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Abstract

A\ stereo vision system was developed to automatically track the three dimensional
(3D) motion of artificial markers which were rigidly attached to vertebrae during the
surgical correction of scoliosis. The trajectory of these markers can be interpreted in
terms of the 3D dynamic configuration of the spine to provide visual and quantitative
feedback for different stages of surgery.

Development addressed all issues of the feature-based stereo-vision paradigm. Im-
ages were enhanced. Peature detection was implemented as a template-matching
problem with multiple templates. Similarity measures were analyzed for correlation
of gray level and edge images. Correspondence used scene and system constraints to
register features extracted from the stereo-images. Triad-markers were identified in
the reconstructed 3D feature space by model-matching. Experiments and results are

provided with operating room image data for all the work presented.
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1 Introduction

Appearances to the mind are of four kinds.
Things either are what they appear to be;
or they neither are, nor appear to be;

or they are, and do not appear to be;

or they are not, and yet appear to be.

Rightly to aim in all these cases is the wise main's task.

Discourses, Book 1. Chapter 27,

Epictetus ¢.50-120

Scoliosis [67] is a deformity of the spine. Scoliotic patients have spines with anoma-
lous curvature profiles and abnormally rotated vertebrae. Surgery is used to correct
extreme. progressive deformities. A system has been developed for the three dimen-

sional measurement of corrections made during scoliosis surgery.

1.1 Purpose

This work describes the research and development of a computer vision system to
intraoperatively monitor scoliosis surgery. The system was used to make automatic
three-dimensional measurements on the displacements and derotations of vertebrae
during surgical correction of scoliosis. It can be used tc provide surgeons with real-
time feedback regarding the changes they are affecting to the spine. It can be used as a
tool for monitoring, visualization (using 3D graphical models), assessment, planning,
and recording different stages of surgery. Also, unlike other measurement alternatives

like radiography, such a system will not pose any radiation hazards.

1.2 Motivation

Traditionally, posterior-anterior (PA) and lateral radiographs have been used for the

assessment of three dimensional deformity in scoliosis. Surgical correction is also



assessed using pre- and post-operative x-ray pairs. This method presents several dif-
ficulties. The post-operative spine is fastened to surgically implanted stainless steel
instrumentation. This instrumentation obstructs varions landmarks and features on
the spine, preventing any measurements which rely on these landmarks. Standard
measures, such as the Cobb angle [13]. are essentially two dimensional and do not
provide reliable three dimensional information [41]. The use of two dimensional ra-
diographs to visualize three dimensional scenes can be conceptnally difficult. As
radiographs prove to be an inadequate tool for studying the 3D spatial curvature and
rotation of the spine. researchers have been investigating alternative methods [34, 61].

Computer vision was investigated as an alternative to radiographs. It was be-
licved that a vision system based on calibrated stereo-cameras can be used to provide
safe. accurate and non-invasive three dimensional information in near real-time. The
challenge in this approach lay in the automatic processing of the surgical field-of-view
(FOV). As the surgical FOV presents a complex scene. one which is bevond the scope
of current computer vicion theoryv. artificial markers were rigidly mounted on verte-
brae. The problem was thus altered to the 3D monitoring of these mounted markers.
Becanse these markers conformed to an a priori model, thev could be reconstructed
in three dimensional space. The location and attitude of the markers will be used
to three dimensionally model the configuration of the spine and infer the motion of

vertebrae to which markers are attached.

1.3 Overview

The computer vision approach presents a number of interesting problems. The design
and development of the system was based on photogrammetric principles, image
processing, and computer vision techniques. Also, there were considerations due
to the fact that the system was to function in the operating room. These and other
issues are dealt with in the following chapters.

Chapter 2 provides information on the operating room (OR) problem and the

research background on which this work is based. Literature from various fields

applicable to this project is discussed. A system description is also provided.

o



Chapter 3 describes the stereo-camera geometry used to make zccurate three
dimensional (3D) measurements. It deals with the photogrammetric basis and ter-
minology used during the calibration of the stereo-cameras. Typical calibration and
reconstruction results are also presented.

Chapter 4 presents the low level image processing research and implementation
for feature detection in OR images. Feature extraction is the phase concerned with
the location of artificially planted markers (features) in stereo-images.

Chapter 5 deals with higher level vision processes developed for correspondence
of image feature sets between stereo-images. These feature sets were returned by the
detection routines of chapter 4. Reconstruction of features with their candidates and
consequent model-related inferences in three dimensional space are also covered as
part of the correspondence process.

Chapter 6 is a description of the visualization part of the project. Radiographs
(x-rays) and camera data were made compatible so that position and orientation
changes recorded by the stereo-canieras may be represented in the radiograph frame
of reference and portrayed graphically.

Chapter 7 reviews the work done and results obtained. Future work is proposed
based on personal experience with the project and its limitations. The thesis closes
with conclusions about the project and its potential benefits.

The appendices contain a mathematical formulation, system specifications, and

the software model of the systern. Documented system software was written in C

language on an IBM RS/6000.



2 Background

This chapter introduces the medical background for the technical work descriced in
this thesis. Scoliosis is introduced with some methods of treatment. The need for
intraoperative monitoring and the use of stereo-vision for this purpose are justified.

An overview of the system and its components i; also provided.

2.1 Scoliosis

Scoliosis [67] is characterized by abucrinal curvature and axial rotation of the spine
(fig. 2.1). The most common form of scoliosis is idiopathic scoliosis, meaning “spinal
curvature without a cause’. It is believed [31] that 2-1% of the population have
scoliosis curves of at least 10 degrees. and that 0.1-0.3% of children have curvatures
greater than 20 degrees. In adolescents. scoliosis can progress at an alarming rate and
have severe effects on the cosmesis of the individual. These cosmetic "defects’ include
unlevel scapula (shoulders) and hips, a prominent shoulder blade or breast. and poor
posture. In those with severe deformities. scoliosis causes fatigue and decreased lung
function.

Few measures exist to quantify the degree of deformity or rotation of the scoliotic
spine. The Cobb argle (fig. 2.2), which is the angle subtended by the normals to the
points of inflexion (maximum curvature) in the spinal midline, is the most popular
measure [3, 15]. However, as scoliotic deformity is three dimensional. the Cobb angle
alone does not convey complete information about the deformity. The tools most
extensively used to visualize deformity are stereo-radiographs (x-rays). The posterior-
anterior (PA) and lateral (LAT) radiographs (fig. 2.2) are commonly used to assess
deformity, make measurements, plan, and evaluate surgeries {21, 40].

In spite of over a century of research, little is known about idiopathic scoliosis.
Consequently, there are no preventive measures to avoid it. Various means of treat-
ment of children with scoliosis have evolved though. These consist of bracing, casting,
and corrective surgery [25]. The quantitative 3D correction of the spine affected by

each of these methods is still largely unestablished. Surgery is only used on extreme



Figure 2.1: ‘Normal’ Back Surface and ‘Scoliotic’ Back Surface. Courtesy: Rehab.
Tech., Glenrose Hospilal.

Figure 2.2: Posterior-Anterior (PA) and lateral (LAT) radiographs. Cobb anglvs
are marked on the PA radiograph. Courtesy: Rehab. Tech., Glenrose Hospital.



curvatures, generaily characterized by Cobb angles > 50° [21]. It is invasive and
involves the rigid attachment of instrumentation to the spine (fig. 2.3). Appropriate
corrective distractive and rotational inrces are then applied to the instrumentation
to force the spine to attain an improved shape. Advocates of some forms of instru-
mentation like the Cotrel-Dubousset (CD) believe that correction is mainly the result
of the rotation of vertebrae during instrumentation derotaticnal maneuvers [48, 67].
Others, believe in Harrington maneuvers which involve applying stretching or distrac-
tive forces to straighten the spine [48]. Currently. it is unclear which philosophy of
correction is optimal - distractive or derotative (fig. 2.4 shows a derotative surgery).
This ambiguity arises because the conventional tool for scoliosis measurements, ra-
diographs, are not reliable. accurate. or convenient for intraoperative assessment of

3D correction. However. other than radiographs. there are no widely used tools for

this purpose.

2.2 Intraoperative Monitoring

Measurements on the scoliotic spine are usually based on radiographs. Though radio-
graphs are ubiquitous, they present many limitations. The procedure for radiograph
measurements is cumbersome. [t involves the manual detection of vertebral land-
marks and features on radiographs. As radiographs do not produce clear images of
vertebrae, the positions of these landmarks are ambignous and consequently, mea-
surements made are prone to errors. The facs that radiographs are non-uniformly
distorted also leads to errors in reconstruction of otherwise legitimately identified
landmarks. [: is even more difficult to make measurements on a spine with instru-
mentation attached because much of the tepclogy of the vertebrae is obscured by
the instrumernation. Also. as measurements are only possible manually and are time
consuming, it is not dossible to obtain results during surgery. These reasons have
caused the investigation of other methods for three dimensional measurements on the
spine.

Intraoperative measurements on the spine allow surgeons to closely monitor and

record tne corrections they make. If accurate and quantitative, intraoperative mea-

6



Figure 2.3: Attachment of the instrumentation rod to the spinal column in a CD
surgery. The rod is shaped like the desired spine after dervotation. (Courtesy of J.B.
Lippencott Inc.)



surements could be used to determine the correction obtained during each surgical
stage. The relative merits of distraction and derotation could then be investigated.
The following characteristics of an intraoperative measurement tool for scoliosis were

established:
e it must satisfy all operating rooin constraints of safety and sterility,

e it should be non-invasive. convenient to use, and transparent to surgical proce-

dure,

e it should make automatic on-line measurements and provide easily interpreted

results in near real-time.

e it should make accurate measurements in three dimensions (approx. 1-2 mm

and 1°),

it should have the capability to record and present visual results.

Preliminary research in this area has been condncted by Labelle [34] and Tread-
well [61]. Labelle et. al. used an electromagnetic digitizer to make measurements
on previously drilled sites. This involved preparatiun +f the spinal column and the
drilling of holes at characteristic sites for the digitizer. This approach is manual and
violates the non-invasive requirement of the ideal tool. Other problems [34] include
errors due to breathing of the patient during digitization and interference of metallic
objects with the electromagnetic fields used by sensors. A one-shot measurement pro-
cess would be more accurate and less distracting to surgeons. Treadwell et. al. used
traditional surveying techniques with fixed single lens reflex (SLR) cameras. Mea-
surement was an off-line process since photographs had to be manually processed;
results from photographs were available only after s:irgery . This violated the ideal
tool requirement of on-line measurements. Such a method is not suitable for real-time
monitoring of correction during surgery. Like radiographs, the manual digitization of
photographs leaves this method open to errors of judgement.

A new approach which satisfied all the requirements of an intraoperative mea-

surement tool has been implemented. The approach consisted of using calibrated

8



Figure 2.4: Correction of Scoliosis by a derotational mancuver [34] in a CD instru-
mentation case. (Courtesy of J.B. Lippencott Inc.)

sterco-cameras with a digitizer and computer to take intraoperative images during
surgery and automatically reconstruct a model of the spine. Reconstruction nsed
camcra parameters and returned three dimensional position and orientation informa-

tion about vertebrae. The technical components of the system are dealt with in the

next section.

2.3 Stereo-vision and the OR

The implementation of a sterco-vision system to record imtraoperative measurements
involved the integration of mechanical design, photogrammetry principles, computer

vision and image processing, heuristics, and visualization. In addition, the operating
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room environment placed several constraints on the svstem.

A functional overview of the svstemn and its components is presented here using
the system model (fig. 2.5). The complexity of the surgical FOV was reduced by
attaching triad-markers (fig. -1.1) on selected vertebrae. The objective of the image
processing and vision algorithms was to automatically locate and orient these markers
which represent the vertebrae to which they are attached. The development of cach

component for the OR-system is briefly discussed in the following subsections.

2.3.1 Image Acquisition

Machine vision systems [12] use fixed cameras to monitor objects of interest. How-

ever, in the OR, this proposition could not be applied as the height at which the
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triad-markers would reside varied with the heieht of the surgery-bed. Surgeons were
opposed to attaching cameras to improvised OR bed posts as they would prove incon-
venient to the support stafl in the OR. A mobile platform with a mounted sterco-rig,
computer, digitizer and monitor (fig. 2.6) was chosen to be the most flexible approach
to image acquisition.

Although the mobile platform did not provide a fixed frame of reference, all mea-
surements of triad-markers were taken relative to a reference triad. The referenee
was placed on a vertebrac whose position was expected to be least modified during
surgery. Reconstruction results of triad-markers were used relative to this reference
triad. This feature allowed comparison « ¢ vetebrac hetween different stages of surgery.
Clinically, this feature could be used for the pest-operative assessments of the verte-

bral movements during different stages of surgery.

Figure 2.6: Mobile platform with sterco-rig, computer, digitizer, and monilor.
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2.3.2 Photogrammetry

Photogrammetric concepts were used to derive an optimal stereo-camera geometry
for the system and to establish the calibration parameters of the cameras. There are
13 parameters for each camera, 3 for position, 3 for orientation. 1 for focal length,
2 for principal center coordinates, and 4 for lens distortion. A survey of calibration
methods [9] was conducted to choose a suitable method to compute these parameters.
The objective was to identify the most accurate method for the calibration of off-the-
shelf (non-metric) CCD cameras for the stereo-camera geometry chosen for the OR.

An approach, based on the classical photogrammetry collinearity condition [51].
was chosen as the accuracy of this method was excellent (better than 1/700 for the
range specified for the OR) and the software and expertise were readily available.

Simulations were conducted with the proposed camera geometry to design a control

field.

2.3.3 Image Processing and Computer Vision

The operating room (OR) is an unconventional place to apply stereo-vision. Images
of surgical fields-of-view (FO\V's) were complex when considered for automated analy-
sis. There were few well defined features, the images had regions with high intensities
and low entropies (the surgical drape) as well as regions with low intensities and high
entropies (surgical FOV). There were imaging problems due to glare from blood, body
fluids and instrumentation, and inconsistency in images acquired from one surgery
to another. The largest obstacle was simulation of the surgical field-of-view for ex-
perimentation with lighting, camera apertures, focii etc. As it was not possible to
photometrically model the FOV', all testing involved real surgeries instead of simula-
tions. This meant that experimentation was limited within the contraints of the OR
for brief periods of time when surgery could be suspended.

The acquisition of stereo-images yields two views of the surgical FOV with markers
attached to the spine. Reconstruction in 3D was possible if the location of triad-

components was known in both views. This was done automatically using image



processing and computer vision algorithms. This process is often called the stereo
paradigm [5, 19]. The main stages of the stereo-paradigm. as implemented for the

operating room. are outlined here:

Preprocessing was aimed at transforming raw images into images with character-
istics suitable for processing by latter stages. The transforms included contrast
enhancement, mode filtering. edge sharpening. edge detection. and identifica-

tion of the surgical FOV within raw images.

Feature Detection was responsible {or returning a set of pos-ille locations of ball-
features, the components of triad-markers. in both image~. A correlation-hased
template matching approach was used. An assessment of many correlation

measures was also done.

Feature {'nirespondence was the process of registration of ball-features hetween
stereo-images. It also served to eliminate some false positices from the previons
detection stage. Registration used multiple constraints like disparity and dis-
tance from epipolar segments. The matching algorithm nsed was not designed

to provide unique matches.

Triad Reconstruction was responsible for the calculation of 1riad-marker locaiions
and orientations in 3-space. The marker model was used to configure 3D points

into triads. False triads were eliminated using heuristic rules.

2.3.4 Visualization

Previons research between the University of Alberta and the Glenrose Hospital [63]
has developed a GL-based (Graphics Language) graphics visnalization software to
display a spine model. This was ported to the OpenGL standard and modified for use
with triad-data returned by the camera-system [14]. Triads ma. be attached in any
position and orientation relative to the body vector representative of a vertebra. The
camera system only measures 3D changes in triad-markers. To realistically represent

the spine model and record vertebral changes, triad-marker movements have to be
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translated into the movements of their corresponding vertebrae. This is only possible
if there is some a priori knowledge of the preoperative configuration of the spine,
especially the vertebrae with triad-markers attached. A method selected by Hill and
Raso [56] was used to estimate the initial configuration of the spine. Relating this
information to the preoperative results of triad positions, triad changes could be
translated to vertebral changes. The OpenGL program also has the capab-ility for the

graphical display of the spine using 3D vectors instead of vertebra models.
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3 3D Perception

The essential function of a camera-based 3D measurement system is the accurate re-
construction of 3D object-space coordinates using 2D image coordinates. One method
for 3D perception that is relatively well understood is binocular stereopsis [5] in which
two images recorded from different perspectives are used. Intraoperative monitoring
used stereopsis for the 3D reconstruction of known entities in both views.

This chapter has three sections. The first introduces basic concepts of stereopsis
and cameras. [t also briefly describes the investigation of some approaches to mod-
elling a stereo-camera system. The second section provides the background for the
method used for camera calibration. The last section describes the camera geometry

used and provides results of calibration and reconstruction.

3.1 Concepts and Methods

To realize 3D perception, the transformation from a 3D object-space point to a 2D
image point must be understood. This understanding must be extended to a dual-
camera system to enable the reverse process of 3D reconstruction {from image coordi-
nates. The transformation is based on the modelling of the camera as an instrument
which perspectively projects points onto the image plane [4, pg. 19]. Perspective
projection (fig. 3.1) implies that the image point (PL) is the intersection of the image
plane (I.) with the line (PCp) joining the object-space point (P) to the perspective
center (Cp).

Concepts

The first concept to be developed here deals with a generalized form of 3D to 2D

mapping for a single camera -

e Transform the point from the 3D object-space coordinate system to the 3D cam-

era coordinate system. This involves rotation and translation matrices relating

the two coordinate systems.

o Perspectively project the 3D point onto the image plane. This yields the ideal
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projected image point.

e Make adjustments for lens distortions. sensor diseretization. principal point
(real image center). atmospherie refraction. ete. These are specific to the cam-
era equipment being used and the modelling of this equipment based on the
acenracy required.

Most camera calibration methods caleulate camera parameters based on such a

t
mapping. Their models differ due to the differences in the adjustments that they may

make. Some terminology related to this process is given here:

Coordinate Systems In a sterco-system. 3D points can be described in any one of
three coordinate systems - world (object-space). left-camera. or right-camera.
The origins of these systems are W, (' and Cp in figure 3.1, Transformations

between these coordinate systems are possible if the extrinsic parameters of

both cameras are known.
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Transformation/Perspective Matrix The matrix which maps 3D object-space

points to 2D image points. The exact form will depend on model assumptions.

Extrinsic Parameters The 6 parameters which describe the position (X,Y,Z) and

orientation (w, ¢, k) of a camera.

Intrinsic Parameters Camera parameters depending on the analytical Imodel used
to relate 3D object-space and the camera’s 2D image plane. They vary in
number depending on the assumptions made in the model, usually including
factors for radial lens distortions (K;, K,). decentering lens distortions (P,

P2). principal point location (xo.v0). and focal length (f).

Epipolar For an object-space point, P (fig. 3.1), the epipolar plane is the plane
containing the points P-C-Cp. Epipolar lines are the intersection of this plane
with the two image planes in a stereo-system. The irreversibility of the 3D-2D
mapping for a single camera is also evident from the figure as the single image

point P can be a projection of the infinite number of object-space points lving

on the line PPy.

Baseline The distance between the camera perspective points, €, and Cg, is termed
the baseline of a stereo-system. Larger baselines result in improved triangulation
(reconstruction) accuracies, but lead to perspective views which differ greatly.

This impedes automatic correspondence between image points in the two views.

During calibration, when dealing with cameras and lenses, there were some important

factors which came into play.

Focal Length The perpendicular distance of the perspective center (Cr) from the

image plane [, (fig. 3.1).
Range The distance between cameras and the object being imaged.

Field of View (FOV) The dimensions of the rectangular plane under focus at the

prescribed range.
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Depth of Field (DOF) Ifa lens is focused at a particular range and targets at that
range are shifted either away or toward the camera, the corresponding image
points become blurred. Depth of field, for a given focal setting, is the deviation
from the ideal range which result in acceptable defocussing of image points.

DOF inversely depends on aperture and focal length [7].

Depth of Focus Depth of focus refers to the distance the image plane can be moved
for a fixed object and still provide for acceptable focussing. This is opposed to
depth of field which depth of field refers to the distance the object can move

with the image plane fixed so that the resultant defoctssing is acceptable.

Aperture Stop (f/d) The @ rture stop is given by the ratio between the focal
length and aperture diameter of the camera. Standard stops consecutively in-
crease by a factor of V2 (1. 1.4.2.2.8. 1. 5.6. 8. 11. 16 ..). This implies that the
aperture diameter reduces by a factor of Ve between stops and light, propor-
tional to the square of the aperture diameter. is reduced by a factor of L with

each stop. The aperture setting proves crucial for setting the DOF for different

lighting considerations.

Experimentation in the OR led to a set of optimal camera and lens settings (table 3.1).
Machine vision software was developed using images raken by the svstem in these

settings.

Methods

Intraoperative monitoring was to be done using off-the-shelf CCD cameras with lim-
ited resolution. These cameras are classified as non-metric cameras [39] and require
sophisticated modelling for calibration. A survey of camera calibration methods [9)
was conducted to arrive at a suitable calibration approach. Three methods showed
promise. Tsai [36, 62] presented a geometrical model for calibration called the two-
stage method. It was based on the radial alignment constraint. The popularity of
this method in computer vision steins from the fact that unlike photogrammetric ap-
proach2s which deal with plate coordinates, Tsai considered the finite spacing between

sensor elements in CCD c-..iieras and digitizers. The approach of Peterson et. al. [51]
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used the classical collinearity principles to determine camera parameters [70]. An in-
teresting approach by Wei and Ma [63, 66] involved the implicit determination of the
line-of-sight (LOS) for any image point. This approach used interpolation methods
with calibration points on two-planes to determine the LOS vector. Thus, no camera
modelling was required. The drawback of this approach is the larger computational
and memory expense relative to the other two methods.

As his software was available, Peterson’s approach [51] was tested. It yielded
accuracies better than 1 mm at 1.1e specified range of 700 mm; accuracies comparable
to those reported by Tsai’s method. The two-plane methods were not feasible because

of their computation and memory loads during 3D point reconstriction.

3.2 Camera Calibration

The approach to calibration used by Peterson et. al [51] was used to model the
stereo-system in the OR. This approach first uses the Direct Linear Transformation
(DLT) [1] to obtain estimates of camera parameters. These estimates are then fed as
approximatious to linearized collinearity equations which yield the final parameters
on iteration. It is necessary to use collinearity to refine the parameters returned by
the DLT because it has been reported [62] that the accuracy of reconstruction, when
using parameters returned by the DLT, fell by over 100% outside the central (90%)
FOV. This section provides the theoretical background to the DLT and collinearity
principles. A simultaneous least squares adjustment of all the measurements in a
photogrammetric mapping problem can be formulated by the use of condition and
ohservation equations [59]. This section only provides the maihematical model of each
system of equations. The complete treatment of these methods, in terms of formation
of observation equations, linearization, least squares adjustment and error analysis,
is beyond the scope of this work. Simulations of object-space point projections and
image point reconstructions were widely used during the development of the OR-

system. The basis for these simulations are also provided.
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3.2.1 DLT

The Direct Linear Transformation, or DLT, is a system of equations which represents
a direct transformation between image coordinates and object-space coordinates with-
out explicitly considering interior orientation parameters [1]. The later form of the
DLT [39] includes constraints of interior orientation and is no longer a linear system
though it has maintained the name. The model of the DLT used herein accounts for

intrinsic parameters ar has the following form:

LN+ LY+ [,Z+L,
L{).\’ + Lloy- + L”Z 41
- [-X + Lh} + L-Z -+ Lg
+4, = - ~ (3.1
T T LNt LY v LnZ <] 3-1)

where, §, = (r —xo) Ny r°. 5, = (y—ya) N7 (x.v) are the measired image coordi-

T+, =

nates: {ty. yo) is the principal point. or image ceuter: (N, Y. Z) are the corresponding
object-space coordinates: r? = &% + y°. the radial plate distance; | is the radial
lens distortion coefficient ( other radial coefficients. A'y. A'5. ... and decentering coeffi-
cients. P, Py. Py, ... are nsually too small to have a significant distortion effect 51, 70]
y[LiLaLls... Ly] are eleven unknown constants. As each image point vields 2 equa-
tions using equation 3.1. a minimum of 6 well distr’huted control points are required
to solve for the 12 unknowns. L. ...L,,. Ay. All extriusic and intrinsi- parameters can
be computed from these solutions [46]. The system of equations for n (n > 6) control
points will have redundancy and can be solved directly or iteratively [39. pg. 301].

A FORTRAN impiementation of the DLT (NDLT) [50] was used to provide pa-

rameters estimates used as approximations with the collinearity conditions.

3.2.2 Collinearity Equations

The collinearity condition requires that the perspective center of the camera, image
point (positive image convention was used), and the cbject point in three dimensional
reference space all lic on the same straight line (fig. 3.2). In the camera coordinate
system, centered at the perspective center(O¢). image points, (x,y), can be repre-

sented by the vector, V = <xy -f>T, where f is the principal distance of the camera.
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Figure 3.2: The Collincarity Condition : Convention and Terminology.

This is the same as the calibrated focal length if the camera has a fixed focus lens.
In the object-space coordinate system (center O%), the perspective center can be
referred to by the vector, Xo = (X, Yo. Zo), and the object point is represented by
X = (X,¥, 7). By the collincarity condition, the vector (X — Xg) is collinear to
the vector (MTV), the vector V rotated into the object-space coordinate system by
the inverse of the orthogonal matrix, M. Collinear vectors, in the same system of

reference, only differ by a scalar factor. tience,
(X - Xg) = kMTV (3.2)

where M = R, R R, is the product of the three orthogonal matrices (R,, Ry, Ry)
corresponding to successive rotations (w, ¢, k) about the x, y, and z axes, in that
order. Rearranging and cxpanding the matrices in eq. 3.2, we have the collinearity

equations as:



z my M2 Myg (X ~ Xo)
y | =U/k) | may ma ma (Y - Yo) (3.3)

—C M3y g2 Mag (Z = Zy)
Eq. 3.3, a system of three equations, is difficult to use because the scalar factor (k) is
different for each object-space point. To eliminate this factor, eq. 3.3 is reduced to a
system of two equations by dividing the first and second equations bv the third. Also.
if the equations are revised to consider the principal point (actual image center) and

second-order radial lens distortions, the two collinearity equations can be stated as:

mp (N = No) + mpa(Y = Y5) +=ma(Z = Zp)
- 5. = (-
T To + ( f) l:mgl(_\’— \))-:- 3(}‘ —}'))—Lm'm 7 70)
may (N — Xo) + maa(Y — ¥g) + man(Z ~ Zo)] .
— ., = — 3.4
Y y0+ v [77271(.\’—' \U)"f- (} "}0 -'-IT7'n .7 Z())J (3 !
where, principal point. (ro.y0). and radial distortion components. (6,,4,). are the

same as in eq. 3.1.
A FORTRAN implementation of the collinearity equations (V2STEREO) [50] was
used for this work. V2STEREO uses a Taylor series linearized form of the collinearity

equaticns (eq. 3.4). Resnlts are presented at the end of this chapter.

3.3 Results

This section provides photogrammetry-related data about the stereo-vision syvstem
used in the operating room. It describes the equipment used. camera geometry suit-
able for intraoperative monitoring, the calibration procedure, and simulations done.

Calibration results are also provided.

Equipment Used

The system (fig. 2.6) consisted of a pair of Sanyo VDC-2524 cameras, Tamron Variable
Focal Length (6-16mm) lenses, a Scion [1 Image Capture Card used with a Macintosh
computer to capture images intraoperatively, and an Optex VA0150 Video Halogen
Lamp (table 3.1). Research work and software development was done separately on
an IBM RISC/6000. All software, except V2STEREO and NDLT, was developed in-

house using the ANSI C programming language. Table 3.1 lists the camera geometry
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SYSTEM EQUIPMENT
Cameras Sanye VDC-2524, B/W, NTSC video output
Camera Sensor CCD frame transfer, 800x500 pix., 6.4x4.8 mm
Lenses Tamron (f=6-16mm), variable aperture
Lamp VA0150 Optex 150W/120V Halogen Video Lamp
Frame Grabber Scion II Image Capture Card (640x480 pix.)
Captured Image B/W, 568x416 pix. (subset of Frame Grabber FOV of 640x480 pix.)
GENERAL CAMERA GEOMETRY
Range 630-760 mm
Focal Length 7-7.5 mm
Field of View (FOV) 500x400 mm
Depth of Field (DOFi) +75 mm
Aperture midway (varies)
Baseline 300-500 mm (varies)
Vergence 15 ~ 20°

Table 3.1: System Equipment and Camera Geometry.

experimentally found to be optimal in the OR. This geometry proves useful when the

system is to be recalibrated or changed.

Simulations for Control Field

A control frame which was geometrically suitable for calibration of the camera geom-
etry chosen for the operating room (table 3.1) was designed and constructed. This
suitability was tested by simulations. A control frame was simulated as a grid of 30
points, 5 rows of 6 points, with widely varying heights from 0 mm to 105 mm. The
heights roughly corresponded to a LOW-HIGH pattern where, if one point was to
be LOW, all surrounding points werc to be HIGH and vice versa. A LOW height
was a choice from the set {0, 15, 30, 45} mm and a HIGH height consisted of one of
{60, 75, 90, 105} mm. The simulations used cameras conforming to the general cam-
era geometry and the collineaiity equations (eq. 3.4). It was found that peripheral
points of the control frame should have LOW heights to be easily accommodated in
calibration stereo-images.

Table 3.2 lists the simulated configuration of 30 points which was found to be
stable, i.e. calibration runs easily converged when using simulated projections, with

random error, of the control field. It also lists the actual point coordinates after
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Figure 3.3: The Peg Board with 30 points (lab. 3.2). A typical 3x4 subsct used for
calibration is indicated.

construction of the control grid as a “peg board™ (fig. 3.3) with "pegs™ of different

heights holding diflerent points.
Calibration Procedure
The calibration procedure consisted of taking images of a subset of 12 points of the
control field (peg board} and using calibration routines to arrive at specific camera pa-
rameters. Fxperience with calibration has shown that with the OR camera geometry,
3 rows of 1 points sufficiently covers the entire FOV (fig. 3.3). Multiple shots were
taken for calibration verification.

Including accuracy assessment. there were five stages for calibration. Along with

the routines they use, these can be listed as:

I. Image Acquisition and Digitization of control points,



Control Point | X, =X, VY, =Y, Z Z.
1 0 508 0 0.0E—
2 127 308 45 44.780
3 254 508 15 14.858
4 381 508 45 44.754
5 508 508 30 29.794
6 635 508 60 59.893
7 0 381 45 44.780
8 127 381 15 14.884
9 254 381 105 104.902

10 381 381 30 29.921
11 508 3381 90 89.839
12 635 381 15 14.732
13 0 254 30 20.595
14 127 234 0 0.000
15 254 254 45 45.110
16 381 254 120 120.192
17 508 254 30 30.073
18 635 254 45 44.856
19 ¢} 127 60 59.994
20 127 127 45 45.059
21 254 127 90 90.195
22 381 127 45 44.983
23 508 127 105 104.952
24 635 127 0 0.000
25 0 0 15 15.113
26 127 0 60 60.248
27 254 0 30 30.124
28 381 0 45 44.932
29 508 Q 15 14.985
30 635 0 60 59.918

Table 3.2: Control Field : Simulation Coordinates (X,,Y,,Z,) and Constructed
(X., Y., Z.) (Peg Board) Coordinates. Only the constructed depths differed from the
simulation depth specifications (All coordinates are in mm).
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o

PIX2MM C routine used to convert xv'-based digitized control point coordi-

nates from pixels to mm on the sensor,

3. NDLT FORTRAN (DLT) routine used with plate coordinates to arrive at

initial approximations of parameters,

4. V2STEREO FOIITRAN (collinearity) routine used with plate coordinates and

initial approximations to arrive at final parameters,

SIM3D FORTRAN routine used with final camera parameters to transform a

(W)

set of derived coordinates and compare to control point coordinates to evaluate

accuracy of calibration.

The program PIX2MM.c was developed for the Sanvo camera image sensor. This
program converts image pixels to millimetres on the sensor: there is also an important
adjustment for scale which corrects for the aspect ratio. For the Sanyo cameras. this
factor was experimentally determined to be 0.845. The factor was determined as the
average ratio of the principal distance in the x-direction to that in the y-direction
(eq. 3.5) for a number of NDL'1 runs.

For Sanyo VD(C-2524 C(Ds.
scale_factor Y = = = 0.845 (3.5)

The other function of PIX2MM was to transform points from pixels in the xv
image-origin (in the top-left of the image) to millinietres in the plate-origin in the
center (with Y-axis inverted). Theoretically, this conversion to piate coordinates
seems unnecessary. but it was found that when pixels were used directly, a different
scale_factor_ Y was required and V2STEREO often did not converge.

Five calibration trials (A, B, C. D, and E) were conducted with different control

frame images. All trials converged. Based on these trials, the camera parameters

Ixv is the X-windows program used used for viewing and manipulation of images of different
formats (RAS, TIF, GIF. etc.). The origin for xv's pixel coordinate system is at the upper left
corner of the image. The camera ‘plate’ has its origin at the center of the plate sc that the top right

corner of the image is in the first quadrant.



EXTRINSIC PARAMETERS (w,5.x in DDDMMSS.X)
CAMERA X{(mm) | Y (mm) Z (mm) w o ®
LEFT 223.9545 | 442.5372 | 743.9232 -50609.0 -165732.2 12336.1
RIGHT 645.7806 | 442.3287 | 734.5083 -42648.9 151302.0 -15356.3
INTRINSIC PARAMETERS
CAMERA f(mn) | xo(mm) | yolmm) | Ky(mm?) | Ky(mm?2) | P (mm? Py(rmm?)
LEFT 7.776 061 .078 29E-02 A2E-26 33E-26 A6E-25
RIGHT 7.556 .018 .090 33E-02 B55E-25 BOE-25 21E-25

Table 3.3: Calibration Parameters for trial (.

RECONSTRUCTION ACCURACY
(using Trial C parameters, table 3.3)
TRIAL | X (mm) Y (mm) Z (mm)

A 0.3308 0.5456 0.8258
B 0.3895 0.2761 0.7108
C 0.2351 0.3060 0.4807
D 0.3473 0.3297 0.7106
D 0.3666 0.2683 N 2696
AVG 0.3378 0.3451 0.6595

Table 3.4: Reconstruction Accuracy using trial C parameters. The standard devia-
tion of residuals is quoted for lhe reconstruction of each trial. The mean of residues

was zero in each case.
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for trial C' and accuracy of reconstruction of control points in all calibration runs
are given in table 3..4. The mean error of reconstruction in each case was free from
bias (mean residual on x. y. and z was 0.0000 mm [30]}. The quoted accuracies are
the standard deviations on x. yv. and z residnals as calculated using the FORTRAN
program. SIM3D [50%.

During the design phase of this project. concerns were raised [21] regarding the
accuracies of measurements possible using “surveillance-type” off the shelf cameras
and lenses. Successtul calibration experiments and verification done have proved that
the photogrammetric techniques nsed (50] are capable of providing submillimetre 3D
measurements in the range of 500-900 mm with baselines as wide as 500 mm. With
rudimentary knowledge of the photogrammetric principles and software. it is possible
to calibrate the cameras wirh ease. [t has been snggested as part of furnre work
that the different calibration programs be integrared and an automartic “shoot and
calibrate” program be develuped. Futire caiibration models should also acconnt for
the discretization of the image senzor in CCD cameras 62,

This chapter dealt with the use of sterev-cameras to make 3D measurements,
Testing involved the mannal digitization of conrrol and target points in images. In
the operating room. manual digitization of features i stereo-images is inconvenient.
Work was done towards the automatic detection of the spherical-components of triad
markers (called ball-featnres) in OR images. The next chapter focuses on experiments

and algorithms for automatic feature detection.



4 Feature Recognition and Low Level Processing

Vision systems first attempt to use low level image processing techniques, those deal-
ing with pixels and edges. to extract information from a scene [64]. This information
is represented in structures called features which are then used by higher level pro-
cesses to make more advanced inferences about the scene. The primary objective of
the system developed in this study is to reconstruct triad-markers (fig. 4.1) in 3D. To
obtain information about a triad and its location in three dimensions, we need to lo-
cate its spherical components (ball-features) in both images. Thus. provided there is
no occlusion, feature recognition should locate at least 3 ball-features in cach image
corresponding to every triad placed on the spine. Higher level matching processes
can then proceed with reconstruction in 3D based on the correspondence hetween

ball-features in the left and right image.

Figure 4.1: A triad-marker model. An orthogonal configuration of spiverical balls is
shown here. Configurations with spherical balls in a flaf, planar configuration we i
also used. The spherical components are Smm in diameler (all model dimensions are

in mm).

This chapter focuses on algorithms and experiments used to develop a piocedure
for the detection of ball-features in operating room (OR) images. The software de-
veloped for this purpose was called DETECT-POINT. This first section describes

the analysis of typical operating room images. The discussion is hased on exist-
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ing methods for feature recognition. A modei-based approach. implemented using
template matching, was adopted. Subsequent sections deal with the algorithms and
experiments used to develop DETECT-POINT. Preprocessing of raw images from
the OR is presented in detail. This consists of various transformations like gamma
correction, image size reduction, mode filtering and edge detection. These operations
modify raw images. making them more suitable for the feature detection procedures
to follow. Details of the design and implementation of the template matching, the
chosen approach, are then presented. Implementation details are explained using
comparisons with alternative methods and experimental results on OR images. A
mathematical formulation is presented which applies cross-correlation in the spatial
frequency domain. This could be applied to improve the speed of DETECT-POINT
which currently relies on a spatial domain implementation of correlation which is
computationally expensive.

DETECT-POINT was tested on images from a three-stage <urgery. The first stage
was used to design models used by DETECT-POINT: the program was then applied

to all three stages. Results of this experiment are provided.

4.1 Analysis of Operating Room Images

A typical stereo-pair of operating room images. after contrast adjustment, is shown
in figures 4.2 and -£.3. This section piesents an analvsis of such images and their
properties to discuss the options available for ball-feature detection. All references to
images. features, bachground etc. implicitly refer to the above inentioned figures.
The histogram of these images {fig. 1.1) reveals that features, which appear as
circular, specular gray regions (fig. 4.2) have intensity levels in common with the
background, but occupy a small area of the ‘mage. Consequently. thev do not exclu-
stvely occupy any mode in the histogram. This rules out the possibility of using any
slobal histogram or threshold selection methods [26] to segment these images into
background and foreground (features). Local methods [68] based on the same princi-
ples will fail due to insufficient contrast between the features and their backgrounds.

Local histograms, taken over smaller subimages, have little informative modal distri-
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Figure 4.3: Contrast Adjusted Operating Room Image (Right Camera).
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bution even though feature pixels acconnt for most of the histogram. As histogram or
region-based segmentation is not robust enongh. shape-based methods which proved
successful in an carlier pilot study (8] were ruled out. The pilot study used a spine
model with high contrast markers. Size and moment constraints were applied on
connected components of binary images to identifv possible features. Region growing
methods [} are also not feasible due to the diffienlty of automatically assigning seed
locations when ball-features ocenpy an nnpredictably small percentage of image area.

Edge detection and the Hongh transform [18] showed promise but failed to vield
consistent resnlts, This was because the small size of the feature boundary (diameter
10 pixels or 8 mm in the model) and noisy surgical field of view yield a “highly
excited’ Hough-parameter space. Segmentation of this space provides little relevant
information.

Photometric methods [23] would require the modelling of the light source. precise
knowledge of the location of cameras and the reflectance properties of the surgical

ficld of view. As the background of flesh, blood, bone and instrumentation cannot be
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characterized easily in this way, this approach is also not feasible.

Textur= and entropy methods [69] show promise if the fleshy background can
be characterized statistically with texture features different from those of the more
consistent balls features. However, research in this area is still not considered mature
(37, 69] enough to apply successfully to complex environments like the operating room.

A model-based approach, using multiple templates and image matching tech-
niques, seemed more appropriate than others. This is because many characteristics
of the ball-features such as size, shape, specular appearance. and, in most cases,
significant contrast between the feature, and its background are suited to template
matching [13, 60].

The following sections elaborate on the rationale behind the different components
of our approach as implemented in the DETECT-POINT software. These are sup-

ported by experimental results on OR images.

4.2 Preprocessing

Preprocessing of raw images in DETECT-POINT consists of a number of operations,
each with its own objective. The first operation applied to these images is gamma
correction. Gamma correction improves contrast levels of raw images. As OR images
capture more than the surgical field of view, a routine was implemented to automat-
ically identify the region of interest. This results in reduced processing time. Median
filtering improves the signal to noise ratio of the images by removing ‘impulse’ noise.
The filter implemented for this purpose implicitly sharpens edges also. Edge im-

ages are required by later stages of detection. These are also computed as part of

preprocessing.

4.2.1 Gamma Correction

In the OR, it is important to keep the aperture of the cameras small for greater depth
of field. However, images taken with small camera apertures are dark (fig. 4.5). Such

low contrast images do not use the entire intensity range of the sensor. The variac-
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controlled lamp, positioned between the cameras (fig. 2.6), is designed to offset this
drawback. By increasing the intensity of the lamp, brighter images can be obtained
while keeping the aperture small. This condition, however, does not apply beyond
the saturation of the sensor due to glare. Iterated gamma ccitection (eq. 4.1) was
used to improve the contrast levels of raw OR images.

After the ith iteration, the output intensity u; is given by:

55 + [”‘;‘-}W (4.1)

255

¢

’
ot

vy =

where 7 is the gamrmna correction index and, for the first ireration (u), vy (on RHS)
is defined as the raw image intensity.

Historically, gemma refers to the quality of contrast produced hy a photogram-
metric film. High-contrast films reproduce tone differcnces in the subject as large
density differences in the photograph. whiie low-contrast films translate tone differ-
ences as small density differences. Characteristic curves for films plot density against
log of the exposure (D-legE). These curves, called H & D curves [64] (after Hurter
and Driffield, who developed this methiod) correspond to response curves of modern
sensors. CCD sensors have a gamma. measured using equation 4.2, approximately
equal to 1.0, while vidicon sensors have gamma vahies close to 0.63. Eq. 1.1 represents

a special form of the generalized gamma expression (eq. 4.2).

__log(sensor output signal) (4.2)

.

log(sensor input signal)
Gamma correction was applied to the raw image in figure 1.5. Figures 4.6 and 4.7
show results after the first and second iterations respectively. Gamma indices of 2.0
and 1.5 were used for iterations one and two respectively. It was also found that two

iterations proved more effective than a single iteration with a high index.

4.2.2 Automatic Size Reduction

Only about a third of a typical OR image consists of the surgical field of view (FOV).
As seen in figure 4.5, the image is well approximated by the length of the surgical

FOV. However, width-wise, most of the image consists of irrelevant portions of the
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Figure 4.6: Image after Gamma Correction, iteration #1 (v = 2.0).



Figure 4.7: lImage after Gamma Correction, iteration #2 (v=1.3).

patient’s back. It would be unwise to subject such images to computationally ex-
pensive procedures like template matching, Thus, a method was developed for the
antomatic identification of the region of interest. or surgical field of view. in operating
roon! images.

The method considers basic statistical parameters of image segments. Image seg-
ments are defined as collections of 5 contignous rows. each spanning the length of
the image. Henee.o our images of size 5685116 pixels have 83 segments of size 568xH
pixels and one boundary segment of size Ix568 pixels. Averages and standard devi-
ations are caleulated for each segment of the image. The distributions for averages
and standard deviations of the segments of figure 1.7 are shown in figure 1.8 and fig-
ure 1.10 respectively. Thresholds are applied to these distributions to obtain isolated
modes. These isolated modes correspond to groups of image segments which survive
thresholding of the distribution. The surgical field of view was considered to be the
region of the image with the highest standard deviation and lowest average. llence,
if we consider the distribution of standard deviations of image segments, the largest

central mode in the distribution would be the mode of interest. This could be taken to
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directly correspond to the surgical FOV. On the other hand, if we consider averages,
the largest central trough in the distribution of image segment averages would qualify
as the mode of interest.

Regions of low averages could also develop if the surgical drape covering the pa-
tient becomes stained. The standard deviation was thus chosen as a more robust
parameter than the average. This is seen in figures 4.8, 4.10. Threshold selection
for the distributions is dynamic and is a function of the maximum and minimum
parameter values (eq. 4.3).

Given the distribution of a parameter (average/standard deviation), the threshold

value, T, is chosen as:

T = max — a(maz — min) (+1.3)

where max, min are the maximum and minimum parameter values of the distribution
and a is the fraction of the range to be considered. An «a of 0.5 produced good results
(figs. 4.9, 4.11 ).

On thresholding, if the distributions are found to contain multiple modes (fig. 4.9)
the mode of interest is selected as the mode containing the maximum standard devia-
tion. The subimage containing the rows corresponding to this selected mode of image
segments is the artomatically detected surgical field of view. Figures 4.12 and 1.13

show an original image and its automatically detected region of interest respectively.

4.2.3 Mode Filtering

Gamma correction improves the contrast of images considerably. However, it also
degrades the signal to noise ratio of already noisy images. In this context, noise refers
to unnecessary gray level variations within a small spatial area. This variability
in images makes them unsuitable for the task of model-based recognition. Hence,
preprocessing must include operations to reduce the noise level of the image.
Smoothing is a common technique used to improve noisy images. The most com-
mon smoothing operations in the spatial domain are implemented using the mean and

median filters [29]. However, if preprocessed images are to be used to make precise
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Figure 4.12: Original OR lmuge.

Figure 4.13: Aulomalically detceted surgical field of vicw for fig. 4.12.



measurements, we must first assess the effects of different smocthing operations on
feature positions.

Mean or Gaussian filtering, which is equivalent to low pass filtering in the fre-
quency domain, reduces the high definition content of images and praduces blurred
images. This is undesirable as blurred images have low edge content and subsequent
correlation methods {pg. 52) rely heavily on the magnitude and position of edges to
infer the porition of features. Any smoothing operation applied at this stage must
not effect either of the edge properties (viz. pusition. magnitude) or the underlying
gray value distribution of a region. Another disadvantage of these filters is that im-
pulse noise, which is produced by the sensor and needs to be removed completely.
is allowed to 'smear’ over local neighbourhoods [25]. Median filtering is an effective
way of suppressing such impulse noise. The images produced by median filters have
a 'softened’ appearance and have little loss of detajl.

Recently, Davies [17, 18] introduced the mode filter as a viable alternative for
noise smoothing. The mode represents the most probable value of any distribution.
a more meaningful parameter than the mean or the median. However, its implemen-
tation for small neighbourhnods like 3x3 pixels presents a tedions problem when the
are 256 possible levels for each of the 9 pixels in that neighbonrhood. Unlike a cor -
tinuous distribution where the mode is easily locatable. the intensity with the highest
frequency in such small, discrete distributions {fig. 4.74 ) is not necessarily the un-
derlying mode. This is equivalent to a continuous distribution with a superimposed
impulse (fig. 4.15 ) higher than the real mode of the underlying distribution. A
width of 256 gray levels for a 3x3 distribution is another anomaly. For these reasons,
an indirect estimate of the mode is sought rather than a direct calculation [16]. The
mode filter was implemented by calculating the median as an estimator of the mode
and removing a portion from a end of the distribution. This truncation was done ( at
T.) so that the ends of the resultant distribution are equidistant (L) from the median
of its parent distribution (fig. 4.16) . The median of this new, truncated distribution

is now closer to the mode than its predecessor. Iteration, in this fashion, leads to a

practical estimate of the mode.

41



freq.

2- 1
"H“Tﬂ slninln

Gray Levels

—_

Figure 4.14: The sparse local intensity histogram of a .3x.3 ncighbourhood where the
orthodor mode might nol rcpresent the underlyving mode. Henee, the mode has to be

cstimated using the median.

An important benefit of the truncated median filter. in addition to the removal
of noise. is the implicit sharpening of edges [171 As any neighbourhood approaches
an edge. the distribution of that window hecomes bhimodal as in fig. L16. Replacing
pixels close to edges by their modal values results in Cerisper” edges - a property which
proves nseful during subseqnent edge analysis. Davies {17] also proved that there is
negligible displacement of edges when the truncated median filter is applied. The
same cannot be said for the orthodox median filter {2.4].

The truncated median filter was tinplemented using a 3x3 kernel. A single iteration
was sufficient. The ontermost "noniles™. containing a ninth of the distribution at
cach end, were considered as the extremes of the local distribution. This is because
noniles . ere more stable than the minionm and maximmm of th distribution. The

sorting procedure of the median-finding loop was optimized for speed by applyving
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the histogram sort. As pixel intensitics must lie between 0 and 255, a histogram can
be filled without having to scan the pixels for their boundary values (as in a general
sorting routine). The algorithm then scans the histogram until the accumulated
count of pixels reaches the medial value. For a 3x3 window, the median would be the
intensity of the histogram bucket at the accumulated count of 5. The histogram sort
has only seme 256 operations for any size n. This proves to be more efficient than
other general sorting operations [27].

Figures 4.17, 4.18 show an image (gamma corrected and resized) processed by the
truncated median filter (‘TMI") just described. The reduction in spatial variations
is evident from these images. To display the TMIs uselulness in removing edge
noise zoomed portions of a low contrast, defocused image are observed. Figure 4.19
shows a zoomed i:nage containing a triad-marker. Edges were determined without the
application of the TMF (fig. 4.20). The edee image was noisy. The image in fig. 4.19
was then processed by the TMF. Fig. 4.21 is the filtered image. Fig. 4.22 shows the
edges determined for the filtered image. The TMI image had a lower noise content

than the unfiltered image in both gray levels and edges. Closer inspection showed
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Figure 4.17: A high contrast image beforc median filtering. Local entropy is high
due to impuls-r noise and glare i the surgical FOV.

Figure 4.18: The imagc (fig. [.17) after truncated median filicring,  Gray leeel
variations are ‘softey” with the romoval of impulse noisc. Edges are better de fined and
« consistenl un(/(I'[inI!, gray leeel model cmerges. TME Paraweters: 353 kernel, |
iferation.

Figure 4.19: Zoomed portion of a low contrast image containing a triad. No trun-
cated median filtering ‘s applied here.



that the filter also sharpened edges. Edges magnitudes were determined using a pir

of 323 Sobel masks [4].

4.2.4 Edge Detection

Edge detection is an essential part of most image processing applications. It has
been applied to many problems such as image segmentation, feature location and
threshold computation [28]. Edges provide the first level for abstraction where we
can begin analyzing data based on intensity differentials and their directions. Data
storage requirements and information processing are also substantially reduced in

edge-space. There are two primary approaches to detecting edges. These are:
e Template Matching (TM)

o Differential Gradient (DG)

In either case, the aim is to find where the intensity gradient magnitude (g) is
sufficiently large to be taken as a reliable indicator of the edge of an object. The
two approaches differ mainly in how they estimate g locally: there are also differences
in how they determine local edge orientations. Template matching applies a set of
predefined masks, each with their own orientation, to a neighbourhood. The local
edge gradient is chosen as the maximum of the applied masks. The orientation is
a.signed as the orientation of the chosen mask . Common examples of TM detectors
are the Robinson masks and Canny edge detectors [28, 64]. The differential gradi-
ent approach relies on evaluating the edge response with respect to fixed cartesian
directions. The magnitude and direction of the edge at a point is then evaluated vec-
torically {eq. 4.4, 4.5). If g; and g, are the edge responses in the cartesian directions,

the local edge magnitude is calculated using the nonlinear transformation:

9= /92 + 9,2 (4.4)

The edge direction, 6, is given by:

= arctan(&) (4.5)
9z
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Figure 4.20: The cdge image of fig. 4.19. A 3x3 Sobel detcctor was used. The region

of the image cnclosed by primary cdges is cetremely noisy (compare fig. 4.22).

Figure 4.22: The cdge image of fig. §.21. The TMF processcd image is cleaner than
ils corresponding image (fig. 4.20, no TMI was applied).
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Figure 4.23: 3r.2 Sobel I'dge Masks for the x, y divcetions

It was found that correlation is more meaningful with edge images than with
gray level images (refer pg. 55). Thus. a computationally efficient method to extract
cdges was required which would be part of the preprocessing stage of DISTICT-
POINT. The 3x3 Sobel detector (figure 1.23) is an ideal candidate for our application.
As the Sobel detector is of the differential gradient type. there are only two masks
involved and edge detection is speedy. Its directional accuracy has been quoted at
one degree [18] and its performance as a general purpose edge detector ontweighs
that of other masks of the sanu: class such as Roberts and Prewitt [33). Template-
bascd detectors produce greater accuracy but at a nwch higher computational cost.
A typical operating room image transformed into the edge-space using the 3x3 Sobel

masks is shown in figure 4.24.

Figure 4.24: OR image in edge-space (3r3 Sobel masks were used).



4.3 Model-Based Recognition

Model-based recognition refers to a variety of algorithms that recognize the identity,
position, and orientation of features in images using a priori knowledge about the
feature’s properties [L3]. This approach was adopted in the form of template matching
between statistically designed templates and real scenes.

The features to be identified in the operating room images are black, plastic.
spherical structures which are part of markers mounted oun vertebrae. Each marker
contains three such spherical structures or ‘ball-features” arranged in a known spatial
configuration (fig. 4.1). Based on the analysis of operating room images (figs. 4.2, 4.3)
with a number of feature location methods (pg. 30). it was decided that template

matching would prove effective in locating these ball features. This i~ hecause:
e ther is a small number of ball-features (between 6-21/image).
e all ball-features project as cirenlar regions die to their spherical shape.

o the diameter of these circular regions is fixed at 10-11 pixels because of the

range of markers from the cameras does not vary enough to affect feature size,

e cach feature has a distinctive specular region due to light sonrce between the

cameras,
e there is significant contrast between most features and their background, and

e edge-space (fig. 4.21) images arc more reliable than gray level space images

because edges are more tolerant to photometric and perspective changes.

The template matching problem can be simply stated as: given an image, g(x,y)
of size MxM, and given a template (model), t(x,y) of size NxN (where NV <« M and
the images are square for the simplicity of this definition), find the locations in g(x,y)
whose neighbourhoods closely resemble t(x,). Such a paradigm clearly involves three

processes:

Similarity Measures Choosing or designing criteria to quantify similarity of a

subimage with the template model
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Template Design Design of templates for real images: organisation of these models

for speed if there are multiple models

Feature Extraction Decision criteria for features based on resilts from the

similarity criteria selected

The following sections discuss these processes in detail. Similarity measures for
matching are considered first. This is followed by template design. and finally, decision

criteria for feature selection.

4.3.1 Similarity Measures

By the above definition of the template matching problem. locations in the image.
g(x,y) similar to the template t(x,y) must be found. This is visualized by taking the
two-dimensional image t(x,y) and moving it over the image g(x.y) while computing
the similarity with the image at each position. As the size, or domain, of b{x,y) is
much smaller than that of g(x,y), at any position, it is only possible to evaluate the
similarity of t(x,y) with a subimage g'(x,y), of the same size as the template, which
lies directly below the template. This subinmiage. g'(x,y), is called the shadow of the
template on the image. The similarity evaluation will be assigned to g(ra,v0). the
center of the shadow subimage. The image is searched by the template moving cver
the image in this way.

Similarity between the template and the shadow may be evaluated in many ways.
This may be done by taking the sum of the differences between corresponding ele-
ments, as in distance measures, or the products between corresponding elements, as
in correlation techniques. However dissimilar they may seem, these two methods are
related. Consider the Euclidean distance, ~ common metric used to compare vec-
tors and matrices. Using the Euclidean as our primary similarity metric between the

image and a template, we have:

N=1

E(z,y) = S lolz + iy + ) (i) (4.6)

hj= _N=

2
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or,

M-
E(zr,y) = \J (Z; > loli ) =t~ - !/)]2> (4.7)

Note that eq. 4.6 is conventionally written in the form shown in eq. 4.7. In eq. 4.7,
the indices i and j are bound by the limits of the image. g(x.v) The conv‘ention used
in eq. 4.6 is followed in this work. where indices i and j are bonnd by the limits of
the template, t(x.y) instead. It was found that correlation formulae were easier to
asscss when computed in the template’s coordinate system. centered at (i = j = 0).
for any position of the template over the image. Mathematically. eq. 4.6 and eq. 4.7
are identical (p.oof in Appendix A},

The square of the measure in eq. 1.6 is given by

Eiey) =33 [dfic+iy+J) = 29(c + iy + jitlij) + £l j) (4.3)

LI

The popular cross-correlation function hetween two images is derived from the
middle term of eq. 4.8 and is given explicitly in eq. .L.9. It is usually stated in
this form although it is of limited use as a similarity measure as it is based on the
assumption that the first and third terms of eq. 1.3 are constant. Those terms denote
the energy of gray levels of rhe shadow and template subimages respectively. Of these,
only the templaie energy is fixed, but the shadow’s energy will vary from one position

to another in any image.

Clawy) ="t ggle +iy+J) (4.9)
i

To demonstrate the ineffectiveness of C(x.y), consider the calculation of C(x.y) in
a part of an image with high energy, or high g(« + 1,y + j) values, the correlation
value will be high irrespective of whether the template matches that area or not. To
put eq. 4.9 in a more practical form, it is important to normalize it with the shadow’s
energy coefficient, E’g:(r_y) =3 %63 (x+i,y+7). where i,j are bound by the template

size. This is done in eq. 4.10.

Nioy) = ZEiUidlgle + iy +) (410

VI (e + i,y + )




Besides being a good measure, the normalized cross-correlation index (eq. 4.10)
can be modified to allow bounds on the value of C(x,y). By the Cauchy-Schwarz

inequality [20],

N(z,y) < \/;letz(i,j)l |
N(z.y) > —\/Zz[t%i,m (4.11)

Using eq. 4.11, the correlation coefficient can be modified to a very useful form.

p(e.y) = N(z,y) = - Zith(i,‘j)g(:r.H,waj\. _ (4.12)
T+ iy +7) (TS, £2(0.)

The cerrelation « now has the property of heing bound by —1 and 1
(eq. 4.13). This prope. * very useful when comparing correlation coefficients
due to different tunpl-. nen decidir 1 the identity of the shadow.

-1.0 < p(zr,y) < 1.0 (4.13)

While the correlation coefficient of eq. 4.12 adjusts the underlying shadow for any
scale changes it does not account for any differences in contrast between the shadow
and template. This can be incorporated into eq. 4.12 by applying Moravec’s zero-
mean principle [4  The zero mean principle states that in mask applications, best
results are obtained when the mask and shadow have a mean value of zero. This can
be applied to the above procedure by subtracting the mean of the neighbourhood
from each pixel of the shadow before correlating with the template. The template
may be adjusted for the mean only once. This leads to another form of the correlation

coeflicient given in eq. 4.14. Note that this form also conforms to the bounds specified

in eq 4.13.

N=1

2

Zij= ¥ (t(,7) =0 (g(z +1i,y+ 7) — §(2,y))

(s.9) =
o (S (ot 40 5) = 0,90 (Fasm s (t0) - )
(4.14)
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where,

S e
t:——;z Z t(z.7) , and
N-xj=_:‘L-_l
2
g(z.y) Z Z glz +i.y+)) (4.15)
‘J—___

As described herein, there are many forms of correlation. each with its own char-
acteristics and computational requirements. As the different measures may be suited
to different types of images. a quantitative assessment of the measures was required to
decide on the optimal measure for OR images. [t was felt that a study of the different
forms of ccrrelation was necessary. Previously. Boninsegna and Rossi {11] worked on
the assessment of distance measures and Li and Madhavan [39] investigated measures
for corner detection. Based on their professed functionality. five measures were chosen

for testing on OR images. These were:
1. Euclidean Difference (ED) (eq. 1.6)
2. Orthodox Cross Correlation (OCC) (eq. 1.9)
3. Cress Correlation with Normalization Only (CCN) (eq. 1.10)

4. Cross Correlation with Means Adjustrnent Only (CCM) (eq. -1.16)

(z.y)=3 Z ) (gle + iy + )= glr,y)) (4.16)

= _ 2=

Cross Correlation with Normalization and Means Adjustment (RHO), or simply.

<t

the correlation coefficient (eq. 1.14)

An operating room image (fig. 4.25) and its corresponding edge magnitude image
(fig. 4.32) were chosen as test images. The test templates (for gray levels and edges)
were the averages of subimages at the 15 feature locations in another sample image
(fig. 4.2). Basic statistics were gathered for a: ‘he above measures using both images
(figures 4.31, 4.38). The response of the metrics was measured at manually specified

feature locations of the test images and in a 50x50 subimage representative of the
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Figure 4.25: Gray level test image.

background in the decision spaces for each of the metrics. The decision space is the
image with each pixel intensity replaced by the correlation coefficient, scaled to 0-255,
at that point. Decision spaces for gray level space correlation are shown in figs. 1.26-
4.30 and edge space correlation are shown in figs. 4.33- 4.37. A subimage of the
surgical field-of-view was considered instead of the entire image because correlation
statistics taken for the entire image are distorted by the response of the metric to the
surgical drape which covers a large percentage of image area.

Based on figures 4.31 and 4.33, an index of performance called selectivity (4)
was defined. Selectivity is the difference between the average response at feature
locations (Ay) and background image patch(A;) (eq. 4.17). As the decision spaces
for the different measures were scaled to 0-255, the se'ectivities of different measures
could be dircctly compared. Table 4.1 provides the results of our tests with a ranking

of the measure-performances based on selectivity.

Ay — Ayl (4.17)

dw:

Figure 4.26: Correlation of the gray level image (fig. 4.25) using the mcasure IXD.
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Figure 4.27: Cerrelation of the gray level inmage (fig. 1.23) using the measure OCC

Figure 4.28: Correlation of the gray level image (fig. 4.23) using the measure
NORA.

Figure 4.2w5: Corrcation of the gray leved image (fig. 4.25) using the measure
MEANS,

Figure 4.30: Correlation of the gray level image  fig. {.25) using the measure RHO.
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Figure 4.31: Average Responses of different measures using gray level femplates.
The first bar denotes the ~verage response to the 12 features in the image, the sce-
ond bar denotes the average response to the 50 x50 subimage representative of the

background.

The performance of the measures differed with the property (gray levelfedg

used for correlation. Using gray levels. the combined normalized cross-correlation
measure (RHO) indicated the highest selectivita oo = - 1) The other measures per-
formed poorly in comparison (Table 1.1). Judzing by lectivity, when edge images
were used for correlation. there was significant iv provement in he per emance of
COM (¥ = 44 to v = 60) while RHO fell (¢+ = 81 to o = 72). RHO. however,
still performed better than CCM. The other measures performed poorly in compar -
ison (Table 4.1). As expecied. the overall performance of measures was hetter for
correlation with edges when compared to gray levels,

These results confirm that RHO., the normalized eross-coeflicient coefficient with
means adjustment. is cuperior to other measures and independent of the property
used for correlation. This is becanse it accounts for scale changes (using normal-
ization). contrast differences (using means adjustiment) and other perspective effects

EID | OCC | CON | COM | REHOQ

Gray Levels 15 10 12 44 81
Edges 29 7 14 60 ‘ 72

Table 4.1: Selectivitics of Measures. Seleetivity = Aves of Feature Responses - Avg.
of response to Background

<t



Figure 4.32: The cdue imagi corresponding o fig. [.25.

(like incompletrriens, veclision) and other photometr distortions in the image rela-
tive to e templates As 2HO was the most robust operator with grayv level images.
it was selecto ior correlation with gray level iiages in DETECT-POINT.

Gener than RUOL the only metric which performed reasonably was the cross-
correlation iorasure with means adjustiment only (COM). As CONM involves ess com-
putation corapared to RHO. but performs equaliy well with edge images (table 1.1).
CONM was used for the correlation of ~dee mmages in DETECT-POIN'T.

C'CN ranked lowest amongst the measures for both properties. In general. nor-
malization withont means adjustment (CONJ s of little value without the inelusion
ol means adjustment. Another notable pomnt is that the OCC should not he over-
estimated hased o its good performance (v = 10y with grayv level images. This is
necause ball-features had a higher “enerey” level relative to their backgroend and the
OCC is somewhat only suited 1o such a situation. The OCC will alwavs fail if the
backgronnd image energy. £ = 55 glr. ). is higher than that of the features them-
seives, 1t is less robust to distortions compared to other forms, like CONC which is

computationally close to the OCC,

4.3.2 Template Des'gn and Organization

Template design is a challenging tash, when the model-hased recognition process is to
be applied to real images. The complexity of the problem is accentuated when we
consider stereo images. The model or models developed mnst be robust enough to

tolerate different perspective views, photometric distributions. occlusions and incom-
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Figure 4.37: Covrclation of the cdge image (fig. [.32) using the measure RO,
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Figure 4.38: Average Response of diffcrent measures using cdge templates. Conven-
tion as in fig. f.11.
pleteness. Even though the correlation coefficient is robust. recognition will perform
poorly il the models we develop are overly simplistic,

To deal with this problem. an carly decizion to use multiple models i differem
property spaces was made, Property spaces refer to representation of a scene on the
hasis of a particular property. For the operating room images, three property spaces

showed promise:
Gray Level-Space where pixels represent the photometric distribution of the scene,

Edge-Space where pixels represent the edge magnitude as computed by the Sobel

detector, and

Directivity-Space where pixels represent the edge direction as computed by the

Sobel detector.
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Only the first two were experimented with for this work. The third was left
as an option for future work. The design and organisation of templates was done
by taking a sample population of subimages. ciustering the population into classes,
designing representative i=mplates for each class and organising these templates into
an inverted tree-like structure. A template or si:bimage resides at each node of this
tree (fig. 4.39, 4.42). A root template, designed tising al} the representative templates,
occupies the root node of the tree while sample subimages, in their respective clusters,
occupy the leaf nodes of the tree.

An approach similar to that attempted by Li et. al [38] and Ramapriyan [54]
was implemented. However, there are important differences. They organized their
templates into a multilevel tree which was guided from root to leaf nodes by decision
rules at each level of the tree. We have implemented a simpler tree structure with
only two levels, the root template level and representative templates level. Hence, a
single decision rule is required at the root template level: continue correlation (onto
representative level) or reject tree. The pixel in the decision-space is assigned an
optimal value based on correlation with representative templates. A multilevel tree
would prove useful if all the ball-features were different; if they were spherical with

different diaraeters, for instance. The experiments and results behind this work are

now described.

Sample Population

A surgical case was photographed in three stages of correction called PRE, INTER
and POST. From stage PRE, 27 subimages of size 19x19 were used to form the sample
pepulation of templates. There were 15 subimages from the left image (fig. 4.40) and
12 {rom the right image (fig. 4.41). Although there were 5 markers (15 ball-features)
use-1 during that surgery, 3 ball-featu-es were occluded and completely invisible to t2
rizi.t camera. Hence, only 12 subiimages were contributed by the right image. These
subimages were take.: {rom manually specified positions in the gray level-space. An
equal numb2r of subimages were obtaired from the same positions in the edge-space.
Bali-teatures occupied circular regions of wpproximately 10-11 pixels in the gray level

images and 13-14 pixels in the edge magnitude images. The diameter is greater in the
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Figure 4.39: Groy Levd-Space Tomplate Tree.
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edge-space because of smearing caused by edge detection. The smearing caused by
directional masks is subject to thinning in many vision applications. As a smeared
edge provides more information (area) for correlation than a thinned edge, thinning
was not applied. The size of the templates was chosen as 19x19 to include bacxground
information. However, as the background was found to be highly inconsistent in both
domains, only a thin annulus around the feature was considered for correlation in
addition to the feature itself. Thus, correlation used circular templates rather than

orthodox square/rectangular ones.

Clustering and Tree Generation

Clustering, in this context, refers to the arrangement of these subimages into classes
where each class has some distinctive att:ibutes. In pattern recognition, clustering
is the technique used to define sartitions or boundaries in feature space bascd on
d".criminant analysis [20] of a sample populatio:. of vectors. Hence, a nxl vector
population is treated in n dimeunsional space and the partitions are n-dimensional
hyperplanes [20, 58].

Instead of orthodox clustering i 19x19 subimages, visual clustering was applied to
the 27 subimages in each property space. In the gray level-space, the visual criteria
included the position of the specular region within the ball’s circular region, the
absence of a specular region or a diffused specular region. In the edge level-space. the
main criteria were the double rings, one for the ball-feature boundary and the other
produced by the specular region. Classes were defined using the different positions
of the smaller ring within the feature boundary. This procedure led to 6 classes
of subimages in the gray level-space and 4 classes of subimages in the edge-space.
Representative templates were generated for each class by averaging subimages in
that class. Figures 4.39 and 4.42 show the representative templates for each of the
classes in the two property spaces. The root template for each property space is the
average of the representative templates of that space.

Clustering was quantitatively verified by constructing proximity matrices. These
matrices compare the similarity between all pairs of representative templates to en-

sure that visual clustering has indeed resulted in dizsimilar classes. The correlation
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Figure 4.40: Lcfl lmaqge: Stage PRE. 15 subimages of ball-features wore oblained
from *his image.

e
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Figure 4.41: Right hnage: Stage PREL 2 subimages of ball-features were obtained
Jrom this image.
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Figure 4.42: Fdgce-Space Template Tree.
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ROOT RT#1 RT#2 RT#3 RT#4 RT#5 RT#6 | Row Avg.
ROOT 1000 0975 0995 0981 0585 0995 0.995 0.9893
RT#1 1.000 0961 0957 0.961 0.959 0958 0.9673
RT#?2 1.000 0966 0.977 0.991 0.997 0.9826
RT#3 1.000  0.956 0973  0.964 0.9711
RT#4 1.000  0.970 0974 0.9748
RT#5 1.000  0.994 0.9830
RT#6 1.000 0.9831

Table 4.2: Prozimity Matrir for the 6 Gray Level-Space Representative Templates.

ROOT  RT#1 RT#: RT#3 RT#1 | Row Avg
ROOT 1002 0.951 0.973 0.963 0974 0.9727
RT#1 1.000 0.897 0.870 09141 0.9261
RT#2 1.000 0.933 0,438 0.9486
RT#3 1.000 0.912 0972536
RT#4 1.1y 00475

Table 4.3: Prozimity Matrir for the | Edge-Space Representative Templates.

coefficient was used as the proximity criterion for the construction of these matri-
ces. The 6 classes in the gray level-space led to the generation of a 6x6 proximity
matrix (table 1.2) between the representative templates of the classes. Similarly, the
edge-space had a 4x4 proximity matrix for its 4 classes (table 13). Li et. al. [38]
used such matrices with different proximity criteria to generate multilevel trees as
part of the complete link clustering algorithm. We used the same methods for veri-
fication of visual clustering. T}: proximity matrices have elements with large values
corresponding to the similarity between lifferent representative templates because
the templates represent different i sed appearances of the same object. Proximity
matrices of subimages within any of the classes produce elements which are all ap-
proximately 1 (correlation coefficient, p = 1.0). The proximity between subimages in
the classes is thus greater than that between representative templates of the different

classes. This is an indication that visual clustering was successful.
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4.3.3 Feature Extraction

This section deals with the use of previously designed template trees for template
matching on operating room images. The procedures used to handle multiple decision
spaces to extract sub-pixel resolution features are described. Unlike a property space
(PS) which corresponds to a physical property like gray level or edge magnitude of a
scene. a decision space (DS) corresponding to a PS represents the result of correlation
in that PS. Once gray level and edge images have been processed, decisions need to

be made regarding the positions of features; hence the name decision space.

Decision Spaces

The value of a pixel in the decision space (DS) depends on the neighbourhood of that
pixel in property space (PS) and the template tree for that PS. I the neighbourhood
of a point, I’ps(r,y), ina DS is close to the root template, it is assigned the maximum
of the correlation cocfficients on correlation with the representative templates of the
corresponding PS (eq. 4.18) . There s only one threshold required at the root level.
This threshold can be set conservatively withoo t alecting the accurs ;7 feature
detection. Thi= is because it only saves the unnecessary effort of cerre 5 of cach
point’s neighbourhood with all representative templates,

For a property space, the corresponding decision space. Pps(r, y). is given as:

Pps(ecy) = 0.0 itpfe.y)y < T
/

I

max[p' (e, ) otherwise (1.18)

where Ppsie,y) is the DS value at location (x,v), 7" is the threshold which al-
lows/disallows correlation with representative templates, p(r,y) is the correlation
cocflicient of the PS shadow image at (x,y) with the ith representative template | and
plx,y) is the correlation coefficient with the root template.

The gray level PS in figure 4.43 was processed with the gray level template tree
(fig. 4.39). The corresponding DS, scaled to a [0-255] range, is shown in figure 4.44.
FFor the edge-space image (fig. 1.45), the corresponding scaled DS is shown in fig-

ure 4.46.



Figure 4.44: Dccision Space (scaled to 0-235) cor o sponding correlation of fig. J.].5.

Feature space

As correlation results in each PS are represented in a DS, the number of decision
spaces is equal to the number of property spaces selected. The software developed for
processing operating room images, DETECT-POINT. uses two such properties, gray
level and edge magnitudes. The results in these DS (figs. LU LA6) cannot be used
dircetly 1o extract {eatures. Information from multiple DSs must be appropriately
interpreted and represented i a single place. This is done by constructing the feature
space (I'S). Feature locations are derived directly hy manipulating the FS only.

The edge DS (fig. 1.16) contains features which can be distinguished by the non-
maximal suppression (32] in theiv neighbourhoods. This property is not exhibited in
the gray level DS (fig. 111 where feature locations are surrounded by a “bulbons’
neighbourhood where it is difficult to localize the feature. It was found that the edge
DS conveys more information than the gray level DS. This could be quantitatively

proven using point spread functions for feature locations in both decision spaces.
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Figure 4.46: Decision Spacc (scaled to 0-255) corresponding to corrclation of
lig. 4.45.

This is to be expected as edges are reliable while gray levels differ significantly due
to differences in camera perspectives to a scene. It can be argued that since the edge
image is derived from the gray level image, the edge image will never be isolated from
photometric distortions. However, these distortions will be less apparent in the edge
PS as compared to the gray level PS. While the edge PS scems to be superior in this
application, another application might have property spaces where cach PS has its
pros and cons. Hence, cach application will differ in the ruies for the construction of
the feature space from the different decision spaces. In this application, the feature
space is constructed (eq. 4.19) by weighting the edge DS twice as much as the gray
level DS. The factor of 2 was chosen ad hoc but serves the purpose of emphasizing

cdge information more than gray level information.

Polx,y) + K * Pg(x,y) (1.19)

Pr(x,y) = K
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where K is the weighting factor (K=2 was used) and Pr, Ps. Pg denote the value of

a pixel position (x,y), in feature space, gray level DS and edge DS respectively.

Segmentation

Segmentation of the feature space (FS) is the process of distinguishing feature pixels
(signal) from noise. A histogram-based, percentile-like method [57] was used = -
namic thresholding. Based on the number of features expected. a maximum 1. .. ber
of pixels admissible as feature pixels’ is calculated. A histogram of the FS is con-
structed. The intensity buckets of the histogram are accumulated starting at 253.
The threshold is selected as the intensity at which the accumulated count exceeds the
maximum number of admissible pixels (eq. 4.20). Thresholding is done so that pixels
passing the threshold maintain their FS values.

J

Y < MAX (4.20)

1=255

where, j is the threshold and MAX is the maximum number of admissible pixels.
On thresholding. the FS corresponding to fignres 1.43 and -1.45 is shown in fig-
ure -LA7. It was known a priori that there are 12 ball-features in ti¢ »rene. Allowing
6 pixels per feature, the upper 72 pixels from the histogram of the FS survive thresh-
olding. After threshelding (figure 4.47). the FS image is subjected to a two-pass
algorithm to search for <nd L0 all 8-connected components [28'. Fach connected
component is assumed to represent an extracted feature: a possible ball-feature loca-
tion. An intensity-weighted centroid calculation for each connected « ~mponent yields
the subpixel location for the feature {eq. 4.21, 4.22).
Wiiiie a connected component (comp.). the feature lo-ation (F;, F.,) is calculated as:

OvEr comp.

T' (’! R
F, = 2 el (4.21)
TG
oI gy o
y = -t P
‘ PIDINER

where (z;, y;) is a member of the connected component and has intensity Gj.



Figure 4.47: Featurc Space ajicr dynamic ihresholding {KN=2, ¢ pirels/component).

4.3.4 Results

As mentioned in an carlier section (pg. 59). tewaplates were designed using stap
PRE of a sclected surgery. After elnstering. there were 6 representative tempiates in
gray level-space and 4 representative templates in edge-spes The software devel-
op for the task of ball-feature detection was called DETE  PC 7T The acenrvacy
of DETECT-POINT was tested against mannally digitized dures. As mannal
digitization itself s only acenrate to 0.5 pixels (considering integral pixel valies onlv).
the sub-pixel accuracy of DETECT-POINT is difficult to assess ina lute terms.
Instead. the completeness and reliability of the software were tested in ali three stages
(PRECINTER. POST) of the selected surgery. DETECT-POINT returned all voan-
ually detected ball-feature locations to within 1 pixel of theiv mannally digitized
locations. Clonsidering the inacenracy inherent in manual Jdigitization. the worst case
accuracy of DETECT-POINT is 1.5 pixels. 0.5 pixels more han the difference be-
tween manually ard antomaticaily detected features (table 4.1). Table 1.4 compares
subpixel locations of features o irned by DETRCT-POIN'T against the correspond
ing manually detected positions. An average of 30-35 features were returned for every
OR image. As there were 15 features: there is approximat. 'y one false positive located
for every feature in the scene.

An assessiuent of template matching would he unfair without addressing it< com-
putational and memcry requirements. Even among low level image processing meth-

ods. correlation is one of the most expensive in computational terms. More so in this
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arolication, where multiple templates are applied in multiple domains (gray levels,
edges). It is difficult to apply such a method to a true real-time application without
resorting to specialized or parallel architectures. DETECT-POINT took an zverage
«f 240 seconds to process a stereo-image on an IBM RS/6000. This as. however, a

¢ratiai doma’ imuolimentation of correlation. It was estimated that an FFT-based

implementat + . orrelation in the spatial requency domain will lead to processing
rimes @ theran. 710 seconds (for larze images and templates). suitable for use in

a pse :do- al time environment like the OR. However onlv e OCC form ot wicss-
corresat! -~ vhich was proved to be of little use. . ameuable to a direct application
of the FET. A formulation is presented in Appendix A for the conversion of the most
involved form (RHO) inte subparrs where the "7 can be applied. The proofs pre-
sentecd in the appendix can be applied 1o make anv 7 the ather forms (CONM. CON,
ESM) amenable to FIFT imnlementation.

In sumuaeys a feature detection algorith.o has been devlosed for the antomatic
recognition of the ball-components of triad inarkers in OR ‘mages. Preprocessing
rovtines were developed to standardize raw images. They consisted of gamma correc-
tion. truncated median filtering. edge ¢ tection. aud a uovel size reduction algorithm.
Modol-based recognition was implemented a- = teruplate matching nechlem in mul-
tiple property spaces with statistically desigre-! templates. Iive similaritv ineasures.
different furms of cross-correlation. were invoruigated. The measure RHO proved su-
perior to the others when correlation nsed gray levels and ed¢ .. A formulation of
RHO suitable for FFT implementation was also Jdone (Appendix Aj. Templates for
each property space were organized in a tree. Feature extraction resulted in the de-
tection of all visible features in the 6 images from a surgery. The averase error in the
location of these features was one pixel frum their manually detected locations. There
was an average of one false positive for every feature in the image. The feature sets
obtained by the detection process are used as inputs to higher level correspondence
processes along with calibration parameters. These are responsible for the elimination
of false positives based on other conscraints. The performance « ~ this approach to

feature detection is comparable to others (7] which requite detection for the purpose
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Manual Detection | A+ tomatic Detection Error Euclidean Error
_ﬁ’" '«a Ya “Xm—Xa A¥Y =Yy -Ya | &= \/(AX)"’ +(AY)?
15 21 15.00 »21.00 0.00 .00 0.00
34 135 33.00 135.48 1.00 -0.48 1.11
71 97 71.83 96.83 0.17 0.17 0.24
91 118 90.69 118.24 0.31 -0.34 0.46
120 90 | 129.81 88.69 0.19 1.40 1.41
149 109 | 148.99 109.25 0.01 -0.25 0.25
217 48 | 212.00 49.01 1.00 -1.01 1.42
215 3 | 213.00 72.53 2.00 0.47 2.05
199 71 198.66 70.33 .34 0.64 0.72
317 <8 | 315.00 48.00 2.00 0.00 2.00
317 69 | 317.C% 58.32 - J0 0.48 0.48
300 TO L 29900 69.00 1.02 1.00 1.9
Average En'o:’;;x : 0.17 0.96
Stundard Deviation of Frror {pix.) 0.64 | 0.67

T Numher_o-f False Positives s

Table 4.4: AManual versus Automatic Detection (stage FOST, all velues in pirels).

of re

orstructing in 3D rather than identifying objects only fe¢. mammogram analy-

sis [35]). The next chapter deals with the algorithms developed for the registration of

feature sets returned by automatic detection on stereo-imagzes. Correct registration

enables the system to reconstruct points in 3D and identify triads corresponding to

the ones used during surger;.




5 Hierarchical Feature Correspondence

Hierarchical feature correspondence in the OR stereo-vision system refers to the reg-

istration of fea® ires in layered stages where each stage uses the results of the previcus

one. While * .c lower stages operate on 2D image fratures, finding candidates for
correspor e in the other image of ihe stov Lair. higher stages fuuction in 3D.
configur: . cts of 3D points to « priori models (fig. 5.1).

This  napter deals with issues related to corresponaence between features located
in the left an< right images. Reliable correspondence between stereo-views, an integral
component of the stereo paradigm [5]. is a challenging and active field of research
today. This 15 becanse while the other components of the stereo paradigm like 3D
reconstruction are quantitativeny will defined '59]) correspondence of pixels or features
between perspectively different views is not. There is a one-to-many relationship
between esch image pixel and the line in objeat-space it corresponds to. Different
perspective views of three dimensional scenes poosen different 1ssues. The field of
view (IFOV) of the stereo-images will differ s¢ that some points in one view will be
‘o tside” the other. Othe Hroblems . lade the projection of objeci-space points such
thai both views have neighbourhoods wich different grayv level or structural propertios
{eg. - daes). the basis of image-related inference. Occelnsion. where a point in one scene
is “hirhien” in the other. is another 1ssue which must be addiessed by correspondence
algorith:ims or minimized by system design.

The organizi-tion of this chapter is as follows. First. a literature review of corre-
spondence as a problem in stereo-vision is presented. It includes an outline of the
hierarchical strategy developed for correspondence between features in OR stereo-
images. Subsequent sections deal with the three main stages of this strategy. Finally.
a section on simulaticns and results is provided. Simulations are included to point
out the iimitations of the camera model and to justify the use of constraints and

heuristics nsed to solve the correspondence problem with real data.



5.1 Literacure Review

The correspondence problem in a feature-based stereo approach [30] uses scene and
camera-geometry specific information with a number of constraints for the identifica-
tion of correspording or matching features in stereo-images. The purpose of featurc
or pixel correspondence allows calibration and/or reconstruction in three dimensional
object-space [27]. For a generalized scene, where little information is available about
the scene and cameras or where incomplete information is used to develop models
of the immediate environi:ent, there are no robust solutions [60]. Robotic svstems
tend to u.e generalized interest operators to detect interesting image points to con-
struct @ - odel of the 3D world surrounding tue robot. The interest cperator by
Moravec [43, 47] was based on directional variance. The assumption underlying these
approaches is that a set of 3D points will project as interesting points in both views
and can be reconstructed to yield a sparse estimate {model) of the robot’s environ-
ment. Reconstructing a model of the spine from stereo-images of the surgical field of
view only falls into an even more complex tlass of problemns, as mich of the object
of interest, the spine, is not ~ven visibir. The complexity of the OR scenes was re-
duced by ngidly fixing locatable markers onto selected vertebra. These markers we
located using corrciation-based methods and statistically designed template models.
The process of correspondence for this application was thus simplified to matching
detected ball-components and identifying the triads they beiong to.

Constellation matching (CM) [8] was investigated thoroughly as a possible solution
to matching during a pilot study. Three promising methods were found. These used
angular world view by Murtagh [49], relaxation by Ranade and Rozenfeld [35] and
tree search by Wong [72]. For the pilot studv , Wong’s method using a tree search with
branch and bound heuristics was successfully implemented for spine-model images.
However, with OR images, this approach proved inadequate. This was because CM
is directed towards matching 2D point configurations wher2 the stereo-images can
be considered to be translated and rotated versions of the same 2D configuration.

CM proved successful in the pilot study with a 3D point configuration because of
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the smooth variation of depth for neighbouring point features and the near-parallel
(small baseline) stereo-geometrv used.

Other generalized, more flexible algorithms were studied. The cooperative stereo
paradigm by Marr and Poggio [41] introduced the concept of disparity, or the paral-
lax/shift between features in stereo-images. Recent wpproaches ‘6] have used general
assumptions like smoothness f the imaged surface, rigidity of sub-feature components
of features, and uniqueness of feature matches to model the behavior of dispa:. -+ and
design constraints for feature correspondence. The disparity aradient limit of the
Pollard. Ma:hew, and Frishy algorithm. better known as PMF 2% used cyelopean
constraints based on biological knowledge of human stereoscopic vision. This ap-
proach is especially tseful when camera geometry is nndetermined. NMost researchers
integrate these approaches and adapt them te specific stereo problems. The formu-
lation of feature de.ection and matching as a special cose of signal detection by Wi
and Ahuja [32] is one example of the integration ei different constraints to solve for

correspondence.

5.2 Correspondence strategy

The OR problem. as a wuole. is not as ill-conditioned as many of the situations
addressed by the above referenced researc. In this case. specific trind-markers are
planted for easy detection, a well defined model existed for the configuration of the
ball-feature components of triad-markers, and calibrated cameras were used for ac-
curate reconstructions.  Also, system-related information about the OR layout is
available.  For instance. the approximate range and the number of triad-markers
used during each surgery is known. While the OR problem is more controlled than
the generalized correspondence probiems mentioned earlier. many of the assumptions
madce for the solutions to the generalized probiems cannot be applied to the OR case.

Constellation matching, which proved successful for feature correspondence during a
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pilot study, is inappropriate because of the significant vergence! and large baseline?
of the OR camera system. Disparity constraints based on smoothness cannot be ap-
plied as neighbouring features (ball-components) cannot be considered as belonging
to any particular smooth surface. Because of the lack of such constraints, the unique-
ness constraint was not applicd on feature pixels until the final stage of identifying
triad-markers.

The strategy developed herein for the registration of detected ball-features be-
tween steveo-images was ainied at using scene and system-specific information before
resorting to more generalized coustraints. This led to the hierarchical structure of
this approach (fig. 5.1). The algorithm processed feature sets for the sterco-pair pro-
vided by the detection routines described earlier. At the lowest level. each feature
was considered with all the features in the other imuge of the sterco-pair. Constraints
based on epipolar georaetry. system range, and disparity were nsed to construct ini-
rial sets of candidates. The next higher level attempts to refine these candidate sets

ing suructural similarity in the scene. All candidates in the ‘refined’ candidate sets
are then reconstructed. This results in reconstruction of multiple object-space points
(3D features) for image (2D) features wvhose refined candidate sets contain multiple
members. At the higheet [ovel of the correspondence hierarchy. features in 30 are
tested for confignrations matching the 3D triad-marker models. Heuristics were used
to discard false triads and reconstructed points so that a unique number of triads,
corrzsponding to the number of trinds used in that experiment or surgerw. survive.
The subsequent sections describe the different stages of this hierarchical method in

detail. Results are shown at the end.

5.3 Candidate Sets

Given a feature set for the left stereo-image (FSy), the first task of correspondence was

to select, for every feature in this set, a set of candidate points from the right sterco-

'Vergence refers to the angular convergence between stereo cameras. Parallel geometrics, for

example, have no vergence associated with them.

“Baseline refers to the distance between siereo-cameras.
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image feature set (FSg) which definitely included the left-image feature’s ‘match’
in the right-image. This was called left to right registration. Similarly, right to
left registration involved the assignment of subsets of the left-image feature set as
candidate sets to features in the right image.

A description of the left to right registration process for a point-feature in the left
image (Pz) will serve to describe the algorithm used for constructing canaidate sets.
The right to left registration process occurs in an identical fashicii. There were four
conditions used for constructing the candidaie set {CSp, ) for Py from the feature set

for the right image (FSp). These were (also refer to figs. 5.2, 5.3):

Range Constraint Determine the 3D close (PF) and far (P%) points in the 17,
camera coordinate system for image point Py corresponding to system range

boundaries, [Ry;4. Rmax],

Camera Geometry Constraint Represent the close and far points (PL, Pf‘)in the

right camera coordinate system (P%, P?),

Collinearity Condition Perspectively project P and Pf onto points ¢ and [ re-
spectively on the right image plane to obtain the epipolar line segment, c-f,

corresponding to Py, and

Epipolar Constraint Points from the right feature set. FSp, which are perpendicu-

larly close to the epipolar segn ent c-f are accepted into the candidate set, CSp,,

of PL.

The process of constructing candidate sets is vow described using the . ..nstraints

mentioned above. The use of left to right registration for feature Py, is con. ued for
the rest of this section.

Range Constraint

In the left camera coordinate system, the range at which markers were located was
specified by the limits Z € [Z., Z;]. where Z, and Z; are positive. Z. and Z; were
trignometrically derived as functions of the vergence, baseline and range boundaries

of the stereo-cameras (fig. 5.3).
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The coordinates of the far pomnt of Py oin the left camera system (Plf‘) are also

determined in this manncer.
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Figure 5.3: Caleulation of 31 close and far point< using bascline and ranae bound-

arics.

Camera Geometry Constraint
As the location and attitude of the cameras are kiovn from calibration, any point
in the left camera’s coordinate otem can be trarn-"wiod to the cont camera’s

coordinate system using eq. 5.2

‘\’ll. .\’[‘
Y | = Rz Y; T (H.2)
Zlf Z/,

where, (X, Y0, Z1) and (X, Yy, Zp) are coordinates ¢t the same point. in the left and
right stereo-camera coordinate svstems respectively: Ry, and Ty are the rotational
and translational matrices relating the left camera system to the right camera systen.
I+ 1s now shown how these matrices can be determined using the extrinsic parameters
of the stereo-cameras.

From collinearity (eq. 3.3), the object-space coordinates (X, Yig, Ziy) of any

point. can be transformed into 31 coordinates in a camera system (Xe:, Yo, Z00) using



eq. 5.3.

Xe X — Xo
Yo | =M.| Y -Y
Zc Zw — 2y
or,
Xc =Re (X - T¢) (5.3)
where. the camera's rotational matrix. R+ = M. and its rranslational vector,

Te = [Xo Yo Zo]7: 1Ny Yy Z6]T are the object-space coordinates of the camera
J P
(perspective center). and M is a function of the rotational angles (w. 5. %) (eq. 5.4)

of the camera considered in that order [16. Appendix A].

COSQEOSK  COSwSINA + sinwsin ocns & Sin W SIN K — €OS L SIN W oS & -I
M=MM_ M, = | —cossdsine  coswzoss —sinwsinesing  sinwsoss + cos . sin phisina (5-1)
$in © ~sin . coso E0S v COS D
For the left and right cameras. writing eq. 5.3 in matrix form. we get
X, = Ry Xy - T/)
\ /
Xp = Ra(Xw - TR) (5.5)

Eliminating Xy from ( 5.3), we can re.ate the coerdinates of Xy in both camera.

coordinate systems.
_ S - o L N )
Xr = (RRRL )XL + Kp (T[_ ~ Tr) (5.6)
where object-space point (Xyv) is given by X, and Xg in the left (R, Ty) and
right (Rx.Tx) camera coordinate systems respectivelv. Since the rotation matrices
are orthogonal [71], R[' can be written as £7. Comparing eq. 5.2 and eq. 3.6, we

have,

RLR = RRR}I: s and TLR = RR (TL - TR) (37)

The transformatior of a point from the right camera system to the left (RRL, Trr)

can be derived similarly.
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The close and far points in the left camera coordinate system, PL and P%, can
be transformed to PR and Pf in the right camera coordinate system using eq. 5.2.

These can then be projected onto the right image plane as follows.

Collinearity Condition

After the computation of PR ard PR, their projection onto the right im-.ge plane uses
the collinearity condition. The projection is the reverse process the application of the
range constraint (eq. 5.1. pg. 77). Consider. for example. the projection of PR(Xx,
YR, Zr ) in right camera frame of reference to point ¢(x,, y,) on the right image

plane, v.e have (eq. 5.1)

Iy \l Yr S’-I’l
-— = and -2l =_—,
frR “Zr frR Zn
. , Xr Yr
c(x,. y, = i-f. = —-f. - (5.8
(zr. yr) - Zn) 5.8)

The projection of Pf to poini f" ou the right image is obtaincd in the same way.

Epipolar Constraint

Line segment c-f {fig. 5.2) is the epipolar segment obtained in the right image plane
corre onding to PL(x;, yi) on the left image. Theoretically, the point i the right
image corresponding to left image point, Pz, will lie or its epi,..lar segment in the
right image p'ane. However, when real data and manual calibration (as compared to
simulaticns) were used, this was not true because of calibration model limitations,
sensor (image plane) discretization and random errors. Hence, the epipolar constraint
was applied by admitting all right image point features ‘close’ to segment c-f (eq. 5.9)

into the initia! candidate set, CSp,, for Pp.

P € CSp, if PR L(c—flp, <7 (5.9)

where, P} € FSp is the ith point-feature of the right image feature set and C'Sp, , (c—
f)p, are the candidate feature set and epipolar line segments corresponding to Py, of
the left image; L is symbolic for the perpendicular distance of the point (P%) from

the line segment and r is the threshcld for this distance.
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Figure 5.4: ( rpondicular distunce (do of feature from the cpipolar Line siqment

{e-f) used to decide inelusion into the candidate sct,

For the ith ¢ in the right timage (£}, the prrpendicular distance (d,j s
calanlated nes ta dine in the dight iaee plane parallel to the epipolar iine segiment

(eq. 5.10, fig. 5.1).
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5.4 Refinement of Candidate Sets

Most registration methods apply constraints nsing snrface smoothness. disparity cra-
dient. eyelopean bounds, vigiditysand continnity 1o evalnate a feature’s candidates for
registration [0, 30012.52.69]. This process s terminated by the uniqueness condition,
e dterative evaluation of candidates ceases when one “hest” candidate is det rmined
or all candidates have been discarded. For the evaluation of candidates, Matthies
[12. 93] used coarse to fine correlation on frmage pyrami-ls of different resolutions for
both sterco-images. Others [6. 30, 52] only nsed correlation fo get initial match prob-
abilities which are iteratively improved by relaxation labelling using properties sich
as disparity gradient. figural continuity, surface smoothness. neighbour reinforcement,
cte. Lo converge to a unique mateh or none at all. These approaches are aimed at

1-)
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realizing a quick, spar  model of the 3D environment surrounding a robot, for in-
stance. The cameras for these purposes are configured in a near-parallel geometry
with baselines rarely exceeding 300mm. Tests in the operating room involved base-
lines varying between 300 mm and 500 mm. Larger basclines were used for greater
accuracies. Large baselines, coupled with the fact that ball-features do not lie on any
particular smooth surface, rule out the efficient use of the above properties for the
application of uniqueness for convergence of initial candidate sets to singular or null
sets. They could, however, be used for the purpose of refinement of candidate sets.
“efinement of candidate sets, the intermediate stage in the correspondence hierarchy,
aims to reduce the size of candidate sets by eliminating candidates which did nct
satisfy the constraint which was enforced at this level.

Experiments were conducted to test the feasibility of using correlation-based mea-
sures to reject candidate locations whose neighbourhoods bore little structural sim-
ilarity to the feature's neighbourhood. Two camera configurations were used and
stereo-images acquired using both configurations were tested. One configuration was
defined as having a small baseline (320 mm) and vergence (24%) and the other as
having a large baseline (420 mm) and vergence (32?). There were 12 ball-features
visible in the stereo-images of both configurations. Square windows (side 75 pixels)
with features in their center were selected. These were called feature subimages.
Cross-correlation results were recorded for correlation between feature subimages in
one image with feature subimages in the other image of the stereo-pair. Correlation
used eq. 3.4 also applied during feature matching.

Tables 5.1 and 5.2 list the results of cross-correlation of the 12 feature subimages
(size 75x75 pixels) of the left image with the 12 features of the right image for stereo-
images of the two configurations respectively. For each feature subimage of the left
stereo-image, the maximum and minimum correlation values (p) are given with the
correlation value for the matching subimage in the right image. Often, the matching
subimage will not have the maximum correlation value due to the perspective dif-
ferences between the two views. The percertage of the ratio of this value with the

maximum is indicative of the difference in lihelihood between the matching subimage
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Small Baseline-Vergence Configuration
Feature Cross-correlation Values, p € [-1,1]
Number | pmaz  Pavg  Pmin  Pmatch 100 £matah (77)

#0 0.705 0.066 -0.359 0.705 100.0
#1 0.706 0.139 -0.220 0.706 100.0
#2 0.473 0.057 -0.173 0.473 100.0
#3 0.535 0.205 -0.171  0.335 100.0
#4 0.738 0.229 -0.147 0.738 100.0
#5 0.408 0.122 -0.159 0.408 100.0
#6 0.286 0.077 -0.065 0.286 100.0
#7 0.674 0.252 -0.100 0.674 100.0
#8 0.252 0.058 -0.130 0.226 89.6
#9 0.129 0.008 -0.084 0.129 100.0
#10 | 0.503 0.138 -0.313 0.503 100.0
#11 0.425 0.008 -0.501 0.425 100.0

Table 5.1: Structural Similarity with a small baseline-vergence configuration (Base-
line = 320mm, Vergence = 24° ). Only feature #8& did not register the marimum
similarity value with its corresponding point in the right image.
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Large Baseline-Vergence Configuration

Feature

Number

Cross-correlation Values, p € [~1.1]

Pmazx Pavg Pmin  Pmatch ! 1002,?:‘5?(%)

#0
#1
42
#3
41
#5
46
47
#3
49
#10
#11

0.212  0.0v3 -0.046  0.212
0.252  0.005 -0.201 0.252
0.342 -0.034 -0.322 0.342
0.336  0.081 -0.18%  0.236
0.221  0.037 -0.1»3  0.199
0.341  0.033 -0.22¢4  §.191
0.297v  0.084 -0.061  0.231
0397 0.012 -0.286  0.397
0.265 0.043 -0.204  0.265
0.30v 0.111 -0.072  0.307
0.220 0.002 -0.182  0.220
0.324  0.027 -0.205 0.324

100.0 |
100.0
100.0
65.6
90.0
.1

Ut
Ut

~1
-1

160.0
100.0
100.0
100.0
100.0

Table 5.2: Structural Simuarity with a large baseline-vergence configuration (Base-
line = 420mm, Vergence = 32°). Feature #3, #{.#5, and #3, did not register the
mazimum similarity value with their corresponding points in the right image. There
are many more features that do not register mazimum similarity with their matching
candidates as compared to table 5.1. This indicates the difference in perspective views

as the baseline is increased.
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and the most structurally close subimage in the right image to the teature subimage in
question from the left image. For the small baseline-vergence configuration (table 5.1),
all features except #8 recorded maximum correlation values with their corresponding
subimages. The correlation value recorded between the subimage for feature #8 and
its corresponding subimage was 39.6% of the maximum correlation value registered
for all subimages with feature #8. With the small baseline-vergence coﬁﬁguration,
a thresliold of 80% of the maximum correlation value was found to always include
the matching feature in the refined candidate set. With the large baseline-vergence
configuration (table 5.2), features #3 (66.6%), #4 (90.0%). #5 (55.1%). and #6
{(77.7%) did not register maximum correlation values with their matching candidates.
The threshold value for this configuration, based on testing with more stereo-images,
was set at 50%. This is significantly lower than the threshold of 80% for smaller
baseline-vergence configuration. The difference in thresholds was expected because
the structural similarity between matching scenes deteriorates with increased baseline
and vergence.

In the correspondence algorithm implemented, candidate sets were optionally
subjected to the structural constraint as the intermediate stage of correspondence.
A given feature’s subimage was tested with large neighbourhoods of its candidates
(members of its candidate -et) in the other image of the stereo-pair. Refined candi-
date sets only admitted candidates with similarity values above the threshold relative
to the candidate with maximum similarity (eq. 5.11). This does not ensure that the
refined candidate set will be singular.

Given a feature L; with a candidate set, C' = {r;,r3,...,7;,...}. The refined

candidate set (R’) for L; is defined as:

R = {rk Sre€C, andre > 7 (maxp;j)} (5.11)
]

where 7 is the threshold chosen for the particular camera configuration, and p;; de-

notes the cross-correlation coefficient between the feature subimages corresponding

to L; and r;.
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5.5 3D Feature Reconstruction

This section deals with the use of stereo-camera parameters for the reconstruction
of possible ball-features in three dimensional space. As no uniqueness criterion was
enforced during the refinement of candidate sets, there may be multiple members
from the other image in a feature’s refined candidate set. Thus. reconstruction with
these may yield multiple 3D points for a single feature.

In photogrammetry, the process of reconstruction in 31 using two or more image
point locations is termed space intersection. The concept of space intersection is
presented first, followed by the model used for the calenlation of three dimensional
features.

In fig. 5.5. a vector relationship can be formulated (eq. 5.12) between the baseline
vector, B, left image vector. a;. residual parallax vector. PyP,. and right image
vector, ap. If [pr.py.p:]T are the components of a vector in the direction of PP, by
solving for the scalars (A;. Az, &) (eq. 5.12), we can determine P(N.Y.Z). corresponding

to the object-space vector WP.

B = /\laL-]rP[Pg —f\ga_!{ (512)
which in ohject-space is
B: Ty Pr -l I
= AM] + 5 — A MJ
B, ML w r R py AMp |y,
B; _'fL L P: _fR
- _.1 r
A W pr —Uur B,
K = v py  —Ur B, (5.13)
As wy p. —w, B.
where,
U T Uy z,
vy = NI’LI: yr , v, = 1\’12 Yr .
wy "'fL J Wy —fR
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Figure 5.5: Space Intcrsection: The position of P(X. Y. Z) is given by the vector
relationship between the bascline vector, lines of sight, and the perpendicular (PyPy)

between the LOS.

P
B =C,Cn. and P\Py =n| p, | =nr(aLxap)

P

using eq. 5.13, we have,

1
WP = WCL + /\13," + ;P]Pz (r)l-;)

The above approach places the object-space point, P at the midpoint of the vesid-
ual parallax vector, P{P,. This method for the reconstruction of P is somewhat ad
hoc and lacks accuracy [46]; it has been presented as one casy approach to understand
the process of 3D reconstruction froin.

A C routine (CSPACO) was written based on a FORTRAN implementation {50]

(SPACO) of the iterative reconstruction based on collincarity (eq. 3.4). The iterative

0
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approach has higher accuracy. and can accommodate multiple lities of sight (LOS)
corresponding to multiple cameras [70]. Details of the formulation of condition equa-
tions and their iterative solution are not relevant to the process of correspondence,

and have not been covered here.

5.6 Triad-marker Identification

Most registration methods seek to find a unique match from a feature’s initial set of
match-candidates. To do this, a uniqueness constraint is typically propagated until a
single candidate remains otherwise, the feature is discarded unpaired [6]. With OR
images. however. there were no efficient constraints available at the stage of refinement
to apply the uniqueness cendition. Hence. a one-many correspondence was allowed.
This meant that refined candidate sets could contain more than one candidate. The
uniqueness constraint was not applied until after reconstruction when object-space
was tested for a known number of triad-markers. An unoccluded triad-marker yields
three 3D point features after detection. correspondence, and reconstruction. As the
spatial configuration of these features was known from the geometry of the triad-
marker (fig. 4.1). object-space was searched for triplets of points which satisfied the
marler model. Heuristic constraints were used to eliminate false triads. This section
describes the identification of triad-markers in 3D - the final level in the correspon-

dence hierarchy (fig. 5.1).

3D Model Matching

The 3D model matching problem may be stated thus: given a set of 3D point features,
a 3D model of the distances and angles between the three components of a triad-
marker, and knowledge of the number of triads in object-space, identify the triads
and their component points as mutually exclusive triplets from the set of 3D points.
Generalized solutions for point structure matching use correspondence between frames
[2] to arrive at camera and/or object motion parameters. Mitiche and Bouthemy [43]
have presented a rigorous solution for generalized correspondence of 4-point structures

for solving of motion parameters.
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Figure 5.6: A flat, planar iriad model (all dimensions in mm).

To monitor spinal surgeries, markers were designed as triads of spherical balls
conforming to a model (fig. 5.6). The ball-components were 8 mm in diameter and to-
gether with their ‘legs’ (10mm, 14 mm, 18 mm) were configured in a plane. Previously
illustrated markers may depict different configurations or lengths of legs. However. it
was decided to use this configuration as it presents minimal occlusion problems. There
are three distances possible between the three points that constitute a triad (fig. 5.6).
These were used to define distance matrices for possible triad configurations.

Distance Matrices (DM) are defined as 3x3 upper triangular matrices consisting of
3D inter-feature distances for a prospective configuration being matched to the ideal
triad model. A reference distance matrix was calculated for the model (table 5.3).
For a triplet of points, if the DM or any permutation on the DM was ‘similar’ io
the reference distance matrix, a possible triad was labelled (cq. 5.16). The triad
error, used to quantify similarity to the reference matrix, was the Fuclidean distance
between the set of three inter-feature distances for any prospective triad with the
corresponding set of inter-feature distances of the ideal triad model (table 5.3).

Given a subset , T = {P,,P2,P3}, of the 3D feature set, T is labelled a triad if,
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Reference DM Typical DM Error Marrix
XX YY MX | P P, P P F. P
00 228 28000 226 28.1}00 0.2 0.1

0.0 17.2 0.0 17.4 0.0 0.2
0.0 0.0 0.0 |
Matrix Error, ¢ = \/(0.2)2 + (0.1)¢+ (€ 2)2=0.3 _]

Table 5.3: The reference distance matiz (DM). a typical DM with associated error
matriz (all dimensions in mm).

for this permutation of point positions, distance errors (d,3. da3.d,3) are such that:

ldi2 = dn,| < 7.and

. and

idg;; - dryl <

dva = de] < (5.16)

where, d;; represents the distance between P, and P,, 7 is the tolerance of a 3D dis-
tance from the model distance. and (dn,, dyy. dn:) are the model distances (fig. 5.6).

Distance matrix error (2) for a configuration T is defined as:

s = \/(dlz = Ay )? + (daz = dzy)? + (diy = dii)? (5.17)

For every set. with three members. there were 6 permutations (3!) which corresponded
to the different configurations of the points tested relative to the model components

using eq. 5.1€.

Heuristic Constraints
Though not necessary with simulation data, with real data and manual calibration
of camera parameters, heuristic constraints were necessary to eliminate any ‘false’
triads which may have accidentally satisfied the 3D model matching criteria (eq. 5.16).
These criteria allowed large tolerances so that any true triad does not get rejected
if the recoustruction or detection of any of its components is poor. The heuristics,
applied to triads, could be considered equivalent to the uniqueness properties most
correspondence methods apply to image features.

These heuristics, along with their basis and a description of their application, are

stated here. These were applied to triads, 3D point feature configurations, each of
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which had satisfied the triad model matching criteria (eq. 5.16). A triad, or triad
set, has 3 members, each an object-space point reconstructed using an image feature

from both stereo-images. Each triad also has a corresponding DM and triad error.

o [H1] The six image features used to reconstruct the 3 components of
the triad must be distinct.
This heuristic applies uniqueness to image features used for the components of
any triad. If either the three left image features or the three right image features

are not distinct, the triad set can be discarded.

o [H2] A 3D feature can only belong to a single triad.
This heuristic applies uniqueness to 3D points. If a 3D feature belonged to more
than one triad, only the triad with minimum triad error was retained. Given
triads T;, 1 € Z, containing the common point. Only triad T, is retained where,

if £; is the triad error (eq. 5.16) of T},

& = m__ins,~ (5.18)

e [H3] A single image feature can be used to reconstruct an object-
space point in no more than one triad.
This heuristic applies uniqueness to 2D image features as in [H1] but considers
features from different triads rather than within each one. If multiple triads
have component object points computed using the same image feature, the

triad with minimum distance error is chosen (eq. 5.18).

e [H4] Triads, when arranged in order, should conform to interverte-
bral measurements.
The spine is roughly aligned along the x- or y-axis. Hence, when triads are sorted
and placed along the x- or y-axis, distances between triads should (roughly) cor-
respond to the intervertebral distances of the vertebrae which have triads rigidly
attached to them. Intervertebral distances were obtained from x-ray data for
real cases, and by manual measurement for simulations. If these measurements

are not available, this heuristic is ignored. This heuristic was not used and
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is mentioned for future work. The correspondence process was successful in

locating triads without this constraint.

e [H5]) When complete, the number of triads should be the same as the
number of triad-markers used.
This heuristic specifies the uniqueness of the number of triads detected. If true,

this condition signals the end of the correspondenice process.

5.7 Triad Representation and Results

This section covers the calculation and representation of triad information followed

by typical results using operating room data with different camera configurations.

Representation of Triads
For visualization and recording progress during surgery. three pieces of information are
required for every triad-marker which is automatically located by the correspondence
algorithm. These are its label (corresponding to the vertebra to which it is rigidly
attached), its position. and its orientation in object-space. For each triad-marker,
the position and orientation information determined must be consistent with the 3D
model of the triad. Though many triad prototypes were designed and 'ested, the
ones finally selected for use were arranged in a flat. planar configuration (fig. 5.6)
parallel to the xy-plane of the object space coordinate system. The position of point
P (fig. 5.6, 5.7), defined as representative of the triad position, can be calculated
when the spatial locations of 3D features corresponding to model locations XX, YY,
and MX are known. The three triad component points constitute a plane in 3D. The
orientation corresponding to a triad-marker was defined as the normal to this plane.

The triad position was defined as the point (P) which intesects the 3D line joining
model points MX and XX in the ratio 10:18 or 5:9 (fig. 5.7). The orientation was
taken as the unit vector in the direction of the cross product between the vector, A
(XX-MX) and B (XX-YY) (fig. 5.7).

The labelling of triads was possible using the relative positions of the triads along

the x- or y-axis of object-space. Since calibration is usually done with the x- or y-axis
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Figure 5.7: Model-based calculation of triad position and oricntation (all dimensions

in mm),

of the world coordinate system oriented along the OR bed (the patient’s spine). There
is a priori information regarding the vertebrae to which markers were attached, the
triad-markers automatically identified in space could be labelled by the vertebrae to
which they were attached by sorting them by the x- or y-coordinate of their position
vectors.

Results

As the correspondence approach chosen was hierarchical, cach stage was tested using
simulations or test data followed by real data. Three dimensional points projected
onto image planes during simulations required only the lowest level of the hierarchy
for matching; i.e. the candidate sets of simulated point features were singleton sets
as the matching point always occured on the epipolar line for the feature. With real
data, however, the practical limitations of the calibration model, furthered by ran-
dom error, become evident. Candidate sets contained multiple candidates. Often, ihe
matching candidate was not the closest to the epipolar line segment of the feature.
This reaffirmed the requirement of the intermediate stage of refinement to climinate
obvious mismatches based on different criteria before 3D reconstruction. Heuristics

were designed to enforce uniqueness at the highest level of correspondence. As mul-
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tiple 3D reconstructions with image points had been done by that stage, uniqueness
was enforced for 2D image features, 3D object-space points, and triad-markers.

The integrated matching algorithm was tested using stereo-cameras in two differ-
ent configurations, one with a small baseline and vergence and one with large baseline
and vergence. For both configurations, the parameters (like threshold 7 for candidate
set refinement) used were the more relaxed valies designed for the large baseline-
vergence configuration. This was because parameters for the small baseline-vergence
configuration were only devised as being optimal for speed. and not functionality.

For the camera configuration with small baseline-vergence. stereo-images for the
final stage are shown in figs. 3.8, 3.9. The twelve feature locations {1. 2....11, 12) are
marked along with added noisy points which formed the input to the correspondence
algorithm. The correspondence process for the matching of a particular feature is
now followed visually. Fig. 5.10 shows a feature in the left image. The lowest level
of correspondence (fig. 5.1) vields its candidare set. The 8 members of its candidate
set in the right image are shown in fig. 5.11. The intermediate level of refinement
leads to the elimination of features { F. 5. 8, 9}. half of rhe candidate set. Fig 5.12
shows the remaining 4 members of its refined candidate set. After the application of
uniqueness at the highest level (triad matching). the feature was found to belong to
triad #2, and matched only a single feature in the right image (fig. 5.13).

As mentioned, there were two camera configurations. each used to record two-
stage surgeries. There were four triads used in both surgeries. The 12 image features
were labelled identically in the feature sets of the stereo-images (left image feature
#i matches right image feature #i) so that the application of heuristics to discard
‘false’ triads can be easily understood. The correspondence algorithm returned the
four triads configured correctly in both stages when both configurations were used.
Results are provided for all triads configured in space (model matching), their triad
errors, constituent model points, and image features. Tables 5.4, 5.5 show results for
the initial and final stages respectively, when the small baseline-vergence configuration
was used. Table 5.6 shows results of the initial and final stages when the large baseline-

vergence configuration was used. The column labelled heuristics lists the heuristic
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Figure 5.9: Right sterco-image with annotated features (F' for false positives).
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Figure 5.10: Left image feature #4 (LIF#]) which is to be matched with a unique
candidate in the right image.

Figure 5.11: Correspondence Stage I: Candidate set features in the right image for
LIF#/.
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Figure 5.13: Correspondence Stage I1I: The unique matching candidate for LIF#/
after triad identification.
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used to disqualify a particular triplet’s configuration which satisfied the 31 model
matching criteria. The model components (XX, YY, MX) are given in terms of the
left and right image feature numbers used to construct the 3D component. Triad
errors are also included so that the application of heuristics can be understood. In
the column showing heuristics used to discard triads, ‘P’ indicates a triad which
passed all heuristic evaluations. In each stage, all four triads present in'the images
were correctly located.

The correspondence process was successful using both camera configurations. This
proved that the integrated paradigm used is robust enough to solve for baselines as
large as 420 mm. The triad errors also prove that the accuracy of measurements
made by the system on composite bodies (triads) is excellent. Simulations suggest
that an improved calibration model (eg. one that takes sensor discretization into
account) would obviate the need for the intermediate stage of correspondence pre-
sented here. The constraints designed here were dependent on the system design and
prove that stereo-correspondence is a solvable problem in specific cases where a priori

scene knowledge can be integrated with generalized constraints to provide a complete

solution.
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Small Baseline-Vergence Configuration (Stage 1)

Triad # | Error (mm) | XX(L) XX(R) | YY(L) YY(R) | MX(L) MX(R) | Heuristic
0 2.98 1 1 2 2 3 3 P
1 0.59 4 4 5 5 [ 6 P
2 3.53 7 6 6 4 6 5 H1
3 1.17 9 8 9 9 8 8 Hl
4 2.13 7 7 8 8 9 P
5 3.01 9 7 10 9 9 8 H1
6 3.59 12 & 11 8 10 7 H1
T 4.27 12 10 10 9 10 8 Hi
8 1.37 10 10 11 11 12 12 P
9 4.70 10 7 11 8 12 H1

10 1.74 10 7 12 9 12 8 Hi1
11 5.65 10 7 11 8 12 9 H3

Table 5.4: Triad matching with a small baseline-vergence configuration (Baseline
). For this stage, model matching resulted in 12 possible
triads. Triad errors are provided in mm. The components of the triad model (XX,
YY, MX) are also given in terms of the left (L) and right (R) image features used to
reconstruct the 3D point in each triad’s component positions. The information in the
table can be used to confirm the heuristic used to evaluate the triad marker (P implies
that the triad passed all tests). Four triads were used in this surgery. They were all

= 320mm, Vergence =

0 jo

woap

identified in the correct configuration.
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Small Easeline-Vergence Contiguration (Stage 2)

Triad # | Error (mm} | XX/L) XX(R) | YY(L) YY(R) | MX(L) MX(R) | Heuristic
o] 1.24 1 1 2 2 3 3 P
1 0.38 7 6 6 B 5 4 Hi
2 0.50 4 4 5 5 6 6 P
3 +.06 8 9 9 9 8 8 Hi
4 3.94 9 8 9 9 8 8 H1
5 1.25 1C 6 9 4 4 H1
6 1.26 7 7 ] g 9 9 P
T 4.21 3 9 8 8 9 9 H1
8 3.78 9 2 3 8 3 9 Hi
9 1.0¢ 117 9 10 8 e} T H1

10 3.99 11 B 10 [} 9 4 H1
11 5.33 9 T 10 3 9 4 H1
12 1.34 8 9 9 9 15 10 H1
13 -4.00 8 6 9 o] 10 7 H1
54 4.37 12 3 11 8 10 7 H1
15 2.72 11 4 10 1 11 5 H1
16 3.58 11 1 12 5 11 5 H1
17 | 3.67 9 t 10 1 11 6 Hi1
I3 3.93 10 6 12 7 1] [ H1
19 5.22 10 T 1t 3 12 9 H2
20 3.25 12 7 11 6 12 6 Hi
21 1.4 10 10 11 11 12 12 P
22 3.19 12 11 11 11l 12 12 Hi
23 1.29 12 6 11 4 12 4 H1
24 3.60 10 7 11 8 12 8 Al
25 2.55 10 7 12 9 12 8 H1

Table 5.5: Triad matching with a small baseline-vergence configuration (cortd.)
(Baseline = 320mm, Vergence = 2/°). Table notation as explained in table 5.4.
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’- Large Baseline-Vergence Configuration {Stage 1)
Triad # | Error (m—) | XX(L) XX(R) | YY(L) YY(R) | MX(L) MX(R) | Heuristic
0 122 3 3 2 2 1 1 P
1 0.51 3 3 2 2 1 2 H1
2 2.71 5 3 5 2 4 1 H1
3 0.87 6 6 5 5 4 4 P
4 0.74 9 9 8 8 7 T P
5 2.33 8 8 9 9 9 8 Hi
6 0.77 12 12 11 11 10 10 P
7 3.96 12 7 10 T 12 9 Hi
Large Baseline-Vergence Configuration (Stage 2}
Triad # | Error (mm) | XX{L} XX/R) | YY(L) YY(R) { MX(L) MX(R) | Heuristic
0 2.06 3 3 2 2 1 1 P
1 4.21 € 3 5 2 4 1 H3
2 0.61 6 6 3 5 4 4 P
3 2.71 6 6 5 5 4 5 H!
4 314 9 4 9 6 T 4 Hi
5 267 7 8 3 8 T 7 H1
6 0.56 9 9 8 8 7 7 P
7 3.01 10 1 10 3 9 2 H1
8 1.00 9 4 10 6 10 5 H1
9 3.21 9 5 10 6 10 5 Ht
10 3.03 11 12 i1 11 10 i0 H1
11 0.76 12 12 11 11 10 10 P
12 i.78 11 10 10 10 11 11 H1

Table 5.6: Triad matching with a large baseline-vergence configuration (Baseline

420mm, Vergence = 32°). Table notation as ezplained in table 5.4.



6 Visualization

This chapter deals with the meaningful representation of triad-marker data (position
and orientation) automatically computed by the system. The purpose will be real-
time, dynamic visualization of the spine during surgery. post-operative clinical or
surgical evaluation, and the creation of a record of the different stages of surgery.
Issues dealing with the interpretation of marker information in terms of vertebral
movements are discussed to lay the foundation for future work. The Huckground for
a graphics visualization software [14. 63] is given. This software has the capability
of representing 3D spine information as a set of vectors or vertebral-model objects.
Triad information, automatically generated from previous algorithims. was graphically

represented by this software using both vectors and graphical models of the spine.

6.1 Clinical Requirements

[n the operating room. acquisition of stereo-images is {ollowed by image processing.
feature detection. and correspondence. These processes return position and orienta-
tion of triad-markers in the form of 3D vectors corresponding to triad-markers. These
vectors, called triad vectors, exist in the object-space coordinate system defined dur-
ing camera calibration. As the stereo-rig used was mounted on a mobile platform,
triad vector sets corresponding to any stage of surgery. necessarily used one of the
triad vectors as a reference. This was the triad vector corresponding to a reference
triad which was placed on the vertebra expected to undergo minimal change during
surgery, usually a lumbar or cervical vertebra. Triad parameters between different
stages could be compared using position values relative to those of the reference.
Clinical studies and visualization require knowledge about the 3D status of ver-
tebrae or the spine during different stages of surgery. The camera system measures
position and orientation changes in the triad vectors. These cannot be directly in-
terpreted as changes ia vertebral ‘body’ vectors, virtually defined 3D vectors which
represent a vertebra's position and orientation. The body vector could be taken as a

vector positioned on the spinal midline which passes through the vertebra’s center of
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Figure 6.1: Body and triad vectors for the ith vertebra (B;T;). The vectors are
also shown for the refercnce (dummy) vertebra (B Tp).

mass. In this work, body vectors are implicitly defined in graphical routines where
vertebral-objects are modelled. The body (B;) and triad (T;) vectors of a vertebra
arc shown in fig. 6.1. As the surgeon may fix triad-markers at any lecation on the
spinous process of a vertebra, there is no a priori knowledge regarding the 3D rela-
tionship between the triad and body vectors for a vertebra. The direct use of triad
vectors for the representation of the spine during surgery would be inaccurate and
difficult to visually interpret for the surgeon. Another related issue is that by com-
paring vectors (relative to reference vectors) between different stages, the 3D change
in position and orientation of triad vectors can be inferred. Even if this were to be
directly applied, as a gross approximation, to vertebral body vectors, the 3D status
of the spine cannot be given without information regarding the initial (pre-operative)
configuration of the spine.

The solution proposed was the use of sterco-radiographs of prostrate patients to
calculate the preoperative 3D configuration of the spine. If the preoperative status

of the spine is modelled, position and orientation changes recorded intraoperatively
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using stereo-cameras can be used to update the configuration of the spine-model. The
following sections present the current implementation of this apnroach and the issues

vet to be dealt with during future work.

6.2 Graphical Representation

Based on a study of methods for measurements of vertebral position and rotation
[56. 63] using radiographs. visualization software (SPINE) was developed {63] for the
3D modelling of the spine using IBM's GL (Graphics Langnage) graphics package.
It was proposed to modifyv the existing SPINE program for the graphical display of
results from stereo-cameras. Chu [14} ported SPINE to the OpenGL standard and
made modifications to make it compatible with stereo-camera data.

The basis for the modifications made to SPINE were as follows. For any surgery.
stage 0 represented the preoperative stage when instrumentation had been attached
to the spine. but no active correction had been initiated. For this stage. lying stereo-
radiographs had been analyzed [56] and the configuration of the spine (body vectors)
was made available. This information was used by SPINE for the display of the
uncorrected spine. For consequent stages, triad vector data. automatically computed
by the stereo-camera system. was made available. For these stages. the triad vector
data was be used to compute body vector information as follows. Consider stage 0
and stage | for the ith vertebra (fig. 6.1). When the system provides triad vector
data for stage 1, 3D vector information is available for the following: T? (triad vector,
stage 0). T! (triad vector, stage 1), and BY {body vector. stage 0). It is required to
compute B!, the body vector for the ith vertebra for stage 1. Rotation for a vector
in 3D can be completely defined by an axis (A) and an angle of rotation (8) about
that axis. The axis and angle are ca'culated using the cross product between the

pre-correction and post-correction triad vectors (eq. 6.1).

A = TxT}
. | IToxT}Y
() = sn ! []—’I‘-‘)Tm (61)
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This 3D rotation (A, 6) can be applied to B{ to arrive at B!. The positional
difference between B? and T? can be maintained to arrive at the new position of B!.
Post-correction body vectors are obtained in this fashion and displayed by SPINE. The
underlying assumption is that body and triad vectors for the same vertebrae constitute
rigid bodies and so, are subject to the same 3D rotation. Thus, SPINE attempts to
represent 3D triads movements as measured by stereo-cameras in terms of changes to
the configuration of the spine beginning from its precorrection configuration. Visually,
this is more meaningful than displaying triad vector information only.

Images of a two-stage surgery were digitized. The {eature sets were used with the
correspondence algorithms described earlier. All four triad-markers were successfully
located in both stages. Figures 6.2 and 6.3 show the results of reconstruction of
the spine model using body vectors and graphical vertebral objects respectively. As
lying radiographs of this particular patient were not available, standing radiographs
of another patient were used to provide initial body vector information. This is
not an accurate representation, but the purpose, at this stage. was only to simulate
the visualization procedure. Triad vectors are transparent to visualization, but form
‘composite objects with body vectors and are used to manij. ilate them in 3D. Triad
vector data corresponding to the four triad-markers is given in table 6.1. It has
been suggested [21] that a protocol be estal'shed wherein lying stereo-radiographs
will be taken preoperatively in the clinic, before and after instrumentation, during
characteristic stages of instrumentation and postoperatively in the clinic.

This graphical approach is only preliminary and is yet to be completely evaluated.
Some of the issues related to this interpretation of triad data which can be investigated

as part of future work are now discussed.

6.3 Outstanding Issues

As triad vectors do not correspond directly to body vectors of vertebrae, a number
of issues arise during the interpretation of triad data for clinical purposes. These
are dealt with in view of two suggested approaches to interpreting triad data: using

OpenGL, as currently implemented, and using photogrammetry to relate camera
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Figure 6.2: Precorrection configuration of the spine using body vectors and vertebral
models, The dark vectors corresponding to the vertcbrae marked with triads. The
remaining vectors arc interpolated using the initial (precorrection) configuration of
the spine.
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Figure 6.3: Postcorrection configuration of the spine using body vectors and vertebral
models.
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Tri:z.d Data (Pre- and Post- Stage) (X.Y.Z in mm: a.3,~ in DDD.XX)
Stage | Vertebra X Y VA a 3 v
Pre L1 0.0 0.0 0.0 | 116.14 | 112.62 35.85
Post L1 0.0 0.0 0.0 | 116.01 | 114.24 36.98
Pre Tii | 26.18 -48.13 | 30.36 | 119.34 | 105.03 33.73
Post TI1 | 34.44 -59.67 | 29.32 79.08 99.65 14.65
Pre T2 | 41.64 -97.76 | 40.59 8666 | 111.70 22.01
Post T9 | 33.32 | -107.08 | 28.38 779 92.67 8.29
Pre T7 | 31.50 | -145.55 | 24.51 92.36 88.69 3.16
Post T7 | 38.41 -1536.18 | 17.53 36.58 T8 15.57

Table 6.1: Postion and orientation information for the | triads used in figs. 6.2
and 6.3. Pre- and post-correction data is grouped for each triad. («.3.~) are vector
angles from the (X. Y, Z) coordinate ares respectively. The reference triad, planted
on vertebra L1. shows little angular deriation due to correction.

and radiograph object-spaces. Future work should concentrate on the evaluation of
measurements recorded by the OpenGL approach for known 3D vertebral and triad
vector motions. s an alternative, the latter approach is strongly recommended
because of its mathematical rigour in establishing the relationship between camera
and radiograph measurements. Using OpenGL is a more convenient approach for

visualization rather than quantitative analysis of spine dynamics during surgery.

Relating camera and radiograph fraines of reference

Currently, triad vector data, in the camera object space. and body vector data, in
the radiograpl. object space, are combined in a common frame of reference in the
3D viewport provided by SPINE. Although both object-spaces represent real world
measurements, it might prove more accuratc to relate the two photogrammetrically,
or at least do so in an experiment to prove that they are compatible. For any surgery,
a common set of vertebral landmarks can be reconstructed using radiographs and the
stereo-camera system. The seven-parameter transformation {46] can be applied to the

two sets of data to arrive at the rotational and scale difference between measurements

in the two frames of reference.

Interpretation of triad vector motion in terms of vertebral body vector

109



motion

As che motion of vertebrae is not well understood, it is difficult to relate positional
and rotational changes in a triad vector to those of the body vector of the vertebra
to which the triad is attached. A rigid translation of a vertebra in 3D will reflect
identically on the triad. However, at this time, the trajectorv of the triad vector
has not been modelled in terms of rutation of the body vector about an arbitrary
axis in 3D coupled with 3D translation. Experimental evaluation is required under
controlled conditions to assess the validity of the currently implemented scheme of
interpretation of triad motions using OpenGL.

The accurate interpretation of triad vectors in terms of body vectors is an impor-

tant issue for the intraoperative monitoring of scoliosis surgery using this approach.
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7 Conclusions and Recommendations

This chapter concludes the thesis in three parts. The first subsection briefly sum-
marizes highlights of research done and results obtained. This work was intended to
test the feasibility of using stereo-vision for intraoperative measurements. To build
on this work. future directions of research and experimentation are outlined in the
second section. (onclusions, based on the intraoperative erperience, constitute the

final sectinn.

7.1 Summary of Results

Five distinct arcas of work emerged when the stereo-vision paradigm [3] was ap-
plied for making intraoperative measurements. These were mechanical system de-
sign. stereo-camera calibration. feature detection in OR stereo-images. correspon-
dence between feature sets returned by detection. model matching in 3D space, and

visualization of data. Work done in each of these is summarized below.

Mechanical System Design A mobile platform was modified for the operating
room. [t accommodates a stereo-rig. a computer with frame-grabber. and a
monitor. The stereo-rig consisted of an adjustable arm (3 degrees of freedom),
a pair of Sanyo CCD cameras. and a variac-controiled light source. Many pro-
totvpes of triad-markers were designed with different fixation mechanisms so
that they could be rigidly attached to the spinous processes of vertebra during
surgery. Spherical ball-components of the triad-markers were fabricated using
painted plastic. These ball-components were 8 mm in diameter and constructed
with legs of variable length conforming to a specified triad model. All mechan-

ical fabrication was done at the Electrical Engineering (EE) Workshop.

Stereo-Camera Calibration Calibration routines were developed for the Sanyo
CCD sensors used. A control frame (peg-board) for calibration was designed
guided by simulations. The control frame was constructed at the EE Work-

shop. Collinearity-based routines were used for calibration of stereo-cameras
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and reconstruction of matched points in 3D. Accuracies of (0.3, 0.3, 0.7) mm

were obtained in the (X,Y,Z) object-space directions respectively.

Feature Detection Routines were developed for the preprocessing of raw OR im-
ages using gamma correction, truncated median filtering, and Sobel edge de-
tection. A novel algorithm, based on subimage statistics, was devised for the
automatic recognition of the surgical field of view in OR images. This was
used to reduce the size of images to save unnecessary computation during later
stages. Gray level and edge-spaces were used for cross-correlation with mul-
tiple templates for the localization of ball-features. Six gray level and four
edge-space template classes were developed by clustering and organized as tem-
plate trees. Fundamental work was done to compare the characteristics of five
different forms of cross-correlation. Cross-correlation with means adjustment
and normalization (RHO), and means adjustment alone (CCM) performed well.
DETECT POINT, the implementation of this approach, was tested on a three-
stage surgery. All unoccluded ball-features were successfully located within one
pixel from manually specified locations. The feature sets returned by DETECT

POINT contained approximately one false positive for every true feature de-

tected.

Correspondence A three-stage hierarchical approach was adopted for correspon-
dence between feature sets returned by the system’s detection algorithms. The
lowest stage collects candidates for each feature from the. other image of the
stereo-pair based on epipolar and range constraints. The intermediate stage
rejects candidates based on structural similarity between feature and candidate
neighbourhoods. This refines candidate sets constructed by the first stage. Fea-
tures are reconstructed in 3D with each of the members of their refined candidate
sets. At the highest level, 3D model fitting was implemented to match triplet
3D point configurations to the 3D triad model. False triads were eliminated
using uniqueness-based heuristic rules. Software developed for this correspon-

dence model was tested with data for two camera configurations - small baseline
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(320 mm) and large baseline (420 mm). All triads were successfully located in
their correct configurations. All other points were rejected as false positives or

incorrectly reconstructed 3D features.

Visualization Issues were presented regarding the interpretation of triad position
and orientation information in terms of vertebral movements during stages of
surgery. Specifications were designed for Chu [14] for the modification of the
program (SPINE) used to display vertebral information. SPINE can be cur-
rently used to visually assess the configuration of the spine after any stage of
surgery. An approach using photogrammetry to relate camera and radiograph

coordinate systems was proposed for future work.

7.2 Recommendations for Future Work

[f future work is to build on what has been done, the theory, related literature, soft-
ware implementation, and limitations of work done must be thoroughly understood
before proceeding. For this purpose. relevant theory has been referenced and explained
and software written has been documented in detail. This section provides the au-
thor’s recommendations for future work based on his experience with the project and
its limitations. The five areas of work used to describe results in the previous section

are also used here.

Mechanical System Design

1. When the development of the system is deemed complete, it should be possible
to mount the stereo-rig (arm accommodating stereo-cameras and lamp) rigidly
to the ceiling. The lenses can be replaced by more powerful zoom lenses (focal
length 28-50 mm should be sufficient) to maintain the field of view. The lamp
may need an optical accessory to avoid dispersion of light. As the field of view
will only be slightly larger than that of the mobile system, there will be no need

to replace the cameras or system software.

2. The aperture setting of the cameras is currently of an inconvenience during cali-
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bration and intraoperative image capture. As the aperture settings are manually
adjustable and have no f/stop locks, it is difficult to visually adjust the f/stop
on both cameras so that their apertures are equally open. The Sanyo VDC-2524
manual suggests the use of automatic iris lenses (model VCL-X, where X refers
to the desired focal length). These lenses feed back to the auto-iris circuitry
already in the cameras to provide pictures with consistent lighting. ‘This would
eliminate the tedium of matching the lighting (apertures) of the left and right
camera images so that detection procedures do not have problems detecting vis-
ible features. It is cxpected that because of standardized lighting, the auto-iris

will not vary significantly to affect reconstruction accuracy.

3. To eliminate errors during image acquisition, it is advisable to devise a proce-
dure which uses the EXT SYNC circuitry to take synchronized stereo-images
in response to single capture signal. This prevents left and right images being

taken during different phases of the patient’s breathing cycle.

4. Triad-markers of different sizec can be constructed in the EE Machine Shop, if

surgeons so desire.

Stereo-Camera Calibration

1. As suggested during the survey of caiibration techniques conducted for this
project, Tsai's [36, 62] two stage calibration method can be tested and compared
to the classical collinearity method [51]. Tsai’s meunod involves constraints that
account for sensor discretization. Collinearity, having its roots in photogram-
metry, works with continuous plate coordinates. Only experimental evalua-
tion can prove whether Tsai’s method does provide any significant increase
in accuracy. Software for Tsai’s method, as implemented by Willson is avail-
able (http://www.cs.cmu.edu/afs/cs.cmu.edu/user/rgw/www/TsaiCode.html).
A comparison of Tsai’s method with Wei and Ma’s two plane calibration ap-
proach is already available [66]. The Calibrated Imaging Laboratory (CIL) of
Carnegie Mellon University (http://www.cs.cmu.edu/ cil/cil.html) is a place
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where related work on stereo-vision and 1mage uncerstanding is taking place.
Researchers at the CIL can be contacted for advice on practical issues regarding

stereo-vision as they arise.

o

After every calibration trial, data was collected on the accuracy of reconstruc-
tion with the calibrated camera geometry. Accuracies as good as 0.7 mm in
the 7-direction were recorded. Experiments should be conducted to measure
three dimensional angles using snch camera geometries with sub-millimetre te-
construction accuracies. Statistical analysis of these measurements can be used
to establish a relationship between measurements of distances and angles in
three dimensions. These ex Aments need not employ markers. but may need
a carefully constructed and measured control frame with a wide range of angular

edges in 3D.

3. If FORTRAN routines like V2STEREO. NDLT. and SIM3D are to be used on a
permanent basis, the programs shonld be ported to the C language (SPACO has
already been ported). They should be formally documented with the relevant
photogrammetry and mathematical theory needed to understand and modify
the programs. Currently. calibration is time consuming because it requires
manipulation of data files in different formats which are to be used by the
general purpose calibration programs mentioned above. The ported C routines
can be combined into an integrated, automatic calibration program especially
developed for use in the OR. Each surgery can then use camera parameters

computed in situ when the control structure was imaged shortly before surgery:

Feature Detection

1. For consistent success ‘n detection of ball-features in images from one surgery
to another, lighting and calibration (aperture and focal length) should be stan-
dardized. Currently, due to repeatcd calibration of cameras between surgeries,
raw images have sometimes had to be manually preprocessed before images are

input to DETECT-POINT. This is 2 problem with image acquisition and not
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the methnd used for feature detection. Experimentation with various meth-
ods has shown that the feature detection problem in OR images is best solved

by model-based recognition using cross-correlation, =s formulated in DETECT-

PCINT.

. Cross-correlation proved successful for feature detection in terms of accurate
localization of features. However, correlation has its drawbacks when applied in
a real-time environment because of its computational requiremen’s. DETECT-
PQINT required an average of 240 seconds on an IBM RS/6000 to process a
single OR image. It was calculated that the FFT implemantation of cross-
correlation formulated as part of this work will result in a 10-fold decrease in
the time taken for correlation (24 sec/image). This includes multiple passes
of the image with models of size 19x19 pixels. If the detection criteria are
relaxed, so that the system does not depend on multiple models, thece would
be a 6-fold reduction in the gray level-space and a 4-fold reduction in the edge-
space. This means that if only root templates of each property space were used
with the FF'T implementation of cross-correlation, 1he expected processing time
would fall from 240 sec/image to approximately 5 sec/image (average of 4 and
6 sec/image). This modification will not affect the performance of detection
as the models in any template tree are structurally very similar and can be
approximated by the root template ( pg. 64, tables 4.2, 4.3, for all proximity
matrix elements, p > 0.95). This approach will lead to an increase in the number
of false positives so that the onus of eliminating them would lie on consequent
matching routines. However, as detection is computationally far more intensive

than matching, this would be an acceptable compromise.

. The triad-markers used had spherical components fabricated of plastic, painted
black. Hard plastic and stainless steel were the only alternatives investigated as
materials for the ball-components which were compatible with the OR. Though
plastic has been used, it still presents lighting problems. For instance, ball

features appear gray instead of black when overhead lighting is introduced to
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eliminate shadows and light the ‘hollow’ of the back under surgery. A material
with the properties of dull cloth, which does not glare, which is also easily
admissible into a sterile environment would be ideal. Florescent paints and
special illumination are possible alternatives which deserve experimentation.
The use of color cameras for easier feature detection should also be experimented
with. Colour image processing is still considered a relatively unexplored area
[33]. It was not used be:ause it increases the computational complexity of all
algorithms. However, if a colour-based region segmentation approach provides
results which are as accurate and computationally less complex than template

matching, the extra expenditure in hardware (color cameras) may be justified.

For correlation, two property spaces. gray levels and edges. were used. Directiv-
ity, corresponding to the edge direction instead of magnitude, could be used as
another property for correlation. Just as edges provide more information about
the striucture of a scene than gray levels. a study comparir.g directivity as an

index of scene structure will prove useful.

Correspondence

L.

o

The triad-marker configuration currently being used consists of a flat. planar
arrangement of spherical ball-components and their unequal legs. This config-
uration reduces the problein of occlusion which commonly afflicted the earlier
configuration where ball-components cccupied the ends of three mutually or-
thogonal legs. The current 3D triad-model has been found to be ‘geometrically
sound’ during 3D model matching. However, its design can be improved by solv-
ing for the location of ball-features in a plane as an optimization design problem
where the distances between the ball features have to be mutually maximized.

This could result in a smaller optimized model for triad markers.

Decision spaces, created as a result of correlation during feature detection, could
be used by the intermediate stage of matching for the purpose of refinement of

feature sets. This would speed up matching considerably as the area-based
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correlation constraint could be implemented as a look-up into decision space in-
stead. This was not implemented as the development of detection and matching

routines were kept isolated from each other.

3. It will prove advantageous to future researchers working with this system to get
a better idea of disparity distributions corresponding to the camera geometries
they use. A control frame (disparity grid), of the size of the field of view of
the cameras, can be constructed with points spanning the depth of field of the
system in each region of the field of view. Digitization or auto-location of the
disparity points of such a control frame could be done during calibration. An
analysis of disparity over the field of view can provide important information
which may be incorporated into the matching algorithm. For example, with a
small baseline-vergence configuration, the disparity in the y-direction (in im-
age frame of reference) was found to be within 14 + 5 pixels. This could be
used as an additional constraint during the refinement of candidate sets, the

intermediate stage of the correspondence process.

Visualization

1. For this system to become clinically useful, triad measurements must be trans-
formed to vertebral movements corresponding to the different stages of surgery.
The previous chapter provides two alternatives for future work to do this.
OpenGL can be used to get quantitative figures for the visual vertebral po-
sitions currently displayed by SPINE. This will not prove to be very tedious
to implement. If the assessment of movements due to this approach are un-
satisfactory, a photogrammetric basis will have to be implemented to relate

stereo-camera and stereo-radiograph object spaces.

2. If data interpretation yields acceptable results, work can begin on the integra-

tion of the system into a self-contained, real-time platform for making intraop-

erative measurements.
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7.3 Conclusions

A stereo-vision system was developed for the intraoperative monitoring of scoliosis
surgery. The system was developed sc that it can be integrated into a one-shot, non-
invasive, on-line measurement tool used to intraoperatively record and quantitatively
assess different stages of surgery .

The work done for the development of this system can be categorized into five

areas:

e Mechanical System Design,

Stereo-Camera Calibration,

Feature Detection.

Correspondence, and

Visualization.

For each of these arcas. a well-defined problem was formulated in view of the
operating room environment. literature was surveyed. a solution was proposed and
implemented. Groundwork was also laid for the system to be integrated into an
easy-to-use automated tool. The approaches suggested [10] should remain the same
unless major design changes are made. Development was slow because data collection
and experimentation could only proceed within the constraints of real surgeries. As
more OR data is collected. it should be possible to experiment with new materials
for markers, repeatability of images, use of different basclines, and interpretation
schemes. If real-time operation becomes crucial, the fast (using FFTs), relaxed (using
root templates only) approach to detection, where the system currently spends more
then 96% of its time, should be implemented. Quantitative interpretation of triad
movements in terms of the vertebra they are rigidly attached to cannot be stressed
enough. A visual interpretation is already available. It is these features which will

endear the system to surgeons and clinicians.
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Stereo-vision was used in the operating room for the monitoring of scoliosis cor-
rection. Currently, there are no widely used tools for this purpose. This work proves
the feasibility of using stereophotogrammetry, computer vision, and image analysis in
the OR. It lays the foundation for the automated, accurate 3D monitoring of scoliosis
surgery using these methods. Based on my experience with this work, I can safely
conclude that this approach, if pursued, will develop into a standard tool for the 3D

Intraoperative monitoring of scoliosis surgeries, among others.

Since the measuring device has been constructed by the observer ...
we have to remember that what we observe is not nature in itself

but nature exposed to our method of questioning

Physics and Philosophy (1958)
Werner Karl Heisenberg (1901-1976)
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Appendix A Correlation Speedup using FFT's

References to spatia' domain correlation implemented in the frequency domain using
the fast fourier transform (FFT) [29] usually refer to correlation in its orthodox form
(OCC, eq. A.3). For correlation to be implemented in its more useful forms (RHO,
CCM), there has been little work done to make these forms compatible for FFT
implementations. This appendix presents the mathematical proof for the calculation
of the normalized cross-correlation coefficient with means adjustment (eq. A.1) using
fast fourier techniques. This form was chosen of the five investigated as all the others
can be derived as subparts of this measure. Hence, their FFT forms can be easily
obtained by selecting parts of the proof presented here.

For convenience, the form of the correlation coefficient being considered is restated
in eq. A.1. The image, g(x.y), is of size MxM and the template, t(x,y), is of size NxN.

As a simplification, the images are assumed to be square.

N-1

e 2k (1)) = D (glz + iy + 1) - §(x,y))
pley) = —= . - —
/ (Sis= S5 gl + i+ ) = 2001 (Sim £ (100,5) - 17)

(A.1)
where £ is the template average, computed once, and §(z, y) is the average of the NxN

image shadow centered at (x,y).

N 1 2
P=—3" > t(i,j)
Mo
1 £
i(z,y) WZ glr+i,y+7)
= _N-1

Eq. A.1 is a modified form of the basic cross-correlation equation given in eq. A.2.

The derivation of eq. A.l from eq. A.2 was dealt with earlier (pg. 51).



Lemma R 1 Given two functions, g() and t() (as described above), the convention
regarding summation used in eq. A.2

=2 Z b g)gl + iy + ) (A.2)

1_]" o

is equivalent to that followed in orthodox equations like eq. 4.3

(x.y) ZZqz] (t—r.)—y) (A.3)

)= =20
Proof
In eq. A.2, the limits are specifically shown in terms of N. the size of t(). However,
because
Hij)=0.forij & [- 52 25
eq. A.2 can be written as
(r.y)= ZVH)])JM*IU*J)

(_]:—U

Substituting

in the above forn: of eq. A.2. we ger,

Clepy = S Stla—1.3- ygla.3)

a=r.J-y= -

or

C(r.y) ZZgaJ (a—x.3—y)
o= -

ple]
which is the same as eq. A.3.

QED

Theorem S 1 (Convolution Theorem) Given two functions g and t with Fourier

transforms G and T,
Flg*txy)l=Fleglxy) 1F[t(xy) ] =G (fz./)T(fz.fy)
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This theorem has been stated for completeness only. For its proof, refer [20]. Next,

the relation between correlation and convolution is shown so that correlation can be

computed in the frequency domain using theorem 1.

Lemma R 2 Given two functions g(z,y) and t(z,y), correlation (Q )between the func-

tions is equivalent to convolution (*) of the first function with the second flipped about

koth its azes, i.e.

gt =g *i (A.4)
where, t = t(—z, —y). the flipped function, and the operations @ and * are defined
as:

(9 /) (z.v) ZZQZJ (i =z, —y) (A.5)
1,J= —00
(g*f Zz_,gl} (x =iy =) (A.6)
Proof
Expanding the RHS of eq. A.4 using the definition of convolution (eq. A.6), we get:
gri=Y 3 gli iz iy —J) (A7)
1, y= —00

but, it is known that
f(?—lyy—J) = t(l—:l),] —y)

Substituting this into eq. A.7, we have

g i= S g ti-zi-y) =g/

ivj= —0o

Hence, ( A.4). QED
Corollary

gQt=g*i= mvf[ (t)]
Using the background just presented, eq. A.1 will be represented as multiple simplified
terms, each of which is in the form of ordinary cross-correlation (eq. A.2) and can be

evaluated using the fast Fourier transform by lemma 1. Consider eq. A.1 in the form,

p(z,y) = g((;’yy)) (A.8)
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The template can undergo a one-time adjustment for its mean.
t(z,y) = t(e,y) - i

The numerator (eq. A.8) can be expanded using eq. A.l,

Nixy) = 3 Z HL ) gle + iy + ) = ale,y) (A.9)
)= _
= A(:\',y)—-B(x.y) (A.10)

Atey) = LY Jlgle =i+
t J

B(xy) = ZZf(i.j)_(](.r.y)
vy
(A.11)

The component term. A(x.v). is in the simplified correlation form {eq. A.2) and can

be evaluated using FFTs. Sitnplifving the term, B.

B{x.y) = Z Z (i gl y)

= g(r.y) Z J) as gt y) s independent of 1]
' J

‘(j(.!'..’_/).[ ATARY)

where, T30V = T, >, t(i. g} o a constant for every template | and.

r.y) = —Z th—ruv/%—()

uv= N}

is the averaged image which can be computed (see lemma 3) using Fi'T's. This need

be done only once and the value of g(.r,y) will be available for each computation.

Lemma R 3 The image averaging operation is equivalent to cross-correlation.

Proof
Consider the averaging operation,
N-1
1 z_
gley) =55 2. 2 gle+uy+v)
u, = _ N-1



The above can be rewritten as,

N1
gle.y) = 30 30 fluv)gle +u,y +v) where, f(z,%) = g for xy € [~ 251, ¥1]
u,v= _ N—-1

QED
Consider the denominator, D(), of eq. A.8. Squaring both sides,
. Y . N ‘
[D(x.y)] = [ZZ [i(i,5)] } [ZZ[g(x +iLy+7) =gz, )| (- .13)
[ tJ
[TSUMOJSQUARES] (VAR(z,y)]

e T
The term, TSYMe/SQUARES _ s~ 2; [t(z,])] 1s a constant for each template. The
other terin, VAR(x,y), is more involved as it represents the dynamic energy level of

the shadow image relative to the average of the central pixel. Expanding this term.
VAR(z.y) = 33 lg(z +1i,y+)) - glz,y) (A.14)
v

= 2.2 [9(-’0 +i,y+7)" +g(e,y)" = 20(z, y)g(z + i,y +j)]
P

= A(xy) + B(xy) - C(x.y)

(A.15)
Evaluating each component term of eq. A.15,
Alxy) = 23[9z +iy+5)]
i
= 22 G dgsalz +i,y+ j))
i
where, gsq(z,y) = [g(z,y)]” and f(x,y) = 1 for ij € [~ 25, ey
(A.16)
which is in the FFT-compatible correlation form.
ﬂ;-_l
B(xy) = Y, 3 [a(=,y) (A.17)
i,j:_!'%,
= N?[g(z,y)]"
= N?gAvSq(z,y) where, g4vSq(z,y) = [g(z,y)*
(A.18)
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The g4uSq(x.y) image can be precomputed from the average image, §(r,y), as an
O(n?) operation. We find that this image can be used in the simplified form of the

final component, C(), of the denominator too.

Clxy) = 222 25(z.y)g(z +i,y+ )

= 2g(r.,y) [Z Zg(.r +iLy+ j)J as gl.r.y) is independent of i,
v

= 2g(r,y) [;\’Qg(.r. y)] by the defn. of the image average

= 2V*{g(r.y)] (A.19)

= 2Ny AuSq(r.y) (A.20)

The final components, B{) and C(). of eq. A.13 can be simplified as

B(x.y)=Clxy) = N [gley)) =2V gl
= ~N[glr.y)
= —NgdveSqlr.y)
(A.21)

Eq. A.l is thus simplified into (x.y)-position dependent components rather than
neighbourhoods. Each of these components can be computed using the basic form
of cross-correlation (eq. A.2) or simply referenced from a precomputed image (like
gAvSq(x.y)) or template-dependent constant (like T5Y*). This formulation can
prove extremely efficient when normalized cross-correlation involves templates of large

sizes.

133



Appendix B System Specifications

This appendix briefly describes system specifications in terms of the software devel-
oped and platform used.

Software Information

Programming Language : ANSI C

Operating System : UNIX

Compiler : gee (for portability to different platforms)

Platform : IBM RS/6000

Graphics Support : OpenGL (Hardware assisted on the IBM RS/6000)

Software Available With : Dr. N.G. Durdle, Dept. of Electrical Engineering,
University of Alberta, Edmonton. Alberta. Canada T6G 2GT.

Calibration Software
Directory Name : Calibration

Ezxecutable Names : pix2mm, ndlt, v2stereo

Detection Software
Directory Name : DetectPoint
FErecutable Name : detect

Image format supported : SUN Rasterfile
Correspondence Software
Directory Name : MatchPoint

FEzecutable Name : match

Hardware Information

Refer table 3.1
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Appendix C Software Model: DETECT-POINT

This appendix outlines the software model] for DETECT-POINT, the software de-
veloped for the antomatic extraction of features in OR images. The relationship
between components of the software (modules) is presented using the (' files used
to build DETECT-POINT. Control dependencies between the modules is presented
graphically (fig. C.1). The functionality of cach of the modules are given with the
relevant inputs and outputs. Code is heavily documented and contains all other

information necessary to understana or modify the software.

0 Y
¢ Ulmagec

D
0 .
" o
UYL

preprocessimaz. ¢ findFeatures.c

gammaCorrect.c Y ( cutOutSheet.c connectivily.¢

Figure C.1: DITECT-POINT: Software Modules.



C.1 Module Descriptions

The modules comprising DETECT-POINT are shown in fig. C.1. Numbers indicate
the chronological sequence in which modules are accessed from their parent control
nodes. All modules are independent. Control is always returned to the parent module,
unless specified otherwise. A high level description is provided here of each of the
modules in terms of its purpose, reference (theory) in the thesis. input, and output.
Details from within modules like individual functions, data structures. and variables

are provided in the introductory comments of module code and the README files

written for future programmers.

detect.c This is the control module for DETECT-POINT. It is only responsible for
passing program control to the four main modules of DETECT-POINT (pre-
processImage.c. makeEdgelmage.c, correlationWithModels.c, findFeatures.c) in
a specified order. After each of these modules return control to detect.c, results
of that stage are recorded in images (pre.ras, edge.ras, crossGl.ras crossEd.ras,
final.ras) for data analysis and debugging purposes.
Input Operating room image in SUN Rasterfile format.
Output Data file (FEATURES.DAT) containing the number of features detected

and the list of features and their subpixel locations.

preprocessImage.c This module is responsible for the preprocessing of images. It
sequentially calls modules gammaCorrection.c, cutOutSheet.c, and truncated-
MedianFilter.c in that order.

Input Raw image.

QOutput Preprocessed image (after gamma correction, size reduction, and TMF).

gammaCorrection.c This module contains code for the gamma correction algo-
rithm.
Reference pg. 33.
Input Raw image.

Output Raw image after gamma correction.
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cutOutSheet.c This module contains code for the antomatic size reduction algo-
rithm.
Reference pg. 34.
Input Image after gamma correction.

Output Image after size reduction.

truncatedMedianFilter.c This module contains code for the implementation of
the truncated median filter.
Reference pg. 37.
Input Immage after size reduction.

QOutpul Image after truncated median filtering.
! 2 3

makeEdgeImage.c This module contains code for the implementation of the 3x3
Sobel Edge derector.
Reference pa. 15.
[nput Preprocessed image data steneture after TN

Output Edge image corresponding to the prepocessed image,

correlationWithModels.c This module contains code for the implem=ntation of
cross-correlation using gray level or edge templates. according to the inpat iin-
age.
I+ ference pg. 48,
Input Gray level (preprocessed) image or edge image and flag indicoting prop-
erty space.
Output Correlation image (decision space) containing cross-correlation values

(p) scaled to 0-255.

findFeatures.c This module controls the task of feature extraction. It sequentially
calls modules combineCCResults.c, connectivity.c. and writeFeatures.c in that
order.
Input Correlation images containing gray level and edge decision spaces.

Output Data file (FEATURES.DAT) containing list of features and their loca-
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tions.

combineCCResults.c This module combines the results of cross-correlation using
gray levels and edges to form the feature space.
Reference pg. 66.
Input Correlation images containing gray level and edge decision spaces.

Qutput Feature space image after thresholding.

connectivity.c This module implements the 8-connectivity algorithm to isolate fea-
ture components after thresholding of the feature space.
Reference pg. 66.
Input Feature space image after thresholding.

Output List of 8-connccted components and their sub-pixel centroid locations.

writeFeatures.c This module writes the feature set determined to a data file.
Input List of 8-connected components and their sub-pixel centroid locations.

Output Data file (FEATURES.DAT) containing list of features and their loca-

tions.

Ulmage.c While the other modules are independent, this module contains a library
of global functions. The commercial SUN Rasterfile format for images is sup-
ported by DETECT-POINT. Internally, images are maintained in a data struc-
ture. In all the above statements, images implicitly mean image data structures.
Functions in this module are called universally for reading (SUN Rasterfile) im-
ages into image data stuctures and for writing from image data structures into
(SUN Rasterfile) images.

Input SUN Rasterfile image or image data structure.

Qutput Image data structure or SUN Rasterfile respectively.



Appendix D Software Model: MATCH-POINT

Th' - npendix outlines the software model for MATCH-POINT. the software devel-
oped for the automatic registration of feature sets corresponding to stereo-images.
The relationship hetween components of the software (modules) is presented using
the C files used to build MATCH-POINT. Control dependencies between modules is
presented graphically (fig. D.1). The functionality of cach of the files is given with
the relavent inputs and outputs. Code is heavily documented and contai- < all other

information necessary to understand or modify the software.
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runRules.c

dist.c

Figure D.1: MATCH-POINT: Software Modules.
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D.1 Module Descriptions

The modules comprising MATCH-POINT are shown in fig. D.1. The numbers in-
dicate the chronological sequence in which modules are accessed from their parent
control node. Control is always returned to the parent module, unless specified oth-
erwise. A high level description is provided here of each of the modules.in terms of
its purpose, reference (theory) in the thesis. input, and output. Details from within
modules like individual functions, data structures, and variables are provided in the
introductory comments of module code and the README files written for future

programiers.

match.c This is the control module for MATCH-POINT. It is only responsible for
passing program control to the five main modules of MATCH-POINT (rfl.c,
gc.c, runRules.c, reconstruct.c, triad.c) in a specified order.
Input Data files containing lists of features and their locations in both stereo-
images.
Output Data file containing labelled triads, their object-space positions and

orientations.

rfl.c rfl stands for read-feature-list. This module contains code for reading the feature
sets for the stereo-images and the calibration parameters of the geometry with
which these images were acquired. Pixel features are converted to millimetres
and corrected for lens distortion. Extrinsic calibration parameters are used for

to compute rotation and translation matrices used by other modules.

Reference pg. 79.
Input Data files containing feature pixels (PixelsLEFT.dat, PixelsRIGHT .dat)

and stereo-camera parameters (CameraParameters.dat).
Output Data files and lists containing features plate coordinates in mm (cor-
rected for lens distortion) and data structures containing rotation and transla-

tion matrices relating the left and right cameras.

gc.c gc stands for get-candidates. This module implements the lower levels of the

correspondence hierarchy used to construct candidate sets for all features in
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either image. It calls the medule dist.c.

Reference pg. 79.

Input The from list of features, the to list of features, and flags relating from/to
lists to left/right feature sets.

Output Data structures for all features containing their candidate sets.

dist.c The epipolar constraint used by gc.c is implemented here.
Reference pg. Sl.
Input Feature (from feature) point structure, its close and far point projections.
and to list of features.

Output Suitable candidates for the (from) feature chosen from the to list of

features.

runRules.c This module contains rules for refinement of candidate sets. It can be
disabled to speed up the matching process.
Input Feature structures from both images containing candidate sets.
Output Feature structures from both images containing refined candidate sets

and data file (MatchCoords.dat) of points for reconstruction in input format of

CSPACO.

reconstruct.c This medule contains CSPACO, the ' adaptation of the FORTRAN
routine SPACO. It is responsible for returning 31 coordinates for points whose
locations are specified in both images.
Reference pg. 87.
Input Data files containing camera parameters (CameraParameters..’at) and
image points for reconstruction (MatchCoords.dat}.
Qutput File containing 3D object-space coordinates of constructed puints (World-
Points.dat) and residuals data (SpacoOUT.dat) about reconstructed points for

analysis and future work.

triad.c This module implcments the highest tier of the correspondence process. It

deals entirely with the 3D point feature set reconstructed in the module recon-
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struct.c. Three dimensional model matching and triad evaluation by heuristics
is implemented here.

Reference pg. 89.

Input List of 3D object-space points.

Output Data file (SpineStageX.dat) containing triads, their position, and orien-

tation information.

matrixOp.c This module contains libraries for the matrix operations involved in
modules like rfl.c.
Input Matrix structures and matrix operation expected.

Output Matrix structure corresponding to output of matrix operation.
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