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Abstract

This thesis considers the effect of perturbations in a dynamical scalar field
quintessence on the large scale anisotropy of the cosmological microwave background
(CMB). It is observed that evolving quintessence inhomogeneities suppress low-|
multipoles of the CMB power spectrum. The description of cosmological perturba-
tions is carried out in the conformal Newtonian (zero shear) gauge, and assuming
an inverse power law form for the quintessence field potential. The CMB power
spectra are calculated using the exact form of the Sachs-Wolfe effect, as opposed to
widely used approximations. It is established that long wavelength perturbations
of the scalar field remain significant till the present time, whereas short wavelength
perturbations decay and become insignificant during the matter dominated epoch.
Therefore the existence of inhomogeneities in the quintessence field affects the grav-
itational potential only at long wavelengths. Correspondingly, only the low-/ mul-
tipoles of the CMB are affected. These results may be used in conjunction with

modern CMB observations to constrain quintessence models.
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Chapter 1

Introduction

1.1 History of quintessence in cosmology

For a general isotropic and homogeneous universe, with a metric chosen to be of the

Robertson-Walker form

dr?

5 +1r%d6? + r?sin? 0dg? | | (1.1)

ds? = di? ~ a?(t)

the Einstein equations of general relativity

1
Ry = 5Rgus = 87G Ty (1.2)

predict a dynamical cosmology. The prevalent view at the time when Einstein for-
mulated General Relativity was, however, that the universe is static and unchanging.
Therefore, in 1917, Einstein introduced into his equations a new fundamental con-
stant which has since been variously called the cosmological constant or the ‘Lambda

term’. The modified equations then read
1
Ry, - ERguu — Aguy = 87GTyy . (1.3)

The resulting equations indeed admit static solution, but it is unstable. Conse-
quently if subjected to an infinitesimal contraction or expansion, the universe must
go on contracting or expanding. The discovery by Edwin Hubble in the 1920s of
an expanding universe, proved the static Einstein universe to be unrealistic. Sub-
sequently, Einstein abandoned the cosmological constant, calling it “his greatest
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CHAPTER 1. INTRODUCTION 2

blunder”.

From a theoretical standpoint, the cosmological constant remained a distinct pos-
sibility and continued to be studied if only out of academic curiosity. Lemaitre (1927)
used it to construct an expanding universe with a quasi-static origin in the past,
rather than an initial singularity seen in expanding Friedman-Robertson-Walker
(FRW) models. De Sitter invoked the A term in the absence of matter to get dy-
namic and static solutions. The de Sitter model proved important for the steady
state cosmology, as well as for inflationary models of the early universe. In inflation-
ary models [15], proposed in the early 1980s, matter (in the form of a false vacuum,
as vacuum polarization or as a minimally coupled scalar field) behaved precisely like
a weakly time dependent A term. Ya. B. Zeldovich (1968) gave the A term a physi-
cal basis when he observed that one loop quantum vacuum fluctuations give rise to
an energy momentum tensor which upon being suitably regularized has exactly the
same form as a cosmological constant. This introduced the modern view according
to which the A term is not a fundamental constant in Einstein equations but is
mimicked by some kind of matter, often called dark energy. The A term in the form
of dark energy came to the forefront of cosmology in the last decade with detailed
observations of type Ia high redshift supernovae (Riess et al [31], Perlmutter et al
[26], for the latest results see [32, 27] and references listed therein) which indicated
that the expansion of the universe is accelerating, which requires dominant matter
component to have negative pressure, behaving similarly to the A term.

The nature of the dark energy, required to explain the acceleration, is still to
be established. In particular, its exact equation of state is still unknown. The first
attempts rescued the cosmological constant as an ad hoc explanation, although a
naive interpretation of the constant in terms of a vacuum energy is inconsistent by
124 orders of magnitude with respect to the required value.

The idea that a scalar field with a suitable potential of self-interaction can play
the role of dark energy was introduced by Wetterich [37], Caldwell et al [8], Ratra
and Peebles [30] to alleviate the extreme fine tuning needed to allow a cosmological
constant to be significant only at recent epochs. Such a scalar field is popularly called
a quintessence field. The most popular potentials are inverse power and exponential
laws [29] although other possibilities have been considered [28]. The main property
of quintessence potentials is the existence of “tracking” behaviour due to which the
motion of the field converges to a unique solution for a broad range of different

initial conditions.
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CHAPTER 1. INTRODUCTION 3

The dynamic nature of the dark energy in the form of the quintessence field
opens many new possibilities. For example, since quintessence has been inspired
by observations of an accelerating universe, it is worthwhile asking, what if the
acceleration is merely transient, and not permanent as has been assumned hereto-
fore. In this context Blais [6] proposes a double quintessence model in which the
dark energy sector consists of two coupled scalar fields. In both such models, it is
shown [6] that if acceleration occurs, it is necessarily transient. The possibility of
transient acceleration in two one field models, the Albrecht-Skordis model and the
pure exponential has also been established. Using separate conservative constraints
(on the effective equation of state wef, the relative density of the dark energy Qg
and the present age of the universe) scenarios with a transient acceleration that has
already ended at the present time or no acceleration may be constructed. A less
conservative analysis using the cosmic microwave background (CMB) data rules out
the last possibility. The scenario with a transient acceleration that ended by today
may be implemented if at the present time the ordinary matter density Q,; > 0.35
and the Hubble constant Hy < 68km/s/Mpc.

Another interesting angle is a possible link between the running of the fine
structure constant o and a time evolving scalar dark energy field [12]. Provided
no symmetry cancels it, there may be a term in the effective Lagrangian weakly
coupling baryonic matter to the scalar field. If this field evolves over cosmological
times, such a coupling would lead to a time dependence of the coupling “constants”
of baryonic matter. Dirac had introduced the notion that the fundamental constants
of nature may vary. In a realistic GUT scenario, the variation of different couplings
is interconnected. This interdependence might be ignored thus making only the
fine structure constant “variable” with all others fixed. Indeed, bounds on the
time variation of these “constants” restrict the evolution of the scalar field and the
strength of this coupling. Under the assumption that the change in « is of the
first order given by the evolution of the quintessence field, it can be shown using
current Oklo nuclear reactor, quasi-stellar object (QSO) and equivalence principle
observations [11, 10, 24, 36], that the model parameters are restricted considerably
stronger than observations of the CMB, large scale structure and type Ia Supernovae
combined.

Quintessence fields also arise in Supergravity and M/string theory. In [13] the
implications of seven popular models of quintessence based on these theories for the

transition from a decelerating to an accelerating universe are explored. All seven
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CHAPTER 1. INTRODUCTION 4

candidates can mimic the A cold dark matter (A-CDM) model at low redshifts
0 < z < 5. For a natural range of initial values of the quintessence field, the
SUGRA and Polonyi potentials predict a redshift z; of transition to A-dominated
epoch to be 2z; = 0.5 for Q49 = 0.7 in agreement with the observational value of
2t =~ 0.46. For reference, the A-CDM model with constant A-term has z = 0.67.

1.2 Alternatives to quintessence

A competing candidate to quintessence for dark energy has been k-essence (or kinetic
essence), originally proposed in [2]. k-essence cosmologies, unlike quintessence ones,
are derived from Lagrangians with non-canonical kinematic terms. In standard
quintessence models we may devise situations with scalar field potentials that go to
zero asymptotically. These can have cosmologically interesting properties, including
“tracker” behaviour, that makes the current energy density largely independent
of the initial conditions. Unfortunately, the era in which the scalar field begins
to dominate can only be set by fine tuning the parameters in the theory. This
may be remedied by considering a dissipative matter component interacting with
dark energy. However in k-essence models [1], the solution seems not to require the
consideration of dissipation. Even for potentials which are not shallow, the nonlinear
kinetic terms lead to dynamical attractor behaviour that permits the avoidance of
the cosmic coincidence problem.

A surprisingly simple alternative to quintessence has been to consider a cos-
mological model comprising only two fluids, baryons (modelled as dust) and dark
matter with a van der Waals equation of state. In [9] it is shown that acceler-
ated expansion may be obtained by suitably choosing the model parameters. Data
from type Ia Supernovae and distant radio galaxies may be used to constrain the
parameters of this form of quintessence.

Amongst astrophysical effects, the quintessence scalar field may enhance the
abundance of dark matter relic particles (33]. The integrated Sachs-Wolfe (ISW)
effect on the CMB, as measured through its correlation with galaxies, may be used
[17] to study the dynamics of the dark energy through its large scale clustering
properties. A canonical single scalar field or quintessence model predicts that these
clustering effects will appear on the horizon scale with a strength that reflects the
evolution of dark energy density.

Importantly, the dynamic nature of quintessence field results in inhomogeneities
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CHAPTER 1. INTRODUCTION 5

in the field being developed in the course of gravitational clustering, in contrast to
the pure Lambda term which affects only homogeneous background. The goal of
this thesis is to study the role of the perturbed quintessence degrees of freedom on

the prediction of the observed large-scale anisotropy of the CMB.

1.3 Organization of the thesis

In this thesis we presume the quintessence model of Ratra and Peebles [30] and
Wetterich [37], whereby a scalar field with a negative equation of state, constitutes
the dark energy required to explain the anomalous acceleration of the Universe.
Such a scalar field has a “tracking” behaviour, which is to say it tracks the domi-
nant component of the energy content of the universe, and comes into prominence
at a relatively recent cosmic era. This thesis is primarily concerned with the ef-
fect of such a dynamical quintessence on observables such as the anisotropies of
the CMB. In particular, our goal is to compare the predictions for the large-scale
anisotropy in the CMB in the model with dynamical quintessence field when its
perturbations are taken into account versus, as is frequently done, the case of ne-
glecting the quintessence perturbations and, as a benchmark, versus the model with
the cosmological constant.

This thesis is organized as follows. All equations necessary to describe the evolu-
tion of a homogeneous, isotropic background and cosmological perturbations upon
it, are derived and collected in Chapter 2. Chapter 3 contains analytical solutions to
these equations in certain limiting cases. Chapter 4 contains an introduction to the
cosmic microwave background (CMB) and the description of the main mechanism by
which cosmological perturbations cause large scale CMB temperature anisotropies
(called the Sachs-Wolfe effect after its discoverers [34]). Later in Chapter 4 we turn
to the main result of the thesis, a computation of how a realistic quintessence with
inhomogeneities affects these anisotropies as opposed to dynamical but homogeneous
quintessence, and the static A term postulated originally by Einstein. Chapter 5
summarizes the results, and suggests possible future developments.

Throughout the thesis we set ¢ = i = 1. We do not set G = 1. Thus we are not
using a system of Planck units. Instead, in section 2.1.3 we further completely specify
the system of units by setting the present day Hubble constant Hy = 1. In such
units, the time is measured in Hy ' ~ 14 Gyr and the length in ¢/Hy = 4283 Mpc
if Hy = 70km/s/Mpc. The energy (mass) density scale is then H{G™' = HiMJ.
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CHAPTER 1. INTRODUCTION 6

This choice is more suitable for cosmological calculations. The value of the scalar
field is, on the other hand, measured in inverse Planck length lp_ll.

Everywhere, the dot () denotes a partial derivative with respect to proper time ¢
of the metric (1.1), while the prime ()’ denotes a derivative with respect to conformal
time n = [ dt/a(t). We use comma (); for the derivative with respect to a spatial
coordinate z' and (), for the derivative with respect to the scalar field value ¢.
The semicolon (),, is used for the covariant derivative with respect to z“. H as a
function of time denotes the Hubble parameter H = g/a. The Hubble parameter is
also somewhat loosely used to denote the closely related quantity # = a'/a. After
introducing dimensionless quantitities in section 2.1.3 we retain the same symbols
for them as for their dimensional counterparts, which, hopefully, does not lead to

confusion.
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Chapter 2

Theoretical background

In this chapter we turn to the systematic development of all necessary equations
which govern the evolution of cosmological perturbations. Perturbations can only
be studied in the context of the background manifold. Hence in this chapter we first
outline the properties of the background spacetime, such as its metric, its assumed
material constituents and derive the equations governing them.

Then, in section 2.2 we review the perturbations on such a background, and de-
rive the perturbed Einstein equations. These equations provide a set of constraint
equations giving the metric perturbation (®) in terms of the quantities that specify
the perturbed stress energy tensor. The conservation condition and the Euler equa-
tion that govern the evolution of quantities in the perturbed stress-energy tensor in
the limited case of scalar perturbations, are derived. Finally we end this chapter

with the description of inhomogeneities in the quintessence field.

2.1 The background spacetime

Our approach is based on the premise that on the large scales the observed universe
deviates by only a very small amount from a homogeneous, isotropic space time.
Though originally a simplifying assumption, this has been verified to a remarkable
degree of precision by recent observations. This makes it convenient to decompose
the metric into a background metric, representing the homogeneous, isotropic ideal,
and a perturbation upon it. The background metric in such a case is called the
Friedman-Robertson-Walker (FRW) spacetime.

The background line element in a FRW spacetime in conformal time and carte-
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CHAPTER 2. THEORETICAL BACKGROUND 8
sian coordinates is given by
ds’ = *(n)(dn” — yiyda'da’), (2.1)

where space-like coordinates and tensor components are labelled with Latin letters

t,j = 1,2,3. We reserve Greek letters to denote four-dimensional coordinates and

tensor indices which vary from zero to four with zero being the time component. We

assume Einstein summation convention over upper-lower pairs of repeated indices.
The background metric in these coordinates then becomes

Guv = a2(77) { ! 0 J ) (2'2)
0 -
where
Yy = F(T)J-;j (23)
and
F(r) = [l—i—%r?]'z. (2.9)

For spacetimes with flat, closed and open spacelike hypersurfaces, K = 0,~1 and 1
respectively. There is reasonable observational evidence that K = 0 in which case

PR [ . _(;ij ] . (25)
But in the following treatment we keep the formalism as general as possible. As
a prelude to computing the perturbation to the Einstein or Ricci tensors, we must
first compute the affine connections. For the metric given above, the nonvanishing
affine connections are as follows,

Ty = H,

I = Hyj,

b o= HE,

o = H,

o= L, (2.6)
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CHAPTER 2. THEORETICAL BACKGROUND 9

where H is related to the derivative o’ of the scale factor with respect to conformal
time 5, # = d'/a, and f‘;k is the affine connection on the spatial metric ;. For
spatially flat spacetimes, ;; reduces to the Euclidean metric and the corresponding

affine connections f’;k reduce to zero. The details of these computations are given

A

ux In spatially flat spacetime,

in Appendix A.1. For convenience we define I'y =T’

it has the components
Iy = 4%,
i = 0. (2.7)

2.1.1 Einstein equations

The Ricci tensor Ry, then has the elements

Ry = 3%,
Ry, = 0,
Ry = —[H +2H*+2K]y;;. (2.8)

The Ricci curvature scalar is given by R = —6[L+Z§2+—K]. The reader may refer to
Appendix A.2, for the details of these computations. The Einstein tensor, defined

as
1
G, = R,-3Rg,, (2.9)
then has the components
JH2+K)
0
GO = __0:—2-—— 3
G = 0,
, M +H 4+ K

We consider the universe with material constituents being the radiation (de-
scribing both relic photons and relativistic neutrinos), pressureless matter (for our
purposes baryons can be included in this category together with dark matter) and a
scalar field which does not interact with other components, except gravitationally.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. THEORETICAL BACKGROUND 10
Hence, it is convenient to decompose the total stress-energy tensor T as follows,
™ = (Trm)/“/ + (Tsf)/w, (2-11)

where (T, )" and (Ts;)*” refer to the stress-energy tensors of radiation-matter
and the coherent scalar field respectively. Radiation and matter may be treated as
a perfect fluid with no anisotropic stress and no dissipation. The stress-energy tensor
is then described in terms of only three functions, the energy density p, pressure p

and the fluid four-velocity U# as follows,
(Tm)* = (p+pU*U" —pg"”. (2.12)

The energy density in the radiation-matter fluid p is the sum of the energy densities

of the two components. So,

p = pPrtpm, (2.13)

where p, and py, are the energy densities of radiation and matter respectively. As
the energy of a photon redshifts as 1/a, we may infer p, drops as 1/a*. For ordinary
baryonic matter, or dust, as well as for pressureless dark matter, p, drops as 1/a®.
We may therefore introduce the following substitutions,

_ Pro

pr = '&T»

Pmo
) 214

where pro and pno are the energy densities at a scale factor of unity. As dust is
pressureless, the pressure of the fluid p equals the pressure due to radiation, which
is inferred from the relativistic limit of the energy-momentum relations, to be,

1
p=pr=3or. (2.15)

For a scalar field interacting only with itself via the potential V' (¢), and mini-
mally coupled to gravity, the corresponding energy-momentum tensor is given by

. 1 . v .
(Tsp)™ = w‘“w’”—bw’“w;a—V(w)] g, (2.16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. THEORETICAL BACKGROUND 11

where

et = ¢y (2.17)

In a highly homogeneous universe, the scalar field shall also, to a large degree, be
homogeneous. We denote ¢(n) to be this homogeneous part of the scalar field which
drives the background isotropic model.

From the stress-energy tensor of the scalar field we may infer that the energy
psy and pressure p,; of the background scalar field are given by

1
psp = 272@’2+V(<p),
1
psy = ﬁ‘ﬂm—v(‘ﬂ)- (2.18)

The combination of terms for the pressure psy is not positive definite. In fact when
the potential term dominates over the usual kinetic term, the pressure becomes
negative. Under such conditions, the scalar field acts as if with a negative equation
of state. This property is used in the models of quintessence scalar field to explain
the accelerated expansion of the universe.

Another unusual property of the scalar field, which makes it a good candidate
for the role of dark energy, relates to the evolution of its energy density, as compared
to the energy densities of radiation and matter. Unlike these other constituents, the
energy density of the scalar field does not drop as a simple, fixed power law of the
the scale factor a(n) as in (2.14). To the contrary, for several types of potential,
including the inverse power law and exponential ones, the energy density of the
subdominant scalar field ps; “tracks” the dominant component of the energy at
various cosmological epochs. The exact law of the energy change quintessence is
determined by the potential V() and importantly, by the equation of state of the
dominant energy component. This property shall be explained analytically later in
Chapter 3. Such “tracking” behaviour ensures that quintessence which dominates
the present day energy balance in the universe, was not negligibly small relative to
other components in the early universe. This alleviates the fine-tuning required to
have the present-day value of the cosmological constant of the same order as other
matter components.

Summing up the various contributions to the total energy momentum tensor T},

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. THEORETICAL BACKGROUND 12

we observe

T = prtpmtpss,

TiO = 0,
T; = Pr+Psy. (2.19)

With the above substituted into the Einstein equations, the time-time component

gives us
a? K ;
a—4 -+ ? = SWGTt = STTG({)T + Pm + Psf) s (220)
and the trace gives us
all K "
'a—3 + —0—2— = 87TGT,L . (221)

The equations (2.20) and (2.21) are commonly known as the Friedman equations,
and the corresponding cosmological models are known as the Friedman models.
Incidentally, the second of these equations (2.21) follow from the first (2.20) and
from the equation of energy conservation, which may be stated in conformal time
as

pad = [aS(p + p)]l : (2.22)

where p and p refer to the total energy density and total pressure due to all con-
stituents of the universe. Hence, in our numerical calculations of the scale factor
a(n) we restrict our attention exclusively to the first Friedman equation (2.20). For
a spatially flat universe, where K = 0, substituting (2.14) for the scale dependence
of the energy densities of radiation and matter, and (2.18) for the energy density of
the scalar field, the first FRW equation becomes

o2 87G

1
== (pmoa + pro + §a2<p'2 + a4V(<p)) . (2.23)

The third term is the kinetic term associated with the scalar field and V(i) repre-
sents the potential that governs the quintessence like scalar field.
2.1.2 Scalar field dynamics

We have derived the equation which governs the evolution of the scale factor a. The
evolution of the energy densities radiation and matter are trivial, as they are given

by simple power laws in (2.14). In order to complete this treatment however, we
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CHAPTER 2. THEORETICAL BACKGROUND 13

need the energy density of the scalar field which in turn depends on the scalar field
value and its time derivative. Therefore, we need the equation for the evolution of
the unperturbed scalar field. This is given by the Klein-Gordon equation, which we

derive shortly. The action for a free self-interacting scalar field is given by
1.
5= [ (5¢"0u - V(0) v=da. (220

On varying the action with respect to (for compactness - wrt) the scalar field ¢,
for convenience the variation may be decomposed into two terms, §S = 651 + .52,
where 651 and 655 are given by

1. .
80 = [ [500% 0 +630,) Vo0l v=3d's,

/ FWW‘P;# - V(m)} 6/—gdz. (2.25)

652 5

The first term may be simplified as follows,

s .
65 = / 5((590’“90;” +#bp.,) =V o00] \/—gd4m,
- |
5591“/90;#‘9;” +p 8, —Vpbe] v —gd'z,
1 , . .
= [ 1509 0usn +(6#80),, — o0 Vb Vgd'z. (226)

il
~—

The integral over the second term which is a full divergence vanishes, leaving us

with
1 . .
85y = / [559“%;#@0;” — (p", + V) 590} V=gd'z, (227)

To compute the variation of the determinant of the metric in (2.25) we use the

following linear algebra relations for a matrix M
§1n[Det(M)] = Trace [M“léM] . (2.28)
For the metric tensor g this gives us

M9 _ gwg,,, (2.29)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. THEORETICAL BACKGROUND 14

or,

=g = YLgsg,

2
= e 230
Substituting the above into (2.25) we get
1. Yiiad
68z = —/ [iw“m - V(<P)J g“”—zg——\/—gd4-’v~ (2.31)

Summing up the two terms,

05 = / [%5QW {‘P;MP;U - (%‘P;u‘P;u - V(‘P)) guu} + {‘P;u;u + V,tp} 530} \/"‘_gdAjm'
(2.32)
Assuming the variation wrt the scalar field vanishes, we get the Klein-Gordon equa-
tion:
ot + Ve =0. (2.33)

Since the background scalar field ¢ is by assumption homogeneous, all spatial deriva-
tives vanish, and the Klein-Gordon equation is simplified to

¢+ 21y +a®V, =0. (2.34)

2.1.3 The background evolution of the cosmological model. Track-
ing behaviour of the scalar field.

The evolution of the background is governed by the coupled system of equations
(2.23) and (2.34). Let us introduce convenient dimensionless variables.

o We normalize the scale factor so that at the present moment a(now) = 1.

e At the present moment the Hubble parameter is equal to the observed value
H= ga—/ = Hy. Henceforth, we shall use the time units in which Hy = 1. This
condition together with the already used ¢ = h = 1 completely specifies our

system of units. In these units the present time is defined by a'(now) = 1.

o With the present day critical energy density periy = 3HZ/(87G) we use frac-
tional densities Qr = py/perits m = Pm/Perit as cosmological parameters that
describe the density of radiation and matter in the Universe.
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CHAPTER 2. THEORETICAL BACKGROUND 15

e We measure the scalar field (and later, its fluctuations) in terms of the Planck

mass My, = G~1/2, introducing dimensionless ¢ — o/ My
o We define the dimensionless potential of the scalar field V — V/(H3 M2).

In this notation, the background system of equations to solve is

8 1 1/2
a - Qma+Qr+—§r-a4 <%2—<p'2+V)} = 0, (2.35)
1" a 2

The model properties of the scalar field are determined by the potential V().
In this thesis we shall restrict our attention to inverse power law potentials where
Vip) = %(p_", where A is dimensionless, using units of HSMIZ”. Here, we collect
example calculations of the background properties in the model with V = %tp“j.
These potentials have been shown to have the “tracking property” [30, 37].

The concept of “tracking® behaviour of a quintessence field refers to two related
properties:

e When energy contribution of the field ¢ is subdominant, there is a special
solution of the equation of motion (2.36) following which the field exhibits an
effective equation of state determined not only by its potential V' (¢) but also
by the properties of the dominant energy component.

e This special solution is an attractor to a class of trajectories with arbitrary
initial conditions (¢(n;), ¢’ (n;). By itself, the tracking solution depends only on
the parameters of the potential V(). Once specified, they determine uniquely
the value of the field and its derivative at any moment. This makes prediction
of the model insensitive to a wide range of initial conditions for a scalar field.

The mathematical reason for the attractor properties lies in the large fric-
tion term in the equation of motion of the field, with the Hubble parameter,
determined by the dominant component, as a coefficient.

The idea of using a scalar field with potential that exhibits the tracking behaviour
is that it is possible to arrange conditions so that the energy of the field evolves
similarily to the dominant component (under ideal tracking, it will scale exactly
as a dominant component). This serves to alleviate the fine-tuning problem with

a constant A-term, the scaling of which differs from matter and radiation energy
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CHAPTER 2. THEORETICAL BACKGROUND 16

density by a® or a?, making them disparate by many orders of magnitudes in the
early Universe.

In Figure 2.1(a) we plot the evolution of energy densities in three components,
radiation, matter, and the scalar field with a potential V(yp) = %(p‘ﬁ potential for
the cosmologically relevant case when the quintessence field is subdominant at early
times. For this particular potential, the resulting law of change of quintessence en-

1017 T

.. radiation

M
]
3
T2 1T

q

quintessence matter

quation of state w

FrTT T T T T T TFTT1T T T T T 717

=S VRO S S I S O N N N Y VRS T T T N S S |

0-8 il et al Lol 0.8 b bbb
0.001 0.01 0.1 1 0.001 0.0 0. 1
conformal time 7 conformal time 7

—
(=]

(a) Radiation, matter and quintessence are (b) The equation of state parameter wy of
denoted by dotted, dashed and solid lines re- the quintessence field evolving through radia-
spectively. The time is in units of Hy', the tion, matter, and scalar field itself dominated
energy density is in units of Mﬁ,Hg . stages

Figure 2.1: Time evolution of the energy density components in a quintessence
model and equation of state of the scalar field.

=225 during the matter

ergy is pgy o a~3 during the radiation stage and psf X a
stage, as we show analytically in Chapter 3. Figure 2.1(b) illustrates how the effec-
tive equation of state w, = pss/ps; varies when the dominant component switches
from radiation to matter. At the end, the quintessence field itself becomes dominant
and w, drops to more negative values.

Ideal tracking is not desirable, since then the quintessence field will always be
subdominant, in conflict with modern observations. With power law potentials the

field evolves slower than the dominant component, and at late times may dominate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. THEORETICAL BACKGROUND 17

the energy density. Then, the Universe begins to accelerate, in accordance with
observations. In the left panel of Figure 2.2 we plot the evolution of the Hubble
parameter H = a'/a for several values of ;. The accelerating expansion of the
Universe corresponds to the growth of #. Note that for €}, = 0.7 the present day w,

Ty T T T TTT77 L LR RALY T =TT TTTTT

108

T
Lt gl

T

=a'/a
—_
o
0n
Lo~ ©

T
ooy aaal

T

...
=

T Ty

Hubble parameter H

ot

100

T
canl

lll[ 1 L 1][]”' A 1 lllull 1 d I|llll] 1 I W EWEN
10-3 10-2 10! 100 10!
conformal time 7

Figure 2.2: The evolution of Hubble parameter # for €, = 0.9,0.7,0.3 (from top
to bottom). # is given in units of Hy while conformal time is in units of Hy'.
The curves stop at the present day value of the conformal time, which is smaller for
larger values of Q.

is still higher than —1. wg = —0.4. This explains why in this model the Universe is
just approaching the accelerating stage at the present moment, although the scalar
field is already dominant. ! This is in contrast to the constant A-term model which
already accelerates now for Q4 > 1/3.

The behaviour of the scalar field ¢ for the discussed potential is given in Fig-
ure 2.3. The field starts with the initial value below Planck mass M, and slowly rolls
down the potential increasing in value. The rate of the evolution is self-regulated to

!Einstein equations give d = —1/2 Zi Q:(1 + 3w;) at the present time. For our two component
case with just matter and quintessence contributing and Qn, = 1 — @, we obtain @ > —1/(3wy)
condition for acceleration a > 0.
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Figure 2.3: The unperturbed scalar field ¢ in M}, units vs conformal time in Hy !
units.

obey tracking behaviour until the scalar field starts to dominate the evolution.

At first glance, it may seem we have three parameters to describe the specific
quintessence model- the energy scale A and the initial values for ¢(7;) and ¢'(n;) to
specify the field trajectory. However, tracking solutions are special solutions of the
background equations and serve as an attractor to general solutions under widely
varying initial conditions, [19, 30, 37]. This alleviates the need to fine-tune initial
conditions in order to reproduce present day observables, a problem which persists
in earlier models of quintessence [8, 29, 28]. 2

In Figure 2.4 we present a “phase” diagram 3 which demonstrates the attractor
properties of the tracking solution. For different initial values of ¢ and ¢’ we observe
a convergence of the trajectories to the special tracker solution. When initial energy

2The study of stochastic behaviour of the quintessence field during inflation [22] showed that
restriction on the inflationary models are required in order the quintessence initial values at the
later FRW stage to fall into acceptable range

3The scalar field equation of motion depends explicitly on the scale factor and is not conservative.
Therefore, the field trajectory in (¢, ¢’) plane is not determined completely by initial values, but
also by the time moment at which these values are taken.
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density of the field exceeds or is comparable to that of the dominant radiation
component, the solution will diverge from the tracker trajectory. However, this case
is of little direct interest, as it denotes a cosmology where quintessence dominates
the Universe before matter, thereby preventing any astrophysical structures from

forming.

100 P A A A R A

o
-_—

I
. !
o
L !
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b Tracking
1 : '
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' '
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Figure 2.4: Tracking solution as an attractor in (¢, ¢') “phase” space.
Heavy solid line is the tracker trajectory. Dashed curves represent equal energy
contours. The higher contour corresponds to the initial state of the quintessence
taken at n; = 0.0001, and the lower one marks the final energy reached at the present
time. The parameter A is chosen so that the tracking solution ends exactly at the
required present energy density € = 0.7. The parameter A = 0.0784 is chosen
so that the tracking solution ends exactly at the required present energy density
0y = 0.7. Thin solid lines respresent trajectories of the field with different initial
conditions at n = 0.0001.

Thus, as we shall see in the next chapter in detail, tracking behaviour corresponds
to a unique relation at a given time between ¢ and ¢’ and ¢ and A. So, whenever
tracking behaviour is exhibited we are free to chose only one quintessence parameter,
say the ratio of the energies in the scalar field and the dominant matter component.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. THEORETICAL BACKGROUND 20

However, if one sets €2, the present day contribution of the quintessence field to
its dimensionless energy must be equal to 1 — ,,, (with our choice of variables this
is enforced implicitly by the requirement than that when a = 1 also we should have
a' = 1). Thus, setting Qy, or, equivalently @y = 1 —Qy,, practically uniquely defines
the background cosmology.

2.2 Cosmological perturbations

2.2.1 Metric perturbations

In order to study the growth of gravitational perturbations, we shall need the
linearized Einstein equations in the background of a Friedman-Robertson-Walker
(FRW) spacetime, which give us the evolution of any initial inhomogeneities present
at the end of the inflationary epoch, and the onset of the radiation dominated era
in the history of the universe.

In defining the perturbation to the metric, there are complicating issues related
to the freedom of gauge or the choice of background coordinates. In this docu-
ment, we use the “gauge invariant” formalism due to Bardeen [3], as formulated by
Mukhanov et al (23], where metric variables are independent of the choice of coordi-
nates. In this formalism, when the perturbed energy-momentum tensor is diagonal
5T} x 6;-, scalar perturbations may be expressed in terms of a single gauge invariant

variable @, and are given by

20 0
hyw = Ogu =a . 2.37
v Juv ("7) l: 0 2®5ij } ( )
From the following identity
9“”(59,,,, + 5gltugyp — 0,
we get
B = g™ = —gH7g"P3gq, . (2.38)
This gives us
1 1 0 20 0
R = — 21 O. 21 | d*(n) J
a*(n) [ 0 —y'™ | a*(n) [0 —y" 0 2Dymy
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1 [1 0 20 0
a?(n) | 0 —yim 0 —2@7{,, ’
_ 1. T2 o

a?(n) | 0 2849 |-

Lowering one index, we get

2 0
hE = [ " _og } (2.39)
—200;

and on contracting these indices, we get

ht = 28(1 - §}) = —49. (2.40)

2.2.2 Perturbations in the affine connections

We are now faced with the task of computing the perturbations to the connection
coefficients. The formula for a perturbation to the affine connection is given by

(5].—‘;),, _ l(sg)\;g [Bg/w agnu 69;11/]

2 oz = 0zv Ok

1 Af‘i ah/}ﬂ/ ahﬁu 8hl“’
- - 2.41
+29 Oz+ + oxv ozr (2.41)

With rearrangement, it assumes a friendlier form,
1 Oh Oh oh
A A A KV KU v

6F/u/ = _hnrzll + 59 K [az# Bml/ ~ amﬁ ] . (242)

The perturbations to the affine connections are then found to be (see details in

Appendix A.3),
oY = @,
JF?O = (b:i’
iy = - [4HO+ 2],
iy = 7Foy,
Ty, = -¥'8,
0Ty = ~& ;0 - 8% + g% ® kg1 (2.43)
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The components of 6", = éI'y,,, for the case of flat spatial section are

Ty = —20,
0T, = -2, (2.44)

2.2.3 Perturbations in the Ricci tensor

I,

From the connection coefficients I'4,’s and its perturbations 6I'%,’s, we may now
compose the perturbations to the Ricci tensor. The general formula for such a

perturbation 6R,,, is given by
SRy = (8T ) — (6T, )ia - (2.45)

Substituting the requisite affine connections and their perturbations (given in Ap-
pendix A.4), we obtain the following,

6Ryy = —30" — V2P — 61,
6Ri0 = - (2@" + 27‘[@) IR
bRy = [2"~ V0 +6HE +4(H +2H7) ] v, (2.46)

2.2.4 The perturbed Einstein tensor

In order to calculate the perturbed Einstein equations we need the perturbation to
the Einstein tensor 6Gy,. Since the Einstein tensor G, is composed of the Ricci
tensor R, and the Ricci scalar R, we proceed as follows. The Ricci scalar R is

given by
R = Rug¢". (2.47)
Therefore, perturbing it, we get
0R = g"oR,, +6g" Ry . (2.48)
The Einstein tensor is defined as

Gr = Rf,‘—%Rgﬁ. (2.49)
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Perturbing it, and combining with (2.48), we get
5GL = 0B+ 6 Ry — 3 7Ry + 80 By gt (250
With rearrangement, this becomes
5GE = PR, = SR ol + g Ray — 560 Resft . (251)

Evaluating the above expression for each component of the perturbed Einstein ten-

sor, we get
56 = ive- SH(D' + H®
0 = g[ + )]
2
(SG? = Q—[H(I)+(I)'],i,
6Gi = —E[Q”+3H®'+(2H’+?{2)‘I’]- (2.52)

The details of these calculations are given in Appendix A.5.

2.2.5 The perturbed Einstein equations

At last, we may now turn to the perturbed Einstein equations. The perturbed

Einstein equations in gauge invariant form read
OGH = 8nGoTY . (2.53)

Assuming a flat universe (K = 0), the time-time(0,0), time-space(0, 1), and space-

space(i,1) parts respectively read

V20 - 3D - 3H2® = 4nGa’ép, (2.54)
1
E(a@)',i = 4nGa*(p+ p)dl;, (2.55)
3" + 3HY + (2H' + HH)® = 4nGa®dp. (2.56)

In the above equations, dp, dp and dU; denote the perturbations to the energy density
and pressure and fluid velocity in the conformal Newtonian gauge respectively.
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2.3 Evolution of perturbations

In order to have an accurate understanding of the inhomogeneities in such a cos-
mology we need to calculate the evolution of the following variables;

1. ®: the perturbation to the gravitational potential;

2. bp: the fractional perturbation to the energy density of matter, defined as

Om = Opm (2.57)

3. 0r: the fractional perturbation to the energy density of radiation, defined as

(=%}

9 (2.58)

T

o
I

4. vp: the three-velocity potential of matter wrt the unperturbed background
manifold, defined by
aVmi = (0Unm); (2.59)

5. vy: the three-velocity potential of radiation wrt the unperturbed background

manifold, defined by
avri = (6Ur); . (2.60)

6. d¢p: the perturbation to the scalar field value.
7. 8¢': the derivative of the perturbation to the scalar field wrt conformal time.

We shall decompose the perturbation equations using the set of eigenmodes of the
Laplace operator. In a flat spacetime, these are the Fourier modes or plane waves
{e(k)}, each of which corresponds to a spatial wavevector k;. These modes form a
complete orthonormal set of basis functions. The mode {e(k)} corresponds to the
eigenvalue —k? of the Laplacian i.e. V2e(k) = —k%e(k). The Fourier decomposed
perturbation equations form a set of ordinary differential equations (ODEs), indexed
or labelled by the wave number £, for the Fourier amplitudes, which themselves are
functions of time only. This is a considerable simplification. Therefore, from now
onwards, we shall implicitly assume we are working with individual spatial modes,
of a certain wave number &, of the variables describing these inhomogeneities. For

brevity, we shall not carry the index k through the equations.
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For numerical stability we choose two different equations for the evolution of .
For n < 0.05, we use the time-time component of the perturbed Einstein equations

! 1 1
o = “po-%e_ Lo e - L0610
3a/k ® a(I) 2QT(5 /(aa’) QQm /a,
4 a 4r
—?((plé-(p[ - (p,2q))a - '3_Vacp 5(,003/(1, . (261)

For n > 0.05, we take the time-space component of the perturbed Einstein equations

' 30 Q,
o = —5;-@ + 50 + 250y + dmp' . (2.62)

The first equation behaves better numerically at small 5, while with the second it
is easier to compute the evolution of inhomogeneous Fourier modes k # 0 at later
times since it does not contain any dependence on wave number.

With adiabatic initial conditions, the evolution of ¢ with respect to conformal
time can be characterized by the above set of equations, and for wave numbers
k =0,10,50,100 and 200, is given in Figure 2.5(a).

As may be expected, higher £ modes tend to vary more violently than lower &
modes. The modes with higher wave numbers vary most rapidly before and during
the time of recombination, and then settle down to a steady state value well into
the matter dominated era. This trend is more apparent in a plot of the modes with
respect to the log of conformal time in Figure 2.5(b).

So far we have merely restricted ourselves to the Einstein equations and its
perturbations. They give us the evolution of the Hubble scale factor a and the
gravitational potential ®. The time evolution of the variables d,,, 0r,03,0, follow
from the vanishing covariant divergence of the energy-momentum tensor, which we

now study in detail.

2.3.1 Conservation of energy in conformal time

In conformal time the velocity four-vector U* evaluated in the comoving reference

frame is given by
U* =[1/a,0,0,0], (2.63)

The unperturbed four-vector satisfies the relation

UrY, = UtguU” = 1. (2.64)
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Figure 2.5: Gravitational potential ¢ for various wave numbers as a function of (a)
conformal time and (b) log of conformal time.

With a perturbation vector U#, in a perturbed metric, we have a similar relation
(U¥ + U (guw + hyw)(U” +6U") =1,

thus
6ng[LVUV + U”guydUV + U”hquU = 0 .

Or, applying (2.63) we get
206U° + 29 =0,

which gives us

U = -®/a. (2.65)

Before we evaluate the covariant divergence of the energy-momentum tensor T+,
we may, for convenience, compute the covariant divergence of U#*U", which is given
by

(UHU"), = (UMUY),, + T4 UMUY + THUAU.
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For u =9,
1y 1 1
0 — 0
(U UV):II - (E) + FOOE + FO? 3
1

- 3% . (2.66)

The energy-momentum tensor T#" of a perfect fluid is given by
™" = (p+ p)U*U” — pg” . (2.67)

Vanishing covariant divergence of this tensor, 7#¥,, = 0, implies
(p+ ) UVY + (p + p)UHUY)w — poug”” = 0. (2.68)

The perturbation to the above, § (T*,,) = 0, gives

! .
50 + 37@(5/1 +dp) = (p+p) [30' - aVioU'] . (2.69)

For details please refer Appendix A.6.

For radiation the equation of state is p = %p, and if we assume that there is no
variation in the equation of state, the perturbations in pressure dp and density dp
are also related by ép = %6[). For scalar perturbations, we may substitute (2.60), to
get

4qa' 4
5ol + —(‘L‘-ap, =48’ + V7. (2.76)

Since, for radiation pl. = -4%/),, substituting (2.58), the equation for Fourier modes
simnplifies as follows
4
8 = 49" - gk%,. (2.71)

For various wave numbers the evolution of J, as governed by the above equation is
given in Figure 2.6(a). It may be observed that the variations of the modes with
lower wave numbers are steady and almost monotonic. The variations of the modes
with higher wave numbers on the other hand, are more pronounced and sinusoidal
in nature.

Similarly, for pressureless matter dp,p = 0. Since for matter pj, = —3%pm,
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frequency of oscillation.

Figure 2.6: The perturbation to energy densities of (a) radiation and (b) matter, d,
and 6, repsectively, vs conformal time for various wave numbers.

substituting 0, = dpm/om, we get
& =30 — kv, . (2.72)

For various wave numbers the evolution of é,,, as governed by the above equation,
gives us the Figure 2.6(b). For higher wave numbers the amplitudes of these pertur-
bations is larger. The behaviour of the modes are qualitatively different from that
in the case of radiation. This may be qualitatively explained as follows. Pressure-
less matter perturbations grow under the influence of self-gravity. This tendency
is partially counteracted by the expansion of the universe. The growth of these
perturbations is then governed by a power law [23] rather than an exponential, as

would have been in the absence of an expanding universe.
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2.3.2 Conservation of momentum in conformal time

We now turn to the spatial component of the vanishing covariant divergence of the

energy-momentum tensor, T = 0. The perturbation to it, §T = 0, implies

/
p p,
(5U~'+——6U~=a[¢>-+—‘]~} . 2.73
Cpte Tpte (2.73)
The intermediate steps are given in Appendix A.7. We may now replace the velocity
by the velocity potential using (2.59). Since the partial derivative wrt z; acts on all
terms, we then get

/ ! 5
v'+[—£—+g-}v=<1>+—p. (2.74)
pt+p a

Radiation is characterized by the equation of state p = p/3 and the energy
redshift relation p' = —4%’;}. Applying these properties, the coefficient of v is seen
to vanish. Furthermore, applying dp = dp/3, we obtain

1
¢=Z&+®. (2.75)

The evolution of v, as given by the above equation may be plotted with respect to

conformal time as in Figure 2.7(a).
For pressureless matter all pressure terms p, dp and their derivatives drop out to

leave ,

u=-%%+@. (2.76)

m

The evolution of v, as given by the above equation may be plotted with respect to

conformal time as in Figure 2.7(b).

2.3.3 Evolution of scalar field perturbations

If we take into consideration that the scalar field may not necessarily be homoge-
neous and may have evolving inhomogeneities, we must also derive the equation
governing the perturbation to the scalar field. For this purpose we also need the

perturbation to the Klein-Gordon equation. We know

(p#L e guuso;u ,
= ¢"ou. (2.77)
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Figure 2.7: The velocity potential perturbations of (a) radiation and (b) matter, v,
and vy, respectively, vs conformal time for various wave numbers.

Since for scalars, covariant derivatives may be replaced by partial derivatives, the
perturbations to the derivative of the scalar field may be written as

st =0g" 0.+ g" S0, . (2.78)
For y1 = 0, this leads us to
20 1
10 — — — ——
5@ - (12 (PI + ag 5‘PI ’
1
= ;[&p' —20y']. (2.79)
For pp =1, B
s ==L 5, 2
=T Py (2.80)

Now, we are in a position to perturb the Klein-Gordon equation. We know

M4 —

(p,a"’io;a’
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Op™
a(';a +F0901a' (2-81)
Therefore, iy
e
6 (so‘“;a) = a;pa + 60 ® + Tyl . (2.82)
This gives (see Appendix A.8)
@ 1 v o@ . 2 Y,
5(30’ ;a) = = |86 + 20! + 28V, — 40’ + K0 . (2.83)

So, the perturbed Klein-Gordon equation

§ (w;a) + Vo =0, (2.84)

becomes ,
6" + z%w’ +a*Vppbp + k*6p = —2aV ,@ + 40/’ . (2.85)

Numerical solutions of quintessence inhomogeneities governed by the above equation
shall be presented at the end of Chapter 3. There, it will be demonstrated that long-
wave and short-wave perturbations exhibit markedly different behaviour.

This completes our discussion of all equations describing the evolution of in-
homogeneities. The entire system of coupled differential equations outlined in this
chapter when solved numerically, describes the growth of cosmological perturbations
as functions of conformal time. All results presented in this thesis are computed in

this manner.
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Chapter 3
Analytical solutions

In this thesis, we shall approach the evolution of cosmological perturbations as a
classical initial value problem. Therefore, together with the equations that govern
the evolution of these perturbations, mentioned in the preceding chapter, we shall
also need the initial values of these perturbations and their first derivatives. The
derivation of these initial conditions, while important, are secondary, and have been
inserted into Appendix A.9. In section 1 of this chapter we shall merely refer to these
initial conditions to derive analytical solutions for background scalar field ¢ during
the radiation and matter dominated eras. In particular, we derive simple power law
solutions for the background scalar field and its energy density during these eras. In
section 2 we shall turn to analytical solutions of the gravitational potential (®) in
certain important limiting cases. They are, as follows, (i) the evolution of the zero
mode (® when k = 0), in the absence of quintessence, valid for the entire history
of the universe, (ii) the dominant modes of during the radiation dominated era and
finally, (iii) the dominant modes during the matter dominated era. The focus of
this thesis shall be to study the effect perturbations in quintessence have on the
CMB anisotropies via the gravitational potential. To that end, in section 3, we shall
derive a few analytical solutions for the evolution of these perturbations during the
radiation dominated era for long and short wavelength modes separately. Later in
section 3, the same is done for the matter dominated era. It is observed that long

and short wavelength modes exhibit very different behaviour.

During the very early radiation dominated era, the energy content of the uni-
verse was dominated by radiation with matter being the subdominant component.
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Therefore, during this era, we may approximate the first Friedman equation hy

ignoring the energy component of quintessence as follows
2 )
a* =Qpa+Q,. (3.1)

This has the solution
a = agn(n +m)- (3.2)

We get the following expressions

ag = Qn /4, (3.3)
Va

o =4 ) - (3.4)
m

The expression for the Hubble parameter, in conformal time, is then

a' _ 2n+m

=T T amtm) (3:5)

3.1 The background scalar field ¢: Analytical solutions

In this section we shall derive a few analytical solutions for the evolution of the
background (or unperturbed) scalar field in certain limiting cases. The scalar ficld
is governed by the Klein-Gordon equation. This equation features a Hubble drag
term which is dictated by the Friedman equation. Therefore, our task simplifies
considerably if we solve the Klein-Gordon equation at epochs during which the
Hubble term can be expressed simply. We shall show, in the succeeding sections,
that in the radiation dominated era and the matter dominated era the Hubble factor
is given by H = 2/n and H = 1/n respectively. This in turn leads to simple power
law solutions of the scalar field ¢ in terms of the conformal time 7 during these two

€ras.

3.1.1 The scalar field ¢ during the radiation dominated era

During the radiation dominated era we may take n < 79, and equations (3.2) and
(3.3) simplify to
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Substituting the above result into the Klein-Gordon equation, we get
2 .
¢+ -;’ga' — Qe =, (3.7)

where we assume the potential to have an inverse power law form as given by

-n

y =2

n

(3.8)

This equation has a special solution when the scalar field evolves as a power law

given by
o= A", (3.9)
where
o = 4
T - n + 2 3
1
A (n +2)2 ] "2
A . = — X
' { i(3n +10) (3.10)

We may now use this solution for ¢ to calculate the energy of scalar field. The total
energy of the scalar field may be written as
Ty =

Zyp’? +V (). (3.11)

Substituting the solution of the scalar field as given in equations (3.9) and (3.10),
we get

W (3.12)

The main result is then easy to read off. Apart from constants which characterize
the potential of the scalar field and the energy densities of radiation, the total energy
evolves as a simple power law of conformal time and is given by TY o n‘f—:‘z. For
n = 6, this corresponds to T oc ™% ox a™5.

This is the unique tracking solution of the system being considered. The con-
dition for its existence is the dominance of the radiation energy over the energy in
the quintessence field. Further, we shall consider perturbations of the scalar field o,
in particular, its homogeneous mode, where the value of the field is perturbed hy

the same amount everywhere in space. We will demonstrate that in the absence of
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metric perturbations, such homogeneous perturbations decay. Therefore, the track-
ing solution is an attractor for trajectories with perturbed initial conditions. In the
presence of gravitational potential, the homogeneously perturbed system sets onto
a neighbouring, coordinate-shifted tracking solution.

3.1.2 The scalar field ¢ during the matter dominated era

During the matter dominated era, we may assume 7 3> 7, but is not so large so
that the scalar field starts to dominate the total energy content of the universe.
Equations (3.2) and (3.3) then simplify to

Q
a(n) = =1’ (3.13)
Substituting the above result into the Klein-Gordon equation, we get

Q2 A
o'+ %w’ - =t =0, (3.14)

Now, the special power-law tracking solutions is given by

0 = Apn®™, (3.15)
where
6
= — 16
o377 nt2’ (3 6)
1
A2 (n +2)2] 7
_ m\" T 2) 1
Am [ 96(5n + 16) (3.17)

Proceeding as before, we see that the solution for the scalar field value leads to the

following expression for the total energy of scalar field,

0 76842, e

0= n(n + 2)Q2, (3.18)

Therefore, during the matter dominated era, the total energy of the scalar field

6n
T§ o< 3+, For n = 6, this dependence is T§ o /2 oc a=%/4.
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3.2 Analytical solutions for the zero mode of ¢ (k = 0)

We may begin by restating a few necessary equations in terms of ag and 79 defined
earlier in this chapter. The time-time linearized Einstein equation (2.54) becomes
a N2 k2 a 2,,2
o (“—) &— =0, 4 W, (3.19)
a a 3 a 202

The space-time part of the perturbed Einstein equations (2.55) becomes

! 2 2.,,2
o +%0 = 6Ly, + 200, (3.20)
a a a?

The other equations for the variables 8, 0, U, vy, given by (2.72), (2.71), (2.76)

and (2.75), remain unmodified and are as follows

&, = 30—k, (3.21)
4

& = 4@’-§k2u,, (3.22)
!

o = fb—%vm, (3.23)
1

v, = <D+Z<5,.. (3.24)

Now, we shall try to see how the gravitational potential ® evolves with time.

From the equations (3.19) and (3.20) we get

k2 ! 2,.2 !
-5 = 22 (504 3%0n) + BT (54450 ) (3.25)
a a 20, a

From the equations (3.22) and (3.24) we get the following 2™ order ordinary differ-
ential equation (ODE) for v,
2

u;'+%v, = 20 (3.26)

For the special case when the wavenumber k£ = 0, equations (3.22) and (3.21) reduce

to

5 = 49,
&, = 39, (3.27)
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These equations have the following solutions

5, = 4% - 69,
9
b = 30 - 2, (3.28)

where now & = ®(kn — 0). With a few intermediate steps hidden in Appendix
A.10, we may judiciously combine the equations in this section to arrive at a first
order ODE purely in terms of the gravitational potential ®, given by

. 2 2
<I>'+<1)[f+ 31 } = g | S 3mt g (3.29)
n o+ n+10/2 10+ 10) (20 + 710
The homogeneous solution to the above equation is given by
o = C[rim+m) " m+m/2)] . (3.30)
By the method of variation of constants we know
3n%(n+m0)*(3n* +3 5
o 3wt m) Bn” + 3mo +15) o (3.31)

2 (n+mno/2)?

Integrating the above expression for the value of C' and substituting into (3.30) with

the appropriate initial value, we get

9, Lm(m+n/2)

3(n) = [10 T (3.32)

The general solution drops out as it cannot satisfy the initial values. This solution
may be substituted back into (3.28),(3.23) and (3.24) to get

[ 12 255(m0 +n/2)
b = sty | P
5 (n+m)
P _§+§_713(770+77/2)
" | 5 10 (n+m)
T ’i+}7}o(ﬁo+3n/4)]
S STURN AN RS N
[9m+29/3 1 7§
S — Dy 3.3
o 120 o +n | 20(@+m2] (8.35)
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Thus, for the homogeneous mode(k = 0) in the absence of quintessence, we have
exact solutions for the perturbation variables ®, d,,d,,,v, and v,,. Combining the
equations for 4, and ® above, we may also derive another expression which shall be
useful in the formula for the temperature fluctuations of photons. This is given by

D44, /d=|—+

1075 (tmpP (8:349)

3 }n%(no+n/2>}

3.2.1 The dominant modes during the radiation dominated era

In the radiation dominated era, we may use the approximations a = agnng and
n < 1. With these approximations we can keep the most dominant terms on both

sides of the Einstein equations. The time-time part (3.19) gives us
k? 1 4 _
—-?@ = 'é;—}-i (Jr + ’T;UT> . (335)

The space-space part (3.20) gives us

1 2
O+ = . 3.36
n (330

The equation for vanishing covariant divergence remains

1 k2
55; + 3= i (3.37)

Differentiating (3.24) and combining with (3.37), we get

}(22
o + o = 28 (3.38)
Combining equations (3.35) and (3.36)
ly (L B L (3.39)
n 3 T '

Eliminating 4, from the above, using (3.24), we get

.2
_l(I)’ + (;}-1.2_ — L) ¢ = "237)7 . (340)
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Eliminating v from the above, using (3.36), we get

I P (
"+ '+ -0 =0. (3.41)
/] 3

This is a Bessel ODE of the first order and has the following general solution

-G cos—}ﬂ—ﬁsink—77 G, si kn—ﬁcos-lﬁ
S k2 \ TV kB

AN s/i) (342

Applying the initial conditions as kn — 0, we get Cy = 0 and ®(0) = —%l, which

gives us C1 = —9®;. The solution to ® then becomes

d(z) = 3 (32—71, — Cos :r) Qg (3.43)

72

where 1 = 21,

V3

3.2.2 The dominant modes during the matter dominated era

In the matter dominated era, we have a = agn?. It follows o’ = 2agn and a’fa = 2/1.

In this regime, the first Einstein equation becomes

k2 2 6 7 8 >
.___(I) = — —_ — (5 - . 3-44
3 7]2 <5m + ﬂ'Urn) + 27’4 < r+ n”r ( )
In the limit as & — 0 we get 0y, = —%vm, and 6, = —%w. In the matter dominated

era n > 7o and the space-time part of the perturbed Einstein equations may be

approximated as follows

1
o+ Lo %0, (3.45)
a a

The equation for v, may be written out for convenience as

(avm)' = a®. (3.46)

These two equations may be combined to eliminate vy, into the following single 2™

order ODE given by

! N/ N2
" + 30‘_(1,1 + li(a_> + (a_> - 9_0;9} d=0. (3_47)
a

a a
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The coefficient @ conveniently drops off to zero to give
a/
o +3;<I)’ =0. (3.48)

Integrating this equation, we get

C
a
c
= Pnt 5. (3.49)

Substituting this into the formula for v, above, this gives us

Um §¢’m77 . (3.50)
For &, we get
k'2772
Om = —Tém. (3.51)

3.3 Scalar field perturbations

We may now study the growth of scalar field perturbations. Though these pertur-
bations were formerly denoted by de, for convenience we now denote them by ¢;.
The perturbed Klein-Gordon equation (KGE) then reads

O + K21 + 2He! +a*Vipp 01 = —a2V,, @ + 49’9 (3.52)

For the inverse power law potential, the first and second order derivatives are given
by Vi = —Ap~ 1) and V4, = A(n + 1)~ (72,

3.3.1 Long wavelength scalar field perturbations (p; as k — 0) dur-
ing the radiation dominated era

During the radiation dominated era the first constant mode for the gravitational
potential @ is dominant and the second forcing term involving ®’ may be ignored.
So, ® ~ const. In the long wavelength approximation k*p; — 0 and from the
perturbed KGE, we get

2 C
ol + ;}so’l + ;;sol = D, A, &n~ 2o, (3.53)
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where C, = w and D, = %Q This has the particular solution given

(n+2)
by
D;
= - Ar Gr(I)’
T a3+ G
2 2
— A Gy (I) — ¢
n+2( ) n+2(p®’ (3.54)

which grows with time proportionally to the background field. The homogencous
solution for the above equation denoted by ¢y; can be verified by the power series
ansatz to be

o1n =112 [Ani‘/4cf’1 _+_Bni\/4Cr—1} , (3.55)
or, equivalently,

i =112 (Acos [1og(m/21”c,——1)] + Bsin [ log(V/4C; - D). (350

The homogencous modes decay with time and are subdominant wrt to the partic-
ular solution. This is typical of attractor solutions, where solutions with slightly
varying initial conditions, converge to a certain attractor over time. In the absence
of gravitational effects, any solution perturbed homogeneously from the tracking
solution will approach it. In the presence of the gravitational potential @ there is

an offset to a neighbouring solution.
3.3.2 Short wavelength scalar field perturbations (¢, as k > 1/)
during the radiation dominated era

In the short wavelength approximation k? > C/n?, the perturbed KGE reduces to
2
it et K1 = D A0 1+ 40'd' (3.57)

The homogeneous solutions may be found by converting the homogeneous equation

to Bessel’s equation and are given by

eikr] e—ikn
e1r(n) = T,m(n) =

(3.58)

For short wavelengths, the gravitational potential ® is dominated by the second
mode given in (3.43). Expanding in a series about 7 = 04 and retaining terms only
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till the order of O(kn), we get the following for the complete forcing term,

(1200 +2D;) | g kn
F(p) = -T2 A 50 cos —=,
(n) V3 1 73
k , k
+ (4o +2D,) A~ 49 gin 7—% — (dak/V3) Ay ™30 cos —\/% .(3.59)

For very short wavelengths we may approximate kn > 1. In such a case, the
contribution from the 1st and 2nd terms become negligible in comparison to the

third term and we may approximate the forcing term to be

- kn
F(n) = =Lakn=3%r cos =L | 3.60

where Ly = 4o, A, /V/3. Substitute ¢; = u;/n and the resulting equation may be

approximated as follows
ufl + k*uy = —Lzkn™21%" cos (kn/\/g> . (3.61)

This equation describes a simple harmonic oscillator (SHO) with a forcing term
F¢(n) which gradually decays with time and is given by

Fy(n) = ~Lskn™***" cos(kn/V/3). (3.62)
The causal Green’s function G¢(n,n;) for the SHO is given by
Gs(n,m) = sink(n —m). (3.63)
Thus, the particular solution is

n
us(n) = /O G (1) Fs () (3.64)

which reduces to

i

u1(n) ~\/§L3 / 771“2+“ cos(km/\/?;) sink(n — ny )dn ,

il

-\/'ELg/n;M (sin [kn ~ k(1 - %)m] + sin [kn —k(1+ %)mb dn; .
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Since the integrand is a highly oscillatory function for large k, the integral may be
approximated by the method of stationary phase [5] to be

+

ur(n) = —v3Lyg (COS [’“ﬂ - k(1- %)7)0] cos [kn ~ k(1 + %)M) |

1 1
k(l - ﬁ) k(l + ﬁ)
(3.65)
Ignoring the phase term corrections due to 79, we get
_ cos(k
o)~ — [3vALg o] T (360

Therefore, the dominant term in the scalar field inhomogeneity ¢; for short wave-

lengths is given by

o) ~ K, L (367
where K is a constant whose value is set at the onset of the radiation stage and is
given by K1 = [3v/3L3n52"*]. Though crude, and based on many approximations, it
has a ready qualitative explanation: scalar field perturbations on short wavelengths

are damped as ~ KIT; and the forcing term is actually unimportant.

3.3.3 Long wavelength scalar field perturbations (¢, as £ — 0) dur-
ing the matter dominated era

We may largely repeat the same analysis for the matter dominated era, where @,
given by (3.49) is again nearly constant. In the long wave regime the perturbed
KGE becomes

o + %‘Pll + %‘Pl = DmAm")_2+am(I)a (3.68)

where C,,, = Gmtrlwrg?f 9 and D, = 1—2(&%1,9 = 2Cm/(n + 1). The particular

power-law solution of this equation is again

Dy,
= Apn™ @,
Pip (o + 5) + Cpy mf]
2 o
= — m = D, 3.69
n+2(Amn A n+2(p( ( )

We observe that the long-wave response to the gravitational potential given above
is of the same form in the radiation and matter dominated eras and is independent

of the type of dominant component. It may also be observed that the homogeneous
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solution for the scalar field perturbation is given by

ei\/Cm—Qn

Pih = T3 >
n?

e=1VCn =21
o = —5—. (3.70)
n
Apart from an oscillatory factor, these general homogeneous solutions are damped

out as ~ n~2.

3.3.4 Short wavelength scalar field perturbations (¢, as £ > 1/7)
during the matter dominated era

In the short wavelength limit and in the matter dominated stage, the perturbed

KGE may be approximated as

4
o} + 590’1162901 = F(n). (3.71)

Substituting ¢; = u;/n? this again describes a SHO for u;. We may yet again apply
the Greens function in (3.63) and (3.64) to get

uy = [ sin2k(n = m) Dty (3.72)

Since this is a highly oscillatory integral, we may justifiably approximate it using
the method of stationary phase as in the radiation dominated era to get,

4 ~ @ (3.73)

Therefore, the scalar field inhomogeneity is given by

cos(kn)
kn?

1~ . (3.74)
This section may be now summarized as follows. Long wavelength perturbations
exhibit attractor type solutions in both radiation and matter dominated eras. In the
radiation dominated era the dominant solution grows as a power of the conformal
time. Short wavelength perturbations to the scalar field on the other hand are

severely damped down in both eras. During the radiation dominated era, they
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evolve as ~ k]_n’ and during the matter dominated era they evolve as ~ # As
an illustration of the foregoing analysis, numerical calculations of §y for the wave

numbers k£ = 0, 10, 50,100 and 200 are plotted in Figure 3.1. Here we sce a pattern

0.2 T T T T I T T T T T T T T T

e
—
3}

e
—_

0.05

scalar field perturbation &y

conformal time 7

Figure 3.1: The evolution of the scalar field inhomogeneities for wave numbers
k = 0,10, 50,100 and 200

similar to that for the gravitational potential ®. The lowest wave number modes vary
slowly. The higher wave number modes vary more violently, especially before the
time of recombination. We also observe that long wavelength perturbations remain
siginificant well into the matter dominated era, and till the present time. Short
wavelength perturbations on the contrary are damped down and reach a steady
state value close to zero during the matter dominated era. These modes therefore
have negligible effect on the evolution of ®. More relevantly for this thesis, their
effect on photon temperature fluctuations, and therefore CMB anisotropies to be

introduced in the next chapter, shall also be negligible.
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Chapter 4

Quintessence and large scale

CMB anisotropy

4.1 The Cosmic Microwave Background

The discovery of the Cosmic Microwave Background (CMB) by Penzias and Wilson
marks the birth of modern, precise cosmology. The CMB has a perfect blackbody
spectrum at a temperature of Ty = 2.726 + 0.010K (95 % Cl) and temperature
anisotropies at the level of one part in 10° [16]. The big bang cosmology, almost
uniquely amongst cosmological models, predicts such a radiation background. In the
big bang model the Universe undergoes an expansion from some initial singularity
and light from distant sources is redshifted in proportion to distance. Correspond-
ingly, more distant sources emitted the light a longer time ago, when the universe
was smaller. Due to the expansion of the universe the wavelengths of photons were
stretched and particle number densities dropped leading to the low temperatures
and photon densities observed today. This explains why the spectrum is thermal at
2.7K, a temperature much lower than other matter in the universe. Conversely, ex-
trapolating backwards in time, we may infer that the Universe began in a hot dense
state. At sufficiently high temperatures, interactions between particles were suffi-
ciently rapid for the universe to be in thermal equilibrium. Adiabatic cooling from
the expansion preserves such a spectrum and this explains the blackbody nature of
the thermal spectrum.

The high degree of isotropy observed in the CMB is more puzzling. In the

early universe radiation interacted with matter through Compton scattering. After
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the time of recombination, at redshift z ~ 103, photons no longer had the energy
to keep hydrogen photo-ionized. Therefore the time of recombination also marks
the time the CMB last interacted with matter. At such early times, the patches
of sky off which the CMB last scattered should not have been in causal contact.
This apparent violation of causality has been dubbed the horizon problem. The
theory of inflation proposed by Guth [15] alleviates it by postulating a very early
phase of rapid expansion that separates originally causally connected regions by vast
distances necessary to account for the large scale isotropy of the CMB.

Measurements of the thermal nature and isotropy of the CMB support the overall
hot big bang model. Anisotropies of the CMB on the other hand carry information
about the fluctuations which led to structure formation in the universe. A few facts
and figures may be illuminating. Hubble’s law states that the observed redshift
scales with distance as z = Hyd due to the uniform expansion of the Universe. The
Hubble constant Hy = 100hkms~—!Mpc~! where observations require b ~ 0.7. Hp
also sets the expansion time scale Hy L ~ 10h~1Gyr and thereby determines the age
of the Universe.

In general relativity, mass tends to decelerate the expansion and a higher energy
density implies a younger universe. The mass is usually parameterized by €2, which
is the energy density in units of the critical density perit = 3H§/87rG = 1.879 %
1072°h2g/cm®. In this thesis, we must also consider the possibility that vacuum
energy and pressure in the form of a cosmological constant, or a quintessence scalar
field, can provide an acceleration to the expansion of the Universe. The ratio of
the energy density of this component to p.;; may similarly be expressed as Qg a,
where the subscripts ¢ and A denote quintessence and the cosmological constant
respectively. For a spatially flat universe, (0, + g o = 1. Dynamical measurements
of the mass in the halo of galaxies implies 2, > 0.1 — 0.3. Luminous matter
in the form of stars in the central part of galaxies account for Q. ~ 0.04 of the
critical density. This implies the existence of a significant amount of nonbaryonic
dark matter. Collisionless dark matter, unlike baryonic matter, does not undergo
dissipative processes. The CMB energy density ,h? = 2.38 x 1075604 , where 657 =
To/2.7K. Although negligible today, in the early universe it increases in importance
relative to the energy density pm, since p,/pm o< 1 + z, due to the redshift. The
photon density is thus fixed through the CMB temperature.
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4.2 The Sachs-Wolfe effect

Large-scale anisotropies are not affected by any local microphysics at last scattering.
At the time of recombination, the perturbations responsible for these anisotropies
were on scales far larger than could be connected by causal processes. Since in this
thesis, we are only concerned with large-scale anisotropies, we restrict our attention
to the primary mechanism which generates them, namely, the Sachs-Wolfe effect. In
order to derive it we shall work in the conformal Newtonian Gauge with coordinates
(n,2%).

On large scales a fractional change in photon temperature in the CMB may be

caused by two distinct mechanisms;

1. An intrinsic temperature fluctuation on the surface of last scattering during
recombination denoted here by %7: ree» 1 DeIng the temperature, due to a local

over(under) density of photons.

2. A temperature fluctuation incurred during the photon’s journey from the sur-

AT

face of last scattering to the observer, denoted by T jour

Thus, the total fractional change in temperature is given by

AT AT AT

el . 4.1
T T rec T jour ( )

The formula for %11 rec 18 €asy to derive. The energy density of photons p, is propor-
tional to T%. Then, for a fractional change in energy density 4, = % at the surface

of last scattering, we have
AT 1

— ==6p. 4.2
T ree 4 (4:2)
The derivation of the formula for %jom is a bit more involved. We begin by

noting that the CMB has an almost perfect blackbody spectrum with a distribution

function given by
1

flg) = Q/FT 1’ (4.3)

where ¢ and T are the total momentum magnitude and temperature respectively.
Since the CMB cools adiabatically, we may infer that the distribution function

remains unchanged. Therefore, at any instant of time during the journey

2 =28

7 ; (n). (4.4)
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The total change in momentum Ag may be expressed as Aq = %%dn. In order to get
the cumulative temperature fluctuation due to the entire journey, we may integrate

the above expression wrt 7, to get

dn. (4.5)

ar i
T jour Mrec qdn

We may now proceed to convert the above expression into a more convenient one.
In the absence of perturbations, the particle momentum “redshifts” as 1/a. We
assume collisions do not alter the energy of a species, and do not create or destroy
particles, as from Thomson scattering.

It is convenient to make the following definitions:

= ap,

n = g(unitvector),

¢ = aoF =(¢* +m%a?)!/2,

To get the deviation from the unperturbed “redshift” p o 1/a, we must evaluate g—%.
To do so, we need to relate (E,p’), the four-momentum components in the locally
orthonormal frame to those in the conformal Newtonian coordinate system denoted
by P*. The necessary relations are

P’ = gf’E=a(l+®)E,
P = gl*d=a1-0),

The geodesic equation for a photon is given by

APt _ (10905 POPP (4.6)
dnp 208zv) PO '

Evaluating the time component along the particle trajectory ‘fi—f; = n%, we find to

15t order,

= — 4.7
gdn On qné‘zl (47)

For a photon € = g, since

d® 0%  dz' 99

@ T dor
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o 00
= %7‘+7L1%7- (4.8)

We may use the above to eliminate the troublesome second term in (4.7) to get

1dg 0% d®
i =) - 4.9
qgdn 9n dy (4.9)

Combining the above with (4.5), we get

AT /7)0 1 Eigdn
T jour s 44N ’
m 9P (ex,
= O(TrecsMrec) — &(z9,m0) + 2/ _(_Q

dn. 4.
rec 8” T) ( 10)

The second term of this expression does not contribute to the anisotropy and may
be dropped. Summing up the terms given in (4.2) and (4.10) we get the following
for the total temperature fluctuation

AT 1 o 3P(er,
T = (3o o) e v2 [ 22Dy, (412

It is conventional to denote the first term, which is due to values on the surface of last
scattering (SLS) the Naive Sachs-Wolfe (NSW) effect. Correspondingly, the integral
term, due to the properties of the intervening medium between the SLS and the
observer, is called the Integrated Sachs-Wolle (ISW) effect. We use this expression
to evaluate the temperature fluctuations and thereafter, the CMB anisotropies in
this document. The standard expression most often used in literature [18],[20],
which differs from that above is now stated.

In the low wavelength limit, well after the onset of the matter dominated era,

we shall demonstrate in the next chapter that
6~ -0, (4.12)

As a further approximation, the lower limit integral can be taken to be 0 instead of

Nrec- Therefore, the total temperature fluctuation now goes as

1 m gd(ex,
- = 5@(:3?6057??‘66) + 2/0 _(Wﬂ“)'dn- (4.13)

This convention was first used by Kofman and Starobinskii (18] and later popular-
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ized by Liddle and Lyth [20]. We stress the fact that this often quoted result is
an approximation to the more rigorous result earlier. Wherever possible, we shall
try to show the divergence between the exact result and the approximate one. A
pedagogical derivation for the Naive Sachs-Wolfe effect is given below. Potential
perturbations at last scattering have two effects:

1. They redshift the photons we see so that an overdensity cools the background
as the photons climb out of the potential wells %—Z = .

2. They cause time dilation at the last scattering surface, so that we are looking
at a younger and hence hotter universe where there is an overdensity of pho-
tons. The time dilation is %ﬁ = ®. Assuming recombination occurs at the time
of matter domination, the scale factor @ « ¢2/3 and T 1 /a, which produces
a couterterm %Z = —§<I>. The net effect is thus: % = %@.

4.3 CMB angular power spectra

The Sachs-Wolfe effect we have just derived is applicable to a single photon. We
shall now try to quantify the observed temperature fluctuations field QTI with a
statistical measure: the angular autocorrelation function of the field of temperature
fluctuations. This field inhabits a universe that is isotropic and homogeneous in its
large scale properties. This suggests that the autocorrelation function should also
be homogeneous even though it is a field that describes inhomogeneities.

As a preparatory step, we must decompose these fluctuations into a set of modes.
Since in a flat comoving geometry the Fourier basis form a complete set of basis

functions, we shall take the Fourier transform of (4.11) over space, to get

T R) = o (/44 @) (e, )0

70 .
+2 [ drd'(r, k)etk-dlo-1)| (4.14)
Trec
Here, a; denotes the randomization operator. It is used to denote that the coefficient
of each mode is a random variable. In this context, it denotes that denotes that

each mode has a random phase. The mean of each coefficient is zero. We may now
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use the expansion for a plane wave in terms of spherical harmonics

etk —47rZz Ji(kr) Z Y™ (E)Y™(4), (4.15)

m=-1

to get,

%(q,fe) = a [4vrzz'l{(6r/4+@)(rm,k)mm—mc),

im

w2 [ dr®(r, Kyjilhro — )Y RY, *(q)}. (4.16)

Trec

For economy, we may rewrite the above as

AT
?(é,k) =a [4WZ i{NSW (k) + ISW (k)}Y;™ (k) Y™ (4 )} (4.17)
where the NSW (k) and ISW (k) are the Naive and Integrated Sachs-Wolfe terms

respectively, defined as,

i

NSW (k)
ISW (k)

(5T/4 + (I))(Trec, k)jl(kTo - Trec) )
)
2 [ drd'(r,k)ji(kmo — 7). (4.18)

Trec

The autocorrelation of the fluctuation modes %(k) in terms of the coefficients of

spherical harmonics is then given by

<%,m(’%)’%;m,(ﬁ’)> = / (ak,azf)[167r2il"’{NSW(k’)+ISW(ic’)}

{NSW (k) + fswuc)}yl,m,(lef)y;m(lé)d-"‘kd%'] .

The angle brackets denote an averaging over the normalization volume V. Apart
from the statistical isotropy of the temperature fluctuation field, we might also make
the reasonable assumption that the phases of the different Fourier modes A,—FT (k) are
uncorrelated and random. This corresponds to treating the initial disturbance as a
form of random noise, analogous to Johnson noise in electrical circuits. Each mode

is uncorrelated to the other. A given mode has nonzero variance, so

(ax, 0y = Pa(k)8(k - k). (4.19)
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where ¢ is the three dimensional Dirac delta-function, and P,(k) is the spectrum of
the modes, and is known as the Harrison-Peebles-Zeldovich spectrum or more briefly
the Zeldovich spectrum. This spectrum has the property that k3P,(k) remains
constant and is hence scale-invariant. This property is explained by Guth’s theory
of inflation [15]. However, we resist the temptation to digress and proceed with the
implications of such a spectrum. We get, apart from a few constants,
AT Al AT* s 1 ,ll_l 2 ~ ~ 3
(T80, 0) = [ 5 [N SW )+ IS W)Yo () Yim 4]

For convenience, we may perform the above integral over k in spherical coordinates.
The measure may be written d3k = k?dkdS;. Since the spherical harmonics satisfy

the orthonormality criterion,
[ Yemt (R)Yim (B2 = G118 (4.20)

the relation (4.3) simplifies to

(AT A

- lm(k),-.-T—l/ml(;})> =3 6 / {NSW (k) +ISW(k)}2%. (4.21)

We observe that only the diagonal components are nonzero. It is customary to
denote these components by C;. The definition for the coefficients C; then follows,

r. ~dk

Ci= / (NSW (k) + 1SW (k) 12

2 dk (4.22)
k-
It is noteworthy that any azimuthal dependence represented by the index m has dis-

appeared from the expression. These components are a function only of the angular
separation represented by the index . The coefficients C; completely define the
angular autocorrelation function. The C;’s thus defined are variously called “Mul-
tipoles”, “Angular Spectra”, “CMB spectra” and even very misleadingly “Power
spectra”. In the remainder of the thesis we shall adhere to the most conventional
term: “Multipoles”. In the convention of Liddle and Lyth, which we mentioned
earlier in this chapter, (refer (4.13)), the Naive and Integrated Sachs-Wolfe terms

have the following approximations

1 .
NSWy(k) = 5@(Trec,k)ﬂ(km—mc),
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70
ISWy(k) = 2 /0 a7’ (7, k) (ko - 7). (4.23)
The corresponding multipoles are then defined by
o dk
Ciu= [{NSWuk) + ISWu(W)}* (4.24)

These different expressions for the Sachs-Wolfe effect can result in markedly different

O.IIiIIIIIIIrllrlllrl

0.08 .

U 06 |- Exact SW spectra ]

Multipole

0.02 ) -
| Approximate SW spectra .

Olll!llll[llll'lll]

5 10 15 20
Angular index 1

Figure 4.1: Comparison of CMB spectra for a purely matter dominated universe,
with Sachs-Wolfe terms and their standard approximations given in Liddle and Lyth

angular power spectra, as evident from the Figure 4.1. This corresponds to the
hypothetical case of a purely matter dominated universe (,, = 1.0). This case
is in conflict with experimental data but has the advantage of having closed form
solutions and is therefore widely regarded as a benchmark in literature. In [18] it was
proven that under approximations which are strictly valid only for long wavelengths
well into the matter dominated stage, this case corresponds to flat angular power

spectra.
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4.4 Approximations to C; for the dipole, | =1

In this section we shall derive a few useful approximations for the dipole compo-
nent of the correlation function of large scale CMB anisotropies. Their purpose is
twofold, to serve as a check for numerical results and to aid comparison amongst
various expressions that exist for angular power spectra. We highlight two sepa-
rate cases (i) the approximate expressions for the generation of anisotropies given
in equations (4.13),(4.23) and the corresponding multipoles (4.24), (ii) the exact
expressions thereof, given in equations (4.11),(4.18),(4.22).

The power spectra corresponding to the two cases are shown in the above figure.
The observed angular power spectra for case (i) widely quoted from [18] and [20]
remain flat. In contrast, the power spectra for case (ii) fall steeply, We now proceed
to explain this difference. As a first step we shall try to explain the difference in the
values of C for [ = 1 using suitable asymptotic analysis, Since for [ = 1 the peak
of the spherical Bessel function is at a very low value, only the lowest wavelengths
contribute to the value of Cj. For low values of the argument, the spherical Bessel

function may be replaced by its asymptotic expression

ozl

Jilz) = @ (4.25)

For [ = 1, this gives
MOEES (4.26)
4.4.1 Case (i) Liddle and Lyth’s approximation for the Sachs-Wolfe
effect

For this case the expression for Sachs-Wolfe effect, with I;; denoting the temperature

fluctuation, as given in (4.13), is

I = g0kl = o) +2 [ P n)i(kOw —m)dy. (@20

For low £ this can be approximated as

k{1 o
Ii=3 |30l =) +2 [ @ —mdn| . (428)
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The integrated Sachs-Wolfe term may be decomposed as follows

7o , no ' 70 '
®'(n)(no — m)dn = / ()0 = rec)dn — | ' (M)(n = rec)dn.  (4.29)
0 0 0

The second integral can be ignored on the heuristic consideration that the potential
® varies at the time of recombination, (whereabout 7 — 7,¢. ~ 0) and is otherwise
constant. Thus, either factor in the integrand is always negligible. Therefore,

70

A ®'(n)(no — n)dn

Q

/0'70 @'(n)(M0 = Nrec)dn,
[(I)(UO) - (I)(O)](UO - nrec) . (4~3O)

P4

Substituting back into the integral and dropping the pre-factor of k/3, we get,

T = |580me) + 2(8(m) = B(0)] (0 = o). (43)

We now have an approximate expression for the Sachs-Wolfe effect purely in terms
of the values of the potential ® at times 7 = 7e. (time of recombination) and ng
(present time). For k = 0, the numerical computation of ¢ gives us the values
®(nrec) = 1.02679, ®(no) = 0.99975, and ®(0) = 1.1058. These values are in excel-
lent agreement with those obtained from the analytical solution for the homogeneous
mode given in Chapter 3, which therefore serves as a further check. The resulting

value for Ij; is
Iy = 0.13015(n0 — Nrec) - (4.32)

We may repeat the above analysis for the second case.

4.4.2 Case (ii) The exact expression for the Sachs-Wolfe effect

For this case, the expression for Sachs-Wolfe effect, with I denoting the temperature

fluctuation, is as given in (4.11)

I'= ((_11 + @) (Mrec) i (k(no — Nrec)) + 2 nno ‘I"(Tl)jz(k(no —n))dn. (4.33)

Decomposing the integral term we proceed similarly as before. The expression for

I can be approximated as, after dropping the pre-factor of /3,

I=1[(0r/4 ~ ®)(nrec) + 2(1)(770)] (M0 — Nrec) - (4.34)
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For k = 0 we have observed 4,/4 — ® is a constant wrt time, and for k£ = 0 equals
—5/3. Hence, we get

I'={-5/3+2%(no)] (M0 ~ Nrec) - (4.35)

For k = 0, the numerical value of ®(n = 0) = 1.1058 gives us the following value
I = 0.28818(1 — Nrec) - (4.36)

The terms I and Iy squared are the integrands for the angular moments C;. The
ratios of the squares should give us the relative ratios of the coefficient C; in the two
cases. Thus (I/Iy)? ~ 4.9, which is very close to the observed value in the figure.
This explains the differences in the values of C; for [ = 1.

4.5 Approximations to C; for multipoles [ > 1

The arguments employed in the former section are valid only in the low frequency
regime (k — 0). Consequently they cannot be applied to approximate the coeffi-
cients C) for [ > 1. This is unfortunate, as it denies us concrete numerical estimates
for the ratios of C; in the two cases for higher values of [. We are therefore forced
to be more vague. The CMB spectra for the exact case (ii) falls off with increasing
[, while that for the more popular approximate case (i) remains flat. This difference
will only be explained qualitatively.
We observe that the coefficients C; have a convenient decomposition

Ci = Cinsw + Clinter + Clisw (4.37)

where the component terms are defined as

dk
Cinsw = /NSW(k)Qza
dk
Cmer = [ 2NSWRISW ()T,
,dk
Ciisw = / ISW (k5 (4.38)

Thus the first and third terms are the contributions to the angular moments purely
from the Naive and Integrated Sachs-Wolfe effects, in that order, and are positive
definite. The second term is the contribution to the angular moment due to the
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interference of the Naive and Integrated Sachs-Wolfe effects, and hence the subscript.
In the Liddle and Lyth approximation, the coefficients C;j have a similar de-

composition
Ciu = Crunsw + Cuitinter + CLursw » (4.39)

with the component terms defined in exact analogy to equations (4.38).

The essence of our argument consists of comparing each individual component
in the exact case (4.37) to its counterpart in the approximation (4.39). If we observe
that the ratios of the individual terms fall off, we may safely infer, that the ratio of
the totals also fall off.

But before we do so, we need a few useful results concerning spherical Bessel
functions. The spherical Bessel function satisfies the following equation:

2’5 + 2z + (2* = (2 +1)) ju = 0. (4.40)

At an extremal point z, the derivative vanishes, jj = 0. Therefore

2
bl 1} . (4.41)

1

Ji

i

T2

The Bessel function may be written in the form of an exponential

ji(z) = e, (4.42)
It then follows
jile) = =8'(z)e™5®,
] _ " 2 ~S(z)
(@) = [-5"()+ $%a)| 5@, (4.43)

Therefore, at an extremal point z, where S'(z) = 0, we get
il(z) = 8" (z)e~ 5. (4.44)

Combining the above equations for j;(z) and j;'(z) at an extremal point, we get

—

§"(z) = —]]"l ((j) , (4.45)
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or,

S"z)=1- (4.46)

We are now in a position to derive an approximate expression for the separate
contributions to the coefficients of the angular power spectra C;, namely, the pure
Naive Sachs-Wolfe, interference and pure Integrated Sachs-Wolfe terms separately.

4.5.1 Pure Naive Sachs-Wolfe term

We begin with the pure Naive Sachs-Wolfe term which is the most straightforward.
In general this term may be written as

o0 . dk
Cuvsi = [ 18 + 6 /41137 (k0 — 1) - (1.47)
In the above expressions ® and §, refer to the gravitational potential and perturba-
tion in the radiation energy density at the time of recombination, henceforth denoted

by 7., respectively. If we substitute the exponential form of j;(z) given in (4.42),

we get
oo}
Cinsw = / [@ + tSr/4]2(k:)e‘%"(’“("""'r))(2—]c . (4.48)
0
We may change the dummy variable to z = k(g — 7,). This gives us
oQ
Cuvsw = [0+ 64 (2 ) 250 (4.49)
0 o — N X

The function ji(z) has a maximum at a position say z,, which is dependent on
the index {. These maxima vary approximately as z,, ~ (I + 1/2). The exact
values of these maxima have been found numerically. We begin by using the Taylor
expansion of S(z) till the second order in the neighbourhood of z,, in the argument

of the exponent. Then the integral becomes

x 1" Zm
Cinsw = / (@ -+ 6,/4] ( ) =208 (em)+ -Gm) )(x—xm)ﬂdf_ (4.50)
0

Mo —Nr

Since the function ji(z) is rapidly vanishing outside the neighbourhood of zr,, the

above integral may be approximated therefore, as given in [5), as follows

—25(.’5,71_) 00 " .
Cinsw =@+ 6-/4) <,70m:n77 ) ¢ - /0 ¢S @m)e=2m)? 4oy (4.51)
T m
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The exponential outside the integral may be substituted using (4.42) and the integral

which is now a Gaussian may be evaluated to give,

2
Cinsw = [® 6r42( - )]l(zm) . -

Substituting (4.46) for S”(z) and regrouping terms, we get

2
z it zm) 7 .
Cinsw = [® + 6. /4] (770 —mnr) lmmfn T (4.53)

If we repeat the above procedure with the Liddle and Lyth approximants to the

Naive Sachs-Wolfe terms, we get

®2(0, &m) 2(
_ 0 ) It (Em) ™
Crunsw = 9 P . %ﬂ . (4.54)
The ratio of these expressions may then be found to be
Cinsw _ [B+0/4F (nr zom0) (4.55)

Ciunsw @%(0, 22)/9

4.5.2 Pure Integrated Sachs-Wolfe term

The pure integrated Sachs-Wolfe term ISW (k) for an arbitrary wave number % is

given by; o
ISW(k) = [ ®'(n,k)5(k(no —n))dn. (4.56)

mr

By the mean value theorem
ISW (k) = [®(nr, k) — @(mo, k)]t (k{0 ~ nm)) (4.57)

where 7,, is the mean value, as yet undetermined, in the range [,,70]. But since
the gravitational potential varies most markedly till well into the matter dominated
era, in the earliest part of this interval we may assume 7, = n,. This is very true
for lower wave numbers. Now, the contribution to the i** multipole of the angular

power spectra becomes

Cuasw = [ 180 k) - 80w, OFR GO0 - 1) - (458)
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If we proceed to approximate the above integral as before, with the Pure Naive
Sachs-Wolfe term, we get

2 52
Im Tm Ji (Zm) m

— ®(n, } / . 4.59
o — nm) o o — TIm) Tm 1- I-T—;+l ( )

This expression contains 7, which is an unknown value, and cannot be evaluated

Ciisw = [@(nr,

directly. We may now approximate 7, = 7, to get
T

2 2.
Crrsw = {@ , =) — (g, — } ilem) [T 460
Lisw = |®(n — m) (o0 — 7’r) tm || 1= (4.60)

For the Liddle and Lyth approximation, we apply the mean value theorem to
the term ISWy(k), to get

ISWy(k) = [2(0, k) — ®(no, k)]t (k(no = 1)) - (4.61)

The contribution to the angular multipole, when approximated similarly, becomes

T Tm 1% 5 (zm) T
C :[@0,JE - ,—"’] Lim ) 4.62
LILISW ( 770) (10 o ) om 1= (4.62)

‘m

The ratio of these contributions is found to be

2
Cusw |0 325) - (o, 525)]

- 2
Craasw— [2(0, Z) ~ (o, 22|

(4.63)

4.5.3 Interference term

Now, we turn to the contribution to the angular correlation function from the in-
terference of the NSW and ISW terms, which is given by

00 dk
Cuiner =2 | ISW(DNSW (i) (4:64)
0
From the expression we have derived for 7SW (k) with n,,, approximated as 7., we
get

ISW (k) = [®(nr, k) — D(no, k)] sulk(no — 7)) - (4.65)
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Substituting this value into the expression Cj jnter, we get

dk

Cuinter =2 [ 1@+ 6:/4)(6) 800, ) — S, I (bl = )T (466)

As before with the purely NSW and ISW terms we proceed as is given in [5] and

we arrive at the following approximate expression

mm ‘Tm

Crivrr = 2®+6,/4](~ [q),“”’" —~ &1,
l,inter [ T/ ](T)O _777‘) (Tlr o _7’?) (770 o _77r)

2
Jilem) [T (4.67)
Tm 1=

Proceeding analogously as above for the Liddle and Lyth approximations with the
Naive and Integrated Sachs-Wolfe terms NSW),(k) and ISW),(k) defined as in equa-
tions (4.23), we get

2 & €T T
Cuainter = 3®(0, %)[2(0, %) = 2, - )]

2
i (@m) L. (4.68)
Iy 1~ ;;"—

Thus the ratio of the interference terms comes out to be

Clinter 1@+ /411, 725) [0y, 72-) — (g, 2]

Clijiinter 32(0, 22)[(0, Zn) — (o, Zn )]

(4.69)

To summarize, in this section we have derived approximate ratios for the pure
NSW, interference and pure ISW contributions to the multipoles C; of the angular
autocorrelation function for temperature fluctuations, for the exact, rigorous expres-
sion for the Sachs-Wolfe effect to the Liddle and Lyth approximation. Separately,
these ratios show a falloff for higher . Therefore, we may infer that the multipole
C; for the exact expression shall also fall with higher ! compared to the multipole
Cy1 in the Liddle and Lyth approximation. Since this is what we observe in Figure
4.1, our numerical calculations of these CMB spectra are therefore validated.
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4.6 Effect of perturbations in quintessence on large scale

CMB anisotropies

In this section we discuss the difference between the effects various forms of quintessence
have on the large-scale CMB anisotropies. Large-scale CMB anisotropies are gov-
erned by the long-wave behaviour of cosmological perturbations, the most important
of them being the gravitational potential. The main effect of the A-term like com-
ponent is the deviation of ® from constant behaviour, observed in a purely matter
dominated universe, at late epochs, which leads to non-zero ISW effect [18].

Thus, we begin this discussion comparing the evolution of the gravitational po-
tential @ as a function of conformal time in different quintessence models. The first
case we study as the benchmark is the standard A term. In Figure 4.2 we plot the

evolution of ® for k = 0 for several values of £ = Q4. Since A quintessence has a
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Figure 4.2: Evolution of the gravitational potential ® for Q4 = 0,0.2,0.4,0.6,0.7
Lambda quintessence vs log of conformal time

strictly negative equation of state with w, = —1, we may infer this “counteracts”
gravitational infall. The gravitational potential @, is in naive terms an indicator
of the growth of gravitational instabilities under their own self gravity. We may
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therefore infer, that for increasing €25, which represents an increasing influence of
A quintessence, @ shall then decrease. Since A quintessence begins to dominate the
energy ratio of the universe at relatively late times, we may also expect the expected
decrement to be more pronounced at later times. This is indeed the case as evident
from Figure 4.2.

The second case, that of a dynamical homogeneous scalar field, which acts like

quintessence is very much similar, as one can see from Figure 4.3. Though its
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Figure 4.3: Evolution of the gravitational potential ¢ for (2, = 0,0.2,0.4,0.6,0.7
scalar field quintessence vs log of conformal time

equation of state is variable and not identically —1, it is negative and much the
same reasoning applies as for A quintessence. The evolution of ¢ for a certain
value of €, in both A quintessence, and dynamical homogeneous quintessence, is
qualitatively very similar. For a purely matter dominated era, when Q; = 0, the
gravitational potential ® drops sharply as before the time of recombination, then
remains constant at the value unity as predicted by the analytical solution, for the
zero mode. As €, increases, quintessence is more influential at late times. The
growth of gravitational potential ® is more strongly counteracted. Therefore for
larger values of €}, we observe larger fall offs from unity. In addition, the falloff,
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while not exactly equal to that observed for A quintessence with the same value of
€, is certainly comparable.

Finally we consider the case of scalar field quintessence with perturbations. Here
we observe that the effect of quintessence on @ is qualitatively the same, but that it
is much less pronounced. The results for long-wave evolution of ® in this case are

given in Figure 4.4. When Q, = 0 the gravitational potential falls off and remains
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Figure 4.4: Evolution of the gravitational potential ® for Q, = 0,0.2,0.4,0.6,0.7
scalar field quintessence with perturbations vs log of conformal time

constant at unity as expected from the analytical solution. As €, increases, the
expected fall off from unity is observed, but is much less pronounced, as may be
observed from Figure 4.4. Thus, inspite of the presence of quintessence the evolution
of ® is much more similar to that in a purely matter dominated universe. Therefore,
we reach an important conclusion. The new degree of freedom which can develop
imhomogeneities in the quintessence model allows the amplitude of the perturbed
gravitational potential to be maintained.

In Figure 4.5 we compare these three cases for {1, = 0.7 corresponding to the
value preffered by modern observations (e.g., from the results of WMAP consor-

tium and SNla analysis). For A quintessence and homogeneous quintessence the
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Figure 4.5: Evolution of the zero mode gravitational potential ® for Q, = 0.7 for
dynamical quintessence with and without perturbations and A quintessence

curves for ¢ are very close. For quintessence with perturbations, the curve for @ is
markedly higher, showing much less late time decrease than for the two preceding
cases. We shall invoke this observation later to explain the difference between their
corresponding CMB spectra.

It is worthwhile asking, since the zero mode of the gravitational potential for
quintessence with perturbations is so markedly different from those of Lambda
quintessence and homogeneous quintessence (i.e. without perturbations), if we shall
also see a similar difference for higher wave numbers (i.e. shorter wavelengths). In
our analysis of perturbations of the scalar field in Chapter 3, we saw short wave-
length perturbations evolve as % in the radiation dominated era and as I:? in
the matter dominated era. We may therefore argue, since short wavelength scalar
pertubations are damped out, at such wavelengths the gravitational potential ®
shall evolve unaffected by perturbations in the quintessence field. Consequently,
for quintessence with perturbations, homogeneous quintessence (without perturba-
tions), and A quintessence should be very similar. This is indeed borne out by exact

numerical calculations shown in Figure 4.6.
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Figure 4.6: Evolution of short wavelength (k = 20) the gravitational potential ®
for @, = 0.7 for dynamical quintessence with and without perturbations and A
quintessence

We have so far established that differences between quintessence with pertur-
bations on the one hand, and homogeneous quintessence and A quintessence on
the other, manifest themselves only for gravitational perturbations at long wave-
lengths. We may now turn to central result of this thesis, the comparison of the
CMB anisotropy spectra for quintessence like scalar fields with evolving inhomo-
geneities, quintessence like scalar fields without inhomogeneities and the benchmark
A quintessence. Our numerical calculations of the large-angle (low [) multipoles, us-
ing the exact expressions for the Sachs-Wolfe effect (4.11) and for the value Qg = 0.7
are shown in Figure 4.7.

We observe that the CMB spectra for quintessence with inhomogeneities varies
markedly from that of homogeneous quintessence at low . At high values of I, the
CMB spectra for both cases merge and become indistinguishable. This may be ex-
plained as follows. As we had established earlier in this chapter, the {** multipole
C) is most sensitive to the gravitational potential with wavenumbers k ~ /2. Con-
sequently, the lowest multipoles reflect the low k or long wavelength modes in ®.
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Figure 4.7: CMB spectra of Lambda term, scalar field quintessence with and without
perturbations

Correspondingly, the higher multipoles reflect the high k or short wavelength modes
in ®. Earlier in this section, using both numerical illustrations and analytical re-
sults, we had observed that only the gravitational perturbations at long wavelengths
(low k) are affected by evolving perturbations in the scalar field. It follows then,
that only large angle multipoles Cj, for low values of 1, should differ when evolving
perturbations are considered in quintessence, as observed in the comparative plot of
the angular spectra in Figure 4.7.

The existence of a measurable effect on large-angle CMB anisotropy is very im-
portant for the prospect of restricting the choice of quintessence models observation-
ally. In future work we plan to compare the predictions of the models with different
potentials and/ or kinetic terms (the last class may lead to qualitatively different
results) and compare these predictions with state of the art CMB observations using

full-scale statistical analysis.
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Chapter 5

Conclusions

5.1 Conclusions

This thesis considers the effect of quintessence scalar fields in large-scale (low [) CMB
anisotropies. Particular emphasis is paid to the fact that a realistic quintessence
scalar field should, to some extent, have evolving inhomogeneities. The develop-
ment of the thesis has been as follows. Chapter 1 contains a brief introduction
to the subject of quintessence. Therein, the idea of quintessence and its relevance
to modern cosmology are introduced without any formalism. The formalism nec-
essary, that of linearized Einstein equations and the other equations which govern
the perturbation variables are given in Chapter 2, together with exact numerical
solutions to these equations. Example numerical simulations are used to illustrate
the acceleration in the expansion in the universe caused by quintessence. A few im-
portant properties of the inverse power law potential governing the scalar field are
also outlined in this chapter. The ‘tracking’ property, whereby the energy density
of the quintessence largely tracks the dominant constituent at various cosmological
eras, and the existence of ‘attractor’ like solutions for the background scalar field
are outlined with numerical simulations and analytical arguments. These proper-
ties make the inverse power law model for quintessence robust to a wide range of
initial conditions, thereby alleviating the need to fine-tune conditions to get the
desired observables. Analytical solutions to these equations in a few limiting cases
are given in Chapter 3. These include the zero mode of the gravitational potential
®, its dominant modes during the radiation and matter dominated stages and the

inhomogeneities of the scalar field during these stages.
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The theory of large scale anisotropies and the statistical technique used to anal-
yse these anisotropies of the CMB are developed in Chapter 4. The differences
between the exact expression for the generation of temperature fluctuations in the
CMB, and a popular approximation to it widely used in literature are highlighted.
Semi-analytical expressions for the resulting differences between the angular multi-
poles in these two cases are also derived. The benchmark case of a purely matter
dominated universe is then used to validate numerical results obtained for CMB
power spectra.

Later in Chapter 4, we turn to the main topic of the thesis, namely, the ef-
fect of the Lambda term or A quintessence and dynamical quintessence with and
without inhomogeneities on CMB anisotropies. We establish that the existence of
inhomogeneities in the scalar field affects the gravitational potential only at long
wavelengths. Therefore, the existence of inhomogeneities in the scalar field affects
the large-angle multipoles in the CMB spectra, as verifed by numerical calculations.
This opens possibilities to place constraints on possible quintessence medels from
modern CMB observations.

Our research can, and should be extended in the following directions:

Currently, only adiabatic perturbations have been considered. Since we have
three primary components for the energy content of the universe, radiation, pres-
sureless matter and quintessence, we must consider the evolution of the two other,
isocurvature modes of perturbations, which keep the total energy unperturbed. For,
a general perturbation shall be the sum of these three types of perturbation. The
well-known isocurvature mode which corresponds to relative perturbations in en-
ergy densities of radiation and matter in the early Universe has been studied in
the literature (e.g., see [23]). The 2" isocurvature component, which appears due
to introduction of new dynamical degrees of freedom in the form of a scalar field,
its evolution during various cosmological stages, and its effect on the CMB spectra
require new investigation.

Results for the background scalar field, its evolving perturbations and the gravi-
tational potential have been derived assuming an inverse power law potential for the
background scalar field. Such a potential has been considered because it exhibits
the ‘tracking’ property. We believe our results will generally hold for a wide class
of quintessence potentials with ‘tracking’ properties. However, this deserves closer
scrutiny. Also, we plan to analyse the theories with modified kinetic terms.
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Appendix A

A.1 Background affine connections in conformal time

As a prelude to computing the perturbation to the Einstein or Ricci tensors, we

must first compute the affine connections for our background metric
ds? = a®(n) ((f?72 - 7ikdzidzk) (A1)

For A = 0 (corresponding to conformal time),

I

P?w l Ok [agnu + agnu _ aguu] ’

2 Ozt Ozv  Ozx*
_ 1 g0 9g0v agOp B!];w
T2 ozt = Oxv Bzo]' (4.2)
For p =0,
1 dg
o _ 1 g0[900 .
Lo, = 39 [W}. (A.3)
For (p,v) = (0,0),
1 00900
0 00
o = 39 e
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= (A.4)
For (u,v) = (0,1),
Y. = 0. (A.5)
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For (p,v) = (i, J),
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For v =k,

1

We also define

78
a .
= 35]'- (A.13)
1 oin [&%L Ogxj agjk]
2 ori ~ dzF Oz~
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2° Yog7 T Bzk  Bat
L [%s oy _ m]
2 ori ~ 9zk ot |’
T (A.14)
I, = T,,
!
Iy = 4>,
~(l
r; = Ik, (A.15)

A.2 Elements of the Ricci tensor in FRW spacetimes

The Ricci tensor is defined as follows

i %I;:% - %%E + Dialax = Tinlon (A.16)
For (p, k) = (0,0),
Ry = % %FOA“ + T80 - Ty,
- % %P%O +T03T0 + Toal = ToTo,
- %1;_8 - ?92%0 TG00 + Tb;Th — ThoTo,
= %(47{) - a%” +H? + HIHS! — 432,
= 3H'. (A17)
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For (ua’("’) = (iaj)a

ar; ary
Rij = o= +TOl5; - =TT,

r, ory ork
- Ty Ty — + Tlg; + TRy — TiTo - [T,
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81~“i BFfJ =k 0 d[\O
= 3 ok + T, F’"F + TS, +I‘ I‘0]+I‘ =T - 610
= Bij + [HryicHOS + MO Hoyjm — Hog(4) = Wy |
= Ry- [H’+2’H2] i - (A.18)
For maximally symmetric spaces, the spatial curvature tensor is given by
Ry = -2Kvy;. (A.19)
We then get
Ry = —[H +2H2+2K] ;. (A.20)
A.3 Perturbations in the affine connections
For A =0,
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- 5, (A.23)
For (p,v) = (4, 7),
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i i & )
0% 20T, + 29 [( 20) <dz1 + ol 3.%’“)
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~2 (D gkt + D ugr; + Pk gjl)] :
= 20T} - 20T,
- (‘I’,J‘ézi +® 6% - q’,kgikgjz) ;

= - (q’,jéf +@,6% - gik‘l’,kgﬂ) . (A.29)
A.4 Perturbations in the Ricci tensor
For (p,v) = (0,0) we get
8Roo = (6T%3)i0 — (6T0)ia - (A.30)

We evaluate the first and second terms, which we call Ty and Ty, separately.

A(or)
a(ar

= —59?[22 d P805F0 )

al

= —2@” + E(Z‘I)’) .

d(oT)
T, = —(az—g") —~ Tg\0T 3 — D54dT05 + T 0T5,

(8T 50)

=~ — 20a0T5s + Tl

We call the successive terms in the above expression T9; 2793 and evaluate them

separately.
_ 9(dTg)
T21 = 6.’[7>‘ ) |
_ 0eTG) | 9(6Tfy)
0z ozt
= @H"f"')’ij@yi,j.

Ty = 200,003,
= 2[F8)‘6I‘(}0+I‘6,\6I‘§;],
(l, al . J
- 2[3@’+35;r0i} ,

al

/
= 2 [‘icb’ —3~<1>’] ,
a a
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/
4%
a
255615 ,

ey
a

Now summing them up, we have,

T

This then gives us

dRgo

Similarly, for (1, v) = (4,0),

Top =T + T3
.. !
" + 490, +828
a

!
~36" — V26 — 6=,
a

SRip = (1)) — (6T)ar-

Proceeding similarly as before, we call the first and second terms T3 » respectively.
They are evaluated separately.

T = % T4,
= %(—2@#) ~ThaT),
_ a%(—z@,i) - %om,
= -2 + 29:@,1"
! a
T, = 63(;_30) =T8Ty = TRodTls + Tl

The successive terms

Ty

are called To; 22,23 24

A(T)
drr '
a(oT)

, 20TS)

9z

q),' - _(@’6;‘3) )

32

azk
0
Oz
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= 0.
56T ,

[ \3Tgp + Ff,\(SFI':o] ;
MWWWM%+WW :

T

[%’Yil (V@ 1) + — 5k¢)k+r( ‘1’51)J
{a

228, 3
i+ T 5:&} ,

al
{2;‘1”1' - @‘Tik} .
Since for a flat spacetime we have T% = T'% = 0, the above equation simplifies to
a’
Ty = 2-—(1)71' .
a
The remaining terms are given by

Ty = T €A5F?ﬁ’
= (5[‘1,3 + FOZ(SFI,B s

- ;qa,”u 551“5],

al I

= 2o, 1% (-39,
a a

!
= 2%,
Q
T = T}0Th,
= F 5P0+PM(5F

Since I'y = %’ and for spatially flat universes I'; = 0 we have,
!
a
Tos =4—0,; .
a

Summing these pieces, we get
!

T2 = 4_0_’_¢,i .
a
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This gives us
!
SRy = — (2(1)’ + 2“-@) i
a
For (u,v) = (i,5),

SRi; = (6T}))y — (0T}

Proceeding in exactly the same manner, with all terms being defined analogously,

a(drA)
T = ﬁ—rgérgk,

= =20~ F?j(?l"é,\ (inflatspace)

al
= 2—7;0' - 29,
a

a(aT
T, = (awf) — T8}, — T§ 60 + Thor%
a(eT})
Ty = aill’\J )
. B(eTY) - oeTY)
T

= —[4(HE + HD) + 8"y — 2255 - 9D 4g5]
= _ [4 (HO' +H'D) + 0" — V20| ;5 — 205,
T = THoTY;,
= [rhary; +Thar}]
= [rhary; + Thary)] ,
=~ (2HO' +4H?®) 7y,
Ty = D500},
= T};6T% + 14,005,
= Ip;0T% +Th;0Ty,
= — (2H + 430) v,
Ty = THors,
= T0OTY +Thors,
= - (16H?® +4H®') ;.
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Summing them up for Ty, we get

Ty Ty —To9 — Tpa + Ty,

— [4 (30 + HO' + 2H20) + 0" - V20 7 - 20

i

Then, we get

GRij = [<1>" - V20 + 6HO' +4 (H + 2}12) q>} Y- (A.31)

A.5 The perturbed Einstein tensor
The perturbed Einstein tensor is given by
1
G = 3Ry, — 3 (0 Rpo) gl + 6 Bow = 5 (0P Rl ol (A2

We may call the sum of the first and second terms Ti, and the sum of the last two
terms into T5. For convenience, we evaluate them separately and then sum them

up. 73 may be simplified using the identity

1 [4®@ 0
5977 = - +2BgP7
I aQ(n)[ 0 o} !
= —43g%0ghgt + 20g"° . (A.33)

For (u,v) = (0,0), this gives us

1
Ty = g™ By - 5 (~499"ghe5 +229” ) Byo
= —20¢9" Ry + 289" Roo — @™ R,y ,

= -OR,
6 (H' +H?)

a2

-9 (A.34)

Now,

1 .
8G9 ¢8Ry - 5(90051%00 +¢96R;) + Ty,
1 ..
= 5(90051{00 - gYéR;;) + 1o,
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1 '+ H?
= — [4v2<1> — 12H®' - 12(H' + 27{2)<1>] + 60 (# +H7)

2a2
2
a?

a? ’

[v2<1> ~3H (@' + H@)} : (A.35)

For (i, v) = (0,4), since the elements g7 are zero, the expression for 6GY simplifies

to

6G? = g™3Ry +69™ Ry,

= "% Ro; + 39" Ros ,
2
= SHE+],. (A.36)
For (¢,v) = (i, 4),
. . 1 .
865 = g"6Ry; ~ 3 (6™ 0R00 + g™ 5Ruk) g} + Ty (A.37)

Ty can be simplified as follows

i 1 '
Ty = 0g”Ryj~ 5 (50" Rpo) 95

. 1 .
209" Ryj - 5 (-2@900300 +20g" Ry ) g} (A.38)

When ¢ # j all elements in te above expression are evidently zero. For i = j, we
can use the identity
. 1.
g'Ry; = ggﬂng‘ , (A.39)

to get
1
L = ‘I’<900R00—§glkb’«tk>,
4, 1
- (i la),
20/,
- a—'z(% - (A.40)

Now, we proceed to evaluate T) which is given by

. 1 ] «
T = g”éle -3 (g005R00 + g”‘(sRi;;) g; - (A.41)
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For 7 # j, all terms are obviously zero. For ¢ = j, the first term can be simplified
using (A.39) to give
1 1 ;
= '3-glk5Rzk -5 (9005300 + glkfmuc) 9

2

1 4 1
- 1 2
59 0Roo 59 Ry,

1 1 %
= —ﬁcsRoo—ggﬂ 0Ry

- 2 [+ 310 + (3 + 2%%) @] . (A.42)

a?
Combining the expressions for T} and 75 we get

2

6G} =~ (@ + 318" + (20 + H?) J (A.43)

A.6 Conservation of energy in conformal time
The energy-momentum tensor T for a perfect fluid is given by
™ = (p+ p)U*U” - pg"” . (A.44)
Therefore, vanishing covariant divergence T+*., = 0 implies (¢g",, = 0)
(p+ ) U*U” + (p + p)(UHU") —p g = 0. (A.45)

We may call the terms in the above expression T2 3 respectively. We calculate the
perturbations in these terms separately and then sum them up. The unperturbed
four-velocity components are given by Uy = a, U% = 1/a, U; =U ¢ = (. Therefore,

8Ty = (Sp+6p) UPUY + (p+ p) . (U*SUY + 6UU"),
6Ty = (bp+3p) (UMU),, + (p+p)0 [(UHD"),,]

6Ty = dpug" +puLogh . (A.46)
For 1 =0,
1 29
0Ty = (dp+ 5/’)';2' -(p+ P)'Eg‘ , (A.47)
0T = (6p+5p)(U0U");,, + (P‘f‘ﬁ),ufs(UOUU);u-
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For convenience, we call the two terms in the above expression §T5; and 6Ty re-
spectively. Applying (2.66), the first term becomes

!

5Ty = 3%(6}7 +4p).

Evaluating the second term is a bit more tedious.

0Tee = S(UMUY),,
= SUBUY + ULSUY + SURUY, + U"SUY, + ST U*U*
HT\SUFUA + TWUHSU + 6T, UMY

+Th SUAUY + T4 UAUY .
For u =0,
6Ty = SUYU+ U0 +6U°U" + U° (60 + U%) + 66U
+Tp0U0° + (ToU%0U° + T,UUY) + 6T, U°U°,
+2 (T§dU"U° + r%u%sUt) .
Substituting I'y) = 0, I; = 0 and regrouping all terms, we get
0Ty = 2W°8UY +20Y60° + UOV,U* + (8T + T8, ) U°U° + 2 (To + Ty ) 6U°U°,
2 o 0 s77i ! a 2
= E(—@/a) —2a—2(—tI>/a) +UV;6U" + (_@’)P +10;(—(I>/a ),

o ®d 1_
= =3 —6—5 + -VidU'.
a a a

Summing §T5; and §T59, we then have

3a’ ® dd 1 :
(5T2 = (5]) + (5p) ?; + (P + p) (—30._2 - 67 + EVZ(sUl) . (A48)

The third term 673, for p = 0, simplifies to

20
a?’

1
6T3 = Jp'—&i —p (A.49)

Combining three terms in
8T + 6Ty — 6T3 =0,
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and rearranging terms, gives us
;3 , ; . 3a
6 + (80 +p) = (p+p) (32 - aviU ) +22 |0 + —(p+p)].

The coefficient of @ (i.e. the term in brackets on the right hand side) vanishes due

to conservation of energy. This leaves us

!
o'+ %(ép +dp) = (p+p) (30' - aVidU") . (4.50)

A.7 Conservation of momentum in conformal time

For yu = 1, vanishing covariant divergence T%., = 0 of the energy-momentum tensor

implies
(p+p) yUUVY + (p+p)(U'T")y — prg” =0. (A.51)

We again call the successive terms 772 3. As before, we compute the perturbations
in these terms separately and then sum them up. The perturbation to the first term

is given by
STy = (0p+0p) UUY + (p+ ), (USUY + 8U'UY). (A.52)

Since the spatial components U? are zero in any comoving reference frame, the above

expression simplifies to

oUt
N = (p P)'—; : (A.53)
The perturbation to Ty can be written as
0T, = (8p+6p)({U'U")w + (p+ p)S(UUY),, . (A.54)

Since U* = 0, the first term drops out. For the second term, we shall first evaluate

SUUY), = SULUY +ULSUY + 8U'UY, + USUY, + sTAUU?
408U + TWULU + 6T, UAUY
4%, 60U + T4, UASUY . (A.55)
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All terms containing U; and its derivatives drop off and since I'y, = 0, we get the
following, much simplified expression

§UT), = UMDY +6U'UY +TodU'U + 6ThUUC + 20,607 U0,

GJU"’ + 5%6Ui + &1—27’7‘@,]-) .
Substituting in (A.54), we get
6Ty = (p+ p) (LsUi’ + 52;6Ui + iﬂif@,j) . (A.56)
a a a y
The third term is given by
§T3 = 6pug™ +puog™ .

Since the pressure defined on the unperturbed manifold has only zero spatial deriva-
tives, p; = 0, the above expression simplifies to

0P 4
Ty = — 0010
0 3 a2 v
Combining these three terms as in
0N + 6Ty — 6153 =0

we get, after using the background equation of motion

8U' i

SU o U
+p'— ==[(p+)®;+dp,] 1—2 ~ (A-57)

(p+p) ——+2——

A shorter form is obtained if use covariant spatial components of four-velocity, U* =
—l/aQ'yijUj, §Ut = —1/a2fyij5Uj,

sU; - 8U; i
{(Mp) —L 4+ } 7—2 =-[p+p)2;+dp; 1—2 (A.58)
which gives [
op
U+ LU, = {@ + Pg } A.59
U] p+p 7~ a] +,0 ( )
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A.8 Perturbing the Klein-Gordon equation

A perturbation of the Klein-Gordon equation has the form

5 (9°0) +8 (V) =0 (A.60)
We start with
. by
5 () = 0 ;"a + 0T + Tobp® . (A.61)

We again call these terms T 2 3 respectively. The first term is given by

d6p? dbprt
T —_—
0z0 Ozt
1 L G
= |tes -20p)] - T
= i&”—z‘i'a'—m ”—2“—/'— U s s A.62
= — |0p ¢ (o 0) =780, - (A.62)
a e a
The second term is evaluated as follows
T2 = I‘a&p’aa
= FOJ‘P’O,
4a’
= = [0¢" —20¢] . (A.63)
And the third term
T3 = Jl"a(pva’
= Top”,
29",
= - (A.64)
When we sum them up, we obtain
6 (v, )=i [‘590"+2a—’5so’~2<1>(s0"+29—’90')—4<I>’so’—V2580 . (A6Y)
i@ a? a a
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Simplifying the coefficient of @ using the unperturbed equation we finally obtain
Klein-Gordon equation in the first order

1 '
E-@W+2%ﬁ¢+2®ﬁq¢—4@¢h-v%¢-+Kwﬁ¢=o. (A.66)

A.9 Initial conditions

We may begin by restating a few necessary equations in terms of ag and 79 defined
in Chapter 2. The time-time linearized Einstein equation is given by

a_, [(d\° k2 ay adn}
23 = - = 2— ——=0,. .
2 (a) 2-70 = 22,4+ 00y, (A.67)
The other equations for the variables 6,0, Vm, v, remain unmodified and are as
follows
& = 30 — kv, (A.68)
4
& = 4@“—§k%», (A.69)
! al
Uy = @—Evm, (A.70)
1
v = 2+ 76 (A.71)

The space-time part of the perturbed Einstein equations states
! a 2a3n2
V2o = 620y, + 0Ny, (A.72)
a a a

In order to determine the initial values of the functions @, ém,, &y, v, vr asn — 0,

we must Taylor expand a few functions in series of /ng. Since we have a = apn(y +

2
e _ ! 1+~77——<1)
a n| Tm \m
I\ 2 2
1
(&) = et (2)
a n Mo Mo

@ _ 1 1_l+(1>2‘
a Mo T \7o ’

no) and @’ = ag(2n + n0), we get

!
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2 2
1
(99) - _[1_2£+3<1) (A.73)
a Mo o o
Now, if we substitute the following formulae
q) = @Hnn ,
6r = 6;1 n,
bm = oy,
o= v,
Un = vy, (A.74)

where repeated indices denote summation, into the above equations, we get the

following from (A.67),

1
-0 = 552,
2 2 1 1
—20! - 290 = g0 4 gl — 80
10 w27
k? 3 1 2 2 1 1 3
90307 - 2o+ 00 = 6l — S0 4o gl 2 50A.
3 ’ o +7I§ n " ond m* 3% o’+2n§ AAT3)
Similarly, from (A.68), we get
8L+ k20 = 38!,
202, + kvl = 682, (A.76)
From (A.69), we get
1 4 2,0 1
Jr +§k U, = 49 )
252+§-k2u} = 8¢2. (A7)
From (A.70), we get
vy, = 0,
wl = o0
1
302, + n_o”’ln = ¢!, (A.78)
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From (A.71), we get

22 = %&+¢R (A.79)
From (A.72), we get
W o= 0,
by = n%vgn + 20} ~ :—va,
20! + —nl;tbo = n%v,ln - %vfn + 202 — Y;iouﬁ + %v? ,
3@+%@—%@=:%@—%%+M—%ﬁ+%ﬁ.(Aw

We may define two convenient initial values as follows

c, = &%,
Cs 8~ 0. (A.81)

In terms of these constants, we get for the first set of coefficients,

8 = -201,

1
'U;n = 5013

1
1 e —
v, = 201,
q)O = Cla

3

8 = Cy = 5C1. (A.82)

In terms of these constants, we get for the second set of coefficients,

(5; = ——1 (Cl + 202),
o

1 2

2 _ z

Uy, = 4?70(01 + 302),
1

2 _ — e

v = 4WWHQ@%
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1

o = ——(C1+20y),
4770( 1 2)

o= S (ci420). (A.83)
4mo

In terms of these constants, we get for the third set of coefficients,

53 = 2(01-}-202)———]{: Ci,
Mo
3 8 1
3 _ ° - 12
W = 103 (01 +20y) - 512G,
o - é’ (€1 +20) = 3K,
2 = 2—7(0 +20)—~k201 (A.84)
T A T '

The above ordinary differential equations (ODEs) have two separate solutions cor-
responding to two different initial conditions, namely, the so-called adiabatic and
isocurvature modes. The generic solution for any wave-number & can, therefore, be

written as the sum of these distinct modes:
f(C1,C) = Axf(C1,Ch) + Bif(CY,C3) (A.85)

For the adiabatic mode we may take C) = 0 and C] = 10/9. This satisfies the
condition for adiabaticity which states d,, = %(5,. For the isocurvature mode we

may take C§ = —5 and C} = 0 which satisfies the condition dpp, = —dp;.

A.10 Zero mode of & (k=0)

The solutions (3.28) may be used to eliminate terms with 4% and &' from (3.25) to
get

2 2,,2
z [6991),,1 +2@%T] - [6“—- a”"" o+ +39-°—Z—} ®).  (A.86)
a a a a a 13

Using (A.70) and (A.71) to eliminate the terms with v, and vy, we finally arrive
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at an ODE purely in terms of the gravitational potential, which is given by

o'+

d ay  a3n} ap ., asn’
E“FG;}"{'Z'&?— = 9;4‘3%’* by (A87)

This equation may be further simplified, using (3.3) and (3.4), to get

3 1 34+ 3me+ 12 | .
]:3[77” Mot | g (A.88)

'+ @ [—3— +
(n + no)(2n + 1p)

non+m n+m/2

This equation can be easily solved. The solution is given in the main text by the
formula (3.32).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



