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Abstract

This thesis considers the effect of perturbations in a dynamical scalar field 

quintessence on the large scale anisotropy of the cosmological microwave background 

(CMB). It is observed that evolving quintessence inhomogeneities suppress low-1 

multipoles of the CMB power spectrum. The description of cosmological perturba

tions is carried out in the conformal Newtonian (zero shear) gauge, and assuming 

an inverse power law form for the quintessence field potential. The CMB power 

spectra are calculated using the exact form of the Sachs-Wolfe effect, as opposed to 

widely used approximations. It is established that long wavelength perturbations 

of the scalar field remain significant till the present time, whereas short wavelength 

perturbations decay and become insignificant during the matter dominated epoch. 

Therefore the existence of inhomogeneities in the quintessence field affects the grav

itational potential only at long wavelengths. Correspondingly, only the low-1 mul

tipoles of the CMB are affected. These results may be used in conjunction with 

modern CMB observations to constrain quintessence models.
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1

Chapter 1

Introduction

1.1 H istory of quintessence in cosm ology

For a general isotropic and homogeneous universe, with a metric chosen to be of the 
Robertson-Walker form

ds =  dt2 -  a2(t) ^r +  r 2d02 +  r 2 sin2 9d(f>2
l - K r 2

( 1.1)

the Einstein equations of general relativity

R/ii/ ~  2 ^ 9 in/ — Q'k G T hv (1-2)

predict a dynamical cosmology. The prevalent view at the time when Einstein for

mulated General Relativity was, however, that the universe is static and unchanging. 

Therefore, in 1917, Einstein introduced into his equations a new fundamental con
stant which has since been variously called the cosmological constant or the ‘Lambda 

term ’. The modified equations then read

R/ii/ ~ 2 R-Snv ~ ^9in/ ~  SirGTfu, . (1.3)

The resulting equations indeed admit static solution, but it is unstable. Conse

quently if subjected to an infinitesimal contraction or expansion, the universe must 
go on contracting or expanding. The discovery by Edwin Hubble in the 1920s of 
an expanding universe, proved the static Einstein universe to be unrealistic. Sub
sequently, Einstein abandoned the cosmological constant, calling it “his greatest
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C H A P T E R  1. IN T R O D U C T IO N 2

b lunder” .

Prom  a  theoretical standpoint, the cosmological constant remained a distinct pos

sibility and continued to be studied if only out of academ ic curiosity. Lem aitre (1927) 

used it to construct an expanding universe w ith a quasi-static origin in the past, 

ra th e r than  an  initial singularity seen in expanding Friedm an-Robertson-W alker 

(FRW ) models. De Sitter invoked the A term  in the absence of m atter to get dy

nam ic and sta tic  solutions. The de S itter model proved im portant for the steady 

s ta te  cosmology, as well as for inflationary models of the  early universe. In inflation

ary  models [15], proposed in the early 1980s, m atter (in the form of a false vacuum, 

as vacuum  polarization or as a  minimally coupled scalar field) behaved precisely like 

a  weakly tim e dependent A term . Ya. B. Zeldovich (1968) gave the A term  a physi

cal basis when he observed th a t one loop quantum  vacuum  fluctuations give rise to 

an energy m om entum  tensor which upon being suitably  regularized has exactly the 

sam e form as a  cosmological constant. T his introduced the m odern view according 

to  which the A term  is not a  fundam ental constant in E instein equations bu t is 

mimicked by some kind of m atter, often called dark energy. The A term  in the  form 

of dark  energy came to the forefront of cosmology in the last decade w ith detailed 

observations of type la  high redshift supernovae (Riess et al [31], P erlm utter et al 

[26], for the la test results see [32, 27] and references listed therein) which indicated 

th a t the  expansion of the universe is accelerating, which requires dom inant m atter 

com ponent to have negative pressure, behaving sim ilarly to  the A term .

T he natu re of the dark energy, required to  explain the acceleration, is still to 

be established. In  particular, its exact equation of s ta te  is still unknown. The first 

a ttem p ts  rescued the cosmological constant as an  ad  hoc explanation, although a 

naive in terp re tation  of the constant in term s of a vacuum  energy is inconsistent by 

124 orders of m agnitude w ith respect to the required value.

T he idea th a t a scalar field with a  suitable poten tial of self-interaction can play 

the role of dark energy was introduced by W etterich [37], Caldwell et al [8], R atra  

and  Peebles [30] to  alleviate the extreme fine tuning needed to  allow a  cosmological 

constant to be significant only at recent epochs. Such a  scalar field is popularly  called 

a quintessence field. The most popular potentials are inverse power and exponential 

laws [29] although other possibilities have been considered [28]. The m ain property 

of quintessence potentials is the existence of “tracking” behaviour due to  which the 

m otion of the field converges to a unique solution for a broad range of different 

in itial conditions.
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C H A P T E R  1. IN T R O D U C T IO N 3

The dynam ic nature of the dark energy in the form of the quintessence field 

opens many new possibilities. For example, since quintessence has been inspired 

by observations of an accelerating universe, it is worthwhile asking, w hat if the 

acceleration is merely transient, and not perm anent as has been assumed hereto

fore. In this context Blais [6] proposes a double quintessence model in which the 

dark  energy sector consists of two coupled scalar fields. In bo th  such models, it is 

shown [6] th a t if acceleration occurs, it is necessarily transient. The possibility of 

transien t acceleration in two one field models, the Albrecht-Skordis model and the 

pure exponential has also been established. Using separate conservative constraints 

(on the effective equation of sta te  weff, the  relative density of the dark energy Oq 

and  the present age of the universe) scenarios w ith a transient acceleration th a t has 

already ended at the present time or no acceleration may be constructed. A less 

conservative analysis using the cosmic microwave background (CMB) d a ta  rules out 

the last possibility. The scenario with a  transient acceleration th a t ended by today 

m ay be im plemented if a t the present tim e the ordinary m atter density Qm  >  0.35 

and the Hubble constant H q < 68km /s/M pc.

A nother interesting angle is a possible link between the running of the fine 

s truc tu re  constant a  and a  tim e evolving scalar dark energy field [12]. Provided 

no sym m etry cancels it, there may be a term  in the effective Lagrangian weakly 

coupling baryonic m atter to the scalar field. If this field evolves over cosmological 

tim es, such a  coupling would lead to a  tim e dependence of the coupling “constants” 

of baryonic m atter. Dirac had introduced the notion th a t the fundam ental constants 

of natu re  may vary. In  a realistic GUT scenario, the variation of different couplings 

is interconnected. This interdependence might be ignored thus m aking only the 

fine structu re constant “variable” with all others fixed. Indeed, bounds on the 

tim e variation of these “constants” restric t the evolution of the scalar field and the 

streng th  of this coupling. Under the assum ption th a t the change in a  is of the 

first order given by the evolution of the quintessence field, it can be shown using 

current Oklo nuclear reactor, quasi-stellar object (QSO) and equivalence principle 

observations [11, 10, 24, 36], th a t the model param eters are restricted considerably 

stronger than  observations of the CMB, large scale structu re  and type la  Supernovae 

combined.

Quintessence fields also arise in Supergravity and M /string  theory. In [13] the 

im plications of seven popular models of quintessence based on these theories for the 

transition  from a decelerating to  an accelerating universe are explored. All seven
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C H A P T E R  !. IN T R O D U C T IO N 4

candidates can mimic the A cold dark m atter (A-CDM) model at low redshifts 

0 <  z  < 5. For a natu ra l range of initial values of the quintessence field, the 

SUGRA and Polonyi potentials predict a redshift z t of transition  to A-dominated 

epoch to be zt ~  0.5 for Gao ~  0.7 in agreement w ith the observational value of 

zt ~  0.46. For reference, the A-CDM model w ith constant A-term has zt =  0.67.

1.2 Alternatives to quintessence

A com peting candidate to  quintessence for dark energy has been fc-essence (or kinetic 

essence), originally proposed in [2]. b-essence cosmologies, unlike quintessence ones, 

are derived from Lagrangians w ith non-canonical kinem atic terms. In standard  

quintessence models we may devise situations w ith scalar field potentials th a t go to 

zero asymptotically. These can have cosmologically interesting properties, including 

“tracker” behaviour, th a t makes the current energy density largely independent 

of the initial conditions. Unfortunately, the  era  in which the scalar field begins 

to  dom inate can only be set by fine tuning the  param eters in the theory. This 

may be remedied by considering a  dissipative m atter component interacting w ith 

dark energy. However in /c-essence models [1], the solution seems not to  require the 

consideration of dissipation. Even for potentials which are not shallow, the nonlinear 

kinetic term s lead to  dynam ical a ttrac to r behaviour th a t perm its the avoidance of 

the cosmic coincidence problem.

A surprisingly simple alternative to quintessence has been to consider a  cos

mological model comprising only two fluids, baryons (modelled as dust) and dark 

m atte r w ith a van der Waals equation of state. In  [9] it is shown th a t acceler

ated  expansion may be obtained by suitably choosing the model param eters. D ata 

from type la  Supernovae and d istan t radio galaxies may be used to constrain the 

param eters of this form of quintessence.

Amongst astrophysical effects, the quintessence scalar field may enhance the 

abundance of dark m atter relic particles [33]. The integrated Sachs-Wolfe (ISW) 

effect on the CMB, as measured through its correlation w ith galaxies, may be used 

[17] to  study the dynamics of the dark energy through its large scale clustering 

properties. A canonical single scalar field or quintessence model predicts th a t these 

clustering effects will appear on the horizon scale w ith a  strength  th a t reflects the 

evolution of dark energy density.

Im portantly, the dynamic natu re of quintessence field results in inhomogeneities
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C H A P T E R  1. IN T R O D U C T IO N 5

in the field being developed in the course of g ravitational clustering, in contrast to 

the  pure L am bda term  which affects only homogeneous background. The goal of 

this thesis is to  study  the role of the pertu rbed  quintessence degrees of freedom on 

the prediction of the observed large-scale anisotropy of the CMB.

1.3 Organization of the thesis

In  this thesis we presum e the quintessence model of R a tra  and Peebles [30] and 

W etterich [37], whereby a scalar field w ith a  negative equation of state, constitutes 

the dark  energy required to  explain the anom alous acceleration of the Universe. 

Such a scalar field has a “tracking” behaviour, which is to  say it tracks the domi

n an t com ponent of the  energy content of the universe, and comes into prominence 

a t a  relatively recent cosmic era. This thesis is prim arily  concerned with the ef

fect of such a  dynam ical quintessence on observables such as the anisotropies of 

the CMB. In  particu lar, our goal is to  compare the  predictions for the large-scale 

anisotropy in the CMB in the model w ith dynam ical quintessence field when its 

pertu rba tions are taken into account versus, as is frequently done, the case of ne

glecting the quintessence perturbations and, as a benchm ark, versus the model w ith 

the  cosmological constant.

This thesis is organized as follows. All equations necessary to  describe the evolu

tion  of a  homogeneous, isotropic background and cosmological perturbations upon 

it, are derived and  collected in C hapter 2. C hapter 3 contains analytical solutions to 

these equations in certain  lim iting cases. C hapter 4 contains an  introduction to the 

cosmic microwave background (CMB) and the description of the m ain mechanism by 

which cosmological perturbations cause large scale CMB tem peratu re anisotropies 

(called the  Sachs-Wolfe effect after its discoverers [34]). L ater in C hapter 4 we tu rn  

to  the  m ain result of the thesis, a com putation of how a realistic quintessence w ith 

inhom ogeneities affects these anisotropies as opposed to  dynam ical b u t homogeneous 

quintessence, and  the sta tic  A term  postu lated  originally by Einstein. C hapter 5 

sum m arizes the results, and suggests possible fu ture developments.

T hroughout the thesis we set c =  h =  1. We do no t set G — 1. Thus we are not 

using a  system  of Planck units. Instead, in section 2.1.3 we fu rther completely specify 

the  system  of units by setting the present day Hubble constant Hq = 1. In such 

units, the tim e is m easured in H q 1 «  14 Gyr  and th e  length in c/Hq  =  4283 M pc  

if Hq =  7 0 k m /s/M p c . T he energy (mass) density scale is then  H q G ~ ] — H'qM'^.
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CHAPTER 1. INTRODUCTION 6

This choice is more suitable for cosmological calculations. The value of the scalar 
field is, on the other hand, measured in inverse Planck length

Everywhere, the dot () denotes a partial derivative with respect to proper time t, 

of the metric (1.1), while the prime ()' denotes a derivative with respect to conformal 
time r] — J dt/a(t).  We use comma for the derivative with respect to a spatial 

coordinate x 1 and ()iV, for the derivative with respect to the scalar field value ip. 
The semicolon ();„ is used for the covariant derivative with respect to x'/ . H  as a 

function of time denotes the Hubble parameter H  = aja.  The Hubble parameter is 

also somewhat loosely used to denote the closely related quantity H — a1 /a. After 

introducing dimensionless quantitities in section 2.1.3 we retain the same symbols 
for them as for their dimensional counterparts, which, hopefully, does not lead to 
confusion.
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Chapter 2

Theoretical background

In this chapter we tu rn  to the system atic development of all necessary equations 

which govern the  evolution of cosmological perturbations. Perturbations can only 

be studied  in the context of the background manifold. Hence in this chapter we first 

outline the properties of the background spacetime, such as its m etric, its assum ed 

m aterial constituents and derive the equations governing them.

T hen, in section 2.2 we review the perturbations on such a background, and de

rive the pertu rb ed  E instein equations. These equations provide a  set of constrain t 

equations giving the m etric pertu rbation  ($) in term s of the quantities th a t specify 

the p ertu rbed  stress energy tensor. The conservation condition and the Euler equa

tion th a t govern the evolution of quantities in the  perturbed  stress-energy tensor in 

the lim ited case of scalar perturbations, are derived. Finally we end th is chapter 

w ith the description of inhomogeneities in the quintessence field.

2.1 The background spacetime

O ur approach is based on the premise that on the large scales the observed universe 

deviates by only a very small am ount from a homogeneous, isotropic space time. 

Though originally a simplifying assum ption, this has been verified to a rem arkable 

degree of precision by recent observations. This makes it convenient to  decompose 

the m etric into a background m etric, representing the homogeneous, isotropic ideal, 

and a pertu rbation  upon it. The background m etric in such a case is called the 

Friedm an-Robertson-W alker (FRW) spacetime.

The background line element in a FRW spacetime in conformal tim e and  carte-
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CHAPTER 2. THEORETICAL BACKGROUND 8

sian coordinates is given by

ds2 =  a2(7))(dr)2 -  j i j d x 2dx^) (2 .1)

where space-like coordinates and tensor components are labelled with Latin letters 

i , j  = 1,2,3. We reserve Greek letters to denote four-dimensional coordinates and 
tensor indices which vary from zero to four with zero being the time component. We 

assume Einstein summation convention over upper-lower pairs of repeated indices.

The background metric in these coordinates then becomes

For spacetimes with flat, closed and open spacelike hypersurfaces, K  =  0 ,-1  and 1 

respectively. There is reasonable observational evidence that K  =  0 in which case

But in the following treatment we keep the formalism as general as possible. As 

a prelude to computing the perturbation to the Einstein or Ricci tensors, we must 
first compute the affine connections. For the metric given above, the nonvanishing 
affine connections are as follows,

(2 .2 )

where

7ij =  K(r)dij (2.3)

and

F(r )  = [l +  ~ r 2] - 2 . (2.4)

(2.5)

( 2 .6 )
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CHAPTER 2. THEORETICAL BACKGROUND 9

where H  is related to the derivative a! of the scale factor with respect to conformal 

time t], % — a'/a,  and Tl-k is the affine connection on the spatial metric 7 y. For 
spatially flat spacetimes, 7 7  reduces to the Euclidean metric and the corresponding 

affine connections reduce to zero. The details of these computations are given 

in Appendix A .I. For convenience we define =  F ^ .  In spatially flat spacetime, 
it has the components

T0 = AH,

Vi =  0. (2.7)

2.1.1 Einstein equations

The Ricci tensor R flv then has the elements

f?oo =  377',

Hoi =  0 ,

Rij  =  -[%' + 2H2 + 2K}l i j . (2.8)

The Ricci curvature scalar is given by R — -0 [ n ' ^ +K\. The reader may refer to
Appendix A.2, for the details of these computations. The Einstein tensor, defined 

as

d  = R Z - \ R g Z ,  (2.9)

then has the components

0  W 2 + K )
° °  "  ^  •
G°i =  0,

Gj = (2 .1 0 )

We consider the universe with material constituents being the radiation (de
scribing both relic photons and relativistic neutrinos), pressureless matter (for our 

purposes baryons can be included in this category together with dark matter) and a 
scalar field which does not interact with other components, except gravitationally.
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Hence, it is convenient to decompose the to ta l stress-energy tensor T IW as follows,

= (Trmr + (Ts f r , (2 .ii)

where (Trmy v and {Tsf Y u refer to  the stress-energy tensors of rad ia tion-m atter 

and the coherent scalar field respectively. R adiation and m atter may be treated  as 

a  perfect fluid w ith no anisotropic stress and no dissipation. The stress-energy tensor 

is th en  described in term s of only three functions, the energy density p, pressure p  

and the fluid four-velocity f/^  as follows,

(Trmr  =  (p +  p ) £ W ' - p < T -  (2.12)

T he energy density in the rad ia tion-m atter fluid p is the sum of the energy densities 

of the  two components. So,

p — Pr T  Pm i (2-13)

where pr and  pTO are the energy densities of radiation and m atter respectively. As 

the energy of a  photon redshifts as 1 /a , we may infer pr drops as 1 /a 4. For ordinary 

baryonic m atter, or dust, as well as for pressureless dark m atter, pm drops as 1 /a 3. 

We may therefore introduce the following substitutions,

PrO
Pr -

f c  =  ^ r ,  (2.14)

where pro and pmo are the energy densities at a scale factor of unity. As dust is 

pressureless, the pressure of the  fluid p  equals the pressure due to  radiation, which 

is inferred from the  relativistic lim it of the energy-momentum relations, to be,

P =  Pr =  ^P r- (2.15)

For a scalar field interacting only w ith itself via the potential V(<p), and m ini

m ally coupled to  gravity, the corresponding energy-momentum tensor is given by

(Ts / r  -  r r - (2.16)
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where

(2.17)

In  a highly homogeneous universe, the scalar field shall also, to a large degree, be 

homogeneous. We denote <p(rj) to be this homogeneous p a rt of the scalar field which 

drives the background isotropic model.

From  the stress-energy tensor of the scalar field we may infer th a t the  energy 

psf  and pressure p sj  of the background scalar field are given by

The combination of term s for the pressure p sj  is not positive definite. In fact when 

the po tential term  dom inates over the usual kinetic term , the pressure becomes

of state. This property is used in the models of quintessence scalar field to explain 

the  accelerated expansion of the universe.

A nother unusual property of the scalar field, which makes it a good candidate 

for the role of dark energy, relates to  the evolution of its energy density, as compared 

to the energy densities of radiation and m atter. Unlike these other constituents, the 

energy density of the scalar field does not drop as a  simple, fixed power law of the 

the  scale factor a(rf) as in (2.14). To the contrary, for several types of potential, 

including the inverse power law and exponential ones, the energy density of the 

subdom inant scalar field psj  “tracks” the dom inant component of the energy at 

various cosmological epochs. The exact law of the energy change quintessence is 

determ ined by the potential V(ip) and im portantly, by the equation of s ta te  of the 

dom inant energy component. This property shall be explained analytically later in 

C hapter 3. Such “tracking” behaviour ensures th a t quintessence which dominates 

the  present day energy balance in the universe, was not negligibly sm all relative to 

o ther com ponents in the early universe. This alleviates the fine-tuning required to 

have the present-day value of the cosmological constant of the same order as other 

m atter components.

Summ ing up the various contributions to  the to ta l energy m om entum  tensor T/',

Psf =  +

P s f  = (2.18)

negative. Under such conditions, the scalar field acts as if w ith  a negative equation
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we observe

T o  -  P r  +  P m  +  P s f  ,

I f  =  0 ,

Tj =  P r + P s f ■ (2.19)

W ith the above substituted into the Einstein equations, the time-time component 
gives us

q i 2

■ ^ 4  +  ^ 2  =  =  %xG(pr + pm + P s f )  i (2.20)

and the trace gives us
a" K
-?  +  - » =  8 vGT*  (2.21)o3 a2  ^ v /

The equations (2.20) and (2.21) are commonly known as the Friedman equations, 

and the corresponding cosmological models are known as the Friedman models. 
Incidentally, the second of these equations (2.21) follow from the first (2.20) and 
from the equation of energy conservation, which may be stated in conformal time 
as

p'a3  =  |a3(p +  p)j , (2.22)

where p and p  refer to the total energy density and total pressure due to all con

stituents of the universe. Hence, in our numerical calculations of the scale factor 
a(r)) we restrict our attention exclusively to the first Friedman equation (2.20). For 
a spatially flat universe, where K  =  0, substituting (2.14) for the scale dependence 

of the energy densities of radiation and matter, and (2.18) for the energy density of 
the scalar field, the first FRW equation becomes

aa _  +  +  1  fl2 ^ 2  +  ai y ^  _ (2.23)

The third term is the kinetic term associated with the scalar field and V(tp) repre
sents the potential that governs the quintessence like scalar field.

2.1.2 Scalar field dynamics

We have derived the equation which governs the evolution of the scale factor a. The 
evolution of the energy densities radiation and matter are trivial, as they are given 

by simple power laws in (2.14). In order to complete this treatment however, we
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need the energy density of the scalar field which in turn depends on the scalar field 

value and its time derivative. Therefore, we need the equation for the evolution of 

the unperturbed scalar field. This is given by the Klein-Gordon equation, which we 

derive shortly. The action for a free self-interacting scalar field is given by

=  I  -  V(y>)) yP g d t x  . (2.24)

On varying the action with respect to (for compactness - wrt) the scalar field <p, 

for convenience the variation may be decomposed into two terms, 5S = SS i +  5S?. 
where 5S\ and 6 S 2  are given by

6 y/^gdi x . (2.25)=  /
The first term may be simplified as follows,

8 S 1 = J  ^(<V;'V ;(u +<£;/i<fy;/1) - V iip5tp] yf^gd^x,

=  /  \ 6 9 > w - v wS(p] V :Igdix ,

= J  - V ^ ) y f ^ d i x .  (2.26)

The integral over the second term which is a full divergence vanishes, leaving us 

with
+ 5g> sfz gd4 x , (2.27)

To compute the variation of the determinant of the metric in (2.25) we use the 

following linear algebra relations for a matrix M

5\n[Det{M)} =  Trace [ a T ^ m ]

For the metric tensor g this gives us

S ( ~ 9 ) = f v^9iiv,

(2.28)

(2.29)
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or,

(2.30)

S ubstitu ting  the above into (2.25) we get

s s 2 = - 1  -  V l A  . (2.31)

Sum m ing up the two terms,

SS = J  \ 5 g ^  ~  Q ^ V im  -  V { < p )  j  J  +  [ < p ' P ^  + l ^ }  5<p v / ^ r f 1x .

(2.32)

Assum ing the variation w rt the scalar field vanishes, we get the Klein-G ordon equa

tion:

Since the background scalar field ip is by assum ption homogeneous, all spatial deriva

tives vanish, and the Klein-Gordon equation is simplified to

2.1.3 The background evolution of the cosmological model. Track
ing behaviour of the scalar field.

T he evolution of the background is governed by the coupled system  of equations 

(2.23) and (2.34). Let us introduce convenient dimensionless variables.

•  We normalize the scale factor so th a t a t the present m om ent a(now ) =  1.

•  At the present moment the Hubble param eter is equal to the observed value 

H  =  ^  =  H q . Henceforth, we shall use the time units in which H q =  1. This 

condition together w ith  the already used c — h =  1 com pletely specifies our 

system  of units. In these un its the present time is defined by a!{now) — 1.

• W ith  the present day critical energy density pcru =  31Lo/(87rG) we use frac

tional densities =  pr/  Pent* Om =  pm/p crit as cosmological param eters th a t 

describe the density of rad ia tion  and  m atter in the Universe.
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•  We measure the scalar field (and later, its fluctuations) in term s of the Planck

•  We define the dimensionless potential of the scalar field V  -4  V / I H qM ^) .  

In  this notation, the background system  of equations to  solve is

T he model properties of the scalar field are determ ined by the poten tial V(tp). 

In th is thesis we shall restrict our a tten tion  to  inverse power law potentials where 

V(ip) — where A is dimensionless, using units of H qM ^ 2. Here, we collect

example calculations of the background properties in the model w ith V  =

These potentials have been shown to have the “tracking property” [30, 37].

The concept of “tracking" behaviour of a quintessence field refers to  two related 

properties:

• W hen energy contribution of the field <p is subdom inant, there is a special 

solution of the equation of motion (2.36) following which the field exhibits an 

effective equation of state  determ ined not only by its potential V(ip) bu t also 

by the  properties of the dom inant energy component.

• This special solution is an a ttrac to r to a class of trajectories w ith arbitrary  

in itial conditions (<p{rn), (p'{r]i)- By itself, the tracking solution depends only on 

the param eters of the potential V(<p). Once specified, they determ ine uniquely 

the value of the field and its derivative at any moment. This makes prediction 

of the  model insensitive to a wide range of initial conditions for a scalar field.

The m athem atical reason for the a ttra c to r properties lies in the large fric

tion term  in the equation of motion of the  field, w ith the H ubble param eter, 

determ ined by the dom inant component, as a coefficient.

T he idea of using a scalar field w ith potential th a t exhibits the tracking behaviour 

is th a t it is possible to  arrange conditions so th a t the energy of the field evolves 

sim ilarily to  the dom inant component (under ideal tracking, it will scale exactly 

as a  dom inant com ponent). This serves to  alleviate the fine-tuning problem  with 

a  constant A-term, the scaling of which differs from m atter and radiation  energy

mass M pi =  G ]/ 2. introducing dimensionless tp —> p / M pi.

(2.36)

(2.35)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H A P T E R  2. T H E O R E T IC A L  B A C K G R O U N D 16

density by a 3 or a4, m aking them  disparate by m any orders of m agnitudes in the 

early Universe.

In  Figure 2.1(a) we plot the evolution of energy densities in three components, 

radiation, m atte r, and the scalar field w ith  a  potential V(ip) =  |<p-6 potential for 

the cosmologically relevant case when the  quintessence field is subdom inant a t early 

times. For th is particu la r potential, the resulting law of change of quintessence en-

radiation

quintessence matter

0.1
conformal time r;

(a) Radiation, matter and quintessence are 
denoted by dotted, dashed and solid lines re
spectively. The time is in units of Hq 1, the 
energy density is in units of M^Rq-

(b) The equation of state parameter wq of 
the quintessence field evolving through radia
tion, matter, and scalar field itself dominated 
stages

Figure 2.1: T im e evolution of the energy density com ponents in a quintessence 
m odel and equation of s ta te  of the scalar field.

ergy is psf  oc a -3  during the radiation stage and psf  oc a -2 -25 during the m atte r 

stage, as we show analytically in C hapter 3. Figure 2.1(b) illustrates how the effec

tive equation of s ta te  w q = p sf / p sf  varies when the dom inant component switches 

from radia tion  to  m atter. At the end, the  quintessence field itself becomes dom inant 

and wq drops to more negative values.

Ideal tracking is not desirable, since then  the quintessence field will always be 

subdom inant, in conflict w ith modern observations. W ith  power law potentials the 

field evolves slower than  the dom inant component, and  a t late times may dom inate
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the energy density. Then, the Universe begins to accelerate, in accordance with 

observations. In the left panel of Figure 2.2 we plot the evolution of the Hubble 

parameter % — a'/a for several values of The accelerating expansion of the 

Universe corresponds to the growth of U. Note that for Q,q =  0.7 the present day wq

0\
(rt
ll 102 

X
c.d)

10°

10 '10°

conformal time 7)

Figure 2.2: The evolution of Hubble parameter H for =  0.9,0.7,0.3 (from top 
to bottom). H is given in units of Hq while conformal time is in units of H ^ . 
The curves stop at the present day value of the conformal time, which is smaller for 
larger values of Cq.

is still higher than -1 . wq ^  -0 .4 . This explains why in this model the Universe is 

just approaching the accelerating stage at the present moment, although the scalar 
field is already dominant. 1 This is in contrast to the constant A-term model which 

already accelerates now for Qa > 1 /3.
The behaviour of the scalar field ip for the discussed potential is given in Fig

ure 2.3. The field starts with the initial value below Planck mass Mpi and slowly rolls 
down the potential increasing in value. The rate of the evolution is self-regulated to

‘Einstein equations give a =  -1 /2  )T. fh (l +  3Wi) at the present time. For our two component 
case with just matter and quintessence contributing and = 1 — H,, we obtain £2, > -l/(3u> ,) 
condition for acceleration a > 0.
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l

0.8

S-
2 0 . 6

0 )

0.2

0
0.001 0.10.01 1 10

c o n fo r m a l t im e  tj

Figure 2.3: T he unperturbed  scalar field <p in M pi un its vs conformal tim e in  H q 1 

units.

obey tracking behaviour until the scalar field s ta rts  to  dom inate the evolution.

At first glance, it may seem we have three param eters to  describe the specific 

quintessence model- the energy scale A and the in itial values for <p{r]i) and ip'(r]i) to 

specify the field trajectory. However, tracking solutions are special solutions of the 

background equations and serve as an a ttrac to r to  general solutions under widely 

varying in itia l conditions, [19, 30, 37]. This alleviates the  need to  fine-tune initial 

conditions in order to  reproduce present day observables, a  problem  which persists 

in earlier m odels of quintessence [8 , 29, 28]. 2

In Figure 2.4 we present a “phase” diagram  3  which dem onstrates the a ttrac to r 

properties of the  tracking solution. For different in itial values of <p and p '  we observe 

a convergence of the trajectories to the special tracker solution. W hen initial energy

2The study of stochastic behaviour of the quintessence field during inflation [22] showed that 
restriction on the inflationary models are required in order the quintessence initial values at the 
later FRW stage to fall into acceptable range

3The scalar field equation of motion depends explicitly on the scale factor and is not conservative. 
Therefore, the field trajectory in (ip, tp') plane is not determined completely by initial values, but 
also by the time moment at which these values are taken.
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density of the field exceeds or is comparable to that o f the dominant radiation 

component, the solution will diverge from the tracker trajectory. However, this case 

is of little direct interest, as it denotes a cosmology where quintessence dominates 

the Universe before matter, thereby preventing any astrophysical structures from 

forming.

100 .   -   :...

: / v  1.4 * i o |s 1

3 / f i - Q ,

T r a c k i n g  
s o l u t i o n  
X -0.0704

Figure 2.4: Tracking solution as an attractor in (ip, iff) “phase” space.
Heavy solid line is the tracker trajectory. Dashed curves represent equal energy 
contours. The higher contour corresponds to the initial state of the quintessence 
taken at t]i =  0.0001, and the lower one marks the final energy reached at the present 
time. The parameter A is chosen so that the tracking solution ends exactly at the 
required present energy density Qq = 0.7. The parameter A =  0.0784 is chosen 
so that the tracking solution ends exactly at the required present energy density 
Qq — 0.7. Thin solid lines respresent trajectories of the field with different initial 
conditions at rj = 0.0001.

Thus, as we shall see in the next chapter in detail, tracking behaviour corresponds 

to a unique relation at a given tim e between ip and ip' and ip and A. So, whenever 

tracking behaviour is exhibited we are free to chose only one quintessence parameter, 

say the ratio of the energies in the scalar field and the dominant matter component.
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However, if one sets ftm, the present day contribution of the quintessence field to 

its dimensionless energy m ust be equal to  1  -  f im (with our choice of variables this 

is enforced im plicitly by the requirem ent th an  th a t when a =  1  also we should have 

a' = 1). Thus, setting Om, or, equivalently Llq =  1 - Q m, practically uniquely defines 

the  background cosmology.

2.2 Cosmological perturbations

2.2.1 Metric perturbations

In  order to study the growth of gravitational perturbations, we shall need the 

linearized E instein equations in the background of a  Friedman-Robertson-W alker 

(FRW) spacetime, which give us the evolution of any initial inhomogeneities present 

a t the end of the  inflationary epoch, and  the onset of the radiation dom inated era 

in the history of the universe.

In  defining the pertu rbation  to the m etric, there are complicating issues related 

to  the freedom of gauge or the choice of background coordinates. In th is docu

m ent, we use the “gauge invariant” formalism due to Bardeen [3], as form ulated by 

M ukhanov et al [23], where m etric variables are independent of the choice of coordi

nates. In this formalism, when the pertu rbed  energy-momentum tensor is diagonal 

ST? oc 6 j ,  scalar pertu rbations may be expressed in term s of a  single gauge invariant 

variable and are given by

h[u/ = $Qilu — o (f])

From  the following identity

r t g » p +  SgTgvp =  0 ,

we get

h ^  = S g ^  = - g ^ g ^ 8 ga p . (2.38)

T his gives us

2$ 0 

0 2$7mn

1 ' 1 o ' 1 ' 1 0 9 / \
a 2 {g) 0 - 7 im a 2 {7}) 0 - j j n a (v)

2 $  0  

0 2
(2.37)
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1

a 2 (v)

1

a2(v)

Lowering one index, we get

1  0

0

2 $  0

0 2 $ j ij

2 $  0

0 - 2 § 74

K  =
2 $  0  

0 -2<Mj
(2.39)

and on contracting these indices, we get

=  2$(1 -  6 j) = - 4 $ .

2.2.2 Perturbations in the affine connections

(2.40)

We are now faced with the task of computing the perturbations to the connection 

coefficients. The formula for a perturbation to the affine connection is given by

1H— q 
2 y

dx 11 dxu dxK
dh^i; ^  3h■liv
dxp 3a;" dxK

With rearrangement, it assumes a friendlier form,

<!>rA = - h xVK 4- - aiiv ilkl liv ~  i^y
1 Xk dhKu dhufi dh^v

3.r/ 1  3a;" dxK

(2.41)

(2.42)

The perturbations to the affine connections are then found to be (see details in 

Appendix A.3),

o
oo'-O II

K II _e
<

JT j II i si >&

a r j 0

II -a
, &

f f 0i =

STfi

Jto*•*->III Jk; (2.43)
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The components of Sr it =  for the case of flat spatial section are

£ r 0 =  - 2 $ ' ,  

5T, =  - 2 $ j . (2.44)

2.2.3 Perturbations in the Ricci tensor

From the connection coefficients T ^ ’s and its perturbations firm 's, we may now 

compose the perturbations to the Ricci tensor. The general formula for such a 
perturbation S R ^  is given by

Substituting the requisite affine connections and their perturbations (given in Ap
pendix A.4), we obtain the following,

2.2.4 The perturbed Einstein tensor

In order to calculate the perturbed Einstein equations we need the perturbation to 
the Einstein tensor 8 Gtlv. Since the Einstein tensor G/w is composed of the Ricci 

tensor and the Ricci scalar R, we proceed as follows. The Ricci scalar R  is 
given by

8 R lu, = (Sr$x).l, - ($£%,)* . (2.45)

<5tf0 0  =  - 3

5Ri0  =  -(24»' +  2  m ) , i ,

SRij = [$" -  V2$  +  % m '  + 4 {%' +  2H2) $] 7 i j . (2.46)

(2.47)

Therefore, perturbing it, we get

SR =  g ^ S R ^ + S g ^ R ^ . (2.48)

The Einstein tensor is defined as

G» =  K - \ R g Z . (2.49)
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Perturbing it, and combining with (2.48), we get

6 G£ =  g ^ ^ R x v  + d g ^ R x v - ^ f ^ R p o  + S g ^ R p ^ t f .  (2.50)

W ith rearrangement, this becomes

5G£ =  g ^ S R x u - ^ S R M  + S ^ R ^ - l i S g ^ R M .  (2.51)

Evaluating the above expression for each component of the perturbed Einstein ten
sor, we get

c\

5G°0  =  ^  [v 2 $  -  3^ ( $ ' + ^ ) ]  .

=  ^ [ m  +  <&']„,
ft

SGi = - ^ [ $ "  + 3 m '  + (2 H' + H 2 )A>]. (2.52)

The details of these calculations are given in Appendix A.5.

2.2.5 The perturbed Einstein equations

At last, we may now turn to the perturbed Einstein equations. The perturbed 
Einstein equations in gauge invariant form read

5G£ = 8 trGSTH . (2.53)

Assuming a flat universe (K  = 0), the time-time(0,0), time-space(0, i), and space- 
spacefj, i) parts respectively read

V2$  -  3 m '  -  m 2§  =  4ttGa2 8 p,  (2.54)

- (a $ ) '. i  =  i /KGa2(p + p)6 Ui. (2.55)
a

+ 3 m '  + {2U' E H 2)® =  4ttGa2 Sp. (2.56)

In the above equations, 5p, 5p and 6 Ui denote the perturbations to the energy density 
and pressure and fluid velocity in the conformal Newtonian gauge respectively.
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2.3 Evolution o f perturbations

In order to have an accurate understanding of the inhomogeneities in such a cos

mology we need to calculate the evolution of the following variables;

1 . 4>: the perturbation to the gravitational potential;

2 . Sm : the fractional perturbation to the energy density of matter, defined as

Sm = —  • (2.57)
P m

3. 8 r \ the fractional perturbation to the energy density of radiation, defined as

8 r = & .  (2.58)
Pr

4. vm: the three-velocity potential of m atter wrt the unperturbed background 
manifold, defined by

a v m ,i =  (8Um )i • (2.59)

5. vr: the three-velocity potential of radiation wrt the unperturbed background 

manifold, defined by

a v r,i =  {S U r ) i  ■ (2.60)

6 . 5<p\ the perturbation to the scalar field value.

7. 5ip'\ the derivative of the perturbation to the scalar field wrt conformal time.

We shall decompose the perturbation equations using the set of eigenmodes of the 
Laplace operator. In a flat spacetime, these are the Fourier modes or plane waves 

{e(Jfc)}, each of which corresponds to a spatial wavevector fc;. These modes form a 
complete orthonormal set of basis functions. The mode {e(A;)} corresponds to the 

eigenvalue - k 2  of the Laplacian i.e. V 2 e(k) = - k 2 e(k). The Fourier decomposed 

perturbation equations form a set of ordinary differential equations (ODEs), indexed 

or labelled by the wave number k, for the Fourier amplitudes, which themselves are 

functions of time only. This is a considerable simplification. Therefore, from now 
onwards, we shall implicitly assume we are working with individual spatial modes, 
of a certain wave number k, of the variables describing these inhomogeneities. For 
brevity, we shall not carry the index k through the equations.
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For num erical stab ility  we choose two different equations for the evolution of <h. 

For t] < 0.05, we use the  tim e-tim e component of the p ertu rb ed  E instein equations

For r) > 0.05, we take the  time-space component of the  p e rtu rb ed  E instein  equations

T he first equation behaves b e tte r numerically at sm all r], while w ith the second it 

is easier to  com pute the  evolution of inhomogeneous Fourier m odes k ^  0 at later 

tim es since it does not contain any dependence on wave num ber.

W ith  adiabatic  in itial conditions, the evolution of $  w ith  respect to  conformal 

tim e can be characterized by the above set of equations, and  for wave numbers 

k — 0 ,10 ,50 ,100  and 200, is given in Figure 2.5(a).

As m ay be expected, higher k  modes tend to vary more violently th an  lower k 

modes. T he modes w ith higher wave numbers vary most rap id ly  before and during 

the  tim e of recom bination, and then settle down to a  steady s ta te  value well into 

the  m atte r dom inated era. This trend is more apparent in a  p lo t of the modes with 

respect to  the  log of conformal tim e in Figure 2.5(b).

So far we have m erely restricted ourselves to the E instein  equations and its 

pertu rbations. They give us the evolution of the H ubble scale factor a and the 

grav ita tional po ten tial $ . The tim e evolution of the variables Sm , Sr ,vm,vr follow 

from the  vanishing covariant divergence of the energy-m om entum  tensor, which we 

now study  in detail.

2.3.1 Conservation o f energy in conformal tim e

In  conformal tim e the velocity four-vector U 11 evaluated in the  comoving reference 

fram e is given by

6 a a 2  2

(2.61)

$ '  = (2.62)

U^ =  [1 /a , 0 , 0 , 0 ], 

T he u n p ertu rb ed  four-vector satisfies the  relation

(2.63)

(2.64)
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(a) $  vs 1] for k = 0,10, 50,100 and 200 (from (b) $  vs log(rj) for k =  0,10,50,100 and 200
top to bottom). (from top to bottom).

Figure 2.5: G ravitational potential $  for various wave num bers as a function of (a) 
conformal time and (b) log of conformal time.

W ith  a pertu rbation  vector SU11, in a pertu rb ed  metric, we have a similar relation

{V* +  s u n i g ^ u  + V ) ( ^  +  s u n  =  1,

thus

su ^ u 1' + upĝ &u1' + tf'vcf" = o.

Or, applying (2.63) we get

2a5U° +  2<f> =  0,

which gives us

6 U° = - $ / a .  (2.65)

Before we evaluate the  covariant divergence of the energy-momentum tensor T7' 1', 

we may, for convenience, com pute the covariant divergence of which is given

by
(u^uu).M = {ulluu),u + r ,lXl/u xuv + r xuxu<1.
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For p =  0,

(u °u -  ( ^ ) '  + r o o i  + r o ^ ,Vo /  oz
o'

= ^3 ■ (2-66)

The energy-momentum tensor T '"' of a perfect fluid is given by

T»v = {pTp)U>lUv - p g » v . (2.67)

Vanishing covariant divergence of this tensor, =  0, implies

(P +  PbUtiUv +  (p +  p)(C W "):„ -  p,ur  = 0. (2.68)

The perturbation to the above, 5 (T^-u) = 0, gives

rj /
Sp1 + -^~{5p + dp) = (p + p)  [34?' -  aViSU1 j . (2.69)

For details please refer Appendix A.6 .

For radiation the equation of state is p = and if we assume that there is no

variation in the equation of state, the perturbations in pressure 5p and density Sp
are also related by 5p = l^Sp. For scalar perturbations, we may substitute (2.60), to
get

Sp’r -I Spr =  4$ ' +  — V 2 ur . (2.70)
(X o

Since, for radiation p'T = - 4 ^ p r, substituting (2.58), the equation for Fourier modes 

simplifies as follows

<5; =  4$ ' -  \ k \  . (2.71)
o

For various wave numbers the evolution of 5r as governed by the above equation is 

given in Figure 2.6(a). It may be observed that the variations of the modes with
lower wave numbers are steady and almost monotonic. The variations of the modes

with higher wave numbers on the other hand, are more pronounced and sinusoidal 
in nature.

Similarly, for pressureless matter 5p,p = 0. Since for matter p'm = - 3 j p m,
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(a) 6r for wave numbers k =  0,10 and (b) Sm for wave numbers k =  0,50,100, 200, from
50 (in cHq1), in order of increasing top to bottom,
frequency of oscillation.

Figure 2.6: The perturbation to energy densities of (a) radiation and (b) matter, 8 r 
and 5m repsectively, vs conformal time for various wave numbers.

substituting 5m =  Spm/pm, we get

4  =  3 $ ' - k 2 vm . (2.72)

For various wave numbers the evolution of 5m, as governed by the above equation, 

gives us the Figure 2.6(b). For higher wave numbers the amplitudes of these pertur
bations is larger. The behaviour of the modes are qualitatively different from that 

in the case of radiation. This may be qualitatively explained as follows. Pressure- 

less m atter perturbations grow under the influence of self-gravity. This tendency 
is partially counteracted by the expansion of the universe. The growth of these 

perturbations is then governed by a power law [23] rather than an exponential, as 

would have been in the absence of an expanding universe.
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2.3.2 Conservation o f m om entum  in conformal tim e

We now tu rn  to  the spatial component of the vanishing covariant divergence of the 

energy-m oinentum  tensor, T™ =  0. The pertu rbation  to it, 8 T%  =  0, implies

SUi +  - ? — 5Ui = a 
P + P

sP j
J P + P\

(2.73)

T he in term ediate steps are given in A ppendix A .7. We may now replace the velocity 

by the  velocity po ten tial using (2.59). Since the partial derivative w rt x; acts on all 

term s, we then get

v' +
i ftp

v = $  +  . (2.74)
P + P.P + P a

R adiation  is characterized by the equation of sta te  p = p/3  and the energy

redshift relation p' — - 4 ^-p. Applying these properties, the  coefficient of v is seen

to vanish. Furtherm ore, applying 5p — 5p /3, we obtain

u' =  ^ r +  $ .  (2.75)

T he evolution of vr as given by the above equation may be p lo tted  w ith respect to

conform al tim e as in Figure 2.7(a).

For pressureless m atter all pressure term s p. Sp and their derivatives drop out to 

leave

v'm =  vm +  <f>. (2.76)
a

T he evolution of vm as given by the above equation may be p lo tted  w ith respect to 

conform al time as in Figure 2.7(b).

2.3.3 E volution o f scalar field perturbations

If we take into consideration th a t the scalar field may not necessarily be homoge

neous and  may have evolving inhomogeneities, we must also derive the equation 

governing the pertu rbation  to the scalar field. For this purpose we also need the 

p e rtu rb a tio n  to the Klein-Gordon equation. We know

ipW = g ^ ip .u ,

(2-77)
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(a) vr for wave numbers k = 0,10 and 50, in (b) vm for wave numbers k — 0,50,100 and
order of increasing frequency of oscillation. 200 (from top to bottom).

Figure 2.7: The velocity potential perturbations of (a) radiation and (b) matter, vr 
and vm respectively, vs conformal time for various wave numbers.

Since for scalars, covariant derivatives may be replaced by partial derivatives, the 
perturbations to the derivative of the scalar field may be written as

Stp* = 5glwtpjU + g^SiP'V . (2.78)

For fj, — 0, this leads us to

r 0 2$  , 1 ,  ,S y  =  — j<p +  ~2 ,
a1 a1

= ^ [ V - 2 V 1 -  (2-79)

For ji — i,

Htp'1 =  . (2.80)

Now, we are in a position to perturb the Klein-Gordon equation. We know

(P'<X;a =
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(2.81)

Therefore,

(2.82)

This gives (see Appendix A.8 )

S (v?;a.Q)  =  ^  8tp" +  2 +  2 -  4 $ V  +  k2S<pj . (2.83)

So, the perturbed Klein-Gordon equation

(2.84)

becomes

8ip" + 2 =  - 2 a 2V;v $  +  V # ' . (2.85)

Numerical solutions of quintessence inhomogeneities governed by the above equation 

shall be presented at the end of Chapter 3. There, it will be demonstrated that long
wave and short-wave perturbations exhibit markedly different behaviour.

This completes our discussion of all equations describing the evolution of in- 

homogeneities. The entire system of coupled differential equations outlined in this 

chapter when solved numerically, describes the growth of cosmological perturbations 

as functions of conformal time. All results presented in this thesis are computed in 
this manner.
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Chapter 3

Analytical solutions

In  th is thesis, we shall approach the evolution of cosmological perturbations as a 

classical initial value problem. Therefore, together w ith the equations th a t govern 

the evolution of these perturbations, m entioned in the preceding chapter, we shall 

also need the initial values of these pertu rbations and their first derivatives. The 

derivation of these initial conditions, while im portant, are secondary, and have been 

inserted into A ppendix A.9. In section 1 of this chapter we shall merely refer to  these 

in itia l conditions to derive analytical solutions for background scalar field ip during 

the  rad ia tion  and  m atter dom inated eras. In  particu lar, we derive simple power law 

solutions for the background scalar field and its energy density during these eras. In 

section 2  we shall tu rn  to analytical solutions of the grav itational potential ($ ) in 

certain  im portan t lim iting cases. They are, as follows, (i) the evolution of the zero 

mode (<[> when k =  0 ), in the absence of quintessence, valid for the entire history 

of the  universe, (ii) the dom inant modes of during the rad ia tion  dom inated era and 

finally, (iii) the dom inant modes during the m atte r dom inated era. The focus of 

this thesis shall be to study the effect pertu rbations in quintessence have on the 

CMB anisotropies via the gravitational potential. To th a t end, in section 3, we shall 

derive a  few analytical solutions for the  evolution of these pertu rbations during the 

rad ia tion  dom inated era for long and short wavelength modes separately. Later in 

section 3, the same is done for the m atter dom inated era. It is observed th a t long 

and short wavelength modes exhibit very different behaviour.

D uring the  very early radiation  dom inated era, the energy content of the uni

verse was dom inated by radiation w ith m atter being the subdom inant component.
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Therefore, during this era, we may approximate the first Friedman equation by 
ignoring the energy component of quintessence as follows

a ~  Ulf. (3-1]

This has the solution

a = a0 r)(rj +  7?0) - (3.2)

We get the following expressions

ao =  Lljn/4, (3.3)

W =  (3.4)
^hn

The expression for the Hubble parameter, in conformal time, is then

=  (3.5)
a 7 7 ( 7 7  +  770)

3.1 The background scalar field p: Analytical solutions

In this section we shall derive a few analytical solutions for the evolution of the
background (or unperturbed) scalar field in certain limiting cases. The scalar field 

is governed by the Klein-Gordon equation. This equation features a Hubble drag 
term which is dictated by the Friedman equation. Therefore, our task simplifies 

considerably if we solve the Klein-Gordon equation at epochs during which the
Hubble term can be expressed simply. We shall show, in the succeeding sections,

that in the radiation dominated era and the matter dominated era the Hubble factor 
is given by 7i = 2/rj and 71 — 1 / 7] respectively. This in turn leads to simple power 
law solutions of the scalar field ip in terms of the conformal time r] during these two 

eras.

3.1.1 The scalar field p  during the radiation dominated era

During the radiation dominated era we may take r] -C 7 7 0 , and equations (3.2) and 

(3.3) simplify to
a = \ / Q / r ) .  (3.G)
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Substituting the above result into the Klein-Gordon equation, we get

/  + V  -  nrA»/V(n+1) - 0 , (3.7)
Tj

where we assume the potential to have an inverse power law form as given by

A Ur"
V  -  — —  . (3.8)

n

This equation lias a special solution when the scalar field evolves as a power law 
given by

ip = ATrjQr, (3.9)

where

Olr =

A r =

n + 2  ’

XOr(n + 2 ) 2

4(3n +10)
(3.10)

We may now use this solution for p  to calculate the energy of scalar field. The total 
energy of the scalar field may be written as

T° = ^ p ' 2  + V(p) .  (3.11)

Substituting the solution of the scalar field as given in equations (3.9) and (3.10), 
we get

The main result is then easy to read off. Apart from constants which characterize 
the potential of the scalar field and the energy densities of radiation, the total energy 

evolves as a simple power law of conformal time and is given by T0° oc t]~”+*. For 
n = 6 , this corresponds to T0° oc ? / ~ 3  oc a -3 .

This is the unique tracking solution of the system being considered. The con

dition for its existence is the dominance of the radiation energy over the energy in 
the quintessence field. Further, we shall consider perturbations of the scalar field ip. 

in particular, its homogeneous mode, where the value of the field is perturbed by 
the same amount everywhere in space. We will demonstrate that in the absence of
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metric perturbations, such homogeneous perturbations decay. Therefore, the track
ing solution is an attractor for trajectories with perturbed initial conditions. In the 

presence of gravitational potential, the homogeneously perturbed system sets onto 
a neighbouring, coordinate-shifted tracking solution.

3.1.2 The scalar field ip during the matter dominated era

During the matter dominated era, we may assume r] >  r?o, but is not so large so 

that the scalar field starts to dominate the total energy content of the universe. 

Equations (3.2) and (3.3) then simplify to

«(»/) =  (3.13)

Substituting the above result into the Klein-Gordon equation, we get

/  + V - % ^ V (n+1)= o .
rj 16

(3.14)

Now, the special power-law tracking solutions is given by

ip = AmTfm , (3.15)

where

Qm =  -----   , (3.16)
n + 2  v '

Am. —
AQ^(n +  2) 2

96 (5n +  16)

n-f*2
(3.17)

Proceeding as before, we see that the solution for the scalar field value leads to the 
following expression for the total energy of scalar field,

Therefore, during the matter dominated era, the total energy of the scalar field 
Tq o c  T7 ~ "T5. For n =  6 , this dependence is T0° a  r) ~ 9 / 2  o c  a ~ 9U .
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3.2 Analytical solutions for the zero mode of $ (k = 0)

We may begin by restating a few necessary equations in terms of «o and 7 7 0  defined 
earlier in this chapter. The time-time linearized Einstein equation (2.54) becomes

= +  ( 3 . 1 9 )
a \ a } 3 a 2 a1

The space-time part of the perturbed Einstein equations (2.55) becomes

=  +  (3.20)
a a a1

The other equations for the variables Sm,Sr,vm,vr, given by (2.72), (2.71), (2.76) 

and (2.75), remain unmodified and are as follows

S'm = 3 $ '-A ;2um , (3.21)

S'r =  4$ ; - ^ f c 2 ur , (3.22)

vm
.  a'

— ^  ) a
(3.23)

v'r =  O +  j V (3.24)

Now, we shall try to see how the gravitational potential $  evolves with time. 

From the equations (3.19) and (3.20) we get

? * - » ? ( * . + ! £ ( * + 4 0 -
From the equations (3.22) and (3.24) we get the following 2nd order ordinary differ
ential equation (ODE) for vr

v'; + ^ v r = 2 $ '. (3.26)
0

For the special case when the wavenumber k =  0, equations (3.22) and (3.21) reduce 
to

S'r =  4 $ ',

S'm -  3 $ '. (3.27)
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These equations have the following solutions

5r =  4 $  -  G$ 0  ,
9

<5 m =  3 $ - - $ o , (3.28)

where now $ 0 =  $ (^ 7  -+ 0). W ith a few intermediate steps hidden in Appendix  

A .10, we may judiciously combine the equations in this section to arrive at a first 

order ODE purely in terms of the gravitational potential '!>. given by

3
-  +

1
=  3

3 T]2 + 3r]T)o +  T]l 
v(v + Vo){2 V + Vo).V V + Vo V + Vo/2 

The homogeneous solution to the above equation is given by

$  =  o [ r ?- 3(7? +  r/o )-3(r, +  7?0/2)] .

By the m ethod of variation of constants we know

C 1 =

<&n (3.29)

3??2(?? +  %)2 (3??2 + 3r)T)0 + Vo)
(77 +  r/o/2 ) 2 $ 0 .

(3.30)

(3.31)

Integrating the above expression for the value of C  and substituting into (3.30) with  

the appropriate initial value, we get

_9_+  1 Vo(vo + v/2)
10 10 (77 +  77 0)3

o • (3.32)

The general solution drops out as it cannot satisfy the initial values. This solution  

may be substituted back into (3.28),(3.23) and (3.24) to get

S-r ---

Sm =

1 2  | 2 ^ ( 7 7 0 + 7 7 / 2 )
5 5 (r/ +  7/o) 3

9 +  3 77o(^o +  77/ 2 )
5 10 (77 +  7/0 ) 3

3 1 770(770 +  3j7/4)
10 5 (rj + T]0 ) ‘i

9  m + 2 7 7 / 3  +  1

$ 0 ,

$ 0 ,

$ 0 ,

Vo
2 0  770 +  7? 2 0  (77 +  7 7 0)2

d>0 . (3.33)
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Thus, for the homogeneous mode(fc =  0) in the absence of quintessence, we have 
exact solutions for the perturbation variables §.Sr,5m,vr and vm. Combining the 

equations for 5r and $  above, we may also derive another expression which shall be 

useful in the formula for the temperature fluctuations of photons. This is given by

$  +  <Sr /4 = _3_ + Mo(??o + W2) $ o • (3.34)
10 5 (v + Vo) 3

3.2.1 The dominant modes during the radiation dominated era

In the radiation dominated era, we may use the approximations a =  aoWo and 
r/ <C o- With these approximations we can keep the most dominant terms on both 
sides of the Einstein equations. The time-time part (3.19) gives us

&
3

1

- $  “  2t?2 ' Sr + Vt

The space-space part (3.20) gives us

The equation for vanishing covariant divergence remains

1  d */
4 r +

Differentiating (3.24) and combining with (3.37), we get

v'; + j v r ^ 2 ^ .

Combining equations (3.35) and (3.36)

1

Tj 6 J  21]2

Eliminating 5r from the above, using (3.24), we get

1

Sr.

—  $ '  +v \n2  3
_ 2

V2
4> =  - j  Vr .

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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Eliminating v'r from the above, using (3.36), we get

$" +  - $ '  + =  (3.41)
7}  3

This is a Bessel ODE of the first order and has the following general solution

Ci (  krj i/3 . krj \  C2  f  . krj s/3 hr) \
$  -  7 7 -T 0  cos - 7 = -  —  sm - 7= + ——f  I sm - 7 = -  —  cos - 7 = (3-42)

{kr)}2 \  y/3 kV VSJ  {kv)2 \  s/Z kr) s / z )  1

Applying the initial conditions as krj ->■ 0, we get C2  =  0 and $(0) =  - ^ L, which
gives us C\ =  —9$o- The solution to <f> then becomes

, 3 ( sin x \  T ,
$(*) =  ( ---  cos x ) $ 0  (3-43)

where x  =
s/3

3.2.2 The dominant modes during the matter dominated era

In the matter dominated era, we have a =  aQfj2. It follows a' — 2aor] and a'/a =  2 jr\. 

In this regime, the first Einstein equation becomes

~T* = ^  {6m + vVm) + (5t + vVr) ■ (3'44)

In the limit as k —> 0 we get 8m = — , and Sr — — |u r . I1 1  the matter dominated

era rj >  rj0 and the space-time part of the perturbed Einstein equations may be

approximated as follows
, ,  , a' 6 ao . . .+  _ $  = — vm . (3.45)

a a

The equation for vm may be written out for convenience as

(at>m)' =  a $ .  (3.46)

These two equations may be combined to eliminate vm into the following single 2nd 

order ODE given by

<h" + 3—$ ' + a ' \ '  f a' \ 2
a J a

$  =  0 . (3.47)
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The coefficient $  conveniently drops off to zero to give

$" +  3 - $ '  =  0. (3.48)
a

Integrating this equation, we get

(3.49)

Substituting this into the formula for vm above, this gives us

V m  ~  rj • (3.50)

For 5m, we get

(3.51)

3.3 Scalar field perturbations

We may now study the growth of scalar field perturbations. Though these pertur

bations were formerly denoted by Sip, for convenience we now denote them by ip\. 

The perturbed Klein-Gordon equation (KGE) then reads

For the inverse power law potential, the first and second order derivatives are given 

by V,<p =  -A<p~(n+1) and V,w  = A(n +  l)(p~(n+2\

3.3.1 Long wavelength scalar field perturbations (<pi as k -> 0) dur
ing the radiation dominated era

During the radiation dominated era the first constant mode for the gravitational 

potential is dominant and the second forcing term involving 4>/ may be ignored. 

So, $  «  const. In the long wavelength approximation k2ip\ -» 0 and from the 
perturbed KGE, we get
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<Pi +  -<p[ + =  DrAr$r] 2+° r
7] rf

(3.53)
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where Cr — and D r =  This has the particu lar solution given

by

D r
Vlp =  a r {ar + 3) + Cr ArV r $ ’

=  =  (3.54)

which grows w ith tim e proportionally to the background field. The homogeneous 

solution for the above equation denoted by pih can be verified by the power series 

ansatz to  be

A t]W 4Ct- 1 + Br)WiCr- 1] , (3.55)<P\h = v 1/2

or, equivalently,

V \ h  =  ?T 1/2 (^ c o s  log(7?v/4Cr -  1) +  B s in  7 /log (^ /4C V ^I) ) . (3.5G)

The homogeneous modes decay with time and are subdom inant wrt to the partic

ular solution. This is typical of a ttrac to r solutions, where solutions w ith slightly 

varying initial conditions, converge to a certain a ttrac to r over time. In  the absence 

of gravitational effects, any solution perturbed  homogeneously from the tracking 

solution will approach it. In  the presence of the gravitational po ten tial $  there is 

an  offset to a  neighbouring solution.

3.3.2 Short wavelength scalar field perturbations (yq as k  »  l / n )  

during the radiation dom inated era

In the short wavelength approxim ation k 2 >  C/r?2, the pertu rb ed  KGE reduces to

ifi H— ipj +  k^pi  =  D rA rT) 2^ ° $  -(- 4ip'fy1. (3.57)

T he homogeneous solutions may be found by converting the  homogeneous equation 

to Bessel’s equation and are given by

e ikrj  e - i k r ]
<Pihiv) = ~  ’^ 2 h(v) =  • (3.58)

For short wavelengths, the gravitational potential $  is dom inated by the second 

mode given in (3.43). Expanding in a series about rj =  0+ and  retaining term s only
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till the order of 0{ki]),  we get the following for the complete forcing term ,

F(V) =
(12ar +  2Dr) A ^ +Qr c q s ^ ^

k / V 3

hr]

7 1 '

+  (4a r + 2Dr)A rT]~Har  sin -  {4ark / V 3 ) A rr)~'3+ttr cos .(3.59)
v 3  v 3

For very short wavelengths we may approxim ate h]  > 1 .  In such a case, the 

contribution  from the 1 st and 2 nd term s become negligible in com parison to the 

th ird  term  and we may approxim ate the forcing term to be

F(v)  — -L sk r j  3+Qr cos -^=
V3

(3.60)

where L 3  =  4 o r Ar / \ /3 .  S ubstitu te  tpi =  7x1 / 7 7  and the resulting equation may be 

approxim ated as follows

u" +  k 2u\ — -L^kr]  2+Qr cos (kr]/ \/3j  . (3.61)

This equation describes a  simple harm onic oscillator (SHO) w ith a forcing term  

Fs (rj) which gradually decays w ith tim e and is given by

F M  =  -L z k r i  2+“r cos(kr]/\ /3).

The causal G reen’s function (7 .5 (7 7 , 7 7 1 ) for the SHO is given by

(3.62)

G s f a m )  =  sin *1 (7 7 - 7 7 1 ; (3.63)

Thus, the particu lar solution is

7 7 1 (7 7 ) = /  G., (7 7 , 7 7 ! )FS(7 7 1 )^ 7 /1 , 
Jo

which reduces to

7 7 1 (7 7 ) =  - V 3 L 3  j  7 7 1  2+a cos{kr]i/ V i )  sin *1 ( 7 7  -  7 7 1 )7/ 7 7 1 ,

- 7 3 L 3 I 77t 2+0 1 sin k r ] - k ( l  -  -^=)77i +  sin

(3.64)

drj\
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Since the integrand is a highly oscillatory function for large k, the integral may be 
approximated by the method of stationary phase [5] to be

.. h , . . ( cos f a  -  *(' -  75>®1. cos f a  -  w  + 4 s H  \
I  M i -  * )  +  W 7 J )  ) ■

(3.65)
Ignoring the phase term corrections due to rjo, we get

ui (v) ~  -  [ 3 2+“] ■ (3-66)

Therefore, the dominant term in the scalar field inhomogeneity </h for short wave
lengths is given by

(3.67)

where K \  is a constant whose value is set at the onset of the radiation stage and is 
given by K \  — [Sx/SLrjr/^2'1'0]. Though crude, and based on many approximations, it 

has a ready qualitative explanation: scalar field perturbations on short wavelengths 
are damped as ~  ^  and the forcing term is actually unimportant.

3.3.3 Long wavelength scalar field perturbations (ipi as k -A 0) dur
ing the matter dominated era

We may largely repeat the same analysis for the matter dominated era, where 

given by (3.49) is again nearly constant. In the long wave regime the perturbed 

KGE becomes

Ti +  +  - T V i  = D,nAm7 f 2+am§ , (3.68)
rf rfa

where Cm =  gfo+ljg / 1.6) and Dm = =  2Cm/(n  + 1). The particular
power-law solution of this equation is again

trn —  R n   4 ,nOm A
~  i i n  m  ̂ ’Q(m(0(m 4" 5) +  Cm

2 = (3.69)
n 4-2 n + 2

We observe that the long-wave response to the gravitational potential given above

is of the same form in the radiation and matter dominated eras and is independent
of the type of dominant component. It may also be observed that the homogeneous
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solution for the scalar field p e rtu rb a tio n  is given by

gi\/Cm 
Plh. 9 1rjz

g—i'JCm -2tj
^2/i =   2 -------• (3’7°)r/z

A part from an oscillatory factor, these general homogeneous solutions are dam ped 

out as ~  r?- 2 .

3.3.4 Short wavelength scalar field perturbations (</?i as A: >  1/?/) 
during the matter dominated era

In the short wavelength lim it and in the m atter dom inated stage, the  p ertu rbed  

KGE may be approxim ated as

Ti  +  V i ^ V i  =  F{rj) . (3.71)

Substitu ting  ip\ =  ui /r j2 th is again describes a SHO for u\.  We may yet again apply 

the Greens function in (3.63) and (3.64) to get

u i  =  J  sin 2k{rj -  r]i)Dmrftmdr)i. (3.72)

Since this is a highly oscillatory integral, we may justifiably approxim ate it using 

the m ethod of stationary  phase as in the radiation dom inated era to  get,

C0S( M  79A
 k — '

Therefore, the scalar field inhom ogeneity is given by

c° s ( k r i )  „
(3-74)

This section may be now sum m arized as follows. Long wavelength pertu rbations 

exhibit a ttra c to r type solutions in b o th  radiation and m atter dom inated eras. In the 

rad ia tion  dom inated era the  dom inant solution grows as a power of the conformal 

time. Short wavelength pertu rb a tio n s to the scalar field on the  o ther hand are 

severely dam ped down in b o th  eras. During the radiation  dom inated era, they
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evolve as ~  and during the m atter dom inated era they evolve as ~  ^ r .  As 

an illustra tion  of the foregoing analysis, num erical calculations of Sip for the wave 

num bers k  =  0 ,10,50,100 and 200 are plotted in Figure 3.1. Here we see a pattern

0.2

k = 0  

k = 1 0  

k = 5 0  
k =  1 0 0

s.
*o

G 0.15  o

Ih(0
to 0.05
ow

0 1 2 3
confo rm al tim e  7 7

Figure 3.1: The evolution of the scalar field inhomogeneities for wave numbers 
k =  0 ,10 ,50 ,100  and 200

sim ilar to  th a t for the gravitational potential $ . T he lowest wave num ber modes vary 

slowly. The higher wave num ber modes vary more violently, especially before the 

tim e of recom bination. We also observe th a t long wavelength pertu rbations remain 

sign ifican t well into the m atter dom inated era, and till the present time. Short 

wavelength pertu rbations on the contrary are dam ped down and reach a steady 

s ta te  value close to zero during the m atter dom inated era. These modes therefore 

have negligible effect on the evolution of <1>. More relevantly for this thesis, their 

effect on photon tem perature fluctuations, and therefore CMB anisotropies to  be 

in troduced in the next chapter, shall also be negligible.
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Chapter 4

Quintessence and large scale 
CMB anisotropy

4.1 The Cosmic Microwave Background

The discovery of the Cosmic Microwave Background (CMB) by Penzias and Wilson 
marks the birth of modern, precise cosmology. The CMB has a perfect blackbody 

spectrum at a temperature of To =  2.726 ± 0.010TC (95 % Cl) and temperature 

anisotropies at the level of one part in 105 [16]. The big bang cosmology, almost 

uniquely amongst cosmological models, predicts such a radiation background. In the 

big bang model the Universe undergoes an expansion from some initial singularity 

and light from distant sources is redshifted in proportion to distance. Correspond
ingly, more distant sources emitted the light a longer time ago, when the universe 
was smaller. Due to the expansion of the universe the wavelengths of photons were 

stretched and particle number densities dropped leading to the low temperatures 

and photon densities observed today. This explains why the spectrum is thermal at 
2.7A", a temperature much lower than other matter in the universe. Conversely, ex

trapolating backwards in time, we may infer that the Universe began in a hot dense 

state. At sufficiently high temperatures, interactions between particles were suffi
ciently rapid for the universe to be in thermal equilibrium. Adiabatic cooling from 

the expansion preserves such a spectrum and this explains the blackbody nature of 
the thermal spectrum.

The high degree of isotropy observed in the CMB is more puzzling. In the 
early universe radiation interacted with matter through Compton scattering. After
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the tim e of recom bination, a t redshift z ~  103, photons no longer had the energy 

to  keep hydrogen photo-ionized. Therefore the time of recom bination also marks 

the tim e the  CMB last in teracted  w ith m atter. At such early times, th e  patches 

of sky off which the CMB last scattered should not have been in causal contact. 

This apparent violation of causality has been dubbed the horizon problem. The 

theory of inflation proposed by G uth  [15] alleviates it by postu lating  a very early 

phase of rapid expansion th a t separates originally causally connected regions by vast 

distances necessary to account for the large scale isotropy of the CMB.

M easurem ents of the therm al nature and isotropy of the CMB support the overall 

hot big bang model. Anisotropies of the CMB on the other hand carry inform ation 

abou t the fluctuations which led to  structure form ation in the universe. A few facts 

and figures may be illum inating. Hubble’s law states th a t the observed redshift 

scales w ith distance as z =  Hod  due to the uniform expansion of the  Universe. The 

Hubble constant Ho =  100h k m s ~ l M p c ~ l where observations require h  ~  0.7. Ho 

also sets the  expansion tim e scale H q 1 ~  10h~1Gyr  and thereby determ ines th e  age 

of the Universe.

In general relativity, mass tends to  decelerate the expansion and  a  higher energy 

density  implies a  younger universe. The mass is usually param eterized by Llm which 

is the energy density in units of the critical density pcra  =  3 H o /8 n G  =  1.879 * 

10~29/i2p /cm 3. In  th is thesis, we m ust also consider the possibility th a t vacuum 

energy and pressure in the form of a cosmological constant, or a  quintessence scalar 

field, can provide an acceleration to  the expansion of the Universe. T he ra tio  of 

the  energy density of this com ponent to pcrjt may similarly be expressed as 

where the subscripts q and A denote quintessence and the cosmological constant 

respectively. For a spatially  flat universe, +  =  1- Dynamical m easurem ents

of the mass in the halo of galaxies implies Llm > 0.1 -  0.3. Lum inous m atter 

in the form  of stars  in the central p a rt of galaxies account for fl* ~  0.04 of the 

critical density. This implies the existence of a significant am ount of nonbaryonic 

dark  m atter. Collisionless dark m atter, unlike baryonic m atter, does not undergo 

dissipative processes. The CMB energy density Qrh2 =  2.38 * 10-5 #2.7 where 6 2 . 7  = 

Tq/2.7K.  A lthough negligible today, in the early universe it increases in im portance 

relative to the energy density pm, since pr /p m oc 1 +  z, due to  the  redshift. The 

photon density is thus fixed through the CMB tem perature.
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4.2 The Sachs-Wolfe effect

Large-scale anisotropies are not affected by any local microphysics a t last scattering. 

At th e  tim e of recom bination, the pertu rbations responsible for these anisotropies 

were on scales far larger than  could be connected by causal processes. Since in this 

thesis, we are only concerned with large-scale anisotropies, we restric t our a tten tion  

to  th e  p rim ary  mechanism which generates them , namely, the Sachs-Wolfe effect. In 

order to  derive it we shall work in the conformal N ew tonian Gauge with coordinates 

(:r) , x%).

O n large scales a fractional change in photon tem pera tu re  in the CMB may be 

caused by two distinct mechanisms;

1. An intrinsic tem perature fluctuation on the  surface of last scattering during 

recom bination denoted here by ^ ? rec, T  being th e  tem perature, due to  a  local 

over(under) density of photons.

2. A tem peratu re  fluctuation incurred during the p h o to n ’s journey from the  sur

face of last scattering to the observer, denoted by ^ - j our-

Thus, the to ta l fractional change in tem perature is given by

A T  A T  A T  , ,  ,.
~rn~ ~  "f 7p~ . ' (4-1)

1 1  rec  1  jo u r

The form ula for rec is easy to derive. The energy density  of photons pr is propor

tional to  T 4. Then, for a fractional change in energy density  Sr =  ^  a t the surface 

of last scattering, we have

T he derivation of the formula for 4 ? .  is a b it m ore involved. We begin by
I jo u r  °  J

noting th a t the  CMB has an  almost perfect blackbody spectrum  w ith a  d istribu tion  

function given by

=  e q/kT _  !  ’

where q and T  are the to ta l momentum m agnitude and  tem peratu re  respectively. 

Since the CMB cools adiabatically, we may infer th a t  the  d istribu tion  function 

rem ains unchanged. Therefore, at any instan t of tim e during the  journey

= (4.4)
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The total change in momentum Aq may be expressed as Aq =  '-dr]. In order to get

the cumulative temperature fluctuation due to the entire journey, we may integrate 
the above expression wrt p, to get

We may now proceed to convert the above expression into a more convenient one. 

In the absence of perturbations, the particle momentum “redshifts” as 1/a. We 

assume collisions do not alter the energy of a species, and do not create or destroy 
particles, as from Thomson scattering.

It is convenient to make the following definitions:

To get the deviation from the unperturbed “redshift” p a  1/a, we must evaluate 

To do so, we need to relate (E ,p l), the four-momentum components in the locally 

orthonormal frame to those in the conformal Newtonian coordinate system denoted 
by P 11. The necessary relations are

(4.5)

q  =  a p ,

n =  5  (unii vector) .
Q

e =  aE = (q2 + m 2a2)1/2 .

P° =  g ^ E ^ a Q  + ^ E ,

p l  = 9u V  =  a(l -  $)P1

The geodesic equation for a photon is given by

(4.6)

Evaluating the time component along the particle trajectory =  n l, we find to 

1st order,

(ix1

qdrj dr) q dxi
(4.7)

For a photon e =  q, since

d$  _  9 $  dxl 94?
dp dp dp dxl ’
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=  ( 4 ' 8 )

We may use the above to eliminate the troublesome second term in (4.7) to get

1 dq 9$
(49)

Combining the above with (4.5), we get 

AT po  1 dqp °  1 dq ,
=  / - T dV,Jm c qdriT  j o u r  Jt]LS q dr]

= $ ( x rec,«]rec) ~  $(zo,%) + 2  f  . (4.10)
hrec drj

The second term of this expression does not contribute to the anisotropy and may 

be dropped. Summing up the terms given in (4.2) and (4.10) we get the following 
for the total temperature fluctuation

A T  Z1 , *- j T  -  I T<5r +  ^

It is conventional to denote the first term, which is due to values on the surface of last 

scattering (SLS) the Naive Sachs-Wolfe (NSW) effect. Correspondingly, the integral 
term, due to the properties of the intervening medium between the SLS and the 
observer, is called the Integrated Sachs-Wolfe (ISW) effect. We use this expression 

to evaluate the temperature fluctuations and thereafter, the CMB anisotropies in 
this document. The standard expression most often used in literature [18],[20], 
which differs from that above is now stated.

In the low wavelength limit, well after the onset of the matter dominated era, 

we shall demonstrate in the next chapter that

<5r ~  — , (4.12)

As a further approximation, the lower limit integral can be taken to be 0 instead of 
r]rec. Therefore, the total temperature fluctuation now goes as

^  -  \ * { X r e c ,  V rec )  + 2 . (4.13)

This convention was first used by Kofman and Starobinskii [18] and later popular
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ized by Liddle and Lyth [20]. We stress the fact th a t this often quoted result is 

an approxim ation to the more rigorous result earlier. W herever possible, we shall 

try  to show the divergence between the exact result and the approxim ate one. A 

pedagogical derivation for the Naive Sachs-Wolfe effect is given below. Potential 

pertu rbations a t last scattering have two effects:

1. They redshift the  photons we see so th a t an overdensity cools the background 

as the  photons climb out of the po ten tial wells Qf- =  # .

2. They cause time dilation a t the last scattering surface, so th a t we are looking 

a t a  younger and  hence hotter universe where there is an overdensity of pho

tons. The tim e dilation is j  =  4>. Assuming recom bination occurs a t the time 

of m atte r dom ination, the scale factor a oc t 2 / 3  and T  oc 1 /a, which produces 

a couterterm  =  -§4>. The net effect is thus: ^  =  5 $ .

4.3 CMB angular power spectra

T he Sachs-Wolfe effect we have ju s t derived is applicable to a single photon. We 

shall now try  to  quantify the observed tem perature fluctuations field w ith a 

s ta tistica l measure: the angular autocorrelation  function of the field of tem perature 

fluctuations. This field inhabits a  universe th a t is isotropic and homogeneous in its 

large scale properties. This suggests th a t the autocorrelation function should also 

be homogeneous even though it is a  field th a t describes inhomogeneities.

As a  preparatory  step, we m ust decompose these fluctuations into a set of modes. 

Since in a flat comoving geometry the Fourier basis form a complete set of basis 

functions, we shall take the Fourier transform  of (4.11) over space, to  get

Here, ak denotes the  random ization operator. I t is used to denote th a t the coefficient 

of each mode is a random  variable. In this context, it denotes th a t denotes that 

each mode has a random  phase. The m ean of each coefficient is zero. We may now

—  (q,k) = ak [(Sr /4  + ^) (Trec, k )e ik^ - r^

(4.14)
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use the expansion for a plane wave in terms of spherical harmonics

00 I
e*M = 4 n z  y r m mt(Q), (4 . 1 5 )

(=0 m=-I

to get,

A T
T  (q,k) = ak 4tt {(5r/4  +  $)(Trec,fe)j/(fer0 Tree) 1

Im

+2 f  dr$ '(r, k)jf (fcro -  T)}Yln{k)Yi
^Trcc

For economy, we may rewrite the above as 

A T

(4.16)

- ( q , k ) = a k 4tt £  i'{ATSW(fc) +  /SWr(fc)}ytm(fc)y7n*(g)
ml

(4.17)

where the iVSW (A:) and I S W  (k) are the Naive and Integrated Sachs-Wolfe terms 

respectively, defined as,

N S W (k )  =  (5r /4  + 4>)(rrec, k)ji(kro Tree) 1 

I S W { k ) =  2 /" d,T$'(T,k)ji{kTo -  r ) . (4.18)
Tree

The autocorrelation of the fluctuation modes Qj(-(k) in terms of the coefficients of 

spherical harmonics is then given by

( f c ) ,^ T  $ ) )  = ( {ak, a l , ) \ \ ^ i [l- l{ N S W { k ' ) P l S W { k ' ) )
\  1  l m  1 I 'm '  /  J  l

{N SW {k)  + I S W i k ^ Y ^ i k ^ Y U ^ k d ^ k 1 ] .

The angle brackets denote an averaging over the normalization volume V. Apart 

from the statistical isotropy of the temperature fluctuation field, we might also make 

the reasonable assumption that the phases of the different Fourier modes Qf-{k) are 
uncorrelated and random. This corresponds to treating the initial disturbance as a 

form of random noise, analogous to Johnson noise in electrical circuits. Each mode 
is uncorrelated to the other. A given mode has nonzero variance, so

(ak,a*k,) = Pa( k ) 6 \ k - k ' ) .  (4.19)
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where <53 is the  three dimensional Dirac delta-function, and Pa{k) is the spectrum  of

the  m odes, and is known as the Harrison-Peebles-Zeldovich spectrum  or more briefly 

the Zeldovich spectrum . This spectrum  has the property th a t k 3Pa(k) remains 

constant and  is hence scale-invariant. This property is explained by G u th ’s theory 

of inflation [15]. However, we resist the tem ptation  to  digress and proceed w ith the 

im plications of such a  spectrum . We get, apart from a few constants,

For convenience, we may perform  the above integral over k  in spherical coordinates.

We observe th a t only the diagonal com ponents are nonzero. It is custom ary to 

denote these com ponents by Ci. The definition for the coefficients C\ then follows,

It is notew orthy th a t any azim uthal dependence represented by the index m  has dis

appeared from  the expression. These com ponents are a function only of the angular 

separation  represented by the index /. The coefficients Ci completely define the 

angular autocorrelation function. The C { s thus defined are variously called “M ul

tipoles” , “A ngular Spectra” , “CMB spectra” and even very misleadingly “Power 

spec tra” . In  the  rem ainder of the thesis we shall adhere to  the most conventional 

term : “M ultipoles” . In  the convention of Liddle and  Lyth, which we m entioned 

earlier in th is chapter, (refer (4.13)), th e  Naive and Integrated Sachs-Wolfe term s 

have the following approxim ations

/ A T  A T* \ r 1 r
\ T i m { h ) ' ^ F i > J h ) )  = J ¥  [i l ' ~ l { N S W ( k ) +  I S W ( k ) } 2 Y i 'm ' m m C k ) d 3 k^

The m easure may be w ritten  d?k =  k‘2dkdOk- Since the spherical harmonics satisfy 

the  orthonorm ality  criterion,

J  Yi'm'{k)Yim (k)dClk -  5i'i6, (4.20)

the  relation (4.3) simplifies to

( k ) , ^ T  ( f c ) W - '< W W  [ { N S W ( k )  + I S W ( k ) } 2f .  (4.21)
\  1 l m  1 I 'm'  /  J  K

Ci = I  { N S W { k )  +  I S W { k ) } 2j  (4.22)

N S W u ( k )  = ( T r e c , k ) j i { k T Q  - T r e e )
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I S W u[k) =  2 I ' 0 d T $ ' { T , k ) j i ( k T Q  -  t )  . (4.23)
Jo

The corresponding multipoles are then defined by

Cm = j  {NSWulk) + I S W tl{k)}2j .  (4.24)

These different expressions for the Sachs-Wolfe effect can result in markedly different

0.08

_ E xact SW s p e c tr a

0.02
. A p p ro x im a te  SW s p e c t r a

5 10 15 20
Angular index 1

Figure 4.1: Comparison of CMB spectra for a purely m atter dominated universe, 
with Sachs-Wolfe terms and their standard approximations given in Liddle and Lytli

angular power spectra, as evident from the Figure 4.1. This corresponds to the 
hypothetical case of a purely matter dominated universe (fim =  1.0). This case 
is in conflict with experimental data but has the advantage of having closed form 

solutions and is therefore widely regarded as a benchmark in literature. In [18] it was 
proven that under approximations which are strictly valid only for long wavelengths 

well into the matter dominated stage, this case corresponds to flat angular power 
spectra.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. QUINTESSENCE AND LARGE SCALE CMB ANISO TRO PY  55

4.4 Approximations to Q for the dipole, I = 1

In this section we shall derive a few useful approximations for the dipole compo
nent of the correlation function of large scale CMB anisotropies. Their purpose is 

twofold, to serve as a check for numerical results and to aid comparison amongst 
various expressions that exist for angular power spectra. We highlight two sepa

rate cases (i) the approximate expressions for the generation of anisotropies given 

in equations (4.13),(4.23) and the corresponding multipoles (4.24), (ii) the exact 
expressions thereof, given in equations (4.11),(4.18),(4.22).

The power spectra corresponding to the two cases are shown in the above figure. 
The observed angular power spectra for case (i) widely quoted from [18] and [20] 

remain flat. In contrast, the power spectra for case (ii) fall steeply, We now proceed 
to explain this difference. As a first step we shall try to explain the difference in the 
values of C; for I = 1 using suitable asymptotic analysis, Since for I = 1 the peak 

of the spherical Bessel function is at a very low value, only the lowest wavelengths 

contribute to the value of C). For low values of the argument, the spherical Bessel 
function may be replaced by its asymptotic expression

A w - p m r  <4'251

For 1 = 1, this gives

= (4.26)

4.4.1 Case (i) Liddle and Lyth’s approximation for the Sachs-Wolfe 
effect

For this case the expression for Sachs-Wolfe effect, with In denoting the temperature 
fluctuation, as given in (4.13), is

h i  = ^(Vrec)jl{HV0 -  Vrec)) +  2 / $  (T l ) j l { k ( l ]0 -  T } ) ) d T j  . (4.27)
6 J o

For low k this can be approximated as

7 - k 
— 3

1
X $ ( Vrec){m -  Vrec) + 2 / $  (v)(V0 ~ rftdq
.3 Jo

(4.28)
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T he integrated Sachs-Wolfe term  may be decomposed as follows 

rv o rvo rvo
/  $ ( v ) ( v o ~ v ) d v  = §(ri){rjQ-r i rec)dr)-  $  (r})(rj -  rjrec)dri . (4.29)

Jo Jo Jo

T he second integral can be ignored on the heuristic consideration th a t the potential 

$  varies a t the tim e of recombination, (w hereabout T] -  rjrec ~  0) and is otherwise 

constant. Thus, either factor in the integrand is always negligible. Therefore.

rm rm
/ $  iv) (Vo ~  r))dr) ~  / $  {r))(r)o ~  Vrec)dr],

Jo Jo
«  [$(r?o) -  $(0)](f?0 -  Vrec) • (4-30)

Substitu ting  back into the  integral and dropping the  pre-factor of k/3 ,  we get,

'1
III = 3 $(7?rec) + 2 ( $ M - $ ( 0 ) ) (VO ~  Vrec) • (4-31)

We now have an approxim ate expression for the  Sachs-Wolfe effect purely in term s 

of the values of the po tential $  a t times t] — ijrec (tim e of recom bination) and r/o 

(present time). For k =  0, the numerical com putation of $  gives us the values 

®{Vrec) =  1.02679, $ ( 7 /0 ) =  0.99975, and $ (0) =  1.1058. These values are in excel

lent agreem ent w ith those obtained from the analytical solution for the homogeneous 

m ode given in C hapter 3, which therefore serves as a further check. The resulting 

value for In  is

In =  0.13015(770 -  r]rec) . (4.32)

We may repeat the  above analysis for the second case.

4.4.2 Case (ii) The exact expression for th e Sachs-W olfe effect

For th is case, the expression for Sachs-Wolfe effect, w ith  I  denoting the tem perature 

fluctuation, is as given in (4.11)

A rm
1 =  (4 + $){Vrec)ji{k{ilo -  Vrec)) +  2 /  & ( v ) j l { H v o -  v) )dv  ■ (4-33)

4 J Vrec

Decomposing the integral term  we proceed sim ilarly as before. The expression for 

I  can be approxim ated as, after dropping the pre-factor of k / 3 ,

I  =  [(Sr/4: -  $ )(r lrec) +  2 $ M ]  (Vo -  Vrec) ■ (4-34)
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For k = 0 we have observed Sr/ 4 -  is a constant wrt time, and for k  =  0 equals

- 5 /3 .  Hence, we get

I  =  [ - 5 /3  +  2$fao)] (Vo ~  Vrec)  • (4.35)

For k  =  0, the numerical value of $ ( 7 7  =  0) =  1.1058 gives us the following value

I  =  0.28818(7?o -  Vrec)  ■ (4.36)

The term s /  and In  squared are the integrands for the angular m om ents C\. The 

ratios of the  squares should give us the relative ratios of the  coefficient Q  in the two

cases. Thus ( I / I n ) 2 ~  4.9, which is very close to the observed value in the figure.

T his explains the differences in the values of Ci for I = 1.

4.5 Approximations to Q  for multipoles I > 1

The argum ents employed in the former section are valid only in the low frequency 

regime (k -4  0). Consequently they cannot be applied to approxim ate the coeffi

cients Ci for I >  1. This is unfortunate, as it denies us concrete num erical estim ates 

for the  ratios of C; in the two cases for higher values of I. We are therefore forced 

to be more vague. The CMB spectra for the exact case (ii) falls off w ith increasing 

I, while th a t for the  more popular approxim ate case (i) rem ains flat. This difference 

will only be explained qualitatively.

We observe th a t the coefficients C i  have a convenient decomposition

Cl =  Cl'NSW +  Cijnter +  Ci jgW  , (4-37)

where the com ponent term s are defined as

/
fjU

N S W ( k )2t ,

f  d k
C l , in t e r  =  j  2 N S W ( k ) I S W ( k ) - ,

f  d k
C i j s w  -  J I S W ( k ) 2- .  (4.38)

T hus the  first and th ird  term s are the contributions to  the angular m om ents purely

from the Naive and  Integrated Sachs-Wolfe effects, in th a t order, and are positive

definite. T he second term  is the contribution to the angular m om ent due to  the
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interference of the Naive and  Integrated Sachs-Wolfe effects, and hence the subscript.

In the Liddle and Lyth approxim ation, the coefficients C m  have a  sim ilar de

com position

w ith  the com ponent term s defined in exact analogy to equations (4.38).

The essence of our argum ent consists of comparing each individual com ponent 

in  the exact case (4.37) to  its counterpart in the approxim ation (4.39). If  we observe 

th a t the ratios of the individual term s fall off, we may safely infer, th a t the  ra tio  of 

the  totals also fall off.

B ut before we do so, we need a few useful results concerning spherical Bessel 

functions. T he spherical Bessel function satisfies the following equation:

Combining the above equations for j i(x)  and j " { x ) a t an extrem al point, we get

Cl,u =  Ci,UNSW +  CijHintcr +  C/,H/SVV' (4.39)

(4.40)

A t an extrem al point x,  the  derivative vanishes, j[ — 0. Therefore

jl x 2
(4.41)

T he Bessel function may be w ritten  in the form of an exponential

j i{x) = e s{x). (4.42)

It then follows

;,'(*) =  - S '( x ) £ - S<1>,

j { ( x )  =  —S"{x)  +  S '2(x) e~s ^  . (4.43)

Therefore, at an  extrem al point x,  where S' (x)  =  0, we get

=  - S ”(x )e -s W . (4.44)

(4.45)
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or,

S"(x) = 1 -  l- ~  . (4.46)

We are now in a position to derive an approximate expression for the separate 

contributions to the coefficients of the angular power spectra Ci ,  namely, the pure 
Naive Sachs-Wolfe, interference and pure Integrated Sachs-Wolfe terms separately.

4.5.1 Pure Naive Sachs-Wolfe term

We begin with the pure Naive Sachs-Wolfe term which is the most straightforward. 
In general this term may be written as

roo f jL

Cl,NSW =  /  [$ +  <W4]2(/cb';2(fc(% ~  V r ) ) -T  • (4-47)Jo rZ

In the above expressions $  and 5r refer to the gravitational potential and perturba
tion in the radiation energy density at the time of recombination, henceforth denoted 

by t j t , respectively. If we substitute the exponential form of ji(x) given in (4.42), 

we get
r oo flh.

Cl,NSW =  [$ +  5r/4 ]2(fc)e-2S« « ) ) ^ .  (4.48)
Jo k

We may change the dummy variable to x  =  fc(r/0 - i j T). This gives us

a , n s w = n * + f— ) e~2s{x]— ■ (449)
Jo \ T 1 0 ~ V r J  X

The function j[(x) has a maximum at a position say x m which is dependent on 
the index I. These maxima vary approximately as x m ~  (Z +  1/2). The exact 

values of these maxima have been found numerically. We begin by using the Taylor 

expansion of S{x) till the second order in the neighbourhood of x m in the argument 
of the exponent. Then the integral becomes

Cl  N S W  = r ^  +  <W4]2 ( — — 'I —  . (4.50)
Jo \ V 0 - V r J  X

Since the function ji(x) is rapidly vanishing outside the neighbourhood of x m, the 

above integral may be approximated therefore, as given in [5], as follows

C l , NSW  =  [$ +  <5r/4)2 ( ^ - )  f 00 . (4 .51)
\V0 ~ T ) r J  X m  Jo
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The exponential outside the integral may be substituted using (4.42) and the integral 
which is now a Gaussian may be evaluated to give,

< W  =  [*  +  « 4 ( 4. 52)

Substituting (4.46) for S"(x)  and regrouping terms, we get

=  [# +  4,/4]2 ( ^ )  ■ ( « 3 )
V Xm

If we repeat the above procedure with the Liddle and Lyth approximants to the 
Naive Sachs-Wolfe terms, we get

_ * 2(0, j r
C u m s w - —  < 4 5 4 >

The ratio of these expressions may then be found to be

Cl , NSW  _  +
Ci,nNs w  * 2(0, ^ ) / 9

4.5.2 Pure Integrated Sachs-Wolfe term

(4.55)

The pure integrated Sachs-Wolfe term ISW(k)  for an arbitrary wave number k is 

given by;
I S W (k )  — / $ '(rj,k)ji(k(rj0 -ri))dr]. (4.56)

Jl] T

By the mean value theorem

ISW {k)  =  [$(r)r,k) -  ^(T]o,k)}ji{k(rj0 -  ?ym) ) , (4.57)

where ?/m is the mean value, as yet undetermined, in the range [r)T,r}o]- But since 
the gravitational potential varies most markedly till well into the matter dominated 

era, in the earliest part of this interval we may assume r]m «  rjr. This is very true 
for lower wave numbers. Now, the contribution to the Ith multipole of the angular 

power spectra becomes

dk
C i js w  =  J  [$(%  k) -  $(r?o, k)]2jf{k(rjo -  Vm))- j  • (4.58)
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If we proceed to approximate the above integral as before, with the Pure Naive 
Sachs-Wolfe term, we get

C i j sw  — §(r?r
m  TJm VO V m  .

2 „-2ii (*n
1 l2+l (4.59)

This expression contains r}m which is an unknown value, and cannot be evaluated 
directly. We may now approximate Tjm & rjT to get

Q , i sw  ~
VO ~ V r  VO ~  Vr  J

2 „'2

P+i (4.60)

For the Liddle and Lyth approximation, we apply the mean value theorem to 
the term ISWu(k),  to get

ISWu(k) = [$(0, k) -  $(?7o, k)]ji (k(r)o -  V m ) )  ■ (4.61)

The contribution to the angular multipole, when approximated similarly, becomes

2 j f ( x m )  j  X
C i uisw * { o ,— ) - * { * . — )Vo Vo . \ 1 l2+l (4.62)

The ratio of these contributions is found to be 

ClJSW  [ ^ r ’ 7?0 - 7) r )  ~

c.\ m s w

4.5.3 Interference term

(4.63)

Now, we turn to the contribution to the angular correlation function from the in

terference of the NSW and ISW terms, which is given by

fOO fjh
CiMer = 2 j o I S W ( k ) N S W ( k ) j . (4.64)

From the expression we have derived for IS W (k )  with rjm approximated as r?r , we 
get

IS W (k )  =  [$for ,fc) -§(vo,k) \ j i (k(7}0 - V r ) ) -  (4.65)
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S ubstitu ting  this value into the expression Cijnter, we get

rco fjh
C l , i n t e r  =  2 / [$ +  5r/4]{k)[${r)r ,k )  -  ${r]o, k)]jf(k(r]o -  r)r ) )—  . (4.66)

Jo k

As before with the purely NSW and ISW  term s we proceed as is given in [5] and  

we arrive a t the following approxim ate expression

C l , i n t e r  =  2[$ +  Sr/ 4 } ( - ^ ~ )
VO Vr VO ~ V r  VO- Vr J
7T

^  ( - S '

Proceeding analogously as above for the Liddle and Lyth approxim ations w ith the 

Naive and Integrated Sachs-Wolfe term s N S W u ( k )  and I S W u ( k )  defined as in equa

tions (4.23), we get

C,,uinter = |* ( 0 ,  — )[*(0, — ) -  $(>», — )]
3 Vo Vo Vo

1 -
l 2+ l  ■

(4.68)
xt

Thus the  ra tio  of the interference term s comes out to be

< W  +  5 ^ )  -  ^ r )
Ch„in,e,  J* (0 , ) -  * ( l» ,  )]

(4.69)

To summarize, in this section we have derived approxim ate ratios for the pure 

NSW, interference and pure ISW  contributions to  the multipoles Ci of the angular 

autocorrelation  function for tem perature fluctuations, for the exact, rigorous expres

sion for the Sachs-Wolfe effect to the Liddle and Lyth approxim ation. Separately, 

these ratios show a falloff for higher I. Therefore, we may infer th a t the m ultipole 

Ci for the  exact expression shall also fall w ith higher I compared to the multipole 

Ci,n in the Liddle and Lyth approxim ation. Since this is w hat we observe in Figure 

4.1, our numerical calculations of these CMB spectra are therefore validated.
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4.6 Effect of perturbations in quintessence on large scale 
CMB anisotropies

In this section we discuss the difference between the effects various forms of quintessence 

have on the large-scale CMB anisotropies. Large-scale CMB anisotropies are gov
erned by the long-wave behaviour of cosmological perturbations, the most important 

of them being the gravitational potential. The main effect of the A-term like com
ponent is the deviation of <& from constant behaviour, observed in a purely matter 

dominated universe, at late epochs, which leads to non-zero ISW effect [18].
Thus, we begin this discussion comparing the evolution of the gravitational po

tential $  as a function of conformal time in different quintessence models. The first 

case we study as the benchmark is the standard A term. In Figure 4.2 we plot the 

evolution of $  for k  =  0 for several values of Since A quintessence has a

=0.7

o  O.i

i n n i i l  i i  I nnl  I 111 mil i n  I I i mi n i  i m i m l  i i i i m i l — i m ini

10-7 10-® 10-U0000.0010.01 0.1 1 10 100 1000
0.4

conformal tim e 7 7

Figure 4.2: Evolution of the gravitational potential for Oa =  0,0.2,0.4,0.6,0.7 
Lambda quintessence vs log of conformal time

strictly negative equation of state with wp = — 1, we may infer this “counteracts” 
gravitational infall. The gravitational potential <t>, is in naive terms an indicator 
of the growth of gravitational instabilities under their own self gravity. We may
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therefore infer, th a t for increasing Qa , which represents an increasing influence of 

A quintessence, $  shall th en  decrease. Since A quintessence begins to dom inate the 

energy ra tio  of the universe a t relatively late times, we may also expect the expected 

decrem ent to  be more pronounced a t later times. T his is indeed the case as evident 

from Figure 4.2.

T he second case, th a t of a  dynam ical homogeneous scalar field, which acts like 

quintessence is very much similar, as one can see from Figure 4.3. Though its

1.2

l

>is
0  0.6

Q  4   i i i m i i l   I 1 1 1 m i l l  I u m i l l  i - i . n m i l  i m i i i i l  i i n i i i u — i . i i i i i n l — i i m i n i  i m i n i

' lO -M O -6 10-60.0000.0010.01 0.1 1 10 100 1000
conform al tim e tj

Figure 4.3: Evolution of the  gravitational potential $  for t iq =  0 ,0 .2 ,0 .4 ,0 .6 ,0 .7  
scalar field quintessence vs log of conformal time

equation of state  is variable and not identically - 1 ,  it is negative and much the 

same reasoning applies as for A quintessence. The evolution of ip for a  certain 

value of L l q in bo th  A quintessence, and dynam ical homogeneous quintessence, is 

qualitatively very similar. For a  purely m atter dom inated era, when Llq =  0, the 

grav itational potential $  drops sharply as before the tim e of recom bination, then 

rem ains constant a t the value unity as predicted by the analytical solution, for the 

zero mode. As Qq increases, quintessence is more influential a t late times. The 

growth of gravitational po ten tial $  is more strongly counteracted. Therefore for 

larger values of Oq we observe larger fall offs from unity. In  addition, the  falloff,
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while not exactly equal to that observed for A quintessence with the same value of 
flq, is certainly comparable.

Finally we consider the case of scalar field quintessence with perturbations. Here 
we observe that the effect of quintessence on $  is qualitatively the same, but that it 

is much less pronounced. The results for long-wave evolution of $  in this case are 
given in Figure 4.4. When -  0 the gravitational potential falls off and remains

=  0 
- 0.2 
- 0 .4  
=  0.6 
= 0.7

0  0.6

0.4
io -7 10-6 lO-U.OOOD.OOlO.Ol 0.1 1 10 100 1000

conform al tim e 77

Figure 4.4: Evolution of the gravitational potential $  for Slq =  0,0.2,0.4,0.6,0.7 
scalar field quintessence with perturbations vs log of conformal time

constant at unity as expected from the analytical solution. As flq increases, the 
expected fall off from unity is observed, but is much less pronounced, as may be 
observed from Figure 4.4. Thus, inspite of the presence of quintessence the evolution 

of <1> is much more similar to that in a purely m atter dominated universe. Therefore, 
we reach an important conclusion. The new degree of freedom which can develop 

imhomogeneities in the quintessence model allows the amplitude of the perturbed 

gravitational potential to be maintained.
In Figure 4.5 we compare these three cases for = 0.7 corresponding to the 

value preffered by modern observations (e.g., from the results of WMAP consor
tium and SNIa analysis). For A quintessence and homogeneous quintessence the
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1.2

1

0.6

Q w ith  p e r tu r b a t io n s  
A te rm
Q w ith o u t p e r tu r b a t io n s>0.4

0.2

0
0 21 3

conformal time tj

Figure 4.5: Evolution of the zero mode gravitational potential $  for Llq = 0.7 for 
dynamical quintessence with and without perturbations and A quintessence

curves for $  are very close. For quintessence with perturbations, the curve for $  is 
markedly higher, showing much less late time decrease than for the two preceding 
cases. We shall invoke this observation later to explain the difference between their 
corresponding CMB spectra.

It is worthwhile asking, since the zero mode of the gravitational potential for 

quintessence with perturbations is so markedly different from those of Lambda 

quintessence and homogeneous quintessence (i.e. without perturbations), if we shall 
also see a similar difference for higher wave numbers (i.e. shorter wavelengths). In 
our analysis of perturbations of the scalar field in Chapter 3, we saw short wave

length perturbations evolve as ^  in the radiation dominated era and as ^  in 

the m atter dominated era. We may therefore argue, since short wavelength scalar 

pertubations are damped out, at such wavelengths the gravitational potential $  

shall evolve unaffected by perturbations in the quintessence field. Consequently, $  
for quintessence with perturbations, homogeneous quintessence (without perturba
tions) , and A quintessence should be very similar. This is indeed borne out by exact 

numerical calculations shown in Figure 4.6.
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1.2

1

A t e r m
Q w i th o u t  p e r t u r b a t i o n s  
Q w ith  p e r t u r b a t i o n s

0.2

o
o 1 2 

con fo rm al tim e  t?
3

Figure 4.6: Evolution of short wavelength (k =  20) th e  gravitational po ten tial $  
for Llq =  0.7 for dynam ical quintessence w ith and w ithout pertu rbations and  A 
quintessence

We have so far established th a t differences between quintessence w ith p e r tu r

bations on the one hand, and homogeneous quintessence and A quintessence on 

the other, m anifest themselves only for gravitational pertu rba tions at long wave

lengths. We may now tu rn  to central result of this thesis, the  com parison of the 

CMB anisotropy spectra  for quintessence like scalar fields w ith evolving inhom o

geneities, quintessence like scalar fields w ithout inhom ogeneities and the benchm ark 

A quintessence. O ur num erical calculations of the large-angle (low I) m ultipoles, us

ing the  exact expressions for the Sachs-Wolfe effect (4.11) and for the value Llq = 0.7 

are shown in Figure 4.7.

We observe th a t the CMB spectra for quintessence w ith  inhomogeneities varies 

m arkedly from th a t of homogeneous quintessence a t low I. At high values of I, the 

CMB spectra  for b o th  cases merge and become indistinguishable. T his may be ex

plained as follows. As we had established earlier in  this chapter, the Ith m ultipole 

Ci is m ost sensitive to  the gravitational potential w ith wavenumbers k  ~  1/2. Con

sequently, the lowest multipoles reflect the low k  or long wavelength modes in 4>.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. QUINTESSENCE AND LARGE SCALE CMB ANISOTROPY  68

0.2

A te rm
Q w ith o u t p e r tu r b a t io n s  
Q w ith  p e r tu r b a t io n s0.15

+
  '

ro.i

0.05

0
3010 20 40 50

1

Figure 4.7: CMB spectra of Lambda term, scalar field quintessence with and without 
perturbations

Correspondingly, the higher multipoles reflect the high k or short wavelength modes 

in <h. Earlier in this section, using both numerical illustrations and analytical re
sults, we had observed that only the gravitational perturbations at long wavelengths 
(low k) are affected by evolving perturbations in the scalar field. It follows then, 
that only large angle multipoles Ci, for low values of 1, should differ when evolving 

perturbations are considered in quintessence, as observed in the comparative plot of 

the angular spectra in Figure 4.7.
The existence of a measurable effect on large-angle CMB anisotropy is very im

portant for the prospect of restricting the choice of quintessence models observation- 
ally. In future work we plan to compare the predictions of the models with different 

potentials and/ or kinetic terms (the last class may lead to qualitatively different 
results) and compare these predictions with state of the art CMB observations using 

full-scale statistical analysis.
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Chapter 5

Conclusions

5.1 Conclusions

This thesis considers the  effect of quintessence scalar fields in large-scale (low /) CMB 

anisotropies. P articu la r em phasis is paid to the fact th a t a realistic quintessence 

scalar field should, to  some extent, have evolving inhomogeneities. The develop

m ent of the thesis has been as follows. C hapter 1 contains a  brief introduction 

to  the subject of quintessence. Therein, the idea of quintessence and its relevance 

to  m odern cosmology are introduced without any formalism. T he formalism nec

essary, th a t of linearized E instein equations and th e  other equations which govern 

the pertu rbation  variables are given in C hapter 2, together w ith exact num erical 

solutions to these equations. Example numerical sim ulations are used to illustrate 

the acceleration in the expansion in the universe caused by quintessence. A few im

p o rtan t properties of the  inverse power law po ten tia l governing the scalar field are 

also outlined in th is chapter. The ‘tracking’ property, whereby the energy density 

of the  quintessence largely tracks the dominant constituent a t various cosmological 

eras, and the existence of ‘a ttra c to r’ like solutions for the background scalar field 

are outlined w ith  num erical simulations and analytical arguments. These proper

ties make the inverse power law model for quintessence robust to  a wide range of 

in itial conditions, thereby alleviating the need to fine-tune conditions to  get the 

desired observables. A nalytical solutions to these equations in a few limiting cases 

are given in C hap ter 3. These include the zero m ode of the gravitational po tential 

$ ,  its dom inant m odes during the radiation and m a tte r dom inated stages and the 

inhomogeneities of the  scalar field during these stages.
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T he theory of large scale anisotropies and the statistical technique used to  anal

yse these anisotropies of the CMB are developed in Chapter 4. T h e  differences 

between the exact expression for the generation of tem perature fluctuations in the 

CMB, and  a popular approxim ation to it widely used in literature are highlighted. 

Sem i-analytical expressions for the resulting differences between the angular m ulti

poles in these two cases are also derived. The benchm ark case of a  purely m atter 

dom inated  universe is then  used to validate numerical results ob tained for CMB 

power spectra.

L ater in C hapter 4, we tu rn  to the m ain topic of the thesis, namely, the ef

fect of the  Lam bda term  or A quintessence and  dynam ical quintessence w ith and 

w ithout inhomogeneities on CMB anisotropies. We establish th a t the existence of 

inhom ogeneities in the scalar field affects the gravitational potential only a t long 

wavelengths. Therefore, the  existence of inhomogeneities in the scalar field affects 

the large-angle m ultipoles in the CMB spectra, as verifed by numerical calculations. 

T his opens possibilities to  place constraints on possible quintessence m odels from 

m odern CM B observations.

O ur research can, and  should be extended in  the following directions:

Currently, only adiabatic pertu rbations have been considered. Since we have 

three prim ary  com ponents for the energy content of the universe, rad ia tion , pres- 

sureless m atte r and quintessence, we m ust consider the evolution of the  two other, 

isocurvature modes of perturbations, which keep the  to tal energy unpertu rbed . For, 

a  general p ertu rb a tio n  shall be the sum  of these three types of pertu rb a tio n . The 

well-known isocurvature mode which corresponds to relative pertu rbations in en

ergy densities of rad ia tion  and m atter in the early Universe has been studied  in 

the lite ra tu re  (e.g., see [23]). The 2nd isocurvature component, which appears due 

to  in troduction  of new dynam ical degrees of freedom in the form of a scalar field, 

its evolution during various cosmological stages, and its effect on the CM B spectra  

require new investigation.

R esults for the background scalar field, its evolving perturbations and  the gravi

ta tio n a l po ten tia l have been derived assum ing an inverse power law po ten tial for the 

background scalar field. Such a poten tial has been considered because it exhibits 

the  ‘tracking’ property. We believe our results will generally hold for a  wide class 

of quintessence potentials w ith ‘tracking’ properties. However, this deserves closer 

scrutiny. Also, we plan to  analyse the theories w ith modified kinetic term s.
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Appendix A

A .l Background affine connections in conformal time

As a prelude to computing the perturbation to the Einstein or Ricci tensors, we 
must first compute the affine connections for our background metric

ds2 =  a2(rj) (dr)2 -  7 ikdxldxk'sj

For A =  0 (corresponding to conformal time),

'dg,r°, = - o0k• iiv

00

\!kv . dgKii 
dx*1 dxv 
dgou S^o/i

d 9,iiv
dxK 

dgftv
dxv dxv dx°

(A.l)

(A.2)

For /j, = 0,

F° — 1 0  v ~
„oo 3£oo

dxv
(A.3)

For {)L,v) = (0,0),

For (n,v) =  (0,i),

r o _  1 00 3ffoo
00 ~  2 3a;0

a! 
a * (A .4)

(A-5)
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For = (i , j ),

 ̂ Ok % j
2y d x * ’ 

_  _ I  00% ,
2S dx° ' (A.C)

Substituting <?,j =  - a 2( g ) j i j ,  we get

r 9 .  —i y -  fl7 y (A.7)

For A =  i (a spatial index),

For fx =  0,

For v — 0,

For u =  j ,

For it = j,

For n =  0,

F  =  - a lK

=  V  2

% a/ _ dglw
dx11 dxv dxK

dgiv % M _ dgiW
dxv d xv dx1 (A.8)

• 0i/ 25
dgiv dgov
dx° dx1 (A.9)

■ oo (A.10)

ru
L0j

1 «% y
2  a*0 ’

= (A .ll)

r ! =
dgw . dgKj dgjv
dxi ' dxv dxK

(A.12)

V1 — Lj o - 29 dx°
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For v — k.

We also define

a J (A. 13)

r;*
dg^ fc dgKj
d x i

1 Ut^dik +
2 d x i  d x k

1 il - 72 '

fjifc-

djik dj ii  
dxi Qxk

dgjk 
d x k d x K 

d 9 j k  I
<9a;( 
djjk  
d x 1

(A.14)

r .
_  pi/
— A III/ 

r
To =  4—

a
Ti ii •-3

1

(A.15)

A.2 Elements of the Ricci tensor in FRW spacetimes

The Ricci tensor is defined as follows

For (h , k) = (0,0),

R _  ^£o _  ^ 0 0  , r <r r A _  p<r p
d x °  d x x 0A ct0 OO1-^!

  a r 00 ( p^ i pj pQ p
-  0A 00 0A i0 “  00 0 ’

ar0 ar°00 + rSoFgn + rLri - r° r0
d x °  d x °  00 00 ° i  i0 00

=  - { i t y - T r H  + t f  + m H S l - A U 2, 
dr] dt] J

= m ' .  (A.i 7)
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For (h , k ) =  (i , j ) ,

Rij ~  dxi
dTi 5 T | _

dx \  <rj y ^  ’

d p
dxi
d Y

dxi

3F?- df^- ~  _t j  13 j_ pO pA » pmpA pO p p77i p
' iA* 0? ' 1 tA 1 m7 midx0 dxk 

d Y l

■ 13 •

dxk
13 1 pmp/c p77ip j_

i" 1 j/- i  1 ij 1 m  “r
■pO pO r pO -nk 1 p m p O  

iO^ 0j  '  ̂ik*■ 0j  ' tO^- mj
n ^ n '"pO p  ____i3_

li  0 8x°

Rij +  [Ri ikUSkj + R 5 T R 1]m -  n i i j W )  -  Wi ii]

= Rij -  \R'  +  2H2] 7 i i . (A.18)

For maximally symmetric spaces, the spatial curvature tensor is given by

Ri3 =  -2 /jr7y .  (A.19)

We then get

Rij = - \ R ! + 2U‘2 + 2K\'fi j (A.20)

A.3 Perturbations in the affine connections

For A =  0,

<jr°UA flU _ 2$r° h—
^  2a2

dhQV dh Q|j dhft v
dx11 dxv dx°

(A.21)

For (n,v) = (0,0),

5F00 0 -2«  +0  , 1 dfoo 
00 2a2 dx°

=  - 2$
a 2a2

(A.22)

For (/z,v) =  (i, 0),

r̂ °o =
1 Ok^ kO
2y ftr*

1 3/i0o 
2a2 fix' ’
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For (p, v)

For A =  i, 

For (p, v)

For {p, v)

For {p, v )

Since hki =

= (A.23)

= ihj ),

STij -2$r?
i 2a2 ( 2a2$7!'j) ’

4 $ _  +  $ /| l i } . (A.24)

(0 , 0 ),

dhkfi d h ^  
dxi1 dxv dxk (A.25)

=  - h i r k0Q+ l- g ik
dfioo
dxk

= y * * * . (A.26)

= (0 , j),

s r i j  = - h i r k0j + \ 9ik^ i
dx° ’

~ hk^ SI + \ s l k ( ^ ) ' j kj ,

- # % ■ (A.27)

( i,0 ,

<5rj( =  - 4 r ^  +  ^ dhki dhki  _  dhji
dxJ dx1 dxk

- 2 we get

«rji =  s w j j  +  ty *
\  dxi dx1 dxk

(A.28)
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2 $ r ; ( -  2$rj-t

A.4 Perturbations in the Ricci tensor

For (//, u) =  (0,0) we get

5iioo =  ( ^ A) ; o - ( ^ 0);A.

We evaluate the first and second terms, which we call T\ and T2, separately.

Ti

(A.29)

(A.30)

_ d(sr*x) 0 x
1 000 i  P \ )Ox^

d W _ r o , r
dx° 00 0 ’

=  -2 $ "  + - ( 2 $ ') -a

t 2 = ^ ( ^ 0 0 ) p/3  p /3  „pA I p A  rp /3
1 0A PO ~  1 AO Op +  1 Pkdl  00 >

^ ( ^ 0 0 ) op/? af ')i 1 r A
 ZL 0A 0/3 "*■ t  px° i  0 0  •

We call the successive terms in the above expression T2 1 ,2 2 , 2 3  and evaluate them 
separately.

T2i = d(&rba)
dx^ 5

dx° dx1

T22 =  2T0DX5 r L ,OA 0/3 •

2 I Foa^Foo +  FoA^Foi 1 ,

a . a
=  2 +  -<5

. 0 a -
a' , a/

=  2 - 3 -
. a a
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a' , 
a

A rpOt23 =  2 r0\ ^ 0 ,

=  4 - $ ' .

Now summing them up, we have,

?2 =  J 2 1  -  T2 2  + T2 3

This then gives us

SRoo =  - 3 $ " - V2$ - 6 - $ ' .
a

Similarly, for [fJi,v) =  (i,0),

S R io  =  ( S r & U - ( S T $ 0 ) : X .

Proceeding similarly as before, we call the first and second terms T\$  respectively. 
They are evaluated separately.

a « )  „ A
1 Qx 0 iO /3A >

= - 2 ^  +  2 ^ .  

9(*r*0)0 ^ 0 1  j0j 0  ̂ ^  ̂ p
~  I f o *  iA 00 ~  1 AO®1 03 +  1 ^  iO ■

The successive terms are called T21,22,23,24-

3 ( ^ 0)
T2 1  =

dx° dxk
= $ ' ------— i$'§k)

dxkK l h
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=  0 .

T22 =  r f Â 0 ,

-  [r?A<5r̂ 0 + rfA<5r£0] ,

= jr^ r 'o  + r^ rJo  + r ^ r '

-  f r a t f * * ,* )  +  - s h , k  + r £ ( - * '4 ) l  ,d a j

■ fcO i

Since for a flat spacetime we have Hr =  FA =  0, the above equation simplifies to

T2 2 =  2 -$ ,,- .
a

The remaining terms are given by

t 23 =  r ^ ,

= r ^  +  r J r t ,

a' a' ,  .
a a 

a1
= - 2 —$u •a

/3A^I iO :

= r ^ r f o  +  r ^ r ' o -

t 24 =  H A5lf0 ,

Since To =  4^- and for spatially flat universes F; — 0 we have,

T24 =  4—$,, . 
a

Summing these pieces, we get

T2 =  4 - $ , i  .
a
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This gives us 

For (fi,u) = (i , j ),

.a 'SRto =  -  2$ ' +  2 - $  
a

61k, =  (5Ttx): j~(5r^):X.

Proceeding in exactly the same manner, with all terms being defined analogously,

t ,  -

1 “  dxi  *3 m  ’
=  - 2 -  r ^ F g ^  (inflatspace),

rn   p /3  r p A p/3 cpA  | pA  rr>|9

T21

2 - 7 ; ,$ ' -  2$

d { ^ j )  
dxx

Ox  ̂ 5 
d(6T°l3) d(6T*•)

dx° dxk 1

-  [4 ( m '  +  H'Q) + $"] 7y -  [2$,;,, -  s t u f f y ]  ,

-  [4 (%$' +  H '$ ) +  $" -  V2$] 7ij -  2$ ^ ,

^22 =

r?Â .  +  r{Aj r ^ ]  ,

=  [ r ^ .  +  r ^ r y  ,

= -  ( 2 m '  + 4 ^ 2$ )  7y ,

t 23 =  r ^ r ^ ,

-  r°Aj5r& +  r ‘Aj5 rji,

=  r g / r * + r ' / r S ,

=  -  ( 2 W  + 4-«2$ )  7y , 

t 24 =  r ^ r j . ,

=  r ^ r « .  +  r ^ . ,

=  -  (l6 H 2$  +  4 H $ ')7 i i .
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Summing them up for T2, we get

T2 = T21 -  T22 -  X23 +  T24 ,

= -  [ 4  + W '  +  2H2$ )  +  <F" -  V2$] 7 y -  .

Then, we get

^  =  [$« -  V2$  +  6 m '  + 4 ( n '  + 2U2) $] 7 y • (A.31)

A.5 The perturbed Einstein tensor

The perturbed Einstein tensor is given by

SC* =  g»x6RXl/ -  1 (gf” 8Rpa) g> + 6g»xRXl/ -  l-  ( S g ^ R ^ )  &  . (A.32)

We may call the sum of the first and second terms T\ , and the sum of the last two 
terms into T2. For convenience, we evaluate them separately and then sum them 

up. T2  may be simplified using the identity

&<r =  -
1

a2( tj)

= - 4 V ° ^ o + 2 V ff-

+  2 $gpa,

For ( ij, , v )  — (0,0), this gives us

T2  =  ^ i ? AO- ^ ( - 4 $ 5 0 \ Pffo + 2 % pJ) ^ a ,  

=  - 2 ^ g 00Roo + 2$gmR 00 -  V  >

(H' +  H 2) '

(A.33)

(A.34)

Now.

<5G° =  g0X5Rx, - - ( g 00SRm + gî R 4j) + T2 ,

= 2 ( 9
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=  ^ 2  [4V^  “  ~ +  2U 2)$] + ^  ^ 2+  ,

2
-  — 2  [V2$  -  3ft ($ ' +  ft$ )] . (A.35)

For (n,v)  =  (0,i), since the elements g° are zero, the expression for 8G® simplifies
to

8 $  = g0X5RXi + 5g0XR Xi,

= gm5Roi +  Sg^R o i ,

= ^  [ m  +  $'] ,f . (A.36)

For =  {i,j),

8G*■ =  /<5fty -  ^ (s ° ° g ) + T 2 . (A.37)

T2  can be simplified as follows

T2  = 5glXR X j - l- { 8 g ^ R pa) ^ ,

=  2$gilRij -  1 ( - 2 $ ff00i?0o +  2 f  5j . (A.38)

When i A j  all elements in te above expression are evidently zero. For i = j ,  we
can use the identity

gilRh = l ^ R i j , (A.3 9 )

to get

T2 =  <1, (gWRw  _  l g lkRi^) ,

-  kVs+H-

Now, we proceed to evaluate T\ which is given by

T, -  gpSRtj -  \  (g005R00 +  glk5Rlk) g) . (A.41)
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For i ^  j ,  all terms are obviously zero. For i — j ,  the first term can be simplified 

using (A.39) to give

Ti =  l 9 lk5Rik - ^ ( g 005R00 + glk6Rlk) g ) ,

= - ^ S R o o - ^ S R t k ,

= -  ̂  [$" +  2 , m '  + (nf +  2 n 2) $ ] . (a.42)

Combining the expressions for T\ and To we get

SG) = ~  [$" +  3m 1 +  { w !  +  U 2) $] . (A.43)

A.6 Conservation of energy in conformal time

The energy-momentum tensor T IIU for a perfect fluid is given by

= {p + p)lJ*UV -  pg1*  ■ (A.44)

Therefore, vanishing covariant divergence T MJ/;J/ =  0 implies (g = 0)

(p +  p ) ^ U v + (p + p){U»Uv),„ -  p,vf v =  0. (A.45)

We may call the terms in the above expression Ti o^ respectively. We calculate the 
perturbations in these terms separately and then sum them up. The unperturbed 
four-velocity components are given by Uq = a, U° — I fa, Ul — Ul — 0. Therefore,

ST, =  {Sp + S p ^ U W  + ip + p ^ U W  + SU^U1'),

ST2 = (Sp + 5 p ) ( U » U %  + (p + p ) S [ ( U W ) . l/] ,

STZ =  &p,vs T + p , vS g T . (A.46)

For p, =  0,

ST, =  (6p + 6 p ) ' ± - ( p  + p y ™ ,  (A.47)
cr a z

ST2 = (Sp + Sp){U*Uv\ v  + {p + p ) ^ { U QUv\ v
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For convenience, we call the two terms in the above expression <5T2i and 8T22 re

spectively. Applying (2.66), the first term becomes

A
<5T2i =  3—{8p + 8p). 

a

Evaluating the second term is a bit more tedious.

ST22 =  <5( ^ 17% ,

=  6U[IUU +  U»8UI/ + S U ^  +  U>‘8U£ +  8TxUllU x 

+rA<5twA + r At w A +
+ t ,ij u xu i/ + r  % u x8 u v .

For ji = 0,

ST22 = 8U°'U° +  U°'8U° +  8U°U01 +  u° (su01 + 5U ' )  +  8 r0U0U0 

+T08U°U° + (t 0U08U0 + T i U ^ U 1) + 8T°00U°U0 ,

+2 (rg 0<5[/V  +  T io U ^ W )  .

Substituting =  0, F, — 0 and regrouping all terms, we get

8T22 = 2U°8U°' + 2U0'8U° + iPViSW + (<5r0 + JTg0) u°u° + 2 (r0 + rg0) 8U°U° ,

=  -  ( - $ / a ) '  -  2 ^ { - $ / a )  + l ^ V i S i r  + ( - * ' ) 4  +  10— ( - ^ / a 2) , a a1 a* a
„<£>a' 1 rTri

— — 3— — 6 —7,—I— V {5U . 
a2 a6 a

Summing 8T2\ and 8T22, we then have

3// /  d>; dj// 1 A
8T2 = (Sp + 8 p ) ^  + (p + p) - 3- j  -  6 ^  +  -  W *  . (A.48)

<r V a o a J

The th ird  term  8T,3, for p — 0, simplifies to

8T3 = 8 p ’\ - p ' ^ . (A.49)
az aA

Combining three terms in

<m +  <ST2 -<5T3 =  0,
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and rearranging terms, gives us 

3a'
Sp' + -^-(Sp + 5p) = (p + p) ( 3 $ '  -  a V i S U + 2$ 1 3a'

P  +  — ( P + P )  a

The coefficient of $  (i.e. the term in brackets on the right hand side) vanishes due 

to conservation of energy. This leaves us

dp' +  ^ - ( 6 p  +  Sp) =  (p + p) ( 3 -  a V r d W )  . (A.50)

A .7 Conservation o f m om entum  in conform al tim e

For p = i, vanishing covariant divergence T w-V =  0 of the energy-momentum tensor 
implies

(p +  P i u i r u 1'  + (p + p W u v \ u -  P A V =  0 • (A.51)

We again call the successive terms Ti,2 ,3 - As before, we compute the perturbations 
in these terms separately and then sum them up. The perturbation to the first term 
is given by

5TX =  (Sp + Sp)tl/UiU,'  + (p + p)^(UiSUu + 5UiU1').  (A.52)

Since the spatial components Ul are zero in any comoving reference frame, the above 
expression simplifies to

SW
STX = (p + p)’— . (A.53)

a

The perturbation to T2  can be written as

6T2 = (Sp + Sp)(UiUv)^  + (p + p)S(Ut U % .  (A.54)

Since Ul — 0, the first term drops out. For the second term, we shall first evaluate

S(UiUl' )v/ = SU^U"+ U)VSUV+ S U W v + UiSUt;iJ + STx UiUx 

+Tx5UiUx + r xUlSUx + SYiXvUxUu 

+Tix„8UxUv +  r SJJXSUV . (A.55)
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All terms containing U{ and its derivatives drop off and since Tqo =  0, we get the 
following, much simplified expression

W u v).v = sui'uQ + suiu0' + r0suiu0 + sri00u0u0 + 2r l0lsu3u0,

-sir1+ 5^sui + -^ '/^ j
a az a1

Substituting in (A.54), we get

6T2 = (p + p ) ( - S I P 1 + . (A.56)
\ a  a‘ a1 }

The third term is given by

ST3 =5p,vgw P p ^ g ™ .

Since the pressure defined on the unperturbed manifold has only zero spatial deriva
tives, pti =  0, the above expression simplifies to

6T3 = - 6- P f f i .
a*

Combining these three terms as in

ST1 +ST2 - S T 3 = 0,

we get, after using the background equation of motion

(P + P)
5UU a1 SU1

a a a
.6U' Y i

+ P —  = ~ [(P + p)$,j +  Spj] - 2  • (A.57)

A shorter form is obtained if use covariant spatial components of four-velocity, Ul = 

- l / a 2f W j ,  SU* = - 1  / a2f j 5Uj,

16uj(P + P)—  + P —
7

2 =-[ (p  + p)*j  + Spj}-tj-. 

sP,j
which gives

SU' +  - 2 — SUj =  a
3 P + p J

a ‘ "" ' ~ a

$  j  +  — -
P + P

(A.58)

(A.59)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. 91

A.8 Perturbing the Klein-Gordon equation

A perturbation of the Klein-Gordon equation has the form 

We start with

= ~ ^  + 5raV'a + TaS<P'a .

We again call these terms Ti,2 , 3  respectively. The first term is given by

Ti =  8 5 ^  | 8 6 ^
dx° dx’ ’

i ( V -  2 V )

Sip" -  2- S p '  -  2$(p" -  2 % ')  -

The second term is evaluated as follows

,Qt 2 = r aSip
= r 0v " ,

= ^ [ V - 2 V ]

And the third term

t 3 =  s r a<p’a , 

= s r 0<p’°, 
2$ ' ,

-----TVa1

When we sum them up, we obtain 

1
5 ) =  Sip" + 2- V  -  2 $ ( /  +  2—y/) -  4 $ V ' -  V2^

'  ’ > a1 a a

(A.60)

(A.61)

(A.62)

(A.63)

(A.64)

(A.65)
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Simplifying the coefficient of $  using the unperturbed equation we finally obtain 
Klein-Gordon equation in the first order

V '  +  2 -  V  + 2§a2V v -  4 -  V2<fy + — 0 . (A.6 6 )

A.9 Initial conditions

We may begin by restating a few necessary equations in terms of no and % defined 
in Chapter 2. The time-time linearized Einstein equation is given by

a ' ,   $ ' 9 «o.  ajfog
Vm *• o  o  •a 2a1

(A.67)

The other equations for the variables 5m,Sr,vm,vr remain unmodified and are as 

follows

SL 3$' -  k 2Vr,

4$' -  ^ k \ ,

v m  ~  $  a  v m  i

w; =  $  +  ^ r -

The space-time part of the perturbed Einstein equations states

2 afcl
um  i o  ' ^ r  • a a cr

(A.6 8 ) 

(A.69)

(A.70) 

(A.71)

(A.72)

In order to determine the initial values of the functions <I>, <5m, dr , vrn, vr as tj —> 0 , 

we must Taylor expand a few functions in series of 7 7 / 7 7 0 . Since we have a = a o r /( 7/  +  

7/0 ) and a' = ao(2ij +  7/0 ) ,  we get

a 
a 

is 2

ao
a

1

»?
1

7/2

_1_

7?J?0

V o Jm

l + 2 l .
m

v
- +  ~  f?o \f?o
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v v o
1 - 2 -

Vo
3 | —

Vo
(ATS)

Now, if we substitute the following formulae

$  =  , 

5 r  =  f>nr V \

5m = Cvn,
vr = v ^ r f , 

«ro =  v m V n , (A.74)

where repeated indices denote summation, into the above equations, we get the 

following from (A.67),

k2

-<h° = -<5° 
2 r

-A$° =
2 ,

- 2$ ‘
Vo %

- # 1 +  4#° - -8;% vl Vo

1 xo
Vo

<5Uur t

7)0 H  TV

Similarly, from (A.68), we get

5lm + k2v°m = 3 * 1, 

282m + k2vL =  6d>2 , (A.76)

From (A.69), we get

5l + -kh°r

25? + -IfcV1 =  8$2 .
<5

(A.77)

Fi'om (A.70), we get

=  o ,

3^  + 7»m  =Vo
(A.78)
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Prom (A.71), we get

vl ~  ~^r +  )

2v2r = (A.79)

Prom (A.72), we get

v r = 0,

$0 = - v °m + 2vI
Vo

1

Vo
<f>° = 6 i

Vo

6

Vo
1

Z 3
II

o& 6 2
— v m

6
2Vo Vo Vo

U ,Vo
. o 4 , 6 n

+   vr 4- -wv° ,
% Vo

—th1 -  4^-$° =  — Vm -  +  2vl -  — vl  +  -^i;* ■ (A.80)
Vo Vo Vo m  Vo Vo Vo

We may define two convenient initial values as follows

Ci =  $ ° ,

C2 =  & - S ° .  (A.81)

In terms of these constants, we get for the first set of coefficients,

sl = - 2 C U

^m

vl
=  s c "

$° -  C i ,

<5°u m =

In terms of these constants, we get for the second set of coefficients,

Si =  - - ( < ? ! +  2C2),
Vo

*  = - i (c ' + ^ > '

4  =  - 4 ^ ( c > + 2« -

(A.82)
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&  =  (Cj +  2C2) ,
4r?0

S i  =
4t7o

(Ci +  2C2) (A.83)

In terms of these constants, we get for the third set of coefficients,

9
^ (Cl +  2 c y

(Cl +  £ C 2) -  -4 —fc2C i ,
9

1
1 2 0 '10t?o

3 (Ci +  2C2) -  ± - k 2Ci
10%2

9
20

(Cj +  2C2) -  — k 2C i ,

5l

1 ’ 2(

( C i + 2 C 2) - ^ f c 2C!.

20r/§y~ i ' 30
27 

20?/o
(A.84)

The above ordinary differential equations (ODEs) have two separate solutions cor

responding to two different initial conditions, namely, the so-called adiabatic and 
isocurvature modes. The generic solution for any wave-number k  can, therefore, be 

written as the sum of these distinct modes:

/ ( C ] ,C 2) =  Afc/(C (,C ^ ) +  S fc/(C " ,C £ )  (A.85)

For the adiabatic mode we may take C2 — 0 and C[ =  10/9. This satisfies the 

condition for adiabaticity which states Sm =  15r. For the isocurvature mode we 

may take C2 =  - 5  and C{' = 0 which satisfies the condition Spm =  - S p T.

A.10 Zero mode of <3> (k=0)

The solutions (3.28) may be used to eliminate terms with k2 and from (3.25) to
get

a
a

A m + 2aM v r s aj .  + aM
a a1

^  ~f~ 9 ^ + 3 #  
a az

$o- (A.86)

Using (A.70) and (A.71) to eliminate the terms with vr and vm we finally arrive
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at an ODE purely in terms of the gravitational potential, which is given by

— +  6^y +  2^—
a a! aa

9 ^  +  3 ^  
a1 aa' $0 • (A.87)

This equation may be further simplified, using (3.3) and (3.4), to get

1<3>' +  $ 3 3
+

Tj V +  VO V +  %>/2.
= 3

3 rj1 + 3 7 7 7 7 0  +  rfi 

viv +  m)(2 V +  Vo)
(A.8 8 )

This equation can be easily solved. The solution is given in the main text by the 
formula (3.32).
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