
University o f Alberta

NONLINEAR MICROMECHANICAL ANALYSIS OF COMPOSITE 

MATERIALS UNDER MULTIAXIAL LOADING

by

Yunfa Zhang

A thesis submitted to the Faculty of Graduate Studies and Research 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy

Department of Mechanical Engineering

Edmonton, Alberta 

Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1*1 Library and 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Bibliotheque et 
Archives Canada

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 0-494-14072-0 
Our file Notre reference 
ISBN: 0-494-14072-0

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

In this thesis, a 3D approach based on the micro/meso repeated unit cell (RUC) model 

for composite laminates is established which incorporates material nonlinearity, damage 

initiation and growth, and multiaxial loading. A unified form of periodic boundary 

conditions for RUC models subjected to multiaxial loads is first presented. The 

implementation into the finite element scheme and the calculations of the average 

stress/strain are discussed. The periodic boundary conditions for the off-axis loading of a 

one-quarter RUC are further derived considering the symmetries of the geometry, 

material and load. A rhombohedral two cell model has been developed to facilitate the 

analysis of angle-ply and cross-ply laminates.

A differential form of nonlinear viscoelastic constitutive model for thermoset matrix 

materials is introduced and has been implemented into the FEM code ADINA through its 

user-defined subroutine. To model the damage of the fibre/matrix interface, a new type of 

interphase element is proposed and its stress-strain relation is derived based on a cohesive 

law. The model can handle both the normal and tangential separations, thus mixed mode 

of interphase damage can be predicted. In addition, a viscous term is added to the 

cohesive law to overcome the convergence difficulty in numerical iterations. To model 

the progress of matrix-cracking, a ‘smeared crack approach’ is employed. This approach 

permits a crack description in terms of stress-strain relations. In particular, the proposed 

post-damage stress-strain relation allows that only normal and shear stress components in 

the cracked plane tend to zero.

For different loading cases, composite laminates with various fibre architectures and 

constituent material properties are analyzed as application examples. Detailed numerical 

results are presented and are found to be in good agreement with the available 

experimental results or similar theoretical predictions in the literature.
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CHAPTER 1

INTRODUCTION

1.1 APPLICATION OF COMPOSITE MATERIALS

Composite materials are becoming an essential part of present engineered materials 

because they offer advantages such as higher specific stiffness and strength, better fatigue 

strength and improved corrosion-resistance compared to conventional materials. The 

advanced composite materials usually consist of high performance fibres as reinforcing 

phase and polymers or metals as matrices. Examples of advanced fibrous composite 

materials are carbon or graphite fibre/epoxy, glass fibre/epoxy, boron fibre/aluminum, etc. 

The utilization of fibre reinforced composites in various fields of application has 

progressed significantly over past decades. They are used in a variety of applications 

from making aircraft structures to golf clubs, from electronic packaging to medical 

equipment, and from space vehicles to home building. By using composite materials, 

designers are able to locate and orient the reinforcement to withstand the anticipated 

loads. However, in spite of the superior properties of composite materials, the use of 

composite materials in critical load bearing members is still limited. One of the main 

reasons for this limited application is the difficulty in reliable prediction of the behaviour 

of composite materials. For example, the time- and temperature-dependent behaviour of 

polymer matrices and the mechanical degradation (damage) make the accurate prediction 

difficult, e.g. see the comments in References [1-4].
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Chapter 1 2

1.2 MECHANICAL PROPERTIES OF COMPOSITE MATERIALS

1.2.1 Mechanical Properties

We mainly discuss the properties of continuous fibre reinforced polymeric composites. 

The high specific stiffness and strength of composite come from the high strength of the 

fibres. Compared to bulk materials, continuous fibres produced from the same material 

have different microstructures and much less defects. However, an individual fibre or 

fibre bundle is difficult to use in an engineering structure. To utilize the superior 

performance of fibres, the key is to support them in a matrix. The mechanical properties 

of composites depend not only on the properties of the constituents but also on the 

arrangement of the constituents (contents and distributions of fibres, etc.)[l-3]. 

Composite materials are therefore heterogeneous and anisotropic (orientation-dependent) 

materials. Furthermore, mainly due to the properties of the matrix phase, composite 

materials exhibit time-dependence, and their behaviour is influenced by damage or 

degradation that frequently exists in the material system. For practical design and 

analysis, the orientation dependence, damage sensitivity and time-dependence of 

composite materials are significant factors to be considered.

(a) Orientation dependence

The most significant characteristic of composite material is the orientation dependence 

(anisotropy). Figure 1-1 (a) shows, for example, the stiffness of a typical E-glass/epoxy 

unidirectional composite (UDC) at fibre direction (0°) and transverse direction (90°) [5]. 

It can be seen from the figure that for the same unidirectional laminates, the stiffness is 

saliently different in the longitudinal and transverse directions.
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Chapter 1 3

Experimental results also show that even under the same uniaxial loading the fibrous 

composite laminates with different fibre architecture have quite different stress-strain 

response and damage behaviour [6], Figure l-l(b), for example, shows different 

responses for: (1) a unidirectional laminate under 45°off-axis loading; (2) a [0°/90°] 

cross-ply laminate under tensile loading in 0° direction; and (3) a [±45°] angle-ply 

laminate under uniaxial tensile loading. The drastically different stress/strain response 

and the stress/strain level at final failure are clearly demonstrated in this figure. This 

implies that the location and orientation of the reinforcement can be tailored by the 

designer to withstand the anticipated loads. However, it also brings up a challenge to the 

researchers to accurately predict and analyze the highly nonlinear stress-strain curves and 

the deformation mechanisms involved.

(a) (b)
800 -|

x Failure

Matrix

0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5 6 7 8  

Strain (%)Strain (%)

Fig. 1-1. Response of composite materials:

(a) Unidirectional laminate [5]. (b) Different lay-ups [5-6].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1 4

(b) Influence o f Damage

In many cases, the mechanical response of composite laminates are accompanied with 

and influenced by damage. The most important damage modes in a multi-layer laminate 

are fibre breaking, matrix cracking, interphase/interface separation and delamination [3], 

Among them, the first three modes are the primary intralaminar damage modes [7], and 

the matrix cracking and interface debonding are greatly influenced by the matrix 

properties. For instance, the damage process in a unidirectional composite laminate may 

initiate by matrix cracking or interface debonding at certain locations, this damage then 

propagates and finally breaks the laminate. For multidirectional laminates, matrix 

cracking or interface debonding may exist at loading level much lower than the final 

failure load or even during the material curing process. However, these damages may be 

confined to certain laminae, thus the entire laminate can still hold loads until final 

fracture occurs, as in the case o f a cross-ply laminate [6], Thus for an accurate analysis, it 

is imperative to consider the prevailing damage mechanisms, especially the intralaminar 

ones. The features of matrix cracking and interfacial damage are dominated by the 

properties of the matrix and the fibre/matrix interface.

An adverse effect of using a matrix phase in the composite is its influences on the 

damage properties of the composite. In a glass/epoxy composite, for example, epoxies are 

usually weak and flaw sensitive compared to the fibre, under tensile loading, most 

epoxies fail in a brittle manner [8]. Because of the brittleness of the epoxy, matrix 

cracking becomes one of the most important damage mechanisms of a composite.

In most advanced composite materials, there is invariably an interphase between the 

two main constituents of the reinforced composites. The scale of the intrephase may be
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Chapter 1 5

very small of the order of several microns [3]. Therefore, in many studies the interphase 

can be treated as an interface. The interphase/interface determines the stress transfer 

between the reinforcement and matrix, and thus it influences the damage process of 

laminates if the bonding is weak.

In practice, damage usually evolves in mixed modes. Figure 1-2, for example, displays 

the damage of a unidirectional laminate under transverse tensile loading. Figure l-2(a) 

shows that the final failure is the mixed mode of matrix cracking and interphase damage

[3] and Fig. 1-2(b) shows the ffactograph of the fractured specimen [9].

Fig. 1-2 Transverse damage of UDC.

(a) Mixed matrix cracking and interface debonding; (b) Fractograph of transverse

damage (adopted from [9]).

(c) Time-dependence

Epoxies are polymerization products with a highly crosslinked network. They are 

extensively used as the matrix phase in high performance composite materials. Their 

specific properties depend upon their particular formulation [8-10]. However, the epoxy 

matrix, like other thermoset polymers, exhibits time dependence (viscoelasticity). This is 

manifested by the increase of deformation with time under constant load, which is called
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creep, and, conversely, by the decrease of stresses with time under constant strain, which 

is called relaxation (Fig. 1-3). Although the fibres, such as E-glass fibre, behave 

elastically for most of their stress-strain range, composites still exhibit viscoelasticity. 

The analysis of Hashin [11] showed that the viscoelastic effect in a unidirectional fibre 

composite is significant for axial shear, transverse shear and transverse uniaxial stress, for 

which the influence of the matrix is dominant. This implies that for multiaxial loading 

cases, influences of viscoelasticity will be inevitable. Furthermore, in many cases, the 

viscoelasticity of the matrix and the composite will be nonlinear and the damage in 

composite laminates would also evolve with time. This increases the complexity of the 

analysis.

r
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Fig. 1-3 Viscoelasticity (after Hashin [11]).

1.2.2 Inherent Scales Involved in the Analysis o f  Composite Materials

When analyzing a composite structure, one should be aware of different scales 

involved in the structure. There are at least three scales explicitly manifested in the 

composite structure (composite laminates, for instance, can be regarded as a simple 

structure or structural element), viz. (a) the macro-scale of the entire laminate, (b) meso- 

scale of individual plies and (c) microstructural length scales of individual fibres, matrix, 

coatings or interphases. The specific scales depend on the particular composite material
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systems. In a typical glass-fibre reinforced polymeric composite, the diameter of each 

fibre is of the order of a few microns, and the thickness of the layers is of the order of 

100 p m .

1.3 MICROMECHANICAL ANALYSIS OF COMPOSITE MATERIALS

From the above discussion, the mechanical responses of composite materials are not 

only influenced by the properties of their constituents, but also greatly influenced by their 

microstructures. And in many cases, the influence of time and damage should be 

considered in the analysis. Therefore it is desirable to conduct a full micromechanical 

analysis for the entire composite structure where both the properties and structures of the 

reinforcement, matrix, and interphase/interface are explicitly presented in the model. If 

sufficient computing power and adequate solution procedure are provided to handle the 

full microscopic model of composite structures, many advantages can be ensured. 

However, from a practical point of view, it is very difficult to analyze full microscopic 

models, since the required computing resources are tremendous if numerical solution 

methods are used [12-13]. Due to this reason, full microscopic modeling of a whole 

composite structure has rarely been dealt with. Instead, in the analysis of composite 

materials, the object of a micromechanical analysis is usually confined to a small size of 

material sample, which is called representative volume element (RVE). And usually, a 

macromechanical approach is combined with the micromechanical approach to analyze 

the whole structure.

The applications of the micromechanical and macromechanical analyses can be very 

well demonstrated by the analysis of multi-layer laminates. First the micromechanical
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analysis is conducted, in which a micro-scale model is established according to the 

microstructure of the composite lamina. (This is usually called a representative volume 

element (RYE). For a composite with periodic structures, the micro-scale model reduces 

to a repeated unit cell (RUC).) The properties of the constituents are then input to the 

RVE or RUC model to obtain the mechanical response, and effective modulus (EM) of 

the lamina can be defined considering each ply as a homogenized but anisotropic material 

[14].

The homogenized laminates are then analyzed by the macromechanical approach, e.g. 

classical laminate theory or similar theories which are based on the effective properties 

obtained by the above micromechanical analysis. (Of course, the effective properties can 

also be obtained from a test. However, in some situations, for example during the design 

stage, the material may not be available yet, then the micromechanical analysis becomes 

the main source). Thus macroscopic stress fields can be evaluated and non-critical and 

critical regions be identified from macroscopic computations using homogenized 

constitutive relations. This macromechanical approach is similar to that for a 

conventional material, except for composite materials, usually anisotropic constitutive 

models should be used.

Upon the identification of critical points according to the macroscopic response, key 

microscopic stresses may then be recovered in local regions by detailed micromechanical 

solution using a RVE and the boundary conditions from the macroscopic solution. 

Therefore, through these global-local computations, it is possible to overcome 

shortcomings of pure macroscopic analyses that are inaccurate and pure micromechanical
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modeling of the entire laminate which is computationally prohibitive. Examples of 

effective multiscale global-local techniques can be found in [15-19].

It can be seen that the micromechanical modeling of heterogeneous material involves 

two procedures for efficient computing and for accurate representation of variables at 

different scales. First is ‘from micro to macro’, and usually referred to as 

‘homogenization’ procedure [14, 20]. In this step, homogenized material behaviour at a 

macroscopic point X  is determined as a function of microstructural parameters but 

independent of applied load. In this homogenization procedure, an isolated representative 

volume element is identified at the microstructural scale of heterogeneities (See Fig. 1-4). 

The dimensions of the RVE are typically very small in comparison with the structural 

dimensions D. Homogenized (averaged) variables are obtained by volume averaging the 

continuous variables in the RVE. The macroscopic material constants can then be 

determined using the effective modulus, and the entire structure can be analyzed 

macroscopically under different loadings.

/ B /
Heterogeneous Homogeneous

X macroscopic 

x microscopic

Representative volume element V

Fig. 1-4 Micro-scale and macro-scale analysis (after Suquet [20]).
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The reverse of this process, termed as ‘localization’, is a ‘top down approach’ where 

the evolution of variables is evaluated in the microstructure from known macroscopic 

variables. In those regions, where the microstructure admits an RVE, the microscopic 

variables can be evaluated by solving a boundary value problem with imposed 

macroscopic strains and the local periodicity conditions.

Thus an effective and accurate micromechanical approach is the critical element for 

both the ‘homogenization’ and ‘localization’ for the composite materials. 

Micromechanical analysis for linear elastic composites has been addressed extensively in 

the literature, e.g., in Hashin [1] and Christensen [2] and the references therein. However, 

with the increasing use of composite materials as major load-bearing parts, for 

meaningful design of structural materials and accurate analysis, it is very important that 

micromechanical analysis should robustly incorporate details of real morphology, 

nonlinear constituent properties and damage models.

For fibre reinforced polymeric composite (FRPC), the following two factors should be 

considered in developing micromechanical models:

• Viscoelastic behaviour o f polymer matrices'. All polymers are viscoelastic materials 

(Some thermoplastics may also be viscoelastic-viscoplastic). The viscoelastic 

response of a polymer becomes more pronounced under conditions of high 

temperature, sustained loading, and/or high stress level. Owing to the viscoelasticity 

of the polymer matrix, the composite material also presents viscoelastic behaviour. 

The viscoelastic effect in a unidirectional laminate is significant for the axial shear, 

transverse shear, and transverse uniaxial loadings, for which the influence of matrix is 

dominant [11].
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• Matrix dominated damage: Basically, there are four damage modes in a composite 

laminate: (1) Matrix cracking; (2) Interfacial debonding; (3) Fibre breaking; and (4) 

Delamination. Among them, the matrix cracking and the fibre/matrix interface 

debonding are two primary damage modes in composite laminates [7, 21]. These 

intralaminar damages could occur during the manufacturing process or at a relatively 

low applied load. In most cases, damage in composite laminates initiates in these two 

forms. Obviously, these damage behaviours are also evolved from the micro scale, 

thus a micromechanical analysis is preferred.

1.4 OBJECTIVES OF THE STUDY

The objective of this study is to develop a unified micromechanical model for periodic 

composite laminates which incorporates the material nonlinearity of the matrix and 

damage models of matrix cracking and interface debonding. To this end, the study 

concentrated on the following aspects:

(1) The development o f a unified three-dimensional micromechanical analysis model 

under general multiaxial loading. This includes primarily how to establish a RUC 

model, and the formulation of the appropriate periodic boundary conditions to be 

applied. The incorporation of the nonlinear viscoelastic model for the matrix and ease 

of implementation into a commercial FEM scheme are also important factors.

(2) Microscopic damage models. For the requirement of performing micromechanical 

analyses with capability to simulate entire evolving damage process including matrix 

cracking, interface debonding, and fibre fracture, more realistic failure criteria and
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post-failure constitutive relations for the matrix and the interface need to be 

developed.

(3) Meso-scale modeling o f multi-layer laminates. Meso-scale approaches for cross-ply 

and angle-ply laminates will be investigated. The micromechanical approach for a 

unidirectional RUC will be extended to a meso-scale model in which the fibres in a 

ply are represented by a homogenized fibre. This provides an alternate procedure to 

obtain the response of the laminates directly from the properties of the constituents. 

And the damage evolution in the laminates can be simulated more accurately.

(4) Numerical issues. For time-dependent multiaxial loading cases, to specify the 

direction of the global stress or strain vector, as to simulate the strain controlled test 

of off-axis unidirectional laminates or angle-ply laminates, a special iteration 

algorithm is to be established. Other considerations such as imposing and 

implementing proper boundary conditions accounting for the symmetry of a RUC, 

mesh convergence, and strategies to overcome the snap-back instability for 

equilibrium iterations in a nonlinear FEM solution, will be investigated.

(5) Application and verification examples. A number of numerical analyses will be 

conducted to show the wide application potential of the proposed micromechanical 

approaches, which include: 1) The elastic analysis of unidirectional laminates and 

angle-ply laminates. 2) Nonlinear analysis of unidirectional laminates with evolution 

of interface debonding under general off-axis loading. 3) Nonlinear analysis of 

unidirectional laminates and angle-ply laminates with evolution of matrix cracking. 

And 4) Residual stress/strain analysis of cross-ply laminates. All the results will be 

compared with the available experimental and theoretical results in the literature.
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1.5 LITERATURE REVIEW

1.5.1 Micromechanical Analysis

The main and important motivation of micromechanical analysis is the prediction of 

homogenized material properties from the microstructure of a composite material. Since 

1960s, many analytical and numerical studies have been carried out. Based on the 

approaches (mechanics of material, theory of elasticity) adopted, there are several types 

of micromechanical methods. In particular, upper and lower bounds for elastic moduli 

have been derived using energy variational principles, and closed-form analytical 

expressions have been obtained [22-23]. For example, based on an energy balance 

approach with the aid of elasticity theory, Whitney and Riley [24] obtained closed-form 

analytical expressions for a composite’s elastic moduli. Unfortunately, the generalization 

of this method to viscoelastic, elastoplastic and nonlinear composites is very difficult. 

The solutions of composite cylinder assemblage (CCA) model, self-consistent scheme 

(SCS), and generalized self-consistent scheme (GSCS) models are from the theory of 

elasticity, thus usually give more accurate results [25-27]. However, the solutions of the 

above models may not be accurate for high fibre volume fractions or high rigidity of the 

fibre [28]. Aboudi [29] has developed a unified micromechanical theory based on the 

study of interacting periodic cells, and it was used to predict the overall behaviour of 

composite materials both for elastic and inelastic constituents [30]. As in reference [29], 

homogeneous boundary conditions were applied to the RVE or unit cell models. In fact, 

this is only valid for those cases in which normal tractions are applied on the boundaries. 

For a shear loading case, many researchers, e.g., Suquet [20], Yuan and Pagano [28], and 

Sun [31], among others, have indicated that the ‘plane-remains-plane’ boundary
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conditions are over-constrained boundary conditions. Xia, et al. [32] further demonstrated 

that homogeneous boundary conditions are not only over-constrained boundary 

conditions but may also violate the stress/strain periodicity conditions.

The above micromechanical models can be regarded as mechanical or engineering 

models. A mathematical counterpart to such engineering methods appeared in the 1970’s 

under the general heading of the ‘asymptotic homogenization theory’. The fundamentals 

of this theory can be found, e.g. in [20, 33-37], among others. Asymptotic 

homogenization theory has explicitly used periodic boundary conditions in modeling of 

linear and nonlinear composite materials. These results have clearly shown that 

characteristic modes of deformation do not result in plane boundaries after deformation 

[20]. Guedes and Kikuchi [38] discussed the application of finite element method (FEM) 

to composite problems. It showed that usually a special FEM code should be developed 

or modified to solve the basic equations of the homogenization theory. Recent 

development and applications of homogenization theory for various aspects of composite 

analysis are given, for instance, in Ref. [15-19, 38-42].

Suquet [20], Hori and Nemat-Nasser [40] presented universal inequalities which 

indicate that the predicted effective elastic modulus can vary depending on the applied 

conditions on the boundary dV  of a unit cell, and the homogeneous displacement and 

homogeneous traction boundary conditions will give the upper and lower bounds of the 

effective modulus. Hollister and Kikuchi [41] have given a very good comparison of the 

homogenization theory and the mechanical methods (it is called average field theory in 

[41]), concluding that the homogenization theory, which uses the periodic boundary 

conditions, yields more accurate results. It is shown in [40] that the homogenization
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theory and mechanical methods can be related to each other and a more applicable hybrid 

theory was established.

Note that from the compatibility and continuity of displacement and traction along the 

cell boundaries, the periodic boundary conditions can also be obtained for a unit cell, see 

for example, Ref. [28, 31, 43].

The direct extension of elastic micromechanical analysis is in predicting the nonlinear 

response of a composite caused by the nonlinearity of the constituents. In [42, 44] the 

rate-independent plastic response of a unidirectional laminate were studied, while in [45- 

46] viscoplastic model of matrix were used. Examples of viscoelastic response of a 

composite can be found in [47-50]. A few investigators have also applied the 

micromechanical analysis to the cross-ply laminates (laminates containing only 0 ° and 

90° plies) [46, 48-52], by which the thermal residual stresses, viscoelastic response and 

matrix damage have been studied. There are very few studies extending the 

micromechanical approach to angle-ply laminates [30, 32].

In addition to analytical approaches, the finite element method, the boundary element 

method [53-55], and the fast Fourier transformation method [36] have been used in the 

micromechanical analysis. However, in most cases, the finite element method was 

explored to conduct the numerical micromechanical analysis [41-42, 56-58].

1.5.2 Micromechanical Analysis with Damage Evolution

Within the framework of continuum mechanics, two distinct approaches, namely the 

phenomenological and micromechanical approaches have evolved. Motivated by 

experimental observations, the phenomenological theories introduce a set of internal
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scalar or tensor damage variables, whose growth is determined by appropriate evolution 

laws. Although these models have been popular for their relative simplicity in 

representing underlying physical complexities, the empirical treatment makes their 

applications to different materials questionable [39]. The micromechanical approach 

enables one to investigate damage/failure behaviour of laminates at the fibre, matrix and 

interface level, and it can be directly related to the micro-scale structure and the 

properties of constituents. There are many investigations incorporating the damage 

models (we confined our attention mainly to matrix cracking and interfacial debonding) 

in the micromechanical analysis. Usually, the entire response of laminates including 

damage evolution and failure mechanisms can be simulated. Micromechanical analyses 

including damage/failure analysis can be found, among others, in [28-29, 46, 49-50, 53- 

57, 59-65].

According to the approaches used and applications, the mechanical analysis with 

damage/failure can be grouped into: (1) Prediction of the strength of laminates [59-60]; 

(2) Analysis of the response of composites with assumed known damage [28, 53-55, 61- 

62]; and (3) Prediction and analysis of composites with evolving damage [49-50, 56-57, 

63-65],

In [60], for instance, Aboudi presented a micromechanical analysis for the prediction 

of ultimate stresses of unidirectional fibre composites under combined loadings. The 

approach is based on micro-failure criteria applied to the fibre and matrix phases as well 

as to the fibre/matrix interface. The advantage of a micromechanical analysis for the 

strength of laminates is that one can gain some insight into the failure mechanisms of 

composite materials.
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The analyses of composites with assumed known damage mostly relate the influences 

of imperfect bonding across the fibre/matrix interface. In [28], for example, Yuan and 

Pagano have carried out an analysis of fibre reinforced brittle matrix composites in order 

to predict the influence of the debonded interface on “effective” elastic moduli of the 

composites. The debonded interface is assumed to be completely separated and the extent 

of the debonded interface is simulated by assumed debonding geometries. Hashin [61-62] 

also studied the influence of the imperfect interface where the interface conditions are 

discussed and formulated.

Examples of predicting the entire evolution process of damage can be found, e.g., in 

[46, 57]. The key for predicting both the initiation of propagation of damage is that 

proper damage criteria and propagation rule and appropriate numerical techniques should 

be adopted, since the damage location and path is unknown prior to the analysis. It is 

worthwhile to note that several researchers have introduced the cohesive interphase 

damage models into the micromechanical RUC analysis. A significant advantage of the 

cohesive damage model is that both the initiation and propagation can be properly 

simulated, e.g., see [56-57, 64]. Also in the modeling of matrix cracking, smeared crack 

method is used in [63, 65]. This approach permits a description of crack in terms of 

stress-strain relations; therefore, it is convenient to implement into a FEM code [66-67].

1.5.3 Current Status

Both standard mechanical approach and asymptotic homogenization theory are 

extensively used in the micromechanical analysis. Generally, homogenization theory, 

using periodic boundary conditions, gives more accurate results [41]. Finite element
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method is widely used in both approaches. However, for homogenization theory, standard 

structural finite element analysis codes can not be directly used to implement the periodic 

boundary conditions [32, 42], especially for multiaxial loading cases.

It is noted that most of the aforementioned micromechanical analysis of composites, 

with or without damage modeling, has been confined to unidirectional laminate under 

uniaxial loading applied along the material principal directions, see, for example, the 

review by Pagano and Yuan [14]. The micromechanical approach can be applied also to 

multi-angle laminates and to unidirectional laminates under general off-axis loading [45, 

60, 63, 6 8 ]. However, works on off-axis loading analyses including damage modeling are 

very limited [60, 63].

For cross-ply and angle-ply laminates, several researchers use simplified unit/multi­

cell models, where the cross-sections of fibre are represented by squares, as in [29]. And 

damage is usually not included in the analysis [51].

The prediction and analysis of composites with the entire evolution process of damage 

is a challenge to researchers, especially in combined loading cases. In these types of 

analyses, proper damage initiation criteria and propagation rule are an essential pre­

requisite. The cohesive interphase damage model and smeared cracking approach for 

matrix crack modeling are two main approaches which are successfully used in the 

micromechanical analysis. These two approaches are also convenient to implement in a 

FEM code.

Two issues arise in the numerical solution of micromechanical problems when 

material nonlinearity is involved. First, to specify the direction of the global stress or 

strain vector, as to simulate the stress controlled or strain controlled tests of a laminate, a
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specific iteration algorithm is needed [36, 63]. Second, in strongly nonlinear problems, 

convergence of equilibrium iterations of the FEM solution is frequently an important 

concern. In general, special algorithms, for example, arc length method, are needed to 

overcome the convergence difficulties [40, 69-71].

1.6 SCOPE AND ORGANIZATION OF THE DISSERTATION

In chapter 2, a three-dimensional micromechanical analysis model is proposed. A 

unified, explicit form of periodic boundary conditions suitable for FEM analyses of RUC 

models subjected to multiaxial loads is presented. The proposed model and 

implementation into the finite element scheme are discussed in detail. With the aid of 

Gauss’ theorem, a formula is derived to calculate the average stress/strain based on 

periodic boundary conditions. Using the method of Lagrange’s multipliers, it is 

demonstrated that in a FEM scheme, imposing periodic displacement constraints to a 

RUC will guarantee the traction continuity conditions automatically. It is also shown that 

by using effective properties of a ‘homogenized’ media, the strain energy stored in the 

effective media is equal to the strain energy stored in the composite material.

The use of symmetry to reduce the computational effort in the RUC analysis under off- 

axis loading conditions is presented in detail. The procedure is first illustrated through 

two examples for square array RUC under triaxial extension/compression, combined in­

plane shear and axial shear loadings. Then periodic boundary conditions for off-axis 

loading on a one-quarter RUC are obtained. The comparison with a full-size RUC model 

demonstrated the validity of the formulation.
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Examples of elastic analysis by using the FEM code ANSYS [72] are also provided in 

this chapter. The first two examples show that: (1) The periodic part of deformation can 

be retrieved after the solution of the RUC using the proposed unified periodic boundary 

conditions; (2) An asymmetric RUC is analyzed which demonstrated that the present 

model can apply to general inclusion geometries. In another 2-D example, the results of 

the present method and those obtained by applying homogeneous boundary conditions 

are compared. The results clearly show that homogeneous boundary conditions are not 

only over constraints to the deformation of a periodic laminate, but also will violate the 

traction continuity conditions. In the last 3-D example, it is demonstrated that all the nine 

effective constants of an orthotropic unidirectional laminate can be predicted 

simultaneously by the present approach.

In chapter 3, models for the matrix viscoelasicity, fibre/matrix interphase damage, and 

matrix cracking are presented. The matrix behaviour is described by a recently developed 

nonlinear viscoelastic constitutive model [73]. A brief description of the model is 

provided in Section 3.2 and the model is implemented into the FEM code ADINA [74].

To model the damage (separation) of the fibre/matrix interface, an interphase/interface 

separation model is proposed which can be directly applied to a unit cell analysis. The 

stress-strain relation of the interphase element is derived based on a cohesive law, which 

characterizes the dependence of the tractions on the displacement discontinuities across 

the interface. The model can handle both the normal and tangential separations of the 

interphase, thus mixed mode interphase damage can be predicted. In addition, an 

‘artificial’ viscous term is added to the cohesive law to overcome the convergence
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difficulty induced by the so-called snap-back instability in the equilibrium iterations 

(Section 3.3).

To model the matrix cracking, a ‘smeared crack approach’ is employed. In this 

approach, the cracked solid is assumed to be a continuum that permits a crack description 

in terms of stress-strain relations. In particular, the proposed post-damage stress-strain 

relation allows that only normal and in-plane shear stress components (corresponding to 

crack orientations) tend to zero (Section 3.4).

In Chapter 4, the initiation and evolution of the intralaminar damage and its effect on 

the global stress-strain relation of composite laminates are predicted by finite element 

micromechanical analysis. As application examples, two unidirectional laminates (glass 

fibre/Epon 828 and glass/Epon 815) under off-axis tensile loading are analyzed. Results 

show that the initiation and evolution of the intralaminar damage can be well simulated. 

And the predicted global stress-strain curves are also in good agreement with the 

experimental results.

In Chapter 5, the analysis of three laminates with different lay-ups is described. The 

finite element predictions of the three types of laminates subject to uniaxial tensile 

loading are presented, viz. (1) a unidirectional laminate under 45° off-axis loading, (2) a 

[0790°]ns cross-ply laminate under transverse loading and, (3) a [±45°]ns angle-ply 

laminate under tensile loading.

To facilitate the micromechanical analysis for angle-ply and cross-ply laminates, a 

meso/micro rombohedral two cell model has been developed for the [+#],, angle-ply

laminates. The in-plane elastic moduli for [±9]n angle-ply laminates are predicted to 

verify the model (Section 5.2).
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For the three laminates involved in Chapter 5, studies show that the bonding between 

the fibre and matrix is strong and perfect bonding conditions can be assumed. Thus 

matrix cracking remains the main intralaminar damage mechanism. The ‘smeared crack 

approach’ presented in Chapter 3 is employed to simulate the matrix cracking in the three 

laminates. The numerical results characterizing the local and global responses of the 

laminates including the damage evolution are presented and the predicted results are 

compared with the experimental data with similar composite lay-ups (Section 5.3). 

Residual stress/strain may lead to the development of damage and may also have an 

adverse effect on the mechanical behaviour of the composites. In Section 5.4, the 

initiation and evolution of the residual stress/strain are analyzed using time-dependent 

and temperature-dependent material constants. A subsequent mechanical loading is 

imposed to the cross-ply RUC to investigate the influence of the residual stress/strain.

Conclusions from this study are summarized in Chapter 6.

1.7 SUMMARY OF MAIN CONTRIBUTIONS THROUGH THIS RESEARCH 

PROJECT

• The proposed three-dimensional micromechanical model and the unified form of 

periodic boundary conditions are suitable for RUC models subjected to general 

multiaxial loads. The approach applies not only to linear elastic but also to 

nonlinear viscoelastic problems. It has rigorously demonstrated that imposing the 

suggested periodic displacement constraints on the RUC can guarantee the traction 

continuity conditions across the neighbouring cells. The proposed approach can 

also be easily implemented into a commercial FEM code.
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• The proposed meso/micro rombohedral two cell models for the [±0]„ angle-ply

laminates provide an alternative way to the analysis of multi-directional laminates. 

Thus the mechanical properties of the laminates can be directly related to the 

properties of the constituents. To the author’s best knowledge, no similar work has 

been reported.

• Considering the symmetries of geometry, material and loading, appropriate 

boundary conditions for combined normal and shear loading (off-axis loading) on a 

one-quarter RUC are further derived. An iteration algorithm is proposed to simulate 

the off-axis loading under strain control conditions.

• A cohesive interphase element is developed which can be directly applied to a unit 

cell analysis. The model can handle both the normal and tangential separations of 

the interphase, thus mixed mode interphase damage can be predicted. The 

interphase element can be conveniently inserted into a FEM scheme since an 

equivalent stress-strain relationship is used. A simple strategy has been introduced 

to overcome the convergence difficulty induced by the so-called snap-back 

instability in the interface damage analysis.

• A ‘smeared crack approach’ is employed to model the matrix cracking. The 

approach has been used in the analyses for concrete structure; however, its 

application to the fibrous composite materials is rather limited. In addition, in the 

present research, the proposed post-damage stress-strain relation allows that only 

preferred stress components tend to zero.

• The application examples demonstrated that the present model can distinguish the 

damage modes of fibre breaking, matrix cracking and interface separating based on
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the properties of the constituents, without the need to prescribe the prevailing 

damage mode. Evolving damage analysis is also extended to a meso-scale model of 

angle-ply laminates.

• The initiation and evolution of the residual stress/strain are analyzed using time- 

and temperature-dependent material constants. Especially, the temperature- 

dependence of both the Young’s modulus and the coefficient of thermal expansion 

are considered for the entire range from curing temperature to room temperature. 

The meso/micro-mechanical analysis of a cross-ply laminate reveals that the 

damage initiation and evolution under subsequent mechanical loading are greatly 

influenced by the residual stress/strain.
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CHAPTER 2 

FINITE ELEMENT ANALYSIS FOR PERIODIC COMPOSITES UNDER 

MULTIAXIAL LOADING

2.1 INTRODUCTION

In the following Section 2.2, a micromechanical model of periodic fibrous composites 

under multiaxial loading conditions is presented. A unified, explicit form of periodic 

boundary conditions for a repeated unit cell (RUC) is proposed which satisfies the 

periodicity conditions and is suitable for any combination of multiaxial loads. The 

implementation of the boundary conditions into a finite element analysis scheme is 

described. It is shown that the traction continuity conditions across adjacent cells can be 

satisfied automatically through the FEA solution. A method to simplify the calculation of 

average stress and average strain over the RUC subjected to periodic boundary conditions 

is presented. It is proved that by using effective properties of a ‘homogenized’ media, the 

strain energy stored in the effective media is equivalent to the strain energy stored in the 

composite material. Finally through a 2-D example, it is shown that the periodic part of 

deformation can be retrieved after the solution of the RUC, although the periodic 

deformation is not explicitly presented in the proposed periodic boundary conditions. 

Another 2-D example shows that the proposed boundary conditions also apply to an 

asymmetric RUC.
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Section 2.3 discusses the symmetries of a RUC. When a three dimensional unit cell 

exhibits planes or axes of symmetry, the micromechanical analysis with periodic boundary 

conditions can be performed on a reduced-size RUC and with standard boundary 

conditions on the plane of symmetry. However, the reduction of the RUC depends not only 

on the geometry and material of the RUC, but also on the loading applied to the RUC. For 

multiaxial loading cases, only for some loading combinations could symmetry conditions 

be exploited to reduce the RUC analysis and the procedure is usually complicated. In this 

chapter, for a unidirectional composite (UDC) under off-axis loading, from the symmetric 

conditions of geometry, material and loading, the boundary conditions for a one-quarter 

RUC are derived from the general periodic boundary conditions. The one-quarter RUC and 

the original full-size RUC under the periodic boundary conditions are solved and 

comparison of the results of the two RUCs verifies the proposed boundary conditions for 

the one-quarter model.

In Section 2.4, examples are provided to illustrate the validity and application of the 

proposed approach. Starting from a simple 2-D example, the results of the present method 

and those obtained by applying homogeneous boundary conditions are compared. The 

results clearly show that homogeneous boundary conditions are not only over constraints 

to the deformation of a periodic laminate, but also will violate the traction continuity 

conditions. In the second example, based on a three-dimensional RUC, it is shown that all 

the nine effective constants of an orthotropic unidirectional laminate can be predicted 

simultaneously by the present approach. The predicted results are in good agreement with
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the experimental and theoretical results available in the literature.

2.2 PERIODIC BOUNDARY CONDITIONS OF A UNIT CELL

2.2.1 Unit Cell o f  Composite with Periodic Microstructure

A composite with periodic reinforcement distributions can be envisioned as a structure

generated by periodically repeating a unit cell in three directions [1-3]. In a real fibre 

composite, the fibre is usually straight in the axial direction, thus the fibre distribution in 

the cross-section determines the microstructure. Although in reality the fibre distribution 

may be quite random, assuming a perfectly periodic distribution will greatly reduce the 

complexity and cost of the analysis. In micromechanics of fibrous composites, the 

frequently used fibre array is square array or hexagonal array [4-7]. The unit cell is not 

uniquely defined as illustrated in Fig. 2-1 for the square fibre array. However, the effective 

behaviour of the composite computed from different unit cells should coincide since they 

generate the same micro structure [8-9]. The choice of the unit cell is often motivated by the 

differences in geometrical symmetries which can be used to simplify the numerical 

solution of the problem [8 , 10-11], In this thesis, the square array of fibre distribution is 

assumed, resulting in a repeated unit cell (RUC) in the shape of a cube. Note that the length 

of side d is the space between the centers of the neighbouring fibres, and in the fibre 

direction, an arbitrary length can be used. The volume fraction of a RUC is the volume 

fraction of the laminate.
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Fig. 2-1 Possible choice of unit cells of a unidirectional composite.

2.2.2 Formulation o f the Problem

Consider a large sample of periodic inhomogeneous body (composite) as shown in Fig.

2-2. The body has two length scales, a global length scale, D, which is of the order of the 

size of the body, and a local length scale, d, which is proportional to the wavelength of the 

variation of the microstructure. The size of RUC is of the order of d, which is typically very 

small in comparison with the structural dimension D. Consequently,

Obviously, any function/ in the body depends on two variables, X i and x; , and the 

relation between the global coordinates X t for the body and the local coordinates xt for 

the unit cell can then be written as

(2.1)
D

(2.2)
8
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Q

Fig. 2-2 RUC from a periodic composite.

At each macroscopic point, X {, there is a RUC whose microstructure and properties can be 

repeated to construct the whole body. A small change on the global scale corresponds to a 

very large movement on the local scale. For small strain elasticity, the boundary value 

problem for the composite body can be defined as the following, from which the unknown 

field quantities, stress , strain £tJ and displacements ui can be solved:

Vijj = 0 (2-3)

= Cijkls kl (2.4)

£kl = ~2̂ Uk,l + Ul,k) (2-5)

Gijtij = Tt on da , u, = ut on du (2.6)

The boundary value problem has the feature that Cijkl varies very rapidly within a
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short wavelength (order of cl) on the global length scale X i and therefore it is difficult to 

find a solution that solves the global problem and accounts for the local oscillation at the 

same time [6 ]. For example, in a FEM solution, assuming roughly each unit cell should 

have several hundred elements to accurately capture the large variations due to the 

heterogeneous nature of the microstructure, then for the whole composite laminate or a real 

composite structure, the elements needed will be increased by orders of magnitude. Hence, 

there is a motivation to seek a simplified solution.

2.2.3 Unified Periodic Boundary Conditions

The composite body can be envisioned as a periodical array of the RUCs. This implies

that beyond a boundary layer of the composite body, each RUC in the composite has the 

same deformation mode and there is no separation or overlap between the neighbouring 

RUCs. That is, the stress and strain fields are periodic as the microstructure. Therefore it is 

adequate to obtain a solution based on the RUC, except for the boundary layer of the body 

[8].

Since the whole body and thus each unit cell is in balance, the equilibrium equation, 

Eqn.(2.3) and the relations in Eqns.(2.4-2.5) still apply in a RUC with volume V. However, 

the boundary conditions on the boundary of the RUC, 8 , should be properly determined. 

In the case of periodic media, the microscopic fields have to fulfill suitable periodicity 

conditions ensuring continuity of boundary displacements and tractions across adjacent 

cells.
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For a periodic array, the displacement field can be expressed as [1]:

U,  (x,, X2 , X3 ) = SyXj + u* ( x , , x2, x3) (2.7)

In the above, Sy is the global strain tensor of the periodic structure and the first term on the 

right-hand side represents a linear distributed displacement field, which is true for 

homogeneous materials. The second term on the right-hand side is a periodic function from 

one RUC to another (it corresponds to the microscopic perturbation of the displacement 

field due to the heterogeneity of the microstructure [1], also see Eqn. 2.22 later). In addition, 

for a periodic RUC, the tractions on the opposite boundary surfaces should also meet the 

continuity condition, i.e.

where P  and Q are periodic points (with the same in-plane coordinates) on the two opposite 

boundary surfaces, n is the unit outward normal vector to the surfaces, see Fig. 2-2. Thus 

for a RUC, Eqns. (2.3) -  (2.5) and Eqns. (2-7)-(2.8) define the boundary value problem. 

This problem is well-posed as shown, for example, in Ref. [1].

The global (macroscopic) strain e.. in Eqn. (2.7) and hence the global stress cf.. can be

defined as the averages over the RUC volume V:

Imagine a homogenized media with the same volume V as that of the unit cell, upon 

applying a constant to this homogenized media, a uniform stress cf- will be produced,

(jy (P)fij (P) = - a y  (Q)n y ( 0 (2 .8)

(2.10)

(2.9)
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thus the strain energy in the volume isU = (1 / 2 )a ij£ijV . On the other hand, the strain 

energy in a RUC isU' = J (1 /2 )a jj£ jjd V  . It can be shown (see Section 2.2.4) that under

periodic boundary conditions,

U' = U (2.11)

Therefore for a homogenized media, effective material properties can be defined which 

describe the relation between a tj and , and by doing so it ensures that for the same 

global loading s tJ, the strain energy of the homogenized media is the same as the strain 

energy of the heterogeneous media [1,4,12-13],

Generally, u*(x1, x2, x3) is unknown prior to the solution, therefore, Eqn. (2.7) is not 

convenient to apply in a commercial structure FEM code, and usually a FEA code should 

be modified [6 , 14-15]. A more explicit form of periodic boundary conditions, suitable for 

the FEM analysis of RUC models can be derived from the above general expression.

For brevity, we start from a rectangular parallelepiped RUC as shown in Fig. 2-2, the 

displacements on a pair of opposite boundary surfaces whose normals are along the xj axis

are

u i +  = £ i k x l +  +  u i (2-12)

u i ~  = £ i k x l ~  + u *i (2-13)

where index “j+ ” means along the positive xj direction and “j-” means along the negative -re­

direction. The difference between the above two equations is

u i +  ~  u i ~  =  £ i k  ( x l +  ~  * / ~ )  =  Z i k ^ l  ■ (2-14)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 42

For any parallelepiped RUC models hxJk is constant, therefore the following unified 

periodic boundary conditions are obtained:

W(* , X2 , 2C3) ti- , X2 , x )̂ C- (/, j  1, 2, 3 ) 5)

The constants, c \, c\ and c \ , represent the average stretch or contraction of the RUC 

model due to the action of the three normal traction components, whereas the other three 

pairs of constants, c,2, c\ ; c\ , c \and c \ , c \ , correspond to the shear deformations due to 

the three shear traction components. This form of boundary conditions meets the 

requirement of displacement periodicity and continuity. It can be seen from Eqn. (2.15) 

that although the difference of the displacements for the corresponding points on the two 

opposite boundary surfaces are specified, the individual displacement component is still a 

function of the coordinates, i.e. a plane does not necessarily remain a plane after the 

deformation. Also since Eqn. (2.15) does not contain the periodic part of the displacement, 

which is unknown, it becomes easier to adopt this form in a finite element procedure, 

instead of applying Eqn. (2.7) directly as the boundary conditions. The application of Eqn 

(2.15) can be realized by the constraint equation options in many FEM codes, for example, 

ADINA [16], orANSYS [17], Examples can be seen in Ref. [15, 18-19],

In the later Section 2.2.5 we will show that when we apply Eqn. (2.15) to a RUC using 

a displacement based FEM procedure, the traction continuity condition in Eqn. (2.8) will 

be met automatically, therefore, in a finite element analysis, only Eqn. (2.15) needs to be 

applied.
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2.2.4 Calculation o f  Average Stress and Strain 

Calculation o f  averase stress and strain

The calculation of average strain and stress defined in Eqns. (2.9) and (2.10) can be 

simplified. By using the Gauss’ theorem, the average strain in the RUC can be expressed as 

an integral around the boundary surfaces [1,4]

s u = — f £jjdV = — f («.« . +u ni)d S . (2.16)
V y  J y  v 2v  is ' J J 1

Since all the boundary surfaces in Fig.2-2 are perpendicular to one of the coordinate 

axis, the unit normal vector n has only one non-zero component on these surfaces with a 

value of unity. Therefore, using the symbols defined in Eqns. (2.12) and (2.13); the above 

integral can be reduced to

£y = ^ [ £  (M/ + - ui ~)njdS  + £ (u1/  -Uj^ntdS]

= - ^ ( c i S f +c)St)=-
1 c-Ax.Ax, +cliAx;Axl.
- { c Ji S j +cljSi) = -  —  J J k

2V J J 2Ax.Ax.-Ax,

Therefore,

1 c j Axi + c1; Ax,
£ i j = - ~ ---- !-----J~ ^ ~  (2.1.7)2 Ax i Ax j

Note that the suffixes i and j  in the above expressions are not dummy suffixes.

Similarly, by using the Gauss’ theorem and equilibrium equation a y j  = 0 , the

average stress can be expressed as [2 , 15]

I 
V^ij j. &ikxj nkdS (2-18)

Since the traction distributions at the boundaries must satisfy the periodicity condition 

expressed in Eqn. (2.8), the two corresponding points on the two opposite planes (with the
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same in-plane coordinates) must have the same normal and shear stresses. By using the 

same argument as in the derivation of Eqn. (2.17), Eqn. (2.18) is reduced to 

° i j  =  y  ! s  a i k x j n k d S  =  ~ ( I s  + <7 i m x j  d S  ~  \S m  (7 i m x j  d S )  =  —  \s +  CTim ( X j  ~  X j  ) d S  

In the above the suffix m is a dummy suffix. However, when m ^  j ,  the coordinates 

x j  = x j  and when m =j, x j  -  x j  = AXj , therefore,

-  t PHOjj = — — C jdS  = ( no summation over j ) (2-19)
V  j  S j

The above equation indicates that the average stresses can be simply obtained from the

ratio of resultant tractions on the boundary surfaces to the areas of the corresponding 

boundary surfaces.

Strain energy relations

If the composite is homogenized with effective properties, the total strain energy 

stored in a volume V of the effective media is

u = \ ° 9 * s v  (2-2°)

The strain energy in the heterogeneous RUC of the same volume is

(2 .21)

Since w,. = s ikxk + u*, using the definition of strain, we have 

1 du ■ oUj
eu = s u + -  (—  + — d-) (2 .2 2 )

11 11 2  doc j dxt

Substituting Eqn. (2.22) into Eqn. (2.21), and noting is a symmetric tensor, i.e., 

a ij = °.n ’we §et
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(2.23)

Designating the second integral in the last step as I 2 , Noting the equilibrium

d a u

equation,— -  = 0, and using the Gauss’ theorem, we reach

Where S  is the boundary of the RUC volume V. For a periodic media, S can always be 

divided into two parallel parts, S + andS~, S = S + f)S ~ . For two arbitrary corresponding 

points on S + and5^, we have: (1) the out normal vectors n are opposite; (2) u* is the 

same since it is the periodic part of displacement; and (3) traction (Tytij are anti-periodic 

from Eqn. (2.8). Thus

2 1 2 = f5+ & y  u *n+j  d $  + J5- a y  u *n j  d S

Thus we showed that the strain energy stored in a heterogeneous RUC of volume V and 

that stored in an equivalent homogeneous media o f  volume V are equal i f  the two are

(2.24)

=  0

Therefore, from Eqn. (2.23) we conclude

U' = U (2.25)
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subjected to the same periodic boundary conditions.

2.2.5 Implementation into a FEM Scheme and Examples 

Periodic boundary conditions:

In a FEM scheme, the displacement constraint equations, Eqn. (2.15), can be imposed 

by Lagrange multipliers [20-21]. Lagrange’s method of undetermined multipliers is used to 

find the maximum or minimum of a function whose variables are not independent but have 

some prescribed relations. In structural mechanics the function is potential energy II and 

the variables are displacements in {f/}. System unknowns become {U} and the Lagrange 

multipliers.

In a discrete (finite element) system, let [AT], {[/}, and (F}be the global stiffness 

matrix, displacement vector and nodal load vector, respectively, then the potential energy 

of the system is

n  = (2-26)

And the system of constraint equations can be written in a general matrix form as

[D]{C/}-{c} = 0  (2.27)

We are seeking a solution of {U} which minimizes II under the constraints in Eqn. (2.27).

To this end, for each constraint equation in Eqn. (2.27), we introduce a Lagrange 

multiplier T;. , thus for m independent constraint equations, we have

{X f  = fa ,  I , , . . . ,  Xm}T (2.28)

Multiplying the left-hand side of Eqn. (2.27) by Eqn. (2.28) and adding the result to Eqn.
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(2.26), we obtain the modified potential energy function (Lagrangian) as

n  = i  {u }T {k  }{u  } -  {u }T {f } + {a }t ( [D]{u}  -  [C])

The stationary condition is

s n

(2.29)

dui
dU
dA;

=  0 

=  0
(2.30)

Thus from Eqn. (2.29) we get the system of equations for the finite element system [20-21]

(2.31)

After the solution of {U} and {A}, the nodal reactions can be obtained by

K  D t 
D  0

r  L I F 1 
U  c !

RUC

(2.32)

RUC
m+1
m+2

m-1
2 m

(a)

m
m+1

(b)

Fig. 2-3 Node labeling on the boundary:

(a) Periodic conditions; (b) Constrained plane.

Now let us regroup the n unknowns in {17} in the following manner (see Fig. 2-3a):
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u ; (u ^m+1

{[/}=■ u2> = .

F*. \ U 2m J

r \ u

, u ,\  m J

ru A2m+\

V U n

(233)

Where {U3} is unconstrained degrees of freedom, {Ux} and {U2} are constrained by the m

constraint equations

' U '
(2.34)

Where [/] is the m-th order identity matrix, {C} is determined from the c/ in Eqn. (2.15). 

Thus Eqn. (2.34) is equivalent to Eqn. (2.15). And the nodal force vector is also regrouped 

correspondingly.

Using Eqn. (2.33) and Eqn. (2.34), the system equation, Eqn. (2.31) can be written in a 

partitioned matrix form

(2.35)

If only constraint equations Eqn. (2.15), or Eqn. (2.34) are imposed, {F}} = {F2) = {0}, thus 

for two arbitrary corresponding nodes p  and p+m on the boundary (see Fig. 2-3a) , the 

reactions induced by the constraints are

~KX i * 1 2 * , 3 I ' Ux > l '

* 1 2 * 2 2 * 2 3 -I u2 * 2

* 1 3 * 2 3 * 3 3 0 U3 * 3

I — I 0 0  _ / t _ c
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\ / p e { p  = l,---,m) (2.36)

Note if  we only apply A{ as the load to the original finite element system 

({^} = {^}  = {0 }),then

X i
K n Kn '  A '

K k 22 k 23
<u 2 » =  *- A

k t23 U) 1 A . A ,

will give the solution of displacement that satisfies the constraint equations [20]. In other 

words, if we (only) apply the displacement constraint equations, Ai are the tractions on the 

corresponding boundary nodes, and they satisfy Eqn. (2.36).

Therefore it can be concluded that in a finite element scheme, upon applying the 

displacement constraint equations (periodic displacement boundary conditions), Eqn. 

(2.15), the tractions at the corresponding nodes will be solved and the traction condition, 

Eqn. (2.8) will be satisfied automatically.

To impose the displacement constraints, Eqn. (2.15) or (2.34), in FEM, it is a 

requirement to produce the same meshing at each paired boundary surfaces; this can 

always be done since the geometry of the RUC should satisfy the periodic conditions.

Some micromechanical analyses [1, 22] use u*(xx, x2, x3)as unknowns to be solved. 

In the present approach, although Eqn. (2.15) does not explicitly include the periodic part 

of the displacement u*, their values can easily be retrieved after the solution, as shown in 

the illustrative example 1 in the following Section 2.2.6.

It can be seen that the above derivation does not assume a particular inclusion shape,
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thus the boundary conditions also apply to any inclusion shapes. This also indicates that for 

an asymmetric RUC, the displacement boundary conditions will guarantee the traction 

continuity conditions (see illustrative example 2 in Section 2.2.6).

One can also see that the derivation and proof procedures for the proposed unified 

periodic boundary conditions are not dependent on the properties of the constituent 

materials of the composites. Therefore, they can be applied to nonlinear micromechanical 

analyses of the composites under any combination of multiaxial loads.

Constrained plane:

In the micromechanical analysis of a RUC, another type of boundary condition 

frequently encountered is the constrained plane. See, e.g., in [4, 6 ], or examples in the 

following Section 2.3. On this plane, the displacement components in the normal direction 

are coupled, while the resultant traction in the normal direction vanishes. Referring to Fig. 

2-3b, on the right-hand side surface s of the square RUC, the boundary condition can be 

stated as:

Note that in a finite element analysis, only Eqn. (2.38) will be applied as constrained nodal 

displacement conditions, i.e., the normal displacements of all nodes in this boundary 

surface are equal to each other. The value of 8  is not specified when applying the boundary 

conditions, its value is to be determined by the solution. We will show that in the finite 

element analysis, upon applying Eqn. (2.38), Eqn. (2.39) will be satisfied automatically. If

(2.38)

(2.39)
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the plane has m+1 nodes, then Eqn. (2.38) can be equivalently expressed as m constraint 

equations (see Fig. 2-3b)

W, =  U 1 **\ i*m+1

=  Um+1

U — U ,m m+1

(2.40)

which in a matrix form is

[ /  - / © - W (2.41)

where [/] is m-th order identity matrix, [ J ] = {1, 1, —, l}r (m components), and

{^1 } — {̂ 15 ^2 ’' '  ’ > }

{U2} = {u m+l} (2.42)

{U,} = {u m+2 ,--- ,un}T (unconstrained degrees of freedom)

Again, assuming the degrees of freedom of the system are labeled as

{U} =
Ux
u2
u,

(2.43)

Hence, by introducing m Lagrange multipliers, the system of equations can be written in 

the partitioned form

(2.44)

'*11 *12 *,3 I u ; ' K
Kn *22 *23 ~ J T u 2

» ^  < F2

* 1 3 *23 *33 0 U3 *3
I J 0 0 X 0

S i n c e } = {F2} = {F3} = {0}, the resultant reactions of d.o.fs. u:,u 2 ,---,um are
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^_tti - t x -  ~(AX (2.45)
m m

While the reaction of um+] is

( „ ,  = w r w = A + - - ^ . = Z ^ (2.46)
m

Thus the resultant traction on the plane

J5,crn ^  -  'Y j U + t m+1 -  _  0 (2.47)
m m m

And from Eqn. (2.19) we get the average stress in the RUC, a n = 0. Applications of this 

type of boundary conditions will be shown in Section 2.3.

Finally, it should be noted that other approaches such as transformation and penalty 

functions can also be used to impose constraint equations on a FEM system [20, 23]. 

However, from the uniqueness of the solution (the proof of the uniqueness of the solution 

can be seen, e.g., in [21, 24]), the conclusions of this section hold for any approach.

2.2.6 Illustrative Examples

In the following, illustrative example 1 shows that the periodic displacement u* can be 

easily retrieved from the FEM solution and example 2 shows that the present approach 

applies to an asymmetric RUC. For these two examples, the materials of the inclusion and 

matrix are assumed to be elastic and the material constants used are Ef  =72400 MPa, 

^= 0 .22  for inclusion and Em =2600 MPa, and vm=0.4 for matrix. And for simplicity, 

only two-dimensional RUCs are used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 53

Example 1

Figure 2-4(a) shows a RUC for a unidirectional laminate of E-glass/epoxy composite 

based on square fibre array. The meshed model is established with four noded elements 

with 1632 elements and 1681 nodes. The volume fraction of the RUC is Vf =50 % and the

side of the square (space between the centres of neighbouring fibres) is unity. The RUC 

under a general multiaxial loading (in-plane biaxial tension and shear) is solved. Note that 

for the square RUC shown in Fig. 2-4a, Axt = Ax2 = 1, therefore the constants in Eqn. 

(2-15) applied are: ^=0.0012, c22 =0.0016, c 2 =^=0.0018.

(a) (b) (c)

Fig. 2-4 Illustrative example 1: (a) Meshed RUC; (b) Total deformation; 

(c) Periodic part of deformation.

After the solution the displacement field in the RUC is known, thus from Eqn. (2.7) 

u*(Xj, x 2 , x 3) = ut (x,, x2, x3) - SyXj (2.48)

Figure 2-4(b) shows the exaggerated deformed shape and Fig. 2-4(c) shows the periodic 

part of the deformed shape. Note in this example, the origin of the coordinate system is at 

the centre of the square RUC.
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Example 2

Figure 2-5 shows an asymmetric RUC with a rectangular inclusion. The problem with 

loading of c\ =c\ = 0 , c\ = c^O.Ol (Note that Ax = Ay = 1) is solved with a mesh of 

181x181 four noded elements.

Fig. 2-5 Dimensions of an asymmetric RUC.

6 0 -, Distributions along: 
 x-0

5 0 -

4 0 -

(0
CL
2

3 0 -

(ft 
Vi 0) 2 0 -

co
1 0 -

- 1 0 -

-20
0.0 0.2 0.4 0.6 0.8 1.0

Location in y direction 

Fig. 2-6 Stress distributions at the two opposite sides of a RUC.
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Fig. 2-6 plots the comparison of the distributions of the stress components at two 

opposite sides of the RUC. It clearly shows that even for asymmetric RUC, the stress 

continuity conditions are well satisfied.

2.3 SYMMETRY CONSIDERATIONS OF A SQUARE RUC

2.3.1 General Procedure and Examples

When a three dimensional parallelepiped unit cell exhibits a plane of symmetry, the

micromechanical analysis with periodic boundary conditions can be reduced to a problem 

on half of the unit cell with standard boundary conditions on the plane of symmetry. And if 

the RUC has two or three symmetric planes, the analysis can further be reduced to 

one-quarter or one-eighth of the original RUC. However, the reduction of the RUC 

depends not only on the geometry and material of the RUC, but also on the loading applied 

to the RUC. For multiaxial loading cases, only for some loading cases could symmetry 

conditions be exploited to reduce the RUC analysis [10]. In this section, we discuss the 

application of the periodic boundary conditions described in Section 2.2 considering 

symmetry conditions. The general procedure is first illustrated by simple loading cases, 

then the consideration on off-axis loading (combined normal loading and shear loading) is 

described in detail.

In the following, we consider the unit cell V which is a rectangular parallelepiped 

delimited by planes xi = ± L i (i = 1,2 3) . A Cartesian coordinate system can be
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established with the origin being the geometric centre of the parallelepiped and the axis 

along the normal directions of the three orthogonal surfaces of the parallelepiped (see Fig. 

2-7).

For RUC analysis, the periodic boundary condition is (Eqn. (2.7)),

ui = &\k xk + u* > u* periodic (2.49)

And the loading of the RUC can be viewed as applying the average strains, ei}.

For the RUC with a plane of symmetry, x 2= 0, Michel et al [8 ] showed the following

stress and periodic displacement relations for two loading cases, viz.:

Case 1:

When the loading is

{f} — {^n, ^22’ C33’ 0, 0, £31} (2.50)

then

u](Xj, - X,, x3 ) = ( - 1 ) ,+1 u*(x,, x2, x3) (2.51 a)

CTy ( x , , - x 2 ,x 3) = ( - 1)'+/ cTy (x,, x2, x3) (2.51b)

In this case the overall strain (loading) {e} is the superposition of arbitrary extensions 

along the three directions of the RUC and of arbitrary shear in the plane (31). Obviously, if 

only one component in Eqn. (2.50) is not zero, Eqns. (2.51a, b) still apply.

Case 2:

When

{^} = {0, 0, 0, el2, s23, 0} (2.52)

then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 57

w*(x,, - x 2 , x 3)~  x2, x3) (2.53a)

try (x,, -  x2, x3) = (-1) ,+/+1 cr.. (x, , x 2 ,x 3) (2.53b)

In this second case the overall strain (loading) {J} is the superposition of pure shears in 

the planes (12) and (23). Following are two examples showing the reduction of a RUC by 

using the above relations, Eqns. (2.50)-(2.53).

Example 1—Extension in three directions:

In this example, the loading is the combination of sn , e21 and . Thus from Eqn.

(2-51), on planes x 2 = 0 and x2 = ±L2 / 2 (we only consider the half of the RUC confined

by x 2 = 0, and x2 = L2/ 2 for brevity),

u2 (xj, 0, x3) = u*2 (xj, L2 /2, x3) = 0 (2.54a)

cru (Xj, 0, x3 ) = cr12 ( ^ , L2 / 2, x3 ) = 0 (2.54b)

<r23 (Xj , 0, x3 ) = cr23 ( ^ , L2 / 2, x3 ) = 0 (2.54c)

►

►A  A  A  A  A

Fig. 2-7 Reduction of RUC under extensions in three directions.
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Therefore, from Eqns (2-49) and (2.54), we obtain:

On plane x 2 = 0:

H, = 0
2 (2.55)

° " l 2 — ^23 — 0

On plane x 2 = L2 / 2 :

 ̂ (2.56)U2 = £2 2 ^ 2  / 2 )
&X2 — °23 ~ 0

Therefore, the problem can be solved on a half of the RUC under the above boundary 

conditions (The boundary conditions on other planes remain unchanged). Repeat the above 

procedure if the RUC has symmetric planes, x1 = 0 and x3 = 0, we can conclude that the 

problem can be solved on 1/8 of the RUC using standard boundary conditions. Figure 2-7 

shows in 2-D case for simplicity.

Example 2— Combined shear:

Now consider the case of combined shears en and s 23. The loading and reduction of 

the RUC is shown in Fig. 2-8. Note in this case, the RUC can only be reduced to one-half of 

the original size. On planes xx = ±LX / 2 and planes x3 = ±L3 / 2 , periodic boundary 

conditions remain unchanged, and the boundary conditions on planes x, = 0  and 

jc2 - ±L2 / 2 are:

On plane x2 = 0:
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Ux =  0

u3 = 0  

a  22 = 0

(2.57)

On plane x2 = ±L2 / 2 :

U\ ~ ^12 {J-“2 I 2 )
W3 = 2̂3 (-^2 /
cr22 = 0

(2.58)

X1 .

X3

’ 23

X2

Fig. 2-8 Combined shear loading.

2.3.2 Off-axis Loading

(a)

Xi
m  2

X1

(b) (c)

Fig. 2-9 Reduce to one-quarter of the RUC under off-axis loading.
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For off-axis loading, the global stress and corresponding strain to be applied to a RUC 

are (see Chapter 3 and Chapter 4):

Referring to Fig.2-9, the geometry, material and loading of the present problem has three 

symmetries, viz. (1 ) along x, axis (fibre direction), the geometry, material, stress/strain, 

and periodic part of displacement are invariant. (2 ) a mirror symmetry about the 

plane x3 = 0 , and (3) a ^--rotation symmetry about the x3 axis.

In a UDC, local stress <jy, strain £y, and periodic part of the displacement is the 

perturbation of the microstructure, thus they are independent of xx, from Eqn. (2.7), the 

general form of the displacement field can be written as:

ul(xl , x2, x3) = £nxx + 2 sn x 2 + ux (x2, x3) (2-61)

u2 (xx, x2, x3) = s 22x 2 +u*2 (x2, x3) (2.62)

u3 (Xj, x2, x3 ) = s 33x3 + « 3 ( x 2 , x3) (2.63)

Note a rigid body rotation about x 3 axis, w, = sX2x2, u2 = - £ u xx, is added to the

displacement field for simplification of the above equations. The stress, strain field will not 

be changed.

Reduce to one-half RUC

For off-axis loading, Eqns. (2-59) and (2-60), the full-size RUC shown in Fig. 2-9(a)

{&}={VU’ (J22’ Q’ Of 

{s) = {sn ,£ 22,£3Z, s n ,Q, 0 }r

(2.59)

(2.60)
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has a mirror symmetry about plane x3 = 0 , thus the displacement and stress components of 

two arbitrary symmetric points satisfy:

2) From Eqn. (2.63) and Eqn. (2.64), for an arbitrary point P  on plane x3 = Z3 / 2 and its 

symmetric point Q on plane x3 = - L 3 / 2 ,

u3 (Xj, x 2 , L3 / 2) -  u3 (Xj, x 2 , -  L3 / 2) = s33L3 

u3 (jTj , x 2 , L3 / 2) = - u 3 (jc, , x 2 , -  L3 / 2)

Therefore, we get

3) From Eqn. (2.65), we have

^*23 ("^1 ’ ^ 2  > ^ 3   ̂ ^ 2 3  (^"1 ’ "^2 ’ ^ 3  ^

From the traction compatibility conditions, Eqn. (2.8), for two periodic points, we have

^ 2 3  > *^2 ’ ‘̂ ■'3 ^ ^*23 ( ^ l  ’ "^2 ’ ^

Therefore,

(2.64)

(2.65)

(2 .66)

And for other displacement or stress components:

a j {xx, x 2 , x 3) = cjij{xl , x 2 , - x 3)

1) From Eqns. (2.64)-(2.66), on plane x3 = 0, we have

u3 — 0 , cr23 cr31 0 (2.67)

u3 (jq, x2, L3 / 2) = £33(Z3 /2) (2 .68)
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cr23 ( x ,  , X 2 , L3 / 2 )  =  0 ( 2 .6 9 )

Similarly,

a 3X(xx, x 2 ,L 3/ 2 )  =  0 (2.70)

Thus, under off-axis loading, the RUC shown in Fig. 2-9(a) can be equivalently solved 

based on the one-half RUC shown in Fig. 2-9(b). The boundary conditions apply to the 

planes x3 = 0 andx3 = —L3/ 2 are determined by Eqns. (2.67)-(2.70).

Reduce to one-quarter RUC

The RUC shown in Fig. 2-9(a) or Fig. 2-9(b) also has a ^--rotation symmetry about x 3 

axis, thus the displacement and stress components of two arbitrary symmetric points meet: 

ux(xj, x2, x3) = - u x( -x x, - x 2, x3) (2.71)

u2 (Xj , x 2 , x 3) = - u 2 (~xx , -  x2, x3) (2.72)

*̂ 23 (^1  ’ U  > -*"3 ) — ~®23 (—-̂"l ’ — U ’ Ti ) (2.73)

cr31 (x,, x2, x3) = -cr31(-x ,, - x 2 , x 3) (2.74)

And for other displacement or stress components:

or., (x, , x2, x3) = or.. (-x, , - x 2 , x 3)

1) For two arbitrary ^-rotation symmetric points A and B on plane x 2 = 0:

From Eqn. (2.61), and note u* is independent o fx ,, thus

Mj (x,, 0, X3 ) -  Mj ( - X j , 0, X3 )  =  S u Xx -  S n { —X x )  +  U* (X j , 0, x3) -  u*x ( —x , , 0, x3 )

= 2 exlxx

From Eqn. (2.71),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 63

Ux (Xj, 0, X3) = -Ux {-Xx, 0, X3 )

Thus from the above two relations, we obtain

K^Xj.O, x^) = £nxx (2.75)

Similarly,

u2 (xj, 0 , x3) = 0 (2.76)

From Eqn. (2.73),

23 (Tl 5 X3 ) *̂ 23 ( "̂3 )

But alone xx axis, the local stresses are invariant, thus,

<t23 (x,, 0 , x3) = cr23 (-*!, 0 , x3)

Therefore, the above two equations yield

cr23(Xj, 0, x3) = 0 (2.77)

2) For two arbitrary ^-rotation symmetric points M  and N  on planes x 2 = ±L2 / 2 , and an

auxiliary point R, Fig.2-9(b), note u* of M, R satisfy periodic condition, and ux of N, R

are invariant alone axis, thus,

ux (x,, Z,2 / 2, x3) = u*( -x , , - L2 /2, x3) = u*x (Xj, - L 2 12, x3 )

Therefore from Eqn. (2.61) we have 

ux (x,, L2 /2, x3) - u x { -xx, -  L2 /2, x3 )

= £xxxx -  £xx (-Xj) + 2eX2 (L2 /2) -  2£u (~L2 /2) + Mj*(Xj, L2 /2, x3) -  u*x (-x 3, - Z2 /2, x3) 

= 2£nxx + 2£n a + u \ (Xj , - L 2 ! 2, x3) -  u*x (-Xj, -  Z2 /2, x3)

From Eqn. (2.71),

ux (Xj, L2 / 2, x3) = - u x (—x,, -  Z2 / 2, x3)
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Thus from the above two relations we have

ux , L2 / 2, x3) = £xxxx + 2eX2 (L2 / 2) (2.78)

Similarly, for u2, we have

u2 (vj, L2 /2, x3) = s 22(L2 /2) (2.79)

3) From Eqn. (2.73),

23 (A l ’ ^ 2 ^ 2?  ^"3 )  ^*23 (  ^1 ’ _  ’̂ '2 ^ 2 j  ^ 3  )

Consider the three points M, TV and T? in Fig. 2-9(b), note <x23 of M, R should satisfy the 

traction continuity conditions, Eqn. (2.8). And cr23 of TV, R are invariant alone X̂  axis, 

thus,

*■̂23 Ĉ l ’ ^2  ̂ X3 ) 6T23 (Xj, L 2 / 2, X3 ) ^"23 ( 1̂ ’ ^2  ̂2j ^3 )

From the above two equations, we have

<j23( x x, L 2 I 2 , x 3) = 0 (2.80)

The periodic boundary conditions applied to one-quarter RUC (Fig. 2-9c) for off-axis 

loading are summarized as:

On planes x x =  ± L X / 2:

u x( L x 12,  x 2 , x 3) - u x( - L x 12 ,  x 2 , x 3) =  £ 1XL x

■ u 2( L x / 2 , x 2, x 3) - u 2( - L x / 2 , x 2, x 3) = 0 (2.81) 
u 3(L x /2 , x 2, x3 ) - u 3( - L x 12,  x 2 , x 3) =  0

On plane x 2 = 0 :

u x ( x x, 0 , X 3) =  £ xxXx

■ u 2( x x, 0 , x 3) =  0 (2.82)

^23 A? ) ^
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On plane x2 = L2 / 2:

«,(x,, Z2 /2 , x3) = + 2su (L2 /2)
w2 (X[, Z2 / 2, x3) = e22(L2 /2) (2.83)

23 (^ 1  ’ ^ 2  ^ U  )  ^

On plane x 3 =  0:

u3 (xl, x 2 , 0 ) = 0  

■ <723 (Xj , x 2 , 0 )  =  0  

<t31( x 1, x 2 , 0 )  =  0

On plane x 3 =  L3 / 2 :

cr3 ] ( x 1, X 2 , Z 3 / 2 )  =  0

Note that in the x3 direction, the constant S33 in Eqn. (2.85a) is not specified, thus 

from Section 2.2.4, it ensures that on the plane x3 = L3 / 2 , the total normal traction 

vanishes,

Therefore, from Eqn. (2.19), the global stress component (average over the RUC) cr33 = 0. 

Verification

To verify the above boundary conditions for the one-quarter RUC, a full-size RUC 

(model A) and a reduced-size RUC (model B) are developed as shown in Fig. 2-10(a) and

(b), respectively. Both models are meshed with 8  node brick element with model A has 

4592 elements and 7059 nodes and model B has 574 elements and 1226 nodes. The

w3 (xj, x2 , Z3 / 2 ) -  c>3 3 , so ^  cr^dS -  0

a 23 (xj, x2, Z3 / 2 ) -  0 (2.85)
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materials constants used are Ef  =72400 MPa, vf  =0.22 for inclusion and Em =2600 MPa, 

and vm=0.4 for matrix. The verification analysis is performed using ANSYS.

(a) (b)

Fig. 2-10 Verification models A and B\

(a) Full-size RUC; (b) One-quarter RUC.

If the proposed boundary conditions for the RUC model are correct, then the two 

meshes should produce the same stress/strain field. Note that mesh A has two layers of 

element while B has only one layer, this is to verify that in the fibre direction only one layer 

of element is enough. An arbitrary loading is:

M = fe* . Gyy> ẑz> ^xy, °> ^  = {0-005, 0.01, £zz, 0.01, 0, O}7
f (2.86)

a z z = (H V )\v a zzdV = Q

For model A, the boundary conditions are from Eqn. (2.15), and for model B, the boundary 

conditions are from Eqns. (2.81-2.85).
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Figure 2-11 shows, for example, the distributions of stress components o zz and cr^ 

of the two models. It can be seen from the figure that the distributions of the stress 

components have two features. Firstly, for both the full size RUC and the reduced size 

RUC, the distributions of the stress are invariant along the fibre direction (x direction). 

Secondly, the distribution in the one-quarter RUC is identical to the distribution in the 

upper-left quarter (with positive x, y, z coordinates) of the full RUC. Other stress 

components have similar results except for stresses a xz and a  , which distribute in the

full RUC anti-symmetrically about planes y  = 0 andz = 0. However, in fibre direction, all 

the six stress components are invariant.

From Fig. 2-1 la  it is observed that in the RUC, a Z2 is usually not zero, and on the left 

surface of the RUC (plane z =1), the distribution of <jzz is not uniformly zero. However, 

from the numerical results, the total normal traction can be calculated from the distribution 

of crzz. The numerical result is

f c  dS = 0.767386x 10~12 ~ 0 forfullRUCJz=1

f crzz dS = 0.280886 x 10“13 « 0 for quarter RUCJz=l

And therefore the average stress <xzz in the RUC is zero.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 68
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(a) Distribution of <j77 in the full RUC and quarter RUC
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(b) Distribution of a xy in the full RUC and one-quarter RUC

(c)

Fig. 2-11 Comparison of the distributions of stress.
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Table 2-1 lists all the six stress components at arbitrarily selected locations in the full 

and reduced models. The locations of the selected points are shown in Fig. 2-12 for the 

one-quarter model. For the full-size model, the corresponding locations in the upper-left 

quarter are used. Note in the list, for each point, the values in the first line are of the full 

RUC model, and those in the second line are the values from the one-quarter RUC.

Fig. 2-12 Selected points for comparison.

It can be seen from Table 2-1 that the stress values of the two models are identical 

except at the edge points A, B and K. From Eqns (2.67), (2.69) and (2.70), the stress 

components a yz and crxz should be zeroes at points A, B  and K, however, in a FEM

solution, usually only small numbers will be obtained instead of exact zeroes. From Table 

2-1, it is seen that at points A, B and K, the stress components <j  and a xz are very small
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Table 2-1 Stress at arbitrarily selected locations

p o i n t  <j xx a yy  <7ZZ <y xy  ( j y z  a xz

A 0.401643E+03 0.245522E+03 -0.653280E+02 0.981944E+02 0.509077E-09 0.119458E-08

0.401643E+03 0.245522E+03 -0.653280E+02 0.981944E+02 -0.277047E-01 -0.183932E-01

B 0.187939E+03 0.302619E+03 0.124104E+03 0.118610E+03 0.301497E-08 0.538535E-09

0.187939E+03 0.302619E+03 0.124104E+03 0.118610E+03 -0.134164E+00 0.582990E-01

C 0.409201E+03 0.239566E+03 -0.250169E+02 0.105387E+03 -0.805735E+01 -0.759562E+01

0.409201E+03 0.239566E+03 -0.250169E+02 0.105387E+03 -0.805735E+01 -0.759562E+01

D* 0.287211E+03 0.240142E+03 0.652202E+02 0.107342E+03 -0.331590E+02 -0.531365E+01

0.287211E+03 0.240142E+03 0.652202E+02 0.107342E+03 -0.331590E+02 -0.531365E+01

E 0.168272E+03 0.262202E+03 0.115353E+03 0.106542E+03 -0.389891E+01 0.480952E+01

0.168272E+03 0.262202E+03 0.115353E+03 0.106542E+03 -0.389891E+01 0.480952E+01

F 0.394990E+03 0.187219E+03 -0.372659E+02 0.915169E+02 0.182981E+01 -0.120590E+02

0.394990E+03 0.187219E+03 -0.372659E+02 0.915169E+02 0.182981E+01 -0.120590E+02

G 0.883278E+02 0.129883E+03 0.478118E+02 0.518074E+02 -0.352341E+01 0.202419E+02

0.883278E+02 0.129883E+03 0.478118E+02 0.518074E+02 -0.352341E+01 0.202419E+02

H 0.426640E+01 0.253313E+02 -0.577903E+02 0.794953E+01 0.290810E+02 0.692185E+01

0.426640E+01 0.253313E+02 -0.577903E+02 0.794953E+01 0.290810E+02 0.692185E+01

I 0.642034E+02 0.731787E+02 0.442048E+02 0.360217E+02 0.357595E+01 0.641149E+01

0.642034E+02 0.731787E+02 0.442048E+02 0.360217E+02 0.357595E+01 0.641149E+01

J 0.853789E+02 0.889280E+02 0.813942E+02 0.495667E+02 -0.243899E+00 -0.131148E+00

0.853789E+02 0.889280E+02 0.813942E+02 0.495667E+02 -0.243899E+00 -0.131148E+00

K -0.170655E+02 0.116897E+02 -0.974785E+02 0.531061E+01 -0.226460E-08 0.219814E-10

-0.170655E+02 0.116897E+02 -0.974785E+02 0.531061E+01 0.199569E+00 0.179554E-02

L 0.770590E+02 0.704296E+02 0.790930E+02 0.444523E+02 0.109666E-01 0.680411E-01

0.770590E+02 0.704296E+02 0.790930E+02 0.444523E+02 0.109666E-01 0.680411E-01

* Interface node, the values are average values of that in the fibre and matrix.
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comparing to the other stress components for both the full model and the quarter-size 

model. On the other hand, for the full size model, the stress values at the points A, B and K  

(nodes) are the averages from all the elements which contain the corresponding node, 

therefore a very small value is obtained since the stress cryz and <j xz are anti-symmetric. 

Furthermore, for the quarter-size model, the stress a yz and a xz will approach to very 

small values with a finer mesh.

Therefore this example validates the proposed boundary conditions for the one-quarter 

RUC under off-axis loading.

2.3.3 Generalized Plane Strain Conditions

As shown in Fig. 2-13, assume x x direction is the fibre direction, and the applied load 

is en , s 22, J 33 and e23 (no out of plane shear). Since all the stresses and strains are 

independent of x{, thus from Eqn. (2-7),

Ul ( x i , x 2 , x 3) = £,!*! + «* (x2, x3) (2.87)

u2 (x,, x2, x3) = s 22x 2 + s 23x3 + u\ (x 2 , x3) (2 .8 8 )

u3 (xi , x2, x3) = e23x 2 + s 33x3 + ul(x2, x3) (2.89)

Assuming the laminate is very long in x, direction, thus for the RUC delimited by 

planes x, = ±LX, plane x, = 0 is a plane of symmetry. From Eqn. (2.51a),

u*(0, x2, x3) = u\(±Lj /2, x2, x3) = 0 (2.90)

Note u* is invariant alongx,, thusM*(x,, x2, x3) = 0 . Therefore on an arbitrary plane
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jq = const, we have

Mj = enx  j (2-91)

and

w2 =  ^ ( x q ,  x 3 ) , m3 = w3 ( x 2 , x 3 )  (2.92)

Therefore Eqn. (2.91) and Eqn. (2.92) define a generalized plane strain problem. In 

plane strain conditions, usually the stress in x, direction cr,, ^ 0  , consequently 

I <jn d S ^ 0  . However, for generalized plane strain case, proper boundary
J x \= c o n s t

conditions can be applied to ensure that f <r11c?<S' = 0 , hence the global stress
J x l= c o n s t

component in jq direction vanishes, i.e. <xn = 0 . For a unidirectional laminate under 

loadings in the transverse plane, there is no global stress at the ends in the x i direction, 

thus generalized plane strain condition may be closer to the real case.

Fig. 2-13 Generalized plane strain.

From the above discussions, under in plane loadings

{a7} = {0, a 22, ct33 , 0, 0, a 22 f  (2.93)
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{e} = {su , e22, £33, 0, 0, en }r (2.94)

The problem can be solved on the RUC which is a segment of arbitrary thickness in xx

direction with the boundary conditions as the following:

On planes xx = 0 xx = Lx/ 2: 

ux(0 , x2, x3) = 0

ux(Lx /2, x2, x3) = Sxx so JcTj^S^O (2.95)
<JX2 — <Jn — 0

On planes x 2 = ±L2 / 2 :

u2 (x 2 = L2 / 2) -  u2 (x2 = - L 2 / 2) = s 22L2

m3 ( x 2 = L2 IT) -  w3 (x2 = - L 2 IT) = £23L2 (2-96)

o-2, = 0  

On planes x3 = ±L3 / 2 :

u2 (x3 =L 3 /2) — u2 ( x 3 = —L3 / 2) = £23L3 

u3 (x, = L3 IT) — u3 (x3 = - L 3 /2) = £33L3 (2.97)

cr3i = 0

2.4 ILLUSTRATIVE EXAMPLES OF MICROMECHANICAL ANALYSIS

In this section, two examples are provided to show the application and validity of the 

proposed finite element modeling procedure. For simplicity, all the material constituents 

are assumed to be elastic and the interface between the inclusion (fibre) and matrix are 

assumed to be perfectly bonded.
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2.4.1 Example 1

This example compares the unified boundary conditions, Eqn. (2-15), with the 

“homogeneous boundary conditions” (or plane-remains-plane boundary conditions) [2 ], 

The 2-D model consists of a rectangular reinforcement with a volume fraction of 50%, Fig. 

2-14. The elastic moduli and the Poisson’s ratio for the fibre and matrix are Ef  =72400 

MPa, vf  =0.22 for inclusion and Em =2600 MPa, and vm =0.4 for matrix. For a pure shear 

deformation mode we apply the following two different sets of boundary conditions to the 

RUC model:

(a) Periodic boundary conditions, Eqn. (2.15):

tip = v F = 0  (to eliminate the rigid body motion) 

where u and v are displacement components along X  and Y , respectively.

(b) Homogeneous boundary conditions:

The following homogeneous boundary conditions were suggested in Ref. [2] to be 

applied to the boundary surface .S' of a repeated unit cell V:

U AB U EF  ~  0 ’ V AB V EF  —0.0018
U A E ~ U B F ~  0.0018, V a e ~ y b f ~  0

(2.98)

Ui(S) = EyXj (2.99)

where Sy is the average strain.

For the current example, the above equation reduces to:

uAB = 0.0018x45 , uEF = 0.001 SyEF
N ab  =0.0018x^,5 =0.0018, n  EF = 0.001 SxEF = 0
u a e  = O-OOlSx^ = 0.0018 , uBF = 0.0018y55 = 0  

n a e  = 0.0018 x AE , n b f  =  O.OOI8 X55

(2 .100)
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Note that the origin of the coordinate system is set at the point F of the square RUC and the 

above boundary conditions specify that all displacement components are linearly 

distributed at the boundaries, i.e. a plane-remains-plane.

Finite element analysis results

Case (a): The deformed shape for this case is shown in the Fig. 2-14(a). One notes that the 

boundaries do not remain plane after the deformation. The resultant tractions at the 

boundaries are:

At AE  and BF : Nyx = ±6.4831, Nyy -  0; at AB and EF: Nxx = 0 , Nxy = ±6.4831

<7 ̂  =  6.731 M Pa  
E A

Fig. 2-14 Deformed shape and shear stress distribution of a two dimensional RUC model 

with different applied boundary conditions: (a) Eqn. (2.98); (b) Eqn. (2.100) (dashed

lines show the undeformed shape)

BF
( a ) (b)
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Further examination of the stress distribution indicates that at all boundaries the 

normal stress components are zero and the shear stresses are uniform in the whole body as 

shown in Fig. 2-14a, i.e. the RUC is subject to a pure shear load. In addition, not only the 

displacements but also the stress distributions along the boundaries satisfy the periodic 

conditions. Therefore, the average shear strain and the average shear stress can be 

calculated from Eqns. (2.17) and (2.19) resulting in y  = 2sxy = 0.0036 and 

f  = crxy -  6.483IM Pa , respectively, and the equivalent shear modulus is G=T,801MPa. 

Case (b): The deformed shape is shown in Fig.2- 14(b). The boundary lines remain straight 

lines. Therefore, the displacement periodicity is satisfied but it is an over-constrained 

condition in comparison with the results in Fig.2-14(a). Now let us look at the resultant 

forces and moments at the boundaries. They are:

At AE and BF: Nyx = ±24.335, Nyy = 0, Af, =10.3494;

At AB and EF: Nxx = 0 , Nxy = ±4.5963, M 2 = 0.4807 .

Note that in this case the resultant shear forces at the boundaries AE  and AB are not

equal. This indicates that the unit cell is not subject to a pure shear force and other forces

(moments) must be applied to the boundaries in order to maintain force and moment 

equilibrium, see Fig. 2-15(a). Figures 2-15(a) and 2-15(b) also show the distributions of 

stress components c rxx and a  , respectively. It is seen that the c rxx and c ryy give rise to

boundary moments M2 and Mi to ensure that the unit cell as a whole is in equilibrium. 

However, the normal traction at the corresponding points on the opposite sides have 

opposite signs; one is in tension while the other in compression as seen in Fig. 2-15(b) at
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points C and D. This implies that the traction distribution at the corresponding opposite 

boundaries does not satisfy the periodic condition and as such a “RUC” model cannot be 

arranged in a periodic array to represent a composite material. Accordingly, it is clear that 

the “homogeneous displacement boundary conditions” are not appropriate boundary 

conditions for the RUC of composite materials subject to a shear load.

The average shear strain and the average shear stress in this case are 

y  = 2e° = 0.0036 and f  -  (ftv = 24.912MPa , respectively, and the equivalent shear 

modulus is G=6,937 MPa. We can see that the homogeneous displacement boundary 

condition does greatly overestimate the modulus.

Fig. 2-15 Resultant boundary forces and distribution of stress components by applying

homogeneous boundary conditions:

(a) Distribution of stress component <7 XX; (b) Distribution of stress component <7 vv.

c r.

(a) (b)
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2.4.2 Example 2 (Prediction of Effective Elastic Constants o f a UDC)

The meshed RUC model is shown Fig. 2-16. It is meshed with three-dimensional

eight-node hexahedral elements. The finite element mesh is constructed with 1881 nodes

and 1536 brick elements.

(a) (b)

Fig. 2-16(a) The Finite element mesh of the RUC model for the unidirectional laminate;

(b) Deformed shape under shear.

In this example, the unidirectional composite laminate is composed of aluminum 

matrix and boron fibre. All the constituent materials are assumed to be isotropic elastic but 

with different material properties. Table 2-2 lists the materials properties used in the 

calculations. The fibre volume fraction is 47 %.

Table 2-2 Material properties of fibreand matrix [4]

Material E (MPa) V

Boron 3.793xl05 0 .1

Aluminum 6.83xl04 0.3
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The unidirectional laminate is assumed to be orthotropic and linearly elastic. In a 

matrix notation form, the constitutive relation of this effective material can be written as,

{J}=[S]{cr} 

where [s] is the compliance matrix,

(2.101)

[s] =

S u S 12 * 3 0 0 0

S 12 S 22 S 23 0 0 0

S n S23 S33 0 0 0

0 0 0 S4 4 0 0

0 0 0 0 S55
0

0 0 0 0 0
s 66

(2 .102)

After obtaining the cf. and for given c j  from Eqns. (2.17) and (2.19) of a RUC, 

the Sy can be obtained from Eqn. (2.101). The relation between the engineering elastic 

constants and S;, are:

E =  —  
Sn

E 2 =

E ,=

1

'22

1

33

U2 = '

= ■

23

u 13

' s n

*̂23
Sit

Gu = 2 S 44

2 S.
(2.103)

G23 =

55

1
2S,66

It should be noted that for a general orthotropic material, nine independent material 

constants must be determined. However, Eqn. (2.101) contains only six equations; thus two 

sets of solutions are required. Note that the last three equations will result in the same 

moduli for the two sets of solutions. Thus, in total there are nine independent equations for 

nine independent material constants. All the nine constants are, therefore, determined by
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solving the nine equations.

The following two sets of cj are used in the calculation of the unidirectional laminate 

model ( At = Ay = Az = 1):

Set 1: c\ = c 22 = c33 =0.012, cj = 0.016 ( j j ) ,

Set 2: cj = c \=  0.018 all other c j = 0.

The predicted elastic properties of the unidirectional boron/aluminum laminate 

(E 3 = E 2 ,G13 = Gu andv13 = v12) and a comparison with the numerical, analytical and the 

available experimental data are given in Table 2-3. In the table, the results of Aboudi et al. 

[22] and Sun and Vaidya [4] are using a square array RUC similar to that used in this thesis. 

It can be seen that the present results are very close to the results in [4, 22], The predictions 

of Sun and Chen [25] and Chamis [26] are based on a mechanics approach involving the 

use of displacement continuity and force equilibrium conditions. The solution presented by 

Whitney and Riley [27] is based on the use of the energy balance approach with the aid of 

classical elasticity theory. It is noted that the analytical results of Hashin and Rosen [28], 

based on energy variational principles, provide bounds for the elastic moduli, and the 

average values are used in the table. For E\, Gu and v u  the upper and lower bounds 

coincide to provide an exact solution. The present predictions agree well with the exact 

analytical values, as seen from the table.

It can be concluded that the predicted properties are generally in good agreement with 

the analytical, numerical, and experimental results in the literature.
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Table 2-3 Results and comparison for unidirectional boron/aluminum laminate

(Vf  =0.47)

Elastic

Constants Present Ref. 22 Ref. 4 Ref. 25 Ref. 26 Ref. 27 R ef 28

Test data 

(Ref. 29)

£;(Gpa) 214 215.4 215 214 214 215 215 216

£ 2(Gpa) 143 144.0 144 135 156 123 135.2 140

G/2(GPa) 54.2 54.34 57.2 51.1 62.6 53.9 53.9 52

G23(GPa) 45.7 45.83 45.9 — 43.6 . . . 52.3 . . .

vu 0.195 0.195 0.19 0.19 0.20 0.19 0.195 0.29

v23 0.253 0.255 0.29 . . . 0.31 . . . 0.295 . . .

The deformed shape of the RVE under an applied pure shear periodic displacement

3 2 /boundary condition, c2 = C3 = 0.016 , and all other cj = 0, is shown in Fig. 16(b). Again,

it can be seen that the deformed boundary surfaces no longer remain planes.

2.5 CONCLUDING REMARKS

The following conclusions are drawn from the study of the present chapter:

• Based on the compatibility conditions for a periodic structure, unified boundary 

conditions for repeated unit cell (RUC) model are presented which satisfy the 

periodicity conditions and are suitable for any combination of multiaxial loads.

• The proposed unified boundary conditions satisfy not only the boundary displacement 

periodicity but also boundary traction periodicity of the RUC model. In a FEM scheme,
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the traction conditions are automatically satisfied. The proposed boundary conditions 

can be conveniently implemented into a finite element code

• A method to evaluate the average stresses and strains has been derived based on the 

applied boundary conditions. And it shows that the average stress can be calculated 

from the resultant forces at the boundaries.

• In the proposed boundary conditions, the periodic part of displacement is not explicitly 

presented, however, the periodic part of deformation can be easily retrieved after the 

solution.

• The proposed procedure applies to both geometrically symmetric and asymmetric 

RUCs. For geometrically asymmetric RUC, the entire model should be used in a 

analysis for multiaxial loading

• For a parallelepiped RUC under different loading conditions, the symmetries of the 

RUC are exploited to reduce the size of the problem. For a unidirectional laminate 

under spatial off-axis loading, proper periodic boundary conditions for a one-quarter 

RUC are derived rigorously.

• A 2-D example shows the “homogeneous boundary conditions” (plane-remains-plane) 

are not only over-constrained conditions but they may also violate the stress periodicity 

conditions. Thus, they cannot be used to represent periodical structures of the 

composite laminae or laminates under loading conditions with shear components.
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• Applying two sets of values of the proposed boundary conditions, all elastic moduli for 

the unidirectional laminates can be predicted simultaneously. The predicted results are 

in good agreement with the results available in the literature, and the experimental data.

• The basic relations proposed in this chapter do not depend on the properties of the 

constituent materials of a composite. Therefore, they can also be applied to nonlinear 

micromechanical analysis of the composites under multiaxial loads. However, all the 

derived equations in this chapter are based on small deformation theory.
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CHAPTER 3

MODELING VISCOELASTICITY OF MATRIX AND INTRALAMINAR 

DAMAGE

3.1 INTRODUCTION

Epoxies are polymerization products with a highly crosslinked network. They are 

extensively used as the matrix phase in high performance composite materials. Their 

specific properties depend upon their particular formulation [1], However, the epoxy 

matrix, like other thermoset polymers, has a highly nonlinear viscoelastic response. 

Although the fibres, such as E-glass fibre, behave elastically for most of their stress-strain 

range, composites still exhibit viscoelasticity. The analysis of Hashin [2] demonstrated 

that the viscoelastic effect in a unidirectional fibre composite is significant for axial shear, 

transverse shear and transverse uniaxial stress, for which the influence of matrix is 

dominant. Zhang et al [3] have studied the evolution of residual stresses/strains in 

composite laminates. It is shown clearly that the time-dependent viscoelastic properties of 

the polymer matrix (creep and stress relaxation) will cause a change of the stress/strain 

values in the fibres due to the interaction between the constituents, although the fibres are 

purportedly elastic. For the same reason, the damage in composite laminates would also 

evolve with time. Ellyin et al [4] have presented the evolution of matrix cracking due to 

its viscoelasticity. Consequently, an effective micromechanical analysis of fibrous 

composites requires accurate constitutive relations for the matrix material.

Another adverse effect of epoxy matrix is its influence on the damage properties of 

the composite. As compared with fibres, epoxies are usually weak and are flaw sensitive, 

under tensile loading, most epoxies fail in a brittle manner [5]. Because of the brittleness
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of the epoxy, matrix cracking becomes one of the most important damage mechanisms of 

a composite.

In most advanced composite materials, there is invariably an interphase between the 

two main constituents of the reinforced composites. The scale of the interphase may be 

very small of the order of several microns [6 ]. Therefore, in many studies the interphase 

can be treated as an interface. Interphase/interface determines the stress transfer between 

the reinforcement and matrix, and thus it influences the damage process of laminates if 

the bonding is weak.

For a unidirectional laminate under tensile loading, the matrix cracking and 

fibre/matrix interphase damage are the two main damage modes [7]. In most cases, 

damage process in laminates initiates by the above two mechanisms. And usually, these 

two damages are referred to as intralaminar damage. For multidirectional laminates, 

intralaminar damage may exist at a loading level much lower than the final failure load or 

even during the material curing process. The most common example is the loading of the 

0°/90° cross-ply laminates along the 0° ply direction. In this case the damage occurs in 

the 90° plies at a rather low load, however, the laminates can still carry higher load in the 

0° direction, although at a reduced stiffness, see, e.g. Hoover et al [8 ]. Thus for an 

accurate analysis, it is imperative to consider the prevailing damage mechanisms, 

especially the intralaminar ones.

Thus there are two key requirements for an effective micromechanical analysis for a 

fibre reinforced polymeric composite: (a) an accurate constitutive model for the matrix 

material, and (b) a proper simulation of damage process (damage initiation criterion and 

post-damage constitutive relation which governs the propagation of the damage). In this
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chapter, models for the matrix viscoelasicity, the fibre/matrix interphase damage, and 

matrix cracking are presented, respectively. The matrix behaviour is described by a 

recently developed nonlinear viscoelastic constitutive model [9-10]. A brief description 

of the model is provided in Section 3.2 and examples are given to show the influence of 

the viscoelasticity of the matrix on the response of the composite. To model the damage 

(separation) of the fibre/matrix interface, an interphase element is proposed which can be 

directly applied to a unit cell analysis. The stress-strain relation of the interphase element 

is derived based on a cohesive law [1 1 -1 2 ], which characterizes the dependence of the 

tractions on the displacement discontinuities across the interface. In addition, a viscous 

term is added to the cohesive law to overcome the convergence difficulty induced by the 

so-called snap-back instability in the equilibrium iterations (Section 3.3). To model the 

matrix cracking, a ‘smeared crack approach’ is employed. In this approach, the cracked 

solid is assumed to be a continuum that permits a crack description in terms of stress- 

strain relations. In particular, the proposed post-damage stress-strain relation allows only 

normal stress and in-plane shear stress components (corresponding to crack orientations) 

tend to zero (Section 3.4). Applications of the constitutive model and damage models to 

the analysis of composite laminates will be presented in Chapters 4 and 5.

3.2 NONLINEAR VISCOELASTIC MATERIAL MODEL FOR EPOXY

3.2.1 Nonlinear Visoelastic Model for Epoxy Matrix

Throughout this thesis, the glass fibres are modeled by the generalized Hooke’s law. 

However, the epoxy polymer matrix is modeled by a nonlinear viscoelastic model
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recently developed by Xia et al. [9]. Here, for the sake of completeness, only a brief 

description will be given.

For the uniaxial stress state, the model can be represented by a finite number of 

nonlinear Kelvin elements and a linear spring element, connected in series (Figure 3-1). 

The constitutive equations, generalized to the multiaxial stress state, are sumarized below:

f e } = f e } + f e l  C3-1)

m  , E,t. t,
1

KEiri
(3.2)

i J

{ < j M [ / + + e} (3.3)

In the above, {st }, {se}, {sc},{(t} are the total strain-rate, elastic strain-rate, creep strain- 

rate, and stress-rate vectors (each contains six components, respectively). E  is an elastic 

modulus which is assumed to be constant and \a ] is a matrix related to the value of 

Poisson’s ratio, defined by

M =

1 - v -  V 0 0 0

- v 1 - o 0 0 0

- o - v 1 0 0 0

0 0 0 1 + 19 0 0

0 0 0 0 1 + 19 0

0 0 0 0 0 1 + 19

(3.4)

A time scale factor a  is introduced. It is assumed as the following:

Ti =(a) l~l Tl (3.5)

In this way all r (- are related through the scale factor a. A time span of order of n would 

be covered, if n Kelvin elements were chosen and the value of a  is taken to be 10.
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Nonlinear
spring

a

Kelvin 
element n

Kelvin 
element 2

Kelvin 
element 1

Linear spring 
element

Fig. 3-1 A uniaxial visoelastic model represented by a finite series of Kelvin elements

coupled with an elastic spring.

The description of the nonlinear behaviour in the current model is achieved by 

letting Et be functions of the current equivalent stress, creq . Furthermore, a single

function form for all E{ is assumed, i.e.

Ei~E \{(Jeq)  (3-6)

w ith

{r -  i)/, + V C r-i)2 a 2 +12 RJ2

a eq =- 2 R
(3.7)

where I\ = (J \ + <J2 + cr3 is the first invariant of the stress tensor, = %*% / 2 is the 

second invariant of the deviatoric stress tensor and R is the ratio o f compressive to tensile
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‘yield stress’. Note that when R = 1, then Eqn. (3.7) reduces to the von Mises equivalent 

stress, a eq = f i j 2 .

To delineate the loading/unloading cases for general multiaxial loading paths, a stress 

memory surface is defined as

/ ; K ) - C . ,  = f  V s - - r ~  = ° <3'8)

where stj = a u -  — a  kk 8 U are the deviatoric stress components. The radius of the memory 
3

surface, Rmem , is determined by the maximum von Mises stress level experienced by the

f~3material during its previous loading history, i.e. Rmem = J ( — S y Sy ) ^  . Therefore, for a

monotonic loading from the virgin state, the stress memory surface will expand 

isotropically with an increasing stress level. If cr,'is the current stress point, d a ‘y is the

stress increment at time t , and (—̂ —) _ , represents the direction of the normal to the
day

memory surface at the current stress point, then a criterion to distinguish the 

loading/unloading cases is introduced as follows:

•  if the current stress point is on the memory surface and (—-—) t • daj) > 0 , this
day aij

signifies a loading case;

•  if the current stress point is on the memory surface and (—-—) , • da]. < 0, then a
day aj

switch from loading to unloading occurs;
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•  if the current stress point is inside the memory surface, i.e. /J(< r'.) -  R 2mem < 0, it is

then an unloading case.

For the loading case the spring stiffness of the Kelvin elements is defined as a 

function of the equivalent stress, Et = Ex (creq). For the unloading case, it is assumed that

Ej remains the same value during the entire unloading process, which is equal to the

value of Ei at the switch point, where unloading takes place.

The values of constants ( E , v, a, z \ , R) and the functional form of E\ (aeq) can be

determined from uniaxial creep curves at different stress levels following a routine 

procedure which is described in the above mentioned references.

In this thesis, three types of epoxy are involved, viz, (1) Epon 826/curing agent 9551; 

(2) Epon 828/curing agent Epon Z; and (3) Epon 815/ curing agent Versamid 140. The 

viscoelastic model presented here is calibrated using Epon 826/9551 as in [9-10]. To 

compare the predictions of the present micromechanical model with the off-axis test 

results reported in [13], where Epon 828/Z and Epon 815/Versamid 140 are used in the 

two types of laminates, the constants and functional in the viscoelastic model for these 

two epoxies should be determined. However, due to lack of test data, the constants for 

Epon 828/Z and Epon 815/Versamid 140 are determined by: (1) the Young’s moduli and 

Poisson’s ratio are taken from the test values in [1]; (2) the values of a ,  r and R are 

taken approximately as the values for Epon 826/9551; and (3) the coefficients in the 

functional Ex {<jeq) are estimated such that the predicted uniaxial stress-strain curves of 

the corresponding epoxiess are close to the test curves in [1] .
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Table 3-1 Material properties and constants of constitutive model

E-Glass Epon 826 Epon 828 Epon 815

E (MPa) 72400 3400 3450 2130

V 0.22 0.42 0.40 0.39

a / 10 10 10

G / 6.116 6.116 6.116

R / 1.15 1.15 1.15

E f ° eq) / a - 22.764

105500e 18000
cr-22.764

105500e 18000
O--40.0

10000e 90

S cr / 0.048 0.09 0.14

EfMPa) / 284 345 213

The constants for the epoxy resins, Epon 826/9551, Epon 828/Epon Z, and Epon 

815/Versamid 140 are listed in Table 3-1. The elastic properties of E-glass fibre are also 

listed in the Table 3-1.

3.2.2 Implementation into ADINA and Verification Examples

The above viscoelastic constitutive model for epoxy matrix is implemented into the 

FEA code ADINA through its user defined subroutine [14]. The implementation 

procedure is straightforward; therefore we only show three verification examples herein. 

Figure 3-2 shows the predicted results of the model and the comparison with test for 

Epon 826 (including unloading). And Fig. 3-2 shows the predicted uniaxial stress-strain 

curves for Epon 828 and Epon 815 (strain rate =10'3/s).
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Fig. 3-2 Stress-strain curve of viscoelastic matrix including unloading.
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Fig. 3-3 Stress-strain curve of Epon 828 and Epon 815.

Another example shows the transverse response of an RUC under transverse tensile 

loadings in different loading directions shown in Fig. 3-4. Figure 3-5 portrays the stress-
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strain response at a strain rate of 10 3 / s . It is observed that the global stress-strain curve 

of the composite is nonlinear due to the nonlinearity of the matrix.

i A 4

I / / 7

T r i i '

(a) Direction of global loading; (b) FEM mesh.

Fig. 3-4 Transverse loading of unidirectional laminate at different orientations.

20 '

45'
CO

CL
2
to
to
CDL_
V)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.61.4

Strain (%)

Fig. 3-5 Transverse response of a unidirectional laminate.
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3.3 COHESIVE DEBONDING LAW AND COHESIVE INTERPHASE ELEMENT

3.3.1 Cohesive Law

The fibre-matrix interphase/interface will be modeled by a cohesive zone model

proposed by Tvergaard [11-12]. The behaviour to be captured by a cohesive law is that, 

as the cohesive surface separates the magnitude of the traction at first increases, reaches a 

maximum and then it decreases with the increasing separation and finally approaches 

zero. In the interface coordinate system 1-2-3 shown in Fig. 3-6, let [m1],[m2] ar|d [u2] be 

the displacement differences across the interface and 7], T2 and T% are the corresponding 

tractions in the 1, 2, and 3 directions, respectively. To account for the combined effect of 

normal and shear decohesions, a non-dimensional parameter X is defined as in [11-12]

(3.9)

Fibre
\

Fig. 3-6 Interface coordinate system.
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where 8 n , 8 a , 8 a are displacement difference values in the three directions,

corresponding to complete separation. Therefore Eqn. (3.9) defines the critical damage 

condition for combined mode debonding, i.e., the interface completely separates when 

1 = 1 (see Fig. 3-7).

1.0

0.8

0.6

0.4

0.2

0
■1 0.5-0.5

-0.50.5

1.0

Fig. 3-7 Combined mode debonding criterion.

To determine the tractions a function F(X)  is chosen as in [11],

= 1 -2 2  + 2") for 0 < A < 1 (3.10)

and the interface tractions are given by the expressions

[Wj] F(A)

[ « 2  ]T2 = a ^ F ( X )
t2

Tj =a^-^-F{X)

(3.11)
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In the above equations, crmax is the tensile strength of the interface for pure normal 

separation (in 3 direction as shown in Fig. 3-6, [mJ = [m2] -  0 > X = [u3 ]/Sn ). The 

tangential strength of the interface for sliding separation (in 1 or 2 direction as shown in 

Fig. 3-6, [«3] = 0 ) is  designated as crcrmax, in which a  is a dimensionless factor (the ratio 

of the tangential strength to normal strength of the interface). Function F(X) determines 

the shape of the traction/displacement jump curve. Note in some researches, exponential 

function or straight lines are also used to describe the traction/displacement jump curve. 

By choosing the function F(X) as expressed in Eqn (3.10), the traction/displacement

27 2jump relation for the pure normal separation will be T3 = —  a maxX ( l - X)  . Therefore

we can obtain the normal traction/displacement jump curve which is shown in Fig. 3-8. It 

can be seen that for the case of purely normal separation, the relation between traction T3

and displacement jump [u3 ] described by the cohesive law is: T3 varies from the value 0 

at [m3] = 0, then reaches a maximum value crmax at [u3 ] = Sn / 3, and then again drops to 0 

at [m3 ] = Sn, where complete separation is assumed to occur (Fig. 3-8). By integrating the 

traction/displacement jump curve over X = 0 to 1 , the work of separation per unit 

interface area is obtained to be 9crtmxSn /16. Thus, to represent the interfacial debonding

behaviour for a given interface the values of the five parameters Sn, Stx, St2, crmax and

a  have to be chosen such that the maximum traction and the work required for the 

separation for the combined modes are approximated as closely as possible.

For decreasing X a type of elastic unloading is used to represent the partly damaged 

interface [12]:
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r3 = % lF (A max)

t2

Tx =  a ^ - F { X m a ) 
o„

for X  < X max or 2  < 0 (3.12)

Where Amax is the maximum of ^ in the loading history. Furthermore, under normal 

compression, elastic springs with a high stiffness are used to approximately represent 

contact (instead of Eqn. (3.1 la) or Eqn. (3.12a)), thus taking

x =
{r -A2 

[«2]
v ^<2 y

yr 
[tq ]

v ^<i y

1 / 2 (3.13)

Figure 3-8 shows the normal cohesive law expressed by Eqns. (3.11)-(3.13).

70 -i Normal coh esive law 
a  =60MPa

5 0 -

4 0 -
loading

3 0 -

2 0 - unloading
1 0 -

Co
o
CO
I-

- 0.2 0.2 0.4 0.6 0.8

K ]/5n
- 1 0 -

- 2 0 -

I  loading 

j unloading

-30 -

-4 0 -

-50 -

-60 -

-70-J

Fig. 3-8 Normal cohesive law.
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3.3.2 Cohesive Interphase Element

The traction-displacement jump relation is relatively difficult to implement into a 

commercial finite element code, especially for three-dimensional cases. Instead, in this 

study the ideal interface (zero thickness) is represented by a very thin layer of interphase 

element with thickness of h. Assuming uniform strains throughout the thickness, then, the 

strains can be expressed as a function of the displacement jumps as follows (in the local 

coordinate system 1-2-3 shown in Fig. 3-6):

Substituting Eqns. (3.14) and (3.15) into the cohesive law expressed by Eqns.(3.11)- 

(3.13), and replacing the corresponding tractions J 3, I)  and T\ by the stresses cr33, f 23 

andr13, a stress-strain constitutive law is obtained as follows:

(3.14)

The critical strains are defined from the above equation as

(3.15)

(3.16)

r  a = a Z f F ( X )

U 3 3 J  U 2 3 J  U 1 3 J

(3.17)

The incremental expressions are obtained from Eqn. (3.16) as
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a 33
'33
„ c
' 3 3

F(A) + SF •'3 3

£•33 dA
A

■23 a ^ F ( A )  + a ^ L — A
y 23c dA

( 3 . 1 8 )

f 13 -  a ^ - F ( A )  + a ^ - — A 
Yn Yu■c 8 A

where

d F  27 , ,
T 7  = T ffJ - l  + ^)dA 2

A = J_ g33 3̂3 ! 727, t n  J Yu Yn
^1*33^3 YhYh  YnYnJ

(3-19)

This cohesive constitutive law can be implemented into a FEM code as a stress-strain 

relationship.

3.3.3 Snap-back Instability

In the numerical simulation of the interfacial debonding, the snap-back instability of 

the stress-strain curve frequently results in convergence difficulties in the calculation. 

Snap-back of the stress-strain curve indicates the strain decreasing with the decreasing of 

the stress (under displacement control) [15-16]. In cases when the snap-back instability 

occurs, special equilibrium iteration algorithm such as ‘arc-length’ method should be 

used [17-18]. In the arc-length method, a load-displacement constraint equation is 

incorporated into the Newton-Raphson iterative procedure. However, in the FEM code 

ADINA used in the present study, this option is not available when a user-defined 

material constitutive model is used [14]. Thus, in this section, a simple interfacial model 

is considered to study the snap-back behaviour and a numerical strategy to overcome the 

convergence difficulties.
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One-dimensional interphase model and analytical solution

A one dimensional interfacial model is shown in Fig. 3-9. It consists of three plane 

strips representing the fibre, interphase and matrix, respectively. The fibre and the matrix 

are assumed to be elastic and the interphase model is described by the cohesive law 

described in Sections 3.3.1 and 3.3.2. This one dimensional model can be solved either 

analytically or numerically. In the analytical solution, the interphase is idealized as an 

interface, and the cohesive law expressed by Eqns. (3.11)-(3.13) is used. While in the 

FEM solution, the interphase is represented by a thin layer of interphase element, and 

cohesive constitutive relations expressed by Eqns. (3.16)-(3.19) are used. First, let us 

examine the following analytical solution:

e = Z { S J  2R) + (a  / ̂  )(CTmax / 2Em )(1 + Em / Ef )
27 , (3-20'

c r / a ^ ^ - W - Z ) 2

Interphase

Fibre Matrix

Ef Em

R R

h

o

Fig. 3-9 One dimensional interphase model.
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Fig. 3-10 Global stress vs. global strain.

Figure 3-10 portrays the stress-strain curves for the above solution with fsm=3450 MPa, 

Ef=72400 MPa, crmax = 60 MPa and different ratios of Sn / R .  And Fig. 3-11 shows the 

relation between the interphase separation with the global strain. It can be seen that the 

stress-strain curves show the ‘snap back’ instability when Sn / R = 0.025 or 0.01. By 

differentiating Eqn. (3.20), the condition for this instability is, when

(armJ S n)/(E '/R)>4/9  (3.21)

where E' = EmEf  !{Em +Ef ).
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Fig. 3-11 Interface separation vs. global strain.

Finite element solution

In the FEM analyses, for the three ratios o fJ ffl/i? = 0.1, 0.075 and 0.05, the same 

global stress-strain curves as that in Fig.3-10 are obtained. However, as for the ratios of 

Sn I R = 0.025 and 0.01, the calculations can be continued only until the maximum global 

stress is reached and no converged solution can be obtained thereafter. To overcome this 

difficulty, when the snap-back occurs, an artificial viscous term is introduced, as 

suggested in Gao and Bower [15]. The modified cohesive law is given by

> 2 ]T2 = a ^ - F ( y l) +

5„ dt 
Va d[u2\

' t l

Tx = a ^ - F ( X )  +

312 ^
d[ux] 

8 (X dt

(3.22)

where r]n, rjt2, r]a are viscous coefficients.
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Fig. 3-12 Response with artificial viscosity.

In Fig. 3-12, the FEM numerical solution for Snf R = 0.025 with rjn =5.0 is compared

with the analytical solution. It can be seen that the snap-back instability is avoided and 

the curve after complete separation seems physically more realistic. In addition, the 

influence of the thickness of the cohesive interphase element, h, is also shown by 

comparing the results with two different thicknesses. It is seen that, the influence of the h 

is negligible as long as it is sufficiently small. Thus in the analyses of composite 

laminates in Chapter 4, the thickness of the interphase element will be taken to be 2% of 

the fibre radius.

3.4 MODELING OF MATRIX CRACKING

Upon increasing the applied load, micro-cracks will develop in the matrix. These 

cracks cause reduction in stiffness of the laminate. In contrast to a predefined single
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dominant crack in isotropic materials, the orientation and location or even numbers of 

cracks in a laminate is unknown, thus makes it difficult to deal with such cracks through 

the classical fracture mechanics approach. Instead, the so-called ‘smeared crack’ 

approach [19-21] will be used. In this approach the initiation of the crack is determined 

by an appropriate damage criterion, and the reduction of load bearing capacity induced by 

a crack is described by stress-strain softening relationship. Thus the discontinuity caused 

by a crack is smeared out, and the model can again be implemented into a FEM code 

conveniently.

3.4.1 Initiation o f a Crack

The first step is to determine the initiation of a crack using an appropriate damage 

criterion. Generally, a damage criterion is a function of stress/strain components, for 

example, the maximum stress criterion, equivalent stress criterion, maximum strain 

criterion, etc. Experimental investigation has indicated that the main fracture mechanism 

of an epoxy resin is brittle tensile failure [5] and the maximum principal strain theory is 

in good agreement with test data for matrix crack initiation in fibre reinforced epoxy 

laminates [22-23]. Thus, at each step and at each matrix sampling point, the principal 

strains are computed. A local (crack) coordinate system 0-1-2-3 is established in which 

the three axes are along the directions of the three principal strains (£, > s 2 > s3), see Fig.

3-13. The maximum principal strain damage criterion is then specified by

(3-23)

And when this condition is met, then a crack in the plane perpendicular to the direction of 

the ex is deemed to have initiated.
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►

Z

Fig. 3-13 Global and local coordinate systems of a crack.

3.4.2 Post-damage Constitutive Model

Once a crack is formed, it is assumed that it cannot transfer normal and shear stresses 

across the crack plane, i.e., crn , cr12 and cr13 —» 0. The subscript 1 denotes the Cartesian

axis perpendicular to the crack plane while 2 and 3 are in the crack plane (Fig. 3-13). 

However, the ability to transfer the other stress components is not affected by the crack 

formation. Let the stress and strain vectors in the local (crack) coordinate system be 

designated by

(cr}Cr -  { ° il>  °22> ° 3 3 ’ a 12> a 2 3 ’ a 3 l } T  ^  24 '

{£ } Cr =  i £ \> s 2> s 3 ’ h i ’ ? 2 3 ’ T 3 \ } T

and the stress and strain vectors in the global (O-x-y-z) coordinate system are
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{ ( j}  XX ’ ^ y y  ’ ’ & xy ’ ^ v z  ’ ^ z . t  }

f c } g '  =  £„> * = .  rv , r y2’ r J T

Thus, the post-damage constitutive model in the crack coordinate system is:

{ A a r = E , [ D l ^ r - z [ B b r

or written in its full form:

(3.25)

(3.26)

A o V
c r 0 0 0 0 0  N'  A sx Nc r (1 0 0 0 0 oN c r

Acr22 0 Z \ z 2 0 0 0 As 2 0 0 0 0 0 0
A c r 3 3

=  E t
0 Z 2 Z i 0 0 0 A s  3

- x
0 0 0 0 0 0 <*3

A o -12 0 0 0 J3Z2 0 0 A m 0 0 0 1 0 0 a \2
Ao-23 0 0 0 0 Z 3 0 Ay 23 0 0 0 0 0 0 cr23

^ 0 0 0 0 0 p z 3y y A r i l y ,0 0 0 0 0 K <a 3 l ,

(3.27)

In the above, 

Z i= -
1 -u Z2 = v 1

(3.28)
(1 + d)(1 -2 u) (1 + u)(1 -2 u) 2(1+ y)

Et is the modulus of the epoxy under uniaxial tensile loading at the instant of damage, /? 

is a small number which represents the loss of the stiffness in these three particular stress 

directions and the constant x allows the three stress components to be reduced to near 

zero values in a sufficiently short time duration.

In Ref. [10], a series of uniaxial tensile tests on pure epoxy specimens (Epon 

826/9551) at a strain rate of 10'4 s'1 indicated a failure strain of 4.8%, therefore, the value 

of s cr = 4.8% is used in this analysis. Also, Et =284 MPa is taken as the tangent 

modulus prior to failure of the epoxy resin under the uniaxial tensile loading. For Epon
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828/Z and Epon 815/V140, the constant ecr is taken from the test in [1], and Et is taken 

as E/10. The constants scr and Et for the three epoxies are also listed in Table 3-1.

For example, the values of J3 and x  are taken to be 0.001 and 0.05, respectively, in the 

calculation for Epon 826/9551. With such a choice of the values of the constants in Eqn. 

(3.27), the above constitutive relation would reduce the stress components across the 

crack plane to a very small value in a short time (zero is the asymptotic limit). The matrix 

element then cannot carry loads in the corresponding direction; thus, simulating the 

damage process.

Prediction 
strain rate=10'4/s 
13=0.001 
a=0.05 
£ =4.8%cr
E=284MPa
Test

ra
CL

4 0 -

(/>w<1)
+j
CO

30-

2 0 -

1 0 -

-10
10 2 3 4 5 6 7

Strain (%)

Fig. 3-14 The response of a matrix element including damage process.

Figure 3-14 shows the response of a matrix element before and after damage. Also 

shown is the test result [10] of epoxy specimens under uniaxial tensile loading at a strain 

rate of lO 'V1. It can be seen that the response before failure is in good agreement with 

the test data. These values will be used in the following analysis for composite laminates.
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3.4.3 Coordinate System Transformation

The crack orientation in a 3-D composite unit cell may vary at different locations; 

therefore, it would be convenient to have the post-damage relation transformed to the 

global coordinate system, where the FEA is carried out. Let the direction cosines of the 

principal strains et {i = 1,2,3) be denoted by (I ; mL nt) . Therefore, the transformation 

matrix between the local and global coordinate systems can be written as,

I 2 2 mj « ,2 i jW j V i
I 22

3m2 n2 i 2m2 m2n2 n2̂ 2
t 23

2 n2 n2t  3

2 f Y 2 2m\m2 2 «j«2 h m2 + h ml mj«2 + m2n\ n\£ 2 +n2̂ 1
2 l 2l 3 2m2m3 2n2n3 £2m3 + £ 3m2 m2«3 + m3n2 n2£3 +n3£2
2 i 3e1 2m3mi 2«3«̂ i 3m-[ + t \m 3 m3tii + min3 n3i  j +  rqf 3

(3.29)

The stress and strain transformation is given by

{ A s f  = [ r ]{ A ^ ',  { A a f  = [t ]~t {Aa}“ , {CTf  = [t ] -T{<?¥' (3.30)

In the above, the superscript T  is the transpose of a matrix, and superscript -  T is the 

transpose of the inverse of a matrix, i.e., [T]"r =([T]_1)r . Substituting Eqn. (3.30) into 

Eqn. (3.26), the post-damage constitutive equation in the global coordinate system is

[SaY 1 = Et [D']{AsY1 -  x[B']YYl (3-31)

with

[zr]=[r]r[z>][r] 

[F ]= [ r ] r [5 ][7 t
(3.32)

Note both [D '] and [B '] are 6x6matrix. Using Eqns. (3.29) and (3.30), the expression of 

the elements of the two matrices read

d,j 3̂î 2 )̂ 2 j +î 2î 2 + P + h f j  + ̂ 6î 6j
( i , j  = !,•••, 6) (3.33)
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b'y = t j xj + ^ t 4it4J + ̂ t 6it6J (1 = 1 , -  ,6, j  = 1,2,3) 

by = 2 tutXj + tMtAj + t6it6J (i = 1, • • • ,6, j  = 4,5,6)

For the stress-strain relationship of interphase element, the coordinate systems 

transformation between the interface coordinate system and the global coordinate system 

can be obtained similarly.

3.5 CONCLUDING REMARKS

•  A nonlinear viscoelastic constitutive model is implemented into the FEM code 

ADINA. Example shows that the viscoelasticity of the epoxy has a significant 

influence on the composite response in the transverse direction.

• The interphase element developed based on the cohesive law is capable of modeling 

mixed mode (both normal and tangential) separations of the interface. The interphase 

element is convenient for implementation in a FEM code since an equivalent stress- 

strain relationship is used.

• Snap-back instability involved in the simulation of the interphase damage is 

illustrated by a 1-D example and a simple strategy is adopted to overcome the 

induced convergence difficulties.

• A smeared crack approach is proposed to model the initiation and propagation of the 

matrix cracking in a composite. Stress-strain relationships are used to describe a crack, 

thus making it convenient to implement into a commercial FEM code.
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CHAPTER 4

MICROMECHANICAL ANALYSIS OF OFF-AXIS UNIDIRECTIONAL 

LAMINATES WITH INTRALAMINAR DAMAGE

4.1 INTRODUCTION

Both macromechanical and micromechanical approaches can be used to model the 

mechanical response of the composite laminates, with or without an assumed damage 

occurrence. However, damage in the composite laminates evolve at a microscopic level 

and it would be desirable that a micromechanical approach be used, in which the fibre, 

matrix, and interphase/interface are explicitly accounted for in the model [1-2]. Assuming 

a uniform distribution of fibres, a representative volume element (RVE) or a repeated unit 

cell (RUC) can be used to conduct micromechanical studies [3]. By using the 

micromechanical approach, not only the effective properties of the composites can be 

obtained, but also various damage at the microscopic level can be predicted provided 

proper damage initiation criteria and evolution rules are available. Some recent 

micromechanical studies of laminates involving matrix cracking or interphase damage are 

reported, e.g., in [2, 4-10], among others. It is worthwhile to note that several researchers 

introduced cohesive interface cracking models into the micromechanical RUC analysis. 

A significant advantage of the cohesive cracking model is that both the initiation and 

propagation of the damage can be properly simulated [7-9]. While in the modeling of 

matrix cracking, the smeared crack method is used in [10]. This approach permits a 

description of the crack in terms of stress-strain relations; therefore, it is convenient to 

implement into a FEM code [11].
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Most micromechanical analyses so far are confined to uniaxial loadings along the 

material principal directions, as reviewed by Pagano and Yuan [1]. For off-axis loadings, 

only limited attention has been paid. Examples of recent studies for off-axis loadings are 

Zhu and Sun [12] for thermoplastic matrix composites and Aghdam et al. [13] for metal 

matrix composites. However, in these researches, no damage models are involved.

In this chapter, the initiation and evolution of the intralaminar damage (matrix/fibre 

interface debonding and matrix cracking) and its effect on the global stress-strain relation 

of composite laminates are predicted by finite element micromechanical analysis. A 

three-dimensional RUC model based on a periodic fibre array is established, and 

appropriate periodic boundary conditions for combined shear and normal stress loading 

are applied. To model both the normal and tangential separations of the fibre/matrix 

interface, a thin layer of interphase elements is introduced in the unit cell model. The 

stress-strain relation of the interphase element is derived based on a cohesive law [7-8], 

which characterizes the dependence of the tractions on the displacement discontinuities 

across the interface. In addition, a viscous term is added to the cohesive law to overcome 

the convergence difficulty induced by the so-called snap-back instability in the numerical 

iterations. To model the matrix cracking, a ‘smeared crack approach’ [10-11] has been 

employed. In this approach the cracked solid is assumed to be a continuum which permits 

a crack description in terms of stress-strain relations, thus making it computationally 

more convenient to implement into the finite element displacement method. The rate- 

dependent behaviour of epoxy is described by a recently developed nonlinear viscoelastic 

constitutive model [14], As application examples, two unidirectional laminates (E-glass 

fibre/Epon 828 and E-glass/Epon 815) under off-axis tensile loading are analyzed. 

Results show that the initiation and evolution of the intralaminar damage can be well
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simulated. And the predicted global stress-strain curves are also in good agreement with 

the experimental results.

4.2 OFF-AXIS TENSILE LOADING OF UNIDIRECTIONAL LAMINATES

To conduct the micromechanical analysis of a unidirectional laminate under off-axis 

loading, a unit cell model should be extracted from the microstructure from the laminates 

and appropriate boundary conditions be applied to the unit cell. For nonlinear analysis, 

proper iteration is needed to simulate the loading conditions. These aspects will be 

described in the following sections.

4.2.1 Unit Cell o f a Unidirectional Laminate

Assuming fibre distribution is periodic across the cross-section, a repeated unit cell 

(RUC) can be isolated from the composite laminates. The periodic fibre sequences 

commonly used are the square array and the hexagonal array [3]. In this chapter, the 

square array of fibre distribution is assumed, resulting in a rectangular parallelepiped 

RUC containing one fibre, as shown in Fig.4-l(b).

The cross section of the unit cell is a square with sides a, and thickness in the fibre 

direction is b (Fig.4-l(b)). The radius of the fibre, R, is determined by the fibre volume

fraction Vf of the composite such that Vj = n R 2 / a 2 .
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Fig. 4-1 Unidirectional laminates and unit cell model:

(a) A unidirectional laminate under off-axis loading; (b) Unit cell for a square fibre array;

(c) Quarter of a unit cell.

4.2.2 Periodic Boundary Conditions

The off-axis tensile loading applied to a unidirectional laminate can be decomposed 

into a set of multiaxial loading in the material principal directions of a lamina, as shown 

in Fig. 4-l(c).

<7U =  (X COS2 d

a 2 2 =asin2& (4.1)
a l2 -asmGcosd

Therefore the global stress and corresponding strain vectors can be written as:

M  i , ^22, 0, d=j2, 0, O f (4.2)

{e}={eu , s 22 , e 33 , e l2 ,0 ,0  f  (4.3)

To impose the above global loadings to the RUC, appropriate periodic boundary 

conditions should be applied. The periodic boundary conditions can be expressed as the
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displacement and traction compatibility relations between the two opposite surfaces of 

the RUC (see Chapter 2). Designating P  and Q as two arbitrary corresponding points 

(with the same in-plane coordinates) on the two opposite surface of the RUC, Fig. 4-1(b), 

the general form of the periodic boundary conditions reads

where tij are the unit out normals of the RUC surface.

In practical numerical applications, Eqns. (4.4) and (4.5) can be greatly simplified as 

one solves the RUC problem using a FEM procedure and considers the symmetry 

conditions. In Chapter 2, a detailed derivation of the periodic boundary conditions for the 

one-quarter RUC, Fig. 4-1(c), under the combined shear and normal loading was 

provided considering the geometric, material, and loading symmetries. In such a way, the 

computation time required can be significantly reduced, especially for the current 

nonlinear problem. The applied boundary conditions to the one-quarter model are 

summarized as Eqns. (2.81) to (2.85) in Chapter 2.

4.2.3 Off-axis Loading Algorithm

In an off-axis loading of unidirectional laminate under strain control, the global strain 

in the loading direction (see Fig.4-1 (a) and (c)) is

£ = £u cos2 6  + s 22 sin2 0 + 2sn cos0 sin0 (4.6)

For each time step, A t , the strain increment is given by

(4.4)

a ij (p )nj = ~Gij (Q^nj  (2) (4.5)

As -  s  At (4.7)
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where s  is the applied global strain rate. To simulate the off-axis loading, an iterative 

procedure is required to ensure that proper proportions of the increments of s u , s 22, eu 

are applied, so that Eqn. (4.1) is satisfied at each step. The iteration procedure is as 

follows [2]:

(i) For each time step At, we have the trial increments of sn , s 22, s n , which satisfy Eqn. 

(4.6).

(ii) The solution gives the stress distribution in the unit cell, so the global stress 

components can be calculated from

{a} = j  ^ { a ( x l ,x 2 ,x3 )}dV (4.8)

where V is the volume of the unit cell.

(iii) Equation (4.1) is checked and, if it is satisfied (within certain error limit), then one 

proceeds to the next step. If not, new increments of s n , s 22,e l2dxe obtained and 

steps (i) to (iii) are repeated.

For a small time step, it could be assumed that the increments of sn , s 22, sn are 

proportional to the corresponding increments of average stress components, then the new 

increments of sn , s 22, sn can be estimated from the average stresses, Eqn. (4.8). 

Numerical calculation indicated that the required increments of s n , s 22, en could be 

obtained through a few iterations.
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4.2.4 Finite Element Analysis o f  the Unit Cell

Usually, an analytical solution of the unit cell problem presented in the previous 

sections is difficult to obtain, thus a numerical approach is required. In this study, the 

finite element method is used to conduct the analysis.

As application examples, two unidirectional laminates, E-glass/Epon 828(curing agent 

Z) and E-glass/Epon 815(curing agent Versamid 140), under off-axis tensile loading are 

analyzed, respectively. These examples are chosen because a detailed experimental study 

( Ishai [15]) has been conducted for the two laminates under off-axis loadings.

The cohesive stress-strain relations for the interphase element, the matrix cracking 

model and the viscoelastic constitutive model of the epoxy resin have been implemented 

into the FEM code ADINA as a user-defined material subroutine. The calculations were 

conducted on a SGI Origin 2000 computer system. Figure 4-2 shows the finite element 

meshes of the RUC model with 8 node brick elements. The mesh consists of 1226 nodes

Interphase Matrix

Fig. 4-2 Finite element mesh of the RUC model.
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and 574 elements. A thin layer of interphase element around the fibre (h/R = 0.02, h and 

R are the thickness of the interphase element and the radius of the fibre, respectively) is 

shown in the inset.

Mesh conversence

To determine if  the mesh (Mesh A) shown in Fig. 4-2 is sufficient to obtain converged 

results, a finer mesh (mesh B) shown in Fig. 4-3 is used to conduct the convergence study. 

The mesh B is also constructed with 8-noded brick element, however, this finer mesh 

consists of 3884 nodes and 1872 elements.

Fig. 4-3 Finer mesh for RUC (Mesh B).

E-glass/Epon 828 unidirectional laminate is analyzed using the aforementioned two 

meshes. The material constants for E-glass (linear elastic) and Epon 828 (nonlinear 

viscoelastic) are listed in Table 3-1. Evolution of interphase damage is simulated using
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the interphase model described in Section 3.3, Chapter 3. The constants used in the 

interphase model are shown in the legend of Fig. 4-4.
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Fig. 4-4 Comparison of the results of two meshes and the test.

Figure 4-4, for example, shows the predicted stress-strain curve of 45° off-axis loading 

of glass/Epon 828 unidirectional laminates. It can be seen that predictions from the two 

meshes are very close. Therefore mesh A, i.e. the mesh shown in Fig. 4-2 will be used in 

the following sections to conduct the analysis. Note that in the fibre direction (jti
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direction), only one layer of elements is sufficient, since all the stress and strain 

components are invariant along the fibre direction. Note the test data from [15] are also 

plotted in the figure.

4.3 ANALYSIS OF GLASS/EPON 828 LAMINATES

4.3.1 Test Results

Detailed test results can be found in [15]. It is noted that the global stress-strain curves 

for four off-axis angles (90°, 45°, 30°, and 20°) under a strain rate of about 10'3/s were 

obtained from these tests. Furthermore, the tests revealed the damage mechanisms for the 

unidirectional laminates. For the E-glass/Epon 828 laminates, the bonding between the 

fibre and matrix was relatively weak and interfacial debonding was the dominant failure 

mechanism for all the off-axis orientations.

Figure 4-5 shows the fractographs of the failed unidirectional laminate specimens 

under 90°, 45° and 20° off-axis loadings for the glass/Epon 828 laminates. In the picture, 

those vertical striped zones with relatively smooth surfaces indicate complete separations 

between the fibres and the epoxy matrix, while those zones with ‘wrinkles’ are damaged 

surface regions of the epoxy matrix. Note these fractographs are the scanning electron 

microscopy (SEM) pictures of the final failure surfaces of the specimen, thus there is 

always some fractured zones produced from the separation of the matrix. However, it can 

be seen that the interphase/interface separation is the primary damage mode for 

glass/Epon 828 laminates.
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Fig. 4-5 Fractographs of glass/Epon 828 coupon specimens under off-axis loadings 

(a) 90° loading; (b) 45° loading; (c) 20° loading (adopted from [15]).
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4.3.2 Material Constants

In the current FEM analysis the glass fibre is assumed to be linear elastic with elastic 

constants listed in Table 3-1. The nonlinear viscoelastic model described in Chapter 3 is 

used to model the constitutive reponse of the epoxy matrix. The material constants 

needed for the viscoelastic model are also listed in Table 3-1.

The constants for the interphase damage model and the matrix damage model are 

mainly determined by numerical tests. The following constants for the cohesive model 

are used for the E-glass/Epon 828 system:

c j ^ = 1 2 M P a , 5 n!R = 5n IR  = St l /R  =1.0%, a  = 0.9 (4.9)

For the Epon 828 matrix, the constants used for the matrix damage model are:

Ecr =0.09, E, = 0.1£,/? = 0.001, x  = 0.02 (4.10)

Note ecr = 0.09 is the uniaxial tensile test value for Epon 828/Z in [16].

To compare with the test results in Ishai [15], uniaxial tensile loads at different off- 

axis angles were applied to the unidirectional laminates at a constant strain rate of 10'3 s'1.

4.3.3 Numerical Results for Glass/Epon 828 Laminates 

Prediction o f Global Stress-strain Curves

Figure 4-6 shows the predicted global stress-strain curves and the comparison with the 

test results of Ishai [15]. All the calculations used the same set of material constants as 

shown in Table 3-1 and the off-axis angles considered were 90°, 45°, 30°, 20°, as in the 

test. It can be seen that stress-strain curves of the laminates with four different angle 

orientations are well predicted by the present micromechanical analysis. In the

calculations for all the four off-axis angles (glass/Epon 828 laminates),
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Vn /^max = 7;i! & max = 7(2 / ̂ max =0.15 were used to avoid the convergence problems 

caused by the snap-back instabilities.

180-
Predictions:
 0 =  20 °

 9 = 30°
0 = 45°

 0 = 90°
• Test

160-

140-

120  -

to
Q.
^  100 - 
</) co o
& 80-

6 0 -

4 0 -

20-

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Strain (%)

Fig. 4-6 Global stress-strain curve of glass/Epon 828 laminates under off-axis loadings.

Strength vs. off-axis orientations

Taking the peak of the predicted stress-strain curve as the strength of an off-axis 

laminate, one obtains the tensile strength a s of unidirectional laminates vs. the off-axis 

orientation 0 , as shown in Fig. 4-7. Note to obtain the predicted curve in the figure, more 

off-axis angles besides 0 = 90°, 45°, 30°, 20°, are calculated using the same set of 

material constants. Thus the off-axis angles calculated are 0 =90°, 80°, 70°, 60°, 45°, 30°,
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20°, 10°, 5°, and 0°. The test values { 6  =90°, 60°, 45°, 30°, 20°, and 10°) are also from 

Ishai [15]. It is seen that the predictions agree well with the test results.

Test
Prediction

20
cr

1 6 -
3
E

1 2 -<0

0

1 0 -

cr

20 50 60 70 80 900 10 30 40

9(°)

Fig. 4-7 Strength of unidirectional laminates vs. off-axis orientations ( crmax = llM P a ).

It should be noted that, for 90° > 6 > 5 ° ,  the FEM results indicate that the damage 

initiates as the interphase separation. However, for the prediction of 0 = 0° (longitudinal 

loading), the numerical result indicates that both the matrix damage and interphase 

damage criteria are not met up to global strain en > 2.5%. Therefore a fibre damage 

criterion is adopted. This criterion assumes that the fibre is damaged when the axial strain 

of the fibre exceeds a prescribed maximum value, £/max. For the E-glass fibre used in

this investigation, -  2.3 % is assumed [17].
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Microscopic Deformation and Interphase Damage Initiation

The microscopic deformation including the interphase damage behaviour can be 

directly obtained from the current analysis. Figures 4-8(a) and (b) show the deformed 

RUC and the separation of the interphase for 90° and 45° off-axis loadings, respectively. 

The deformations of 30° and 20° loadings are similar to that of the 45° loading. As 

shown in Fig. 4-8(a), for the 90° (transverse) loading, the maximum separation of the 

interphase is normal to the interphase with [w3] * 0 ,  [m,] = [m2] = 0.  For 45° off-axis 

loading, the interphase damage shows a mixed mode: opening normal to the interphase 

and sliding in the 1 direction, i.e. in this case, [u3 ] * 0 , [w, ] ^  0 , but [u2 ] = 0 as shown in 

Fig. 4-8(b). Note also that for transverse loading, the deformed surfaces of the RUC 

remains rectangular, while for 45° off-axis loading, the surfaces originally perpendicular 

to the fibre do not remain plane after the deformation.

(a) (b)

Fig. 4-8 Deformed shape of the RUC and interphase damage for different off-axis angles:

(a) 90°loading; (b) 45° loading.
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Figures 4-9 to 4-11 plot distribution of the tractions in the interphase for the four fibre 

angles at the instant prior to but close to the peak point of the stress-strain curves. For 90°, 

45°, 30°, and 20° off-axis angles, the corresponding global strains are s = 0.5%, 0.9%, 

1 .0 %, and 1 .0 %, respectively.

It can be seen from Figs. 4-9 to 4-11 that, along the circumferential direction of the 

interphase (see inset in Fig. 4-9 for angle <j>), the normal traction J 3 and sliding traction 7j 

for all the four off-axis angles have maximum values at <j>=0 °, thus indicates that the 

interphase debonding will initiate at (j> = 0°. However, the proportions of tractions T3 and 

T\ are different for different off-axis angles 0. When 0 = 90° (transverse loading), the 

tractions T2 and T\ are very small at <|> = 0°, while T3 / <xmax is close to 1 as indicted by Fig.

4-9, thus the initiation of the damage is mainly caused by the traction J 3 . When 0 = 45°, 

T3 / crmax « 0.6, Jj / « 0.7 (at (j)=0°), thus both tractions Z3 and 7j contribute to the

initiation of the interphase damage, resulting in the interphase separates with the 

combined normal opening and the sliding along the fibre direction.

Figure 4-12 portrays the distributions of the maximum principal strain near the 

interphase (in the matrix elements adjacent to interphase elements shown in Fig. 4-2) for 

the four off-axis angles. Note these curves are also plotted at the same global strains as 

those in Figs. 4-9 to 4-11. Thus comparison of the maximum principal strain and the 

interphase traction at the approximate same location will indicate the probable damage 

initiations (matrix cracking or interphase separation) at the next loading level. Therefore 

the two intralaminar damage modes can be distinguished. Of course the accurate 

judgment will be based on the damage criteria. For the present glass/Epon 828 laminates, 

numerical results indicate that the damage mode is interphase separation.
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Evolution o f  interphase damage

The propagation of the interphase damage can also be depicted by the interphase 

traction distributions in the RUC. For transverse loading, for example, Figure 4-13 shows 

the distribution of the interphase tractions at different loading levels. At e = 0.5 %, the 

traction T3 reaches the maximum value at § = 0°, thus the interphase starts separating at 

this point. The traction decreases with the increase of the separation, thus the normalized 

traction decreases to about 65% at global strain of 0.7 % and at global strain of 0.8 %, the 

total separation occurs, i.e. the traction drops to zero. With further increase of loading to

0.9 % and 1.1 %, the damaged zone propagates further along the circumferential direction. 

The interphase damage propagates to an angle of (|> = 40° at the global strain of e = 1.1 %.
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£=0.7%
£=0 .8%
£=0.9%
0= 1 . 1 %0.7

0.5
CD
E 0.4e

0.3i-
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0 10 20 30 40 50 60 70 80 90
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Fig. 4-13 Traction distributions in interphase prior to and after damage: 

(a) Traction Ty (b) Traction T2.
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4.4 ANALYSIS OF GLASS/EPON 815 LAMINATES

4.4.1 Test Results

For the E-glass/Epon 815 laminates, there were two damage modes [15]: For off-axis 

angles of 10° < 6  < 60°, matrix failure prevailed; and for off-axis angles of 60° <0 < 90°, 

interfacial debonding was the predominate damage mode. In the global stress-strain 

curves, matrix failure was characterized by a plateau and the final failure occurred after 

large deformations. Figure 4-14 shows the fractographs of the failed unidirectional 

laminate specimens under 90°, 45° and 20° off-axis loadings for the glass/Epon 815 

laminates. For 90° loading shown in Fig. 4-14a, those vertical stripped zones with 

relatively smooth surfaces indicate complete separations between the fibres and the 

epoxy matrix, while those zones with ‘wrinkles’ are damaged surface of epoxy matrix. 

Thus the damage is mainly the interphase separation, or at least it is the mixed interphase 

damage and matrix damage. For 45° and 20° off-axis loadings shown in Fig. 4-14b and c, 

however, there are almost no smooth zones, thus the matrix damage is the primary 

damage mode.

Also, stress-strain curves for off-axis angles 6  =90°, 45°, 30°, and 20° are obtained 

under strain rate of about 10'3/s.
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Fig. 4-14 Fractographs of glass/Epon 815 coupon specimens under off-axis loadings: 

(a) 90° loading; (b) 45° loading; (c) 20° loading (adopted from [15]).
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4.4.2 Material Constants

The elastic constants for the E-glass fibre and the material constants needed for the 

viscoelastic model for Epon 815/Versamid 140 are listed in Table 3-1. The constants for 

the cohesive model for E-glass/Epon 815 are:

crnm=80MPa,Sn/R = S n / R = 5a / R = 1.5%, and or = 1.0 (4.11)

And for the Epon 815/Versamid 140, the constants used for the matrix damage model are: 

f cr=0.14, Et = 0AE,/3 = 0.001, ^  = 0.02 (4.12)

Again, to compare with the test results in Ishai [15], uniaxial tensile loads at different 

off-axis angles were applied to the unidirectional laminates at a constant strain rate of 

10'3 /s.

4.4.3 Numerical Results

The calculations for the glass/Epon 815 unidirectional laminates are similar to that for 

the glass/Epon 828 unidirectional laminates. All the calculations used the same set of 

material constants as shown in Table 3-1 and the off-axis angles considered were 90°, 45°, 

30°, 20°, as in the test. However, in all the four off-axis angles for glass/Epon 815, 

numerical results shows that no snap-back instabilities occurred during the calculation, 

thus, t)n = ?jn = r/t2= 0.

Global stress-strain curves

Figure 4-15 shows the predicted global stress-strain curves and the comparison with 

the test results. It can be seen again that the stress-strain curves under different loading 

angles are well predicted. However, for the glass/Epon 815 laminates, numerical results
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show that for 90° loading, the damage mode is interphase damage; while for 45°, 30°, 

and 20° loading angles, the damage mode is matrix cracking. This result is in agreement 

with the general conclusion of Ishai [15].
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Fig. 4-15 Global stress-strain curve of glass/Epon 815 laminates under off-axis loadings.

Prediction o f damage

The initiation and evolution of the damage can be analyzed analogously to that of the 

glass/Epon 828 laminates. Figures 4-16 to 4-18 plot the distributions of the interphase 

tractions prior to damage. And Fig. 4-19 shows the distribution of the first principal strain 

in the matrix. For 90°, 45°, 30°, and 20° off-axis angles, the corresponding global strains 

are e = 1.0%, 2.6%, 2.1%, and 1.7%, respectively. From these distributions, the initiation 

of the damage upon further loadings can be predicted.
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For d =90°, Fig. 4-16 shows that traction T3 nearly reaches crniax at <j) = 0°, while from 

Fig. 4-19, the first principal strain is very small at § = 0°. Thus it implies that upon 

further loading, the damage will initiates at § = 0° as interphase damage. For 6  =45°, 

30° and 20°, Figs. 4-16 to 4-18 indicate that the tractions T\, T2, and T3 are rather small, 

while from Fig. 4-19, the first principal strains for all the three cases are close to the 

critical value at <j) = 0°. Thus it implies that upon further loading, the matrix damage will 

initiate at (j) = 0°.

It can be concluded that in the case of glass/Epon 815, for 90° off-axis loading, the 

damage initiates as the interphase separation; while for 45°, 30°, and 20° off-axis 

loadings, the damage mode is matrix cracking. This is in agreement with the tests results 

reported in [15]. Furthermore, it shows that the matrix cracking and interphase damage 

can be distinguished.

4.5 CONCLUDING REMARKS

The fibre/matrix interphase damage and matrix cracking modeling have been 

simultaneously incorporated into the micromechanical finite element analysis for the 

fibrous composite materials. Both the macroscopic and microscopic responses of 

unidirectional laminates under off-axis loadings are well predicted based on the 

properties of the constituents and that of the interphase. In particular, the following 

conclusions can be drawn from the current investigation:

• The interphase element developed based on the cohesive law is capable of modeling 

both normal and tangential separations of the interface. Thus the entire response 

including damage initiation and evolution of the composite can be simulated. The
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interphase element is convenient to implement into a FEM code since an equivalent 

stress-strain relationship is used.

• Two intralaminar damage modes can be distinguished by the present analysis. For E- 

glass/Epon 828 unidirectional laminates under transverse loading, the interphase 

damage initiates as the normal opening while for the off-axis loadings combined 

mode of normal opening and in-plane sliding is predicted. For E-glass/Epon 815 

laminates under transverse loading, the damage mode is interphase separation; 

however, for 45°, 30°, and 20° off-axis loadings, the damage is matrix cracking. 

Those predictions on the damage mechanisms are in agreement with the experimental 

observations.

• Using the same set of material constants, the global stress-strain curves at different 

off-axis angles are predicted and they are in good agreement with the experimental 

results.
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CHAPTER 5

MICRO/MESO-MECHANICAL ANALYSIS OF ANGLE-PLY AND CROSS-PLY 

LAMINATES

5.1 INTRODUCTION

Experimental results show that under the same uniaxial loading the fibrous composite 

laminates with different fibre architecture have quite different stress-strain response and 

damage behaviour [1]. For a unidirectional laminate under 45 “off-axis loading, the stress- 

strain curve is an almost linear one and the specimen fractures along the 45° fibre 

direction at an applied low global strain value. For a [0°/90o]ns cross-ply laminate, the 

global stress-strain curve consists of two linear portions. The knee between the two 

straight lines corresponds to the load level causing transverse cracking of the matrix in 

the laminate. And the final failure of the specimen is due to the fracture of fibres in the 0° 

plies. It is quite instructive to study the behaviour of [±45°]ns angle-ply laminate. The 

stress-strain curve indicates a gradual transition from a linear portion to a part with low 

tangent modulus similar to the “yielding” behaviour in metals. At a relatively low global 

strain value the stress-strain response is comparable to that of the unidirectional 45° 

angle-ply laminate. However, the specimen does not fail until the global strain reached 

quite a large value of approximately 15% (for glass fibre reinforced epoxy laminates [1]). 

To predict such a drastically different response of the [±45°]ns angle-ply laminate poses a 

considerable challenge in the mechanical modeling of composites. In this case it becomes 

imperative, that a micromechanical model be adopted since damage evolution plays an 

important role. In such a model damage initiation and evolution can be properly
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simulated in the individual constituents of the composite laminate at the microscopic 

scale, e.g. see Pagano et al. [2], Raghavan et al. [3] and Kim et al. [4],

In this chapter, three-dimensional meso/micro-mechanical unit/multi-cell models are 

established for three different laminates in a unified procedure. The composite system 

studied is E-glass/epoxy matrix with fibre volume fraction of 52.5%. The coupon 

specimens of the three laminates were made from a prepreg of 3M Company [5]. 

Experimental and numerical studies showed that the epoxy polymer matrix can be 

described by the nonlinear viscoelastic constitutive model in Chapter 3 and the fibre is 

assumed to behave elastically.

The analysis of unidirectional laminates under off-axis loading was described in 

Chapter 4. To facilitate the micromechanical analysis for angle-ply and cross-ply 

laminates, a meso/micro rhombohedral two cell model has been developed for the [±6 \n

angle-ply laminates. The in-plane elastic moduli for [+#]„ angle-ply laminates are

predicted to verify the model (Section 5.2).

For the three laminates investigated in this Chapter, studies show that bonding 

between the fibre and matrix is strong and perfect bonding conditions can be assumed. 

Thus matrix cracking remains the main intralaminar damage mechanism. The ‘smeared 

crack approach’ presented in Chapter 3 is employed to simulating the matrix cracking in 

the three laminates. The finite element predictions of the three types of laminates subject 

to uniaxial tensile loading are presented, viz. (1) unidirectional laminate under 45° off- 

axis loading, (2) [0°/90°]ns cross-ply laminate under transverse loading and, (3) [±45°]ns 

angle-ply laminates under tensile loading. The numerical results indicate the local and 

global responses of the laminates including the damage evolution. The predicted results
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are compared with the experimental data with similar composite lay-ups, and the 

agreement is found to be good (Section 5.3).

Residual stress/strain may lead to the development of damage and may also have an 

adverse effect on the mechanical behaviour of the composites. The influence of residual 

stress/strain is investigated in section 5.4. The initiation and evolution of the residual 

stress/strain are first analyzed using time-dependent and temperature-dependent material 

constants. The meso/micro-mechanical analysis of a cross-ply laminate indicates that the 

damage initiation and evolution under subsequent mechanical loading are greatly 

influenced by the residual stress/strain.

5.2 MESO SCALE MODELING FOR ANGLE-PLY LAMINATES

5.2.1 Meso Scale Unit Cell Modeling

The meso/micro-mechanical model is set up based on the extension of periodic RUC 

technique for a unidirectional laminate. Fig. 5-1 indicates the manner in which a two cell 

model is developed for a thick angle-ply [±#]„ laminate. From the periodicity of the fibre 

arrary, we can cut a rhombohedral cell consisting of two layers, each with a single fibre 

in the direction +0 and -0, respectively. The angle-ply laminate can thus be seen as a 

periodical array of this two-cell model [6]. This type of two-cell model or possibly multi­

cell model will be referred as meso-scale unit cell model (MUC).

It should be noted that in Fig. 5-1, the angle 0 is measured from X  axis ( if measured 

from the Y axis, it will be 90° -  0 , therefore this model can also be seen as a MUC for the 

[±(90 -  0)}n laminates. For example, the MUCs for the [±30]„ laminates and the [±60]n 

laminates are the same.
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(a) (b)

Fig. 5-1 Meso-scale cell models for angle-ply laminates:

(a) Angle-ply laminates; (b) Meso scale unit cell model.

To facilitate the analysis, a skew coordinate system as shown in Fig. 5-2 is introduced. 

We denote this skew coordinate system as 0 - X s Ys Zs , with the same origin as that of 

the orthogonal coordinate system O-XYZ, and the axes X s, Ys are parallel to the fibre 

directions (direction of ± 6  ). In this system, the coordinates and the displacement 

components are designated as ( x s , y s , z s ), and ( uxs,uys,u zs ), respectively. From

Fig.5-2, we can obtain the transformation between the two coordinate systems as follows:

sin# -c o s# 0 Xs 1
ys sin 2#

sin# C O S # 0 y

z s . 0 0 sin 29 z

Uxs 1
» — --------------ys sin 29

Uzs.

sin# -c o s#  0
sin# cos# 0

0 0 sin 29

(0 < 9  < - )  
2

(5.1)

( 0 < # < - )  (5.2)

Referring to Fig. 5-1(b), we assume that S is the area of side surface (ABCD), i  is the 

length of the side AB, h is the height of the muti-cell model (AD), Si is the area of the 

cross section (AEFB), the volume of the MUC is V, the fibre volume fraction is Vf  and R
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is the radius of the fibre. The following relations between these geometric parameters can 

be obtained:

h = 2 l  sin 2  6  

S , = I 1 sin 20

S = 2£ 2 sin2# (0 < 6 < j )  (5.3)

V = 2 t 3 sin2 26 

R = I  sin 29

-od*
uy

U x

Fig. 5-2 The two coordinate systems.

Similarly to the derivation of the unified boundary conditions for the rectangular 

RUC in Chapter 2, for angle-ply laminates represented by the rhombohedral MUC shown 

in Fig. 5-1(b), from Eqn. (2-7) and Eqn. (5-2), a unified form of boundary conditions can 

be written as ( in the skew coordinate system 0-XsYsZ s):

ui* (xs > ys> zs) -  u iS" (xs, y s,z s) = ci (5 -4)
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In the above equation, all indices have the same meaning as in the Eqn. (2.15, Chapter 2) 

except that they are now defined in the skew coordinate system. Specifically, the indices i,

j  =1, 2, 3 correspond to X S,YS, Zs ; and j +, j~  correspond to the surfaces with normals

along the positive and negative X S,YS, Z s directions, respectively.

o i 'i 2
If only in-plane loads are considered ( =  c3 = c2 = c3 = 0) and by using the relation

between the displacement components in the skew coordinate system and in the 

orthogonal O-XYZ coordinates, Eqns. (5.1) and (5.2), the displacement boundary 

conditions in the O-XYZ coordinates can be written as (note that the coordinates are 

expressed in the skew coordinate system in the following equations for clarity):

On planes ABCD ( xs = Axs )and EFGH( xs = 0):

[ux(Axs, ys, zs) - u x( 0 , , zs)]sin9 - [uy(Axs, ys, zs) - u y(0,y , ,zs)]cos9 = c\ sin29 

K (Axs,ys,zs) - u y(0,y s,zs)]cos9 + \ux(Axs, y s,zs) — ux( 0 , , zs)]sin9 = cf sin29 (5.5) 

Mz (Ax,, zs) = u2 (0 , y s,zs)

On planes ADHE (y s = Ays )and BCGF( = 0 ):

[ux(xs,Ays,zs) - u x(xs,0,z5)]sin9 - [ u y(xs,Ays,zs) - u y(xs,0,zs)]cos9 = cf sin29 

[uy(xs,Ays, zs) - u y(xs,0,zs)]cos9 + [ux(xs,Ays, zs) - u x(xs,0,zs)]sin9 = c22sm29  (5.6)

Mz(^»Ays,zJ) = wz(xJ,0,zJ)

On planes BAEF ( zs = Azs )and CDHG( zs = 0):

Wx (x, , ys,Azs) - u x (xs, ,0)] sin 9 -  [uy (xs , y s,Azs) - u y (xs, ys ,0)] cos 9 = 0 

[uy (xs , ys,Azs) — uy (xs, ,0)] cos 9 + [ux (xs , y s,Azs) - u x (xs, ,0)] cos 9 = 0

«z(^»^»0) = 0
uzixs->yS'>Azs) = c\ = const.
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-2
Note that for the in-plane loading case, the constant c3 is not required to be specified. 

Its value will be obtained through the FEM analysis. To eliminate the rigid body motion, 

the displacement components, ux , uy of the center point of the MUC are assumed to be

zero.

To apply the the above Eqns. (5.5)-(5.7) in the FEM analysis, the mesh in opposite 

boundary surfaces should be the same. For each pair of displacement component at the 

two corresponding nodes with identical in-plane coordinates on the two boundary 

surfaces a constraint equation is imposed. Although a large number of the constraint 

equations needs to be applied, it is usually easy to produce all those equations by using 

certain automatic schemes embedded in a FEM package.

Based on definitions of the average strain and stress, Eqns. (2.9) and (2.10) of Chapter 

2, and noting the geometric description of the MUC given by Eqns. (5.3), a relation

between the avearge strains and the constants c j , and the average stresses and resultant 

tractions on the boundary surfaces are found as follows:

£xx + 2ci2 + c2)

~ ^ c\ +ci )  (5-8)

«- A
C Z Z  Jn
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pAB , pAE
—  _  x  ~r  r x

“  ~~ 2S sin 9
pAE _ pAB

* y y = ^ ------—  (5-9)25 cos#
pAE _ p AB p A B + pAE

—  _  ^ _ x _______ J  x  _____ y _________ y

xy I S  cos 0 2S sin 0

Note Eqns. (5-8) and (5-9) are defined in the coordinate system O-XYZ. In Eqns. (5.9), 

each resultant traction P  has two indices. The subscript x  or y  indicates that the traction is 

along the X  or Y direction; and the superscript AB or AE is a short designation for plane

ABCD or AEHD (see Fig. 5-lb). For example, P / B is the total traction of plane ABCD

along the X direction, its value can be obtained from the FEA solution:

PjfB = f cr (x, y , z )cos9 dS + f (x, y, z ) sin9 dS (5.10)* JABCD '  JABCD ^  '  v ’

(b)

Fig. 5-3 Meshed MUC for angle-ply laminates:

(a) Meshed MUC for ±15° ( ±75°); (b) Meshed MUC for ±30° (±60°).
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Figure 5.3 shows the meshed MUCs for ±15° ( ±75°) and ±30° ( ±60°) laminates, 

each having 3681 nodes and 3072 elements. The MUC for ±45° laminates will be shown 

later (Fig. 5-7).

5.2.2 Prediction o f  In-plane Moduli

From the microstructure of the laminate, it is reasonable to assume that the laminate is 

orthotropic in the sense of overall response, i.e., for average stresses and average strains, 

we have

(5.11)

In a procedure similar to that described in Chapter 2, two sets of c\ , c\ , c] are 

specified to obtain the elastic constants in Eqn. (5.11). The in-plane elastic moduli can be 

obtained from:

1

£ x x ^ 1 2

1O lb

£ y y . :
^ 1 2 ^ 2 2 0 • ° y x

f x y _  0 0 ^ 6 6 .

1 F  1 
c  , t j y  o , v x y  5 22

and Gxv = —-— 
■Sll ”  2 S66

(5.12)

Figures 5-4 and 5-5 show the predicted Ex and Gxy for angle-ply laminates with varying

angles and a comparison with the results obtained by using the classical laminate theory 

(CLT). Note that the micromechanical results are based on the properties of the two 

constituents (fibre and matrix, Table 5-1), while the CLT results are based on the global 

properties of the lamina [7], Table 5-2.
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Table 5-1 Properties of constituents [5]

Material E (MPa) v

E-glass 7.25xl04 0.22

Epoxy 2.6xl03 0.4

Table 5-2 Properties of a lamina [7]

E-glass/epoxy lamina

(3M-1003)

El (GPa) 41.7

E2 (GPa) 13.0

Vl2
0.3

Gn  (GPa) 3.4

From Figs. 5-4 and 5-5, it is seen that the differences between the results of the CLT 

and the present micromechanical model are rather small. And from the limited 

experiment points [1, 5], it seems that the present micromechanical results are in good 

agreement with the experimental data.

4 5 -,

■a— Present 
o -  CLT 
x Experiment

40

3 5 -

c l  3 0 -  O
W* 2 5 -

2 0 -

1 0 -

0 10 20 30 40 50 60 80 9070

Orientation (Degree)

Fig. 5-4 Ex~0  curves for angle-ply laminates.
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14—|
Present
CLT

1 2 -

1 0 -

O

0 10 20 30 40 50 60 70 80 90

Orientation (Degree)

Fig. 5-5 Gxy~0  curves for angle-ply laminates.

5.3 MESO/MICRO-MECHANICAL ANALYSIS OF THREE LAMINATES

5.3.1 RUC/MUC Model and Loading

Figures 5-6(a) and 5-6(b) show a 45° off-axis loading of a unidirectional laminate and 

uniaxial loading of a [±45°]ns angle-ply laminate, respectively.

(a) (b)

Fig. 5-6 Two types of laminates under uniaxial tensile loading(or) :

(a) A unidirectional laminate; (b) A [±45°]ns angle-ply laminate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 157

Note that for the [±45°]ns angle-ply laminate we assign the Y-axis in the +45° fibre 

direction and the X-axis in the -45° fibre direction. The Z-axis is in the thickness 

direction of the laminate. The tensile load a  applied to these two types of laminates can 

be decomposed into a set of multiaxial loading in the coordinate system O-XYZ shown in 

Figures 5-6 and 5-7. From the transformation of stress components, for both Figs. 5-6 (a) 

and 5-6 (b), we have

The response of 45° unidirectional laminate and the [±45°]ns angle-ply laminate under 

the equivalent multiaxial loads will be analyzed here by a micromechanical method. 

Figures. 5-7(a) and 5-7(b) show the micro/meso-mechanical representations of 

unidirectional laminates and [±45°]tls angle-ply laminates.

The models in Fig. 5-7 are meshed with 8-nodes brick elements with 1536 elements, 

1881 nodes for the unidirectional laminate and 4096 elements, 4833 nodes for the 

[±45°]ns angle-ply laminate.

1 Y
» Y

(a) (b)

Fig. 5-7 RUC/MUC models of two composite laminates:

(a) A unidirectional laminate; (b) A [±45°]ns angle-ply laminate.
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5.3.2 Boundary Conditions

For the 45° unidirectional laminates and angle-ply laminates subjected to the above in­

plane loading, the applied global strain components are exx, s yy , e2Z and s  , therefore 

the boundary conditions can be obtained from the general periodic boundary conditions 

described in Chapter 2. Note that the same model in Fig. 5-7 (b) for [±45°]ns angle-ply 

laminate can also be used for the analysis of [0790°]ns cross-ply laminates, since the 

direction of the fibres of the two layers are perpendicular. However, different forms of 

boundary conditions should be used. For cross-ply laminates under transverse tensile 

loading, the ‘plane keeps plane’ boundary conditions are adopted. Referring to Fig. 5-7, 

the boundary conditions for a cross-ply laminate under transverse loading (along X-axis) 

can be specified as,

On plane X=0, Y=0 and Z=0, symmetric conditions are specified,

u(0,y,z) = 0, v(x,0,z) = 0, and w(x,y,0) = 0, respectively (5-14)

On plane X=l, Y=l, and Z=2

u(l,y,z) = c\, v(x,l,z) = S l , and w(x,y,2) = S2 (5.15)

Note that c\ is specified as the node displacement on the plane X=l, which results in a 

global strain = c\ applied to the cell, while on plane Y=l, and Z=2, the corresponding

displacement components for each point are equal to a constant, but the constant is not 

specified.

For the 45° unidirectional laminate and ±45° laminates, the iteration algorithm for off- 

axis loading described in Chapter 4 is required to conduct the analysis.
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5.3.3 Models for Material and Damage and Constants

For the composite system in this Chapter, the glass fibre is assumed to be linear elastic 

with elastic constants listed in Table 3-1. The nonlinear viscoelastic model described in 

Chapter 3 is used to model the constitutive reponse of the epoxy matrix. The material 

constants for the epoxy matrix are approximately taken as those of the Epon 826, which 

are also listed in Table 3-1.

For the three laminates studied in this Chapter, perfect bonding between the fibre and 

matrix is assumed. Thus matrix cracking remains the main intralaminar damage 

mechanism. The ‘smeared crack approach’ presented in Chapter 3 is employed to 

simulating the matrix cracking in the three laminates. The constants used for the matrix 

damage model are:

s cr =0.048, Et = 2S4MPa , j3 = 0.001, j  = 0.05 (5.16)

Note scr = 0.048 and Et = IMMPa  are the uniaxial tensile test values for Epon 826 in 

[8],

At each step of the calcualtion, the average axial strain of the fibre is monitored, if it 

exceeds a prescribed maximum value, i.e.

£  fa  — ^  f  max (5-12)

Then the fibre is aassumed to have fractured and the calcualtion is then terminated. For 

the glass fibre used in this calculation, £fjmx = 2.3 % is assumed [9].

Uniaxial tensile loads were applied to the aforementioned three laminates at a constant 

strain rate of 10‘4 s '1. In the following sections, both global and local responses will be 

presented for the three types of laminates, viz. (1) a unidirectional laminate under 45°
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off-axis loading, (2) a [±45°]ns angle-ply laminate under uniaxial tensile loading, and (3) 

a [0°/90°]ns cross-ply laminate under transverse tensile loading.

5.3.4 Prediction o f Stress-strain Curves o f the Three Types o f  Laminates

Figures 5-8 and 5-9 show the global stress-strain responses of the three types of 

laminates and the comparison with test results. All the calculations use the same set of 

material constants. The test specimens were made of “Scotchply 1003” prepregs from the 

3M Company. The test data of cross-ply laminates is from the technical data of the 3M 

Company [5] and that of the [±45°]ns angle-ply laminates and unidirectional laminates 

under 45° off-axis loading are from [1]. It can be seen that drastically different responses 

of the three types of laminates are well predicted by the micro/meso-mechanical analysis. 

Note that for the cross-ply laminate, the results indicate that at a global strain of 2.3%, the 

fibre in the 0° ply breaks at the average stress of 470 MPa. However, for the other two 

laminates, no fibre fracture occurs within the strain range of the present calculations.

Prediction 
Strain rate= 10'4/ s 
p= 0.001 
X= 0.05 
e = 4.8%cr
E = 284 MPa 
Test [1]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Global strain (%)

Fig. 5-8 Predicted global stress-strain curve of a unidirectional laminate.
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For the unidirectional laminate, it is seen that the predicted trend is in good agreement 

with the test results, Figure 5-8. The predicted initial stiffness is 10.1 GPa, and the 

maximum load is 68 MPa, while the corresponding test results are 10.1 GPa and 82 MPa. 

The effect of viscoelastic behaviour of the matrix is manifested by the nonlinearity of the 

stress-strain curve, which is noticeable once the stress exceeds 40 MPa (about 0.5% 

strain). Since damage has not yet occurred at this load level (damage initiation will be 

presented later), therefore this nonlinearity is mainly caused by the viscoelasticity of the 

epoxy matrix.

The results for cross-ply and angle-ply laminates are shown in Figure 5-9. For the 

cross-ply laminate, the bilinear stress-strain curve is predicted with two stages of 

modulus, which are approximately 25.5 GPa and 17.4 GPa. Corresponding test values are

25.5 GPa and 15.6 GPa, respectively. The knee between the two straight lines 

corresponds to the load level causing transverse cracking of matrix in the laminate. And 

the final failure of the specimen is due to the fracture of fibres in the 0° plies. From the 

technical data of the ‘Scotchply’, the test value of tensile strength of cross-ply laminate is 

480 MPa, and the present prediction of 470 MPa is very close to that of the test.

The unique nonlinear stress-strain curve for the [±45°]ns laminate is also well predicted. 

For example, the predicted initial stiffness of 10.1 GPa agreed very well with the test 

value of 10.1 GPa. In contrast to a unidirectional laminate under 45° off-axis loading 

which failed at a relatively low global strain of 0.9%, at the same strain level, the [±45°]ns 

laminate is capable of carrying the applied load albeit at a reduced stiffness. However, 

prior to the ‘yielding’ point, the stress-strain curve also manifested a nonlinear response. 

Since the damage has not yet occurred at this load level (50 MPa), this nonlinearity is
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mainly caused by the viscoelasticity of the epoxy matrix. Note that the nonlinearity of the 

stress-strain curve has different causes at different strain levels: at lower strain levels, it is 

mainly caused by the viscoelasticity of the matrix, while at higher strain values, it is 

mainly influenced by the damage evolution in the matrix. Note, however, that the 

simulation is carried out only up to about 2.3% applied global strain. Thereafter, it is 

difficult to continue the simulation, since the local deformation is very large and the 

present FEM model is based on the small deformation formulation.

500-,
Predictions:
—■— Cross-ply 
—*— Angle-ply

450-

400-

^  350- Tests:
Cross-ply
Angle-ply

^  300- 

W 250-

2 0 0 -

O 150-

1 0 0 -

50-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Global strain (%)

Fig. 5-9 Predicted global stress-strain curves of a [0/90°]ns cross-ply laminate and a

[±45°]ns angle-ply laminate.

5.3.5 Prediction o f  the Ply Level Response

The average in-plane stress components of each ply in the laminates can also be easily 

determined from the current analysis. Since the stress field in the repeated unit cell or 

multi-cells is known, the average stress is calculated according to Eqn. (2.9) but over the 

corresponding unit cube as shown in Fig. 5-7(b). Figure 5-10 shows the evolution of the
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ply-level in-plane stresses for [±45°]ns angle-ply laminates. Referring to Fig. 5-6(b) and 

Fig. 5-7(b), due to symmetry the average stresses of the 45° ply and the -45° ply have the 

relation:

( f f n ) - 4 5  45> ( a y y ) - 4 5  =  ( a x x )  45 > x y ) - 4 5  =  ( a  x y )  45 (5.18)

Therefore only the evolution of the stress components of 45° ply xx, (Jyy, a  xy )45 is

shown. Prior to damage initiation at global strain of about 0.9%, the stress components 

(a xx, <7 yy, <Jxy )45 all increase with the increase of the global strain, and Eqn. (5.13) is 

satisfied. After the initiation of damage, the three stress components evolve in a different 

manner: (c%)45 and (ct )_45 decrease steadily which implies that in the transverse 

direction of each ply the capability to sustain tensile loading diminishes. However, 

(ayy )45 and(<xxr)_45 components increase at a higher rate than that prior to damage. This

indicates that after damage, each ply carries more loading in the fibre direction. In fact, 

the global stress of the laminate in the X-direction can be written as

( ^ x x  )/n rnin ate ~  ^  ^ xx  ̂ 45 xx )-45 (5-19)

Therefore, after the initiation of matrix damage, the laminates can still carry load in the 

X- and Y-directions, although the contributions of each lamina are different ( a yy for 45°

ply and a xx for -45° ply). Note also that the shear stress (0 ^ ) 4 5  or (ct^, )_45 changes

gradually; thus, the laminate’s global load evolves gradually at approximately the same 

rate as that of the shear stress, see Figure 5-10.
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Global stress of the laminates
140 axx of 45° ply 

cryy of 45° ply 
xxy of 45° ply

120

100

TOQ.
2
t o
c/3CD
CO

-20

2.0 2.51.0 1.50.0 0.5

Global strain (%)

Fig. 5-10 Global stress-strain curve at the laminate level and ply level stresses (angle-ply).

1000
Global stress of laminates 

of 0° ply

a of 90° ply
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C/3
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200
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0.0 0.5 1.0 1.5 2.0 2.5

Global strain (%)

Fig. 5-11 Global stress-strain curve at the laminate level and ply level stresses (cross-ply).

Figure 5-11 shows the average (global) stress-strain curve for each ply of the cross-ply 

laminates. The evolution of load carrying capacity of each ply and the entire laminate as a
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function of the global strain is demonstrated. Prior to the initiation of damage in the 90° 

ply, both 90° and 0° plies contribute to the load carrying of the laminate, however, after 

the damage, the load carrying capacity of the 90° ply drops to a small value, whereas the 

0° ply continues to carry the load at almost the same rate.

(a) (b)

Fig. 5-12 First principal strain distribution in the unit cell:
(a) Isometric 3D view; (b) Front 2D view.

5.3.6 Microscopic Response

It is the local stress/strain distribution which determines the damage initiation. Figure 5- 

12 shows the distribution of the maximum principal strain at an applied global strain of 

0.8 % for the unidirectional laminate. For the angle-ply laminates, Fig. 5-13 shows the 

distribution of the stress components <7  ̂ at an applied global strain of 0.8 %. The 

distribution of the maximum principal strain is depicted in Fig. 5-14. As seen in Figs 5-12 

to 5-14, the stress and strain distribution along the fibre direction (Y-axis for +45° ply
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and X-axis for -45° ply, respectively) is constant. An examination of the distributions of 

other stress/strain components results in the same conclusion.

Fig. 5-13 Distribution of the local shear stress, <7xy in a [±45°]ns laminate.

-  45° ply

Fig. 5-14 Distribution of the maximum principal strain in a [±45°]ns laminate.
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It is seen that the maximum value of principal strain occurs in the matrix near the 

fibre/matrix interface extending along the fibres (Figure 5-12 for unidirectional laminate 

and Figure 5-14 for angle-ply laminate, respectively). Thus, upon further loading, there 

will be two symmetric ‘narrow bands’ of matrix cracking along the fibre direction in each 

lamina. The stress/strain distribution for the cross-ply laminates will also indicate the 

critical regions in the laminates, however for the sake of brevity these will not be shown 

herein.

Figure 5-15 displays the angle change of the fibres of the [±45°]ns angle-ply laminate 

at a global strain of s = 0.8 %. The numerical values of the angle change can be estimated 

form the displacement of the center of the fibre, and this is plotted in Fig. 5-16 which 

shows the angle change A6  vs. the applied global strain up to 2.5%. It is worthwhile to 

mention that Sun and Zhu [10] included the angle change of the fibre in their analysis of 

angle-ply laminates based on classical laminate theory and concluded that it is also a 

factor contributing to the nonlinear behaviour. Here the change of the angle is directly 

determined by the micro/meso-mechanical approach.

Fig. 5-15 Change in the fibre orientation resulting from load application.
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Fig. 5-16 Fibre orientation change vs. the applied global strain.

5.3.7 Evolution o f  Matrix Damage

The evolution of the damage zone (matrix cracking) can also be determined by the 

current analysis. Figures 5-17 to 5-19 show the evolution of the damaged zone with the 

applied global strain for the three types of laminates. Note that the cells are cut along the 

Y-direction at the mid-plane of the ply to more clearly show the damaged zone along the 

fibres direction. For a unidirectional laminate under a 45° off-axis loading (Fig. 5-17), 

damage initiated at an applied global strain of e = 0.9%, in the form of two ‘narrow 

bands’ in the matrix near the interface along the fibre direction, Fig. 5-17(a). Upon 

further loading the bands expand around the circumference of the fibre. Note that the 

direction of global load is along the diagonal of the square cross-section. The matrix 

cracking is not transverse to the tensile loading, but along the fibre direction.
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For a cross-ply laminate under transverse loading along X-axis (Fig. 5-18), a different 

damage form is noted. Initially there are two damage bands in the matrix of the 90° ply, 

and shortly after, there is another pair of damage bands which are around the fibre/matrix 

interface. Upon further loading only the latter two damage bands propagate around the 

fibre/matrix interface in 90° plies. All the damaged zones are restricted to the 90° ply, 

and the damaged bands are in the fibre direction of 90° ply, i.e. they are perpendicular to 

the applied loading. For an angle-ply laminate (Fig. 5-19), at an applied global strain of 

s  = 0.9 %, damage initiates in the form of two ‘narrow bands’ in the matrix near the 

interface along the fibre direction for each ply, Fig. 5-19(a). Upon further loading the 

bands expand around the circumference of the fibres, Figs. 5-19(b) to 5-19(d). Note that 

the direction of the global load is along the diagonal of the square cross-section. Thus the 

predicted orientation of the ‘cracks’ is not perpendicular to the load; rather it is in the 

direction of fibres.

This prediction of the orientation of matrix cracking is in agreement with that observed 

in the tests. In the tests of the three corresponding coupon specimens under tensile 

loading, the cracks in the specimen and the main final fracture of the specimen were 

along the fibre directions [11-12].
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(a) e = 0.90 % (b) 5 = 1.0%

(c) e =1.2% (d) 5 = 1 .4%

Fig. 5-17 Evolution of the damaged zone (unidirectional laminate).
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(a) a = 0.96 % (b) J  = 1.04 %

(c) £ = 1.2 % (d) ?  = 1.92 %

Fig. 5-18 Evolution of the damaged zone (cross-ply laminate).
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(a) £ =0.9% (b) £=1.0%

(c) £ = 1.2% (d) £ =1.9 %

Fig. 5-19 Evolution of the damaged zone (angle-ply laminate).
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5.4 ANALYSIS OF RESIDUAL STRESS AND ITS INFLUENCES

5.4.1 Temperature Dependent Material Constants

In this section, the evolution of curing induced residual stress/strain and their influence 

on the damage behaviour of a cross-ply laminate are investigated. The MUC model used 

in this section is shown in Fig. 5-20. The nonlinear viscoelastic constitutive model for the 

epoxy matrix is a version of that used in [13-15], The material constants in the model are 

calibrated at room temperature based on an EPON 828 epoxy system, see Xia and Ellyin 

[15].

For the epoxy resin used in this investigation, the glass transition temperature is 110° C. 

The curing temperature, 149° C, is higher than the glass transition temperature. Thermal 

transition temperatures, for example, the glass transition temperature, Tg , and the melting 

temperature, Tm , strongly affect the mechanical properties of polymers and their 

composites. The morphology of the polymer is also a determining factor [16-18]. 

Therefore, it would be more reasonable to consider the dependency of the material 

constants on temperature.

For the cross-linked epoxy polymer matrix considered in this study, the following 

relations are used:

(a) Poisson’s ratio is assumed to be temperature independent [17].

(b) We consider the change of Young’s modulus over the temperature range from curing 

to room temperature. The total temperature range can be divided into three regions. When 

T > Tg + AT2, the matrix is in liquid or rubbery state [17], and E  is assumed to have a

very small value, for example, for some polymers it is of the order of a few MPa, or 

E(T)»(0.001 ~ 0.01)£(rr ) , where E(Tr ) is the modulus at room temperature. The
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transition region around Tg is assumed to be Tg -  A7j <T <Tg + A T2, in which, E  varies

greatly. When T <Tg -AT\  , the matrix is in solid state, and E  changes slightly.

Exponential functions are used for the last two regions, and the constants are determined 

approximately by using the data for similar polymers in Refs. [16-17]:

E ( T )  = £(rr)exp(-i, T ~ l r ) T  < Tg -  A T ,
1 g  — ZXi] — l r

T-T„+ATX
E(T) = E(Tg -  A7i)expH:2 A7, g ) Tg -ATl <T<Tg+ A T2 (5.19)

A l \  + A±2

E(T) = QME(Tr ) T>Tg +AT2

For the current matrix we have, approximately,

Tg = 110°C , Tr = 23°C , AT] = AT2 = 35°C ,

) = 2600MPa, E(Tg -  ATX) = 0.7£(7;), E(Fg + AT2) = 0.01£(rr )

ifcj = 0.357 and k2 = 4.249 .

(c) For ai in Eqn. (3) in Ref. [15] we assume,

ai (T) = at (Tr ) expl/c, T ) T < Tg -  A7]
- A7i - 7 r

T -T„ + AFi
a,- (F) = (7>) exp(^2 g+ — ) Tg -  AT] <T <Tg + AT2 (5.20)

af(r) = a; (rr )x l0 2 T>Tg +AT2

where a, (7[.) is the value at room temperature, see Eqn. (3) in Ref. [15]. The constant 

bt is assumed to be temperature independent.

(d) The coefficient of thermal expansion (CTE) is assumed to change linearly with 

temperature with a slope of
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a e - a(Tr )
K  = - £ -----—  (5.21)

m  rp  '  '

g r

where a(Tr) = 6 3 x l0 “6 /°C  , and is the CTE just above the Tg . From Ref. 

[17], 13vTg « 0.16 ( f3v is the volumetric CTE, and Tg is in Kelvin temperature), therefore,

a e = - f l v = - x  0-16 = 139xlO~6/ 0C.
g 3 3 273 + 110

5.4.2 Generation and Evolution o f  Thermal Residual Stresses and Strains

The distribution of residual stress crzz induced by cooling from the curing temperature

149°C to 23°C at a cooling rate of 1.4°C/min is shown in Fig. 5-20. The result is based 

on the temperature-dependent material constants as specified in the previous section and 

the residual stress distribution is at that instant when the temperature reaches the ambient 

one. It can be seen that the maximum tensile stress is 33.68 MPa in the matrix near the 

interface and the maximum compressive stress is 61.89 MPa in the fibre. For the [0790°] 

cross-ply laminate the stress component crxx has the same maximum values and 

distribution as crzz. To find bounds on the magnitude of residual stresses generated, two 

other types of analysis are carried out. First, a slower cooling rate of 0.15°C/min is 

specified. Second, it is assumed that the polymer matrix properties during cool-down are 

temperature-independent. For the slower cooling rate of 0.15°C/min, the distribution is 

similar to that of Fig. 5-20 but with a maximum tensile stress of 27.22 MPa in the matrix 

and a maximum compressive stress of 50.44 MPa in the fibre. Therefore, a faster cooling 

rate results in higher residual stresses. When the material constants at room temperature 

are used for the entire temperature range, much higher values of residual stresses are
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obtained. The maximum tensile stress for the later case is 42.69 MPa and that of the 

compressive stress is 77.7 MPa for the cooling rate of 1.4°C/min, and the corresponding 

values for the slower rate of 0.15°C/min are 32.01 MPa and 59.04 MPa. Since the 

modulus of an epoxy material increases with the decrease of temperature, the results from 

the temperature-independent constants overestimate the residual stresses in the composite 

laminate. An elastic solution is obtained by using elastic material constants E = 2600MPa 

and v =0.4 for epoxy. For this elastic solution, the maximum tensile stress in the matrix is 

52 MPa and the maximum compressive stress in the fibre is 101 MPa, irrespective of the 

rate of cooling.

Fig. 5-20 Residual stress (o \z) distribution in the model.
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Following cooling to room temperature, creep and relaxation take place 

simultaneously due to the viscoelastic properties of the epoxy matrix. The change of the 

stresses/strains in the matrix causes a change of the stresses/strains in the elastic fibre in 

order to reach a new state of balance for the cross-ply laminate. The numerical analysis 

was carried out for 2500 minutes (-42 hrs) while the temperature was held at 23°C.
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Figures 5-21 and 5-22 show the evolution of the maximum tensile stress in the matrix and 

the maximum compressive stress in the fibre, respectively. The time 0 in the figures 

corresponds to the instant when the cooling temperature reached 23 °C. In the legend of 

the figures, “TD” refers to the results with temperature dependent material constants, and 

“TI” refers to the results with temperature independent material constants.

55-,

5 0 -

4 5 - Cooling rate (°C/min.) 
—-— 1,4,TI 
—b— 0.15.T1

4 0 -

OJQ_ 3 5 -

3 0 - — 0.15,TD 
■«— Elastic2 5 -b

20  -

1 0 -

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Time (min.)

Fig. 5-21 Evolution of the maximum tensile stress in the matrix for various cooling rates

and material properties.

It can be seen that both tensile and compressive stresses are decreasing with time. The 

cooling rate affects the initial residual stress values. However, irrespective of the cooling 

rate, the residual stresses asymptotically tend to small values. For example, after 2500 

minutes, the maximum tensile stresses are 6.32 MPa and 5.76 MPa, and the maximum 

compressive stresses are 10.12 MPa and 9.40 MPa, for the cooling rates of 1.4°C/min and

0.15°C/min, respectively. For the purpose of comparison, the results of temperature-
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independent constants are also presented in the figures. They show a similar trend and the 

residual stress values after 2500 minutes for both the fast and slow cooling rates are not 

much different than those of the temperature-dependent ones.

-10

-20

-3 0 -

(0Q- -4 0 -
Cooling rate(°C/min.)
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-80-!
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-100 7,
-110

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 24000
Time (min.)

Fig. 5-22 Evolution of the maximum compressive stress in the fibre for various cooling

rates and material properties.

In the micromechanical analysis of composites, it is assumed that the global stress and 

strain are defined by the average values over the volume of the cell as follows [6, 19],

W ) , W ) d V ,  {£] = y l { s ) d V  (5.22)

where V is the volume of the multi-cell model.

From the FEM results we can also obtain the average residual stresses in each ply, for 

example, for the 90°ply (fibre along X-direction), we have

{CT}90= - L f  {a} dV = (5.23)
yU Vqq 90 Y J i
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where Vi is the volume of z'th element, (cr,} is the average stress of z'th element. The latter 

is simply the average of the stress values at all 8 nodes of each element.

Cooling rate (°C/min.)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Time (min.)

Fig. 5-23 Evolution of the global (average) stress a xx and <rzz in the 90° ply.

Figure 5-23 shows the evolution of the average stress components and <rzz of the 

90°ply. Again, the time 0 in the figure corresponds to the instant when the cooling 

temperature just reaches 23°C, and at this instant the stresses have the highest values. The 

average residual stresses in the ply decrease with time and tend to small asymptotic 

values after a period of time. It can be seen that the two in-plane stress components are 

equal but with opposite signs, negative in the fibre direction ( )  and positive in the

transverse direction (<xzz). It should also be noted that for the 0° ply, the global stress

C

O
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components (<xj0 = - (< u j90 and (a22 )0 = - { o 22 )90 , i.e. the global (average) thermal

residual stress of the cross-ply laminate is zero as expected.

The shrinkage of the laminate can be illustrated by the average strain (global strain). It 

should be noted that Eqn. (5.22) is valid for both mechanical and/or thermal loadings. 

Thus, by micromechanical analysis of a cell, one can get the macroscopic strains and 

stresses of the composite. By using Gauss’s theorem, the average strain in the cell can be 

expressed as an integral around the boundary surfaces [6, 19]. For the current [0°/90°]n 

cross-ply laminate the average shrinkage strain is the same in the X- and Z-axes 

directions and can be obtained from the following equation:

s L = - e a =  f sz dV = - -  f ^ d V  =  - -  f w n d S  (5.24)
V Jv zz v  w 8z y  Js 2

where S  is the outside surface of the multi-cell model, w is displacement in z direction

and nz is the normal unit vector. Using the boundary condition similar in Eqn. (5.13), we

obtain:

_ L -  w(0,0,l)e L = -----------------------------------------------------------------------------------------(5.25)

where L is the length of the micro-mechanical model in the Z-direction and w (0, 0, 1) is 

the displacement of the surface Z=l. Figure 5-24 shows the evolution of the average 

shrinkage strain with time. It is noted that a fast cooling rate results in a higher shrinkage 

strain when the laminate is cooled to room temperature. The thermal shrinkage strain 

gradually recovers and asymptotically tends to a smaller value irrespective of the cooling 

rate. Again, the result from the temperature-independent material constants shows a 

similar trend to that of the temperature-dependent material constants, however, the 

magnitude of the shrinkage strain is overestimated.
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Fig. 5-24 The evolution of shrinkage strain 1 1 for two cooling rates and two material

properties.

5.4.3 Mechanical Part o f  the Total Strain

The above results show that the residual stresses (both local stresses and the average 

stress in each ply) and the average shrinkage strain tend to small values after a certain 

period of time. However, this is not the case for the local strains. Here we are interested 

in the mechanical part of the total strains because this part is produced due to the 

mismatch of the thermal strains between the fibre and the matrix. At each point within the 

MUC, the total strain {et }, mechanical part of the strain (residual strain), {sm} and the

thermal strain, {eth} have the following relation:

{*»«} = (5-26) 

Figure 5-25 shows the distribution of the first principal strain of the strain vector {em} in 

the MUC at 2700 minutes after cooling to room temperature at 1.4°C/min by using
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temperature dependent material constants. It can be seen that the highest residual 

principal strain reaches 3.5% in the matrix near the fibre/matrix interface -  a rather high 

value. The location of the maximum strain is unchanged during the evolution of 

shrinkage strain.
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Fig. 5-25 The distribution of the first principal strain.
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Fig. 5-26 The evolution of the maximum principal strain in the matrix.
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The evolution of the maximum residual strain with time is shown in Fig. 5-26. It can 

be seen that the 1st principal strain increases with time and tends to an asymptotic value. 

The increase of the local residual strains can be attributed to a combined action of the 

relaxation of the stresses and the creep of the strains. The local material is constrained to 

a certain degree by surrounding materials, therefore, the relaxation and the creep 

processes can occur simultaneously. The creep rate decreases with the decreasing stress, 

and tends to zero when the local stress becomes low enough.

5.4.4 Results o f  Subsequent Uniaxial Tensile Loading

The previous results indicate that the residual stresses (both local stress and average 

stress in each ply) and the average shrinkage strain tend to small values after a certain 

period of time; however, the local residual strains in the multi-cell model are still quite 

significant. To study the influence of residual stresses/strains on the response of the 

laminate under subsequently applied mechanical loads, the damage evolution in the 

matrix under a uniaxial tensile loading in Z-direction (Fig. 5-20) is investigated. The 

analysis is carried out in the meso/micro-mechanical model with the residual stress/strain 

state. After keeping the laminate at room temperature for 2700 min, a global tensile 

s tra in ^  is superimposed to the model. This is achieved by specifying a displacement at 

the surface Z=l. The load is applied up to szz = 1.5% (superimposed value) at a strain rate

of 10_5s_1. At each time step the damage zone of the matrix is determined using the 

criterion and post-damage relation described in Chapter 3.

The evolution of damage zones (represented by black color) in matrix is shown in Fig. 

5-27(a). When the global strain szz=0.2%, damage begins near the fibre/matrix interface
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in 90° ply (fibre along X-direction), and upon further loading it propagates in two 

directions. One is a growth in the hoop direction of the interface, and the other one is 

along the axial direction of the interface (X-direction). At szz =0.5%, another damage 

(transverse crack) initiates at the upper edge of the surface Z=l. This damage zone on the 

plane Z=1 does not grow further with the increased strain, but the damaged zone along 

the fibre/matrix interface propagates further along the X-direction and goes through the 

MUC at about Zzz =1.0%. It is noted that in the lower part of the MUC (0° ply, where the 

fibre is in the loading direction) no damage has as yet occurred.

X

Z

?  =0 .2% 0.3% 0.5% 1.0% 1.2%

( a )

X

Z

s„ =0.77 % 0.9% 1.0% 1.2% 1.3%

(b)

Fig. 5-27 Damage evolution in cross-ply laminates:

(a) With residual stress/strain; (b) Without residual stress/strain.
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For the sake of comparison, Fig. 5-27(b) shows the damage evolution under the same 

uniaxial tensile loading but neglecting the residual stress/strain introduced in the cooling 

process. It can be seen that at the global strain of 0.77% damage band (transverse 

cracking) is first formed along the X-direction. Thereafter, the band extends across the 

thickness of 90° layer and finally it is blocked by the 0° layer. Therefore, the location and 

the strain level at which damage initiates and the evolution of the damage are different in 

these two cases. This indicates that although the residual stresses relax to small values 

after a period of time, the local residual strains could still have a significant influence on 

the response of the laminate under subsequently applied mechanical loads.

5.5 CONCLUDING REMARKS

Following conclusions are drawn from the current investigation.

• The meso-scale representation and mechanical analysis of cross-ply and angle-ply 

laminates provide an alternate approach for these laminates. Elastic results show that 

the predictions based on the meso-scale model of the laminates agree well with the 

classical laminate theory.

• The predicted global stress-strain curves of the three types of laminates are in good 

agreement with the experimental observations. In particular, the predicted results 

indicate the unifying nature of the micro/meso-mechanical approach for both the 

unidirectional and angle-ply laminates using the same material constants.

• The results of the ply level stress indicate that after damage, the load carrying 

capacity is decreased only in directions perpendicular to the fibre. Thus it explains the 

varying stress-strain responses of laminates with different types of fibre architecture.
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• The predicted orientation of the matrix cracking is in agreement with the macroscopic 

test observations and the evolution path is properly simulated by the micro/meso- 

mechanical analysis. It is shown that the matrix cracking for the cross-ply laminates 

are confined to the 90° ply, hence, the analysis highlights the different mesoscopic 

response of a cross-ply laminate compared to that of an angle-ply one.

• The evolution of thermal residual stress/strain induced during curing process and their 

influence on the subsequently applied mechanical loading have been analyzed 

through a viscoelastic finite element analysis for cross-ply laminates. The generation 

of the residual stresses strongly depends on the cooling rate and the model with 

temperature independent material constants over-predicts the residual stresses.

• A stress relaxation process takes place in polymer composites after the temperature 

has dropped to the ambient one. The residual stresses decrease with time. In addition, 

they asymptotically tend to a small value irrespective of the cooling rates.

• The maximum shrinkage is reached at the completion of the cooling process. A 

higher cooling rate results in a higher shrinkage strain. However, most of the 

shrinkage strain is recovered with time and it asymptotically tends to a small value 

irrespective of the cooling rates.

• Although the residual stresses and the global shrinkage strain are small after a period 

of time, the local residual strains could still have a significant influence on the 

response of the laminate under subsequently applied mechanical loading. The 

location and the global strain level of which damage initiates, and the evolution of the 

damage are different for cases with or without consideration of the residual 

stresses/strains.
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CHAPTER 6

SUMMARY

6.1 SUMMARY AND CONCLUSIONS

The main works and conclusions through this Ph. D research project can be briefly 

summarized as the following.

Based on the general form of periodic conditions, a unified form of boundary 

conditions is proposed for the FEM analysis of RUC models subjected to multiaxial loads. 

Using Lagrange’s multiplier method, it is demonstrated that by imposing displacement 

difference constraints (in the form described in Chapter 2), the traction continuity 

conditions can be satisfied automatically. Thus the proposed periodic boundary 

conditions can be conveniently specified in a standard structural FEM scheme.

With the aid of the Gauss’s theorem, a method to evaluate the average stresses and 

strains has been derived based on the applied boundary conditions and the resultant 

forces at the boundaries. It is shown that by using effective properties of a ‘homogenized’ 

media, the strain energy stored in the effective media is equal to the strain energy stored 

in the composite material. For a unidirectional laminate subjected to general off-axis 

loading, the periodic boundary conditions for a one-quarter RUC are derived by 

exploiting the symmetries in geometry, in material and in loading conditions. The 

comparison with a full-size RUC model demonstrated the validity of the formulation.

The matrix behaviour is described by a recently developed nonlinear viscoelastic 

constitutive model which has further been implemented into the FEM code ADINA 

through its user-defined subroutine. Since the nonlinear viscoelasticity is introduced at
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the constituent level, the influences on the response of unidirectional and angle-ply 

laminates under mechanical loading, evolution of the residual stress/strain induced by 

curing, and the evolution of damage can be well simulated.

Through representing the interphase/interface by a thin layer of element, the proposed 

interphase/interface separation model can be directly applied to the micro/meso unit-cell 

analyses. The stress-strain relation of the interphase element is derived based on a 

cohesive law. The model can handle both the normal and tangential separation of the 

interphase, thus mixed mode interphase damage can be predicted by the model. 

Furthermore, the interphase damage model is easily to implement into FEM scheme since 

an equivalent stress-strain relationship is used.

The so-called snap-back instability involved in the numerical simulation of the 

interphase damage is illustrated by a 1-D example analytically and numerically. In 

addition, a viscous term is added to the cohesive law to overcome the convergence 

difficulty induced by the snap-back instability in the equilibrium iterations.

To model the matrix cracking, a ‘smeared crack approach’ is employed. In this 

approach, the cracked solid is assumed to be a continuum that permits a crack description 

in terms of stress-strain relations. In addition, the proposed post-damage stress-strain 

relation allows only normal and in-plane shear stress components (corresponding to crack 

orientations) tend to zero.

An iteration algorithm is established to simulate the global off-axis loading under 

strain control conditions. Since off-axis tensile loading to a UDC is equivalent to 

multiaxial loadings in the material principal directions, at each loading step, appropriate 

ratios of increments of strain components should be applied to ensure the resultant of the
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stress components acting along the off-axis direction.

The proposed meso scale analysis method for the [±#]„ angle-ply laminates can be

regarded as an extension of the micromechanical approach of unidirectional laminates 

and it provides an alternative way to the analysis of multi-directional laminates. Thus the 

mechanical properties of the laminates and damage evolution can be directly related to 

the properties of the constituents.

Two types of unidirectional laminate (E-glass/Epon 828 and E-glass/Epon 815) are 

analyzed with the intralaminar damage. For macroscopic response, it is shown that the 

predictions on both the global stress-strain curves and ultimate strength at different off- 

axis angles are in very good agreement with the corresponding test results. For 

microscopic response, it is illustrated that the initiation and propagation of the interphase 

damage and matrix cracking, can be well simulated. In addition, the two types of 

intralaminar damage modes can be distinguished in the analyses.

For cross-ply laminates, initiation and evolution of curing induced residual 

stress/strain and the effect of the residual stress/strain on the subsequent mechanical 

loading are investigated. Temperature-dependent material constants at the range from the 

curing temperature to room temperature are estimated approximately. The results indicate 

that elastic model and temperature-independent material constants over-estimated the 

residual stresses. It is also shown that the residual stress will relax and the residual strain 

will increase with time due to the viscoelasticity nature of the polymer matrix and they 

will asymptotically reach stable values. For the subsequent tensile loading of a cross-ply 

laminate with residual stress/strain, it is observed that both the location and load level at 

which matrix cracking initiates and propagates depend on the residual stress/strain
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distribution.

In summary, a comprehensive and reliable micro/meso-mechanical analysis approach 

for composite laminates has been established. The approach is able to deal with material 

nonlinear viscoelasticity and multiaxial loading, is able to simulate initiation and growth 

of different damage modes in composite laminates including interface debonding, matrix 

cracking and fiber fracture. Presented application examples to different types of laminates 

(unidirectional, cross-ply and angle-ply) under different loading scenarios (uniaxial, off- 

axial and thermal loading) have demonstrated the feasibility of the approach. Satisfactory 

agreements between the predictions of the approach and available experimental or 

analytical results have confirmed the validity of the method. Moreover, FEM modules of 

major importance to this method, such as viscoelastic material model, interface damage 

model and smeared matrix crack model have been developed and successfully 

incorporated into a commercial FEM code, which provides great potential for more 

applications of the proposed micro/meso-mechanical analysis approach.
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