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Abstract

Geometric modeling is one of the active topics of research in computer science.
One of the toughest problems in this arca is the problem of finding the intersee-
tions of curves and surfaces. Recently, rescachers have focused their attention on
applying algebraic geometry to this problem. It turns out that elimmination theory
can he effectively used to solve the intersection problems. This thesis discusses
the issues of how to evaluate curve and surface intersections using elimination
theory. First, it provides a comprehensive study of the elimination techniques.
Second, it presents the implemention issues of three curve/curve intersection al-
gorithms: projection, resolvent, and Grobner basis methods. To test the algo-
rithms, a methodology for generating random problems (pairs of 31) parametric
rational curves) with known intersections is presented. Experimental results ob-
tained frum the random problems identify the classes of the problems for which
cach method is better. Also, experiments are performed to illustrate the difficul-
ties which arise when using floating point implementations of the projection and

resolvent intersection algorithms.
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Chapter 1

Introduction

Geometric modeling is concerned with the design, representation, and process-
ing of curves, surfaces, and solids. It plays an important role in many arcas of
computer science and industry. This includes computer graphics, computer-aided
design (CAD), computer-aided manufacturing (CAM), computer-aided geometric
design (CAGD), robotics, automotive and aircraft industries. Computer models
are apparently replacing physical models in many applications in industrial design
and manufacture. They are cheaper to construct, easier to change, and simpler to
analyze. Computer simulations save both time and moncy, and computer analyses
of geometric models lead to better and cheaper products.

There are two distinct aspects of geometric modeling (1) Design: first, the
physical shape of an object is given and presumed to be fixed, and we deter-
mine a mathematical approximation; (2) Processing: we usually need subsequent
operations on the design such as viewing, intersections, transformations, ctc.

In the design aspect of geometric modeling, designing curves and surfaces
plays an important role in the construction of quite different products such as

car bodies, ship hulls, airplane fuselages and wings, propeller blades, shoe insoles,
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bottles, etc., as well as in the description of geological, physical, and even medical
phenomena.

Choosing a good representation of curves and surfaces can improve the ac-
curacy with which the actual curves and surfaces are modeled. In addition, the
representation also piays an impertant role in the effectiveness of the processing
aspect of geometric modeling. For example, intersecting &n implicit curve and
a parametric polynomial one is a simple problem, but intersecting two implicit
curves is a hard problem. Finally, the nature of the application also determines
what type of representation we must choose. For instance, discrete representation
of curves and surfaces is suitable for the image processing area but is awkward in
CAGD.

Of all of the representations of curves and surfaces, parametric polynomial and
parametric rational are the most commonly used in geometric modeling systems.
The parametric rational representation can approximate with a high degree of
accuracy most of the curves and surfaces that arise in real life applications [Bohm].

On the processing side of geometric modeling, intersection of curves and sur-
faces is a fundamental operation. This operation is performed repeatedly as part
of many operations in geometric processing. We give some examples. Firstly,
curve/curve intersection is used to find a physically meaningful offset curve (an
offset curve is a curve offset from a given curve by a small amount) since one
must first determine the self-intersections of this curve. An offset curve is useful
in generating a cutter path[Farin]. Secondly, surface/surface intersection plays
an important role in the construction of fillet surfaces, i.e., surfaces that round
off sharp corners or edges between surfaces, since we must know that edge which

is very often the intersection line between two surfaces. Thirdly, in solid mod-



eling, the Boolean operations for solids require accurate intersection algorithius.
In fact, most current solid modelers restrict themselves to plane and quadratic
surface faces simply to ensure that intersections can be founsd reliably. Finally,
curve/surface intersection is used in compuling the contour lines which are the
intersections between a plane and the graph of a given multivariate function. This

is used very often in finding the lines of constant temperature in metcorology.

The intersection problem is not an easy one, and continues to be an active

topic of research. Some of the reasons for this continuing activity are not hard
to identify. A good curve and surface intersection technique has to balance three
conflicting goals: efficiency, robustness, and accuracy. In this thesis, we will focus
our attention on the intersection of parametric polynomial and parametric rational
curves and surfaces. In Chapter 2, these intersection problems are described.

There are several known methods of handling the intersection problem. The
first one that comes to our mind is the numerical method. Due to the scope of
our thesis, this method is not covered here. The second method is the subdivision
method. It is usually used for B-spline or Bezier curves and surfaces, which are
defined by control polygons or graphs [Morten, Farin]. For example, to compute
the intersection of two Bezier curves we proceed as follows: Compare the convex
hulls of the two control polvgons. If they do not overiap, the curves do not inter-
sect. If they do overlap, each curve is subdivided into two parts and represented
by refined control polygons and new convex hulls are checked for overlap. As
this procedure continues, each iteration rejects parts of the curves which do not
contain intersection points. We will not discuss this method further since it is
beyond the scope of the thesis.

The third method is to use the elimination technique. Elimination theory



can be viewed as two classes. The first is the classical one. This class deals
with the existence of the solutions to polynomial equations. It evolved during
the constructive period in algebra, beginning in the latter part of the nineieenth
century. Sylvester, Cayley and Bezout did some pioneer works on the bivariate
case. Later, Hurwitz and Mertens [Hurwit, Mertens] extended this result for the
multivariate case using an abstract method. At the beginning of the twentieth
century, Macaulay introduced an explicit expression for the multivariate resultant.
More recently, Buchberger advanced elimination techniques by introducing the
notion of Grébner basis, a modern elimination technique.

In Chapter 3 and in the Appendix, we provide a comprehensive survey of
these elimination techniques. First, we present the construction of the Bezout
matrix of two univariate polynomials. Then, we provide a complete, correct, and
constructive proof for the bivariate case, which involves the Sylvester resultant.
Furthermore, we rewrite the constructive method to derive an explicit expression
for the resultant in the multivariate case (the original descriptions in Macaulay
[Mac02, Macl16)] are hard to follow and appear to contain errors). Also in Chapter
3, the concepts of the complete and special resolvent are discussed and the notion
of Grébner basis is presented.

In Chapter 4, we describe the implementation issues of three curve/curve inter-
section algorithms: projection, resolvent, and Grébner basis methods. A method
for generating 3D parametric rational curves from random points in 3-space with
known intersections is given. Experimental results obtained from these problems
identify classes of problems for which each method is better. Also included in this
chapter are experiments which illustrate difficulties with floating point implemen-

tations of the projection and resolvent intersection algorithms.



Concluding remarks and future considerations arising from this thesis are pre-

sented in Chapter 5.



Chapter 2

Curves and Surfaces

Designing curves and surfaces is one of the most important areas in geometric
modeling. There are two classes of representations of curves and surfaces. The
first one is the discrete class. It includes the tessellation of objects, such as curves
and surfaces; for example, the raster format, quadtree, running code, chain code,
etc., [Ball, Carlbo, Rosenf] techniques belong to this subclass of the discrete class.
In addition, this class also contains the graphic or vector representation of objects.
This subclass represents an object by its boundary vectors. In practice, the dis-
crete representation class is often used in computer vision and image processing.

The second class is the continuous representation. It represents or approxi-
mates an object by a set of continuous functions. For example, spline curves and
surfaces [Bohm, Farin, Morten] belong to this class. In this thesis, we restrict
ourselves to curves and surfaces which can be represented implicitly as polynomi-
als in independent variables with real coefficients. It looks like we are imposing a
large constraint, but in practice, this subclass can approximate a lot of objects to
any desirable accuracy. With any implicit representation, however, it is hard to

determine the points on the curve or surface. Thus, we define a subclass of this
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implicit polynomial class; namely the class of curves and surfaces which can be
represented by parametric rational polynomials. This representation is the most
widely used one in geometric modeling systems because it has many advantages
over other representations. First, it usually offers more degrecs of freedom for
controlling the shape of curves and surfaces than the non-parametric form. Scc-
ond, transformations such as translation and rotation can be performed directly
on parametric equations. Third, parametric forms readily handle infinite slopes
without breaking down computationally. Fourth, parametric equations completely
separate the roles of the dependent and independent variables, both algebraically
and geometrically, and allow any numbers of variables. Fifth, parametrically de-
fined geometric elements are inherently bounded because the parametric variables
are bounded. Sixth, we can easily express these parametric equations in the form
of vectors and matrices; this allows us to usec computers economically. Finally,
we can have the parametric polynomial meet certain special conditions, such as
a common form for all curves and a common form for all surfaces. Because they
have these nice properties, in this thesis, we focus only on curves and surfaces in
parametric rational form. In practice, curves and surfaces are parametric picce-
wise rational, i.e., they consist of several parametric rational curves or surfaces
joined together with a few degrees of continuity at the endpoints or boundary
curves.

Before we give the definition of these curves and surfaces, we want to statc that
all parametric rational curves and surfaces can be implicitized to the polynomial
form, but the converse is not always true. An implicit polynomial curve can be
parametrized as a rational curve if and only if the curve has genus zero [Sedergdh).

In the case of implicit cubic polynomial curves, not all curves can be parametrized;



Figure 2.1 has been removed
due to the unavailability of

copyright permission

Figure 2.1: [Pat88b] Graph of —10z° + 30zy® ~ 30z2 — 30y +22=0
for example, the planar curve [Pat88b]
—10z3 + 30zy® — 30z% — 30y +22 =10

is nonparametrizable using rational form (see Figure 1). There are some works in
the literature that deal with this problem [Pat88a, Pat88b, Abhy87a, Abhy87b,
Abhy88a, Abhy88b]. They use polynomials and/or trigonometric functions such
as sin or cos to parametrize the curves and surfaces.

In this chapter we give the definitions of various types of curves and surfaces,

and we state several intersection problems involving them.

2.1 Definitions of Curves and Surfaces

The simplest curve in geometric modeling is the planar parametric polynomial

curve.



Definition 2.1 A planar parametric polynomial curve of degrec n, C(t)=( x(l),

y(t)), is defined by the equations

z(t) = a.t"+ an_ "M 4+ il + ag,

y(t) = bntn + I)n_ltn_] R blt + 1)(), (2 l)
where to <t <ty and at least one of a, and b, is nonzero.

We can see that the class of planar parametric polynomial curves is a small
subclass of the implicit curves. For example, in the quadratic case, we can use
planar parametric polynomial curves to represent the parabolas only. To represent
all other conic curves such as ellipses and hyperbolas, we need the concept of
planar parametric rational curves. For example, we can represent a semicircle

which passes through Py = (o, y0) and P2 = (z2,y2), has center at the midpoint

of the line segment PyP;, and has radius r = /(20 — z2)* + (3o — y2)%, by the

parametric rational curve

o(t) = (2o — 221 + T)t2 — 220 — 1)L + )

22 -2t +1
(1) = (yo — 241 + y2)t* = 2(yo — 1)t + %o
W= 202 — 2t + 1 ’
where t € [0,1], and
—1 Tog— T
-T1=———y22'10, n = 02 :

In addition, we can get the other half of this circle by using the same paramet-
ric rational equations z(t) and y(t) with the new values of z; and y; being the
negative of the above valucs of z; and y; . Thus, in order to exactly represent
or approximate some more complicated planar curves, we need the definition of

planar parametric rational curve.



Definition 2.2 A planar parametric rational curve of degreen, C(t)=(z(t), y(t)),

is defined by the equations

(t) = ant™ + an_1 1" 4 Fart + ag
= Lt dt -t dit+do
but™ + by_y " 4 -+ bt + bo

= 2.2
y(t) dol® + dy_y "1 4 -+ dit + do” (22)

where to < L < t, and at least one of an, b, and dy, is nonzero. Also, at least one

of d;’s is nonzero.

In practice, sometimes we have to used 3D curves; these curves can be thought
of as the intersection of two 3D surfaces. It is noted that the set of all planar
parametric polynomial curves is a subset of the set of all 3D parametric polynomial
curves. Similar to the planar case, 3D parametric rational curves can be used to
represent or approximate a larger set of curves than the class of 3D parametric
polynomial curves. The definition of the 3D parametric rational curves is as

follows.

Definition 2.3 A 3D parametric rational curve of degree n, C(t)=(z(t), y(t),
z(t)), is defined by the equations

ant" + @™ -+ art + a0
dat? + dp_1t"-1 4+ .-+ dit + dg’
bt + b yt™ V- + bt + bo
dot™ + 1tV 4 -+ dit + do’
cal® + enal™ !+t at + oo
dot™ + dpqt1 4 -+ dit + do’

z(t) =

where tg < t < t; and at least one of an, by, ¢; and dy is nonzero. Also, at least

one of d; 's 1s nonzero.

Note that when d, = ... = d; = 0 and dy = 1, we have the representation of a

3D parametric polynomial curve as mentioned above.
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We can easily extend this definition for the k-dimensional parametric rational

curves as

Definition 2.4 A k-dimensional paramelric rational curve of degree m,
C(t) = (z.1(t), za(t), - .., zk(t)) is defined by the equations

QG l™ + Qait™ o Farat + ago
dytn +dyqt"' 4+ dit+dy
Agnl™ + agp-1t™ 4+ Fagit 4 azp

t) = 2.
z2(1) Aot + dpyt™' + -+ dit +do (2:4)

.'l!](i)

---------

ull) = Apnl™ + hpaat™ o+ apal + @po
) = T b g -+ dil+ do

where to <t < t; and at least one of ayn, G2, - -, Ukn and dy is nonzcro. Also,

at least one of d;’s is nonzero.

The parametric representation of the surface is similarly defined as in the case

of the curves; hence, we have the definition of a parametric polynomial surface as

Definition 2.5 A parametric polynomial surface, S(u,v)=(z(w,), y(u,v), z(w,v)),

is defined by the equations

n n

z(u,v) = Z Za;jztit’j,
1=0 ;=0
n m

y(u,v) = Z Zb;ﬂtil:j, (2.

=0 j=0

n m . 3
z(u,v) = Z ZC,‘j‘U"UJ,

1=0 j=0

I~
-t
~—

where up < u < u; and vo < v < vy, and at least one of anm, bnm, and ¢y 15

NONZETO.

In geometric modeling, we also have the concept of a parametric rational

surface, which is similarly defined, and the concept of a k-dimensional parametric

11



rational surface, which can be defined easily by extending the definition of the
parametric rational surface, but due to the scope of this thesis, we will not, discuss

these surfaces here.

2.2 Intersection Problems

T'he intersection problem is one of the most fundamental problems when pro-
cessing curves and surfaces in geometric modeling. For example, ray tracing is a
standard technique for the realistic rendering of objects. One of the major com-
ponents in that method is the computation of intersections between straight lines
(rays) and the objects to be rendered.

There are several different intersection problems; namely, the intersection be-
tween two curves, the intersection between two surfaces, and the intersection
between a curve and a surface. The representation of the curves and surfaces in
these problems determines the level of difficulty in obtaining the solution. The
casicst intersection problem is the intersection between an implicit curve/surface
and a parametric one. The problems of finding the intersection of two implicit or
two parametric curves/surfaces has the same level of difficulty, in our opinion. In
this thesis, we discuss only the intersection problems involving parametric curves
and surfaces.

To solve these problems using algebraic methods, we have to solve the implic-

itization and inversion problems.

(1) The implicitization problem is to find the implicit polynomial equation
F(z,y) = 0, for a given planar parametric curve, or two implicit surfaces

F(z,y,:) = 0and G(z,y, z) = 0 whose intersection is a given 3D parametric



curve, or the k—1 hypersurfaces whose intersection is a given k-dimensional

parametric curve.

(2) The inversion problem is to find the parameter(s) ¢ corresponding to the
coordinates of a given point P = (z,y),or P = (x,y,z) for the 3D curve, or

P = (x,,%3,..., ) in the k~dimensional case, known to lic on the curve.

Now we are in the position to give the description of the intersection problems

in geometric modeling.

Problem 2.1 Curve/Curve intersection
Let Cy(s) = (x1(s),1(8), z1(s)) and Ca(t) = (a2(t),y2(t), z2(1)) be curves
represented by x-, y- and z-coordinate functions which are rational poly-

nomials in s and {, i.e., z1(s) = 3—,'(('3’ yi(s) = %((%, zi(s) = ?T((%’ and

b c
zo(t) = B, (1) = 2l 2(t) = 2, where ai(s), bi(s), e1(), di(s) are
polynomials in s and aa(t), ba{t), ca(t), d2(t) are polynomials in . Note that
if ¢1(s) = c2(¢) = 0 then the curves are planar, and if d,(s) = dy({) = I then
the curves are non-rational. Finding all the intersection points of these two

curves by algebraic techniques is equivalent to solving the following system

of equations:

i) Ly

bi(s) aat) _ Y
a6 Lo -0 (26)
Cl(S)_Cg(l) - o

We can also implicitize one curve, say Ci(s), to get the implicit equations

P(z,y,z) = 0 and Q(z,y, z) = 0 for the surfaces whose intersection curve is



Cy(s). Substitute z = z2(t),y = y2(t) and z = z,(t) into P(z,y,z) =0 and

Q(z,y,z) = 0, to get the following system of equations:
P(t)=0, Q()=o0.

Similarly, for the k-dimensional case, the problem reduces to solving a sys-

tem of k of equations in two unknowns, s and ¢, or a system of k-1 equations

in one unknown, .

Problem 2.2 Curve/Surface intersection

Let S(u,v) = (z(u,v),y(u,v),2(x,v)) denote a surface as in (2.5). Let
line L be represented as the intersection of two planes whose equations are
F(z,y,2) = aiz+byy+cz+dy =0 and G(z,y,z) = aaz+byy+coz+dy = 0.
Let the curve C;(s) be defined as in the previous problem. Because of the

complexity of the problem, we separate it into two subproblems as follows:

Problem 2.2a Line/Surface intersection

The solution for this problem is straightforward. We simply substitute
r = z(u,v),y = y(x,v),z = 2(u,v) into F(z,y,z) and G(z,y,z) to

get two polynomials in u and v :

P](U,U) = 0, Pg(u,v) =Vu. (27)

Problem 2.2b Curve/Surface intersection

In this case, we can obtain the system of equations :

Z:E:; —z(u,v) = 0,
Z‘lg)) —y(u,v) = 0, (2.8)
als) z(u,v) = 0.

di(s)

14



Problem 2.3 Surface/Surface intersection
Let the two surfaces be parametrically defined by Sy(u,v) = (zi(u,v),
y1(u,v), 21(x,v)) and Sp(s,t) = (za(s,t),y2(s,1), 22(s,t)) where the coor-
dinate functions are bivariate polynomials. As in the above curve/surface

subproblem, we can obtain the system of equations:

xl(uav)"‘z2(3ai) = 0,
y1(u,v) — y2(s,t) = 0, (2.9)

zi(u,v) — 22(s,t) = 0.

Hence, the intersection problems can be expressed algebraically as a system of

k equations in n unknowns, where k can be greater, less than, or equal to n.

w



Chapter 3

Elimination Theory

Classical elimination theory evolved during the period of constructive methods in
algebra, beginning in the latter part of the nineteenth century. It is the study
of conditions for the existence of solutions to a system of polynomial equations.
The main idea here is to find a single condition for a system of k equations in
n unknowns to have a solution. In the case of n homogeneous polynomials in n
unknowns, we have the concept of resultant. This resultant is zero if and only if the
system has a nontrivial solution, a solution in which at least one of the unknowns
is nonzero. When there are k homogeneous polynomials in n unknowns where
k < n and the system has a finite number of solutions, we have the concept of
u-resultant. From this resultant,. we can get the solution of this system. Here,
we are interested in more than the existence of the solutions of the system; we
are interested in the constructive aspects of these resultants and how to find the
solutions of the system from them. For the case n < k, we have to use a more
powerful notion; here, the concept of resolvent is used to determine the existence
of the nontrivial solution. The resolvent provides the necessary and sufficient

condition for the system to not have a finite number of solutions.
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Modern elimination theory is based on the concept of the Grébner basis. After
computing this basis, we have a list of criteria to determine the existence of the
common zeros of the system of polynomials.

In this chapter, we examine these concepts in detail.

3.1 Polynomial Module and Ideal

In this section we introduce some basic conzepts in polynomial theory. These
concepts will be used throughout this chapter. The first one is the concept of a
module of a set of polynomials; understanding this concept is useful for the devel-
opment of classical elimination theory. The second concept, polynomial ideals, is
an extension of the first one. This idea plays an important role in the development

of the Grébner basis.

3.1.1 Moduies

First we introduce the concept of a module system of polynomials whose cocffi-

cients are in an arbitrary field.

Definition 3.1 : A module system is an aggregate of polynomials in n variables
1, ..,y defined by the property that if P, Py, Py belong to the system then P+ I

and AP dlso belong to the system where A is any polyromial in zy,. .., Tn.

We can see that if P, ..., P belong to a module system then so does A, P+
cev+4 APy, where Ai,..., Ay arc arbitrary polynomials.
Let P, ..., P, be polynomialsin 21, ..., T, then (Pr,..., P,) denotes the mod-

ule system of these polynomials. Of all the members of the module (Py,..., 1),

17
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we are interested only in a small subset, namely those which are called the ele-

mentary members.

Definition 3.2 : An elementary member of the module (Py, ..., P,) is any mem-

ber of the type wP; (i = 1,...,n), where w is any power product of T1y...,Zn.

Thus, the number of elementary members of a given module system of a given

degree is finite.

Another way to think of the notion of a module is that the module is a gen-
eralization of a vector space; instead of restricting the scalars to lie in a field we
allow them to be elements of an arbitrary ring. In our case, the ring is the ring
of multivariate polynomials. Thus, we have the notion of linearly independent
members of a module and the notion of bases as in a vector space [Herst].

3.1.2 Polynomial Ideal

Let K be a commutative ring, i.e., the ring of multivariate polynomials.

Definition 3.3 : A non-empty subset T of a commutative ring K with identity

is called an ideal if

(1) F-Gel,

(2) PFel,
forall FGeI, PeK.

The simplest examples are the null ideal (consisting of the 0 element only) and

the unit ideal (consisting of the entire ring). The set

<P>={PQ|QeK]}



of all multiples of P € K is called a principal idcal generated by P. Clearly the
unit ideal is < 1 >. Similarly, for the ring clements P,..., P, € K, the ideal

generated by these elements is

<P,...,.P>={D_ PQi|Qiek}.
=1

Thus, a set of polynomials (algebraic equations) P = {P,,..., P} may be viewed

as the generators of < P > .

3.2 The Resultants

In this section, we give a general definition of resultant. In addition, we present
the construction of the Bezout matrix of two univariate polynomials. Using the
concept of modules, we discuss the construction of Sylvester and Macaulay ma-
trices of two bivariate homogeneous polynomials and n homogencous polynomials
in n unknowns, respectively. Furthermore, we will show that the determinants of
the Bezout and Sylvester matrices are the resultants of these polynomials while
the resultant of the multivariate polynomials is the ratio between the determinant

of the Macaulay matrix and the determinant of one of its submatrices.

Definition 3.4 : A resultant of a set of polynomials is an expression involving
the coefficients of these polynomials such that the vanishing of the resullant is a
necessary and sufficient condition for the set of polynomials to have a nonlrivial

common zero.

Note that in the case the coefficients of these polynomials are real numbers, com-
plex zeros are allowed. In general, the zeros can be in an extension field of the

coefficients.
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3.2.1 Bezout’s Resultant of Two Polynomials

Let P, and P, € RJt], for R an arbitrary Unique Factorization Domain, UFD.
This domain includes the rings of polynomials in one or more variables over an

arbitrary field. Assume deg(Py) = deg(Pz) =n >0, ai, b; € R; we have

P1 (t) = Z(l,‘ti, and Pg(t) = E bjtj,

=0 j=0

where at least one of a,, b, are nonzero.
Let
£(£) = Pi(t) Pa(to) — Pa(t) Pa(to),
where tg is a constant. Then f(fo) = 0, even if there is no common root. Thus,
g(l) = -ll_f—:;- is a polynomial in ¢ of degree at most n — 1, and the symmetry of
f() implies that the coefficients of g(t) are also polynomials of degree n — 1 in {o.

Thus, we can write g(t) as

n-1 n-1

gty = 2 (2 eto)t”s (3.1)

p=0 ¢=0

where the c,, are functions of a; and b;. Now if £ is a common root of Py(t) and

P,(1), then
A1) Py(t)
t) = ———Py(ty) — ———=Pi(to) =0
g( ) (i “'tO) 2( 0) (t "'tO) 1( 0)
for all t. Hence, we can say that
n~1
> cpeth =0, forallp, 0<p<n-1L (3.2)

q=0

This yields the homogeneous system of linear equations:

€00 R Con-1 1

C1,0 e Cin-1 to

LCn—l.o eor Gnein-l || tg_l



The matrix C = [cpq] is called the Cayley matrix or the Bezout matrix. Since
to is a common root of Py(t), Py(t), system (3.3) has a nontrivial solution. This
implies that the determinant of the above matrix is zero. De Montaudouin and
Tiller [Montau] give the expression for entries ¢yq of the Bezout matrix as:

mn

g = O (@kbppragot — pr14g-kbi), 0SS pgsn-—1. (3.4)

k=mz
where mn = min(p,q) and mz = max (0, —n + 1+ p).

Using the vector approach, Goldman, Sederberg and Anderson [Goldm84] get

the same expression for the ¢y, as in (3.4)
mn
Cpq = LZ |V, Vptr4g-k), 0<pg<n-—1. (3.5)
;=mz
where mn and maz are defined as in (3.4), and v; = [a;, b]". We wi"' discuss the
advantages of this vector notation in solving the implicitization, inversion, and
intersection of planar parametric rational curves in a later chapter.

It is clear that if P, = kP, where k # 0, then all the entrics of the Bezout
matrix are zeros. Also, De Montaudouin and Tiller [Montau] show that the de-
terminant of the Bezout matrix is the resultant of polynomials P, and 1%, 1.c.,
the vanishing of the determinant of the Bezout matrix of Py, P, 1s a necessary
and sufficient condition for them to have a common root. In addition, they show
that if the rank of [c,g] is n — r then the degree of the ged of Py and [ is » and
the (n — r)-th order submatrix in the lower right of [c,,] is nonsingular. Thus, if
P, and P, have a unique common root, we can get it by solving for {g in system
(3.3). Using the vector notation approach, Goldman, Sederberg and Anderson

[Goldm84] show that if the number of common roots of Py and P is more than

one and less than n, then we can find them by first finding the ged of Py and



P, by constructing the Bezout matrix, as in (3.3), of P and P, and performing
Gaussian elimination on the rows of this Bezout matrix bottom up using ¢n-1,n-1

as a slarting pivot. After climination, the Bezout matrix look like this

_ -
0 0 0 0 0 0
Cn—i -+ Cn—ijp—i -+ 0 0
(3.6)
Cn=20 Cn-21  ++-  ++» Cn-2,n-2 0
Cn-10 Cn-1.1 e «r+ Cn-1n-2 Cn-1,n-1 |

The first non-zero row of C = [¢;;] will be of the form
(€0,€15-++1€ry0,...,0), er # 0,

and the ged of Py and P, is H(t) = Yi—o eit'. Thus, the common roots of P, and
P, are the roots of H(t). For a complete proof of the above results see [Goldm84].
Now, we can give the treatment for the case deg(Py) = m > deg(P;) = n.

There are two ways to increase the degree of P, from n to m ( to obtain F7) :

(a) Regard P, as a polynomial of degree m, with the leading m — n coefficients

equal to zero, i.e., Py = P,.
(b) Multiply P; by ™", i.e., P; = t™ P,

De Montaudouin and Tiller [Montau] show that the Bezout resultant of Py and P,
denoted by R(Py, P}), is the Bezout resultant of P, and P, denoted by R(Fy, P2),
multiplied by an extraneous factor. This factor is (ag)™ ™ if we use method (a)
and (am)™ ™ if we use method (b). Thus, in computer implementations, it should

be checked which of ag,a, is simpler to apply the appropriate method; then
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R(P,, P;) must be divided by the simple extrancous factor. Also, when one of
the polynomials is a multiple of another, all the entrics in [cy,] are zeros. Finally,
it is easy to show that the Bezout resultant of two univariate polynomials is
exactly, without regarding the sign, the Sylvester resultant of them. The Sylvester

resultant is defined in the next section.

3.2.2 Resultant of 2 Bivariate Homogeneous Polynomials

Let

d dy—1 '
Pl = adlmll +ad1—la'll 1'-2—*--.. +(lol'(2‘,

d dy—1 ! Y -
Py = bg,z +bg,_1x? T g 4 o0+ botyt, (3.7)

where d;,d; > 1, and let d = d; + d2 — 1. We assume that aq,, bz, tg, and by are
nonzero (if P; and P, do not satisfy this assumption, then a factor x¥ or ak can
be removed from P, or P, to satisfy this assumption). With this assumnption, we
can avoid the case of infinitely many solutions ¢f P; = P = 0, and a solution is
either z; = 2o = 0 or z; = 03,2 = az where a; and a; are both nonzero. The
solutions (¢, @2) and (cay,caz), where ¢ # 0, are regarded as identical solutions.

The array of the coefficients of all elementary members of (Py, P) of degree

dy=1

: dy—-1 da—-2 dy—-1 dy—1 dy -2
d, viz, (1712 P], IL‘12 $2P1,..., .’1222 P], .’1,‘1l Pg, .’1211 1‘2172,..‘, Zq Pg, has (12

rows corresponding to P, and d; rows corresponding to P,. This array can he



expressed as

where

L

:L'c]‘z—lpl

mgz—lpl

.'t‘lil_l.Pg

L :z:g"ng

a4, Qdy-1
ad, ad, -1
aq,
bd2 bdz—l
bdz bdz—]
ba,

z{
:c‘li’ zg’"l
xf;—lxgz
z5
Qo
aop
Ady ~1
bo
bo
bdg—l

24

(3.8)

ag

(3.9)

bo

We will show that the determinant, R, of the matrix S is the resultant of P

and P,. R and S are known as the Sylvester resultant and the Sylvester matnx,

respectively.

First, we show an important property of S, which plays an important role in

the constructive proof for the Sylvester resultant, given by

Lemma 3.1 . If the rank of S is r where maz(dy,d2) <r=d+1-k< d+1,

then

(1) the first (last) v columns of S are linearly independent, and

(2) the first (last) v rows of S are linearly independent.



(8) Furthermore, if k > 1 then S can be reduced by elementary row operations to

U, V
0 0
where U, is an order v upper triangular malriz with nonzero diagonal clements,

and the last row of V is a nonzero row.

Proof : We present the proof for the casc of the first 7 columns and the first
r rows; for the other cases, the proof is similar.
We will show that elementary row operations, without moving the last k rows,

can be used to reduce S to a matrix of the form

U, V
: (3.10)

0 O

where U, is an order r upper triangular matrix with nonzero diagonal elements (r
may be d+ 1, in which case the other 3 submatrices are nonexistent). This means
that the rank of S is r, and the first 7 columns of S are linearly independent, and
the first r rows of S are linearly independent.

Suppose after some elementary row operations, we have the matrix

U, V
? , (3.11)
0 th(n

where U, is an order p 2 0 upper triangular matrix with nonzero diagonal cle-
ments, V is arbitrary, and S,, 4, is a Sylvester matrix formed by polynomials of
degree ¢; > 1 and g > 1 with gy +¢q2 = di +d2—p and coefficients ¢, ¢q,-1,---, €0
and e,,, €g,-1,- - -, €0, such that not both ¢, and e, are zero, and ¢g = aq. Note
that initially, p= 0,y =d; 2 L,qa =d2 2 1, ci = aj,ei = b; and both ¢4, and ey,

are nonzero.



Consider the submatrix Sy, o,. There are 3 cases :
(a) cg #0,¢, =0,
(b) ¢q =0,¢q, #0,

(c) ¢q # 0,4, #0.
Now, we will give the treatment for each case :
Case (a) : First suppose g2 > 1. Then S, g, can be partitioned as
Car v
0 Sgg-1
where Sq, as—1 1s a Sylvester matrix of polynomials with degree 1 2 1,42 —
1 > 1 and coefficients are €g,—1 = €g—1,--.,€1 = e1,60 = eg, and &, =
Carr- -+, &1 = €1,é = co. Since ¢, # 0, we have a matrix of the form (3.11)
with p increased to p + 1, and this argument can be repeated.

Now, suppose ¢ = 1. Then

€y Cq-1 --- G
Sqlvl=

0 €g

If e = 0 then we have a matrix of form (3.10) with » = p+ 1. Furthermore,
the last row of matrix V, as in (3.10), i.e., (¢4, -1, .-, Co), IS 2 NONZEro row.

If eg # 0 then S has full rank.

Case (b) : Suppose ¢; > 1, then moving row g, + 1 to the top of Sg, 4, yields
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where Sq,_l'q, is a Sylvester matrix of polynomials with degree ¢ — 1 >

-

1,g2 > 1 and coefficients ¢o,_1 = €q-11-..,C1 =

¢1,60 = cg, and ¢,
€gar--+»61 = €1,80 = €o. Thus, we have a matrix of the form (3.11) with p
increased to p + 1, and this argument can be repeated.

Now, suppose q; = 1. Then

a2 =

0 Co

i qu Cq..,_] I 1) |

In this case, we have ¢y # 0 since cg is ap of the original matrix S. Thus, S

has full rank.

Case (c) : If ¢1 > g2, then for rows 1,...,qs, subtract (€, /ey;) times rows

g2+1,...,2g2, respectively, and move row g2 +1 to be the first row, resulting

in

€52 €q-1 €o

0 ¢ Cqy—q2 Co
é ¢ C ¢ vT
q1 -1 91—92 0 92

€q2 €o 0 an—l,'lz
€q2 €q2-1 €0
€, Cqp-1 o

which satisfies the conditions below (3.11) and the value of ¢y remains as

ao, so this argument can be repeated.



If ¢ < qz, then, first suppose g; > 1. In this case, for rows go+1,...,q2+q1,

subtract (e4,/¢c, ) times row 1,...,q1, respectively, so matrix S,,.q2 reduces

to
[ T
Cqy Cq—i Co
Cq, Cq-1 - Co
T
Cyy Cq=1 oo v Co Cqy v
= ’
0 qu_l e oo €0 0 91.g2—1
0 éqz_] vee eee €o
0 éq2_1 P 1)

which satisfies the conditions below (3.11) and the value of ¢y remains as
ag, so this argument can be repeated.

Second, suppose ¢ = 1. Then ¢1 = ¢2 = 1, and

G G G G
Si1= can be reduced to

€1 €o 0 éo

If éo = 0 then r = d; +d; — 1, otherwise r = d; +d;. In both cases, the
matrix has the form (3.10), and the last row of V, if it exists, is a nonzero

row. 00

Let Sy_; be a matrix obtained from Sy = S by removing the last row of each
st of rows corresponding to the coefficients of P and P, respectively, and the
last column. Then the following corollary shows some important properties of

S,_; which will be useful for the proof of the next theorem.
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Corollary 3.2 . Let rank(S4) = r = d+ 1 —k, where min(dy,dz) 2 k2 1. Then
rank(S4-1) = rank(Sqg) —1 =r —1, and the first (last) r — 1 columns of 841 are

linearly independent.

Proof : Let S;_; be the matrix obtained by removing the last row of Sy.
Then by part (2) of Lemma 3.1, rank(S4_1) = rank(Sq). In matrix S4_1, the
d,-th row, i.e., the last row of the block of rows corresponding to the coefficients
of Py, is contributing to the rank of this matrix since the only nonzero entry of
the last column belongs to this row. Thus, removing this row will reducc the rank
of S4_1 by 1. Therefore, rank(S4-;) = rank(Sy) -1 =r—1.

To prove that the first (last) » — 1 columns of Sy_; are lincarly independent,
we can use an argument siinilar to the proof of Lemma 3.1. In this case, we use
the S4_; type matrix instead of the S4 type matrix. 0O

Now we are in position to investigate the solution of Syc = 0. If Sy has full
rank then c is the zero vector. Suppose that rank(Sq) = d + 1 — k, where & > 0;
then ¢ has k degrees of freedom, and by part (1) of Lemma 3.1, there exists a

solution ¢ = [cq, €4-1,- - ,¢1,¢0)T of Sgc = 0 of the form
Co =381, CL =52, ...y Ckel = Sk, (3.12)

Ck = Gk(S1y---y8k)y +ovy Cd= 9a(S1y--+55k), (3.13)
where s, . .., Sk are arbitrary parameters and gi(s1,. .., sk) are unique linear com-
binations of these parameters.

Let & = [ca,€a1y+-1C2y01)7 and & = [cd_l,cd_g,...,cl,co]T, where ¢;’s are
given in (3.12) and (3.13). Then Syc = 0 if and only if Sg_1& =0 and Sy.;¢ = 0.
This result will be useful in proving the most important property of R, that it is

the resultant of P, P,.
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Theorem 3.3 : A necessary and sufficient condition that the equations P, =

P, = 0 have a nontrivial solution (i.e., a solution other than z, = 2 = 0) is the

vanishing of R.

Proof : The original version of this proof is due to Macauley [Mac16], but
his proof is valid only when P; and P, have one common root. The constructive
proof given here is valid for the case P, and P, have more than one common root.
In addition, this proof has a potential to extend to the general case.

Suppose Py = P, = 0 has a nontrivial solution z; = a,z2 = az. With
this substitution, the left hand side (LHS) of (3.8) is O which implies that the
right hand side (RHS) of (3.8) is 0. Since the vector on RHS of (3.8) is nonzero,
R = |Sq| = 0.

Suppose R = 0 and rank(Sq) = d+1 — k, where min(d;,dp) > k > 1. Let
Q(zy,z2) and O(z1, z2) be the general members of the module ( Py, P») of degree
d and d — 1, respectively, i.e.,

Qz1,22) = Y. gizizj and Qzr,z2) = Y. (j,:r'lm’z (3.14)
i+j=d i+j=d-1
Thus, Q(z;, *2) has d 4+ 1 monomials of degree d in z; and z,. On the other hand,

we have

Qz1,72) = BaP + Ry Py, (3.15)

where Ry and R, are homogeneous polynomials in 24 and z, and deg(R;) = d2—1,

deg(R;) = dy — 1. Hence,

Q(z1,22) = (elm‘f"l + eng"2mg + -+ edzzg”l)Pl +

(flnf'f’_l + fzw‘;'—zwz + -+ fa "Jg"l)P% (3.16)
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Let

q= [qda'"7qd1sqd1—la'°'aq0]'ra
c= [cda“"cdncdl-la---160]7"
g = [elv"')edQ)fla'"’fd]]Ta

where the elements of ¢ are defined in (3.12) and (3.13). Then writing equation
(3.16) in the form of system (3.8) and equating the cocfficients with equation
(3.14), we obtain

qf =g7Ts,. (3.17)

Post-multiplying both sides of equation (3.17) by vector ¢, we have
q‘c=g’Syc. (3.18)

In order for (3.18) to be O for all values of g, i.e., for all members of module
(Py, P,) of degree d, vector ¢ must be a solution vector of the system Syc = 0.
Since R = 0, there exists a nonzero solution c.

1

Let s # 0 be an arbitrary parameter and set s; = st fori=1,...,kin

(3.12) and (3.13), so that
=1 =8 ..., k1 = Pt (3.19)

cL = gk(l,s,...,sk"’), veey C4= g,,(l,.s‘,...,sk"). (3.20)

Note that gi(1,s,...,s"") are uniquely determined in terms of 1,s,...,s51. In

addition, by part (3) of Lemma 3.1,

Ck =gk(1131'-'73k_1) # 0.
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Now we want to show that P, = P, =0hasa nontrivial solution z; = §,z2 =1
where § is a solution of

gk(1,8,...,85 1) = sk (3.21)

in the extension field of the coefficients of /i, P,. In order to do it, we have to
consider the linear relation between the coefficients of a general member of the

module (P, P,) of degree d as {ollows:
With the ¢;’s as given by (3.19) and (3.20), it follows from (3.18) that there is

a unique linear relation between the coefficients of all general members Q(z1,z2)

of module (Py, P2) of degree d :

Caqd + Cd-19d-1 + ++- + ¢1q1 + cogo = 0. (3.22)
The uniqueness of this relation is defined in the sense that if
Y = {Yd, Yda-1,--- ,y1,%0)T is a solution of Sgy = 0 and

k-1
Yvo=1, y1 =8, -y Y1 =8

then

Yk =gk(1,8,...,5k—1), ceey Yd = gd(lasa-- wsk—l)'

Similarly, by Corollary 3.2 we have the following unique linear relation between

the coeflicients of all general members O(z1, 1) of module (Py, P,) of degree d—1:
Cd—1§d—1 + Ca—2Ga—z + -+ €1d1 + codo = 0, (3.23)

where ¢;'s are given in (3.19) and (3.20).

Consider z,Q(z1,%,) and 22Q(x1,22), then

210(21,72) = Gac12t + Ga-02y T2 - o287 (3.24)
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z2Q (21, 22) = Ga—1287 20 + Gamad %22 4 -+ God (3.25)

are the members of (P, P;) of degree d whose coefficients must satisfy equation

(3.22). Hence we have the following relations:
§7¢ = c4Ga1 + ca1fa—a + -+ 2@ + c1do = 0, (3.26)

47e = cg_1Ga-1 + Cd—2§i-2 + -+ + adi + cofo = 0, (3.27)
where § = [da-1s-..,00)7, € = [c4y...,a1]T, and € = [ea-1,- - ,co]T. By Corollary
3.2, Sy_1& = 0 for all values of s. In addition, there always exists 3 # 0 that is a

solution of

gk(l,s,...,sk")—sk =0

in the extension field of the coefficients of the polynomials Py, /%, since

ge(1,8,...,851) # 0. Thus, & evaluated at s = 3 is

[ga(1, 5., 8 )y grn (1,6, .., 871,85, 8T

This implies that c. = (1/8)¢ evaluated at s = § also satisfies S4_1c. = 0. Henee,

by the uniqueness of (3.23), the following ratios hold for the ¢;’s cvaluated at &

Cd _ Cd-1 Cd+1-k S 5

C4-1  Cd-2 Cd—k a ¢ 1

— —
= ...

Therefore, it is easy to see that

c c Cd— Cd- c
ﬁ;.__l__fl_ - _71_2_;‘._‘__7‘{ (3.28)
1 5 82 ) 342~ g1 T
Thus, equation (3.22) can be written as
o+ qid + 28t + - 4 qa-28 T + o3 + g8 =0, (3.29)

or we have

gTS4c =0,
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§d-l

where ¢ = &9, 5,1)7, and § is a solution of

qgecey

gk(l,s,...,sk"l) - sk = 0’

i.e., P, = P, = 0 has a nontrivial solution (z;,22) = (3,1). 0O
Therefore, R is a resultant of Py, Py, called the Sylvester resultant.

From the above proof, it follows that
(gk(mga mg—lxla (RRR) .’172214:—1) - zl;)'ng(Pla P2)

because any solution of (gx(z5, 25 21, ., 2o251) —2¥) = 0 is a common solution

of P, = P, = 0. Furthermore, we have

ng(Ph P2)|(gk($§a$'2c_lxh soe 1z2xf—l) - .’Ilé)

because for any common solution of Py = P, =0, (21, 72) = (a1, a2), there exists

¢ =[a?,ef ..., 08T that is a solution of Sqc = 0. Therefore,
(gx(zh, a5 ey, 2azt ™) — 2¥) = ged(P, Po).

Thus, solving for the roots of gi(zh, o5y, . ,222¥1) — 25 = 0 yields all the
solutions of P, = P, = 0.

Before leaving this section, we give an example to illustrate the results of the

above theorem.

Example 3.2.1: Let

P = (22 -3y)(3z +y)(z — y)(4x — y),

P, = (22 -3y)(3z +y)(z—y)(z—3y)



The Sylvester matrix is

- 24 =58 29 g8 -3 0 0 O
0 24 -58 29 8§ -3 0 0
0 0 24 -58 29 8 -3 0
S 0 0 0 24 -58 29 8 -3
6 -31 43 -9 -9 0 0 O
0 6 -31 43 -9 -9 0 O
0 0 6 =31 43 -9 -9 0
L 0 O 0 6 31 43 -9 -9 |

We can determine that the rank of S is 5, so the rank deficiency is 3. Solving for

c in Sc = 0, we get

CO=t0

c2=t2
ci=—Pto— Pt + 55k
cﬁ:"%to—%tl%'%]—%

Substitute to = 1,1, = t,t; = t%, we have

=1

Cg'—-‘-tz
C4-——-1—%_%§.t+_1_465_t2

e =~ — Gttt

C = i]
1 2 13
c3 = —zlo— 5h + <l
_ 5 1465, __ 407
cs = =75l + gt — joste
o = M6l 41507, 133273,
T = T 2592 0 3888 -1 7776 "2
C = {
—_1_2 13,2
3= =3 5t oL
. . 145 ) 1465, 4072
¢s = ~—%; + 36t — Tost
PSR U} (0 41507, _ 1332732
7= T 2592 3888 7776

—P=U—§U+5U—U=0

&
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Therefore, (3/2,1),(-1/3,1) and (1,1) are solutions of Py, P;. Also, we obtain

ged(P, P) = gs(ys,y2$,y-"32)"ma

= —-(13-(6:1:3 — 132%y + 4zy® + 35°).

Note that this method of finding the roots of P, = P, = 0 is valid only when
these polynomials have a finite number of roots; i.e., when there are no common
factors of these polynomials in the form z¥ or z. If these polynomials have an
infinite number of roots, then either the first k, in the case when the common
factor is z¥, or the last k, in the case when the common factor is z&, columns of S
will be all zeros. We can then find the other roots of P, = P> = 0 by considering
a general member of degree d — k instead of a general member of degree d.

The second important property of R, which is used for the proof of the general

case, is given in the following theorem.

Theorem 3.4 : R is irreducible in the sense that it cannot be resolved into two

factors each of which is a function of the coefficients of P, P,.

Proof : The origin of this proof is due to Macaulay {Macl6]. R has the
term aﬁfbg’ obtained from the diagonal of the matrix S, and this is only term of
R containing b3 or agf. Also R has a term (—l)dedzagf_lbg"l, and this is the
only term of R containing b=! when a4, = 0. This can be seen by expanding
about the first column of S. Hence, when R is expanded in the powers of &g to

two terms, we have

R =rg b8 + g, b3 -, (3.30)

d . .
where 74, = ag} and 74,1 mod ag, = (—1)‘12 bdzajf_l. Thus, if R can be written
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as a product of two factors, then
R = (@ 4 )0 + )

where p; 4+ q1 = dy and p; + g2 = da, and either p; or ¢; is zero because otherwise
the coefficient r4,_; of bg"l would be zero or divisible by a4, which is not the
case. Therefore, one of the factors of R is independent of the coeflicients of I,
since both factors must be homogeneous in the coeflicients of P;. Similarly, one

of the factors must be independent of the coefficients of P, i.e.,
R = (a2 +-- )48 +---) = b + BUg + DaZ +---. (3.31)

Now, if each factor contains only one term, then (3.31) would contradict (3.30)
since 74,_; # 0. On the other hand, if one factor contains more than one terny,
then B and D are not both zero and (3.31) contradicts (3.30) since ajfbﬁ' is the

only term of R containing ajf or bd'. Therefore, R is irreducible. OO

3.2.3 Resultant of n Homogeneous Polynomials in n Vari-

ables

In this section, we introduce a general theory of resultant. It will parallel that
already given in the bivariate case but with greater complexity. Another method
of finding the resultant is given in [Waerd], and Canny explains this method
more clearly in his Ph.D. thesis [Can87]. Although the multivariate resultant
given here is for n homogeneous polynomials in n variables, we can find the
multivariate resultant for n non-homogeneous polynomials in 7 — 1 variables by
finding the corresponding homogeneous polynomials of the same degrees obtained

by introducing a variable z, of homogeneity.
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LC'r
P o= al) ot 4 tap), 008t -+ af) 470,
P = afi? oz‘{’+---+a(()22"_.'0a:§’+- +a((f) A2 T i’a (3.32)
P o= ol gzttt ald gadn e+ ab g T

be n homogeneous polynomials in n variables, i,...,Zs, of degree di,...,d,
respectively, with indeterminate coefficients.

In addition, we have

d=1+zn:(d,'—l).

=1

We define a polynomial reduced in zy,...,Z; as

Definition 3.5 A polynomial containing no monomials 1232 ... 22~ divisible by

& .., z¥ is said to be reduced in z1,. .., Zi.

any of =, =3 ;

Let a = (ay,...,an), la] = LT ai, and let z* denote z1xd? ... zgn.

Also, let X, be the set of monomials of degree m in z1,...,Zn, such that
Xw={z" o1 +az+--+an=m}. (3.33)

We observe that the cardinality of Xy, is [Can87]

. m+n—1
I‘;\ml = Nm = . (334)
m

Let 7 be a permutation of 1,2,...,n. We now partition X, into n + 1 subsets
with respect to the permutation 7 as follows: AA’{L]M is the set of monomials which

: dﬂ' 1 . . F.{ . .
are multiples of x,r(f-)), but which are not multiples of a:i(;-’)) for any j < i, so that

m = {1:01 € /{}m | Qr(1) 2 dw(l)}
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.i’;':m = {:l:° € .l"m | Qr(2) > d,,(g) and a1 < d,,(l)}
(3.35)

"
b
n—-1,m

= {.’L‘ar € /?m I Oln(n) > (l,.-(n) and Qr(i) < d,r(,') fort=1,...,n — 1},
./'\?,’['m = {Z‘a € /?m l Qn(i) < (1,,(,') fori = 1,...,77.}.

It is readily shown that the 'i’fm are disjoint, and that every element of i’m is
contained in exactly one of them. In addition, for m > d, f’,’[ w =0
Also, for each i’,-"'m, where 0 < i < n — 1, we define a set of monomials 7,

such that

G P PR

T,m

Thus, we can easily see that the monomials in X7, are reduced in Tr(1y,- - Ta(i)
for:=1,...,n.

Let QF,, be the set of polynomials such that
Q:{m = {Z ajmaJ I an € Xi,.rm}'
J

Then the product Pr(;)Qi—1, Where Qi1 € O, , is a homogencous polynomial
of degree d in z1,...,Tx.
Also, let Qfm be the set of polynomials such that

O = (L a2 |2 € (U Am)}s
2

g=t

and Xi,m = Xi?m’ X,"m = A&7

i,m?

fl;,m = fl}"m, Qi = Q7 with identity permutation.

For simplicity, we now assume 7 is the identity permutation, although the

following results apply for any permutation 7. Let

G=P1Q0+"'+PPQP—1+QP’



wherel < p<n,Q; € Qymiori=0,1,... ,p—1,and Q,, € fl,,,m are homogeneous

polynomials of degree m in z1,...,Zn. In vector notation, we have
gTx = "M, (n, m)x, (3.36)

where g and x are the vectors of the coefficients and the corresponding mono-
mials in G, c is a vector of the coefficients of the polynomials Qo, .. .,Qp_l,Qp,

and M,(n,m) is the Macaulay matrix of P,..., P, whose construction we now

describe.

First, we construct n + 1 sets Xoms-«-yAnm- For 0 < i < p— 1, define a set

of polynomials F; such that
17; = A.’,"m.P,'.;.] (1!1, ceey 213,1_). (337)

Then the polynomials in F;, for i = 0,...,p — 1 are elementary members of the
module (Py,..., P,) of degree 1n. The union F of Fo,...,Fp-a, z?,,'m, ey r\?,,’m is
a collection of Ny, polynomials of degree m. Thus, we can construct a square
matrix M,(n,m) whose rows contain the coefficients of the N, polynomials in F
and whose columns correspond to the N, monomials in Xp.

To illustrate the above construction process, we give the following example.

Example 3.2.2: We construct the Macaulay matrices, M,(3,3), M3(3,3) and

M3(3,4), of a system of 3 quadrics in three variables z,y, z. The polynomials are:

P, = az;3° 4 a5y + 222 + ayyy2 + ayyz + a;.7%,
Py = bz 4 byyay + bozz + byyy2 + by.yz + b,.22,

2 2 2
Py = CoxZ’ 4 CoyTY + C2:T2 + Cyyy” + CpaYz + C22 2"

We haved; = dy =dy =2, d = 4.
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Now, we construct M(3,3) is as follows: First, we have

Xos = {2° r?y,2’z},

Xis = {9,299}, (3.38)
Xyz = {%,22%y2%),

Xz = {ayz}).

Dividing Xo 3, X135 by 22,92, respectively, we obtain

‘;‘:'O.S = {T,y,Z},

Xa = {795} (3.39)

Hence, the 10 by 10 matrix M3(3,3) is

[ ]
Qrr Qzy Gzz Qyy Q:z Gy 0 0 g O

0 azr 0 azy 0 az: ay ay 0 a.,

0 0 azz 0 ap, azy 0 ay G Gy

bos bsy bz by b b O O 0 0

M,(3,3) = : :




where

[ zh - [ z® -
yP %y
zP z?z
zP, zy?

2
vh | M3 |
2P, zYz
e y3
Tyz yiz
P 23
yz? yz?

The construction of M3(3,3) is as follows: first we have

Xos = {z° 2%y, 2%z},

Xis = {v° 9% y%2), (3.40)
Xys = {%22%y2%), (3.41)
Xz = {zyz}.

Divide X3, Aya, X,3 by 2,32, 2%, respectively, to obtain

X0'3 = {xvyaz}a
Xl.a = {;v,y,z}, (3°42)

Xoz = {z,9,2}.



Hence, the 10 by 10 matrix M;3(3,3) is

Similarly, the construction of Mj3(3,4) begins with getting the following scts :

/{}0.4 = {.'124,2:3:1/,.‘1332,.'1,'2?/2,.17222,3)2?/2},
Xia = {v' 23,952, 9%2%, zy%e}, (3.43)
Xoa = {225,925, 2927, (3.44)

a

X34 = @

Divide Xp 4, X14, X24 by 22,32, 2%, respectively, we have
, 2 2 2
AO.‘I = {IL » TY,T2,Y, 2 1yz}a
Xia = {y'2y,y2,7,22) (345
14 = y.ry,Yyz,2,124, - '))

,2.«1 = {szmzayza"vy}'

13



Hence, the 15 by 15 matrix Ma;(3,4) is

-

al‘.‘l}

0

0

0

L

where the monomials corresponding to 'he columns are in order zi, 23,282,z

222%, 2tyz,yt oyt Pz, ut 2t ye,

Qzry

az’z‘

0

c.‘L':C

azz

0

Ay

Ayy

aZZ
0
al’.‘.’

0

Qrz

Crz

cI z

Czx

Crz

0

the polynomials P; gives us a different matrix M,(n,m).

Now, we are in position to show the relationship between the resultant of the
polynomials Py, ..., F, and the determinant of the Macaulay matrix Mu(n, d).

Let |M,(n,m)| denote the determinant of the matrix M, (n,m), and R(n,m)
denote the ged of the n determinants formed in a similar way to matrix M,(n,m)

when Pi,...,P, are arranged in n ordeis: {(P,...., P}y {Pay. s Py P} -

0

aZZ

Oz

0

Cyz

CZZ

0

Crz

CZZ

2

1 223,yz3, 2yz2. Note that a different order of

v,
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{Pa-1, Pay Pry..oy Paca)s {Pa, Py Paca ). Thus,
R(n,m) = ged([Mu(n,mh],...,|[Mu(n,m).l), (3.46)

where |[M,(n, m)l, ..., |Mn(n,m)a| are the determinants of the Macaulay matri-
ces corresponding to the n above arrangements of the polynomials.

Let f’l,f’z, ..., P, be a specialization of /1, Pa,..., Ps, i.e., not all coefficients
in f’l, 132, cees P, are indeterminates. Also, let 'fZ(n, d) be R(n,d) evaluated at the
coefficients of P, P, .. ., P,. Then we have the first important property of 7‘2(11, d)

in the following theorem.

Theorem 3.5 : A necessary and sufficient condilion that the cquations Iy =

P, = ... = P, =0 have a nontrivial solution is the vanishing of R(n, d).

Proof : A nonconstructive proof of this theorem is given in [Waerd]. OO

Let M,(n,d) be M,(n,d) evaluated at the coeflicients of PLby,... P
Macaulay [Mac16] gives a constructive proof for this theorem by cxtending the
proof of Theorem 3.3 for the general case, but, in our opinion, his proof is incorrect.
In this proof he shows that ihe coefficients of the general member of the module
(151,152, ... ,Pn) of degree d — 1 satisfy only one lincar rclation, whether R(n,d)
vanizhes or not. He claims that the above result can be obtained by showing that

the number N of linearly independent members of the module (P, P,..., P of

degree d — 1 is one less than the number

d+n-2
Ny =

d-1

of the monomials of z,. . .,z of degrec d—1. But in general N#Ny_; —1 because

N = rank(M,(n,d — 1)), where M,(n,d — 1) is obtained from M, (n,d — 1)

A5



by removing th- «ws containing a 1, and we know that not all the rows in
M,(n,d — 1) are linearly independent for any particular values of the coefficients
of the polynomials Py, Py,..., Pr.

In his paper [Mac02], Macaulay gives another proof for this theorem, but again
his arguments are not constructive. He argues that if R(n,d) = 0, then M, (n, d)]
vanishes, and consequently the system M, (n,d)w = 0 has a nontrivial solution
w. This is correct. However, he next concludes that w provides a solution to

P=P=...=P,=0ie,

od sd-1g od a adel adT
w = [39,84 8y, ..., 85,y BncaBn T E0)

such that (#1,%2,...,&a-1,%n) i 2 nontrivial solution of the equations P = P, =
. = P, = 0. The following example illustrates that (1, Z2,... ,En_1,%n) is not

casy to find.

Example 3.2.3: The polynomials are:

P = 22+ zy + 2z +yz— 22 =0,

P 2?4+ 3zz —yt + 2z — 22 =0, (3.47)

P, = z4+2y+z.
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We have d; = d; = 2,d3 = 1, and d = 3. Thus, we have the system:

[ zhP - [ 112 01-1 0 0 O 0W - rs -
yP, o010 12 0 O 1 -1 0 riy
zP 0 01 01 2 ¢ 0 1 =1 riz
2Py 1 03 ~-12-1 0 0 0 0] ay
yPs 610 03 0-1 2-1 0 Yz

= . (3.48)
2P, 0o 01 00 3 0 -1 2 -1 rz?

zyPs 010 21 0 0 0 0 O y?
zzP; 6 01 02 1 0 0 0 O yiz
yzPs 6c 00 01 0 0 2 1 0 yz?

| P (000 00 1 0 0 2 L] & ]

where the matrix in (3.48) is the Macaulay matrix Ms;(3,3) for (3.47). We know
that (3,3) = 0 and the system has a solution (-3,1,1) [Can88]. The rank of

this matrix is 8; thus, solving M3(3,3)w = 0 for w, we have

w = [—14t — 13s, 5 +4s, 4L +5s, =2t —s, =25 —{, =24 — s, 1, s, 1, ST,
where t, s are indeterminates. The question arises here is, in general, how do we
systematically choose the values of s and ¢ for w, which is in the form

3 .2 2 2 . el 3 2 2 7T
[m,xy,xz,:cy,:ry.;,mz,y,yz,yz,::].

The answer is we do not know. But, with a little bit of luck, if we choose s = { =1
then

w=[-27,9,9, -3, -3, =3, 1, 1, 1, 1],

and we get the solution of (3.47).

A7



The difficulty in Example 3.2.3 is a conseq''ence of the fact that the solution

w has dimension greater than 1. In this case, it is required to show that a solution

of the form

od ad-1z ~d s adel adT
w = [29,8]7 82,01 25+ s En1 Ty T0)

where at least one the #;’s is not equal zero, can be obtained. This can be done,
since by Theorem 3.5 a nontrivial solution to P = P, = ... = P, always exists.
The matter of its construction, however, is nontrivial and is left as a subject for
future research.

The development in the remainder of this section is concerned with finding
necessary and sufficient conditions for the ezistence of a solution only. The defi-
nition of R(n,m) given in (3.46) is not practical because we have to find the ged
of n determinants. Thus, we have to explore another approach. From now on, for
simplicity, we denote M, (n,m) by M(n,m).

Let

_ IM(n,m)|

|AM(n,m)] = S5 (3.49)

for one of the arrangements of these polynomials, say A, ..., P,. We will show
that AM(n,m) is a particular submatrix of M(r, m) in the appendix. In addition,

the construction of this submatrix is as follows:

For each A7, we define its subset

V' = {z* € &7 | 3p,q such that ar(p) > du(p) a0d Qr(g) > drig)}.  (3.50)

t,m £,m

Thus, set Yi_, . is empty. Also, for each set ), we define a set of monomials

im?

Y7 such that

f,m

n dvr:' \ -
-yl'.m = {wa/xx(f‘.:l’)) I xa € )):m} (3)1)
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Hence, all monomials in Y7, are of degree m — dy(is1) 2nd non-reduced in at least
one of the variables T (it2),. .., Tx(n) In addition, it is not very hard to get the

total monomials in the sets Y7, [Can88]

AN —l U xm m ZD"()’

1=0 i=1

where

Dyy= Y das)-

j=lg#i

Let ®7,, be the set of polynomials such that
m = {2 0% 2% € Vi)
J

Hence, any polynomial belonging to set ®7, will have the same propertics as the

monomials belonging to set

Let &7 be the set of polynomials such that
= {Zb 2% | 2% € ( U (X ~ Vo))

Then, for m < . any polynomnal Qr € &7 is reduced in at least n — 1 variables.
Again, let = y,m, T = =) oy PT o = iy and <I>,’n = <i>,,l, for the identity
permutation. @{m and &7 are referenced in the appendix.

For each Y; 4, we define a set of polynomials AF; such that
AF; = Y 4Pisi(x1,. .., Tn). (3.52)

Thus, we can construct a square matrix AM(n,m) whose columns correspond to

the AN,, monomials in the ;. and each row of which contains the coefficients

of those monomials in some polynomial in AF;.



Referring back to Example 3.2.2, for the construction of the submatrix

AM(3,4), we have

5)0'4 = {:ZIJ z?2%},

M = {9’} (3.53)
Vs = 0.

Divide Yo4, Y14 by 2%, 3%, respectively, to obtain

yo,4 = {yz, 32},

Vi {*}. (3.54)

1

Hence, the 3 by 3 matrix AM(3,4) is

azz 0 @

0 azz ay

K

We can see that, AM(3,4) is independent of the coefficients of Pi(z,y,2).

3.2.4 The u-Resultant

We can use the resultant defined in the previous section to find the solutions of a
system of polynomials when the number of solutions is finite. Let Py, Pa,..., Pao1
he n — 1 homogeneous polynomials in the unknowns z,Z2,..., Zn. If (a1,---,0n)
is a solution of P, = P, = -+« = P, = 0, then we regard (aq,...,an) and
(cay,.-..,cay), wherec # 0, as identical solutions. Assume that the resultant Ry,
of the polynomials Py, Ps,..., Pooy with respect to z1,22,...,Zn-2, %0, where zg
is a homogenizing variable (i.e., Rn_1 is a polynomial in z,_y, zn) does not vanish.

If R, = 0, we must use the resolvent which is introduced in the next section.
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We introduce the linear polynomial with indeterminate cocfficients:
P, =z~ (wyyzy + ugx2+--- + Upe1Tnt).

Then, weregard P, = P, = ... = > 1 = P, = 0 as a system of equations in the
variables z1,...,Zn-1,2. Also, let R, be the resultani of Py, P,,..., Pooy, Py in
the variables T, 1, Z2, ..., Zn-1, Where zo is a homogenizing variable. Then we
obtain a homogeneous polynomial in = whose degrie D, is the product of degrees
of the P’s fori = 1,...,n — 1. This polynomial is called the u-resullant [Mac16]
of P, Py,..., Py 1.

Now we want to show that we can obtain the solution of Py = ... = P, from

their u-resultant. The following theorem confirms it.

Theorem 3.6 : I[fRn_1 # 0, then the u-resultant R, factors completely over the

extension field of the coefficients of P;’s into linear factors of the form

20 — (S(Ii)ul + S(zi)u2 +-t Sfﬂlu""' )

and for each factor, z; = sg'), zo = 5(2'), civy Tpoy = .95:11, z, = £, is a solution

of A=P=...=P,_,=0.
Proof :[Mac16] Let P,~(") be P; with the substitutions z, = 0; we have

Rny = ROzP 4.0

n-1

where R{9 is the resultant of PO PP with respect to 7y, T2, L Tacts

and does not vanish since R,_; does not vanish. To ecach solution of z,_; = 1:5,'1,

of R,._1 = 0, we have a corresponding solution (x(,i), :v.(,i), .. ,szl,) of the equations
Pp=P,=...= P,y =0 for z;,23,...,Zn_1, by Theorcm 3.5. There are D,

solutions altogether.



Similarly,

Ry = ROaPw 4 ...

where R(®) # 0. Hence, to each of the D, solutions = = £ of R, = 0, there

corresponds a solution (.%f),a‘:g),...,:i:f,ill,:i:(i)) of the equations P, = P, = ... =

P.., = P, =0, by Theorem 3.5. In addition, the D, solutions (i:gi),:igi), vy 'cf,'ll)
must be the same as those obtained by solving R,—; = 0. Furthermore, if ) # 0,

then set a‘:gi) to :i:g-i)/.f:(‘) forj=1,...,n—1, and £#® = 1. Thus,
(i) (1)

NG i
J:(‘)-T = ulsg ) + U8y  + - + Un-15,"1,

where ) = 0, s§1 =20, ..., 8, = 2% are independent of uy, us,.. ., un 1,

or
2 @ . G ¥
Ry = 'RS?’H (5:('):1: —u38) — UpSy’ — = Un—18p_1)-
=1

Therefore, R, is a product of D, factors which are linear in uj,ug,...,%s-1,7
and the coefficients of uj, ug,...,un 1,2 in each factor supply a sclution of the
cquations P, =P, =...=P,_, =0. 00

Note that Van der Waerden [Waerd] uses
Py = wz1 + upZa + -+ - + UnZn.

Then

Dr, . ) )
R = RO (ursd?! + wast) + -+ + unsld).
i=1

Now, we give an example to illustrate the above concepts.

Example 3.2.4:[Can88] Using the notation in [Waerd], we have the following

cquations :

2 2
Py = z{+ 7172+ 22123 + To13 — 23 = 0,



P, = z+3z23 — 75 + 27273 — 2 =0,
P, = wr +uzrs+uzrz=0.
Then
Ry = —(uy — up + uz)(—3ug + uz + us)(wy + us)(wr — ua).

Thus, there are Ds = 4 solutions, (1,—1,1),(-3,1,1),(0,1, 1) and (1,-1,0), for
P] = P2 = 0.

Using Macaulay’s notation, we have

2 . o . - 2.2
Py = 2+ m2p + 2232120 + T3T2T0 — 137 = 0,
2, . 2, 2.2 _
Py = 224332130 — 75 + 2237970 — 2375 = 0,
Pu = (EIL‘o—u].'El—Uz.'IIQ—‘——O,

where 21, 2, zo are the variables. Then
Ry = z3(z — z3uz)(—t1 + u2)(z + 3z3u; — Taus)(x — z3uy + Tauz).

Thus, there are D3 = 4 solutions (0,1,1),(—1,1,0),(=3,1, 1) and (1,~-1,1), for

P1=P2=0.

3.3 The Resolvent

For the completeness of elimination theory, we introduce the concept of resolvent
in this section. Namely, the method of solving k equations, Py = P, = ... = P =
0, in n unknowns, 1,3, ..., s, Whether k is greater or less than n, is explained.
The polynomials given here are not necessarily homogeneous. In the casc of
homogeneous polynomials, note that we cannot use the concept of resultant in

the previous section to solve all of these problems. That is, the concept of resultant



fails when cither k > n or the system has an infinite number of solutions. This

method is due to Kronecker [Mac16]. The solutions we seek are

(i) those, if any, which exist for z; when z2,23,...,Zn, have arbitrary values;

(ii) those which exist for z1,z, not included in (i), when z3,24,...,Zn, have

arbitrary values;
(iii) those which exist for 1, z2, 23 not included in (i) or (ii), when 24, s, ..., Zn,
have arbitrary values; and so on.

Also, for the purpose of geometric modeling, i.e., the curve/curve intersection
problem, we are particularly interested in the special resolvent for three cubic

polynomials in one variable [Goldm85].

3.3.1 The General Case

In this section we give a definition of the complete resolvent, D, of Py, Pa,..., Pk,
and provide a procedure for its determination. We also show that any solution of

D =0 is a solution of P, = P, =...= P, =0 and vice versa.
Let k = ko and P = Py, fori = 1,..., k. We treat P{*, P{").. PO as
polynomials in z;. Find
DO = ged(PO(z:), 1" (1), Pig (@1))-
1f D does not involve z, then set it to be 1.
Set Q,(-o) = Pl.(o)/D(O), for i = 1,2,...,k. Then ng), §°’,...,Q§g’ have no
common factor involving z,, and
A = MQP 208+ + My QR

0 (V] (4]
A9 = 500+ QW 4 4 QY
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where \'s and u’s are arbitrary quantities, do not have a common factor involving
z;. Regarding them as two polynomials in a single variable y, we calculate their

resultant, R, and arrange it in the form
M PM 4 MyPY 4o 4 M, P,

where M, Ma,..., M, are different power products of X's and p’s, and
le, P(l) . P;S,]) are polynomials in z2, 73, ..., 2, not involving the A’s and y’s.
We will stop if k; =0, and set DV =... = D(*-1 =1,

Again, treat P,(I) P(l), ..,P;Ell) as 1 o in I, find

D — gcd(P,(l")(:rg), . 1)(1)(“2))
and set Q1 = P /DM (3 =1,2,... . ky;  en find the resultant, RM, of
Agl) = AN Qm + /\2Qm ot Ay 2:) and

AY = QU+ w0 4+ QL
and arrange it in the form

M PP + MyP -+ M, P

(2) P(2)

? . . . .
as before, where P, P( ) are polynomials in 23, %4, ..., Tsx. Continuing

the above process, we get the following series in succession :
POPO, PO withged DO and QY Q,...,Q0

PO P PP withged DY and QM0 QL

PI"_]),PQ("_I) P(" l) with ged D(*-1)  and Q,"’”,Qg"'”,...,Qi.:::).

Note that we stop the process if ki = 0, and set D) = ... = D"1 = [ Let

D = DO DM p*-1)_ then we have a formal definition of resolvent.

w
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Definition 3.6 : D is called the complete resolvent of the equations Py = P, =
oo = P = 0 and of the module (P1, Py, ..., Pr). DUG-1) s called the resolvent of

rank i, and any factor of DU=Y is called a partial resolvent of rank <.

Now we will prove an important property of the resolvent, which shows us how

to obtain the solutions of P, =...= P, =0 from D = 1.

Theorem 3.7 . Any solution of P =P, =---=PF.=0isa solution of D =0

and vice versa.

Proof: Macaulay [Macl6] provided a sketch proof of this theorem. Any so-

lution of P, = P, = -+ = P, = 0 is a solution of D@ = 0 or of Q" =

-(zm == Qﬁ.oo) = 0. And any solution of ng) = ng) = .. = Qﬁ:?.) =9, is
a solution of Pl(” = Pz(l) = e = P,S) = 0, since R(® = 0, and P,-(I)M,- = 0,
for i = 1,...,k;, where M; are nonzero monomials in A;’s and u;’s. Thus,

any solution of ng) = ng) = ... = Q{.‘:) = 0, is a solution of DM = 0 or of

ol = M= = Qg) = 0. Heuce, any solutionof P, = P, =--- = P =0
is a solution of D@ = 0 or DM = 0 or Q" = Q) = ... = Q) = 0. Proceed-
ing in a similar way we find that any solution of P, = P, = --- = P, =0 is a

solution of DO DM . ptn=1) = 0, since Q", Q" ,...,Q0 ™Y are univariate

polynomiais in z,, and have no common factor.

Conversely, suppose we have a solution of D = 0, i.e., a solution of DY =0,
for 0 < i < n — 1. We will consider the case of i = 2, since the other cases are
similar.

Suppose az, Ta,- .., T, is any solution of D' = 0, then it also is a solution of
the equations 1’1(2) = P2(2) == P,Sf) = 0. It follows that the resultant R(*) with

respect to x, vanishes when z3 = a3. This means the polynomials A(ll) and Agl)



have a common root 2 = a3, or in other words, (1') = Q,f,_') == Q(kl:) = ()

have a solution with z; = a;. Thus, P,(‘) = él) = k(:)

= .. = = 0 have a
solution ag,as,T4,...,Ts. And by the same reasoning, the cquations P, = I =
... = P, = 0 have a solution o, as,a3,7s,...,Z,. Similarly, to any solution
of DODW | D=1 = 0, say a solution aj,Zip1,..., %, of D=1 = 0, there
corresponds a solution aq, a2, ..., Qi Tis1y. . -, Ta of theequations Py = P = -+ =
P, = 0. Hence, from the solution of a single equation D = D@DM . D=1 =0
we can get all solutions of the system P, = P, = --- = P, = 0 since all the

solutions of the latter satisfy the former. OO

From this theorem, we can casily prove the following corollary.

Corollary 3.8 : The equations P, = P» = --- = P, = 0 have no solution if and

only if the complete resolvent D = 1.

Now, we give an example to illustrate the above concepts.

Example 3.3.1 : Let

P = (t=1)2241+4)—z=20—1>+3t—(4+1),

P, - =t+1)—y=2=2"+2t - (1 +y),

P = (=12 —2=03-3t4+3t - (1 +2),
be three polynomials in ¢. Thus, gcd( Py, /%2, P3) = 1 and

Ar = (20 4 A+ 23)t% = (A 4+ 225 + 3X3)2 + (3A 42X + 3A3)t —
(44 z)M + (T +y)he+ (1 +2)0),
Az = (2p1 + o+ pa)t® = (jr + 212 + 3pa)t® + (31 + 2p0 + 3ps )t —

(4+ )+ (1 +y)pa + (1 + 2)pa),
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The resultant of these polynomials is too big to give in here, because there are

about 100 polynomials in z,y, and =.

From the construction of the resolvent D, we can see that this method of
solving system of polynomials equations is impractical because the number of
polynomials in each step grows exponentially. Thus, we only apply this tech-
nique in some restricted situations and have to use some tricks. For a system of
three independent cubic polynomials in one variable where the constant terms are
symbolic, we have a very good technique to find the resolvent. We explain this

technique in detail in the next section.

3.3.2 Special Resolvent of Three Independent Cubic

Polynom als

In this section we present a simple version of resolvent described in the previ-
ous section. The resoivent presented here is in the sense of the resultant system
[Waerd] rather than in the sense of the partial resolvent [Mac16]. This result wil
be used in the implementation of an algorithm for the curve/curve intersection
problem. Also, it is casy to show that F = y(t) — di(t)z, 2 = bi(t) — di(t)y and

Fy = (t) — dy (22, where ay(8),1h(t),¢1(t) and dy(t) are cubic polynomials, are

~——

. . (!
linearl, independent. in fasi, :‘;

bi{t) elt) : : .
30 41 (0) constitute a 3D parametric rational

I

~—

cubic polynomial curve (see Chapter 2). Thus, in this section, we deal with 3
linearly indepe:.<lent cubic polynomials only.

Let

P, = a3t® 4 axt® + ayt + ao,

Py = bat®+ bot® + byt + bo, (3.55)
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P3 = C3t3+(‘.212 +C1t + o,

be three independent cubic polynomials, where at least one of asy, by, ¢y is nonzero.
Notice that these polynomials have at most one common root since if they have
two common roots, they are linearly dependent. We want to tind necessary and
sufficient conditions for these polynomials to have a common root. In addition,
we want to find the common root, when one exists, without actually solving for
the roots of all three polynomials.

In [Goldm85], Goldman uses the standard properties of determinants to elimi-
nate the 2 and {2 terms from the original polycomials. This allows hin to replace
the cubic polynomials Py, Pz, Pa by three linear polynomials 1y I, Iy which have
a common root if and only if P, P, P3 have a common root.

Using vector notation, let
Vi = [ak, bk, Ck]T, for k = 0, 1,2,3 and p= V313 + Vzl.‘! + Vit + V.
Then by the construction

p - [P],PQ, P3}T, a,nd p(to) = 0 = IJI(I»()) = [)2(“_)) = I'_';(’”) =0,

Let |vi, v;, vi| denotes the determinant of a 3 by 3 matrix whese colunms are

the 3-elements vectors v;, v;, vi. Define

F, = !Va,V'zePl-

Fy, = |va,val +vi,pl. (3.50
Fy = |vat+ va.vi,pl

Then clearty

p(te) = 0 = Fi(to) = F3(le) = Fy(ty) = 0.

e

H9



It is easy to see that the Fi's are linear in ¢, in fact,

P = |V3,V2,V1|t + |va, Va2, vol.
Fy = |va,va,volt + |vs, V1, Val. (3.57)
FS = ‘V37 VI,VOIt + |V2,V1,‘V0|-

“t,) show 73.57), we just use the fact that the determinant of any matrix which

has 2 identical columns is zera and

244

vy, Ve ) Ve = Z [Viyeon s Va, Vil
121

f=1
Next. if Py, Pp. 1% are linearly nitependent and Fi, F,, F3 have a common root at
L = ty, then |va,va,vy| # 0. This can be scen by substituting ¢ = # into (3.57),

se wo have

Fi(to) = |va,va,vilto+ |va, v, Vol =0,
F2(t0) = |V3,V2,V0|t0 + |V3,V1,Vo| = 07 (358)
Fs(to) = |V31V|e‘v’olto + ‘Vz,Vl,Vo] = 0.

Now, if |vs, vy, V| = 0, then it follows immediately that [v;,v;,vi] = 0 for all
i,j,k. Thus, P, P, P are lincarly dependent. This contradicts the assumption
that /. P, P5 are linearly independent. Hence, |3, Vo, vi| # 0.

Now. we are in position to show the relationship between p(to) zud Fi(to), F2(to)

in

Lemma 3.9 [Goldm85]. Suppose that Pi(t), Py(t), Ps(t) are linearly independent

cubic polynomials. Then the following two statements are equivalent:

(1) p(to)|va. i.e., p(to) = dva where d is a constant.



(2) Fi(to) = Fa(to) =0.

Proof : See [Goldm85). OO
In addition, we have a stronger statement about the relationship between the
root of the linea” olynomials Fy, Fy, F3 and the root - 7 the lincarly independent

cubic polynomials P, P2, P3 as follows:
P](io) = Pg(to) = Pg(to) =0 Fl(t()) = ]"'z(to) = 1’1;({0) = (.

Thus, the polynomials Pi, P, P’3 have a common root if and only if
pol] A

(p)

Ry (p)

Ry(p)

[V, va. v
Vs, va, Vo
|V, Va2, Vi
V3, V1, Vol
[vs, vz, Vol

lVg, Vi, Vol

lvi. v, Vol
Iva. vy, Vol
IV:;, \’2,Vo|
lV'zthVul
|Va, Vi, Vol

|V2,V1,Vo|

=0,

(3.59)

=0,

sirce two linear polynomials have a common root if and only if they are lincarly
dependent. Here, B:(p)=0, Ry(p)=0, and Ry(p)=0 are the necessar, and suffi-
cient conditions that three pairs of linear polynomials in &, (Fi, F2), (F, F3) and
(Fy, F3), have a common root. The determinants /t,(p), Ry(p), Ita(p) are called
the special resalvents of p(t). Note that these determinants are equivalent to the
Pl(l), 2(1),..., ,fl” in the general case. That is, the vanishing of these determi-
nants is a necessary and sufficient condition for p(t) to have a solution. Irom now
on we call these determinants the resolvents of p(t).

Now we can see that if a common root {, exists then |vi, v, vy| # 0. Con-

versely, if |va, va,v1| # 0 and R,(FP) = R2(P) = 0 then a common root. o exXists,
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Hence, we can easily obtain this common root by solving for it in F; = 0. It

follows that
lV3, V2, Vo|

to = — . 3.60
° Vs, vz, Vi ( )
Iiquation (3.60) is called the inversion cquation of p(to).
Going back to Example 3.3.1, we have the [ollowing vectors :
vo = [~(4+2),~(L+y),~(1+2)]
vi = [3,2,3],
vo = [-1,-2,-3]T,
vy = [2,1,1].
Then we have the following determinants:
[va,v2,Vo| = z-5y+3:+2,
|V3a Vo, V) | = _23
|v3,vi,Vo| = —z+3y—2z—2,
IV2,V1,V0| = Gy —4z 4 2.
Hence, the resolvents of the system are:
Ri(p) = —z*+ 102y — 62z — 25y + 30yz — 92* — 2z + 14y — 10z,
Rip) = z*—8zy+4xz + 15y — 14yz + 32% + 42 — 28y + 162,
Ry(p) = —a®+ 12zy — 6xz — 39y® + 4dyz — 132% — 22 + 14y — 62.

We can see that one of the solutions for the above system is 2 = y = z = 0. Thus,

Py = P, = P; = 0 in this example, withz =y =2 =0, has a common root zt

|va, va, Vol _ =2 _ 1

th = — =
! |V3a V21V1I -2



Comparing with the method to find the resolvent in the previous section, we
have the optimal set of resolvents for three lincarly independent cubic polynomials.
In this case, we have 3 resolvents of degree 2 in a,y, z. In addition, we can get the

common root of the system easily.

3.4 The Grobner Basis

In his Ph.D. thesis, Buchberger [Buch65] introduced the concept of a standard
basis of a polynomial ideal, which he named after his supervisor, Grébner. In
{Buch65] and [Buch70] he presented an algorithm for computing such a basis. The
notion of Grébner basis is refined and analyzed in [Buch76a) and {Bueh76h], after
which it became more widely known as an important constructive technique in
polynomial ideal theory. There are many works such as [Lazard, Buch83. Buchs5)
to further explained Grébner basis theoretically. Czapor [Czapor] used a heuristic
approach to construct a Grébner basis for a set of polynomials faster. Application
of these bases have been also developed recently in curve and surface intersection
evaluation [Hoflm88, Neff88).

We want to consider the following problem: Given a polynomial (7, is it in
the ideal < P >, where P = {P,,..., P}, i.c., can it be written in the form
G = Q1P + PQy + ... + P.Qy, where the Q;’s are some polynomials. We will
show that this preblem can be solved algorithmically by using the Grobner basis.
Furthermore, the theory of Grébner basis also provides an cffective mechanism
for solving for the roots of Py =...= P =0.

In this section, we will introduce she concept of a standard basis for a poly-

nomial ideal and present the: basic algoritium, known as Buchberger’s algorithm,
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1o construct such a basis. Also, after computing the Grdbner basis of the set of

algebraic equations, we give the criteria for them to have nontrivial solutions.

3.4.1 Orderings and Leading Terms

We need a notation for “this polynomial is simpler than that one”. We introduce
an ordering on the terms and declare F' to be more complicated than G if the

most complicated term in F is later in this ordering than the most complicated

term in G.

Define the set of n-variate terms by
T, = {z%a € Z"}.
Then a total ordering <t on 7, satisfies
(1) 1 <rt,
(2) su <7 tu, whenever s <7 t,

for all s,1,u € T,. Any order satisfying the above conditions will 5::ffice. However,
in practice one of the following two is almost always chosen.

Lezicographic term ordering is defined by
s=aizy?... " <L e Pt
3 such that a; < B andaj =f; for 1 <j <t
Note that this establishes the precedence of the variables
T, <L Tn-y <L ... <L T2 <L 21
in the ring K[z1,...,2.). In the case of terms in [z,y, 2] for example

1<Lz<1,z2 <L =LY =LYz Sy ST S TY <L
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On the other hand, graduated (or total degree) term ordering is defined by
s <Lgl &
deg(s) < deg(t), or deg(s) = dcg(t) and
"/ suchthat a; > B; anda; = B; for i < j < n.

That is, terms of the same degree are “graduated” using an inverse lexicographic

ordering. For terms in [z,y, z], we have
1 <gz<gy<cz1=<¢g 22 <G y: <¢ y2 <L Tz <o TY <G It < e

Every term in a polynomial G consists of a coefficient and a power product.
The term whose J-++wer product is largest with respect to the ordering <t is called
the leading term of G, written 1i(G). The leading term consists of the leading
coefficient, lcf(G), and the icading power product, Ipp(G). From now on, when
we say that the polynomial F is simpler than the polynomial (i with respect to
lexicographic or graduated ordering, respectively, we mean Ipp(F)<plpp((5), or
pp(F)=<clpp(G), respectively.

Also, define the leading term of a set of polynomials Py, ..., Py, mr,....n)
to be the lcast common multiple of the leading term of cach polynomial.
Example 3.4.1: Let Q be the field of rational numbers. Referring hack to

Example 3.2.2, let the set of polynomials of Q[z,y, ] be specialized as follows:

P 8z% — ldzy + 2zz + 3y* + 2yz - 2,
P, = 6zy—6zz—9y® + 6yz — 2%,
Py = 22° —9zy+ 2z + 9y* — 6yz.

Then, with respect to the lexicographic ordering, we have

MP)= 8z, Ipp(P,) =y, lefiPs) =2, and WPy, P2, Ps) = 247y,
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3.4.2 Grobner Basis

Let F be a field. We start this section with the notion of reduction.

Definiticn 3.7 : A polynomial F € Fz1,...,Ta) reduces with respect to @ (and

with respect to a fized ordering) if there ezists a monomial in F which is divisible

by lpp(@Q ).
In particular, if
F=ct+R where ce F,t €Ty, R€ Flz1,...,%n)

and ¢ =wlpp(Q), u € Tn;

then we write

=F.

- Q
F ~q P—Ctlt(Q)

Otherwise, we say that F' is irreducible with respect to Q.

If I is reducible with respect to some polynomial in P = {P,... , P}, then
we say F reduces modulo P; otherwise F is in fully reduced (or “normal”) form
moduls P. In addition, if Il(F) reduces modulo P, we say that F' is lt-reducible
modilo P.

Thus, given a polynomial G and P, we can establish the reduction sequence
G ~p Gy ~p Gy ~p Gz~p ...

until we get a polynomial G; which is the normal form of G modulo P. At this
moment one may ask whether there exists such a G;. The answer is yes because

of the following fundamental property of reduction introduced by Buchberger

[Buch6s).



Lemma 3.10 : The relation ~+p is Noetherian, i.c., there is no infinite sequence
G'v)p G1 ~4+p Gg’\’)‘p G;;Mp

Let ~3 denote the transitive closure of ~+p. Then as a consequence of the above
lemma, we can construct an algorithm reduce(G, P) to return @ such that &7 ~5Q
and Q is irreducible modulo P.

Example 3.4.2: Let G = zy — z and let P; be as in the previous example. Then,

with respect to the graduated ordering, we have

G = I(zy) — z, lpp(P2) = zy, t(P) = 6xy and

3

l <, « l -
2)=rz+3y2—y:+6:2~—::(,).

3
G ~p, (my—z)—(my-—mz—;—)—yz-i-yz—-é:
Also, we note that in this case G ~3 @Q, since Q Mﬁl Q,Q ""7’2 Q, and Q ~ 7, Q.

Now we are in position to define a Grobner basis as follows :

Definition 3.8 An ideal basis G is called a Grébner basis if
Fe<G> = reduce(F,G)=0.

The above definition of Grobner basis presents many difficulties. For example,
it does not give us a means of testing whether a given ideal basis is a Grobner
basis. In addition, it does not teli us how to construct a Grébuer basis for a given
ideal < P > . One of Buchberger’s many contributions was to give an algorithm

to compute the Grobner basis.

Definition 3.9 The S-polynomial of P and Q is

Spoly(P, Q) = lt(P,Q)[Hg,—) - i
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Then, Buchberger [Buch76a] gave the alternative characterizations of Grébner

bhasis according to

Theorem 3.11 (Buch76a) . The following are equivalent:
(1) G is a Grébner basis;

(2) If reduce(F,G) =G and reduce(F,G) = H, then G = H;
(3) reduce(Spoly(F,G),G) =0 for all FGEG.

Proof : Sce [Buch76a] since the proof is nontrivial, and it will be omitted for

brevity. 00O

From the above theorem we can obtain the following algorithm.

Buchberger’s Algorithm :

procedure Gbasis(P)

G —P; k« length(G)
Be—{li,j]]1<i<j <k}
while B # # do
[i,j] — sclectpain(B,G); B « B~ {}i.J]}
F — reduce(Spoly(Gi,G;),G)
if I # 0 then
Ge—GU{F}; ke=k+1
Be—Bu{[ik]|1<i<k}

endif
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endwhile

return(G)

Example 3.4.3: For the polynomials P = { I, P,, 3} of Example 3.4.1,

9 6 1. 3 1 3 1.
G={P,P,Ps 2" - Zyz +qye - ;{22, xy — §y2 toys 22— gy 532}

is a Grobner basis (with respect to the total degree ordering for terms in [r,y, z])
such that <P >=<G > .

Now, we can easily solve the ideal membership problem algorithmically since
any polynomial G belongs to an ideal P if and only if the normal form of G with
respect to the Grébner basis of P is 0. For example, the normal formof ¢ = ay -
with respect to G in tue previous example is 3y* — yz — 2z. lleuce, G is not in the
ideal generated by P.

Going back to Buchberger’s : 'gorithm, a first glance gives an impression that
this algorithm can produce complex calculations for apparently simple input. The
problem here is how to choose the appropriate pair of polynomials in G to avoid
the reductions leading to 0. There are many works in the literature to develop
a set of criteria for determining a priori a large proportion of those pairs whose
reductions will yield 0. For the interested reader, [Czapor] is a good reference:.

We can easily see that in general, a Grébner basis is not unique. For example,
the Grébner basis we found in the previous example is not unique since we can
leave out Py, Py, Ps and G — P is still a Grobner basis of < P >. Hence, the

following definition will help us to scive this problem.

Definition 3.10 A4 Grébner basis is reduced if all F € G, F = reduce(F, G~ F)
and lcf(F) = 1.



Thus, G — P is a reduced Grobner basis of P in the previous example. In addition,

Buchberger showed that if < G >=< G, >, and Gy, G2 are reduced Grébner bases

Lhcn g1 = gg.

3.4.3 Solving Algebraic Equations with Grobner Basis

We will briefly discuss the criteria for the solvability of the system of algebraic
equations P, = P, = --- = P, = 0 using a Grébner basis. Note that these poly-
nomials do not have to be homogeneous. The first criterion gives a condition for
P to have solutions in an algebraic extension of F; namely, the reduced Grobner
basis, G, of a set of polynomials P contains 1 if and only if these polynomials do
not have a common root, including the trivial one. The second criterion indicates

the number of solutions of P, = ... = P, = 0. Let H be the set
H = {lpp(G) | G € G};

then P has finitely many solutions if and only if for all {,1 <z < m, there exists

p such that 2f € H.

We will give some examples to illustrate the solvability of the system of poly-
nomial equations by the mean of Grébner basis. First, P in Example 3.4.1 has
infinitely many solutions because its reduced Grobner basis does not satisfy the
second criterion.

For the second example, let P = {13,, By, P3}, where

A= (z-y=-2),

P = (2z-y+32)%

P = (242 -2)%
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Then P has only the trivial solution (0,0,0) because its reduced Grobner basis

G, with respect to [z,y, 2] and lexicographic order, is

G = {222 +3y% - 2y2+32%, o°, 2t - 22y — 9 + 292,

—4zz +y? + 2z — 2%, —Byte — 553, —3yzt — 427},

Finally, let [Can88]

P = 2?4ay+22-y—1,

P, = 2 +4+3z—y?-2y—~1.

Then the reduced Grobner basis of P = {P, 2}, with respect to [r,y, 2] and

graduated order, is
G={z"+3x4+2 -2, 4" -1, ay—x—y+1}.

Thus, P has i ",(-3,1),(1,-1) as solutions.

Before leaving this section, we want to mention that there are many methods
for finding the solutions when different orderings are used. The interested reader
can consult [Czapor] for further details. We will discuss the strategy for evaluating

curve intersections using a Grébner basis in the next chapter.



Chapter 4

Applying Elimination Theory to

Intersection Problems

The intersection problem is one of the most fundamental problems in the area of
processing curves and surfaces in geometric modeling. In this chapter, we first
show that elimination technigaes can be used to solve the intersection problems
effectively. Secondly, we present a method to randomly generate 3D parametric
nolynomiai and 3D parametric rational curve intersection problems with known
solutions. Thirdly, the implementation issues for the projection, resolvent, and
Crébner basis methods for the above problems are discussed. Finally, we analyse
the experimental results for the curve/curve intersections with rational and real

coeflicients.

4.1 Solutions of Intersection Problems

First, we give the formulae of the Bezout resultant, in vector notation, when

Aut™ + dy "M+ agt +ag
dntn + dn—ltn“1 + M + dlt + do

1y

P(t) =
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b"t" + b"_lt"_l 4+t blf + ()()
-,
d"t"'*'dn_lt"_l + .- +(11f+([0 4

where z,y are treated as constants. Rewriting P () = 0, Py(f) = 0 in polvnomial

form, we havc

Pl(t) = (an - xdn)ln + (an—l - -l.({n—l)l"_1 + oot (ug = wdy) =0,

Po(t) = (by — yd )" + (byoy — ydut 1"+ - 4 (by = yidy) = 0,

Let,

p=lzy1), vi= [, b, i) for k=0, 0

then the entry ¢, of the Bezout matrix C of [4(1), (1) [Goldmsql is

mn

Cpg = Z IP: Vi Vitt4g-] Vspgsn—1, (i

k=mzx

whiere mn =min(p, ¢) and ma =maa(0,q — n + 1 + p). Thus, this expression give.

us a compact formula for the implicitization of a 2I) parametric rational curve

(cf. Section 3.2.1).
Similarly, there are formulae for the resolvents of the three components of &
3D parametric rationa! curve

astd + agt? 4+ agt + ag
d3t3 + d2t2 + (ll.t—-i: d—; -
bat® + byt? + byt + b
e+ G+ di+do
cal® 4+ cot? + ¢t + oy

Ps(t) = —_—z.
3(1) datd + dot? + dy L + dy

Pi(t)

T,

P(t) =

k)

Rewrite Pi(t) = G, Py(t) = 0, and P5(t) = 0 in polynomial form, to obtain
Pi(t) = (az—zds)t® + (a2 — 2dg)t* + (ay — zdy )t + (ag — wdy) = 4.
F(t) = (bs—yds)t® + (b - ydo}t® + (b — ydi)t + (by — ydy) = 0,

P3(t) = (C3 - Zd3)t3 + (¢ ~ 2d2)t2 +{cy - zdl)t + (co — Z(IU) == {).



Using vector notation, let

uy, = [ax b, cpydif?, fork=0,1,2,3 and q= [z,y, 2, 1)7.

Then, we have the following reset~nis (cf. Section 3.3.2): [Goldm85]

R] _ |uw-£a"'-QI |u31u27u0’q| =0,

IUS’ Uz, Ug, (ll |U3,U1,UO, Cll

s

feel ug,un, us, Uz, u
Ry = up,unal fusuzuoal ) (1.2)

lug, uy, ug, gl |uz, uy, o, qf

R, = !u31u17u03q| Iuaeux,llmm —o.

i, u;,u0,q] Juz,ui,uo,q]

In addition, the inversion equation is

o = lus:uz U0l (43)
|U3, uz, Uy, ql

From now on, whenever we say Bezout resultant we mean (3.5) and (4.1) for the
case of nonrational and rational parametric curves, respectively. Similarly, (3.59)
and (4.2) will be used for the resolvents of nonrational and raiional parametric
cubic curves, respeitively. In addition, let fi(z,y,2) = [V, v, val in (3.60) for
the nonration! case, and fi(z,y,z) = Jus, uz,u; q| in (4.3) for the rational case.

Now, we present the solutions for the problems proposed in Chapter 2 using

the elimination techmgues in Chapter 3.

Problem 2.1: Curve/Curve intersection

We have three different climination metheds to solve it.

Grobner basis: Let ay(s)da(t)-- as{t)di(s) = 0, by(s)da(*) = ba(t)di(s) = O,
and ¢;(s)da(t) — co(t)di(s) = 0, be three bivariate polynomials equa-

tions; then find the reduced Grobner basis G of the above equations.



Solve for s,t in . We will discuss this method in detail in the next

section.

Projection: This method is bas~d on the fact that any 31 curve can be
projected onto the zy and y= planes to get two polynomials in &, y and

y, z, respectively. This can be done by using the Bezout resultant.

Find the Bezout resultants £2,(.r, ) and Ra(y. 2} of two pairs of poly-
nomials

ar(s) —adis) =0, b(s) =yt is) o b

and

by{n) —ydi(s) =0, ey(s) = zdy(s) =0

Substituting z = aa(t)yy = y2(1), and = = zf) into (e y) and
Rafy, z), we get two polynomials Pi(t) and P%(t). To find the common
roots of these polynomials we again construct their Bezout matrix and
obtain the common factor C(¢) of these poiynomials. Again, using an
univariate polynomial solver, we can get the set 7 of rents of C(1) = 0.

For cach { € T we find # = x4({). Using an univariate polynomial

-~

solver we can g¢ i set S of roots of zy(s) — = 0.

For cach & € S and the corresponding £ € T, il 3(5) = yo(1) and

z1(8) = 2zo(f) then the pair (3,1) is a solution of the problem.
Resolvent: This method is applicable when one of the curves is parametric
cubic.

Find the resolvents R (x,y, z), fi2(z,y, z) of the cubic curve, say Cy(s).

These resolvents arc the polynomials of degree 2 in z,y, z. Substituting



z = z2(t),y = y2(t), and z = 22(1) into Ry(z,y,2) and Ry(z.y,z), we
get two polynomials 7(t) and P,(t). To find the common roots of
there polynomials *ve again construct their Bezout msiix and obtain
the common factor C(t) of these polynomials. Uein, an univariate
polynomial solv . we can get the set 7 of roots of C(t) == 0.

For cach i € T we find & = z5(f),7 = y2(i), 2 = z(6). I fi(£,§,2) #0
then we get § by using one of the inversion equations (3.60) or (4.3)

of s. Then the pairs (3,1) are the solutions of the problem.

Problem 2.2a: Line/Surface inlerseclion
After getting two polynomials Py(w,v) and Py(u, v), we can nse the Grébner
basis method to solve for their roots. Also, we can homogenize these poly-
~omials, and let P3(u,v,z¢) = aju + av + a3To. Then we can use the
11 sultant of Py(x,v,20o), Pa(x, v, 70), and Ps(u,v,To) to get the solutions

for this problem.

Problem 2.2b: Curve/Surface interseclion
This problem is similar to Problem 2.2a. Thus, we can use the Grobner
basis or u-resultant method 1o solve it. In this problem, we have 3 trivariate

polynomials; thus it is harder to solve.

Problem 2.3: Surface/Surface intersection
The solution of this problem consists of the equations of the intersection

curves in the parameter planes (u,v) or (s,t).

We can treat the parameters in one plane as constant, say (s,t}, then we



have three bivariate equations:

Qi(u,v) = x(1,v)—c; =0, where ¢ = ra(s,t).
Qa(u,v) = yi(u,v) —ca =0, where ¢z = ya(s,1).
Qs(u,v) = zp(w,v)—c3 =0, where 3= z(s,t)

First, we eliminate u from Q,(u,v),Q(u,v) and Q,(u,v), Qa(u, ) using
resultants to get Py(v) and Py(v), respectively. Then, eliminate v from
Pi(v) and P,(v) by computing their resultant. We get the equation 7 =0

of ti w intersection curve in the parameter plane (s, ).

4.2 Generation of Random Problems

Generating (o "ot problems with known solutions is one of the important aspeets
of testing various algorithms. For Problem 2., thereis - mcthod in the literature
(to our knowledge) for generating a pair of 3D parame!~ic .ational curves in
which their jntersection points are known. In this section, we discuss a proress
for randomly generating such curves, Cy(s), Ca(1), with rational coeflicienis. The

following are the input parameters:

(1) ny,ny: degrees of Cy, Ca, respectively,

(2) % : number of intersection points,

(8) rat : indicates whether the curves are rational or not,

(4) range : range for the random number generator. The denominator and the

numerator of the random rational numbers are in [0,7ange].

(5) seed : seed for the random number generator



‘The output consists of the coefficients of the polynomials a;(s), bi(s), ci(s), di(s),

where z;(s) = a;(s)/d1(s),y1(s) = bi(s)/dy(s), z1(s) = e1(s)/d1(s), and the poly-
nomials az(1), ba(t), ca(i), d2(t), where zo(t) = as(t)/da(), y2(t) = balt)/da(t),

<2

tively. These cocfficients are rational numbers.

We find these curves by the following steps:

(1) Randomly generate six vectors of rational numbers

xs:[i’la----jm],r» ys=[.771a-"737p1]Ta za=[§lv--°

. ~ T _ Il A T —[2
)\1:['(11"'9‘1]’2] . M {yl""ayl’i’] 9 zt—["‘l""

where

¥

4n;
[ [ n +3J ral=true,

i =
n; +1 - herwise,

by using an uniform random number generator with seec ..

22(1) = ca(t)/da(t). "This yields the parametric curves Cy(s) and Cy(t), respec-

? 5P1]T’

2 7T
’*'Pz] )

d vange as the

inputs. These vectors must satisfy the following conditions: Firstly,

and the remaining points are distinct. Secondly, the points (&, i, Zi) for
i=1,...,p are not coplanar if p; > 4 (or equivalently, n; 2 3). Similarly,

(&4 90 2y for 1=1,...,pg are not coplanar if p; > 4.

(2) Randomly generate two vectors of rational numbers s = [815---y8p,]7, and

t=[{.... ,tm]T, where 0 < s,¢ < 1. In addition, within each vector, the
clements are distinct. Then the intersection points of the two curves include

the pairs (si t;) for i = 1,..., k.



70

(3) If rat=false then we just simply obtain x(s), 11(8), 21(8) using polynomial
interpolation of s and X,,Y¥,, and z,, respectively. In the implementation of
this algorithm, we use the inferp function in Maple [Maple]. For example,
x1(s) =interp(ny.s,%,). Similarly, we get xy(1), y2(1), z2(1).

Otherwise, for the curve Cy(s) and the interpolation conditions x((s,) =
iy y1(88) = §iy ni(si) = 3, forz=1,...,p:, we set up 3p1 homogencous

linear equatiot:.

sttan, + c g e s+ ao—
Filsiely, + s Wy e sidy - do) =0

l

-1
"y + 8P T by oy e A sily + by

gilsd, + s:-”"l(l,‘._l +ooiFdsidy+dy) = 0
siten, + s}”"lcn,_l + o 45,0 + Co—
.’:’,‘(S:—”d,” + ._“-?l—l(l,,.}_] R 8,‘(1] + (I()) =
fori =1,...,p;. Hence, in vector notation, we have
Ae =0, (4.4)

where e is the vector containing the a;, b, ¢; and d;, i.e.

. . T
e = [anla"'7(1()11)".],"‘11)07(‘1”""3(4Jadu)7"-a(l()] N
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and A is a underdetermined Vandermonde-like matrix with 3p, rows and

4n, + 4 columns where 4n; +1 < 3py < 4ng + 3, i.e.,

s ... 1 0 ... 0 0 ... 0 =&y ... -
s .1 0 ... 0 0 ... 0 —Zsp ... —E
9.1 0 L0 0 L0 =Sy .. =Ty
0 ...0s" ... 1 0 ...0 —@sy" ... =B
0 ... 0 Sg‘ v ] 0 ... U —3728;” -—gg

0 ... 0 s ... 1 0 ... 0 =fpsp! ... —Up

4!
0 ... 0 O ... 0 S;“ | —2:13;“ -—51
0 ... 0 0 ... 0 s 1 —Zhsp ... =%

n i _3 ny -
0 ... 0 0 ... 0 s ... ) =28 ... —Zp |

Using a linear system solver, i.e., linsolve in Maple, we can get the coefficients
a;, bi,c; and d;. Since (4.4) is an underdetermined system, we get a set of
solutions for e, i.e., there are indeterminates in it. We just simply assign
the value 1 to the indeterminates. Note that we use the exact method here,
i.e., the entries of A and e are rational numbers. Similaiiy, we can do the

same for the second curve Cs.

We want to use exact computation in our method because first we would like
to get the exact representation of the curves with precisely k intersection points;
second, the floating point solution of (4.4) may not be reliable since Vandermonde

matrices may be ill-conditioned.



4.3 Implementation Issues for Problem 2.1

In this section we discuss the implementation of three different methods to solve
this problem. We have implemented these algorithms in Maple for the cases of
rational and real coeflicients of the input curves. In general, the inputs are two
curves C;,C, and their degrees. The outputs are the intersect’- 1 points and the
comparison between the actual and the calculated intersection points.

For the Grébner basis method, we only implemented it for the case that the
coefficients of the input curves' are rational. To get the reduced Grobner basis G
of these curves, we use the Grobner basis package in Maple [Maple] with lexico-
graphic ordering and used the heuristic approach for choosing the order of s and
t. Note that this is the bivariate case for the Grobner basis. Buchberger [Buchsi)
and Lazard [Lazard] showed that the number of polynomials in the Grobner basis
is bounded by m + 1, where m is the minimum of the total degrees of the leading
mon~inials of all the input polynomials. We show how to get the solutinns from
G = {G,,G,,...,Gn}, where n < m+1, and the Gy’s are polynomials in s and £,

In our experiments, n is relatively small(n < 5).

(1) ' 1 € G, then the curves do not intersect; stop.

(2) Find a univariate polynomial P(s) or Q(t) in G whox degtee is minimal in
s and t, respectively. Note that in general, if the sct of equations Ay =
... = Ar = 0, where A; € K[z,,..., ], has a finite number of solutions,
then the reduced Grobner basis G of these polynomials with respect to the
lexicographic ordering always contains a univariate polynomial in z,. This
can be seen by applying the criterion of the Grobner basis which indicates

that the system has a finite number of solutions (sce Section 3.4.3). Thus,

N1



if two curves intersect at a finite nesnber of points then either Pie; or Q1)
exists.
(3) If I’(s) and Q(t) do not exist then the curves intersect at an infinite number

of points; stop. In this case the equations z1(8) —z2(t) = 0,41(8) —2(t) = 0,

and z,(s) — z2(t) = 0 have an infinite number of solutions.

(4) If P(s) is found in step 2 then

(4.1) If the input curves are rational and if fi(s) = ged(di(s), P(s)) # 1,
then set P(s) to P(s)/fi(s). We want to avoid finding extraneous

roots of P(s) = 0.

(4.2) Find a bivariate polynomial R(s,t) in G whose degree is minimal in

L.

(4.3) Solve for P(s) = 0; s is a vector of solutio:. . It each § ¢ 3. solve for
t in R(s,1) = 0; t is a vector of solutions; ilie pairs (é,f), where f € t

arc solutions.
(5) Otherwise (Q(t) is found in step 2)

(5.1) If the input curves are rational and if fo(t) = ged(dz(1), Q1)) # 1,

then set Q(t) to Q(1)/ f2(¢}. We want to avoid finding extraneous roots

of Q(t) = 0.

(5.2) Find a bivariate polynomial R(s,t) in G whose degree is minimal in

S.



(5.3 Sobve for £20%) =2 0; t is a vector of solutions. For each { € %, solve for
s in I(s,t) == U; § is a vector of solutions; the pairs &, 1), where $ € §
|

are solutions.

For the projection and resolvent methods, the implementations in the case
of rational coefficients are straightforward (sce Section 4.1). We will discuss the
implementatio:s~ of these algorithms when the coeflicients are real (floating point)

numbers in the next section.

+.4 Experimental Results

4.4.1 Exact Arithmetic Implementation

We have coded the three algorithms described in Section 4.1. The aipst ~aic
manipulation language Maple is used, since il uses exact arithmetic {rotienal
numbers) and comes with a Grébner basis package. The tests are perfusy .
using the Unix operating system on a VAX 11/780. Testing is performed o
303 parametric rational and nonrational curves of degrees 3 to 6, and on 21
parametric rational curves of degrce 2 to compare the CPU times of the three
methods. Because the projection method is inferior to the other two, we have
only run it a limited number of times. For cach of polynomial or rational and
each degree of the second curve, 50 test probler., are randomly generated with 0 to
4 intersection points. For each number of intersection points, 10 test problems are
generated. The timing results are presented in Table 4.1 and Table 4.2, where the
CPU times are in seconds. Each entry is the average of 10 runs. The blank entries
in these tables indicate that there are no test runs. We felt that these runnings are

unnecessary because the conclusions can be drawn without their presence. The
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Algorithm | No. int. Degrees of input curves
points 3-2] 3-3[] 3-4] 3-5 3-6
0 27.551 | 82.950 | 208.909 | 697.467 | 1096.967
1 27.792 | 76.175 | 203.742 | 464.142 | 1000.384
Grobner 2 27.483 | 69.016 | 156.250 | 457.617 | 872.482

3 24.850 | 67.017 | 121.600 | 380.500 } 729.499
4 777777 | 58.150 | 122.050 | 354.433 | 619.634
0 29.784 | 72.440 | 242.876 | 1158.817 2241.083
1 18475 | 48.258 | 184.481 | 826.924 | 2122.876

Resolvent 2 12.650 | 37.583 | 117.083 | 676.683 ) 1714.216
3 10.413 | 32.950 | 100.606 | 441.016 | 1209.650
4 777777 1 16.866 85.950 | 321.167 | 935.867
0 50.200 | 408.942
1 45.209 | 287.783

Projection 2 39.900 | 223.357
3 30.492 | 175.450
4 727777 | 99.800 | 1230.516

Table 4.1: Times in seconds for parametric rational curves

«?97777" entries are there because the number of intersection points is greater
than the degree by 2, which is impossible.

The first goal of our evaluation is to determine the correctness of these algo-
rithms. Of all the sample problems with known intersections solved, all results
obtained are correct; that is these algorithms report exactly the known intersec-
tions.

The second goal is to compare execution speed. Our results indicate that
the projection method is the worst. This is reasonable because it produces in-
termediate polynomials with high degree (see Section 4.1). For instance, to find
the intersection of two 3D parametric rational cubic curves using the projection

method, we have to find the ged of two degree 9 univariate polynomials; this



Algorithm | No. int. Degrees of input curves
points | 3 -2 3-3[3-4]3-5]3-6
0 10.934 | 12.800 } 1%.350 | 25.602 | 36.850
1 10.233 | 13.633 § 16.717 | 24.150 | 29.816
Grobner 2 10.133 | 13.484 | 15.950 | 28.710 | 33.234
3 R8.015 | 14.033 ] 16.733 | 23.584 | 30.417
4 777771 12.050 { 12.667 | 22.650 | 27.866
0 10.050 | 20.850 | 45.534 | 83.740 | 173.350
1 7.616 | 19.483 | 31.517 | 64.820 | 146.733
Resolvent 2 7.600 | 16.500 { 32.266 | 74.834 | 137.517
3 7.421 { 16.933 | 25.450 | 57.233 | 129.417
4 77777 1 10.217 | 28 "84 | 47.167 | 119.416
0 35.884 | 173.950
1 20.883 | 148.250
Projection 1 2 | 19.533 | 111.150
3 18.213 | 92.000 "
4 7777771 47.600

Tavle 4.2: Times in seconds for parametric polynomial curves

corfesponds to settir: up a 9 by 9 Bezout matrix and applying Gaussian climi-

nation to it. Hence, ..c only discuss the comparisons between the resolvent and
the Grébner basis algorithm.

We have some conclusions about the speed of the algorithms in terms of degrees

of the ir.put curves. First, we state the results for the case that the input curves

'vic rational. If the degree of the second curve is less than or equal 3,

t. o i o ouslvent algorithm uses slightly Jess CPU time than the Grébner basis

algorithm. The two algorithms have about the same time wheu the degrees of

the inputs are (3,4). But if the degree of the second curve is greater thar 4 then

the Grobner basis method is faster than the resolvent method. Second, when the

input curves are 3D parametric polynomial, the Grébner basis algorithm is much

”*



better then the resolvent algorithm, especially when the degree of the second curve
is high.

In terms of the number of intersection points of the two curves, cach algorithm
typically consumes less time as the number of interscction points increases. This
agrees with theoretical reasoning: For the resolvent algorithm (sce Section 4.1),
the higher the number of the intersection points, the fewer the number of steps
of Gaussian elimination on the Bezout matrix it has to perform to get the ged
of the two univariate polynomials. A similar observation holds for the projection
method. For the Grobner basis method, it is fair to say that the degrees of the
polynomials in the reduced Grébner basis of the input curves are high. This means
that the number of reduction steps are fewer when there are more intersection
points, i.e., the degree of the basis polynomials are higher.

When comparing the speed between the two algorithms in terms of the number
of intersection points of two parametric rational cuives, we can say that resolvent
method is better when there are more tnan 2 intersection points and the degree
of the second curve is less than or equal to 5. Hence, the Grobner basis method
is better when there are less than 3 intersection points.

In the case of parametric polynomial curves, the results show that as the degree
of the second curve increases the time required for the Grébner basis algorithm
grows polynomially while the time required for the resolvent algorithm grows
exponentially, i.e., it approximately doubles with an increase of 1 in the degree.
However, when the input curves are parametric rational, the times required by
both algorithms grow at about the same rate with respect to the degree of the
second curve.

In summary, if there exist three intersection algorithms: projection, resolvent,
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and Grobner basis, in a geometric modeling system, then from these results, we

make the following recommendations for the users of these algorithms:
- Try to avoid using the projection method as much as possible.

- When the input curves are 3D parametric polynomial, use the Grébner basis

algorithm.

- When the input curves are 3D parametric rational and the degrees of the input

curves are 3 and d, then if d < 3, use the resolvent method, otherwise, use

the Grébner basis algorithm.

If we know that there are more than 2 intersection points and d < 4, use the

resolvent method.

Overall, the Grébner basis algorithm is better than the other two methods,
especially in practice, since two 3D curves seldom intersect. We believe that we
can develop a special Grobner basis package to handle the 3D curve intersection,
which is faster than using the genera! package because we can exploit the fact
that all the polynomials are bivariate.

Before leaving this section, we want to mention that the Grébner basis package
in Maple is more efficiently implemented than the resolvent algorithm because
we believe that some of the subroutines in this package are implemented in C,
while the resolvent algorithm is implemented entirely in Maple. Hence, we will
only know how much better the resolvent algorithm will be compared with the
Grébner algorithm if we know how the Grobner basis package is implemented in
Maple and C, and modify the implementation of the resolvent algorithm to match

the advantages that the Grébner basis algorithm has.
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4.4.2 Floating Point Arithmetic Implementation

For the floating point arithmetic implementation of the projection and resolvent
algorithms described in Section 4.1, we have one more input paramecter array, 76!,
consisting of two elements. We will show how To[[1] and To{[2] are used in the
algorithm below.

Let P(t) = 3%, c;t' be any arbitrary polynomial of degrec d; then define

mazcof{ P(t)) = max(|ci), fori=0,1,...,d

Also, let A =[a;;] = [ry,...,ra]7 be an n by n matrix, with rows r?. Then
¥ y t
mazr; = max(|a;|), forj=1,...,n;
maz(A) = maz(mazr;), fori=1,...,n.

Now, we modify the projection and resolvent algorithms for Problem 2.1 in

Section 4.1 for the floating point representation of the coefficients.

(1) After we get the univariate polynomials P;(t), P,(t), in both methods, nor-
malize them; for example, set P(1) to Y4, (ci/mazcof P(1)))t!. Then, if

le;] < Tol[1], set ¢; = 0.0.

(2) Now, we set up the Bezout matrix B for the normalized P, P, and apply
Gaussian elimination with partial pivoting and implicit scaling [Atkin]. The
problem here is that during the elimination process, we need to decide which
small entries in B are really zero. We use the second tolerance for this
problem. That is, if the pivot of B, say b;, is less than 76l2] in absolute
value, then set rows 7 to row n to 0. This is a heuristic step, and its based
on our observation that the rows have decreasing absolute values in our

experiments.
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(3) After we get the common factor C(t), we proceed as in the case of rational
coefficients.

Initially, our first zoal was to find the relationship between the coefficients of
the input curves and the array Tol. But we failed to obtain such a relationship

and will leave it to future research.

Our second goal is to see how stable the projection and resolvent algorithms
are. There are cases in which these algorithms fail to report any intersection points

while the actual intersection points exist. The following exampie illustrates this

point.

Example 4.4.1 : The curves are P(s) and Q(t), where the components of the

curve P(s) are:

1.8448264 — 13.781822s + 27.775270s? — 16.905831s>

21(8) = 57043950 — 20.562170s + 41.8692675% — 25.6832405° "
1.4189839 — 9.7137086s + 19.030943s2 — 11.46959353
11(5) = 37043950 —20.5621705 + 4186926757 — 25.6832405°”
1.0 — 7.7359194s + 15.912610s? — 9.8347009s3
a(s) = 57013950 — 20.5621705 1 41.8692675% — 25.6832405° "

and the components of the curve Q(t) are:

—0.61265987 + 2.5891510¢ — 3.4319562t2 + 1.3599856¢°

n(t) = —0.97070784 + 3.99846 76t — 5.0996641¢2 + 1.8809454¢3’

() = —.26698886 + 1.0t - 1.0454412t2 + 0.19785466t°
—0.97070784 + 3.9984676¢ — 5.099664112 + 1.8809454¢3’

all) = ~0.45511876 + 1.8307656¢ — 2.2626510¢2 + 0.79152472?.
—0.97070784 + 3.9984676¢ — 5.0996641£2 + 1.8809454¢3

We used the projection and the resolvent algorithms with Tol = [1077,10~7].
Both algorithms failed to report any intersection points. But, the actual in-
tersection points, in z,y,z coordinate, are: (0.5,0.6,0.5), and (0.625,0.444,0.4),
and in the parametric variables (s,t), the intersection points are: (.7,1.0) and

(0.85714286, 0.66666667).



On the other hand, the following example indicates that the projection and
resolvent algorithms report extra intersection points, which do not lic on the input
curves:

Example 4.4.2 : We know that the input curves P(s) and Q(¢) have one inter-
section point at (0.25,0.9,0.5) with corresponding s = 0.625 and t = 0.22222222.

The components of the curve P(s) are:

1.0 — 4.4817827s + 6.6322672s% — 3.2439802s°

0.31245966 — 2.1861032s + 4.215762852 — 2.4674966s3°
—1.2158106 + 4.5855138s — 5.7185561s% + 2.3557553s>

1(s) = 537245066 —2.1861032s 7 4.2157628+7 — 3.467496653 "
0.97756096 — 4.5882078s -+ 7.04115145? — 3.54355205°

0.31245966 — 2.1861032s + 4.2157628s2 — 2.46749665"°

231(5) =

zi{s) =

and the components of the curve Q(t) are:

() = —0.089112463 + 0.51508244¢ — 0.85819763{% + 0.44200280¢3
—0.35745934 + 2.0727994t — 3.4767756¢% + 1.8054237¢3 °
n(t) = —0.32053031 + 1.8553865¢ — 3.1032929¢2 + 1.6061408(3
—0.35745934 + 2.0727994¢ — 3.4767756¢% -+ 1.8054237¢3’
2l(t) = —0.17482380 + 1.0t — 1.63625212 + .82427232¢3

—0.35745934 + 2.07279941 ~ 3.476775612 + 1.8054237¢3"

But using the projection algorithm with Tol= [1078,10~®] and the resolvent algo-

rithm with Tol= [10~6,107%], we have the following interscction points:

sy = 0.62489327 t, = 0.21672381,
s = 0.62489327 ty = 0.23657849,
s3 = 0.62489327 t3 = 0.22223487.

In some other cases, we obtain complex intersection points whose real parts
are close to the actual intersection points and the imaginary parts are close to
0. For most of the randomly generated problems that we ran, one of the ahove
three cases occurred for the computed results. Thercfore, this indicates that the

projection and resolvent algorithms are likely numerically unstable.
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Chapter 5
Concluding Remarks

In this thesis, we discussed the issues of how to evaluate curve and surface inter-
sections using climination theory. First, we provided the mathematical tools in
elimination theory. Then, using these tools, we implemented three curve/curve
intersection algorithms: projection, resolvent, and Grébner basis. Also, we im-
plemented an algorithm to generate random problems for the three intersection
methods. The experimental results obtained from the random problems, with
rational coeflicients, indicate that the projection method is the worst in term of
CPU time. In addition, the Grobner basis method is the best, in term of CPU
time, when the input curves are 3D parametric polynomial. Furthermore, for the
case input curves are 3D parametric rational, if there are more than 2 intersection
points and the degree of the first curve is 3 and the degree of the second curve is
less than or equal 4, the resolvent algorithm uses less CPU time than the other
two algorithms. Finally, we illustrated the difficulties arising from floating point
implementations of the projection and resolvent algorithms.

The new contributions of this thesis are: First, we provided a comprehensive

survey of the elimination theory. We gave a complete, correct, and constructive
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proof for the solutions of two bivariate polynomials, which involves the Sylvester
resultant. Also, we improved the description of the constructive method to derive
an explicit expression for the rcsultant in the multivariate case because we believe
that the original descriptions [Mac02, Mac16] are hard to follow and appear to con-
tain errors. Second, we discussed the implementation issues of three curve/curve
intersection algorithms: projection, resolvent, and Grébner basis methods. In ad-
dition, we provided a methodology for generating random problems with known
intersections. Furthermore, from experimental results, we identified the classes of
the problems for which each method is better and indicated the difficulties which
arise when using floating point implementations.

In our opinion, there are many unsolved problems arising from this thesis.
Namely, the first major one is related to the multivariate resultant. The second
problem is concerned about the special resolvent, implicitization, inversion, and
intersection of curves and surfaces. Finally, the third problem is dealing with
the floating point implementation of the curve/curve intersection problem. These

open questions are elaborated further below.

5.1 Multivariate Resultant

First, when deriving an explicit expression for the multivariate resultant R, we
treat all the coefficients of the polynomials Py,..., P, as indeterminates. This
causes confusion and difficulties in understanding this theory. The question here is
whether we can derive R using specialization of the coeflicients of the polynomials.
The problem with the current approach is that the determinant of the submatrix

AM may be zero when using specialized coefficients.



Second, the construction of the Macaulay matrix M is complicated and time
consuming. Can we find an easier way to construct it, i.e., can can we obtain M
from the coefficients of P,. .., P, like we do in the bivariate case? There are two
difficulties here. Number one is can we get a formula to indicate how many rows
correspond to each polynomial without actually computing /XA’o'd, e ’/‘?n—l,d,i’n,d,
Number two is how to find a pattern for the rows corresponding to each polyno-

mial. We believe there exists such a pattern. For example, for the matrix M(3,4)

in Example 3.2.2 we can reorder its rows as

[z*Py, zy Py, z2Py, y* Py, y2Py, 2Py,
Ty Py, 2Py, yzpzv yz Py, 2% Py,

ry Py, z2Ps, yzhs, 22P3],

and reorder the columns in the lexicographic ordering of [z, y, 2] to get the follow-

ing matrix:
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4 .3 3 2.2 2. .22 S TV N TR BN DU S SN S
[x,xy,zz,ry,ry~,z~,my’aya,wyu-u,y»y~.y~,y~.~]

dry Qry Ar: Qyy ayz a.: W
arz 0 azy az: 0 ay ay: a

a:r 0 apy ax: 0 ay ay a:

a;y 0 0 apy ap: 0 0 ay ap a

e
e

a,r O 0 ay ar. 0 0 ay ayp

bey O bry b 0 by by b
by 0 0 by b O 0 by, by b

by 0 0 by bz 0 0 by, by b
byy O 0 by 0 O 0 by by b,.

€z 0 Coy €z 0 €y Gy Ca:
Czz 0 Cry €z 0 Cyy €y C:

Cexr 0 0 ¢y €z 0 0 oy ©p O

] ez 0 G cpy €z 0 0 oy Gy Ca ]
We can see a pattern between the rows and between the columns in this matrix.
Third, we know that if the system P, =...= P, =0 has a nontrivial solution,

then there exists a nonzero solution for the system of lincar equations
Mx = O. (5.1)

The question arising here is can we get the solution of P, = ... = P, =0 from x,

a solution of (5.1). We know that if

v; = [onj, @2, - ..,O'nj]T where ajj #0fore=1,...,n

1A



are the solutions of P, = ... = P, = 0, then M| = 0 implies there exists nontrivial
solutions for P, = ... = P, = 0. Moreover, we belicve that these solutions can
be obtained from the solution x. One way to overcome the problem that some of
the ay; are zero is to make the substitutions zx = zx + B, where B; # 0 for all
k such that ay; = 0. But, how do we know which variable will be equal to 0 in
the solutions? If we can get a set of criteria for this condition than we think that
we can come up with a constructive proof for Theorem 3.5. One more question
arising is whether the rank of M teils us anything about the number of solutions
that P, =... = P, = 0 has, as in the bivariate case.

Finally, the issue of specialization of the coefficients needs some treatment.
The major obstacle here is that [AM| may vanish when we specialize the coef-
ficients. One way to tackle it is to apply Theorem A.6; that is, compute [AM]
first. And then figure out which coefficients of Py,..., P, cause [AM]| to vanish.
We can make JAM| # 0 by applying an appropriate linear transformation to the

variables. Then the resulting resultant is the same as the original one.

5.2 Curve and Surface Intersections

There are still open questions for the implicitization, inversion and intersection of
parametric rational curves/surfaces.

First, we know that the Bezout matrix is symmetric. Is there any geometric
significance to the fact that this matrix is symmetric?

Second, we already have the solutions for the implicitization and inversion of
3D parametric rational cubic curves; these solutions can be used to generate an

optimal, robust intersection algorithm. What about the 3D parametric rational
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curves of higher degree? In order to answer this question, we must find the answers

to the following questions:

- Can we get the special resolvents for three univariate polynomials of arbitrary

degree?

- We know that a 3D rational curve of arbitrary degree can always be represented
as the intersection of three algebraic surfaces together with some residual
curves [Abhy69]. Thus, an exact implicitization may require many surfaces,

Could we use these surfaces in an intersection algorithm?

5.3 Floating Point Implementation of Intersec-

tion Algorithms

In this section, we only discuss the difficulties we faced for the curve/curve inter-
section algorithms. Here, we do not include the issue of stability of the problem
of curve/curve intersection. We only raise the questions concerned with the ex-
perimental aspects of this problem.

The first question is what values of the tolerances, which are based on the
degrees and coeflicients of the input curves, are acceptable. These values should

answer the following questions:

- What are the criteria to stop the Gaussian climination process, because there
is an extremely small probability that the Bezout matrix will be singular in
floating point arithmetic? In addition, in our obscrvation from experiments,
after a couple of elimination steps, the entries in cach row are in decreasing

order. Hence, what is a suitable valuc of the pivot for it to be considered

96



equal to zero along with the rest of the matrix?

- How small must a coefficient of the input curves be to be considered insignificant,

i.e., equal 07

- When the solutions obtained are close together, then what are the criteria for

accepting these roots?

In the projection algorithm presented in Chapter 4, we compute the intersec-
tion points of two curves in parameter s. And then, we substitute this value of
s into the curve Cy(s) to get one of the values of z,y, and z to solve for £. Since
two 3D curves can have the same value in one or two axes but the other two or
one axes are different, we have to choose an axis which avoids extra roots in Z.
The question here is which of the three axes do we choose.

The final issue is what is the interpretation of complex roots. If the complex
solutions have a very small imaginary part, then can we ignore the imaginary part

and consider them to be real solutions.
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Appendix A

The Multivariate Resultant

In [Mac02] and [Macl6], Macaulay shows that the matrix AM(n,d) defined in
Chapter 3 is a submatrix of the Macaulay matrix M(n, d) = M, (n,d), and proves
that the resultant R(n,d) is a ratio between |M(n, d)| and |AM(n, d)|. We believe
that Macaulay’s proofs are hard to follow, are missing significant details, and may
contain some errors. In this appendix, we try to improve Macaulay’s proofs by
filling in some missing details and giving a better description. Even with these
improvements, there are still some gaps in the proof.

Again, we will treat the coefficients of P, ..., P, as indeterminates. First, we

prove the fundamental theorem of the resultant theory.

Theorem A.1 Let1 < p < n and 0 < m. Any homogencous polynomial (i of

degree m in t,,...,z, can be expressed uniquely as
G=PQo+PQi+ -+ PQ1+Q, (A.1)

where Q; € Qim, fori =0,1,...,p~1, and Qp € Q,,,m. Equivalently, M,(n,m)

is nonsingular.
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Proof: Equating coefficients of the monomials on the two sides of equation

(A.1) we obtain the system of Ny, linear equations
M;(n, m)c = g,

where M,(n,m) is an Ny by N, Macaulay matrix, g is a vector of dimension N,
consisting of the coefficients of G, and ¢ is a vector of dimension Ny, consisting of
the coeflicients of Qo, ..., Qp-1, Q,. We want to show that Mg'(n, m) is nonsingu-
lar symbolically. That is, for any given P, ..., P,, which are nonzero homogeneous
polynomials, (A.1) can be satisfied for G = 0 if and only if Qo,...,Q,,_l,Q,, all

vanish.

Now, suppose that Mg(n,m) is symbolically singular, then G = 0 could be
satisfied without Qo,...,Qp-1, Q,, all vanishing. In particular, for the specializa-
tion P, = :::}1‘ for i = 1,...,p, there exists the same nontrivial Qo,...,Qp_l,Qp
such that

:v'lj’ Qo+ zg’Ql +---+ mZ’l‘l’ Qp-2 + mszp—l + Qp = 0. (A.2)
But this is not possible because the matrix My(n,m) corresponding to (A.2) is a
diagonal matrix with nonzero entries. Hence, all the coefficients Qo, - .., @p-1, Qp
must be equal zero. Thus, M?,‘(n, m) is nonsingular, i.e., there exists a unique set
of values of the unknown c, or in other words, Qo,...,@p-1, QP can be chosen in
onc and only one way so as to satisfy the equation (A.1). OO

Note that this theorem also applies for any permutation m of the polynomi-
als P,..., P, ie, (R1,...,Rs) = (Pr1)s- - -, Pr(ny), Where R; is a homogeneous
polynomial in Zx(1y,...,Zx(n) of degree dr(;).

Let

AM(n,m)| = 2



for one of the arrangement of Py, ..., Py, say (P, Py,..., Pr). We wish to find an
expression for |[AM(n,m)| in terms of the coefficients of the polynomials. Then

one important property of |AM(n,m)| is given in the following lemma.

Lemma A.2 : |AM(n,m)| is independent of the cocfficients of P,. Also, the
degree of R(n,m) in the coefficients of P, is equal to the number of monomials in

Xn—l,m-

Proof : Let 7 be a different order of the polynomials Py,..., Py in zy,...,Tp;
and let [M"(n,m)| denote the determinant of the Macaulay matrix M*(n, m) for

this order. Thus, M™(n,m) is the Macaulay matrix corresponding to

Py RE + -+ Pymy Ry + R, (A.3)

n-1

where R} € €1, and R e Q;'m.
Now, let G be a general member of the module (P, ..., P,) of degrec m. That
is
G=PRo+PRi+- + PasRucy + PaRucy = T M(n,m)x, (A1)
where R; € Qin, and c and x are the vectors corresponding to the cocflicicnts
of Ry,...,R,—1 and to the monomials in z,...,z, of degree m, respectively. By

Theorem A.1, we can bring G to the form
G=PqRE+ -+ Py Ry = (") "M (n, m)x. (A.5)
Equating the power products of equation (A.4) and equation (A.5), we have
M(n,m) = (c")"M™(n, m).

For simplicity, we drop (n,m) from the matrices M(n,m) and M"(n,m). Ac-

cording to Theorem A.1, the matrices M and M" are nonsingular. Thus, we
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have
c= (MT)—I(Mr)Tcx.
Hence, the ratio of |M| to [M"| is

IM™| _ RjAMT| _ |AM"|
M|~ R[AM] © |AM

where ¢ = Tc™ and T = (M7T)"}(M™)T.

= |T|, (A.6)

Now, we describe a method for expressing ¢y, ...,cn,, in terms of c7,...,cx,_
and the coefficients of Py, ..., P, such that |T| is a rational function of the coef-

ficients of P,,..., P, whose denominator is independent of the coeflicients of Py.

In other words, we express
G =P A+ PA + -+ PhAn, (A.7)
where A; = R7_,;_,), in the form
G =PRo+ PRy +++ + PaRuy, (A.8)
or we find the solution of
PiRy+ PRy + -+ PoRuy = PAo+ PoAr 4 - + PoAno, (A.9)

where A;’s are given and R;’s are the unknowns.
First, we want to find the coefficients of the polynomials ((,1) yeens QSBZ, QAQI
in
A = POV + PQY 4 4 Pt QU, + QASII-ZI’ (A.10)
where Q,(-’) € Qm-d, fort =0,...,n—-2and Qn_l € Qn,m—dn- Here the coefficients
of Q((,”, ey f,l_)z, Qf:_)l are found as follows: By Theorem A.1 equation (A.10) can

be written in vector notation as

vIBx = aTx,



106

where v is the coefficients of the unknown polynomials, a is the coefficients of
A,_1, x is the monomials of degree m — d,,, and B is a nonsingular square matrix.
Thus, we have

v = adj(B")a/|B|,

in which the denominator of v does not involve the cocfficients of the polynomials

on the left hand side of (A.10).
Substituting A,_; in (A.10) into (A.7), we have

G = Pi(Ac+QVP) + Po(Ar + QP + -+ + Pacy(Anz + QUL P + POW,
(A.11)
where Q(l) .,Qfll_)z,Qm have been found.

Similarly, we can find the coefficients of Q(z) ey G 512_)3, Q"_2 in equation

Anz+ Qf}_’an = PIQ(2) + P @4 Pn—2Q(2)3 + Qf?)g, (A.12)

2 . \ . _
where Qf ) e Qim-da, forz=0,...,n =3, and Qn_2 € Qum-d,_,, in the same
manner. Hence, we have a unique solution for these coefficients.

Thus, we can proceed in this way until (A.7) becomes
G=POM+ PO 4. + P QP, 4+ POW, (A.13)

It follows that (A.13) has to be equal to (A.8), i.e., Bo= Q™. ..., Ruey = Q).
Thus, all the coefficients of R; has been found in terms of the coeflicients of A,
and P,.

In this method, the denominators of the Q{*) and Q'*) depend on the coeffi-
cients of Py, ..., P,_; only and not those of P,. Thus |T| is a rational function of
the coefficients of Py,..., P, whose denominator is independent of the coefficients

of P,.
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Now assume that |AM| and |[AM"| have a common factor, C, that is a poly-

nomial in the coefficients of P,. Then we have
|AM|=CF, and |AM;|=CF; for 1=2,...,n

where [AM;| = |M;|/R;, for the other (n — 1) arrangements of Py, ..., P. This
contradicts the fact that R is the ged of n Macaulay determinants. Thus, |JAM|

is independent of the coefficients of P,.

Furthermore, the degree of |M| in the coefficients of P, is the number of rows
in the matrix M corresponding to P,. This number is exactly the number of
monomials in X,_ym. Since [AM] is independent of the coefficients of P, R has
the same degree in the coefficients of P, as |M(n,m)|.00

From the above lemma we can explicitly give the degree of the R(n,d) in the

coefficients of P;’s. Let

D= I &

J=1#i
Then, when m = d, we can easily show that the numbers of monomials in Xy_14

is D,.. This can be seen from the fact that R,_; has degree d—d, and it is reduced

in zy,...,T,. Thus, the monomials in X,_; 4 are all the power products in

(L4 zy 420 (1 + Ty + o+ 2o,

each multiplied by an appropriate power of z,. Therefore, the number of mono-
mials in X,_1 4 is dy...dn_; = D,. By Lemma A.2 the degree of R(n,d) in the

coefficients of P, is D,. The general result is given in the following lemma.

Lemma A.3 : The degree of R(n,d) in the coefficients of P; is D; for i =

1,...,n.
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Proof: It follows from the fact that R(n,d) is the ged of n |M™(n,d)| and
the above observation. OO

From now on, we pay attention to R(n,d) even though the proofs given here
are valid for anj degree m. From the fact that AM(n,d) is independent of the
coefficients of P,, we find an explicit expression for |[AM(n,d)|. In order to get
this expression, we need to introduce some new notations.

Let P,-(p) denotes the value of P; when z,41,...,z, are all zero; so that lv’,-(") is
a homogeneous polynomial in p variables zy,...,x, of degree d;. Let [M?(p, )],
p < n, denote the determinant of the matrix M) (p,m) corresponding to the

degree m polynomial equation
G=PPQo+PPQi++ PP\ Qs+ PPQ,1 + O, (A.14)

where @; € T';,, and Q,, € f‘,,,m. Here, p is the number of variables and the number
of polynomials. The sets I';,, and f‘p‘m are similar to the set Q;, and fl,,,,,,, in
which Pl(p),...,P,f”) are used instead of Py,..., P,. Hence, the construction of
M) (p,m) is similar to the construction of M,(n,m). R(p,m) denotes the ged
of the p determinants like [M()(p,m)|, formed from p cyclic arrangements of
PP, P

We want to explain the construction of the Macaulay-like matrix, M.(n,m),

whose determinant vanishing is the condition that the polynomial equation

PlQO,m + PZQl.m S RERE P —lQn-—?.m = zin n-1.m (Alr))

of degree m, Q; m € Qi m, can be satisfied for 0 <7 < n—1, where not all Q;,, are
zero. Note that the monomials in zf;‘Qn_l,m are the monomials in X,,_; . Thus,

the columns of M.(n,m) correspond to the (Ny — |Xyu—1.m| — |nm|) monomials
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n—-2

- - N ) -,
Xm - Xn—l,m - Xn,m = U Ai.ma
1=0

and the rows contain the coefficients in

n-2

U Xi.mR-H (zlv EERX) zn)-

=0
If the rows of M(n,m) are arranged so that the rows corresponding to Xu_1,mFPr
and the monomials in Ay at the bottom and the columns of M(n,m) are ar-
ranged so that the the monomials in X, -1,m and A"n'm are to the right, then
M.(n,m) is a leading square submatrix of M(n,m).

Referring back to Example 3.2.2, we want to construct a matrix whose deter-

minant vanishing is the condition that the polynomial equation

PiQoa+ P2Q1a=7"Qa4 (A.16)

of degree 4 can be satisfied for Q;4 € Q4 (not all zero). The 11 by 11 matrix is

Qzr Qzy Qzz: Ay Gz G 0 0 0 0 0
0 azz 0 ay 0 az; 0 ayy, 0 0 ay

0 0 a 0 ap: az O 0 0 0 ay
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This kind of matrix will be used in the proof of Lemma A 4.

Now if we consider [M(n,d)|, R(n,d), and [AM(n,d)| as polynomials in the
coefficients of P,, then |AM(n,d)| is a constant while |M{n, d)] and R(n,d) have
the same degree. Thus, finding the ratio between |M(n,d)| and R(n,d), i.c.,
|AM(n,d)|, in terms of the coefficients of Py, ..., ..} is equivalent to finding the
ratio between the coefficients of (af,"'j_'d")D", in [M(n,d)| and R(n,d), by Lemma

A.3. This ratio is given in

Lemma A.4 .

d-1
IM*-Y( — 1,d - p)|
AM(n, )] = Dol A (A7)
! R(n,d) dn-1 '
H R(n~1,d-q)
g=0

Proof : First, we can sce that agj"d" appears in the diagonal on D, rows

of M(n,d). Thus, the coefficient of (agﬂ_‘d")D" in M(n,d) is [M.| = |M.(n,d)|,
the determinant of the (N — D,)-th order submatrix in the upper left corner of
M(n,d). In terms of a polynomial equation, M. is the Macaulay like matrix,

whose vanishing is the condition that the degree d equation

PiQoa+ PoQra+ -+ PusiQuizd = 2 Quira (A.1R)

can be satisfied, where Q; 4 € Q4.
To find [M.|, we assume that (A.18) is satisfied and put x, = 0. Then P,

becomes P,-("_l), and Q;q4 becomes Q7. (A.18) becomes
PUNQs a4 PPV a4+ PIQs a = Qi (A.19)

Note that the determinant whose vanishing is equivalent to the satisfaction of

condition (A.19) is [M("=1)(n —1,d)|. Hence, we have cither [M™(n — |, d)|=0,
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or Qg 4y - - -, @y _z,4 all vanishing. In the latter case, Qog, . - - Qn_2,4 are all divisible

by z,, and dividing it out, we have the degree d — 1 equation
Px(n_l)QO,d—l + Pz(n—l)Ql,d—l 4+ Py(:_l;”Qn-Zd—l =25 Qn 141, (A.20)

where @Q; 4-1 € Qi 4-1. Hence, (M=) (n — 1,d — 1)|=0, or an equation similar to

(A.20) of degree d — 2 holds. This process continues until the degree is 1. Thus,

we have
d-1
IM.| =]] MY (n —1,d - p)|.
p=0
Therefore,
d-1
IM(n,d)| = (@ 0 )P T MO = 1,d=p)| 4+~ (A21)
p=0

Macaulay matrix of the polynomials in the order = such that #(1) = n, #(¢) =
i—1fori=2,...,n,ie., Py, P,...,P,_;. The vanishing of |[M"(n,d)|, is the

condition that the equation
Pr)Qod + Pr2)@ra+ -+ + Prn)@n-1a =0 (A.22)

of degree d can be satisfied, where Q;4 € Q] ;.

Let r be the number of monomials in A, Then the coefficient of (agf}"dn ) in
IM™(n,d)| is the determinant of the (N —7)-th order submatrix in the lower right
corner of M™(n,d), or the determinant whose vanishing is the condition that the

equation

dn
PiyQua+ -+ Prn)Qu-14 = 2,03) Qo (A.23)

of degree d can be satisfied. We can find (al’

.....

n

finding the expression of (a(()

.....



the degree of the equation is d — (d, — 1) because Qi 4,...,Q@u_1.4 are reduced in

Tx(1) = Tn. Thus, the coefficient of (a(()','.)md")’ in |M,(n,d)| is

Now, keeping P, fixed in the first position while altering the order of Py, ..., P,
in the last n — 1 positions in n — 1 ways, results in the ged of the coefficients of

(ag,l.?.,d,.)r being
dn~1

II R(n-1,d~p).

=0

Thus, this is the coefficient of (ag’?_'d,l)D" in R(n,d). Hence,

du~—1
R(n,d) = (af)r,l.)..,d,,)D" II Rn-1,d=p)+---. (A.24)
p=0

The lemma has been proved. OO

By definition of R(n — 1,d), we have
R(in—-1,d) = Rln-1,d-1) = ... = R(n~1,d—-d, +1).
Thus,
R(n,d) = (af? ; )P"(R(n = 1,d — do + 1))* + .- (A.25)

Furthermore, we can have that the expression for the coefficients of
i Di i+1 t -1 n— T n N
(ag,?..,d;,...,n) (ag.....g.-“ ..... )P (ag,l...,d),,_, ,o)D l(a((),l.)..,d,.)l) (A.26)

in R(n,d) is (R(: — 1,d — d; + 1))P".

We have the explicit expression for |[AM(n,d)| in terms of the ratio of the
product of the determinants of the Macaulay matrixof Py,..., P_iinzy, ... 2.,
of degree d to degree 1 to the resultant of Py,..., Py inzy,..., 2,1 of degree d

to degree d —d, + 1. But this expression is not very helpful for computing R(n, d).
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We will show that |JAM(n,d)| is the determinant of the minor of the Macaulay

matrix M(n,d) whose construction is given in Chapter 3.

Theorem A.5 : AM(n,d), where |[AM(n,d)| = |M(n,d)|/R(n,d), is the mi-
nor ¢f M(n,d) obtained by deleting the columns of M(n,d) corresponding to the
monomicls reduced in any n — 1 variables and the rows containing the coefficients

of ¥ in P; in the delcted columns.

Proof : First, we can see that AM(n,d) described in this theorem is the
same matrix AM(n,d) described in Section 3.2.3, Chapter 3. That is, matrix

AM(n, m) corresponding to the following equation
PiQowm + PiQim + -+ + Pac1Qno2im — Qm = 0, (A.27)

where Q;,;n € ®;m and Om € ®,.. Therefore, the vanishing of [AM(n,m)] is
the condition that (A.27) is satisfied, i.e., all the coefficients of the polynomials
Qim, Qm are zero.

To avoid confusion in the notation, let the matrix described in this theorem

be A(n,d). Second, to prove this theorem, it will be sufficient to show that

dn-1 d-1
|A(n,d)| = ] (A(n - 1,d=p)| [] IM"P(n-1,d-p)], (A.28)
p=0 P=dn

and to verify that
|A(2,d)| = 1.

The verification for the bivariate case is trivial.
Now, we consider the multivariate case. Putting z, = 0, let Q;, and Q3 be

the value of Q;q and Qd when z, = 0, respectively; then @;,_, y = 0 and

PlQO‘d + P2Ql,d +---+ Pn-—lQn—2,d = Qd, (A29)
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where Q;q € ¥;4 and Qd € \f/d, becomes
PV g+ P UQ 4+ PV Qs = G (A.30)

Since |A(n—1,d)| = 0is the condition that (A.30) satisfies, either |A(n—1,d)] =0
or Qo -+ @34 Q3 all vanish. In the latter case, dividing z, out of each

Qogs- s @z Q7 in (A.30) we have the degree d — 1 cquation

PiQod-1+ P2Quac1 ++ + PociQuoza-1 = Qu_r. (A.31)

Hence, the part played by z¢ in (A.29) is now taken by z%~! in (A.31). So
that in (A.31), any monomial is reduced or non-reduced in z, means that it is
non-divisible or divisible by zd=-!.

Again, putting z, = 0 in (A.31), we have that either [A(n —1,d = 1) =0, or
(A.29) still holds with d reduced to d — 2 and z% to zd~'. Proceceding in this
way, we find that

dn=1

|A(n,d)| = [B| ][] |A(n - 1,d - p)|, (A.32)

p=0

where |B| is the determinant whose vanishing is the condition that (A.29) holds
when d is reduced to d — d, and z, to 29 = 1. Thus, cach Qd_j for0<j<d,
is now non-reduced in z,, and consequently Q;a_d, is in Qi 4_q,, and Qq_q, = 0,
since it is reduced in z,...,7,_; and of degree d — d,,. Therefore, (A.27) becomes

the degree d — d,, equation
PiQod-d, + PaQrg-d, + -+ 4 Prc1@n-2,d-d, = 0, (A.33)
where Q; 4-4, € Qid-d4,. By Lemma A.4 we have

d-1
B = [] MUY ~1,d-p). (A.34)

p=dy
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Therefore, A(n,4) = AM(n,d). 0O
Like the bivariate case, the second important property of R(n,d) = R(n) is

given in the following theorem.

Theorem A.6 : The resultant R(n) of Pi, Py, ..., Py is irreducible in the sense
that it cannot be resolved into two factors each of which is a function of the coef-
ficients of these polynomials. Furthermore, R(n) is invariant for a homogeneous
linear substitution

- t)T

, X = (z3,...,23)7, and B is a nonsingular n by n

where X = (Z1,...,Tn ,

maltriz.

Proof : [Mac16] We will prove that R(n) is irreducible by induction since for
the case n = 2 has already been shown.

Let R(n — 1) be the resultant of P L P and assume that R(n —1)

is irreducible.

Also, let Py,..., P;_;, be homogeneous polynomials in zi,...,Zn-2, %o where
P (x1,...,Tn-2,%0) = Pi(21,...,Tn-1%0, TnTo)

fori =1,...,n—1; then Ro(n—1) is the resultant of P},..., P;_; in z1,...,Zn2,
zo. Note that Ro(n — 1) is a polynomial in z,_1, Zn.

R*(n) denotes the resultant of Py, ..., Pi_1, Pun, in 231,...,Z, Where

- . (n) dn n d
Poy=Pu(0,... 201, %) = ¢ | g, 0Ty +0 0 F a((,'z”dna:n".

Let R%(2) be the resultant of Ro(n — 1) and P.y in z,_1 and z,. In addition,

D = D;/d, fori=1,...,n—1.
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Since the coefficient, @.., of zp"~' in P;_; is

)("—1)(mn)du—l ,

(A.35)

by (A.25) we have
Ro(n — 1) = Quzly + Qezn oy + - (A.36)

where @ and @, are functions of the coeflicients of Py,..., P._;. If 2, = 0, then

Ro(n — 1) becomes the resultant of Pi(z1,...,Zn_120¢) fori =1,...,n — 1. Thus,

Ro(n—1)=R(n — 1)(.‘127?:1 ),

or @1 = R(n —1). Also, Ro{n ~ 1) has a term, i.c., (A.26),

1 D? 2 * -2 D .
(aglf...,o) ! (a((,'g ,...,0)D7 e (“(()r,l...,d),,_,.o.o) "‘z(a--)D"”

where a.. is in (A.35). Hence, Q; has a term

»* l Do 2 Do _2 Do Do
Dn—lb"(ac(h!...,O) ’(03,32....,0) 2-~-(af),,l...,d),._.,.o,o) "-2(a..) "1,

and cannot be divisible by R(n — 1), because R(n — 1) does not involve b.,.

Therefore, we find that

Ro(n = 1) = R(n — 1)z2*, 4+ QozPri'z, + - - (A.37)

where @7 is neither zero nor divisible by R(n — 1).

Now, if R*(n)=0, then one of the solutions of P., = 0 will be the same as
.. = P,_; = 0. This solution is also the

in one of the solutions of P, = P,
01in xy,...,Tn_2, To; hence, the solution of

solution for Py = Py =...= P;_,
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P., = 0in z,_1, T, is also the solution for Ro(n—1) = 0. Thus, R*(n)=0 requires

RY(2) = 0. Let R*(n) be factored into the product of m irreducible factors, i.e.,
R*(n)= FAF:... Fu;

then there exists only one irreducible factor F; such that R°(2) is divisible by it,

viz, R%(2) = FiB;. On the other hand we have

RO(2) = (Rn = 1)*(6f)0,)% + Qalaf)) 1)) -

geenln

where Q3 = (—l)d"Qg"(agf_)wdmo) mod R(n — 1), so that Q3 is neither zero nor
divisible by R(n — 1). Also, R%(2) has an irreducible factor of the form (R(n —
1))¢» (agf_!"d")”+- .., and has no other factor involving R(n—1), i.e. the coefficients
of P, P,,...,Pa._1,and the coefficients of P.,. Hence, F; is this irreducible factor
of R%(2) because F; involves the the coefficients of P,Py,...,Piq, Pun.

Again, R*(n) is what R(n) becomes when all the coefficients of P, other than
those of P., are put equal to zero. Hence, R(n) has an irreducible factor of the
form (R(n - 1))""(a((,"'_{'dn)" + ..., where ¢ > p. The remaining factor of R(n)
is independent of the coefficients of Py, Ps,...,Po_1, and therefore also of the
coefficients of P, when n > 2. Hence, R(n) is irreducible.

It is easy to prove that R(n) is invariant. Suppose that R(n) = 0 and that
this is the only relation existing between the coefficients of Pi, P,,..., P.. Then
not more than one relation can exist between the coefficients of Py, P, ..., B,
the polynomials into which Py, P,, ..., P, are transformed. Since R(n) = 0 there
are less than Ny linearly independent members of the module (P, P, ..., Py) of
degree d, and therefore less than Ny linearly independent members of the mod-

ule (}51,132, . ..,P,,) of degree d. The single 1elation between the coefficients of
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(131,132,... ,P.), which will admit this is R(n), the resultant of (131,132, P,
being equal to zero. Hence, R(n) = 0 requires R(n) = 0, and R(n) is divisi-
ble by R(n). The remaining factor of R(n) is independent of the coefficients of
(Py, Py, ..., P). Therefore, R(n) is invariant. 00

The third important property of the resultant is given in the Product theorem.

Theorem A.7 : If P, is the product of two polynomials Qq,Q2 then the resul-
tant R(n,d) of P, Pa,..., Pn 18 the product of the resultants Ri(n,d), Ra(n,d) of
P,P,...,Q1 and P, Ps,.. Qo

Proof : See [Macl6]. OO

In practice we are interested in the value of the resultant for a certain spe-
cialization of the coefficients. By a specialization of the coefficients, we mean
the introduction of polynomial relations on the indeterminate coefficients, c.g.,
a(zl,g'o =1 or ag’g‘s — 3u. The difficulty arising here is the vanishing of |AM(n, d)|
for n permutations of the polynomials P;.

Example A.1: We have the following polynomials

Po= (tgy+2)e+y+22),

P, = (2z+2y+52)(2c+y+2)

P = (%z + %y + 2)(z + 2y + 22).
Notice that these polynomials do not have a common root, but for all 3 per-
mutations of Py, Py, Ps the determinants |[M(3,4)] and |AM(3,4)| are identically

zero. Hence, in this case we fail to find the resultant of this system by complete

specialization of the cocflicients.
One extreme is to compute the determinants |[M(n, d)| and |AM(n,d)| sym-

bolically, and then compute R(n, d) as a polynomial in all coefficients of the s
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However, this is a massive task, and generates terms of size double exponential in
d.

Since computing the resultant symbolically is very expensive, we can avoid it
by first computing |AM(n, d)|. If this value is nonzero then we compute |M(=n, d)|.
Otherwise, one chooses a different ordering of the polynomials. If for all such or-
derings, |AM(n,d)| is zero, the method of complete specialization fails. This
method is feasible because the cost of computing the determinants of the subma-
trices are relatively small compared with the cost of computing the determinant
of the Macaulay matrix. For this approach, Canny, Kaltofen, and Yagati [Can88]
have developed a new method to compute [M(n,d)| and |AM(n, d)|. This method
is based on two recent results in computational algebra. They used the Wiede-
mann’s [Wiede] fast method for computing the determinant of a matrix using a
linear number of matrix times vector operations. In the case of the Macaulay ma-
trix, the matrix times vector product can be shown to be equivalent to computing
a multivariate polynomial product in which the product is a dense polynomial
bounded in total degree. In order to compute this product, they make use of the
sparse interpolation algorithms [Ben-Or, Kalto, Zipple]. The method given here

computes the resultant in
O(nNZ2(log*(Na)log(logNg) + n))

arithmetic steps over the coefficient field, using O(Ny) locations for field elements.
The third approach that one can use is the partial coefficients specialization

method given in [Can87]. The basic idea here is to let

-

Pi(zy,...,2,) = P(a1,...,%.) + iz,

where w; are indeterminates. Notice that the u; appear on the diagonal of the



matrices M(n,d) and AM(n,d). Hence, the resultant R(n,d) is a polynomial in
u; and specializing u,,...,u, to zero, we obtained the desired resultanit. We can

speed up this method quite a bit by letting

A

Pzy,...,2,) = P,-(:L',,...,a;n)+u:z::-i',

where u are indeterminates, and k = |Xi4|l= min(|Xy4l, ..., |Xac1,4]). Then,
[M(n,d)| is a univariate polynomial in u of degree k, and |[AM(n, d)| is a univariate
polynomial in u of degree k— D;. Finally, we get R(n,d) is a univariate polynomial

in u of degree D;. The constant term of this polynomial is the desired resultant.



