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Abstract

Architecture evaluation is a major bottleneck of Neural Architecture Search (NAS).

Recent trends have seen a shift in favor of weight-sharing networks capable of su-

perimposing all possible candidate architectures in a search space. Nevertheless, this

technique is not beyond reproach, and has already encountered significant criticism.

Of these is the ability of weight-sharing supernets to accurately represent the char-

acteristics of a single discrete architecture when they are purposefully designed to

mimic the behaviour of many.

As the cost of NAS evaluation decreased, the complexity of search algorithms

has grown. In this thesis, we explore the application of Reinforcement Learning

(RL) in the problem space of weight-sharing NAS. Specifically, we focus on the usage

of deterministic agents operating in a continuous action space. First, analogous to

gradient-based optimization, we train both the supernet and agent simultaneously and

interface them accordingly. Our agent consists of an actor-critic framework, where

the actor generates architectures based on the teachings of the critic. Rewards are

calculated to encourage the selection and further improvement of high-performance

architectures.

Next, we refine the efficiency of our weight-sharing supernet, while decoupling

optimization with the RL agent. These reforms lower the resource cost during archi-

tecture search and remove unhelpful biases the supernet may have imposed on the

agent. We adapt the RL agent to these changes by redefining the state as statistical

representation of the best architectures observed. Finally, in order to focus on only

the most high-performance architectures, we incorporate the check loss into the critic.
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Experimental results on DARTS show that our first scheme is capable of gener-

ating architectures that achieve over 97% test accuracy on CIFAR-10 and 81% test

accuracy on CIFAR-100. Findings indicate that the agent of our second approach

is capable of state-of-the-art test performance on NAS-Bench-201. Additionally, ar-

chitectures generated by our second approach achieve over 97.4% test accuracy on

CIFAR-10 and 75% top-1 accuracy on ImageNet.
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Chapter 1

Introduction

All Neural Architecture Search (NAS) methods consist of three core components (Elsken

et al., 2018b). The first of these is the search space, which describes what operation

and topology choices exist when crafting network architectures. For example, the

choice of what activation function to use in a Multi-Layer Perceptron (MLP), or

what type of pooling to use in a Convolutional Neural Network (CNN), are both ex-

amples of operation search spaces. Conversely, the number of neurons in the hidden

layers of an MLP, or the choice and placement of skip-connections in a CNN, describe

topology search spaces. The overall search spaces used in modern NAS (Ying et al.,

2019; Dong and Yang, 2020; Siems et al., 2020) involve optimizing both the choice

and placement of operations, as well as the topological structure of a network.

The search algorithm, an optimization routine responsible for traversing the search

space, is second. Search algorithms come in a variety of different types. Reinforce-

ment Learning (RL) (Zoph and Le, 2017), Evolutionary Algorithms (EA) (So et al.,

2019) and Random Search (RS) (Li and Talwalkar, 2020) frameworks have all been

implemented for NAS. The choice of search algorithm is mostly limited by the nature

of the target search space. For example, NAS-Bench-101 (Ying et al., 2019) is the first

publically available NAS-focused dataset, yet due to the nature of how architectures

are represented within it, many search algorithms cannot be applied to it (Dong and

Yang, 2020). Additionally, Differentiable Architecture Search (DARTS) (Liu et al.,

2019) was truly made possible with the introduction of weight-sharing (Bender et al.,

2018; Guo et al., 2020).

Finally, the performance evaluation strategy rounds out the trio of NAS compo-

nents. This is the mechanism by which the search algorithm gauges candidate archi-

tectures from the search space. Years ago, this was done by training and evaluating

individual architectures from scratch, and thus formed a costly, resource-intensive

bottleneck (Real et al., 2019) in NAS. However, much like how the introduction of
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weight-sharing has enabled the use of gradient-based methods, so too has it lessened

the resource costs of performance evaluation.

Weight-sharing condenses an entire search space into a single dynamic neural net-

work, typically called a oneshot model or supernet. From a practical point of view

weight-sharing has made research in NAS more accessible to scientists who may not

have access to hundreds of GPUs at a time (Zoph and Le, 2017). Conversely, from a

theoretical standpoint, a key advantage of weight-sharing is the relaxation of search

spaces from discrete domains to continuous landscapes.

At a lower resource cost, the number of algorithms implementing weight-sharing

techniques has grown at a rapid pace in recent years (Bender et al., 2018; Liu et al.,

2019; Xie et al., 2018; Cai et al., 2019; Elsken et al., 2018a; Pham et al., 2018; Wang

et al., 2020; Chen et al., 2019; Dong and Yang, 2019; Chu et al., 2019; Guo et al.,

2020; Jin et al., 2019; Stamoulis et al., 2019; Wu et al., 2019; Xu et al., 2019; Cai et

al., 2020; Li et al., 2020; Wan et al., 2020; Dai et al., 2020). This heightened interest

has not been without merit. Competing algorithms seek recognition by claiming the

much sought after title of state-of-the-art, specifically on the benchmark datasets of

CIFAR-10 (Krizhevsky, 2009) and ImageNet (Deng et al., 2009). In terms of small-

scale models with 10 million parameters of fewer, this crown has rapidly changed

hands in the past few years.

1.1 Problem Motivation

Attention entails critique, and NAS is no exception. As the number of schemes

employing the use of weight-sharing has grown, so too have the number of criticisms

pointing out flaws, whether they pertain to the workings of individual algorithms (Li

and Talwalkar, 2020; Zela et al., 2020; Chen and Hsieh, 2020) or the use of weight-

sharing altogether (Yu et al., 2020b; Shu et al., 2020; Yu et al., 2020a).

Despite these concerns, NAS architectures found by weight-sharing have proved

superior next to manually handcrafted ones. However, credit for these gains cannot

be exclusively awarded to their corresponding search algorithms. The aptly titled

paper “NAS Evaluation is Frustratingly Hard” (Yang et al., 2019) reveals a reliance

on ‘tricks’ in the evaluation phase of an experiment as a means to boost performance.

The use of expert knowledge during formal evaluation is not a significant problem

in isolation. However, it is clear that the destination - high performance metrics,

has taken precedence over the journey - how the model that produced said metrics is

found. This conceals a deeper, more fundamental issue with NAS worth exploring:

To what extent is the proposed search algorithm working?
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1.2 Solution Motivation

The continuous relaxation of the search space (Elsken et al., 2018b), as is done by

DARTS (Liu et al., 2019) and other succeeding gradient-based NAS approaches (Xie

et al., 2018; Chen et al., 2019; Dong and Yang, 2019; Jin et al., 2019; Xu et al., 2019;

Chen and Hsieh, 2020; Li et al., 2020; Xu et al., 2020; Wu et al., 2019; Cai et al.,

2020), has incurred a few issues, especially when the final evaluation is inevitably

performed on discrete architectures derived from the supernet. Since supernets are

trained to minimize the loss as a whole instead of maximizing the performance of

individual architectures, a discretization error, or optimization gap, exists between

the performance of an architecture acting as part of a larger supernet and its true

performance when evaluated individually (Yu et al., 2020b; Xie et al., 2020).

Moreover, as differentiable methods, these algorithms are fundamentally subject

to the limitations of gradient-descent-based optimization techniques when applied to

NAS. While it is true that differentiable methods have been remarkably effective for

unconstrained neural network optimization (Wilson et al., 2017), it is unclear whether

this will naturally extend to optimizing architecture parameters, which can lie in

constrained, non-Euclidean domains (Li et al., 2020). In fact, Zela et al. (2020) found

the DARTS algorithm unstable. They show that DARTS is unable to generalize

to different search spaces, some of which contain dummy operators that a search

algorithm should be able to discriminate against. Additionally, Zela et al. (ibid.)

propose regularization to delay the instability and early stopping to terminate search

before the inevitable occurs.

Another common problem facing differentiable NAS approaches, whether by design

or consequence, is an inherent lack of exploration. In the former case, gradient-

based methods seek the closest, nearest local loss minima as quickly as possible.

Therefore, they do not incorporate the same degree of robust exploration as previous

NAS frameworks based on reinforcement learning or evolutionary algorithms (So et

al., 2019). Consequently, gradient-based NAS approaches are reported to be driven

towards regions of the search space where the supernet can train rapidly. This results

in wide and shallow architectures being selected over deeper and narrower topologies

(Shu et al., 2020). Clearly, there is a motivation to develop more advanced schemes

than gradient descent for differentiable NAS.

Reinforcement Learning is a less favorable solution compared to other means, like

gradient descent, because RL is not a precise match for NAS (Preiss et al., 2020).

Nonetheless, like evolutionary approaches (So et al., 2019), reinforcement learning

solutions for NAS can be treated as a double-blind black box. That is, the search
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algorithm submits an architecture to the search space, which returns information that

serves to improve the algorithm and influence the shape of future architectures. The

method by which the search space generates information using the architecture is

unknown to the algorithm. Likewise, the method by which the algorithm uses the

information returned to it in order to generate new architectures, is unknown to the

search space. This is not the case when gradient-based optimization is used for NAS

as the search space and search algorithm are tightly coupled by losses.

Decoupling search space and search algorithm allows for different optimization

methods to be implemented on both. For example, optimization of a weight-sharing

supernet can be done by random discrete sampling that is slower but better represents

the behaviour of architectures used for benchmark evaluation. Meanwhile, the algo-

rithm policy can be trained using a continuous, gradient-based method that learns at

a rapid pace.

It has been shown that differentiable NAS as originally proposed (Liu et al., 2019),

does not generalize to alternative search spaces (Zela et al., 2020), datasets (Yang

et al., 2019) or publicly available benchmarks (Dong and Yang, 2020). Modulariz-

ing the search space and algorithm allows the performance of the latter to be more

readily tested on different spaces and data. RL algorithms typically present perfor-

mance metrics on a variety of different tasks (Mnih et al., 2013; Lillicrap et al., 2016;

Schulman et al., 2017; Fujimoto et al., 2018; Haarnoja et al., 2018).

The application of RL for NAS is not in itself novel (Zoph and Le, 2017; Pham et

al., 2018; Wang et al., 2020; Bender et al., 2020). However these methods operate in a

discrete action space using stochastic policies. Architectures are constructed sequen-

tially as NAS search spaces are too large for whole architectures to be selected all at

once. NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-201 (Dong and Yang, 2020)

are small search spaces yet contain over 400k and 15k architectures, respectively. By

contrast one of the first continuous RL algorithms, Deep Deterministic Policy Gra-

dient (DDPG), was originally proposed to operate in problem spaces where discrete

policy optimization “is likely intractable” (Lillicrap et al., 2016).

1.3 Scope of Research

This thesis presents the evolution of a continuous RL scheme applied to the problem

space of weight-sharing NAS. We base our research in one of the most popular (Xie

et al., 2020) NAS search spaces, DARTS (Liu et al., 2019). Weight-sharing supernets

are trained discretely (Li and Talwalkar, 2020) in order to minimize the error incurred

when architectures are sampled at the end of an experiment (Chen and Hsieh, 2020).
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Actions are produced by our RL agent, then mapped to discrete architectures to be

used by the supernet. We present two algorithms, Deep Deterministic Architecture

Search (DDAS) and Continuous Action-Discrete Architecture Mapping (CADAM),

respectively.

First, we provide a review of relevant NAS methods in Chapter 2. Specifically, we

list details on different NAS objectives and methods and how they relate to DDAS and

CADAM. Then we provide background information on Differentiable Architecture

Search.

Chapter 3 introduces DDAS, an RL scheme that can be adapted in place of a

gradient-descent search algorithm. We warm-up the weight-sharing supernet for a

short period of time before using a continuous RL search policy to direct further

optimization. The agent learns alongside the warmed-up supernet and is designed

accordingly. We focus our efforts on how to use Pareto frontiers to incorporate com-

putational constraints without explicitly modifying the supernet loss or RL reward

functions.

CADAM is elaborated on in Chapter 4. We separate training of the search space

and search policy so that the former is fixed while the latter is optimized. We further

modify the search algorithm to better suit the problem objective through the use

of a quantile regression loss function. In place of resource constraints and Pareto

frontiers, we describe an agent-environment pair that provides metrics regarding the

composition of high-performing architectures in a given search space.

Finally, we summarize and compare our findings in Chapter 5. We then provide

a brief discussion regarding future research directions, including applications and

methods for further refinement.
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Chapter 2

Background

Before describing our methods of applying continuous reinforcement learning, we will

first establish a necessary context through a review of recent advancements in neural

architecture search. Additionally, we provide a mathematical description of the search

spaces used throughout this thesis.

2.1 Review of Recent Literature

Originally, NAS is a resource-intensive task, since every candidate architecture must

be fully trained to execute performance evaluation, which is used to guide the search

algorithm. For instance, NASNet (Zoph et al., 2018) and AmoebaNet (Real et al.,

2019) spend over 2,000 GPU days to find the best architecture. To reduce this cost,

succeeding works like ENAS (Pham et al., 2018) adopt a weight-sharing scheme by

training a supernet containing all possible operations and connections. Each archi-

tecture then inherits the corresponding weights from the supernet.

Weight-sharing NAS techniques mainly branch into two categories, ones that rely

on random search, and ones that attempt to incrementally learn a distribution of

the best architectures. Under the first category, Bender et al. (2018) train a oneshot

model once and then sample architectures from a fixed distribution for performance

estimation and search. Guo et al. (2020) sample a single path uniformly from a

supernet to train the shared weights. Similarly, Li and Talwalkar (2020) randomly

sample a child network and only update a selected set of shared weights.

In comparison, DARTS (Liu et al., 2019) uses gradient descent to try and learn

the architecture distribution parameters during supernet training. This method has

given rise to numerous NAS schemes built upon differentiable architecture search. P-

DARTS (Chen et al., 2019) breaks the search procedure into different stages, where

the number of cells in the supernet grows while the search space is pruned to bridge
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the optimization gap. PC-DARTS (Xu et al., 2019) searches on ImageNet by using

partial channel connections to decrease the memory cost of backpropagation. This

same technique also serves to regularize any bias towards parameterless operations,

such as skip-connections and pooling layers. Similarly, our supernets are based on

DARTS in Chapter 3 and as well as PC-DARTS in Chapter 4. However, we modify

the supernet training procedure using random sampling inspired by Li and Talwalkar

(2020) to ensure that the architectures used during training match those that can be

selected for evaluation.

Many attempts have focused on identifying and potentially correcting the flaws

of gradient-based NAS methods. GDAS (Dong and Yang, 2019) and SNAS (Xie et

al., 2018) help bridge the optimization gap by using Gumbel Softmax techniques to

sample a single operation per edge during the forward pass. ProxylessNAS (Cai et al.,

2019) incorporates a binary gating mechanism into the search procedure. Zela et al.

(2020) propose early stopping based on the validation loss in DARTS. GAEA (Li

et al., 2020) modify the weight update equation using a simplex projection to ensure

better convergence. SDARTS (Chen and Hsieh, 2020) aim to reduce the discretization

error by forcing the supernet weights to generalize to a broader range of architecture

parameters. Yu et al. (2020b) demonstrate that the DARTS policies perform similarly

to random search and are heavily dependent on the initial random seed. By contrast

our schemes presented in Chapters 3 and 4 do not use gradient-descent as our search

algorithm, but a continuous RL agent that falls into the actor-critic framework, which

can still be trained efficiently using gradient ascent.

Hardware constraints, such as FLOPS, model size and inference time, are consid-

ered by a number of NAS schemes (Tan et al., 2019; Wu et al., 2019; Stamoulis et

al., 2019). Using an Evolutionary Algorithm, Elsken et al. (2018a) approximates the

Pareto frontier of architectures under multiple objectives. SNAS (Xie et al., 2018)

and ProxylessNAS (Cai et al., 2019) handle hardware-friendly objectives, i.e., latency,

to tailor the search for specific devices, i.e., CPU, GPU, or Mobile, by adding loss

regularizers. We confront these issues in Chapter 3 with DDAS. The key difference of

our approach is that instead of introducing penalty terms, which necessitate repeated

search runs, DDAS generates the Pareto frontier in a single search by judiciously

striking a balance between exploration and exploitation. A similar oneshot Pareto

frontier search scheme is presented in Cai et al. (2020), which decouples supernet

training and search, and uses a progressive shrinking trick to combat interference be-

tween child models. In contrast, DDAS solves the supernet training and architecture

search as a holistic problem, relying on the ability of DDPG to discover and train

important architectures on the Pareto frontier in a continuous search space.
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Shu et al. (2020) show that weight-sharing NAS algorithms that train supernets and

the policies that operate on them in parallel are biased towards selecting wide, shallow

cell architectures. Yu et al. (2020b) claim that architecture rankings obtained using

weight-sharing techniques do not properly reflect the true architecture rankings during

formal evaluation. We incorporate exploration strategies in the DDPG frameworks

of both DDAS and CADAM to avoid over-exploitation. Additionally, we separate

supernet training from architecture search in Chapter 4, which helps to reduce bias

toward shallow architectures.

Last, but certainly not least, a number of RL-based NAS methods, including, but

not limited to, NASNet (Zoph et al., 2018) and MNASNet (Tan et al., 2019), have

been proposed. ENAS (Pham et al., 2018) is the first reinforcement learning scheme

to use weight-sharing. By use of a discrete agent, TuNAS (Bender et al., 2020)

shows that guided policies decisively exceed the performance of random search on

vast search spaces. Like Zoph and Le (2017), most of these schemes use a simple

agent trained by REINFORCE (Williams, 1992) to select architectures parameters or

Proximal Policy Optimization (PPO) (Schulman et al., 2017) to learn to sample child

networks in a stochastic manners. One exception is AlphaX (Wang et al., 2020) that

uses Monte Carlo Tree Search to balance exploration with exploitation during the

search. Nevertheless, all of these methods operate in a discrete space where the RL

state keeps track of the partial architecture that is built over many steps. By contrast,

DDAS and CADAM select an entire architectures at every step. Since DDAS trains

the supernet alongside the agent in parallel, the state records the previously-selected

architecture. By contrast, CADAM uses the RL state to keep track of the distribution

of high performing architectures in the search space.

2.2 Differentiable Architecture Search

The Convolutional Neural Network architectures used by DARTS (Liu et al., 2019)

consist of two types of cells, normal and reduction, that are stacked to form neural

networks. The majority of network cells are normal cells where the output data

dimension - channels, height and width - match the input data dimension. Each

network contains two reduction cells that double the number of channels while halving

the height and width of input data.

DARTS adopts a continuous relaxation of searchable operators, which leads to a

supernet that represents the behavior of all possible architectures for both types of

cells. Specifically, each cell is represented by a directed acyclic graph (DAG) with

2 input nodes, |N | ordered intermediate nodes, |E| =
∑︁|N |

i=1(i + 1) edges and an
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output node. The intermediate nodes are latent data representations, while the edges

perform a weighted sum of |O| candidate operations, from a predefined operation

space denoted by O. Given input data xi, the computation performed at each edge

(i, j) where i < j, is defined as,

fi,j(xi) =
∑︂
o∈O

α(i,j),oo(xi),

where α ∈ R|E|×|O| are architecture distribution parameters. The output of a cell

is the channel-wise concatenation of the outputs of each intermediate node xj.

PC-DARTS (Xu et al., 2019) further extends this framework with the inclusion

of partial channel connections to overcome the memory inefficiency of DARTS. This

involves masking out certain channels based on a masking distribution to bypass the

mixed operations computation, thus allowing for larger batch sizes during training. It

also includes additional architecture distribution parameters, β ∈ R|E|, which can help

overcome instability caused by sampling channels. PC-DARTS performs a weighted

summation of all edges directed into a given node. Specifically, for node j ∈ N ,

xj =
∑︂
i<j

β(i,j)fi,j(xi).

During the search phase, the architecture distribution parameters exist in a con-

tinuous domain, and are updated alongside the model weights, w, using gradient

descent. At the end of the search phase, the architecture distribution parameters

are used to determine a single discrete cell architecture that can be retrained from

scratch to perform a formal evaluation. The process consists of the following steps:

Each node in N will receive input from only two of the directed edges that can feed

into it. Each of these selected edges shall perform a single operation. The choice of

which edges are chosen, and which operators will occupy these edges are determined

using the magnitude of their architecture distribution parameters, where higher is

better. Therefore, during the search, a cell of the DARTS supernet contains |N | in-
termediate nodes and no less than |E| =

∑︁|N |
i=1(i+ 1) edges, while the discretized cell

for evaluation contains no more than 2|N | edges.
DARTS and PC-DARTS excludes the ‘none’ operation from being selected regard-

less of the architecture distribution parameters. Additionally, P-DARTS (Chen et al.,

2019) places limits on the number of ‘skip-connect’ operations that may be selected.

These discrepancies, pertaining to the number of edges or allowed operations, leads

to a performance loss or discretization error (Xie et al., 2020) when deriving the

architecture from the continuously relaxed supernet for final evaluation.
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Chapter 3

Parallel Optimization of Supernet
and Policy

In this chapter, we use reinforcement learning to efficiently explore an architec-

ture search space and propose Deep Deterministic Architecture Sampling (DDAS),

a weight sharing NAS algorithm. Based on Deep Deterministic Policy Gradient

(DDPG) (Lillicrap et al., 2016), a continuous, off-policy RL agent, DDAS is capable

of efficiently generating a Pareto frontier of architectures in terms of the accuracy

and FLOPS, or accuracy and number of parameters, to find the best architecture in

a single run. Specifically, we make the following contributions.

First, we model NAS as a continuous control problem in a high-dimensional search

space. Similar to DARTS (Liu et al., 2019), SNAS (Xie et al., 2018) and Proxyless-

NAS (Cai et al., 2019), we parameterize the search space using a set of continuous

weights of operations that connect latent vectors. However, instead of updating these

weights of operations with gradient descent or bi-level optimization, we rely on the

ability of DDPG to explore and sample them in an actor-critic framework. Empiri-

cal evidence shows that DDPG performs well in high-dimensional control tasks with

continuous actions, e.g., robotic control (Duan et al., 2016).

Second, previous reinforcement learning schemes proposed for NAS, e.g., ENAS,

mainly use a stochastic policy to sample architectures for training over a sequence of

steps. In contrast, we use a deterministic policy in DDAS, which can generate one

whole architecture in a single step. Additionally, the deterministic policy gradient

can be estimated much more efficiently than the usual stochastic policy gradient, as

is shown in DPG (Silver et al., 2014) and DDPG (Lillicrap et al., 2016).

Third, we judiciously design the reward and strike a balance between exploitation

and exploration when updating the actor and critic networks in DDAS, such that the

agent will maintain a high reward while being allowed to explore a potentially large
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space of candidate architectures, which gradient-based optimization methods fail to

fully explore. In fact, in the pursuit of a higher validation performance, gradient-

based optimization schemes may often converge to a single large architecture, which

is repeatedly selected for training, preventing these schemes from sampling other

architectures in the search space and generating the Pareto frontier. In DDAS, ex-

ploration over diverse architectures in the search space is achieved by the use of a

combination of noise-based exploration schemes in a continuous space.

Fourth, the problem of NAS is further complicated by the need for hardware-

friendly architecture search, e.g., by budgeting the number of floating point opera-

tions used to forward pass a single data sample (FLOPS), inference time, or the total

number of parameters that a model can have. Schemes such as SNAS (Xie et al.,

2018), RC-DARTS (Jin et al., 2019) and ProxylessNAS (Cai et al., 2019) address the

problem by introducing constraints or penalty into their optimization formulations.

In practical deployment, however, the need for depicting a Pareto frontier of architec-

tures necessitates repeated executions of these algorithms under different constraints,

which is costly. Therefore, our final contribution is the design of an algorithm capable

of generating a Pareto frontier that features adequate coverage of many regions of the

search space, both within the context of a single experiment and without the use of

explicit regularizers in the reward or loss functions.

A series of experimental results on CIFAR-10 and CIFAR-100 (Krizhevsky, 2009)

suggest that the Pareto frontiers generated by DDAS show a clear superiority over

that of random search over a randomly warm-started supernet (Li and Talwalkar,

2020). In the meantime, the test accuracy of the best architectures found by DDAS

is comparable to various state-of-the-art NAS methods that rely on weight sharing.

3.1 Methodology

In this section, we describe the detailed mechanisms of our proposed scheme, DDAS.

First, we present our RL agent and environment, followed by a description of the

training procedure and methods to balance exploitation and exploration.

3.1.1 The DDAS Agent

In reinforcement learning, at time-step t, an agent in state st interacts with an en-

vironment by executing an action at. The environment in turn returns a reward, rt,

and the agent observes the next state, st+1. The goal of the agent is to maximize the

return R =
∑︁T−1

t=0 γtrt over T time steps subject to a discounting factor γ ∈ [0, 1).
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Figure 3.1: An illustration of one DDAS step.

DDAS is based off DDPG, which adopts an actor-critic framework. The actor µ(st)

is a neural network that takes a state st as its input, and produces an action

at = µ(st) + Zt, (3.1)

where Zt is a noise added to the actor’s output to encourage exploration of architec-

tures.

The critic Q(st, at) is a neural network that is trained to maximize the return by

predicting the action value of a state-action pair (st, at). On the other hand, the actor

learns the optimal policy necessary to maximize the return.

A replay buffer is used to store interactions with the environment, the supernet,

in a form of experience tuples (st, at, rt, st+1). Experiences can be randomly sampled

with replacement in order to train the actor and critic. Our actor and critic are simple

MLPs with three hidden layers applied onto the vectorized inputs.

3.1.2 Environment Interaction

We now describe the interaction of the DDAS agent with the environment through

the action, state and reward. We split all the available training data into two non-

overlapping sets, the training data DT and validation data DV ; the first is used for

training the supernet weights w while the latter is used to evaluate the performance

of a given architecture. The DDAS procedure is illustrated in Figure 3.1.

We first initialize the environment by setting every element of α to one to obtain

the supernet with all the operations present. Then, we warm up the supernet with

several epochs of training (Bender et al., 2018; Guo et al., 2020). The accuracy of

the warmed-up one shot model OS is denoted by Acc(OS).

The DDAS agent interacts with the environment in an iterative process. In par-

ticular, the actor network will output the action at = αt, where αt represents the

α generated at time step t. This action at will be evaluated by the environment

according to Algorithm 1 to obtain rt and st+1.
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Algorithm 1 Architecture Sampling and Evaluation

1: Input: αt given by the DDPG actor
2: αd

t ← Discretize(αt) # Algorithm 2
3: for M minibatches do
4: Sample a minibatch m from DT

5: Update supernet weights selected by αd
t using SGD and m

6: end for
7: Compute the loss LV (α

d
t ) and the accuracy Acc(αd

t ) of the selected architecture
on DV using weights inherited from the supernet.

8: Return rt by Equation 3.3 and st+1 = αd
t .

Algorithm 2 Map Continuous α to Discrete Architecture (DARTS)

1: Input: α ∈ R|E|×|O|

2: Output: αd ∈ {0, 1}|E|×|O|

3: Start = 0, n = 1
4: αd = 0|E|×|O| # Initialize the αd matrix to zero
5: for k = 0, 1, ..,|N | − 1 do
6: End = Start + n # |N | is the number of intermediate nodes
7: A = α[Start : End, :] # Rows of a specific intermediate node
8: (i1, j1) = argmax(i,j) Aij

9: (i2, j2) = argmax(i,j):i ̸=i1 Aij

10: αd[Start + i1, j1] = 1
11: αd[Start + i2, j2] = 1
12: Start = End + 1
13: n = n+ 1
14: end for
15: Return αd

Having generated αt at time step t, we discretize αt to obtain αd
t ∈ {0, 1}|E|×|O|.

Given an intermediate node, we select the top two edges with the highest operation

weights incoming from all its predecessor nodes. Then we discretize the two edges by

setting the index of the operation with highest weight on each edge to one and the

rest to zero, i.e.,

αd
t = Discretize(αt), (3.2)

where a detailed definition of Discretize is given in Algorithm 2. In fact, αd
t cor-

responds to a single deterministic architecture, with a controlled complexity, whose

corresponding weights in the supernet will be updated using SGD. This architecture

is then evaluated on DV to calculate the reward.

We define the reward at time step t , i.e., rt, in terms of the selected architecture’s
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Figure 3.2: Comparison of DDAS performance on CIFAR-10 with (blue) the full
reward function, without the loss term (red) and without the accuracy term (green).
DDAS becomes nearly indistinguishable from Random Search (grey) when either the
loss or accuracy terms are removed.

validation accuracy, Acc(αd
t ), and the validation loss LV (α

d
t ) as

rt =
1

2
(Acc(αd

t )− Acc(OS)) +
1

2
(−LV (α

d
t ) + LV (α

d
t−1)). (3.3)

The accuracy term encourages the DDAS agent to select well-performing archi-

tectures, while the validation loss term, e.g., cross-entropy loss in the case of clas-

sification, encourages the agent to constantly improve. Moreover, the addition of

loss in the reward is empirically critical to addressing concerns raised by Yu et al.

(2020b). As Figure 3.2 shows, without a loss component, the actor policy eventually

degenerates into random search.

Finally, the agent sets the next state to the selected architecture, i.e., st+1 = αd
t ,

and continues the process to find a better architecture.

3.1.3 Exploration and Exploitation

The goal of DDAS is to generate a Pareto frontier of architectures in terms of accuracy

and FLOPS through a single run of the algorithm. Intuitively speaking, we can also

obtain the Pareto frontier by warming up the supernet and then applying random

search or evolutionary algorithms over architectures that inherit weights from the

supernet. In contrast, optimization schemes such as DARTS, SNAS, etc., are not

capable of depicting the Pareto frontier in one run, as gradient descent will drive

these schemes to train a single or a few large architectures fully in order to minimize

the validation loss of selected architectures.

The ability of DDAS to discover a better Pareto frontier in one run critically

depends on a balance between exploration and exploitation processes. Since DDPG
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is off-policy, it benefits from the use of an experiential replay buffer. DDPG splits

exploration and exploitation into two sequential phases. In the first phase, neither

the actor nor the critic is used or updated. Instead, the agent accumulates a diverse

collection of state transitions in its replay buffer by sampling actions from a random

distribution. In the second phase, i.e., the exploitation-centered phase, actions are

generated by the actor using Equation 3.1. The agent samples a random batch BR

of experiences from its replay buffer and uses them to update the critic network

according to the loss,

LCritic =
1

|BR|
∑︂
i∈BR

(ri + γQ′(si+1, µ
′(si+1))−Q(si, ai))

2, (3.4)

where Q′ and µ′ are the target networks used to aid in the training procedure; refer

to Lillicrap et al. (2016) or Mnih et al. (2013) for further details. The actor network

is then updated using a sampled policy gradient from the critic,

LActor =
1

|BR|
∑︂
i∈BR

Q(si, µ(si)). (3.5)

One caveat of Equation 3.4 is that given our definition of the reward, the actor

will learn to sample the same architecture repeatedly regardless of the state in order

to train this architecture fully to increase the validation performance. In DDAS, we

introduce exploration in architecture sampling through the use of two types of noise.

First, we introduce exploration during the exploitation phase by adding a Gaussian

noise to the actor output in every step, as in Equation 3.1. However, it may not be

strong enough to completely randomize the actions. Rather, it perturbs α such that

when discretized into αd, it is in the same neighborhood of the actor’s output. If the

agent samples from a small neighborhood repeatedly, the validation performance will

be guaranteed to improve, as the shared weights are repeatedly updated.

To further encourage exploration in DDAS, we introduce a new phase to follow

the normal exploitation phase, where we replace the Gaussian noise by the Ornstein-

Uhlenbeck process (Uhlenbeck and Ornstein, 1930), which is more effective than

Gaussian noise at overwriting actions (Lillicrap et al., 2016). Thus, we do not add

Ornstein-Uhlenbeck process to the actor output in every step. When the agent detects

that α has been stagnant, measured by observing minimal changes from step-to-step,

for a number of steps Tstag, the new noise is added to the actor’s output for the next

Tstag steps. When the noise is off, the agent will focus on a small number of architec-

tures that the critic deems worthwhile and continuously train their weights, driving

up the validation performance. On the other hand, when the Ornstein-Uhlenbeck pro-

cess is temporarily introduced, the newly selected architectures will become radically
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different, yet still having a few shared weights overlapped with previously selected

architectures. This overlap of shared weights can be used to boost the performance

of the newly selected architectures.

Through a combined use of the above two types of noise, the DDAS agent can

switch attention to seldom sampled architectures including the smaller architectures,

so that the Pareto front in terms of validation accuracy and FLOPS can be uplifted.

3.2 Experiments and Discussion

We perform our experiments on two datasets, CIFAR-10 and CIFAR-100 (Krizhevsky,

2009). Both datasets have 60k images each, of dimension size 32 × 32, with ten

classes for CIFAR-10 and one hundred classes for CIFAR-100. Architecture search is

performed on a data split similar to DARTS, resulting in a training set DT , validation

set DV , and test set with sizes 25k, 25k, and 10k samples, respectively. Further

evaluation of the best architectures found involves training on the official CIFAR-

10 and CIFAR-100 splits that partition the data into 50k training samples and 10k

testing samples.

3.2.1 Architecture Search

Warmed-up Supernet: We warm up all our architecture search experiments by

training a 6-cell oneshot supernet for 75 epochs on DT with all elements of α set to

one. Supernet training typically takes less than six hours.

Architecture Sampling with DDAS: We initialize DDAS with the warmed up

supernet and start the architecture sampling process. For every sampled architecture,

the supernet is trained for 25 batches on DT to fit the supernets weights to the new

architecture configuration. We compare three different DDAS configurations against

a random search baseline. Each experiment runs for 1,500 steps and takes around 24

hours to finish.

1. Random Search (RS): Following Li and Talwalkar (2020), we train the supernet

by randomly sampling architectures from Uniform(0, 1)|E|×|O|.

2. Noiseless (DDAS-NL): After an initial 500 steps of exploration, DDAS enters

an almost purely deterministic exploitation phase where Zt = U(−10−5, 10−5).

3. Gaussian (DDAS-G): Same as DDAS-NL, however we engender further explo-

ration during the exploitation phase by disrupting the actor’s output at with a

noise sampled from a Normal distribution, Zt = N (0, 0.05).
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(a) CIFAR-10 validation curves
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(b) CIFAR-100 validation curves

Figure 3.3: Search validation curves on CIFAR-10 and CIFAR-100 as a function of
RL steps. The ‘Oneshot’ line represents the best validation accuracy the warmed-up
supernet obtained prior to architecture search.
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(b) CIFAR-100 FLOPS Pareto frontiers

Figure 3.4: Search Pareto frontiers in terms of validation accuracy and FLOPS. Each
line is generated by one of the four search schemes. Numerical annotations denote
the step t where an architecture was sampled. Any step below 500 is guaranteed to
be generated from a uniform random distribution, U(0, 1)|E|×|O|.

4. 4-Stage (DDAS-4S): Behaves like DDAS-G for the first 500 steps of the ex-

ploitation phase. In the last 500 steps of the experiment, the additive noise is

turned off by default, Zt = 0, then re-enabled sporadically. The key difference

is that the agent keeps track of selected architectures. The agent considers two

architectures to be similar if less than 6 of the 16 activated operation-edge pairs

between the normal and reduction cells are different. If the agent detects that

it has been selecting a similar architecture for Tstag = 32 steps in a row, then a

large, (Uhlenbeck and Ornstein, 1930) noise will be added to the actor output

for the next Tstag steps.

For each experiment we obtain the best architecture found by DDAS with the
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(a) CIFAR-10 Cell Width Histogram
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(b) CIFAR-100 Cell Width Histogram

Figure 3.5: Search histograms of normal and reduction cell width distributions on
CIFAR-10 and CIFAR-100 across architectures in the top 5% accuracy percentile.
Width is defined as the average number of operation-edge pairs originating from the
two input nodes, and can take values between 0.5 and 4.

highest validation accuracy on a given dataset. For every architecture sampled by

DDAS, we calculate both the number of FLOPS and the number of parameters in

a model assuming it is instantiated on a 6-cell network. We construct the Pareto

frontier from the validation accuracy of each sampled architecture on the supernet,

constrained by the number of FLOPS/parameters on the 6-cell network.

In the second half of our experiments, we forwarded many of the architectures

found on the FLOPS Pareto frontiers for further evaluation on larger models for 600

epochs each. The number of cells used were 10 and 20 for CIFAR-10 and CIFAR-100,

respectively.

Lastly, we took the absolute best performing architecture from each experimental

setting and compared their test accuracies against those of several related NAS algo-

rithms. For comparisons on CIFAR-10, we re-trained these architectures using 20 cell

models in order to perfectly match the hyperparameter choices of Liu et al. (2019).

3.2.2 Evaluation and Comparison

Search validation curves for all experiments are illustrated by Figure 3.3. All variants

of DDAS demonstrate a clear superiority over random search. The performance of

DDAS-NL is the quickest to rise following the initial exploration steps, while DDAS-

G and DDAS-4S take a few hundred additional steps before they surpass random

search. Additionally, dips and rises in the plots of DDAS-4S clearly denote the time

steps where a large noise is added to the actor output. The validation Pareto frontiers

found by our search experiments, in terms of FLOPS, are presented in Figure 3.4.
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Figure 3.6: Test set evaluation Pareto frontiers for CIFAR-10. Points correspond to
architectures present on the search Pareto frontier for a given search scheme. All
models were trained using 10 cells.
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Figure 3.7: Test set evaluation Pareto frontiers for CIFAR-100. Points correspond
to architectures present on the search Pareto frontier for a given search scheme. All
models were trained using 20 cells.

Architectures on these curves were selected for further evaluation through larger mod-

els. Note that while DDAS-NL appears to outperform all other methods in terms of

validation performance over time, Pareto frontier regions corresponding to smaller

FLOPS are dominated by DDAS-G and DDAS-4S.

We adopt the definition introduced by Shu et al. (2020) for measuring the width

and depth of NAS cells and exclude the ‘none’ operation from these calculations.

Figure 3.5 displays the histograms of cell widths for cells in the top 5% accuracy

percentile for all experiments on both datasets. The distribution of architectures

for both datasets resembles that of a Gaussian distribution centered around 2.5;

corresponding to 2-3 edges per input node, in the case of CIFAR-10. For CIFAR-100,

the distribution of normal cells more closely resembles a uniform distribution bounded

between 2 and 4. Reduction cell widths follow a narrow Gaussian centered around

2.5. Regardless of the distribution, it is clear that respectable accuracy metrics can be

found across a spectrum of cell widths—high accuracies are not limited to a narrow
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Figure 3.8: Best set of cells found on CIFAR-10. These cells were found using the
noiseless configuration (DDAS-NL) at step 833.

c_{k-2}

0avg_pool_3x3

1skip_connect

2

max_pool_3x3 3

sep_conv_5x5

c_{k-1}

none

sep_conv_3x3

dil_conv_3x3

c_{k}

max_pool_3x3

(a) Normal Cell, 3c, 3

c_{k-2}
0avg_pool_3x3

1sep_conv_3x3

c_{k-1}

sep_conv_3x3

2skip_connect

3
none

dil_conv_5x5

c_{k}dil_conv_3x3

dil_conv_3x3

(b) Reduction Cell, 2c, 5

Figure 3.9: Best set of cells found on CIFAR-100. These cells were found using the
four-stage configuration (DDAS-4S) at step 1483.

range of cells with large widths. These findings corroborate our claim that NAS

algorithms should incorporate a higher degree of exploration and avoid being biased

toward a specific type of topologies.

Test set Pareto frontiers, in terms of both FLOPS and total number of parameters,

on both datasets, are given by Figures 3.6 and 3.7, respectively. By test set accuracy,

the Pareto frontiers of all three DDAS configurations are higher than those of RS in at

least one region. This reflects the search curves where their architectures were chosen

from. DDAS-NL is the sole exception to this observation. DDAS-NL produced the

highest test score on CIFAR-10 and the highest validation scores on both datasets.

According to Figure 3.4, the only architectures DDAS-NL chose that had a small

number of FLOPS were sampled during the initial 500-step exploration phase, or

shortly afterward. When comparing DDAS-G to DDAS-4S we observe that their

evaluation Pareto frontiers almost identically match the ones generated during the

search. On CIFAR-10, DDAS-G is better at sampling low-FLOPS architectures,

but is eventually overtaken by DDAS-4S. Meanwhile, on CIFAR-100, the DDAS-4S

Pareto frontiers completely dominate DDAS-G on both search and evaluation.

The best cell architectures found for CIFAR-10 and CIFAR-100 are given by Fig-

ures 3.8 and Figure 3.9, respectively. With exception to the normal cell for CIFAR-

100, no cell has a width above 3 nor a depth smaller than 3. This demonstrates that

DDAS is not prone to the same issue as cells found by state-of-the-art algorithms.
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Table 3.1: Comparison of DDAS schemes with other state-of-the-art algorithms in
terms of test accuracy, gigaFLOPS and millions of parameters. We manually evalu-
ated the publicly available architectures found by DARTS first-order and second-order
on CIFAR-100.

CIFAR-10 CIFAR-100

Architecture FLOPS Params Test Acc. (%) FLOPS Params Test Acc. (%)

DARTS 1st Order 1.022G 3.65M 97.00 1.022G 3.77M 82.37

DARTS 2nd Order 1.078G 3.83M 97.24 1.078G 3.95M 82.65

ENAS – 4.60M 97.11 - - -

ProxylessNAS-G – 5.70M 97.92 – – –

GDAS – 3.40M 97.07 – 3.40M 81.62

GDAS (FRC) – 2.50M 97.18 – 2.50M 81.87

SNAS (Mild Const.) – 2.90M 97.02 – – –

SNAS (Mod. Const.) – 2.80M 97.15 – – –

RS 1.024G 3.67M 97.16 0.920G 3.55M 80.76

DDAS-NL 0.876G 3.23M 97.27 1.106G 4.04M 81.34

DDAS-G 0.839G 3.10M 96.81 0.916G 3.47M 80.88

DDAS-4S 0.842G 3.07M 96.74 0.814G 3.14M 82.00

That is, the layout of the cells do not resemble a wide, shallow neural network; each

input is not simply passed to each node independently before being aggregated at the

output. Instead, the inputs are subject to a series of sequential operations as they

are passed from one node onto the next.

Next, we compare the test performance of the best architectures found by all four

of our experimental setups to those reported by several other state-of-the-art NAS

algorithms using weight sharing and relying on a few GPUs. The results are given in

Table 3.1.

Table 3.1 provides evidence that DDAS is superior to ENAS (Pham et al., 2018),

GDAS (Dong and Yang, 2019) and SNAS (Xie et al., 2018), where the latter two

employ exploration in the form of Gumbel Softmax. The only architectures whose

scores are higher than DDAS are ProxylessNAS (Cai et al., 2019) on CIFAR-10 and

DARTS (Liu et al., 2019) on CIFAR-100. Both methods achieve their high accuracy

metrics at the cost of substantially larger model sizes.

Comparing our experimental configurations against each other, we observe the

superiority of DDAS-NL and RS over DDAS-G and DDAS-4S on CIFAR-10. Both

of these algorithms favored architectures with a much higher number of parameters

than DDAS-G and DDAS-4S. Most notably RS is the more inefficient of the two.

Moreover, the same situation is partially true on CIFAR-100, where DDAS-G and

DDAS-4S reign supreme with fewer parameters.
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DDAS-NL is most comparable to gradient-based NAS algorithms due to a low,

almost negligible amount of exploration during exploitation. Conversely, DDAS-4S

incorporates mechanisms that allow it to actively fight against the sampled policy

gradient of its critic, while DDAS-G does not heavily depart from the original specifi-

cation of DDPG given by Lillicrap et al. (2016). On CIFAR-100 DDAS-4S completely

outperformed DDAS-NL, both in terms of performance and parameter efficiency.

CIFAR-100 is inherently more difficult to classify than CIFAR-10 due to having the

same number of samples but 10 times as many classes and therefore 10 times fewer

samples per class. Thus, it can be said that DDAS-4S demonstrates the benefits of

modifying RL algorithms beyond the scope of their original theory for use in NAS

problems.

In addition, we approximated the slope of accuracy against FLOPS or parameters

using linear regression. For CIFAR-10, we found that test accuracy increased at rates

of 2.86% per gigaFLOPS and 2.123% per million parameters, both with linear correla-

tions over 0.93. For CIFAR-100, these values are higher at 4.03% per gigaFLOPS and

3.196% per million parameters, linearly correlated over 0.86. These metrics quantify

the small loss of accuracy entailed by downsizing model size and indicate the ability

of DDAS to find resource-efficient architectures for practical deployment.

Table 3.2: Spearman correla-
tion coefficients between vali-
dation and evaluation accura-
cies for Pareto front cells

Setting CIFAR-10 CIFAR-100

RS 0.964 1.000

DDAS-NL 0.881 0.826

DDAS-G 0.886 0.810

DDAS-4S 0.886 0.600

We also computed the ranking correlation between

the validation and evaluation scores of all Pareto

frontier architectures. The Spearman coefficients are

given in Table 3.2. This shows that the DDAS is ca-

pable of sampling architectures where the true, eval-

uation ranking is adequately preserved during the

search phase.

Finally, the search cost of DDAS is relatively com-

parable to DARTS. DDAS takes approximately 24

hours to complete 1,500 steps, while the initial phase of warming up the oneshot

model takes around 6 hours, for a total of 30 hours on an RTX 2080 Ti GPU. It is

worth noting that DARTS, P-DARTS, and GDAS ran their search experiments four

or three times with different random seeds in order to pick the best architecture ac-

cording to the validation accuracy. Repeated searches are a mechanism to encourage

exploration. In contrast, DDAS is designed to explore, train and identify a range of

good architectures in the same search run.

22



3.3 Conclusions

We introduce Deep Deterministic Architecture Search (DDAS), an algorithm based

on Deep Deterministic Policy Gradient (DDPG) in Reinforcement Learning (RL),

to thoroughly explore an architecture search space and perform Neural Architecture

Search (NAS) by sampling and training architectures on a weight-sharing supernet.

Unlike prior RL schemes for NAS which use stochastic policy gradient to sample

architectures, DDAS uses a deterministic policy and leverages the ability of DDPG

to handle high-dimensional control in a continuous space. Coupled with a loss-based

reward function, the policy of DDAS is distinct from random search and can learn to

focus on important regions of the search space.

Furthermore, DDAS addresses the lack-of-exploration issue present in recent NAS

frameworks via several exploration schemes. As a result, DDAS is capable of gener-

ating a Pareto frontier of architectures in a given search space for flexible deployment

on target hardware. Additionally, the cells produced by DDAS are not always wide

and shallow or biased toward a specific type of topologies. We performed extensive

experiments on CIFAR-10 and CIFAR-100 in a wide range of experimental settings.

Experimental results have shown that DDAS is capable of generating architectures

with test accuracies that are competitive with other state-of-the-art efficient, weight-

sharing NAS algorithms that are based on no more than a few GPUs. In addition, in a

single algorithm run for less than 1.5 GPU days, DDAS can produce Pareto frontiers

that outperform random search based on a warm-started supernet, demonstrating

its superior capability to automatically explore and discover important regions of a

neural architecture search space.

In the next chapter, we decouple the training of the supernet and agent, and

perform these tasks sequentially. We also explore what additional alterations, both

to the original DDPG algorithm and DDAS, are made possible by this change.
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3.4 Additional Experimental Details

In this section we further elaborate on the hyperparameter setups used for our exper-

iments and disclose the computational resources used to perform our experiments.

3.4.1 Search Hyperparameters

Our weight-sharing search models, modified from DARTS (Liu et al., 2019), all have

6 cells; 4 normal and 2 reduction cells. Data enters through a head which applies a

channel multiplier of 16 as well as a few preliminary convolution operations, before

being passed on to the cells. A batch size of 64 is used at all times, and each supernet

is trained over the course of 75 epochs on the 25k training set, DT . We followed the

precedent set by DARTS and utilized a stochastic gradient descent optimizer with

momentum. During oneshot supernet training, the initial learning rate is set to 2.5×
10−2, but is annealed down to 10−3 by a cosine schedule without restarts (Loshchilov

and Hutter, 2017). When searching for an architecture using DDAS, we set the

learning rate to a constant value of 10−3. For reproducibility, all experiments are

initialized with the same random seed values of 2 for search and 0 for evaluation.

3.4.2 Agent Hyperparameters

The actor and critic networks of DDAS are both MLPs with 3 hidden layers and

256 neurons in each layer. Both networks are trained using Adam (Kingma and Ba,

2014) with its default parameters of β⃗ = (0.9, 0.99) and learning rates of 10−4 and

10−3, respectively. ReLU (Nair and Hinton, 2010) is used as the internal activation

function for both the actor and the critic. However, the actor’s final layer uses a

sigmoid activation (σ) to truncate the output into the range (0, 1). The critic does

not utilize any final activation at all, because it produces a scalar. The target networks

(see Lillicrap et al. (2016) for details) are synchronized at every step using a mixing

coefficient of 10−3. The replay buffer is truncated to only hold experiences from the

last 500 time steps during Phase 4. The size of the buffer is 106 at all other times.

The number of experiences, |BR|, sampled from the replay buffer is always 64. The

discount factor γ is set to 0.99.

DDAS uses a Gaussian noise N (0, 0.05) during its exploitation phase (DDAS-G)

before adopting the Ornstein-Uhlenbeck (Uhlenbeck and Ornstein, 1930) process for

its final, fourth stage (DDAS-4S). Unlike Lillicrap et al. (2016), the actor and critic

networks are completely separate with no overlap between their parameters. We

do not apply any regularization to either network. Table 3.3 lists the configurations
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Table 3.3: Hyperparameters specific to different versions of DDAS.

Setting Explore Exploit 4S ZExploit Z4S

Steps Steps Steps

DDAS-NL 500 1,000 0 U(−10−5, 10−5) N/A

DDAS-G 500 1,000 0 N (0, 0.05) N/A

DDAS-4S 500 500 500 N (0, 0.05) (Uhlenbeck and Ornstein, 1930)

specific to different search algorithms including three different versions of DDAS. Our

RL code is based off of Shangtong (2018).

3.4.3 Evaluation Hyperparameters

Once a cell architecture is found and sent for evaluation (testing), the tested network

consists of 10 or 20 cells for CIFAR-10 and CIFAR-100, respectively. The channel

multiplier present at the beginning of a network is increased to 36. The same cosine

annealed SGD with momentum optimizer is used here, except now the learning rate

is annealed down to a value of 0 over the course of every experiment, all of which

lasted 600 epochs with a batch size of 96. Finally, we also made use of DARTS path

dropout feature, with a probability of 0.2, and an auxiliary head with a weight of 0.4.

When further evaluating the best CIFAR-10 architectures for Table 3.1, we re-ran

the evaluation experiments with 20 cells. This allowed us to directly compare our

results with those of DARTS (Liu et al., 2019). In all experiments, we made use of

Cutout (DeVries and Taylor, 2017) using the recommended lengths for CIFAR-10 and

CIFAR-100.

3.4.4 Computing Platforms

Workstations used to run our experiments were equipped with Threadripper 2990WX

processors, with two exceptions: One computer used a Ryzen 9 3900X, and the other

was equipped with a Intel Core i9-9900X. All systems were equipped with dual RTX

2080 Ti GPUs.
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Chapter 4

Sequential Optimization of
Supernet then Policy

In this chapter, we propose Continuous Action-Discrete Architecture Mapping (CADAM)

for NAS. Our search algorithm consists of a deterministic reinforcement learning agent

based on DDPG (Lillicrap et al., 2016) and the actor-critic framework operating in a

continuous space. In particular, CADAM has the following advantages.

First, CADAM produces continuous actions via a DDPG agent which undergo

a many-to-one mapping into discrete architectures. This allows the RL policy to

be efficiently optimized using gradient ascent and enjoy the same efficiency as other

gradient-based optimization algorithms. In the meantime, CADAM incorporates sev-

eral forms of exploration strategies into the DDPG framework, including the noise-

based exploration mechanisms built into DDPG and ϵ-greedy, to ensure that the

agent adequately explores a large search space of architectures to avoid premature

convergence.

Second, in contrast to previous RL agents (Pham et al., 2018; Bender et al., 2020)

in NAS that make discrete actions sequentially to build a neural network over multiple

steps, the DDPG actor in CADAM generates one continuous action per step which

translates into an entire architecture, and thus does not suffer from the sparse reward

problem. Practically speaking, instead of learning a policy to construct a graph step

by step, CADAM learns to generate the update rule for architecture parameters using

continuous RL.

CADAM diverges from DDAS by training the supernet first and fixing the shared

weights during optimization of the RL agent policy. Since no updates are applied

to the supernet after initial training, the RL state no longer needs to represent the

previously selected architecture. Therefore, we design an actor, which is a neural

network, to generate such architecture parameter update rules based on a novel state
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Figure 4.1: A high-level illustration of CADAM

representation that provides statistical information of high-performing architectures

in search history, as well as a critic network driven by quantile regression to assess

the value of different updates. Thus, CADAM can also be understood as replacing

the gradient descent update rule usually used in optimization with an architecture

parameter update rule meta-learned by DDPG. However, CADAM is more robust

than gradient-based NAS and DDAS as it does not strictly require a supernet to

operate and can perform search by quering fixed oracle performance.

We test CADAM and show that it outperforms the best published results on the

public benchmark NAS-Bench-201 (Dong and Yang, 2020). Additionally, we eval-

uate CADAM on supernets trained using CIFAR-10 and a downsampled version of

ImageNet (Deng et al., 2009). We show that our scheme produces architecture capa-

ble of achieving over 97.4% test accuracy on CIFAR-10 and 75% top-1 accuracy on

ImageNet.

4.1 Methodology

We now present the operating mechanisms of the proposed algorithm, CADAM.

CADAM relies on a continuous reinforcement learning agent that explores the search

space and learns to generate architecture parameters that increasingly focus on high-

performing architectures. Every continuous action generated by CADAM is directly

discretized into an individual architecture whose reward is instantaneously examined

to avoid discretization loss.

4.1.1 The CADAM Agent

A high-level overview of our scheme is illustrated in Figure 4.1. CADAM performs

model search using Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,

2016) from reinforcement learning, which operates in a continuous space. The agent

interacts with an environment, e.g., a pre-trained supernet, predicted performance
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or oracle performance if available, over an infinite number of steps, t = 0, 1, ...,,

by performing an action at at each step, receiving a reward rt in return, followed

by transitioning to a state st. Different from prior RL-NAS schemes, e.g., ENAS,

that learn to construct a high-performing neural network by taking multiple steps of

discrete actions, the goal of CADAM is to explore a large search space and learn to

output actions given the current state in order to locate the top architectures within

a small number of steps.

Specifically, at step t, the agent produces an action that serves as continuous

architecture parameters, i.e., αt = at ∈ R|E|×|O|. Each continuous action αt is mapped

into a discrete αd
t by Algorithm 2, which is actually equivalent to the procedure used

by DARTS (Liu et al., 2019) to produce the final discrete architecture for evaluation

at the end of search. Algorithm 2 produces αd ∈ {0, 1}|E|×|O|, which contains discrete

entries. Therefore, each αd corresponds to an individual architecture in the search

space.

The reward of action αt is defined as

rt = 100Acc(αd
t ), (4.1)

where Acc is the accuracy of the architecture αd
t , in its decimal form, measured by

the environment.

During the search, the environment keeps track of the top-K actions seen to date, as

determined by the accuracy. That is, we store a history tensor, ht ∈ {0, 1}K×|E|×|O| of

top-K αd
t seen so far and define the state, st ∈ R|E|×|O|, as the channel-wise averaging

of ht.

The state st is meant to provide statistical information regarding the search space.

Given our definition, each entry of the state matrix represents the sample probability

that a specific operation is present on an edge in the top-K architectures seen so far.

A higher value on an entry indicates that the corresponding operation-edge pair is

favoured by high performing architectures.

4.1.2 Quantile-Driven Search Policy

We introduce a few modifications to the original DDPG algorithm to tailor it to our

specific search problem, mainly including a quantile loss in critic training.

In particular, the CADAM agent consists of two different neural networks: The

actor, µ(st), which generates an action at given st; and the critic, Q(at), which predicts

the action value. The agent maintains a replay buffer, R, which stores experience

tuples in the form of (st, at, rt).
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The actor network is defined as,

at = µ(st) + Zt, (4.2)

where Zt is a small noise following a uniform distribution U(−ξ, ξ), added to the actor

output to encourage exploration. Furthermore, we introduce additional exploration

strategies in the form of taking random actions drawn from a uniform distribution,

U(0, 1)|E|×|O|, instead of being determined by the actor network in Equation 4.2. We

apply two different exploration strategies depending on the search space:

• ϵ-greedy: At every step, the actor will take a random action with probability

ϵ. We initialize ϵ to a high value and anneal it to a minimum value over time.

• Random warm-up: The agent takes random actions in the first W steps.

Actions taken during all remaining steps t > W are determined by Equation 4.2.

The critic network of CADAM differs greatly from that of the originally proposed

DDPG as it does not take the state as an input,

rt ≈ Q(at). (4.3)

At every time step t, the agent randomly samples a batch BR from the experiential

replay buffer and uses it to update the critic, and then the actor. Furthermore,

CADAM updates the critic network using the check loss (Koenker, 2005) in quantile

regression:
ui = ri −Q(ai),

LCritic =
1

|BR|
∑︂
i∈BR

ui(τ − 1(ui < 0)),
(4.4)

where τ ∈ [0, 1] corresponds to the desired quantile level. The actor network learns

directly from the critic with the loss:

LActor =
1

|BR|
∑︂
i∈BR

Q(µ(si)). (4.5)

As Preiss et al. (2020) point out, “NAS and RL problems are not an exact match.

RL targets sequential tasks where major challenges are unknown transition dynamics,

temporal credit assignment and exploration (Sutton and Barto, 2018).” In DDPG the

critic is responsible for interfacing with the environment, which defines the problem.

The DDPG critic, originally proposed as Q(st, at), accommodates issues of RL by

calculating a discounted estimate of future rewards (Lillicrap et al., 2016) based on

state transitions and learns using the L2 loss function, formally given by Equation 3.4.
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In NAS the only relevant issue mentioned is exploration. Our definition of the state

is not related to the accuracy of single architectures. Intuitively speaking, a critic

trained by the L2 loss predicts the mean reward of at. In contrast, a critic trained

by the check loss is predicting the τth-quantile of the reward. The key advantage is

that our critic is capable of picking up and dealing with the best architectures while

the DDPG critic is only able to handle average architectures. Put succinctly, our loss

function ensures that the critic predicts the tail of the reward, which corresponds to

the accuracy of the best architectures selected. This knowledge is then passed onto

the actor following Equation 4.5.

Finally, we accelerate policy training by sampling more than one batch from the

replay buffer and training the networks multiple times per step. This is useful in

situations where the number of steps is tightly budgeted. We determine the number

of training cycles C by

C = min(

⌊︃
|R|
|BR|

⌋︃
, Cmax), (4.6)

where |R| is the number of samples in the replay buffer and Cmax determines the

maximum number of cycles. The actor and critic networks start training once the

experience buffer has |BR| samples.

4.1.3 Supernet Pre-training

The CADAM agent interacts with an environment by sending continuous actions

and receiving rewards, where the environment can take multiple forms, e.g., oracle

performance, accuracy predictor or a weight-sharing supernet. The former is available

in public benchmarks, e.g., NAS-Bench-201 (Dong and Yang, 2020), in the form of

a look-up table of fully evaluated architectures, while the supernet is helpful when

integrating with DARTS and PC-DARTS.

Unlike DARTS that updates all the model weights in the entire supernet during

the search, we pre-train the supernet by uniformly sampling individual architectures

and only train their corresponding edges in the supernet. This strategy is inspired

by random search (Li and Talwalkar, 2020) and could better reflect the conditions

present when the formal evaluation is performed on individual architectures. More-

over, backpropagation using this method requires less memory, allowing for larger

batch sizes.

One criticism of weight-sharing NAS approaches is that search algorithms are bi-

ased towards selecting architectures that are wide and shallow (Shu et al., 2020). This

phenomenon occurs because the path the gradient must travel in shallow architec-

tures are shorter than those in topologies that are deep and narrow. Thus, given an
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Algorithm 3 Map Continuous α to Discrete Architecture (NAS-Bench-201)

1: Input: α ∈ R|E|×|O|

2: Output: αd ∈ {0, 1}|E|×|O|

3: αd = 0|E|×|O| # Initialize the αd matrix to zero
4: for k = 0, 1, ..,|E| − 1 do
5: A = α[k, :] # |E| is the number of edges
6: ik = argmaxi Ai

7: αd[k, ik] = 1
8: end for
9: Return αd

equal number of weights, a wide and shallow architecture will be able to train faster

than one that is deeper, giving an illusion of superiority. Our approach avoids this

problem by pre-training the supernet separately using a random policy that is blind

to performance of different topologies. During the search, the weights of the supernet

are fixed.

In particular, we sample discrete architectures from the supernet during for train-

ing. For each batch of training data, we first sample a random matrix α ∈ R|E|×|O|,

which is then discretized by Algorithm 2 into an architecture αd, whose weights are

updated with the batch of data. Since αd performs both operation and edge selection,

the need for β can be omitted when applied to PC-DARTS. By performing a discrete

operation and edge selection, we ensure that the architectures seen by our supernet

during training exist in the same space as the evaluation models.

4.2 Experiments and Discussion

In this section, we evaluate CADAM on several benchmarks. First, we demonstrate

the merit of our novel RL-NAS agent on NAS-Bench-201 (Dong and Yang, 2020).

Next, we train supernets on CIFAR-10 (Krizhevsky, 2009) and a downsampled version

of ImageNet (Deng et al., 2009), perform model search and evaluate the performance

of the best architectures found.

4.2.1 Oracle Performance

NAS-Bench-201 consists of 15,625 cells architectures. The search space is a downsized

variant of DARTS featuring a different operation set, |O| = 5, where each cell only

receives input from its predecessor. The topology consists of |N | = 2 intermediate

nodes and |E| = 6 edges. Unlike DARTS, all edges perform operations.
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Table 4.1: Accuracies obtained on NAS-Bench-201 datasets compared to other meth-
ods. The horizontal line demarcates weight-sharing algorithms from those that di-
rectly query oracle information. We run CADAM for 500 and 1,000 steps per experi-
ment across ten different random seeds, and report the mean and standard deviation.

CIFAR-10 CIFAR-100 ImageNet16-120

Method Valid [%] Test [%] Valid [%] Test [%] Valid [%] Test [%]

DARTS 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00

ENAS 37.51 ± 3.19 53.89 ± 0.58 13.37 ± 2.35 13.96 ± 2.33 15.06 ± 1.95 14.84 ± 2.10

GDAS 89.89 ± 0.08 93.61 ± 0.09 71.34 ± 0.04 70.70 ± 0.30 41.59 ± 1.33 41.71 ± 0.98

GAEA – 94.10 ± 0.29 – 73.43 ± 0.13 – 46.36 ± 0.00

RS 90.93 ± 0.36 93.70 ± 0.36 70.93 ± 1.09 71.04 ± 1.07 44.45 ± 1.10 44.57 ± 1.25

REA 91.19 ± 0.31 93.92 ± 0.30 71.81 ± 1.12 71.84 ± 0.99 45.15 ± 0.89 45.54 ± 1.03

REINFORCE 91.09 ± 0.37 93.85 ± 0.37 71.61 ± 1.12 71.71 ± 1.09 45.05 ± 1.02 45.24 ± 1.18

BOHB 90.82 ± 0.53 93.61 ± 0.52 70.74 ± 1.29 70.85 ± 1.28 44.26 ± 1.36 44.42 ± 1.49

CADAM-500 91.36 ± 0.19 94.11 ± 0.16 72.47 ± 0.74 72.69 ± 0.58 46.23 ± 0.28 46.74 ± 0.39

CADAM-1k 91.47 ± 0.15 94.28 ± 0.08 73.02 ± 0.52 73.09 ± 0.35 46.58 ± 0.08 47.03 ± 0.27

Optimal 91.61 94.37 73.49 73.51 46.77 47.31

All cells were evaluated on CIFAR-10, CIFAR-100 and ImageNet16-120 (Chrabaszcz

et al., 2017). The inclusion of accuracy metrics across the entire search space allows

us to test the CADAM RL agent without a weight-sharing supernet. In this con-

text, our goal is to use the given oracle information to find the highest performing

architecture in the least number of steps.

We set K = 64, τ = 0.9, |BR| = 8, ξ = 1e−4 and Cmax = 10. On NAS-Bench-201,

CADAM performs exploration using ϵ-greedy. The initial value of ϵ is 1.0 however

it is annealed via cosine schedule to a minimum of 0.05 by step 175. Discretization

for NAS-Bench-201 is simpler than it is for DARTS. Formalized by Algorithm 3, the

process consists of performing an argmax on each row of α ∈ R6×5 to select the

operations.

Results and comparison against related works are given by Table 4.1. Also, Fig-

ure 4.2 contrasts the final state of a 500 step CADAM experiment against the best

architectures queried using exhaustive search.

Table 4.1 demonstrates the state-of-the-art performance of CADAM. In terms of

validation set accuracy, CADAM is second to none. For test accuracy, CADAM is

only second to GAEA (Li et al., 2020) on one dataset, CIFAR-100. In addition,

GAEA relied upon training the supernet from scratch and is not bound by oracle

performance. The standard deviation on CADAM is highest on CIFAR-100, but

lower than the majority of other algorithms on CIFAR-10 and ImageNet16-120. For
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Figure 4.2: Comparison of the state at the end of a CADAM experiment on NAS-
Bench-201 CIFAR-100 test accuracy (left) with the average of the absolute top-K best
architectures as determined by exhaustive search (right). Rows indicate operations,
columns indicate edges. ‘i’ denotes input, ‘n’ denotes intermediate nodes and K = 64.
Darker elements indicate higher values. Vertical bars demarcate intermediate nodes.

500 step tests, CADAM found the absolute best validation and test architectures, by

rank, at least once for CIFAR-10, CIFAR-100 and the ImageNet16-120 test set. The

third best architecture was found twice for the ImageNet16-120 validation set. In

terms of the 1,000 step tests, CADAM found the best architecture at least twice on

all datasets, regardless of whether validation or test data was used.

Figure 4.2 shows how close CADAM is to finding the top architectures in the

dataset. The average αd of the top-64 architectures found by CADAM after querying

only a fraction of NAS-Bench-201 is very close to that found using exhaustive search.

The ‘none’ and ‘avg pool 3x3’ operations are rarely selected in high-performance ar-

chitectures, while both ‘nor conv’ operations are, ‘3x3’ more so than ‘1x1’. Skip

connections should only ever be selected for the fourth edge which connects the

cell input to the third and final node. This indicates an extreme preference for a

ResNet (He et al., 2016) topology in NAS-Bench-201. Taken together, Table 4.1 and

Figure 4.2 establish the advantages of the CADAM RL agent both in terms of results

and information regarding a search space.

4.2.2 Supernet Architecture Search

We modify the frameworks of DARTS and PC-DARTS to train our supernets. The

topology of both supernets are identical, consisting of |N | = 4 intermediate nodes

and |E| = 14 edges. Algorithm 2 ensures that only 8 edges are activated at a time,

matching the constraints of the evaluation space. Our operation space is a subset

of DARTS that consists of |O| = 7 potential candidates. Originally both methods

feature an operation space with |O| = 8 potential candidates. We omit the ‘none’

operation during the search, reducing |O| to 7.

33



Supernets are trained on CIFAR-10 and ImageNet32-1201 (Chrabaszcz et al., 2017).

CIFAR-10 consists of 50k training samples and 10k test samples. ImageNet32-120

consists of 155k training and 6k test samples, respectively. In both cases, we split the

original training set in half into equally sized training and validation partitions. The

new training set is used to train the supernet. The validation set is used to query

the supernet during the model search. The test set is untouched until the end of

the model search when we perform a preliminary gauge the test performance on all

architectures in the top-K.

The best architectures and accuracy metrics are not known when using a super-

net. Additionally, DARTS dwarfs NAS-Bench-201 by many magnitudes (Siems et al.,

2020). Therefore, in this scenario, the goal of CADAM is to explore the search space

sufficiently such that a range of high-performing architectures can be stored in the

top-K. We set K = 500, τ = 0.95, |BR| = 64, ξ = 5e−5 and Cmax = 1. We run the

agent for 20k steps on each supernet and limit the replay buffer to contain the last

5k experiences. Exploration is achieved using random warm-up with W = 3000.

Figure 4.3 provides an analog to Figure 4.2 for PC-DARTS. It should be noted

that elements corresponding to operation-edge pairs leading into nodes 2 and 3 will

have smaller values than those leading into nodes 0 and 1. This is because there are

more candidate operation-edge pairs competing to connect to the deeper nodes, yet

the number of operation-edge pairs that can lead into each node remains constant at

2. Put more simply, in every case one element from column ‘k-2 -> 0’ is guaranteed

to be chosen. The same holds for column ‘k-1 -> 0’, but not for any other column.

This shows that high-performing architectures are not limited to specific topologies.

Analyzing Figure 4.3, the normal cell shows a strong preference for routing con-

volution operations into the first two nodes and feeding the output from node 0 to

node 1. Average pooling operations are more common along the edges that feed into

nodes 2 and 3, while maximum pooling and skip connections are rare. The reduction

cell is less discriminating. Most operations can occupy the start of the cell. A small

preference for separable convolutions and pooling operations is shown for nodes 2 and

3. Skip connections are strongest when linking the reduction cell input and the first

two nodes but rarely appear elsewhere.

Figure 4.4 illustrates the best cell architectures found during the same experiment

that produced Figure 4.3. The structure of these cells are in agreement with the

average depiction given by Figure 4.3. With exception to a lone average pooling

operation, the normal cell is dominated by numerous convolution operations and the

1First 120 classes of ImageNet (Deng et al., 2009) downsampled to 32x32 images using the ‘box’
method.
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Figure 4.3: Final state of CADAM on CIFAR-10 using a PC-DARTS supernet. Rows
indicate operations, columns indicate edges. ‘k’ stands for cell input. Lone numbers
denote nodes and K = 500. Darker elements indicate higher values. Vertical bars
demarcate boundaries between nodes where operation-edge pairs compete.

c_{k-2}

0

sep_conv_5x5

1

avg_pool_3x3

2dil_conv_3x3

c_{k-1}
dil_conv_5x5

sep_conv_3x3 sep_conv_3x3
c_{k}

3
dil_conv_5x5

sep_conv_3x3

(a) Normal Cell, 2.5c, 4

c_{k-2}

0

sep_conv_5x5

1

avg_pool_3x3

c_{k-1}

skip_connect

sep_conv_5x5

2sep_conv_3x3

3sep_conv_5x5

c_{k}dil_conv_3x3

sep_conv_5x5

(b) Reduction Cell, 3c, 4

Figure 4.4: Cell architectures found by running PC-CADAM on CIFAR-10, annotated
with width and depth metrics defined by Shu et al. (2020).

‘sep conv 5x5’ operation connecting input k− 2 to node 0 is clearly represented. The

reduction cell is similar, with exception to the skip connection between k−1 and node

1. Figure 4.3 shows that there is some preference to connect separable convolutions

into node 3 of the reduction cell and this preference is reflected in the choice of

operators for that reduction cell node.

4.2.3 Supernet Evaluation and Comparison

We now evaluate the best architectures found by CADAM on two well-known bench-

mark datasets, CIFAR-10 (Krizhevsky, 2009) and ImageNet (Deng et al., 2009).

Given that the “goal of NAS is to find the optimal architecture which produces

the best performance on the test set” Xie et al. (2020), we do not determine the best

architecture using validation set performance. However, as K is large when using

a DARTS-like supernet, formally evaluating each architecture in the top-K would

be computationally expensive. Instead, for every discrete architecture in the envi-

ronment history at the end of search, we assign the αd of said architecture to the

supernet. The preliminary test accuracy of each architecture is then measured using
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Table 4.2: Evaluation of CADAM architectures with other NAS algorithms on
CIFAR-10. The horizontal bar separates algorithms that evaluate on the DARTS
search space from those with different search spaces. Prefixes denote the variant of
DARTS search space.

Architecture Test Acc. [%] Params

ENAS 97.11 4.6M

GDAS 97.18 2.5M

AlphaX 97.46 ± 0.06 2.8M

ProxylessNAS 97.92 5.7M

DARTS 1st 97.00 ± 0.14 3.3M

DARTS 2nd 97.24 ± 0.09 3.3M

SNAS 97.15 ± 0.02 2.8M

P-DARTS 97.50 3.4M

PC-DARTS 97.43 ± 0.07 3.6M

PC-SDARTS 97.51 ± 0.04 3.5M

P-SDARTS 97.52 ± 0.02 3.4M

PC-GAEA 97.50 ± 0.06 3.7M

CADAM 97.46 ± 0.09 3.7M

PC-CADAM 97.42 ± 0.08 3.8M

the supernet. To combat the optimization gap present in weight-sharing NAS, the

architecture in the final top-K that produces the highest preliminary test accuracy

is considered the best. Validation accuracy is still meaningful in this context as the

metric which determines which architectures are stored within the top-K.

Table 4.2 lists results of CADAM architectures on CIFAR-10 against other relevant

algorithms. In terms of both accuracy and model parameters, the found architectures

are on-par with the current state-of-the-art for DARTS. It is interesting how the

CADAM architectures not only outperform second-order DARTS, but are on-par

with PC-DARTS and P-DARTS. While GAEA and SDARTS modify the gradient-

descent mechanisms that perform the model search, the novelty of PC-DARTS and P-

DARTS pertain to improvements made to the structure of the original search model.

By achieving performance that is on-par with these schemes, we demonstrate the

validity of our supernet training procedure as a means of improving the original

search model without inserting constraints on how many times a candidate operation

may be selected.

Finally, as shown by Table 4.3, we formally evaluate all relevant architectures on

ImageNet. The architecture found using DARTS on CIFAR-10 performed the worst

and barely passed 75% top-1 accuracy. The architecture found by CADAM using

the proxy subset, ImageNet32-120, outperformed the DARTS architecture in terms
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Table 4.3: Evaluation of CADAM architectures with other NAS algorithms on Im-
ageNet. Prefixes denote the variant of DARTS search space; suffix abbreviations
indicate dataset used to train the supernet; e.g. ‘C10’ for CIFAR, ‘IN’ for ImageNet.

Architecture Top-1 Acc. [%] Top-5 Acc. [%] Params

DARTS-C10 73.3 91.3 4.7M

SNAS-C10 72.7 90.8 4.3M

P-DARTS-C10 75.6 92.6 4.9M

P-DARTS-C100 75.3 92.5 5.1M

PC-DARTS-C10 74.9 92.2 5.3M

PC-DARTS-IN 75.8 92.7 5.3M

PC-SDARTS-C10 75.7 92.6 -

P-SDARTS-C10 75.8 92.8 -

PC-GAEA-C10 75.7 92.7 5.3M

PC-GAEA-IN 76.0 92.7 5.6M

CADAM-C10 75.0 92.3 5.3M

PC-CADAM-C10 75.5 92.5 5.4M

PC-CADAM-IN 75.1 92.3 5.0M

of top-1 accuracy tied with it in terms of top-5 accuracy, while using 300k fewer

parameters.

Our best ImageNet architecture was found using the PC-DARTS search model.

With top-1 accuracy and top-5 accuracy metrics of 75.5% and 92.5%, respectively,

this result is in the same neighborhood as recent DARTS-based algorithms.

4.3 Conclusions

In this chapter, we propose CADAM, a continuous actor-critic reinforcement learning

algorithm for differentiable neural architecture search. Based on the DDPG algo-

rithm, CADAM produces continuous actions that are translated into discrete archi-

tectures using a many-to-one mapping. A reward is then computed from the accuracy

of an architecture. Through a number of innovations on state representation, actor

and critic network design, quantile optimization losses and exploration strategies,

CADAM learns to explore a large search space and achieves fast convergence to high-

performing architectures in fewer number of validations.

Experiments show that CADAM outperforms the best published results on NAS-

Bench-201 after querying only 500 or 1000 architectures. When applied to DARTS

and PC-DARTS, CADAM produces architectures that achieve competitive test accu-

racies on CIFAR-10 and ImageNet relative to other state-of-the-art algorithms using

the same search space.
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Table 4.4: Comparison of validation and preliminary test architectures for the best
architectures found during model search. ‘PC’ prefix indicates a supernet based on
PC-DARTS. Suffixes denote whether the architecture produced the best validation
or test accuracy. ‘Rank’ indicates the place in the top-K. The lower the rank, the
higher the validation accuracy.

Dataset and Supernet Validation Acc. [%] Test Acc. [%] Rank

CIFAR-10-Val 88.90 91.81 1

CIFAR-10-Test 87.87 92.25 416

PC-CIFAR-10-Val 87.08 87.78 1

PC-CIFAR-10-Test 86.52 88.04 129

PC-ImageNet32-120-Val 49.71 45.38 1

PC-ImageNet32-120-Test 49.43 46.45 8

4.4 Additional Experimental Details

We provide additional information regarding accuracies recorded during model search.

We also list hyperparameters for the supernet training, RL search and formal eval-

uation stages of our experiments. Finally, we describe the computational resources

used to perform experiments.

4.4.1 Validation and Test Ranking

Table 4.4 compares validation and preliminary test accuracies for supernets. Valida-

tion accuracy serves as an intermediary when judging the performance of all sampled

architectures, but the final decision does not hinge on it. Test accuracy should only

be invoked sparingly outside of formal evaluation. We believe that our usage of it,

as a way of determining the best of the best architectures from a vetted pool of

candidates, is one of these scenarios.

4.4.2 Search Hyperparameters

CIFAR-10 supernets trained for 10,000 epochs using a batch size of 250, while Im-

ageNet supernets trained for 5,000 epochs using a batch size of 750. All supernets

consisted of 8 cells and 16 initial channels The initial learning rate was set to 0.025

and was annealed down to 1e−3 by cosine schedule (Loshchilov and Hutter, 2017).

Stochastic gradient descent with a momentum factor of 0.9 is used to optimize the

weights. DARTS supernets trained using cutout, however PC-DARTS supernets were

not. We did not apply any preprocessing techniques to ImageNet32-120.

38



4.4.3 Agent Hyperparameters

The CADAM actor and critic networks are both multi-layer perceptrons with 3 hidden

layers. The number of neurons in each layer is (256, 256, 256) when operating on a

DARTS-like supernet and (128, 256, 128) when quering NAS-Bench-201. ReLU (Nair

and Hinton, 2010) serves as the activation function in the hidden layers while the final

layer of the actor network features a sigmoid activation and the critic uses an identity

function as it produces a scalar. Both networks are optimized using Adam (Kingma

and Ba, 2014) with β⃗ = (0.9, 0.99). Learning rates for the actor and critic networks

are 1e−8 and 1e−4, respectively. Supernet training and search are done separately,

but initialized with a random seed of 2 each. The seeds for NAS-Bench-201 trials

were in [1, 10].

4.4.4 Evaluation Hyperparameters

We evaluated architectures on CIFAR-10 using models with 20 cells with an initial

channel size of 36. All models were evaluated using Cutout (DeVries and Taylor,

2017) using the recommended length for CIFAR-10, as well as an auxiliary head with

a weight of 0.4. The initial learning rate is 0.025 and this value is annealed down to

zero following a cosine schedule over 1,000 epochs.

The DARTS supernet (listed as ‘CADAM’) architecture was trained with a batch

size of 80 and a drop path probability of 0.1. The PC-DARTS architecture (‘PC-

CADAM’) trained with a batch size of 96 and a drop path probability of 0.2. The

listed batch sizes are the maximum we could fit onto a single 11GB NVIDIA RTX

2080 Ti. Finally accuracies consist of the mean and standard deviation across 5

different random seeds: 0, 1, 2, 3 and 4.

ImageNet evaluations were performed using the same hyperparameters as PC-

DARTS (Xu et al., 2019). The network consists of 14 cells and is trained for 250

epochs. An initial learning rate of 0.5 is used and is annealed down to zero after an

initial 5 epochs of warmup.

4.4.5 Computing Platforms

NAS-Bench-201, supernet training, model search, and some CIFAR-10 evaluations

were performed using GPU workstations equipped with dual RTX 2080 Ti GPUs

and AMD Ryzen Threadripper 2990WX CPUs. The remaining CIFAR-10 and all

ImageNet evaluations were performed on a GPU server with 8 Tesla V100 32GB

GPUs and an Intel Xeon Gold 6140 GPU.
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Chapter 5

Conclusion

We finalize the contents of this thesis by summarizing the findings of our parallel

and sequential optimization methods, DDAS and CADAM. Then, we provide a brief

discussion on vectors for future research based on the presented work in relation

to recent literature in the fields of Neural Architecture Search and Reinforcement

Learning, respectively.

5.1 Contributions

In this thesis we propose the use of continuous RL search agents to the problem

space of NAS in two distinct ways. We primarily apply our RL search algorithms to

the domain of weight-sharing supernets. Leveraging a continuous agent, we are able

to generate and evaluate one architecture per step. By decoupling the search space

and search algorithm sufficiently, and using a continuous-to-discrete mapping, we are

able to train both components in an optimal fashion without inducing additional

performance compromises.

Our first scheme, DDAS, optimizes the supernet and RL agent in parallel. The

agent determines which weights the supernet will update, while the reward returned

by the supernet influences future decisions the agent will make. In this situation

both components are sufficiently separated such that they only see the output of one

another, not the internal mechanisms used to generate the output. Additionally, we

make use of Pareto frontiers to investigate the performance of architectures generated

by our scheme against computational constraints such as FLOPS or number of pa-

rameters. Experimental results show that our first scheme explores different areas of

the search space while focusing on the most critical locations. This exploration results

in DDAS selecting architectures from a range of topologies with a varying number of

FLOPS or parameters. When evaluated, the highest performing architectures on the
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Pareto frontiers achieve competitive performance on CIFAR-10 and CIFAR-100.

Next, we introduce CADAM, whose search procedure consists of training the su-

pernet and agent sequentially. First, the supernet is rigorously optimized by random

sampling that does not permit bias towards specific topologies. Second, the agent

produces continuous actions which are translated into discrete representations. These

representations are used to query the performance of a specific architecture using the

supernet. This methodology allows us to swap out the supernet entirely for an oracle

accuracy predictor, such as those provided by public NAS benchmarks. Therefore,

we can readily test the performance of our agent on different search spaces. We make

use of a quantile regression loss function to ensure that our agent focuses on learn-

ing from the architectures at the tail of the accuracy distribution. Additionally, we

propose a novel RL state definition that tracks the distribution of high-performing

architectures in the search space. This state can be extracted to provide informa-

tion on which parts of an architecture generally contribute to a high performance

overall. Experiments show that CADAM achieves state-of-the-art performance on

NAS-Bench-201. Relative to other schemes using the same search space, we achieve

competitive performance on CIFAR-10 and ImageNet.

In conclusion, we investigate the problem of weight-sharing NAS using continuous

RL. We first apply the agent to the search space in a parallel way synonymous with

gradient-based solutions. Next, we separate the training of these components into

sequential steps. Both schemes yield respectable results on several benchmarks and

we demonstrate both the applicability and usefulness of continuous deterministic

reinforcement learning in neural architecture search.

5.2 Future Work

Based on our findings and experiences, we propose the following research avenues,

• DARTS is considered a large search space as it contains approximately 1018

different architectures (Siems et al., 2020). Despite this size, it has been shown

that random search policies are capable of competitive performance relative to

guided policies (Li and Talwalkar, 2020), such as differentiable or RL methods.

TuNAS (Bender et al., 2020) refuted this claim, by showing that the perfor-

mance of random search drops substantially when the search space is very large

- on the order of 1028 to 1043, specifically. Therefore, one avenue for future

research would be to deploy our proposed algorithms on similar search spaces

to truly test the performance of our RL agent.
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• Preiss et al. (2020) categorized RL-NAS methods into three distinct types, Ban-

dit, Editor and Tree. Both schemes presented in this thesis most closely align

with the bandit framework, while other RL-NAS methods (Zoph and Le, 2017;

Pham et al., 2018; Wang et al., 2020) are tree-based. The scheme presented in

Chapter 4 could be modified to fit the editor framework by replacing the state

with an architecture representation sampled using information from the top-K.

Just as the state is the average of the top-K, the standard deviation could be

calculated and sampling could be performed using techniques borrowed from

Variational Auto-Encoders (Kingma and Welling, 2019). The agent would then

be responsible for proposing an edit to this architecture. The reward would

be defined by the accuracy difference between the original architecture and the

edited version.

• Apply the proposed frameworks to the macro-search setting. In this situation

the search space consists of cells with fixed architectures, and the search process

consists of finding the optimal ordering of these cells.

• CIFAR-10 and ImageNet are the most popular benchmark datasets for NAS,

however algorithms that train on them do not generalize to other datasets.

Therefore, we would apply the proposed frameworks to non-standard benchmark

datasets, like the ones used by Yang et al. (2019).

• It would be interesting to see how DDAS and CADAM would change if the

underlying DDPG agent was replaced with Twin Delayed Deep Deterministic

policy gradient (TD3) (Fujimoto et al., 2018), which was originally proposed to

address function approximation issues with the critic network.

• Using a multi-GPU setup, it would be possible to generate a multi-actor algo-

rithm. In this scheme, the agent would still consist of an actor-critic framework.

However, there would be multiple actor networks, each one corresponding to a

different supernet on separate GPUs, that may potentially be different sizes or

optimizing on different datasets. There would be one or more critic networks,

potentially serving as an ensemble, or instantiated in accordance with the num-

ber of datasets used, that would be used to teach the actor networks. Using

this scheme it may be possible to generalize or discriminate the results of the

DDAS Pareto frontiers or CADAM states across different sizes of supernets or

types of datasets.
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