummy, . YES);
fprintf(stderr, “\n");
ExecAbort();

||);

166

167

Sat 19 Dec 19887 faexe.c page 16

1051 y = Stack[SP].dummy->this=>number;
1052 pPopStack();

1053 }

1054

1055 /* get increment ("by") value */

1056

1057 if (par->three == NULL)

1058 z = ONE;

1058 else
1060 {
106 1 ExecParse(par->three);
1082 1f ((Stack[SP].dummy->this == NULL)

1063 (Stack [SP].dummy->this->type != ValNUMBER)
1064 (Stack [SP].dummy->this~>number == ZERO))

1065 {
1066 PrintlLine();

1067 fprintf(stderr, "bad ‘by’ value in ‘for’ statement: "):
1068 PrintValue(stderr, Stack[SP].dummy, YES);

1069 fprintf(stderr, "\n");

1070 ExecAbort();

1071 3

1072 z = Stack[SP].dummy->this->number;

1073 PopStack ();

1074 M

1075 ‘

1076 /* execute for 1oop */

1077

1078 for (w = x ; ; w += Z)

1078 {

1080 /* assign value to index variable =/

1081

1082 ExecName (par->symbol); /= push variable onto stack */
1083 PushStack(); /* create a value to assign */
1084 Stack [SP].dummy~>this = val = MakeValue(ValNUMBER);

1085 val=->number = w;

1086 ExecAssign(): ‘ /* do the assignment */

1087 PopStack(): : /* ki1l assigned value */

1088

1089 /* check loop condition */

1080

1091 if (((z < ZERO) && (w < vy))

1092 Il ((z >= ZERD) && (w > vy)))

1093 break;

1094

1095 /* execute statement body */

1096

1097 ExecParse(par->four);

1098 }

1099 break ;

1100

1101 /* function call */

1102

1103 case (OpFUNCTION):

1104 ExecFunction(par);

1105 break;

1106

1107 /> if.*/

1108

1109 case (OpIF):

111C ExecParse(par->one); /* test condition */

111

1412 error = NO; /* assume no errors */

1113

1114 if ((Stack[SP].dummy->this == NULL)

1115 | (Stack[sP].dummy->this->type != VaiNUMBER))

1116
1117 error = YES;
1118
1119
1120

P

A~~~
(&)
o

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

1147

1148
1149
1150
1151

1161
1162

1167
1168

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190

Sat 19 Dec 1987 faexe.c page 17

% = _Stack[SP].dummy~->this->number:
/* check test conditicn */

if (x == TRUE)

! ExecParse(par->two);

}
else if (x == FALSE)

{
ExecParse(par->three);
)
else
error = YES;
}
if (error)
{
PrintLine():
fprintf(stderr, "bad condition in “if’ statement: “):
Printvalue(stderr, Stack[SP].dummy, YES):
fprintf(stderr, "\n");
ExecAbort();
)
PopStack(): /* kill test condition */
break:

/* index (subscript or subrange) */

case (OpINDEX):

PushStack(); /= our result */
/* generate expression to be indexed */

ExecParse(par->one);

if ((Stack[SP].dummy->this == NULL)
|| ((Stack[SP].dummy->this->type != ValSET)
8& (Stack[SP].dummy->this->type != ValSTRING)))
{
PrintLine();
fprintf(stderr,

"subscripted expression must be a set or string:
PrintvValue(stderr, Stack[SP].dummy, YES);
fprintf(stderr, "\n"):

ExecAbort():
}

/* generate index lower bound */

ExecParse(par->two);

error = NO; /* assume no errors */
if ((stack[sSP].dummy->this == NULL)
|1 (Stack[SP].dummy->this->type != VaiNUMBER))
{
error = YES;
}
else
{
x = Stack[SP].dummy->this->number;
m=n = (long) X;

if (x != (NUMBER)} m)
{

/* truncation changes value */

error = YES;

168

1181
1192
1193
§194
11895
1196
1187
1198
1189
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1228
1230
1231
1232
1233
1234
1235

1242
1243

1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

Sat 19 Dec 1987 faexe.c page 18

;lse if (m <= O)
(/* lower bound must be positive */
error = YES;
}

if (error)

printLine();
fprintf(stderr,

169

rsubscript lower bound must pbe a positive integer: ")

Printvalue(stderr, Stack[SP].dummy, YES):
fprintf(stderr, *\n");
gExecAbort();

}

PopStack();

/* generate index upper bound */

if (par->three 1= NULL)

{

ExecParse(par->three):

error = NO; /= assume no errors */
if ((StaCk[SP].dummy->this == NULL)
|l (Stack[SP].dummy->this->type '= VaINUMBER))
{
error = YES;:
}
else
{
x = Stack[SP].dummy=->this->number;
n = (long) x;:
if: (x t'= (NUMBER) n)
{
/* truncation changes value */
error = YES:
else if (n < 0)
{
‘ /* upper bound must be non-negative x/
error = YES;
}
¥

if (error)

PrintLine();
fprintf(stderr,

"subscript upper bound must be a non-neg
Printvalue(stderr, Stack[SP].dummy, YES);
fprintf(stderr, "\n");

ExecAbort();
}

PopStack();
}

/* do set subscription */

if (Stack[SPl.dummy->this->type == ValSET)
{

ative integ

1261
1262
1263
1264
1265
126€
1267
1268
1269
1270
1271
1272
1273
1274
1275

1287
1288
1289
1290
1281
1292
12983
1294
1285
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330

sat 19 Dec 1987 faexe.C page 19

CheckSign(Stack[SP].dummy=->this);

it (m > n)
{

else

/* return a null set:*/
Stack[SP~1].dummy->this = MakeValue(ValSET):

Stack[SP~1].dummy~>this->sign =
Stack[SP].dummy=->this=>sign;

valueThing * val; /* a value structure */

/* find first element */

= 9

val = Stack[SP]).dummy->this=->next;

while ((j < m) && (val != NULL))

{
AR
val = val->next:

}

if (val == NULL)

{
PrintLine();
fprintf(stderr, "bad subscript: index %d", m);
fprintf(stderr, " greater than set size"):
fprintf(stderr, " %d for ", (j-1)):
PrintValue(stderr, Stack[SP].dummy, YES):
fprintf(stderr, "\n");
Execabort();

>

/* single elements may be assignable */

if (par->three == NULL)
{

if ((Stack[SP].free == YES)

|| (Stack[SP].owner == NULL))

{
/* free is never assignable */
Stack[SP-1].dummy~>this =

CopyValue(val~->this);

Stack[SP-1].free = YES;
Stack[SP-1].owner = NULL;

}

else

{
Stack[SP-1].dummy->this = val->this;
Stack [SP-1].free = NO;
Stack[SP-1].owner = val;

}

}
/* subranges are copied (not assignable) =/

else
{

VailueThing * new;

new. = MakeValue(ValSET):

new->sign = Stack[SP].dummy->this->sign:
Stack{[SP-1].dummy->this = new;
Stack[SP-1].free = YES;
Stack[SP-1].owner = NULL;

while ((j <= n) && (val != NULL))
{

170

1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1382
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394

1385 .

1396
1397
- 1328
1399
1400

Sat 19 Dec 1987 fuexe.c page 20

}

J o
new->next = MakeValue(ValELEMENT);

naw->Pnext->this = CopyVatue(val->this);

new = new->naext;
val = val=-rnext;

/* do string subscription */
/* easier because the result is never assignable */

else
{
char * 1p, * rp: /* left, right string */
CheckSign(Stack[SP).dummy->this);
Stack[SP-1].dummy->this = val = MakeValue(ValSTRING):
if. (par->three == NULL)
val->sign = 1; /* if [n] indexing */
else : _
{ /% if [m:n] indexing */
val->sign = Stack[SP].dummy=->this->sign;
) .
rp = Stack{SP].dummy->this->string;
k = strien(rp);
if (m>n)
{
/* return a null string */
val->string = lp = GetMemory{1);
(*1p) = '\O*;
else if (m > k)
{
PrintLine(); .
fprintf(stderr, "bad subscript: index %d", m);
fprintf(stderr, " greater than string size");
fprintf(stderr, " .%d for ", k);:
Printvalue(stderr, Stack[SP].dummy, YES):
fprintf(stderr, "\n");
ExecAbort();
}
else
{
if (k < n)
n= K; /* adjust upper bound */
val->string = 1p = GetMemory(n - 'm + 2};
rp = Prp +m - 1;
for (i m<=n; m++)
(*1p ++) = (*rp ++);
(*1p) = ‘\0’;
3
} P
PopStack(); /* ki1l subscripted expression */
break;

/* subtraction ("-") */
/* division ("/") */
/* multiplication ("*")

case (OpMINUS):
case (OpSLASH):
case (OpSTAR):

171

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428

1441
1442
1443
1444

1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463

1464
1465
1466
1487
1468
1469
1470

Sat 19 Dec 1987 faexe.C

pushstack(); /*

ExecParse(par->ona); /
ExecPerse(par->two); /*
error = NO; /*

1f ((Stack[SP=-1].dummy=>this == NULL)

(Stack[SP).dummy~->this == NULL)
(stack[sP=1].dummy->this->type I= Va1NUMBER)
(stack[SP].dummy->this->type 1= VaiNUMBER))
{
error = YES;
}
else
{
x = Stack[SP-1].dummy=>this->number; /* left side */
y = Stack[SP].dummy->this->number: /* right side */
?witch (par~>type)
case (OpMINUS):
WoEX o=y
preak;
case (OpSLASH):
if (y == ZERO)
error = YES:
else
W= x /vy
pbreak;
case (OpSTAR):
W.E X XYy
break;
default:
PrintLine():
fprintf(stderr, ‘
"internal error: OpMINUS parse type = %d\n",
par->type);
error = YES;
break;
if (lerror)
{
stack[sP-2].dummy->this = val = Makevalue{Va INUMBER) :
val->number = w;
}
Y
2f (error)
PrintlLine();
fprintf(stderr, "bad values in '*’, =/, or '/’ ")
pPrintValue(stderr, Stack[SP-1].dummy, YES):
fprintf(stderr, " and s
PrintValue(stderr, Stack[SP].dummy, YES);
fprintf(stderr, "\n");
ExecAbort();
b4
PopStack(); /* ki1l right side */
PopStack(); /* ki1l left side */
break;

/* name (may be a function ca!l) */

case (OpNAME):
if (par->symbol->type == SymFUNCTION)
{
ExecFunction{par);

w]se

page 21

our result */
left side */
right side */

assume No errors */

14741
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1423
1484
1495
1486
1497
1498
1498
1500
1501
1502
1503
1504
1505
1506

1508

1512

1513

1518
1518

1540

sat 19 Dec. 1987 faexe.c page 22
{
ExecName(par->symbol};
}
break ;

/* negate (unary minus) */

case (OpNEGATE):

ExecParse(par->one); /* right side */
MakeDynamic(SP);
val = Stack[SP].dummy->this;
if (val == -NULL)
{
/* negated NULL is still just NULL */
}
else if (val->type == ValNUMBER)
{
val->number = =~ val->number;
}
else if ((val->type == ValSET) || (val->type == ValSTRING))
{
CheckSign(val);:
val->sign = --val >sign;
}
else
{
PrintLine();
fprintf(stderr, "internal error: OpNEGATE value type
val->type);
ExecAbort();
}
break;

/* not (logical negation) */

case (OpNOT):

PushStack(); /* our result */
ExecParse(par->one); /* right side */

error = NO; /* assume no errors */
if (Stack[SPJ].dummy->this == NULL)

{

error = YES;

}
else if (Stack{[SP].dummy->this->type == ValNUMBER)

{
x = Stack[SP].dummy->this->number ;
if (x == FALSE)
w = TRUE;
else if (x == TRUE)
w = FALSE;
else
error = YES;
if (lerror)
{
Stack [SP-1].dummy->this = val
val->nhumber = w;
}
b

else if (Stack[SP].dummy=->this->type == VaiSTRING)

/* logically negate a bit string */

char * new, * old; /* string pointers */

CheckSign(Stack[SP]1.dummy->this);

Stack [SP-1].dummy~>this = val = MakeValue(VailSTRING):

MakeValue(VaiNUMBER) ;

173

154 1
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1653
1554
1655
1556
1657
1558
1558
1660
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1672
1873
1574
1575
1576
15677
1578
1679
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1580
1591
1592
1583
1594
1595
1586
1587
1588
1599
1600

1601 -

1602
1603
1604
1605
1606
1607
1608
1609
1610

Sat 19 Dec 1987 faexe.c page 23

val->sign = Stack[SPl.dummy->this->sign;

old = Stack[SP].dummy->this->string;
k = strlen(old);
val=>string = new = GetMemory(k + 1);

white ((*old) != '\0‘)
{ .
if ((*01d) == ‘0O)
(*new) = ‘1’
eise it ((*old) == ‘1’)
(*new) = ‘0O’
else if (i*old) == ANYBIT)
(*new) = BADBIT;
else if ((*old) == BADBIT)
(*new) = ANYBIT;
else
{
error = YES;
break;
b
new ++;
old ++;
(*new) = ‘\0’; /= terminate string */
bt
else

error = YES;

if (error)

{
PrintLine();:
fprintf(stderr, "bad value in ’'not’: ")
PrintValue(stderr, Stack[SP].dummy, YES);
fprintf(stderr, "\n");
ExecAbort();

}

PopStack(); /* kill right side */

break;

/* null */

case (OpNULL):
PushStack () ;
break ;

/* number */

case (OpNUMBER):
PushStack();
Stack[SP].dummy->this = val = MakeValue(ValNUMBER);
val~->number = par->number H
break;

/* parameter list */

case (CpPAR):

ExacParse(par->onea); /* left recursive side */
ExecParse(par->two); /* this parameter (right) */
break;

/* addition (v+n) *x/
/* addition (set concatentation) */
/* addition (string,concatentation) */

case (OpPLUS):
PushStack(); /* our result */
ExecParse(par->one); /* left side */
ExecParse(par->two); /* right side */

174

1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680

sat 19.Dec 1987 faexe.cC page 24

error = NO; ‘ /* assume no errors */
if ({Stack[SP-1].dummy->this == NULL)

|l (stack[$P]l.dummy->this == NULL))

{

error = YES;

}

else if ((Stack[SP-1].dummy->this->type == ValNUMBER)
&& (Stack[SP].dummy->this->type == ValNUMBER))

{

x = Stack[SP-1].dummy->this->number; /* left side */
y = Stack[SP].dummy->this->number; /* right side */
W= Xty

Stack[SP-2].dummy->this = val = MakeValue(ValNUMBER);
val->number = W;

else if ((Stack[SP-1].dummy->this->type == ValSET)
8& (Stack[SP].dummy->this->type == ValSET)
&& (Stack[SP-1].dummy->this~>sign. == Stack[SP).dummy->ihis->sign))
{ .

ValueThing * head; i /= head (left) set */

ValueThing * tail: /* tail (right) set */

/* a little late., but check sign anyway */

CheckSign{Stack [SP-1].dummy->this):
CheckSign(Stack [SP].dummy->this);

/* get link to right side */

MakeDynamic(SP);
tail = Stack[SP].dummy->this->next;
Stack[SP].dummy->this->next = NULL; /* kill link */

Stack[SP].free = YES:
/* attach -1ink to existing left side */

MakeDynamic(SP-1);
head = Stack[SP-1].dummy->this;
while (head->next != NULL)

head = head->next;
head->next = tail;
head =+ Stack[SP-1].dummy=~>this;
Stack[SP-1].free = NO;

/* now put result back onto stack x/

Stack[SP-2].dummy->this = head;
y ‘

else if ((Stack[SP~1].dummy->this->type == ValSTRING)

&& (Stack[SPl.dummy->this->type. == Val1STRING)

&& (Stack[SP-1].dummy->this->sign == Stack[SP].dummy->4his->sign))
{

char * cp: /* a.string pointer */
/* a little late, but check sign anyway x/

CheckSign(Stack[SP—1].dummy->fhis);
CheckSign(Stack [SP].dummy~>this);

/* get enough memory, and copy strings */

strlen(Stack[SP—1].dummy—>this—>string);
strien(Stack [SP].dummy->this->string);

h]
k

nu

Stack[SP~2].dummy~->this = val = MakeValue(ValSTRING);
val->sign = Stack[SP].dummy->this->sign;
val->string = cp = GetMemory(j + k + 1);

Sat 19 Dec 1987 faexe.C page 25

1681 -

1682 strcpy(cp, Stack[SP-1].dummy->this->string):
1683 strcat((co + j), Stack[SP].dummy->this->string);
1684 }

1685 else

1686 error = YES;

1687

1688 if-(error)

1689 {

1680 PrintLine():

1691 fprintf(stderr, "bad values in '+’: "};

1692 Printvalue(stderr, Stack[SP-1].dummy, YES):
1693 fprintf(stderr, " and ");

1694 Printvalue(stderr, Stack[SP].dummy, YES);
1695 fprintf(stderr, "\n");

1686 ExecAbort();

1897 }

1698

1699 PopStack(); /* Kill right side »*/
1700 PopStack(); /* Kill left side */
1701 break

1702

1703 /* power. */

1704

1705 case (OpPOWER):

1706 /* convert power operator into a function call */
1707 /* can’t do this in YACC: user may re-define "pow" symbol */

1708 PushStack(}; /* our result */

1710 ExecParse(par->one); /* left side */

1711 ExecParse(par->two); /= right side */

1712 oldframe = FP; /* save frame pointer */
1713 FP = SP - 2; /* create fake frame */
1714 PreMath(NULL, pow, ' "power operator"); /* . math routine */
1715 FP = oldframe; /* restore frame pointer */
1716 PopStack(); /* kill right side */

1717 PopStack(): /* kill left side */

1718 break;

1720 /* repeat */

1722 case (OpREPEAT):

1723 do

1724 {

i725 /* execute statements */

1727 ExecParse(par->one):

1729 /* generate test condition */

1731 ExecParse(par->1two);

1733 error = NO; /= assume no errors.*/

1735 if ((Stack[SP].dummy->this == NULL)

1736 | (Stack[SP].dummy->this->type != valNUMBER))
1737
error = YES;
1739
1740
1741
1742 x = Stack[SP].dummy->this->number;

1743

1744 /* check test condition */

1745

1746 if ({x == FALSE) || (x == TRUE))

1747 {

1748 /* legal value, but do nothing */
1749)

1750 else

~ (D - A e b,

1751
1752
1753
1754
1755
1756
1757
1758
1758
1760
1761
1762
1763
1764
1765
1766
1767
1768
1768
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780

1782
1783
1784
1785
1786
1787
1788
1789
1780
1791

1792
1793
1794
1795
1796
1797
1798
1799
1800
1801

1802
1803
1804
1805
1806
1807
1808
1809
1810
1811

1812
1813
1814
1815
1816
1817
1818
1819
1820

DEGL Y MTY T fm—r— - - [

error = YES;

}

if. (error)

{
PrintLine();
fprintf(stderr, "pad condition in ‘repeat’ statement:
PrintValue(stderr; Stack[SP].dummy, YES):
fprintf(stderr, "\n"“);
ExecAbort();

Y

PopStack(); /* kill test condition */

}
while (x == FALSE);
break;

/> return from function */

case (OpRETURN):
Tongimp{ReturnJump.env, YES):
break;

/= finished set */

case (OpSET):
PushStack();
Stack[SP].dummy->this = val = MakeValue(V: L)
val->sign = 1;

/7 generate eloment concatenations */

if {par->one != NULL)
{
ExecParse(par->one);
MakeDynamic(SP);
val->next = Stack[SP].dummy->this; /* link */
Gtack[SP].free = NO;
PopStark();
}

break;
/* statement */

case (OpSTMT):
oldstack = SP; /* must return to this leval */

/* do any preceding (left recursive) statements */
ExecParse(par->one);
/* do this statement */
if (par->two != NULL)
¢ rxecParse(par->two);
/* anything to print? */
jf (SP == (oldstack + 1))
' if (par->two->type == OpASSIGN)
¢ /* throw away assigned value */
llse 1f ((Stack[SP].dummy=->tkis == NULL)
8& ((par->two->type == OpFUNCTION)
[((par->two->type == OpNAME)

&& (par->two->symbol->type == SymFUNCTIGN))))
{

1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
*331

332
1633
1834
1835
1336
1837
1838

1866
1867

1871
1872

1876
1877

1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890

Sat 19 Dec 1987 faexe.c page 27

/% throw -away NULL function result */
else

PrintValue(stdout, Stack[SP].dummy, YES);
fprintf(stdout, "\n');

gopStack():
}
/* is stack back to original level? =/
If (sP != oldstack)

PrintLine();
fprintf(stderr,

178

"inteprnal error: OPSTMT stack pointer is %d. not %d\n",

SP, oldstack);
ExecAbort();
}

break:
/* string */

case (OpSTRING):
pushStack ();
Stack [SP].dummy~->this = val = MakeValue(ValSTRING);
val->sign = 1;
val->string = CopyString(par->string); /* must be “"free" */
break ;

/* while */
case (OpWHILE):
do
{

/* generate tcut condition */

ExecParse(par->one);

error = NO; /* assume no errors */
if ((Stack[SP].dummy->this == NULL)
|| (Stack[SP].dummy->this->type != Va INUMBER))
{
error = YES;
)
else
{
x = Stack[SP].dummy->this->number;
/* check test condition */
if (x == TRUE)
{
ExecParse(par->two);
}
else if (x == FALSE)
{
/* lugaiivalue, but do nothing */
) - ‘
else
error = YES;
}

if (error)
{
PrintLine();

fprintf(stderr, "bad condition in ‘while’ statement:

1891
1892
1893
1894
1895
1896
1897
1898
1899
1800
1901
1902
1903
1804
1908
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915

Sat 19 Dec 1987 faexe.cC page 28

Printvalue(stderr, Stack[SP].dummy, YES);
fprintf(stderr, "\n");
ExecAbort():

}

PcpStack () /* kill test condition */

)
while (x == TRUE):
break;

/= default case for illegal or undefined operators */
default:
PrintLine():
fprintf(stderr, "internal error: ExecParse parse type = %a\nt,
par->type);
ExecAbort();
break;
/* end of big, big switch statement */
}

/* restore file line number */

L ineNumber = oldline;

/*
MakeDynamic()

Make a stack entry dynamic. That is, if it is not marked as "free", 1t/ ..
replace it with a "free" copy.

=/
MakeDynamic(n)
int n; /* stack entry number, usually SP */
{
if ((n<0) |} (n > sP))
{
PrintLine();
fprintf(stderr,
"internal error: MakeDynamic has n = %d and SP = %a\n®,
n, SP);
ExecAbort();
}
if (Stack[nl.free 1= YES)
{
Stack [n].dummy->this = CopyVa1ue(Stack[n].dummy—>this);
Stack[n].fres = 7§;
Stack[n].owner - IMLL;
3
}

*

PopStack()

Pop one value off the stack. I1f the stack is marked as "“free" (dynamic), then
its memory will be released.
*/
PopStack()
{
CheckStack() ; /* of course */

/* free the value? */

1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1872
1973
1874
1975
1876
1877
1978
1979
1980
1931
1982
1983
1984
1985
1986
1987
1988
1989
1880
1891
1992
1983
1894
1995
1996
1997
1998
189S
2000
2001
2002
2003
2004
2005
2006
2007

180

Sat 19 Dec 1987 faexe.C page 28

if (Stack[SP].free == YES)
{

FreeVaiue(Stack[SP].dummy->this);
}

/* clear the stack entry, just to be careful */

Stack [SP].dummy~>this = NULL:
Stack[SP].free = YES:
Stack[SP].owner = NULL:

/* decrement stack-.pointer, and check it again */

sSP --;
CheckStack();

/*
PushStack ()

Push a NULL value onto the stack. A NULL. value has the attributes Of being
dynamically allocated (*free") and no owner. The stack field "dummy® wuoints
to a dummy value structure that ends- in a null pointer (dunmy->this 5 NULL).
The czller should attach his value to the end of the dummy structure.

(A11 of the dummy stuff is necessary sO that function local variables cat: be
assigned.)

*/

PushStack ()

{

/* increment the stack pointer, and check it */

SP ++;
CheckStack();

/* put a dummy value structure onto the stuzck */
if (Stack[SP].dummy == NULL)

¢ Stack[SP].dummy = MakeVailue(ValDUMMY);
%tack[SP].dummy->this = NULL:

Stack[SP].free = YES;
Stack [SP].owner = NULL;

WoEe~NOOhWMN -

181

sun 29 Nov 1887 faglo.c page 1

/*

faglo.c -- Global variables

Keith Fenske

Department of Computing Science
The University of Alberta
Edmonton, Alberta, Canada

T6G 2H1

December 1887
Copyright (c) 1987 by Keith Fenske. A1l rights reserved.
This file defines the global variables declared by “fainc.h". A global

variable is any variable shared by more than one module. They are collected
here so that you don’‘t have to ge looking for initial values.

~/

#include "fainc.h" /* our standard includes */
int FP = 0; /* function frame pointer x/
Symbo1Thing * GlobalHead = NULL: /= global symbol head */
SymbolThing * GlobalTail = NULL: /* global symbol tail */
int LineNumber = -3999; /* file line number */
SymbolThing * LocalHead = NULL; /* 1ocal symbol head: */
Symbo1Thing * LocalTail = NULL; /* iocal symbol tail */
parseThing * ParseTree = NULL; /* YACC parse tree */
int SP = 0; /* stack pointer {(index) */
StackThing Stack[STACKSIZE+1]; o /* execution stack */
char * UserArg = "-p": /* argument for classifier */
char * UserfFile = "robert"; /* nane of user classifier x/

int UserTrace = NO; /* trace flag for classifier =/

CONOUHWN =

182

sat 19 Dec 1987 fainc.h page 1

/*

fainc.h -- Include Standard Definitions
Keith Fenske

Departiment of computing Science

The University of Alberta

Edmonton, Alberta, Canada

T6G 2H1

December. 1987

Copyright (c) 1987 by Keith Fenske. A1l rights reserved.

This file is #include’d by the other modules to declare:
- values for common symbolic names
~ return value types for functions
- data types for global variables

A1l global variables are defined in the "faglo.c" module.

;*/

/= oiher. includes */

#include <stdio.h> /* standard 1/0 */

/* definitions */

#define ANYBIT '#’ /* "don‘t care" character .in a bit string */
#define BADBIT ‘7?27 /* illegal character in.a bit string */
#define CMPEQ O /* compare: left equals right */

#define CMPGT:1 /= compare: left greater than right */
#define CMPLT 2 /* compare: left less than right */
#define CMPNE 3 /* compare: left, right not comparable */
#define FALSE O.0 /* user-level logical false */

#define FORMAT "“%.159" /* (f)printf format for numbers x/
#define MAXSTRING 989 /* maximum bytes in a string */

sdefine NO O ‘ /* vch level logical false */

#define NUMBER doubie /* user-level numeric type */

#define ONE 1.0 /* user-level value of number one */
#define QUOTE ‘"’ /* character for printing a string */
#define STACKSIZE 989 /* size of execution stack */

#define TRUE 1.0 /* user-level logical true =/

#define YES 1 /= wc" jevel logical true */

#define ZERO 0.0 /* user-level value of number zero */

/*

For each complete statement, a parse tree is built and then executed. The
contents of a parse node vary depending upon the operator, which is: some OpXXX
number .

*/

#define OpAND 101
#def ine OpASSIGN 102
#def ine OpCONCAT "103
#define. OpDIV 104
#define OpEQ 105
#define OpEQP- 106
#def ine OpFOR 107
#define OpFUNCTION 108
#define OpGE 108
#define OpGT 110
#define OpIF 114

134

140

sat 19 Dec 1987 fainc.h page 2

#define
#define
#def ine
vdofine
#define
#define
#def ine
#def ine
#def ine
#def ine
#define
#define
#def ine
vdefine
Adef ine
#define
#define
ddef ine
#def ine
#def ine
#define
ddef ine
rdef ine
#define

OpINDEX
OpLE 113
OpLT 114
OpMINUS 115
OpMOD 116
OpNAME 117
OpNE 118
OpNEGATE 119
OpNEP. 120
OpNOT 121
OpNULL 122
OpNUMBER - 123
OpOR 124
OpPAR 125
OpPLUS 126
IpPOWER 127
OpREPEAT. 128
OpRETURN 129
OpSET 130
OpSLASH 131
OpSTAR 132
OpSTMT 133
OpSTRING 134
OpWHILE 135

112

struct
struct
struct

typedef ParseThing
ParseThing

ParseThing

if not NULL */
if not NULL .*/
third part, if not NULL */
fourth part, if not NULL */
parameter count-*/

file line number */

if a number */

if a string */

if a name */

parse type: OpXXX */

one; /*

two; /*
struct ParseThing three; /*
struct ParseThing four; /*
int count; /*
int line; /*
NUMBER number; /*
char » string; /*
struct SymbolThing * symbol; /*
int type; /*

} ParseThing;

first part,
second part,

* O* K KA

/*

Expressions are evaluated on a stack. To keep the stack entries consistent,
each entry points to a structure which contains the actual value. = Additional
information is kept on whether the stack values were created dyhamically (and
are free to be assigned to a variable), or .if the values are owned by a variable
that can be assigned a new value (used to simplify the assignment grammar) .

*/

typedef struct StackThing {
struct ValueThing * dummy;
int free;
struct ValueThing * owner;
} StackThing;

/* pointer to dummy value structure */
/* non-zero if this value is "free" */
/* ‘owning ValueThing, if not NULL */

/*

There are only two types of symbols: functions and variables. Variables can be
global or local.. Global variables have exactly one value, which is pointed to
by the symbol table (via a dummy value structure). Local variables are stack
offsets relative to a function call (which allows recursion).

*/

#def ine SpeABS 401 /* pre-defined absolute function */
#def ine SpeAC0S 402 /* pre-defined arc cosine function x/
‘#define SpeASIN 403 /* pre-defined arc sine function */
#def ine SpeATAN 404 /* pre-defined arc tangent function */
#define SpeATAN2 405 /* pre-defined arc tangent function */
#def ine SpeCBRT. 406 /* pre-defined cube root function */
#def ine SpeCLOSE 407 /* classifier close function . */
#define SpeC0S 408 /* pre-defined cosine function */
#define SpeEXIT. 408 /* pre-defined exit function */

183

141
142
143
144
145
146
147
148

184

Sat 19 Dec 1987 fainc.h page 3

ydefine SpeEXP 410 /* pre-~def ined exponential function */
#define SpeFLAGMESS 411 /* classifier flagmess function */
#define SpeFLAGRULE 412 /* clasgifier flagrule function */
#define SpelDAD 413 /* pre-defined load function */
#define SpelL0G 414 /* pre-def ined ‘logarithm function */
#define SpelOG10 415 /% pre-defined logarithm function */
#define SpeOPEN 416 /* classifier open function */
#define SpePACK 417 /* pre~def ined pack: function */
#define SpePOW 418 /* pre-defined power function */
#define SpePRINTF 419 /* pre-defined printf function */
#define SpeRANDOM 420 /* pre-defined random function */
#define SpeRECEIVE 421 /* classifier receive function */
#define SpeROUND 422 /* pre-defined.round function */
#define SpeSAVE 423 /* pre-defined save function */
#define SpeSCANF 424 /* pre-defined scanf function */
#define SpeSEND 425 /* classifier send function */
#define SpeSIGN 426 /* pre-defined sign function */
#define SpeSIN 427 /* pre-defined sine function */
#define SpeSIZE 428 /* pre-defined size function */
#define SpeSPRINTF 429 /* pre-defined sprintf function x/
#define SpeSQRT 430 /* pre-defined square. root function -/
#define SpeSSCANF 431 /* pre-defined sscanf function */
#define SpeSTOP 432 /* pre-defined stop function x/
#define SpeSYSTEM 433 /* pre-defined system function */
#define SpeTAN 434 /* pre-defined tangent function */
#define SpeTRUNC 435 /* pre-defined truncate function */
#define SpeTYPE 43€ /* pre-defined type function */
#define SpeUNPACK 437 /* pre-defined unpack function */
#define SpeVALUE 438 /* pre-defined value func*ion */
#define SpeWRITE 438 /* pre-defined write function */
#define SymFUNCTION 501 /* type if a function */
#define SymGLOBAL 502 /¥ type if a global variable */
#define SymLOCAL 503 /* type if a local variable */
typedef struct SymbolThing {

int count; /* # of parameters, if a function */

struct ValueThing * dummy; /* dummy value i? global */

int free; /* for local variables (parameters):

NO if pasSsed by address,
YES if copy by value */

struct SymbolThing * local; /* local symbols if a function */
char *. name; /* name string */

struct SymbolThing * next; /* next symbol, or NULL */

int offset;: /* parameter 1ist offset if local */
struct ParseThing * parse; /* parse tree if a function */

int special; /* ‘special processing code */

int w/pe; /* symbol type: SymXXX =/

} SymbolThing;

/*

The user’s data is stored in linked "value" structures. Basic data fitems are
numbers, strings, and the NULL value., Composite items are sets of the basic
items. A dummy value is inserted between variable entries in the symbol table
and the actual value structure so that the assignment operator doesn’t need
separate productions for the lefthand and righthand sides. (See the "owner"
field-in "StackThing".)

NULL values are assumed when a pointer to a reguired vailue structure is NULL.

*/

#def ine ValDuiamy /* typ2 if a duwmy value structure */
goetima VoL yRE /< iype 1t a se’ element */

#define ViulN J owype if a ridmoer . */

#defing Va:iiii ! /i~ type if. a set */

#define VaiSTRING 704 /* type if a string */

typedef struct ValueThing {
struct ValueThing * next; /* first. element if a set */

211
212
213
214
21%
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

242
243
244

188

Sat 19 Dec 1987 fainc.h page 4
/* next element if an element */
NUMBER numbisr: /* value 1f a number */
int aign; /* +1 or -1 1f set or string */
char ° String: /* value 1f a string */
struc: ajueThing * this; /* value if dummy or element */
int type, /* value type: Valxxx */
} valueThiso
/* globsl wariadles */
' 1 int FP; /* function frame pointer */
¢ torn SymbolThing * GlobalHead: /* global symbol head */
evrirn SymbolThing * GlobalTail; /* giobal symbol tail */
extern int LineNumber; /* file 1ine number */
=ytern SymbolThing * LocalHead; /* local symbol head */
axtern SymbolThing * LocalTail; /* local symbol tail */
extern ParseThing * ParseTree; /* YACC parse tree */
extern int-SP; /* stack pointer (index) */
extern StackThing -Stackl]; /* execution stack */
extern char * UserArg; /* argument for classifier */
extern char * UserfFile; /* name of user classifier */
extern. int UserTrace; /* trace flag for classifier */
extern FILE * yyin; /* LEX input file pointer */
/* functions =/
int Comparevalue(): /* compare value structures */
char * CopyString(); /* dynamic string copy */
ValueThing * CopyValue(): /* dynamic value copy */
NUMBER FindNumber(): /* find number in a string */
char * GetMemory(): /* memory allocatirn */
Symbo1Thing * GlobalAdd(); /* global symbol addition */
Symbo1Thing * GloballLooK(}: /* - global: symbol 1ook-up */
Symboi1Thing * LocalAda(); /* local symbol addition */

Symbo1Thing * LocallLook(};
parseThing * MzkeParse();
Symboi1Thing * MakeSymbo1();
valueThing * Makevalue();
shar * Packvalue();

char * SkipSpace();
valueThing * StringTovalue();
ValueThing * UnpackString():
valueThing * UnpackValue(};
char * UserReceive();

focal symbol’ 1o0k-up */

create parse tree node */

create sympbol table. entry */

create value structure */

pack a value into a string */

skip white space in-a string */
parse string into value structure */
unpack string into a value */

unpack value into a bigger value */
receive from user classifier */

CO~NOAWND -

186
Mon 14 Dec 1987 - falex.) page 1

%{
/*

falex.l -~ Lexical Tokens

Keith Fenske

Department of Computing Scierce
The University of Alberta
Edmonton, Alberta, Canada

T6G 2H1

December 1987

Copyright (c) 1987 by Keith Fenske. A1) rights reserved,

This file breaks up the input stream into tokens that can be handled by YACC.
Reserved words are recognized: in any combination of upper. and lover case
letters. -Some special characters are converted into the equivaient reserved
word. (For example, "&" is the same as the "AND’ token.) Strings are scanned
manually so ‘that "\' escape Seguences Can be recognized. Comments go from a
"g1 character - to the end of the line (not in a string, of course!).

The relational operators (EQ, LT, etc) are grouped together as a single token.
This simple change.reduced an early version of the YACC machine in-"y.output"”
from 2,300 lines to 1,200 lines.

(Special characters are listed in ASCII order.)

*/

#include "fainc.h" /* our standard includes. */

#include "y.tab.n" /* YACC token definitions */

#def ine LEXEOF © /* 1lexical end-of-file character */
double atof(): /* ASCII to floating double */

%3}

%%

[aalInNI[aD] return(TokAND):
[bBI[rR]l[eE][aA][kK] return(TokBREAK);)
[eB]{vY] return(TokBY); }
[ap]li1llvV] return(TokDIV); }
[ap][o0] return(TokD0); }

[eelUILI[ATI)[FF]
[eell1L][sS][eE]
[eE) [nN][dD]
[eEl[qQ]
[eellg@][pP]

return{TokELIF); '}

return{TokELSE); }

return(TokEND); }

yyival.count = OpEQ; return(TokRELOP); }
yylval.count = OpEQP; return{TOkRELOP); }
[fF]lo0][rR]} return(TokFOR); }

[fF]irR]1[00][mM] return(TokFROM); 7
[fF1IuU;InNI[cCIltTILi11[00][nN] { return(TokFUNCTION):"}

P A Ay A Ay A o A A A

[oG]leE]) { yylval.count = DpGE; return(TokRELOP); 7}
1oGlltT] { yyival.count.= OpGT; return{TokRELOP); }
[i11[fF] { return(TokIF): }

[iL)lel] { yylval.count. = OpLE; return(TokRELOP);. '}
[1L)0tT] { yylval.count = OpLT; return(TokRELOP); }
[mM][o0]}[dD] {. return(TokMOD); }

[nN][eE] {{"yylval.count = OpNE; return(TokRELOP); :}
[nNl1{eE]l[pP] { yylval.count = OpNEP; return(TOkRELOP); '}
[nN][00])([1T] { return({TokNOT); 2}

[ANITuul{L3[L] { return(TokNULL); 3

[c01{rR] { return(TokOR); }

187
Mon 14 Dec: 1887 falex.1 page 2

P][rR][oO][cC][eE][dD][uU][rQ][eE] { return(Tok FUNCTION); }

[rRI[eE]l[pPl[eE]l[aAl[tT] { return(TokREPEAT); }

[rR][eE][xT][uU][rR][nN] { return(TokRETURN); }

[tT][o0] { return(TokTO); 2}

[tTl1IhH][eE][NN] { return(TokTHEN); }

[WUIInNILtTILATILILY . {: return(TokUNTIL); }

[wW]{hH][1I1{1L]1[eE] { return(TokWHILE); }

[a-zA-2_][a-2A-2_0-9]* {
yylval.string = CopyString(yytext);
return{TokNAME);

Y !

(([0-91+) [([0-9]+"."[0-8]*) | ("."[0-81+))([eE][-+]12[0-9]+)? {
yylval.number = atof(yytext);
return(TokNUMBER) ;

"= { yylval.count = OpNE; return(TokRELOP); }

\" { LexString(’"’): return(TokSTRING); }

noLn { return(TokMOD);)}

"& "+ { return(TokAND); :}

wen { LexString(’\’’); return{TokSTRING); }

HE L { return(TokPOWER); }

R { return(TokASSIGN); }

LR { yylval.count = OpLE; return(TokRELOP); }

N> { yylival.count = OpNE; return(TokRELOP); }

nen { yylval.count = OpLT; return{TokRELOP); }

LY { yylval.count = OpLE; return(TokRELOP); '}

U { yylval.count = OpGE; return(TokRELOP); }

e { yylval.count = OpEQ; return(TokRELOP); }

Ho=n { yylval.count = OpGE; return(TokRELOP); '}

s { yylval.count = OpGT; return(TokRELOP); -}

e { return(TokPOWER); }

nan { return(TokPOWER); }

" Lo { Lex3tring(’L’); return(TokSTRING); }

Ll R { return(TokOR); }

wan { return(TokNOT); }

\n { /* newiine */ LineNumber++; }

[\tl+ { /* ignore spaces and tabs */ }

AN { /* comment, do nothing */ }

{ /* default */ return(yytext[0]); }

%%

/*

LexString()

Given a delimiting character, look for a string ending with this character, and
which may include the following escape sequences:

\n for newline
\t for tab
\\ for '\

or \ followed by the delimiting: character.
*

LexString(delim)

char delim; /* delimiting character x/
{

char buffer[MAXSTRING+2]; /* string buffer */

char c; /* some input character */

int length; ’ /* bytes in string buffer */

length = 0O; /* nothing in buffer */

Mon - 14

Dec 1987 falex. 1 page

while (length <= MAXSTRING)
{

}

buffer[iength] =

c = input();

if (¢ ==
{

else if

else if

LEXEOF) /* lexical end

PrintLine();

fprintf(stderr, "end-of-file in quoted string (%c)\n",

delim);
unput(c);
break;
(c =="'\n") /* newline? */

PrintLine();

fprintf(stderr, "newline in quoted string (%c)\n",

delim);
unput(c);
break;
(c == "\\") /* escape sequence? */
char d; /* another input character */

d = input();

if (d == 'n’)
buffer[length++] = ‘\n
else if (d == ’'t*)
buffer[length++] = "\t
else if (d == '\\’)

buffer{iength++] = ‘\\
else if (d == delim)

3

/* get an input character */
-of-file? */

‘.
'
‘.
’

7.
’

buffer[length++] = delim;
else
{
buffer[length++] = "\\’;
unput (d);
}
(¢ == delim) /* end of the string? */
break;

/* just a text character */

buffer[length++] = c;

‘\NO’; /* put null at the end */

if (length > MAXSTRING)
{

}

PrintLine();

fprintf(

yylval.string =

L

/%
PrintLine()

If input is coming from a file, print an error message on stderr with the file
‘1ine number .

*/

PrintLine()

Otherwise,

stderr,

188

"string lenger than %d characters, begins with ‘%.9s’\n",

MAXSTRING, buffer);

CopyString(buffer);

if input is from a terminal,

don‘t bother.

211
212
213
214

Mon 14 Dec 1987 fajex;l

if (LineNumber > 0)
fprintf(stderr, "at line %d:

page 4

LineNumber) ;

189

OB WN -

180

Sat 12 Dec 1987 famem.c page 1

/*

famem.c -- Memory Allocation

Keith Fenske

Department of Computing Science
The University of Alberta
Edmonton, Alberta, Canada

TEG 2H1

December 1987

Copyright (c) 1987 by Keith Fenske. A1l rights reserved.

These routines perform some of the low-level memory allocation functions. .The
standard "malloc" routine is . called to handle the most trivial details.

*/

#inciude "fainc.h" /* our standard includes */

/*

CopyString()

Given a pointer to a string (which may be in static memory), allocate enough

memory for a new string, and copy the contents. This is used to save names
and strings found by the LEX routines.

*/
char .*. CopyString(oid)
char * old; /* pointer to old string */
{
char * new; /* pointer to new string */
if (old == NULL)
new = NULL;
else
{
new = GetMemory(strlen(old) + 1);
strepy(new, old);
return(new) ;
}
/*

Copyvalue()

Recursively copy a value structure into a new dynamically allocated structure.
The contents of the new structure are identical to the old, and no attempt is
made to check them.

*/
ValueThing * CopyValue(val)
ValueThing * val; /* a value structure pointer */
{
ValueThing * new; : /* new value structure pointer */

if (val == NULL)
new = NULL;
else
{
new = MakeValue(vai->type);
new->next = CopyValue(val->next):
new->number = val->number;
new->sign. .= val->sign;
new->string = CopyString(val->string);

191

Sat 12 Dec 1987 famem.c page 2

new->this = CopyValue(val->this);
}

return(new) ;

/*

FreeParse()

Recursively free all memory allocated to a parse tree. This is used when a

function is re-defined, or after a complete statement has been executed.
*/

FreeParse(par)
ParseThing * par; /* a parse tree pointer */
{
if (par 1= NULL)
{
FreeParse(par~>one);
FreeParse(par->two);
FreeParse(par~>three);
FreeParse(par->four):
FreeString(par->string);
/* DO NOT FREE PAR->SYMBOL ! */

free(par);

/*
FreeString()

Free the memory allocated to a string. The string must have been previoustly
allocated by some dynamic routine, such as CopyString().
*

FreeString(string)

char. * string; /* a-string pointer */
{
if (string 1= NULL)
free(string);
}
/*

FreeSymbol()

Recursively free all memory allocated to a symbol table. This is used when a
global symbol is re-defined as a function, and the old local symbol table (if
any) must be de-allocated. ‘The caller must ensure that there are no stray
pointers to the freed memory.

*/

FreeSymbo1(sym)
SymbolThing * sym; /* a. symbol table pointer */

{
Symbol1Thing * ‘old; /* old symbol table pointer */
Symbol1Thing * new; /* new symbol table pointer */
old = sym;

while (old !'= NULL)
{ ‘ :

FreevValue(old->dummy) ;
FreeSymbol{old->local);
FreeString(old->name);
FreeParse(old->parse);

new = old->next; /* don’t use a freed pointer! */

/*

Sat 12 Dec 1987

free(old);
old = new;

Freevalue()

Recursively free al)l memory allocated to a value structure.

famem.c

page 3

a variable is assigned, or when an operator finishes with its operands.

*/

FreevValue(val)

{

/*

valueThing * val; /*
vaiueThing * old; /*
ValueThing * new; /*
old = val;

while (old != NULL)

{

FreeString(old->string);
FreeValue(old->this);

new = old->next; /*
free(old);
old = new;

GetMemory()

Given a size in bytes, allocate enough memory to hold a thing that big.

a value structure pointer */

old value structure pointer */
new value structure pointer */

don’t use a freed pointer! */

this fails, print:a nasty error message and abort.

*/

char * GetMemory(size)

{

/*

int size; /*
char * malloc(); /*
char * new; /*

new = malloc({unsigned) size);
if (new == NULL)
{
PrintLine();
fprintf(stderr, "GetMemory
size): :
abort(); /*

return(new);

GlobalAdd()

Add a new.symbol to . the gliobal symbol table.

is already on the giobal symbol table.
*/

Symbol1Thing * GlobalAdd(name, type)

char * name; /*
int type; /*
Symbo1Thing * sym; /*

size in bytes */

must declare function type */
pointer to new string */

failed to aliocate %d bytes\n",

be nasty */

some name string */
symbol . type: SymXXX */

symbol table pointer */

This 1is used when

If

A warning is issued- - if this name

192

Sat 12 Dec 1987 famem.c page 4

sym = Globall.ook(name);
if (sym t= NULL)
{

PrintlLine();

fprintf(stderr, "warning: duplicate global symbol

name) ;
}
sym = MakeSymbol(type);
sym=>name : = name;
if (GlobalTail 1= NULL)
GlobalTail->next = sym:
GlobalTail = sym;
if (GlobalHead == NULL)
GlobalHead = sym;

return(sym);

/*
Globallook()

Given a name, look for this symbol .in: the global symbol table.

found, return the address. Otherwise, return NULL.

*/

Symbo1Thing * GlobalLook(name)

char * name; /* some name string */
{
Symbo1Thing * sym;
sym = GlobalHead;
while (sym 1= NULL)
{
if (strcmp(name, sym->name) == 0)
break ;
sym = sym->next;
}
return(sym);
}
/*

LocalAdd()

Add a new symbol to the Tocal symbol table.” A warning is

is already on the local symbol tabie,.
x*

Symbol1Thing * .LocalAdd{name)

issued

char * name; /* some-name string */

{
Symbol1Thing * sym;

sym = Locallook(name);
if (sym != NULL)
{

PrintLine();
fprintf(stderr, "warning: duplicate
name) ;

} ‘

sym .= MakeSymbol (SymLOCAL) ;

sym->name = name;

if (LocalTail . != NULL)
LocalTail->next = sym;

LocalTail ‘= sym;

if (LocalHead == NULL)
LocalHead = sym;

return(sym);

local

symbol

/%s/\nu ,

If ‘an entry is

/* symbol table:pointer */

if this name

/* symbol table pointer */

'%s’\n" .

193

194

Sat 12 Dec 1987 famem.c page 5

/\«

LocalLook()

Given a name, look for this symbol
found, return the address.

*/

SymbolThing * LocallLook(name)

char * name

{

Symbo1Thing * sym;

sym = LocalHead;
while (sym != NULL)

{

if (strcmp(name,

sym

return(sym)

/nr

MakeParse()

Allocate space for a new parse tree node, given the operator type and pointers
to the first four parse sub-trees.
must insert the correct contents.

break ;
= sym->next;

Otherwise,

in the local symbol table.
return NULL.

/*
/a

sym=->name)

/*
/-
/x
/*
/t

/x

some-name string */

symbol table pointer */

== Q)

All other fieids are cleared;

three, four)

operator type: OpXXX */
first part */
second part */
third part =/
fourth part */

new parse pointer */

new = (ParseThing *) GetMemory(sizeof(ParseThing));

*/

ParseThing * MakeParse(type, one,
int type;
ParseThing * one;
ParseThing * two;
ParseThing * three;
ParseThing *. four;

{

ParseThing * new;
new->one = one;
new->two. = two;
new->three = three;
new->four = four;
new->count = 0;
new~->line = LineNumber;
new->number = ZERO;
new~>string = NULL;
new->symbol = NULL;
new->type = type;
return(new);

)

/*

MakeSymbo1()

Allocate space for a new symbol:table entry, given the symbol type.

fields are cleared, and the caller must

*/

SymboiThing * MakeSymbol(type)

int type;

insert the correct contents.

/* symbol type: SymXXX */

I1f an entry is

the cailer

A1l of the

351
352
353
354
355
356
387
358
359
360
361
362

/*

Sa

Symbo1Thing

t 12 Dec 1287 farem.c page 6

* nev;

/* new symbol pointer */

new = (Symbol1Thing *) GotMemory(sizeof(SymbolThing));

new=>count =
new->dummy =
new->free =
new=>local =
new->name =
new->next =
new->offset
new->parse =
new->special
new->type =

return(new);

MakeValue()

0

NULL;
YES;

NULL;
NULL
NULL ;
= O

NULL;
=O;
type;

Allocate space for a new value structure, . given the value type. ' A1l -of the
fields are cleared,

*/

and the caller must

ValueThing * MakeValue(type)

{

int type;

ValueThing *

new;

insert. the correct contents.

/* value type: ValXxx »/

/* new value pointer */

new = (ValueThing *) GetMemory(sizeof(ValueThing));

new->next =
new=->number
new->sign =
new=->string
new->this
new->type

nu

return(new);

NULL;
= ZERO;
0;

= NULL;
NULL ;
type:

195

DODINOIH WA -

Mon 14 Dec 1987

/n

fapre.c -- Pre-Defined Functions
Keith Fenske

Department of Computing Science
The University of Alberta
Edmonton, Alberta, Canada

T6G 2H1 ‘

December 1987

Copyright (c) 1987 by Keith Fenske.

These are the pre-defined language functions.

subroutines in the "fasub,c" module.
the "fause.c" module.)

*/

#include "fainc.,h"
#include <math.h>
#include <setjmp.h>
#include <signal.h>
#include <varargs.h>

jmp_buf Mathdump;

/w

fapre.c

page 1

A1l rights reserved.

/* our standard inciudes */

/* math routines =/

/* system long jump */

/* system signals */

/* 'system variable arguments */
/

* for errors in math routines */

Define a type for. the parameters to the formatted 1/0 routines (“printf",

"scanf", etc).
string pointer.
pointers and numbers.

Note:
common stack.

members of the union would have .to -have the same size.
are double-precision, and “double" is twice the size of a pointer, then for:

printf("%s %f",

There is a problem on VAX computers.

Each parameter can be a number pointer, a number value, or a
We cheat here and assume that
A1l pointers are assumed to have the same size.

"hello", 23);

the following would get put on the machine stack for "hello" and 23:

when "printf" is expecting:

*/

#define FioNUMBER 801
#def ine. FioPOINTER 802

typedef struct {
NUMBER number;
char. * pointer;
int type;

} FioThing;

R e, - +
| double |
B L s T PP +
e +

|
LR e +

/* type if a number */
/* type if a pointer */

/* number vaiue */
/* number or string pointer */
/* type */

struct { NUMBER dummy[10]; } va_alist;

va_list va_pvar;

/* 10-variable argument list */
/* don’t change the name */
/* pointer to variable 1ist */

Many are just calls to support
(Classifier pre-defined functions are in

parameters are of two types:

Parameters are pushed onto a
For an arbitrary union to be acceptable for all parameters,
Otherwise, if numbers

196

Mon 14 Dec 1987 fapre.c page 2

#define va_put(p) if (p.type == F{oNUMBER) \

else \

/w

FioCheck ()

va_arg(va_pvar, NUMBER) = p.number; \

va_arg(va_pvar, char *) = p.pointer;

Check that & parameter on the stack is legal for use with the formatted 1/0
subroutines ("printf", "'scanf", etc). ' Return the appropriate value for use
with the real system subroutine,

»*

FioThing FioCheck(n, string, assign, name)
/n

int n; offset from frame pointer */

int’ string; /* YES if must be a string */

int assign; /* YES if must be assignable =/

char = name; /* name of pre-defined function */
{

FioThing result; /* our result thingy */

result.number = ZEROD: /* default to zero */

result.pointer = NULL; /* default to nothing */

result.type = FioPOINTER; /* assume a pointer */

if ((FP + n) > sP)

{

else if

}

else if

{

else if

/* this parameter is missing in function cal) */
if (string)
{

PrintLine();
fprintf(stderr,
“%s failed: string parameter #%d is missing\n",
name, n);
ExecAbort();
}
else
result.pointer = NULL;

(Stack[FP+n].dummy->this == NULL)

/* explicit NULL parameters are illegal */ ‘
/* happens when you use an undefined variable name */

PrintlLine();
fprintf(stderr, "%s failed: parameter #%d is NULL\Nn", name, n):
ExecAbort();

(assign &8 (Stack[FP+n)].owner == NULL))

PrintLine();
fprintf (stderr,
"%s failed: parameter #%d can not be assigned: ",
name, n);
Printvalue(stderr, Stack[FP+n].dummy, YES):
fprintf(stderr, "\n");
ExecAbort():

(Stack [FP+n].dummy->this->type == ValNUMBER)
if (string)
{

PrintLine();

fprintf(stderr,
"%s failed: parameter #%d must be a string: "
name, n);

Printvalue(stderr, Stack[FP+n].dummy, YES);

197

141
142
143
144
14%
146
147
148
149
160
151
152
153
154
155
166

207
208
209
210

Mon 14 Dec 1987 fapra.c page J

fprintf{stdarr, "\n");
ExecAbort():

else {f (assign)

{
Stack [FP+n].dummy=>thig=>number = ZERD;
result.pointer » (char *) &

Stack[FP+n].dummy=>thia=>numbear:

else
rasult.number. = Stack[FP+n].dummy->this~>number;
result.type = FioNUMBER;

}

(Stack [FP+n].dummy=->this->type == Va1STRING)

if (assign)

{
char * cp;
int ‘i

/* free old . string */
FreeString(Stack[FP+n].dummy=->this->string):

/* allocate and clear a new. string */
/* clearing it makes %c input safe */

cp = GetMemory(MAXSTRING + 1)
for (1 = 0 ; 1 <= MAXSTRING ; 1 ++)
(*(cp+i)) = '\0';

/* 1ink back to original vailue structure =/

Stack{FP+n].dummy~->this->string = cp;
}

result.pointer = Stack [FP+n].dummy=->this->string;

PrintLine();

fprintf(stderr,
“%s failed: parameter #%d must be a number or string: ",
name, n);

PrintValue(stderr, Stack[FP+n).dummy, YES):

fprintf(stderr, "\n");

ExecAbort();

return{result);

Pre~-defined function to return the absolute value of an expression.

ParseThing * par; /* function call in parse tree */

}
else if
3
else
{
}

}

/u

PreAbs()

*/

PreAbs(par)

{

if (Stack[FP+1].dummy->this == NULL)
{

else

/* abs(NULL) is just NULL */

CheckSign(Stack [FP+1].dummy->this);

198

211
212
213
214
215
216
217
218
218
220
221
222
223
224
225
22€
227
228

229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
285
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

271

272
273
274
275
276
277

278

280

108
Mon 14 Dec 1887 tapre,c page 4

?witch (Stack [FP+1]).dum: s=>this~>ty, a)

case (VaINUMBER):
Stack[FP).ounmy=>thig = MakeValue(/aINUMBEK);
Stack[FP) ., dummy~>thig->»numbor »
fabs(Stack{FP+1], Jummy=>this=>numbor)
break:
case (ValSET):
case (ValSTRING):
Stack[FP].dummy~>this =
Copyvalue(Stack [FP+1].dummy~>this);
Stack[FP} ., dummy~>this->sign = 1;
break;
dafault:
PrintLine();
fprintf(stderr,
"internal error: PreAbs value type = %d\n".
Stack [FP+1{].dummy=->this->type):
ExecAbort(): ‘
break ;

/-c

PraDefina()
Def ine the pre-d:fined symbocls. Try to be alphabetical here.

For functions, "“sym->count" is the minimum number of parameters. - If negative,
then any number of parameters is acceptable. and the pre-defined function must
be smart enough to use only those values that have been actually pushed onto.
the stack.

»*

?reDefine()

Symbol1Thing * sym; /* a symbol table pointer */

sy = -GlobalAdd(”abs", SymFUNCTION):
sym->count = 1{;
sym->special = SpeABS;

sym = GlobalAdd(*acos", SymFUNCTION):
sym->count = 2;
sym->special = SpeAC0S;

sym = GlobatlAdd(”asin", SymFUNCTION):
sym->count = 2;
sym->special = SpeASIN;:

sym = GlobalAdd(*atan", SymFUNCTION):
sym->count = 2;
sym->special = SpeATAN;

sym =.GlobalAdd(*atan2", SymFUNCTION):
sym->count =.2;
sym->special = SpeATAN2;

sym = GlobalAdd("cbrt", SymFUNCTION):
sym->count =:2;
sym=->special: = SpeCBRT;

. sym = GlobalAdd(“"cos", .SymFUNCTION):;
sym->count = 2;
sym->special .= SpeC0S;

sym = GlobalAdd("exit", SymFUNCTION);
sym=->count = 0;

Mon 14 Dec 1987

sym->special =

sym = GlobalAdd("exp", SymFUNCTION):

sym->count = 2
sym->special =

sym = GlobalAdd("false", SymGLOBAL);
sym->dummy = MakeValue(ValDUMMY);
sym->dummy->this ‘= MakeValue(ValNUMBER);

SpeEXIT;

’

SpeEXP;

sym->dummy->this->number

sym: =: GlobalAdd(" 1oad", SymFUNCTION):
sym->count = 1;

sym->special =

sym =. GlobalAdd("log", SymFUNCTION);

Spel.0AD; |

sym->count. = 2;

sym->special =

sym .= GlobalAdd(" 1og10", SymFUNCTION);
sym->count =:2;

sym->special =

sym:= G1obaIAdd("pack". SymFLUINCTION) ;
sym->count = :2;

sym->special =

sym :=:GlobaiAdd("pi",
sym->dummy .= MakeValue(Va1DUMMY) ;

sym->dummy->this =" MakeValue(ValNUMBER);
3.14159265358978323846;

sym->dummy->th

sym = GlobalAdd("pow", SymFUNCTION);
C sym->count:= 2

sym->special =

SpeloG;

Spel0G10;

SpePACK ;

is=>number

SpePOW;

sym = GlobalAdd{('printf",

sym~>count =" 1;

sym->special =

,SpePRINTF;

©sym-=:GlobalAdd("quit", SymFUNCTION);

sym->count = Q;

sym->special =

sym:=:GlobalAdd("random", SymFUNCTION);
sym=>count = '1;

sym->special:=
srandom(getpig

sym = GlobalAdd("round", SymFUNCTION):
sym->count = . 2;

sym->special. .=

sym = GlobalAdd("save", SymFUNCTION);
sym->count = 1; .-
sym->speacial =

sym = GlobalAdd("scanf", SymFUNCTION);:
sym~->count: = 1;
sym->special =

sym = GlobalAdd("sign", SymFUNCTION);
sym->count = 1;

sym->special =

sym = GlobalAdd("sin",
sym->count ‘= 2;

sym->special =

SpeEXIT;

" SPeRANDOM;
()

SpeRBUND:;

SPeSAVE;

s

SpeSIGN;

SpeSIN;

‘sym = GlobalAdd{"size", SymFUNCTION):

SymGLOBAL) ;

SymFUNCTION) ;

initialize random seed */

fSpeSCANF;

SymFUNCTION) ;

200

Mon 14 Dec 1987 fapre.c page 6

sym->count =:1;
sym->special = SpeSIZE;

sym = GlobalAdd("sprintf", SymFUNCTION);
sym->count = 2}

sym->special = SpeSPRINTF;

sym = GlobalAdd("sqrt", SymFUNCTION):;
sym->count = 2;
sym->special = SpeSQRT;

sym = GlobalAdd("sscanf", SymFUNCTION);
sym->count .= 2;
sym->special = SpeSSCANF;

sym = GlobalAdd("stop", SymFUNCTION);
sym->count.= 0;
sym->special = SpeSTOP;

sym = GlobalAdd{("system", SymFUNCTION);
sym->count = 1;
sym->special = SpeSYSTEM;

sym = GlobaIAdd("tan".‘SymFUNCTION);
sym->count ‘= 2; j
sym->special = SpeTAN;

sym = GlobalAdd("true", SymGLOBAL);
sym->dummy = MakeValue(ValDUMMY);
sym->dummy->this = MakeValue(ValNUMBER);
sym->dummy=->this->number = TRUE;

sym = GlobalAdd("trunc", SymFUNCTION);
sym->count = 2;
sym->special = SpeTRUNC;

sym = GlobalAdd("type", SymFUNCTION);
sym->count =.2;
sym->special = SpeTYPE;

sym = GlobalAdd("unpack", SymFUNCTION);
sym->count = 2;
sym->special = SpeUNPACK;

sym- = GlobalAdd("value", SymFUNCTION);
sym->count = 1{;
sym->special = SpeVALUE;

sym = GlobalAdd{("write", SymFUNCTION);
sym->count. .= -1;
sym->special = SpeWRITE;

/*
PreExit()

Pre-defined function to exit (quit) from this classifier interface system, and
to return to the UNIX command level.

*/

PreExit(par)
: ParseThing * par; - /* function call!in parse tree */
{ : ‘

fprintf(stderr, *\n");
Printline();
fprintf(stderr, "exit() called; returning to UNIX\n"):

/* c1o$e‘the»pipe to the user classifier system (if any) */

201

202

Mon 14 Dec 1987 fapre.c page 7

UserClose():

exit(1);
}
/%
Preload()

Pre-defined function to "load" (read and execute) the statements or definitions
in a file.

*/
PrelLoad(par))
, ParseThing *. par; /* function call in parse tree */
{
if ((Stack[FP+1].dummy->this != NULL)
&& (Stack[FP+1].dummy->this->type == Val1STRING))
{
ExecFile(Stack [FP+1].dummy->this->string);
b
else
{
PrintLine();
fprintf (stderr, i
"load failed: parameter must be a file name string: "):
Printvalue(stderr, Stack[FP+1].dummy, YES);
fprintf(stderr, "\n");
ExecAbort();
}
Y
/*
PreMath()

Pre~-defined math functions. The caller must give us the address of a real
system math routine (like "sqrt") and a character string with the routine’s
name. We pass up to two number parameters, return one number resuit, and trap
errors.

*/

PreMath(par, func, nanmne)
ParseThing * par; : /* function call in parse tree */
double (* func)(); /* pointer to function returns double */
char. * name; /* function name */

{
int error; /* YES means bad values */
extern int PreMathTrap(); /* trap handler for error-signal */
int (* status)(); © /* status of "signal" function */
NUMBER w, x,. y; /* numbers */
error = NO; /* assum2 no errors */

/* get first number parameter */

if ((Stack[FP+1].dummy->this != NULL)
&& (Stack[FP+1].dummy->this~>type == ValNUMBER))
{

X = Stack[FP+1].dummy->this->number:
;1se l

error = YES;
/¥ get second number.parameter (if any) */
Zf (Stack[FP+2].dummy->this == NULL)

y = ZERO;

/*

Mon 14 Dec 1987 fapre.c page 8

else if (Stack[FP+2).dummy->this->type == ValNUMBER)
{ y = Stack[FP+2].dummy->this->number;
;153
error = YES;
/* add protection and call the math routine */
if (lerror)

/* set long jump for PreMathTrap abort */

it (setjmp(Mathdump) == 0)
{
/* trap signal for math errors */
status = signal (SIGILL, PreMathTrap);
if. (status == BADSIG)
{
perror("PreMath signal trap failed");
exit(-1);
}
/* call the math routine */
w = (*func)(x, y);
/* return the result (if we get this far) */
Stack [FP].dummy->this = MakeValue(ValNUMBER);
Stack [FP].dummy->this~>number = w;
;
else
{
/* must be PreMathTrap aborting */
error = .YES;
;

¥

/* restore default signatl trap */

status = signal(SIGILL, SIG_DFL);
if (status == BADSIG)
{

perror("PreMath signal default failed");
exit(-1);
H

if (error)

PrintLine();

fprintf(stderr, "%s failed: bad number parameters:

PrintValue(stderr, Stack[FP+1].dummy; YES):
fprintf(stderr, " and *);
PrintValue(stderr, Stack([FP+2].dummy, YES);
fprintf(stderr, "\n");

ExecAbort();

PreMathTrap()

"

’

name) ;

Trap . the error signal that happens when bad parameters are given to a-math

routine.

x/

203

Mon 14 Dec 1987 fapre.c page 9

PreMathTrap()
{

longjmp{Mathdump, YES);

/*
PrePack()

Pack a wvalue structure into a string. This is used to convert some general set
into a message or rule string suitable for a user classifier machine,

*/

PrePack (par)
ParseThing * par; /* function call in parse tree */
{
char buffer [MAXSTRING+1]; /* temporary buffer for result */
char * cp; /* pointer into "buffer" */

cp = PackValue(buffer, Stack[FP+1].dummy->this,
Stack[FP+2].dummy~>this);

Stack([FP].dummy->this = MakeValue(ValSTRING):
Stack[FP].dummy~->this~>sign = 1;
Stack[FP].dummy->this->string = CopyString(buffer);

/*
PrePrintf()

Formatted output with the "printf" subroutine to standard output. We use
variable argument 1ists because the size of a String pointer may be different
than the size of a number. :

x/
PrePrintf(par)
ParseThing * par; /* function call in parse tree */
{
FioThing format; /* format string */
FioThing p1, p2, p3, p4, p5, p6, p7, P8, p9; /* parameters */
format = FioCheck(1, YES, NO, "printf"):
pi1 = FioCheck(2, ND, NO, "printfh);
P2 = FioCheck(3, 'NO, NO, "printf");
p3 = FioCheck(4, NO, NO, “"printf");
p4 = FioCheck(5, ND, NO, "printf"):
p5 = FioCheck(6, NO, NO, "printf");
p6é = FioCheck(7, NO, NO, "printf");
p7 = FioCheck(8, NO, NO, "printf");
p8 = FioCheck(9, NO, NO, "printf"};
pS = FioCheck(10, NO, NO, '"printf");
va_start(va_pvar); /* start list */
va_put(pi);
va_put(p2);
va_put(p3);
va_put(p4);
va_put(p5);
va_put(ps);
va_put(p7);
va_put(p8);
va_put(p9);
va_end(va_pvar): /* end list */
~doprnt(format.pointer, &va_alist, stdout);
}

/*

204

Mon 14 Dec 1987 fapre.c page 10

PreRandom()

Generate a pseudo-random number from O and iess than the caller’s modulus.

* /

PreRandom(par)

ParseThing * par; /* function call in parse: tree */
{
int error; /* YES means. bad value */
long i; /* integral caller’s parameter */
long random(); /* system random number routine */
NUMBER x; /* caller's original parameter */
error = NO; /* assume no errors */
if ((Stack[FP+1].dummy->this == NULL)
|| (Stack[FP+1].dummy->this->type 1= ValNUMBER))
{
error = YES;
Y
else
{
X% = Stack [SP].dummy->this->number;
i = (long) x;
if (x t= (NUMBER) i)
{
/* truncation changes value */
error. = YES;
}
else if (i <= 0)
/* modulus must be positive */
error = YES;
}
}
if (error)
PrintLine();
fprintf(stderr,
“random: failed: parameter must be a positive integer:
PrintValue(stderr, Stack[FP+1].dummy, YES):
fprintf (stiders, "\n");
Exevabort{);
}
‘Stack [FP}.dummy->this = MakeValue(ValNUMBER):
Stack [FP].dummy=>this->number = (NUMBER) (random({) % i):
}
/*

PreRound()

Pre-defined function teo round a number to the closest integral value. If a
second parameter is given, then it must be a scale factor. (For example, a
factor of 0.01 woula round to the nearest penny.)

*/
PreRound(par)
ParseThing * par; /* function call in parse tree */
{
int error; /* YES means bad values */
long 'i; /* integral part */
NUMBER x; /* number to'be converted */
NUMBER v; /* scale factor */

n)

205

*

Mon ‘14 Dec 1987 fapre.c page 11

error = NO; /* assume no errors */
/* get number to be converted */

if ((Stack[FP+1].dummy->this != NULL)
&& (Stack[FP+1].dummy->this->type == ValNUMBER))
{

X = Stack[FP+1].dummy~->this->number;
}
else

error. = YES;

/* get scale factor */
if (Stack[FP+2].dummy~>this == NULL)
{

y = ONE;
}
else if (Stack([FP+2].dummy->this->type == ValNUMBER)
{

y = Stack[FP+2].dummy->this->number;
if (y == ZEROD)
error = YES;
}
else
error = YES;

/* do the conversion. */
if (lerror)

if. (x < ZERO)
i= (ltong) ((x '/ y) - 0.5);
else
iv= (long) ((x /'y) + 0.5);
Stack [FP].dummy~->this = MakeValue(ValNUMBER);
Stack [FP].dummy->this->number = y * (NUMBER) 1;
3}

if (error)

PrintLine();

fprintf(stderr, "round failed: bad number parameters: *):
Printvalue(stderr, Stack[FP+1].dummy, YES):
fprintf(stderr, " and ");

PrintValue(stderr, Stack[FP+2].dummy, YES):;
fprintf(stderr, "\n"):

ExecAbort();

}
}
/*
PreSave()

Pre-defined function to save all global variables into a file named by ‘the

user, or else print them on the terminal if no file name is given.
*/

PreSave(par)
ParseThing * par; /* function call in parse tree */
{
char * cp; /* pointer to file name string */
FILE * fp; /* file pointer */
Symbo1Thing * . sym; /* a symbol table pointer */

if (Stack[FP+1].dummy->this == NULL)
{

NULL ;
stdout;

cp
fp

(L

206

/*

PreScanf

207

Mon “14 Dec 1987 fapre.c page -12

}
else if (Stack[FP+1].dummy->this->type == ValSTRING)
{

cp = Stack[FP+1].dummy->this->string;

fp = fopen(ecp, "w");

if (fp == NULL)

{

PrintLine();

fprintf(stderr,
"save failed: can’t open file ‘%s’ for writing\n",
cp);
ExecAbort();
}
}
else
{
PrintLine();
fprintf(stderr,
"save failed: parameter must be a file name string or NULL:
Printvalue(stderr, Stack[FP+1].dummy, YES);
fprintf(stderr, "\n");
ExechAbort();
} g

sym = GlobalHead;
while (sym != NULL)
{

if (sym->type == SymGLOBAL)

{
if (sym->special == 0)
fprintf(fp, "%s := ", sym->name);
PrintValue(fp, sym->dummy, YES);
fprintf(fp, ":;\n");
}
else
{
UserSave(fp, sym);
}
Y
sym = sym->next;
}
if (ep '= NULL)
fclose(fp):
Q)

Formatted input with the "scanf" subroutine from wherever it is that we are

reading
*

PreScanf

{

input ("yyin®).

(par)

ParseThing * par; /* function call in parse tree */
int count; /* result from fscanf */

FioThing format; /* format string */

FioThing pi1, p2, p3, p4, p5. p6, p7, p8., p9; /* parameters */

format = FioCheck(1, YES, NO, "“scanf");

pi1 = FioCheck(2, NO, YES, "scanf");
p2 =:FioCheck(3, NO, YES, "scanf");
p3 = FioCheck(4, NO, YES, "scanf");
p4 = FioCheck(5; NO, YES, "scanf");
p5 = FioCheck(6, NO, YES, "scanf");
6 = FioCheck(7, ND, YES, "scanf");
p7 = FioCheck(8, NO, YES, "scanf");

")

Mon 14 Dec 1987 fapre.c page 13

p8 = FioCheck(9, NO, YES, “scanf");
p9 = FioCheck(10, NO, YES. "scanf"):

count = fscanf(yyin, format.pointer, pi.pointer, p2.pointer,
R3.pointer, pd4.pointer, p5.pointer, p6.pointer, p7.pointer,
P8.pointer, ‘pP9.pointer);

Stack [FP].dummy~->this = MakeValue(ValNUMBER);
Stack [FP].dummy->this->number = (NUMBER) count:

PreSign()

Pre-defined function to returrn the sign of an expression.
*>

PreSign{par)

parseThing * par; /* function call in parse tree */
if (Stack [FP+1}.dummy->this == NULL)
{

/* sign(NULL) is just NULL */

}
else
{
NUMBER sign;
CheckSign(Stack[FP+1].dummy->this);
?witch (Stack[FP+1].dummy->this->type)
Case (ValNUMBER):
sign = Stack[FP+1].dummy->this->number;
if (sign < ZERD)
sign = - ONE;
else if (sign > ZERO)
sign = ONE;
break:
case (ValSET):
Cace (ValsSTRING): ‘
sign = (NUMBER) Stack[FP+1].dummy->this->sign;
break;
default:
PrintLine();
fprintf(stderr,
"internal error: PreSign value type = %d\n",
Stack [FP+1].dummy->this->type);
ExecAbort();
break;
}
Stack[FP].dummy->this = MakeValue(ValNUMBER);
Stack[FP].dummy->this->number = sign:
b4

PreSize()

Pre-defined function to return the size of an expression.
b 3

rreSize(par)

ParseThing * par; /¥ function call in parse tree */
ValueThing * val; /*. a value structure pointer */
NUMBER size; /* where we put the size */

208

Mon 14 Dec 1987 fapre.c page 14

;f (Stack[FP+1].dummy~->this == NULL)

size = ZERO;
} ‘
else switch (Stack[FP+1].dummy->this->type)
{
case (ValNUMBER):
size = ONE;
break ;
case (ValSET):
size .= ZERO;
val = Stack[FP+1].dummy->this->next;
while (val != NULL)
{
size += ONE;
val = val->next;
}
break ;

case (ValSTRING):

209

size = (NUMBER) strilen(Stack[FP+1].dummy->this->string);

break ;
default:
PrintLine();

fprintf(stderr, "internal error: PreSize value type

Stack [FP+1].dummy->this~>type);
ExecAbort();
break ;

Y
Stack [FP].dummy->this = MakeValue(ValNUMBER):
Stack [FP].dummy->this->number = size;

/*
PreSprintf()

Formatted output with the "sprintf" subroutine to a text string.

= %d\n",

Because of

problems with variable arguments, this routine is restricted to two data

parameters.

(Calling "_doprnt" with variable arguments into a string is. too difficult.)
%

PreSprintf(par)

ParseThing * par; /* function call in.parse tree */
{

FioThing format; /* format string */

FioThing pt, p2; /* parameters */

FioThing string; /* a text string */

string = FioCheck(1, YES, YES, "sprintf"):
format = FioCheck(2, YES, NO, "sprintf");

pt1 = FioCheck(3, NO, NO, "sprintf");
p2 = FioCheck(4, NO, NO, "sprintf"):
if (SP > (FP + 4))
{
PrintLine();
fprintf(stderr,
"warning: sprintf called with too many parameters (%d)\n",
(SP-FP));
b
if (pi.type == FioNUMBER)
{

if (p2.type == FjoNUMBER) ‘
sprintf(string.pointer, format.pointer,
p2.number);
else
sprintf(string.pointer, format.pointer.

p1i.number,

p1.number.

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

11040
1041
1042
1043
1044
1045
1046
1047

1048

1049
1050

210

Mon 14 Dec 1987 : - fapre.c page 15

p2.pointer);

}
?159
if (p2.type == FioNUMBER)
sprintf(string.pointer, format.pointer, pi.pointer,
p2.number):
else .
: sprintf(string.pointer, format.pointer, pi.pointer,
p2.pointer); ‘
}
}
/*

PreSscanf()

Formatted input with the "sscanf” subroutine from a text string.

*/

PreSscanf(par)
ParseThing * par; /* function call in parse tree */
{
int count; /* result from sscanf */
FioThing format; /* format string */
FioThing p1, p2, p3, p4, p5, p6, p7, p8, p9:; /* parameters */
FioThing string:; /* a text string */

string = FioCheck(1, YES, NO, "sscanf");
format = FioCheck(2, YES, NO, "sscanf");

pi1 = FioCheck(3, NO, YES, "sscanf");
p2 = FioCheck(4, NO, YES, "sscanf"):
p3 =. FioCheck(5, NO, YES, "sscanf");
p4 = FioCheck(6, NO, YES, "sscanf");
pS = FioCheck(7, NO, YES, "sscanf");
p6 = FioCheck(8, NO, YES, "sscanf");
p7 = FioCheck(9, NO, YES, "sscanf");
p8 = FioCheck(10, NO, YES, "sscanf");
P9 = FioCheck(11, NO, YES, "sscanf");

count = sscanf(string.pointer, format.pointer, pi1.pointer, p2.pointer,
p3.pointer, pd4.pointer, p5.pointer, p6.pointer, p7.pointer,
p8.pointer, p9.pointer);

Stack[FP]).dummy->this = MakeValue(ValNUMBER);
Stack[FP]).dummy->this->number = (NUMBER) count;

/*
PreStop()

Pre-def ined functicen to stop the current user program or statement. . We do
this by the crude method of forcing an execution abort (just like some sort
of fatal error).

*/
PreStop(par)
ParseThing * par; /* function call in parse tree */
{
fprintf(stderr, "\n");
PrintlLine();
fprintf(stderr, "stop() calied; ready for more input\n"):
ExecAbort(); ‘
}
/*

PreSystem()

1051
1052
1053
1054
1055
1056

1057

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1081
1092
1093
1094
1095
109€
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

211
Mon 14 Dec 1987 fapre.c pape 16

P;e-defined function to call the UNIX “sh" shell with a command line.
»®

PreSystem(par)

{

/*

ParseThing * par;: /* function call in parse tree */

if ((Stack[FP+1].dummy->th15 != NULL)
&& (Stack[FP+1].dummy~>this->type == ValSTRING))
{

system(Stack [FP+1]), dummy->this->string);

}
else
{
PrintLine():
fprintf(stderr,
"system failed: parameter must be a command string: ");
Printvalue(stderr, Stack[FP+1].dummy, YES);
fprintf(stderr, "\n");
ExecAbort();
}

PreTrunc()

Pre-defined function to truncate a number to its integral part. If a second
parameter.is given, then it must be a scale factor, (For example, a factor of
0.01 would truncate to the penny.)

*/
PreTrunc(par) :
ParseThing * par; /* function call in parse tree */
{
int error; /* YES means bad values */
long 1; /* integrai part */
NUMBER x; /* number to be converted */
NUMBER vy ‘/* scale factor */
error = NO; /* assume no errors. */

/* get number to be converted */

if ((Stack[FP+1].dummy->this "t= NULL)
&& (Stack([FP+1].dummy~->this->type == ValNUMBER))
{

x = Stack[FP+1].dummy->this->number;
}
else

error = YES;

/* get scale factor */
if (Stack[FP+2].dummy->this == NULL)
{

y = ONE;
} .
else if (Stack[FP+2].dummy->this->type == ValNUMBER)
{

y = Stack[FP+2]}.dummy->this->number;
if (y == ZERO)
error = YES:
}
else
error = YES;

/* do the conversion */

if (lerror)

1168
1169
1170
1174
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190

212
Mon 14 Dec 1987 fapre,c page 17
.= (tong) (x / y):

Stack[FP),dummy~>this = MakeValue{ValNUMBER):
Stack[FP).dummy=->this=->number = y * (NUMBER) 1{;

}
if (error)
PrintLine();
fprintf(stderr, “trunc failed: bad number parameters: ")
Printvalue(stderr, Stack[FP+1].dummy, YES);
fprintf(stderr, " and *);
Printvalue(stderr, Stack[FP+2].dummy, YES):
fprintf(stderr, "\n");
ExecAbort();
}
}
/n
PreType()

Pre-def ined function to return the type of an expression. If a second
parameter is .given, then it must be a string. We compare the type of the
first parameter with this string, and return TRUE if the types are. the same,
and FALSE if they are different.

PreType(par)

ParseThing * par; /* function call in parse tree */
{

char *. type; /* type string pointer */

if (Stack[FP+1].dummy->this == NULL)
{

type = "nulil";

}

else switch (Stack[FP+1].dummy~->this->type)

{

case (ValDuUmmy):
type = “"dummy";
break;

case (ValELEMENT):
type = "element";
break ;

case (ValNUMBER):
type = "number";
break;

case (ValSET):
type = usetu;
break;

case (ValSTRING):
type = "string";

break;
default:
PrintLine();
fprintf(stderr, "internal error: PreType value type = %d\n",
Stack[FP+1].dummy~->this->type);
ExecAbort():
break;
}

/* do we return the type, or compare it with another string? */

if (Stack{[FP+2].dummy->this == NULL)

{
Stack[FP].dummy->this. = MakeValue(ValSTRING):
Stack[FP].dummy->this->sign = 1;
Stack[FP].dummy->this->string. = CopyString(type);

}
else if (Stack[FP+2].dummy->this->type == ValSTRING)

1194
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
12086
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237

1238 °

1238
1240
1241
1242
1243
1244
21245
124¢
1247
1248
1249
1250
1251

1252

1253

1254

1255
1256
1257
1258
1259
1260

219

Mon 14 Dec 1987 fapre.c page 18

{
Stack[FP), dummy->this » MakeValue{ValNUMBER);
if (stremp(Stack[FP+2].cdummy=>thig-»string, type) =s 0)
Stack[FP].dummy->this~>number = TRUE:
else
, Stack[FP).,dummy->this~->number = FALSE:
else
{
Printline();
fprintf{stderr,
"type failed: second parameter must be a string or NULL:
PrintValue(stcarr, Stack[FP+2].dummy, -YES);
fprintf(stderr, *\n");
ExecAbort();
}
}
/:u

PreUnpack ()

Pre-defined function to return a value that looks l1ike the first parameter,
but with all strings replaced by a value that looks like the second parameter.
For each string, this is the reverse operation of "pack ()",

*/
PreuUnpack (par)

ParseThing * par; /* function-call in parse tree */
{

Stack[FP).dummy->this = UnpackValue(Stack[FP+1].dummy->this,
Stack [FP+2] . dummy~->this);

/:t
Prevalua()

Pre-defined value function. Manually try to parse.a string - into a value
structure.

WARNING:: This function was written to read back message and rule lists from
the user classifier system. It is5 not documented, and is subject to change.
* / : .

Prevalue(par)
: ParseThing * par; /* function call in parse tree */
{
char * cp;: /* a character pointer =/
int error; /*_YES means bad string */
error’ = NO; /* assume no errors */
if ((Stack[FP+1].dummy->this == NULL)
|| (Stack[FP+1].dummy->this->type != ValSTRING))
{
error = YES;
}
else
{
cp = Stack[FP+1].dummy->this->string;
Stack[FP].dummy->this = StringToValue(cp, cp, &%p);
if ((*cp) . t="/\0") /* did we use entire string? */
error = YES;
}

if (error)

PrintLine();

")-

1261
1262
1263
1264
1265

1266

1267

1268 -

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1278
1280
i281
1282
1283

Mon 14-Dec 1887 fapre.c page 19

fprintf(stderr, "value. failed: bad string parameter: ");
PrintVatue(stderr, Stack[FP+1].dummy, YES);
fprintf(stderr, "\n");

ExecAbort();

/*
PreWrite()

Pre-defined write function. Write out all of the parameters without adding
spaces, newlines, or. quctes to strings.

*/
PreWrite(par)

ParseThing * par; /* function call in parse tree *x/
{

int 1; /* index variabie */

for (i = (FP. + 1) ; . <=.8SP ; 1 ++)
PrintValue(stdout, Stack[i].dummy, NO);

OCONOCTHEWN =

Fri 11 Dec. 1987 fasub.c page 1

/*

fasub.¢ -- Support Subroutines

Keith Fenske

Department of Computing Science

The University of: Alberta

Edmonton, Alberta, Canada

T6G 2H1

Dgcember 1987

Copyright (c) 1987 by Keith Fenske. ~All rights reserved.

These are the ‘support subroutines for various nifty things. Most are called
by the pre-defined functions in the "fapre.c" module.

*/

#inciude. "fainc.h" /* our standard includes */
#include <ctype.h> . /* character types */
#inciude <math.h> /* math routines */

/»x

CheckSign()

Check the "sign" of a value structure. It should be zero for some value types,
and +1 or -1{ for others. '

This function could be generalized to check (for each value type) that the
fields which should be unused have their default values. The additional. CPU
time is probably not warranted in a production version.

. ‘

CheckSign(val) ‘
valueThirg * val; /* a value structure pointer */
{

if (val == NULL)
{

PrintLine(};
fprintf(stderr,
"internal error: CheckSign value pointer = NULL\Nn");
Execabort();
}

else switch (val->type)

case (VaiDUMMY):

case (VaiNUMBER) :
if (val->sign != Q)
{

PrintLine();
fprintf(stderr,
“internal error: CheckSign szign = %d not zero\n",
val->sign);.
; ExecAbort{();
break ;
case (Val1SET):
case {ValSTRING):
if (val->number 1= ZERD)

{
Printline();
fprintf(stderr, "internal. error: CheckSign number =:i");
fprintf(stderr, FORMAT, val->number);
fprintf(stderr, " not zero\n");

ExecAbort();

Fri 11 Dec 1987

fasub.c

page 2

if ((val->sign 1= -1) && (val->sign != 1))
{

PrintLine();
fprintf(stderr,

"internal error: CheckSign sign =
val->sign);

ExecAbort();
b
break;
default:
PrintLine();
fprintf(stderr,
val=->type);
ExecAbort();
break;

/*
Comparevalue()
Given two value structures,
CMPEQ
CMPGT
CMPLT
CMPNE

if
if
if
if

left = right
left > right
left < right

"internal error:

compare them or give up.

%d not +-1\n",

CheckSign value type = %d\n",

An integer is returned:

teft and right are not comparabile

We keep track of the sign of "left" 'and "right" so that for sets and strings
we can .compare: the positive parts and then reverse CMPGT and CMPLT results .if

necessary.
b 3

int Comparevalue(left, right, pattern)
ValueThing * left;
ValueThing * right;
int pattern;

int result;
int sign;

result = CMPEQ;
sign = i;

if (left == NULL)
{

if (right == NULL)
result = CMPEQ;
eise
result = CMPNE;

b
else if (right == NULL)
{

left value structure */
right value structure x/
YES if "#" allowed in strings */

result of comparison */
sign of comparison: -1 or +1 */

assume equal */
don’t reverse result */

ValNUMBER) && (right->type == valNUMBER))

ValSET) && (right->type == ValseT))

result = CMPNE;
}
else if ((left->type ==
{
if (1eft->number < right->number)
result = :CMPLT;
else if (left->number > right->number)
result = CMPGT;
else
result = CMPEQ;
)
else if ((left->type ==
{

CheckSign(left);
CheckSign(right);

216

217

Fri 11 Dec 1987 | fasub.c page 3

sign = left->sign;

if (left->sign t= right->sign)
{

result = CMPGT; /* sign may get reversed */
} ‘
else
{
ValueThing * 1p; /* lett element */
ValueThing *. rp; /* right element */
1Ip = left->next; /* first element on left */
rp = right->next; /* first element on right */
result = CMPEQ: /* assume equal */
while ((1p 1= NULL) && (rp != NULL))
{
result = ComparevValue(lp->this, rp->this,
pattern);
if (result != CMPEQ)
: break;
1p = 1p->next;
rp = rp->next;
}
if (result == CMPEQ)
{
if (1p != NULL)
result = CMPGT;
else if (rp != NULL)
result = CMPLT;
}
}
}
eise if ((left->type == ValSTRING) && (right->type == ValSTRING))
{

CheckSign(left);
CheckSign(right);

sign = left->sign;

if. (left->sign != right->sign)

{
result = CMPGT; /* sign may get reversed */
3
else
{
char * Ip, * rp; /* left, right pointers */
p left->string;

-
Rel
L]

right->string;

if (pattern)

¢ result = CMPEQ; /* assume equal */
Yhi1e ({((x1p) 1= '\6') &8 ((*rp) 1= ‘\O’))

if (((*1p) = ANYBIT)
8& ((*rp) 1= ANYBIT))
{

zf ((x1p) < (*rp)) .

result = CMPLT;
break;

}
else if ((*1p) > (*rp))
y)
result = CMPGT;
break;

280

elise

}

Fri 11 Dec 1887 fasub.c
}
1p ++;
rp ++;
}

page 4

/* at end-~of-string, ‘\0' < ‘¢§’ */

if. (result == CMPEQ)
{

if ((*1p) 1= "\0’)

result = CMPGT;

if ((*rp) 1= /\0')

else

int status;

status =

stremp(

if (status < 0)

r

esult =

result = CMPLT;

/* result from strcmp */

p, rp);

CMPLT;

else if (status > 0)

r
else
r

/* not comparable */

result = CMPNE;

esult =

esult =

CMPGT ;

CMPEQ;

/* reverse the meaning of "less than" and "greater than"? */

if (sign < 0)
{

switch (result)

case (CMPEQ):
return(CMPEQ);
break;
case (CMPGT):
return(CMPLT);
break;
case (CMPLT):
return(CMPGT);
break;
case (CMPNE):
return(CMPNE);
break;
default:
PrintLine() ;
fprintf (stderr,
“internal
‘ result);
ExecAbort() ;
break;

return(résu1t);

error:

ComparevValue result = %d\n",

281

Fri 11 Dec 1987 fasub.c page 5

/*
FindNumber()

Given the address of a string, try to find a number. We return the address
in the string after the number.

Note: This routine does NOT accept a ‘leading sign ("+" or "-"), because of
who catis it (StringTovalue, UnpackString).
*/
NUMBER FindNumber(cp, newcp)
char * c¢p; /* current string pointer */
char *_ * newcp; " /*.returned string pointer */
{
double atof():; /* ASCII to floating double */
char * new; /* our string pointer */
NUMBER result: /* our resulting number */
new = cp; /* starting address */

/* skip digits before decimal point */

while (isascii(*new) && isdigit(*new))
new ++;

/* skip decimal point (if any) and trailing digits */

if ((*new) ==.7.")
new ++;
while (isascii(*new) && isdigit(*new))
new ++;
}
/* skip exponent (if any) */
if (((*new) == ‘e’) || ((*new) == ‘E’))
{
new ++;
if (((*new) == ’'-7) || ((*new) == 7+7))
new ++;
while (isascii(*new) && isdigit(*new))
new ++;
}

/* convert ASCII to number ‘and return new string pointer. */

result = atof(cp);
(*newcp) = new;
return(result);

/*

PackValue()

Pack a value structure into a string. This is used to compress a set into a
truz bit string.: It has been defined to be quite general, although this
generality may not be useful. ‘

The "value" parameter may be NULL, a number, a set, or:-a string. The "pattern'

. parameter must have the same'structure. If "value" is a set, then "pattern"

may be a set.with ‘a similar but simpler structure (fewer levels), such as a
number or string.

Assume that "value" and "pattern" are both sets with identical structures.
Then, for each:NULL element in "value', the corresponding element.in "pattern”
is-converzed into a string and concatenated to this function’s result.

218

Fri 11 Dec 1987 fasub.c page 6

Non-NULL elements in "value" are converted to a. string that looks like the
"pattern' element. If a "value" element has a negative sign,

only preserved if the "pattern" element is
*

char * PackValue(cp, value, pattern)

char * cp; /*

ValueThing * value; /*

VailueThing * pattern; /*
{

char * new; /*

new = cp; /*

if (value == NULL)
{

if (pattern == NULL)

also negative.

then the sign is

where output goes */

value to be packed
pattern to be used

new output pointer

default to nothing

/* use pattern element instead */

new = PackValue(new, pattern, NULL);

>number) ;

*/
*/

*/
*/

/* find new string end */

{
/* do nothing */
}
else
{
}
}
eise if ((value->type == ValNUMBER) && (pattern == NULL))
{
sprintf(new, FORMAT, value-
new += strlen(new);
}

else if ((value->type == ValNUMBER) 8&& (pattern->type == ValNUMBER))

if (pattern->number < ZERO)

sprintf(new, FORMAT, va1ué->number);

else

sprintf(new, FORMAT,

new += strien(new);

}
else if ((value->type == ValSET) && (pattern ==.NULL))
{
ValueThing * val;
CheckSign(value);
if (value~>sign < 0)
(*new. ++). = /-7;
val = value->next;
while (val != NULL)
{
val val->next;
}
}

fabs (value->number));

/* find new string end */

/* current-part of "value" */

/* first value element */

new = PackValue(new, val->this, pattern);

else if ((value->type == ValSET) && (pattern->type == ValNUMBER))

ValueThing * val;

CheckSign(vatue);

if ((pattern->number < ZERO) && (value->s

(*new ++) = ./~’;
val = value->next;

while (val. != NULL)
{

val val->next;

/* current part of "value" ¥/

ﬁgn < 0))

/* first value element */

new = PackVailue(new, val->this, pattern);

220

221

Fri 11 Dec 1987 fasub.c page 7
}
}
else if ((value->type == ValSET) && (pattern->type == valSTRING))
{
ValueThing * val; /* current part of "value" */
CheckSign(pattern);

CheckSign{(value);
if ((pattern->sign < 0) && (value->sign < 0))

{(*new ++) = '-7;
val = value->next; /* first value element */
while (val != NULL)
{
new = PackValue(new, val->this, pattern):
val = val->next;
}
}
else if ((value->type == ValSET) 8&& (pattern->type == ValSET))
{
ValueThing * pat; /* current part of "pattern" */
ValueThing * val; /* current part of "value" */
CheckSign(pattern);
CheckSign(value);
if ((pattern->sign < 0) && (value->sign <-0))
(*new ++) = =~/
pat = pattern->next; /* first pattern element */
val =. value->next; /* first value element */
while ((pat != NULL) |} (val t= NULL))
{
if (pat == NULL)
{
new = PackValue(new, val->this, NULL);
val = val->next;
}
else if (val == NULL)
{
new = PackValue(new, pat=->this, NULL);
pat = pat->next;
}
else
{
new = PackValue(new, val->this, pat->this);
pat = pat-rnext;
val = val«>next;
}
}
}
else if ((value->type == ValSTRING) && (pattern == NULL))
(. .
CheckSign(value);
if (value->sign:< 0)
(*new ++) = -/,
strcpy(new, value->string);
new += strilen(new): /* find new-string end */
) i
else if ((value->type == ValSTRING) && (pattern->type == ValSTRING))
{
int j, k; /* string lengths */
char * pp; /* pattern string pointer */
char * vp; /* value string pointer */
iCheckSign{pattern);
CheckSign(value);

480 if ((pattern->sign < 0) && (value->sign < 0))

Fri 11 Dec 1987 fasub.c

(*new ++) = ‘=/;

pp .= pattern->string;
vp = value->string;

3 = strilen(vp);

page 8

value length */

k strlen(pp); /* pattern length */
if (j <= k) /* if value <= pattern */
{
strcpy(new, vp); /* copy value string */
new += j; /* new output pointer */
pp += j§i /* get extra from pattern */
for (5 J <k 3 ++)
(*new ++) = (*pp ++);
>
else /* if value > pattern */
{
for (= O §j <k ; § +4+)
(*new ++) = (*vp ++);
¥
>
else
{
PrintLine();
fprintf (stderr, "“pack failed: can‘t pack ");
Printvalue(stderr, value, YES);
fprintf(stderr, " into pattern ");
Printvalue(stderr, pattern, YES);
fprintf(stderr, "\n");
; Execabort();

/* put an end-of-string marker and return */

(*new) =" '\0’;
return{new) ;

/*
PrintString()

Print-a string (possibly quoted) using a given file pointer.

*/
PrintString(fp, cp, quote)
FILE * fp; /* a file pointer */
char * cp; /* string pointer */
int quote; /* YES if we quote strings */

zf (quote)

fprintf(fp, "%c", QUOTE);
while (*cp)

{
1f ((*cp) == '\n’)
fprintf(fp, "\\n");
else if ((*cp) == ‘\t’)
fprintf(fp, "\\t");
else if ((*cp) == ‘\\')
forintf (£p,: "\\\\");
etse if . ((*cp) == QUOTE)
fprintf (fp, "\\%c", QUOTE);
else
‘ fprintf(fp, "%c", (*cp));
CR ++;
>

fprintf(fp, "%c"., QUOTE);

222

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

591
592
593
584
595
596
597
598
599
600
601
602
603
604
605
605
607
608
609
510
611
612
613
614
615
616
617
618
619
620

622
623
624
625
626
627
628
629
€30

/*
Printval

else

ue()

Fri-11 Dec 1987

fasub.c page 9

fprintf(fp, "%s*, cp):

Recursively print a value structure.
"stdout"), and is responsible for any newlines before or after the output.

Unlike most subroutines,

The caller gives us a file pointer (like

the caller may pass us a dummy value structure. This

is provided as a courtesy only, due to the large number of Printvalue() calls.
. ‘

Printvail

ue(fp, val, quote)
FILE * fp;
valueThing * val;
int quote;
int comma;

ValueThing * new;

if (val
{

else

== NULL)

fprintf(fp, °NULL"):

CheckSign(val):
switch (val->type)

case (ValDUMMY):

/* a file pointer */
/* a value structure pointer */
/* YES if we quote strings */

/* "comma required" flag */
/* new value structure pointer */

Printvaiue(fp., val->this, quote);

break;

case. (ValNUMBER):
fprintf (fp,
break;

case (ValSET):

FORMAT, val->number);

if (val->sign < 0)
fprintf(fp, "~");

fprintf(fp,
comma = NO;

u{n);

new = val->next;

while (new !

{

= NULL)

if (comma)

)

if (quote)

fprintf(fp, ", ");
else

fprintf(fp, ",");

PrintvValue(fp, new->this, quote);
comma = YES;

new

3
fprintf(fe,
break;

case. (Val1STRING):

= new->next;

u}n):

if (val->sign < 0)
fprintf(fp, "-");
PrintString(fp, val->string, quote);

break;
default:

PrintLine();

fprintf(stderr,
"internal error: PrintvValue value type .= %d\n"

val-

>type);

223

631
632
633
634

224

Fri. 11 Dec 1987 fasub.c page 10

ExecAbort();
break ;

/*

;SkipSpace()

Given a string pointer, return a new pcinter which skips over any white space
(blanks, tabs, or newlines).

»

char * SkipSpace(cp)

char * cp; /* string pointer */

{
char * new; /* new string pointer */
new = cp;

while ‘(isascii(*new) & isspace(*new))

new ++;
>

return(new):

/w
StringToValue()

Given a string pointer, “try to parse the string as the definition of a single
data object (number,. string, set, or NULL value). This is a crude version of
the real YACC parser, and is used to take apart message and rule lists from
the user classifier system.

The following features are not supported:

-~'missing set elements are NOT converted to NULL values
- escape sequences are NOT allowed in:'strings

WARNING: This function was written to read back message and rule lists from

the user classifier system. It is not documented, and is subject to change.
x/

ValueThing * stringToValue(start, cp, newcp)
char * start; *. start of complete string */

char * cp; i /* where we start looking */

char * * newcp; /* where we return new pointer */
{ :

int error; /* YES means bad string */

char * new; /* new string pointer */

ValueThing * result; /* resulting value structure */

int sign; /* sign of result x/

error = NO; ‘ /* assume no errors */

new. = cp; /* start looking here */

result = NULL; -~ . /* assume nho result */

sign: = 1; /* assume positive sign */

new = SkipSpace!new); /* skip white space */

/* look for -a-sign */
it ((*new) == '\0’)
{

error = YES;

?1se if ((*new) == '+')

701
702
703
704
7085
706
707
708
709
710
AR
712
713
714
7156
716
717
718
719

720 ¢

721

722

723
724
725
726
727
728
729
730
731

. 732

733
734

©73%

736
737
738
739
740
741
742
743
744

746
747
748
749
750
751
752
753
754
755
756
757
758
759
. 760
761

763

. 764
765

766

767

768
769
770

Fri 11 Dec 1987 fasub.c page 11

new = SkipSpace(new+1);
?lse 1f ((*new) == ¢-~7)
new = SkipSpace(new+1);
sign = -1;
}
/* find the data type */

if (error)

/* do nothing at this level */

}
else if (((*new) == ‘n*) || ((*new) == 'N*))
/* must be the NULL vatlue */
if ((((*++new) == ‘u’) || ((*new) == "u’))
&& (((*++new) == 71") l ((*new) == ‘L))
&& (((*++new) == 71} ((*new) == ‘L*)))
{
new ++;
result = NULL;
}
else
error = YES;
}
else if (isascii(*new) 8& (isdigit(*new) [| ((*new) == + 7))
{
/* must be a number */
result = MakeValue(ValNUMBER):
result->number = FindNumber(new, &new) * sign;
}
else if ((*new) == *{’)

/* must be a set */
ValueThing * val;
new = SkipSpace(new+1):

result = val = MakeValue(ValSET);
val=->sign = sign;

1f ((*new) == ")) /* end of set? */
{
new ++;
}
else
{

while (YES)
{
val->next = MakeValue(ValELEMENT):
val = val=->next;
val->this = StringTovalue(start, new, &new);

if ((*new) == 7 7}
new ++; /* more elements */
else if ((*new) == /}’)
new ++; /* end of set */
break;
}
else
{

error = YES;
break ;

225

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

Fr{ 11 Dec 1887 fasub.c page 12
}
}
}
?159 1 (((*new) == ") || ((*new) == *\7'} || ((*new) == ’tr))
/* must -be a string */
char delim; /* string delimiter */

char * old; /* start
delim = *new ++;
old = new;
while (YES)
{
if ((*new) == '\0')
{

error = YES;
break;

ing address */

/* missing string delimiter */

else if ((*new) == delim)

break;
}
else
{
new ++;
}
}
if (lerror)
char * copy; /* copy

of . string */

result = MakeValue(ValSTRING);

result->sign = sign;
result->string = copy =

while (old != new)

GetMemory(new - old + 1);

(*copy ++) = (*0ld ++);

)
(*copy) = *\O";"
new ++; /* skip
}
else
error = YES;
if (error)

PrintLine():
fprintf(stderr,

over final delimiter */

"StringToValue failed: bad string parameter: ");

PrintString(stderr, start, YES);
fprintf(stderr, “\n");
ExecAbort();

}

(*newep) = SkipSpace(new);
return(result);

/*
UnpackString()

Given a string and a pattern value, attempt to take the string apart and create

a value structure that ‘looks 1ike the pattern.

The caller must give us the

226

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887

889

890

891
892
883
884
895
896
897
888
899
200
901
902
203
904
205
806
907

908

909
810

Fri 11 bac 1987

starting string pointer, and we return (as a parameter) the updated pofnter{
*/ ‘

fasub.c

page 13

ValueThing * UnpackString(cp, pattern, newcp)

char *.cp: /*
valueThing * pattern; /*
char * * newcp: /*

ValueThing * result; /*

starting string pointer */
pattern to be used */
where we return new pointer */

our rasuit */

int sign: /* sign of a value */

2F ((*ecp) == r\O’)

}
else {f

}
eise if

else if

else if

result = CopyValuelpattern);
(pattern == NULL)

result = NULL:
(pattern->type == ValNUMBER)

sign = 1:
if (pattern->number. < ZERO)
{

if ((*cp) == ‘+7)

cp ++;
eise if ((*cp) == ‘=)
{

sign = -1;
cp ++
}
}
result = MakeValue(VaiNUMBER):;

result->number = FindNumber(cp, &cp) * sign;

(pattern->type == ValSET)

ValueThing * new;
ValueThing * pat:

sign = 1;
CheckSign(pattern);
if (pattern->sign < 0)
{
if ((*cp) == 7+¢)
Cp ++;
else if ((xep) == ’-/)
{

sign = ~1;
cp ++;

}

new = result = MakeValue(ValSET);
result->sign = sign; '

3

pat = pattern->next;
while (pat !="NULL)
{

/* a new set */
/* current part of “pattern® */

/* a new set */

/* first pattern element */

new~->next = MakeValue(ValELEMENT):

new->next~>this = UnpackString(cp, pat->this, &cp);

new = . new->next;
pat = pat—>next:

}
(pattern->type ==:ValSTRING)
int j, k;

char * pp;
char * rp;

/* string lengths */
/* pattern pointer */
/* result pointer */

227

911
813
- 814

815
916

. 925

980

Fri 11 Dec 1987 fa

sign = 1;
CheckSign{pattern);

if (pattern->sign < 0)
{

if ((*cp) == '+
cp ++y
else if ({(*cp) =

sign = -
cp +*t;
3}
) N
result = MakeValue{ValST
resuit->sign =-'sign;

pp = pattern->string;
i = strien(ep);
k = strien{pp);

result->string = rp = Ge

if (§j <= k)
{
strepy(rp, cp);
cp += j;
pp - *=j;
rp 4= j;
for (5 J < k. ;
Ctrp ++)
b4
else /* j > k */
{
for (i =0 j <
{(*rp +=+)
b
(*rp} = '\O’;
}
else
{
PrintLine();
fprintf(stderr,
“internal erro:
pattern->type);
; ExecAbort();

/* pass pback new string pointer,

(*newep) = cp;

return(result);
}
/%
UnpackVaiue()

Given a value structure, return a new value structure which looks like the
old value,: except:that all strings have been broken apart by :a “"pattern®.
The result.of ‘this function is dynamic,

*/

ValueThing * UnpackvVaiue(value, pattern)

ValueThing * value;

“ValueThing * pattern;

VaIueThing * resuilt;
if (pattern == NULL)
{ S

C/* can’t unpack without

sub.c page 14

)

= /..1)

13
RING);

/* remaining input */
/* pattern length. */

tMemory(k + 1);

/* input smalier than pattern */

/* copy all input */

/* get.more from pattern */

)
= (*pp #+);

/* more input than pattern */

/* end result string */

Unpack$String pattern type =

and return value */

and may e assigned freely.

/* original value */
/* pattern structure x/

/* our result */

a pattern */

1228

981
982
283
984
985
986
987
988
989
980
981
992
983
994
295
986

987 .

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1014
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

1024

1025
1026
1027
io28
1029
1030
1031
1032

1033

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

1045
1046

else

else

{

~D
=
0
o

else

3

if

if

if

229
Fri 11 Dec 1987 fasub.c page 15

result = NULL;

(value == NULL)

/* replace NULL value with the pattern */
result = CopyValue(pattern);

(value->type == ValiNUMBER)

/* numbers are unchanged */

result = CopyValue(value);

(value->type == ValSET)

/* sets are unpacked recursively */

vValueThing * new; /* new set */
ValueThing * val; /* current part of "value" */

new = result = MakeValue(ValSET):
CheckSign{value);
result->sign = value->sign;

val = value->next; /* first value element */
while (val I's NULL)
{

new->next = MakeValue(ValELEMENT);
new~->next->this.= UnpackValue(val~>this, pattern);
new = new->next;

val = val->next;

3

(value->type == ValSTRING)

/* strings are so much work, we call somebody else */

char * cp: : /* dummy string pointer */
result = UnpackString(value->string, pattern, &cp):

CheckSign{value):
if ((result t= NULL) && (value->sign < 0))
{

CheckSign(result);
if (result->type == ValNUMBER)
result->number = - result->number;
else
resutt->sign = - result->sign;

Printline();

fprintf(stderr, "unpack failed: can’t unpack ");
PrintValue(stderr, value, YES):

fprintf(stderr, " using pattern ");
PrintValue(stderr, pattern, YES);
fprintf(stderr, "\n");

ExecAbort();

return(result);

OO WN —~

230

Sat 12 Dec 1987 fause.c page 1

/*

fause.c -- User Support

Keith Fenske

Department of: Computing Science
The University of Alberta
Edmonton, Alberta, Canada

T6G 2H1

December ‘1987

Copyright (c) 1987 by Keith Fenske. All rights reserved.

A1l knowiledge and special code necessary to support an interface to the. user’s
classifier system is buried in this module. These routines can be safely

omitted without affecting the language itself. (There are a few pre-defined
function references in the main code that would need to be commented out.:)

*/
#include "fainc.h" /* our standard includes */
#define MESSLIST 301 /* special code for "messlist" variable */
#define READY "ready" /* user classifier prompt for. input */
#define RULELIST 302 /* special-code for “"rulelist" variable */
char UserBuffer[MAXSTRING+1]; /* buffer for UserReceive() */
int UserFlagMess = YES; /* YES if “messlist" is invalid: */
int UserFlagRule = YES;: /* YES: if "rulelist" is invalid */
int UserReadFD = -1; /* user pipe read file descriptor */
int UserWritefD = -1 /* user pipe write file descriptor */
/*

PreClose()
Pre-defined function to close the connection to the user classifier system, if
it isn‘t already closed. . There are no parameters, and no result.

*/

PreClose(par)

ParseThing * par; /* function call in parse tree */
{

UserClose();
}
/*

Pref JagMess()

Pre-defined function to flag the user classifier message list ("messlist") as
invalid, so-that:it will be re-fetched upon the next reference. :This.is
necessary after sending any command that MAY change the message l1ist.

*/

PreF 1agMess(par)

ParseThing *. par; /* function call in parse tree */
{

UserFlagMess = YES;
Y
/*

PreFlagRule()

Pre-defined function to flag the user classifier rule list ("rulelist") as
invalid, so that it will be re-fetched upon the next reference. This is:

231
Sat 12 Dec 1987 fause.c ‘page 2

necessary after sending any command that MAY change the rule list.
* .

PreFlagRule(par)

ParseThing * par; ‘ /* function call in parse tree */
{
UserFlagRule .= YES;
}
/*
PreOpen()

Pre-defined function to .open a connection to the user classifier system, if it
isn‘t. already open. If the first parameter is given, then it must be the name
of the executable classifier file. If the second parameter is given, then it
must be the first argument to the user classifier. 1If either parameter is
missing, then the defaults 'are used.

* ‘

PreOpen(par)
ParseThing * par; /¥ function call in parse tree */
{
char * arg; /* argument to user classifier */
int error; /* YES means bad values */
char * file; ‘ /* file name of user classifier */
error = NO; /* assume no errors */

/* get file name */
if (Stack[FP+1].dummy->this == NULL)
{

file = UserFile; /* default */
3 ‘
else if (Stack[FP+1].dummy->this~>type == ValSTRING)
{

file = Stack[FP+1].dummy->this->string;
} ‘

else
error = YES;

/*. get first argument to classifier */
if: (Stack[FP+2].dummy->this == NULL)
(i

arg = UseraArg; /* default =/
}
else if (Stack[FP+2].dummy->this->type == ValSTRING)
{

arg = Stack[FP+2].dummy->this~>string;
>
else

error-.= YES;

/* open connection */
if (terror)

UserOpen(file, arg);
}

if (error)

PrintLine();

fprintf(stderr, "open failed: bad string parameters:. "):
Printvalue(stderr, Stack[FP+1].dummy, YES);
fprintf(stderr, " and "); :

PrintvValue(stderr, Stack[FP+2].dummy, YES);
fprintf(stderr, "\n"): -

Sat 12 Dec 1987 fause.c page 3

ExecAbort();

/*

PreReceive(’)

Pre-def ined function to receive a string from the user classifier system. If
a parameter .is given, then we keep waiting until we get this "expected"

response string, and nothing is returned to the caller. ‘(May get abused by the

/>

user.)
*/
‘PreReceive(par)
ParseThing * par; /* function call in parse tree */
{
char *. cp; /* a string pointer */
if (Stack[FP+1].dummy~>this == NULL)
{
cp = UserReceive();
Stack [FP].dummy~>this = MakeValue(ValSTRING);
Stack[FP].dummy->this->sign = 1;
Stack[FP].dummy->this->string = CopyString(cp);
}
else if (Stack[FP+1].dummy->this->type == ValSTRING)
(‘
UserReady(Stack [FP+1].dummy->this->string);
}
else
{
PrintLine();
fprintf(stderr,
"receive failed: parameter must be a string or NULL:
PrintValue(stderr, Stack[FP+1].dummy, YES);
fprintf(stderr, "\n"); ‘
ExecAbort();
}
}
/*
PreSend()
Pre~-def ined function to send a string to the user classifier system. : (May get
abused by the user.) ‘
*/
PreSend(par)
ParseThing * par; /* function call in parse tree */
{
if ((Stack[FP+1].dummy->this. 1= NULL)
8% (Stack[FP+1].dummy->this->type == ValSTRING))
{
UserSend(Stack[FP+1].dummy->this->string);
}
else
{
PrintLine();
fprintf(stderr,
"send failed: parameter must be a string: ");
Printvalue(stderr, Stack[FP+1].dummy, YES);
fprintf(stderr, -"\n");
ExecAbort();
}
}

")

232

Sat 12 Dec 1987 fause.c page 4

UserClose()

Tell the user classifier system to exit, and then close the pipe.
*/ ‘

UserClose()

/*

int status; /* status of called function */

if ((UserReadFD < 0O) &&.(UserWriteFD < 0))
return; /* already closed */

if- (UserTrace)
fprintf(stderr,

"trace: closing pipe to user'classifier system\n");

/* tell user classifer system to close up and exit */
/* we don’t care if there is a "ready" reply */

UserSend("close");
sleep(1); /* wait for child to exit */

/* invalidate our file descriptors */

status = close(UserReadFD);
if (status < 0)
{

perror("UserClose close UserReadfFD failed"):
exit(=1);

}

status = close(UserWriteFD);

if (status < 0)

{
perror("UserClose close. UserWriteFD failed"):
exit(-1);

}

UserReadfD = UserwWritefFD = -1;

UserDefine()

Define and initialize any functions to support the user classifer system.

also PreDefine() in the "fapre.c" file.)

x/

UserDefine()

{

SymboiThing * sym; /* ‘a symbol table pointer */

sym = GlobalAdd("ciose", SymFUNCTION);
sym=>count = 0;
sym->special = SpeCLOSE;

sym = GlobalAdd("messlist", SymGLOBAL):
sym->dummy = MakeValue(ValDUMMY);
sym->dummy->this = MakeValue(ValSET);
sym->dummy->this->sign = 1;
sym->special = MESSLIST;

sym = GlobalAdd("flagmess", SymFUNCTION):
sym->count = 0O;
sym->special = SpeFLAGMESS;

sym = GlobalAdd("flagrule", SymFUNCTION);
sym->count ='0;
sym->special = SpeFLAGRULE;

233

(See

Sat 12 Dec 1987

sym = GlobalAdd("open", SymFUNCT
sym->count = 2;
sym->special = SpeOPEN;

fause.c

page 5

I0N);

sym = GlobalAdd("receive", SymFUNCTION);

sym->count = 1{;
sym->special = SpeRECEIVE;

sym = GlobalAdd("rulelist", SymG
sym->dummy = MakeValue(ValDUMMY)
sym->dummy->this = MakeVailue(val
sym->dummy~>this->sign = 1;
sym->special = RULELIST;

sym = GlobalAdd("send", SymFUNCT
sym->count = 1;
sym->special = SpeSEND;

/*

UserError()

Print an unidentified string as an error

system,
*/

UserError(cp)
char * cp;
{

}

fprintf(stderr, "classifier erro

/*
UserFetchList()

The caller must have sent a command to the user classifier asking for the
We fetch all elements (either 1ist), and attach a new

message or rule list,
set structure to the symbol table entry.

*/

UserFetchList(sym)
Symbol1Thing * sym;
{

char * cp;

char * new;

ValueThing * val;

/* free old value */
FreeValue(sym->dummy->this):

/* create a new value */

sym->dummy->this = val = MakeVal
val->sign = 1;

while (YES)
{ :
cp = UserReceive();

if (strcmp(cp, READY) ==
break ;

LOBAL) ;

SET);

I0N);

message from the user classifier

/* a'string pointer */

r: ‘%s‘\n", cp);

/* a symbol table pointer */

/* string pointer */
/* new string pointer */
/* a.value structure pointer */

ue(VaisSET);

0)

val->next = MakeValue{ValELEMENT);

val = val->next;
val->this = StringToValu

if ((*new) != ’\0')
UserkError(cp);

e(cp, cp, &new);

/*.did we use entire string? */
/* no */

234

351
352
353
354

235
Sat 12 Dec 1987 fause.c page 6

/*

UserFetchMess()
Eetch a nevw copy. of the message 1ist from the user classifier system.
UserFetchMess(sym)

SymbolThing * sym; /* a symbol table pointer */
¢ /* reset fetch flag */

UserF lagMess .= NO;

/* ask for the message tist */

UserSend("messiist");

/* call common routine for fetching a set */

UserFetchList(sym);

/*
UserFetchRule()

Fetch a new copy of the rule list from the user classifier system.

*/ '

UserFetchRule(sym)
SymbolThing * sym; /* a symbol table pointer */
{

/* reset fetch flag */

UserFlagRule = NO;

/* ask for the rule list */
UserSend("rulelist");

/* call common routine for fetching a set */

UserFetchList(sym);

/*
UserOpen()

Open a pipe to the user classifier.system. We use two UNIX pipes, because
it‘’s simple, and it works.

UserOpen(file, arg)

char * file; /* file name of user classifier */

char * arg: /* argument to user classifier */
{

int fdal[2], fdb[2]; /* pipe file descriptors */

int status; /* status of -called function */

if ((UserReadfFD > 0) &3 (UserWriteFD > 0))
. return; /* already open */

if (UserTrace)
‘ fprintf(stderr,
"trace: opening pipe to user classifier ‘%s’\n", file);

Sat 12 Dec 1987

fause.c page 7

/* create the necessary pipes (two) */

status = pipe(fda);
if (status <:0)
{

perror{"UserOpen
exit(-1);

}

status = pipe(fdb);

if (status < 0)

{

perror("UserOpen
exit(-1);
}

/* fork a copy of "face"

status = fork();
if (status < 0)
{

perror{"UserDpen

exit(-1);
}
else if (status == Q)
{

/* child process

/* get face-to-classifier pipe */
pipe fda failed");
/* get classifier-to-face pipe */

pipe fdb failed");

to become the classifier x/
fork failed"):

*/

/* close unused ends of the pipes */

status = close(fda[1]);

if (status < 0)
{

perror("UserOpen close fdal1] failed"):

exit(-1);

}

status = close{fdb[0]);

if (status < Q)
{

perror("UserOpen close fdb[0] failed");

exit(-1);

}

/* replace standard input and output */

close(0);

status = dup(fda[0]);

if (status < 0)
{ !
perror("

exit(-1),

close(1);

status = dup(fdb[1]);

if (status < 0)
{

/* cliose stdin */
/* replace with pipe */

-~0pen dup stdin failed");

J/* close stdout */
/* replace with pipe */

perror("UserOpen dup stdout failed");

exit(-1);

3

/* execute the user classifier system */
/*if "execl" returns, it’s.an error */

execl(file, file, arg, 0);

perror(“UserOpen
PrintLine();
fprintf(stderr,

execl failed");

"open failed: parameters were ‘%s’ and ‘%s’\n",

file, arg);

exit(-1);

236

491
492
493

Sat 12 Dec 1987 fause.c

page 8

fda[0] failed");

fdb[1] failed");

read file descriptor */
write file descriptor */

child start running */

tell child to open up */
should be ready now */

else
{
/* parent process */
/* close unused ends of the pipes:*/
status = close(fdal[0]);
if (status < O)
{
perror("UserOpen close
exit(-1);
)
status = close(fdb[1]);
if (status < 0)
{
perror("UserOpen close
exit(~1);
}
UserReadFD = fdb[0]; /* our
UserWriteFD = fdal1]; /* our
sleep(1); /* let
/* UserSend("open"); */ /*
UserReady(READY) ; /*
}
}
/*

UserOpName()

The "name" executable operator found a global variable marked "special".

must.be a special user classifier variable.
system if necessary.
*

UserOpName(svm)
Symbo1Thing * sym;

/* a symbol table pointer */

/* only "messlist" and "rulelist" are legal row */

switch (sym->special)

case (MESSLIST):
if (UserFlagMess)
UserFetchMess(sym);
Stack[SP].dummy->this =
Stack[SP].free = NO;
Stack[SP].owner = NULL;
break ;
case (RULELIST):
if (UserFlagRule)
UserFetchRule(sym);
Stack[SP].dummy->this =

Stack[SP].free = NO;
Stack[SP].owner = NULL;
break;
default:
PrintLine();
fprintf(stderr,
"internal. error:
sym->special);
ExecAbort();
. break;
-2

UserDpName symbol

sym-=>dummy->this;

/* not assignable */

sym=>dummy->this;

/* not assignable */

special =

This

Re-fetch it from the classifier
(A dummy stack element is ready for the value.)

%d\n",

237

238
Sat 12 Dec 1987 fause.c page 9
/*
UserReady()
Call this subroutine after sending a command to the user classifier system,

and the only acceptable response is "ready" (or whatever the final prompt
string 1s chosen to be).
*®

UserReady(string)

char * string; /* expected response string */
{

char *-cp; /*.a string pointer */

while (YES)
{

cp = UserReceive(): /* receive a line */
if (stremp(cp, string). =='0)
break;
UserError(cp); /* must be an error message */
}
}
/*

UserReceive()

Receive a line from the user classifier system. Return the address. of the
string (in our static buffer) to the calier. The string does not include the
newiine character.

*/
char * UserReceive()
{
char * cp; /* a string pointer */
int status; /* status of called function */
if (UserReadFD < Q) ‘
UserOpen(Userfile, UserArg);
/* read the pipe, one byte at a -time, until a newline */
/* sleep(1); */
cp = UserBuffer; /* start here *x/
while (YES)
{
status = read(UserReadfFD, cp, 1):
if (status t= 1)
{
perror(“UserReceive read failed");
exit(~1);
}
if ((*cp) == '\n’)
break;
else
cp +k
;
(*ep) = ‘\0’; /* terminate string with null */
if (UserTrace)
fprintf(stderr, “"trace: received '%s’\n", UserBuffer);
/* sleep(1); */
/* return address of buffered string */
return(UserBuffer);
}
/*

UserSave()

631
632
633
634
635

239
Sat 12 Dec 1987 fause.c page 10

The pre-~defined save() function found a global variable that it does not
understand (because the "special" flag is non-zero). 'We convert this variable
into the proper format for a user classifier function call.

*/
UserSave(fp, sym)
FILE * fp; /* file pointer */
Symbol1Thing * sym; /* a symbol table pointer */
{
char * fun; ./* pointer to function name */
/* only "messlist" and "rulelist" are legal now */
switch (sym->special)
case (MESSLIST):
fun = "message";
break;
case (RULELIST):
fun. = *rule®;
break ;
default:
PrintLine();
fprintf (stderr,
"internal error: UserSave symbol special = %d\n",
sym->special);
ExecAbort();
break;
}
/* both "messiist" and "rulelist" must be sets */
1f ((sym=->dummy == NULL)
(sym->dummy~->this ==-NULL)
(sym->dummy~->this->type != ValSET))
{
/* must be some mistake, save unchanged */
fprintf(fp, "%s := ", sym->name);
Printvalue(fp, sym->dummy. YES);
fprintf(fp, "; # warning, expecting a set\n");
}
else
{
ValueThing * val; /* pointer to set element */
/* we have a legal set to work with */
fprintf(fp, "\n# saving ‘%s’\n", sym->name);
val = sym->dummy->this->next;
while (val = NULL)
o
fprintf(fp, "%s(", fun):
Printvalue(fp, val->this, YES);
fprintf(fp, ");\n");
val = val->next;
3
fprintf(fp, "# end of ‘%s’\n\n", sym->name);
}
}
/*

UserSer:d()

Send-a -string followed by a newline to the user classifer system. We add the
newline, not the caller,

701
702
703
704
705
706
707
708
708
710
714
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

Sat 12 Dec 1987 fause.c page 11
*/
UserSend(string)
char * string; /* some text string */
{
int length; /* length of string */
int status; /* status of called function */

if (UserWriteFD < 0)
UserUpen(UserFile, UserArqg);

/* steep(1); */
if (UserTrace)

fprintf(stderr, “"trace: sending '%s’\n", string);
/* send the string, followed by a newline */

length = strilen(string);
status = write(UserWritefFD, string, length);

if . (status != length)

{
perror("UserSend write string failed"):
exit(=1);

}

status = write(UserWritefFD, "\n", 1);

if (status !'= 1)

{

perror("UserSend write newline faijled");
exit(=1);

Y
/* sleep(1); */

240

DOXNRNUTH WA -

241
Tua: 29 Dec {987 fayac,y page 1

%{

/%

fayac.y =- YACC Grammar

Keith Fenske

Department of Computing Science

The University of Alberta

Edmonton, Alberta, Canada

T6G 2H1

December 1987

Copyright (c) 1887 by Keith Fenske. A1l rights reserved,
This is the. YACC grammar. It has been greatly simplified by the following
assumptions:

This program will be used in an interactive environment.

Exactly one function definition or complete executable statement is parsed on
each call to yyparse().

wWhen a syntax error is found, a message is printed, and . all im-it is skippad
until the next semicolon (:). At this point, it should be =:iv:c o call ths
parser for the next statement.

Statements alwayc end with a semicolwit. The semicolar .= 0t used anywhere
else in the grammsr., Hence, YACC will safely parco a statement without
fetching a look-ati2ad token from LEX (which would be lost on the next call).

Anything and everything can be re-defined at any time. . There is'no required
ordering for the input statements. This means that the semantic actions can
not and should not do type checking. Also, this removes the compile-time
distinction between functions and procedures.

Operators are assigned priorities with the %left and %right deciarations.
This avoids having to separate the rules into long unambiguous productions
(as is typical. in Pascal language definitions):

Assignments are just the lowest-priority operator. . They are implemented by
keeping track of the owner of each data value, so that one extra level of
indirection can always be removed.

The only control statements are "for", "if", "repeat*, and "while". Everything
else is done by pre-defined functions. :
=/
#include "fainc.h" /* our standard includes */
Symbo1Thing * sym; /* a symbol table pointer */
Symbol1Thing * ThisFunction; /* current function symbol. */
%2}

. %start program

%token TokAND TokASSIGN TokBREAK TokBY TokDIV TokDO TokELIF TOKELSE TokEND
%token TOKERROR TokFOR' TokFROM TokFUNCTION TokIF TokMOD ;

%token <string> TokNAME

%token TokNOT TokNULL

%token <number>’' TokNUMBER

%token .TokOR . TokPOWER

%token <count> TokRELOP

%token ‘TOKREPEAT TokRETURN

%token <string>. TokSTRING

140

Tue 29 Dec 1887

%token TokTO TOokTHEN TokUNTIL, TokWHILE

%right TokASSIGN
%1eft TokOR
%left TokAND
%left TokRELOP
%’Ieft Lt)
%'Ief't 2okt l/l
%right TokNOT
%right TokPOWER
%right ‘[~

TokDIV TokMOD

fayac;y " page 2

242

%type <parse> expr expr_index expr_pars expr_plist expr_set expr_slist expr_term

%type <parse>
%type <parse>
%type <count>
%type <parse>
%type. <parse>
%type. <parse>
%type <parse>
%type <parse>

for_by for_do for_from f
func_body

func_head. func_pars
if_else if_stmt if_then
repeat_stmt

return_stmt

statement stmt_1list
while_do while_stmt

%union {
int ‘count;
NUMBER number;
ParseThing * parse;
char * string;

%%

program
{ /% prevents
| function '’
{ YYACCEPT; }
| statement ;¢

{

ParseTree = MakeParse(OpSTMT, NULL, $1, NULL, NULL);

YYACCEPT;
y

| error err_program ’:
{ YYABORT; }

function

ThisFunction~->count = $3
ThisFunction->parse = $4
LocalHead = LocaiTail =

or_stmt for_to

/* YACC stack value */

/* if an integer */

/* if a number */

/* if a parse -tree node */
/* if a string */

an error on end-of-file */ }

‘

TokFUNCTION func_name func_head func_bocly TokEND
{

| TokFUNCTION error arr_function ’;’

{ YYABORT; }

TokNAME
{

func_name

LocalHead = LocalTail = MakeSymbo1(SymLOCAL);
LocalHead~>name = CopyString($1);

ThisFunction. =

if (ThisFuncti

else

,(.

ThisFunction = GlobalAdd($1,

GlobalLook ($1);
on == NULL) -
SYmFUNCTION) ;

/* free old definition (if any) */

FreeValue(ThisFunction->dummy) ;

func_head

func_pars

func_b&dy

243

Tue 29 Dec 1987 fayac.y page ‘3

FreeSymbol(ThisFunction->1local);

FreeString(ThisFunct ion~->name);

FreeParse(ThisFunction->parse);
} '
ThisFunction->count = 0;
ThisFunction->dummy = NULL;
ThisFunction->free = YES;
ThisFunction->1ocal. = LocalHead;
ThisFunction->name = $1;
ThisFunction->offset = 0;
ThisFunction->parse = NULL;
ThisFunction->special = 0O;
ThisFunction->type = SymFUNCTION;
}

{ $%$ = 0; 2}

/(1 4)
{ %% =0; 1}

‘(' func:pars ‘)’
{ 8% =%2;)

‘(’ error err_func_paren ‘;’
{ YYABORT; }

Tok NAME -
{
/* first parameter passed by value */
$% = 1; ;

sym = LocalAdd(%1);
sym->free = YES;
sym->offset = $%;

}

!*7 Tok NAME

{ . i
/* first parameter passed by address */
$$ = 1;

sym: = LocalAdd($2);
sym->free = NO;
sym->offset = $%;

}

‘* error err_func_star ‘;’
{ VYABORT; ?}
func_pars /,’ TokNAME
{

/* following parameter passed by value */
$% = $1 + 1,

sym = LocalAdd($3);

sym->free = YES;

sym->offset = $%;

}

func_pars -/ ,’ “*’ TokNAME
{

/* following parameter passed by address */
$$ = $1 + 1;

sym = lLocalAdd($4);

sym->free = NO;

sym->offset = $%;

func_pars -/ ,’ ‘*’ ercor err_func_star ‘'
{ YYABORT: }

func_gars ‘,’ error err_func_comma ’;’
{ YYABORT; '}

{ $% = NULL; }
TOKASSIGN stmt_1ist
{ %% = $2;)

stmt_list

statement

expr

Tue 29 Dec 1987 fayac.y - page 4

TokDD stmt_list
{'$% = $2;)

statement

{
if ($1 == NULL)

$$ = NULL;
else

$$ = MakeParse(OpSTMT, NULL, $1, NULL, NULL);

stmt_tist '’ statement

{
if ($1 == NULL)
$$ = $3;
else if ($3 == NULL)
$% = $1;
else
$$ = MakeParse(OpSTMT, $1, $3, NULL, NULL):
Y

{ $$ = NULL; '}

expr

{ 3% = $1;°)
for_stmt

{ 8% = 81;)
if_stmt

{ 8% = 81;)
repeat_stmt

{ 8% = 34;)
return_ simt

: }
while st

{ }

expr__iarm .
{ %% = 81;)
TokNOT expr
{ $$ = MakeParse(OpNOT, $2, NULL, NULL, NULL):.)
TokNOT error err_expr_not ‘;’
{ YYABORT; }
‘+/ axpr %prec TokNOT
{ %% = $2;)
‘+/ error err_expr_plus ‘;’
{ YYABORT; }
‘=’ expr %prec TokNOT

{ $%$ = MakeParse(OpNEGATE, $2, NULL, NULL, NULL): }

‘=’ error. err_expr_minus ‘;“

{ YYABORT; }
expr ‘*’ expr

{ $$ = MakeParse(OpSTAR, $1, $3, NULL, NULL); }
expr ‘*’ error err_expr_star ‘;’

"~ { YYABORT; }

expr: ‘+’ expr

{ $$'= MakeParse(OpPLUS, $1, $3, NULL, NULL);)}
expr '+’ error:err_expr_plus ‘;’
: { YYABORT; }
expr ‘-’ expr

{ $% = MakeParse(OpMINUS, $4, $3, NULL, NULL); }
expr: ‘-’ error err_expr_minus ;'

{ YYABORT; }
expr- ‘/’ expr'

{$% = MakeParse(DpSLASH, $1, $3, NULL, NULL); }
expr “‘/’ error err_expr_slash ’;’

{ YYABORT;)}

244

245

Tuc 29 ‘Dec 1987 fayac.y ‘page 5
284 | expr TokAND expr
282 {' $$ = MakeParse(OpAND, %1, $3, NULL, NULL);)}
283 | expr TokAND error err_expr_and ’;’
284 { YYABORT; }
285 | expr TokASSIGN expr
286 { $% = MakeParse(OpASSIGN, $1, $3, NULL, NULL): }
287 | expr TokASSIGN ‘error err_Bxpr_assign ‘;’
288 { YYABORT;)
289 | expr TokDIV expr
280 { $% = MakeParse(0OpDIV, $1, $3, NULL, NULL): ?}
291 | expr TokDIV error err_expr_div '’
292 { YYABORT;: }
283 | expr TokMDD expr
294 {:$$ = MakeParse(OpMOD, $1, $3, NULL, NULL);: }
295 | expr TokMOD error err_expr_mod /;’
296 { YYABORT; }
297 | expr TokOR expr
298 { $$ = MakeParse(OpOR, %1, $3, NULL, NULL); }
299 | expr TokOR error err_expr_or *;’
300 { YYABORT; }
301 | expr TokPOWER expr
302 { $% = MakeParse(OpPOWER, $1, $3, NULL, NULL); }
303 | expr. TOokPOWER error: err_expr_power ’;
304 { YYABORT; }
305 | expr TOKRELOP expr
306 { $%-= MakeParse($2, $1, $3, NULL, NULL);)
307 | expr TokRELOP error err_expr_relop
308 { YYABORT;
309 | 7 expr ')
310 { 3% =3%2: 7}
214 | ‘(' error err_expr_paren ;'
212 { YYABORT; >
313 | ¢’ expr_set ‘}’
314 { $% = MakeParse(OpSET, $2, NULL, NULL, NULLJ;)
315 | “{’ error err_expr_set ’;’
316 {: YYABORT; .}
317 | expr_index ‘1‘
318 {88 =81,)
319 | expr_index error err_expr_index ‘;’
320 { YYABORT; }
321 :
322
323 expr_set :
324 { 8% = NULL; }
325 | expr_siist -
326 {38 =81, }
327 H
328
329 expr_slist ;. expr
330 { $% = MakeParse(OpCONCAT, '$1, NULL, NULL, NULL) .)
331 | expr 7,
332 {
3833 /* "{expr,}" must be the same as:"{expr ,NULL}" */
334 $$ = MakeParse(OpCONCAT, $1,
335 MakeParse(OpCONCAT,
336 MakeParse(OpNULL, NULL, NULL, NULL, NULL),
337 NULL, "‘NULL, NULL),
338 NULL, NULL);:
339 }
340 | expr /.’ expr_slist
341 {:$$ = MakeParse(OpCONCAT, $1, $3, NULL, NULL): }
342] /., expr_slist ‘
343 {
344 /* "{,expr_slist}" must be “{NULL ,expr_slist}" */
345 3 =" MakeParse(OpCONCAT,
346 MakeParse(OpNULL, NULL, NULL, NULL, NULL),
847 ’ $2, NULL, NULL);
348 ’ }
349 | 7.’

350 {

expr_index

expr_term

expr_pars

expr_plist

Tue 28 Dec 1987 fayac.y page 6

/* "{,}" must be the same as "{NULL,NULL}" */

$$ = MakeParse(OpCONCAT,
MakeParse(OpNULL, NULL, NULL, NULL, NULL),
MakeParse(OpCONCAT,

246

MakeParse(OpNULL, NULL, NULL, NULL, ‘NULL),

NULL, NULL, NULL),

NULL, NULL);

}
expr ‘[’ expr

{ $$ = MakeParse(OpINDEX, $1, $3, NULL, NULL); 2
expr ‘[’ expr ‘:’ expr

{ $% = MakeParse(OpINDEX, $1, $3, $5, NULL); }
expr ‘[’ error err_expr_index .‘;’

{ YYABORT; } :
expr_index !,’ expr

{ $% = MakeParse(OpINDEX, $1, $3, NULL, NULL);.}
expr_index ’,’ expr ‘:’ expr

{ $$ = MakeParse(OpINDEX, $1, $3, '$5, NULL); }
expr_index ’',’ error err_expr_index ‘;’

{ YYABORT; .}
TokNAME

{
sym = LocallLook($1);
if (sym == NULL)
sym = GlobalLook($1);
if (sym == NULL) ‘
sym = GlobalAdd($1, SymGLOBAL);
$$ = MakeParse(OpNAME, NULL, NULL, NULL, NULL);
$$->symbol = sym;
}

TokNAME ‘{’ expr_pars ')’
{

sym = GloballLook($1);
if (sym == NULL)

sym: = GlobalAdd($1, SymGLOBAL);
$$ = MakeParse(OpFUNCTION, $3, NULL, NULL, NULL);
if ($3 t= NULL)

$$->count = $3->count;
$$->symbol = sym;
}

TOKNAME ‘(’ error err_func_paren ’;’

{" YYABORT; }

TokNULL

{:$% = MakeParse(OpNULL, NULL, NULL, NULL, NULL):

TokNUMBER
{

$$ = MakeParse(OpNUMBER, NULL, NULL, NULL, NULL);
$$->number = $1;

}

TokSTRING
{

$$ = MakeParse(OpSTRING, NULL, NULL, NULL, NULL);
$$->string = $1;
}

{ $% = NULL; }
expr_plist

{ $% = $1; 2}
expr

{

$$ = MakeParse(OpPAR, NULL, $1, NULL, NULL): -
$$->count = :1; :

)

for_stmt

for_from

fOl"_LO

247

"“Tue 29 Dec 1987 fayac.y page 7

3

‘! expr

{

/* ",expr" is "NULL,expr" */

$%$ = MakeParse(OpNULL, NULL, NULL, NULL, NULL);
$% = MakeParse(OpPAR, NULL, $$, NULL, NULL);
$$->count = 1;

$$ = MakeParse(OpPAR, $%, $2, NULL, NULL);
$$->count = 2;

expr_plist-’,’ expr
{

$$ = MakeParse(OpPAR, $1, $3, NULL, NULL);
$$->count = $1->count + 1;

expr_plist '’/

/* ‘expr_plist," is "expr_plist,NULL" */

$% = MakeParse(OpPAR, $1,
MakeParse(OpNULL, NULL, NULL, NULL, NULL),
NULL, NULL):

$$->count = $1->count + 1;

{

/* MM s "NULL NULL™ */

$$ = MakeParse(OpNULL, NULL, NULL, NULL, NULL):

$$ = MakeParse(OpPAR, NULL, $$, NULL, NULL);

$$~->count = 1;

$$ = MakeParse(OpPAR, $%,
MakeParse(OpNULL, NULL, NULL, NULL, NuLL),
NULL, NULL);

$$->count = 2;

TokFOR “TokMNAME for_from for_to for_by for_do TokEND
{

sym = Locallook($2);
if (sym == NULL)

sym = GlobalLook(%$2):
if (sym == NULL)

sym = GlobalAdd($2, SymGLOBAL):
$$ = MakeParse(OpFOR, $3, %4, $5, $6);
$$->symbol. = sym;
}

TokFOR error err_for ‘;’
{" YYABORT; }

{ $%$ = NULL; }
TokASSIGN expr

{ $% ="%2;}
TokASSIGN error err_for_from /;°’
YYABORT; }
TokFROM expr
{ $% = $2; ?
TokFROM error err_for_from ‘;’
YYABORT; -}
{ %% .= NULL; }
TokTO expr
{ 3% = %$2; }

TokTO error err_for_to ;'
" { YYABORT; }

for_by

for_do

if_stmt

if_then

if_else

repeat_stmt

return_stmt

while_stmt

while_do

err_expr_and

Tue 29 Dec 1987 fayac.y page 8
{ $% = NuLL; }

TokBY expr
{ %% = $2; }

TokBY error err_for_by ’:’
{ YYABORT; }

{ $% ="NULL; }
TokDO . stmt_tlist
{ 3% = %2;)}

Tok IF expr if_then if_else TokEND

{ $$ = MakeParse(OplF, $2, $3, $4, NULL);)}
TokIF error err_if /;’

{ YYABORT; }

{ $$ = NULL: }
TOKTHEN stmt_1list
{ %% = %2: }

{ 8% = NULL; ?}
TokELSE stmt_list
{ $% = $2; }
TokELIF expr if_then if_else
$$ = MakeParse(OpIF, $2, $3, $4, NULL);)}
TokELIF error err_if_elif. *;’
YYABORT; }

TOkREPEAT stmt_1ist TokUNTIL expr

{ $% = MakeParse(OpREPEAT, '$2, $4, NULL, NULL); }
TOKREPEAT stmt_list TokUNTIL ‘error err_rep_until ’;’/

{ YYABORT; }
TokREPEAT error err_repeat ’;’

{ YYABORT; }

TOKRETURN
{ $% = MakeParse(DpRETURN, NULL, NULL, NULL, NULL);

TokWHILE expr while_do TokEND

{ $% = MakeParse(OpWHILE. $2, $3, NULL, NULL); '}
TokWHILE error err_while /;’

{ YYABORT; 1}

{ $$ = NULL; }
TokDO stmt_1list
{85 =%2; }

{ skippy("error after ‘and’ or ‘&’ in .expression");

}

)

248

7249
Tue 29 Dec 1987 fayac.y page S

561 err_expr_assign :

562 { skippy("error after ':=‘ in expression");)}
563 H

564

565 err_expr_div :

566 { skippy("error after ‘div’ in expression"); }
567 H

569 err_expr_index :
570 { skippy("error after ‘[’ or ’,’ in subscripted expression");)}

573 err_expr_minus
574 { skippy("error after '-’ in expression");)}

577" err_expr_mod
578 { skippy("error after 'mod’ or ‘%’ in expression"); }

581 err_expr_not
582 { skippy('error after ‘not’ or ‘=’ in expression®): }

585 err_expr_or
586 { skippy("error after ‘or’ or ‘|’ in expression"); }

589 err_expr_paren
590 { skippy("error after '(’ in expression");:)}

593 err_expr_plus
: { skippy("error after '+’ in expression"):)}

587 err_expr_power
598 { skippy(“error after ‘**‘ or '~/ in expression"): }

601 err_expr_relop

602 { skippy("error after relational operator in expression");)}
603 : ‘

605 err_expr_set

606 { skippy('error after ‘{‘’ in set expression"): }

609 err_expr_slash :
610 { skippy("error after ’/‘ in.expression"}: }

613 err_expr_star
614 { skippy("error after. '*’ in expression"); }

617 err_for :
618 { skippy("error after ’‘for’ in for statement"):; }

621 err_for_by
622 { skippy("error after ’‘by’ in for statement"); }

625 err_for_from
626 { skippy("error after ‘from’ in for- statement"); }

629 err_for_to
630 { skippy('error after ‘to’ in for statement"):)

Tue 29 Dec 1887 fayac.y page 10

err_function

250

{ skippy("error after ‘function’ in function definition"):

err_func_comma
{ skippy(“"error after ‘,’ in function parameters"); }

err_func_paren
{ skippy("error after '(’ in function parameters"): }

err_func_star
{ skippy("error after ‘*‘ in function parameters");)}

err_if
{ skippy("error after ‘if’ in if statement"): }

err_if elif
{ skippy("error after “elif’ in jf statement"); }

err_program

err_repeat
{ skippy("error after ‘repeat’ in repeat statement"); }

err_rep_until
{ skippy("error after ‘until’ in repeat statement");)}

err_while
{ skippy("error after ‘while’ in while statement"); }

%%

/*
skippy()

Because of a syntax error, we will now start skipping until we find a semicolon
in the input. The caller gives us an error message to print first.
*

sk ippy(cp)

char * cp; /* character string pointer */
{

yyerror{cp);

yyerror("skipping to next semicolon.’;’");

/*
yyerror()

Print. a YACC-generated error message.

*/

yyerror(string)
char * string; /* some error message */
{

}

{ skippy("input must be an executable statement or function definit

251
Tue 29 Dec 1987 fayac.y page 11

701 PrintLine(); ‘
702 fprintf(stderr, "%s\n", string);

703)

CONOAUIDWUN

Mon 14 Dec 1987

/*

kpr.c -- Keith’s: Print Program

Keith Fenske

Department of Computing Science
The University of Alberta
Edmonton, Alberta, Canada

T6G 2H1

December 1987

Copyright (c) 1987 by Keith Fenske.

kpr.c

252

page 1

A1l rights reserved.

Print a file listing in a format acceptable to. the Faculty of Graduate Studies

and Research.

options:
-N
number the lines. Default
~p<number>
first page number. -Default
~s

skip to a new sheet of paper for each file.

only to the next side.

A1l other arguments must be file names.
fed directly into "mpr"

skip to physical

9 single spacing, ignore MTS
*/
#include <stdio.h> /*
#include <sys/types.h> /*
#include <sys/stat.h> /*
#include <time.h> /*
#define PAGEGAP O /*
#define PAGELEFT 83 /*
#define TITLEGAP 1 /*
#define TITLELEFT 32 /*
#define TEXTGAP 2 /*
#define TEXTLEFT & /*
#define TEXTLINES 70 /*
/* global variables */

int Numberflag = 0O; /*

int. PageNumber = 1; /*

int SkipFlag = O; /*
/* main program-.*/
main(argc, argv)

int argc; /*

char * argv[]; /*
{

int-i; /*

/* set page printer font and

without running "xp" first.
control characters are used (first column):

This is similar. to the standard UNIX "ph" utiltity, but has fewer

is no 1line numbers.

is 1.

Ppefault is to skip

The output from this program should be

The following MTS carriage

top of next page

lines per:page count

standard 1/0 */
for last modify time */
for last modify time. */
time buffers */

lines before page number */
spaces before page number */
lines after: page before title */
spaces before title */

lines after title before text */
spaces before text */

text lines per page */

non-zero if line numbers */
first page number */
non-zero if skip sheet */

number of arguments */
argument strings */

index variable */

format */

253

Mon 14 Dec 1987 kpr.c page 2

printf ("$**$ OVERLAY=NONE\n"):
printf("$**$ FORMAT=FMTGH1 FONTNEXTIMAGE=MEDIUM SKIPTO=NEXTSHEET\n"):

/* process command 11ine arguments */

for (i =1 7 1 < arge ; 1 ++)

ZF (argvlil{O] == ’~1)

}
else
{
}
}
}
/*
ListFile()
Given a file name, list

*/

ListFile(name)
char * name;

I3

1

switech (argv[il[1])
{

case (‘n’'):
case ('N’):

NumberFtlag = 1;
break;

case (‘p’'):

case ('P’):

1

PageNumber = atoi(&argv[i)[2]);
break; :

case ('s’):

case (’'S’):
SkipFlag = 1;

break:
default:
fprintf(stderr, "kpr: unknown flag: ‘%s’\n",
argv(il):
exit(~-1);
break;
)

ListFile(argvl[il);

the contents of the file.

/* file name */

int c; /* input character =/

int cotumn; /* current output column (tabs) =/
FILE * fp; /* file pointer */

int i, j; /* index variables */

int line; /* file line number */

struct stat modify; /* last modify buffer */

int page; /* local page number */

int “status;

/* status of called function */

char time_day[9]; /* time string buffers */
char time_month[8];
char time_time[8];
char time_week[8];
char time_year[9];

char time[99];

/* open file *x/

fp = fopen(name,

if (fp == NULL)
{

/* last modify time string */

"f‘") :

fprintf(stderr, "kpr: can’t open ‘%s’ for reading\n*, name);

return;

141
142
143
144
145
146
147
148
149
150
151
1152
153
154
186
156
157
158
159

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
178

181
182
183
184
185
186
187
188
188
190
191
192
193
194

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

Mon 14 Dec 1987 kpr.c page 3

/* get last modify time and reformat it */

status = stat(name,

if (status !I= 0)
{

fprintf(stderr, "kpr: can’t get file status for *%5\n", name):
fclose(fp):

return;

}

gmodify);

sscanf (asctime(localtime(&modify. st_mtime)), "%s %s %s %s %s",

time_week, time_month, time_day, time_time, time_year);
sprintf(time, "%s %s %s %s", time_week, time_day, time_month,

time_year);

/* skip to a new sheet of paper? */

if (SkipF1ag)

printf("$**$ SKIPTO=NEXTSHEET\n");

/* do the pages of text */

line = page =

s

while (!feof(fp))
{

/* local line and page numbers =*/

/* start a new page */

printf(*;\n");

/* do the page nu~ber */

Sk ipL ines(PAGEGAF) ;
printf("9");
Sk ipSpaces(PAGELEFT);

printf{*%4d\n",

PageNumber);

/* do the title »/

Sk ipL ines(TITLEGAP);
prints(*9");
Sk ipSpaces(TITILELEFT);
printf{"%s

%5 page %d\n", time, name, page);

/* do enough text lines to fill this page */

Sk ipL ines(TEXTGAP) ;

for (i

0

if (feof(fp))

column = 0;

do
{

s

i

< TEXTLINES ; § ++)

/* end-of-file? */
break;

/* starting column */

c = fgetc(fp);

if ((c == EOF)]| (e == '\f'))
{
if . (column > 0)
putchar (‘\n’):
break ;
3

tf (column == 0)

printf("a");
Sk ipSpaces(TEXTLEFT):

254

21
212
218
214
215
216
217
218
219
220
2214
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
244
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276

277

. 278

279
280

Mon 14 Dec 1987 KRpr.c page 4

if. (Numberflag)

printf{“%5d "o line);
olse k
) SkipSpaces(8);
if (¢ == Ox07) /* bell x/
{
putchar(Oxf0); /* translate */

column ++:
else if (c == \t*)
j =8 - (coltumn
Sk ipSpaces(j);
column += {;
else if (g == /~7)

putchar(Oxbb);
column ++;

else if (c == L)

putchar(0Oxd3);
column ++;

else if (c == Ox7Ff)

putchar(0ad0);
column ++;
}
else
{
putchar(c);
column ++;
}
)
while (c 1= '\n’);

if ((c == EOF) || (¢ == "'\f"))

line ++;

)

break;

/* . increment page number */

page: ++;

PageNumber +o+
) .
/* close file */

fclose(fp);

/*
SkipLines()

The caller tells us how many blank

*/

Sk ipLines(count)
int count;
{

int k;

for (k = 0 ; k < count :

/* tab */

% 8);

/* circumfiex: */

/* transiate */

/* grave */

/* translate */

/* delete */

/* translate */

/* local page number */
/* global page number */

lines to put . in the output.

/* number of blank lines */

/* index variable */

k ++)

255

281
282
283
284
285
286

288
289
290
291
282
293
294
295
286
287
298

/*

Sk ipSpaces()

Mon 14 Dec 1987

printf("9\n");

kpr.c page 5

The caller tells us how many blank spaces to put in the output.

*/

SkipSpaces(count)
int count:

4
1

int k;

for (k

=0 ; k < count
printf (" ");

poRHE)

/* number of blank spaces */

/* index variable */

OCONOUTHLWN =

/*

Mon ' 14 Dec 1987 telex

telex.c -- Test Lexical Routines

Keith Fenske

Department of Computing Science
The University of Alberta

Edmonton, Alberta,

T6G 2H1

December 1987

Canada

Copyright (c) 1987 by Keith Fenske. A1l 'rj

257,

.C page 1

ghts reserved.

This is a quick-and-dirty program to test the lexical routines. _As you type

tokens, this program wili tell

(if it recognizes the token).

*/

#include <ctype.
#include "fainc,
#include "y, tab,

YYSTYPE

main()

h>
h"
h"

yy lva

int token;

do
{

token

13

/*
/*
/*

/*

yylex(): /*

if. {token == TokAND)
printf("token AND\n"):
(token == TokASSIGN)
printf("token ASSIGN\a"):

else
else
else
else
else
else
else
else
else
else
else
else
elsg
else

else

else

if

if

if

if

if

if

if

if

if

if

if

if

if

if

if

(token == TokBREAK)

you the token number, and possibly the value

character types =/
our standard includes */
YACC token definitions */

where LEX returns information =/
token returned by LEX */

get a token */

printf("token BREAK\Nn"):

(token == TokBY)
printf("token BY\n"
(token == TokDIV)

)

printf("token DIV\R");

(token =="TokD0)
printf(*token DO\n"
(token == TOkELIF)

)i

printf("token ELIF\n"):

(token == TokELSE)

printf(”token ELSE\n");

(toxen == TokEND)

printf("token END\n"):

(token ==. TokERROR)

printf("token ERROR\N"):

(token == TokFOR)

printf("token FOR\n");

(token == TokFROM)

printf("+token :FROM\n"):

(token == TokFUNCTI

ON)

printf("token FUNCTION\N");

(token == .TokIF)
printf("token IF\n"
(token .==".TokMOD)

)

printf("token MOD\n"):

(token: == TokNAME)

printf("token: NAME
yylval.stri

(token == TokNOT)

= ‘%8’ at %x\n*, yylval.string,
ng);

printf("token NOT\n");

258

Mon 14 Dec 1987 telex.c page 2

else

else

{

else
else

else

}

else
else

else

else
else
else
else
else
else

}

if

if

if
if

if

if

(token == ToOkNULL)
printf("token NULL\n");
(token == TOKNUMBER)

printf("token NUMBER = ");
printf(FORMAT, yylval.number);
printf("\n");

(token == TokOR)
printf("token OR\n"):
(token == ToOkPOWER)
printf("token POWER\n");
(token == TOKRELOP)

int op;
op = yylval.count;
printf("token RELOP =:");
if (op == OpEQ) .-
printf("OpEQ\n");
else if (op == OpEQP)
printf("OpEQP\n");
else if (op == OpGE)
printf("OpGE\n");
else if (op == OpGT)
printf("0pGT\n");
else if (op == OpLE)
printf ("OpLE\n");
else if (op == OpLT)
printf(*OpLT\n");
else if (op == OpNE)
printf("OpNE\R");
else if (op == OpNEP)
printf("OpNEP\Nn"):
else
printf("unknown %d\n", op);

(token == TOKREPEAT)
printf("token REPEAT\n");
(token == TOKRETURN)
printf("token RETURN\n");
(token == TOKSTRING)
printf("token STRING = ‘%s’ at %x\n", yylval.string,
(yy]va1.?tring);
token == TokTO
printf{"token TO\n"):
(token == TokTHEN)
printf("token THEN\n");
(token == TOKUNTIL)
printf("token UNTIL\n");
(token == TokWHILE)
printf(*token WHILE\n"):
(isascii(token) && isprint(token))
printf("token character ‘%c‘’\n", token);:

printf("token decimal %d\n", token);:

white (token > 0);
printf("\nend-of-file rece1ved from LEX\n");

OWEeENOUDWON =

Sat 19 Dec 1987 tepar.c page 1

/*

tepar.c -~ Test Parse Routines

Keith Fenske

Department of Computing Sc1ence

The University of Alberta

Edmonton, Alberta, Canada

T6G 2H1

December 1987

Copyright (c) 1987 by Keith Fenske. All rights reserved.

This is a guick-and-dirty routine to dump the parse tree built up by the YACC
grammar , It replaces the "main()" routine normally found in "face.c":

*/

#include "fainc.h" /* our standard includes */
/*

main()

Fake main program to keep . calling-YACC until an end-of-file.

*/

main()
int flag; /* status flag =/
do
{
ParseTree = NULL;
printf("\ncalling yyparse()\n");
flag = yyparse();
printf("\nyyparse() returns %d\n", flag);
if (ParseTree == NULL)
printf("ParseTree is NULL\Nn");
else ;
DumpParse(ParseTree, -0);
while (!feof(stdin));
printf("\nend-of-file on standard input\n");
}
/*

DumpParse()

Dump a parse tree in a crude indented format.
*

DumpParse(parse, level)

ParseThing * parse; /* pointer to a parse tree */
int level; /* indenting level */
{
int i; /* index variable */
for (i =0 ; i < level ; i ++)
printf("* "); ‘
printf("at %x *, parse);

if (parse->type == 0OpAND)

258

else
else
else
else
else
else
else
else
else
else
else
else
else

else

else’

else

else

else

else

else

else

else

else

else

else

else

else

else

else

else

else

else

else

else

if

if
if

if

Sat 19 Dec 1987 tepar.c

printf("AND");
(parse->type == OpASSIGN)
printf("ASSIGN");
(parse->type == OpCONCAT)
printf ("CONCAT");
(parse~->type == QpDIV)
printf("DIv");
(parse->type == 0pEQ)
printf("EQ"); «
(parse->type == OpEQP)
printf ("EQP");
(parse->type == OpFOR)
printf("FOR");
(parse->type == OpFUNCTION)
printf ("FUNCTION");
(parse->type == OpGE)
printf("GE");
(parse->type == 0OpGT)
printf("GT");
(parse->type == OpIF)
printf("IF");
(parse~>type == OpINDEX)
printf("INDEX");
(parse->type == OpLE)
printf("LE");
(parse->type == OpLT)
printf("LT");
(parse->type == OpMINUS)
printf ("MINUS");
(parse->type == 0pMOD)
printf("MOD");
(parse->type == OpNAME)
printf("NAME");
(parse->type == OpNE)
printf("NE");
(parse->type == OpNEGATE)
printf("NEGATE");
(parse->type == OpNEP)
printf("NEP");
(parse->type == 0pNOT)
printf("NOT");
(parse->type == OpNULL)
printf ("NULL");
(parse->type == OpNUMBER)
printf ("NUMBER") ;
(parse-~>type == 0OpOR)
printf("OR");
(parse->type == OpPAR)
printf("PAR");
(parse->type == OpPLUS)
printf("PLUS"):
(parse->type == OpPOWER)
printf ("POWER");
(parse->type == OpREPEAT)
printf ("REPEAT");
(parse->type == OpRETURN)
printf("RETURN");
(parse->type == OpSET)
printf("SET");
(parse->type == DpSLASH)
printf("SLASH");
(parse->type == OpSTAR)
printf("STAR");
(parse->type == OpSTMT)
printf("STMT");
(parse->type == OpSTRING)
printf("STRING");
(parse->type == OpWHILE)
printf("WHILE");

page 2

26C

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

166
167
168
169
170
171
172

if
if
if
if
if

if
{

}
if

if

Sat 19 Dec 1987 tepar.c page 3

printf("decimal %d", parse->type);

(parse->none != NULL)

privtf(" one = %x", parse->one);

(parge~->two != NULL)

printf (" two = %x", parse->two);

(parse->three !« NULL)

printf(" threz = %x", parse->three);

(parse->four != NJULLY

printf(" four = %x", parse->four);

(parse~>count != 0)

printf(" count = %d", parse->count):

(parse->pumber 1= ZERD)

printf (" number = ")

printf (FORMAT, parse->number):

(parse->string != NULL)

printf(" string = ‘%s’",

(parse->symbol != NULL)

parse->string);

(Qrintf(“ symbol = ¥%x ‘%s’", parse->symbol,
printf{("\n");

(parse->one != NULL)
DumpParse(parse->one., (
(parse->two !'= NULL)
DumpParse(parse->two, (
(parse->three != NULL)
DumpParse(parse->three,
(parse->four !'= NULL)
DumpParse(parse->four,

level+1));
level+1));
(1evel+1)):

(level+i));

parse-~>symbol->name) ;

261

282

Sat 12 Dec 1887 terob.c page 1

/*

terob.c ~~ Test Robert Program

Keith Fenske

Department of Computing Science
The University of Alberta
Edmonton, Alberta, Canada

T6eG 2H1

OO U L WN -

December 1987

Copyright -(c) 1987 by Keith Fenske. All rights reserved.

This is a dummy program which is connected to the user classifier end of a
pipe to dump exactly what the "face" program is sending to the classifier
system. . This program reads a line from standard input, traces it onto the
terminal, repeatedly asks you for what to send back (until you type the magic
word “ready"), and then waits to read more .input from standard input.

(The name "terob" comes from "test Robert", where "Robert" is Robert Andrew
Chai, who is writing the real user classifier machine.)

“/
#include "fainc.h" /* our standard includes */
#define READY -"ready" /* user classifier prompt for input */

main(arge, argv)

int argc; /* number of arguments */
char * argv(]: /* argument strings */
{
char buffer{MAXSTRING+1]; /* input/output buffer x/
int i /* index variable */
FILE * ttin; /* input from terminal */
FILE * ttout: /* output to terminal =/
ttin = fopen("/dev/tty", "r"):
if (ttin == NULL)
{
fprintf(stderr, "can’t open /dev/tty for input\n");
exit(-1);
)
ttout = fopen("/dev/tty", "w");

if (ttout == NULL)
{

fprintf(stderr, “can’t open /dev/tty for output\n");
exit(-1);

}

/* introduce ourself and echo command line arguments */
fprintf(ttout, "\nterob: running\n"):

for (1 =0 ; i < argc ; i ++)

{

}
fflush(ttout);

fprintf(ttout, "terob: argument #%d is ‘%s‘\n", i, argv[il);

/* main loop =/

while ((!feof(stdin)) && (!feof(ttin)))

{
fprintf(ttout, "terob: sending ‘%s’\n", READY):
fflush(ttout);

Sat 12 Dec 1987 terob.c page 2

fprintf(stdout, "%s\n", READY);
fflush(stdout);

gets(buffer); /* drops newline */
if (feof(stdin))
break;

fprintf(ttout, “terob: received '%s’\n", buffer);
fflush(ttout);

if (strcmp(buffer, "close") == 0)
break;

while (YES)
{

fprintf(ttout, “terob: send what reply? ");
ffiush(ttout);

fscanf(ttin, " %[~\nls", buffer);

if (feof(ttin))
break ;

if (stremp(buffer, READY) == 0)
break;

fprintf(ttout, "terob: sending ‘%s’\n", buffer);
fflush(ttout);

fprintf(stdout, "%s\n", buffer);

ffiush(stdout);

Y
if (feof(ttin))
break;

}

fprintf(ttout, "\nterub: exiting\n");
fflush(ttout);

fclose(ttin);
fclose(ttout):

N - d 4 v i a o
CQOUWONOUBLWNIIOUOLNTHEWN =

N
—

Fri: 27 Nov 1987 pretty.f

pretty.f

Keith Fenske
Department of Computing Science
The University of Alberta

Edmonton, Alberta, Canada
T6G 2H1
December 1987

parameter must be NULL, a number,.a set,

elements to name strings.

The function call:

pretty("00", picture);

would print "NO" (without quotes or newlines).

pretty("#1", picture):

would print "(YES or MAYBE)'", Finally, the function

pretty("10", picture);
would print "[10]" since there is no legal mapping:.
(This function.is recursiveiy defined for sets. The

responsible for writing any newlines before or after
output., Bad parameters will result .in obscure error

h%k’lh%%%’t%%%l‘:%k%h32,3-1lkl%h%h%%%i%k%%%%%k%%%%

264

page 1

This “face" function prints a value in. a pretty format. The first
or a string.,
parameter should have the same set structure as the first parameter,
but with one extra level of sets to provide a mapping from "value"

The second

For exampie, suppose that there is a field in a classifier message

that has the string "OO" for NO, "11" for YES, and "01" for MAYBE,
Tnen a mapping picture would be:
pictur‘e .= (uoou' ‘"NO", I|11||‘ "YES". |uo1u‘ "MAYBE"}:

The function call:

cali:

caller is
the "pretty"
messages.)

function pretty(value, picture, # real parameters
found, i) # local variables

do

if "vailue" is a set, then call ourself for each element

if type(value, "set")
then
if sign(vaiue) < O

then write("-");

end;
write("{"); 3
for i from 1 to size(value)
do
if i > 1
then write(", ");
end;
pretty(valuefi], picture[il);
end;
write("}");

else look for an identical mapping (no pattern matching)

else

26

Fri 27 Nov 1987 pretty.f page 2
found := 0;
for 1 from 1 to size(picture) by 2
do
if value = pictureli]
then
if found > O
then write(" and ")
end;
write(pictureli+1]);
found := found + 1;
end;

end;
try pattern matching if nothing identical was found

if found =0

then
for i from 1 to size(picture) by 2
do
if. value eqp picture[i]
then
if found = 0
then write("(");
else write(" or ");
end;
write(pictureli+1]);
found := found + 1;
end;
end;
if found = O
then write("[", value, "]");
else write(")");
end;
end;

end;
end;

OCENOUDWN

AT TR TAITRLTRTRTRRITRLR

X

fu
do

en

#

fu
do

en

#

fu
do

en

#

fu
do

en

#

fu

do

Fri 27 Nov 1987

user . f

Keith Fenske

Department of Computing Science
The University of Alberta
Edmonton, -Alberta, Canada

T6G 2H1

December 1987

These functions provide most of the support for Robert Chai’s
classifier system. Since they are user-defined,

change.

close(), flagmess(), flagrule(), open(), receive(), and send() are

user . f page 1

written in "C" in the "“fause.c" module.

clear ()
nction cliear

flagmess();

flagrule();

send("clear");

receive("ready"):
d;

crossover: ()

nction crossover
flagrule(); 4
send("crossover') ;
receive("ready"):

d;

generate ()

nction generate
flagmess(); #
flagrule(): #
send("generate");
receive('ready"):

d;

invert ()

nction invert

flagrule(); #

send("invert");
receive("ready");
d;

message (string)

nction message (string |, #
buffer) #

flagmess(): #

messlist is invalid
rulelist is invalid

ruletist is invalid

messlist is invalid
rulelist is invalid

rulelist is invalid

sString parameter
local string buffer

messlist is invalid

they are easy to

266

107
108
109
110
111
112
113
114
115
116

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

134
135
136
137
138

140

Fri 27 Nov 1987 user f page 2

buffer := "message " + pack(string):
send(buffer):
receive(“ready");

end;

mutate ()

function mutate

do
flagrule(); # rulelist is invalid
send('mutate"”);
receive("ready"):

end;

payoff (number)

function payoff (. number , # number parameter
buffer) # locai string buffer
do
flagrule(): # rulelist is invalid
buffer := “"payoff " + pack(number);

send(buffer) ;
receive("ready");
end;

rule (set)

function rule (set ,
buf fer
conditions ,

i)

set parameter

local string buffer
local set of conditions
ljocal index variable

TR

do
flagrule():

a

rulelist is invalid

if type(set) ne "set"

then
write("rule fajled: bad set parameter: ");
set:
stop();

end;

do ~nndition strings

buffer := "ruyle *";
conditions := set[1]:
it type(conditions, "set")
then
for i from 1 to size(conditions)
do
if i> 1
then buffer := buffer + v , ".
end;
buffer := puffer + pack(conditions[ij):
end;
elise
buffer := buffer + pack{conditions);
end;

do action part
buffer := buffer + " / " + pack(set[2]):

do. any remainihg elements

267

Fr{:27 Nov 1987 user , f page 3

for-1i from 3 to size(set)
do

buffer := buffer + " " + pack(set{1]});
end;

send to classifier system
send(buffer);

receive("ready");
end;

switch (number)

function switch (number # number. parameter
buffer) # local string buffer
do
flagmess(); # messiist is invalid
flagrule(); 4 rulelist is invalid
if type(number, “nulil")
then switchnumber :=:14;
else
if type(number, “number")
then switchnumber := number;
else
: write("switch failed: bad numper parameter: "“);
numtber ;
stop():
end;
end;
buffer := "switch " + pack(switchnumber);
send(buffer);

receive("ready");
end;

switchnumber := 1; 4 initial value

268

269
prime.f page 1

Fri 27 Nov 1987
#
prime.f
¥
#
Keith Fenske
Department of Computing Science
The University of Alberta
Edmonton, Alberta, Canada
T6G 2H1 ‘ ;
“
December. 1987
#
#
Find all prime numbers from 1 to 100. - This 'is used t0 collect data
about CPU times for the various operators ~-- hence this program is
not written to:be "efficient". I know that 1 is not realiy a
prime number!
#
primes := {}:
for i from 1:t0 100
do '
j = true;
k. i1= 2
while (j and (k <= size(primes)))
do
if -1 mod primeslk]l eq O
then j := false;
end;
K s k + 1;
end;
if (j)
then
write(i, " is a prime number\n"):
primes := primes + {i};
end;
end;

primes;

270

Tue 22 Dec . 1987 prime.s page 1

Script started on Tue Dec 22 19:02:41 1987

cavell -fenske % face prime.f

face da class: an:interactive classifier programming language
loading - file ‘prime.f'

1 is a prime number

2.is a prime number

3 is a prime number
5
7

is a prime number
is a prime number

11 is a prime number
13 is a prime. numbter
17 is a prime number
19 is .a prime number
23 is ‘a prime number
22 is a prime number
3t is . a. prime number
37 is.a prime number
41 is a prime number
43 is a prime number
47 is .a prime number
53 is a prime. number
59 is a prime number
61 is a pr.ime number
67 is a prime number
71 is a prime number
73 is a prime number
79 is a prime number
83 is a prime number
89 is a prime r..mber
97 is a prime nurber

{1,2,:8, 8, 7, 1%, 138, 17, 19,.23, 29, 3t, 37, 41, 43, 47, B3, B9, 61,
67, 71, 73, 79, 83, 89, 97}

end-of-file on file ’‘prime.f’
ready for input

exit();

exit() called; returning to UNIX
cavell fenske % exit

script done on Tue Dec 22 19:03:06 1987

271

Fri 27 :Nov 1987 prime.p page 1

call graph profile:

index

%time

self

The sum of self and descerdents is the major sort
for this listing.

function entries:

the index of the function in the call graph
listing, as an aid to locating it (see below).

the percentage of the total time of the program
accounted. for by this function and its
descendents.

the number of seconds spent in this function
jtself.

descendents

called

self

name

index

self*

the number of seconds spent in the descendents of
this function on behalf of this function.

the number of .times this function is called (other
than recursive calls).

the number. of times this function calls itself
recursively.

the .namg . of the function, with an indication of
its membership in a cycle,. if any.

the index of the function in the call graph
listing, as an aid to locating it.

parent listings:

the number of seconds of this function’s self time
which is due.to calls from tinis parent.

descendents*

called**

total*

parents

index

self*

the number of seconds of this function’s
descendent time which is due to calls from this
parent.

the number of times this function is called by
this parent. This is the numerator of the
fraction which divides up the function’s time to
its parents.

the number of times this function was called by
all of its parents. "This is the denominator of
the propagation fraction:

the name of this parent, with an-indication of the
parent’s membership in a cycte, if any.

the index of this parent in the call graph
listing, as an aid in locating it.

children listings:

the number of seconds of this chiid’s self time
which is due to being called by this function.

descendent*

called*x*

totalx

children

index

272

Fri 27 Nov 1987 prime.p page 2

the number of seconds of this child’s descendent’s
time which is due to being called by this
function. :

the n..-der of times this child is called by this
functi.n. . This is the numerator of the
propagation fraction for this child.

the number of times this child is called by alil
functions. ~ This is the denominator of the
propagation fraction.

the name of this child, and an indication of its
membership in a cycle, if any.

the index of this child. in the call graph listing,
as an aid to locating it.

* these fields are omitted for parents (or
children) in the same cycle as the function. If
the function (or child) is a member of a: cycle,
the propagated times and propagation denominator
represent the: self time and descendent time of. the
cycle as a whole.

** static-only parents and children are indicated
by a call count of 0.

cycle listings:

the cycle as a whole is listed with the same
fields as a function entry. Below it are listed
the members of the cycle, and their contributions
to the time and. call counts of the cycie.

Fri 27 Nov 1987

prime.p

273

page : 3

granularity: each sample hit éovers 4 byte(s) for 0.22% of 4.56 seconds

index

%time

27.

self descendents

.26
.00

called/total
called+self
calted/total

{71

(sl

.14

1/4812
2/4812
4809/4812
4812
15/15
2/17
1/1

108/113
2/4

parents

name index
children
<gpontaneous>

_ExecParse [1]
_fprintf [9]

<spontaneous>
_CheckStack [2]

<spontaneous>
_GetMemory (3]
_mailoc [7]

<spontaneous>
_Freevaiue [41]
_free [12]

<spontaneous>
_PopStack [5]

<spontaneous>
_Pushstack [6&1]

— fisbuf [13]

__filbuf [43]

_GetMemory. [3]
_malloc [7]

_morecore [23]

_sbrk [38]

_getpagesize [92]

_printf [33]

_fprintf [9]
__doprnt [8]

__fisbuf [13]

_ExecParse [1]

_PreExit [42]

_PrintString [22]

_Printvatue [11]
_fprintf [9]

__cdoprnt: [8]

_fflush [47]

<spontaneous>
_Makevaiue [10]

Fri 27 Nov 1987 prime.p
[11] 3.0 0.00 0.14
0.00 0.14 79/108
0.00 0.00 1/4681
0.00 0.00 27/4681
0.00 0.00 63/4681
0.13 0.00 4590/4681
[12) 2.9 0.13 0.00 4681
0.01 0.10 38/38
[13) 2.5 0.01 0.10 38
0.10 0.00 36/38
0.00 0.00 1/4812
0.00 0.00 1/3
0.00 0.00 1/1
0.01 0.00 2/38
0.10 0.00 36/38
[14] 2.4 o] 0.00 38
[15] 2.2 0.10 0.00
(161} 2.0 0.08 0.00
(171 1.8 0.08 0.00
0.00 0.00 3/3
[18] 1.8 0.08 0.00
[19] 1.3 0.06 0.00
[20} 1.1 0.05 0.00
0.00 0.00 27/46814
[241 1.1 0.04 0.01
0.01 0.00 1120/1120

274

page 4

<gnontaneous>
_Printvalue [11]
_fprintf [9]

_fclose [36]

_FreeString [20]

_FreeParse [35]

_FreeValue [4]
_free [12]

___doprnt [8]
__ fisbuf [13]
_write [14]
_malloc [7]
_fstat [88]
_isatty [95]

~fflush [41]
_flisbuf [13]
_write [14]

<spontaneous>
_ExecFunction [15]

<spontaneous>
_PreSize [16]

<spontaneous>
_yylook [17]
__filbuf [43]

<spontaneous>
_CopyValue [18]

<spontaneous>
_ExecCompare [19]

<spontaneous:>
_FreeString [20]
_free [i2]

<spontaneous>
-GlobalLook [21]
_strcmp [37]

Fri 27 Nov -1987

0.00 0.05
0.00 0.05
0.03 0.01
0.03 0.01
0.01 0.00
0.01 0.02
0.00 0.01
0.01 0.01
».00 0.00
0.00 0.00
0.03 0.00
0.03 0.00
0.03 0.00
0.00 0.00
0.00 0.00
0.01 0.02
0.02 0.00
0.00 0.00
0.03 0.00
0.02 0.00
0.02 0.00
0.00 0.00
0.02 0.00
0.02 0.00
0.0G C.00
0.00 0.00
0.01 0.01
0.01 0.01

prime.p

26/108

1/1
1

310/310

page S

<spontaneous>
_PrintString [22]
_fprintf [8]

_malioc [7]
_morecore: [23]
_sbrk [38]

<spontaneous>
_ExecFile [24]
_fclose [36]
_printf [32]
_setjmp [85]
_fopen [91]

<spontaneous>
_ClearStack [25]

<spontaneous>
_CompareValue [26]

<spontaneous>
_CopyString [27]

_stton [83]

_strcpy [82]

<spontaneous>
_PreDefine [28]

_srandom [30]

_getpid [83]

<spontaneous>
_yyparse [29]

_PreDefine [28])

_srandom [30]
—random [81]

<spontaneous>
_MakeDynamic [31]

<spontaneous>
_yylex [32]
_atoi[84]

_main [34]
_ExecFile:[24]
_printf [33]

275

- . e e o e o = S e e " e . ———

e s o e 4= T e = = = o -

Fri 27 Nov 1987

0.00 0.01
0.01 0.01
0.00 0.00
0.01 0.00
0.00 0.00
0.00 0.01
0.00 0.01
0.01 0.00
0.00 0.00
0.00 0.00
0.01 0.00
0.01 0.00
0. 0.00
0.01 0.00
0.01 0.00
0.01 0.00
0.01 0.00
0.01 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.01
0.0t 0.00
2.00 0.00
J.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

prime.p

1120/ 1120
1120

= = o = o o = R v ————— ——— ———

310/310
310

page 6

_doprnt [8]

<spontaneous>
_main [34]
_printf [33]

<spontaneous>
_FreeParse [35]
_free [12]

_ExecFile [24]

_fclose [36]
_close [39)
_ffiush [41]
_free [12]

GlobalLook . [21]

_stromp [87]

_malloc [7]

_morecore [23]

_sbrk [38]

_fclose [36]
_close [39]

<spontaneous>
_CheckSign [40]

__filbuf [43]
_fclose [36]
_fprintf [9]
_fflush [41]
_write [14]

<spontaneous>
_PreExit [42]
_fprintf [9]

_yylook [17]
__filbuf [43]
_fflush [41)]
_malloc [7]
_read [89]
_fstat [88]

_srandom [30]
_random [81]

276

BLANK PAGE (NSERTFD

Fr{i 27 Nov 1987 prime.p page 8

v o A 4R e e P A e o oy e e e o e v e e o e o v e e e e i S e e R o e 4n

0.00 0.00 1/1 - __fisbuf [13]
[85] 0.0 0.00 0.00 1 _isatty [95]

0.00 0.00 1/4 _joctl [94]

0.00 0.00 1/1 _fopen [91]
[96] 0.0 0.00 0.00 1 _open [96]

0.00 0.00 1/ _moncontrol [180]

[87]) 0.0 0.00 0.00 1 _profit [87]

B e e T i P Sy Sy S S

Fri ‘27 Nov 1987 prime.p page 8

flat profile:

%
time

cumulative
seconds

self
seconds

calls

self
ms/call

the percentage of the total running time of the
program-used by this function,

a running sum of the number of seconds accounted
for by this function and those listed above it.

the number of seconds accounted for by this
function alone. This is the major sort for this
listing.

the number of ‘times this function was invoked, if
this function is profiled, else blank.

the average numpber of milliseconds spent in this
function per call, if this function is profiled,

“else blank.

total
ms/cail

name

the average number of milliseconds spent in this
function and its descendents per call, if this
function is profiled, else biznk.

the name of the function. This is the minor sort
for this listing. The index shows the location of
the function in the gprof listing. If the index is
in parenthesis it shows where it would appear. in
the gprof -listing if it were to be printed.

279

Fri 27 Nov 1987

prime.p

280

page 10

granularity: each sample hit covers 4 byte(s) for 0.20% of 5.06 seconds

%

time

24.
11.

[eXeNeNeNoNoNoRoloNeNoNoNoReNoReNoNoNoNoNoNoNoRoNoNoNoNoNeRoNoNoNo Yol o RoRoNo N o Ko JUEpraprupiNybuir I O U S NP NI I I 7o)
QOO0 00O00O00000O0OOOOONNRRNNRNRNNINLLADNOINNNADONONNDONOIODOCOOOLUO

cumulative
seconds

quiaoaauuaaoauaaooaoaaeaaooaaooEdLobdbADLAMLALLEDLNADDRMIAAMRMDDWWOWWWNN =

self

seconds
1.26

F)?SDC)O(DC)O(DC)O(DC)O(D()O(DC)O(DC)O()C)Q(DC)PfDF)O(D()C)O(DC)O(3C)O()C)O<DC)O(3C)013C>O<>C)O

.58
.50
.40
.36

calis

4812

4681
38

113

15

310
108

gy
[L, N e X e}

[N N (A Qi S Vi (i G A A A N S)]

self

ms/call

[sXeoRoNoRoNoReRoNoRoReNoNoNoNoNeNoNeNoRo N o)

.05

.03
.89

A

.00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

.00

total
ms/call

MO

20.

Owowo

000000020000+000000~0

.06

.03
.89

.72

.69

00

.01
.01
.69

.00

name
_ExecParse [1]
_CheckStack [2)
mcount (68)
_PopStack [5]
_PushStack [6]
_Freevaiue [4]
_mailoc [7]
_GetMemory [3]
_Makevalue [10]
_free [12]
_write [14)
_ExecFunction [15]
_PreSize [16]
_-doprnt [8]
_CopyValue [18]
_yylook [17]
_ExecCompare [19]
_FreeString [20]
“Giobaltook [21]
. morecore [23]
_ClearStack [25]
_CompareValue [26]
_CopyString [27]
_yyparse [29]
_srandom [30]
_MakeDynamic [31]
_yylex [32]
_stremp [37]
—_fisbuf [13]

. _sbrk [38]
‘“printf [33]

_close [39]
_Checksign [40]
_ExecFile [24]
_FreeParse [35]
_PreDefine [28]
“main. [34]
_random [81]
_fprintf [9]
_strcpy [82]
_strlen [83]
Tatoi [84]

._setjmp [85]

. sigblock [86]
_sigstack [87]
_fflush [41]
__filbuf [43]:
_fstat [88]
_read [89]
__findiop [80]
_fclose [36])
_fopen [91]
_getpagesize [92]
_getpid [93]
_iocti [94]
_isatty [95]
_open:[96]
_profil . [97]

281
Fri 27 Nov 1887 prime.p page 11

Index by function name

[40] _CheckSign (6] _PushStack [96] _open

[2] _CheckStack [8) __doprnt [33]) _printf
[26] _ClearStack [43] __filbuf [27]) _profil
{26] _Comparevalue [90} __findiop [81] _random
[27) _CopyString [13] __fisbuf (88] _read
{18) _Copyvaiue [84] _atoi [38]). _sbrk
[19] _ExecCompare {39] _close [85] _setjmp
{24]) _ExecFile [36] _fclose [86]) _sigblock
[15] _ExecFunction [41] _ffiush [87]) _sigstack
[1] _ExecParse {81] _fopen [30] _srandom
[35] _FreeParse (9] _fprintf [37] _strcmp
[20] _FreeString [12] _free [82] _strcpy
(4] _Freevalue [88] _fstat [83] _strien
[3] _GetMemory [92] _getpagesize [14] _write
[21] _GlobalLook [93] _getpid [32] _yylex
[31]) _MakeDynamic [94] _ioectn [17] _yytook
[10]). _Makevalue [85] _isatty [29] _yyparse
[5] _PopStack {34] _main (68) mcount
[28] _PreDefine (7] _malloc

'116]) _PreSize [23] _morecore

